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Abstract 

Magnocellular neurones (MCNs) are capable of secreting vasopressin and oxytocin 

from the somato-dendritic compartment, which can occur independently to secretion 

from nerve terminals.  One hypothesis of the mechanism that regulates this 

differential release is that dendrites utilise different vesicle pools compared to those 

found in terminals.   

 

Little is known for the function of neuronal dendrites, especially the mechanism for 

peptide release.  One theory is that vesicles stored in dendrites are non-released 

vesicles ready for recycling or degradation.  Immunofluorescent labelling was 

performed on hypothalamic slices of the transgenic rat where enhanced green 

fluorescent protein (eGFP) was tagged to vasopressin.  Lysosomes were detected by 

the lysosome-associated membrane protein LAMP1.  Correlation analysis of LAMP1 

labelling and VP-eGFP had shown that localisation of lysosomes in dendrites is 

positively correlated to loci of high vasopressin expression.  This suggests active 

degradation of vesicles in dendrites. 

 

It is not known whether preferential release of peptides occurs along the profile of 

dendrites.   Experiments were carried out using a temperature block to block exit of 

vesicles from the Golgi apparatus.  Release of the temperature block triggered release 

of a wave of newly synthesised vesicles from the Golgi apparatus.  Measurement of 

the fluorescent intensity of VP-eGFP showed that preferential release of peptides 

does not occur along the profile of dendrites.  

 

I have also utilised confocal live cell imaging to study the dynamics of dendritic 

vasopressin release using VP-eGFP slice explants.  Experiments using high 

potassium stimulation showed significant increase in the release of vasopressin after 

priming with thapsigargin (intracellular calcium mobiliser), in accordance to in vitro 

release and microdialysis studies.  These results demonstrate that live cell imaging 

can be achieved in magnocellular neurons, providing a robust model system in the 

study of dendritic peptide release. 

 

Large dense core vesicles (LDCVs) in other cell types such as bovine adrenal 

chromaffin cells were shown to segregate according to vesicle age, suggesting that 

vesicle age is an important factor in the regulation of peptide release.  Whether 

vesicles of different age groups exist in magnocellular dendrites is not known.  Thus, 

biolistic transfection with exogenous fluorescent proteins for expression under 

temporal control was carried out.  However, low transfection rate in magnocellular 

neurones and the high background fluorescence caused by scattered gold particles 

used as bullets for transfection deemed this method inappropriate for the purpose of 

imaging vesicles.  Hence, development of an adenoviral transduction system was 

employed.  By using an inducible adenovirus gene construct coupled with a 

fluorescent reporter gene, it is possible to visualise vesicle pool segregation under 

different experimental conditions.   Subcloning of a red fluorescent construct tagged 

to ppANF was tested on PC12 cells to show targeting of fluorescence expression to 

LDCVs. Successful production of an inducible adenoviral DNA with the red 

fluorescent construct insert was confirmed by PCR and DNA sequencing.  Whilst the 

generation of viral particles is still to be achieved, successful production of the virus 

will be an invaluable system for inducible gene expression in neurones.  
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1. INTRODUCTION 

 

Neurons transmit information via the release of neurotransmitters and 

neuromodulators.  Neurons also communicate with each other via synapses.  

Classical synapses connect axons from one neuron to dendrites of another, where 

information is passed on through neurotransmission.  In classical neurotransmission, 

dendrites have always been regarded as the “receiving” end of neurons in that they 

receive information from axonal afferent terminals and relay the information to the 

cell body.  Ramon Cajal (Cajal 1891) proposed that information flows in a 

unidirectional manner from dendrites towards the soma and then along the axons.  

This concept still applies to most of the information processing in neurons, but there 

is strong evidence that electrical signals not only travel from dendrites towards the 

cell body, but can be generated in dendrites and propagate from the soma into the 

dendrite (Stuart et al. 1997).  There is also evidence that dendrites can release neuro-

active substances like those found in the nerve terminals.  Studies on the dendrites of 

dopaminergic neurons in the substantia nigra (Cheramy et al. 1981; Conde 1992; 

Pucak & Grace 1994) demonstrated that their dendrites release dopamine, and the 

main functions of dendritic dopamine release is auto-regulation, modulation of 

neurotransmitter release from afferent terminals and modulation of activity in 

adjacent cells (Cheramy et al. 1981; Conde 1992; Pucak & Grace 1994).   

 

Dendritic peptide release from magnocellular neurons is amongst the most 

extensively studied. Magnocellular neurons can be described as vasopressinergic or 
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oxytocinergic, depending on which of either of the two hormones they synthesise and 

release.  Both hormones are released into the peripheral circulation via the posterior 

pituitary.  Vasopressin is best known for its antidiuretic properties (Bankir 2001) 

whilst oxytocin is crucial in lactation and believed to play a role in parturition 

(Luckman et al. 1993; Lee et al. 2008).  Oxytocin also acts on OT receptors in the 

kidneys and induce natriuresis (Verbalis & Dohanics 1991).  Early studies using in 

vitro preparations of the supraoptic nucleus (SON) and the paraventricular nucleus 

(PVN) of the hypothalamus have shown vasopressin and oxytocin release from these 

hypothalamic nuclei (Moos et al. 1984).  Further studies found in vivo oxytocin 

release in the SON during the milk ejection reflex (Moos et al. 1989).  Vasopressin 

release in the SON and the PVN has also been measured in vivo in response to 

osmotic stimulation (Landgraf & Ludwig 1991).  The SON is made up of 

vasopressin- and oxytocin-expressing magnocellular neurons and axons of these 

neurons all project to the posterior pituitary, leaving the soma and dendrites in the 

nucleus.  This anatomical arrangement suggested that vasopressin and oxytocin 

release in the SON came from release from either the soma or the dendrites, or both, 

of magnocellular neurons. The PVN contains vasopressin- and oxytocin-releasing 

magnocellular neurons as well as parvocellular neurons, which secrete other neuro-

active peptides such as corticotrophin-releasing hormone (CRH), thyrotropin-

releasing hormone (TRH) and vasopressin.  Moreover, the PVN receives 

vasopressinergic inputs from the suprachiasmatic nucleus (SCN) (Kalsbeek et al. 

1993).  This makes it difficult to study dendritic vasopressin release in the PVN.  

Hence, the SON is often used as a model system to study the mechanisms of 

dendritic release.  This chapter aims to introduce the vasopressin and oxytocin 
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systems, focussing on the regulation, physiological significance, and mechanisms of 

dendritic peptide release of magnocellular neurons.   

 

 

1.1 The Vasopressin and Oxytocin Systems 

1.1.1 Architecture of the Vasopressin and Oxytocin Systems 

Vasopressin-expressing magnocellular neurons are located in the ventral part of the 

SON and more medial part of the PVN and oxytocin-expressing neurons are located 

in the dorsal part of the SON and lateral part of the PVN (see Figure 1-1 for 

immunohistochemical staining of vasopressin and oxytocin in the hypothalamus).  

Magnocellular neurons have large cell bodies (20 – 40 µm in diameter) which 

contain one to three dendrites (Armstrong et al. 1982; Dyball & Kemplay 1982).  

Vasopressin and oxytocin producing neurons in the SON generally have a single 

axon that projects to the posterior pituitary terminating on capillaries where peptides 

are released into the blood stream (Fisher et al. 1979).  The magnocellular neurons in 

the PVN have the same morphology but their dendrites project to the parvocellular 

part of the PVN, towards the third ventricle (Armstrong et al. 1980).  Axons of 

magnocellular neurons in the PVN also terminate in the neural lobe (Alonso & 

Assenmacher 1981).  The parvocellular neurons in the PVN project to the median 

eminence (Vandesande et al. 1977), nucleus tractus solitaries (NTS), brain stem and 

spinal cord (Swanson & Sawchenko 1983), and limbic area (Buijs & Swaab 1979).  
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For the purpose of this thesis, the introduction is going to focus on vasopressin- and 

oxytocin-expressing magnocellular neurons in the SON. 

 

Magnocellular neurons have very simple dendritic morphology and dendrites 

generally contain few dendritic spines (Armstrong 1995).  Branching in dendrites 

was also found to be rare.  Vasopressin and oxytocin dendrites have the same 

morphological properties in the SON and in the PVN.  Dendrites of SON neurons 

extend ventrally and run adjacent to the ventral glial lamina for hundreds of 

micrometers providing extensive coverage of the brain surface and contact to 

cerebrospinal fluid (CSF) (Morris 2005). Along the profile of dendrites, large 

dilations were found to be filled with secretory vesicles (Sofroniew & Glasmann 

1981) although vesicles are also contained in undilated parts.  Figure 1-2 shows the 

morphology of vasopressin-expressing magnocellular neurons in the SON. 

 

1.1.2 Actions of Vasopressin and Oxytocin 

Peripheral actions of vasopressin mainly include osmoregulation (Bankir 2001; Inoue 

et al. 2001; Bourque 1998) and blood pressure regulation (Aisenbrey et al. 1981).  

Osmoregulation is mediated through activation of Vasopressin-2 (V2) receptors 

found in the distal convoluted tubules and collecting ducts in the kidneys (Bankir 

2001).  Activation of Vasopressin-1a (V1a) receptors mediates vasoconstriction 

(Aisenbrey et al. 1981).  Oxytocin is important in parturition (Luckman et al. 1993) 

and lactation (Lee et al. 2008)).  Figure 1-3 shows the downstream signalling 
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pathways of the VP and OT receptors.  Actions of oxytocin are mediated through 

activation of oxytocin receptors found in the myometrium and mammary smooth 

muscles (Gimpl & Fahrenholz 2001).  In the brain, vasopressin affects the regulation 

of aggression in male and female rats (Caldwell et al. 2008b; Nephew & Bridges 

2008), facilitation of pair bonding in prairie voles (Cho et al. 1999; Insel et al. 1994), 

regulation of the stress axis via control of adrenocorticotropic hormone (ACTH) 

release (Aguilera & Rabadan-Diehl 2000), and regulation of circadian rhythm (Buijs 

et al. 2003).  The V1a receptor is the most abundant vasopressin receptor found in the 

brain (Zingg 1996).  V1b receptors are mainly found in the adenohypophysis and its 

main function is to stimulate secretion of ACTH from the anterior pituitary (Volpi et 

al. 2004).  Oxytocin acting on oxytocin receptors in the brain is involved in the 

regulation of maternal behaviour (Fahrbach et al. 1985; Pedersen & Prange, Jr. 

1979), sexual behaviour (Caldwell & Moe 1999; Melis et al. 2007), pair bonding 

(Insel & Hulihan 1995) and aggression (Bosch et al. 2005; DeVries et al. 1997; 

Winslow et al. 2000) in both male and female rats, facilitation of social memory in 

mice and humans (Lee et al. 2008; Rimmele et al. 2009), and regulation of stress and 

anxiety (Ring et al. 2006; Windle et al. 1997).  Since vasopressin and oxytocin 

released from the posterior pituitary enter the blood stream and do not cross the 

blood-brain barrier (Ermisch et al. 1993), the peptides found in CSF are a result of 

central release in the brain.  Sources of central release are the parvocellular 

vasopressin and oxytocin neurons of the PVN, vasopressin neurons in the SCN, and 

magnocellular soma and dendrites of the PVN and SON.  Concentrations of both 

peptides have been found to be high in CSF, indicating possible functions of peptides 

in the brain (reviewed in (Leng & Ludwig 2008).  Also, both vasopressin and 
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oxytocin receptors are expressed throughout the brain (Caldwell et al. 2008a; Gimpl 

& Fahrenholz 2001).   Vasopressin released from the parvocellular neurons 

stimulates ACTH release from the anterior pituitary by acting on V1b receptors (for 

review see (Antoni 1993) and acts as an important regulator of stress (Aguilera & 

Rabadan-Diehl 2000).  The suprachiasmatic vasopressin neuron also projects 

centrally to the PVN and releases vasopressin in a diurnal rhythm (Kalsbeek et al. 

1993; Kalsbeek et al. 1995).  Parvocellular oxytocin neurons mainly project to the 

brain stem and spinal cord and there, they are involved in the regulation of 

behaviours such as penile erection and yawning (Kita et al. 2006; Gimpl & 

Fahrenholz 2001) as well as modulation of nociception (Gerardo et al. 2010) via 

actions on oxytocin receptors.  However, these are the main sites of parvocellular 

neuronal projection and innervations of other sites in the brain where vasopressin and 

oxytocin receptors are expressed are sparse.   Vasopressin and oxytocin release from 

magnocellular neurones in the PVN is particularly important in the modulation of 

stress and anxiety-related behavioural response and also maternal behaviour in 

pregnant rats (Neumann et al. 2000; Neumann 2007).  Magnocellular neurons 

contain a large resource of vasopressin and oxytocin, where most of their peptides 

are stored in the soma and in dendrites (Morris & Pow 1988; Leng & Ludwig 2008); 

suggesting that somato-dendritic release could be a main source of vasopressin and 

oxytocin in the brain.  Vasopressin and oxytocin are cleared in the brain by 

aminopeptidases and have half-lives of 26 and 19 min in the CSF respectively (Mens 

et al. 1983).  Since both oxytocin and vasopressin have long half-lives in the CSF, it 

is possible for both peptides to act on distant sites in the brain, which are not 

innervated by the respective neurons, via diffusion (Ludwig & Leng 2006).   As 
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discussed above, dendrites of SON neurons extend for hundreds of micrometers 

providing coverage of a large portion of the brain surface (Morris 2005). The 

extensive coverage of the brain surface by magnocellular dendrites, and the fact that 

these dendrites are in close contact with CSF, offer an anatomical advantage to 

dendritically released peptides to act on distant sites.  

 

1.1.3 Evidence of Dendritic Peptide Release 

Several neuropeptides had been shown to be released from somato-dendritic 

compartments of different cell types.  Galanin, which was found to co-exist with 

vasopressin in magnocellular neurons (Melander et al. 1986), is thought to be 

preferentially targeted to dendritic compartments and is believed to exert 

autocrine/paracrine control on membrane hyperpolarisation (Landry et al. 2005).  

Dynorphin, the peptide opiate, is synthesised in granule cells of the dentate gyrus and 

the majority of the peptide was found to be located in dendrites where its release 

negatively regulates afferent inputs (Drake et al. 1994).  First evidence of dendritic 

peptide release from magnocellular neurons came from electron-microscopic studies 

with tannic acid fixation of dense core vesicles (Buma et al. 1984) applied to slices 

of the hypothalamus capturing exocytosis of vesicle cargo from dendrites (Pow & 

Morris 1989).  Studies using dendrosomes of magnocellular neurons, which are 

portions of dendrites isolated to form membrane-bounded structures, showed release 

of vasopressin and oxytocin by hyperpolarising stimulus via exocytosis (Pow et al. 

1990).  Measurement of vasopressin and oxytocin levels by in vivo microsampling 

also showed high concentrations of the peptides in the extracellular fluid of the SON 
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(Landgraf & Ludwig 1991).  In addition, secretion of vasopressin and oxytocin in the 

SON had been shown in vitro using high K
+
 to depolarise cells in slices (Mason et al. 

1986).  Since the SON has no afferent inputs of vasopressin or oxytocin, contain very 

few axon collaterals, and as mentioned above, vasopressin and oxytocin released into 

the blood do not cross the blood brain barrier, it is clear that the peptides measured in 

the SON in these experiments were released from the somata and dendrites of 

magnocellular neurons.  

 

1.1.4 Regulation of Dendritic Vasopressin and Oxytocin Release 

The SON receives inputs from the subfornical organ, the organum vasculosum of the 

lamina terminalis, the brain stem, the nucleus of the solitary tract, and the 

ventrolateral medulla (see reviews (Leng et al. 1999; Swanson & Sawchenko 1983).  

Aside from inputs from these areas, the SON also receives inputs from neurons just 

outside the nucleus in the perinuclear zone.  Figure 1-4 summarises the afferent 

inputs to the HNS (Burbach et al. 2001).  Glutamate and γ-Aminobutyric acid – 

GABA are the major excitatory and inhitory neurotransmitter input respectively.  

Other inputs include noradrenaline, serotonin, and dopamine.  Noradrenergic inputs 

are mainly derived from the medulla oblongata and induce an increase in the firing 

rate of both VP-ergic and OT-ergic neurones (Randle et al. 1984).  Serotonin input 

originates from the brain stem and was found to increase expression of OT but not 

VP in the SON (Vacher et al. 2002).  Dopaminergic input from the brain stem 

increases peripheral release of both VP and OT (Buijs et al. 1984).  In addition to 

peptidergic inputs from the brain stem, peripheral release of VP and OT are also 
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stimulated by angiotensin II (Ang II) which is important in salt and water 

homeostasis (Phillips 1987).  Intravenous and intracerebral injection of Ang II both 

stimulates increase in neuronal activity in the SON (Rowland et al. 1994b; Rowland 

et al. 1994a).  Moreover, direct application of Ang II to SON slice preparations 

increased the firing rate of magnocellular neurons (Okuya et al. 1987), indicating 

that magnocellular neuronal activity is also regulated by peripheral peptides. 

 

Many studies have been done on the regulation of dendritic vasopressin and oxytocin 

release, testing both physiological and pharmacological agents.  Ludwig 1998 

reviewed a list of physiological and pharmacological stimuli to dendritic vasopressin 

and oxytocin release.  Osmotic challenge (Landgraf & Ludwig 1991; Ludwig et al. 

1996b; Ludwig & Landgraf 1992), dehydration (vasopressin) (Ludwig et al. 1996b), 

and suckling during lactation (oxytocin) (Moos et al. 1989; Neumann et al. 1993b) 

all had effects on dendritic vasopressin and oxytocin release, suggesting a 

physiological role for dendritic release.   Agonist and antagonist treatment in the 

SON had also been demonstrated to affect dendritic peptide release, suggesting that 

these peptides act on vasopressin/oxytocin receptors in the SON to elicit their 

functions (Moos et al. 1984; Wotjak et al. 1994).  In a review article, Landgraf and 

Neumann (Landgraf & Neumann 2004) added a series of behavioural stimuli to this 

list such as social behaviour, maternal behaviour and a range of stress stimuli.  

Sabatier et al. (Sabatier et al. 2003) found that α-melanocyte-stimulating hormone 

activates dendritic oxytocin release.  All these findings indicate that the vasopressin 

and oxytocin system is regulated by a range of stimuli, which affects dendritic 
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vasopressin and oxytocin release to differing degrees. The physiological significance 

of dendritic peptide release during various physiological states including parturition, 

lactation, and dehydration is discussed below. 

 

 

1.2 Physiological Significance of Dendritic Peptide Release 

1.2.1 Morphological Plasticity 

Interesting morphological changes occur after the onset of parturition and during 

lactation.  At the end of pregnancy and in lactation, the dendrites of oxytocin neurons 

become bundled together without intervening glia (Theodosis & Poulain 2001), 

allowing synaptic boutons to contact more than one dendrite or cell body (Theodosis 

et al. 1998).  An increase in the general numbers of synaptic terminals were found 

and these terminals were found to be of GABA-ergic, glutamatergic and 

noradrenergic synapses (Theodosis et al. 1998).  Glial retraction promotes 

juxtapositioning of dendrites and somata, which could facilitate synchronisation of 

neuronal electrical activity (Theodosis et al. 2008).  These kinds of synaptic 

plasticity regress after lactation, depend on dendritic oxytocin release (Theodosis 

2002) and can be mimicked in in vitro slice culture of the rat hypothalamus using in 

vitro administration of oxytocin and the effect was blocked by oxytocin receptor 

antagonist (Langle et al. 2003).  These effects of oxytocin on synaptic plasticity are 

facilitated by female sex steroids (Montagnese et al. 1990).  Oxytocin gene 

expression had been shown to be increased by activation by sex steroids in the rat 
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(Crowley & Amico 1993) and oestrogen was shown to selectively induce vasopressin 

and oxytocin release from cell bodies and dendrites but not from axonal terminals 

(Wang et al. 1995).  This kind of neuronal modelling does not only occur during 

pregnancy and lactation, but also under acute osmotic stimulation where there is an 

increase in oxytocin synthesis and release (Beagley & Hatton 1992; Perlmutter et al. 

1985; Tweedle & Hatton 1984).  Vasopressin’s role in structural remodelling is 

unclear since osmotically induced morphological changes occur in Brattleboro rats, 

which lack vasopressin (Chapman et al. 1986). Synaptic plasticity and neuronal 

remodelling promote communication between afferent and efferent neurons and also 

between bundled oxytocin neurons.  This can facilitate synchronisation of electrical 

activity (Theodosis & Poulain 1992), however, it is not essential for synchronised 

burst activity of oxytocin neurons since burst firing was observed before neuronal 

remodelling, reviewed in (Russell et al. 2003), and that absence of neuronal 

remodelling, prevented by removal of the sialylated isoform of the neural cell 

adhesion molecule, shown to be a prerequisite to neuronal remodelling, did not 

inhibit burst firing of oxytocin neurons during parturition and lactation (Catheline et 

al. 2006).  Nevertheless, glial retraction and dendritic bundling encourage 

communication between oxytocin neurons and formation of glutamate and GABA 

synapses as a result is important in the fine tuning of oxytocin electrical activity. 

 

1.2.2 Parturition and the Milk-Ejection Reflex 

The role of centrally released oxytocin is important in parturition but not essential, as 

oxytocin gene knockout mice give birth normally (Young, III et al. 1996).  It had 



  Chapter 1 Introduction 

12 

been proposed that vasopressin could have compensated for the effects of oxytocin 

deficiency; supported by the fact that vasopressin can act on oxytocin receptors 

(Barberis et al. 1998).  Nevertheless, oxytocin release from the SON and PVN was 

found to be increased by 254% and 300% respectively during parturition (Neumann 

et al. 1993b), suggesting a role for central oxytocin release.  Moreover, oxytocin 

antagonist treatment after the onset of labour was shown to slow down the process of 

pup-delivery (Neumann et al. 1996).  At parturition, increase in local glutamate 

release stimulates dendritic release of oxytocin (Herbison et al. 1997), which acts on 

oxytocin receptors on oxytocin neurons to stimulate a positive feedback release of 

oxytocin in the SON (Moos et al. 1984).  Moreover, oxytocin cells inhibit 

neighbouring cells via the release of endocannabinoids (Hirasawa et al. 2004), which 

are also released centrally by oxytocin neurons.   This coupling of oxytocin neurons 

facilitates burst firing by enabling coupled neurons to be stimulated by a surge of 

glutamatergic activity (reviewed in (Brunton & Russell 2008).  Synchronised firing 

of oxytocin neurons mediated by dendritic oxytocin release can then facilitate bursts 

of oxytocin release from the posterior pituitary at parturition.  

 

In the rat, prolactin release is stimulated by oxytocin (Murai & Ben Jonathan 1987) 

and surges before parturition to prepare the mammary gland for the production of 

milk (Andrews 2005).  This trigger of lactation, together with oxytocin neuron burst 

firing results in milk ejection when stimulated by suckling.  The physiological aspect 

of dendritic oxytocin release was first shown in the milk-ejection reflex (Moos et al. 

1989).  It was shown that oxytocin antagonist administered to the SON disrupts the 
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milk ejection reflex by reducing burst amplitude and frequency of oxytocin neurons 

(Lambert et al. 1993), demonstrating the importance of centrally released oxytocin in 

the bursting behaviour of oxytocin neurons.  In lactating rats, oxytocin injection into 

the SON or PVN stimulated bursting activity in oxytocin cells (Moos & Richard 

1989).  Injection of oxytocin in one SON or PVN resulted in firing of oxytocin 

neurons in the contralateral nucleus and this effect is specific to the magnocellular 

nuclei since injection of oxytocin away from the SON and PVN did not result in 

synchronised burst activity (Moos & Richard 1989).  Direct evidence of central 

oxytocin release during the milk-ejection reflex came from in vivo push pull 

experiments where increase in oxytocin release was measured in the SON just before 

milk ejection (Freund-Mercier et al. 1988).  These evidences suggested a positive 

feedback mechanism where oxytocin facilitates its own release.  Moreover, this 

effect is specific to oxytocin since intra-cerebroventricular (icv) administration of 

vasopressin did not induce burst firing of oxytocin cells or milk let-down (Freund-

Mercier & Richard 1981).  Oxytocin facilitates oxytocin burst firing in the 

magnocellular nuclei and once the reflex is started, more oxytocin is released from 

the somata and dendrites to sustain the pulsatile release from the axon terminals in 

the posterior pituitary needed for foetus expulsion and milk let-down.   

 

1.2.3 Autonomic Control  

Vasopressin neurons respond to changes in plasma osmolality and peripheral 

vasopressin secretion results in high osmolality, leading to reabsorption of water in 

the kidney collecting tubules.  Systemic administration of hyperosmotic stimuli such 
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as hypertonic saline results in both vasopressin and oxytocin secretion from the 

posterior pituitary and also from the SON (Ludwig et al. 1994a).  Magnocellular 

neurons, being osmosensitive, respond to plasma osmolality changes not only by 

activation of cell surface osmoreceptors but by afferent inputs from 

circumventricular organs (for review see (McKinley et al. 2001).  Lesion of the 

anterior and ventral region of the third ventricle abolished intranuclear release in 

response to systemic hyperosmotic stimulation (Ludwig et al. 1996a).  Also, 

administration of tetrodotoxin, which blocks voltage-gated sodium channels and 

hence the generation of action potentials, diminished release of vasopressin and 

oxytocin in the SON in response to systemic hyperosmotic stimulation (Ludwig et al. 

1995), indicating the importance of afferent inputs in the regulation of dendritic 

peptide release in the SON.  Recently, nitric oxide (NO) has been implicated in 

dendritic vasopressin release in the SON in response to osmotic stimulus (Gillard et 

al. 2007).   Water deprivation (Ueta et al. 1995) and salt loading (Villar et al. 1994) 

increased nitric oxide synthase activity in magnocellular neurons.  Gillard et al. 

found that NO stimulated increased dendritic vasopressin release after systemic 

osmotic stimulation and this increase of dendritic vasopressin release was due to 

increase in glutamatergic signalling.  Hence, NO released from magnocellular 

dendrites enhance presynaptic glutamatergic input to vasopressin neurons, increasing 

dendritic vasopressin release and actions on V1a receptor activation (Gillard et al. 

2007). 
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It was found that different osmotic stimuli result in differential regulation of 

dendritic vasopressin release.  For example, water deprivation, but not salt loading, 

triggers vasopressin release in the SON after acute osmotic challenge, while release 

from posterior pituitary was unaffected (Ludwig et al. 1996b).  Salt loading depletes 

somato-dendritic stores of vasopressin and has a major impact on plasma sodium 

concentration while water deprivation has an impact on plasma volume.  The 

consequent dendritic vasopressin release after water deprivation is then due to 

activation of baroreceptors-mediated pathways.  Vasopressin is important in the 

regulation of cardiovascular function, and central vasopressin release from the SON 

was found to be important in blood pressure regulation (Toba et al. 1994).  The 

baroceptor pathway provides tonic inhibition of magnocellular neurons in the SON 

via activation of afferents in the NTS and GABA release from the perinuclear zone 

(Grindstaff & Cunningham 2001).  Angiotensin administration through icv increases 

vasopressin release from both the dendrites of the SON and PVN and the posterior 

pituitary (Moriguchi et al. 1994), in accordance to vasopressin’s role in blood 

volume regulation.  There is evidence that intranuclear vasopressin release is 

regulated by interactions between baroreceptor inhibition and chemoreceptor 

activation in the aortic arch and carotid body.  Denervation of baroreceptors was 

found to increase release of vasopressin and oxytocin from the posterior pituitary and 

in the SON after hyperosmotic stimulation (Callahan et al. 1997; Morris & 

Alexander 1989).   Hyperosmolar stimulation of the SON was also found to stimulate 

release of vasopressin from both the SON and neural lobe and this stimulus was 

found to increase mean arterial blood pressure (Ludwig et al. 1994b).  Application of 

a V1 receptor antagonist intravenously was found to have no effect on mean arterial 
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pressure, indicating that central activation of vasopressin release is important in 

regulation of blood pressure.   

 

1.2.5 Stress and Other Effects 

Vasopressin and oxytocin had been implicated in behavioural regulation where 

physical and emotional stress is implied, for example in forced swimming, it was 

shown that there was an increase in vasopressin and oxytocin release in the SON and 

PVN (Wotjak et al. 1998).  Interestingly, vasopressin release from the posterior 

pituitary, unlike oxytocin release, was not increased in parallel to release in the SON 

and PVN in forced swimming.  A more recent study using the morris watermaze as a 

swim stress paradigm showed that vasopressin release in the PVN, and oxytocin 

release in the SON, was increased during the swim stress (Engelmann et al. 2006).  

These increases in intrahypothalamic release also coincided with an increase in the 

plasma stress hormone (ACTH) levels.  Involvement of dendritic vasopressin and 

oxytocin release has been shown in other stress paradigms.  Microdialysis studies 

have shown that dendritic oxytocin release is involved in the male social defeat 

paradigm (Engelmann et al. 1999).  Moreover, oxytocin release in the PVN was 

found to be elevated in lactating female rats defending their litter (maternal defence) 

in highly aggressive rats (Bosch et al. 2005).  Meanwhile, oxytocin infusion to the 

PVN was found to reduce anxiety-related behaviour in male rats (Blume et al. 2008). 
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1.3 Mechanisms of Dendritic Peptide Secretion 

As discussed so far, dendritic release of vasopressin and oxytocin does not always 

match release from the neural lobe.  Stimulated secretion of vasopressin by 

dehydration or intravenous/intraperitoneal bolus hypertonic saline administration 

showed that vasopressin released in the SON is delayed compared to peripheral 

release, and occurs over a much longer duration (Ludwig et al. 1994a; Ludwig et al. 

1994b).  The spatial and temporal differences in peripheral and central release 

indicate differences in secretory mechanisms in the different cellular compartments.  

Immunocytochemical and electron-microscopic studies revealed peptide-containing 

dense core vesicles in the dendrites of magnocellular neurons (Pow & Morris 1989).  

These peptides, i.e. vasopressin and oxytocin, were found to be quite distal from the 

cell body and were contained in the classical 160 nm dense core secretory vesicles. 

However, little is known about the differential regulation of transport mechanisms of 

vesicles in dendrites compared to axon terminals.  It had been proposed that 

neurosecretory vesicles are transported to the dendrites in the same way they are 

transported down axonal microtubules (Pow & Morris 1989).   

 

Unlike release from axon terminals, dendritic peptide release from magnocellular 

neurons was not blocked by the sodium channel blocker tetrodotoxin (Scala-Guenot 

et al. 1987), suggesting that dendritic release is not potentiated by action potentials.  

However, voltage-gated Ca
2+

 channels have been reported on somata and these Ca
2+

 

channel subtypes were found to be different to those in axon terminals (Fisher & 

Bourque 1995; Fisher & Bourque 1996).  Moreover, like stimulated release from 
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axon terminals, Ca
2+

 was found to be important in dendritic release of magnocellular 

neurons (Mason et al. 1986; Neumann et al. 1993b; Wang et al. 1995).  Hence, 

extracellular Ca
2+

 entry is important in triggering dendritic peptide release, but as 

discussed in more details below, it is not the only Ca
2+

 requirement for release.   

 

1.3.1 The Importance of Intracellular Calcium 

Under normal conditions, dendritic release of peptides does not occur from electrical 

stimulus.  However, dendritic vasopressin and oxytocin release was found to be 

stimulated by high K
+
 levels and is dependent on Ca

2+
 concentrations and central 

release of oxytocin induced by suckling in lactating rats was shown to be diminished 

by microdialysis with Ca
2+

-free solution (Neumann et al. 1993b).  Similarly, addition 

of K
+
 to hypothalamic slices stimulates vasopressin and oxytocin release and this 

release is blocked in Ca
2+

-free medium (Mason et al. 1986; Wang et al. 1995).   

 

The inhibition of vasopressin and oxytocin release in the absence of Ca
2+

 indicates 

that release is triggered by influx of Ca
2+

 through Ca
2+

 channels in the dendritic 

plasma membrane.  However, application of 100 nM oxytocin in a low Ca
2+

-EGTA 

buffer can induce oxytocin release by triggering Ca
2+

 release from intracellular stores 

(Dayanithi et al. 2000) meaning that calcium entry through the plasma membrane is 

important in the initiation of stimulus-triggered dendritic release but intracellular 

Ca
2+

 mobilisation is important in the maintenance of dendritic release.  These stores 

were found to be thapsigargin-sensitive stores of the endoplasmic reticulum – 
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thapsigargin inhibits the Ca
2+

ATPase found on endoplasmic membrane and hence 

inhibits endoplasmic re-uptake of Ca
2+

 (Lytton et al. 1991).  Oxytocin is thought to 

induce calcium release from thapsigargin sensitive calcium stores since application 

of oxytocin to isolated oxytocin cells after thapsigargin treatment did not induce 

further rise in intracellular calcium (Lambert et al. 1994) and oxytocin failed to elicit 

[Ca
2+

]i increase after prolonged exposure to thapsigargin (Dayanithi et al. 2000).  

Oxytocin can mobilise Ca
2+

 from intracellular Ca
2+

 stores via G-protein coupled 

oxytocin receptors on dendritic membrane or on the soma (Chevaleyre et al. 2000; 

Lambert et al. 1994; Moos et al. 1989).  Binding of oxytocin to its receptor activates 

PLC coupled to G-protein, which leads to conversion of phosphatidylinositol-4,5-

bisphosphate (PI(4,5)P2) to inositol triphosphate (IP3).  IP3 binds to IP3-sensitive 

receptors on the endoplasmic reticulum membrane facilitating release of calcium into 

the cytoplasm (Molnar & Hertelendy 1990) (Figure 1-3).  Thus, oxytocin released 

from dendrites could trigger sufficient intracellular Ca
2+

 release to sustain its own 

release, and this release could be long-lasting.   

 

Application of vasopressin to magnocellular neurons in the SON was also found to 

induce an increase in [Ca
2+

]i but this increase is not only due to the release from 

intracellular stores but activation of voltage-gated calcium channels on the cell 

membrane (Dayanithi et al. 2000).  Removal of extracellular Ca
2+

 completely 

abolished the effects of vasopressin and continuous application of vasopressin was 

found to desensitise the calcium response.  Similar to oxytocin neurons, vasopressin 

neurons contain thapsigargin-sensitive calcium stores (Dayanithi et al. 2000).  
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Thapsigargin was also found to stimulate vasopressin release from isolated SON 

preparation by inducing a rise in intracellular [Ca
2+

] (Ludwig et al. 2005).  

Application of thapsigargin to vasopressin neurons in Ca
2+

-EDTA buffer elicited an 

increase in [Ca
2+

]i, demonstrating that intracellular calcium release can contribute to 

vasopressin induced increase in [Ca
2+

]i (Dayanithi et al. 2000).  However, prolonged 

stimulation by thapsigargin did not abolish the vasopressin induced rise in Ca
2+

, 

unlike in oxytocin neurons, further confirming the importance of extracellular Ca
2+

 

influx in vasopressin neurons. Dendritically released vasopressin can act on V1 

receptors to facilitate further vasopressin release through coupling to different second 

messenger systems.  V1a receptor was found to be coupled to PLC and also activates 

adenylate cyclase (AC) (Sabatier et al. 1998).  Inhibition of protein kinase C (PKC) 

and protein kinase A (PKA) attenuated intracellular calcium release (Sabatier et al. 

2004) (Figure 1-3) pointing to a role in calcium channel phosphorylation.  There 

have been contrasting reports on whether V1b receptors were expressed in the SON 

(Hernando et al. 2001; Hurbin et al. 1998; Hurbin et al. 2002; Vaccari et al. 1998).  

V1b agonist was found to have no effect on intracellular calcium release (Sabatier et 

al. 2004) although V1b receptors are coupled to PLC via Gβλ-protein (Jard et al. 1987; 

Michell et al. 1979).  Hence, it is difficult to conclude whether V1b receptors play a 

physiological role in somato-dendritic release.   

 

1.3.2 Autoregulation 

One of the major functions of dendritic release is autoregulation.  Vasopressin and 

oxytocin are packaged with various neuro-active substances such as the endogenous 
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opioid dynorphin and the κ-receptor which dynorphin acts on (Shuster et al. 1999; 

Watson et al. 1982), providing an inhibitory effect on neuronal activity.   

Endocannabinoids, anandamide and 2-arachidonoyl glycerol, were found to be 

released from magnocellular neurons in an activity dependent manner to negatively 

regulate vasopressin and oxytocin neuronal activity by modulating presynaptic 

glutamate release (Di et al. 2005).  Nitric oxide synthase (NOS), the enzyme that 

synthesises NO, is found to be upregulated in the SON by a range of osmotic stimuli 

(Ueta et al. 2002).  NO can activate guanylyl cyclase in magnocellular neurons 

(Stern & Zhang 2005) which results in inhibition of calcium entry into the cell, 

leading to decrease in intracellular calcium concentration (Ignarro 1990).  NOS is 

expressed in both vasopressin and oxytocin neurons (Hokfelt et al. 1994) and seems 

to have a dual regulatory effect on vasopressin and oxytocin neurons in that NO 

tonically inhibits vasopressin and oxytocin neuronal activity but enhances dendritic 

vasopressin release during osmotic stimulation (Gillard et al. 2007).  Figure 1-5 

summarises the autocrine and paracrine actions of dendritic peptide release.   

 

Of interest is that vasopressin and oxytocin themselves can modulate neuronal 

activity by acting on different subtypes of receptors.  Early in vitro studies indicated 

that dendritic secretion of vasopressin and oxytocin act as autocrine and/or paracrine 

signals to modulate activities of vasopressin and oxytocin neurons (Gouzenes et al. 

1998; Richard et al. 1991).  This action of the magnocellular peptides is further 

demonstrated by the fact that vasopressin and oxytocin neurons express vasopressin 

and oxytocin receptors respectively (Hurbin et al. 2002; Freund-Mercier et al. 1994).  
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Furthermore, vasopressin receptors co-localise with vasopressin in the same 

secretory vesicles (Hurbin et al. 2002), indicating that vasopressin could act on its 

own receptors, which are delivered to the plasma membrane at the same time as the 

exocytosis of vasopressin.   

 

In parturition and lactation, dendritic oxytocin release was shown to facilitate axonal 

oxytocin release and dendritic oxytocin release has also been shown to enhance 

activity of oxytocin neurons during hyperosmolarity (Morris et al. 1993; Richard et 

al. 1991).  Oxytocin receptors are coupled to phospholipase C (PLC) (Gimpl et al. 

2008) which activates mobilisation of Ca
2+

 from intracellular stores.  This increase in 

[Ca
2+

]i activates exocytosis of large dense core vesicles (LDCVs) from oxytocinergic 

dendrites.  Unlike oxytocin, vasopressin’s modulation of vasopressin neurons is less 

straight forward.  Central application of vasopressin in the SON via microdialysis 

was shown to induce, and V1 receptor antagonist reduced, vasopressin release in the 

SON (Wotjak et al. 1994).  Since vasopressin acts on V1a/V1b receptors coupled to 

PLC to induce intracellular increase in Ca
2+

, it is not surprising that vasopressin acts 

on vasopressin receptors to increase dendritic release.  On the other hand, 

vasopressin was shown to inhibit phasic firing of vasopressin neurons via activation 

of V1 receptors (Ludwig & Leng 1997).  Icv administration of vasopressin was found 

to decrease plasma vasopressin concentration (Wang et al. 1982), suggesting an 

inhibitory role of dendritic vasopressin release on the activity of vasopressinergic 

neurons.  It was proposed that vasopressin’s activation of voltage-gated calcium 

channels induces rapid hyperpolarisation of vasopressin neurons leading to inhibition 
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of firing rate.  Moreover, it had been shown that vasopressin facilitates pre-synaptic 

GABA release by increasing GABA-ergic neuronal activity (Hermes et al. 2000), 

indicating that the inhibitory effects of dendritically released vasopressin could be 

mediated through modulation of inhibitory inputs.  Vasopressin has also been shown 

to reduce excitatory post-synaptic current acting on V1 receptors (Kombian et al. 

2000).  Dendritic vasopressin release was found to be temporally different from 

vasopressin release in the posterior pituitary under systemic hyperosmotic challenge 

or intranuclear osmotic stimulation via microdialysis (Ludwig et al. 1994a; Ludwig 

et al. 1994b).  Since dendritic release is delayed and outlasts release into the plasma, 

it was proposed that dendritic release of vasopressin stimulates further dendritic 

release until intranuclear vasopressin concentration reached a threshold that is able to 

trigger hyperpolarisation or increased GABA activity (Ludwig & Leng 1997; 

Ludwig 1998).  This function of dendritic vasopressin is proposed to sustain the 

phasic firing of vasopressin neurons where continuous stimulation does not induce 

maximal vasopressin release and phasic firing induce maximal vasopressin secretion 

(Ludwig & Leng 2006).  Moreover, there have been reports that both V1a and V1b 

receptors were found in the brain (Hurbin et al. 1998; Hurbin et al. 2002), leading to 

the speculation that the dual property of vasopressin’s effect on the firing rate of 

vasopressinergic neurons, is exerted via the activation of the two subtypes of 

receptors (Gillard et al. 2007; Gouzenes et al. 1998; Ludwig & Leng 2006).   

