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Abstract

One of the important early applications of Quantum Mechanics was to explain the

Van-der-Waal’s 1/R6 potential that is observed experimentally between two neutral

species, such as noble gas atoms, in terms of correlated uncertainty between interacting

dipoles, an effect that does not occur in the classical limit [London-Eisenschitz,1930].

When many-body correlations and higher-multipole interactions are taken into account

they yield additional many-body and higher-multipole dispersion terms.

Dispersion energies are closely related to electrostatic interactions and polarisation

[Hirschfelder-Curtiss-Bird,1954]. Hydrogen bonding, the dominant force in water, is an

example of an electrostatic effect, which is also strongly modified by polarisation effects.

The behaviour of ions is also strongly influenced by polarisation. Where hydrogen

bonding is disrupted, dispersion tends to act as a more constant cohesive force. It

is the only attractive force that exists between hydrophobes, for example. Thus all

three are important for understanding the detailed behaviour of water, and effects

that happen in water, such as the solvation of ions, hydrophobic de-wetting, and thus

biological nano-structures.

Current molecular simulation methods rarely go beyond pair-wise potentials, and

so lose the rich detail of many-body polarisation and dispersion that would permit

a force field to be transferable between different environments. Empirical force-fields

fitted in the gas phase, which is dominated by two-body interactions, generally do not

perform well in the condensed (many-body) phases. The leading omitted dispersion

term is the Axilrod-Teller-Muto 3-body potential, which does not feature in standard

biophysical force-fields. Polarization is also usually ommitted, but it is sometimes

included in next-generation force-fields following seminal work by Cochran [1971]. In

practice, many-body forces are approximated using two-body potentials fitted to reflect

bulk behaviour, but these are not transferable because they do not reproduce detailed

behaviour well, resulting in spurious results near inhomogeneities, such as solvated

hydrophobes and ions, surfaces and interfaces.

The Quantum Drude Oscillator model (QDO) unifies many-body, multipole

polarisation and dispersion, intrinsically treating them on an equal footing, potentially
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leading to simpler, more accurate, and more transferable force fields when it is applied

in molecular simulations. The Drude Oscillator is simply a model atom wherein a

single pseudoelectron is bound harmonically to a single pseudonucleus, that interacts

via damped coulomb interactions [Drude,1900].

Path Integral [Feynman-Hibbs,1965] Molecular Dynamics (PIMD) can, in principle,

provide an exact treatment for moving molecules at finite temperature on the Born-

Oppenheimer surface due to their pseudo-electrons. PIMD can be applied to large

systems, as it scales like N log(N), with multiplicative prefactor P that can be

effectively parallelized away on modern supercomputers. There are other ways to

treat dispersion, but all are computationally intensive and cannot be applied to large

systems. These include, for example, Density Functional Theory provides an existence

proof that a functional exists to include dispersion, but we dont know the functional.

We outline the existing methods, and then present new density matrices to improve

the discretisation of the path integral.

Diffusion Monte Carlo (DMC), first proposed by Fermi, allows the fast computation

of high-accuracy energies for static nuclear configurations, making it a useful method for

model development, such as fitting repulsion potentials, but there is no straightforward

way to generate forces. We derived new methods and trial wavefunctions for DMC,

allowing the computation of energies for much larger systems to high accuracy.

A Quantum Drude model of Xenon, fit in the gas-phase, was simulated in the

condensed-phase using both DMC and PIMD. The new DMC methods allowed for

calculation of the bulk modulus and lattice constant of FCC-solid Xenon. Both were

in excellent agreement with experiment even though this model was fitted in the gas-

phase, demonstrating the power of Quantum Drudes to build transferable models by

capturing many-body effects. We also used the Xenon model to test the new PIMD

methods.

Finally, we present the outline of a new QDO model of water, including QDO

parameters fitted to the polarisabilities and dispersion coefficients of water.
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Chapter 1

Introduction

Biology at the molecular level is a world of nano-machines and nano-structures,

including such wonders as kinesin the walking molecule [Asb05], the flagellum [JA91]

and ATP-synthase rotary motors [SLW99], the myosin ratchet motor [CEO92]; bi-

layer membranes, liposomes, vesicles, gates, ion-pumps and organelles; DNA, RNAs,

and the associated proteins that open, copy, cut, repair and otherwise operate on

Molecular Machine: ‘feet’ of the

kinesin walking motor (3KIN.pdb)

the encoded information; ribosomes and chaper-

onins that assemble new machines; proteases and

lysosomes that recycle old ones [Goo09, TT99].

All of these are built out of organic molecules

(plus a handful of other atom types), but the

mechanisms of molecular biology involve much

more than just organic chemistry. For example,

when amino acids are joined into proteins by

chemical reactions, that is only the first step in a multi-level process of folding into

its secondary and tertiary (and even quaternary) structure [BT91]. Folding mostly

proceeds with no reactions [BT91]. Likewise the chemical reaction of ATP with a

molecular machine introduces internal tensions to the machine, but understanding how

it changes shape, or does work against the environment, requires additional physics

[SD10].

To grasp deeply the mechanisms of biology at the molecular level, we need

accurate working models of the systems of interest. Simple macroscale models, using

measurable bulk/continuum properties of materials, are often not applicable to the

nanoscale/molecular level, where the relevant physics can be different. For example,

inertia is negligible for molecular machines trying to move through water (very low

Reynolds number) [Goo04]. Since many biological processes are more efficient than

1



Chapter 1. Introduction

human technology [HB05], it makes sense for us to learn from these systems about

the physics they use [Goo04, Vin09]. In structural molecular biology, it is a priori

difficult to predict either structure or the physics of function, from simple inputs such

as sequence or atomic coordinates, respectively [BT91, ch. 16]. Without detailed insight

into their physics, many biomolecular structures would remain black boxes, and thus

our biological design methods would be limited to trial-and-error, similar to the effects

of Darwinian processes [BBL08, GEFS10, PISW49, BNR67, KSS+96].

Modern drug-discovery methods are focussed on screening for ligands [ES90,

AAA+10, SD03], and/or rationally designing them [BBL+95, BGBS05, Tia10], so as

to bind and interfere with a particular target, but they often also have unpleasant

side-effects when they accidentally target other molecules [MW05]. Also, if they act

without taking heed of the design or normal operation of the system, for instance

crudely switching a particular target completely on/off, they can be vulnerable to, or

even cause, secondary problems [MW05]. The former problem suggests that creating

specificity in biomolecular engineering is not just about learning how to strengthen

a particular interaction or binding, but also understanding the principles by which

unwanted interactions can be suppressed; as the number of desired interactions is

usually a small subset of all possible interactions, the latter is perhaps even more

important [BGBS05]. For example, the behaviour of the familiar globular proteins is

strongly atypical of the behaviour of long polypeptide chains in general [Axe04]; the

‘natural’ behaviour of proteins, if they are significantly mutated without selection, or

physically misshapen by heat, is to unfold and stick to other proteins in a mesh of

fibrils [MD00, SD03], as in a fried egg. Only after suppressing this ‘natural’, generic

behaviour of proteins do they become the globular and free-floating modules that can

be programmed with highly specific tasks.

Getting out of the ‘black-box’ regime into real engineering, to be able to rationally

design new systems, or augment existing ones, requires models; we need to understand

in detail what the molecules are doing in the same way an engineer not only understands

a bridge or aircraft by modelling its parts (mechanical engineering → biomolecular

engineering), but also ensures that they work together to form a functional whole

(systems engineering → systems biology).

If chemistry (reactions) provide the rivets that form permanent bonds between

parts, and the energy to do work, it is remarkable just how much of the structure

is self-assembled by physical forces. Many parts fall into place with a minimum of

manipulation, according to preprogrammed patterns of chemical complementarity and
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hydrophobicity [Goo09].

Examples of complementarity are the attraction between oppositely charged ions,

or between oppositely polarised groups, which includes the especially strong hydrogen-

bond [AdP02]. Most of the secondary structure of proteins is due to hydrogen-bonding

(plus the occasional sulphur-sulphur covalent-bond ‘rivet’ [BT91]).

Hydrophobicity is caused by the lack of and thus disruption of charged and polar

interactions, especially the disruption of hydrogen bonding in water. Because water

molecules are particularly good at forming hydrogen bonds, water tends to segregate

itself from large hydrophobic masses, causing them to ‘de-wet’ and subsequently form

Helicase bound to double-stranded

RNA fragment (3LRN.pdb)

membranes (in the case of lipids) or fold into

globular shapes (in the case of proteins) [LCW99,

ZHMB04, BWZ09, AdP02]. Hydrophobicity is

an extremely important feature of the design of

biological nanostructures; if the stability of these

structures were dominated by strong bonds buried

deep inside them, that would be fine for its

functional lifetime, but would make it very difficult

to disassemble, recycle or digest [TG02]. Proteins, for example, are able to fold and

unfold in response to small changes in pH. Lipid membranes are essentially fluid and

can be shaped, joined and pinched-off by the cell[Goo09, TT99].

The effects of complementary and hydrophobic attractions are strongly mediated

by the shape of the molecules involved. If two molecules fit together as ‘lock and key’ or

lego bricks, then the the attractive forces between their different parts can have a greater

combined effect [Goo09, TT99]. In this way biological molecules can be programmed to

bind with a very specific set of other molecules. Also shape can cause interesting things

to happen by ‘induced fit’ [TT99]. This means one or both of the molecules changes

shape in response to other, as a hand reshapes a glove when it enters. The deformation

can be used to create a stress that results in a reaction of a substrate, or to change the

shape of an enzyme so that another active site is activated or inactivated. The shape

and squishiness of a molecule is described by its intermolecular repulsion potential. The

balance of long-range attractions and short-range repulsion allows stable structures to

be formed, that is, minima in the energy surface.
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Chapter 1. Introduction

1.1 Computer Simulation of Condensed Matter on the

Born-Oppenheimer Surface

Computer simulations of condensed matter provide an important bridge between

analytical theory and experiment, the other two pillars of modern science1. Simulation

allows us to ‘see’ what is going on at a microscopic level via a model[FS96]. Simulation

can for example elucidate the microscopic origins of effects seen by experiment, and thus

help in developing an analytical explanation for them, or in other cases simulation can

demonstrate that a particular microscopic theory has implications that do not agree

with experiment. It also allows us to explore ‘alternate realities’ (for example what

would happen if certain kinds of forces did not exist), and other ‘unphysical’ tactics to

gain detailed insight into the mechanisms of the real world [ZHMB04]. It also gave us

new insight into the laws of nature as algorithms [FS96]. In practice, we cannot put

precise fundamental physics into simulations. Instead we have to construct simplified

model systems, and then test them to destruction to make sure that they reproduce

all the most relevant phenomena of the real system they represent, with a minimum of

ad-hoc or post-hoc corrections.

For the intermolecular effects mentioned above, there are no low-lying electronic

excited states and therefore no ‘surface-hopping’ [TP71, PT05]; all can be treated

E0

E1
 ∆E

B.O. limit if kT ≪ ∆E

within the Born-Oppenheimer approximation

[BO27]. The Born-Oppenheimer surface is the

ground state electronic energy solved as a function

of the instantaneous nuclear configuration, upon

which the nuclei move (We are not interested in

excited state BO surfaces here). If the nuclei

are treated classically, then they move under the

influence of forces derived from said surface, using

Newton’s equation of motion F = ma. This is a very good approximation at room

temperature, particularly if one is interested in physical as opposed to chemical

processes.

Exact solution of the ground state Born-Oppenheimer surface is often not possible,

analytically or numerically, for the large complex systems of interest, so approximations

are required to model the BO surface accurately. We would like a method that is not as

complicated as solving the full electronic structure calculation (which is prohibitively

1http://www.wtec.org/sbes/SBES-GlobalFinalReport.pdf
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1.2. Deconstructing the Born-Oppenheimer Energy Surface

computationally intensive), but that captures the most important forces, and at a

computational cost that scales linearly with atom number so that large-scale and long-

time simulations can be performed.

1.2 Deconstructing the Born-Oppenheimer

Energy Surface

Consider two molecules far apart. The Born-Oppenheimer energy and electron-density

of two isolated molecules is a natural reference, which we then perturb to gain

insight into how they interact. At long range, the forces between the molecules are

predominantly caused by the elecrostatic force, modified by the electronic response

of a molecule to the electrostatic interactions [HCB54, Buc67, BU70, Sto96]. This

includes interactions between multipoles (a bare charge is the 0th-multipole), but also

polarisation, and dispersion, which arise from the flexibility of the charge distribution

in a molecule as a stable, unreactive, typically closed-shell moietie, as we now discuss

in detail below.

To a first approximation a molecule can be treated as a static charge distribution,

which interacts with other molecules via electrostatic forces. This can be modelled by

a multipole-expansion, or by a distributed set of point charges (see for instances the

classic works of Hirschfelder-Curtiss-Bird [HCB54] and Stone [Sto96]).

Also, the charge distribution within a molecule can be ‘stretched’/perturbed out

of its equilibrium distribution, under the influence of Coulomb forces external to the

molecule, which is polarisation [Buc67]. The shifted charge distribution of a molecule

changes the pattern of Coulomb forces which it exerts on other molecules, leading to

polarisation effects that can propagate over many molecules; polarisation is a many-

body phenomenon[DO58, Coc71, Buc67, BU70].

Even where there are no external Coulomb forces or permanent charges or polar

molecules to cause polarisation in a collection of molecules, there are electronic

dispersion forces [HCB54]. From here-on-in, we will refer to electronic dispersion

simply as ‘dispersion’. Dispersion is the dominant type of force between non-polar

molecules and molecular residues, including noble gases (especially heavy atoms) and

hydrocarbons (especially benzene-like groups, alkenes and alkanes) [AdP02]. As such

it is crucial for understanding hydrophobicicity. Dispersion is sometimes described

as being due to instantaneous fluctuations, but this is misleading; the mean (or
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Chapter 1. Introduction

measurable) charge distribution shows no change over time [HCB54]. It is more correct

to think of it as a purely quantum- mechanical coupling/correlation of the uncertainty

of the charge distribution between molecules, caused by Coulomb interactions. The

couplings occur because quantum uncertainty applies to the system as a whole; not

just individual molecules or even pairs. The dominant terms are those between pairs

of molecules, starting with the familiar −C6/r
6 potential, which can be corrected by

−C8/r
8 and −C10/r

10 terms, and then terms that involve triplets of molecules, such

as the Axelrod-Teller-Muto C9/(r
3)3 potential [HCB54, Fon61, Sto96, AT43]. And so

on. Note, for non-spherical molecules, dispersion will of course be at least somewhat

anisotropic [Buc67, Sto96].

pentane

isopentane

neopentane

All molecules experience dispersion attractions, in-

cluding both hydrophiles and hydrophobes [Sto96]. For

hydrophobes, many-body dispersion is the dominant

kind of attraction [AdP02]. For example disper-

sion accounts for the differences in boiling tem-

perature between pentane, isopentane and neopen-

tane, three hydrophobic molecules having the same

weight. For hydrophils, multipolar interactions and

many-body polarization are dominant but dispersion

still accounts for a reasonable fraction of the en-

ergy. Dispersion tends to be much less direc-

tional, however. Therefore to understand comple-

mentarity and hydrophobicity requires a model that

treats charge interactions, polarisation and disper-

sion well, and one that goes beyond simple pair-

wise interactions. Here, we consider systems in

which modeling charge transfer [RI91] (on the BO

surface) is not important and point the reader

to interesting recent work [NM09, CM09] on the

topic.

Consider the two molecules again. As they are moved together, the asymptotic long-

range behaviour breaks down, and the electronic structure of the isolated molecules

becomes a less reliable reference [SO96]. The repulsive interactions between molecules

arise from increased nuclear repulsion, Pauli exclusion and in general complex changes

in electronic structure. It has been found that repulsion can be decomposed, to a good

approximation, into pairwise terms centered on the atoms of the molecules [Sto96].
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Advanced modelling often uses non-isotropic repulsion, for example there is Madden’s

seminal work on ionic solids and liquids [MPL+01, AM03b], which follows work by

Stone and others [SP88, Sto96]. As described above, accurate repulsion is important

as it is crucial to correctly define the size, shape and ‘squishiness’ of a molecule, and

therefore the stable energetic minima of its interactions with other molecules.

1.3 Current Force Fields, and

Limits on their Predictions

Most current biomolecular simulation methods use relatively simple two-body poten-

tials that capture repulsion and two-body dispersion fairly well [PC03]. They are often

also fitted to incorporate environmental effects in a ‘mean-field’ approach. The standard

approach, the Lennard-Jones potential [LJ24], simply uses isotropic repulsion of the

form r−12 and a dispersion attraction of the form r−6 with fixed coefficients, plus a fixed

charge Coulomb interaction; for example the force-fields used by CHARMM, AMBER,

GROMOS, [BBO+83, CCB+95, SHT+99] for which this is the main approach, as was

the classic work of Stillinger and Rahman on liquid water. This mean-field method

works well for state points around which the parmeters were fit especially for a one-

component system in bulk, without interfaces and other heterogeneities, or wherever

else polarisation and other many-body effects can be treated as small perturbations to

a mean-field model.

Explicit polarisation and many-body dispersion are usually omitted from standard

simulations [PC03], mainly because they are costly in terms of man-hours and

computer-hours to implement properly. Polarisation requires a model to describe a

complex and mobile charge distribution in a compact way. This means including

an expansion of variable multipoles in the description of a molecule, as well as

correctly parameterising and calculating the many interactions between different terms

on different molecules. Many-body terms, including both polarisation and dispersion

terms, are complicated even just to write down, and utilising explicit n-body terms

can increase computation costs from at most N2 to Nn (where N is the number

of interacting particles). Multipolar polarization can be reduced to an iterative N2

method and implemented with N logN scaling, but many-body dispersion cannot be

properly decomposed like this without approximations. However, there are some cases

where polarisation and many-body dispersion become very significant, and change the

behaviour of a system profoundly.
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For example, the dipole-moment of water is roughly 1.85D in the gas phase,

where each molecule is relatively isolated most of the time. However in condensed

environments each molecule makes hydrogen bonds with other molecules resulting in

strong polarisation effects. These polarisation effects propagate to other hydrogen

bonds, leading to a total dipole-moment of roughly 2.6-3D [BF33, SR74, CIKP03,

BXJ98] for water in such environments. The standard method for getting around this,

is to use different models for water; one with a small dipole-moment, for the gas phase,

and another with a large dipole-moment, for the condensed phase. This works pretty

well for reproducing many of the properties of liquid, solid and gas phase water, but not

all. The triple point of water has remained elusive, for example. Such mean-field models

are also unable to respond to diverse environments where there is an intermediate

amount of polarisation, such as at low density, near surfaces and hydrophobic masses,

or even near other charged or polarisable groups, where the average dipole-moment

would be different. As such, these models are not transferable.

Polarisation also influences the behaviour of ions in water, including the coordi-

nation number (the number of water molecules in the innermost shell of neighbours)

[SKW90]. It also determines an ion’s preference for the bulk or surface [HPDS05,

KLF+00].

An example of the importance of dispersion is the condensed-phase noble gases,

for which experiments show that the condensed phase occupies a volume several

percent larger than that predicted from the gas-phase two-body potential in simulation

[MW70], due to many-body dispersion. This prompted the use of different models,

one for gas-phase and another for the condensed phase, fitted to reproduce the total

binding energy and the lattice constant. However, these condensed-phase models had

other deficiencies. Barron and Domb [BD55] noticed that two-body dispersion alone

predicts an HCP structure for heavy noble-gas atoms in the solid state, in contrast

to the experimentally observed preference for FCC. This difference was attributed

to non-central (that is, many-body, non-two-body) forces, showing that the many-

body quality is somehow just as important as the magnitude of the correction. The

models also predicted incorrect elastic properties, showing that many-body dispersion

is also important for those as well, and cannot be reduced to effective two-body

potentials. The surface tension is also inaccurate when many-body dispersion is omitted

[LBP74, Bar93]. Because the underlying physics of many-body dispersion is ubiquitous,

the same effects could influence many other cases, although it would be most marked

in non-polar/hydrophobic contexts, where no other forces are significant.
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In all these cases, the reason those non-trivial corrections are required, is that

important physics is missing. But that physics is also likely to shape the detailed

behaviour of the system, making it is difficult to determine whether the detailed

behaviour is correct. When a mean-field model encounters a situation which is

significantly different from the one in which it is fitted, we can expect that will need to

be parameterised, and that many not be easy; we are forced either to investigate each

detailed context empirically, or reintroduce the omitted physics. This is very relevant

to biological systems, where varied contexts are the norm. This includes intermediate

densities of fluids, and various anisotropic contexts such as interfaces.

Many important problems in molecular biology involve mixtures of hydrophilic and

hydrophobic molecules, and an interplay of polarisation and dispersion interactions.

In such cases, it is often very difficult to predict or explain the detailed behaviour,

as found with methanol-water mixtures [DCP+02]. One such important area which

combines the need for accurate polarisation and dispersion in a strongly heterogeneous

environment, is the complicated balance involved in hydrophobic de-wetting [LCW99].

Hydrophobic de-wetting is probably the most important factor in the folding and

aggregation of proteins, and in the formation of micelles and membranes, so it is

absolutely essential for biological situations that we can understand it and model it

Haemoglobin folds, with

2 Haem groups (3EOK.pdb)

fairly accurately. Small hydrophobic molecules

can happily coexist with the hydrogen-bond net-

work that exists in water, but large hydrophobic

molecules and large aggregates of hydrophobes

tend to disrupt that network, leaving dangling

OH-groups. This creates a free-energy cost for

water molecules in contact with the hydrophobes,

leading to drying/de-wetting [BWZ09]. De-

wetting is determined by the fine balance between

the surface tension in water, which is due to strong but directional hydrogen-bonding,

which tends to pull water out of hydrophobic regions into regions where it can form more

hydrogen bonds, the Van-Der-Waals forces for which the dominant terms are always

attractive, and other interactions which tend to disrupt and slow the de-wetting process

[BWZ09, ZHMB04]. The surface tension is modified by the degree of polarisation of

the water molecule, and the detail of the Van-der-Waals forces will require many-body

interactions and polarisation modifications. The problem of de-wetting really calls for

a unified treatment of all these forces.
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1.4 Advanced Force Fields

There exist a variety of approaches for including many-body polarisation and/or

dispersion [SD76]. One method is to use classical point dipole oscillators, a model which

captures many-body polarisation in the dipole limit, but not many-body dispersion,

or many-body multipole polarisation (that is, no quadrupolar- octopolar-, or higher-,

polarisation). These models have had great success in explaining water, as dipole-

polarisation generates much of the observed adjustment to the dipole-moment in

condensed water [SK88], as well as charge-screening, and determines the behaviour

of ions in water [SKW90]. They also have had great success treating liquid ammonia

[DMK94].

Advanced (post mean field) force field development began with Dick and Overhauser

which was quickly follwed by Cochran’s seminal work [DO58, Coc71]. Both used a

spherical shell model for polarisable atoms, with a rigid shell of charge representing

outer electrons, harmonically attached to an oppositely charged core, representing

the nucleus and remaining electrons. This has the advantage that the spherically

distributed charge prevents singularities in the interaction with other nuclei, and the

overlap density prescribed a method of estimating the exchange interaction.

Recently, Lamoureux-Mackerell-Roux [LADMR03] have discovered that the gas

phase dipole-polarisability of water is too large to explain condensed phase behaviour.

They suggested that possibly the real electronic distribution is spatially constrained by

the neighbouring molecules, restricting its polarisability; an effect which a point-dipole

polarisability does not capture. A similar effect is discovered by Jungwirth and Tobias

for the polarisability of Cl− ions in an aqueous environment [JT02].

Batista, Xantheas, and Jónsson added more point-multipole polarisabilities to study

some phases of ice. They found that quadrupole polarisability is also important

[BXJ98] It has been shown that that quadrupole polarisations are necessary to properly

understand the behaviour of the Silver (Ag) atom in condensed phase [WCCM96]. Thus

it would be useful to have a general method that incorporates quadrupole and higher

polarisation should they arise.

Important studies have been undertaken in which some of the 3-body terms are

incorporated explicitly. Normally this would be limited to the Axilrod-Teller-Muto

term [AT43]), a term involving triplets of fluctuating dipoles. However, not only is that

term complicated, it is only the first term in an ever more complicated series of 3-body
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and 4-body terms. Even two-body dispersion involves non-trivial terms beyond C10.

Some of the three-body terms have been calculated by Bell and implemented by Doran-

Zucker [Bel70, DZ71], who showed that they help to explain the HCP/FCC anomaly

in crystalline noble-gas condensates, but these are terms in an asymmpotic series

that require non-trivial damping functions. Given the above discussion, many-body

polarisation and dispersion are quite important to describe heterogeneous environments

of interest today. Therefore, it is important to develop an accurate model along with

methods to solve it that are computationally inexpensive.

1.5 The Quantum Drude Model as a potential High-

accuracy Force-field

The Quantum Drude Oscillator is a model atom in which a pseudo-electron is

bound to its pseudo-nucleus by a harmonic potential [HCB54, WM06]. A Quantum

Drude interacts with other Quantum Drudes and other charged particles via Coulomb

potentials, in a similar way to electrons in closed shells. As it is quantum, it is not a

nucleus

Drude electron 

distribution

Quantum Drude atom

point particle, but has a spatial distribution

of charge which can be shifted and thus

polarised to all orders (dipole, quadrupole,

and so on). Correlated quantum uncertainty

produces dispersion effects between Quantum

Drude atoms [EL30]. Since Drude electrons are

distinguishable particles, exchange is neglected (a

good approximation at long range) which allows

for order N solutions as there is no Fermi-sign problem.

As such, the QDO model provides an excellent framework for modelling the

intermolecular long- and intermediate-range interactions relevant to biomolecules.

Electostatics, polarisation and dispersion, are addressed in a unified way that reflects

the underlying force that cause all three kinds of interactions, and leads to simplified,

unified, much more general models than currently exist.

Drude Oscillators were first used to explain the refraction of light, as a classical

model [Dru00], and then in a quantum model with only minor changes [HCB54, pg.881],

and also as a simple model for calculating pairwise London/van-der-Waals dispersion

[HCB54, pg.956] [BK57]. Cao and Berne [CB92a] used a dipole-limit Quantum-Drude
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model to study many-body dispersion and polarisation in rare-gas clusters, and showed

that dispersion expands the volume of such clusters slightly.

Quantum Drude Oscillators approximate the behaviour of real atoms quite well, as

we will show later (sec. 4.3). Therefore, we propose to use them to build models of

those atoms. For this purpose, QDOs have 3 major advantages.

First, by explicitly keeping some of the quantum mechanical nature of the electronic

structure, which allows many-body dispersion and polarisation to be treated on an equal

footing, the Quantum Drude model simplifies the actual model building considerably.

One need only fit the properties of individual species from polarity, polarisation and

dispersion measurements in the gas phase, yet expect interactions between mixed

species to be broadly accurate, without having to fit parameters for every possible

interacting pair of species. One can expect to obtain not just the usual electrostatic

interactions, but also accurate Van-der-Waals forces which come ‘for free’ (they do

not need to be added explicitly). One can also expect the induced polarisations to be

correctly modified by the surrounding environment without any further effort.

Second, one samples polarisation/dispersion accurately to all orders of many-body

multi-polar interactions, that were previously difficult and computationally expensive

to compute.

Third, short range repulsions can be treated as empirical two-body atom-centered

terms, in a way that is consistent with the current state of the art.

1.6 Simulation of QDO’s via DMC and PIMD

Diffusion Monte Carlo (DMC) [GS71, And75, KW86, HJR94, Cep95, UNR93] provides

a means of quickly generating numerically exact energies for static configurations of QD

nuclei and charges, which is useful for example when fitting parameters at the model-

building stage. DMC represents the wavefunction by a set of walkers that evolve such

that they sample the ground state wavefunction or the ground state wavefunction times

a trial function. As such, it does not sample the true probability distribution |Ψ0|2,
preventing any straighforward use of the Hellman-Feynman theorem, and so there is

no straightforward way to calculate the forces on the nuclei. Therefore, we also need a

fast and simple method to evolve the nuclei with accurate forces.

Quantum Drude Oscillators can also be simulated using Path Integral Molecular
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Dynamics, which uses the Feynman Path Integral formulation of Quantum Mechanics

[Fey72]. Although in the classical limit one can simply write down probabilities related

to the local energy, in quantum mechanics one must sum over amplitudes to construct

probabilities, which leads to an integral over the action of all possible paths passing

+

=

P classical simulations N path loops

cost = P×classical-MD no explicit many-body terms

PIMD pictorial

through that state. This can be further abstracted

to say that the weight of a particular path depends

on its action, and that we can sample the state-

space of quantum paths in a manner analogous

to classical states. Since the pseudo-electrons

of the QDO model are distinguishable particles,

there is no Fermi sign problem and the sampling

of the paths is straight forward, and of order

N logN × P in computational cost, where P is

the discretisation-number of the path, and N the

number of atoms. We approximate the path to a chain of ‘beads’ with spring-like

connections between them, and then perform classical-style molecular dynamics on

the chain. Prosaically, the beads are like pseudo-classical ‘parallel universes’, and the

springs represent ‘interactions’ between them. In the classical limit, the springs tighten

and the beads collapse onto one another, so the springs represent quantum uncertainty

at work.

PIMD samples the free energy as an estimate of the ground-state Born-Oppenheimer

energy. This assumes that the temperature is low enough for the real electronic

structure to be close to the BO-surface, which is valid for the range of temperatures

and pressures we are interested in.

The great advantage of PIMD is that it is based on classical Molecular Dynamics

which allows us to use all the wealth of experience that exists already [FS96]. Using an

adiabatic separation, we will show how it is possible to simultaneously evolve the QDO

and nuclei such that the nuclei move on the ground state BO surface of the QDO, or

at least an approximation that can be systematically improved by increasing the ‘bead’

number P .

1.7 Road Map

Here we present a broad overview of the structure and flow-of-the-argument in this

thesis.
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In chapters 2-4, we begin by describing the Quantum Drude model and its

properties. The Quantum Drude model is introduced in chapter 2, by comparing

it to the classical Drude model, describing its Hamiltonian and its damped coulomb

interaction potentials.

We explore the Quantum Dipole Oscillator, which is the dipole-limit of the Quantum

Drude, in chapter 3, as a gentle introduction to the many-body properties of Quantum

Drudes. We use diagrams to illuminate the meaning of ‘correlated uncertainty’. This

simple model also permits analytic solutions of wavefunctions and energies, in terms

of a simple expansion (in contrast to the complex diagrammatic expansion tackled in

chapter that follows). We show how terms in the energy expansion correspond to many-

body dispersion energies.

In chapter 4, we explore in more depth the properties of the full Quantum Drude

model. We derive exact expressions for its multipole-polarisabilities and two-body

multipole-dispersion. We explore the relationships between these quantities and the

Quantum Drude’s parameters, in order to test how close the behaviour of real atoms

is to the ideal Quantum Drude, and derive some new parameter-fitting methods for

a Quantum Drude to best mimic an arbitrary atom, in terms of its polarisabilites

and dispersion coefficients. We introduce a new diagrammatic expansion that allows

visualisation of many-body terms in the energy, including many-body polarisation

terms and many-body dispersion terms. Finally we sketch possibilities for models with

multiple Quantum Drudes per molecule.

Having motivated the Quantum Drude model by examining its properties, we move

on to describe and develop the methods used for simulating it. Chapters 5-7 are devoted

to studying QDOs using the Diffusion Monte Carlo (DMC), a method for generating

accurate energies for static configurations of the nuclei, which we use primarily for

fitting models. In chapter 5 we present the basic theory and methods of DMC, including

the use of trial wavefunctions for importance sampling, then present improved diffusion-

drift propagators and a new population-conserving scheme with reduced bias, that

satisfies detailed balance unlike the traditional method.

Then in chapter 6 we present several new trial wavefunctions, including one that

is very accurate for the dipole-limit QDO, and another that is very acccurate for the

full model QDO (Gaussian on-site potentials modified by off-site Coulomb potentials).

Combined with the tools developed in chapter 5, these wavefunctions allow us to make

DMC more stable for large systems, and therefore allow us to obtain accurate energies
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for a Quantum Drude model in a large system, such as the FCC-solid Xenon we study

in chapter 7.

In chapter 7, we describe the Quantum Drude model of Xenon, developed

by Martyna and Whitfield, as a useful test-case. We calculate the radial Born-

Oppenheimer surface for the Xenon dimer simulated via DMC, and compare it to first-

order perturbation theory results for various wavefunctions, in particular demonstrating

the high-accuracy of the ‘Coulomb’ wavefunction developed in the chapter before. We

simulate the Xenon FCC crystal in the dipole-limit, and compare to analytic results,

as a test of the machinery, then simulate Xenon FCC crystal in the full Quantum

Drude model, for which we calculate a lattice-constant and bulk modulus that are in

remarkable agreement to experiment, as a demonstration of the transferability of this

gas-phase model.

The next few chapters 8-10, are devoted to the study of QDO models using the more

complex, but much more powerful Path Integral Molecular Dynamics method (PIMD),

Chapter 8 introduces the concepts and machinery of PIMD which is a method for

moving atoms on a good approximation to the Born-Oppenheimer surface, which can

be systematically corrected by increasing the discretisation number. We start with the

concept of ‘high-temperature’ approximate density matrices, then describe the complex

machinery required for PIMD simulations.

Chapter 9, discusses the need for improved discretisations of the path-integrals,

and some potential paths to solution, to motivate the search for improved ‘high-

temperature’ approximate density matrices. Then we present a new dipole-approximation

density matrix for use in PIMD, along with its requisite energy-estimators, pressure

estimator and forces. We also sketch some approaches to porting the high-quality on-

site plus external Coulomb trial wavefunction into a density matrix for PIMD.

In chapter 10, we use the new dipole-approximation density matrix to simulate

Quantum Drude model Xenon in PIMD, presenting various tests, for the Xenon dimer

and the Xenon FCC-crystal. We demonstrate that the energy is converged with

reasonable values for the timestep, RESPA-number for multiple time-stepping and

faux-mass for achieving an adiabatic separation, and show that performing PIMD for

a Quantum Drude model Xenon dimer, gives a very close approximation to the exact

ground-state Born-Oppenheimer energy potential calculated earlier via DMC, at the

relatively high (Drude) temperature of ~ω/kT = 10.0.
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Chapter 1. Introduction

Finally, we present the general outline of a new model of water, the ultimate goal of

this project, in chapter 11. We present Quantum Drude parameters that best reproduce

its polarisability properties, and sketch how we will complete the rest of the fitting.
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1.8. Summary of Original Contributions

1.8 Summary of Original Contributions

• Chapter 4 is new material on the interaction properties of QDOs.

• Chapter 5: sections 5.1 and 5.2 describe existing DMC theory; sections 5.3

(accurate diffusion-drift propagators) and 5.4 (population-conserving DMC) are

new.

• Chapter 6 describes new trial wavefunctions.

• Chapter 7 derives Martyna and Whitfield’s QDO model for Xenon; then describes

original work testing the new wavefunctions and studying Xenon using DMC.

• Chapter 9 describes new density matrices for PIMD.

• Chapter 10 describes original work testing the new density matrices by studing

Xenon using PIMD.

• Chapter 11 is mostly a sketch of future work, but section 11.2.1 is new, and

describes a rational parameterisation for a QDO-based model of water.
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Chapter 2

The Quantum Drude Oscillator

We introduce the Quantum Drude Oscillator model of an atom, comparing and

contrasting it with the classical Drude model. We begin by discussing the model’s

quantum behaviour. We present the base harmonic oscillator Hamiltonian, and its

interactions via damped Coulomb interactions.

2.1 The Model

In 1900, Drude used a classical polarisable model to explain the refractive index of light

[Dru00]. In the Classical Drude Oscillator model of an atom or molecule, a classical

charged particle is attached to a centre (for example an atomic nucleus) by a simple

harmonic bond whose force constant is related to the dipole polarizability. In other

words, it is a pseudo-electron on a spring. For the Classical Drude model, only the

minimised energy is meaningful; there is no spatial distribution of charge and it sits at

the point in space which minimises the energy.

An external electric field can shift the equilibrium position of the charge, to produce

a dipole, but as the position of a classical particle is precisely defined at any instant, this

point-distribution is too simple to allow for quadrupole, octopole and higher multipole

polarisations. That is, although two spatially separated charges technically have higher-

order multipoles which depend on the choice of origin, these are not independent

variables and the dipole always dominates in the Classical model.

The Quantum-Drude Oscillator is also localised by a harmonic potential, with the

difference that the whole system, possibly containing many Quantum-Drudes and their

coulombic interactions, is described by a Schrödinger wave equation. The pseudo-

kinetic ∇2 operator introduces Heisenberg uncertainty to the position of the particle,

which means that the spatial distribution for the particle is “smeared-out” even at

zero temperature. For real electrons and for Quantum-Drudes, this yields a charge
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Chapter 2. The Quantum Drude Oscillator

nucleus

Drude electron

harmonic 

bond

(a) Classical-Drudes have a well-defined
position in space.

nucleus

Drude electron 

distribution

(b) Quantum-Drude position-states are
inherently uncertain/smeared-out.

distribution rather than a point particle, which profoundly changes the behaviour. It is

possible to have non-trivial charge distributions, and thus quadrupole, octopole and all

the higher multipole polarisations, and when it interacts with other Quantum-Drudes,

that also gives rise to a surprising effect, electronic dispersion, which does not exist for

polarisable charge distributions in the classical limit.

Multipole many-body polarisation illustrated using deformable charge distributions.

Dipole Polarisation Quadrupole Polarisation Octupole Polarisation

2.1.1 Regularisation (damping) and repulsion terms

At very close range, real atoms are not well modelled by Coulomb effects alone.

Electronic distributions are influenced by Pauli-exchange at close range, which resists

overlap between the electrons of neighbouring atoms, pushing the atoms apart. Also,

nuclear charge repulsion increases because the nuclei are localized while the neutralizing

electron cloud is dispersed.

The Quantum-Drude model does not reproduce the true physics at short range.

The simple coulombic potential between a Quantum-Drude and a neighbouring nucleus

would be divergently attractive, causing that nucleus to ‘yank on the spring’; this would

be an unphysical artifact of the model. Additionally, the Quantum-Drude particle

should not be thought of as a valence electron; it is only intended to represent the total

shift in charge distribution from all the electronic orbitals. Thus it should never get

too close to the centre of another charged point particle, such as a nucleus or another

electron, or at least if it does, the Coulombic potential must not be permitted to diverge.
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2.1. The Model

Regularisation of the Coulomb potential at small separations (often referred to as

‘damping’) neutralises these unphysical divergences as well as generating some repulsion

between the atoms, and the remainder of the repulsive potential can be corrected by a

sum of exponential potentials that act only at short interatomic separations.

For example, when designing a model of Xenon, Martyna and Whitfield [WM06]

found that the coulombic attraction between the Quantum-Drude and a neighbouring

atom is suitably damped in the following way:

Figure 2.1: Damped Coulomb potential

φ

r

1
r
→ e−(r/λ)4−1

r

This potential produces repulsive forces within the damped range. The damped

potential between two Quantum-Drude particles was chosen to have a similar form

for the sake of simplicity, (although with a tighter damping radius and thus a higher

repulsive barrier). Because of the damping form, the repulsive forces switch to

unphysical attractive at very close range. This was thought not to matter, as was

proved by the good results obtained. It is possible that the model could be improved

by damping that potential to a flat plateau instead. We leave that possibility to future

work.

2.1.2 Reciprocal-space Energy Sum

At long range, the potential is purely coulombic (the damping is all short-range), and

can be treated exactly the same way as in classical simulations, the reciprocal Ewald

sum, as described by Leeuw, Perram and Smith[dLPS80]. In small simulation boxes

with periodic boundary conditions, it is sometimes necessary to include a few repetitions

of the box in order to maintain high accuracy in calculating the real-space contribution.

For large simulation boxes, the Particle Mesh Ewald technique[EPB+95] and the Fast

Multipole Method [Rok85, GR87] can be used to increase efficiency.
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Chapter 2. The Quantum Drude Oscillator

To perform Ewald summation, the potential must be split into short-range and

long-range components. Because the damping is short-range, we can simply add the

difference to the usual short-range component. It also makes sense to leave the long-

range component unchanged because it is calculated via its Fourier transform, which

would be non-trivial to calculate.

φ

r

φ

r

Short-range Long-range
(damping added) (unchanged)

Figure 2.2: Short-range and long-range components to the damped Coulomb potential.
The black dotted line shows the full 1/r potential. The red dotted line shows what the
short-range potential would be without damping.

2.2 The Hamiltonian

The Hamiltonian for a Quantum-Drude without interactions, in Cartesian coordinates

is

Ĥ = − ~
2

2m

[

∇2
x + ∇2

y + ∇2
z

]

+
mω2

2

[

x2 + y2 + z2
]

.

The ground state wavefunction is simply:

ψ0 =
(mω

π~

)

3
4

exp
{

−mω
2~

[

x2 + y2 + z2
]

}

=
(mω

π~

)

3
4

exp
{

−mω
2~

[

r2
]

}

.

In order to explore external interactions, it is convenient to use spherical polar

coordinates. Following Flugge [Flu71] into spherical polar coordinates (and replacing
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2.2. The Hamiltonian

m with µ to avoid confusion with the magnetic quantum number m) yields

Ĥ = − ~
2

2µ

[

1

r

∂2r

∂r2
− L̂2

~2r2

]

+
µω2

2
r2,

where

L̂2 = −~
2

[

∂2

∂θ2
+ cot θ

∂

∂θ
+

1

sin2 θ

∂2

∂φ2

]

.

Because the L̂2 operator contains all the θ-, φ-dependence, it can be separated from

the r-dependence, and thus also commutes with the Hamiltonian. In the r-dependent

part, we can also simplify by cancelling the r-multiplicand in front of the ∂2, which

gives us

ψklm(r, θ, φ) =
1

r
Rkl(r)Ylm(θ, φ),

where

− ~
2

2µ

[

∂2

∂r2
− l(l + 1)

r2

]

Rkl(r) +
µω2

2
r2Rkl(r) = EklRkl(r).

The eigenvectors and eigenvalues can be written as [Flu71]

Rkl(r) = Nkl r
l+1 L

(l+ 1
2
)

k

(µω
~
r2
)

exp
(

−µω
2~
r2
)

,

Nkl =

(

µ3ω3

4π~3

)1/4
(

2k+2l+3k!
(µω

2~

)l

(2k + 2l + 1)!!

)1/2

,

and

Eklm = ~ω

(

2k + l +
3

2

)

,

respectively. Here, the L
(l+ 1

2
)

k are the generalized Laguerre polynomials.
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Chapter 3

Quantum Dipole Oscillators:

the dipole-limit QDO

We explore a simplified model of the Quantum Drude Oscillator in order to produce

some exact solutions; the dipole-limit, or Quantum Dipole Oscillator. In the process

we gain some insight into the more complex full Quantum model. We also use the

dipole-limit for testing the machinery of our software, and its analytic form makes it

useful for producing the first iteration of trial wave-functions and density matrices for

increasing the efficiency of DMC and PIMD respectively.

First we calculate the exact solution, wavefunction and interacion energy for a

dimer of interacting quantum dipole-oscillators in terms of its normal modes, using

1-dimensional oscillators to illustrate the meaning of correlated uncertainty, the effect

that gives rise to dispersion. We then extend the normal-mode approach to an arbitrary

assemblage of quantum dipole-oscillators using rotations to the diagonal basis to find

the normal modes (we can also do this for actual cases using matrix diagonalisation,

although this scales as N3 and is not a method one would wish to use in large systems).

Finally, we derive an matrix expansion in terms of the dipole-interaction tensor αT,

generating the many-body dipole limit dispersion interactions.

These are not new results, as the dimer result was derived by Hirschfelder, Curtiss

and Bird [HCB54], and the many-body limit was originally done by Cao and Berne

[CB92a].
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Chapter 3. Quantum Dipole Oscillators: the dipole-limit QDO

3.1 The Dipole Approximation for Neutral Atoms

The QDO model is approximated by replacing its spatially oscillating drude particle,

with a harmonically oscillating point dipole-moment µ = QDx.

The Hamiltonian for a system of such oscillating point dipoles is therefore

Ĥ = − ~2

2m∇2 + 1
2mω

2r2 + φinteraction − 3
2~ω,

where this time the interaction energy is as follows (note µ now means dipole, not

mass):

φinteraction = −1
2µiαTiαjβµjβ, where µi ≡ QDri.

The tensor T is defined as follows:

Tiαjβ = ∇iα∇jβ
1

|Rij |

=
1

|R|5
(

3RαRβ −R2δαβ

)

, with R = Rij = (Ri −Rj).

3.1.1 Damping and Periodicity of the Potential in the Dipole Limit

Aguado and Madden[AM03a] derive an Ewald sum for multipoles, which can include

just dipole moments or also quadrupole moments. They are derived by taking

appropriate derivatives of the normal Ewald sum, following Smith [Smi82, Smi98].

3.2 Single Quantum Dipole Oscillator

For an uncoupled dipole oscillator, the Hamiltonian is

H =
−~

2ω2α

2
∇2

µ +
1

2

µ2

α
,

where α is polarisability (units L3), µ is a dipole moment (Q×L), ω is frequency (1/T ).

This is the familiar harmonic oscillator Hamiltonian

H =
−~

2

2m
∇2

µ +
1

2
mω2µ2,
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3.3. Coupled Pair of Dipole Oscillator

with an effective mass, meff = 1
αω2 , and frequency ω2

eff = 1
αmeff

= ω2,

for which the solution is

ψ =
(mω

π~

) 1
4
e−

mω
2~

µ2
=

(

1

π~ωα

)
1
4

e−
1

2~ωα
µ2
,

ρ = ψ∗ψ =

√

mω

π~
e−

mω
~

µ2
,

with ground-state energy:

E0 =
3

2
~ω in 3 dimensions.

3.3 Coupled Pair of Dipole Oscillator

For two coupled dipole oscillators A and B, having the same frequency ω = ω0, the

Hamiltonian contains an additional interaction term:

H = HA +HB − µATABµB,

or using the same substitution,

H = − ~
2

2m

(

∇2
µA

+ ∇2
µB

)

+ 1
2mω

2
0(µ

2
A + µ2

B) − µATABµB.

The dipole tensor TAB is defined:

TAB
ij ≡ ∇i∇j

(

1

|RAB|

)

=
3RiRj

R5
− δij
R3

.

3.3.1 Analytical Solution using Normal Modes

Following Hirschfelder-Curtiss-Bird [HCB54], we use the diagonal basis, where ~R =

(0, 0, R) ,

T =
1

R3







−1 0 0

0 −1 0

0 0 +2






.

Because T is diagonal, the Hamiltonian can be split into components:

Hi = − ~2

2m∇2
µA,i − ~2

2m∇2
µB,i + 1

2mω
2
0µ

2
A,i + 1

2mω
2
0µ

2
B,i − µA,iTiiµA,i .
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Chapter 3. Quantum Dipole Oscillators: the dipole-limit QDO

Now let ν(+) = 1√
2
(µA + µB) , ν(−) = 1√

2
(µA − µB):

∇2
ν(+)

+ ∇2
ν(−)

= ∇2
µA

+ ∇2
µB
,

ν2
±,i = 1

2(µ2
A,i + µ2

B,i) ± µA,i.µB,i ,

rewrite the Hamiltonian,

H±,i = − ~
2

2m∇2
ν+,i + 1

2

(

mω2
0 ∓ Tii

)

ν2
±,i ,

and, recalling that α = 1
mω2

0
,

H±,i = − ~
2

2m∇2
ν±,i + 1

2mω
2
±,iν

2
±,i

E±,i = 1
2~ω±,i ,

with the normal modes:

ω(+),i = ω0

√
1 + αTii, (more energy, tighter oscillation),

ω(−),i = ω0

√
1 − αTii, (less energy, wider oscillation).

µ1

µ2

0

0 µ1

µ2

0

0

µ1+µ2

µ1-µ2

µ2

µ1

µ1 µ1

normal modes:
+µ2 -µ2

coupling

Figure 3.1: The normal modes of a pair of QDO’s in 1 dimension
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3.3. Coupled Pair of Dipole Oscillator

3.3.2 Dispersion Energy for a Pair of Dipole Oscillators

In the diagonal basis, we can do a Taylor expansion:

E =
∑

±,i

1
2~ω±,i =

∑

±,i

1
2~ω0

√

1 ± αTii

=
∑

i

1
2~ω0

(

1 − α
2Tii − α2

8 T
2
ii

)

+ . . .

+
∑

i

1
2~ω0

(

1 + α
2Tii − α2

8 T
2
ii

)

+ . . .

= 3~ω0 − α2

8 ~ω
∑

i

T 2
ii + . . .

The first term is the unperturbed energy of 6 harmonic oscillators (3 dim × 2 particles),

and the second term is the interaction energy. In this simple case,

∑

i

T 2
i =

1

R6

(

(−1)2 + (−1)2 + (+2)2
)

=
6

R6
,

so the interaction energy is:

Edipole−dipole ≃ −3

4

α2

R6
= −C6

R6
.
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Chapter 3. Quantum Dipole Oscillators: the dipole-limit QDO

3.4 Many Coupled Dipole Oscillators

Following Cao and Berne [CB92a] we now investigate dispersion in the dipole-limit

for many-body systems. For N dipoles distributed in space, the total interaction term

comes from the sum of all the dipole pairs (making sure none are counted twice). Let

A,B denote the Ath,Bth dipole.

H ′ = −
N
∑

A>B

µATABµB = −1
2

N
∑

AB

µATABµB,

H =

N
∑

A

(

− ~2

2m∇2
µA

+ 1
2mω

2
0µ

2
A

)

− 1
2

N
∑

AB

µATABµB.

3.4.1 Analytical Solution using Normal Modes

If we treat all the 3-vectors µA as a single 3N-vector µ and the 3×3-tensors TAB as a

3N×3N-tensor T, then we can write,

H = − ~2

2m∇2
µ + 1

2mω
2
0µ

2 − 1
2µ

TTµ.

Tensor T is easy to resolve if diagonalised by a unitary transformation S to the

eigenmode basis λ.

Sµ = ν, µ = STν,

µTST = ν, µ = νTS,

STST = λ, T = ST
λS,

(i) µ2 = µTµ = νTSSTν = νTν = ν2,

(ii) ∇µi =
d

dµi
=
∂νj

∂µi

d

dνj
= ST∇ν ,

∇2
µ = ∇T

µ∇µ = ∇T
ν SS

T∇ν = SST∇T
ν ∇ν = ∇T

ν ∇ν = ∇2
ν ,

(iii) µTTµ = νT
λν.
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3.4. Many Coupled Dipole Oscillators

Because the dipole tensor is now diagonal, the hamiltonian can be split into 3N

components labelled by i:

H =
∑

i

(

− ~2

2m∇2
νi + 1

2mω
2
0ν

2
i

)

− 1
2

∑

i νiλiµi,

H =
∑

i

(

− ~2

2m∇2
νi + 1

2mω
2
i ν

2
i

)

,

where ωi = ω0

√
1 − αλi, α = (mω2

0)
−1.

So we can solve 3N independent wavefunctions:

Hiψi =
(

− ~
2

2m∇2
νi + 1

2mω
2
i ν

2
i

)

ψi (no sum).

Omitting the normalisation factor gives the following ground state:

ψi(νi) = e−
mωi
2~

ν2
i ,

Ψ(ν) =

3N
∏

i

ψi(νi) = exp

(

−m
2~

∑

i

ωiν
2
i

)

.

3.4.2 Wavefunction from Dipole-tensor Expansion

The above wavefunction is exact (but only in the dipole-limit of the QDO) if it is

possible to diagonalise the dipole tensor, but in practice this will be too difficult and/or

too computationally-expensive to be worth it, especially as we are really interested in

the full model, where higher multipole terms dwarf the higher many-body dipole terms.

Instead we take the exponent down and expand it in a Taylor series:

∑

i

ωiν
2
i = ω0

∑

i

(1 − αλii)
1/2ν2

i

≃ ω0

∑

i

(

1 − α
2λii − α2

8 λ
2
ii + O(λ3)

)

ν2
i

≃ ω0

(

∑

i

ν2
i − α

2

∑

i

νiλiiνi − α2

8

∑

i

νiλiiλiiνi + O(λ3)

)

.
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Chapter 3. Quantum Dipole Oscillators: the dipole-limit QDO

Then we take the expansion back to the original basis µ, in which it is non-diagonal:

∑

i

ν2
i = νTν = µTµ =

∑

i

µ2
i ,

∑

i

νiλiiνi = νT
λν = µTTµ =

∑

ij

µiTijµj ,

∑

i

νiλiiλiiνi = νT
λλν = µTTTµ =

∑

ijk

µiTijTjkµk .

The third term is currently O
(

N3
)

but because the tensor is

symmetric (T = TT), it has a symmetry that can be exploited to

reduce the calculation to O
(

N2
)

:

µTTTµ = µTTTTµ = (Tµ)T(Tµ)

= (Tµ)2 =
∑

i





∑

j

Tijµj





2

,

∑

i

ωiν
2
i ≃ ω0

(

µTµ− α
2µ

TTµ− α
8µ

TT2µ
)

,

Ψ ≃ e−
mω0
2~

µ2

e+
αmω0

4~
µTµe+

α2mω0
16~

µT2µ...

= e
− 1

2α~ω0
µ2

e
+

1
4~ω0

µTµ
e
+

α
16~ω0

µT2µ
... .

The first term is the unperturbed harmonic wavefunction (µiµi). The second term

represents the effect of direct dipole-dipole interactions. The third term is the effect of

interactions between two dipoles propagated by a third dipole.

They are terms from a more complex expansion which we will explain in the next

chapter.
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3.4. Many Coupled Dipole Oscillators

µTµ
= µiTijµj

µT2µ
= µiTijTjkµk

µT3µ
= µiTijTjkTkℓµℓ

i j
T

µ µ
i

j

k

T T

µ µ
i

j

k

ℓ
T

T T
µ

µ

Figure 3.2: Feynman-style Propagator diagrams

3.4.3 Dispersion Energy from Dipole-tensor Expansion

In the diagonal or normal mode basis:

HΨ =
∑

i

Hiψi = 1
2~

∑

i

ωi = 1
2~ω0

∑

i

(1 − αλii)
1
2 .

Approximate again with a Taylor expansion:

(1 − αλii)
1/2 = 1 − α

2λii − α2

8 λ
2
ii +O(λ3),

HΨ ≃ 1
2~ω0

(

3N − α
2

∑

i

λii − α2

8

∑

i

λ2
ii

)

= 3N
2 ~ω0 + 1

2~ω0

(

−α
2 Tr(λ) − α2

8 Tr(λ2)
)

.

We also know that traces are invariant under unitary transformations as Tr(M ′) =

Tr(SMST) = Tr(MSTS) = Tr(M), and we know that Tr(T) = 0, as dipoles do not

interact with themselves.

HΨ ≃ 3N
2 ~ω0 − α2

16 ~ω0Tr(T2) − α3

32 ~ω0Tr(T3)... .

The first term is the unperturbed energy of the harmonic oscillators. In practice this

term will often be dropped as it is not part of the interaction energy.

The second term is the sum of interaction energies between pairs of dipoles.
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Chapter 3. Quantum Dipole Oscillators: the dipole-limit QDO

E(2) = −3α2
~ω0

4R6 ,

C6 = −3
4α

2
~ω0.

The third term is the sum of interaction energies around triplets of dipoles. This is the

Axilrod-Teller-Muto term [AT43].

E(3) = 9
16α

3
~ω0

[

1 + 3 cos a cos b cos c

A3B3C3

]

,

C9 = 3
16α

3
~ω0 (× 3 atoms).

A

B

C

a

b

c

The trace terms can also be represented diagrammatically, and represent a subset of

the energy-expansion terms shown in the following chapter.

Tr (T)
= Tii

Tr
(

T2
)

= TijTji

Tr
(

T3
)

= TijTjkTki

i T i j

T

T

i

j

k

T

T

T

Figure 3.3: Feynman-style Bubble diagrams

Because Tr(T) = 0, it does not appear in the energy, but Tr(T2) does appear.

If a higher order expansion of the wavefunction was used, higher order traces could

appear, and would represent explicit 3-body and many-body terms in the ground-state

energy. Thus this expansion allows us to generate the coefficients of the 4-body, 5-body,

6-body, . . .many-body dipole-limit dispersion terms for the model.
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3.4. Many Coupled Dipole Oscillators

Calculating the Higher-Order Traces

To calculate these higher order traces, one would first need to construct the complete

tensor T, from the individual dipole-interaction tensors Tij that exists between two

molecules i and j.

T =













0 T12 T13 T14

T21 0 T23 T24

T31 T32 0 T34

T41 T42 T43 0













, where Tij = Tji = ∇i∇j (1/rij) .

The diagonal elements will be zero unless the system is periodic, in which case a

dipole can interact with its own image. Periodic systems, however have to be calculated

by Fourier transform, and the T tensor can be calculated using complex numbers, in

which case each derivative becomes a complex derivative, so that each entry in the T

matrix itself becomes a 2 × 2 matrix.

In either case, if there are N particles in the system, the total storage required for

the T-tensor is of order N2. When multiplying the matrices, there are O
(

N2
)

new

components to calculate, and each requires an contraction over a dummy index, which

is O (N), giving a total cost of O
(

N3
)

operations. The simplest way to multiply the

T-tensors is by repeatedly multiplying the original tensor.

[

Tn+1
]

ij
=
∑

k

Tik [Tn]kj .

In terms of storage space, this requires a total of 3 matrices. The trace can be calculated

separately at each power:

Tr (Tn) =
∑

i

[Tn]ii .
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Chapter 4

Properties of the Full Quantum

Drude model

We work through properties of the full Quantum Drude in more detail, in order

to demonstrate that it is capable of realistically modelling the actual properties

of atoms and molecules. We begin by deriving its polarisabilities and dispersion

coefficients, including mixed-species dispersion, in terms of the basic paramters of the

model. The polarisability derivation has not been published specifically for Quantum

Drudes before. We derive some previously unpublished ‘combining rules’; unit-less

ratios between polarisabilities and dispersion coefficients quantities that are exact for

Quantum Drudes, irrespective of parameterisation, to which we can compare real

atoms, as a test of how well Quantum Drudes actually reproduce their behaviour. We

present a completely new scheme for visualising the many-body, multipolar interactions

of the Quantum Drude, including many-body multipolar polarisation, many-body

multipolar dispersion, and terms that are intermediate between the two. Finally, we

discuss some possibilities for augmenting the model, by using multiple Quantum-Drudes

per molecule, mentioning issues of symmetry, and then adding interactions between

Quantum-Drudes within a molecule that might yield correct hyperpolarisation.

4.1 Polarisabilities of a Quantum Drude

The following derivation has not been published before, to my knowledge. In order to

develop an analytic expression for the polarizabilities of the Quantum Drude oscillator

model, the perturbing effect of a test charge at a large distance R (distinguish from
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Chapter 4. Properties of the Full Quantum Drude model

R(r)) away on the z-axis, is examined.

H ′(r, θ) = Qq
∞
∑

l=1

(

rl

Rl+1

)(

4π

2l + 1

)1/2

Yl0(θ).

Using the fact that Y00(θ) = 1/
√

4π, the perturbation to the ground state energy is

zero to 1st order.

The 2nd order perturbation to the energy is, similarly,

E(2) = −
∑

kl

|〈00|H ′|kl〉|2
(2k + l) ~ω

= −
∑

kl

∣

∣

∣

∣

∫

r

∫

Ω R00Y00

[

∑

l′

(

rl′

Rl′+1

)(

4π
2l′+1

)1/2
Yl′0

]

RklYl0

∣

∣

∣

∣

2

(2k + l) ~ω
,

which simplifies because Y00 = 1/
√

4π and
∫

Ω Yl0Yl′0 ≡ 〈l|l′〉 ≡ δll′ :

E(2) =
∑

kl

−
[

Q2q2

R2l+2(2l + 1)

]

[∫∞
0 dr rlR00Rkl

]2

(2k + l) ~ω
.

The k = 0 modes have another property which allows a simplification.

[R0l

N0l

]

= rl

[R00

N00

]

=⇒ rlR00 = ClR0l, where Cl =
N00

N0l
.

The k 6= 0 and l 6= l′ modes do not contribute because of orthogonality

〈Rkl|Rk′l′〉 = δkk′ll′ .

This gives us

E(2) =
∑

l

E
(2)
l

E
(2)
l = −

[

Q2q2

R2l+2(2l + 1)

]

[

Cl

∫∞
0 drR0lR0l

]2

l~ω

= −
[

Q2q2C2
l

R2l+2(2l + 1)l~ω

]

, and C2
l = (2l + 1)!!

(

~

2µω

)l
,

= −
[

q2

µω2

] [

Q2(2l − 1)!!

2R2l+2l

]

[

~

2µω

]l−1
,
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4.2. Dispersion between Quantum Drudes

where we are temporarily using µ for the Drude mass instead of m in order to avoid

confusion with the magnetic quantum number.

The polarisabilities are defined as follows:

E
(2)
l = −

[

Q2αl

2R2l+2

]

,

which implies,

αl =

[

q2

µω2

] [

(2l − 1)!!

l

]

[

~

2µω

]l−1
,

αl = α1

[

(2l − 1)!!

l

]

[

~

2µω

]l−1
.

In the classical limit, lim ~ → 0, only the dipole polarizability is non-zero:

α1 ≡ q2

µω2
, αl → 0 ∀l > 1.

We can also write down some explicit relationships between the polarisabilities.

α1 =
q2

µω2
,

α2 = 3
4

(

~

µω

)

α1,

α3 = 5
4

(

~

µω

)2
α1 = 5

3
~

µωα2.

4.2 Dispersion between Quantum Drudes

This derivation is essentially the same as was published by Fontana[Fon61], where he

estimates the dispersion energy for noble gas atoms, using the approximation that those

atoms respond like harmonic oscillators. Similar approaches have been used by others

[HCB54, Sto96].

We can write down the interaction Hamiltonian in an shorthand expansion of multipoles

Q and multipole-interaction tensors T .

H ′
AB ≡

∑

m,n

QA
m QB

n T
AB
mn .
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It is useful to use spherical coordinate basis again, where the two sets of tensors QA
m

become essentially two spherical vectors representing fluctuating charge distributions

on A and B, and the tensors TAB
mn become essentially a single interaction-tensor that

depends only on the positions and orientations of molecules A and B. [Sto96].

Next, we plug this into perturbation theory as before. The derivation is similar to that

for the polarisation; the k-sum will be truncated as before, so it is omitted, and there

is an implicit sum over the magnetic quantum-number m, to make up the total number

of components, but we omit this also for clarity. This time the interaction energy

introduces coupling between two quantum-drude ground-state wavefunctions.

E(2) =
∑

lAlB

|〈00|H ′
AB|lAlB〉|

2

lA~ωA + lB~ωB
.

Each set of multipole l-values picks out its counterpart in the wavefunction. The T -

tensor components can be pulled out as constants.

E(2) =
∑

lAlB

[

TAB
lAlB

〈0|QA
lA
|lA〉〈0|QB

lB
|lB〉
]2

lA~ωA + lB~ωB

=
∑

lAlB

TAB
lAlB

TAB
lAlB

∣

∣

∣
〈0|QA

lA
|lA〉

∣

∣

∣

2 ∣
∣

∣
〈0|QB

lB
|lB〉
∣

∣

∣

2

lA~ωA + lB~ωB
.

The wavefunction projections can be resolved in the same way as for the polarisability,

and can be simplified in terms of the two atoms’ multipole polarisabilities.

E(2) =
∑

lAlB

TAB
lAlB

TAB
lAlB

C2
lA

(2lA + 1)

C2
lB

(2lB + 1)

1

lA~ωA + lB~ωB

=
∑

lAlB

TAB
lAlB

TAB
lAlB

[

q2Aq
2
B(2lA − 1)!!(2lB − 1)!!

lA~ωA + lB~ωB

]

[

~

2µAωA

]lA
[

~

2µBωB

]lB

=
∑

lAlB

TAB
lAlB

TAB
lAlB

αA
lA
αB

lB

[

~

4

lAlBωAωB

(lAωA + lBωB)

]

.

The α terms should strictly be tensors in the magnetic components, but Quantum

Drude Oscillators are isotropic, so we take them to be simple constants. The implied

sum becomes a sum over T -tensor components-squared. In cartesian coordinates these

traces can also be evaluated using a recursive relation, but in polar coordinates, it is

simplest to sum the components explicitly. The components are listed in Stone’s book

[Sto96], but here we simply list the results. Any terms with lA = 0 or lB = 0 will
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4.2. Dispersion between Quantum Drudes

vanish.

|T1,1|2 = 6R−6, |T1,2|2 = 15R−8,

|T1,3|2 = 21R−10, |T2,2|2 = 70R−10.

Inserting those values,

E(2) =
[

6R−6
]

αA
1 α

B
1

[

~

4

ωAωB

(ωA + ωB)

]

+
[

15R−8
]

αA
1 α

B
2

[

~

4

2ωAωB

(ωA + 2ωB)

]

+
[

15R−8
]

αA
2 α

B
1

[

~

4

2ωAωB

(2ωA + ωB)

]

+
[

21R−10
]

αA
1 α

B
3

[

~

4

3ωAωB

(ωA + 3ωB)

]

+
[

21R−10
]

αA
3 α

B
1

[

~

4

3ωAωB

(3ωA + ωB)

]

+
[

70R−10
]

αA
2 α

B
2

[

~

4

4ωAωB

(2ωA + 2ωB)

]

+ O
(

R−12
)

,

E(2) ≡ C6R
−6 + C8R

−8 + C10R
−10 + O

(

R−12
)

.

The two-body dispersion coefficients C6, C8, C10 etcetera can be extracted:

CAB
6 = 3

2α
A
1 α

B
1

~ωAωB

(ωA + ωB)
,

CAB
8 = 15

2

[

αA
1 α

B
2

~ωAωB

(ωA + 2ωB)
+ αA

2 α
B
1

~ωAωB

(2ωA + ωB)

]

,

CAB
10 =

[

21αA
1 α

B
3

~ωAωB

(ωA + 3ωB)
+ 21αA

3 α
B
1

~ωAωB

(3ωA + ωB)
+ 70αA

2 α
B
2

~ωAωB

(2ωA + 2ωB)

]

.

If the drude particles are also identical: ωA = ωB = ω, αA = αB = α, then:

C6 = 3
4α1α1~ω,

C8 = 5α1α2~ω,

C10 =
[

21
2 α1α3 + 70

4 α2α2

]

~ω.

It is possible also to calculate 3-body dispersion energies using spherical polar methods,

but this is much more complicated. For now, we simply take the 3-body result in the

dipole limit, which we derive in the next chapter, which is the Axilrod-Teller-Muto

term:

C9 = 3
16α

3
1~ω.

By substituting in our previous polarisability relations, we can write down some
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Chapter 4. Properties of the Full Quantum Drude model

relationships that are more explicit in terms of the underlying Quantum-Drude

parameters q, m and ω.