 

1.3.3 Facilitation of dendritic release via vesicle recruitment - priming 
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As mentioned above administration of thapsigargin to the SON was able to potentiate 

dendritic oxytocin release subsequent to an activating stimulus (Ludwig et al. 2002).  

In the same study, it was shown that application of an oxytocin agonist was able to 

generate the same effect.  The action of oxytocin inducing dendritic oxytocin release 

is important because basal spike activity or antidromic stimulation of oxytocin 

neurons do not stimulate dendritic oxytocin release (Ludwig et al. 2002).  However, 

after administration of thapsigargin or oxytocin to the SON, high-K
+
 stimulation 

causes a remarkable increase in dendritic oxytocin release (Ludwig et al. 2002).  The 

authors called this phenomenon the self-priming of dendritic oxytocin release where 

oxytocin acts on oxytocin autoreceptors to prepare oxytocin-expressing neurons for 

further activity-dependent release.  This potentiation of oxytocin release was shown 

to be long-lasting (increased oxytocin release 30, 60 and 90 min after thapsigargin or 

oxytocin pre-treatment).  Thus, oxytocin serves an important role in priming 

dendritic stores to enable activity-dependent dendritic oxytocin release for a 

prolonged period.  On the contrary, even though vasopressin could induce dendritic 

vasopressin release, it does not induce priming.  Priming of dendritic vasopressin 

release only occurs after thapsigargin pre-treatment (Ludwig et al. 2005), indicating 

the importance of intracellular Ca
2+

 mobilisation.   The priming action of oxytocin is 

also thought to be dependent on the release of calcium from endoplasmic stores since 

the oxytocin receptor is coupled to PLC (Gimpl et al. 2008), which can activate 

release of endoplasmic stores of Ca
2+

 via conversion of I(4,5)P2 to IP3.  A study 

based on quantifying the number of vesicles at 500 nm proximity to the plasma 

membrane showed that thapsigargin priming involves the recruitment of vesicles 

closer to the plasma membrane, making vesicles more readily releasable (Tobin et al. 
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2004) (see Figure 1-6).  In bovine adrenal chromaffin cells, it was found that dense 

core vesicle translocation to the plasma membrane during activity-dependent 

potentiation (ADP), a phenomenon similar to vesicle priming in dendrites where 

LDCVs were translocated to the plasma membrane, is dependent on F-actin 

disassembly and MAP kinase activity (Park et al. 2006). The level of activated MAP 

kinase was found to be correlated to the level of calcium influx and inhibition of 

MAP kinase was found to inhibit F-actin disassembly, leading to decreased ADP.  It 

is possible that the thapsigargin-induced rise in intracellular calcium concentration 

could activate similar mechanisms leading to LDCV translocation and exocytosis, 

however, this is yet unknown.  Similarly, actin remodelling was found to be 

important in the self-priming of gonadotrophin-releasing hormone (GnRH) on 

gonadotrophs, where exposure of gonadotrophs to oestrogen and subsequently 

GnRH, produced an enhanced secretory response from the gonadotrophs in later 

GnRH stimulation (Aiyer et al. 1974).  Inhibition of actin polymerisation by 

cytochalasin B was found to abolish the self-priming effect of GnRH (Lewis et al. 

1985).  Remodelling of the actin cytoskeleton was also found to be important in 

dendritic peptide release since active depolymerisation of F-actin by latrunculin was 

found to significantly increase high K
+
 induced dendritic peptide release and 

polymerisation of actin by jasplakinolide inhibited release in vitro (Tobin & Ludwig 

2007b).  Axonal release was found to be unaffected by the two drugs mentioned.  In 

the same study, thapsigargin-primed dendritic release of peptides was blocked by 

both the actin polymerising and depolymerising agents, suggesting that priming of 

vesicle release is affected by actin remodelling.  Further studies using the 

transcription inhibitor antinomycin D and the translation inhibitor cycloheximide 
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showed that priming in oxytocin dendrites was not prevented by these two drugs, 

indicating that priming of vesicles by thapsigargin is not dependant on de novo 

synthesis of vesicles (Tobin & Ludwig 2007a).   

 

So far, I have discussed that dendritic vasopressin and oxytocin release have 

important physiological effects and that release from dendrites is temporally and 

functionally separated from release in the neural lobe.  To understand the mechanism 

regulating release from magnocellular dendrites, it is important to understand the 

molecular machinery governing release itself.  The section below will concentrate on 

the regulation of exocytosis in reference to dendritic vasopressin and oxytocin 

release with comparison to axonal release. 

 

 

1.4 Exocytosis in Magnocellular Dendrites 

Ever since tannic acid fixation of dense core cargo in magnocellular dendrites (Pow 

& Morris 1989), it had been accepted that the magnocellular peptides are located in 

LDCVs and release of these peptides is via regulated secretion.  Vasopressin and 

oxytocin are both synthesised as preprohormones (the nonapeptide oxytocin or 

vasopressin are synthesised with their respective neurophysin and a glycopeptide in 

the case of vasopressin).  The function of neurophysin was found to be critical in 

sorting the prohormone into the regulated secretory pathway (Zhang et al. 2005).  

Abolishment of hormone-neurophysin association by point mutation in the 
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vasopressin domain was found to cause the prohormone to be trapped in the 

endoplasmic reticulum of neuroblastoma (N2a) cells (de Bree et al. 2003).  The 

processed prohormone (neurophysin and vasopressin/oxytocin) then enters the Golgi 

apparatus for further glycosylation and packaging into LDCVs (for review see 

(Brownstein 1983).  The hormones are then cleaved by enzymes that are packaged in 

the secretory granules along with secretory proteins such as chromogranin to mature 

(Loh 1987).  The secretory granule enters the regulated secretory pathway and 

releases its contents upon stimulus (Huttner et al. 1995).  Figure 1-7 summarises the 

regulated secretory pathway of neuroendocrine cells.  Upon activating stimuli, the 

plasma membrane depolarises, leading to calcium entry into the cell through voltage 

gated calcium channels, triggering fusion of vesicle membrane with plasma 

membrane, which results in release of the peptides, a process known as exocytosis.  

This regulated secretory pathway is different from the constitutive secretory pathway 

that is present in all cell types.  Constitutive secretion also involves vesicles 

packaged in the Golgi apparatus and release of vesicle cargo is also via exocytosis.  

However, in constitutive secretion, an external stimulus, like an action potential or 

plasma membrane receptor activation is not required (Kelly 1985).   

 

In axonal terminals, exocytosis of LDCVs is regulated by a plethora of proteins.   

The Soluble NSF (N-ethylmaleimide-sensitive factor) Attachment protein Receptors 

(SNARE) proteins were found to be critical (Jurgutis et al. 1996).  There are many 

different important members of the SNARE family which participate at different 

stages of exocytosis.  The regulated secretory pathway requires vesicles to be 
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transported from the cytoplasm to the plasma membrane, where they become docked 

and release their cargo when the correct stimulus arrives.  Molecular evidence of 

exocytosis in dendrites came from the findings that important parts of the exocytotic 

machinery are also found in magnocellular dendrites (de Kock et al. 2003; Schwab et 

al. 2001).  Many of these proteins have been identified in axon terminals, and 

proteins crucial for forming the SNARE complex, in which SNARE proteins 

anchored at the plasma membrane (t-SNAREs) and those that are found on vesicular 

membrane (v-SNAREs), have also been identified in dendrites of magnocellular 

neurons.  Synaptotagmin (Ca
2+

 sensor found on vesicular membrane), SNAP-25 and 

syntaxin (both t-SNAREs) were found in dendrites of neonatal hypothalamic neurons 

(Schwab et al. 2001).  Synaptobrevin (v-SNARE) has also been implicated in 

dendritic oxytocin release where membrane capacitance change was decreased in the 

presence of tetanus toxin which cleaves synaptobrevin in hypothalamic slice 

preparation (de Kock et al. 2003).  α-soluble-NSF-attachment protein (αSNAP) 

which has an important role in detaching the SNARE complex after exocytosis has 

also been reported in magnocellular dendrites (Morris et al. 2000).  In synaptic 

terminals, exocytosis involves recruitment of vesicles close to the plasma membrane.  

Three different pools of vesicles with different release properties and mobilisation 

kinetics have been found (Kuromi & Kidokoro 1998; Richards et al. 2003; 

Schneggenburger et al. 1999).  As discussed above, priming of vesicle release in 

magnocellular dendrites was shown to recruit vesicles to closer proximity to the 

plasma membrane and this recruitment did not require protein synthesis (Tobin et al. 

2004; Tobin & Ludwig 2007b).  This points to the possibility of the existence of 

differentially regulated vesicle pools in magnocellular dendrites, similar to those 
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found in axon terminals (Hsu & Jackson 1996).  The regulation of vesicle pools is 

further discussed below. 

 

1.4.1 Vesicle pools 

Much of our understanding of vesicle pools came from studies of synaptic vesicles 

(SVs).  Most synaptic terminals rely on three vesicle pools for neurotransmission: the 

readily releasable pool (RRP), the reserve pool (RP) and a recycling pool of vesicles 

(Rizzoli & Betz 2005).  Studies in synaptic terminals revealed that neurotransmitter 

release from vesicles displayed differences in kinetics within the same terminal 

(Kuromi & Kidokoro 1998; Richards et al. 2003; Schneggenburger et al. 1999).  One 

store of transmitters releases readily upon electrical stimulation (RRP) and another 

that releases upon intense or prolonged stimulation (RP).  The RRP is made up of a 

small number of vesicles immobilised (docked) at the plasma membrane (Heuser et 

al. 1979) and the release of the RRP can be exhausted with high frequency electrical 

stimulation.  Since these vesicles are docked at the plasma membrane, they are 

available for instantaneous release upon stimulation.  Moreover, these vesicles are 

gathered at “active zones” where there is a concentration of Ca
2+

 channels (Neher 

1998)and hence, upon activating stimulus, influx of Ca
2+

 through voltage dependent 

Ca
2+

 channels trigger exocytosis of the vesicles docked at these sites (Murthy & De 

Camilli 2003).  This concentration of Ca
2+

 channels means that a high level of Ca
2+

 

does not have to be reached in the whole cell but only at active zones.  The proximity 

of vesicle pools and Ca
2+

 channels also mean that activation of exocytosis is a quick 

process.  However, as opposed to SVs release, LDCV release in magnocellular nerve 



  Chapter 1 Introduction 

30 

terminal and in magnocellular dendrites does not seem to be associated with active 

zones since release is possible at all areas of the dendritic plasma membrane (Pow & 

Morris 1989).  The non-association of vesicle release and active release sites is 

probably one of the reasons why latency to release after stimulation is longer in 

peptide-secreting neurons.  Moreover, in axonal terminals, recycling SVs also 

facilitate quick exocytosis via rapid endocytosis which enables endocytosed vesicles 

to be re-released by joining a recycling vesicle pool (Harata et al. 2001).  The 

recycling pool of vesicles is an intermediary pool found between the RRP and RP.  It 

contains more vesicles than the RRP but less than the RP and is released under more 

prolonged stimulation than required for RRP release, but less than required for RP 

release (Harata et al. 2001; Kuromi & Kidokoro 2003).  There is a possibility that the 

recycling pool of vesicles is made up of vesicles that has gone through ‘kiss-and-run’ 

exocytosis, where vesicles fuse with the plasma membrane, release part of their 

cargo content, and are quickly retrieved, whereby then they join the recycling vesicle 

pool which can be mobilised when the RRP is depleted (Aravanis et al. 2003).  

‘Kiss-and-run’ exocytosis has recently been demonstrated in LDCV secretion from 

the soma and neurites of cultured hippocampal neurons (Xia et al. 2009).  Vesicles 

which have partially released their contents were also shown to re-participate in 

release within a short period of time, suggesting that a recycling vesicle pool might 

be present in the LDCV secretory pathway.  This has also been shown in mouse 

chromaffin cells where endocytosed LDCVs can be re-recruited for release (Bay et 

al. 2007).  However, a recycling vesicle pool has yet to be demonstrated in 

magnocellular dendrites.  The third vesicle pool, the RP, is the largest pool and is 

released only after the depletion of the RRP and the recycling pool.  The 
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physiological function of the RP is unclear since physiological stimulation does not 

mobilise this pool.  However, release of RP vesicles under prolonged stimulation 

suggests that this vesicle pool act as a reserve of vesicles which can be released 

under high physiological demand (Kuromi & Kidokoro 1998).   

 

Given that the neural lobe contains ~1.48 x 10
10

 vasopressin and around the same 

number of oxytocin vesicles (Leng & Ludwig 2008), there seems to be an excessive 

amount of peptides stored in the neural lobe.  In the magnocellular oxytocin system, 

the milk-ejection reflex releases about 0.5 pg of oxytocin per burst fired (~5 vesicles 

from all the oxytocin terminals in the neural lobe) (Leng & Ludwig 2008), leaving a 

large pool of vesicles unreleased.  It was also found that each dendrite and soma 

contains ~15000 oxytocin vesicles and ~60000 for vasopressin (Leng & Ludwig 

2008).   Since the biggest pool of vesicle comes from the RP, it is intriguing as to 

why the magnocellular cells contain such a vast amount of vesicles that do not 

release under normal physiological stimulation.  However, unlike SVs that are 

replenished by endocytic recycling of neurotransmitters near the plasma membrane 

(Morris & Schmid 1995), LDCVs have to be synthesised and packaged in cell 

bodies.  Since sites of release are often far away from the somata, it is probable that 

the abundance of vesicles stored in the RP in axonal terminals in the magnocellular 

neurosecretory system could serve a purpose in maintaining a constant supply of 

peptides in the event of prolonged shortage of water where vasopressin release has to 

be maintained until water is found, or in the case of oxytocin, an increased demand 

of milk from the young might require release from the RP and this may also apply to 
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dendritic release.  Magnocellular axonal terminals also contain a non-releasable pool 

of vesicles found in specialised swellings known as Herring Bodies (Heap et al. 

1975; Krsulovic et al. 2005).  It is not known whether dendrites also contain a non-

releasable vesicle pool.  This is further discussed in the next section. 

 

1.4.2 Regulation of LDCV pools 

Tobin & Ludwig postulated that cortical actin microtubules are involved in 

regulating vesicle pools in magnocellular dendrites (Tobin & Ludwig 2007a).  The 

involvement of F-actin in vesicle pool regulation has also been found to be key in 

bovine adrenal chromaffin cells (Vitale et al. 1995; Trifaro et al. 2000).  It was 

shown that magnocellular dendritic peptide release requires the depolymerisation of 

the filamentous or F-actin cytoskeleton beneath the plasma membrane (Tobin & 

Ludwig 2007a) since the actin polymerising agent jasplakinolide inhibited and 

latrunculin (actin depolymerising)  enhanced high K
+
 -induced peptide release.  

However, this is specific to dendritic peptide release since jasplakinolide did not 

block high K
+
-induced peptide release from axon terminals.  Latrunculin facilitated 

peptide release from the neural lobe but did not potentiate further release by high K
+
 

depolarisation (Tobin & Ludwig 2007b; Tobin & Ludwig 2007a).  Potentiation of 

peptide release in dendrites by K
+
 after latrunculin also indicates that actin 

depolymerisation can access a pool of vesicles inaccessible by K
+
 depolarisation.  

Involvement of F-actin in the regulation of exocytosis has been shown in other 

neuroendocrine cell types such as pancreatic β-cells (Wilson et al. 2001), isolated rat 

islet cells (Thurmond et al. 2003), bovine adrenal chromaffin cells (Vitale et al. 
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1995), and pheochromocytoma (PC12) cells (Matter et al. 1989). Jasplakinolide was 

shown to inhibit high K
+
-induced insulin release in pancreatic β-cells and latrunculin 

was shown to potentiate high K
+
-induced release (Thurmond et al. 2003; Wilson et 

al. 2001), much similar to the events in magnocellular dendritic peptide release.  In 

bovine adrenal chromaffin cells, disruption of F-actin increased the number of 

vesicles at subplasmalemal level indicating that F-actin is important in the regulation 

of movement of vesicles from the RP to the RRP (Vitale et al. 1995).  The two 

vesicle pools have been proposed to be linked by cytoskeletal elements, one of which 

is actin (Hirokawa et al. 1989).  Actin filaments has been implicated in the 

movement of vesicles and also translocation of RP vesicles to RRP (Doussau & 

Augustine 2000; Kuromi & Kidokoro 2003).  As discussed above, priming of 

oxytocin release involves translocation of vesicles to the plasma membrane, making 

them more readily releasable.  If priming does not involve de novo synthesis of 

vesicles and if actin is involved in the recruitment of vesicles during priming, then it 

is very possible that vesicles from a RP are recruited to the plasma membrane in 

dendrites during priming.  Figure 1-8 summarises the possible mechanism for 

oxytocin priming in magnocellular dendrites.  Hence, it is possible that regulation of 

dendritic peptide release is more similar to the regulation of LDCV release from 

endocrine cells than release from the neural lobe.  In bovine adrenal chromaffin cells, 

it had been shown that newly synthesised LDCVs become ‘docked’ at the plasma 

membrane soon after their biogenesis and join the RRP (Figure 1-9).  These newly 

synthesised vesicles were found to be docked at the plasma membrane and could be 

released by nicotine stimulation.  Matured LDCVs was found to make up the RP.  

These matured LDCVs were found to occupy the cell centre and were not 
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immediately released by nicotinic stimulation.  The same study showed that different 

sets of stimuli could stimulate the release of different vesicle pools independently 

(Duncan et al. 2003; Wiegand et al. 2003).  Hence, it was hypothesised that newly 

synthesised vesicles were docked at the plasma membrane for a short period of time 

and when exocytosis does not occur, they undock and translocate to the functionally 

different RP.  The underlying mechanism for this age-dependency on vesicle sorting 

is, however, unknown.  It is currently unknown whether dendrites also contain these 

functionally distinct pools of vesicles.   

 

Routing of LDCVs into dendrites can occur via several pathways.  LDCVs can be 

synthesised directly in dendrites, transported from the soma to dendrites, or 

transported retrogradely from axonal terminals.  One study found that deletion of a 

single nucleotide could prevent the targeting of vasopressin mRNA to the axons but 

not to the dendrites (Mohr et al. 1995).  This nucleotide deletion resulted in a 

disruption in the stop codon for mRNA translation.  Hence, it was proposed that 

peptide transport to the axon terminal occur after translation and since transport to 

dendrites was not disrupted, mRNA translocation to dendrites must occur before 

translation.  Magnocellular dendrites were found to contain ribosomes and rough 

endoplasmic reticulum, hence, mRNA may be translocated to dendrites for 

translation (Trembleau et al. 1994).  However, although Golgi elements were found 

in the proximal parts of dendrites (Ma & Morris 2002), polyribosomes were found to 

extend to distal locations of dendrites, making it unclear whether protein biosynthesis 

actually occur in dendrites.   It is unclear why mRNA is transported to the dendrite if 
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translation doesn not occur in dendrites.  Moreover, since elements of the GA, which 

is essential for vesicle packaging and is the last stage of vesicle synthesis before 

trafficking into the cytoplasm, were mostly found in the proximal parts of dendrites, 

close to the soma, translocation of vesicles still mainly occurs from the soma to 

dendrites  It had been proposed that neurosecretory vesicles are transported to the 

dendrites in the same way they are transported down axonal microtubules (Morris & 

Ludwig 2004).  In magnocellular neurons, another peptide, galanin, was found to be 

specifically routed to dendrites (Landry et al. 2003).  Galanin which was co-

expressed in the same LDCV as vasopressin was found to be targeted to the axon 

terminals whereas dendritically located galanin was mostly not found to be co-

expressed with vasopressin.  The mechanism of this routing, however, is not clear.  

Unlike the routing of galanin, specific targeting of vasopressin and oxytocin to 

dendrites has not been shown.  If vesicle pools can be regulated by age, would 

vesicle age affect the preference of translocation along the length of dendrites?   

Another interesting question is whether routing of LDCVs could be dependent or 

independent on vesicle age.  It is also possible that dendrites do not contain different 

pools of vesicles segregated by age, but instead, vesicles that are not released from 

the axon terminal may translocate in a retrograde fashion (Alonso & Assenmacher 

1983) to the dendrite, making up the dendritic pool of vesicles.    If dendritic vesicles 

were made up of retrogradely transported vesicles from the neuronal terminal, 

dendrites may also be important compartments for degradation since matured 

vesicles would eventually enter the degradation pathway (Broadwell et al. 1980; 

Krsulovic et al. 2005; Heap et al. 1975).  Since normal physiological conditions do 

not release all vesicles in magnocellular neurons, a vast amount of vesicles remain 
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unreleased.  In the magnocellular neuronal terminals, RRP vesicles enter endings of 

magnocellular terminals where stimulation triggers peptide release.  Unreleased 

vesicles join the RP in swellings where they could be re-recruited for release (Heap 

et al. 1975; Krsulovic et al. 2005).  However, a separate pool of vesicles was found 

in the specialised swellings, the Herring Bodies (Heap et al. 1975; Krsulovic et al. 

2005), which contain an abundance of lysosomes.  It is believed that unreleased 

vesicles are translocated to these specialised compartments for degradation.  

Moreover, it was found that vesicles which have entered these Herring Bodies could 

not be re-recruited for secretion, making up a non-releasable pool of vesicles.  It is 

uncertain whether magnocellular dendrites also contain a non-releasable pool of 

vesicles and whether magnocellular dendrites contain specialised compartments for 

degradation.  Although dilations were found in parts of dendrites (Sofroniew & 

Glasmann 1981), these dilations were not found to be different in properties from the 

rest of the dendrite.  Electron microscopy and immunohistochemistry have revealed 

the presence of lysosomes in magnocellular dendrites (Ma & Morris 2002), although 

the physiological significance of these lysosomes has not yet been verified.  If 

dendrites are important destinations for aged vesicles ready for degradation, then 

thapsigargin priming represents a unique way of recruitment of aged vesicles in 

magnocellular dendrites which does not occur in magnocellular axon terminals.  On 

the other hand, like their axonal counterparts, dendrites can contain specialised 

compartments for degradation, which will lead to the speculation of the presence of 

both newly synthesised and aged LDCVs.  Nevertheless, evidence of the existence of 

different vesicle pools in magnocellular dendrites is still lacking and questions about 

whether these vesicle pools, if they exist, can be differentially regulated, would be 
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essential to understanding the mechanisms of vesicle priming and vesicle release in 

magnocellular dendrites. 

 

 

1.5 Hypothesis 

The dynamics of dendritic release of vasopressin and oxytocin has been extensively 

studied.  However, the mechanisms that govern dendritic release of peptides are still 

unknown.  Meanwhile, dendritic peptide release had been shown to be temporally 

segregated from axon terminal release (Ludwig et al. 1994a) indicating that 

mechanisms governing release at the two ends of a neuron can be different.  

Evidence of vesicle priming in magnocellular dendrites (Ludwig et al. 2002) and 

study inducing actin (de)polymerisation (Tobin & Ludwig 2007b) suggested the 

existence of differentially regulated vesicle pools. It had been shown that priming did 

not require synthesis of new proteins (Tobin & Ludwig 2007a), pointing to the 

existence of a reserve pool of vesicles in magnocellular dendrites that are made up of 

aged vesicles and can be recruited.  It is likely that vesicle pools exist in dendrites 

and these vesicle pools are differentially regulated to those found in axon terminals.  

The hypothesis of this thesis is that vesicle pools exist in magnocellular dendrites and 

these vesicle pools may be differentially regulated.   The aim of this study is to find 

out the mechanisms of vasopressin release in dendrites by addressing the question of 

how LDCVs are organised in and released from dendrites of magnocellular neurons.   
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With the production of a transgenic rat line where endogenous vasopressin is tagged 

to enhanced green fluorescent protein (VP-eGFP) (Ueta et al. 2005), it is now 

possible to visualise vasopressin-containing cells under fluorescence without pre-

treatment.  The transgene used to produce VP-eGFP transgenic rats consists of the 

eGFP coding sequence inserted in exon III of the VP structural gene (Figure 1-10).  

VP-eGFP mRNA and eGFP fluorescence in the SON and PVN was shown to be 

increased after dehydration for 2 days, in accordance with normal physiological 

response of endogenous vasopressin (Ueta et al. 2005).  Further electrophysiological 

recordings by the authors confirmed that eGFP-expressing cells have membrane 

properties characteristic of vasopressin cells.  Because the SON only contain 

magnocellular cell bodies and dendrites, with very few vasopressinergic axonal 

collaterals, it is feasible to dissect out the SON and study specifically the dendrites.  

Previous studies expressing a similar VP-eGFP chimera in PC12 cells has found that 

the VP-eGFP transgene enters the regulated secretory pathway (Zhang et al. 2005).  

Hence, eGFP targeted to LDCVs is an ideal tool to study the dynamics of vesicle 

pools in magnocellular dendrites.  Since vasopressin is endogenously tagged to 

eGFP, identification of vasopressin and vasopressin-expressing neurons does not 

require immunohistochemical labelling of vasopressin.  This helps avoid the 

disadvantages of immunohistochemical labelling where the level of peptide detection 

hugely depends upon the method of tissue fixation.  Correlation studies of 

endogenous VP-eGFP with lysosomes in magnocellular dendrites can be carried out 

to investigate whether dendrites are important destinations for aged vesicles and also 

whether dendrites contain compartments for degradation by analysing the amount of 

endogenous VP-eGFP where lysosome staining is seen.  Endogenous tagging of VP-
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eGFP also allows for the tracing of vesicles along dendritic profiles according to age 

by using a timed release protocol following a block in vesicle exit from the Golgi 

apparatus (GA).  LDCV release from the GA is inhibited at 20
o
C (Saraste et al. 

1986).  By inhibiting LDCV release from the GA and releasing this exit block by 

increasing incubation temperature of in vitro hypothalamic slices, it is possible to 

trace LDCVs that are newly packaged and released from the GA. This investigation 

allows one to study whether newly synthesised LDCVs are translocated to dendrites 

and also, whether these vesicles are preferentially targeted along the profiles of 

dendrites.  In addition to the in vitro visualisation of eGFP-tagged vasopressin 

LDCVs in magnocellular dendrites, one of the most interesting aspects that is 

afforded by the use of endogenous VP-eGFP tagging is the possibility for live cell 

imaging.  Using organotypic slice explants of the hypothalamus, the soma and 

dendrites of magnocellular neurons are retained and can be cultured for up to weeks 

(Stoppini et al. 1991; Wellmann et al. 1999).  Live cell imaging of VP-eGFP-

expressing magnocellular dendrites in organotypic slice cultures coupled with 

differential stimulation offers a possibility to analyse release of LDCVs in terms of 

fluorescent intensities in living magnocellular neurons.  It is also possible to express 

a time stamp in these cells using either fluorescent compounds that change their 

fluorescent properties during maturation (Duncan et al. 2003; Terskikh et al. 2000) 

or an inducible fluorescent construct can be expressed where a pulse-chase time 

lapse protocol can be used to study regulation of newly synthesised and older 

vesicles in magnocellular dendrites to establish the existence of vesicle pools.  This 

study also allows for the use of different pharmacological interventions to study the 

functional significance in terms of vesicle release of the different vesicle pools 
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found.  The aim of this thesis is to establish the existence of vesicle pools in 

dendrites, and to study the regulation of these vesicle pools. 

 

 

1.5.1 Objectives 

It is not known whether vesicle pools in magnocellular dendrites are segregated by 

vesicle age and whether LDCVs destined for magnocellular dendrites are specifically 

targeted.  As discussed above, parts of the protein synthesis machinery are found in 

magnocellular dendrites (Ma & Morris 2002) but the non-association of the 

biosynthetic pathway makes the theory that LDCVs are synthesised directly in 

dendrites unlikely.  Retrograde transport from neuronal terminals to dendrites occurs 

in magnocellular neurons (Alonso & Assenmacher 1983) and hence, it is possible 

that the dendritic vesicle pool could be made up of retrogradely transported LDCVs.  

As unreleased LDCVs mature, they undergo degradation.  Hence, if the dendritic 

vesicle pool was made up of retrogradely transported vesicles, a high incidence of 

lysosomes will be expected in dendrites.  The first objective of this project is to 

establish whether magnocellular dendrites are important sites for vesicle degradation 

through labelling of lysosomes and correlation of lysosomal locations, and hence the 

importance of dendrites as a compartment for degradation, with density of VP-eGFP 

in those locations.  On the other hand, the dendritic vesicle pool may exist separately 

from the axonal pool.  The second objective of this project is to find out whether 

newly synthesised LDCVs translocate from the soma to the dendrites.  By blocking 
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vesicle exit from the GA, newly packaged VP-eGFP vesicles can be traced.  Tracing 

of the change in fluorescent intensity along dendritic profiles will provide an idea of 

whether newly synthesised vesicles translocate to dendrites, and also whether there 

are any preferential sites for translocation of newly synthesised vesicles.  The third 

objective is to study LDCV release from magnocellular dendrites via live cell 

imaging of cultured hypothalamic slices of the VP-eGFP transgenic rat.  This study 

will also look at the effects of thapsigargin priming in live magnocellular neurons.  In 

addition, to establish whether dendrites contain vesicle pools of different age and 

whether these vesicle pools were segregated by age, transfection studies will be 

carried out to express reporter proteins targeted to LDCV.  A fluorescent time stamp 

which changes colour as it matures over time can be used to image LDCVs of 

different age.  Another way to segregate vesicles by their age is by the expression of 

an inducible reporter protein via neuronal transfection where the induction of protein 

expression can be controlled.  By fixing or imaging magnocellular neurons at 

specific time points after induction of protein expression, LDCVs of different age 

can be visualised.  The final objective of this project is to establish a system whereby 

difficult to transfect magnocellular neurons can be transfected to express reporter 

time stamps for LDCV age visualisation. 
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Figure 1-1.  Coronal section of the hypothalamus showing the supraoptic and 

paraventricular nuclei (SON and PVN).  Immunofluorescent labelling shows 

vasopressin cells (green) are located in the ventral part of the SON and medial part of 

the PVN and oxytocin cells (red) are located in the dorsal part of the SON and lateral 

part of the PVN.  3V = third ventricle and OC = optic chiasm.  (Taken from Ludwig 

and Leng 2006). 
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Figure 1-2.  Coronal section of the hypothalamus showing the SON.  Cell bodies and 

dendrites of vasopressin expressing neurons (green) can clearly be identified.  OC = 

optic chiasm.  (Taken from Ludwig and Leng 2006). 
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Figure 1-3.  Downstream signalling pathways of VP and OT receptors.  V1a, V1b and 

OT receptors are coupled to PLC via Gq protein.  Activation of PLC leads to 

conversion of PIP2 to IP3 and DAG.  IP3 binds to IP3 receptors on membranes of the 

ER to activate Ca
2+

 release into the cytoplasm. DAG activates PKC.  V2 receptors are 

coupled to AC via Gs protein.  Activation of AC via Gs protein to induce cAMP 

production which activates PKA.  Figure adapted from (Dayanithi et al. 2000).
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Figure 1-4.  Afferent inputs to the vasopressin and oxytocin magnocellular neurons 

of the HNS.  DBB = diagonal band of Broca; LC = locus coeruleus; MnPO = median 

preoptic nucleus; NTS = nucleus of the tractus solitarius; OB = main and accessory 

olfactory bulbs; OVLT = organum vasculosum of the lamina terminalis; PNZ = 

perinuclear zones adjacent to the supraoptic and tuberomammillary nuclei; SFO = 

subfornical organ; SCN = suprachiasmatic nucleus; TMN = tuberomammillary 

nuclei; VLM = ventrolateral medulla. Figure obtained from (Burbach et al. 2001).   
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Figure 1-5.  Figure showing the different functional aspects of dendritic peptide 

release.  Dendritic peptide release is involved in the modulation of pre-synaptic 

transmission (red arrows = inhibition and green arrows = facilitation).   

Autoregulation of dendritic release occurs via modulation by dendritically released 

peptides and co-released substances such as opiods (enkaphalin and dynorphin), 

endocannabinoids, and nitric oxide.  In the case of oxytocin dendrites, oxytocin acts 

on paracrine oxytocin receptors to stimulate further oxytocin release.  Both 

vasopressin and oxytocin can act on dendritic autoreceptors to regulate neuronal 

activity (Ludwig & Leng 2006).  At the onset of parturition, during lactation, and 

during acute osmotic challenges, dendrites become morphologically plastic and 

bundling of dendrites occur due to glial retraction (Theodosis et al. 2008).  Nitric 

oxide tonically inhibits dendritic release but induced glutamatergic activation of 

dendritic release during stimulation (Gillard et al. 2007). Endocannabinoids released 

from magnocellular neurons contributing to retrograde signalling and inhibition of 

paracrine dendritic release (Hirasawa et al. 2004) which plays a role in 

synchronisation of dendritic oxytocin release during burst firing.  (Figure adapted 

from Ludwig & Pittman 2003). 

 

Glut NA GABA 

↑ Ca2+ 

Glial cell 
Dendrite 

OT 

 

 

Voltage-gated 

calcium channel 

Glutamate 

receptor 

Endocannabinoids 

 Nitric oxide 

Neurosecretory 

granule filled with 

vasopressin or 

oxytocin 

Afferent neurons 

releasing: GABA 

(γ-Aminobutyric 

acid); NA 

(noradrenaline); 

Opiods 



 

47 

 

 

 

 

Figure 1-6.  Electron micrographs showing dendritic distributions of dense core 

vesicles from (a) a control, (b) a salt-loaded control, and (c) a salt-loaded 

thapsigargin-treated rat.  Scale bar = 1 µm.  Dense core vesicles were found to have 

translocated to close proximity of the plasma membrane after thapsigargin treatment, 

making them more readily releasable.  (Figures taken from (Tobin et al. 2004) 
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Figure 1-7.  Simplified figure of the regulated secretory pathway.  Vasopressin and 

oxytocin are packaged with their respective neurophysins, and glycopeptide in the 

case of vasopressin, into secretory vesicles in the Golgi apparatus and enter the 

regulated secretory pathway.  Peptides concentrate in secretory vesicles and form 

dense core vesicles which translocate to the plasma membrane where they are 

docked and ready for release.  Upon stimulation, calcium enters through voltage 

gated calcium channels (VGCCs) which triggers fusion of vesicle and plasma 

membrane, resulting in release of vesicular cargo (exocytosis).  (Adapted 

from(Alberts et al. 1994)). 
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Figure 1-8.  Possible mechanism of priming of dendritic release.  Oxytocin binds to 

G-protein (G) coupled oxytocin receptor (OTR) which activates phospholipase C to 

convert phosphatidylinositol-4,5-bisphosphate (PI(4,5)P2) to inositol triphosphate 

(IP3).  IP3 activates IP3 receptors (IP3R) on the endoplasmic reticulum (ER) to release 

Ca
2+

 into the cytoplasm.  Increase in intracellular Ca
2+

 could cause vesicles in the 

reserve pool (RP, red) to join the readily releasable pool (RRP, green) docked at the 

plasma membrane (priming).  (Figure adapted from Ludwig & Leng 2006). 
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Figure 1-9.  Images from bovine adrenal chromaffin cells transfected with a 

fluorescent time-stamp that changes colour from green to red as the fluorescent 

protein matures within 16 hr showing that newly synthesised LDCVs (green) were 

docked at the plasma membrane while older vesicles (yellow and red) resided further 

inside the cells.  (Images taken from Duncan et al. 2003). 

 



 

51 

 

 

 

Figure 1-10.  Structure of the VP-eGFP transgene used to generate VP-eGFP rats.  

The eGFP coding sequence was inserted between exon III in frame with the VP 

structural gene, downstream of the VP promoter, and exons I and II of the VP gene 

and upstream of 3kbp downstream flanking sequence.  Figure adapted from (Ueta et 

al. 2005). 
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2. DEGRADATION SITES IN MAGNOCELLULAR DENDRITES 

 

2.1 Introduction 

The neural lobe contains a large amount of vasopressin and oxytocin (~1.48x10
10

 

vesicles of each peptide hormone) (Leng & Ludwig 2008).  This large store of 

vesicles is not all released under physiological stimuli.  High intensity in vivo acute 

electrical stimulation was shown to release approximately 10% of vasopressin from 

the neural lobe (Leng et al. 1994) (also reviewed in (Leng & Ludwig 2008).  Acute 

electrical stimulation in in vitro neural lobe preparations showed a similar percentage 

of release of both vasopressin and oxytocin (Bicknell & Leng 1981).  Chronic 

osmotic stimulation by salt loading released ~85% of vasopressin vesicles from the 

neural lobe, leaving ~15% unreleased (Ehrhart-Bornstein et al. 1990).  Hence, there 

seems to be three pools of vesicles in the magnocellular axon terminal: ~10 % of 

vesicles are readily released under stimulation, ~ 75% of vesicles released under 

prolonged stimulation, and a non-releasable pool.  The neurosecretory axons in the 

neural lobe are made up of different compartments consisting of undilated segments, 

endings and swellings (Heap et al. 1975).  Vesicles were proposed to arrive at the 

endings through the undilated segments, and become stored in the swellings if they 

were not released (Heap et al. 1975; Krsulovic et al. 2005).  A specialised 

compartment, known as the Herring body, was found to be filled with lysosomes 

(Dellmann & Rodriguez 1970) and was found to be the site of degradation for aged, 

non-released vesicles (Krsulovic et al. 2005).  Hence, the three different pools of 

vesicles found in the magnocellular neuronal terminals are stored in different 
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compartments.  In comparison, magnocellular dendrites typically contain ~60000 

vesicles of vasopressin per soma or dendrite and ~15000 vesicles of oxytocin (Morris 

& Pow 1991) (reviewed in (Leng & Ludwig 2008) and it is not known whether 

distinct vesicle pools exist and whether specialised compartments exist for 

degradation.  Regarding somato-dendritic release, high potassium depolarisation 

applied to the SON for 10 -15 min released ~2.5% of oxytocin vesicles (Ludwig et 

al. 2002), and 30 min microdialysis in the SON of suckling rats released ~10% of 

oxytocin vesicles from the somato-dendritic compartment (Neumann et al. 1993b; 

Neumann et al. 1993a).  Hence, it is possible that there are non-releasable vesicle 

pools residing in dendrites.  Moreover, magnocellular dendrites could be important 

sites for the storage and degradation of aged vesicles.  However, morphological 

studies of magnocellular neurons in the SON (Morris & Dyball 1974) have not found 

specialised compartments for degradation. 

 

There are three pathways in which substrates destined for degradation can be 

delivered to lysosomes: endocytosis, phagocytosis and autophagy (Luzio et al. 2007).  

The various lysosomal pathways are summarised in Figure 2-1.  Substrates such as 

ligand-receptor complexes from the plasma membrane enter the endocytic pathway 

where they are delivered to endosomes en-route to lysosomes.  There are several 

theories regarding the delivery of endosomal materials to lysosomes including 

maturation of endosomes into lysosomes, budding of vesicles from endosomes to 

fuse with lysosomes, a “kiss and run” vesicular fusion, and a hybrid formation model 

where endosomes and lysosomes fuse to form a hybrid organelle.  Each of these 
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models have been studied and reviewed and are not thought to be mutually exclusive 

of one another (Bright et al. 2005; Gu & Gruenberg 1999; Luzio et al. 2007; Murphy 

1991; Pillay et al. 2002; Storrie & Desjardins 1996).  Phagocytosis occurs in 

specialised cells and serves to engulf foreign materials like bacteria and other 

pathogens and also apoptotic cells to form phagosomes which fuse with lysosomes 

(Jahraus et al. 1998) and will not be discussed in this chapter.  Autophagy is the 

process in which spent and/or damaged organelles become degraded (Levine & 

Klionsky 2004).  Autophagy is thought to play a crucial role in the regulation of 

intracellular homeostasis and disruption in the autophagic pathway can lead to the 

development and progression of several neurodegenerative diseases (Boland & 

Nixon 2006; Gorman 2008; Jellinger & Stadelmann 2000).  Aged, non-released 

vesicles, like aged organelles, undergo degradation via the autophagic pathway.  

Ultrastructural studies of lysosomes in the magnocellular neurosecretory terminals 

had found that non-released neurosecretory vesicles were engulfed in toto in 

autophagosomes which were positively labelled for acid phosphatase, an acid 

hydrolase found in lysosomes (Whitaker & LaBella 1972).   Acid hydrolases are 

enzymes important for the hydrolysis lysosomal contents.  One acid hydrolase, 

Cathepsin D which is a protease, had been shown to increase in expression when a 

mutant transgene expressed in vasopressinergic neurons resulted in increased protein 

degradation by autophagy (Davies & Murphy 2002).  This, and other studies 

demonstrated that lysosomes are plastic organelles which increase in number and 

activity when the demand for degradation is high.  For example, when there is an 

increase in misfolded proteins which do not enter the secretory pathway (Davies & 

Murphy 2002); or when a dehydration protocol was exercised to stimulate release of 
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vasopressin where an increased amount of vesicular membranes retrieved after 

vasopressin release were sequestered for degradation (Whitaker & LaBella 1972; 

Kobayashi et al. 1962).   

 

In neurons, endocytosis had been shown to occur throughout the length of 

hippocampal dendrites and endocytosed material was found to be transported to the 

cell bodies where the lysosomes were found for degradation (Parton et al. 1992).  