C8 = 15
4

(

~

µω

)

α1α1~ω

= 5
(

~

µω

)

× C6,

C10 =
[

105
8 + 315

32

]

α1α1

(

~

µω

)2
~ω

= 735
32 α1α1

(

~

µω

)2
~ω

= 245
8

(

~

µω

)2
× C6,

C9 = 1
4α1 × C6.

4.3 How Realistic are Quantum Drudes?

The attraction of the Quantum Drude is that it is a simplified model for describing

polarisation and dispersion. But its usefulness depends on its ability to mimic the real

physical behaviour of real atoms. Here we describe a series of tests (which have not

been previously published) that compare the behaviour of real atoms to that of the

ideal Quantum Drude model. This is an important first test of the Quantum Drude

model using independent theoretical and experimental data. We find that Quantum

Drudes are in fact a very good model of the polarisation and dispersion behaviour of

real atoms. Later, in chapter 11 we will find this even extends also to the strongly

anisotropic water molecule, so there is good reason to expect that it will be good at

describing many other molecular groups as well.

In particular, we show that the Quantum Drude model is good at reproducing the

dispersion-interaction behaviour between mixed species of atoms. This means that

Quantum Drude parameters fitted for single species will automatically generate correct

long-range interactions when they interact with arbitrary new neighbours, without

having to parameterise each possible pair, or triplet (The standard approach to date

had been to parameterise every possible pair potential). This is an excellent example of

the model’s ability to support simple models that are widely applicable and transferable.

We derive a set of relations, between some of the properties of atoms relevant to

polarisation and dispersion, including the dipole-polarisability (α1), the quadrupole-

polarisability (α2), the octopole-polarisability (α3), the two-body single species

dispersion coefficients (C6, C8 and C10), the three-body single species dispersion
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4.3. How Realistic are Quantum Drudes?

coefficient (C9), and the leading mixed species dispersion coefficient (CAB
6 ).

Each relation is derived such that it yields a dimensionless constant, and it is chosen

in such a way that that constant is exactly equal to 1 for the Quantum Drude model,

independent of its choice of parameters (m, ω, q). Each relation can then be calculated

for a set of real atoms, as a measure of how much real atoms deviate from the ideal

behaviour of Quantum Drudes. We found that agreement is good, for both noble gases

and alkali metal atoms, the atoms which we have independent data to compare.

4.3.1 Combining Rules

The expressions we just derived for the polarisabilities αn and dispersion parameters

C(2n+2) can be combined into four new dimensionless constants, or combining rules.

Here are the parameters:

α1 =
q2

µω2
, C6 = 3

4α1α1~ω,

α2 = 3
4

(

~

µω

)

α1, C8 = 5
(

~

µω

)

× C6,

α3 = 5
4

(

~

µω

)2
α1, C10 = 245

8

(

~

µω

)2
× C6,

(4.1)

C9 = 1
4α1 × C6.

From these it is straightforward to derive three of the combining rules:

√

20
9

α2√
α1α3

= 1 (polarisability combining rule),

√

49
40

C8√
C6C10

= 1 (dispersion combining rule),

C6α1

4C9
= 1 (3-body dispersion rule).

The case of mixed-species dispersion is more tricky.

Substitute the following;

CAA
6 = 3

4α
A
1 α

A
1 ~ωA =⇒ ~ωA =

4CAA
6

3αA
1 α

A
1

,
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into the expression for mixed-species dispersion,

CAB
6 = 3

2α
A
1 α

B
1

~ωAωB

(ωA + ωB)
= 3

2α
A
1 α

B
1

(

4CAA
6

3αA
1 αA

1

)(

4CBB
6

3αB
1 αB

1

)

(

4CAA
6

3αA
1 αA

1

)

+
(

4CBB
6

3αB
1 αB

1

)

=
2CAA

6 CBB
6 αA

1 α
B
1

CAA
6 αB

1 α
B
1 + CBB

6 αA
1 α

A
1

,

to yield the mixed-species dispersion rule:

1

CAB
6

[

2CAA
6 CBB

6 αA
1 α

B
1

CAA
6 αB

1 α
B
1 +CBB

6 αA
1 α

A
1

]

= 1.

Below, we test these rules for some a set of group I atoms (alkali metals) and group VIII

(noble gases), and calculate ∆, the divergence in the behaviour of the real atom (or

atom pair in the case of mixed dispersion), from the ideal Quantum Drude case. Upper

and lower bounds for α1, α2, α3, C6, C8, C10, and C9 were obtained from two papers

by Certain et al [TNC76, SC85], which used a combination of theory and experiment.
1 We find that almost all atoms show less than 10% deviation from ideal behaviour,

and some are much better than that.

Table 4.1: Polarisability Combining Rule
Atom α1 α2 α3 rule ∆ err

H 4.5 15 131.25 0.920 -8.0% 0.2%
He 1.38 2.44 10.6 0.952 -4.8% 0.2%
Ne 2.66 6.42 34.27 1.003 0.3% 0.2%
Ar 11.1 50.21 531.3 0.975 -2.5% 0.2%
Kr 16.7 95.55 1260 0.982 -1.8% 0.2%
Xe 27.3 212.6 3602 1.011 1.1% 0.2%
Li 164 1383 36800 0.839 -16.1% 0.2%
Na 161 1799 51170 0.934 -6.6% 0.2%
K 291 4597 150200 1.037 3.7% 0.2%
Rb 322 5979 212700 1.077 7.7% 0.2%
Cs 409 9478 339900 1.198 19.8% 0.2%

1We have omitted the combining rules involving dispersion coefficients of sodium(Na) because their
methods resulted in large uncertainties for those values, rendering the result of the combining rule
somewhat meaningless (that is, they were consistent with the combining rules, but within an error-bar
of more than 40%).
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Table 4.2: Dispersion Combining Rule
Atom C6 C8 C10 rule ∆ err

H 6.49 ± 0.02 124.5 ± 0.5 3280 ± 10 0.944 -5.6% 0.7%
He 1.46 ± 0.02 14.05 ± 0.15 182.5 ± 1.5 0.954 -4.6% 1.9%
Ne 6.88 ± 0.4 76 ± 20.5 1173 ± 347 0.937 -6.3% 41.8%
Ar 67.2 ± 3.6 1530 ± 350 47900 ± 13k 0.944 -5.6% 36.9%
Kr 133 ± 9 3740 ± 800 139500 ± 30500 0.961 -3.9% 34.3%
Xe 298.5 ± 26.5 11400 ± 2500 551500 ± 123500 0.983 -1.7% 36.9%
Li 1385 ± 5 80400 ± 1500 6775k ± 275k 0.919 -8.1% 3.7%
K 4k ± 30 392k ± 8k 45800k ± 1800k 1.014 1.4% 4.4%
Rb 4690 ± 50 530k ± 14k 69100k ± 2700k 1.029 2.9% 5.2%
Cs 6665 ± 35 904k ± 46k 131500k ± 8500k 1.069 6.9% 9.2%

Table 4.3: 3-Body Dispersion Combining Rule
Atom α1 C6 C9 rule ∆ err

H 4.5 6.49 ± 0.02 7.21 ± 0.01 1.013 1.3% 0.6%
He 1.38 1.46 ± 0.02 0.49 ± 0.002 1.016 1.6% 1.5%
Ne 2.66 6.88 ± 0.4 4.25 ± 0.14 1.044 4.4% 9.4%
Ar 11.1 67.2 ± 3.6 176 ± 4 1.036 3.6% 8.0%
Kr 16.7 133 ± 9 523.5 ± 13 1.036 3.6% 9.6%
Xe 27.3 298.5 ± 26.5 1850 ± 60 1.067 6.7% 13.0%
Li 164 1385 ± 5 56600 ± 0 1.003 0.3% 0.5%
K 291 4k ± 30 287k ± 0 1.014 1.4% 0.9%
Rb 322 4690 ± 50 365k ± 0 1.034 3.4% 1.2%
Cs 409 6665 ± 35 662k ± 0 1.029 2.9% 0.6%
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Table 4.4: Mixed Dispersion Combining Rule
Atom rule ∆ err

He Ne 1.009 0.9% 2.6%
He Ar 1.004 0.4% 3.0%
He Kr 0.996 -0.4% 4.4%
He Xe 0.987 -1.3% 5.9%
Ne Ar 0.997 -0.3% 6.3%
Ne Kr 0.990 -1.0% 7.6%
Ne Xe 0.975 -2.5% 9.7%
Ar Kr 1.000 0.0% 6.0%
Ar Xe 0.994 -0.6% 7.0%
Kr Xe 0.998 -0.2% 8.0%

H Li 0.988 -1.2% 0.7%
H K 0.954 -4.6% 2.5%
H Rb 0.942 -5.8% 3.1%
H Cs 0.952 -4.8% 2.1%
Li K 1.001 0.1% 0.4%
Li Rb 1.001 0.1% 0.4%
Li Cs 0.998 -0.2% 0.3%
K Rb 1.000 0.0% 0.9%
K Cs 0.999 -0.1% 0.6%
Rb Cs 1.001 0.1% 0.6%

Atom rule ∆ err

H He 0.995 -0.5% 0.4%
H Ne 1.011 1.1% 1.2%
H Ar 1.008 0.8% 1.5%
H Kr 1.011 1.1% 2.1%
H Xe 1.020 2.0% 2.9%

He Li 0.971 -2.9% 1.7%
He K 0.898 -10.2% 4.5%
He Rb 0.879 -12.1% 6.3%
He Cs 0.914 -8.6% 4.9%
Ne Li 0.972 -2.8% 2.2%
Ne K 0.884 -11.6% 5.6%
Ne Rb 0.860 -14.0% 8.1%
Ne Cs 0.909 -9.1% 7.4%
Ar Li 0.985 -1.5% 1.7%
Ar K 0.921 -7.9% 3.9%
Ar Rb 0.902 -9.8% 5.7%
Ar Cs 0.931 -6.9% 4.4%
Kr Li 0.983 -1.7% 1.5%
Kr K 0.926 -7.4% 3.9%
Kr Rb 0.909 -9.1% 5.4%
Kr Cs 0.934 -6.6% 4.0%
Xe Li 1.002 0.2% 1.5%
Xe K 0.947 -5.3% 3.9%
Xe Rb 0.929 -7.1% 5.3%
Xe Cs 0.952 -4.8% 4.0%
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4.3.2 Parameter-Fitting Rules

The same equations that relate Quantum-Drude parameters to their polarisabilities

and dispersion parameters, can be rearranged into a form that allows us to choose

parameters that satisfy those relations. These also have not been published before.

As real atoms behave similar to, but not precisely like Quantum-Drudes only

a subset of the relations can be precisely satisfied at the same time. Any given

parameterisation is always therefore an approximation for real atoms. These are the

three relevant relations, again:

α1 =
q2

µω2
, C6 = 3

4α1α1~ω,

α2 = 3
4

(

~

µω

)

α1, C8 = 5
(

~

µω

)

× C6.

The easiest parameter to find is ω, using the dipole dispersion relation,

ω =
1

~

4C6

3α2
1

.

Next, m can be found using either a polarisation relation, or a dispersion relation,

m =
~

ω

3α1

4α2
or m =

~

ω

5C6

C8
.

Finally, q can be found from the dipole polarisability,

q = ±
√

mω2α1.

As the mobile part of an atom’s charge distribution are the negative electrons, one

expects that sign of q will also be negative.
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4.4 Complex Interactions of the Quantum Drude

A method for generating successive many-body and multipole interactions of the

Quantum Drude, is described towards the end of the DMC chapter (section 6.2.3 on

pg. 107), where it comes from iterative perturbations of the Jastrow trial wavefunction

of an assembly of Quantum Drudes. The detailed derivation is left until then, in order

to maintain the flow of argument in this chapter.

The method is specific to the harmonic nature of Quantum Drudes, and as such, is

not general to all quantum polarisable charge distributions, but for Quantum Drudes

it is a convenient and quite powerful method. It is new and has not previously been

published.

Below, in fig. 4.2 we will show a representation of the quantum energy terms in

a diagrammatic expansion to fourth order. The prefactors are complicated sums that

would be critical for a calculation, but here we leave them out, in order to give an more

intuitive feel for the expansion. First we need to explain the rules of the diagram (next

page).
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4.4.1 Diagram Rules for Quantum Drudes

Each yellow box represents an coulombic interaction between two molecules, with an

implied summation index at each end.

→ ∑

ij φij e.g.
∑

ij R−1
ij

Each connecting line represents a ‘contraction’ that comes iteratively out of the ‘kinetic’
(

∇2
)

operator in the Schrödinger equation. As ∇2R−1 = 0, so this has to be between

two different instances of the coulomb interaction.

A B → ∑

i

(

∇iφA

)

·
(

∇iφB

)

Two lines coming out of a box at the same end indicates that both contractions share

the same particle index, but different ‘geometric’ indices. For example:

A B → ∑

i

(

∇i∇iφA

)

:
(

∇i∇iφB

)

Single-connected box ends therefore represent dipole-interactions. Double and triple

connections represent quadrupole and octopole interactions respectively. Unconnected

ends represent monopole interactions; these represent the sources of any permanent

fields. Finally, the power in R can be easily calculated as (−1) per box (R−1 coulomb

interactions) plus (−2) per connector (∇2 contractions).
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Chapter 4. Properties of the Full Quantum Drude model

Figure 4.1: QDO example interaction-diagrams

→ ∑

ijk,α (∇iαφij) (∇iαφik) =
∑

i Ei ·Ei

(a) R−4 (α1 or ααβ) dipole-dipole polarisation.

→ ∑

ijkℓ,αβ (∇iα∇iβφij) (∇iαφik) (∇iβφiℓ)

(b) R−7 (Bαβγδ) dipole-dipole-quadrupole polarisation.

→ ∑

ijk,αβ (∇iα∇iβφij) (∇iα∇iβφik)

(c) R−6 (α2 or Cαβγδ) quadrupole polarisation.

→ ∑

ij,αβ (∇iα∇jβφij) (∇iα∇jβφij)

(d) R−6 (C6) dipole-dipole dispersion.

→ ∑

ij,αβγ (∇iα∇jβ∇jγφij) (∇iα∇jβ∇jγφij)

(e) R−8 (C8) dipole-quadrupole dispersion.
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4.4. Complex Interactions of the Quantum Drude

4.4.2 Iterative Energy Expansion

The diagrammatic energy expansion in figure 4.2 was generated by the iterative method

described later in the DMC chapter (section 6.2.3 on pg. 107). If prefactors are

neglected, that method simplifies to:

Gn,m ≈ 1
2

∑n−1
ν=1

∑m
µ=0 [∇Gν,µ]·[∇Gn−ν,m−µ] (terms to left & those above them)

+ α
2q2 ~ω∇2Gn,m−1 (terms above),

and the energies En,m are simply the constant components of the Gn,m that can be

removed at each step as constants of integration.

The terms created via [∇G] · [∇G] involved joining two existing diagrams with a new

line to form a new diagram (which must be legal).

[∇G]·[∇G]−−−−−−−−→

The terms created via ∇2G add a new connector to an existing diagram to form a new

diagram (which also must be legal). This can create loops, which create dispersion

terms, akin to “bubble diagrams” which represent the self-interactions of a field in

particle physics (in our case the quantum field is made up of discrete Quantum Drude

Oscillators that can be moved in space and interact non-locally); or parallel connectors,

for example double connectors which represent quadrupole-quadrupole interactions, or

triple connectors which represent octopole-octopole interactions.

∇2G−−−→ +
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Figure 4.2: QDO many-body, multipole, full diagrammatic energy-expansion.
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C11
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C12
∗

Figure 4.4: QDO many-body, dispersion-only diagrams.
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4.4. Complex Interactions of the Quantum Drude

4.4.3 What’s in the Expansion?

It is important to note that these diagrams represent the interactions experienced by

Quantum Drudes. Real atoms and molecules could have even more interactions, as we

will discuss below.

In the dipole limit of the Quantum Drude model (Fig. 4.3), there is a very simple

series of dipole interactions, due to the simple quadratic nature of the perturbing

potential. These are the dipole-limit terms we showed the previous chapter. In the

classical limit of the Drude model , only the dipole limit exists (only α1 is non-zero;

α2 = α3 = 0), but there is also no dispersion (C6 = C8 = C10 = C9 = 0). Thus the

classical model captures dipole polarisation, which has a recursive effect (many-body),

but nothing else

But the full Quantum Drude model (fig. 4.2) is much richer, and captures many

more of the kind of interactions that would be present between real molecules. As we

showed above, real atoms behave very much like Quantum Drudes, even if in a less

idealised way (there is more on the limitations of the Quantum Drude model in the

next section). The expansion allows us to see just how many such interactions there

are as one seeks each new level of accuracy in perturbation theory.

In environments where there are no permanent fields, the Quantum Drude model

captures many-body dispersion, including all multipoles (fig. 4.4). Where permanent

fields do exist , the picture is far more complicated (fig. 4.2); not only do permanent

fields “polarise the dispersion loops”, but they also create hybrid polarisation-dispersion

terms that are difficult to describe.

It should now be clear how great an advantage the Quantum Drude model has if it

can be treated in a way that allows us to avoid having to write down and then compute

all of these terms explicitly.
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Chapter 4. Properties of the Full Quantum Drude model

C11 would be an ambiguous coefficient

Looking at the dispersion diagrams (fig. 4.4), specifically at the 3rd row, 3rd column,

we see that there are three different diagrams that would lay claim to a coefficient

named C11. The first is the a dipole-dipole-quadrupole 3-body dispersion term, closely

related to the Axilrod-Teller-Muto term, which has been calculated by Bell[Bel70].

However, there are also two different 2-body terms. They are more difficult to name

but, together, they relate to the dipole-dipole-quadrupole hyperpolarisability B in the

same way that the dipole dispersion C6 relates to the dipole polarisability α (more

detail of these quantities follows in the next section). From these dispersion diagrams,

one can see that there is a pragmatic reason to halt the two body dispersion expansion

at C10; the next term is C11, not C12. If C11 is to be neglected, then there is no point in

including C12 and higher contributions, including 4-body terms, and so the expansion

typically ends with C10.

The method which we described in section 4.2 uses 2nd-order perturbation theory,

and generates C6, C8, C10 . . .C2n+4. However, these C11 terms would require careful

3rd-order perturbation theory. Further contractions would produce C13, C15 and so on.

One advantage of the Quantum Drude diagrammatic expansion is thus that it allows

us to see more easily which terms could exist. Further terms in the expansion would

expose fourth- and nth-order terms. The 3rd and 4th order two-body terms had been

calculated for the hydrogen atom by Mitroy and Bromley from work previously done by

Ovsiannikov, Guilyarovskia and Lopatko[MB05, MO05, OM06, OGL88]. The method

presented here is simpler and hence more useful for understanding the QDO model,

which is the topic of this thesis.
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4.4. Complex Interactions of the Quantum Drude

The two diagrams are translated into maths as follows:

i j

k ℓ
=
[

∇i∇j

(

1
R

)] [

∇i∇j∇k∇ℓ

(

1
R

)] [

∇k∇ℓ

(

1
R

)]

=
1

R19

[

3RiRj −R2δij
]

[

105RiRjRjRℓ − 15R2 (RiRjδkℓ +RiRkδjℓ +RiRℓδjk

+RjRkδiℓ +RjRℓδik +RkRℓδij) + 3R4 (δijδkℓ + δikδjℓ + δiℓδjk)
]

[

3RkRℓ −R2δkℓ

]

=
216

R11

i
j

k ℓ
=
[

∇i∇j∇ℓ

(

1
R

)] [

∇i∇j∇k

(

1
R

)] [

∇k∇ℓ

(

1
R

)]

=
1

R19

[

−15RiRjRℓ + 3R2 (Riδjℓ +Rjδiℓ +Rℓδij)
]

[

−15RiRjRk + 3R2 (Riδjk +Rjδik +Rkδij)
]

[

3RkRℓ −R2δkℓ

]

=
72

R11
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Chapter 4. Properties of the Full Quantum Drude model

4.5 Limitations and Potential Improvements of the Quan-

tum Drude model

We have just seen that the Quantum Drude model reproduces many of the polarisation

and dispersion interactions of real molecules. It is interesting to now look (briefly) at

which interactions are not present in the model, as well as sketching future work on

the possibilities for including them.

A single Quantum Drude with 3 parameters has spherical symmetry. This means

that there are only a few independent components in the polarisability tensors, and

even of those it has, it is difficult to fit them to the properties of real atoms. By adding

more than one Quantum Drude, with 3 new free parameters per Quantum Drude, it

may be possible to improve the fit. For example, by adding a second Quantum Drude,

that doesn’t interact with the first, at the same site, to the Xenon model, it would be

possible to fit more multipole/hyperpolarisabilities and dispersion coefficients.

For two Quantum Drudes on the same site, polarisabilities simply add, but

dispersion also has cross-terms between the different Quantum Drudes. For example

consider an atom with two quantum drudesA andB on the same site, then α = αA+αB.

Now imagine it is interacting with another identical atom, then its first dispersion

coefficient is C6 = C6,AA + C6,AB + C6,BA + C6,BB .

By fitting Quantum Drudes at different sites on the same molecule, it would be

possible to model anisotropic responses, provided that we allow the Quantum Drudes

to interact. The following table shows the number of components that are independent

in various polarisability response tensors, for 4 different symmetry point groups. α

denotes the dipole-polarisability (which we have been referring to as α1. β and γ

denote the double-dipole and triple-dipole polarisabilities respectively. Aα,βγ is the

dipole-quadrupole polarisability, Bαβ,γδ is the dipole-dipole-quadrupole polarisability,

and Cαβ,γδ is the quadrupole-quadrupole polarisability (which we have been referring

to as α2).

A Quantum Drude has spherical symmetry, but the water molecule (which we will

certainly be interested in) has only C2v symmetry and so the Quantum Drude, having

only 1 independent component to the dipole polarisability, can in general only be an

isotropic approximation to that of the anisotropic water molecule (but fortunately it is

a reasonably good approximation). The polarisability of water requires 3 components:

1 for each axis in the molecule’s basis. By contrast, the symmetry-less group C1 requires
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4.5. Limitations and Potential Improvements

an extra 3 to define the dipole-polarisation basis relative to the molecule’s basis; 6 in

total. There are various ways of arranging 3 or more Quantum Drudes to match the

C2v symmetry of water, but an intermediate possibility is to place 2 Quantum Drudes

on the frame of the molecule (for example on the O-H bonds). Such an arrangement

would have D∞h (roughly, cylindrical) symmetry. We include each of these symmetry

groups in the table 4.5 below.

Table 4.5: The number of Independent Elements in Polarisabilities [Buc67]

Symmetry ααβ βαβγ γαβγδ Aα,βγ Bαβ,γδ Cαβ,γδ

Sphere 1 0 1 0 1 1
D∞h 2 0 3 0 4 3
C2v 3 3 6 4 9 6
C1 6 10 15 15 30 15

Note that some of the tensors disappear entirely for a spherically symmetric species

like a single Quantum Drude. For example,the hyperpolarisability β disappears, as

does the dipole-quadrupole polarisability A (although there could be a dipole-dipole-

quadrupole polarisability B and a quadrupole-quadrupole polarisability C).

Importantly, the diagrammatic expansion technique correctly predicts that there

are no diagrams that correspond to β or A (see fig. 4.2). It also predicts that there is

no diagram for γ, while there are diagrams that correspond to α (fig. 4.1a), B (fig. 4.1b),

and C (fig. 4.1c).

To see why, consider what the diagrams would have to look like: β (fig. 4.5a) is

a dipole-dipole-dipole hyper polarisability. Its diagram would require 3 dipole field

representations converging on one atom, which means 3 yellow bars each with a single

black line coming out of it. Then A (fig. 4.5b), the dipole-quadrupole polarisabilty,

implies 2 yellow boxes, one with a single line and the other having a double line.

Clearly it is not possible to connect either of these in a single diagram using our rules.

Finally γ (fig. 4.5c), the dipole-dipole-dipole-dipole hyperpolarisability implies 4 yellow

boxes, each with a single line coming from it. This can be connected into two diagrams,

but not one.

Thus although γ hyperpolarisability is obtainable for spherical symmetry in general,

we can use the fact that it lacks a diagram to determine that it does not exist for single

Quantum Drude particles (a new result), though it might exist for models involving
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Chapter 4. Properties of the Full Quantum Drude model

Figure 4.5: QDO forbidden interaction-diagrams

(a) βαβγ 3-dipole polarisation? (b) Aαβγ dipole-quadpole polarisation?

(c) γαβγδ 4-dipole polarisation? (d) γαβγδ via intramolecular interactions?

more than one QDO per molecule. In fig. 4.5d, the four yellow boxes represent fourfold

dipole-field interaction. Each ‘normal’ line between two of the yellow boxes represents

an interaction like a dipole-dipole polarisation on one of the Quantum Drudes, and

the additional squiggly line represents a new intramolecular interaction connecting two

Quantum-Drudes, coupling their interactions, thus extending the rules of our ‘Feynman-

style’ diagrams. This idea needs more development, which we leave for future work.

It will also take more analysis to discover which additional properties can be

obtained using multiple quantum drudes in different symmetry arrangements. As a

simplest case example, consider the possibility of having N non-interacting Quantum

Drudes on the same site. The polarisabilites will add linearly as N , and the dispersion
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4.5. Limitations and Potential Improvements

coefficients will add like N2 (for example polarisation α = αA + αB, but dispersion

C6 = CAA6 + CBB6 + 2CAB6). However, the parameters (q,m, ω) need not add

linearly, allowing for greater flexibility in the fitting. We will extend our QDO-specific

diagrammatic method to these cases in future work.

61



Chapter 4. Properties of the Full Quantum Drude model
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Chapter 5

Diffusion Monte Carlo

The Diffusion Monte Carlo (DMC) method [GS71, And75, KW86, HJR94, Cep95,

UNR93] is of great interest because it is a computationally efficient way to generate

ground state energies for the Quantum Drude model at a fixed nuclear configuration,

which we can use for model fitting. Therefore, we want to construct the most accurate,

efficient and stable DMC method we possibly can.

We outline the essential ideas of DMC, then begin presenting our new work. We

developed a ‘flux-balancing’ population operator, which is our attempt at a solution

to a long-standing problem with the DMC method, the desirability of using a fixed

population of walkers, vs the bias which that unfortunately produces. Our new

method conserves the population by balancing the birth-rate with the death-rate at

each timestep, but in a way that satisfies detailed-balance unlike the standard DMC

technique which does not satisfy detailed-balance and exhibits unbounded population

fluctuations. We also developed a much more precise diffuse-drift operator.

5.1 Introduction to DMC

At the heart of DMC is an elegant idea. Let τ = it; the Schrödinger equation suggests

an imaginary-time evolution operation

i
∂Ψ

∂t
= −ĤΨ =⇒ ∂Ψ

∂τ
= −ĤΨ =⇒ Ψ(τ) = e−τĤΨ(0).

For clarity of presentation, imaginary time will be referred to simply as ‘time’.

After a long time, the operator has the effect of promoting the states of lowest energy,
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Chapter 5. Diffusion Monte Carlo

eventually causing the ground-state to dominate.

let Ψ(0) =
∑

i

ciΨi be some arbitrary initialisation

Ψ(τ) = e−τĤ Ψ(0)

=
∑

i

e−τEiciΨi

= e−τE0

(

c0Ψ0 +
∑

i>0

e−τ∆iciΨi

)

, where ∆i = Ei − E0,

Ψ(τ) → e−τE0 c0Ψ0 as τ → ∞.

However, the long time solution either grows without bound (E0 < 0) or vanishes

(E0 > 0).

Normalisation

If we include the normalisation into the operator, we get,

Ψ(τ) = e−τ(Ĥ−E0) Ψ(0).

The ground-state energy E0 is a constant which gives a stable long time solution, and

it is useful to think of it as being part of the potential operator V .

Discretisation

The operator can be discretised into small time-steps τ = N∆τ :

Ψ(τ) =
[

e−∆τ(Ĥ−E0)
]n

Ψ(0).

Operator Splitting

In the following, we assume Ĥ = T̂ + V . The discretised operator can in turn be

approximately decomposed into two parts.

e−τĤ ≈ e−τT̂ e−τ(V −E0)

(

= e−τ(T̂+V −E0)+ τ2

2 [T̂ ,V ]
)

.
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5.1. Introduction to DMC

In practice, we use a symmetric decomposition, which eliminates the τ2 errors (because

[T,V]≡-[V,T]). This defines an approximate hamiltonian ˆ̄H and its normalisation Ē.

e
−τ

“

ˆ̄H−Ē
”

≡ e−τ(V −E0)/2e−τT̂ e−τ(V −E0)/2
(

= e−τ(T̂+V −E0)+O(τ3)
)

≈ e−τ(Ĥ−E0) + O
(

τ3
)

.

The first is the diffusion operator;

e−τT̂ = eτ
~2

2m∇2

=⇒ ∂Ψ

∂τ
= ~2

2m∇2Ψ,

which is the diffusion equation with constant D = ~2

m , but note that this interpretation

assumes that Ψ is positive definite. This limits it to wavefunctions that have no nodes.

It can be adapted to other wavefunctions that have nodes, by breaking up the space

into separate regions and using a fixed-node approximation.

The second is the logistic-growth/population-growth operator;

e−τV =⇒ ∂ log Ψ

∂τ
= Ē − V,

or
∂Ψ

∂τ
=
(

Ē − V
)

Ψ,

which are equations for exponential biological population growth or decline, where the

‘−V ’ would be a measure of comparative biological-fitness. Thus the normalisation

value Ē divides space into regions where the population grows and regions where it

shrinks.

The approximate operator ˆ̄H gives us an approximate wavefunction Ψ̄ and an

approximate energy Ē. After a long time, it picks out the ground-state wavefunction,

but with some O
(

∆τ3
)

error that comes from commmutators.

Ψ̄(τ) = e
−τ

“

ˆ̄H−Ē
”

Ψ̄(0)

= Ψ(τ) + O
(

∆τ3
)

→ c0Ψ0 + O
(

∆τ3
)

as τ → ∞.

Thus the ground-state wavefunction can be represented by a Monte-Carlo process; a

population of ‘walkers’ or ‘samplers’ which diffuse through phase-space, breeding in

areas where the classical potential is low, and expiring where the classical potential is

high.
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Chapter 5. Diffusion Monte Carlo

5.1.1 DMC with Importance Sampling

Efficiency can be improved by importance sampling. This has the effect of changing

the diffusion operator into a ‘diffusion-with-flow’ or ‘diffusion-and-drift’ operator. This

moves some of the influence of the potential/breeding operator into this ‘kinetic’

operator. Broadly this means that walkers tend to drift from regions of high potential

to regions of low potential. The remaining potential/breeding operator still plays a role

in the fine detail of this new distribution, but becomes less important. This is good

because the greatest inefficiences come from that operator. As a bonus, importance

sampling provides an estimator of the energy that has lower variance.

The down-side of DMC, is that it explores only the wavefunction and not the density.

This means that there is no Hellman-Feynman theorem, so the only quantity that can

be measured with only finite timestep error is the energy (without advanced methods).

Use of Trial Wavefunctions

The density operator projects out the ground-state wavefunction Ψ0, but it turns out

we can improve efficiency by sampling a distribution more like the density function

ρ(x) = |Ψ0(x)|2. We can do this by weighting the true groundstate wavefunction Ψ0

with a trial function ΨT. In what follows, we will refer to Ψ0 simply as Ψ. Instead

of letting f(x, τ) → Ψ(x), we let f(x, τ) → Ψ0(x)ΨT(x), where Ψ0 is the true ground

state, and ΨT is an trial estimate of it [And75]. The trial wavefunction ΨT is often

described as a Jastrow wavefunction, after Jastrow[Jas55], who first used a variational

form, in first-order perturbation theory, with potential-like terms plus parameters to

be tuned to minimise the upper bound (1st-order perturbation theory) of the ground

state energy. DMC goes beyond first order perturbation theory, but still makes use of

Jastrow’s trial wavefunctions.

We can assume that Ψ0 is positive definite. This is true for non-identical particles

in the ground state, including Drude electrons because each is uniquely attached

to an atom, so this assumption always holds for our work; Quantum-Drudes are

distinguishable particles. We can then interpret f(x) = Ψ0ΨT as a probability density
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5.1. Introduction to DMC

function.

∂Ψ

∂τ
=

1

ΨT

∂f

∂τ
,

−ĤΨ = −Ĥ
(

f

ΨT

)

= −T̂
(

f

ΨT

)

− 1

ΨT
φf.

Now we meed to evaluate the effect of the kinetic operator T̂

∇ f

ΨT
=

∇f
ΨT

− f∇ΨT

Ψ2
T

,

∇2 f

ΨT
=

∇2f

ΨT
− 2∇f∇ΨT

Ψ2
T

− f∇2ΨT

Ψ2
T

+
2f∇ΨT∇ΨT

Ψ3
T

,

−T̂ f

ΨT
=

~
2

2m

(∇2f

ΨT
− 2∇f∇ΨT

Ψ2
T

− f∇2ΨT

Ψ2
T

+
2f∇ΨT∇ΨT

Ψ3
T

)

.

Then plug back in:

∂f

∂τ
= −ΨTĤ

f

ΨT

=
~

2

2m

(

∇2f − 2f∇ log ΨT∇ log ΨT − 2∇f∇ log ΨT − f∇2ΨT

ΨT

)

− fφΨT

ΨT
.

Then note

∇. (∇− 2∇ log ΨT) f = ∇2f − 2f∇ log ΨT∇ log ΨT − 2∇f∇ log ΨT − 2f∇2ΨT

ΨT
.