However, evidence of lysosome staining had been seen in magnocellular dendrites 

(Morris & Dyball 1974).  Since dendrites can extend to hundreds of micrometers, 

endocytosed materials will have to travel for long distances if degradation only 

occurs in cell bodies.  There is evidence of autophagosomes, a double membrane 

structure which sequesters spent/damaged organelles and fuses with or mature to 

form lysosomes for degradation (Klionsky 2005; Levine & Klionsky 2004) in the 

dendrites of cerebral cortical neurons (Koike et al. 2005).  Even though there is no 

direct evidence of autophagososomes, lysosomes had been visualised in 

magnocellular dendrites (Ma & Morris 2002).   Moreover, as discussed above, 

dendrites may contain aged, non-released secretory vesicles.  Hence, it is possible 

that magnocellular dendrites are important sites for degradation, similar to the 

functions of Herring bodies for local proteolysis.  To investigate the significance of 

lysosomes and the regulation for lysosome expression in magnocellular dendrites, 

this chapter discusses lysosomal localisations in magnocellular dendrites by 

identification of lysosomes locations in correlation to peptide vesicle density.   
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2.2 Material and Methods 

2.2.1 Fixation by Transcardial Perfusion 

Four adult male transgenic VP-eGFP rats (200 – 300 g), were anaesthetised with 1 

ml sodium pentobarbitone and laid on their backs until response to toe pinching 

ceased.  A horizontal incision to the skin under the diaphragm was made and the 

chest was opened up by cutting through the rib cage on either side.  Whilst the heart 

was still beating, a blunted 21-gauge needle connected to heparin-saline (hep-saline) 

solution (appendix I) was inserted through the left ventricle into the aorta.  When the 

needle was in place, a small cut was made to the left atrium of the heart so that blood 

and perfusion solution could flow out.  The perfusion pump was then started and 

Hep-saline solution was perfused through the heart until the liver turned pale (100 – 

200 ml).  When most of the blood was cleared out by hep-saline solution, the 

perfusion solution was changed to 4% (w/v) PFA (appendix I).  Perfusion with 4% 

(w/v) PFA was performed until the animal was completely fixed (300 – 400ml).  The 

brain was removed and the hypothalamus was dissected into a block and stored in 

post-fix solution (15% sucrose w/v in 4% PFA (w/v)) at 4
o
C until the tissue block 

sank to the bottom of the container.  The tissue block was stored in cryoprotective 

solution (30% (w/v) sucrose in 0.1M PB) at 4
o
C overnight, and snap-frozen on dry 

ice.  The hypothalamus was subsequently sectioned using a freezing microtome.  52 

µm sections were collected in 0.1 M PB and stored in cryoprotectant (appendix I) at 

20
o
C until use.  
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2.2.3 Indirect Immunofluorescence Labelling for Free-floating Sections 

Sections were washed three times for 10 min in 0.1 M PBS (appendix I) if they were 

stored in cryoprotectant.  An orbital rotation platform was used at all the incubation 

steps described here.  The sections were first incubated in 50 mM NH4Cl for 10 min 

and then washed three times in 0.1 M PBS.  If sections were to be used immediately 

after cutting, the first three washes were not carried out.  After washing in 0.1 M 

PBS, sections were incubated in a blocking solution which contained 0.1 M PBS, 

0.3% (v/v) Triton X100, and 10% (v/v) pre-immune goat serum for 30 min at room 

temperature.  The primary antibody used to label lysosomes is the mouse monoclonal 

IgG raised against lysosomal associated membrane protein 1 (LAMP-1, LY1C6, 

Santa Cruz Biotechnology, Inc.) and recognises a single band at 120 kDa in Western 

blot of fibroblasts whole cell lysates (manufacturer’s specification).  LAMP-1 was 

found to be important in the regulation of cathepsin D distribution in the brain 

(Andrejewski et al. 1999) and together with LAMP-2, is required for the recruitment 

of the small GTPase Rab7 to autophagic vacuoles (pre-lysosomal bodies), impairing 

fusion with or formation of mature lysosomes (Eskelinen et al. 2004; Eskelinen 

2006).  Primary anti-LAMP1 antibody was added to the blocking solution at 1:50 

dilution (4 µg/ml) and sections were incubated in the primary antibody cocktail at 

4
o
C overnight.  Negative controls were carried out by replacing primary antibody 

incubation with pre-immune serum incubation.  The next day, the primary antibody 

was washed off three times in 0.1 M PBS for 10 min.  Then, a secondary antibody 

cocktail of 1:500 dilution of AlexaFluor 568 (Invitrogen) was made up in blocking 



  Chapter 2 Degradation sites in magnocellular dendrites 

58 

 

solution.  Slices were incubated in the secondary antibody cocktail at 4
o
C overnight.  

The secondary antibody cocktail was then washed off with 0.1 M PBS for three times 

10 min.  The sections were mounted onto gelatinised slides (appendix I), air dried 

and mounted with mowiol (appendix I, medium refractive index 1.4) mounting 

medium and coverslipped.  The mounting medium was left to cure overnight 

protected from light and sections were imaged once the medium was dry. 

 

2.2.3 Microscopic Image Acquisition 

The Zeiss LSM510 inverted microscope was used for all imaging.  The 488 nm line 

of the Argon laser was used to excite eGFP which has an excitation maximum of 488 

nm and an emission maximum of 509 nm.   A dichroic beam splitter, HFT 488, was 

in place and the excitation laser passed through two mirrors before the emitted light 

was collected by a band pass 500 – 550 filter.  The helium-neon 1 (HeNe1) laser line 

(excitation wavelength 543 nm) was used to excite the AlexaFluor 568 staining 

(excitation maximum 578 nm, emission maximum 603 nm).  The photomultiplier 

tube (PMT) settings and laser powers were kept exactly the same for all samples.  

The pinhole was adjusted to 1 Airy unit for confocal image acquisition.  Figure 2-2 

shows the excitation and emission filter settings used.  Images were acquired by 

sequential scanning to avoid bleed through of emitted light from either channel.  An 

x63 oil immersion objective (NA1.4) was used.  Images were acquired close to 

double Nyquist sampling rate to avoid under sampling (Nyquist calculator available 

at www.svi.nl).    3-dimensional images were obtained by scanning the x, y –planes 

at 60 nm, achieved by line scanning 1024 x 1024 pixels with an optical zoom of 2.4, 
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and intervals of 170 nm along the z-axis.  8 bit pixel depth, line averaging of 1 (no 

averaging) and maximum scan speed were chosen for image acquisition to avoid 

photobleaching. 

 

2.2.4 Image Processing  

The acquired stack of images was deconvolved to remove aberrations caused by the 

intrinsic physical properties of the microscope.  Deconvolution of images was 

achieved by use of the Huygens Essential software (Scientific Volume Imaging, NL, 

www.svi.nl) available in the IMPACT imaging facility in our centre.  The Huygens 

deconvolution software restores convolution in images taken by removing blurring 

caused by diffraction of light and noise introduced by the microscope photomultiplier 

tube.  Image restoration is based on the iterative application of a maximum 

likelihood estimate algorithm where the point spread function – the smallest 

fluorescent single point object that can be resolved in 3 dimensions by the 

microscopic parameters used, is used to calculate and reassign out-of focus light 

signals to the point of origin (Shaw PJ & Rawlins DJ 1991).   

 

The microscopic parameters used for deconvolution was set according to the 

parameters used for imaging: microscope type – confocal; numerical aperture – 1.4; 

lens immersion and medium refractive indices – 1.51 and 1.4; x and y sample sizes – 

60 nm; z sample size – 170 nm; excitation wavelengths – 488 nm, 543 nm; emission 

wavelength – 509 nm, 603 nm; excitation photon count – 1; pinhole = 1 Airy unit.  
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These parameters help the deconvolution software to calculate a theoretical point 

spread function used.  A signal to noise ratio is used in the software to control the 

sharpness of the restoration result of the image and can be calculated as the square 

root of the brightest intensity in the image divided by the average intensity of a single 

photon hit caused by photon noise.  Generally, the lowest signal to noise ratio, 3, was 

employed, assuming a very noisy image, so that no background noise would be 

enhanced by deconvolution.  Because of the calculations involved in deconvolution, 

8 bit unsigned images, where pixel intensities were described by 256 shades of grey, 

were converted to 32 bit float images where shades of grey can be described by 

1.17549435
e-38 

to 3.40282347
e+38 

values.   

 

 

2.3 Results 

2.3.1 Localisations of Lysosomes in Correlation with VP-eGFP in Dendrites 

26 dendrites from 4 rats were imaged according to the protocol described above.  

Images were selected with long profiles of dendrites where no overlapping with other 

dendrites could be seen clearly.  Lysosomes were located by going through optical 

sections in the z direction to ensure that stained lysosomes analysed were not from 

presynaptic terminals but occurred within the dendrites.  Images were separated into 

the green (eGFP signal) and red (LAMP-1 staining) channels using ImageJ 

(http://rsb.info.nih.gov/ij/).  The scale of the image was calibrated using ImageJ.  The 

two channels were merged into RGB colour images and locations where lysosome 
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staining was observed, an area of interest of 1 µm in diameter was drawn around it.  

This area of interest was saved and the same was carried out for the whole dendrite.  

Correlation analysis, but not colocalisation analysis, was carried out because lytic 

activity in the lysosome could change eGFP excitation and/or emission or simply 

deform the eGFP fluorophore.  Emission of green fluorescent protein is also highly 

pH sensitive (Tsien 1998).  Hence, the low pH, pH 4.5, found in lysosomes will 

greatly reduce the fluorescent intensity of eGFP.   Moreover, correlation analysis will 

give an idea of whether lysosomes are located where there is a high density of 

vasopressin eGFP vesicles.  After all the areas of interest were obtained, the red 

channel was switched off and the original 32-bit image of the green channel was 

used for a “SUM” projection of the image where pixel intensities were summed up in 

each column of pixels in the z-stack using ImageJ to take into account the whole 

dendrite in 3 dimension.  The saved areas of interest were then superimposed onto 

the green channel where mean VP-eGFP intensity measurements (density/area) were 

calculated for each area (spot intensity).  Areas of interest were also made for whole 

dendrites and mean VP-eGFP intensity measurements recorded.  Please refer to 

Figure 2-3 for a diagrammatic representation of the image analysis and an example 

of areas of interest drawn on a representative dendrite. 

 

To compare whether lysosomal locations are preferentially situated where there is a 

high density of vasopressin-containing vesicles, the difference between the mean 

spots VP-eGFP fluorescent intensity and the whole dendrite VP-eGFP fluorescent 

intensity was obtained and compared using the Chi-square test where positive 
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intensity = location of lysosome correlated to high VP-eGFP density, zero = no 

difference and negative intensity = location of lysosome correlated to low VP-eGFP 

density (all measurements are relative to whole dendrite VP-eGFP intensity).  Figure 

2-4 shows the Chi-square plot (mean spot intensity – mean whole dendrite intensity 

for each dendrite measured).  Chi-square test showed that the spot intensities were 

significantly different from zero (p<0.001) suggesting a positive correlation of 

lysosome locations and areas with high vasopressin vesicle density.  Figure 2-5 

shows optical sections of a portion of a representative dendrite in the z-direction 

where lysosome labelling is in red and VP-eGFP is in green.  It is clearly shown in 

these images that lysosomes were preferentially located at areas where there was 

high vasopressin density, suggesting that dendrites are important compartments for 

degradation.  

 

 

2.4 Discussion 

The Herring bodies in magnocellular terminals are filled with lysosomes and are the 

final destination for aged vesicles (Krsulovic et al. 2005) providing a local capacity 

for degradation where aged vesicles do not need to be transported back to the cell 

body.   It is not known whether dendrites, like neuhypophyseal terminals contain 

specialised compartments for degradation.  Magnocellular dendrites have been 

shown to contain lysosomes (Morris & Dyball 1974), however, their functional 

significance in dendrites is not known.  In hippocampal neurons, lysosomes were 
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found only in cell bodies and very proximal segments of dendrites, and endocytosed 

materials were found to be retrogradely transported to cell bodies, where lysosomes 

were found (Parton et al. 1992).  Having identified lysosomes in dendrites of 

magnocellular neurons in the present study, it is certain that local degradation occurs 

in this compartment.  Since magnocellular dendrites contain a large reserve of 

vesicles, it is possible that “centres” for degradation occur in the dendritic 

compartment.  In the present study, it was found that instead of clustering of 

lysosomes found in one special part of the dendrite, lysosomes were found to be 

located at areas where there was high density of vasopressin vesicles.  These hot 

spots for degradation were found throughout the dendrites.  Since magnocellular 

dendrites were not found to contain accumulations of lysosome clusters, it is unlikely 

that dendrites are the destination of all aged and non-released vesicles.  However, 

lysosomes were found where vasopressin-eGFP vesicles cluster suggesting that non-

released vesicles gather as a pool around these lysosomes or lysosomes were 

preferentially transported to these non-released pools of vesicles.  Dendritic 

lysosomal content is known to be variable where the number of lysosomes increases 

during high cellular activity, e.g. dehydration, and decreases during low activity, e.g. 

rehydration  (Morris & Dyball 1974).  Similarly, in axon terminals, lysosomes-

containing Herring bodies were found to be abolished during rehydration (Krsulovic 

et al. 2005) suggesting that Herring bodies are plastic structures that disappeared 

when old vesicles were spent and newly synthesised vesicles do not enter the 

lysosomal pathway.  Hence, it is likely that lysosomes are targeted to loci where 

there is a high demand for degradation; i.e. where pools of non-released secretory 

vesicles reside.  In the magnocellular neuronal terminal, the smooth endoplasmic 
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reticulum (SER) was found to contribute to the formation of lysosomes (Whitaker & 

LaBella 1972).  Elements of the rough endoplasmic reticulum (RER) had been 

shown in magnocellular dendrites (Ma & Morris 2002), however, elements of the 

SER had not been studied.  Hence, there could be two ways in which lysosomes are 

targeted to dendrites: 1) translocation from the soma to sites of aged, non-released 

vesicle pools in dendrites; and/or 2) local synthesis of lysosomes in dendrites.  

However, the capability of dendrites to synthesise lysosomes require further studies. 

 

In many different cell types, lysosomal degradation is a plastic process which 

increases in activity according to the demand of the cell.  Early studies in rat anterior 

pituitary cells showed that lysosomes have important functions in the regulation of 

prolactin secretion (Smith & Farquhar 1966).  When suckling pups were separated 

from lactating mothers, production of prolactin continued until there was an increase 

in the number of lysosomes and lysosomal enzyme activity.  In secretion deficient β-

pancreatic islet cells, increased autophagic activity was shown to control hormone 

content in the cells under stimulation for insulin production (Marsh et al. 2007).  

Autophagy was proposed to have roles in cell death and cell survival.  Inhibition of 

autophagy was shown to increase cell death in neuroblastom cells expressing a 

mutant VP transgene, indicating that autophagy acted as a cell protective mechanism 

(Castino et al. 2005a).  However, in the same model, autophagy-triggered apoptotic 

cell death was found in cells exposed to oxidative stress (Castino et al. 2005b). In 

cortical neurons, inhibition of autophagosome activity or fusion with lysosomes 

resulted in an accumulation of autophagic vacuoles, similar to that seen in 



  Chapter 2 Degradation sites in magnocellular dendrites 

65 

 

Alzheimer’s disease (Boland et al. 2008).  Disruption of the autophagic pathway in 

dopaminergic neurons was found to play a similar role in Parkinson’s disease 

(Cuervo et al. 2004).  In magnocellular neurons, autophagy has been shown to be 

linked to a specific form of diabetes insipidus (familial neurohypophysial diabetes 

insipidus, FNDI) (Davies & Murphy 2002).  Autophagy was found to be responsible 

for the degradation of mutated vasopressin gene product and also normal vasopressin 

gene product associated with the mutated form, leading to increased degradation of 

vasopressin and decreased secretion.  In magnocellular neurons of FNDI transgenic 

rats, increased lysosome staining was found in SON tissue preparations using 

western blotting (Davies & Murphy 2002).  Since the transgene used caused 

truncation of vasopressin gene product and did not affect the lysosomal pathway, it 

indicates that lysosomal activity increased in the somato-dendritic compartment 

when the demand for degradation increased and hence, controlled somato-dendritic 

hormone content.   

 

In addition to autophagy, dendrites participate in endocytosis and recycling of 

substrates.  In the magnocellular neuronal terminal, it was found that dehydration, 

which stimulates an increase in vasopressin release into the circulation, led to an 

increase in lysosomal activity (Whitaker & LaBella 1972).  In the same study, it was 

found that during dehydration, lysosomes contained microvesicles which were 

electron-translucent.  These electron-translucent microvesicles represent recycled 

membranes from endocytosis.  In control conditions, non-released neurosecretory 

granules were seen to be engulfed by autosomes.  This suggests that lysosomes are 
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not only important for degradation of non-released secretory vesicles but also 

important for membrane recycling after exocytosis.  Endocytosis in the 

magnocellular somato-dendritic compartment had been shown in isolated SON 

neurons from virgin and lactating rats and that the amplitude of endocytosis is 

directly proportional to the rate of exocytosis (de Kock et al. 2003).  This indicates a 

local regulation of plasma membrane content in the soma and dendrites.  Aside from 

local degradation, it has been found that materials endocytosed at the 

neurohypophyseal terminals undergo retrograde transport to enter the lysosomal 

pathway in the cell bodies and dendrites (Theodosis 1982).  Moreover, it was found 

that these endocytosed materials were sequestered in pre-existing lysosomes 

(Broadwell et al. 1980; Theodosis 1982) indicating that dendrites are involved in 

endolysosomal degradation of retrograde transported materials.  Endocytosis is an 

important pathway to lysosomal degradation and recycling of substrates (Maxfield & 

McGraw 2004).  Endocytosed substrates can either be delivered to lysosomes for 

degradation or be sorted for recycling in endosomes.  These substrates, including 

plasma membrane receptors, can be directly transported back to the plasma 

membrane for re-use or delivered to the Golgi apparatus where they are further 

sorted for degradation or recycling.  Since there is no evidence that magnocellular 

dendrites contain the Golgi apparatus, it is likely that substrates destined for sorting 

in the Golgi will be transported back to the cell body.  Further experiments will have 

to be carried out to find out whether endosomal sorting occurs in magnocellular 

dendrites.  In hippocampal neurons, functional differences in endocytic pathways 

were found between axonal and somato-dendritic compartments where brefeldin A 

changed protein distribution in the endocytic pathway of dendrites but not in axon 
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terminals (Mundigl et al. 1993).  This kind of functional difference has not been 

found in magnocellular dendrites.   

 

In the present study, it was also found that lysosomes are located in the centre of 

dendrites (observation, Figure 2-5).  As discussed in the previous chapter, in bovine 

adrenal chromaffin cells newly synthesised vesicles are preferentially targeted to the 

cell membrane and aged vesicles reside in the centre of the cell (Duncan et al. 2003).  

Since aged vesicles were shown to be associated with lysosomal degradation, 

(Krsulovic et al. 2005), this suggests that aged, non-released vesicles reside in the 

centre of dendrites allowing newly synthesised vesicles to be primed close to the 

plasma membrane in accordance with the findings in bovine adrenal chromaffin 

cells.   

 

In conclusion, the present study suggests that dendrites are not centres for 

degradation and recycling but contain hot spots of lysosomes where local 

degradation and regulation of peptide and membrane content occurs.  In contrast to 

magnocellular neuronal terminals, ultrastructural studies of the perikarya in the SON 

had shown that the number of lysosome bodies found after dehydration was 

unchanged (Morris & Dyball 1974), suggesting that release of neurosecretory 

vesicles, which subsequently leads to plasma membrane retrieval, from the cell soma 

is less significant than release from the neural lobe.  Interestingly, Morris & Dyball 

found an increase in the number of lysosome bodies in the perikarya after a 
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dehydration-rehydration regime.  The authors concluded that lysosomes found in the 

perikarya are important sites for the disposal (autophagy) of the biosynthetic 

machinery involved in the increased peptide synthesis during dehydration.  Whether 

the plasticity in lysosomal degradation in dendrites resembles that in the soma or in 

the neuronal terminal is unknown.  However, water deprivation and salt loading had 

been found to stimulate release of vasopressin from the SON (Ludwig et al. 1996b) 

and from magnocellular dendrites (Tobin et al. 2004).  Hence, it is possible that 

regulation of lysosomes in dendrites will be similar to that found in magnocellular 

neuronal terminal.  Nevertheless, this study showed that lysosomes are targeted to 

loci of high vasopressin expression indicating that lysosomes found in dendrites are 

important for the disposal of non-released LDCVs.  Whether lysosomal contents in 

dendrites change similarly to that found in neuronal terminals during chronic 

stimulation by salt loading or dehydration remains to be studied.  In neuronal 

terminals, lysosomes were found to contain recycled membranes after chronic 

stimulation (Whitaker & LaBella 1972).  Recycling of endocytosed substrates has 

been demonstrated in dendrites of other neuronal systems but not magnocellular 

neurons (Xia et al. 2009).  Further experiments involving dehydration and 

rehydration will be needed to find out whether dendritic content of lysosomes 

changes during these stimuli and whether endocytic sorting occurs in magnocellular 

dendrites, providing a local recycling pathway for plasma membrane components.  

The present study suggested that old, non-released vesicles are situated in the centre 

of dendrites indicating that regulation of vesicle pools might be similar to that found 

in bovine adrenal chromaffin cells (Duncan et al. 2003) where aged LDCVs reside in 

the centre of the cell.  Moreover, the shortage of lysosomal accumulations suggested 
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that, unlike Herring Bodies, dendrites are not specialised compartments for 

degradation but disposal of unreleased secretory vesicles occur at hot spots.  This 

further suggests that pools of aged vesicles are concentrated at these hot spots, 

making it likely that dendrites do not only contain aged, non-released vesicles, but 

may also contain a mixture of newly synthesised vesicles for release. 
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Figure 2-1.  Simplified pathways to delivery to lysosomes.  Endocytosed materials, 

such as ligand-bound receptors from the plasma membrane (blue), form early 

endosomes which can sort receptors and ligands for recycling or degradation.  Early 

endosomes either mature to late endosomes or fuse to join pre-existing late 

endosomes.  Late endosomes contain hydrolytic enzymes (orange circles) which are 

responsible for protein degradation.  Late endosomes then mature to or fuse to join 

lysosomes which contain a pool of hydrolytic enzymes (orange trapezoids).  

Lysosomes are also responsible for autophagy of cell organelles and destruction of 

foreign material (e.g. bacteria phagocytosis in neutrophils and macrophages).  

(Figure adapted from Alberts et al. 1994). 
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Figure 2-2.  Beam path configuration for 2-channel imaging with the confocal laser 

scanning system.  BP 500 – 550 and BP 565 – 615 filters collect emissions between 

500 – 550 nm and 564 -615 nm wavelengths and direct the emission light through to 

detection channel 1 (Ch1) and detection channel 2 (Ch2) respectively.  HFT 

√/488/543 is the main dichroic beam splitter which passes all the specified excitation 

wavelengths (488 and 543 nm) to the sample.  The mirror reflects all the light to the 

NFT 545.  The NFT 545 is the secondary dichroic beam splitter which allows 

excitation wavelengths above 545 nm to pass straight through to Ch2 and reflect 

wavelengths below 545 nm 90
o
 through to Ch1.  Emission signals are detected 

through photo multiplier tubes (PMT) and the detector gain and amplifier offset can 

be set for different detection channels.   
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Figure 2-3. Measurement of VP-eGFP intensity relative to locations of LAMP1 

immunofluorescence. (A) Schematic diagram of VP-eGFP intensity measurement.  

Red circles in the top panel = LAMP1 labelling of lysosomes; green circles in bottom 

panel = VP-eGFP. Masks of 1 µm diameter (bold circles) were drawn on images with 

the green VP-eGFP channel switched off to identify locations of LAMP1 labelling.  

These masks were then imported onto the green channel of the same image and the 

intensity of VP-eGFP at these locations was measured as spots (mean intensity/area).  

The whole dendrite in 3-D was taken into account by taking a sum of the image 

stack. The intensity of the whole dendrite was then measured for comparison (B) 

Determination of areas of interest as discussed above; one optical section is shown. 

(C) 3-D image stack converted to 2-D by the sum slices function in ImageJ where the 

sum of the pixels from the stack of images were displayed from 32-bit optical slices. 

Areas of interest described in (A) were then imported onto this image to measure 

VP-eGFP intensity. (D) VP-eGFP intensity of the whole dendrite was then obtained 

by measuring sum slices image of the whole dendrite. Scale bar = 3 µm.
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Figure 2-4.  Correlation of LAMP1 labelling with VP-eGFP intensity in the dendrite.  

Full circles represent mean spot intensity – mean dendrite intensity for dendrites 

measured.  Filled box represent the mean of all the data points (error bar = ±SEM).  

Chi-squared test showed that there is a significant difference between the mean 

intensity of spots and the mean intensity of whole dendrites (p<0.001; n = 26).  This 

suggests that lysosomes were predominantly located in areas with high density of 

vasopressin vesicles.  
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Figure 2-5. LAMP1 immunofluorescence in vasopressinergic dendrite. Images are 

consecutive optical slices of 167 nm z-stepping. Red labelling is LAMP1 and green 

is VP-eGFP. Figure shows that LAMP1 staining of lysosomes was preferentially 

located where there was high vasopressin density (indicated by arrows). Scale bar = 

3 µm. 
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3. VESICLE TRAFFICKING ALONG DENDRITIC PROFILES  

 

3.1 Introduction 

Magnocellular dendrites extend to ~200 micrometers long (Pow & Morris 1989) and 

peptides in dendrites are thought to be transported from the cell bodies where the 

Golgi apparatus (GA) is found (Morris 2005).  As discussed in Chapter 1, 

vasopressin and oxytocin are processed in the endoplasmic reticulum and packaged 

into vesicles in the GA.  Dendritic peptides are believed to travel along microtubules 

(Morris et al. 2000) in a similar fashion to peptide transport to axonal terminals.  It is 

not known whether dendritic peptide release occurs at any preferential sites along the 

dendritic membrane.  There is no evidence of active release zones in magnocellular 

dendrites and it has been found that all parts of the dendritic membranes were 

capable of exocytosis (Pow & Morris 1989).  In bovine adrenal chromaffin cells, it 

was found that vesicular age is an important factor in vesicle pool segregation 

(Duncan et al. 2003).  It is unknown whether newly synthesised vesicles are found in 

dendrites and whether there are preferential sites for storage of newly synthesised 

vesicles and for aged vesicles.  As the results indicated in Chapter 2, it is likely that 

aged vesicles occupy the centre of the dendrite leaving the periphery to newly 

synthesised vesicles.  However, it is not known whether there is a difference in 

storage along the profile of dendrites.  Newly synthesised vesicles can either be 

transported to the distal portion of dendrites, leaving aged vesicles at the proximal 

portion, or vice versa.  It is also possible for there to be no differential location for 

storage of newly synthesised and aged vesicles; i.e. it might be that vesicle storage 
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and release is homogenous along dendritic profiles with no relation to age of 

vesicles.  To test this hypothesis, fresh hypothalamic sections containing the SON 

were incubated at 20
o
C to block exit of proteins from the GA (Griffiths & Simons 

1986).  It was found in exocrine pancreatic cells that transport of secretory proteins 

through the GA is temperature-sensitive (Saraste et al. 1986).  In the same study, 

incubation of pancreatic cells at 20
o
C resulted in the trapping of secretory peptides in 

the GA.  Using microsomal fractions, it was also found that at 20
o
C, secretory 

proteins remained trapped in the endoplasmic reticulum and the GA.  Another study 

found that this blockage of exit is due to the degradation of proteins found in the 

trans-Golgi compartment (Ladinsky et al. 2002), leading to an inhibition of vesicle 

movement through the GA.  Sorting through the trans-Golgi network (TGN) is 

known to be important for peptides like vasopressin, and proteins destined for the 

regulated secretory pathway.  Temperature inhibition is reversible by incubation at 

increased temperatures (Saraste et al. 1986; Griffiths et al. 1985), making this a 

useful tool to study the dynamics of newly synthesised vesicles.  The release of GA 

exit block will generate a wave of newly packaged vesicles trafficking down 

dendritic profiles and hence, enable tracing of these newly synthesised vesicles along 

dendritic profiles.  Figure 3-1 summarises the possible outcomes of GA exit block 

and subsequent release.  In this study, hypothalamic slices of the VP-eGFP rat were 

used to study trafficking of newly synthesised vesicles. 

 

 

3.2 Material and Methods 
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3.2.1 Block of peptide release from the GA 

Sections of the hypothalamus were collected from post-natal day 7 VP-eGFP rats 

(n=8).  Neonatal rat brains were used because slice sections obtained from adult 

brains require constant oxygenation (Aitken et al. 1995), making the later incubation 

process required for GA exit block unfeasible since slices were submerged in media.  

Rats were anaesthetised with halothane or isofluorane and decapitated and their 

brains quickly removed.  Hypothalamic tissue blocks were cut by sectioning the 

brains with a vibratome in aCSF-sucrose-KOH solution (Appendix I).  The 

osmolarity of the solution was 300 mOsm/L.  The solution was gassed with oxygen 

throughout slicing.  350 µm thick coronal sections containing the SON were obtained 

from each brain.  Sections were kept in ice cold Gey’s Balanced Salt Solution 

(Sigma-Aldrich, UK) enriched with 0.5% (w/v) glucose (Sigma-Aldrich, UK).  20 

selected sections were kept in petri dishes with Gey’s solution at 4
o
C for 30 min.  

Slice sections were then transferred to pre-warmed serum-containing medium 

(Appendix I) and were either incubated at 37
o
C for 90 min (8 sections, control), 

incubated at 20
o
C for 60 min (6 sections, GA exit block), or incubated at 20

o
C for 60 

min and 37
o
C for 30 min (6 sections, release of GA exit block).  A 30 min incubation 

at 37
o
C was found to be efficient for transport of secretory proteins to the site of 

exocytosis in the presence of a secretagogue (Saraste et al. 1986).  Serum-containing 

medium was supplemented with 25 mM K
+
 which acted as stimulus for secretion in 

these experiments.  Sections were then transferred to ice cold 4% (w/v) PFA 

(Appendix I) for up to 1 hr fixation. 
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3.2.2 Indirect Immunofluorescence Labelling for Fresh Brain Sections – 

Double Label Immunofluorescence 

The fixative was removed and the tissue was washed three times for 15 min in 0.1 M 

PB (Appendix I) with 0.3% (v/v) Triton X100 (PBT).  Triton X100, a detergent, was 

used to permeabilise cell membranes for easy access for antibodies to intracellular 

antigens.  The fixed sections were then incubated in 50 mM NH4Cl in 0.1 M PB for 

10 min after which they were washed three times in 0.1 M PBT for 15 min before 

incubating in a blocking solution (10% (v/v) normal goat serum in 0.1 M PBT) for 

30 min to block non-specific binding of primary antibody to antigens in the tissue.  

Tissue sections were incubated in a primary antibody cocktail (1
o
Ab + 10% (v/v) 

serum in 0.1 M PBT) for 2 nights at 4
o
C, gently rocking.  Negative controls were 

carried out for each group by leaving out the primary antibodies, and incubating the 

samples in pre-immune serum (control: 7 sections + 1 negative control; GA exit 

block: 5 sections + 1 negative control; release of GA exit block: 5 sections + 1 

negative control).    

 

3.2.2.1 Primary Antibodies 

Neuronal marker – MAP2 

MAP2 (microtubule associated protein found in neurons) was used as a neuronal 

marker.  The polyclonal chicken IgY (Abcam) used detects all three isoforms of 

MAP2: MAP2c is present in the newborn rat brain until postnatal day 10 – 20, and is 

replaced by MAP2a which is present from postnatal day 10 onwards, MAP2b is 
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present throughout life.  MAP2a and MAP2b are both expressed in cell bodies and 

dendrites of neurons (Goedert et al. 1991), making it ideal to be used as a general 

marker for neurons.  The pre-immune IgY was used to test for MAP2 antibody 

specificity and was not found to produce any signal, while in contrast the immune 

IgY produced strong, clear staining of dendrites and perikarya of neurons 

(information provided by Abcam).  MAP2 antibody was used in 1:1000 dilution in 

this experiment.    

 

GA marker – GM130 

GM130 (BD Transduction Laboratories
TM

) is the monoclonal mouse anti cis-Golgi 

matrix protein of 130 kDa, raised against rats and used a GA marker.    Western blot 

analysis of GM130 on rat brain lysate had shown detection at 130kDa (information 

provided by BD Transduction Laboratories
TM

).  The antibody was used at 1:500 

dilution. 

 

After incubation with the primary antibodies, and pre-immune serum incubation for 

negative controls, sections were washed three times in 0.1 M PBT for 30 min to 

ensure that most of the unbound primary antibody was washed away.  A second 

blocking step with 0.2% (w/v) BSA in 0.1 M PBT for 1 hr ensures that any 

remaining non-specific binding sites were blocked.  Sections were then incubated in 

fluorophore-conjugated secondary antibody solution (2
o
Ab + 0.2% (w/v) BSA in 
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PBT + 0.3% (v/v) Triton) at 4
o
C overnight.  From this step onwards, the samples 

were protected from light.   

 

3.2.2.2 Secondary Antibodies 

All secondary antibodies used were from Molecular Probes, Invitrogen: AlexaFluor 

® 568 goat anti-mouse (λEx = 579 nm, λEm = 603 nm) and Alexa Fluor ® 633 goat 

anti-chicken (λEx = 632 nm, λEm = 647 nm).  The excitation and emission 

wavelengths are summarised in Table 1 Appendix I. 

 

After secondary antibody incubation, the secondary antibody solution was removed 

and sections were washed three times for 15 min in 0.1 M PB.  Sections were then 

mounted on microscope slides and coverslipped (coverslip thickness #1, VWR).  

Mowiol (Calbiochem) supplemented with DABCO (Sigma) was used as the 

mounting medium with a refractive index of 1.41.  Sections were left to cure at 4
o
C 

in darkness until the mounting medium had set.   

 

3.2.3 Microscopic Image Acquisition 

The Zeiss LSM510 inverted microscope was used for all imaging.  Laser excitation 

and emission filters were described in Section 2.2.3, Chapter 2.  In addition to the 

488 nm Argon and the 543 nm HeNe1 excitation lasers, a HeNe2 excitation laser λEx 

633 nm was used to excite the far red secondary antibody.  All settings for image 
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acquisition were as described in Chapter 2 except that a HFT √/488/543/633 was 

used as the main dichroic beam splitter which passes all the specified excitation 

wavelengths (488, 543, and 633 nm) to the sample.  Another HFT 633 mirror was in 

place to reflect all the excitation light above 633 nm to a long pass 650 filter to 

collect emission of over 650 nm in a third channel.  Figure 3-2 shows the settings 

used for imaging in this experiment.  All other parameters were the same as 

described in Chapter 2.   

 

3.2.4 Image Processing  

The acquired stack of images was deconvolved to as described in Chapter 2.  The 

microscopic parameters used for deconvolution were as described except that the 

excitation and emission wavelengths of the third fluorescent protein was included.   

Briefly described, the microscope type – confocal; numerical aperture – 1.4; lens 

immersion and medium refractive indices – 1.51 and 1.4; x and y sample sizes – 60 

nm; z sample size – 170 nm; excitation wavelengths – 488 nm, 543 nm, 633 nm; 

emission wavelength – 509 nm, 603 nm, 647 nm; excitation photon count – 1; 

pinhole = 1 Airy unit; a theoretical point spread function was used. 

 

 

3.3 Results 

3.3.1 Trafficking of Newly Synthesised Vesicles along Dendritic Profiles 
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Images were selected where long profiles of dendrites with no overlapping could be 

seen clearly.  Images were separated into the green (VP-eGFP), red (GM130 

staining) and blue (MAP2 staining) channels using ImageJ 

(http://rsb.info.nih.gov/ij/).  The scale of the image was calibrated using ImageJ.  The 

three channels were merged into RGB colour images and a segmented line (360 nm 

wide, diameter of approximately 2 LDCVs) was drawn from the edge of the stained 

GA down individual optical slice of dendrites where vasopressin staining was 

observed and the line selection was saved.   Measurements of individual optical 

slices were used to ensure that there were no overlapping dendritic projections 

included in the measurements.  After all the line selections were obtained, the red 

and blue channels were switched off and the original 32-bit image of the green 

channel was used.  The saved line selections were then superimposed onto the green 

channel where fluorescent intensity measurements of VP-eGFP were made for each 

line.  Fluorescent intensity was recorded for every pixel at 60 nm interval along each 

line selection, to ensure that as much information was recorded as possible.  These 

measurements were saved and the area under curve (AUC; intensity x distance) was 

calculated for each segment of 6 µm of each line to compare fluorescent intensity 

along the dendrite.  Figure 3-3 shows a diagrammatic representation of the image 

analysis and an example of line selection drawn on a representative dendrite.  

Moreover, VP-eGFP fluorescence was measured at the GA by outlining the 

immunolabelled GA and superimposing this region of interest onto the VP-eGFP 

channel, where the sum intensity of VP-eGFP of the whole cell was measured.    
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To study whether newly synthesised vesicles translocate to dendrites and whether 

there is preferential translocation of newly synthesised vasopressin vesicles along the 

profile of dendrites, 125 dendrites were analysed using the methods described above.  

Varying lengths of dendritic profiles were analysed and dendritic profiles of as long 

as 54 µm were measured.  AUC measurements were divided into 6 µm segments.   

Table 3-1 shows the number of dendrites measured for each distance in each 

treatment group.  The AUC was used to calculate the mean intensity of each 6 µm 

segment.  All measurements comparing the effects of treatment to the distances 

measured were normalised to the total fluorescence intensity of each dendrite.  Since 

data was normalised to the total fluorescence intensity, only dendrites with the same 

distances measured were chosen for comparison.  This reduces the number of 

dendrites measured in each group and hence, the three longest distances (42 µm, 48 

µm and 54 µm) were analysed.  AUC of each line measurements of the 6 µm 

segment was compared between the three treatment groups using two-way ANOVA 

comparing treatment at each segment.  Figure 3-4 shows the mean total fluorescent 

intensity of the three treatment groups.  One-way ANOVA showed that there is no 

difference in mean total fluorescence intensity measured between groups.  Figure 3-

5 shows the % fluorescence comparison between the different treatment groups of 

the three total distances measured.  There is significantly less fluorescence at 6 µm in 

the GA exit block released compared to control and GA exit block (48 µm analysis) 

and between GA exit block released and GA exit block (54 µm analysis). This 

difference is not seen with the 42 µm analysis.  At 24 µm there is a significantly 

higher % fluorescence in control compared to GA exit block.  Comparing distances 

within groups, there is a significantly higher % fluorescence at 6 µm compared to the 
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rest of the dendrite in control and GA exit block, showing that the low temperature 

did not affect vesicles already in the dendrites at the time of GA exit block.  There is, 

however, no significant difference in % fluorescence between any distance in the GA 

block released group in all three total distances analysed.  This indicates that newly 

synthesised VP-eGFP vesicles released from the GA forces a redistribution of 

vesicles near the GA, represented by the % fluorescence at 6 µm.      

 

 

3.4 Discussion 

The findings in this study showed that newly synthesised vesicles translocate to 

magnocellular dendrites and that there is no difference in newly synthesised 

vasopressin vesicle location throughout the distances of the dendrites measured.  As 

mentioned in the introduction of this chapter, dendrites can be up to 200 µm long and 

hence the furthest distance analysed, up to 54 µm, should be considered as the 

proximal/middle portions of dendrites.  The purpose of this study is to find out 

whether there are progressively more/less newly synthesised vesicles located along 

the profile of dendrites.  20
o
C temperature incubation blocks vesicles exit from the 

GA (Griffiths et al. 1985; Ladinsky et al. 2002) and hence, release of temperature 

block leads to release of newly packaged vesicles.  In the present study, GA exit 

block at 20
o
C incubation did not affect vesicle distribution along the profile of 

dendrites since no significant difference in immunolabelled vasopressin intensity 

compared to control was observed.  There is a significantly higher percentage of 
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vesicles at 6 µm in both control and GA exit block compared to the rest of the 

dendrite.  Portions of dendrites proximal to the cell bodies were observed to be wider 

compared to the more distal portions measured.  The higher density of vasopressin in 

these dilatations may account for the higher immunolabelled vasopressin fluorescent 

intensity measured at proximal portions of dendrites since more peptides can be 

stored in these portions.  Interestingly, this difference was not observed in dendrites 

where the GA exit block was released.  Although there were significantly less 

vesicles at 6 µm in GA exit block released compared to control and GA exit block in 

the analysis where 48 µm and 54 µm of dendrites were taken into account, this 

difference was not observed in 42 µm analysis where more dendrites were analysed.  

Difference in % fluorescence between 6 µm and longer lengths of dendrites 

measured was not observed in GA exit block released experiments.  This indicates 

that release of newly synthesised vesicles from the GA might induce a redistribution 

of vesicles at close proximity to the GA and these newly synthesised vesicles 

translocate to dendrites.  The homogenous distribution of vesicles after GA exit 

block release also indicates that there are no preferential sites of storage for newly 

synthesised vesicles.  However, a difference in % fluorescence was not observed 

between GA exit block released compared to control.  This is probably due to that 

fact that the analysis method used was not sensitive enough to pick up all newly 

synthesised vesicles that translocated to the dendrite.  This is further demonstrated by 

the fact that there is no difference in mean total fluorescent intensity between the 

three groups (Figure 3-4).   
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Another reason why there is no difference in % fluorescence between GA exit block 

release and control might be due to the fact that high K
+ 

was used in the incubation 

medium.  It was found previously in pancreatic cells that release of GA exit block by 

re-incubation of sections at 37
o
C in the presence of a secretagogue triggered 

secretion of insulin (Saraste et al. 1986).  In the present study, the incubation 

medium contains high K
+
 which has been shown to promote neuronal survival in 

explants of the hypothalamus (Shahar et al. 2004) and to stimulate dendritic peptide 

release (Ludwig et al. 2002).  Hence, one reason why no difference in vesicle 

distribution was observed along dendrites after release of the GA exit block is that 

vesicles were undergoing exocytosis during the 30 min incubation at 37
o
C.  If newly 

synthesised vesicles were preferentially released (Duncan et al. 2003), then no effect 

of vesicle re-distribution after the release of GA exit block will be observed since 

newly synthesised vesicles released from the GA will be exocytosed.  However, in 

pancreatic cells, it was found that there was a 20 - 30 min lag period of insulin 

release after cells were re-incubated at 37
o
C (Saraste et al. 1986).  Therefore, it is 

unlikely that increased exocytosis can fully account for the fact that no difference 

was found in vesicle distribution after the release of GA exit block. is a homogenous 

distribution of vesicles throughout the profiles of dendrites.  

 

One limitation to the present study is that because magnocellular dendrites contain a 

large amount of peptides, and in this case, vasopressin, it is difficult to quantify 

vasopressin content using any other method than fluorescent intensity.  Salt loading 

animals before experiments can lower vesicle content in dendrites and make 
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quantification more reliable (Tobin et al. 2004).  However, salt loading has been 

found to increase the number of newly synthesised, immature secretory granules 

(Morris & Dyball 1974).  Moreover, salt loading has been found to change the 

average diameter of dendrites (Dyball & Garten 1988; Hatton 1990).  As mentioned 

earlier, vesicle accumulation is preferential in dilatations of dendrites (Morris 2005) 

and hence, salt loading was not used in this study to minimise the vasopressin density 

for measurement.   

 

As discussed in Chapter 1, it was found that there are no active sites for peptide 

release in dendrites and all parts of the dendritic plasma membrane are capable of 

exocytosis (Pow & Morris 1989).  After exit from the GA, vesicles travel to their 

sites of secretion via microtubules (for review see (Park et al. 2009).  Hence, 

microtubule distribution is an important factor regulating distribution of newly 

synthesised vesicles.  In vitro secretion studies showed a decrease in peptide release 

from magnocellular dendrites after applying a depolarising stimuli subsequent to 

colchicine treatment which inhibits polymerisation of microtubules (Tobin & Ludwig 

2007a) suggesting the importance of microtubules in the transport of peptide-

containing vesicles in magnocellular dendrites.  The same study reported 

immunoreactivity of β-tubulin, one of the polymers that make up microtubules, in 

dendrites. However, the distribution of β-tubulin in dendrites was not discussed.  

Studies using immunohistochemistry to stain for microtubule-associated protein, an 

important component of microtubule crossbridges, has found extensive staining in 

oxytocin labelled neurons in the dendritic zone in the SON (Matsunaga et al. 1999), 
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further suggesting the presence of microtubules in dendrites.  Further experiments 

looking at the distribution of tubulin during GA exit block and release of GA exit 

block along magnocellular dendrites can be done to complement the present study. 

 

Combining the findings in this chapter with results in Chapter 2, where lysosomes 

were identified, it is likely that both newly synthesised and aged peptide vesicles are 

found in magnocellular dendrites.  However, it is still unknown whether there are 

specific mechanisms controlling peptide vesicle routing to magnocellular dendrites 

and whether the dynamics of vesicle transport and segregation of vesicle pools are 

regulated according to vesicle age.  Vesicle age cannot be studied in fixed tissue 

sections unless it is possible to distinguish newly synthesised vesicles and aged 

vesicles.  Since it is still unknown whether like newly synthesised vesicles in bovine 

adrenal chromaffin cells (Duncan et al. 2003), newly synthesised vesicles in 

magnocellular dendrites are preferentially released, it is important to identify 

vesicular age.  One method to study newly synthesised vesicles in dendrites is to 

express inducible exogenous reporter proteins targeted to vesicles (Zhang et al. 2002; 

Taupenot 2007).  If vesicle expression can be switched on/off as desired, then newly 

synthesised vesicles and aged vesicles can be identified using a “pulse-chase” 

protocol (Han et al. 1999).  The expression of the exogenous reporter protein can 

switched on for certain periods before fixation to identify newly synthesised vesicles, 

or expression can be switched off to identify aged vesicles.  Another way is to use a 

fluorescent time stamp that changes colour as it matures over time (Terskikh et al. 

2000) to label both newly synthesised and aged vesicles like that used in bovine 
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adrenal chromaffin cells as discussed in Chapter 1 (Duncan et al. 2003).  Both these 

methods will be discussed in later chapters but to carry out these experiments, first it 

is important to establish viable slice cultures of the hypothalamus (House et al. 1998) 

which is essential for pulse-chase experiments and second, because neurons are non-

dividing cells, they are difficult to transfect, making it difficult to express exogenous 

proteins.  Moreover, it is also important to establish a live cell imaging technique that 

can be used in the magnocellular system so that the dynamics of newly synthesised 

and aged vesicles and the segregation into different vesicle pools can be visualised in 

real time.  Hence, the next chapters will look at the establishment of viable 

organotypic slice cultures of the hypothalamus, a live cell imaging technique suitable 

for use in the study of vesicle release in magnocellular dendrites, transfection 

techniques that have been tested on magnocellular neurons, and generation of a range 

of constructs targeted for expression in dense core vesicles. 
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Figure 3-1.  Schematic diagram showing hypothetic outcome of temperature block 

on vesicle exit from the Golgi apparatus.  (A)  Vesicle exit from GA blocked by low 

temperature (20
o
C).  Re-incubation at 37

o
C lead to release of GA exit block and: (B) 

newly synthesised vesicles preferentially transported to distal dendrite; (C) Newly 

synthesised vesicles reside at proximal potion of dendrite; or (D) Homogenous 

storage of newly synthesised and aged vesicles along dendritic profiles with no 

relation to vesicular age. 
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Figure 3-2.  Beam path configuration for 3-channel imaging with the confocal laser 

scanning system.  BP 500 – 550 and BP 565 – 615 as described before.  HFT 

√/488/543/633 was used as the main dichroic beam splitter which passes all the 

specified excitation wavelengths (488, 543 and 633 nm) to the sample.  The HFT 633 

reflects all the excitation light above 633 nm to the long pass 650 filter and all the 

light under 633 nm to the NFT 545 filter.  The NFT 545 is the secondary dichroic 

beam splitter.   
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Figure 3-4.  Mean total fluorescent intensity of dendrites measured.  There is no 

difference between treatment groups (one-way ANOVA). 
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Figure 3-5.  Graph showing % fluorescence along the profile of dendrites.  % 

fluorescence is measured in 42 µm, 48 µm, and 54 µm of dendrites (A, B and C 

respectively).  In all the three lengths measured, two-way ANOVA comparing 

treatment groups at each distance showed significant difference between 6 µm and 

the rest of the dendrite in control and GA exit block only (p<0.05).  There is a 

significantly higher % fluorescence at 6 µm in control and GA exit block compared 

to GA exit block released (p<0.05) (B and C).  However, this difference was not 

observed when only 42 µm of the dendrite was measured.  Values are mean ± SEM, 

normalised to total fluorescent intensity.   
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 Number of sections measured in each group 

Distance 

Measured 
Control GA exit block 

GA exit block 

released 

6 µm 39 50 47 

12 µm 39 49 46 

18 µm 35 39 39 

24 µm 29 33 29 

30 µm 22 27 19 

36 µm 17 17 12 

42 µm 11 11 7 

48 µm 8 9 5 

54 µm 6 5 4 

 

Table 3-1.  Number of sections measured for every 6 µm segment in each treatment 

group.  
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4. LIVE CELL IMAGING OF DENDRITIC PEPTIDE RELEASE 

 

4.1 Introduction 

The VP-eGFP transgenic rat has provided a valuable resource for identifying 

vasopressinergic neurons in different brain areas without prior staining procedures 

(Ueta et al. 2005).  Moreover, it provides the opportunity for live cell imaging of 

vasopressinergic neurons without prior transfection or transduction.  Live cell 

imaging is a technique that had been vastly used to study the exocytotic machinery of 

neuroendocrine cell lines.  A range of different microscopic techniques have been 

used to offer deeper understanding in vesicle motility, segregation of vesicle pools, 

and dynamics of exocytosis.  (Levitan 1998; Steyer et al. 1997; Straub et al. 2000).  

Although some of these techniques, for example, Total Internal Reflection 

Microscopy (TIRFM) which images events occurring at the plasma membrane, are 

used with great success to image exocytotic/endocytotic events in neuroendocrine 

cell lines (Merrifield et al. 2002; Nofal et al. 2007), they have limited use for 

imaging vesicle release from magnocellular neurons.  TIRFM uses evanescent wave 

illumination and only illuminates within 100 nm of the specimen and hence, 

specimens imaged will have to be adhered to the cover glass that these cells were 

cultured on.  Isolated cell preparation of magnocellular neurons is largely devoid of 

dendrites, so brain slices had to be used to image dendritic release of vasopressin in 

the form of VP-eGFP.  Brain slices contain layers of different cell types and 

connective tissues hence, making them unsuitable for TIRFM imaging.  On the other 
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hand, wide field microscopy offers a simple and fast way to image fluorescence.  

However, this technique has the drawback of collecting light that is in and also out of 

focus, making it impossible to determine peptide release from a single neuron.  

Therefore, it is important to determine the appropriate microscopy technique to be 

used for live cell imaging, meanwhile, taking into consideration the preparation of 

the specimen used for imaging.  In contrast to wide field imaging, confocal imaging 

only samples from the plane of focus and hence, it is possible to identify single 

neurons.   

 

An important aspect of live cell imaging is the choice of preparation of the cells 

imaged.  As discussed above, brain slices are more appropriate for imaging dendritic 

peptide release in magnocellular neurons than isolated neurons.  Acute brain slices 

are soft and thick, and flatten under their weight on cover slips over the time course 

of imaging.  Due to these physical properties, cultured brain slices were more ideal 

for imaging purposes.  Stationary organotypic slice culture provides a means of 

keeping slice tissues alive for up to several weeks (Stoppini et al. 1991; Gahwiler et 

al. 1997) and also, slice tissues flatten and adhere to the culture interface during 

culture, making it easier to handle and reduce flattening during imaging.  The 

organotypic slice culture technique offers a way to study molecular mechanisms of 

magnocellular neurons where neurons maintain their synaptic connections as well as 

their physiological and morphological properties (House et al. 1998; Stoppini et al. 

1991; Gahwiler et al. 1997; Cho et al. 2007).  Although cultures of dissociated 

hypothalamic neurons are possible, these cultures survive best when the neurons 
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were obtained at the embryonic stage of the animal (Benda et al. 1975; Jirikowski et 

al. 1981), when these cells contain very little vasopressin and almost no oxytocin 

(Sinding et al. 1980b).  The main advantage of organotypic slice culture technique is 

that brain tissues were obtained from neonatal animals, where the magnocellular 

neurons have fully differentiated.  Moreover, neurons maintain their cytoarchitectural 

features, as well as their physiological phenotype.  Slices typically thin down to 80 – 

100 µm (House et al. 1998) which enable further manipulations like 

immunohistochemistry and live cell imaging.  All these characteristics of slice 

cultures, coupled with the use of VP-eGFP rats, made live cell imaging of 

magnocellular cell bodies and dendrites possible.   

 

While slice cultures prepared from neonatal rat brains are optimal for imaging, it is 

important to establish the physiological significance of using the SON of neonatal 

rats as a model system.  In neonatal rats, osmotic challenge had been shown to 

induce vasopressin release into the plasma (Sinding et al. 1980a).  This stimulus was 

found to deplete vasopressin content in the neurohypophysis by ~40%.  Osmotic 

challenge is known to activate neurons in both the SON and the PVN (Penny et al. 

2005).  In adult rats, magnocellular neurons of both the SON and PVN respond to 

osmotic challenge by releasing vasopressin (reviewed in (Leng et al. 1999) into the 

circulation which then acts as a vasoconstrictor and anti-diuretic agent in response to 

increased osmolality.  In the rat, oxytocin was also released after osmotic stimulation 

(Brimble et al. 1978).  The magnocellular vasopressin system is responsive by the 

time of birth (Altman & Bayer 1986; Sinding et al. 1980a).  However, direct 
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evidence for the activation of the neonatal SON in the rat in response to osmotic 

stimulation had not been shown.  In this chapter, the activation of the neonatal SON 

under osmotic challenge, and live cell imaging of VP-eGFP neurons using 

organotypic slice explants of post natal day 7 (P7) rats will be discussed.  Stimulated 

and primed vasopressin release from dendrites by thapsigargin was visualised using 

single photon laser scanning microscopy.    

 

 

4.2 Material and Methods 

4.2.1 Osmotic challenge in P7 rats 

Twelve P7 rat pups, chosen from two separate litters were used in this experiment.  

Six P7 rats were injected with hypertonic saline solution, 1 ml/100 g of 1.5 M NaCl 

(i.p.) (Giovannelli et al. 1992), the other six were used as control without injections.  

Isotonic saline injection had been shown to have no effect on Fos expression in the 

SON, compared to animals not injected (Sharp et al. 1991); hence control animals 

received no injections.  Three male and three female rats were used in each group.  

One adult rat was injected with hypertonic saline as a positive control for 

immunolabelling.  Animals were killed by decapitation 1 hr after injection, since Fos 

production should be seen 30 – 90 min after induction of vasopressin neuronal 

activity (Kawasaki et al. 2005; Sharp et al. 1991).  The hypothalami were then 

trimmed from the brain, fixed in 4% (w/v) PFA in 0.1 M PB (recipes of all solutions 

can be found in Appendix I), changed to 2% (v/v) PFA and 15% (w/v) sucrose in PB,  
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then to 30% (w/v) sucrose in 0.1 M PB (all overnight incubations at 4
O
C). The fixed 

tissue was then snap-frozen on dry ice and cut on a freezing microtome to 52 µm 

sections.  Only sections containing the SON were collected for immunohistochemical 

labelling of Fos protein.  Fos protein is derived from c-Fos, an immediate early gene, 

which is transcribed upon activation of many cell types, including magnocellular 

neurons in the hypothalamus (Berciano et al. 2002; Luckman et al. 1994; Hoffman et 

al. 1993).  The use of Fos immuno-staining as an indication of neuronal activation is 

well documented for magnocellular neurons under osmotic stimulation (Giovannelli 

et al. 1992; Hoffman et al. 1993; Sharp et al. 1991).     

 

4.2.1.1 Three-step ABC method for labelling of Fos protein 

Sections containing the SON were washed in 0.1 M PB + 0.2% (v/v) Triton X100 

(PBT) four times for 10 min.  To deactivate endogenous peroxidases, sections were 

then incubated in 20% (v/v) methanol and 1% (v/v) H2O2 in 0.1 M PB for 15 min.  

Sections were then washed in 0.1 M PBT twice for 10 min then in 0.1 M PB once for 

5 min.  To block non-specific binding of antibodies, sections were incubated in a 

cocktail of 1% (v/v) animal serum in 0.1 M PBT (blocking solution) at room 

temperature for 1 hr.  A primary antibody solution, containing the antibody against 

Fos protein, rabbit polyclonal Ab-2 Fos (Oncogene Sciences), was made up with 1% 

(v/v) animal serum in 0.1 M PBT and Ab-2 Fos in a concentration of 1:1000.  The 

primary antibody was left out in the negative control, where sections were only 

incubated in blocking solution.  Sections were incubated in either primary antibody 

solution or blocking solution at 4
o
C overnight. 
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The next day, sections were washed with 0.1 M PBT for three times for 5 min then 

twice for 10 min.  During these washes, the avidin DH:biotinylated horseradish 

peroxidase complex was made up in PBT in the ratio of 1:1:3.  This complex had to 

be made up half an hour prior to use.  After washing, sections were incubated in 

biotinylated anti-rabbit immunoglobulin (Vector labs) and 30% (v/v) normal goat 

serum in 0.1 M PBT at room temperature for 1 hr.  Sections were then washed in 0.1 

M PBT three times for 5 min.  After washing, sections were incubated in the Avidin 

DH complex at room temperature for 1 hr.  Sections were then washed twice for 10 

min and then rinsed in 0.1 M sodium acetate (pH6) for 5 min. 

 

To visualise, Nickel II sulphate was dissolved in 0.2 M sodium acetate buffer 

(appendix I).  Sections were incubated in this buffer until a colour change was 

observed and the reaction was terminated by the addition of 0.1 M sodium acetate.  

Sections were then mounted on 0.5% (v/v) gelatinised slides and air dried.  Air dried 

sections were then washed in a series of ethanol solutions: 50% for 5 min, 70% for 5 

min, 90% for 5 min, 95% for 5 min, 100% twice for 10 min each, and xylene twice 

for 10 min each.  After dehydration, sections were coverslipped with DPX (VWR) 

and the mounting medium was left to cure overnight. 

 

Sections containing the SON, identified by the anatomical location in the 

hypothalamus, were viewed by a light microscope.  Ten sections containing the SON 
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were analysed per animal.  Fos immunoreactive cells were counted manually and the 

mean ±SEM for Fos counts per animal was compared between osmotically 

challenged and control groups by one way ANOVA.  All statistical tests were carried 

out using Sigma Stat.   

 

4.2.2 Organotypic slice culture 

Rat pups, 7 days old were anaesthetised with halothane or isofluorane and 

decapitated and their brains quickly removed.  Hypothalamic tissue blocks were cut 

by sectioning the brains with a vibratome in aCSF-sucrose-KOH solution (appendix 

I).  Osmolarity of solution was 300 mOsm/L.  Solution was gassed with oxygen 

throughout slicing.  Three to four 300 µm thick coronal slices containing the SON 

and part of the PVN were obtained from each brain.  Slices were kept in ice cold 

Gey’s Balanced Salt Solution (Sigma-Aldrich, UK) enriched with 5 mg/ml glucose 

(Sigma-Aldrich, UK).  Selected sections were kept in a petri dish with Gey’s solution 

at 4
o
C for 1-2 hours.  Explants were then placed on Millicell-CM filter inserts 

(Millipore, pore size 0.4 µm, diameter 30 mm) in 6-well culture dishes with 1.1 ml of 

culture medium (Stoppini et al. 1991).  Explants were incubated at 37
o
C in 5% CO2 

in a stationary manner.  Culture medium was replaced three times a week (House et 

al. 1998).  Explants were maintained for up to 14 days in vitro (DIV).  

 

Culture Media:  Serum-containing medium 
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Serum-containing growth medium was shown to help the slices to thin down to a few 

cell layers so that procedures such as live cell imaging could be done on the slices as 

whole mounts (House et al. 1998).  The serum-containing medium was composed of 

50% (v/v) Eagles basal medium (BME, Sigma-Aldrich, UK), 25% (v/v) heat-

inactivated horse serum (Harlan, UK), and 25% (v/v) Hanks balanced salt solution 

(Gibco).  The osmolarity of the medium was 320-325 mOsm/L.  Medium was 

supplemented by 0.5% (w/v) glucose, 2 mM glutamine, 25 µg/ml 

penicillin/streptomycin (House et al. 1998), 20 ng/ml ciliary neurotrophic factor 

(CNTF) (all from Sigma-Aldrich, UK), and 25 mM KCl.  It has been suggested that a 

higher KCl content increased the exocytotic capabilities of rat cerebellar granule 

neurons (Yamagishi et al. 2000).  CNTF was found to substantially increase the 

survival of both oxytocin and vasopressin magnocellular neurons in the SON in 

organotypic slice cultures by preventing programmed cell death (Rusnak et al. 2003).   

 

4.2.3 Live cell imaging 

Live cell imaging experiments were performed on organotypic slice cultures of the 

SON between 7 days in vitro (DIV7) to DIV14 when slices had adhered to 

membrane filters and flattened down.  The slices were excised from the membrane 

filter and placed inverted on a 30 mm coverslip (thickness #1) and assembled in a 

POC open perfusion adaptor (LaCon, Germany) as shown in Figure 4-1.  The 

perfusion chamber was then placed on a microscope stage heated to 37
o
C and inside 

an environmental chamber gassed with humidified air and 5.5% CO2.  A 21-gauge 
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needle was used for the outflow instead of the original outlet of the chamber.  The 

needle was connected to two outflow tubes being pumped at the same time to ensure 

constant rate of outflow.  The tissue was continuously perfused with tyrode solution 

at a rate of 0.5 ml/min, with or without stimulus.  All solutions were adjusted to pH 

7.2 and 300mOsm.  Tyrode’s solutions were warmed to 37
o
C throughout the 

experiment.  Refer to appendix I for recipes.  Figure 4-2 shows a schematic diagram 

of the perfusion set up. 

 

4.2.3.1 Timeline for image acquisition 

Thapsigargin had been shown to potentiate release of oxytocin and vasopressin after 

30 min of pre-treatment (Ludwig et al. 2002; Ludwig et al. 2005).  Hence, 

experiments were carried out at 42 min sessions.  Four groups of experiments were 

carried out: control (42 min Tyrode’s solution), potassium stimulated (30 min 

Tyrode’s + 10 min 50 mM K
+
), thapsigargin treatment (42 min 200 nM 

Thapsigargin), and thapsigargin treated, potassium stimulated (30 min Thapsigargin 

+ 10 min K
+
).  2 min was allowed for change of solution.  A schematic diagram 

showing the imaging timeline is presented in Figure 4-3.   

 

4.2.3.2 Microscopic image acquisition  

The Zeiss LSM510 inverted microscope was used for all imaging.  The 488 nm line 

of the Argon laser was used to excite eGFP which has an excitation maximum of 488 

nm and an emission maximum of 509 nm.   A HFT 488 filter was in place and the 
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excitation laser passed through two mirrors before the emitted light was collected by 

a band pass 500 – 550 filter (please refer to Figure 2-2).  The photomultiplier tube 

(PMT) settings were adjusted so that small projections from the neurons would be 

visible and were the same for all experiments.  The pinhole was adjusted to 

maximum so that the maximal emission from the specimen could be collected.  The 

laser excitation was set to 15% so that visualisation of eGFP was achievable whilst 

bleaching was kept at minimal.  Images were acquired with an x63 water immersion 

objective (NA1.2).  The lateral resolution was 216 nm for 509 nm emission 

wavelength and NA1.2.  The Nyquist sampling rate, calculated by the Nyquist 

calculator on the Scientific Volume Imaging support website, was 106 nm, 106 nm 

and 341 nm for x, y, and z sampling respectively.  Double nyquist sampling rate was 

employed to avoid under-sampling.  3-dimensional images were obtained by 

scanning the x, y –planes at 60 nm, achieved by line scanning 1024 x 1024 pixels 

with an optical zoom of 2.4, and intervals of 170 nm along the z-axis was acquired at 

the time points mentioned above.  8 bit pixel depth, line averaging of 1 (no 

averaging) and maximum scan speed were chosen for image acquisition to avoid 

photobleaching. 

 

4.2.3.3 Fluorescent image processing 

The acquired stack of images was deconvolved to remove aberrations caused by the 

intrinsic physical properties of the microscope.  The microscopic parameters used for 

deconvolution was set according to the parameters used for imaging: microscope 
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type – confocal; numerical aperture – 1.2; lens immersion and medium refractive 

indices – 1.3; x and y sample sizes – 60 nm; z sample size – 170 nm; excitation 

wavelength – 488 nm; emission wavelength – 509 nm; excitation photon count – 1; 

backprojected pinhole – maximum.  These parameters were used to calculate a 

theoretical point spread function.  Please refer to Chapter 2, section 2.2.4 for a more 

detailed account on image manipulation. 

 

 

4.3 Results 

4.3.1 Osmotic challenge in P7 rats 

Figure 4-4 shows Fos expression in the SON of P7 control and osmotically 

challenged rats, and adult positive control.  The SON was identified by its anatomical 

location.  Landmark features like the 3
rd

 ventricle and the optic chiasm are also 

shown in the images.  Figure 4-5 shows the mean number of Fos positive cells per 

SON ±SEM in control and osmotically challenged P7 rats.  One way ANOVA 

followed by post-hoc Student’s t-test showed that there was significant difference 

(p<0.001) in the number of Fos positive cells between the two groups.  Marked 

increase in the number of Fos immunoreactive cells in the SON suggests activation 

of magnocellular neurons due to osmotic stimulation.  This indicates that 

magnocellular neurons in P7 rats were responsive to the osmotic challenge. 
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4.3.2 Live cell imaging 

Deconvolved images were viewed and analysed by the image analysis software, 

ImageJ (http://rsb.info.nih.gov/ij/).  The 3-D image acquired at each time point was 

then represented as a 2-D image by adding the values of each pixel through the z 

stack and displays it as a sum value.  Due to the decrease in fluorescent intensity as 

the imaging depth increased, 10 optical slices of dendrites from the centre of each 

stack were summed up for 2-D representation.  Hence, 32-bit images were analysed 

so that accurate sums were retained.  The 2-D images were created for image stacks 

collected for each time point and then aligned using the stacks shuffling plug-in 

(Thevenaz et al. 1998) to ensure that the same area was measured for each time 

point.  This allowed for measurement of fluorescent intensities in regions of interest 

by the analyse and measure functions in the software.  An example of region of 

interest measurement is shown in Figure 4-6.  Measurements made for different time 

points were done separately to indicate the amount of eGFP fluorescent gained or 

lost throughout the experiment.  

 

Figure 4-7 shows images of dendrites acquired in the live cell imaging experiments.  

One example of control, K
+
 stimulated and thapsigargin pre-treated K

+
 stimulated 

experiment is shown.  Figure 4-8A shows the changes in fluorescent intensity in 

dendrites after stimulation.  Fluorescent intensity data collected was normalised to 

data at 30 min, the time point imaged before stimulation.  Mean fluorescent 

intensities ±SEM were calculated and compared between groups using two-way 

ANOVA on repeated measures to show changes in intensities between time points 
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and between groups.  The control experiment, with no stimulation, recorded the 

extent of photobleaching and basal vesicle release.  This accounts for ~ 25% loss of 

eGFP signal.  Comparing 32 min to 42 min, there is a significant decrease in 

fluorescent intensity in dendrites in K
+
 stimulated and thapsigargin pre-treated K

+
 

stimulated groups but not in control and thapsigargin treated groups (two-way 

ANOVA, post-hoc Student’s t-test, p<0.05), showing release of VP-eGFP vesicles 

after stimulation.  Fluorescent intensity in thapsigargin pre-treated K
+
 stimulated 

group showed significant decrease compared to other groups at 42 min (p<0.05), 

suggesting that thapsigargin pre-treatment was able to potentiate further release of 

vesicles after K
+
 stimulation (a further ~ 20% release compared to K

+
 depolarisation 

alone, Figure 4-8B).   

 

To ensure that fluorescent intensity changes were due to release of VP-eGFP, 

background fluorescence decay was obtained by measuring the fluorescent intensity 

of 10 x 2 µm squared areas in the background of each image.  A single exponential 

decay function was fitted to the data.  The mean exponential decay constants (Figure 

4-8C) for each group were compared (two-way ANOVA) and showed no difference 

in rate of decay, suggesting that decrease in fluorescent intensity measured in 

dendrites were due to the release of VP-eGFP and not due to increase in fluorescent 

decay caused by treatment. 
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4.4 Discussion 

Use of organotypic slice cultures provides several advantages to the efficacy in live 

cell imaging.  However, since cultures had to be obtained from neonatal rats, it was 

necessary to establish the physiological responsiveness of magnocellular neurons at 

that age.  Neonatal P7 rats had been shown to have a raised membrane capacitance 

and decreased membrane resistance compared to adult rats (Chevaleyre et al. 2001).  

These characteristics were correlated to an increase in dendritic ramifications.  

Despite these early differences, the membrane potential of magnocellular neurons at 

this age was shown to start to stabilise and display typical firing patterns of adult 

magnocellular neurons.  The increase in number of dendritic ramifications could 

facilitate the formation of glutamatergic synapses, as found in the dendrites of 

hippocampal neurons (Tyzio et al. 1999).  In magnocellular neurons, excitatory 

postsynaptic currents were found to be blocked by CNQX (NMDA receptor 

antagonist) around P7 – P8, suggesting glutamatergic activation (Chevaleyre et al. 

2001).  In the osmotic challenge experiments, the SON of P7 animals were shown to 

be responsive to hypertonic saline injections, suggesting activation of the 

magnocellular neurons by osmotic challenge.  Although neurons were not labelled 

for VP or OT, it is likely that the activated cells in the SON represent magnocellular 

neurons.   

 

In the present study, thapsigargin priming induced a ~ 20% potentiation of K
+
 

stimulated vasopressin release (Figure 4-8B). Compared to in vitro release 
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experiments, K
+
 depolarisation induced a ~ 30% increase in vasopressin release after 

thapsigargin pre-treatment for 30 min compared to high K
+
 treatment alone (Ludwig 

et al. 2005).  It is worth noting that whilst the VP-eGFP gene was incorporated into 

vasopressin cells, endogenous vasopressin was still being produced.  Hence, whilst 

measurement of VP-eGFP intensity only detected release of vasopressin tagged to 

eGFP, endogenous vasopressin release would not be accounted for using this 

method.  LDCV release from the magnocellular dendrite is considered a rare event 

(Leng & Ludwig 2008).  Intracellular Ca
2+

 mobilisation caused by thapsigargin 

treatment enhanced this rare release event by recruitment of LDCV to the RRP 

(Tobin et al. 2004).  Thus, vesicle recruitment to the RRP can increase release by 20 

– 30%.  Interestingly, there were no differences in fluorescent intensity measured at 

42 min comparing high K
+
 depolarisation and control, even though there was a 

significant decrease in intensity at 42 min compared to 32 min with K
+
 stimulation 

only (Figure 4-8A).  This difference was contributed by an insignificant increase in 

fluorescent intensity in the K
+
-treated group at 32 min compared to other groups.  

This suggests that K
+
 depolarisation may cause quick vesicle mobilisation and 

vesicle pool replenishment, resulting in a higher VP-eGFP fluorescent intensity right 

after K
+
 stimulation.  Studies in the Calyx of Held synapse (Hosoi et al. 2007) and 

the synapses in the auditory brainstem (Wang & Kaczmarek 1998) found that strong 

depolarising potentials caused an influx of calcium which was essential to rapid 

vesicle recruitment to the presynaptic terminal.  It is not known whether 

magnocellular neurons display rapid vesicle recruitment after depolarisation with K
+
, 

however, vesicle recruitment in the magnocellular dendrite has previously been 
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shown using thapsigargin (Tobin et al. 2004).  It is unlikely that vesicle pools 

mobilised by thapsigargin is the same vesicle pool mobilised by high potassium 

stimulation since potassium depolarisation was unable to mobilise the thapsigargin-

sensitive vesicle pool in magnocellular dendrites (Ludwig et al. 2002).  Nevertheless, 

an ability to recruit and mobilise vesicle pools in magnocellular dendrites may 

explain the small rise in VP-eGFP fluorescent intensity at 32 min in K
+
-treated 

samples leading to a significant difference in fluorescent intensity compared to 42 

min, although VP-eGFP fluorescent intensity at both time points was not different 

between K
+
-treated and control groups.  

 

Basal release of VP-eGFP and photobleaching accounted for ~ 25% loss of eGFP 

signal.  It could be argued that usage of two-photon excitation would minimise loss 

of eGFP signal due to photobleaching since multiphoton excitation only occurs in 

one focal plane and hence, other focal planes of the cell would not be bleached 

during stack acquisition.  Reduction in photo-excitation of cells in general also 

reduces phototoxicity, which is the result of free radicals generation by laser 

excitation.  However, studies comparing cell viability between the use of one- and 

two-photon excitation in chondrocytes found that 84% of cells survived 30 min of 

continuous irradiation of 488 nm single-photon laser excitation (Bush et al. 2007).     

Moreover, photobleaching of GFP by two-photon excitation was found to be more 

enhanced compared to single-photon excitation (Chen et al. 2002) in live cell 

imaging of transfected HeLa cells.  Single-photon confocal imaging of cultured brain 

slices has also been achieved in other brain areas and cell types, e.g. endothelial cells 
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in capillaries and noradrenalinergic neurons in brainstem slices, and pyramidal cells 

in the hippocampus (Teschemacher et al. 2005). 

 

There are several problems associated with imaging live cells in slices.  Firstly, 

instability and movements in both the microscope and the tissue are the major 

problems.  A 1
o
C change in temperature of the microscope set up could account for a 

1 µm movement in the lateral or axial direction (Kasparov et al. 2002).  Therefore, it 

was important to minimise these movements by the use of environmental chambers, 

heated microscope stage, heated solutions and by taking a stack of images in the Z 

direction to make sure that the whole cell is accounted for.  Solution flow rate and 

change of solution can also affect displacement of the tissue.  An environmental 

chamber had been used to keep the temperature on the microscope stage stable.  Two 

outflow tubes had also been attached to the perfusion chamber to ensure steady flow 

of solutions.  Aside from the inherent problems encountered from the microscope set 

up, scattering of light and difference in light absorbance throughout the thickness of 

the section affect the resulting image quality.  These affect organotypic slice cultures 

to a lesser extent since cultures are made from neonatal animals which are optically 

optimal; and slice explants flatten to a few cell layers.  Nevertheless, to image whole 

neuronal cell bodies along with their dendritic projections may require imaging 

depths of tens of micrometers.  This depth of image is in itself a problem since 

fluorescence from the top of the image has less distance to travel compared to 

fluorescence from within the tissue; i.e. fluorescent intensity is stronger at the top of 

the image.  This has to be taken into consideration when quantifying fluorescent 



 

   ____Chapter 4 Live cell imaging of dendritic peptide release 

 113

intensity and hence, 10 optical slices (~1.67 µm in total) in the centre of the stack 

were selected for image analysis.   

 

Lastly, photobleaching and phototoxicity are the most important factors of concern in 

live cell imaging.  The fluorophore used in the experiments in this chapter is eGFP, 

which is a mutated (S65T) version of wild-type green fluorescent protein, GFP.  

Photobleaching in eGFP had been reported to be relatively stable (Swaminathan et 

al. 1997; Tsien 1998) making it suitable as a reporter protein in live cell imaging 

experiments.  Live cell imaging of VP-eGFP in organotypic slice cultures revealed 

significant loss of VP-eGFP within dendrites after depolarisation by 50 mM K
+
 and 

further potentiated release by depolarisation after thapsigargin pre-treatment.  This is 

in accordance with findings in in vitro experiments where isolated SON was 

stimulated and release measured with radioimmunoassays (Ludwig et al. 2002; 

Ludwig et al. 2005).  Since vasopressin release was quantified by the loss of VP-

eGFP fluorescence, it is important to establish that eGFP fluorescence was not 

affected by the treatments used.  eGFP is a class2 GFP, where two point mutations 

led to enhanced photostability, increased fluorescence and stability at 37
o
C.  eGFP is 

also pH sensitive, decreasing in fluorescent intensity at slightly acidic pH (Patterson 

et al. 1997).  To ensure that loss of eGFP fluorescence was due to vasopressin 

release, background fluorescent decay was measured.  Background fluorescence was 

caused by eGFP cells not in focus and by noise.  If the stimuli applied caused a 

decrease in eGFP emission, there would also be a significant decrease in background 

fluorescence compared to control.   Analysis of the exponential decay constants 
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demonstrated that this was not the case; i.e. there was no change in background 

fluorescence in any group at any time point.  Also, thapsigargin treatment without 

depolarisation did not cause a significant change in fluorescent intensity in dendrites, 

suggesting that thapsigargin was unable to induce a significant amount of release of 

VP-eGFP detectable by fluorescent intensity measurement and that thapsigargin 

treatment did not cause changes in properties of eGFP fluorescence. 

 

Results from the live cell imaging experiments showed that live cell imaging of P7 

organotypic slice cultures provided comparable findings as in in vitro release 

experiments.  Results from the osmotic challenge experiments also showed that 

neonatal P7 rats were suitable for use in live cell imaging experiments.  In addition, 

organotypic slice cultures are easy to handle and maintain, and could be transfected 

to induce expression of other fluorescent constructs of interest by use of biolistic 

transfection (discussed in next chapter) or viral transduction for live cell imaging 

(Teschemacher et al. 2005) providing a robust model system to study dendritic 

peptide release in magnocellular neurons.     



 

   ____Chapter 4 Live cell imaging of dendritic peptide release 

 115

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4-1.  Perfusion chamber components.  The POC mini chamber (LaCon, 

Germany) has an observation area of 17 – 22 mm.  A slice explant was placed 

inverted on top of a 30 mm diameter cover slip (thickness #1).  The perfusion 

adaptor allowed for an open perfusion system; influx was through the inlet attached 

to the perfusion adaptor and outflow was achieved by a 21-gauge needle attached to 

two outflow tubes. 
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Figure 4-2.  Perfusion set up for live cell imaging experiments.  Solutions were 

heated up in a 37
o
C water bath and pumped in to the perfusion adaptor by a 

peristaltic pump (0.5 ml/min).  Two outflow lines were used to keep the outflow 

stable.  Solution change was achieved by a three-way tap.  The perfusion adaptor was 

placed on a stage heated to 37
o
C.  The heated stage was encased in an environmental 

chamber where 5% CO2 and 95% humidified air was pumped in.   
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Figure 4-3.  Image acquisition timeline for live imaging.   A stack of images were 

taken at 0 min, 30 min, 32 min and 42 min.  1) Control: sections were perfused with 

Tyrode’s solution throughout; 2) 30 min Tyrode’s solution + Tyrode’s solution 

containing 50 mM K
+
 thereafter; 3) perfusion with Tyrode’s solution containing 200 

nM thapsigargin throughout; 4) perfusion with Tyrode’s solution containing 200 nM 

thapsigargin for 30 min + Tyrode’s solution containing 50 mM K
+
 thereafter. 
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Figure 4-4.  Fos expression in the hypothalamus.  A-D: postnatal day 7 (P7) 

Sprague Dawley rats; E and F: adult positive control. B, D and F (scale bar = 50 

µm) are magnified images of the SON from A, C and E (scale bar = 200 µm) 

respectively.  A and B: control; C – F: osmotically challenged, i.p. 1ml/100g 1.5 

M saline solution. 3V = 3
rd

 ventricle; OC = optic chiasm; SON = supraoptic 

nucleus. 
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Figure 4-5.  Effect of osmotic challenge on Fos expression in the SON on post-natal 

day 7 (P7) Sprague Dawley rats.  Animals were divided into two groups: (1) 

osmotically challenged with 1ml/100g 1.5 M saline solution (i.p.) and (2) control.  

Values are group means ± SEM; 10 SON analysed per animal, n = 6 for each group.  

Student’s t-test showed significant difference in the number of Fos immunoreactive 

cells between control and osmotically challenged groups (p<0.001), suggesting 

activation of the SON in P7 rats after osmotic challenge.   
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Figure 4-7. Live cell imaging of VP-eGFP dendrites in the SON. Images are 

examples of control, K
+
 stimulated and Tg primed K

+ 
stimulated experiments.  A 

change in fluorescent intensity indicate a change of VP-eGFP content in the 

dendrites. Images were acquired at 30’, 32’ and 42’. For K
+ 

stimulation only, control 

Tyrode’s solution was applied for 30’.  Thereafter, K
+ 

stimulation was applied. For 

Tg primed, K
+ 

stimulated experiments, control solution was replaced with Tyrode’s 

solution containing 200 nM Tg. Scale bars = 5 µm. 
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Figure 4-8A.  Changes of fluorescent intensity in dendrites after stimulation.  All 

data were normalised to 30 min.  Intensity in the dendrite was obtained by measuring 

the mean (intensity/area) in 10 optical slices in the centre of a 3-D stack of images 

using ImageJ.  Data analysis was performed with Sigma Stat using two-way 

ANOVA on repeated measures.  A post-hoc Student’s t-test showed significant 

decreases in intensity after K
+
 stimulation and K

+
 stimulation after thapsigargin (Tg) 

priming (p=0.04 and p<0.001, n=4 and 3 respectively; comparison was made 

between 32’ and 42’).  This shows release of vasopressin by high K
+
 stimulation.  