So

∂f

∂τ
=

~
2

2m
∇·(∇− 2∇ log ΨT) f +

f~
2

2m

∇2ΨT

ΨT
− fφΨT

ΨT

=
~

2

2m
∇·(∇− 2∇ log ΨT) f − fĤΨT

ΨT
.
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Now add the normalisation constant Ē:

∂f

∂τ
=

~
2

2m
∇·(∇− 2∇ log ΨT) f −

(

ĤΨT

ΨT
− Ē

)

f

= −Âf − B̂f,

where Â =
~

2

2m
∇·(∇− 2∇ log ΨT) ,

B̂ =
ĤΨT

ΨT
− Ē.

The solution is

f(τ) = eτ(Â+B̂) f(0), which we approximate as

= e
τB̂
2 eÂe

τB̂
2 f(0) +O(τ3).

Properties of the Operators

The DMC operators preserve the ground-state solution.

eτ(Â+B̂) Ψ0ΨT = Ψ0ΨT.

They are closely related, but not identical, to a density matrix (see later chapter).

〈r|eτ(Â+B̂)|r′〉

=
ΨT(r)

ΨT(r′)
〈r|e−τĤ |r′〉

=
ΨT(r)

ΨT(r′)
× ρ(r, r′; τ).

Finally, if the trial wavefunction is exactly correct, that is ΨT = Ψ0,

B̂ =
ĤΨT

ΨT
− E0 = 0,

eτÂ ΨTΨT = ΨTΨT.
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Diffuse/Flow Operator

∂f

∂τ
= −Âf

=
~

2

2m
∇·(∇− 2∇ log ΨT) f

=
~

2

2m
∇2f −∇·(2∇ log ΨTf)

≡ D∇2f −∇ (f~v) .

The term on the left is the same diffusion term that we seen in the introduction, with

D = ~
2

2m . Now, however, we have another term, which is a ‘material derivative’ with

respect to time. It tells us how the local density of a fluid changes when it is flowing

according to the velocity field ~v(x) = ~
2

m∇ log ΨT. Thus to model this operator, our

population of samplers must also be ‘flowing’ according to velocity field ~v(x).

If we make a further simplifying assumption that ∇ log ΨT (a position operator) is

locally a constant, then it commutes with the momentum operator p̂ and so we can

use Gaussian integration to calculate how the operator Â propagates the wavefunction

from a point r to point r′.

P (x→ x′) = 〈x|e−τÂ|x′〉

=

∫

p
〈x|e−τÂ|p〉〈p|x′〉

=

∫

p
〈x|p〉e−τÂ〈p|x′〉 as |p〉 is an eigenstate of Â

=

∫

p
dp′e

i
~
p.x′

e−τÂe−
i
~
p.x.

Note that

−Âe−i
~

p.x′

=

(

~
2

2m
∇2 − v ·∇ −∇·v

)

e−
i
~

p.x′

= −e− i
~
p.x′

(

p2

2m
− ip

~
v(x′) + ∇·v(x′)

)

.

For a quadratic wavefunctions, the term (∇·v) is a constant that comes out in the wash

(normalisation), and we drop it anyway due to our approximation that ~v is locally
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Chapter 5. Diffusion Monte Carlo

constant. Now the propagator becomes

P (x→ x′) =

∫

p
e

i
~
p.(x−x′)e−

τ
2m(p2−i 2m

~
p.v)

=

∫

p
e−

τ
2m(p2+i 2m

~τ
p.(x′−x−τv)).

To evaluate the integral, we need to complete the square in the exponent

− τ

2m

(

p2 + i
2m

~τ
p.(x′ − x− τv)

)

= − τ

2m

[

(

p+ i
m

~τ
(x′ − x− τv)

)2
−
(

i
m

~τ
(x′ − x− τv)

)2
]

.

Now the p terms can be integrated out and dropped as the integral is only a prefactor

P (x→ x′) =

(

2mπ

τ

) 1
4

e−
τ

2m( m
~τ

(x′−x−τv))
2

,

P (x→ x′) ∝ exp
{

− m

2~2τ

[

x′ − (x+ τv)
]2
}

.

This propagator convolves the distribution f(x; 0) to a distribution f(x′; τ).

f(x′; τ) =

∫

x
P (x→ x′) f(x; 0)

∫

x

(

2mπ

τ

)
1
4

exp
{

− m

2~2τ

[

x′ − (x+ τv)
]2
}

f(x; 0).

Differential Reproduction (Population) Operator

Having accounted for the effect of operator Â on the p.d.f. f(r), we now look at the

operator B̂:

B̂ =

(

1

ΨT
ĤΨT − E

)

.

Note that ĤΨT(r) can be evaluated in terms of position only; B̂ is a pure position

operator which modifies the p.d.f. f(r) at a position. This means that it must modify

the population of walkers at a point. As the population at a point considered will be

1, and only integer populations are possible, we interpret the value of B̂ as the mean

70



5.1. Introduction to DMC

number of walkers that will represent this point after the operator is applied:

fnew = e
−τ

“

1
ΨT

ĤΨT−E
”

fold.

5.1.2 Simulation by Sampling using Walkers

In DMC, the function f(x, τ) is represented by a set of random-walkers distributed

with probability density f(x, τ). Thus it is our sampling distribution. We have a time-

evolution operator, that was mentioned above, which involves a double convolution and

a position operator. Let the shorthand
∫

x denote an integral over all space.

f(τ) = e
τB̂
2 eÂe

τB̂
2 f(0) +O(τ3),

f(x′′; τ) =

∫

x′

(

2mπ

(τ/2)

)
1
4

exp

{

− m

2~2(τ/2)

[

x′′ − (x′ + (τ/2)v)
]2
}

× exp

{

−τ
(

1

ΨT
ĤΨT(x′) − Ē

)}

×
∫

x

(

2mπ

(τ/2)

)
1
4

exp

{

− m

2~2(τ/2)

[

x′ − (x+ (τ/2)v)
]2
}

.

Diffuse/Flow of Walkers

The Diffuse/Flow operator is as follows:

P (x→ x′; τ) ∝ exp
{

− m

2~2τ

[

x′ − (x+ τv)
]2
}

.

This means that for a walker situated at position x, the probability distribution for

its location after timestep τ , is P (x′;x, τ). The distribution is a gaussian (normal

distribution) with σ = ~
√

τ/m and µ = x+τv; the centre is shifted by τv. We assumed

that ~v is constant over the width of the distribution, that is ~v(x + σ) ≈ ~v(x − σ). τv

is the ‘drift’ and is taken out of the gaussian and added separately. If Gaussian() is a

unitless gaussian-distributed random number with mean µ = 0 and width σ = 1, then

the position after time τ is:

x(τ) = x(0) + τv + ∆x, where ∆x = ~

√

τ
m × Gaussian().
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Chapter 5. Diffusion Monte Carlo

For example, using the simple harmonic oscillator as a trial wavefunction gives:

ΨT(r) = e−
mω
2~

r2
,

v(r) =
~

2

m
∇ log ΨT = −~ωx.

Differential Reproduction of Walkers

The population operator multiplies the number of walkers at a point by e−τB̂ , where

B =
(

ĤΨT
ΨT

− Ē
)

, in a probabilistic sense. This is like the accept/reject step of

traditional Monte Carlo techniques.

• For each walker, we calculate the number e−τB.

• If e−τB > 1 the walker is copied int(e−τB) times into the next ensemble, and an

additional one is added with probability frac(e−τB).

• If e−τB < 1 the walker is copied into the next ensemble with probability e−τB . If

it is not copied into the next ensemble, it is deleted.

Unfortunately, every time a new walker is introduced, it sits on top of its parent so that

they are correlated until they diffuse apart. Therefore if there is too much fluctuation

in the number of walkers, the correlations will reduce the randomness of the sampling.

A good trial-wavefunction should minimise this fluctuation.

Population Control

More significantly, the walkers are multiplied in a stochastic manner. This leads

to fluctuations in the overall population, even for a large population. It would be

convenient to enforce a constant population, but this is tricky because that becomes a

way for walkers to influence each other, and that can introduce a measurable bias to

the results.

The population operator depends on a normalising parameter Ē, which is typically

adjusted [AMK00] in the following way.

Ē(p+1) = Ēp +
K

τ
log
[

Np/N(p+1)

]

,
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5.1. Introduction to DMC

where p is the number of projection steps taken. At long time however, the adjustment

falls to zero (as 1/p), at which point it is no longer able to correct for stochastic

drift in the population. With this method, there is nothing to stop the population

from exploding, or dying out completely. We mention this in constrast to the norm-

conserving method we present below.

Ground State Energy: The Estimator

ĤΨT

ΨT

We already showed that f → ΨTΨ0 as τ → ∞. Thus the normalised f after

equilibration is

f =
ΨTΨ0

〈ΨTΨ0〉
.

We know that Ĥ is a Hermitian operator. This means,

〈ΨT|Ĥ |Ψ0〉 = 〈Ψ0|Ĥ|ΨT〉,

〈ΨT|Ψ0〉E0 =

∫

r
Ψ0ĤΨT

=

∫

r
Ψ0ΨT

[

1

ΨT
ĤΨT

]

,

E0 =

∫

r

[

Ψ0ΨT

〈ΨT|Ψ0〉

]

[

ĤΨT

ΨT

]

,

E0 =

∫

r
f ĤΨT

ΨT
.

In words, E0 is equal to the average of ĤΨT
ΨT

, over the distribution f .

Therefore we can approximate E0 by taking a long time average of ĤΨT
ΨT

over all the

walkers, after they have had time to equilibrate. ĤΨT
ΨT

is thus an estimator for E0.

Epop Another estimator is the value of E used for normalising the population

operator, after applying a small correction that comes from estimating how much

it favours increasing the population vs decreasing. We found that it has a larger

uncertainty than the ĤΨT
ΨT

, but we used it as a test of the quality of the simulations.
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Chapter 5. Diffusion Monte Carlo

5.2 Evaluating trial wavefunctions

for use in DMC

5.2.1 First Order Perturbation Theory

First order perturbation theory calculations use a suitable trial wavefunction ΨT (with

its corresponding trial Hamiltonian ĤT) to produce an upper bound on the true energy

of the ground state energy of the system. It is an upper bound because any trial

wavefunction mixes the ground state wavefunction with those of excited states, unless

it is exact.

The trial wavefunction will contain a mixture of the true eigenstates of the real system,

so the quality of the estimate of E0 will depend on how close ΨT is to Ψ0:

ΨT =
∑

i

ciΨi, where
∑

i

c2i = 1,

Eestimate = 〈ΨT|Ĥ|ΨT〉
=

∑

i

c2iEi

= E0 + ∆E > E0, ∵ Ei > E0.

We have two different ways of performing these calculations: DMC minus the

population operator, and Metropolis wavefunction sampling.

5.2.2 DMC with no Population Operator (VMC)

Diffusion Monte Carlo is exact in theory, but Variational Monte Carlo is easier to do,

and is a way of doing first order perturbation theory:

We find a suitable trial wavefunction ΨT and a trial Hamiltonian ĤT:

Ĥ = ĤT + Ĥ ′,

Eestimate = 〈ΨT|Ĥ |ΨT〉
= 〈ΨT|ĤT + Ĥ ′|ΨT〉
= 〈ΨT|ĤT|ΨT〉 + 〈ΨT|Ĥ ′|ΨT〉
= ET + 〈ΨT|Ĥ ′|ΨT〉
= ET + E′,

where E′ ≡ 〈ΨT|Ĥ ′|ΨT〉.
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5.2. Evaluating trial wavefunctions

This is first order perturbation theory. If Ĥ ′ is a pure position operator, then

E′ =

∫

dxΨT(x)ΨT(x)H ′(x)

=

∫

dx f(x)H ′(x),

where f(x) ≡ ΨT(x)ΨT(x).

This can be treated in almost exactly the same way as DMC. The same derivation can

be followed, as from the start of this chapter. The only differences are:

DMC → VMC ,

f = Ψ0ΨT → f = ΨTΨT ,

∂Ψ
∂τ = −ĤΨ → ∂ΨT

∂τ = −ĤTΨT ,

[

ĤΨT
ΨT

− E0

]

6≡ 0 →
[

ĤTΨT
ΨT

− ET

]

≡ 0 .

The implication of this is that we may use exactly the same diffuse/drift step, but

there is no need for multiply/contract step. Simulation of VMC is equivalent to that

for DMC but without a multiply/contract step.

At every step τ , we use the full Hamiltonian as an energy-estimator,

ĤΨT

ΨT
= ET +H ′(x(τ)),

but to move the walkers, we need only the trial Hamiltonian:

∂ΨT

∂τ
= −ĤTΨT.

Another way of looking at DMC is that the diffuse/drift step gives you a first

order perturbation energy estimate, and the (more troublesome) multiply/contract step

accurately closes the gap to the true energy (for the ground state).

5.2.3 Metropolis Wavefunction Sampling of ΨT
2

Another option, is to integrate the wavefunction by Monte Carlo sampling of the

probability density function.
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Chapter 5. Diffusion Monte Carlo

For a harmonic wavefunction, this is very simple. Because both the wavefunction and

probability density function are Gaussian distributions, a new position-state sample

can be generated by calling a Gaussian random number generator, and accepted with

100% probability.

φT ∝ exp
{

−mω
2~
x2
}

, ρ ∝ exp
{

−2mω
2~
x2
}

;

xnew =
√

~

2mω × Gaussian() , accept with P = 1 .

All wavefunctions suitable for Quantum-Drudes will be based on the simple harmonic

wavefunction, but for more complicated trial wavefunctions, there is a perturbation

F (x). This requires the accept/reject step.

φT ∝ exp
{

−mω
2~
x2 + F (x)

}

, ρ ∝ exp
{

−2mω
2~

x2 + 2F (x)
}

;

xnew =
√

~

2mω × Gaussian() ,

accept with P = min
[

e2F (xnew)−2F (xold), 1
]

.
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5.3. Large-τ Diffusion/Flow Propagators

5.3 Propagators for Large Timesteps in DMC

Earlier we derived the following result for diffusion with flow on the locally-constant

gradient of the trial wavefunction:

P (r0 → r; τ) ∝ exp
{

− m

2~2τ
[r − r0 − τv(r0)]

2
}

, where v = ~
2

m∇ log ΨT.

That derivation assumed that ~v is a constant, but with a little bit more work, we

can get much more accuracy. If log ΨT is quadratic, we can expand out v(r) without

approximation

v(r) = v(r0) + (r − r0)·∇v(r0) + · · ·
= ~2

m∇ log ΨT + ~2

m (r − r0)·∇∇ log ΨT.

This second derivative term changes both the diffusion and the drift term, but it

is a position operator that does not commute with the momentum operator, so we

need a different approach to derive the exact propagator function (exact for quadratic

wavefunctions and an improvement for others). We do this by following Feynman’s

method of deriving the density matrix for a harmonic oscillator (a subtly different

problem!).

First write down the propagation equations.

∂
∂τ fDMC = ~2

2m∇2fDMC − ~2

m∇·(∇ log ΨfDMC) ,

fDMC(r, τ) =

∫

r
P (r0 → r; τ)f(r0, 0),

∂
∂τ P = ~2

2m∇2P − ~2

m∇·(∇ log ΨP ) .

Then, following Feynmann, we transform to dimensionless variables:

y =
√

mω
~
x, ∇y =

√

~

mω∇x and f = τ~ω.

∂P
∂f = 1

2∇2P −∇·(∇ log ΨP )

= 1
2∇2P −∇·(v(y)P (y)) , (5.1)

where v(y) ≡ ∇y log Ψ.

We expect P to have a gaussian form:

P = exp
{

−a(f)y2 − b(f)y − c(f)
}

,

∇P = [−2ay − b] exp
{ }

,

∇2P =
[

4a2y2 + 4aby +
(

b2 − 2a
)]

exp
{ }

.
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5.3.1 Local Quadratic form

Then can write down an approximation to v(y) that is locally correct to quadratic order

in log Ψ.

v(y) = −yM(y0) + v∆(y0),

where M(y0) = ∇y∇y log Ψ(y0),

v∆(y0) = ∇ log Ψ(y0) − y0∇2 log Ψ(y0).

For quadratic wavefunctions, this form is exact, and for the simple harmonic oscillator,

v∆ = 0. Again P is gaussian

P = exp
{

−a(f)y2 − b(f)y − c(f)
}

,

Ṗ =
[

−ȧy2 − ḃy − ċ
]

P,

−v(y)∇P =
[

−2May2 −Mby + 2v∆ay + v∆b
]

P,

1
2∇2P =

[

4a2y2 + 4aby +
(

b2 − 2a
)]

P.

Using eqn. 5.1, and collecting terms in y2, y and 1 respectively,

−ȧ = 2a2 − 2Ma,

−ḃ = 2ab−Mb+ 2Mav∆,

−ċ = 1
2b

2 + 2Mbv∆ − a+M.

We can solve these using the boundary conditions a(f) → −1/2f

and b(f) → −2y0a(f) as f → 0:

a(f) =
M

1 − e−2Mf
,

b(f) =
−2My0e

−Mf − 2v∆
(

1 − e−Mf
)

1 − e−2Mf
.
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5.3. Large-τ Diffusion/Flow Propagators

When reinserted into P , this gives,

P ∝
√

1
2πσ2 exp

{

− 1
2σ2 (y − µ)2

}

,

σ(f) =

√

1 − e−2Mf

2M
(as before),

µ(f) = y0 e
−Mf + v∆M

−1
(

1 − e−Mf
)

,

∆y = µ− y0 = y0

(

e−Mf − 1
)

+ v∆M
−1
(

1 − e−Mf
)

= v(y0)

[

1 − e−Mf

M

]

≈ fv(y0) − 1
2f

2M(y0)v(y0).

Equivalently, we can write these as

σ(f) =
√
f ×

√

1−e−2Mf

2Mf =
√
f ×

√

e−Mf sinh(Mf)
Mf ,

∆y = v(y0) × f ×
[

1−e−Mf

Mf

]

= v(y0) × f ×
[

2e−Mf/2 sinh(Mf)
Mf

]

.

Finally we transform coordinates back (f → τ , y → x).

M = ~

mω∇2
x log Ψ,

f = τ~ω,

ǫ ≡ −Mf = −τ ~2

m∇2
x log Ψ,

σx =

√

S(ǫ)τ~
2

m ,

τvx = S
(

ǫ
2

)

τ ~
2

m∇x log Ψ,

where S(χ) ≡ exp(χ)
sinh(χ)

χ
.

We published these expressions in Appendix 1 of [JMC+09]. See Umrigar [UF00] for a

discussion of special cases where there are boundary-condition violations (for example

when using DMC methods to study fermions, where nodal surfaces are used to divide

the space, producing a discontinuities in the first derivative). The formula is valid

wherever the locally quadratic approximation to the wavefunction is valid. This can

include periodic systems provided that τ~
2/mL2 ≪ 1. For periodic systems, Barker

generates a more accurate propagator using Poisson summation[Bar79]. Another

solvable case is for a hard-sphere (infinite) potential, where there are discontinuities

in the derivative of the wavefunction. This case has been treated by Cao and

Berne[CB92b].
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Chapter 5. Diffusion Monte Carlo

5.3.2 Testing via VMC and Metropolis Sampling

For convenience, we can refer to a DMC simulation minus branching, as ‘VMC’. It

is useful to note that performing VMC is equivalent to sampling ψ2
T , provided that τ

is taken sufficiently small. Although the drift-diffusion exp[−τ(T̂ + D̂)] preserves ψ2
T ,

approximations are made in its application, so that the energy estimate will have some

timestep dependent error. Since it is possible to sample ψ2
T using standard Metropolis

Monte Carlo procedures, the efficacy of the approximations made in applying the

drift-diffusion evolution operator can be investigated by performing an imaginary time

step convergence study of VMC/DMC-sans-branching (The walker number dependence

of the DMC results is induced by the branch step only). In this way, measures

can be taken to ensure that the imaginary time step of the full DMC computations

are limited only by the commutator between the branch and diffusion-drift terms.

Additionally as described in Ref. [UNR93], the errors in the drift-diffusion propagator

can be reduced using a Metroplis Monte Carlo rejection sampling algorithm that

imposes detailed balance by employing the approximate propagator as the a priori

transition probability and ψ2
T as the limiting distribution. This approach has not been

implemented herein but it can be employed with the improved drift-diffusion operator

above without loss of generality. A minor drawback of Ref. [UNR93] is that persistent

or trapped configurations can occur (e.g. diffusion-drift moves of trapped configurations

are accepted with very low weight) which requires careful attention to details in the

method’s implementation.

In Fig. 5.1(left), the results of an imaginary time step study for a 1D oscillator model

under DMC-with-the-branching-step-turned-ff are given. When ǫ(x) is taken to be non-

zero, the computations yield correct results; 〈ψT | (H −E0) | ψT 〉 = ~ω(1−λ)2/(4λ) =

ET ; independent of imaginary time step as is to be expected for a Gaussian model.

With ǫ(x) ≡ 0, the computations converge at a finite imaginary time step to the

correct result.

In Fig. 5.1(right), a similar imaginary time step study is presented for the QDO

xenon dimer with ǫ taken to be zero and taken equal to the on-site interaction value.

Again, taking ǫ 6= 0 increases significantly the imaginary time step at which convergence

is obtained. However, both choices of ǫ converge to the result obtained from a standard

Metropolis sampling study.

In order to demonstrate the utility of the local harmonic drift-diffusion propagator

for systems in which the trial function is not predominately Gaussian in character,

we show the results for the hydrogen atom (ψT = exp(−r/a0)) within the isotropic

diagonal 2nd derivative approximation (ǫ = −2τ~
2/(3mra0)) simulated in Cartesian

coordinates in Fig. 5.2.
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Figure 5.1: (left)The convergence of the variational energy with imaginary time step
both with and without the exact drift (ǫ 6= 0, dash, and ǫ ≡ 0, cross), for the one-
dimensional harmonic oscillator computing using the DMC method without branching
and ψT = ψ0(λω);λ = 0.9. (right) The convergence of the variational energy with
imaginary time step both with and without the exact drift (ǫ 6= 0, dash, and ǫ ≡
0, cross), for the full QDO xenon dimer computing using the DMC method without
branching and the on-site-plus-all-pair-multipole trial function.
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Figure 5.2: (left)The convergence of a non-harmonic system, VT = −〈e2/r〉ΨT
2 =

(−e2/a0) for the hydrogen atom, ΨT = exp(−r/a0), with imaginary time step both with
and without the isotropic diagonal approximation to the trial function 2nd derivative
matrix (ǫ = −2~

2/(3mra0), dash, and ǫ ≡ 0, cross) computed using the DMC method
without branching in Cartesian coordinates.
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5.4 Norm conserving DMC method that

upholds detailed balance

We have recently proposed a method [JMC+09] to conserve the sampling population

with branching, by ensuring that the number of new walkers created by copying is

always exactly balanced by the number of walkers that are deleted. The method satisfies

detailed balance and therefore can be corrected, and it is stable against the population

blowing up or vanishing.

The other operator, the drift-diffusion evolution operator exp(−τÔ) preserves the norm

exp(−τÔ)ψ2
T = ψ2

T .

It also preserves the norm of an arbitrary f given that f and ψT are well behaved at

the boundaries. The given drift-diffusion evolution preserves the norm of the steady

state solution; if the overall approximate evolution is to preserve the norm of the steady

state solution, then the branch evolution should also preserve the norm.

That is, for the ground state, the expected number of “births” per walker, 〈n(+)〉,
should match the expected number of “deaths” per walker, 〈n(−)〉, as is defined in the

following:

∫

dr e−τV̂ f(r) =

∫

dr f(r),
∫

dr
(

e−τV̂ − 1
)

f(r) = 0,
∫

dr
(

1 − e−τV̂
)

θ(+)f(r), =

∫

dr
(

e−τV̂ − 1
)

θ(−)f(r) ,

〈n(−)〉f = 〈n(+)〉f . (5.2)

Here, V̂ (r) = ĤΨ(r)
Ψ(r) − Ē, θ(+) = θ(V ), and θ(−) = θ(−V ), where θ is the switch-on

function [θ(x) = 1 for x > 0, and θ(x) = 0 otherwise]. The desired condition simply

states that the flux into exp(−τ V̂ )f , 〈n(+)〉f , must be balanced by the flux out of

exp(−τ V̂ )f , 〈n(−)〉f . Given that the flux matching condition need only hold for the

steady state solution, it is clear that a unique Ē that satisfies Eq. (5.2) can be found

which supports the existence of the corresponding stationary solution f(r).

Finally, we note that the flux in is equal to the flux out only on average. Therefore,

for a finite walker population, the number of walkers in a DMC simulation will fluctuate

in time (e.g. unless ψT ≡ ψ0). Thus the branching operator does not preserve the norm
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for arbitraty f .

5.4.1 The Idea (Flux-balance)

The foregoing analysis of the stationary solution of the split operator DMC method

gives insight into construction of a norm-conserving or constant-N , DMC or NC-DMC

method. Consider an ensemble of N walkers ({r1 . . . rN} = r) (each one for the sake of

clarity consisting of a single particle moving in three spatial dimensions) selected with

probability
∏

i f(ri; 0) dri. Application of the norm-conserving drift-diffusion term to

each ensemble member is straightforward and standard above, as the N -walker system

is separable. In light of the discussion in the previous paragraph, it is natural to

consider the entire ensemble in developing a new method to apply the branch evolution,

exp(−τ V̂ ). As described above, flux matching 〈n(−)〉f̄ = 〈n(+)〉f̄ , is true on average

but not instantaneously n(−)(r) 6= n(+)(r). It is natural to replace the average by a

sum over walkers, however, (1/N)
∑

i n
(+)(ri) 6= (1/N)

∑

i n
(−)(ri) unless N → ∞.

It is therefore proposed to enforce norm conservation at each branching step,

by enforcing flux balance for the instantaneous N -walker configuration, through a

modification to the acceptance rule following earlier work by others[AMK00, BS98,

Het84]. This is accomplished by defining

n̄(±)(r) =
1

N

∑

i

n(±)(ri),

w(±)(r) =
n̄(+)(r) + n̄(−)(r)

2n̄(±)(r)
, (5.3)

and taking

P (±)(i; r) = w(±)(r)n(±)(ri), (5.4)

where P (±)(i; r) is probability walker i contributes to the flux into/out of the new

ensemble (e.g. the action of the branch operator). The modification creates the “flux-

matching branch operator” for each walker

〈r | exp[−τ ô2] | r〉 ≡
[

w(+)(r)n(+)(ri) − Min
(

w(−)(r)n(−)(ri), 1
)

+ 1
]

,

defined for N > 1 which when summed over i = 1,N yields unity by definition. In
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more detail, a self-consistent computation is required

w(−)(r)n̄(−)(r) =
1

N

∑

i

Min
(

w(−)(r)n(−)(ri), 1
)

, (5.5)

w(−)(r) =
w(−)(r)n̄(−)(r)

4w(−)(r)n̄(−)(r) − 2n̄(+)(r)
, > 0

to ensure the ensemble branch operator is positive definite w(−)(r)n(−)(ri) ≤ 1; in

practice, self-consistent cycles can be avoided as will be discussed later. It is assumed

that all n(−)(ri) are strictly less than unity or equivalently there are no boundary

condition violations. The parameter Ē is still selected such that 〈n(−)〉f̄ = 〈n(+)〉f̄ .

Note, w(±)(r) approaches unity as N → ∞ and the branch operator properly reduces

to the original form. This approach is new, and is not equivalent to that of the earlier

work we cited [BS98, Het84, AMK00].

The new NC-DMC method strictly conserves the number of walkers in the ensemble

and hence ensures the stability of the simulation for any reasonable choice of Ē. Thus,

neither a rare fluctuation far away from flux matching nor a deviation, Ē = Ẽ0 + δ, can

cause the walker population to grow or shrink by an unacceptably large amount as in the

original method. Note, Ē is only known within some error and first order perturbation

theory in δ is invoked to analyze the simulation results here (as in any DMC simulation).

The lack of weights ensures that statistical averages can be taken safely to the long

time limit but with the O(1/N) bias as in standard DMC. Unlike standard DMC, the

acceptance rule does not modulate in time and the method strictly satisfies detailed

balance allowing for corrections given below. Below, in (5.4.3), details of the new

branching process are given along with prescriptions (i) to choose Ē, to estimate E0,

(ii) to check for the correctness of the simulation results, (iii) to treat configurations

of measure zero wherein the ensemble branch operator becomes undefined or nearly

so (e.g. requiring self-consistent cycles), and (iv) to treat systems where boundary

condition violations (n(−)(ri) ≡ 1 for any i) cannot be avoided.

5.4.2 Reweighting for the elimination of 1
N

bias

The NC-DMC method has a bias that leads to O(1/N) error as in standard DMC with

its time varying acceptance rule. However, under NC-DMC it is possible to correct for

the bias by defining appropriate weights in the usual way. We begin by defining the
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exact weight by rewriting the ensemble branch operator

〈r | exp[−τÔ] | r〉 = exp[−τVeff(ri)]

× exp
{

log
[

1 + (w(+)(r) − 1) n(+,†)(ri)

−(w(−)(r) − 1) n(−,†)(ri)
]}

,

where the minimum condition was removed for simplicity and

n(±,†)(ri) = eτVeff(ri)n(±)(ri) .

The weighting factor for each walker is then

W (corr)(ri, r; τ) = exp
{

− log
[

1 + (w(+)(r) − 1) n(+,†)(ri)

−(w(−)(r) − 1) n(−,†)(ri)
]}

.

Accumulating the weights for projection time, Pτ , requires NP extra storage and

communication (in parallel computations) and removes all population bias. It is

possible to define a mean field correction that provides a weight for the entire ensemble

and introduces extra storage of size P and no additional communication (1 double),

W (corr,mf)(r; τ) = exp

{

− 1

N

∑

i

log
[

1 + (w(+)(r) − 1) n(+,†)(ri)

−(w(−)(r) − 1) n(−,†)(ri)
]

}

The mean-field weight distinguishes ‘good collections’ of size N from ‘better collections’

of size N thereby correcting approximately for the effect of the strict norm constraint.

Under NC-DMC, the parameter, Ē , can naturally be determined so the average

of the correction in mean field is zero. Assuming the simulation is performed using a

good estimate Ē = Ētrue + δ.

Ētrue = Ē −
〈

log
[

W (corr,mf)(r; τ)
]〉

〈

∂ log[W (corr,mf)(r;τ)]
∂Ē

〉 ,
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where the average is not corrected. This result reduces to the standard condition

Ētrue = Ē +

〈

n̄(−) − n̄(+)
〉

τ
〈

n̄(−) − n̄(+) + 1
〉 + O

(

δ2
)

= Ē +

〈

n̄(−) − n̄(+)
〉

τ
+ O

(

δ2
)

, as N → ∞.

In the following, we shall not apply the weights but the improvement wrought by

the mean field weights is given in Fig. 5.6(b) below (the number of walkers required to

obtain a given accuracy is reduced by a factor of ≈ 4).

It should be noted in passing that even re-weighting does not lead to exact converged

results in practice. This is because of the way the sampling distibution actually

overlaps with the correct distribution. This is a common problem where importance

sampling is involved, not just our particular method. The problem arises whereever

the sampled distribution is small, but the correct distribution is large. This requires a

large weighting to be put on any of those samples. But as the sampling is stochastic,

this produces the occasional sample with very large weight, which dominates over most

of the other samples, and prevents good averaging.

ρ
(x

)

x

problem
region

true ρsampled ρT

Figure 5.3: The true distribution (red) vs the sampling distribution (black): the left
hand side is sampled very well, but the right hand side is sampled very poorly. To
make up for this, the right hand side receives bigger weights (ρ/ρT) to pump it up to
the true distribution. The further to the right the sample is, the bigger the weight, so
an occasional sample can have a very big weight and make the results very stochastic.
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5.4.3 Estimating the energy in NC-DMC

The ground state energy can be estimated in two ways from a DMC simulation[KW86,

HJR94, Cep95]. First, using the properties of a Hermitian operator

∫

drf(r)
ĤψT (r)

ψT (r)
=

∫

drψT (r)Ĥψ0(r) = E0.

Hence, an estimator for E0 is simply

E
(est,T)
0 (r; τ) =

1

N

∑

i

ĤψT (ri)

ψT (ri)
,

which is then averaged over the stochastic DMC process or DMC “trajectory” to yield

a variational estimate for E0 (assuming the steady state is of the form f(τ) = ψTψ0).

The second estimator is constructed using the fact that Ē should be taken equal

to Ẽ0(τ). If Ē is not taken exactly equal to E0, then the average of n̄(+)(r) − n̄(−)(r)

over the DMC trajectory will not be zero. Using 1st order perturbation theory, letting

Ē = Ẽ0(τ) + δ, expanding n(±)(ri) to lowest order in τ yields

E
(est,τ)
0 (r; τ) = Ē +

n̄(−)(r) − n̄(+)(r)

τ
, (5.6)

which must be averaged over the DMC trajectory to predict Ẽ0(τ).

Typically, 〈E(est,T)
0 〉 has lower variance but if 〈E(est,τ)

0 〉 does not closely agree with

the latter, the simulation should be rerun with a smaller time step, τ given 〈(n̄(−) −
n̄(+))/τ〉 is sufficiently small. If the latter average is large, a new run with a refined

choice of Ē = 〈E(est,τ)
0 〉 will be required. Note, the above averages over the NC-DMC

trajectory are assumed to be invariant to 1st order variations in Ē.