There are no significant differences in intensity in control (n=4) and in 200 nM Tg 

priming (n=4) between 32’ and 42’. 
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Figure 4-8B.  Changes of fluorescent intensity in dendrites after stimulation.  All 

data analysis as described in Figure 7A.  Two-way ANOVA on repeated measures 

with post-hoc Student’s t-test comparing intensity at 42’ between different groups 

showed significant decrease in intensity in Tg + K
+
 stimulated dendrites (p<0.05) 

showing that 30 min of Tg priming leads to increase release of vasopressin after 50 

mM K
+
 stimulation in dendrites. 
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Figure 4-8C.  Rate of fluorescence decay in image backgrounds.  Background 

fluorescence decay was obtained by measuring the fluorescent intensity of 10 x 2 µm 

squared areas in the background of each image.  Exponential decay curves were 

fitted using ImageJ.  The mean decay constants of each group are shown here.  Two-

way ANOVA comparing the decay constants of each group showed no difference 

between background fluorescent decay in all groups, suggesting that decrease in 

fluorescent intensity shown in Figure 4-8B is due to increase in vasopressin release 

and not due to an increase in fluorescent decay caused by the treatment. 
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5. BIOLISTIC TRANSFECTION 

 

5.1 Introduction 

Chapter 4 described a live cell imaging model using organotypic slice explants of the 

hypothalamus of neonatal transgenic VP-eGFP rats.  To study the dynamics of 

vesicle pools and vesicle pool segregation in magnocellular dendrites, it is essential 

to distinguish between different vesicle pools.  Exogenous fluorescent proteins 

tagged to LDCV cargoes enable visualisation of vesicle pools of different age and 

hence, the regulation of these vesicle pools, by expression of a fluorescent time 

stamp (Duncan et al. 2003; Terskikh et al. 2000) or by inducible fluorescent 

expression (Han et al. 1999).  Cellular transfection offers a way of introducing 

foreign material, for example, DNA, into eukaryotic cells.  Methods available for 

cellular transfection include viral transduction (discussed in next chapter), calcium 

phosphate (Graham & van der Eb 1973) and lipid-mediated cell transfection (Felgner 

et al. 1987), electroporation (Shigekawa & Dower 1988), and biolistic transfection 

(Ye et al. 1990).  With the exception of viral transduction, these methods provide a 

cost effective and non-laborious means of targeting exogenous DNA expression in 

cells.  Of these methods, calcium phosphate co-precipitation and lipid-mediated 

transfection offer the simplest way for delivery of exogenous genetic material since 

neither of these methods require specialist equipments (Graham & van der Eb 1973; 

Felgner et al. 1987). However, these methods require delivery of the genetic material 

to the nucleus for transcription, and entry to the nucleus mostly occurs during cell 

division.  Since neurons do not divide, calcium phosphate co-precipitation and lipid-
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mediated transfection do not usually result in successful expression of exogenous 

DNA in neurons.  Electroporation delivers DNA into a cell by perturbation of the cell 

membrane via electrical pulses generated through a micropipette.  Biolistic 

transfection involves ejection of DNA-coated particles through high pressure, in 

another word, “shooting” DNA-coated “bullets” into cells.  Comparing 

electroporation and biolistic transfection, it was found that biolistic transfection 

resulted in a higher number of transfected cells (Murphy & Messer 2001) using 

cerebellar organotypic slice cultures.  Although both methods require fine tuning, 

strength and length of electrical pulse for electroporation and ejection pressure and 

DNA to particle ratio for biolistics; biolistic transfection had been successfully used 

to express exogenous genetic material in magnocellular neurons of hypothalamic 

organotypic slice cultures (Fields et al. 2003).  Hence, this chapter focuses on the 

establishment of biolistic transfection as a model to target genetic material to 

magnocellular neurons to study vesicle pool dynamics in dendrites. 

 

Biolistic transfection, also known as particle-mediated gene transfer and biological 

ballistics, is the transfer of DNA into cells by an apparatus called the gene gun 

(Biorad).  Originally, biolistics is a technique designed for gene expression in plant 

cells (Ye et al. 1990), where tungsten particles were used as bullets and were coated 

with DNA of interest.  These bullets were accelerated into plant cells by the use of 

gunpowder.  The technique was then adapted to transfect animal cells and the use of 

gunpowder was replaced by a blast of helium gas and gold particles were used as 

bullets instead.  Transfection of animal cells with the use of the gene gun was 
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achieved both in vitro (Gainer et al. 2001; Williams et al. 1991; Fields et al. 2003) 

and in vivo (Williams et al. 1991). Because gene transfer by biolistic transfection 

does not depend on the up-take of DNA during cell division, but the physical 

penetration of particles into cell membranes, it is a suitable technique to transfect 

neurons.  Gene particles were made into bullets where supercoiled plasmid DNA was 

coated onto gold particles.  One or more DNA constructs can be used in a single 

batch of bullets, allowing expression of more than one DNA construct per 

transfection.  Biolistic transfection had been effectively combined with organotypic 

slice explants of brain tissues to express foreign DNA in neurons (Arnold et al. 1994; 

Horch et al. 1999; Lo et al. 1994), and especially in vasopressin-expressing neurons 

in the hypothalamus (Gainer et al. 2001; Fields et al. 2003). 

 

In this chapter, biolistic transfection was applied to organotypic slice cultures of the 

hypothalamus.  The aim was to introduce fluorescent reporter DNA to magnocellular 

neurons so that vesicle trafficking and segregation of vesicle pools can be visualised 

by targeting fluorescent protein expression to dense core vesicles.  The age of rats 

most suitable for use for biolistic transfection was also investigated.  peGFP-N1 

(Clontech; plasmid map in Appendix II) with the immediate early promoter of 

cytomegalovirus (PCMV ie) was used as the reporter gene initially to establish the 

efficiency of biolistic transfection because peGFP-N1 is expressed in the cytoplasm 

and is extremely bright, facilitating the visualisation of successful transfection.  
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5.2 Materials and Methods 

5.2.1 Organotypic slice explants 

Hypothalamic slices were collected from postnatal day 7 (P7) and postnatal day 14 

(P14) wild type Sprague Dawley rat pups and cultured for 7 days.  300 µm coronal 

sections were collected with a vibratome in aCSF solution (Appendix I).  The 

detailed culture protocol is described in Section 4.2.2, Chapter 4. 

 

5.2.2 Biolistic transfection 

The principle of Biolistic transfection involves the blasting of plasmid DNA coated 

gold particles into cultured tissue using a gene gun (Helios Gene Gun, Biorad).  

Figure 5-1 shows a schematic diagram of biolistic transfection using the gene gun.  

Sections of the hypothalamus containing the SON were collected from neonatal wild 

type Sprague Dawley rats, and cultured as described in section 4.2.2, Chapter 4.  

Gold particles of 1.0 µm had been shown to effectively transfect neurons in 

hypothalamic slice explants (Fields et al. 2003; Gainer et al. 2001).  DNA:gold ratio 

used was 2 µg:1 mg.  All materials to be used were incubated in a desiccation 

chamber overnight.  100 µl of 0.05 M spermidine was added to the gold particles to 

help the precipitation of DNA.  Immediately after mixing, 100 µl of 1 M CaCl2 was 

added slowly onto the gold solution further aiding DNA precipitation onto the gold 

particles.  Spermidine and CaCl2 coating the gold particles are cationic and hence, 

attracts negatively charged DNA to the surface of the gold particles.  After 
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incubation at room temperature for 10 min, the mixture was centrifuged at 400rpm 

for 20 sec.  1 ml of 100% ethanol was used to wash the DNA/gold pellet twice.  The 

pellet was then re-submerged in 600 µl + 600 µl of ethanol and transferred to a 2 ml 

tube.  The gold mixture was subsequently sucked into a dry silicon tube by a syringe 

and was allowed to precipitate for 15 min.  Once the DNA/gold particles have 

precipitated onto the silicon tubing, the ethanol was pulled out, leaving the gold 

particles coating the tube.  The gold particles were then dried by a nitrogen gas 

supply for 15 min.  Individual Bullets were made by cutting the silicon tubing and 

were stored at 4
o
C with desiccating agents for up to two weeks.  

 

On the day of transfection, slice cultures were taken out from 37
o
C incubation and 

placed on a 60 mm Petri dish.  The gene gun was aimed onto the section, as 

described in Figure 5-1.  A nylon mesh was used to minimise the impact of the 

helium blast on the section.  The helium pressure used was determined by 

experiments described below.  The sections were shot at individually and quickly 

brought back to 37
o
C incubation.  Transfected sections were cultured for another 24 

hr before further immunohistochemistry was carried out. 

 

 

5.2.3 Immunohistochemistry – double label immunofluorescence 

Transfected organotypic slice explants were taken out of culture and the culture 

medium was removed.  1 ml of 4% (w/v) PFA in 0.1 M PB was added and the tissue 
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was incubated in the fixative for 1 hour.  The fixative was then removed and the rest 

of the procedure is as described in section 3.2.2, Chapter 3.  Primary antibodies were 

replaced by non-pre-immune serum to act as negative controls for immunolabelling.  

Non-transfected hypothalamic slices cultured under the same conditions as the 

transfected cultures were included for immunolabelling and act as positive controls 

for immunolabelling and negative controls for transfection. 

 

5.2.3.1 Primary Antibodies 

Vasopressin antibodies 

The vasopressin primary antibody used was either the rabbit polyclonal vasopressin 

primary antibody (Calbiochem) used at a concentration of 1:500, or PS41, a mouse 

monoclonal antibody which was a gift from Professor Harold Gainer.  The rabbit 

polyclonal vasopressin antibody had been tested by Calbiochem on rat PVN and 

SON and staining was completely eliminated by arginine vasopressin pre-treatment 

(10 µg/ml) (Calbiochem).  Information on cross-reactivity between the antibody and 

oxytocin was also provided and tests by preabsorption of the antibody with 100 

µg/ml oxytocin showed no effects on vasopressin staining.   PS41 was produced 

against vasopressin-associated neurophysin in rats (Ben Barak et al. 1985).  The 

specificity of PS41 against vasopressin-neurophysin is well described by Ben Barak 

et al. using liquid phase assays, immunoblot, and immunoprecipitation experiments.  

PS41 was pre-diluted 1:50, from the stock obtained from Prof Gainer, in 10% (v/v) 
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NGS and 0.01% (w/v) sodium azide in 0.1 M PB.  The pre-diluted antibody was kept 

at 4
o
C.  The final concentration of the PS41 antibody used was 1:1000.   

 

Oxytocin antibodies 

In some experiments, oxytocin primary antibodies were used in addition to 

vasopressin primary antibody to identify all magnocellular neurons in the SON.  The 

mouse monoclonal anti-oxytocin antibody, PS38, was a gift from Prof Harold 

Gainer.  PS38 is directed against oxytocin-associated neurophysin and its specificity 

was also characterised by liquid phase assays, immunoblot, and immunoprecipitation  

(Ben Barak et al. 1985).   

 

Neuronal marker – MAP2 

MAP2 (microtubule associated protein found in neurons) was used as a neuronal 

marker.  The polyclonal chicken IgY (Abcam) used detects all three isoforms of 

MAP2: MAP2c is present in the newborn rat brain until postnatal day 10 – 20, and is 

replaced by MAP2a which is present from postnatal day 10 onwards, MAP2b is 

present throughout life.  MAP2a and MAP2b are both expressed in cell bodies and 

dendrites of neurons (Goedert et al. 1991), making it ideal to be used as a general 

marker for neurons.  The pre-immune IgY was used to test for MAP2 antibody 

specificity and was not found to produce any signal, while in contrast the immune 

IgY produced strong, clear staining of dendrites and perikarya of neurons 

(information provided by Abcam).  
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Glial cells marker – anti-GFAP 

Anti-glial fibrillary acidic protein (GFAP; Sigma) rabbit polyclonal antibody was 

used to identify glial cells in organotypic slice cultures.  GFAP encodes for 

intermediate filament protein in astrocytes.  Anti-GFAP antibody was used at 1:400 

final concentration. 

 

After incubation with the primary antibody, and pre-immune serum incubation for 

negative controls, sections were washed three times in 0.1 M PBT for 30 min to 

ensure that most of the unbound primary antibody was washed away.  A second 

blocking step with 0.2% (w/v) BSA in 0.1 M PBT for 1 hour ensures that any 

remaining non-specific binding sites were blocked.  Sections were then incubated in 

fluorophore-conjugated secondary antibody solution (2
o
Ab + 0.2% (w/v) BSA in 

PBT + 0.3% (v/v) Triton) at 4
o
C overnight.  From this step onwards, the samples 

were protected from light.   

 

5.2.3.2 Secondary Antibodies 

All secondary antibodies used were from Molecular Probes, Invitrogen: Alexa Fluor 

® 568 goat anti-mouse, Alexa Fluor ® 568 goat anti-rabbit, and Alexa Fluor ® 633 

goat anti-chicken.  The excitation and emission spectra, and the emission filters used 

for confocal imaging are shown in Table 1 Appendix 1. 
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After secondary antibody incubation, the secondary antibody solution was removed 

and sections were washed three times for 15 min in 0.1 M PB.  Sections were then 

mounted on microscope slides and coverslipped (coverslip thickness #1, VWR).  

Mowiol (Calbiochem) supplemented with DABCO (Sigma) was used as the 

mounting medium with a refractive index of 1.41.  Sections were left to cure at 4
o
C 

in darkness until the mounting medium had set.   

 

5.2.4 Image acquisition 

5.2.4.1 Widefield fluorescence image acquisition 

Widefield fluorescent images were acquired with the LeicaDMR upright light 

microscope using either the Hamamatsu ORCA HR digital camera, acquired by 

OpenLab (Improvision), or using the Leica DFC490 digital camera, acquired by the 

Leica Application Suite V2.7.  Images acquired with the Hamamatsu camera were 

obtained with a band pass 450 – 490 nm excitation filter and a long pass 515 nm 

emission filter for visualisation of green fluorescence, and band pass 515 – 560 nm 

excitation and long pass 590 nm emission filters for visualisation of red fluorescence.  

Images acquired with the Leica DFC490 camera were obtained with Fitc 488 nm and 

Texas Red 568 nm excitation filters and band pass 516 – 556 nm and 604 – 644 nm 

emission filters to visualise green and red fluorescence respectively. 
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5.2.4.2 Confocal image acquisition 

Confocal images were acquired using the Zeiss LSM510 inverted microscope.  eGFP 

was excited with the 488 nm line of the Argon laser, emission collected through a 

band pass 500 – 550 nm filter.  Alexa Fluor 568 staining was excited with the 543 

nm HeNe1 laser and emission collected through a band pass 565 – 615 nm filter.  

Alexa Fluor 633 staining was excited with the 633 nm HeNe2 laser and emission 

collected with a long pass 650 nm filter.  Filter settings are summarised in Figure 3-

2, Chapter 3.  The pinhole was adjusted to 1 Airy unit for all channels for confocal 

imaging.  Images were acquired with an x63 oil immersion objective (NA1.4).  3-

dimensional images were obtained by scanning the x, y –planes at 60 nm, achieved 

by line scanning 1024 x 1024 pixels with an optical zoom of 2.4, and intervals of 170 

nm along the z-axis was acquired to avoid under sampling.  8 bit pixel depth, line 

averaging of 1 (no averaging) and maximum scan speed were chosen for image 

acquisition to avoid photobleaching.  All 3-D images were deconvolved to remove 

background noise (Huygens Deconvolution Software, SVI).  Please refer to section 

2.2.4 of Chapter 2 for parameters used for deconvolution. 

 

 

5.3 Results 

5.3.1 Organotypic slice culture – P7 vs. P14 

Empirical experiments were carried out to determine the age of neonatal rats suitable 

to be used in organotypic slice culture for biolistic transfection studies.  Figure 5-2 
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(A) and (B) show two organotypic slice explants both cultured for 7 days, one 

obtained from a P7 rat pup and the other obtained from a P14 rat pup.  The sections 

were stained for vasopressin and visualised using by the Alexa Fluor 568 antibody as 

described above.   Figure 5-2 C shows a transcardially perfused section of the 

hypothalamus from an adult (200 – 300 g) VP-eGFP transgenic rat (transcardial 

perfusion was described in Chapter 2).  Green signals were from vasopressin eGFP 

cells in the SON. Comparing the morphology of the SON between the three ages, the 

SON in P14 rats closely resembled that of an adult rat.  Vasopressinergic neurons in 

the P14 slice culture are more spread out in the SON (Figure 5-2 B), similar to the 

anatomy of the SON of an adult rat (Figure 5-2 C).  Vasopressinergic neurons in the 

P14 slice culture have also migrated towards either side of the optic chiasm (not 

shown in figure) resembling the location of the SON in adult rats.  Therefore, P14 

rats were chosen for biolistic transfection experiments. 

 

5.3.2 Transfection efficiency – optimisation of transfection pressure 

Using eGFP as the reporter gene, optimisation of helium pressure used was carried 

out on P14 organotypic slice cultures of non-VP-eGFP rats. The peGFP-N1 plasmid 

localises in the nucleus and produces an enhanced green fluorescent protein.  This 

allowed easy identification of cells that had been transfected with peGFP-N1.   

 

Slice explants were shot at 120 psi (827.4 kPa), 160 psi (1103.2 kPa), 180 psi 

(1241.2 kPa) and 200 psi (1379 kPa) (n=4 slices per pressure) to determine the best 
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pressure of helium gas to use for transfection of magnocellular neurons.  In a 

separate experiment, slice explants were shot at 50 psi (344.75 kPa) and 60 psi 

(413.7 kPa) (n=3 slices per pressure).  Two slices from each experiment were not 

transfected and were used as positive controls for immunohistochemistry.  Slices 

were fixed >20 hr after transfection in 4% (w/v) PFA and immunolabelled for 

vasopressin and oxytocin (PS41 and PS38, both raised in mouse) and MAP2 (raised 

in chicken) for identification of neurons, and in particular magnocellular neurons.  

Secondary antibodies used were Alexa Fluor 588 goat anti-mouse and Alexa Fluor 

633 goat anti-chicken.   

 

10 x63 images were taken of slices from each transfection pressure used using the 

confocal microscope.  The transfection efficiency, i.e. the number of cells transfected 

per section, of the different transfection pressures used is shown in Figure 5-3B.  

One way ANOVA comparing the number of transfected cells showed that there were 

significantly more cells transfected at 160 psi compared to all other pressures used 

except to 180 psi (p<0.05, Student’s t-test).  The transfection efficiency for the 

number of neurons, i.e. transfected cells expressing green fluorescent and labelled 

with MAP2, was also counted (Figure 5-3C).  There was no significant difference in 

the number of neurons transfected between the different pressures used (one-way 

ANOVA).  160 psi was chosen as the transfection pressure in further experiments.  

An example of a transfected neuron labelled with MAP2 is shown in Figure 5-4.  

The transfection efficiency of neurons was calculated to be 7% of the total number of 

cells transfected.  Immunofluorescence labelling of VP and OT was carried out on 
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the same sections and no magnocellular neurons were found to be transfected.  

Hence, further experiments were carried out where sections were either labelled with 

MAP2, VP/OT or GFAP antibodies to investigate the cell types transfected (Section 

5.3.3). 

 

5.3.3 Transfection of neurons, magnocellular neurons, and non-neuronal cells 

15 hypothalamic sections from four P14 pups were collected and cultured for 1 day 

in vitro (DIV) before transfection.  Sections were fixed <20 hr after transfection and 

were immunolabelled for VP/OT (PS41 and PS38) and MAP2 or GFAP.  Figure 5-5 

shows a representative example of the SON after transfection (red = VP/OT; blue = 

MAP2).  Mixing of PS41 and PS38 antibodies allows visualisation all transfected 

magnocellular neurons alongside staining with MAP2. Figure 5-6 shows a 

transfected magnocellular neuron, stained for vasopressin/oxytocin (red) and MAP2 

(blue), transfected with the peGFP-N1 plasmid (green).  This shows that the biolistic 

technique was successful in transfecting magnocellular neurons (transfection 

efficiency = 1.8% of the total number of cells transfected).  There are also other non-

neuronal cell types not stained for MAP2 which were also transfected with the 

biolistic technique.  Figure 5-7 shows eGFP expression (green) in sections stained 

for GFAP (red) an astrocyte marker.  Although no astrocytes were found to express 

the peGFP-N1 plasmid, other cell types such as fibroblasts-like cells and 

oligodendrocytes were found to be transfected.  Figure 5-7 (A) and (B) show 

putative fibroblasts and Figure 5-7 (C) shows a putative oligodendrocyte expressing 

the peGFP-N1 plasmid.  Although optimisation of the biolistic transfection technique 
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did result in the transfection of magnocellular neurons, the number of neurons 

transfected was still found to be low and random.   

 

 

5.4 Discussion 

Stationary organotypic slice culture is an ideal system to study magnocellular 

neurons due to the conservation of the topography of the hypothalamus in these 

cultures.  Using organotypic slice cultures from the hypothalamus of neonatal rats, 

magnocellular neurons can be easily identified through immunohistochemical 

labelling with vasopressin and oxytocin antibodies.  In vitro slice cultures also allow 

for post-culture transfection of cells of interest without the use of in vivo viral 

transduction or transgenic models.  Brain cultures had been prepared from foetal 

(Jiao et al. 1993) to mature rats (Xiang et al. 2000).   To determine the age which is 

most suitable for organotypic slice culture from the hypothalamus, P7 and P14 rats 

were used.  Slices were obtained from the hypothalamus and cultured under the same 

conditions for seven days.   At the end of culture, slice tissues were fixed and 

labelled for vasopressin staining.  Comparing cultured slices labelled for vasopressin 

and slices obtained from an adult VP-eGFP rat (Figure 5-2), the SON from P14 

animals showed a closer morphological resemblance to that of the adult rat than P7 

animals.  Hence, P14 rats were chosen for further transfection experiments. 
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Biolistic transfection had been used as an approach to transfect hard-to-transfect, or 

non-dividing cells (e.g. neurons) as an alternative to viral transduction to express 

foreign DNA in these cell types (Fields et al. 2003; Lo et al. 1994).  A range of 

different helium pressures used for transfection on cultured neuronal cells had been 

reported: 100 psi for cultured hippocampal and cerebellar neurons (Wellmann et al. 

1999); 175 psi for dorsal root ganglion explants (O'Brien et al. 2001); 180 psi for 

hypothalamic slice cultures (Fields et al. 2003).  It is evident that the higher the 

transfection pressure used, the deeper the penetration of particles into the brain 

slices, but also, the lower the survival rate of cells (O'Brien et al. 2001).  Hence, it 

was essential to determine the optimal helium pressure to be used in experiment.  All 

pressures used were successful in transfection, and 160 – 180 psi was found to 

transfect with the highest efficiency, although there was no significant difference in 

the number of neurons transfected with the pressures used.   

 

The transfection efficiency of neurons was found to be 7% of the total number of 

cells transfected using 160 psi transfection pressure, transfection efficiency in 

magnocellular neurons was much lower at ~ 1.8%.  Several measures could be taken 

to improve transfection efficiency, for example, by adjusting the diameter of gold 

particle used, and by adjusting the DNA:gold ratio.  However, gold particle diameter 

of 1 µm and DNA:gold ratio of 2 µg:1 mg had been successfully used to transfect 

magnocellular neurons in hypothalamic slice cultures before (Fields et al. 2003).  

Another aspect which could improve transfection efficiency is the use of younger 

animals for culture.  Fields et al. (Fields et al. 2003) had successfully transfected 
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magnocellular neurons using slices from postnatal day 6-8 rats cultured for up to 15 

days in vitro.  In fact, several studies have used early postnatal rat pups for biolistic 

transfection in different brain areas with success (Lo et al. 1994; Wellmann et al. 

1999; Thomas et al. 1998).  However, other studies had successfully transfected 

cortical neurons in slice culture prepared using P12 – P14 rats (Tao et al. 1998; 

Arnold & Clapham 1999), suggesting that age is not the factor that determines 

transfection efficiency.  Whilst survival of cells after transfection is an important 

factor in transfection efficiency, and it is known that cultures prepared from younger 

rats survive better, it was demonstrated (Figure 5-6) that cultures prepared from P14 

rats survived biolistic procedure, even though transfection efficiency was low.  

Nevertheless, cell death after particle bombardment is an important limiting factor to 

transfection efficiency in neurons.  It had been shown that localised cell death occurs 

as soon as after the biolistic transfection process (Raju et al. 2006; Young, III et al. 

1999).  Another factor that strongly affected the transfection efficiency is the length 

of culture.    Organotypic slice cultures were found to contain a dense layer of glial 

cells over the surface of the slice tissue (personal observation), hence favouring 

transfection of glial cells on the surface of the explant as demonstrated in Figure 5-7.  

The development of a glial cell layer over the surface of cultured organotypic slices 

had been shown in cultured slices from other brain areas (Coltman & Ide 1996) and 

can be prevented by the omission of animal serum in the culture media (Czapiga & 

Colton 1999).  On the other hand, it is possible to target gene expression to 

specifically to neurons.  In hypothalamic slice culture, the nerve-specific enolase 

promoter had been shown to target gene expression to neurons and the vasopressin 
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promoter had been shown to target expression specifically to vasopressinergic 

neurons (Gainer et al. 2001). 

 

Although it is possible to target gene expression specifically to specific neuronal 

phenotypes, and despite the fact that the biolistic technique was successful in 

transfecting neurons and magnocellular neurons, the low and random transfection 

efficiency achieved with biolistic transfection means that a very high number of 

samples would be required to achieve the initial aim of this experiment to label 

vesicles and look at the behaviour vesicle pools under different stimuli.  Another 

major concern deeming this transfection technique unsuitable for the studying of 

vesicle behaviour is the scattering of gold particles which reflected laser excitation 

across the tissues transfected.  It was realised that the scattered gold particles closely 

resembled large dense core vesicles and because gold particles were excited by all 

the excitation lasers used, emission was collected from all three emission channels, 

rendering it impossible to differentiate between large dense core vesicles and gold 

particles.  Since the aim of this project is to study the distribution of dense core 

vesicles in magnocellular dendrites, it is unfeasible to progress with biolistic 

transfection to label these vesicles.  

 

Other methods available for transfection of neurons as discussed at the beginning of 

this chapter include calcium phosphate and lipid-mediated cell transfection, 

electroporation, and viral transduction.  All of these methods, except for viral 
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transduction, would not be suitable for the use with organotypic slice cultures due to 

low transfection efficiency and the growth of a dense glial cell layer on the surface of 

slice tissues, preventing access of transfection agent to the neurons underneath.  Viral 

transduction, on the other hand, has several advantages including high transfection 

efficiency in all cell types including neurons.  Hence, the next chapter of this thesis 

will discuss the development of a suitable viral transduction system for the use in 

hypothalamic slice culture. 
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Figure 5-1.  Schematic diagram of biolistic transfection of organotypic slice culture 

with the Helios Gene Gun.   
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Figure 5-2.  Organotypic slice 

cultures P7 vs. P14.  (A) P7  

culture and (B) P14 culture stained 

for vasopressin by indirect double 

immunofluorescence labelling.  

The yellow staining in these 

images shows vasopressin cells 

present in the SON.  (C) 

Transcardial perfused section of 

the hypothalamus from adult (200 

– 300g) VP-eGFP rat.  Green 

signal represents vasopressin in the 

SON.  Images were acquired with 

the Hamamatsu camera (excitation 

band pass 450 – 490 nm filter and 

a long pass 515 nm emission filter 

for (C), and band pass 515 – 560 

nm excitation and long pass 590 

nm emission filters for (A) and 

(B).  The morphology of the SON 

in the P14 slice culture (B) closely 

resembles that of the adult SON 

(C). 
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6. FLUORESCENT PROTEIN EXPRESSION IN LDCVs AND VIRAL 

TRANSDUCTION 

 

6.1 Introduction 

Viral transduction is well known for its use to target gene expression in hard to 

transfect cells and its high transfection efficiency (Slack & Miller 1996; Washbourne 

& McAllister 2002).  Gene targeting using viral transduction techniques has 

improved dramatically by reducing cytotoxicity and the cost in production.  Non-

viral transfection techniques offer much lower production cost and can transfer 

genetic material of almost any size to the target cell.  However, as seen in Chapter 5, 

in non-dividing cells like neurons, non-viral transfection techniques offer 

disappointing transfection efficiency.  Viral transduction had been successfully used 

to express genes of interest in different neuronal cell types (Ehrengruber et al. 2001; 

Keir et al. 1999; Ridoux et al. 1995; Vasquez et al. 1998).  Another important factor 

to consider is that expression of virally transduced genes typically occurs 1-7 days 

after transduction, depending on the type of cells targeted and the type of virus used 

(Ridoux et al. 1995).  Successful transduction of magnocellular neurons in 

organotypic slice cultures of the hypothalamus (Keir et al. 1999) and in vivo 

transduction of magnocellular neurons (Vasquez et al. 2001) using adenoviral gene 

transfer has been previously reported .  

 



Chapter 6 Fluorescent protein expression in LDCVs and viral transduction  

151 

 

Several different types of recombinant viral vectors are currently used for gene 

delivery in research each possessing different levels of cytotoxicity, transduction 

efficiency, maximal size of insert, onset of protein expression, etc (reviewed in 

(Washbourne & McAllister 2002).    Hence, there is not one virus that is suitable for 

use in every system.  Most recently, the success of adenovirus and adeno-associated 

virus-mediated gene transfer in magnocellular neurons had been demonstrated 

(Vasquez et al. 2001; Keir et al. 1999; Cho et al. 2007).  The virus chosen for 

expression of exogenous proteins in magnocellular neurons in this study is the 

replication-incompetent adenovirus with human adenoviral type5 (Ad5) genome 

(Adeno-X
TM

 Expression Systems, Clontech).  The adenovirus is modified for 

recombination and used to target exogenous protein expression since large portions 

of the Early Regions 1 (E1) and 3 (E3) of the viral genome had been deleted to 

enable accommodation of larger DNA insert (up to 8kb) and also, making it unable 

to replicate itself unless grown in cell lines which expressed the Ad5 Early Regions 

(i.e. HEK 293 cells that stably express the Ad5 E1 genes are used for propagation of 

viral particles after recombination).  Adenovirus particles infect cells by interaction 

of the adenovirus fibre antigen with proteins found on cell membranes (Lonberg-

Holm & Philipson 1969).  Adenoviruses are endocytosed by host cell membranes 

and this endocytosis is clathrin-dependent (Meier & Greber 2003).  After successful 

entry into the cell, the adenoviral particles dissociate from endosomes.  Soon after 

dissociation from endosomes, the capsids, along with other viral structures, 

disassemble and release the recombinant DNA, in addition to the viral genome, to the 

infected cell cytoplasm and these gain entry to the nucleus through nuclear pores for 

replication (Greber et al. 1993).   
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To target fluorescent protein expression in LDCVs, the pre-pro-atrial natriuretic 

factor (ppANF) was chosen to be tagged to the fluorescent reporter protein.  ppANF 

has been found to target reporter proteins to LDCVs (Duncan et al. 2003; Wiegand et 

al. 2003; Burke et al. 1997).  Moreover, release of co-packaged peptides was not 

found to be affected by ppANF expression (Shields et al. 1990).  The three reporter 

constructs chosen are: the ppANF-Timer (to be used as a fluorescent time-stamp), 

and ppANF-tdTomato and ppANF-eGFP (see Appendix II for plasmid maps and 

sequences).  All three constructs will be used for inducible fluorescent protein 

expression as described below.  tdTomato (Shaner et al. 2004) is a dimeric mutant of  

DsRed (Campbell et al. 2002),  a red fluorescent protein derived from the coral of the 

Discosoma genus, which is an obligate tetramer.  The tetramerisation of DsRed often 

results in the aggregation of the fluorescent protein in cellular compartments (Lauf et 

al. 2001).  This aggregation is overcome in the tdTomato protein which forms 

dimers.  tdTomato is also 160% as bright as DsRed and the half time for the protein 

to mature is 1 hr as opposed to ~10 hr for DsRed (Shaner et al. 2004). This increased 

brightness offers an opportunity for live cell imaging, where increased laser 

excitation to illuminate dim fluorescence often leads to cell death.  Moreover, at the 

early maturation of the DsRed protein, the fluorophore emits in the green spectrum 

and slowly matures to emit in the red.  The slow maturation time of DsRed meant 

that traces of green fluorescence could be detected long after transfection or 

transduction.  The much shorter maturation time of tdTomato made it superior as a 

red fluorescent protein.  On the other hand, the slow maturation of DsRed gave rise 
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to another mutant, the fluorescent Timer DsRed-E5, which will be known as Timer 

from now on.  The fluorescent Timer was first described by Terskikh et al. (Terskikh 

et al. 2000).  The slow maturation of the fluorescent timer protein is characterised by 

the time that is required for the protein to fold and tetramerise requiring > 16 hr – 

acting as a time stamp.  It has been used in bovine adrenal chromaffin cells to study 

segregation of vesicle pools according to age (Duncan et al. 2003; Wiegand et al. 

2003).   Hence, this study will use the Timer protein as a time-stamp on LDCVs, 

investigating the segregation of vesicle pools according to age.  In addition to the 

fluorescent time-stamp, utilisation of an inducible expression system targeting 

fluorescent reporter proteins to LDCVs will allow “pulse-chase” experiments to be 

carried out where fluorescent protein production is induced or stopped at different 

time points (Han et al. 1999).  The tetracycline/doxycycline inducible system had 

been chosen for this study.  In the tet-on system, binding of tetracycline/doxycycline 

to the reverse tetracycline repressor protein downstream of the silent minimal 

immediate early promoter of cytomegalovirus (PminCMV) induces transcription of 

reporter proteins.  In the tet-off system, binding of tetracycline/doxycycline to the 

tetracycline repressor protein switches off transcription of the gene of interest 

downstream.  When target cells, in this case magnocellular neurons are infected with 

constructs containing the TRE and a (reverse) tetracycline repressor protein, 

transcription of the reporter gene is turned on (tet-on system) or off (tet-off system) 

by the addition of tetracycline or doxycycline.  This system also ensures that all cells 

which received doxycycline switch transcription on/off at the same time.  The 

tetracycline repressor protein (TetR) works by negatively regulating the genes of 

interest in the absence of tetracycline.  In the Adeno-X
TM

 Expression System 1 
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(Clontech), TetR is fused with an activation domain found in the Herpes simplex 

virus (VP16 protein) (Triezenberg et al. 1988).  Fusion of VP16 to TetR converts the 

repressor element of TetR to an activator in the absence of tetracycline/doxycycline, 

the resulting fusion gene is called the tetracycline-controlled transactivator (tTA) 

(Gossen & Bujard 1992) found in the Tet-off system (Figure 6-1).  In the Tet-on 

system, the regulatory protein is a reverse TetR fused to VP16 making the reverse 

tetracycline-controlled transactivator (rtTA) (Gossen & Bujard 1995), resulting in 

activation of transcription in the presence of tetracycline/doxycycline (Figure 6-1).  

The PCMVie promoter does not enhance transcription unless tTA or rtTA binds the 

TRE upstream of the promoter.  Hence, for successful expression of the gene of 

interest, the regulatory and response virus has to be co-infected.  Figure 6-2 shows 

an overview of recombinant virus construction and subsequent infection of target 

cells, using the Tet-on virus as an example. 

 

In addition to the time-stamp labelling LDCVs, either by the fluorescent Timer or the 

inducible fluorescent proteins, expression of LDCV targeted fluorescent constructs 

can be used in conjunction with live cell imaging, where ppANF-tdTomato can be 

imaged together with VP-eGFP expressing magnocellular neurons in organotypic 

slice cultures of the hypothalamus. Dendrites of VP-eGFP magnocellular neurons are 

easily identified by green fluorescence (Chapter 4) and vesicles expressing the 

ppANF-tdTomato protein after viral transduction can be identified as red 

fluorescence.  Using the inducible construct, ppANF-tdTomato can be expressed for 

different lengths of time before imaging to visualise the dynamics of vesicles of 
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different age.  On the other hand, transduced magnocellular neurons can be fixed 

before imaging, allowing the use of immunohistochemical labelling and the 

expression of ppANF–Timer or ppANF-eGFP constructs to study segregation of 

vesicle pools. As discussed above, the targeting of fluorescent reporter proteins to 

LDCVs requires tagging of the fluorescent construct to ppANF.  Generation of 

ppANF-tagged fluorescent constructs enables direct visualisation of LDCVs.  

Previous studies in LDCV dynamics and vesicle pool segregation, mostly carried out 

in clonal cell lines, provided insights of LDCV dynamics in endocrine neurons.  

Hence, clonal cells (PC12 and N2a) were transfected with ppANF-tagged fluorescent 

construct to examine fluorescent protein targeting.  Expression of a fluorescent time 

stamp, via a fluorescent protein that changes its emission over time or an inducible 

expression system, in magnocellular neurons provides an important tool to study 

vesicle pool segregation in magnocellular dendrites. 

 

 

6.2 Materials and Methods 

Generation of viral particles containing the desired constructs regulated by an 

inducible promoter required several steps of subcloning: 1) To generate ppANF-

tagged reporter constructs, 2) To insert the ppANF-tagged construct into a shuttle 

vector that contains recombination sites for transferring into the viral vector, 3) To 

produce recombinant virus with the inducible ppANF-tagged construct, 4) To 

produce viral particles utilising HEK293 cell culture.  Figure 6-3 shows an overview 



Chapter 6 Fluorescent protein expression in LDCVs and viral transduction  

156 

 

of the whole procedure from the generation of ppANF-tagged constructs to the 

generation of viral particles.  To generate a Tet-on expression system, ppANF-tagged 

constructs were inserted into a shuttle vector containing the Tet-responsive promoter 

– pTRE-shuttle2 vector (Clontech).  This shuttle vector also contains unique 

recombination sites which are compatible with two unique recombination sites in the 

viral vector.  To generate a Tet-off expression system, ppANF-tagged constructs 

were inserted into the pDNR-CMV donor vector (Clontech) which contains two loxP 

sites that are recognised by a specific recombination enzyme, Cre recombinase.  Cre 

recombinase catalyses the cleavage of loxP sites and the subsequent recombination 

of these sites.  Thus, cre-loxP recombination enables genes inserted between the loxP 

sites to be transferred to a special Adeno-X acceptor virus, also containing loxP sites 

and a Tet-responsive promoter. The ppANF-eGFP plasmid was a gift from Dr. Rolly 

Wiegand, University of Edinburgh (Wiegand et al. 2003) and ptdTomato (Shaner et 

al. 2004) was a gift from Dr. Colin Rickman, University of Edinburgh.  The pTRE-

shuttle2, pDNR-CMV donor vector, and pTimer constructs were available from 

Clontech.   

 

6.2.1 Construction of inducible ppANF-eGFP, ppANF-tdTomato and ppANF-

Timer 

Subcloning was carried out by PCR amplification of a cDNA fragment encoding the 

rat ppANF (Seidman et al. 1984), ligation of insert DNA to vector DNA, purification 

and amplification, and finally ligation to the viral vector DNA.  All these procedures 

are described in detail in the sections below.  This section describes the insert DNA 
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fragments amplified, the vectors used and the restriction sites used for subcloning of 

each plasmid.  The selected restriction sites used for each construct ensured that the 

insert DNA was in the same reading frame as the vector DNA. 

 

ppANF-Timer 

PCR was used to introduce two unique restriction sites, HindIII and AgeI, to the 

ppANF fragment of ppANF-eGFP.  ppANF-Timer was produced by subcloning the 

ppANF (insert, 466 bp) fragment from ppANF-eGFP into the pTimer vector 

(Clontech) which contains unique HindIII and AgeI restriction sites.  Figure 6-4A 

shows a plasmid map for ppANF-eGFP and Figure 6-4B shows a plasmid map for 

ppANF-Timer.  Restriction sites for subcloning were also shown. 

 

pTRE-ppANF-eGFP 

The pTRE-shuttle2 (Clontech) vector contains the tetracycline response element 

coupled to the PCMVie promoter and a multiple cloning site where the DNA of interest 

can be inserted.  NheI and EagI are unique restriction sites in the pTRE-shuttle2 

vector and were used for subcloning the ppANF-eGFP insert.  NheI and EagI sites 

were introduced to the 5’ and 3’ end of ppANF-eGFP (1.2 kb) via PCR 

amplification.  Figure 6-4C shows a plasmid map for pTRE-shuttle2 and Figure 6-

4D shows the plasmid map for pTRE-ppANF-eGFP and the restriction sites used. 
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pTRE-ppANF-tdTomato 

pTRE-ppANF-tdTomato was produced by replacing the eGFP sequence from pTRE-

ppANF-eGFP with a tdTomato sequence.  A tdTomato fragment (1.4 kb) was 

amplified by PCR and AgeI and EagI restriction sites were introduced.  AgeI and 

EagI are unique restriction sites found in pTRE-ppANF-eGFP and were used for 

insertion of tdTomato.  Figure 6-4E shows a plasmid map for pTRE-ppANF-

tdTomato and the restriction sites used.  

 

pTRE-ppANF-Timer 

The ppANF-Timer fragment (1.15 kb) of the ppANF-Timer construct was amplified 

by PCR and subcloned into the pTRE-shuttle2 vector via the unique NheI and EagI 

restriction sites.  Figure 6-4F shows the plasmid map for pTRE-ppANF-Timer and 

the restriction sites used. 

 

pTRE-Timer 

pTimer (687 bp) was amplified via PCR where a NheI restriction site was introduced 

to the 5’ end of the Timer DNA and the EagI site at the 3’ end was included in the 

amplification.  The amplified Timer fragment was subcloned via the NheI and EagI 

sites of the pTRE-shuttle2 vector.  Figure 6-4G shows the plasmid map for pTRE- 

Timer and the restriction sites used. 

 



Chapter 6 Fluorescent protein expression in LDCVs and viral transduction  

159 

 

pDNR- ppANF-eGFP  

ppANF-eGFP (1.2 kb), containing unique HindIII and XbaI sites on the 5’ and 3’ 

ends of the insert DNA fragment respectively, was inserted into pDNR-CMV donor 

vector, also containing the same unique restriction sites.  Figures 6-4 H and I show 

the plasmid maps of pDNR-CMV donor vector and pDNR-ppANF-eGFP 

respectively. 