5.4.4 Selecting an Ē

It is important to select a good value of Ē. A useful procedure is to start Ē

equal to the variational energy, Ē =
∫

drψT (r)ĤψT (r), run NC-DMC for a few

hundred steps, refine Ē using eqn. 5.6, and so on until reasonable convergence is

achieved. A long run may then be spawned with Ē fixed. The simulations are stable

independent of Ē and the quality of a NC-DMC simulation with fixed Ē can be assessed

from the estimators of the ground state energy as described above. Computing 1

dimensional distribution such as P (n̄(+)), P (n̄(−)) and P (n̄(−) − n̄(+)) can also help
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judge the quality of the simulations. From the central limit theorem, as N → ∞,

P (n̄(±)) approaches a Gaussian characterized by mean σ
√

2/π and standard deviation

σ
√

(π − 2)Nc/(πN) and P (n̄(−) − n̄(+)) approaches a Gaussian characterized by zero

mean and standard deviation σ
√

Nc/N where Nc is a walker correlation number. If the

quantity, 1− exp[−τVeff] exp[−τVeff ], itself exhibits zero mean Gaussian statistics with

standard deviation, σ, then Nc ≡ 1. The average of the weighting function 〈w(±)(r)〉
over the trajectory should be close to unity or too few walkers have been employed.

5.4.5 Avoiding ‘Sign Collapse’

The NC-DMC method divides walkers into two populations at every step, those below

Ē, and those above and equalizes the flux out of the ensemble (arising from walkers

with energy above Ē) to the flux into the ensemble (arising walkers with energy below

Ē). Thus, the NC-DMC method can be become ill-defined if all walkers have Veff ≥ 0

or Veff < 0 for a given N−walker configuration. Making the reasonable assumption

that the probability of any walker having a Veff of sign positive/negative is 0.5 for the

correct choice of Ē, the probability that N walkers all have the Veff with the same

sign is P (all ±)(N) = 21−N . For N as small as N = 50, P (all ±)(50) ≈ 2 × 10−15

while for N = 20, P (all ±)(20) ≈ 2 × 10−6. Thus, walker “sign collapse” is a rare

event given large enough N . Note, due to walker correlations, the effective number

of walkers is reduced, N → N/Nc, where Nc is a walker correlation number. Now,

for sign collapsed configurations, we can simply choose to take all present walkers into

the next ensemble without prejudice (e.g. no flux in or out). This norm conversing

choice is microscopically reversible because a sign collapse state is history independent

(depends only on configuration). It effectively takes
∏

i f(ri) =
∏

i ψ
2
T (ri) for any sign

collapsed configuration which is, in fact, exact for the case ψT = ψ0 where Veff ≡ 0,

all configurations are sign collapsed (e.g the sign of the number 0 is by convention

positive) and there is no flux n̄(±) ≡ 0. The “accept all” choice for the sign collapsed

configurations defines the N = 1 limit wherein NC-DMC samples f(r) = ψ2
T (r). It

also preserves the variational character of the NC-DMC technique and leads to the

“ensemble flux matching” branch operator definition for each walker

〈r | exp[−τ ô2] | r〉 =
[{

w(+)(r)n(+)(ri) − Min
(

w(−)(r)n(−)(ri), 1
)}

χ(r) + 1
]

,

χ(r) = 1 −
[

∏

i

θ(−)(Veff(ri))

]

−
[

∏

i

θ(+)(Veff(ri))

]

,

where χ(r) = 0 for sign collapsed configurations and χ(r) = 1 otherwise. Similarly,

configurations that are not sign collapsed but for which the self-consistent equation for
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n̄(−)(r), Eq. (5.5) would be required are also accepted without prejudice in the absence

of boundary condition violations.

Walker sign collapse occurs for a vanishingly small fraction of configurations given

N ≥ 18 and ψT 6= ψ0. That is, sign collapsed configurations become points of measure

zero in theN -walker configuration space (e.g. r) forN remarkably small. The NC-DMC

method is not recommended for use with N < 18 where sign collapsed configurations

contribute more than 1 part in 1× 105 unless ψT is a particularly good estimate of ψ0.

The “accept all” choice for sign collapsed configurations ensures the method preserves

the ψT → ψ0;Veff → 0 limit where n̄(±) ≡ 0 leads to ambiguities in the more naive

NC-DMC acceptance rule and all configurations are, by definition, sign collapsed. For

the case ψT 6= ψ0, the “accept all” condition makes the variationally consistent choice
∏

i f(ri) =
∏

i ψ
2
T (ri) for a set of configurations which rapidly approaches measure

zero as N → ∞. It, also, neatly defines the N = 1 limit of the NC-DMC method to

simply be a variational computation with trial function, ψT . If too many sign-collapsed

configurations are identified, the number of walkers should be increased. However,

reweighting either in mean field or exactly corrects for sign collapse but error to be

corrected scales as O(1/N).

5.4.6 Special Case Boundary Conditions

For completeness, we consider systems in which the diffusion-drift operator cannot be

applied such that the boundary conditions are satisfied, for example where ΨT → 0 in

some region. Note, the order of operations should be reversed for this case. The QDO

Hamiltonian studied herein is sufficiently simple that the drift-diffusion operator can be

applied “properly”. In general, any walker that violates the boundary conditions must

be rejected and its rejection probability, n(−)(ri) cannot be scaled so that it is different

from unity. If n̄(−) < n̄(+) and the self-consistency condition given in Eq. (5.5) has

a solution, the NC-DMC method needs no modification. When n̄(−) < n̄(+), the new

self-consistency condition

w(−)(r)n̄(−)(r) =
∑

i

n(−)(ri)θ
(+)(n(−)(ri) − 1)

+ w(−)(r)
∑

i

n(−)(ri)θ
(−)(1 − n(−)(ri)),

w(−)(r) =
w(−)(r)n̄(−)(r)

4w(−)(r)n̄(−)(r) − 2n̄(+)(r)
> 0,

is imposed. For those rare N -walker configurations for which self-consistent solutions

do not exist, all walkers that violate the boundary conditions are removed. The new

ensemble of size Nnew < N is then grown back to size N by randomly copying the
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remaining walkers with equal probability as described in the first paragraph of this

subsection. Again, these fixes for configurations of measure zero are not history

dependent. Note, the method of Ref. [UNR93] can be implemented so as to reject

boundary condition violating moves at the drift/diffusion step thereby obviating the

above procedure. That is, we can use Diffuse/Flow propagators that respect the

boundary conditions.

5.4.7 Testing NC-DMC

In order to test the new NC-DMC technique and the new drift-diffusion evolution

operator, the harmonic oscillator is studied

Ĥ = T̂ +
mω2x̂2

2
,

E0 =
~ω

2
,

ψ0 =
(mω

π~

)1/4
exp

(

mωx2

2~

)

,

ψT (λ) =

(

mωλ

π~

)1/4

exp

(

mωλx2

2~

)

,

ET = 〈ψT | Ĥ − E0 | ψT 〉 =
~ω(1 − λ)2

4λ
.

Tests are performed using λ = 0 and λ = 0.9.

In Fig. 5.4, a NC-DMC study of the convergence of the ground state energy with

imaginary time step, Fig. 5.4(top), and walker number, Fig. 5.4(bot), are presented for

the λ = 0 trial function (no importance sampling). The results converge as τ2 to the

correct value (E0(τ) − E0 is presented in the figure). Approximately 200 walkers are

required to generate converged results.

In Fig. 5.5, the same study is performed using the λ = 0.9 trial function both

with and without the improved drift-diffusion evolution operator. Again, appropriate

convergence behavior is observed with the improved drift-diffusion evolution operator

exhibiting faster convergence with τ . Approximately 200 walkers seems to be required

to generate accurate results.
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Figure 5.4: (left) The convergence of the ground state energy with imaginary time step
for the one-dimension harmonic oscillator computed using the NC-DMC method with
ψT = 1 and N = 1000 walkers. (right) The corresponding convergence of the ground
state energy with walker number computed using an imaginary time step of τ~ω = 0.02.
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Figure 5.5: (top-left)The convergence of the ground state energy with imaginary
time step for the one-dimensional harmonic oscillator computed using the NC-DMC
method with ψT = ψ0(λω);λ = 0.9; ǫ 6= 0 and N = 1000 walkers. (top-right)The
corresponding convergence of the ground state energy with walker number computed
using an imaginary time step of τ~ω = 0.1. (bot-left)The convergence of the ground
state energy with imaginary time step for the one-dimensional harmonic oscillator
computed using the NC-DMC method with ψT = ψ0(λω);λ = 0.9; ǫ = 0 and N = 1000
walkers. (bot-right)The corresponding convergence of the ground state energy with
walker number computed using an imaginary time step of τ~ω = 0.002.
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5.4.8 Analytical studies of Diffuse-Drift Error

Exact results for harmonic systems can be obtained and used to aid in accessing the

accuracy of the new approach. The general expression

〈x | exp(−τÔ) | x′〉 ≡ 〈x | ΨT exp(−τĤ)ΨT
−1 | x′〉,

can be evaluated analytically for the special case Ĥ = T̂ + mω2x2/2 and ĤT = T̂ +

mω2λ2x2/2 as described in Ref. [Fey72],

〈x | exp(−τÔ) | x′〉 =
[

mω

2~ sinh(τ~ω)

]1/2

exp

{

−mω
2~

[

1

sinh(τ~ω)
(x− x′)2

+ tanh

(

τ~ω

2

)

(x2 + x′2) + λ(x2 − x′2)

]}

.

The approximate propapagor of the text can also be generated analytically for harmonic

systems,

〈x | exp
(

−τ ˆ̃O(τ)
)

| x′〉 = 〈x | e−τV̂ /2e−τÔe−τV̂ /2 | x′〉

=

[

mωa(τ, ω, λ)

2

]1/2

exp
{

−mω
2~

[

a(τ, ω, λ)(x − x′)2

+ b(τ, ω, λ)(x2 + x′2) + λ(x2 − x′2)
]}

,

where

a(τ, ω, λ) =

[

λ

sinh(τ~ωλ)

] [

1 +

(

τ~ω(1 − λ2)

2λ

)

tanh

(

τ~ωλ

2

)]−1

,

b(τ, ω, λ) = λ tanh

(

τ~ωλ

2

)

− 2a(τ, ω, λ) +
2λ

sinh(τ~ωλ)
.

Since the approximate expression has same the form as the exact result, the finite τ

propagator can be mapped on to its exact solution at arbitrary β = Pτ through the

definition of three effective parameters

ω̃(τ) =

(

2

τ~

)

sinh−1

(

[

a(τ, ω, λ)

2b(τ, ω, λ)

]1/2
)

,

m̃(τ) =

(

mωa(τ, ω, λ,m)

ω̃(τ)

)

sinh(τ~ω̃(τ)),

λ̃(τ) =

(

mωλ

m̃(τ)ω̃(τ)

)

.
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Here, only the τ dependence of the effective parameters is referenced explicitly. Finite

imaginary time step dependent expressions for the DMC energy estimators follow

Ẽ0(τ) =
~ω̃(τ)

2
,

ẼH(τ) =

〈

ĤψT (λ)

ψT (λ)

〉

f̃(τ)

=
~ωλ

2
+

〈

mω2(1 − λ2)

2
x2

〉

f̃(τ)

=
~ω

2

[

λ+

(

[1 − λ2]λ̃(τ)

[1 + λ̃(τ)]λ

)]

.

where

f̃(x; τ) =

(

m̃(τ)ω̃(τ)[1 + λ̃(τ)]

2π

)1/2

exp

(

−m̃(τ)ω̃(τ)[1 + λ̃(τ)]

2
x2

)

.

The Ẽ0(τ) estimator exists when λ → 0 because the limits of a(τ, ω, 0) = 1/τ~ω and

b(τ, ω, 0) = τ~ω/2 are well defined. In the limit λ → 1 both estimators properly yield

the ground state energy E0 = ~ω/2. In Fig. 5.6(l), the convergence of the NC-DMC

method to the exact finite imaginary time step results is shown for both a small and

a large imaginary time step. The faster convergence of the mean field correction to

NC-DMC is demonstrated at finite τ in Fig. 5.6(r).
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Figure 5.6: (a) The convergence of the ground-state energy as a function of walker
number for the one-dimensional harmonic oscillator computed using the NC-DMC
method with ΨT = Ψ0(λω); λ = 0.9; ǫ 6= 0 at two imaginary-time steps:
τ~ω = 0.6(dash) and τ~ω = 0.06(cross). Convergence is presented relative the
exact finite imaginary-time step results ẼH(0.6/~ω) − ~ω/2 = 1.576 × 10−4 and
ẼH(0.06/~ω) − ~ω/2 = 1.642 × 10−6 , respectively. (b) The improvement wrought
by mean-field trajectory weighting procedure at imaginary-time step τ~ω = 0.06. The
crosses are generated using the mean-field trajectory weighting correction while the xs
are generated using NC-DMC.
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Chapter 6

New Trial Wavefunctions

for the QDO

We explore various new trial wavefunctions for the QDO, suitable for use in DMC. We

start with quadratic dipole-dipole wavefunctions inspired by chapter 3, then incorporate

higher-multipole interaction terms, and then describe an iterative method for generating

many-body multipole interaction terms, the method that inspired the diagrammatic

expansion in chapter 4. We finally settle on a trial wavefunction useful for Quantum

Drudes which very accurately includes the effect of the off-site Coulomb interaction

(Drude - charge) with the on-site harmonic interaction (Drude - nucleus), except

there is damping. Thus the trial wavefunction has some 3-body character (pseudo-

electron/pseudo-nucleus/external-charge) which is specific to the Quantum Drude (it

is similar to but not the same as a Hydrogen atom interacting with a charge). This

trial wavefunction allows us to calculate energies for large systems to high accuracy, as

will be demonstrated in the following chapter. We also sketch current work towards a

version of this wavefunction that has improved close-range damping.

6.1 Trial wavefunctions for the Dipole limit

6.1.1 General Approach for a Quadratic Perturbation

We can extend the harmonic oscillator trial wavefunction by adding a quadratic matrix

term xMx that couples the oscillation coordinates x:

ΨT = e−
mω
2~

(x2+αxMx) .
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Then we plug it into the formulae for DMC. For QDO’s only the coupling is interesting,

so we drop the constant zero energy of the oscillation of the dipoles (3N
2 ~ω). Recall

α = q2(mω2)−1. This gives us:

Ĥ = − ~2

2m∇2 + 1
2mω

2x2 − 3N
2 ~ω + φ ,

vdrift ≡ ~

m∇ log ΨT = −ωx− ωαMx .

Now we introduce our energy estimator and multiply/contract energy hpsi(x) = ĤΨT
ΨT

,

as used in our DMC code.

hpsi(x) = − ~2

2m [∇ log (ΨT)]2 − ~2

2m

[

∇2 log (ΨT)
]

+ 1
2mω

2x2 − 3N
2 ~ω + φ

− ~2

2m [∇ log (ΨT)]2 = − ~2

2m

[

−mω
~

(x+ αMx)
]2

= −1
2mω

2x2 −mω2αxMx−mω2 α2

2 xMMx

− ~2

2m

[

∇2 log (ΨT)
]

= − ~2

2m

[

−mω
~

(3N + αTr(M))
]

= +3N
2 ~ω + 1

2~ωαTr(M)
,

hpsi(x) = φ(x) −mω2αxMx−mω2 α2

2 xMMx+ 1
2~ωαTr(M)

= φ(x) − q2xMx− q2 α
2xMMx+ 1

2~ωαTr(M) .

We want to reduce the variance of hpsi(x) so we can choose M accordingly. The

quantity 1
2~ωαTr(M) would then be part of the zero-point energy.

One way to choose M is to use a variational approach; we would try various forms of

M with different parameters to get the smallest variance of hpsi(x). However that

would be time consuming and dependent on the system/configuration under study.

A more general approach is to use these remaining quadratic terms to cancel quadratic

terms in the potential:

In this context, that would mean using both terms to subtract the dipole-dipole parts

of the total interaction: (−q2xMx−q2 α
2xMMx = −1

2q
2xTx), but that involves taking

the square root of a matrix which would be too expensive.

Instead, we will use one term (−q2xMx) as the second term is usually small.

Symmetrise the Perturbation

Expresssions are simpler when the matrix M is symmetric, so any potential terms that

we wish to cancel should also be expressed in a symmetric form.
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6.1. Trial wavefunctions for the Dipole limit

For example, the sum over all two-body dipole-dipole interactions:

φdipole-dipole =
∑

i>j q
2xiTijxj , triangular form

→ ∑

i6=j
1
2q

2xiTijxj . symmetric form

This factor of 1
2 will appear in every case when we sum up two-body interactions.

Note on Implementation

For implementation in a computational algorithm, we made the following rearrange-

ment, which is possible if M is symmetric (for example, T is symmetric).

xM2x means xTMMx

= (xTMT )(Mx)

≡ y2 =
∑

i

y2
i ,

where yi = Mijxj .

As the vector Mx gets used twice for hpsi(x) and once in the drift v, it is more efficient

to store it once it is calculated. This kind of saving comes up with PIMD as well.
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Chapter 6. New Trial Wavefunctions for the QDO

6.1.2 Simple Dipole Approximation

Using the form just described, we want an hpsi(x) in which the real-space dipole-dipole

part of the electrostatic potential is cancelled by a term from the wavefunction.

φdpl = −1
2q

2xTx ;

we want φ→ φ− φdpl = φ+ 1
2q

2xTx .

So choose M = −1
2T:

hpsi(x) = φ(x) − q2xMx− q2 α
2 xMMx+ 1

2~ωαTr(M)

= φ(x) + q2

2 xTx− q2α
8 xTTx− α

4 ~ωTr(T)

= φ(x) + q2

2 xTx− q2α
8 xTTx

∵ Tr(T) = 0 (in real space).

The implied wavefunction turns out to be the first-order perturbed wavefunction that

was derived in the dipole-limit chapter.

ΨT = e−
mω0
2~

(x2−α
2 µTµ) .

Plug everything we need into our formulae:

vdrift ≡ ~

m∇ log ΨT = −ωx+ α
2ωTx .

hpsi(x) = φ(x) + q2

2 xTx− q2α
8 xTTx .

This leaves only one object that is expensive to calculate
[

O
(

N2
)]

:

Mx = −1
2Tx =⇒ (Mx)i = −1

2Tijxj .

6.1.3 Reaction Field Approximation

We can also adapt the trial wavefunction to cancel out the effective reaction

electric-field that is used in the simulation (see Leeuw, Perram and Smith for the

derivation[dLPS80]). In practice we found that this was too small a term to be bothered

about, but we show the notes because they are interesting, and it is an illustration of

how both wavefunction terms can be used.

This time the term we wish to cancel is the effective field that reacts to the total
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6.1. Trial wavefunctions for the Dipole limit

dipole moment of the periodic simulation box:

φreact ≡ +1
2

4π

vol

1

2ǫs + 1

∣

∣

∣

∣

∣

∑

i

q~xi

∣

∣

∣

∣

∣

2

= +1
2q

2RxΣx ,

where R ≡ 4π

vol

1

2ǫs + 1
, Σ ≡













δ δ · · · δ

δ δ δ
...

. . .
...

δ δ · · · δ













.

This time we can do clever things with the matrix Σ that allow us to cancel both terms

with no extra (computational) work:

we want φ→ φ− φreact = φ− 1
2q

2RxΣx ;

=⇒ −1
2q

2RxΣx = −q2xMx− q2 α
2 xMMx

=⇒ RΣ = 2M + αM2 .

The following insight allows us to solve the equation exactly:

Σ2 ≡













δ δ · · · δ

δ δ · · · δ
...

δ δ · · · δ

























δ δ · · · δ

δ δ δ
...

...
...

δ δ δ













=













Nδ Nδ · · · Nδ

Nδ Nδ Nδ
...

. . .
...

Nδ Nδ · · · Nδ













= NΣ ,

let M = MΣ ,

then RΣ = 2MΣ + αNM2Σ ,

=⇒ M = 1
Nα

(

±
√

1 +NαR− 1
)

,

M = 1
Nα

(√
1 +NαR− 1

)

(choose the smallest magnitude).

Now we need to know Tr(M) and Mx :

Tr(M) = MTr(Σ) = 3NM,

Mx ≡MΣx = M













δ δ · · · δ

δ δ · · · δ
...

δ δ · · · δ

























~x1

~x2

...

~xN













= M













∑

i ~xi
∑

i ~xi

...
∑

i ~xi













= M~xtot













1

1
...

1













,
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Chapter 6. New Trial Wavefunctions for the QDO

where ~xtot ≡
∑

i

~xi , M ≡ 1
Nα

(√
1 +NαR − 1

)

, R ≡ 4π

vol

1

2ǫs + 1
.

Finally plug them into our formulae:

~vdrift = −ω~x− ωαM~x

= −ω~x− 1
N

(√
1 +NαR− 1

)

ω~xtot ,

hpsi(x) = φ(x) − q2xMx− q2 α
2 xMMx+ 1

2~ωαTr(M)

= φ(x) − φreact + 3
2

(√
1 +NαR− 1

)

~ω,

where M ≡ 1
Nα

(√
1 +NαR− 1

)

Σ , R ≡ 4π

vol

1

2ǫs + 1
.

It turns out that the reaction energy is small. It is also interesting to note that it is a

function of the number density (N/vol). This means that it will also fall in significance

for larger systems, which will have correspondingly larger energies.

6.1.4 Reciprocal Dipole Approximation

We can further extend the dipole trial wavefunction so that it cancels all the dipole

terms from both the real-space and reciprocal-space parts of the ewald sum.

This time we want

φ → φ− φdipole ,

φdipole = φdipole,short + φdipole,long (defined in the chapter on QDO’s)

= xiαxjβ∇iα∇jβ φdipole,short + xiαxjβ∇iα∇jβ φdipole,long .

We have 3 distinct parts, for which the theory is separable from one another, but in

practice all 3 need to be applied as they cancel each other to some extent.

φdipole,short is straightforward, as we use the same tensor as for a pure dipole potential.

We need to be a little careful, as this tensor has non-zero trace, and there will be

effective self-interactions due to images outside the first box (The same is also true of

100



6.2. Trial Wavefunctions for the Full Model

the long-range part).

Tr(Mshort) =
∑

i,ℓ>0

1
2q

2 [1 − damp(|R|)] 4α3
ew√
π
e−α2

ewR2
.

φdipole,long is more complicated, as it is not immediately obvious that we can deconstruct

it like this. It can be done, however: see the appendix.

(Mx)iα = 1
q2

1
2∇iα φdipole,long

= 4π
det(h)

∑

∀k∈1
2Z3

[

1
κ2 e

− κ2

4α2
ew κα(aκ,iAκ + bκ,iBκ)

]

− 2α3
ew

3
√

π
xiα ,

Tr(Mlong) = 1
q2

1
2∇2φdipole,long

= 4π
det(h)

∑

∀k∈1
2Z3

[

1
κ2 e

− κ2

4α2
ew Nκ2

]

− 2(3N)α3
ew

3
√

π
,

with κ = 2πkh−1 ,

aκ,i = cos(κ ·Ri) , Aκ =
∑

i

(xi · κ) cos(κ · Ri) ,

bκ,i = sin(κ · Ri) , Bκ =
∑

i

(xi · κ) sin(κ ·Ri) .

φreact was done in a precise way above but we used a simpler version (first order in M)

that avoids cross-terms with the dipole matrix.

(Mx)iα = 1
2Rxtot,α , where ~xtot =

∑

j

~xj

Tr(R) = 3NR ,

where R ≡ 4π

vol

1

2ǫs + 1
.

6.2 Trial Wavefunctions for the Full Model

The full model contains polarisability not just in the dipole limit but beyond. This

means that the true wavefunction will be non-quadratic, but the efficiency of DMC

would be improved if we could include some non-quadratic perturbations. There are 3
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Chapter 6. New Trial Wavefunctions for the QDO

ways of attacking this problem:

Fitted Jastrow terms which suffer from the fact any simple functional form will not

be very like the true wavefunction.

Multipole expansion which suffers from the fact that the series is divergent, and

each term needs to be damped by a function of interatomic separation.

Direct Coulomb-perturbation which shows better promise, and can be damped

with one function.

6.2.1 Fitted Jastrow Terms

One major flaw of the above wavefunctions is that they are very good approximations at

long distance, but are very poor at short range, where the magnitude of the coulombic

interactions are actually the greatest. One of the major sources of error is when a drude

particle gets close to another drude particle or another nucleus. There is a damping

term on the potential that prevents nasty singularities at r = 0, but at intermediate-

small r, the trial wavefunction contains nothing that reflects the distribution of particles

due to close-range repulsion or attraction. This means that the distribution is shaped

almost entirely by the stochastic multiply/contract step of DMC, which results in a

higher variance of hpsi, and ultimately requires much more sampling.

Here we discuss an attempt shape the wavefunction with a Jastrow function to

reduce the reliance on the multiply/contract or population operator. In the end, it did

not perform well, but we include it for interest.

Form and Implementation

But we can add terms to the potential in an empirical manner that helps to correct the

distribution and reduce the variance of the sampling.

We tried the following form for the wavefunction:

ΨT,jastrow = exp

{

(ar − b)
[

1 +
(

r
c

)8
]−1
}

= exp {J(r)} , which defines J(r(x)) .

One set of parameters aDD, bDD, cDD were chosen to try to match an empirical radial

distribution of the drudes with other drudes, and another set aDN, bDN, cDN to match

that of drudes around other nuclei. If we combine this wavefunction by multiplying it
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6.2. Trial Wavefunctions for the Full Model

with our existing ones, this gives us:

ΨT = exp
{

−mω
~

(

1
2x

2 + αF (x)
)

+ J(x)
}

= exp
{

−mω
~

(

1
2x

2 + αF (x) − ~

mωJ(x)
)}

.

But because we ignore the zero point energy of the harmonic oscillator, we can split up

the wavefunction into two parts:

ΨT = ΨSHOΨ∆ ,

ΨSHO = exp
{

−mω
2~
x2
}

,

Ψ∆ = exp
{

−mω
~
αF (x) + J(x)

}

.

By analogy from the multipole wavefunction, we can simply do:

Ĥ = − ~2

2m∇2 + 1
2mω

2x2 − 3N
2 ~ω + φ (as always),

vdrift ≡ ~

m∇ log ΨT = −ωx+ ~

m∇ log (Ψ∆) ,

hpsi(x) ≡ 1

ΨT
ĤΨT

= − ~
2

2m [∇ log (ΨT)]2 − ~
2

2m

[

∇2 log (ΨT)
]

+ 1
2mω

2x2 − 3N
2 ~ω + φ

− ~
2

2m [∇ log (ΨT)]2 = − ~
2

2m

[

−mω
~
x+ ∇ log (Ψ∆)

]2

= −1
2mω

2x2 + ~ω x·∇ log (Ψ∆) − ~
2

2m [∇ log (Ψ∆)]2

− ~
2

2m

[

∇2 log (ΨT)
]

= − ~
2

2m

{

−mω
~

(3N) + ∇2 log (Ψ∆)
}

= +3N
2 ~ω − ~

2

2m∇2 log (Ψ∆)
,

hpsi(x) = φ(x) + ~ω x·∇ log (Ψ∆) − ~2

2m [∇ log (Ψ∆)]2 − ~2

2m∇2 log (Ψ∆) .

We need to calculate ∇ log (Ψ∆) and ∇2 log (Ψ∆) :

∇ log (Ψ∆) = −mω
~
α∇F (x) + ∇J(x) ,

∇2 log (Ψ∆) = −mω
~
α∇2F (x) + ∇2J(x) .

The expressions for ∇J(x) and ∇2J(x) can be calculated using the chain-rule for

differentiation. They are not complicated to implement, but they are complicated

to write down and unenlightening, so I have omitted them.
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Evaluation of this approach

We realised at a very early stage that the Jastrow corrections were contributing very

little to the accuracy of calculations, suggesting we needed a more complex form than

this. Initial results showed that dipole-moments and higher multipole corrections (see

next section) actually made this form of the Jastrow function less useful, so we did not

pursue it in detail.

6.2.2 Trial wavefunction with Multipole-Expansion

We can expand any two body potential as follows, using ~R as the internuclear

coordinates, and ~x as the drude coordinates. As our Quantum Drudes are centred

on pseudo-nuclei of equal and opposite charge, the O
(

x0
)

term of the potential is

cancelled. Then, at O (xn), we get n terms:

φij =

∞
∑

n=1

φ(n)ij , where φ(n)ij = q2
n−1
∑

m=1

1
m!

1
(n−m)!x

(m)
i T(n)ij(~Ri, ~Rj)x

(n−m)
j ,

where T(n) = the nth rank tensor derivative of
(

1
R

)

,

so that x
(m)
i ≡ xiα1xiα2 · · · xiαm ,

and x
(n−m)
j ≡ xjαm+1 · · · xjαn .

Previously we had:

ΨT = e−
mω
2~

(x2+αxMx) .

We can generalise this again:

ΨT = exp
{

−mω
~

(

1
2x

2 + αF (x)
)}

.

Which gives us a general expression for the energy estimator, (more below)

1

ΨT
ĤΨT = φ(x) − q2x·∇F (x) − q2 α

2 [∇F (x)]2 + 1
2~ωα∇2F (x) .

It turns out that for QDO’s in a Coulomb field, ∇2F is approximately zero, whereas

[∇F (x)]2 does not vanish, and is an order more complicated than F itself. As the

variance of the energy estimator and the error of the wavefunction are related, we

can improve the quality of the wavefunction by seeking to reduce the variance of the
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6.2. Trial Wavefunctions for the Full Model

estimator. We do this by choosing F such that strongly varying terms are cancelled,

in particular the external potential:

φ(x) = q2x·∇F (x) . (6.1)

In the dipole limit, this would return to the simple dipole approximation we made

above, but now we have a result that is generally true.

Constructing the Perturbation

Now we choose a particular form of F (x) to cancel terms in the potential φ(x):

φ(x) =
∑

i>j φij(x) triangular form (as in the code)

= 1
2

∑

i6=j φij(x) symmetric form (clearer maths),

where φij(x) =

4
∑

n=2

φ(n)ij(x) + O
(

x5
)

.

Likewise

F (x) =
∑

i>j

Fij(x) = 1
2

∑

i6=j

Fij(x) ,

Fij ≡
4
∑

n=2

1
nf(n)ij(x) , where f(n)ij ≡ 1

q2φ(n)ij .

Notice that each component function f(n) is the nth order term of the Taylor expansion

of the potential. The extra factor of 1
n is added because

x·∇f(n)ij = [xi ·∇i + xj ·∇j ] f(n)ij = nf(n)ij ,

=⇒ q2x·∇
(

1
nf(n)ij

)

= q2f(n)ij = φ(n)ij ,

=⇒ q2x·∇Fij = φij −O
(

x5
)

,

=⇒ q2x·∇F (x) = φ(x) −O
(

x5
)

.

So F (x) is derived from φ(x) but is different.
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Plugging into DMC

We plug the new wavefunction into our standard formulae,

remembering to drop the zero-point energy
(

3N
2 ~ω

)

, and that α = q2(mω2)−1.

This gives us:

Ĥ = − ~2

2m∇2 + 1
2mω

2x2 − 3N
2 ~ω + φ ,

vdrift ≡ ~

m∇ log ΨT = −ωx− ωα∇F (x) ,

hpsi(x) ≡ 1

ΨT
ĤΨT

= − ~2

2m [∇ log (ΨT)]2 − ~2

2m

[

∇2 log (ΨT)
]

+ 1
2mω

2x2 − 3N
2 ~ω + φ ,

− ~2

2m [∇ log (ΨT)]2 = − ~2

2m

[

−mω
~

(x+ α∇F (x))
]2

= −1
2mω

2x2 −mω2αx·∇F (x) −mω2 α2

2 (∇F (x))2 ,

− ~2

2m

[

∇2 log (ΨT)
]

= − ~2

2m

{

−mω
~

(

3N + α∇2F (x)
)}

= +3N
2 ~ω + 1

2~ωα∇2F (x) ,

hpsi(x) = φ(x) −mω2αx·∇F (x) −mω2 α2

2 [∇F (x)]2 + 1
2~ωα∇2F (x)

= φ(x) − q2x·∇F (x) − q2 α
2 [∇F (x)]2 + 1

2~ωα∇2F (x) .

Energy Terms

We have a term that cancels the potential up to O
(

R−6
)

:

x·∇F (x) = f(2)(x) + f(3)(x) + f(4)(x)

= 1
q2φ(x) −O

(

x5R−6
)

.

And we have a remainder term, which is also O
(

R−6
)

:

∇F (x) ≈ f(2)(x) ≈ O
(

xR−3
)

,

=⇒ (∇F (x))2 ≈ O
(

x2R−6
)

.

Beyond R−6, 3-body terms (for example triple-dipole interactions) appear in this term,

and would need similar terms to appear in the wavefunction to cancel them.
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Fortunately this choice of F (x) allows us to omit ∇2F (x) because ∇2f(n)(x) is

identically zero for all n (see appendix), which derives from the fact that ∇2φ(x) equals

zero, and therefore all its tensor derivatives are also zero. Note, this is only true of

this two-body multipole expansion form, which is a special case. It is not true of the

following wavefunctions, for which ∇2F (x) may be non-zero. That leaves

hpsi(x) = φ(x) − q2x·∇F (x) − q2 α
2 [∇F (x)]2 .

All that remains now is to evaluate the vector ∇F (x), for each term in the expansion.

Extension to Reciprocal Space?

It would be possible to extend the multipole expansion into reciprocal space if necessary,

in a manner analogous to the dipole limit, but we have not examined this in great detail

yet, as these are not the major contributors to the energy.

6.2.3 Trial wavefunction with Many-Body terms

The kind of wavefunction we used above is perfectly general:

ΨT = exp
{

−mω
~

(

1
2x

2 + αF (x)
)}

.

We generalise it again slightly by αF (x) → G(x):

ΨT = exp
{

−mω
~

(

1
2x

2 +G(x)
)}

.

Again, it gives us:

hpsi(x) = φ(x) − q2

α x·∇G(x) − q2

2α (∇G(x))2 + 1
2~ω∇2G(x) .