 

pDNR-ppANF-tdTomato 

pTRE-ppANF-tdTomato was used as a template for PCR amplification of ppANF-

tdTomato (1.9 kb) where HindIII and XbaI sites were introduced to the 5’ and 3’ 

ends of the ppANF-tdTomato fragment respectively.  The amplified ppANF-

tdTomato was then inserted into the pDNR-CMV donor vector.  Figure 6-4 J shows 

the plasmid map of pDNR-ppANF-tdTomato. 

 

6.2.2 Amplification of DNA fragment by PCR 

Before a DNA fragment was subcloned into a vector, the DNA fragment was 

amplified by polymerase chain reaction (PCR).  Typical conditions used for PCR are 

summarised in Tables 6-1 and 6-2.  PCR is a technique that uses a Taq polymerase 

to expand short stretches of oligonucleotides, primers, which bind to specific 

sequences of DNA as designed.  Because of the different temperature cycles 

employed, which include a denaturation cycle at 95
o
C to separate double stranded 
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DNA, the enzyme could extend a piece of DNA multiple times, resulting in an 

amplified fragment.   

 

Primers, short stretches of oligonucleotides, were required for PCR because Taq 

polymerase can only add new nucleotides to an existing strand of oligonucleotide.  A 

forward primer reads from 5’ to 3’ from the sense strand and a reverse primer reads 

the anti-sense strand from the vector DNA.  Forward primers were designed so that 

they were complementary to the beginning of the DNA fragment and reverse primers 

were complementary to the c-terminal of the fragment.  Primers could also be 

designed so that specific sequences of restriction sites could be introduced to the 

DNA fragment amplified.  Hence, when primers anneal to complementary DNA, the 

DNA sequence amplified will include the added restriction sites.  This allows for 

introduction of specific restriction sites that are compatible with the restriction sites 

available in the multiple cloning site of the vector DNA.  Compatible restriction sites 

allow for ligation between two pieces of DNA that are digested by the same enzyme 

(Figure 6-5).  Primers were bought from VHBio or Invitrogen and Taq polymerase 

from Promega.  The sequences of primers used to amplify DNA fragments for 

subcloning of each construct are listed in Table 6-3. 

 

6.2.3 Separation and purification of DNA fragments by electrophoresis and gel 

extraction 
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The amplified DNA fragment was transferred directly from PCR to a 1% (w/v) 

agarose gel (appendix I) supplemented with SYBR Safe
TM

 gel stain (10000 X) for 

visualisation.  A DNA ladder (1kb plus ladder, Invitrogen) was loaded alongside 

sample DNA and the fragments were separated by electrophoresis at 100 – 140 mV 

for 30 min to 45 min in TBE buffer (Appendix I).  DNA fragments were visualised 

under UV light and were excised from the agarose gel and purified with the Qiaquick 

Gel Extraction Kit (Qiagen) or the PureLink Quick Gel Extraction System 

(Invitrogen) following the suppliers’ instructions.  DNA was eluted from the silicon 

membrane with 30 µl of ddH2O. 

 

6.2.4  Ligation of vector DNA and insert 

Purified DNA fragments and their respective vectors were digested with restriction 

enzymes to create compatible ends for ligation.  Conditions for a typical restriction 

digest are shown in Table 6-4.  Reactions were typically incubated at 37
o
C 

overnight.  Products of overnight digestions were loaded on 1% (w/v) agarose gel in 

TBE buffer for electrophoresis.  DNA fragments of the correct sizes were then 

excised from the agarose gel and purified by gel extraction (section 6.2.3).  

Restriction enzymes were from NEB, Promega, or Fermentas. 

 

Four ligation reactions and two control ligations were usually performed.  Vector and 

insert DNA were used at different ratios to optimise the success in DNA ligation.  If 
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100 ng of vector DNA was used each time, the amount of insert DNA required for 

each ligation was calculated using the following formula: 

insertofng
vectorofratiomolar

insertofratiomolar

vectorofsizekb

insertofsizekbvectorofng
=×

×

So if the vector:insert ratio to be used is 3:1, then the amount of insert DNA required 

for a 3.3 kb fragment is: 

ng74
3

1

kb33

kb4660ng100
.

.

.
=×

×
 

The vector: insert ratios typically used for ligation are 3:1, 1:1, 1:3 and 1:10.  Two 

control ligations were carried out: vector + ligase (Promega) without insert, and 

vector without ligase or insert.  The typical reaction conditions for ligation reactions 

are shown in Table 6-5.  The first control ligation was performed in the absence of 

the insert to find out the amount of self-ligated vectors.   In the second control 

ligation, the insert and T4 DNA ligase (Promega) were omitted to determine the 

amount of vector not digested by either enzyme.  Reaction mixtures were incubated 

at room temperature for 15 min and then at 4
o
C for at least 3 hr.  

 

6.2.5 Amplification of plasmid DNA by E. coli 

Constructs with ligated DNA were amplified by bacterial cell culture.  E. coli can be 

chemically treated so that the bacteria are competent to acquire DNA that is 

introduced to them (Chen & Dubnau 2004).  E. coli that has been treated is known as 

competent cells and the process by which they take up DNA introduced to them is 

known as transformation (described below).  Vector DNA used for subcloning 
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contain antibiotic resistant genes and hence, E. coli that has been transformed by the 

DNA constructs introduced can be grown on agar dishes containing selective 

antibiotics.  E. coli that has not acquired constructs with antibiotic resistance does not 

grow.  Single colonies of E. coli were selected to grow in culture.  Every E. coli in 

the culture now contains the desired construct and hence, the construct is amplified.  

The detailed protocols for preparation and transformation of competent cells are 

described below. 

 

6.2.5.1  Preparation of competent cells 

Scrapings of frozen XL-10 Gold cells (Stratagene) were incubated in 3ml LB 

medium (recipe: Appendix I) overnight at 37
o
C, with shaking.  The 3 ml culture was 

used to inoculate 250ml LB medium containing 20mM sterile MgSO4 the following 

day.  Cells were grown until the optical density of the cell suspension was between 

0.4 – 0.6, measured at 600 nm.  The bacterial culture was then pelleted at 4500 x g 

for 5 min at 4
o
C and re-suspended in ice cold 100 ml TFB1 (recipe in appendix I).  

The suspension was subsequently incubated on ice for 5 min and pelleted at 4500 x g 

for 5 min (4
o
C).  The cell pellet was re-suspended in 10ml TFB2 (recipe Appendix I) 

and incubated on ice for 30 min.  Cells were then aliquoted into 1.5ml pre-chilled 

eppendorf tubes (200 µl/tube) and snap frozen in a dry ice – isopropanol bath and 

stored at -70
o
C.  Each batch of competent cells was transformed with 0.1 ng of DNA 

to determine the transformation efficiency (the transformation protocol is found in 

the next section).  The number of single colonies resulting from this transformation 

was counted and the transformation efficiency was calculated as the number of 
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colonies transformed per µg of DNA.  Only cells which had a transformation 

efficiency of 10
6
 colony forming unit/µg of DNA were used. 

 

6.2.5.2 Transformation of competent cells 

Frozen competent cells were brought up from -70
o
C on ice and allowed to thaw for 5 

min.  100 µl of competent cells were then aliquoted to pre-chilled polypropylene 

tubes (100 µl competent cells per transformation).  10 µl of ligation reaction product 

was added to each tube of competent cells, including control reactions.  Cells were 

then returned to ice and incubated for 30 min.  After the 30 min incubation, cells 

were heat-shocked at 42
o
C for 90 sec.  Cells were immediately returned to ice for 2 

min after heat shock.  900 µl of pre-chilled LB was added to each 100 µl of cells and 

incubated at 37
o
C for 1 hr, shaking.  After the 1 hr incubation, cells were pelleted at 

4000 x g for 5 min and re-suspended in 100 µl of LB.  The whole suspension was 

then plated on 1.5% (w/v) Agar plates (recipe Appendix I) containing the respective 

antibiotics and cultured overnight at 37
o
C.  As mentioned above, vector DNA 

contains antibiotic resistance genes (see Figure 6-4 for antibiotic resistance markers 

present in each plasmid), usually kanamycin or ampicillin, so that by culturing 

bacteria in the presence of selective antibiotics, only colonies that express the 

antibiotic resistance gene, and hence the gene of interest, could be selected.   

Single colonies were counted for each ligation ratio the following day and the plate 

with the most colonies was selected.  Well-separated single colonies were picked for 

culturing in 5ml LB at 37
o
C overnight, with shaking.  DNA grown in these 5 ml 
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cultures can be extracted by miniprep plasmid DNA purification (section 6.2.6) and 

confirmation of the desired constructs was carried out before they were amplified 

any further. 

 

6.2.6  Miniprep plasmid DNA purification protocol 

Plasmid DNA purification was either performed by the Qiaprep Miniprep (Qiagen) 

or PureLink™ Quick Plasmid Miniprep Kit (Invitrogen) following the suppliers’ 

instructions.  All centrifugation steps were carried out on a microcentrifuge at 14000 

x rpm.  Briefly, bacterial cells containing the desired DNA were cultured in 5 ml LB 

medium overnight.  Cells were then pelleted, lysed in an alkaline buffer and bacteria 

chromosomal DNA, proteins and cellular debris were precipitated, leaving plasmid 

DNA dissolved in a high concentrated salt solution.  This solution is then passed 

through a silica membrane which absorbs plasmid DNA at high salt concentration 

and elutes at low salt concentration.  30 µl of either water or TE buffer, supplied with 

the miniprep kit, was added directly onto the silica membrane and incubated at room 

temperature for 1 min before centrifuging for 1 min to elute the DNA from the 

membrane.  The DNA obtained was either stored at -20
o
C or used immediately for 

restriction digest analysis to confirm the presence of the desired DNA construct.  

Digestion with unique restriction sites gives specific bands of known length and 

hence, helps identify the DNA fragments in the constructs. 

 

6.2.7 Sequence confirmation 
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Purified plasmid DNA was sent to Cogenics, UK for sequence analysis.  A pair of 

primers (forward and reverse) was designed to read from the vector into the insert 

through the two subcloning sites.  A forward and a reverse primer were designed to 

read DNA sequences in an opposite direction of each other, the extended sequence 

crosses path and hence, the DNA sequence to be confirmed was read twice.  To 

sequence longer fragments, several forward and reverse primers were designed so 

that all reading frames were overlapped.  Sequencing results were aligned to the 

predicted DNA sequence using Vector NTI from Invitrogen.  Only DNA sequences 

that had been confirmed and which contain the correct sequences would be used for 

further subcloning or transfection studies. 

 

6.2.8 Maxiprep plasmid amplification protocol 

After the plasmid sequence had been confirmed, a maxi-preparation of the plasmid 

was made.  Single colonies from competent cells transformed with the miniprep 

DNA that had been sequenced were picked for 5 ml culture in LB medium 

containing the selective antibiotic for 8 hours and then transferred to a 250 ml LB 

culture overnight with selective antibiotics.  Subsequently, a maxi preparation was 

carried out with either the PureLink HiPure Maxi Plasmid Prep (Invitrogen) or the 

HiSpeed Plasmid Maxi Kit (Qiagen).  All procedures were carried out according to 

the manufacturers’ instructions.  The DNA concentration obtained from the maxi 

preparation was checked with a spectrophotometer reading at 260 nm.  The 

concentration of DNA was calculated based on the fact that 50 µg of DNA has an 

absorbance of 1 when measured at 260 nm.  Hence, the optical density measured 
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multiplied by 50 and the dilution factor of the diluted DNA will give the 

concentration of the DNA measured.  Restriction digests were carried out to further 

confirm the presence of the desired constructs.   

 

6.2.9 N2a and PC12 cell culture and transfection of recombinant constructs 

Neuroblastoma 2a cells, also called N2a cells, were established by R.J. Klebe and 

F.H. Ruddle.  N2a cells are tumour cells and are originated from a strain A albino 

mouse.  N2a cells are endocrine cells which had been found to produce a range of 

peptides, vasopressin being one of them (Bamberger et al. 1995).  Moreover, N2a 

cells release peptides via the regulated secretory pathway (Noel et al. 1989) and 

hence, these cells were used to test recombinant DNA constructs to study expression 

of fluorescent proteins in LDCVs.  The pheochromocytoma cell line, PC12 cells 

(Greene & Tischler 1976), derived from the rat adrenal medulla is a popular 

neuroendocrine cell line used to study peptide vesicle release. PC12 cells used in this 

study were a gift from Dr Colin Rickman and were cultured on coverslips at 70% 

confluency, ready for transfection (section 6.2.9.4). 

 

6.2.9.1 N2a culture 

N2a cells were stored in cell freezing media (appendix I) at -196
o
C (liquid nitrogen).  

Cells were brought up from liquid nitrogen storage and thawed quickly in a 37
o
C 

water bath.  DMSO in the freezing medium was washed away by pre-warmed N2a 

culture medium (appendix I) and cells were pelleted at 250 x g for 5 min.  Cells were 



Chapter 6 Fluorescent protein expression in LDCVs and viral transduction  

168 

 

then grown in fresh culture medium at 37
o
C, 5.5% CO2.  The N2a culture was then 

expanded by splitting cells at 80 – 90% confluency. 

 

6.2.9.2 Expanding N2a culture 

The growth medium was removed and the N2a cells which were adherent to the 

tissue culture flask were rinsed in HBSS (Gibco) to remove traces of serum, Mg
2+ 

and Ca
2+

 which inhibit the trypsin reaction.  Trypsin-EDTA (Sigma) was used to 

detach adherent cells from the culture flask.  Cells were incubated in trypsin-EDTA 

for 1 to 2 min until sheets of cells were visibly detaching when the flask was 

agitated.  To detach all the cells from the culture flask, the flask was rapped sharply 

several times on the side.  To quench the activity of the trypsin, culture medium 

containing 10% (v/v) foetal calf serum was added and then cells were split into 

different tissue culture flasks in a suitable volume. 

 

6.2.9.3 Cell freezing 

Expanded N2a cells were frozen for storage for future use.  Adherent cells were 

removed as described in section 2.6.1.2 and diluted in N2a culture medium 

containing 10% (v/v) foetal calf serum.  Cells were then pelleted at 250 x g for 10 

min and suspended in cell freezing medium (appendix I) at a density of 10
6

 to 10
7
 

cells/ml and aliquoted into freezing vials.  To freeze cells, the aliquots were held on 

ice for 5 min, and then stored in an isopropanol bath at -70
o
C overnight.  The next 

day, cells were transferred to liquid nitrogen for long term storage. 
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6.2.9.4 Transfection of single cells 

Lipofectamine
TM

 2000 (Invitrogen), was used to introduce plasmid DNA into N2a or 

PC12 cell culture to test the expression of ppANF-tagged constructs.  N2a cells 

originally cultured in tissue culture flasks were transferred onto cover glasses of 

thickness #1 and were transfected at a confluency of 80 – 90%.  PC12 cells were 

grown on coverslips ready for transfection at a confluency of ~70%.  Before 

transfection, the DNA of interest was diluted in 100 µl of DMEM (Gibco) without 

serum.  The DNA:Lipofectamine
TM

 2000 ratio was 1 µg:3 µl.  For cultures grown in 

a 12-well culture dish, 4 µl of Lipofectamine
TM

 2000 was diluted in 100 µl of 

DMEM (Gibco) without serum or antibiotics.  The mixture was incubated at room 

temperature for 5 min.  After the 5 min incubation, the DNA mixture and the 

Lipofectamine
TM

 2000 mixture was combined and incubated at room temperature for 

20 min.  200 µl of the transfection mixture was then added to each well containing 

the cells and 1 ml of culture medium which was then mixed gently by rocking the 

culture dish back and forth.  The cells were then incubated at 37
o
C, 5.5% CO2 for at 

least 16 hr after transfection before fixing in 4% (w/v) PFA for immunofluorescence 

labelling. 

 

2.6.9.5 Double immunofluorescence labelling for adhering single cell cultures 

Immunocytochemistry for N2a cells and PC12 cells is similar to that carried out for 

free floating sections described in section Chapter 2.  All steps carried out were at 
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room temperature on a gently rocking platform unless otherwise stated.  First, the 

culture medium was removed and cells were washed for 10 min twice with 0.1 M 

PBS.  Cells were then fixed with 4% (w/v) PFA for 30 min.  The PFA was then 

washed by rinsing with 0.1M PBS for 10 min twice.  50 mM NH4Cl was used to 

quench background fluorescence and free aldehyde groups by incubating cells in 

NH4Cl-PBS for 10 min.  NH4Cl was then removed and the cells were washed twice 

for 10 min with 0.1 M PBS.  The cell membranes were then permeabilised with 0.5% 

(v/v) Triton X100 in 0.1 M PBS for 15 min.  The triton solution was then removed 

and the cells were washed with 0.1M PBS for 10 min twice.  Non-specific binding 

was blocked by incubating cells in a block solution of 10% (v/v) pre-immune animal 

serum, 0.2% (v/v) Tween-20 (Sigma) in 0.1 M PBS for 30 min.  The block solution 

was then removed and cells were incubated in a 1
o
Ab cocktail made up in block 

solution overnight at 4
o
C.  After incubation in the 1

o
Ab, cells were washed in a wash 

solution containing 0.2% (v/v) Tween-20 in 0.1 M PBS three times for 45 min.  A 

2
o
Ab cocktail was made up in the block solution described above and cells were 

incubated in the 2
o
Ab solution of 2 hr.  After incubation in 2

o
Ab, cells were washed 

three times for 45 min with wash solution after which, cells were rinsed with 0.1 M 

PBS for 10 min twice.  Cells were then mounted onto glass microscope slides in 

Mowiol (Appendix I) and the mountant was left to cure in darkness before imaging. 

 

6.2.10 Construction of recombinant adenoviral vectors 

Constructs confirmed to have the correct sequences were subcloned into either the 

Adeno-X System 1 viral DNA (Clontech) to create the Tet-on expression system or 
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the LP-Adeno-X-TRE System 2 viral DNA (Clontech) to create the Tet-off 

expression system.  All procedures for subcloning were carried out as described in 

section 6.2.1 unless otherwise stated.  Plasmid maps of pAdeno-X and pLP-Adeno-

X-TRE can be found in Figure 6-6A and 6-6B. 

 

6.2.10.1 Construction of recombinant adenoviral DNA for Tet-on expression system 

Recombinant pTRE-shuttle2 vectors were digested by the endonucleases PI-SceI and 

I-CeuI.  Adeno-X System 1 viral (pAdeno-X) DNA was pre-linearised with PI-SceI 

and I-CeuI so that once the recombinant pTRE-shuttle2 vectors were digested, it was 

ready for ligation.  The gene of interest is subcloned into a shuttle vector and the 

recombinant shuttle vector is inserted into the viral vector via PI-SceI and I-Ceu sites 

(Mizuguchi & Kay 1998). All digestion and purification steps were carried out 

according to the Adeno-X
TM

 Tet-Off® & Tet-On® Expression System 1 User 

Manual (Clontech).  Briefly, a double digest of 3 hr at 37
o
C using PI-SceI and I-CeuI 

was carried out on recombinant pTRE-shuttle2 vectors.  3 – 5 µl of the reaction 

product was analysed on a 1% (w/v) agarose gel as described in section 6.2.3 except 

that DNA fragments were not excised from the agarose gel.  After confirmation that 

the reaction product gave the right band sizes, the rest of the reaction product was 

purified using the Qiaquick Gel Extraction Kit (Qiagen) following the 

manufacturer’s instruction.  In this case, the reaction product was not incubated at 

42
o
C to dissolve the agarose gel since the reaction product was dissolved in solution.  

After purification of the linearised recombinant pTRE-shuttle2 vectors, ligation with 

the pre-linearised pAdeno-X DNA was carried out using T4 ligase as described in 
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section 6.2.4.  The ligation product was purified by adding 1 x TE Buffer (pH 8.0) to 

a final volume of 100 µl and 100 µl of phenol:chloroform:isoamyl alcohol (25:24:1) 

(Sigma Aldrich) to the ligation reaction to remove salts in the ligation buffer and 

proteins including the T4 ligase.  The solutions were mixed and then separated by 

centrifugation at 14000 rpm for 5 min at 4
o
C.  The top aqueous layer which contains 

the DNA was removed and transferred to a clear eppendorf tube.  To this tube, 400 

µl of 95% (v/v) ethanol and 1/10 volume 3 M NaOAc was added to precipitate the 

DNA.  This solution was transferred to a -20
o
C freezer for an incubation of 10 min to 

help visualisation of the final purified DNA.  The solution was then centrifuged at 

14000 rpm for 5 min at 4
o
C to pellet the DNA.  The supernatant was removed and 

discarded and the DNA pellet was washed with 300 µl of 70% (v/v) ethanol.  This 

was then spun again at 14000 rpm for 2 min.  The ethanol was removed and the 

DNA pellet was left to dry at room temperature for 15 min.  The DNA was then 

dissolved in 15 µl of sterile H2O.  The purified ligation product was then digested 

with SwaI, a restriction site found between the I-CeuI and PI-SceI sites in the 

pAdeno-X DNA (Figure 6-6A), to linearise non-recombinant, self-ligated pAdeno-X 

DNA.  The restriction digest product was then purified using the 

phenol:chloroform:isoamyl alcohol method described above.  After the DNA pellet 

was dried, it was dissolved in 10 µl of sterile H2O which was then used to transform 

competent E. coli bacterial cells as described in section 6.2.5.2.  Bacterial cells were 

cultured in the presence of 100 µg/µl ampicillin, since the pAdeno-X vector contains 

the ampicillin resistance gene.  Single colonies were used to inoculate a 5 ml culture, 

which were then grown for <24 hr at 37
o
C, shaking.  Cultures were then purified to 

obtain a mini-scale DNA preparation following the instructions in the Adeno-X
TM
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Tet-Off® & Tet-On® Expression System 1 User Manual (Clontech).  The purified 

recombinant pAdeno-X DNA was then analysed by PCR using a set of primers 

provided by Clontech (Adeno-X Forward and Reverse PCR Primers).  These primers 

were designed to confirm the presence of recombinant pTRE-shuttle2 DNA in the 

recombinant pAdeno-X DNA.  The forward primer binds to a sequence upstream of 

the I-CeuI site in the pAdeno-X DNA, whilst the reverse primer binds to a sequence 

downstream of the I-CeuI site of the recombinant pTRE-shuttle2 DNA.  This is 

explained in Figure 6-7.  The presence of inserted recombinant pTRE-shuttle2 DNA 

in the recombinant pAdeno-X DNA would produce a band of 287 bp which was 

analysed on a 1% (w/v) agarose gel after PCR.  The PCR reaction mix used was as 

shown in Table 6-1 and the reaction conditions are found in Table 6-6.  PI-SceI and 

I-CeuI restriction digests were also carried out to verify the presence of insert DNA 

in the recombinant pAdeno-X vector. 

 

6.2.10.2 Construction of recombinant adenoviral DNA for Tet-off expression 

system 

Inserts subcloned into the pDNR-CMV vector were used to generate the Tet-off 

expression system.  The pDNR-CMV vector contains two loxP sites used for Cre-

loxP recombination.  Cre recombinase is an enzyme which mediates recombination 

of DNA sequences at loxP sites.  The pLP-Adeno-X-TRE contains one loxP site and 

act as the acceptor vector.  The reaction was carried out according to the Clontech 

Adeno-X
TM

 Expression Systems 2 user manual where 1 µl of 200 ng recombinant 

pDNR-CMV vector and 1 µl of Cre recombinase (supplied with the Adeno-X 
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Expression Systems 2 kit) were added to 18 µl of Adeno-X LP TRE reaction mix 

containing Cre reaction buffer and BSA.  Briefly, the reaction was incubated at room 

temperature for 15 min and then Cre recombinase was inactivated at 70
o
C for 5 min.  

Transformation of E. coli was carried out to amplify the recombinant viral DNA.  

Electrocompetent cells were used for transformation instead of the chemically 

competent cells described in section 6.2.5 for efficient transformation 

(transformation efficiency for XL10 Gold is ≥5 × 10
9
 cfu/µg pUC18 control DNA 

(Stratagene)).  Electrocompetent cells were purchased from Clontech (EZ10 

ElectroCompetent cells; transformation efficiency = 10
10

 cfu/µg pUC19 control 

DNA) and each transformation was carried out with 40 µl of cells, 1.5 µl of Adeno-X 

LP TRE reaction mix at a voltage of 1.75 kV, 25 µF capacitance in a 0.1 cm cuvette 

(according to manufacturer’s protocol) using the Biorad Gene Pulser II to deliver the 

pulse.  Electroporated cells were then transferred to 960 µl of SOC medium 

(Appendix I) for 1 hr incubation at 37
o
C, shaking at 200 rpm.  Cells were then 

pelleted and resuspended in 100 µl of SOC medium.  The cell suspension was then 

plated out on sterile LB agar containing 7% (w/v) sucrose and 30 µg/ml 

chloramphenicol dissolved in 100% ethanol.  pDNR-CMV vectors contain 

chloramphenicol resistance gene in the expression cassette between the loxP sites 

and the sucrase gene downstream the two loxP sites for negative selection 

(expression of the sucrase gene leads to inability of cells to grow in sucrose).  Hence, 

chloramphenicol selected for recombinant pLP-Adeno-X-TRE constructs and 

sucrose selected against recombinant pDNR-CMV constructs that did not form 

recombinants with pLP-Adeno-X-TRE.  Cultures on LB agar were grown for 30 hr at 

37
o
C.  When colonies were grown, they were used to inoculate 20 µl of sterile H2O 
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each where 10 µl were then used to inoculate 5 ml of LB medium with 100 µg/ml 

ampicillin (ampicillin resistant gene found in pLP-Adeno-X-TRE) and 30 µg/µl 

chloramphenicol.  The rest of the 10 µl was used to carry out colony PCR screening.  

The PCR reaction mix used was as shown in Table 6-1 except that DNA was 

replaced with 10 µl of bacterial cell suspension.  The forward and reverse primers 

used were supplied by Clontech (Adeno-X LP CMV Primer Mix) and the reaction 

conditions are found in Table 6-6.  The PCR reaction products were then separated 

on a 1% (w/v) agarose gel and a 660 bp band was expected.  XhoI digests were also 

carried out as suggested by Adeno-X
TM

 Expression Systems 2 user manual to verify 

the presence of insert DNA in the recombinant pLP-Adeno-X-TRE vector. 

 

6.2.10.3 Miniscale preparation of recombinant Adeno-X DNA 

Since the plasmid size of recombinant Adeno-X DNA is >10kb, miniscale 

preparation of DNA could not be carried out using either the Qiaprep Miniprep 

(Qiagen) or PureLink™ Quick Plasmid Miniprep Kit (Invitrogen).  Miniscale 

preparations of recombinant pAdeno-X DNA and pLP-Adeno-X were performed by 

resuspension of pelleted bacterial cell cultures (2ml) in 150 µl of resuspension buffer 

P1 (see appendix I).  150 µl of lysis buffer P2 and neutralisation buffer N3 were then 

added to the mixture.  After addition of buffer N3, the DNA sample was incubated 

on ice for 5 min.  The DNA sample was then centrifuged at 4
o
C at 14000 rpm for 5 

min.  DNA was purified using phenol:chloroform:isoamyl alcohol as described in 

section 6.2.10.1 and dissolved in 15µl of buffer TE. 
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6.2.11 HEK 293 cell culture 

The Human Adenovirus 5-transformed Human Embryonic Kidney (HEK) 293 cell 

line stably expresses the Ad5 Early Regions 1 (E1) genes that are essential for the 

replication and transcription of Adeno-X viral DNA.  This is because the E1 region 

of wild-type adenovirus has been deleted from the Ad5 genome in the Adeno-X viral 

DNA to restrict the cytopathic activity of the adenovirus.  Hence, HEK 293 cells 

were used to package and propagate the recombinant adenoviral vectors.  The cell 

culture protocol for HEK 293 cells is as described in section 2.6 for N2a cells.  

However, instead of DMEM with 10% (v/v) foetal calf serum, HEK 293 cells 

(Invitrogen) were first cultured in CD 293 medium (Invitrogen) without serum for up 

to 3 passages and then switched to DMEM with 10% (v/v) foetal calf serum 

according to the cell culture guidelines provided by invitrogen.  The thawing, 

expansion and freezing of HEK 293 cells were exactly the same as those described 

for N2a cells in section 6.2.9. 

 

6.2.11.1 Transfecting HEK 293 cells with recombinant Adeno-X DNA 

After confirmation of the presence of the insert of interest in the Adeno-X vector by 

PCR, the recombinant Adeno-X DNA was digested with PacI at 37
o
C for 2 hr to 

linearise the recombinant plasmid.  After PacI restriction digestion, the recombinant 

pAdeno-X DNA was purified by phenol:chloroform:isoamyl alcohol purification as 

described in section 6.2.10.1.  PacI linearised DNA was dissolved in 10 µl of sterile 

water and stored at -20
o
C until used for HEK 293 cells transfection. 
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HEK 293 cells were plated in a 25 cm
2
 tissue culture flask the day before the 

transfection to allow the cells to reach 50-70% confluency.  Each 25 cm
2
 flask of  

HEK 293 cells was transfected with 10 µl of PacI digested Adeno-X recombinant 

DNA using Lipofectamine
TM

 2000 (Invitrogen) as described in section 6.2.9.  When 

HEK 293 cells expressed recombinant Adeno-X DNA, cells become cytopathic.  

This cytopathic effect, where cells round up and detach from the tissue culture flask, 

takes place one to two weeks after transfection.  Cells were then detached from the 

tissue culture flask by mechanical disruption without using trypsin and transferred to 

a 15 ml conical tube.  The suspension was centrifuged at 1500 x g for 5 min at room 

temperature and the pellet was then resuspended in 500 µl sterile PBS.  The cells 

were lysed with three consecutive freeze-thaw cycles where the cells were frozen in a 

dry ice/isopropanol bath and then thawed in a 37
o
C water bath.  Care was taken to 

not let the cells reach 37
o
C.  The cells were vortexed after each thaw.  After the third 

cycle, the cell debris was pelleted by a brief centrifugation and the supernatant, 

which now contained the viral particles, was stored at -20
o
C.   

 

A fresh 25 cm
2
 flask of HEK 293 cells was infected by the viral particles produced in 

the previous step by adding the lysate directly to the culture medium.  If cytopathic 

effects were not evident within a week, the cells were detached from the 25cm
2
 flask 

by mechanical disruption, and the cells were lysed to infect a fresh culture of HEK 

293 cells.  When more than 50% of cells had detached from the flask, cells were 

lysed using the method described above.  This is the primary amplification stock and 
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the presence of the recombinant pAdeno-X DNA was verified by PCR as described 

in sections 6.2.10.1 and 6.2.10.2. 

 

6.2.11.2 Amplifying recombinant adenovirus 

To prepare high-titre stocks of the recombinant adenovirus, HEK 293 cells were 

plated in 75 cm
2
 flasks and grown to 50 – 70% confluency and infected with primary 

amplification stock at a multiplicity of 1 – 5 pfu/cell suspended in 5 ml growth 

media.  Cells were incubated at 37
o
C for 90 min before 10 ml of fresh growth 

medium was added.  Cells were cultured at normal growth conditions until 

cytopathic effects were evident.  Cells were then lysed according to the protocol 

described in section 6.2.11.1. 

 

6.2.11.3 Determining viral titre with end-point dilution assay 

HEK 293 cells were grown in a 96-well plate the day before the assay.  Each well 

contained approximately 10
4
 cells in 100 µl of growth medium.  The next day, a 

1:100 dilution of the amplified viral particles was made and using this as a stock, 

eight serial dilutions of the viral particles were made giving a range of 10
-3

 – 10
-10

.  

100 µl of diluted virus were added to each well.  This is summarised in Figure 6-8. 

 

Cells were grown under normal growth conditions, without changing the culture 

medium, for 10 days.  After which, cytopathic effects were evaluated from each well 

and the viral titre was calculated by counting the number of cytopathic effects 
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positive wells for each dilution divided by 10.  The sum of the fractions of cytopathic 

effects positive wells, x, was used in the following formula to calculate the viral titre 

Titre (pfu/ml) = 10
(x +0.8)

;  

 

 

6.3 Results 

6.3.1 Exogenous fluorescent protein expression in LDCVs 

ppANF fusion protein is known to be expressed in LDCVs (Burke et al. 1997).  To 

verify whether the ppANF-eGFP construct, used as a template for the amplification 

of the ppANF fragment for subcloning of other constructs, was indeed able to target 

eGFP expression to LDCVs, PC12 cells were transfected using Lipofectamine 2000 

(Invitrogen).  Cells were incubated at 37
o
C overnight after transfection and fixed in 

4% (w/v) PFA for immunostaining.  PC12 cells were stained for chromogranin A 

(goat anti-chromogranin A antibody, 1:250 dilution, Santa Cruz Biotechnology, inc), 

a peptide found in LDCVs (Curry et al. 1991; Mahata et al. 1992).The secondary 

antibodies used were AlexaFluor donkey anti-goat 568 (1:500; Invitrogen) as 

described in previous chapters.  ppANF-eGFP expression was excited with the 488 

nm laser line and chromogranin A labelling excited with 568 nm laser.  Images were 

acquired on the Zeiss Axiovert LSM510 laser scanning confocal microscope as 

described in previous chapters. 
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Figure 6-9 shows a PC12 cell transfected with the ppANF-eGFP construct and 

stained for chromogranin A.  Colocalisation analysis was carried out by the 

Colocalisation Threshold plugin in ImageJ where the threshold for each channel was 

set automatically according to Costes’ method (Costes et al. 2004).  Comparing the 

Pearson’s correlation coefficient for the two channels, ppANF-eGFP and 

chromogranin A staining, there is a significant difference (p<0.006, n=10/group) 

between control, where cells did not express ppANF-eGFP, and ppANF-eGFP-

expressing cells.  Colocalisation of ppANF-eGFP expression and chromogranin A 

staining shows that ppANF-eGFP was indeed targeted for expression in LDCVs.  

However, only partial colocalisation of ppANF-eGFP was observed with 

chromogranin A staining.  This reflects the fact that chromogranin A staining did not 

label all dense core vesicles and that ppANF-eGFP was expressed in vesicles where 

chromogranin A failed to label. 

 

6.3.2 Expression of ppANF-Timer and pTRE-ppANF-Timer 

The ppANF-Timer construct was chosen to study the segregation of newly 

synthesised and aged vesicles since the Timer fluorophore matures and changes 

colour over 16 hr.  The ppANF-Timer was generated by subcloning an amplified 

fragment of ppANF DNA, using ppANF-eGFP as a template, by PCR.  Figure 6-

10B shows the PCR amplification product of between 400 and 500 bp, which is 

expected of ppANF amplification (486 bp).  Through PCR amplification, a HindIII 

restriction site and a AgeI restriction site were introduced to the 5’ and 3’ end of the 

ppANF fragment respectively and subcloned into unique HindIII and AgeI sites 



Chapter 6 Fluorescent protein expression in LDCVs and viral transduction  

181 

 

found in the pTimer vector.  The product of ppANF and pTimer ligation was 

amplified by maxi preparation of the plasmid and the product was digested by 

HindIII and AgeI to confirm the presence of ppANF in the construct.  Figure 6-10C 

shows two DNA fragments of 3.27 kb and 461 bp as a result of HindIII and AgeI 

double digest, confirming the presence of the pTimer vector and ppANF insert.  The 

ppANF-Timer construct was further analysed by sequence analysis (Cogenic), 

confirming that no base pair mutations were introduced through the subcloning 

process.   

 

ppANF-Timer was then used to generate the inducible pTRE-ppANF-Timer 

construct by subcloning ppANF-Timer into the pTRE-shuttle2 vector (Clontech) 

where the Timer protein production can be switched on at selected time points to 

assure a controlled period time for expression.  Figure 6-10D shows a 1.21 kb DNA 

fragment of ppANF-Timer amplified by PCR.  The ppANF-Timer DNA amplified 

consists of a NheI site at the 5’ end of the fragment and a EagI site at the 3’ end.  

These sites were used to insert ppANF-Timer into the pTRE-shuttle2 vector.  Figure 

6-10E shows restriction digests of pTRE-ppANF-Timer after amplification of 

ligation products of pTRE-shuttle2 and ppANF-Timer.  NheI and EagI double digest 

produced 4.4 kb and 1.16 kb fragments which were the band sizes expected for the 

digested vector and the ppANF-Timer insert.  Single digests using NheI and EagI 

were also carried out and produced bands of DNA of 5.5 kb.  An undigested 

supercoiled DNA sample was ran alongside digests as control to ensure that the 
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restriction enzymes used were effective.  Sequence analysis was carried out for the 

pTRE-ppANF-Timer construct confirming the correct sequence of DNA present. 

 

A double transfection with pTRE-ppANF-Timer and pTet-on containing the reverse 

tetracycline repressor protein (Figure 6-1), using 1 µg/ml doxycycline to induce 

expression, was then carried out on N2a cells.  Figure 6-11 shows an N2a cell 

expressing the pTRE-ppANF-Timer.  Since ppANF targets fluorescent protein 

expression to LDCVs, a punctate expression of green and red fluorescence was 

expected, similar to eGFP expression in Figure 6-9.  However, Timer protein 

expression was concentrated in “clumps” and was not seen throughout the cell.  This 

aggregation of Timer protein is similar to the previously identified aggregation of 

DsRed in the ER (Lauf et al. 2001).  Figure 6-10F shows the amplification of 

pTimer by PCR and Figure 6-10G shows pTRE-Timer restriction digests by NheI 

and EagI after the ligation of amplified pTimer to pTRE-shuttle2 vector. DNA 

fragments of 680 bp from the PCR amplification of pTimer was observed and NheI 

and EagI double digest produced DNA fragments of 4.4 kb and 680 bp, confirming 

the presence of the Timer insert in pTRE-shuttle2.  Figure 6-12 shows an N2a cell 

transfected with pTRE-Timer and pTet-on.  Expression of pTRE-Timer was induced 

by 1 µg/ml doxycycline.  As seen in Figure 6-12, Timer protein not tagged to 

ppANF was expressed throughout the cell cytoplasm and emitted in both green and 

red, as expected over >16 hr of maturation.   It has been reported previously that 

untagged DsRed protein, like untagged eGFP, did not show aggregation in cellular 

compartments (Lauf et al. 2001).  Hence, expression of Timer with the ppANF tag 
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hampered the correct cellular localisation of the fluorophore.  Since this study 

wanted to look at the segregation of vesicle pools by age, the unability to express the 

Timer protein in LDCVs made it unfeasible to continue the use of this fluorophore 

further. 

 

6.3.3 Expression of pTRE-ppANF-eGFP and pTRE-ppANF-tdTomato 

ppANF-eGFP was amplified by PCR and inserted into the pTRE-shuttle2 vector via 

the NheI and EagI sites.  tdTomato, as mentioned above, is 160% as bright as the 

conventional DsRed and matures within 1 hr, leaving no traces of green 

fluorescence.  More importantly, the dimeric tdTomato does not form aggregates in 

cellular compartments.  tdTomato was amplified using PCR to introduce a NheI and 

an EagI site to the 5’ and 3’ ends of the tdTomato DNA fragment.  The amplified 

tdTomato was then inserted to the pTRE-ppANF-eGFP construct via the NheI and 

EagI sites to produce pTRE-ppANF-tdTomato.  Figure 6-13 shows the PCR 

amplification products of ppANF-eGFP (1.2 kb) and tdTomato (1.4 kb), and 

restriction digests using NheI and EagI of the pTRE-shuttle2 and ppANF-eGFP 

ligation product, and the pTRE-ppANF- and tdTomato ligation product.   NheI and 

EagI double digest of pTRE-ppANF-eGFP produced DNA fragments of 4.4 kb and 

1.2 kb, confirming the presence of ppANF-eGFP in the pTRE-shuttle2 vector.  NheI 

and EagI double digest of pTRE-ppANF-tdTomato produced DNA fragments of 4.4 

kb and 1.9 kb, confirming that tdTomato was inserted into the pTRE-ppANF- vector. 
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pTRE-ppANF-eGFP and pTRE-ppANF-tdTomato were expressed in PC12 cells via 

double transfections of the recombinant constructs and pTet-on, using 1 µg/ml 

doxycycline for induction of expression.  Figure 6-14A shows PC12 cells expressing 

the pTRE-ppANF-eGFP and the pTRE-ppANF-tdTomato plasmids.  PC12 cells were 

immunolabelled with Chromogranin A and a Golgi apparatus marker (mouse anti-

GM130, BD laboratories, described in Chapter 3) was used to label the Golgi 

apparatus.  Expression of both plasmids produced punctate expression of fluorescent 

proteins, as expected for ppANF targeting to LDCVs.  Moreover, colocalisation 

analysis showed that like ppANF-eGFP expression (Figure 6-9), expression of 

ppANF-tdTomato colocalised with the expression of the dense core vesicle marker, 

chromogranin A (Figure 6-14B; p<0.001) (Curry et al. 1991; Mahata et al. 1992), 

indicating that expression of both ppANF-tagged constructs were targeted to LDCVs.  

In this study, negative controls were carried out where transfected cells were not 

incubated in doxycycline.  No expression of either constructs was observed. 

 

An analysis of pTRE-ppANF-tdTomato expression at different time points was 

carried out on transfected PC12 cells to visualise segregation of vesicle pools at 

different time points.  PC12 cells were double transfected with pTRE-ppANF-

tdTomato and pTet-on with 1 µg/ml doxycycline at time 0.  pTRE-ppANF-tdTomato 

expression was observed as early as 4 hr post-transfection.  Cells were then fixed 8 

hr, 16 hr and 24 hr after doxycycline was added to the medium and immunolabelled 

with GM130.  Image stacks were acquired of PC12 cells expressing the pTRE-

ppANF-tdTomato protein using the same imaging parameters as described (Chapter 
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3) and the sum fluorescent intensity (Chapter 2, section 2.2.5) of pTRE-ppANF-

tdTomato expression in deconvolved images was obtained.  pTRE-ppANF-tdTomato 

expression was measured in the GA, cell centre and cell periphery (the outer 1 µm of 

the cells).  The areas measured were cut out so that expression of pTRE-ppANF-

tdTomato in the GA, for example, was not taken into measurement of the other cell 

areas.  Figure 6-15 shows analysis of pTRE-ppANF-tdTomato expression in 

different cell areas at different time points normalised to the pTRE-ppANF-tdTomato 

expression in the GA.  There was significantly higher expression in the GA 

compared to the rest of the cells at all time points (p<0.05, two-way ANOVA, post-

hoc Student’s t-test).  There were no differences between pTRE-ppANF-tdTomato 

expression between the cell centre and cell periphery at any time points and no 

difference at expression at the cell centre and the cell periphery between any time 

points.  There is a significant increase in pTRE-ppANF-tdTomato expression in the 

cell centre at 24 hr compared to 8 hr.  Since cells were not stimulated for vesicle 

release, this indicates that non-released LDCVs accumulate after 24 hr and reside in 

the cell centre.  This study showed that aged vesicles reside in the centre of PC12 

cells, in accordance to the finding that aged, non-released vesicles were found in the 

centre of bovine adrenal chromaffin cells (Duncan et al. 2003).  Moreover, this study 

shows that pulse-labelling of inducible ppANF-tagged  fluorescent protein 

expression can be used to study vesicle pool segregation according to age. 

 

6.3.4 Generation of pAdeno-X constructs 
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Mini-scale preparation of recombinant pAdeno-X constructs were analysed using the 

Adeno-X Forward and Reverse PCR Primers and I-CeuI/PI-SceI double restriction 

digest to confirm the presence of recombinant pTRE- inserts.  PCR analysis (Figure 

6-7) showed that both recombinant pAdeno-X constructs produced an amplified 

fragment of 287 bp, as would be expected (Figure 6-16A).  Further PCR analysis 

using the Adeno-X Forward PCR Primer which binds upstream to the I-CeuI site of 

pAdeno-X viral DNA, and a reverse primer which binds to the insert ppANF-eGFP 

or ppANF-tdTomato DNA, respectively, also produced amplified DNA fragments of 

the expected band sizes (Figures 6-16B and C).  HEK 293 cells were then 

transfected with pAdeno-X viral DNA to produce viral particles.  Cells infected with 

recombinant pAdeno-X constructs were lysed and their lysates collected for PCR 

analysis.  Despite the positive PCR analysis of recombinant viral DNA (Figure 6-

16A – C), PCR analysis of viral stock using the Adeno-X Forward and Reverse PCR 

Primers did not show the presence of the expected 287 bp fragment.  Further 

restriction analysis by double digestion with I-CeuI and PI-SceI did not produce 

DNA fragments of the expected sizes (2.8 kb and 32.67 kb for pAdeno-X-TRE-

ppANF-eGFP and 3.5 kb and 32.67 kb for pAdeno-X-TRE-ppANF-tdTomato).  

Single digests with either enzyme produced DNA bands similar to undigested DNA 

in the case of pAdeno-X-TRE-ppANF-eGFP, indicating that either the restriction 

enzymes were compromised, or the I-CeuI and PI-SceI restriction sites were 

compromised (Figure 6-16D).  Double digestion of pAdeno-X-TRE-ppANF-

tdTomato revealed that the construct was cut by I-CeuI whilst PI-SceI was 

unsuccessful (Figure 6-16D). 
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I-CeuI and PI-SceI double digests were carried out on pTRE-ppANF-eGFP and 

pTRE-ppANF-tdTomato to find out whether the I-CeuI and PI-SceI restriction sites 

were compromised and whether both enzymes were efficient in the conditions used.  

Figure 6-17A shows that both I-CeuI and PI-SceI cut pTRE-ppANF-eGFP and 

pTRE-ppANF-tdTomato into bands of 2.8 kb and 2.8 kb, and 2.8 kb and 3.5 kb 

respectively, indicating that both enzymes were efficient in restriction digest under 

the conditions used.  Further restriction analysis of pAdeno-X-TRE-ppANF-eGFP 

and pAdeno-X-TRE-ppANF-tdTomato using NheI and EagI showed that the 1.2 kb 

and 1.9 kb inserts were present in the pAdeno-X construct respectively (Figure 6-

17B).  However, the full length of the pAdeno-X DNA did not appear to be present.  

Adding up the band sizes of the NheI/EagI double digest of pAdeno-X-TRE-ppANF-

eGFP found the plasmid size to be approximately 7 to 8 kb, which was a lot less than 

the 35.46 kb expected.  The two constructs were subsequently sent away for 

sequence analysis and it was confirmed that although the I-CeuI sites were intact in 

both constructs, the PI-SceI sites were missing, as well as a large portion of the 

pAdeno-X viral DNA.  Care was taken during the transformation of E. coli with 

recombinant Adeno-X DNA to amplify the recombinant constructs to prevent 

damage and recombination of Adeno-X constructs.  XL-10 Gold cells (Stratagene) 

are recombination deficient, and colonies expressing the recombinant pAdeno-X 

constructs were picked <24 hr after transformation for miniprep cultures which were 

used the same day to inoculate maxiprep cultures.  Maxiprep cultures were grown 

overnight for <24 hr hours before maxi DNA preparation was carried out.  Cultures 
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expressing recombinant pAdeno-X constructs were always used fresh and never 

stored at room temperature or at 4
o
C, minimising damage to Adeno-X DNA.  Hence, 

it was concluded that the pAdeno-X DNA was originally damaged and Clontech had 

since replaced our pAdeno-X Tet-on expression system with the pLP-Adeno-X-TRE 

Tet-off expression system. 

 

6.3.5 Expression of pDNR-ppANF-eGFP and pDNR-ppANF-tdTomato 

pDNR-CMV donor vector (Clontech) was used to subclone ppANF-eGFP and 

ppANF-tdTomato into the inducible pLP-Adeno-X-TRE construct.  Firstly, ppANF-

eGFP was inserted into pDNR-CMV via the unique HindIII and XbaI restriction sites 

present in both ppANF-eGFP and pDNR-CMV vectors.  HindIII and XbaI sites were 

also introduced to ppANF-tdTomato via PCR amplification (Figure 6-18A).  After 

ligation of the pDNR-CMV vector with the insert DNA, mini-preparations of the 

constructs were carried out.  HindIII and XbaI restriction digests on the mini-preps 

confirmed the presence of ppANF-eGFP (1.2 kb) and ppANF-tdTomato (1.9 kb) in 

the constructs (Figures 6-18B and C).  These positive constructs were then sent for 

sequence analysis which confirmed the presence of insert DNA between the HindIII 

and XbaI sites (Cogenics). 

 

N2a cells were transfected with pDNR-ppANF-eGFP and pDNR-ppANF-tdTomato 

to test for fluorescent protein expressions in these constructs.  Figures 6-19A and B 

show the expression of pDNR-ppANF-eGFP in green and pDNR-ppANF-tdTomato 
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in red respectively, confirming that these constructs could be used for further pLP-

Adeno-X-TRE subcloning. 

 

6.3.6 Generation of pLP-Adeno-X-TRE constructs 

pLP-Adeno-X-TRE DNA was ligated to pDNR-ppANF-eGFP and pDNR-ppANF-

tdTomato via Cre recombination.  The recombinant DNA was then used to transform 

electrocompetent cells using the procedures described in section 6.2.10.1 above.  The 

transformed cells were then cultured for 1 hr at 37
o
C and then used to inoculate 

sucrose/chloramphenicol agar, which was further cultured for 24 hr at 37
o
C.  Colony 

PCR was performed on selected colonies picked from the agar plates using Adeno-X 

LP CMV Primer Mix (section 6.2.10.1).  Figures 6-20A and B show the results of 

PCR analysis of pLP-Adeno-X-TRE-ppANF-eGFP and pLP-Adeno-X-TRE-ppANF-

tdTomato respectively.  Both analyses generated a band of 660 bp, which is 

consistent with the presence of the pDNR insert in the pLP-Adeno-X-TRE vector.  

Further analysis using the XhoI restriction enzyme showed that pLP-Adeno-X-TRE-

ppANF-eGFP had a missing band at the expected 5.0 kb, which was where the insert 

DNA should be (Figure 6-20C).  XhoI restriction analysis of pLP-Adeno-X-TRE-

ppANF-tdTomato generated all the expected bands (14.5, 8.0, 5.8, 3.6, 2.5, and 1.4 

kb; Figure 6-20D).  

 

 

6.4 Discussion 
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Targeting of fluorescence to LDCVs allows direct visualisation of peptide release 

and vesicle pool segregation.  ppANF, a peptide of 152 amino acids, had been shown 

to target fluorescent protein expression to LDCVs in PC12, bovine adrenal 

chromaffin cells and pituitary lactotrophs (Han et al. 1999; Ng et al. 2002; Stenovec 

et al. 2004; Duncan et al. 2003).  Results from ppANF-eGFP transfection of PC12 

cells had shown that eGFP expression was colocalised with chromogranin A staining 

(Figure 6-9), indicating that ppANF successfully targeted fluorescent protein 

expression to LDCVs.  In this study, a fluorescent time stamp was tagged to ppANF 

for LDCV targeting.  The fluorescent time stamp had been successfully used as an 

indication of vesicle age since the Timer fluorescent protein changes emission from 

green to red as it matures over time (Terskikh et al. 2000).  Hence, over a time 

course, vesicles older than 16 hr emit in the red spectrum and newly synthesised 

vesicles emit in the green.  However, the fluorescent time stamp also has complicated 

folding properties as it matures.  The Timer protein matures and oligomerises into a 

tetramer for fluorescent emission, similar to the maturation process in DsRed (Wall 

et al. 2000).  Previous studies have reported that untagged DsRed expressed in the 

cytoplasm and did not aggregate (Lauf et al. 2001).  In this study, targeting of Timer 

to LDCVs was shown to have the same effect.  As the results in section 6.3.2 have 

shown, tagging of the fluorescent Timer to ppANF resulted in aggregation of the 

fluorophore in perinuclear compartments, likely to be the ER (Figure 6-11).  Similar 

to untagged DsRed expression untagged fluorescent Timer expression, was observed 

throughout the cytoplasm of N2a cells (Figure 6-12).  This demonstrates that 

oligomerisation of the ppANF-Timer protein had resulted in aggregation of the 

fluorophore (Figure 6-11).  Since ppANF tagged to eGFP or tdTomato, both form 
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dimers, resulted in correct targeting of the fluorophores to LDCVs, Timer expression 

had hampered ppANF targeting.  Nevertheless, the fluorescent Timer had been 

shown previously to be successfully targeted to LDCVs in bovine adrenal chromaffin 

cells (Duncan et al. 2003) by tagging to ppANF.  Hence, further experiments to tag 

the Timer protein to ppANF with differing lengths of linking bases which provide 

more flexibility for the  oligomerisation of the Timer protein (Wall et al. 2000) might 

to crucial to expression of Timer protein in LDCVs.  A study analysing the different 

mutants of the DsRed protein had found that mutants with different “free space”, 

based on crystal structure analysis, around the fluorophore resulted in different 

maturing properties of the protein (Terskikh et al. 2002).  It was hypothesised that 

aggregation of the Timer protein is due to electrostatic attraction between the 

negatively charged surface of the protein and the positively charged N-terminal.  

Mutation at the N-terminal of the Timer protein resulted in a non-aggregating form 

of the protein (Yanushevich et al. 2002).  Therefore, it is crucial in future 

experiments to alter the linking region of ppANF and Timer and also to mutate the 

N-terminus of the Timer protein for efficient expression of the fluorescent protein. 

 

Meanwhile, the inducible ppANF-tdTomato construct generated was shown to be 

efficient in pulse-chase labelling of newly synthesised and mature LDCVs.  The Tet-

on expression system involved subcloning fluorescent proteins into a vector with a 

tetracycline response element which upon binding of the tetracycline to the rtTA, 

activates transcription of the fluorescent proteins.  Two fluorescent reporter proteins 

were chosen – eGFP which emits green and tdTomato which emits red.  Figure 6-14 
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showed expression of the pTRE-ppANF-eGFP and pTRE-ppANF-tdTomato 

constructs in PC12 cells and colocalisation of fluorescent protein expression with 

chromogranin A staining.  This shows that both fluorescent proteins were targeted to 

LDCVs and both inducible constructs are suitable for studying the dynamics of 

LDCVs.  “Pulse-chase” expression of pTRE-ppANF-tdTomato had shown that there 

was a significant difference between mean fluorescent intensity in the GA compared 

to other cell areas at all time points measured, indicating that transfected cells were 

actively synthesising ppANF-tdTomato at all time points.  Moreover, there was a 

significant increase in mean fluorescent intensity in the cell centre at 24 hr after 

induction of pTRE-ppANF-tdTomato expression compared to 8 hr.  Since no 

stimulant was used in the culture medium, vesicles not released as a result of basal 

activity were retained in the cells, making up the reserve pool of vesicles.  A 

significantly higher mean fluorescent intensity in the cell centre at 24 hr suggested 

that non-released aged vesicles join the reserve pool in the cell centre, in agreement 

to the vesicle pool arrangement found in bovine adrenal chromaffin cells (Duncan et 

al. 2003). 

 

To express these constructs in magnocellular neurons, these constructs had to be 

inserted into the Adeno-X viral genome for transduction.  The Tet-on expression 

system involved subcloning the recombinant pTRE-shuttle vector into pre-linearised 

Adeno-X DNA.  However, Figures 6-16D and E and 6-17 showed that the PI-SceI 

sites of both pAdeno-X-TRE-ppANF-eGFP and pAdeno-X-TRE-ppANF-tdTomato 

were compromised.  Further sequence analysis confirmed that the PI-SceI site was 
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absent.  The pAdeno-X is a large plasmid, >32 kb, making it vulnerable to damage 

and recombination.  The vulnerability to damage of the pAdeno-X plasmid was taken 

into consideration and  hence, each incubation step from transformation of 

recombinant deficient E. coli to the growth of bacterial cultures was carried out in < 

24 hr succession to the previous step.  Taking all the precautions taken into account, 

one explanation of the absence of portions of Adeno-X DNA and the PI-SceI site 

was that the Adeno-X DNA was damaged prior to subcloning and transformation.  

Clontech technical support had also agreed that the Adeno-X DNA was damaged and 

the company has replaced our Adeno-X
TM

 Tet-On® Expression Systems 1 with the 

Adeno-X
TM

 Expression Systems 2 containing pLP-Adeno-X-TRE vector. 

 

The reporter genes chosen for the Adeno-X
TM

 Expression Systems 2 were ppANF-

eGFP and ppANF-tdTomato.  Subcloning of the two reporter constructs into the 

pDNR-CMV donor vector was shown to be successful in Figure 6-18B and C.  

Transfection of pDNR-ppANF-eGFP and pDNR-ppANF-tdTomato in N2a cells had 

also shown expression of the two constructs (Figure 6-19).  Cre-loxP-mediated 

recombination was carried out to insert the gene of interest from the pDNR-

constructs to the pLP-Adeno-X vector.  Restriction digests with XhoI restriction 

enzyme had confirmed that the presence of the insert and pLP-Adeno-X-TRE vector 

in the pLP-Adeno-X-TRE-ppANF-tdTomato construct.  Further sequence analysis 

also confirmed that the loxP sites used for recombination were intact, making this 

construct a strong candidate for inducible expression of ppANF-tdTomato protein in 

magnocellular neurons.  Transduction of magnocellular neurons with adenovirus is 
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known to be an efficient means of exogenous protein expression.  Adenovirus has 

low cytotoxicity, an important factor to consider in samples to be used in live cell 

imaging experiments.  In addition, the tet-on and tet-off systems offer the 

opportunity to label newly synthesised and mature LDCVs by the addition of 

doxycycline, hence eliminating the use of the complicated Timer protein, and also 

ensuring that fluorescent protein expression ceases at the same time within each 

sample studied.  Generation of viral particles containing the pLP-Adeno-X-TRE-

ppANF constructs will inevitably be a big step forward in targeting fluorescent 

protein expression in LDCVs of magnocellular neurons and controlling fluorescent 

expression will allow pulse chase study of vesicle release in magnocellular dendrites.  
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Figure 6-1.  Adeno-x Tet-Off and Tet-on system.  Transcription is turned off/on by 

the addition of doxycycline.  PCMV = cytomegalovirus promoter; (r)tetR = (reverse) 

tetracycline repressor protein; VP16 = c-terminal activation domain of Herpes 

simplex virus; (r)tTA = (reverse) tetracycline-controlled transactivator; TRE = 

tetracycline response element; PminCMV = minimal immediate early promoter of 

cytomegalovirus; Tc = tetracycline; Dox = doxycycline.  Diagram adapted from 

Adeno-X
TM

 Tet-Off® & Tet-On® Expression System 1 User Manual. 
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Figure 6-2.  Overview of recombinant adenovirus construction and infection.  The 

gene of interest was subcloned into the pTRE-shuttle2 vector via the multiple cloning 

site (MCS).  Insert DNA, bearing the restriction sites compatible with restriction sites 

in the MCS, and pTRE-shuttle2 vector were digested creating compatible restriction 

sites for ligation to create recombinant pTRE-shuttle2 vectors.  pTRE-shuttle2 

vectors contain PI-SceI and I-CeuI restriction sites compatible with those found in 

the pAdeno-X viral vector and can be subcloned via these sites by T4 ligation.  

Recombinant pAdeno-X vectors were then amplified via transformation and culture 

of bacterial cells.  Amplified viral DNA was linearised by PacI digestion and HEK 

293 cells were infected with viral DNA to add packaging of viral particles.  

Recombinant viral particles can then be used to infect target magnocellular cells 

along with Tet-on regulatory virus for inducible expression of the gene of interest.   

Figure adapted from Adeno-X
TM

 Tet-Off® & Tet-On® Expression System 1 User 

Manual. 
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Figure 6-3.  Overview of the generation of inducible ppANF-tagged constructs to the 

generation of viral particles using the Adeno-X
TM

 Expression System 1 (Clontech).   
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Figure6-4.  Plasmid maps of ppANF tagged fluorescent constructs and inducible 

constructs showing the promoters, proteins expressed, restriction sites used for 

subcloning, antibiotic resistant markers, and the sizes of the constructs.  Vector maps 

generated with Vector NTI (Invitrogen). 
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Figure 6-5.  PCR amplification and introduction of restriction sites.  Compatible 

sites with the vector DNA, where the amplified DNA would be subcloned into, were 

chosen, in this example, AgeI and EagI.  Restriction digests result in non-paired 

oligonucleotides producing sticky ends for ligation.  Ligation involves the use of T4 

ligase, where sticky ends from the same restriction digests are joined together.  

Primer FW = forward primer; Primer RV = reverse primer. 
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Figure 6-6.  A) Plasmid map of pAdeno-x containing two inverted terminal repeats, 

the ampicillin resistance gene, PacI sites for linearization of viral vector, and the PI-

SceI and I-CeuI sites for subcloning of recombinant pTRE-shuttle2 vectors.  B) 

Plasmid map of pLP-Adeno-X-TRE containing similar features as (A) plus the TRE 

located upstream of the minimal cytomegalovirus promoter (PminCMV).  Together, the 

TRE and PminCMV makes up the PhCMV -1 which is silent when the tTA is activated in 

the presence of tetracycline.  pLP-Adeno-X-TRE also contains a loxP site for Cre-

loxP recombination with recombinant pDNR-CMV vectors.  Both plasmid maps 

show positions of restriction sites and the size of the Adeno-X vectors.  Figures 

adapted from Adeno-X
TM

 Expression System 1 and Adeno-X
TM

 Expression Systems 

2 user manuals (Clontech). 
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Figure 6-7.  Confirmation of recombinant pAdeno-x-ppANF-DsRed1-E5 ligation 

and transformation by PCR screening.  Figure adapted from Adeno-X
TM

 PCR 

Screening Primer Set protocol. 
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Figure 6-8.  Determining viral titre with the end-point dilution assay.  HEK 293 cells 

were plated in a 96-well plate for 10 days.  The recombinant virus was diluted from a 

10 µl virus stock and serial dilutions were carried out to dilutions of 10
-3

 to 10
-10

.  

100 µl of diluted virus was added to each well containing HEK 293 cells.  Negative 

controls were carried out by adding virus-free media to cells.  Shaded circles 

represent cell growth and circles marked with C represent cytopathic effect of cells 

seen in each well.  The number of wells containing cells with cytopathic effect was 

noted for each dilution used.  Figure adapted from Adeno-X
TM

 Tet-Off® & Tet-On® 

Expression System 1 User Manual. 
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Figure 6-10.  Gel images from electrophoresis of PCR amplification products of 

ppANF, ppANF-Timer and pTimer and restriction digest of ppANF-Timer, pTRE-

ppANF-Timer and pTRE-Timer.  A) DNA ladder (Invitrogen) labelled with band 

sizes in bp.   B) PCR amplification of ppANF (486 bp).  C) Restriction digest of 

ppANF-Timer using HindIII (H) and AgeI (A); sizes of DNA fragments shown are 

3.27 kb and 461 bp; confirming the presence of ppANF in the pTimer vector.  D) 

PCR amplification of ppANF-Timer (1.21 kb).  E) Restriction digests of pTRE-

ppANF-Timer – N/E = NheI/EagI double digest, N = NheI single digest, E = EagI 

single digest, s.c. = supercoiled undigested DNA.  Single digests show band sizes of 

5.58 kb and double digest shows band sizes of 4.4 kb and 1.16 kb, confirming the 

presence of ppANF-Timer in the pTRE-shuttle2 vector.  F) PCR amplification of 

pTimer (680 bp).  G) Restriction digests of pTRE-Timer using NheI and EagI.  

Single digests show band sizes of 5.1 kb and double digest shows band sizes of 4.4 

kb and 680 bp, confirming the presence of pTimer in the pTRE-shuttle2 vector. 
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Figure 6-13.  Gel images from electrophoresis of PCR amplification products of 

ppANF-eGFP and tdTomato and restriction digest of pTRE-ppANF-eGFP, pTRE-

ppANF-tdTomato.  A) PCR amplification of ppANF-eGFP (1.2 kb).  B) PCR 

amplification of tdTomato (1.4 kb).  C and D) Restriction digest of pTRE-ppANF-

eGFP and pTRE-ppANF-tdTomato using NheI (N) and EagI (E); sizes of DNA 

fragments shown are 4.4 kb and 1.2 kb for pTRE-ppANF-eGFP; and 4.4 kb and 1.9 

kb for pTRE-ppANF-tdTomato confirming the presence of both ppANF-eGFP and 

ppANF-tdTomato inserts in the pTRE-shuttle2 vector.  N/E = NheI/EagI double 

digest, N = NheI single digest, E = EagI single digest, s.c. = supercoiled undigested 

DNA.   
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Figure 6-14B.  Colocalisation between ppANF-tdTomato and chromogranin A.  

Mean Pearson’s correlation coefficients of control (non-transfected cells) and pTRE-

ppANF-tdTomato transfection. Student’s t-test showed a significant difference 

between control and ppANF-tdTomato colocalisation with chromogranin A ; 

p<0.001, n=10. 
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Figure 6-15.  pTRE-ppANF-tdTomato expression in the GA, cell centre and cell 

periphery in transfected PC12 cells.  Cells were transfected for 8 (n = 7), 16 (n=10) 

and 24 hr (n=8).  There are significant differences in pTRE-ppANF-tdTomato 

expression between the GA of all time points compared to the cell centre and the cell 

periphery.  pTRE-ppANF-tdTomato expression in the cell centre at 24 hr was 

significantly higher than expression at 8 hr (p<0.05, two-way ANOVA, post-hoc 

Student’s t-test).  There were no significant differences in other cell areas at the 

different time points. 
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Figure 6-16.  Analysis of pAdeno-X-TRE-ppANF-eGFP and pAdeno-X-TRE-

ppANF-tdTomato.  A) PCR analysis of pAdeno-X-TRE-ppANF-eGFP and pAdeno-

X-TRE-ppANF-tdTomato using pAdeno-X Forward and Reverse PCR Primers, 

DNA fragment amplified – 287 bp.  B and C) PCR analysis of pAdeno-X-TRE-

ppANF-eGFP and pAdeno-X-TRE-ppANF-tdTomato using pAdeno-X PCR forward 

primer and a reverse primer binding directly to the insert DNA.  B) Reverse primer 

binding to the c-terminal of the ppANF fragment in pAdeno-X-TRE-ppANF-eGFP, 

DNA fragment amplified – 1.2 kb.  C) Reverse primer binding to the c-terminal of 

the tdTomato fragment in pAdeno-X-TRE-ppANF-tdTomato, DNA fragment 

amplified – 2.7 kb. D) P/I = PI-SceI/I-CeuI double digest, P = PI-SceI single digest 

and I = I-CeuI single digest, s.c. = undigested supercoiled DNA.  P/I double digest 

should generate two DNA fragments for each plasmid: 2.8 kb and 32.67 kb for 

pAdeno-X-TRE-ppANF-eGFP and 3.5 kb and 32.67 kb for pAdeno-X-TRE-ppANF-

tdTomato.  Single digests showed that I-CeuI restriction enzyme worked on pAdeno-

X-TRE-ppANF-tdTomato pAdeno-X-TRE-ppANF-eGFP and PI-SceI did not digest 

either construct since DNA fragments observed were similar to undigested 

supercoiled DNA. 
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Figure 6-17.  A) Restriction analysis of pTRE-ppANF-eGFP and pTRE-ppANF-

tdTomato with I-CeuI and PI-SceI.  I/P = I-CeuI and PI-SceI double digest, I = I-

CeuI single digest, P = PI-SceI single digest and s.c. = undigested supercoiled DNA.  

Double digest of pTRE-ppANF-eGFP produced two bands at 2.79 kb and 2.85 kb, 

and single digests produced bands at 5.6 kb.  Double digest of pTRE-ppANF-

tdTomato produced two bands, one at 2.8 kb and one at 3.5 kb.   These band sizes 

confirmed the presence of ppANF-eGFP and ppANF-tdTomato within the I-CeuI 

and PI-SceI sites of pTRE-shuttle2 vector, both restriction enzymes were successful 

at digest, and both restriction sites were intact in the recombinant pTRE-shuttle 

vectors.  B) Restriction analysis of pAdeno-X-TRE-ppANF-eGFP and pAdeno-X-

TRE-ppANF-tdTomato with NheI and EagI.  N/E = NheI and EagI double digest, N 

= NheI single digest and E = EagI single digest.  pTRE-ppANF-tdTomato NheI/EagI 

double digest was included as a positive control of the double restriction digest.  

NheI and EagI digests of pAdeno-X-TRE-ppANF-eGFP revealed the total size of the 

recombinant pAdeno-X DNA to be between 7 and 8 kb.  Meanwhile, a ~ 2 kb and a 

band higher than 12 kb were seen in NheI and EagI digests of pAdeno-X-TRE-

ppANF-tdTomato. 
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Figure 6-18.  Analysis of pDNR-ppANF-eGFP and pDNR-ppANF-tdTomato.  A) 

PCR amplification of ppANF-tdTomato, DNA fragment amplified – 1.9 kb. B) 

HindIII (H) and XbaI (X) double digest of pDNR-ppANF-eGFP showing band sizes 

of 1.2 kb and 5.6 kb.  C) H/X double digest of pDNR-ppANF-tdTomato showing 

band sizes of 1.9 kb and 5.6 kb.  S.c. = undigested supercoiled DNA.   
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Figure 6-20.  Analysis of pLP-Adeno-X-TRE-ppANF-eGFP and pAdeno-X-

LPTRE-ppANF-tdTomato.  A and B) Colony PCR analysis of pLP-Adeno-X-TRE-

ppANF-eGFP (A) and pAdeno-X-LPTRE-ppANF-tdTomato (B) using Adeno-X LP 

CMV Primer Mix.  DNA fragments amplified – 660 bp.  C and D) XhoI restriction 

digests (X) of pAdeno-X-LPTRE-ppANF-eGFP (C) and pAdeno-X-LPTRE-ppANF-

tdTomato (D).  DNA fragments expected (kb) – pAdeno-X-LPTRE-ppANF-eGFP: 

14.5, 8.0, 5.0, 3.6, 2.5, 1.4, 0.6; pAdeno-X-LPTRE-ppANF-tdTomato – 14.5, 8.0, 

5.8, 3.6, 2.5, 1.4, and 0.6.  s.c. = undigested, supercoiled DNA. 
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PCR Mix Sample (µl) Negative Control (µl) 
Final 

Concentration 

PCR Buffer 10 10 1x 

d’NTPs 1 1 0.2mM @ 

MgCl2 4 4 2mM 

Forward Primer (µM) 5 5 0.2 – 0.3 µM 

Reverse Primer (µM) 5 5 0.2 – 0.3 µM 

DNA (1ng/µl) 1 - 1ng/50µl 

Taq Polymerase 0.25 0.25 1.25u 

H2O 23.75 24.75 - 

Total Volume 50µl 

Table 6-1. Typical reaction mix for PCR.   

 

 

PCR cycles Temperature Duration No. of Cycles 

Denaturation 95
o
C 2 min 1 

Denaturation 95
o
C 1 min 

32 Annealing 64
o
C 30 sec 

Elongation 72
o
C 1 min 30 sec 

Elongation 72
o
C 5 min 1 

Hold 4
o
C Indefinite - 

Table 6-2. PCR Cycles for the amplification of DNA fragment. 
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DNA 

fragment 

amplified 

Forward primers Reverse primers 

ppANF GCTCAAGCTTATGGGCTCCTTCTCCATCACCAAG ACTGACCGGTCGTCGGTACCGGAAGCTGTTGCAG 

ppANF-

eGFP 
TCACGCTAGCCAGATGGGCTCCTTCTCCATCAC TATGGCTGATTATGATCTAGAGTCG 

tdTomato 
TCACACCGGTCCACGCACAAGCCACCATGGTGAGCAAG

GG 
CAGACGGCCGCTTTACTTGTACAGCTCGTCCATG 

ppANF-

Timer 
TCACGCTAGCATGGGCTCCTTCTCCATCACCAA CCAGACAAGTTGGTAATGGTAGCG 

Timer TCAGGCTAGCATGGTGCGCTCCTCCAAGAACGT CCAGACAAGTTGGTAATGGTAGCG 

ppANF-

tdTomato 
GCTCAAGCTTATGGGCTCCTTCTCCATCACCAAG CAGATCTAGATTACTTGTACAGCTCGTCCATG 

Table 6-3.  Primers used in PCR amplification of DNA fragments for subcloning.  Forward and reverse primers listed in 5’ to 3’ for each 

DNA fragment amplified. 
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Insert DNA 

(µl) 

Vector DNA 

(µl) 

DNA (1 µg/µl) 30 5 1 1 1 

Enzyme 1 1 1 1 - - 

Enzyme 2 1 1 - 1 - 

10x Digestion Buffer  4 2 2 2 2 

H2O 4 11 16 16 17 

Total Volume 40 20 

Table 6-4. Conditions for a typical restriction digest. 

 

 
3:1 

(µl) 

1:1 

(µl) 

1:5 

(µl) 

1:10 

(µl) 

Control 1 

(µl) 

Control 2 

(µl) 

Vector DNA 

(100ng/µl) 
1 1 1 1 1 1 

Insert DNA (1.4 

kb, 33ng/µl) 
0.3 1 4.5 8.9 - - 

T4 ligase 1 1 1 1 1 - 

2x Ligation 

Buffer  
5 5 6.5 10.9 5 5 

H2O 2.7 2 - - 3 4 

Total Volume 10 10 13 21.8 10 10 

Table 6-5.  Conditions for a typical ligation reaction. 
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PCR cycles Temperature Duration No. of Cycles 

Denaturation 94
o
C 2 min 1 

Denaturation 94
o
C 1 min 

32 Annealing 64
o
C 30 sec 

Elongation 68
o
C 1 min 30 sec 

Elongation 68
o
C 5 min 1 

Hold 4
o
C Indefinite - 

Table 6-6. PCR Cycles for the screening of recombinant pAdeno-X and pLP-Adeno-

X. 
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7. DISCUSSION 

 

It is known that dendritic peptide release is temporally and functionally different 

from axonal terminal release (Ludwig et al. 2002).  However, the mechanism 

regulating this difference in peptide release is not fully understood.  The present 

study investigated the mechanism of dendritic peptide release by studying the 

regulation of vesicle pools in dendrites.  Intracellular mobilisation of calcium is 

known to recruit vasopressin-containing vesicles to the periphery of the plasma 

membrane (Tobin et al. 2004), suggesting the recruitment of a reserve vesicle pool 

for release.  In peptide-releasing bovine adrenal chromaffin cells, newly synthesised 

vesicles were found to be preferentially recruited to the readily releasable pool whilst 

aged vesicles made up the reserve pool (Duncan et al. 2003; Wiegand et al. 2003), 

suggesting vesicular age is an important factor for vesicle pool regulation.  It is not 

known whether magnocellular dendrites contain vesicle pools functionally different 

depending on age, and it is not known if there are specific mechanisms governing the 

routing of vesicles to dendrites.  

 

 

7.1 Vesicle pools and routing 

The segregation of different LDCV vesicle pools in axonal terminals and in 

endocrine cell lines are well documented.  These vesicle pools were found to be 

functionally different from each other where depolarisation of the cell membrane 
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initially triggers the release of the RRP and prolonged depolarisation triggers release 

of the RP (Horrigan & Bookman 1994; Voets et al. 1999).  Previous morphological 

studies found that lysosomes are present in magnocellular dendrites (Morris & 

Dyball 1974), which suggests the existence of the machinery for degradation of aged 

organelles, including unreleased LDCVs in these parts of the neurons.  The present 

study found that lysosomes in magnocellular dendrites are significantly correlated 

with high vasopressin density, suggesting that lysosomes in magnocellular dendrites 

have important functions in the degradation of vasopressin LDCVs.  Lysosomes 

were found to be located in the centre of dendrites, suggesting that they are ideally 

positioned to handle aged, non-released LDCVs.  Although lysosomes were found in 

magnocellular dendrites and were found to be correlated with high vasopressin 

density, it was not known whether dendrites are important compartments for 

degradation like the Herring bodies found in neuronal terminals (Heap et al. 1975; 

Krsulovic et al. 2005).  If dendrites were compartments of degradation; i.e. a 

compartment filled with aged vesicles ready to be degraded, then aged vesicles may 

be specifically routed to dendrites.  However, using low temperature to block vesicle 

exit from the GA revealed that newly synthesised vesicles do translocate to dendrites 

indicating that dendrites contain a mixture of newly synthesised vesicles and aged 

vesicles and that vesicle routing to magnocellular dendrites is not dependant on 

vesicle age.  Since dendrites are structures of ~200 µm in length, it is interesting to 

find out whether newly synthesised vesicles translocate to specific parts of dendrites.  

If newly synthesised vesicles were specifically translocated to any portion of the 

dendritic profile, this might suggest that different portions of a dendrite have 

different release properties.  Tracking of newly packaged vesicles from the GA along 
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the profile of dendrites suggested that there was no difference in the distribution of 

newly assembled vesicles from the GA.  This suggests that release properties are 

similar in all parts of a dendrite.  Although dendrites measured in this study only 

represent the proximal to middle portion of the full lengths of dendrites, this result 

agreed with the finding that all parts of the dendritic membranes were capable of 

exocytosis (Pow & Morris 1989) and no active zones for release were found.  Hence, 

if newly synthesised vesicles were preferentially recruited for readily releasable pool 

secretion, there is no difference in preferential release throughout the length of 

dendrites.   

 

In bovine adrenal chromaffin cells, the divalent cation barium was found to 

preferentially release vesicles from the reserve vesicle pool and possibly the non-

releasable pool (Seward et al. 1996; Duncan et al. 2003) indicating that barium was 

able to activate a distinct release pathway specific to vesicles in the reserve pool. 

Reserve pool vesicles in magnocellular dendrites are known to potentiate stimulus-

dependent release (Ludwig et al. 2002); however, whether vesicles from the reserve 

pool can also be preferentially released from magnocellular dendrites and hence has 

differential functions to RRP vesicles is unknown.     In contrast, Ba
2+

 was found to 

be unable to stimulate reserve vesicle pool or non-releasable pool release from 

neurohypophysial terminals (Seward et al. 1996).  The model proposed by Heap et 

al. 1975 and later extended by Krsulovic et al. 2005 suggested that in the neural lobe, 

the RRP vesicles are found in endings and RP vesicles are segregated in specialised 

swellings and Herring bodies where there is a lower chance for re-recruitment for 
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release.  Since dendrites do not contain the specialised compartmentalisation found 

in the neural lobe, it would be interesting to find out whether RP vesicles have 

distinct release mechanisms as found in chromaffin cells.  Meanwhile, LDCVs found 

in the Herring bodies represent aged vesicles which cannot be recruited for release 

(Krsulovic et al. 2005).  Aged LDCVs in the neural lobe are known to undergo 

continuous proteolysis (Nordmann & Labouesse 1981) and contain less hormones 

than newly synthesised vesicles either due to continual proteolysis or leakage 

through vesicular membrane (Nordmann & Morris 1984).  It is not known whether 

dendrites also contain a non-releasable pool of vesicles.  If aged vesicles with 

different peptide content can be recruited for release, will there be functional 

differences between release of newly synthesised and aged vesicles?  Nevertheless, 

presence of newly synthesised vesicles and lysosomes in dendrites ensures plasticity 

in response to change in demands for dendritic peptide release.   

 

 

7.2 New tools for studying dendritic peptide release 

Organotypic slice cultures are known for their advantages in the preservation of 

differentiated neurons where synaptic connections are maintained in the process of 

culture.  Moreover, they allow for pharmacological and gene transfer 

experimentations.  In the present study, live cell imaging of dendritic peptide release 

was successfully carried out using organotypic slice cultures of the hypothalamus of 

neonatal VP-eGFP rats.  Although vasopressin is known to be present in the 
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hypothalamus before birth (Sinding et al. 1980b), systemic activation of the SON in 

neonatal rats has not been shown.  The activation of the SON after systemic osmotic 

challenge found in this study proves the physiological significance in using neonatal 

rats for further studies.   

 

Several problems were encountered using brain slices for live cells imaging.  Firstly, 

instability and movements in both the microscope and the tissue are the major 

problems.  A 1
o
C change in temperature of the microscope set up could account for a 

1 µm movement in the lateral or axial direction (Kasparov et al. 2002).  Therefore, it 

was important to minimise these movements by the use of environmental chambers, 

heated microscope stage, heated solutions and by taking a stack of images in the Z 

direction to make sure that the whole cell is accounted for.  An environmental 

chamber had been used to keep the temperature on the microscope stage stable.  

Solution flow rate and change of solution can also affect displacement of the tissue.  

Hence, two outflow tubes had been attached to the perfusion chamber to ensure 

steady flow of solutions.  Aside from the inherent problems encountered from the 

microscope set up, scattering of light and difference in light absorbance throughout 

the thickness of the section affect the resulting image quality.  These affect 

organotypic slice cultures to a lesser extent since cultures are made from neonatal 

animals which are optically optimal; and slice explants flatten to a few cell layers.  

Nevertheless, to image whole neuronal cell bodies along with their dendritic 

projections may require imaging depths of tens of micrometers.  This depth of image 

is in itself a problem since fluorescence from the top of the image has less distance to 
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travel compared to fluorescence from within the tissue; i.e. fluorescent intensity is 

stronger at the top of the image.  This has to be taken into consideration when 

quantifying fluorescent intensity and hence, 10 optical slices (~1.67 µm in total) in 

the centre of the stack were selected for image analysis.  Lastly, photobleaching and 

phototoxicity are the most important factors of concern in live cell imaging.  The 

fluorescence used in the live cell imaging experiments is eGFP, which is a mutated 

(S65T) version of wild-type green fluorescent protein, GFP.  Photobleaching in 

eGFP had been reported to be relatively low (Swaminathan et al. 1997; Tsien 1998) 

making it suitable as a reporter protein in live cell imaging experiments.  Live cell 

imaging of VP-eGFP in organotypic slice cultures revealed significant loss of VP-

eGFP within dendrites after depolarisation by 50 mM K
+
 and further potentiated 

release by depolarisation after thapsigargin pre-treatment.  This is in accordance with 

findings in in vitro experiments where isolated SON was stimulated and release 

measured by radioimmunoassays (Ludwig et al. 2002; Ludwig et al. 2005).  The live 

cell imaging protocol established further confirmed the findings that thapsigargin 

was able to potentiate dendritic vasopressin release subsequent to high K
+
 

stimulation.  Since the amount of VP-eGFP loss found in the live cell imaging 

experiments was comparable to the percentage of vasopressin release found in in 

vitro experiments (please refer to Chapter 4), live cell imaging using organotypic 

slice explants proves to be a robust model to study dendritic peptide release. 