Our approach in eqn. 6.1 above was to use
[

− q2

α x·∇G
]

to cancel simply φ(x).

We can go further by using
[

− q2

α x·∇G
]

to cancel not only φ(x) but also successive

orders of
[

q2

2α (∇G)2
]

and
[

1
2~ω∇2G

]

, except for terms that come out as constants,

which we will put into successive terms of the energy E.

In algebra, we break G into sets Gn,m, where n is the number of times a coulomb

interaction (yellow box) appears in the term, and m is the number of extra contractions
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(more than the minimum required to connect all the instances). These can be visualised

in the diagrams in section 4.4 (figs. 4.2, 4.3 and 4.4). Thus n refers to the column of

the diagram, counting from n = 1, while m refers to the row, counting from m = 0.

G(x) = G1,0 + [G2,0 +G2,1 + · · · ] + [G3,0 +G3,1 + · · · ] + · · · .

They are related as follows:

x·∇G1,0(x) ≡ α
q2φ(x) ,

x·∇Gn,m(x) ≡ 1
2

n−1
∑

ν=1

m
∑

µ=0

[∇Gν,µ(x)]·[∇Gn−ν,m−µ(x)] ,

+ α
2q2 ~ω∇2Gn,m−1(x) .

Each term in G is trivial to integrate if each is a polynomial of degree integer ℓ; the

x·∇ operation simply multiplies by ℓ. This series can be ‘seeded’ by writing down the

potential φ as a multipole expansion.

φ =

∞
∑

ℓ=0

φℓ, where φℓ ≡
∑

k

1
(k)!(ℓ−k)!x

kT(ℓ)xℓ−k .

Terms of the interaction energy can be read off by summing up terms that are constant

with respect to x. This is how the the expansion in fig. 4.2 on pg. 52 was generated.

En,m = q2

2αGn,m(�x) = q2

2αGn,m(x = 0) .

The terms which are of order 1 = (~ω)0, (the set En,0) would all exist in the classical

limit. That means that they exist for classical drude oscillators. If you look at the

diagram in the QDO chapter, these are all the terms in the top row. Note that there

are rather a lot of them, and they get quickly very complex. The Quantum Drude has

even more, and one of the great advantages of the Quantum Drude model, is that these

energies can be sampled directly without calculating individual terms.

The above derivation shows how many-body multipole terms could be added iteratively

to a DMC wavefunction, so give more than just an energy expansion. Unfortunately

this approach does not transfer well to PIMD beyond quadratic terms (that is, dipole-

dipole). Additionally, the multipole expansion in general is not a good description when

charges get too close to one another (the series diverges, and would require damping

on each term). The following solution should be better able to cope with this.
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6.3 Trial wavefunction for Coulomb Interaction

The dipole-limit expansion allows us to project out about half the (ground-state Born-

Oppenheimer) interaction energy for a Quantum Drude model Xenon dimer near its

minimum (see fig. 7.1 in the next chapter), and this is because the dipole-dipole

interaction is only about half the interaction energy at that point.

Thus we tried a multipole expansion. The great advantage of a multipole expansion

is that it generates polynomial expressions that are easy to integrate term by term, like

the dipole-limit. The major disadvantage is that the series diverges when a particle

gets too close to the other charge. A multipole expansion could be used, but it would

require damping on every term, requiring a very involved parameter-fitting procedure.

It would be far better to find a single function F (x) that cancels the entire coulomb

potential φ(x) in one. Following the pattern established above, in eqn. 6.1, this means

finding a function that satisfies

x·∇F (x) = 1
q2 φ(x) .

Perhaps surprisingly, it turns out that there is a simple function that does this even

for the off-centre coulomb potentials that perturb Quantum Drudes in the full model.

x·∇F (x) =
1

|x−R| . (6.2)

There is a small complication because we want ∇F to be well-behaved at x = 0.

This means that we must have (x·∇F )|x=0 = 0, so we need to subtract a 1
|R| from the

right hand side and add it to the Hamiltonian as a constant. This problem did not

arise for the dipole-limit, or multipole expansion because we did not consider the 0th

multipole moment (charge) as we do now. Thus we have:

x·∇F (x) =
1

|~x− ~R|
− 1

|~R|
. (6.3)

(6.4)

6.3.1 Solution of F

Transform the equation into spherical polars, where it simplifies:

r ∂
∂rF (r; θ, φ) =

1

|~r − ~R|
− 1

|~R|
,

F (r; θ, φ) =

∫ r

0

1

r

[

1
|~r−~R| −

1

|~R|

]

.
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Now let ~R be along the polar axis:

F (r; θ, φ) =

∫ r

0

1

r
√
r2 +R2 − 2rR cos θ

− 1

rR
.

Then integrate (we used Wolfram online integrator):

F (r; θ, φ) = − 1
R ln

[

R
√

r2 +R2 − 2rR cos θ +R (R− r cos θ)
]

.

And transform back to cartesian coordinates.

F (x) = − 1
|R| ln [|R| |R− x| +R·(R− x)] ,

∇F (x) =
1

|R| |R− x|
|R| (~R− ~x) + |R− x| ~R

[|R| |R− x| +R·(R− x)]
,

∇2F (x) = 0 .

Sum F contributions

For a particular set of molecules, each coulomb interaction as to be cancelled by an

F -like term. For an example, we can look at the Xenon model (described later). All

we need to know right now is that each Quantum-Drude is centred on a nucleus of

opposite charge. This allows some simplification.

φtotal =
∑

j>k

qDqD
|Rjk + xk − xj|

+
qDqn

|Rjk − xj|
+

qnqD
|Rjk + xk|

+
qnqn
|Rjk|

=
∑

j>k

[

qDqD
|Rjk + xk − xj|

− qDqD
|Rjk|

]

+

[

qDqn
|Rjk − xj |

− qDqn
|Rjk|

]

+

[

qnqD
|Rjk + xk|

− qnqD
|Rjk|

]

+
qDqD
|Rjk|

+
qnqD
|Rjk|

+
qDqn
|Rjk|

+
qnqn
|Rjk|

.

Thus, our total F perturbation is,

Ftotal =
∑

j>k

qDqD F (xj − xk;Rjk) +
∑

j 6=k

qDqn F (xj ;Rjk) ,
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6.3. Trial wavefunction for Coulomb Interaction

and the overall energy contains a constant, which disappears for a neutral atom, where

qD + qn = 0.

φ(0) =
(qD + qn)

2

|Rjk|
.

6.3.2 Wavefunction and Corrections

The above derivation assumed a wavefunction of the following form

ΨT = exp
{

−mω
~

(

1
2x

2 + αF (x)
)}

.

And the formulae we derived above (for multipoles):

Ĥ = − ~2

2m∇2 + 1
2mω

2x2 − 3N
2 ~ω + φ ,

vdrift ≡ ~

m∇ log ΨT = −ωx− ωα∇F (x) ,

hpsi = ���φ(x) −������
q2x·∇F (x) − q2 α

2 [∇F (x)]2 + 1
2~ωα∇2F (x) .

The remaining error involves [∇F (x)]2, and is related to 3-body correlations.

6.3.3 Simple Damping

The F function causes problems because it has a singularity in the potential at

|x − R| = 0, which is due to the singularity in the potential that it is designed to

cancel.

The potential we actually use is damped, but it is difficult to integrate, so we use an

approximate method for damping, with a new parameter σ.

x·∇F (x) ≈
(

1 − e−|x−R|4/λ4
)

1
|x−R| −

(

1 − e−|R|4/λ4
)

1
|R| ,

F (x) ≡ − 1
|R| ln {dampσ [|R| |R− x| +R·(R− x)]} .

Unfortunately this simple form leads to very complex expressions, but these can be
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kept manageable using the chain-rule for differentiation, both here and in the code.

∇F = − 1
|R|

1

dampσ

∂ dampσ

∂y
∇y ,

∇2F = 1
R2

(

1
dampσ

∂ dampσ
∂y ∇2y + 1

dampσ

∂2 damp2
σ

∂y [∇y]2 − 1
damp2

σ

[

∂ dampσ
∂y ∇y

]2
)

,

where y stands for [|R| |R− x| +R·(R − x)] .

The simple damping method is the one we used for most of our computational work,

as it worked well enough for our requirements. It turned out that, for each kind

of damped interaction, Drude-Drude, nucleus-Drude, we could use exactly the same

damping parameter, e.g. σDD = γDD, σnD = γnD

Unfortunately, this simple approach also has some potential problems. The damped

F -function implies a potential, via the expression φ = φ0 + x ·∇F . By damping the

argument of the log function, we introduce anisotropies around the charge centre. The

shape of the well is also the wrong shape. We tried replacing the existing damped

potential with this implicit potential but found that it did not perform well (no close-

range repulsion emerged). If we could create an F with an implicit potential that

matched the existing fitted potential reasonably well, we could drop it altogether, given

that they are intended to cancel each other.
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6.3. Trial wavefunction for Coulomb Interaction

6.3.4 Intelligent Damping

The function F was constructed as a function of the polar coordinates for x; r and

θ. Because the function is constructed via an integration in r, there is a θ-dependent

constant of integration, but it can be set to zero if the function is written in the following

form:

F (r, θ) = − 1
|R| log [|R||R− x| +R·(R− x)] +���c(θ)

= − 1
|R| log [|R||R− x|(1 − cosα)] , where cosα = R·(x−R)

|R||R−x| .

The problem with this expression is that it is infinite-valued where cosα = 1, caused

by integrating through the singularity at |R − x| = 0. This infinite value arises when

(1−cosα) → 0, so we would like to rearrange the expression to remove this singularity:

(1 − cosα) =
sin2 α

(1 + cosα)
=

|x|2
|x−R|2

sin2 θ

(1 + cosα)
.

Plugging this back in, we can find a solution that is finite for cosα = 1 (though now

infinite for cosα = −1), and the singularity is pulled out into an expression purely

dependent on θ, which can be absorbed into the integration constant c(θ).

F (r, θ) = − 1
|R| log [|R||R − x|(1 − cosα)]

= − 1
|R| log

[

|R||R − x| |x|2
|x−R|2

sin2 θ

(1 + cosα)

]

= − 1
|R| log

[ |x|2|R|2 sin2 θ

|R||x−R|(1 + cosα)

]

,

F (r, θ) = − 1
|R| log

[ |x|2|R|2 sin2 θ

|R||x−R| +R·(x−R)

]

+ c(θ)

= + 1
|R| log [|R||x−R| +R·(x−R)]

− 1
R log

[

|x|2|R|2
]

− 1
R log

[

sin2 θ
]

+ c(θ) .

This function tells us what F looks like on the far side of a damped charge (its

asymptotic form). What we need to do now is to develop a damped function to stitch

them together correctly in the vicinity of the charge. For example, if we want a constant,

flat potential in the vicinity of the charge:

F (r, θ) =

∫

V0

r
= V0 log r + c(θ) .
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Thus there are 3 parts to this function. The integration constants have been pulled

within the log bracket.

F (r, θ) ≈ − 1
|R| log [|R||R − x| +R·(R− x)] 0 < r < R−(θ)

≈ + 1
|R| log

[

c1(θ) r
Vc
]

R−(θ) < r < R+(θ)

≈ + 1
|R| log

[

c2(θ)
|R||x−R|+R·(x−R)

|x|2|R|2
]

R+(θ) < r .

These could all be put under a single log bracket, but unfortunately, the outer parts

have opposite sign, forcing one or other to have a singularity at |x − R| = 0. On the

other hand, we want the damping to be inside the brackets because log(0) is singular.

This is a nuisance. We need to define suitable switching functions.

Figure 6.1: 3 regions requiring 3 forms for the F-function. The region left unshaded
is where the existing (undamped) F (r; θ) is accurate. The circular area (// shading)
is the region in which the coulomb potential is damped, but where both the existing
F and the transformed F would be diverge at θ = 0, so a smooth F is needed. The
region beyond this (\\ shading) is where the transformed F (r; θ) is accurate, up to a
θ-dependent integration factor.
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6.3. Trial wavefunction for Coulomb Interaction

Fitting Procedure for the damped F

Produce an numerical function F (r) by integrating φ(r − R)/r numerically, well into

the far region where the potential damping has disappeared, and then fit the tail

(transformed) function, which means fitting the the θ-dependent integration constant

c2(θ) above.

To allow both forms to be damped, we need to damp out the branch point at

|r − R| = 0, from both log-functions, before we attempt to use a switching function.

This involves damping the argument of the log-function as for the simple damping case;

we can use the same damping function with a tighter radial parameter.

Then the front and back forms can be ‘stitched’ using a suitable switching function,

e.g. 1
2 (tanh [r − r0(θ)] − 1) and finally the central form can be ‘stitched’ in using an

appropriate short-range damping form.

This work is in progress. The branch points were a major headache, but using

the prescription just described, we anticipate that it will now be straightforward to fit

F -functions to arbitrary damped-coulomb potentials.
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Chapter 7

Xenon - a QDO Model

The ability of a full QDO model to treat Xenon solid will be stringently tested using

the accurate DMC methods described in the previous chapter. We begin by describing

the Quantum Drude model of Xenon that was originally constructed and fitted to gas-

phase measurements by Martyna and Whitfield[WM06], showing in particular how the

basic parameters of the Quantum Drude were chosen.

Next, using the DMC methods described in chapter 4, we perform DMC simulations,

including convergence tests, for the Xenon dimer, and Xenon FCC-crystal in the dipole-

limit and the full model. We graph the Born-Oppenheimer energy surface that exists

between two QD Xenon atoms, and demonstrate how well each trial wavefunction

contributes to the results, including the ‘Coulomb’ trial wavefunction that performs

particularly well for the full Quantum Drude model. For the dipole-limit FCC-crystal,

we have analytic results from matrix diagonalisation, which they reproduce perfectly.

For the full model, we calculate an accurate lattice constant plus accurate bulk modulus

for a QD Xenon FCC-crystal which both come out very close to experimental values,

showing that the way Quantum Drudes capture many-body dispersion makes them

truly transferable between gas and condensed phases, demonstrating the potential of

Quantum Drudes in general to produce highly-transferable, widely useful molecular

models.

7.1 The Model

The Quantum-Drude is a harmonic oscillator having two parameters m and ω that

describe its quantum distribution,

Ĥ0 = − ~2

2m∇2 + 1
2mω

2x2.
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Chapter 7. Xenon - a QDO Model

plus q its charge, which defines the strength of its interaction with other charges

(including other Quantum-Drudes).

It interacts with other Quantum Drudes and other nuclei through damped coulomb

potentials. The nuclei interact via coulomb potentials plus a repulsive correction which

attempts to take account of short range forces, especially Pauli exclusion which resists

overlap between atoms.

V (x, r) = 1
2

∑

j 6=k

VDD (|xj + rj − xk − rk|)

+
∑

jk

VnD (|xj + rj − rk|)

+1
2

∑

j 6=k

Vnn (|rj − rk|)

+1
2

∑

j 6=k

Vrep (|rj − rk|) ,

where the potentials have a standard form,

VDD(r) =
qDqD

(

1 − e−(r/γDD)4
)

r
,

VnD(r) =
qnqD

(

1 − e−(r/γnD)4
)

r
,

Vnn(r) =
qnqn

(

1 − e−(r/γnn)4
)

r
,

Vrep(r) = κ1 e
−λ1r + κ2 e

−λ2r + κ3 e
−λ3r.

A xenon atom is charge-neutral, so the charge on the Quantum Drude and that on the

nucleus must cancel: qD = −qn. The mass of a Xenon atom is also known: mXe =

131.29 a.m.u. The damping parameter between two nuclei should not matter greatly

as the nuclei should never get too close, and in any case, its effect can be balanced

by modifications to the repulsive correction. For aesthetic reasons only, Martyna and

Whitfield [WM06] chose γnn = γDD, although there is no real relationship between

these two parameters.
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That leaves the following parameters to be fitted:

qD m ω

γDD γnD

κ1 κ2 κ3

λ1 λ2 λ3 .

7.1.1 Fitting Polarisabilities

In a previous chapter (section 4.3), we derived the following relations,

α1 =
q2

µω2
, C6 = 3

4α1α1~ω ,

α2 = 3
4

(

~

µω

)

α1 , C8 = 5
(

~

µω

)

× C6 ,

α3 = 5
4

(

~

µω

)2
α1 , C10 = 245

8

(

~

µω

)2
× C6 ,

C9 = 1
4α1 × C6 ,

even though they hold perfectly only for Quantum-Drudes, they suggested the following

fitting procedure,

(1) ω =
1

~

4C6

3α2
1

,

(2) m =
~

ω

3α1

4α2
or m =

~

ω

5C6

C8
,

(3) q = ±
√

mω2α1 .

Martyna and Whitfield [WM06] generated Quantum-Drude parameters by this proce-

dure, using the following values for α1, C6, C8, and neglecting α2, as well as α3 and

C10.

α1 = 27.3 ω = 0.5152

C6 = 288 =⇒ m = 0.2541

C8 = 11000 qD = −1.357 .

Then we can plug these back in to the polarisation / dispersion relations, and compare
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the results with Certain’s newer paper [SC85]. Note that this means the values for

C6 and C8 no longer match perfectly, even though they were just used for fitting.

Nevertheless, this gives a good idea for what level of error still exists.

q −1.357
m 0.2541
ω 0.5152

Property Value Target Deviation

α1 27.30 27.30±0.03 0.0%±0.0%
α2 156.4 212.6±0.2 −26.4%±0.0%
α3 1991 3602±4 −44.7%±0.1%
C6 288.0 298.5±26.5 −3.52%±8.88%
C8 11000 11400±2500 −3.51%±21.93%
C10 514700 551500±123500 −6.67%±22.39%

Table 7.1: Polarisation and Dispersion coefficients for the Xenon model

7.1.2 Fitting Damping

As the damping contributes only part of the repulsive potential, and the rest of the

potential is added as an explicit force between the nuclei, there is no simple way to

determine exactly what the damping parameters should be. However, Martyna and

Whitfield discovered that the behaviour is fortunately not overly too sensitive to the

damping parameters [WM06]. In the end, the damping parameters were chosen by eye,

by their effect on the shape of the Born-Oppenheimer surface they generated at close

range. the set that best reproduced the experimental gas-phase potential[BWL+74] at

intermediate- and long-range, thereby limiting the explicit repulsion correction to the

short-range.
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7.2 DMC Simulations and Results

Here, the ability the trial wavefunctions developed for use with the QDO model to

treat model and realistic systems, is explored. The QDO trial wavefunctions are

tested through NC-DMC and variational Monte Carlo (VMC) studies of the xenon

dimer and the fcc-xenon crystal. Where possible comparisons are made to analytical

or experimental results as applicable. The notation NXe will be used to denote the

number of xenon Drude oscillator atoms and N the number of NC-DMC walkers,

below. Diffusion Monte Carlo with rejection[UNR93] appropriate for use with the

more complex trial functions has not been implemented.

7.2.1 Xenon Dimer, full QDO model, at T=0

It is useful to evaluate the quality of the QDO trial functions presented in the DMC

chapter through tests on the most basic system to which they can be applied, the xenon

dimer. In fig. 7.1, the variational dimer energy as a function of nuclear separation,

ET(R), is given for some of the trial wavefunctions described in the text, the on-site-

only trial function, the on-site-plus-dipole-dipole trial function, some related multipole

trial functions, and the on-site-plus-pair-coulomb model .

Results are compared to a high quality NC-DMC simulation estimate of E0(R)

(the correct results). The dipole-dipole trial function is a multipole expansion

correct to order O
(

x2
)

, whereas the dipole-quadrupole trial function and dipole-

octopole/quadrupole-quadrupole trial function are the expansions correct to O
(

x3
)

and O
(

x4
)

respectively (that is the dipole-quadrupole trial function builds on the

dipole-dipole trial function and so on). These results illustrate the fact that a multipole

expansion (in this case for a trial function) will converge at long range, but not at close

range.

The on-site-plus-pair-coulomb wavefunction performs particularly well, even at very

close range, predicting the well depth to within 10% percent.
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Figure 7.1: Variational energy ET(R) vs nuclear separation, for the full QDO model
xenon dimer is presented for 3 trial wavefunctions described in the text, from
top to bottom: the on-site-only trial function (red), the on-site-plus-dipole-dipole
trial function (green circle), the on-site-plus-dipole-quadrupole trial function (green
triangle), the on-site-plus-dipole-octopole/quadrupole-quadrupole trial function (green
square) and the on-site-plus-pair-coulomb trial function (blue). Results are compared
to E0(R), calculated from a converged NC-DMC study (purple).

Next, the convergence of the ground state energy of the xenon dimer at its minimum,

E0(Rmin), with imaginary time step and walker number is presented for the on-site-

plus-pair-coulomb trial function under NC-DMC (fig. 7.2). The observed behavior is

in accord with expectations (e.g. the convergence with N and τ is uniform and has

the appropriate power law dependence given the method of [UNR93] has not been

implemented.).
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(a) Convergence of E0 vs imaginary-time step
for the full QDO model xenon dimer computed
using the NC-DMC method with the on-site-
plus-pair-coulomb trial function.
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(b) Convergence of E0 vs walker number
computed using a time step of ~τ = 0.02au.
Note, the energy scale is on order 10µHartree,
stringently testing the method.

Figure 7.2: Convergence tests for DMC, Xenon dimer

7.2.2 Xenon FCC-crystal, in the dipole-limit, at T=0

Having demonstrated the stability and accuracy of the new techniques on small systems,

it is natural to examine larger systems for which high quality “exact” results can still

be obtained. The dipole limit QDO model for the perfect fcc-xenon solid can be solved

quasi-analytically in reciprocal space (a 6nsite×6nsite matrix constructed by appropriate

G-vector sums is diagonalized at each of the n3
cell k-points in Brillouin zone where

nsite = 4 for the fcc lattice and ncell is the number of fcc unit cells in the crystal of

interest, as opposed to diagonalizing a single 3NXe × 3NXe matrix). The results of a

NC-DMC study of the dipole limit QDO model of the perfect fcc-xenon solid at the

experimental lattice constant performed using ~τ = 0.01 N = 1000 and the on-site-

plus-dipole-dipole trial function are compared to the analytical results as a function

of system size, NXe, in fig. 7.3. Although the NC-DMC imaginary time step must be

decreased as
√
NXe with increasing system size, the NC-DMC simulation estimates of

the ground state energies match the analytical answers within the error bars.
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Figure 7.3: Convergence of E0 of the dipole-limit of QDO model xenon fcc-solid at
the equilibrium lattice constant vs system size (n = ncell), computed using NC-DMC
with the on-site-plus-dipole-dipole trial function, N = 1000 walkers and a time step of
~τ = 0.01. Simulation results (red) are compared to the analytical results (blue). A
fit to the data is included: f(n) = E0 − ∆/n3, along with the extrapolated value of
E0 = −6.5055mHartree/atom (green), which is close to the large-N analytic result of
E0 = −6.4996mHartree/atom, calculated for N = 32000 (purple).

7.2.3 Xenon FCC-crystal, full QDO model, at T=0

The results of the previous subsection suggest that the new techniques are capable of

generating high quality results also for the non-trivial full QDO model of the fcc-xenon

crystal (where there are no analytical answers with which to compare).

Proceeding carefully, therefore, in fig. 7.4, the convergence of the ground state

energy with imaginary time step for the full QDO model NXe =32 atom xenon solid

computed using the NC-DMC method with the on-site-plus-pair-coulomb trial function

and N = 1000 walkers is given. Further computations on the QDO model solid given

below were performed using ~τ = 0.02au. and N = 1000 and an appropriate reduction

of τ as
√
NXe with increasing system size.
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Figure 7.4: Convergence of the E0 of the full xenon QDO model fcc-solid at the
equilibrium lattice constant, vs imaginary time step, computed using NC-DMC with
the on-site-plus-pair-coulomb trial function, with 32 atoms and N = 1000 walkers.

Fig. 7.5 shows the ground state energy of the fcc-xenon solid as a function of system

size, NXe at the experimentally determined lattice constant, aeq = 6.12Å under the

full model QDO, along with the extrapolation of the results to NXe → ∞ limit. The

experimental T = 0 binding energy is E0(aeq) = −6.05mHartree/atom[BWL+74] while

the present full QDO predicts E0(aeq) = −6.27mHartree/atom. The zero point energy

is estimated to be 0.2mHartree/atom[BB83] and hence the agreement is good. It

is important to note that the full model QDO is fit to reproduce the BWLSL pair

potential in the gas phase. The high accuracy gas phase pair potential predicts a T = 0

crystal binding energy of E0(aeq) = −6.81mHartree/atom. Thus, the full QDO model

introduces substantial many-body corrections in the condensed phase.
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Figure 7.5: Convergence of the E0 of the full xenon QDO model fcc-solid at the
equilibrium lattice constant vs system size (n = ncell), computed using NC-DMC with
the on-site-plus-pair-coulomb trial function (red), N = 1000 walkers and an imaginary
time step of ~τ = 0.02au. A fit to the data is included f(n) = E0−∆/n3 (green curve),
along with the extrapolated value of E0 = −6.275mHartree/atom (green horizontal).

In fig. 7.6(a), the ground state energy of the NXe=32 atom fcc-xenon solid as a

function of lattice constant, E0(a), is presented along with the variational energy,

ET(a), of the on-site-plus-pair-coulomb trial function. It is clear that ET(a) is not

accurate enough to describe the solid well.

Finally, fig. 7.6(b) shows the ground state energy of the NXe=32 and NXe=256

atom fcc-xenon solids as a function of lattice constant is presented . The lattice constant

predicted by the QDO model is in very good agreement with experiment (aeq = 6.12Å).

In contrast, the BWLSL gas-phase pair potential, which is reproduced by the QDO

model in the two-body, gas-phase limit, predicts aeq = 6.04Å. Nuclear quantum effects

(see 7.2.3) are estimated to increase the lattice constant by 0.03Å. The QDO prediction

of the bulk modulus for two system sizes, κ = 4.0 ± 0.1GPa for NXe=32 atoms and

κ = 4.2±0.2GPa for NXe=256 atoms are in good agreement with each other and nuclear

quantum effects are estimated to decrease these values by 0.3GPa. Thus, the model

prediction is within 3 to 10 percent of the experimental value, κ = 3.64GPa. Note,

the BWLSL gas phase pair potential predicts a rather large modulus, κ = 4.55GPa.

Thus, the QDO does capture the many-body terms that arise in condensed phase
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7.2. DMC Simulations and Results

reasonably well. These new accurate simulation results show the present QDO xenon

model somewhat “stiff” in the solid phase although the lattice constant and the binding

energy are predicted reasonably. In general, the QDO parameters need to be tuned to

reflect the higher quality solid state simulation data that can now be generated.
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(a) E0 vs lattice constant, of the NXe=32 atom
fcc-xenon solid, under the full QDO model,
computed using NC-DMC with the on-site-
plus-pair-coulomb trial function (bottom curve),
N = 1000 walkers and an imaginary time step of
~τ = 0.02au, compared to the variational result
of the on-site-plus-pair-coulomb trial function
(top curve).
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(b) E0 vs lattice constant of fcc-xenon for
NXe=32 atom (bottom curve) and NXe=256
atom (top curve) cells, under the full QDO
model, computed using NC-DMC with the on-
site-plus-pair-coulomb trial function, N = 1000
walkers and an imaginary time step of ~τ =
0.02au.

Figure 7.6: Xenon FCC-crystal bulk modulus curves
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Chapter 7. Xenon - a QDO Model

Nuclear Quantum Effects

The relative importance of quantum effects due to the nuclear motion of Lennard

Jones (LJ) atoms can be quantified with the de Boer parameter, Λ = h/σ
√
mǫ, where

m is the mass of the LJ atom, and σ and ǫ are its LJ interaction radius and energy,

respectively[dB48]. Properties of Lennard Jonesium in reduced units depend linearly on

Λ, for example its reduced density can be fitted to the equation ρ∗ = −1.0789−0.845·Λ,

as ascertained from Table II in Ref. [Cha02]. Using results for solid argon on the

quantum effects in the lattice constant and bulk modulus from the literature [SM01],

we can use this linear dependence on Λ to estimate the quantum effects in xenon. The

LJ parameters for argon used in Ref.[SM01] were σ = 3.405 Å, and ǫ = 120 kBK, while

reasonable values for the condensed phase of xenon are σ = 4.055 Å, and ǫ = 228 kBK,

thus the ratio ΛXe/ΛAr = 0.42. The relative difference in lattice constant and elastic

constants of quantum versus classical for argon were reported to be 1.2% and -17%,

respectively. Given the ratio for Λ stated above, a 0.5% increase in the classical limit

lattice constant of xenon and a 7% decrease in the classical limit bulk modulus of xenon

due to quantum effects can be expected.
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Chapter 8

Path Integral Molecular

Dynamics

We use Path Integral Molecular Dynamics [PR84, TBJK93] as it allows us to calculate

accurate nuclear forces, is order N logN (N is the number of nuclei), and can be

systematically improved by increasing discretization. In this way, it provides us with a

powerful tool for applying QDOs to realistic systems.

+

=

P classical simulations N path loops

cost = P×classical-MD no explicit many-body terms

Figure 8.1: Pictorial summary of Path Integral Molecular Dynamics

We outline the theory of PIMD, starting with the density operator, density matrix,
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Chapter 8. Path Integral Molecular Dynamics

and Feynman’s path integral formalism, describing some density matrices and their

properties along the way, especially the concept of a ‘high-temperature’ approximate

density matrix. Then we make the conceptual leap to sampling the partition function

by PIMD, using Newton’s equations of motion on a fictitious classical potential to

sample the microcanonical ensemble, then adding thermostats to properly sample the

canonical ensemble. We also outline the techniques required to efficiently sample the

paths, including bead-staging, and low-variance estimators for the energy, that come

from integrating out the large on-site energy from the harmonic oscillator. We then

extend PIMD to the motion of nuclei on the implied Born-Oppenheimer surface. We

describe the efficiency gains from increasing the Drude temperature, how to properly

calculate forces and pressures, and how to increase efficiency by increasing the faux-mass

of the Quantum Drude, while maintaining adiabatic separation between the quantum

and classical coordinates, (which each have a different temperature).

8.1 From the Boltzmann Distribution

to the Density Matrix

The operator ρ̂ = e−βĤ [Fey72], which is the quantum operator equivalent of the

classical Boltzmann distribution, is known as the density operator. It is diagonal in the

basis of the Ĥ-eigenstates, and it will tend to increase the weight of the lowest-energy

states in any given superposition.

When applied between two position states, ρ̂ becomes a non-diagonal density

matrix, ρ(x, x′;β). When the temperature is low, there is more structure due to the

potential, and correlation distances are long. When the temperature is high, there is

less structure (it behaves more like a free particle), and correlation lengths fall, but we

can integrate over chains of approximate (simplified) high-temperature density matrices

to build accurate low-temperature ones; a path integration.

The diagonal-elements of the density matrix, ρ(x, x;β), a kind of position-state ‘self-

correlation’ function, turn out to be the temperature-dependent probability density

function, which becomes the classical Boltzmann distribution, in the classical limit,

when β = 1/kT → 0 or ~ → 0.

ρ(x, x;β) → e−βV (x) (classical limit).
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8.1. From Boltzmann Distribution to Density Matrix

8.1.1 Density Operator

The quantum Boltzmann distribution leads to the definition of the partition function

Z, in terms of the density operator.

ρ̂ ≡ e−βĤ =
∑

i

|i〉e−βEi〈i|,

Z =
∑

i

e−βEi〈i|i〉 = Tr (ρ̂) .

and from Z when can compute the thermodynamic quantities,

F = −kT logZ ,

E = − ∂
∂β logZ ,

P = − ∂
∂V FNV T = kT ∂

∂V logZNV T .

It is also possible to calculate observables using the density operator.

〈A〉 =
∑

Aiρi =
∑

i

〈i|Â|i〉〈i|ρ̂|i〉

=
∑

ii′

〈i|Â|i′〉〈i′|ρ̂|i〉 , ∵ 〈i′|ρ̂|i〉 = 〈i|ρ̂|i〉δii′ ,

=
∑

i

〈i|Âρ̂|i〉 = Tr
(

Âρ̂
)

.

The density operator is a mathematical operator that can be expressed in different

ways or in different bases. ρ̂ is an energy eigenoperator; that is, the energy basis is its

diagonal basis, but it can be applied in different bases.

ρ(x, x′;β) = 〈x|ρ̂(β)|x′〉, the position-state density matrix,

ρ(p, p′;β) = 〈p|ρ̂(β)|p′〉, the momentum-state density matrix.

The traces can also be calculated in different bases. It is possible to split the operator

by factorising the exponential, allowing us to use off-diagonal elements of the relevant
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Chapter 8. Path Integral Molecular Dynamics

density matrix.

Tr (ρ̂(β)) =

∫

x
〈x|ρ̂(β)|x〉 =

∫

x
ρ(x, x;β)

=

∫

x
〈x|ρ̂(β − τ)ρ̂(τ)|x〉

=

∫

x

∫

x′

〈x|ρ̂(β − τ)|x′〉〈x′|ρ̂(τ)|x〉

=

∫

x

∫

x′

ρ(x, x′;β − τ)ρ(x′, x; τ) etc ...

It is also possible to calculate expectation values for operators. If Â is a position-

operator, then it can be expressed as a function A(x).

Tr
(

Âρ̂(β)
)

=

∫

x
〈x|Âρ̂(β)|x〉 =

∫

x
A(x)ρ(x, x;β)

=

∫

x

∫

x′

〈x|Âρ̂(β − τ)|x′〉〈x′|ρ̂(τ)|x〉

=

∫

x

∫

x′

A(x)ρ(x, x′;β − τ)ρ(x′, x; τ) etc ...

For an operator B̂ that is not a position operator, then it could be expressed as a non-

diagonal matrix B(x, x′) and the diagonal terms of ρ(x, x′;β) could be used to complete

the trace:

Tr
(

B̂ρ̂(β)
)

=

∫

x

∫

x′

〈x|Â|x′〉〈x′|ρ̂(β)|x〉

=

∫

x

∫

x′

B(x, x′)ρ(x′, x;β) .

8.1.2 Some Example Density Matrices

Free Particle Density Matrix

For an example, consider a free particle

ρ̂(β) = e−βĤfree = e−β p̂2

2m = e+β ~
2

2m
∇2

.
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8.1. From Boltzmann Distribution to Density Matrix

So the free particle density matrix is (See [Fey72, pg. 48]) :

ρ(x, x′;β) = 〈x|e−βp̂2

2m |x′〉

=

∫

p
〈x|e−βp̂2

2m |p〉〈p|x′〉

=
√

m
2πβ~2 × e

− m
2β~2 (x′−x)2

.

Simple Harmonic Density Matrix

Also consider the harmonic oscillator

ρ̂(β) = e
−β

„

p̂2

2m
+ m

2
ω2x2

«

.

The corresponding density matrix is (See [Fey72, pg. 48]).

ρ(x, x′;β) =
√

mω
2π~sinh f × exp

{−mω
2~

[

(x− x′)2

sinh f
+ tanh f

2 (x2 + x′2)

]}

,

where f = β~ω.

Structure at Low Temperature (of Harmonic Oscillator)

At low temperature (β, f are large), we get

ρ(x, x′;β) →
√

mω
π~ef exp

{

−mω
2~

(x2 + x′2)
}

.

Except for the normalisation, this looks like a product of the groundstate wavefunction

at two points φ0(x)φ0(x
′).

In fact that is always true as f, β → ∞.

We can show this by expanding the density operator in terms of energy basis states:

ρ(x, x′;β) = 〈x|e−βH |x′〉
=

∑

i

〈x|φi〉e−βEi〈φi|x′〉,

→ 〈x|φ0〉e−βE0〈φ0|x′〉
= e−βE0φ0(x)φ0(x

′).

133



Chapter 8. Path Integral Molecular Dynamics

Simplicity at High Temperature

At high temperature (β, f are small), the density matrix shrinks to a delta function:

ρ(x, x′;β) →
√

mω
2π~f exp

{

mω
2~f (x− x′)2

}

→ δ(x− x′) as f → 0

Notice that as temperature increases, the density matrix behaves more like that of

a free-particle. As one might expect, as temperature increases, the structure of the

groundstate wavefunction is lost, and correlation times (actually imaginary time ~τ)

and correlation lengths become shorter, ending up as a delta function.

8.2 Approximate Density Matrices

8.2.1 Operator Splitting

We need to be able to do create density matrices that are guaranteed to be correct

to a given order in β. In many cases we do not have the exact expression that we

need. For example, the exponential of two operators that do not commute, we can do

[Tro59, Suz76, Sch81]

eτ(Â+B̂) = 1 + τ
(

Â+ B̂
)

+ τ2

2

(

Â2 + ÂB̂ + B̂Â+ B̂2
)

+ O
(

τ3
)

,

eτÂeτB̂ =
[

1 + τÂ+ τ2

2 Â
2
] [

1 + τB̂ + τ2

2 B̂
2
]

+ O
(

τ3
)

= 1 + τ
(

Â+ B̂
)

+ τ2

2

(

Â2 + B̂2 + 2ÂB̂
)

+ O
(

τ3
)

= eτ(Â+B̂) + τ2

2

[

Â, B̂
]

+ O
(

τ3
)

,

where
[

Â, B̂
]

≡ ÂB̂ − B̂Â is the commutator.

Fortunately, this can easily be improved by symmetrising the splitting:

e
τ
2 Âe

τ
2 B̂e

τ
2 B̂e

τ
2 Â = eτ(Â+B̂) + τ2

2

{

1
4
�

�
��

[

Â, B̂
]

+ 1
4
�

�
��

[

B̂, Â
]

}

+ O
(

τ3
)

,

e
τ
2 ÂeτB̂e

τ
2 Â = eτ(Â+B̂) + O

(

τ3
)

.

We call this a 2nd-order factorisation because when we consider P applications, the error

becomes O
(

Pτ3
)

= O
(

βτ2
)

= O
(

τ2
)

where β=Pτ=1/kT . This decomposition was

originally due to Trotter and Suzuki [Tro59, Suz76, Sch81]. It is mentioned by Martyna

and Whitfield[WM07], along with a 4th-order factorisation, which uses another scheme

by Suzuki[Suz86, Suz94, Chi97].
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8.2. Approximate Density Matrices

The Hamiltonian usually contains a ‘kinetic’ term containing momentum operators

and a ‘potential’ term which is a position operator. Momentum and position operators

do not commute, making it is non-trivial to find a solution to the density matrix.

Instead, we build approximations.

The simplest thing to do is to simply separate the kinetic term T̂ from the potential

term V̂ . Because the density matrix for the harmonic oscillator is known, an alternative

is to split the harmonic oscillator hamiltonian (Ĥh.o. = T̂ + V̂h.o.) from the external

potential (Vext). Other (new) density matrices are explored later on, towards the end

of this chapter.

8.2.2 Free Particle Reference

We have two operators T̂ = p̂2

2m = − ~2

2m∇2, and V̂ = V (x). Because V̂ is a position

operator, it makes sense to put it on the outside of the symmetric splitting. The

operator T̂ generates the free-particle reference propagator, as derived by Feynman

[Fey72].

ρ̂ = e−τĤ ,

ρ̂ → e−
τ
2 V̂ e−τT̂ e−

τ
2 V̂ ,

ρ(x, x′; τ) = 〈x|e−τĤ |x′〉,
ρ(x, x′; τ) → 〈x|e−

τ
2 V̂ e−τT̂ e−

τ
2 V̂ |x′〉

= e−
τ
2 V (x)〈x|e−τT̂ |x′〉e−

τ
2 V (x′)

= e−
τ
2 V (x) ρfree(x, x

′; τ) e−
τ
2 V (x′)

= e−
τ
2 V (x) e−

m
2~2τ

(x−x′)2 e−
τ
2 V (x′),

which is correct to O
(

τ3
)

.

8.2.3 Harmonic Oscillator Reference

We have two operators Ĥh.o. = p̂2

2m + 1
2mω

2x2, and V̂ext = Vext(x), where Ĥh.o. generates

the harmonic-oscillator reference propagator [Fey72].

ρ̂ → e−
τ
2 V̂exte−τĤh.o.e−

τ
2 V̂ext ,

ρ(x, x′; τ) → 〈x|e−
τ
2 V̂exte−τĤh.o.e−

τ
2 V̂ext |x′〉

= e−
τ
2 Vext(x)〈x|e−τĤh.o. |x′〉e−

τ
2 Vext(x′)

= e−
τ
2 Vext(x) ρh.o.(x, x

′; τ) e−
τ
2 Vext(x′), also correct to O

(

τ3
)

,
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where

ρh.o.(x, x
′; τ) =

√

mω
2π~sinh f × exp

{−mω
2~

[

1

sinh f
(x− x′)2 + tanh f

2 (x2 + x′2)

]}

= exp
{

1
2N − 1

2A(x− x′)2 − 1
2B(x2 + x′2)

}

,

where f = τ~ω ,

N = log
[

mω
2π~sinh f

]

,

A = mω
~

1
sinh f ,

B = mω
~

tanh f
2 .
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8.3. From Density Matrices to Path Integrals

8.3 From Density Matrices to

Discretised Path Integrals

8.3.1 Density Matrices as an Integral of Paths

Approximate density matrices are most accurate at small-τ or -β (high-temperature:

where short τ means there is only short-range spatial correlation; little structure to

be lost). We can use this fact to split a large-β density matrix (low-temperature:

where long τ allows long-range spatial correlation; and more structure) into an integral

over a product of multiple small-τ density matrices; lots of little timesteps [Fey72].

Thus when we refer to ‘high-temperature’ density matrices, we are referring to simpler,

approximate ones, small-τ from which we build the desired ‘low-temperature’ density

matrices.

We do this by splitting/factorising the density operator ρ into several (P of them), and

inserting complete sets of states between them. Let β = Pτ .

ρ(x, x′;β) = 〈x|ρ̂(β)|x′〉
= 〈x|e−βĤ |x′〉

= 〈x|
[

e−τĤ
]P

|x′〉

=

∫

dx1dx2...dxP−1〈x|e−τĤ |x1〉〈x1|e−τĤ |x2〉〈x2| · · · e−τĤ |x′〉

=

∫

dx1dx2...dxP−1 ρ(x, x1; τ)ρ(x1, x2; τ) · · · ρ(xP−1, x
′; τ).

The high-T density matrices can be thought of as path-segments, and to construct

the low-T density matrix requires an integral over every intermediate coordinate, thus

integrating over all possible paths made of high-T path-segments. Hence the name

“path integral”.

We want to know the density of each state, which means taking the trace of the

density matrix, and this in turn implies a closed path that finishes where it starts. Each

coordinate on the chain is equivalent as far as the integration is concerned, so we can

use integrate using measurements all round the chain.
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Chapter 8. Path Integral Molecular Dynamics

8.3.2 The Partition function and Measurables

The partition function is obtained by closing the path and integrating over that start

point, becoming an integral over all closed paths through state-space [Fey72].

Z(β) = Tr (ρ̂) =

∫

dxρ(x, x;β)

=

∫

dx0 dx1 · · · dxP−1 ρ(x0, x1; τ)ρ(x1, x1; τ) · · · ρ(xP−1, x0; τ)

=

∫

dPx
P−1
∏

i=0

ρ(xi, xi+1; τ) , where xi±P ≡ xi .

And similarly for measurables (of position operators) [Fey72]:

〈A〉 = Tr
(

Âρ̂
)

=

∫

x
A(x) ρ(x, x;β)

=

∫

dPx A(x0)
P−1
∏

i=0

ρ(xi, xi+1; τ) .

The closed polymer is symmetric under rotation of the indices, meaning that the

measurable A(x) can be calculated at any of the indices, and therefore can be averaged

over all of them [WM07].

〈A〉 =

∫

dPx

[

1

P

P−1
∑

i=0

A(xi)

][

P−1
∏

i=0

ρ(xi, xi+1; τ)

]

.
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8.3. From Density Matrices to Path Integrals

8.3.3 Integration over all Closed Quantum Paths

We are left with something that looks like an integration over all possible states of

a cyclic-polymer, with each node being a state in 3N -space. This is only true for

distinguishable particles, including the Quantum Drude, but is not complete for Bosons

or Fermions where exchange interactions occur see pg. 142.

x → x = (x0, x1..., xP−1) ,

ρ(x) → ρ(x) =

P−1
∏

i=0

ρ(xi, xi+1; τ) ,

∫

dx →
∫

dPx , or equivalently

∫

x
→
∫

x

.

The same way as in classical mechanics, each state has a certain weight, in quantum

mechanics for distinguishable particles, each possible configuration for the cyclic

polymer has a certain weight. The distribution can be sampled by various methods,

including Monte Carlo methods (PIMC), or Molecular Dynamics (PIMD).

Figure 8.2: Path Integrals: Cyclic polymer has rotational symmetry
through ‘imaginary time’ (6= to simulation time-coordinate)
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Chapter 8. Path Integral Molecular Dynamics

8.3.4 DMC as an Integral over Open-Ended Paths

The mechanics and mathematics of DMC are very different from path integrals and

PIMD, but there is this homology between them.

Figure 8.3: DMC: Infinite polymer proceeds through ‘imaginary time’
( = to simulation time-coordinate)

multiply(copy)

contract(delete)

ττττ (β→∞)

DMC and Density Matrices

The propagation steps of DMC are like density matrices [PC84], except that they

contain some extra weighting due to the trial wavefunction. But because the chain does

not close, we do not get the trace, and so we do not know the ground-state density

ρ(x, x;β → ∞, T → 0) = |Ψ0(x)|2. What we do get is the ground-state wavefunction

(weighted by the trial wavefunction). If a DMC simulation could continue indefinitely,

the paths would fill all space with the density f .

P (x′ → x, τ) ∝ ρ(x, x′; τ) × ΨT(x)

ΨT(x′)
,
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8.3. From Density Matrices to Path Integrals

f(x; 0) = ΨT
2(x) (usual initialisation),

f(x; τ) =

∫

dx0 P (x0 → x; τ)f(x0; 0),

f(x;Pτ) =

∫

dxP−1 · · ·
∫

dx1

∫

dx0 P (xP−1 → x) · · ·P (x1 → x2; τ)

P (x0 → x1; τ) f(x0; 0)

=

∫

dxP−1 · · · dx0 ΨT(x) ρ(x, xP−1; τ)������
ΨT

-1(xP−1)

�����
ΨT(xP−1) · · ·�����ΨT

-1(x1)

����ΨT(x1) ρ(x1, x0; τ)�����ΨT
-1(x0)ΨT�2(x0),

f(x;Pτ) = ΨT(x)

∫

dx0 ρ(x, x0;Pτ) ΨT(x0),

f(x;Pτ) → c0ΨT(x)Ψ0(x), as β = Pτ → ∞.
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8.3.5 Path Integrals for Many-particle Statistics

The Quantum Drude Oscillator is a distinguishable particle, as each particle is

attached to a unique centre, or, if on the same centre, have unique parameters. Real

particles, however, fall into one of two categories; Bosons or Fermions; and each has

a different statistical behaviour that comes from the symmetry of their wavefunctions;

Boson many-particle wavefunctions are symmetric under permutation of indices, while

Fermion many-particle wavefunctions are antisymmetric.

Identical or indistinguishable particles satisfy the following property: the Hamiltonian

is invariant to particle exchange. That is, if one labels particle A and particle B as

separate entities, and the Hamiltonian is not changed by swapping A and B, performing

Ĥ, then swapping them back again. We write this down as p̂Ĥp̂ ≡ Ĥ for identical

particles, where p̂ is the permutation operator. p̂ has the property that it is its own

inverse; p̂2 = 1.

p̂Ĥp̂Ψ = Ĥ|Ψ〉 = E|Ψ〉,
p̂2Ĥp̂Ψ = p̂E|Ψ〉, but E is just a constant,

Ĥp̂Ψ = Ep̂|Ψ〉.

This means that p̂|Ψ〉 is an eigenstate of Ĥ. If we make one further reasonable

assumption, that p̂, being a book-keeping/labelling operation with no physical

consequences, does not change the state (the permutation of two non-identical particles

would be a physical consequence), then it at most adds some constant factor; that

means |Ψ〉 must be an eigenstate of p̂. This makes something very weird happen; the

wavefunction must be either symmetric or antisymmetric under permutation.

p̂2 = 1,

p̂2|Ψ〉 = |Ψ〉,
p̂|Ψ〉 = (±1) |Ψ〉.

Relativity is grafted onto standard quantum mechanics by allowing Fermions to occupy

only antisymmetric eigenstates of Ĥ, and Bosons to occupy only symmetric eigenstates

of Ĥ. Wavefunctions of the correct symmetry can be selected using a symmetrisation
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/ antisymmetrisation as follows (if we neglect spin degeneracy).

Ψ±(p̂r) = 1
N !

∑

p

(±1)p Ψ(p̂r)

= Ψ(r) or 0 depending on symmetry

where ‘±’ denotes restriction to even (odd) functions for bosons (fermions), r ≡
(r0, r1, · · · , rN−1), p̂r means a permutation of the elements of r (note that r is an

vector of length N containing 3d-states, not the P ×N vector x used elsewhere).

The construction of the density matrix is as before, except that for bosons, only even

states exist, and for fermions, only odd states. This forces us to perform a sum restricted

to only even / odd states respectively.

ρ±(r, r′;β) =
∑

k±
e−βEk Ψk(r) Ψk(r).

However, restricted sums are inconvenient for building path integrals, so we would

like to convert it into unrestricted sum where the even / odd solutions are predicted

out. We do this using the symmetrisation / antisymmetrisation above. Then we can

rearrange the sum and notice that it translates to a symmetrised / antisymmetrised

density matrix.

ρ±(r, r′;β) =
∑

k

e−βEk 1
N !

∑

p

(±1)p Ψk(r) Ψk(p̂r
′)

= 1
N !

∑

p

(±1)p
∑

k

e−βEk Ψk(r) Ψk(p̂r
′),

ρ±(r, r′;β) = 1
N !

∑

p

(±1)p ρboltz(r, p̂r
′;β).

The permutations have the effect of joining the chains between different particles (unlike

the distinguishable case where they are separate), so that they ‘grow together’. For

fermions the permutation operator p̂ antisymmetrises the density matrix. This is a

problem because an anti-symmetric function must be negative somewhere, and thus

the the diagonal elements of the density matrix cannot be interpreted naively as a

probability density function, which cannot be negative (diagonal meaning r1 = r′1, not

r1 = r2).
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8.4 From Path Integral to P.I.M.D.

Traditional Molecular Dynamics samples states using the true physical dynamics, using

true momenta and forces derived from the form of φ(x). The momenta can be initialised

from a gaussian distribution.

ẋ = p/m , ṗ = F , F = −∇φ(x) ,

ρ(p) = e−β
p2

2m =⇒ pinit =
√

m
β × Gaussian() .

Unfortunately, the true physical dynamics conserves energy, and therefore traditional

MD samples only the microcanonical ensemble (NVE - Number of particles, Energy

and Volume are conserved), assuming ergodicity.

Γ =

∫

x

∫

p
exp {−βH(x, p)} δ(H − E),

〈A〉 =
1

Γ

∫

x

∫

p
A(x) exp {−βH(x, p)} δ(H − E),

where H(x, p) = p2

2m + φ(x).

But we are interested in sampling a Boltzmann distribution, which is the canonical, or

NVT ensemble (constant Temperature but not constant energy due to contact with a

heat-bath).

Z =

∫

x
e−βφ(x), or

=

∫

x

∫

p
exp {−βH(x, p)} ,

〈A〉 =
1

Z

∫

x

∫

p
A(x) exp {−βH(x, p)} ,

which we shall accomplish by introducing a dynamics that connects the system to heat

bath in such a way that the equations of motion are ergodic.
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Canonical Dynamics

We need some way of introducing the conceptual ‘heat-bath’ into the molecular

dynamics. There are many possible methods, including stochastic methods which scale

the momenta, but we prefer deterministic methods if possible, not least because they

can be time-reversible. One deterministic method is that of Nosé and Hoover [Hoo85],

which adds the following to the dynamics

ẋ =
p

m
, ṗ = F − p

pθ

Q
, θ̇n =

pθn

Q
,

ṗθ =

[

p2

m
− kT

]

.

where Q is a mass-like parameter that controls the coupling between momenta and

thermostats.

However, it has been shown [LLM09] that Nosé-Hoover dynamics is not ergodic

for 1d systems such as oscillators. In real systems, heat-energy is conducted away

from molecule to molecule, so for any given molecule its immediate ‘heat bath’ also

fluctuates. This effect can itself be modelled, and the momentum sampling distribution

improved, by themostatting the chains in turn, leading to the Nosé Hoover Chain

method [MKT92], where the n-th thermostat is moderated by the (n+1)-th.

ẋ =
p

m
, ṗ = F − p

pθ0

Q
, θ̇n =

pθn

Q
,

ṗθ0 =

[

p2

m
− kT

]

− pθ0
pθ1

Q
,

ṗθn =

[

p2
θ(n−1)

Q
− kT

]

− pθn

pθ(n+1)

Q
,

ṗθ(N−1) =

[

p2
θ(N−2)

Q
− kT

]

, where Q =
kT

ω2
,

where ω is a ballpark estimate of the thermostat pumping frequency. This dynamics

has the following energy-like quantity (which is not a true Hamiltonian),

H ′ = V (x) +
p2

2m
+
∑

n

[

p2
θn

2Q
− kTθn

]

.

The Nosé Hoover Chain method does improve the sampling of the state-space, by

making it more chaotic, but it is still not ergodic.
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8.4.1 Molecular Dynamics on a Cyclic Polymer

In the quantum limit, the partition function is much more complicated, but, when it

is written down as a path integral, it suggests an analogy to Molecular Dynamics. For

example, for a position operator Â,

〈A〉 =
1

Z

∫

dPx

[

1

P

∑

i

A(xi)

][

∏

i

ρ(xi, xi+1; τ)

]

=
1

Z

∫

x

Aeff (x) e−βφeff(x) ,

where x = (x0, x1, · · · , xP−1) ,

∫

x

=

∫

dx0 dx0 . . . dxP−1 ,

Aeff (x) =
1

P

∑

i

A(xi) ,

φeff (x) = − 1

β
log

[

∏

i

ρ(xi, xi+1; τ)

]

= − 1

β

∑

i

log ρ(xi, xi+1; τ) .

This works for distinguishable particles and bosons, because the density matrix is

always positive definite, so that the logarithm is always meaningful.

We can add momenta to the partition function by inserting gaussian integrals of the

momenta via the following identity

1 =

√

β

2πmeff
×
∫

p
exp

{

−β p2

2meff

}

,

ZP =
[

β
2πmeff

]

P
2
∫

x

∫

p

exp
{

−β p2

2meff
− βφeff(x)

}

.

This implies a pseudo-hamiltonian, and the partition function can be renormalised to

remove the prefactor.

ZP =

∫

x

∫

p

exp {−βHeff(x,p)} , where Heff(x,p) =
p2

2meff
+ φeff(x).
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In other words, a molecular dynamics simulation of a system in N -coordinates becomes

a molecular dynamics simulation in NP dimensions; a chain of pseudo-classical

simulations that influence each other. This is analogous to sampling the states of a

cyclic polymer except that there are no steric effects; the parts of the chain can both

overlap and pass through each other.

Thermostatting for PIMD

Fortunately in PIMD we can apply these thermostats simply to the sampling momenta

in exactly the same way as to a classical simulation; the only difference being that there

are now P times as many momenta. Performing NVT simulations with our code, one

massive Nosé Hoover Chain was added to thermostat every bead of every coordinate

of the chain, which is massive thermostatting. That is, d×N × P thermostat-chains,

where d is the number of dimensions, N the number of particles, and P the number

of beads. In general, the more thermostats there are, the more ‘random’ the heat-bath

is and thus the better the sampling of the state-space. Even for Nosé Hoover Chains,

for a multidimensional system dominated by oscillators, it is inadequate to use only

one chain for the whole system; it produces unrealistic correlations across the system

[MKT92]. For small systems, such as the dimer, large numbers of thermostats are

relatively expensive to run, taking up to 80% of the runtime, but on large systems with

many interaction forces to calculate, they are not computationally intensive.

Effective Potential for Free-Particle reference

In the simplest form of operator-splitting, the free particle reference, where there is a

momentum-dependent kinetic term, and position-dependent ‘external’ potential,

φeff(x) =
mP

2~2β2

∑

i

(xi − xi+1)
2 +

1

P

∑

i

V (xi) .

Note there are tension-like terms and external potential terms present; we have a chain

of beads connected by harmonic bonds (with strength propotional to P to maintain

the length of the chain with P ), in which each bead moves on the external potential

(softened by a factor P to maintain the total influence of the potential with P ). P

is only a discretisation parameter and should not affect the behaviour of the chain, at

least in the large P limit.
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Effective Potential for Harmonic reference

The basic reference that was used by Martyna and Whitfield [WM07], is the harmonic

oscillator density matrix. Again there are tension-like and potential-like terms.

ρh.o.(x, x
′; τ) = exp

{

1
2N − 1

2A(x− x′)2 − 1
2B(x2 + x′2) − β

P

∑

i

φext(xi)

}

,

where f = τ~ω = 1
P β~ω ,

N = log
[

mω
2π~sinh f

]

,

A = mω
~

1
sinh f = mP

~2β
× f

sinh f ,

B = mω
~

tanh f
2 = mP

~2β
× f tanh f

2 ,

=⇒
φeff(x) = −NP

2β N + 1
2βA

∑

i

(xi − xi+1)
2 + 1

βB
∑

i

x2
i + 1

P

∑

i

φext(xi).

Staging: Faux-masses

Above, we derived a pseudo-hamiltonian.

Heff(x,p) =
p2

2meff
+ φeff(x) .

Only φeff is fixed, and although the pseudo-kinetic energy has to be controlled by β,

because the momenta are pseudo-momenta we are free to choose a pseudo-mass meff

to maximise efficiency. These choices constitute a particular staging scheme. This can

include evolving the dynamics in a transformed coordinate basis, (which is equivalent

to choosing meff to be a non-diagonal matrix - that is p2/2m → pTM−1p/2), or by

setting a different mass for each coordinate.

Staging: Coordinate transformation

Following the same approach as Ceperley used for the free-particle reference density

matrix [PC84], Martyna and Whitfield used the following coordinate transformation
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for the harmonic-oscillator reference [WM06, WM07]:

P−1
∏

i=0

ρ(xi, xi+1; τ) = ρ(x0, xP ;β) ×
P−1
∏

i=1

[

ρ(x0, xi; iτ)ρ(xi, xi+1; τ)

ρ(x0, xi+1; (i+ 1)τ)

]

= ρ(x0, x0;β) ×
P−1
∏

i=1

1
√

2πσ2
i

exp

(

−(xi − x∗i )
2

2σ2
i

)

,

where x∗i =
sinh f

sinh(i+ 1)f
× x0 +

sinh if

sinh(i+ 1)f
× xi+1 ,

σ2
i =

~

mω

sinh f sinh if

sinh(i+ 1)f
, f ≡ τ~ω .

The special case is i = 0, which now simply obeys the harmonic oscillator density

distribution:

u0 = x0 , σ2
0 =

~

mω

1

2 tanhβ~ω/2
.

This suggests a coordinate transformation

u0 = x0 ,

ui = xi − sinh f
sinh(i+1)f x0 − sinh if

sinh(i+1)f xi+1 , where xi+P ≡ xi .

Note that if one refers to index 0 as index P , then this transformation could be

represented by a triangular matrix. The determinant of a triangular matrix is the

product of its diagonal elements; therefore the Jacobian of the transformation x → u

is 1. In the code, we define two arrays S1 and Si to speed the calculation:

ui = xi − S1
i x0 − Si

i xi+1 ,

S1
i ≡ sinh f

sinh(i+1)f , Si
i ≡ sinh if

sinh(i+1)f .

This transformation can be reversed, but needs a little care. It can be done step-wise

by cycling down the indices from i = 0 (+P ) to i = 1:

x0 = u0 ,

xi = ui + S1
i x0 + Si

i xi+1 .

Therefore, we can also introduce momenta conjugate to the ‘u’ and obtain the staging

fictitious classical Hamiltonian. This staging ansatz is useful as it diagonalises the

harmonic part of the action, as well as reducing the range of frequencies in the problem,

reducing the range of timescales involved, and thus giving us improved sampling of the
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slowest timescales [TBJK93].

Internal MD-Forces and Momenta

The off-diagonal ‘tension’ terms have been transformed away, leaving a set of harmonic

oscillators, that are independent until re-coupled by an external potential.

φ
(u)
i =

u2
i

2βσ2
i

= 1
2kiu

2
i , where ki = 1

βσ2
i
,

F
(u)
i = −ki ui .

This makes it very simple to evolve the ‘internal’ dynamics of the chain.

The effective masses meff still need to be chosen. In order to maximise sampling

efficiency, each u coordinate should vary on the same timescale, and as we are not

using any true physical dynamics, we can choose an arbitrary sampling frequency

ωPIMD = γ ωMD, where ωMD is the fundamental frequency of the nuclear motion.

ωPIMD = γ ωMD , (8.1)

ki = mi ω
2
PIMD ,

mi = ki

ω2
PIMD

= 1
βσ2

i ω2
PIMD

.

The momenta can be sampled from a gaussian distribution in a manner analogous to

classical MD:

p
(u)
i =

√

mi
β × Gaussian() .

External MD-Forces

The ‘external’ forces are more complicated because they have to be calculated in the

normal x-basis.

F
(x)
i = − ∂

∂xi
φext(x) ,

F
(u)
i = − ∂

∂ui
φext [u(x)] = −∂xj

∂ui

∂

∂xj
φext(x) =

∂xj

∂ui
F

(x)
j .

This is difficult to evaluate directly (the matrix
∂xj

∂ui
is very complicated), but there

is another good iterative method we can use. First we calculate the i = 0 term, which
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behaves differently from the others, and defines a new array D is suggested.

u0 = x0 =⇒ D0 ≡ ∂x0

∂u0
= 1 ,

xi = ui + S1
i u0 + Si

i xi+1 =⇒ Di ≡
∂xi

∂u0
= S1

i + Si
i

∂xi+1

∂u0
.

This array D can be constructed iteratively. It is used to transform forces, and also in

the calculation of the staging virial estimator discussed in the next section.

D0 = 1 , Di = S1
i + Si

i Di+1 [cycling i down from (P-1) to 1] ,

∂φext

∂u0
≡
∑

i

Di
∂φext

∂xi
.

The remaining terms are calculated by a different iteration.

uj = xj − S1
j x0 − Si

j xj+1 ,

∂uj

∂xi
= δi,j + 0 − Si

j δi,j+1 [for i 6= 0] ,

∂φext

∂xi
=

∂uj

∂xi

∂φext

∂uj

=
[

δi,j − Si
j δi,j+1

] ∂φext

∂uj
=
∂φext

∂ui
− Si

i−1

∂φext

∂ui−1
,

∂φext

∂ui
=

∂φext

∂xi
+ Si

i−1

∂φext

∂ui−1
(rearranged) .

Together these allow the transformation of forces from the x-basis to the u-basis where

the dynamics are calculated.

F
(u)
0 =

∑

i

Di F
(x)
i ,

F
(u)
i = F

(x)
i + Si

i−1 F
(u)
i−1 [cycling i up from 1 to (P-1)] .

Summary of Staging Transformation

x0 = u0 , xi = ui + S1
i u0 + Si

i xi+1 ,

F
(u)
0 =

∑

iDiF
(x)
i , F

(u)
i = F

(x)
i + Si

i−1 F
(u)
i−1 ,

σ2
0 = ~

mω
1

2 tanh β~ω/2 , σ2
i = ~

mω
sinh f sinh if
sinh(i+1)f .
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Summary of Dynamics

F
(u)
i = F

(u)
int,i + F

(u)
ext,i(x) ,

F
(u)
int,i = −ki ui , where ki =

1

βσ2
i

,

u̇i =
p
(u)
i

mi
, where mi =

ki

ω2
PIMD

.

To summarise the thermostatting, the subscript i is dropped for clarity,

ṗ(u) = F − p(u)pθ0

Q
,

ṗθ0 =

[

[

p(u)
]2

m
− kT

]

− pθ0
pθ1

Q
,

ṗθn =

[

p2
θ(n−1)

Q
− kT

]

− pθn

pθ(n+1)

Q
,

ṗθ(N−1) =

[

p2
θ(N−2)

Q
− kT

]

,

θ̇ =
∑

n

pθn

Q

(

where θ =
∑

n

θn

)

,

with Q =
kT

ω2
PIMD

=
1

βω2
PIMD

.

They are initialised as follows:

ui =
√

σ2
i × Gaussian() ,

p
(u)
i =

√

mi

β
× Gaussian() ,

θ = 0 ,

pθi,n =

√

Q

β
× Gaussian() .
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8.5 Evolving the Drude Atom Positions

The main purpose of the Drude model is to calculate the motion of the atoms moving

on a good approximation of the ground state Born-Oppenheimer surface, an energy

surface due to quantum charge-distribution effects.

Each atom is therefore represented by one coordinate, which all the beads share

(it is effectively a centroid of the chain), that evolves classically. Here we denote

heavy/classical coordinates by r. The coordinates of the quantum path are again

represented by x, but as will be explained below, they have been chosen to be relative

coordinates that do not behave according to classical physical expectations, and so

require some care.

The quantum charge-distribution effects can be thought of as ‘flesh’ on a skeleton

of classical point coordinates. The flesh is shaped by the skeleton, and the motion of

the skeleton is itself influenced by the resulting flexing of the flesh.

There are some components to the energy, which vary with r, but are constant with

respect to the quantum dynamics (this includes the repulsive energy correction), and

others which must be calculated by a potential of mean force.

Z(r, β) =

∫

x
e−βφeff(x;r,β) ≈ e−βE0(r) ,

E(r) ≈ EC(r) − 1

β
logZ(r, β) ,

F (r) = − ∂

∂r
E(r)

= − ∂

∂r
EC(r) +

1

β

∂

∂r
logZ(r, β)

= − ∂

∂r
EC(r) −

∫

x

[

∂
∂rφeff

]

e−βφeff

∫

x e
−βφeff

.

Thus the forces experienced by the atoms need to be averaged over the drude-states.

The sampling is done by the drude-dynamics, which therefore has to be faster than the

atom dynamics.

mr̈ = FC(r) +
〈

Feff(x; r, β)
〉

x
.

8.5.1 Sampling Efficiency: the faux-mass

In a PIMD simulation, this space-filling ‘flesh’ is represented by the rapidly-fluctuating

quantum path or chain. However, the classical particles should feel only the mean

influence of the statistical distribution of the quantum path, not the instantaneous
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position, so if dynamics are important then it is important to ensure that any influence

of the quantum path on the classical coordinates is sufficiently well averaged. The

Q-Drude mass we use is not the true mass, but a fake mass that we have chosen

appropriately; it will generally be several times smaller than those of the classical

coordinate, so the velocities will generally be much faster; the Q-Drudes should buzz

around the atoms several times before the atoms move significantly. The Q-Drude mass

is closely related to the mass parameter used in Car-Parinello simulations and is chosen

in a similar manner [TS01].