The experimental models established allow for targeted gene transfer to be carried 

out in conjunction with live cell imaging to study the segregation of vesicle pools in 

magnocellular dendrites.  Non-dividing cells, such as neurons, are known to be 
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difficult to transfect using standard transfection techniques.  The biolistic technique 

had been shown to be successful in transfecting magnocellular neurons (Thomas et 

al. 1998).  The present study also showed that biolistic transfection is an effective 

method to transfect magnocellular neurons.  Although the number of neurons 

transfected using this technique is relatively low, compared to the total number of 

cells transfected, it is possible to target gene expression to neurons by driving gene 

expression with neuronal specific promoters (Thomas et al. 1998), hence reducing 

the total number of transfected cells and allowing better identification of transfected 

neuronal cells.  However, the major problem encountered with biolistic transfection 

in this study is the light reflection caused by scattered gold particles used as “bullets” 

for transfection.  Since gold particles are scattered throughout the tissue, and the 

amount of reflected light varies (personal observation), it is difficult to judge the 

actual size of the particles.  This study focuses on the dynamics and segregation of 

vesicle pools in magnocellular dendrites and hence, gold particle reflection which 

resembles fluorescently labelled LDCVs, made this technique unsuitable for further 

optimisation and use for further studies. 

 

Therefore, to express exogenous fluorescent reporter proteins in LDCVs to study the 

release of different vesicle pools, the adenoviral transduction system was used.  The 

adenoviral system chosen was an inducible system whereby expression of exogenous 

reporter proteins can be switched on/off by addition of doxycycline.  To confirm that 

ppANF-tagged reporter proteins were expressed in LDCVs, N2a cells were 

transfected and then immunolabelled for chromogranin A expression.  Colocalisation 
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analysis showed that ppANF-tagged reporter proteins were expressed in LDCVs.    

The fluorescent time-stamp pTimer had also been tested for expression in LDCVs.  

However, the fluorescent Timer did not produce desirable expression when tagged to 

ppANF.  This had further been analysed by subcloning the non-ppANF tagged 

pTimer DNA into the inducible pTRE-shuttle vector for expression.  N2a cells 

transfected with pTRE-Timer expressed red and green fluorescence as expected.  

Since pTimer tagged to ppANF did not result in expression in LDCVs, two other 

fluorophores were chosen for expression: ppANF-eGFP and ppANF-tdTomato.  

Expression of these two constructs, subcloned into the inducible pTRE-shuttle vector 

when co-transfected with pTet-on, resulted in fluorescent expression in LDCVs.  

Studies on vesicle segregation using double transfected PC12 cells (pTRE-ppANF-

tdTomato and pTet-on) showed that pulse labelling experiments were able to label 

different vesicle pools after 24 hr, proving that pulse-labelling was efficient in 

identifying vesicle pools.  Although this study started out with using the pAdeno-X 

coupled to the tet-on system, the pAdeno-X DNA was found to be damaged (Figures 

6-16 and 6-17); hence, the viral system was replaced with the pLP-Adeno-X-TRE 

tet-off system.  Adenovirus-induced transduction coupled with the tTA had been 

previously shown in cultured hippocampal neurons (Harding et al. 1997; Ralph et al. 

2000) and since expression of exogenous proteins can be switched off simply by 

adding doxycycline to the culture medium, the LP-Adeno-X-TRE virus is an ideal 

candidate to be used for pulse chase labelling experiments in magnocellular 

dendrites.  Subcloning of ppANF-eGFP and ppANF-tdTomato into a donor vector, 

pDNR-CMV vector, ensured the correct insertion of ppANF-eGFP and ppANF-

tdTomato into the pLP-Adeno-X-TRE vector.  The use of ppANF-eGFP as a reporter 
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gene allows for pulse-chase labelling where magnocellular neurons can be identified 

by immunolabelling.  In addition, the use of ppANF-tdTomato as a reporter gene 

allows for pulse-chase labelling experiments to be carried out in conjunction with 

live cell imaging of magnocellular dendrites from VP-eGFP rats.  Furthermore, the 

inducible adenoviral constructs can be used in in vivo transduction of magnocellular 

neurons where expression of reporter proteins have been demonstrated by injection 

of adenoviral constructs directly into the SON or via retrograde uptake of the 

adenovirus by injection of the neural lobe (Vasquez et al. 1998; Vasquez et al. 2001).  

In vivo transduction allows pulse-chase labelling to be carried out in intact infected 

animals where visualisation of vesicle pool segregation in magnocellular dendrites 

can be carried out on perfusion fixed brain sections.  Live cell imaging of 

magnocellular dendrites can also be achieved by culturing sections of the 

hypothalamus of VP-eGFP rats infected with inducible ppANF-tdTomato.  The 

induction of viral constructs containing the TRE-coupled promoter in vivo has been 

achieved by simply adding doxycycline to drinking water (Lee et al. 2005).  Hence, 

the successful production of the pLP-Adeno-X-TRE-ppANF-tdTomato construct 

brought us one step closer to the visualisation of vesicle pool segregation in 

magnocellular dendrites. 

 

7.3 Future directions 

With the successful production of adenoviruses containing the pLP-Adeno-X-TRE-

ppANF-tdTomato construct, LDCVs in magnocellular neurons can be labelled.  

Preferential release by recruitment of specific pools, for example barium recruitment 
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of the reserve/non-releasable pool (Seward et al. 1996; Duncan et al. 2003) can also 

be studied to investigate the functional difference of vesicle pools.  In vivo injection 

of the inducible viral constructs can be combined with physiological assays or 

visualisation techniques to study release mechanisms of different vesicle pools.  

Infection of magnocellular vasopressin neurons prior to salt loading, whilst 

terminating reporter protein expression at different time points, will provide an 

understanding to the functional significance of different vesicle pools in 

magnocellular dendrites.    

 

On the molecular level, although there is evidence that SNARE-associated proteins 

are involved in dendritic peptide release in magnocellular neurons: synaptotagmin, 

SNAP-25 and syntaxin (Schwab et al. 2001), VAMP/synaptobrevin (de Kock et al. 

2003), and α-SNAP (Morris et al. 2000); immunolabelling revealed that VAMP2, the 

major VAMP isoform found in magnocellular nerve terminals (Jurgutis et al. 1996), 

was absent in magnocellular dendrites (Ludwig et al. 2006).  Hence, magnocellular 

dendrites use a different isoform of VAMP compared to axon terminals to regulate 

exocytosis.  In dopaminergic neurons, botulinum toxin B, which cleaves VAMP, 

inhibited exocytosis from dopaminergic nerve terminals but not from the somato-

dendritic compartment, leading to speculation that different VAMP isoforms can be 

present in terminals and in the soma/dendrites.  A possible VAMP isoform, VAMP4, 

has been found to be upregulated in the SON after a hypoosomolar challenge 

(Mutsuga et al. 2005), indicating that VAMP4 may have important functions in 

dendritic peptide release.  Identification of specific VAMP isoforms found in 



  Chapter 7 Discussion 

230 

magnocellular dendrites will allow specific targeting of dendritic peptide release via 

expression of dominant negative genes or siRNA.  Expression of a dominant 

negative form of VAMP had been shown in chromaffin cells to result in reduced 

exocytotic events (Sorensen et al. 2002).  Meanwhile, targeting of siRNA to 

magnocellular neurons has also been achieved in vivo (Jensen et al. 2008).  

Identification of other SNARE-associated proteins is also important in decoding the 

molecular mechanisms of dendritic peptide release.  Munc18, which binds syntaxin 

at its closed conformation to prevent SNARE complex formation (Nicholson et al. 

1998; Han et al. 2009; Rickman & Duncan 2010), and Ca
2+

-dependent activator 

protein (CAPS 1) which plays an important role in exocytosis downstream of vesicle 

docking (Fujita et al. 2007), have both been reported in magnocellular dendrites 

(Ludwig et al. 2006).    

 

Furthermore, membrane capacitance measurements showed evidence that 

endocytosis occurs in the somata/dendrites of magnocellular neurons (Soldo et al. 

2004; de Kock et al. 2003).  The endocytotic machinery in magnocellular 

soma/dendrites has not been investigated in detail.  The development of a fixable 

membrane dye, FM1-43FX (green) and FM4-64FX (red) (Invitrogen), provides a 

means to study endocytosis and vesicle recycling in magnocellular dendrites in slice 

preparation where the cytoarchitecture of dendrites is retained.  In hippocampal 

neurons, LDCV recycling and kiss-and-run exocytosis of peptide-vesicles had been 

demonstrated in soma and dendrites (Xia et al. 2009).  Kiss-and-run exocytosis has 

also been demonstrated in LDCVs in nerve terminals in posterior pituitary 
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preparations (Klyachko & Jackson 2002).  In pancreatic β cells, kiss-and run 

exocytosis of LDCVs was shown to release small molecules such as ATP that is co-

packaged with insulin (MacDonald et al. 2006).  It is not known whether vesicle 

recycling and kiss-and-run exocytosis occurs in magnocellular dendrites.  Uptake of 

the FM dye in dendrites will demonstrate endocytosis, whereas, subsequent 

stimulation protocol to look at release of the membrane dye will suggest whether 

magnocellular dendrites contain recycling vesicles.  In addition, neurons containing 

VP-eGFP can be employed to study kiss-and-run exocytosis in dendrites where 

uptake of membrane dyes colocalised with eGFP would suggest partial release of 

vesicle content. 

 

7.4 Conclusion 

Dendritic peptide release from magnocellular neurons serves as an important source 

of peptides in the brain.  Dendritic release of vasopressin and oxytocin has been 

shown to be important in autoregulation and paracrine control of neuronal activity.   

Peptides found in the CSF are believed to be released from dendrites and hence, 

dendritic peptide release has been implicated in the regulation of behaviour (Ludwig 

& Leng 2006).  The temporal and functional difference between dendritic and axon 

terminal peptide release in magnocellular neurons indicate differences in the 

mechanisms regulating release in these two compartments.  The finding that newly 

synthesised LDCVs translocate to dendrites suggests that dendritic peptide release 

can be up- or down-regulated independent of axon terminal release.  Moreover, 

dendrites also contain their own resources for degradation, indicating that dendrites 
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are self-sufficient compartments for the destruction of aged organelles.  The live cell 

imaging technique established will be invaluable in studying the regulation LDCV 

release in a system where homologous cell lines are unavailable.  Furthermore, 

inducible reporter proteins targeted to LDCVs are essential to label different vesicle 

pools.  In vivo or in vitro viral transduction with targeted proteins for expression in 

LDCVs can hence further our understanding in vesicle pool segregation in 

magnocellular dendrites. 
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aCSF-sucrose-KOH solution 

• 220 mM sucrose 

• 1.2 mM KCl, 10 mM HEPES 

• 10 mM glucose 

• 1.2 mM KH2PO4 

• 2 mM MgCl2 

• 2.5 mM CaCl2 

• pH to 7.4 with 1M KOH 

• Check osmolarity = 300 mOsm/L 

 

Agarose, 1% (w/v) 

• 50 ml TBE buffer (see below for recipe) 

• 0.5 g agarose 

• Microwave till agarose dissolves 

• Cool solution under cold water 

• Add 5 ul of Sybrsafe (Invitrogen) for DNA visualization under UV light 

 

Buffer N3 

• 5 M KOAc 

• Autoclave and store at 4
o
C 

 

Buffer P1 

• 25 mM Tris-HCl (pH 8.0) 

• 10 mM EDTA 
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• 50 mM glucose 

• Autoclave and store at 4
o
C 

 

Buffer P2 

• 0.2 M NaOH 

• 1% (v/v) SDS 

 

Buffer TE 

• 10 mM Tris-HCl (pH 8.0) 

• 1 mM EDTA 

 

Cell freezing media 

• DMEM (Gibco) 

• 10% (v/v) Foetal calf serum (Harlan) 

• 5% (v/v) DMSO (Sigma) 

 

Cryoprotectant solution 

• 20% (v/v) glycerol 

• 30% (v/v) ethylene glocol 

• 0.2 M PBS  

• Titrate to pH 5.5 

 

Gelatine solution for subbing slides 

• Heat up distilled H2O 

• 5 g/L gelatine 

• Let solution cool 
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• Add 0.5 g/L chromic potassium sulphate 

• Filter solution before use 

 

Hep-Saline solution (Heparinised saline) 

• 9 g/L NaCl 

• 0.129 g/L Heparin 

 

LB; Luria-Bertani, medium 

• 10 g tryptone  

• 5 g yeast extract  

• 5 g NaCl  

• 1 L water  

• pH 7.5 

• Autoclave 

 

LB Agar  

• 1 L of LB medium (pH 7.5)  

• 15 g agar  

• Autoclave 

 

Mowiol 

• 4.76 ml glycerol (density 1.26 g/L) 

• 2.4 g Mowiol 4-88 (Calbiochem) 

• 12 ml distilled water 

• 12 ml 0.2M Tris pH 8.5  

• Warm up to 50
o
C for 2 hours 

• Aliquot into 50 ml centrifuge tubes 
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• Centrifuge at 2000 rpm for 15 min, save supernatant 

• Add 0.72 g DABCO (1,4 diazabicyclo [2,2,2]-octane) 

• Aliquot into 10 ml in 15 ml conical tubes  

• Store at -20
o
C  

 

N2a culture medium 

• DMEM (with L-Glutamine, 4500 mg/L D-Glucose, 110 mg/L Sodium Pyruvate, 

Gibco) 

• 10% (v/v) Foetal cal serum (Harlan) 

• 1:50 Pen/Strep/Neo (Sigma)  

 

Nickel II sulphate solution for Fos immunohistochemistry 

• 100ml of 0.2M sodium acetate buffer 

• 5g nickel II sulphate  

• 0.8g glucose 

• 0.16g ammonium chloride 

• 50mg DAB is added to 98ml dH20 

• 0.006g glucose oxidase type VII-s (Sigma G7016) was added immediately prior 

to use 

 

4% (w/v) PFA in 0.1 M PB(S) 

• 4 % (w/v) Paraformaldehyde  

• 0.2 M PB or PBS 

• distilled H2O 

• Heat up distilled H2O 

• Add paraformaldehyde 

• Dissolve paraformaldehyde with 10 M NaOH 

• Add equal volume of 0.2 M PB(S) 
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• Titrate to pH 7.4 when cooled 

 

Phosphate buffer (PB) 0.1M 

• 11.5 g/L Na2HPO4  

• 2.964 g/L NaH2PO4.2H2O  

• Make up in distilled H2O 

• Titrate to pH 7.4 

 

Phosphate buffered saline (PBS) 0.1M 

• 11.5 g/L Na2HPO4  

• 2.964 g/L NaH2PO4.2H2O  

• 8.5 g/L NaCl 

• Make up in distilled H2O 

• Titrate to pH 7.4 

 

Serum-containing medium 

• 50% (v/v) Eagles basal medium (BME, Sigma-Aldrich, UK) 

• 25% (v/v) heat-inactivated horse serum (Harlan, UK) 

• 25% (v/v) Hanks balanced salt solution (Gibco) 

• 0.5% (w/v) glucose (Sigma-Aldrich, UK) 

• 2 mM glutamine (Sigma-Aldrich, UK) 

• 25 µg/ml penicillin/streptomycin (Sigma-Aldrich, UK) 

• 20 ng/ml ciliary neurotrophic factor (CNTF) (Sigma-Aldrich, UK) 

• The osmolarity of the medium was 320-325 mOsm/L 

 

SOC medium 

• 0.5% (w/v) yeast extract 
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• 2% (w/v) Tryptone 

• 10 mM NaCl 

• 2.5 mM KCl 

• 10 mM MgCl2 

• 10 mM MgSO4 

• 20 mM Glucose 

 

TBE buffer (1M Tris, 1M Boric Acid, 20mM EDTA) 

• 24.22 g Tris  

• 12.366 g boric acid  

• 1.489 g EDTA  

• Adjust pH to 8.3. QS to 2 liters. Autoclave. 

 

TFB1 

• 30 mM potassium acetate 

• 10 mM CaCl2 

• 50 mM MnCl2 

• 100 mM RbCl2 

• 15% (v/v) glycerol 

• Adjust pH to 5.8 with 1 M acetic acid 

• Filter sterilise with Millipore vacuum filter (0.22 um pore size) 

 

TFB2 

• 10 mM MOPs 

• 75 mM CaCl2 

• 10 mM RbCl2 

• 15% (v/v) glycerol 

• Adjust pH to 6.5 with 1 M KOH 



  Appendix I - Recipes 

vii 

• Filter sterilise with Millipore vacuum filter (0.22 um pore size) 

 

Tyrode solutions 

Control tyrode solution 

• 121 mM NaCl 

• 5 mM KCl 

• 1.2 mM NaH2PO4
.
2H2O 

• 2.4 mM CaCl2
.
2H2O 

• 1.3 mM MgCl2
.
6H2O 

• 10 mM D-glucose 

• 5 mM HEPES 

• 26 mM NaHCO3 

 

50mM KCl solution 

• 76 mM NaCl 

• 50 mM KCl 

• 1.2 mM NaH2PO4
.
2H2O 

• 2.4 mM CaCl2
.
2H2O 

• 1.3 mM MgCl2
.
6H2O 

• 10 mM D-glucose 

• 5 mM HEPES 

• 26 mM NaHCO3 
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Table 1.  Excitation and emission maxima of secondary antibodies used for indirect 

immunofluorescence labelling.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Excitation Maximum (nm) Emission Maximum (nm) 

Alexa Fluor 488 495 519 

Alexa Fluor 568 578 603 

Alexa Fluor 633 632 647 
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Figure 1. Fluorescence spectra of fluorophores used (Alexa Fluor 488, 568 and 633 

antibody conjugates and green fluorescent protein).  Spectra graphs generated with 

Fluorescence SpectraViewer, Invitrogen 

(http://www.invitrogen.com/site/us/en/home/support/Research-Tools/Fluorescence-

SpectraViewer.html). 

Alexa Fluor 488 

antibody conjugate

Alexa Fluor 633 

antibody conjugate

Alexa Fluor 568 

antibody conjugate

GFP

Combined
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Abstract 

The magnocellular neurones of the supraoptic nucleus (SON) and paraventricular 

nucleus (PVN) are capable of neuropeptide release from their axon terminals and 

dendrites.  In magnocellular axon terminals, swellings known as Herring bodies are 

responsible for the degradation of aged, unreleased peptide vesicles.  Peptide vesicles 

that have entered Herring bodies cannot be re-recruited for release and degradation in 

Herring bodies is carried out by the large amounts of lysosomes found in them.  

Interestingly, Herring bodies were found to be extremely dynamic and plastic 

structures which increase in number during dehydration and decreases during 

rehydration.  Dendrites of the magnocellular neurones contain a large proportion of 

the neuronal peptide content.  Swellings similar to Herring bodies found in axon 

terminals have not been reported in dendrites.  In the present study, 

immunofluorescent labelling of lysosomes in dendrites expressing vasopressin (VP) 

endogenously tagged to eGFP (VP-eGFP) showed that there are “hot spots” for 

degradation in magnocellular dendrites.  Lysosomes were found to be preferentially 

located where there was a high density of VP-eGFP expression.  Further analysis 

found that lysosomes were mostly found in the centre of dendrites.  Previous studies 

in endocrine cell lines reported that aged, unreleased vesicles reside in the centre of 

cells.  The central localisation of lysosomes in dendrites indicates a role for 

degradation of aged, unreleased vesicles in dendrites. 
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Introduction 

The magnocellular neurones of the SON and PVN have been widely used as a 

model system to study neuroendocrine peptide release due to the fact that these 

neurones exclusively release large amounts of two peptide hormones VP and 

oxytocin (OT).  VP and OT are released into the circulation via the pituitary gland in 

the neural lobe where VP and OT exert their peripheral functions.  Magnocellular 

neurones also release peptides from their dendrites and this release is different to that 

from the pituitary in that peptides largely remain in the CSF and act on the brain.  

However, the major difference found between peptide release from axon terminals in 

the pituitary and peptide release from dendrites in the brain is that release from axon 

terminals and dendrites can be differentially stimulated and occurs via different 

mechanisms (1,2).  This led to the acknowledgement that axon terminals and 

dendrites of the magnocellular neurones are different compartments where release of 

neuroactive substances can be differentially regulated.  To better understand the 

mechanisms governing the difference in peptide release between axon terminals and 

dendrites of magnocellular neurones, it is essential to investigate differences in 

peptide handling between these two compartments.  

The neurosecretory axons in the neural lobe is made up of different 

compartments consisting of undilated segments, endings and swellings (3).  Peptide 

vesicles were proposed to arrive at the endings through the undilated segments, and 

become stored in the swellings if they were not released (3,4).  A specialised 

compartment, known as the Herring body, was found to be filled with lysosomes (5) 

and was found to be the site of degradation for aged, non-released peptide vesicles 
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(4).  Neurosecretory vesicles that have entered the Herring body cannot be re-

recruited for release, suggesting that Herring bodies are specialised compartments for 

degradation of cellular organelles.  A dehydration regime showed large amounts of 

peptide vesicles residing in Herring bodies and a dehydration-rehydration protocol 

showed reduced amounts of Herring bodies associated with axon terminals indicating 

that Herring bodies are also dynamic and plastic.  In comparison, dendrites are 

morphologically different to axon terminals and no specialised bodies had been 

reported in association with dendrites (6).   

A large amount of peptides is stored within the dendritic compartment.  In the 

case of VP, 95% of the VP content in VP-ergic neurones is contained within the 

dendrites (7,8), indicating that dendrites are important compartments for peptide 

storage and release.  High potassium depolarisation applied to the SON, which 

exclusively contains cell bodies and dendrites, for 10 -15 min released ~2.5% of 

oxytocin vesicles (1), and 30 min microdialysis in the SON of suckling rats released 

~10% of oxytocin vesicles from the somato-dendritic compartment (9,10).  Hence, a 

large amount of peptide vesicles in dendrites are not released.  Non-released vesicles 

age and will eventually be degraded. In hippocampal neurones, degradation was 

found to occur only in cell bodies.  Endocytosis had been shown to occur throughout 

the length of hippocampal dendrites but evidence of lysosomes were only found in 

cell bodies (11).  In contrast, evidence of lysosome staining had been seen in 

magnocellular dendrites (6).  There is also evidence of both endocytosis (12) and 

autophagy (13) in magnocellular dendrites, indicating that magnocellular dendrites 

are actively involved in membrane recycling and the disposal of aged/damaged 



  Appendix II – Hot spots for degradation in dendrites of magnocellular neurones 

xv 

organelles.  Moreover, since magnocellular dendrites act as a major storage 

compartment of peptide vesicles, they may also be important sites for degradation. 

Since special swellings/bodies for degradation were not found in 

magnocellular dendrites, the organisation of degradation sites in the dendritic 

compartment is not known.  Recently, a transgenic rat line was established where 

endogenous VP was tagged with eGFP fluorescent protein (VP-eGFP) (14) which 

enables visualisation of endogenous VP without prior staining.  Staining of 

lysosomes in brain sections containing VP-eGFP hence enabled correlation analysis 

of lysosomal localisations with endogenous VP.  The aims of this study were to 

investigate the physiological significance of lysosomes in magnocellular dendrites 

and the organisation of these degradation sites in magnocellular dendrites.   

 

Materials and Methods 

Indirect Immunofluorescence Labelling for Free-floating Sections 

Four adult male transgenic VP-eGFP rats (200 – 300 g), were anaesthetised with 

sodium pentobarbitone and transcardially perfused with heparin-containing saline 

and then 4% paraformaldehyde.   Rats were then decapitated and their brains 

removed and stored in post-fix solutions (15% sucrose w/v in 4% 

paraformaldehyde).  Sections were stored in cryoprotective solution (30% sucrose 

w/v in 0.1 M PB).  Immunofluorescence labelling was performed on cryostat cut 52 

µm sections containing the SON.  Briefly, sections were washed three times for 10 

min in 0.1 M PBS on an orbital rotation and then incubated in 50 mM NH4Cl for 10 

min.  Sections were washed again three times in 0.1 M PBS.  Non-specific antibody 
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binding was prevented by incubating brain sections in a blocking solution which 

contains 0.1 M PBS, 0.3% (v/v) Triton X100, and 10% (v/v) pre-immune goat serum 

for 30 min at room temperature.  The primary antibody used to label lysosomes is the 

mouse monoclonal IgG raised against lysosomal associated membrane protein 1 

(LAMP-1, LY1C6, Santa Cruz Biotechnology, Inc.).  Primary anti-LAMP1 antibody 

was added to the blocking solution at 1:50 dilution (4 µg/ml) and sections were 

incubated in the primary antibody cocktail at 4
o
C overnight.  Negative controls were 

carried out by replacing primary antibody incubation with pre-immune serum 

incubation.  The next day, the primary antibody was washed off three times in 0.1 M 

PBS for 10 min before incubation in secondary antibody solution containing 

AlexaFluor 568 (1:500 dilution, Invitrogen) made up in blocking solution at 4
o
C 

overnight.  Sections were washed three times 10 min and mounted onto gelatinised 

slides, air dried and embedded with mowiol (Calbiochem) mounting medium and 

coverslipped.  The mounting medium was left to cure overnight protected from light 

and sections were imaged once the medium was dry. 

 

Microscopic Image Acquisition 

The Zeiss LSM510 inverted microscope was used for all imaging.  The 488 nm line 

of the Argon laser was used to excite eGFP that has an excitation maximum of 488 

nm and an emission maximum of 509 nm.   A dichroic beam splitter, HFT 488, was 

in place and the excitation laser passed through two mirrors before the emitted light 

was collected by a band pass 500 – 550 filter.  The helium-neon 1 (HeNe1) laser line 

(excitation wavelength 543 nm) was used to excite the AlexaFluor 568 staining 
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(excitation maximum 578 nm, emission maximum 603 nm).  The photomultiplier 

tube (PMT) settings and laser powers were kept exactly the same for all samples.  

Images were acquired by sequential scanning to avoid bleed through of emitted light 

from either channel.  An x63 oil immersion objective (NA1.4) was used.  Images 

were acquired close to double Nyquist sampling rate to avoid under sampling 

(Nyquist calculator available at www.svi.nl).    3-dimensional images were obtained 

by scanning the x, y –planes at 60 nm, achieved by line scanning 1024 x 1024 pixels 

with an optical zoom of 2.4, and intervals of 170 nm along the z-axis.  8 bit pixel 

depth, line averaging of 1 (no averaging) and maximum scan speed were chosen for 

image acquisition to avoid photobleaching. 

 

Image Processing  

The acquired stack of images was deconvolved to remove aberrations caused by the 

intrinsic physical properties of the microscope.  Deconvolution of images was 

achieved by use of the Huygens Essential software (Scientific Volume Imaging, NL, 

www.svi.nl) available in the IMPACT imaging facility in our centre.  The Huygens 

deconvolution software restores convolution in images taken by removing blurring 

caused by diffraction of light and noise introduced by the microscope photomultiplier 

tube.  Image restoration is based on the iterative application of a maximum 

likelihood estimate algorithm where the point spread function – the smallest 

fluorescent single point object that can be resolved in 3 dimensions by the 

microscopic parameters used, is used to calculate and reassign out-of focus light 

signals to the point of origin (15).   
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The microscopic parameters used for deconvolution was set according to the 

parameters used for imaging: microscope type – confocal; numerical aperture – 1.4; 

lens immersion and medium refractive indices – 1.51 and 1.4; x and y sample sizes – 

60 nm; z sample size – 170 nm; excitation wavelengths – 488 nm, 543 nm; emission 

wavelength – 509 nm, 603 nm; excitation photon count – 1; pinhole = 1 Airy unit.  

These parameters help the deconvolution software to calculate a theoretical point 

spread function used.  A signal to noise ratio is used in the software to control the 

sharpness of the restoration result of the image and can be calculated as the square 

root of the brightest intensity in the image divided by the average intensity of a single 

photon hit caused by photon noise.  Generally, the lowest signal to noise ratio, 3, was 

employed, assuming a very noisy image, so that no background noise would be 

enhanced by deconvolution.  Because of the calculations involved in deconvolution, 

8 bit unsigned images were converted to 32 bit float images. 

 

Image Analysis 

Dendrites were imaged according to the protocol described above.  Images were 

selected where long profiles of dendrites with no overlapping could be seen clearly.  

Lysosomes were located by going through optical sections in the z direction to 

ensure that stained lysosomes analysed were not from presynaptic terminals but 

occurred within the dendrites.  Images were separated into the green (eGFP signal) 

and red (LAMP-1 staining) channels using ImageJ (http://rsb.info.nih.gov/ij/).  

Correlation analysis, but not colocalisation analysis, was carried out because lytic 

activity in the lysosome could change eGFP excitation and/or emission or simply 
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deform the eGFP fluorophore.  Emission of green fluorescent protein is also highly 

pH sensitive (16).  Hence, the low pH, pH 4.5, found in lysosomes will greatly 

reduce the fluorescent intensity of eGFP.   Moreover, correlation analysis will give 

an idea of whether lysosomes are located where there is a high density of vasopressin 

eGFP vesicles.  After all the areas of interest were obtained, the red channel was 

switched off and the original 32-bit image of the green channel was used for a 

“SUM” projection of the image where pixel intensities were summed up in each 

column of pixels in the z-stack using ImageJ to take into account the whole dendrite 

in 3 dimension.  The saved areas of interest were then superimposed onto the green 

channel Please refer to Figure 1 for a diagrammatic representation of the image 

analysis and an example of areas of interest drawn on a representative dendrite.  

To find out whether lysosomes are located in the centre of dendrites, the 

width of dendrites where lysosomes were situated was measured.  The midpoint of 

the dendrite was calculated and the locations of lysosomes were expressed as % 

displacement from midpoint. 

 

Statistics 

To compare whether lysosomal locations are preferentially situated where 

there is a high density of vasopressin-containing vesicles, the difference between the 

mean spots VP-eGFP fluorescent intensity and the whole dendrite VP-eGFP 

fluorescent intensity was obtained and compared using the Chi-square test (Sigma 

Stat) (all measurements are relative to whole dendrite VP-eGFP intensity).   
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The % displacement from midpoint was calculated for each lysosome 

measured.  Bins of 5% displacements were obtained to analyse where lysosomes 

were preferentially located throughout the width of dendrites. 

 

Results 

Correlation of lysosomal localisations with VP-eGFP intensity in 

magnocellular dendrites 

To compare whether lysosomal locations are preferentially situated where there is a 

high density of VP-containing vesicles, lysosomes were stained with the LAMP1 

antibody as described above.  LAMP1 is the lysosome associated membrane protein 

1 and a specific marker for lysosomes.  The signal intensity of eGFP endogenously 

tagged to VP was used as a measurement of VP vesicle density.  An area of 1 µm in 

diameter was drawn around each stained lysosomes.  Mean VP-eGFP intensity 

measurements (density/area) were calculated for each area (spot intensity).  Areas of 

interest were also made for whole dendrites and mean VP-eGFP intensity 

measurements recorded.  The difference between the mean spots VP-eGFP 

fluorescent intensity and the whole dendrite VP-eGFP fluorescent intensity was 

obtained and compared using the Chi-square test where positive intensity = location 

of lysosome correlated to high VP-eGFP density, zero = no difference and negative 

intensity = location of lysosome correlated to low VP-eGFP density (all 

measurements are relative to whole dendrite VP-eGFP intensity).  Figure 2 shows the 

Chi-square plot (mean spot intensity – mean whole dendrite intensity for each 
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dendrite measured).  Chi-square test showed that the spot intensities were 

significantly different from zero (p<0.001) suggesting a positive correlation of 

lysosome locations and areas with high VP vesicle density.  This indicates that 

lysosomes are either targeted to areas of high concentration of VP vesicles to be 

degraded.  Another possibility is that aged/spent vesicles aggregate preferentially 

around lysosomes.  However, this study cannot conclude which of these mechanisms 

was taking place. 

 

Localisation of lysosomes in magnocellular dendrites 

Staining of lysosomes showed that lysosomes are mostly localised in the centre of 

dendrites.  Figure 3 shows optical sections of representative lysosome staining in VP-

eGFP-expressing dendrites.  Figure 3A and B show that lysosomes are located in the 

centre of dendrites.  However, lysosomes are not exclusively localised in the centre, 

as depicted in Figure 3C.  % displacement from the midpoint of dendrites was 

calculated for each lysosome measured and these measurements were grouped into 

bins of 5% (Figure 3D).  The positive skewness of this graph represents that most 

lysosomes were located near the centre of dendrites.  Moreover, normality test 

showed that lysosomes were not normally distributed throughout the dendrite 

(p<0.001).  The preferential localisation of lysosomes in the centre of dendrites also 

agree with a previous study showing that aged, non-released dense core vesicles are 

preferentially located at the centre of the cell (17), indicating that degradation of 

spent vesicles occur in the centre of the dendrites.  Meanwhile, clustering of 
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lysosomes in one specific segment of the dendrite was not seen (Figure 3A-C), 

indicating that dendrites do not contain specialised compartments for degradation. 

 

Discussion 

The Herring bodies in magnocellular terminals are filled with lysosomes and 

are the final destination for aged vesicles (4) providing a local capacity for 

degradation where aged vesicles do not need to be transported back to the cell body.   

It was not known whether dendrites, like neuhypophyseal terminals contain 

specialised compartments for degradation.  Magnocellular dendrites have been 

shown to contain lysosomes (6), however, their functional significance in dendrites 

was not known.  In hippocampal neurones, lysosomes were found only in cell bodies 

and very proximal segments of dendrites, and endocytosed materials were found to 

be retrogradely transported to cell bodies, where lysosomes were found (11).  This 

study indicated that local degradation occurs in the dendritic compartment of 

magnocellular neurones.  Since magnocellular dendrites contain a large reserve of 

vesicles, it is possible that “centres” for degradation occur in the dendritic 

compartment.  In the present study, it was found that instead of clustering of 

lysosomes found in one special part of the dendrite, lysosomes were found to be 

located at areas where there was high density of vasopressin vesicles.  These hot 

spots for degradation were found throughout the dendrites.  Since magnocellular 

dendrites were not found to contain accumulations of lysosome clusters, it is unlikely 

that dendrites are the destination of all aged and non-released vesicles.  However, 

lysosomes were found where vasopressin-eGFP vesicles cluster suggesting that non-
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released vesicles gather as a pool around these lysosomes or lysosomes were 

preferentially transported to these non-released pools of vesicles.  Dendritic 

lysosomal content is known to be variable where the number of lysosomes increases 

during high cellular activity, e.g. dehydration, and decreases during low activity, e.g. 

rehydration  (6).  Similarly, in axon terminals, lysosomes-containing Herring bodies 

were found to be abolished during rehydration (4) suggesting that Herring bodies are 

plastic structures that disappeared when old vesicles were spent and newly 

synthesised vesicles do not enter the lysosomal pathway.  Hence, it is likely that 

lysosomes are targeted to loci where there is a high demand for degradation; i.e. 

where pools of non-released secretory vesicles reside.  In the magnocellular neuronal 

terminal, the smooth endoplasmic reticulum (SER) was found to contribute to the 

formation of lysosomes (18).  Elements of the rough endoplasmic reticulum (RER) 

had been shown in magnocellular dendrites (19), however, elements of the SER had 

not been studied.  Hence, there could be two ways in which lysosomes are targeted to 

dendrites: 1) translocation from the soma to sites of aged, non-released vesicle pools 

in dendrites; and/or 2) local synthesis of lysosomes in dendrites.  However, the 

capability of dendrites to synthesise lysosomes require further studies.  Nevertheless, 

there is evidence of transport of lysosomes between the soma and dendrites of 

magnocellular neurones (20,21). 

 In many different cell types, lysosomal degradation is a plastic process which 

increases in activity according to the demand of the cell.  Early studies in rat anterior 

pituitary cells showed that lysosomes have important functions in the regulation of 

prolactin secretion (22).  When suckling pups were separated from lactating mothers, 

production of prolactin continued until there was an increase in the number of 
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lysosomes and lysosomal enzyme activity.  In secretion deficient β-pancreatic islet 

cells, increased autophagic activity was shown to control hormone content in the 

cells under stimulation for insulin production (23).  Crinophagy and autophagy both 

occur in this cell type.  Crinophagy is the process where β-granules fuse with a pre-

existing lysosome-related body, and autophagy is where β-granules form 

autophagosomes, a pre-lysosomal body, which subsequently forms the lysosome 

either through maturation and acquisition of lysosomal proteins or by fusion to pre-

existing mature lysosomes (24).  There is no evidence of crinophagy in 

magnocellular neurones.  Intracellular degradation is believed to be via autophagy 

and aged/spent organelles, including unreleased peptides, form autophagosomes 

before being degraded by mature lysosomes (13). Previous studies where truncated 

VP peptides were expressed showed an increase in the number of lysosomes in 

magnocellular neurones (13) and this increase in lysosomal activity was found to be 

important in the survival of these neurones (25), indicating that autophagy has a role 

in regulating the content of peptides in magnocellular neurones as well as having 

pro-survival effects. The results from the present study suggest that autophagy is an 

important mechanism for regulation of intracellular peptide content in magnocellular 

dendrites where evidence of lysosomes were found to be preferentially situated at 

areas of high VP-vesicle density.  It should be noted that not every lysosome stained 

was correlated to high VP-eGFP density.  The magnocellular VP neurone produces 

and releases other neuroactive substances in addition to VP (26-29).  Hence, 

lysosomes can also be situated where there is a segregation of other neuropeptides 

than VP in the dendrite. 
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In the present study, it was also found that lysosomes are located in the centre 

of dendrites (Figure 3).  In bovine adrenal chromaffin cells (17,30) and PC12 (31) 

cells newly synthesised vesicles are preferentially targeted to the cell membrane and 

aged vesicles reside in the centre of the cell.  Since aged vesicles were shown to be 

associated with lysosomal degradation (4), this suggests that aged, non-released 

vesicles reside in the centre of dendrites allowing newly synthesised vesicles to be 

primed close to the plasma membrane in accordance with the findings in bovine 

adrenal chromaffin cells.  However, as discussed so far, whether aged, non-released 

vesicles actively aggregate to lysosomal localisations, or whether lysosomes are 

targeted to areas of high density of aged organelles is unknown.  Figure 3C and D 

shows that lysosomes are not exclusively located at the centre of the dendrite, 

indicating lysosomes have other roles in addition to degradation of aged, unreleased 

peptide vesicles.  A dehydration protocol, using different time periods of 

dehydration, can be employed to increase exocytosis and hence, membrane retrieval 

from endocytosis.  Labelling endocytosed membranes or membrane cargoes with 

extracellular markers will enable localisation of endocytosed materials.  Hence, it 

will be possible to identify whether more lysosomes and endosomes were targeted to 

dendrites after prolonged dehydration and whether these lysosomes are colocalised 

with endocytosed markers, indicating that lysosomes may be targeted to areas of high 

density of organelles to be degraded or recycled. 
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Figure 1. Measurement of VP-eGFP intensity relative to locations of LAMP1 

immunofluorescence. (A) Schematic diagram of VP-eGFP intensity measurement. 

Red circles in the top panel = LAMP1 labelling of lysosomes; green circles in bottom 

panel = VP-eGFP. Masks of 1 µm diameter (bold circles) were drawn on images with 

the green VP-eGFP channel switched off to identify locations of LAMP1 labelling. 

These masks were then imported onto the green channel of the same image and the 

intensity of VP-eGFP at these locations was measured as spots (mean intensity/area). 

The whole dendrite in 3-dimension was taken into account by taking a sum of the 

image stack. The intensity of the whole dendrite was then measured for comparison 

(B) Determination of areas of interest as discussed above; one optical section is 

shown. (C) 3-D image stack converted to 2-D by the sum slices function in ImageJ 

where the sum of the pixels from the stack of images were displayed from 32-bit 

optical slices. Areas of interest described in (A) were then imported onto this image 

to measure VP-eGFP intensiy. (D) VP-eGFP intensity of the whole dendrite was then 

obtained by measuring sum slices image of the whole dendrite. Scale bar = 3 µm. 

 

Figure 2.  Correlation of LAMP1 labelling with VP-eGFP intensity in the dendrite.  

Full circles represent mean spot intensity – mean dendrite intensity for dendrites 

measured.  Filled box represent the mean of all the data points (error bar = ±SEM).  

Chi-squared test showed that there is a significant difference between the mean 

intensity of spots and the mean intensity of whole dendrites (p<0.001; n = 26).  This 

suggests that lysosomes were predominantly located in areas with high density of 

vasopressin vesicles.  

 

Figure 3.  A-C) LAMP1 immunofluorescence labelling (red) in VP-eGFP dendrite.  

Scale bar = 5 µm.  D) Localisations of lysosomes in dendrites measured as % 

displacement.  391 lysosomes were measured in 18 dendrites.  A and B) 

Representative images of lysosome localisation in the centre of dendrites (arrows).  

C) Lysosomes are not exclusively located in the centre of dendrites.  D) % 

displacement of lysosome localisations from the midpoint of dendrites grouped in 

5% bins.  Normality test showed that lysosomes are not normally distributed 

throughout the width of dendrites (p<0.001).  The positive skew indicates that 

lysosomes are preferentially located near the midpoint of dendrites.   
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