8.5.2 A False Temperature for the Q-Drudes

There is another major potential cost to P.I.M.D. ; the temperatures at which classical

MD is performed are very very low for Quantum Drudes. For example a temperature

of 300◦K corresponds to β~ω ≡ ~ω/kT ≈ 500. The required bead number P is

proportional to β~ω, and is even greater. This number of beads would be a prohibitive

computational overhead. We would prefer to use many fewer.

Instead we note that for β~ω ≡ ~ω/kT = 10 (P ≈ 10, T ≈ 30, 000◦K), a Q-

Drude system will already be very close to its ground state, as we show below. This

means that we make an approximation that vastly reduces the required bead number

P ; an artificially high temperature for the Q-Drude coordinates, while keeping the

classical coordinates at a physically realistic temperature. This technique works well

provided that it does not introduce any unwanted coupling between the two parts of

the dynamics, for example the transfer of kinetic energy (heat) from hotter to colder.

Given also that the commonly used thermostats, including Nosé Hoover Chains, are

designed for equilibrium contexts, this technique requires that there be effectively an

adiabatic separation between the Q-Drude and the classical coordinates.

Unfortunately adiabatic separation requires a large separation of mass- and thus

time-scales. For an elastic collision, the quantity of kinetic energy transferred depends

on the ratio of the masses. This is a problem also for Car-Parrinello simulations [TS01].

∂

∂t
E1→2 ∝ m1m2

(m1 −m2)
2 ≈ m<

m>
.

The total kinetic energy transfer rate depends also on the frequency of collisions, which

154



8.5. Evolving the Drude Atom Positions

is proportional to ωPIMD:

ωPIMD ∝ γ (from eqn. 8.1 on pg. 150) ,

mPIMD ∝ 1

ω2
PIMD

∝ 1

γ2
,

dE

dt
∝ ωPIMD ×mPIMD ∝ 1

γ
. (8.2)

In practice, one uses the biggest mass that can be tolerated empirically. The two sets

of coordinates are kept at their appropriate temperatures by thermostats. The one

thing that must be the same for both is the ground-state potential surface, which we

approximate by moving on the free energy surface.

Zdrude(r) = e−βdrudeE0 +
∑

i>0

e−βdrudeEi

= e−βdrudeE0

(

1 +
∑

i>0

e−βdrude∆i

)

,

where ∆i = Ei − E0 ,

Efree(r) = − 1

βdrude
logZ(r, βdrude)

= E0(r) −
1

βdrude
log

(

1 +
∑

i>0

e−βdrude∆i

)

≈ E0(r) , for βdrude∆i ≫ 1 .

The atomic partition function uses this energy function:

Zatom =

∫

r
e−βatomEfree(r)

=

∫

r
e

βatom
βdrude

log Z(r,βdrude)

=

∫

r
e
−βatomE0(r)+

βatom
βdrude

log(1+
P

i>0 e−βdrude∆i)

=

∫

r
e−βatomE0(r)

(

1 +
∑

i>0

e−βdrude∆i

)

βatom
βdrude

,

≈
∫

r
e−βatomE0(r)

(

1 + βatom

βdrude

∑

i>0

e−βdrude∆i

)

≈
∫

r
e−βatomE0(r) .
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So we can see that Zdrude, and thus Zatom, converges to the ground state exponentially

fast in βdrude.

8.5.3 Relative Coordinates for the Q-Drudes

Next, consider what happens when an isolated atom, with an attached Q-Drude, is

moving in empty space, and experiences an impulse. If the Q-Drude path coordinates

are treated as normal physical coordinates, the distribution of the Q-Drude will lag

behind the atom which tugs it along. The true physical distribution would have a

much smaller lag, if any. This can be corrected for by making the Q-Drude coordinates

always relative to the centre of the harmonic bond, so that they never need to re-

equilibrate their distributions relative to this dominant ‘internal’ part of the potential.

They will not be in perfect equilibrium with the ‘external’ potential but this should

be less significant. This distinction roughly corresponds to the difference between

intramolecular and intermolecular forces in classical MD simulations.

This becomes important when calculating forces on the atoms: it means that all

forces experienced by the Q-Drudes are also directly experienced by the molecular

skeleton to which they are attached (not mediated by the tug of a harmonic bond or

spring):

Fatomij = F [(ri + xi) − rj ]

acts at ri and rj but not at (ri + xi).

This also has consequences for the pressure tensor, below.

8.5.4 Pressure

The matrix h is commonly used in MD simulations to define the size and shape of

the periodic volume. The pressure is the response of the system to squashing of this

volume. It can be used as a measurement estimator in NVT calculations, or as a ‘force’

in NPT calculations. The definition of the pressure tensor is [FS96],

〈Pαβ〉 =

〈

NkT

deth
+

kT

deth
hβγ

∂ logZ

∂hαγ

〉

.
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In a classical system, this means

〈Pαβ〉 =
NkT

deth
+

1

deth

1

β

[∫

r hβγ
∂

∂hαγ
e−βφ(r)

∫

r e
−βφ(r)

]

=
NkT

deth
− 1

deth





∫

r hβγ
∂φ(r)
∂hαγ

e−βφ(r)

∫

r e
−βφ(r)





=

〈

NkT

deth
− 1

deth
hβγ

∂φ(r)

∂hαγ

〉

.

Analogously, in the PIMD formulation of a quantum system, this implies

〈Pαβ〉 =

〈

NkT

deth
− 1

deth
hβγ

∂φeff(x, r, β)

∂hαγ

〉

,

where φeff(x, r, β) = − 1

β
log

[

∏

i

ρ(xi, xi+1; τ)

]

, as previously.

Thus, the form of the pressure estimator also depends on the choice of reference density

matrix.

8.5.5 Pressure with Relative Q-Drude Coordinates

In the same way that a Q-Drude does not lag behind and therefore get tugged along by

its molecular skeleton (as described in the previous section for atomic forces), a Q-Drude

in a large periodic box would experience little change in its distribution even if the box

height was halved. Therefore, Q-Drude coordinates should not depend explicitly on

the h matrix. This is in contrast to atomic coordinates, which are typically scaled by

the h matrix to allow compressions of the whole box. As with the atomic forces, this

means that elements of pressure tensor act with the force dependent on the distance

between a Q-Drude and another charge, but on a line between the harmonic centre of

the Q-Drude, and the charge (or in the case of two Q-Drudes, on the line between their
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harmonic centres).

Fatomij = F [(ri + xi) − rj ]

acts at ri and rj but not at (ri + xi),

Pαβ,ij = (ri − rj)β Fα [(ri + xi) − rj] .

8.6 Measurement Estimators

Performing Molecular Dynamics (including PIMD) or Monte Carlo simulations, and

making measurements for certain variables over a long time, is equivalent to integrating

a function over state space by statistical sampling. Any function that would be sampled

this way has a variance, and there will be some uncertainty in the result.

However, any integration can be refactored by an integration by parts, so that the

same result is guaranteed to be obtained by integrating over the new function. If the

new integrand function has lower variance, then the uncertainty of the result due to

finite sampling will be likewise reduced. We refer to the original function and the new

one as different ‘estimators’ for the same measurable.

Quantum Drude Oscillators have a potential problem in that the energy and

dynamics of the unperturbed oscillators are far greater than what we are really

interested in; the subtle perturbations due to external forces.

The simplest energy estimator, which we call the ‘Barker’ estimator, has a huge

variance because of this. Here we outline a two-step improvement to this estimator, via

the ‘virial’ estimator to the ‘staging’ estimator as outlined by [WM07]. Here we review

these results.

8.6.1 Barker Energy Estimator

The ‘thermodynamic’ or ‘Barker’ estimator is the most basic estimator, as it is simply

the derivative of the partition function with respect to β:

Z(β, P ) =

∫

x
exp
{

NP
2 N − 1

2A
∑

i(xi − xi+1)
2 − B∑i x

2
i − β

P

∑

i Vext(xi)
}

,

E(β, P ) = − 1

Z

∂Z

∂β
= − ∂

∂β
log(Z) = 〈EB〉 ,
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where

EB = −NP
2 Ṅ + 1

2Ȧ
∑

i

(xi − xi+1)
2 + Ḃ

∑

i

x2
i + 1

P

∑

i

Vext(xi)

= EB + 1
2AB

∑

i

(xi − xi+1)
2 + BB

∑

i

x2
i + 1

P

∑

i

Vext(xi) ,

where EB ≡ −NP
2 Ṅ , AB ≡ Ȧ , BB ≡ Ḃ .

Using the free particle density matrix, we have A = mP
~2β

, N = log (A/2π), B = 0.

EB = NP
2

1
β − mP

~2β2

∑

i

(xi − xi+1)
2 + 1

P

∑

i

Vext(xi)

= NP
2 kT − mP

~2β2

∑

i

(xi − xi+1)
2 + 1

P

∑

i

Vext(xi) .

Using the Harmonic Oscillator density matrix, Vext = 1
P

∑

i V (xi) − 1
2mω

2x2
i is the

‘external’ potential (the local harmonic potential is called the ‘internal’ potential of a

Quantum Drude). Using f = 1
P β~ω; we write

A = mω
~sinh f , = mP

~2β × f
sinh f ,

B = mω
2~

tanh f
2 , = mP

~2β
× f tanh f

2 ,

N = log (A/2π) .

EB = N
2 ~ω coth f − mω2

tanh f sinh f

∑

i

(xi − xi+1)
2 + mω2

cosh2 f

∑

i

x2
i + 1

P

∑

i

Vext(xi)

= NP
2β f coth f − mP

~2β2
f2 coth f

sinh f

∑

i

(xi − xi+1)
2 + mP

~2β2
f2

cosh2 f

∑

i

x2
i + 1

P

∑

i

Vext(xi).

8.6.2 Virial Energy Estimator

Following [HBB82], we can use the properties of the path integral partition function to

express the integral in a different way. Define U as follows. Where possible the Einstein
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summation convention is used on i.

Z =

∫

x
e−U(x) ,

U = −NP
2 N + 1

2A (xi − xi+1)
2 + Bx2

i + β
P

∑

iVext(xi) ,

xi
∂U
∂xi

= 2 ×
[

1
2A (xi − xi+1)

2 + Bx2
i

]

+ β
P xi

∂Vext
∂xi

,

〈

xi
∂U
∂xi

〉

= 1
Z

∫

x
xi

∂U
∂xi
e−U(x) = 1

Z

(

−
∫

x
xi

∂
∂xi
e−U(x)

)

= 1
Z

(

−
∮

|x|→∞
|x|e−U(x) +

∫

x

∂xi
∂xi
e−U(x)

)

= 1
Z (0 + δiiZ) (for a localised particle)

= NP (the trace of the identity matrix),

NP =
〈

xi
∂U
∂xi

〉

= A
〈

(xi − xi+1)
2
〉

+ 2B
〈

x2
i

〉

+ β
P

〈

xi
∂Vext
∂xi

〉

,
〈

(xi − xi+1)
2
〉

= NP
A − 2B

A
〈

x2
i

〉

− β
PA

〈

xi
∂Vext
∂xi

〉

.

Plug this into the Barker estimator to obtain the Virial estimator:

〈EB〉 = −NP
2 Ṅ + 1

2Ȧ
〈

(xi − xi+1)
2
〉

+ Ḃ
〈

x2
i

〉

+ 1
P 〈∑iVext(xi)〉 ,

〈EV〉 = −NP
2 Ṅ + NP

2
Ȧ
A +

(

Ḃ − B Ȧ
A

)

〈

x2
i

〉

+ 1
P 〈∑iVext(xi)〉 − 1

2P
βȦ
A

〈

xi
∂Vext
∂xi

〉

,

EV = EV + BV

∑

i

x2
i + 1

P

∑

i

Vext(xi) −AV
1
P

∑

i

xi
∂Vext
∂xi

,

where EV ≡ −NP
2 Ṅ + NP

2
Ȧ
A , AV ≡ 1

2
βȦ
A , BV ≡

(

Ḃ − B Ȧ
A

)

.

There is no free-particle density virial estimator, because the above derivation only

works for a localised particle. In the case of the harmonic density matrix with an

external potential, some terms cancel or simplify in the virial estimator. Using f ≡
1
P β~ω as usual:

EV = mω2

P

〈

x2
i

〉

+ 1
P

∑

i

Vext(xi) + 1
2f coth(f) 1

P

∑

i

xi
∂Vext
∂xi

= mP
~2β2 f

2
〈

x2
i

〉

+ 1
P

∑

i

Vext(xi) + 1
2f coth(f) 1

P

∑

i

xi
∂Vext
∂xi

.
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8.6.3 Staging Energy Estimator

The harmonic staging virial estimator [WM07] is the least-obvious estimator, and it

is useful because it allows the unperturbed oscillator energy to be integrated out.

Care needs to be taken because it uses the same potential as for MD in the staging

basis, which may not be the same as the remainder/external potential used so far in

the estimators (for example when we derive the dipole-approximation density matrix

expansion below). We denote these φext (the PIMD external potential for dynamics)

and Vext (the physical external potential) respectively.

In the staging coordinate basis, we can write down the partition function:

Z(β, P ) =

∫

u







∏

i6=0

√

1
2πσ2

i
exp

(

u2
i

2σ2
i

)







N0 exp
(

−B0u
2
0 − βφext [x(u)]

)

,

where N0 =
√

mω
2π~sinh(β~ω) , C0 = mω

2~
tanh (β~ω/2) .

Because x0 = u0, we can integrate out the quantity
〈

x2
0

〉

, through another integration

by parts, this time on u0,

〈

x2
0

〉

=
〈

u2
0

〉

= 1
Z

∫

u







∏

i6=0

√

1
2πσ2

i
exp

(

u2
i

2σ2
i

)







√

mω
2π~sinh(β~ω) ×

{

u0 exp
(

−C0u
2
0

)}

× {u0 exp (−βφext)} ,

∫

u0

{

u0 exp
(

−C0u
2
0

)}

{u0 exp (−βφext)}

=

∮

|u0|=∞
− 1

2C0
|u0| exp

(

−C0u
2
0

)

exp (−βφext)

−
∫

u0

(

− 1
2C0

)(

1 − βu0
∂φext

∂u0

)

exp
(

−C0u
2
0

)

exp (−βφext) ,

〈

x2
0

〉

= 0 + 1
2C0

− β
2C0

〈

u0
∂φext

∂u0

〉

= 1
2C0

− β
2C0

〈

u0
∂xi
∂u0

∂φext

∂xi

〉

= 1
2C0

− β
2C0

〈

x0Di
∂φext

∂xi

〉

,

where the Di = ∂xi
∂u0

were derived previously in the section on staging forces.
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The
〈

x2
0

〉

term was easy to calculate because x0 = u0, but it is not immediately obvious

what can be done about
〈

x2
i

〉

for i 6= 0. The next step is to observe that although the

u’s are not equivalent, they depend on an arbitrary choice of labelling for the x’s. The

x’s are equivalent before any transformation, so we could rotate the chain to choose any

another bead to be x0. This is an equally valid choice for the transformation x → u,

which would give us a different u, which could give an alternative set of dynamics for

MD. As the estimators do not depend on the actual dynamics, we can take the same

estimator, rotate it in P , and apply it to each x coordinate in turn: xi → xi+ı, or

Di → Di−ı .

〈

x2
i

〉

= 1
2C0

− β
2C0

1
P

〈

xıD(i−ı)
∂φext

∂xi

〉

.

Inserting this into the expression for the virial estimator,

EV = EV + BV

∑

i

x2
i + 1

P

∑

i

φext(xi) −AV
1
P

∑

i

xi
∂φext

∂xi
,

where EV ≡ −NP
2 Ṅ + NP

2
Ȧ
A , AV ≡ 1

2
βȦ
A , BV ≡

(

Ḃ − B Ȧ
A

)

.

gives the staging virial estimator:

ESt = EV + ESt + 1
P

∑

i φextr(xi) −AV
1
P

∑

i xi
∂φext

∂xi
− BSt

1
P

∑

iı xıD(i−ı)
∂φext

∂xi
,

where BSt ≡ β
2PC0

(

Ḃ − B Ȧ
A

)

.

For the harmonic density matrix, this means:

ESt = 1
2~ω coth

(

β~ω
2

)

+ 1
P

∑

i

φext(xi) + 1
2f coth(f) 1

P

∑

i

xi
∂φext

∂xi

−1
2β~ω coth

(

β~ω
2

)

1
P

∑

iı

xıD(i−ı)
∂φext

∂xi
.
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8.6.4 Summary of Energy Estimators

If we have a partition function of the following form:

Z = exp
{

1
2N − 1

2A
∑

i(xi − xi+1)
2 − B∑ix

2
i − β

P

∑

iV (xi)
}

,

EB(β, P ) = EB + 1
2AB

∑

i(xi − xi+1)
2 + BB

∑

ix
2
i + 1

P

∑

iV (xi) ,

EV(β, P ) = EV + BV
∑

ix
2
i + 1

P

∑

iV (xi) −AV
1
P

∑

ixi∇iV ,

ESt(β, P ) = EV + 1
P

∑

iV (xi) −AV
1
P

∑

ixi∇iV ,

+
(

ESt − BSt
1
P

∑

iı xıD(i−ı)∇iφext

)

.

For the harmonic oscillator reference density matrix, these evaluate as:

EB = N
2 ~ω coth f = NP

2β f coth f ,

EV = 0 ,

ESt = N
2 ~ω coth

(

β~ω
2

)

,

AB = − mω2

tanh f sinh f
1
P = − mP

~2β2
f2

tanh f sinh f ,

AV = −1
2f coth(f) ,

BB = mω2

cosh2 f
1
P = mP

~2β2
f2

cosh2 f
,

BV = mω2

P = mP
~2β2 f

2 ,

BSt = 1
2β~ω coth

(

β~ω
2

)

1
P .

On the right hand side, these expressions have also been written with the ω’s

incorporated into f ’s in order to make it simpler to do convert them into a dipole

quadratic expansion in λ, which we will do in the next section.
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Chapter 9

New High-T Density Matrices for

the QDO

We briefly discuss the challenge of providing more accurate discretisations of the

quantum-path density matrix; to reduce the number of ‘beads’ required to obtain

accurate results. We present a new dipole-dipole density matrix derived by analogy

to the matrix diagonalisation methods of chapter 3. We also sketch some approaches

to porting the high-quality DMC ‘Coulomb’ wavefunction into a density matrix for

PIMD, reasoning that it will result in a similar improvement in convergence.

With DMC, we found that a suitable choice of wavefunction dramatically improved

the probability distribution, reduced its reliance on the clumsy external potential

operator (the population operator), and improving the energy-convergence by reducing

the variance of the estimator. We also found that improved propagators markedly

improved the time-step dependence.

PIMD does not map exactly to DMC, but it would be good if we could use some of

the insights gained, as well as any new ones, to improve the behaviour of the density

matrix, perhaps allowing for a reduction in the bead number P . In particular, we would

like to reduce the number of expensive long-range calculations made around the chain.

Another general approach would be ‘bead RESPA’, where we use the method

of time-scale separation used by Martyna and Tuckerman[TBM92], but applied in

an imaginary time coordinate around the chain. This would allow us to calculate

fewer of the expensive, but slowly-varying, long-range energy components. This has a

disadvantage that not all beads are equivalent, reducing the number of beads from which

the energy can be sampled, which also means that every nrespa-th bead experiences a
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different potential, causing it to yank on its neighbours that are constrained differently.

As such, it would effectively also reduces the overall P number, and thus fail to get

round the inherent limitation of discretised path integrals, that to capture the full

quantum behaviour well, one needs P > ~ω/kT .

Yet another general approach, one which might get around the bead-number

limitation, for long range forces, is that of Manolopoulos[MM08]. To calculate long-

range forces, this method first transforms the chain of P beads by removing all but the

first p (p < P ) of its normal modes, reducing it to simplified chain of the same length

in imaginary time, but with only p beads. The energies and forces thus calculated are

then transformed back to the full P -mode representation, where they can be merged

with the cheap short-range forces.

In this work, we leave aside the ‘bead-respa’ and normal-mode-contraction ideas, for

now, to see if we can improve energy convergence using better high-T (small-τ) density

matrix approximations. Initially, we focussed on the dipole-limit because it is relatively

simple; it requires an perturbation expansion of the quadratic simple harmonic density-

matrix in terms of the dipole-dipole interaction tensor, in a similar manner to the

expansion in the Dipole-Limit chapter. It is also possible to produce a similar expansion

of the simple harmonic virial (and thus also the staging-virial) estimator. We test these

ideas using our existing model of Xenon.

Finally, we sketch two possible approaches towards a coulomb-cancelling ‘F’-density

matrix by analogy to the method we already proved for DMC.
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9.1 New Dipole-Expansion Density Matrix

9.1.1 Derivation of the Density Matrix

The dipole-dipole interaction between two drudes is a quadratic function.

Vdpl = −1
2q

2xTx = −1
2mω

2αxTx .

This method transfers its influence from the ‘perturbing’ operator Vext to the trial

operator H0. This time the Hamiltonian is decomposed into two new operators.

Ĥ = Ĥdpl + V̂rem ,

where Ĥdpl = p̂2

2m + 1
2mω

2x2 + Vdpl ,

V̂rem = Vext(x) − Vdpl (the remainder).

The density operator is decomposed symmetrically as before.

ρ(x, x′; τ) → e−
τ
2 Vrem(x) ρdpl(x, x

′; τ) e−
τ
2 Vrem(x′) , also correct to O

(

τ2
)

.

In the systems we would like to investigate, there may be many dipoles coupled, and

they may also be moving, making it awkward to generate an exact solution for ρdpl. But

the above operator splitting is correct only to O
(

τ2
)

, so it is only necessary to make

sure that ρdpl is correct to the same order, which in turn requires that the logarithm

be correct to the same order (ultimately the logarithm is the only thing we need to

manipulate).

Starting from the harmonic oscillator density matrix

log ρh.o. = 1
2N − 1

2A(x− x′)2 − 1
2B(x2 + x′2) − τV (x) ,

where
A = mω

~sinh f = mP
~2β

× f
sinh f ,

B = mω
~

tanh f
2 = mP

~2β × f tanh f
2 ,

N = log (A/2π) .

We expand it in λ = −αT as before. The functions A, B, and N above were rearranged

so that all the λ dependence appears in f = β~ω/P . It is not immediately obvious that

a 2nd-order expansion in λ would also be 2nd-order in τ , so that had to be checked

(and fortunately, it is):

ω → ω (1 + λ)1/2 , f → f (1 + λ)1/2 , where λ = −αT ,
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log ρdpl =
∞
∑

n=0

λn

n!
∂n

∂λn [log ρh.o.]

≈ log ρh.o. + λ ∂
∂λ (log ρh.o.) + λ2

2
∂2

∂λ2 (log ρh.o.) .

For a system in N dimensions, note N = Tr(δ).

log ρh.o. = N
2 N −1

2A(x− x′)2 −1
2B(x2 + x′2) ,

log ρdpl = N
2 N0 −1

2N1αTr(T) +1
2N2

α2

2 Tr
(

T2
)

−1
2A0(x − x′)2 +1

2A1α(x − x′)T(x − x′) −1
2A2

α2

2 (x− x′)TT(x− x′)

−1
2B0(x

2 + x′2) +1
2B1α(xTx + x′Tx′) −1

2B2
α2

2 (xTTx + x′TTx′) ,

where An ≡ ∂n

∂λnA and so on.

Here are the expansion coefficients explicitly:

N0 = log
(

mP
2π~2β

)

+ log
(

f
sinh f

)

,

N1 = 1
2 (1 − f coth f) ,

N2 = 1
4

(

f coth f − 2 + f2

sinh2 f

)

,

A0 = mP
~2β × f

sinh f ,

A1 = mP
~2β × 1

2
f

sinh f (1 − f coth f) ,

A2 = mP
~2β

×−1
4

f
sinh f

[

1 + f coth f + f2
(

1 − 2 coth2 f
)]

,

B0 = mP
~2β

× f tanh f
2

B1 = mP
~2β ×

[

1
2f tanh f

2 + 1
4f

2
(

1 − tanh2 f
2

)]

,

B2 = mP
~2β ×

[

−1
4f tanh f

2 + 1
8f

2
(

1 − tanh2 f
2

)

− 1
8f

3 tanh f
2

(

1 − tanh2 f
2

)]

.
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9.1.2 Dipole-Expansion P.I.M.D.

When this is used to construct a path integral, the path-density function becomes

log ρdpl(x) = NP
2 N0 −1

2A0
∑

i(xi − xi+1)
2 −B0

∑

i x
2
i

−P
2 N1αTr(T) + (A1 + B1)α

∑

i xiTxi −A1α
∑

i xiTxi+1

+P
2 N2

α2

2 Tr
(

T2
)

− (A2 + B2)
α2

2

∑

i xiTTxi +A2
α2

2

∑

i xiTTxi+1

= log ρh.o.(x)

−P
2 N1αTr(T) + (A1 + B1)α

∑

i xiTxi −A1α
∑

i xiTxi+1

+P
2 N2

α2

2 Tr
(

T2
)

− (A2 + B2)
α2

2

∑

i xiTTxi +A2
α2

2

∑

i xiTTxi+1 .

The path-weights becomes an effective potential as before.

φeff(x) = NP
2β N0 + 1

2βA0
∑

i(xi − xi+1)
2 + 1

βB0
∑

i x
2
i

+ P
2βN1αTr(T) − 1

β (A1 + B1)α
∑

i xiTxi + 1
βA1α

∑

i xiTxi+1

− P
2βN2

α2

2 Tr
(

T2
)

+ 1
β (A2 + B2)

α2

2

∑

i xiTTxi − 1
βA2

α2

2

∑

i xiTTxi+1

+ 1
P

∑

i

[

Vrem (xi) + q2

2 xiTxi

]

.

Part of this potential is the ‘internal’ potential that comes to the harmonic behaviour.

This part does not change at all, and is treated by the staging transformation already

described. The remaining part is the ‘external’ potential that comes from interactions

between the particles. The difference is that previously this term contained simple,

diagonal potential terms. Now, with the dipole-perturbation reference density matrix,

the function is smoothed with respect to the beads, and this includes the introduction

of some off-diagonal terms as well.

φeff(x) = NP
2β N0 + 1

2βA0

∑

i

(xi − xi+1)
2 + 1

βB0

∑

i

x2
i − φext (x) ,

φext (x) = P
2βN1αTr(T) − 1

β (A1 + B1)α
∑

i xiTxi + 1
βA1α

∑

i xiTxi+1

− P
2βN2

α2

2 Tr
(

T2
)

+ 1
β (A2 + B2)

α2

2

∑

i xiTTxi − 1
βA2

α2

2

∑

i xiTTxi+1

+ 1
P

∑

i

[

Vext (xi) + q2

2 xiTxi

]

.
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Beware! For small systems we often wish to include interactions with additional images

(repetitions) of the box, outside of the box. A dipole interacts not just with the other

dipoles in a box, but also with all their images outside the box (and its own images).

This means that the dipole tensor (and anything derived from it, such as gT and pT

explained below) has to be summed over all the images that are included. This makes

no difference for most parts of the calculation, but it does matter when working with

Tr
(

T2
)

. We need to be careful to sum the matrix over all images first, and then

perform the trace.

��������




∑

n

Tr
(

T2
n

)



 −→ Tr





(

∑

n

Tn

)2


 X
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9.1. New Dipole-Expansion Density Matrix

9.1.3 Dipole-Expansion Drude-Forces

The dipole potential involves the drude coordinates x and the atomic coordinates r in

two different ways.

φdpl = −α
2

∑

jk

xj Tjk xk (j,k are particle indices)

= −α
2

∑

jk

1

|rjk|5
[

3(xj ·rjk)(xk ·rjk) − r2jk(xi ·xj)
]

.

The forces on the drude, and the forces on the atoms are much more different than

for the simplest external potential. The drude-forces are the simplest to calculate,

but they have an extra index, the bead index, which is denoted i here in order to be

consistent; j,k,ℓ, etc are used to reference particles.

The forces on the drudes,

F
(x)
extij = −∇ijφext (x)

= + 2
β (A1 + B1)α [Tx]ij − 1

βA1α
{

[Tx]i−1 + [Tx]i+1

}

− 2
β (A2 + B2)

α2

2 [TTx]ij + 1
βA2

α2

2

{

[TTx]i−1 + [TTx]i+1

}

− 1
P ∇ij Vext (xi) − q2

P [Tx]ij ,

where [Tx]ij =
∑

k

Tjkxik ,

[TTx]ij =
∑

k

Tjk [Tx]ik =
∑

kℓ

TjkTkℓxiℓ

(both are P ×Ndrude arrays of 3-vectors).
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9.1.4 Dipole-Expansion Atomic Forces and Pressure

The forces and pressures on the atoms are somewhat different. Define two shorthand

operators: the gradient with respect to atomic coordinates,

ĝj = ∇r,j , ĝjγTjkαβ = ∇γ∇α∇β
1

|rjk| ,

ĝTr (T) = 0 ,

ĝTr
(

T2
)

= 2
∑

jk Tjk (ĝTkj) ,

ĝjxiTxi′ = ĝj
∑

kℓ xikTkℓxi′ℓ =
∑

kℓ xij (ĝjTjℓ)xi′ℓ + xik (ĝjTkj)xi′j ,

ĝjxiTxi′ = xij [gTx]i′j + xi′j [gTx]ij ,

ĝjxiTxi = 2xij [gTx]ij ,

ĝjxiTTxi′ = xij [gTTx]i′j + [xT]ij [gTx]i′j + xi′j [gTTx]ij + [xT]i′j [gTx]ij ,

ĝjxiTTxi = 2xij [gTTx]ij + 2 [xT]ij [gTx]ij ,

where [gTx]ij ≡
∑

k

(ĝjTjk) xki ,

[gTTx]ij ≡
∑

kℓ

(ĝjTjk)Tkℓxiℓ (arrays of 3 × 3 matrices).

and the pressure operator,

p̂αβ =
∑

j
1

det hrj,β ĝj,α , p̂αβTjk = 1
2 (rjβ − rkβ)∇αTjk ,

p̂Tr (T) = 0 ,

p̂Tr
(

T2
)

= 2
∑

jk Tjk (p̂Tkj) ,

p̂xiTxi′ = p̂
∑

jk xijTjkxi′k =
∑

jk xij p̂Tjkxi′k ,

p̂xiTxi′ =
∑

j xij [pTx]i′j ,

p̂xiTTxi′ = 2 [xT]ij [pTx]i′j ,

where [pTx]ij =
∑

k

(p̂Tjk) xki (array of 3 × 3 × 3 matrices).
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The forces on the atoms,

F
(r)
j = −ĝj φext (x)

= − P
2βN1α ĝjTr(T) + P

2βN2
α2

2 ĝjTr
(

T2
)

+ 2
β (A1 + B1)α

∑

i

xij [gTx]ij

− 1
βA1α

∑

i

(xi−1,j + xi+1,j) [gTx]ij

− 2
β (A2 + B2)

α2

2

∑

i

{

xij [gTTx]ij + [xT]ij [gTx]ij

}

+ 1
βA2

α2

2

∑

i

{

(xi−1,j + xi+1,j) [gTTx]ij + (xTi−1,j + xTi+1,j) [gTx]ij

}

− 1
P ∇ij Vext (xi) −

∑

i

q2

P xij [gTx]ij .

The pressure estimator,

P = p̂ φext (x)

= + P
2βN1α p̂ Tr(T) − P

2βN2
α2

2 p̂ Tr
(

T2
)

− 1
β (A1 + B1)α

∑

ij

xij [pTx]ij

+ 1
βA1α

∑

ij

xij [pTx]i+1,j

+ 1
β (A2 + B2)

α2

2

∑

ij

{

2 [xT]ij [pTx]ij

}

− 1
βA2

α2

2

∑

ij

{

2 [xT]ij [pTx]i+1,j

}

+ 1
P ∇ij Vext (xi) +

∑

ij

q2

2P xij [pTx]ij .
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Chapter 9. New High-T Density Matrices for the QDO

These structures are efficient for computational implementation. Although some of

the sums appear to be O
(

N3
)

, they can actually be done by passing a vector twice

through a function that costs only O
(

N2
)

. In our code, a single ‘dipole-matrix’ function

simultaneously performs 3 different operations (3 different outputs) on a single input

vector:

x → { Tx , (gT) x , (pT)x } ,
Tx → { TTx , (gT)Tx , (pT)Tx } .

For a 2nd order expansion in T, it turns out that pTTx is not needed, so there is an

option to omit it, or any of the other operations.

9.1.5 Dipole-Expansion Energy Estimators

The Barker estimator is the simplest to derive. It can be derived two ways: by taking

derivatives in β of all the terms in φeff above, or by taking derivatives in λ = −αT from

the standard Barker estimator for the harmonic oscillator.

The virial estimator involves a particular partial integration, for which there are

two choices; we can choose to cancel only the harmonic cross-terms, or we can choose

to cancel all the dipole-expansion cross-terms.

At present the staging estimator involves cancelling the diagonal terms from the

harmonic part of the virial estimator, so there are two choices for this depending on

which choice of virial integration was used.

Barker Estimator

Here is the harmonic-reference barker estimator again

EB = EB + 1
2AB

∑

i(xi − xi+1)
2 + BB

∑

ix
2
i + 1

P

∑

iV (xi) ,

with

EB = N
2 ~ω coth f = NP

2β f coth f ,

EV = 0 ,

ESt = N
2 ~ω coth

(

β~ω
2

)

.

The dipole-approximation estimator can be derived by expanding in λ = −αT
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9.1. New Dipole-Expansion Density Matrix

via f → f
√

1 − αT as before.

EB,dpl(β, P ) = EB0 − EB1αTr(T) + EB2
α2

2 Tr
(

T2
)

+1
2AB0

∑

i(xi − xi+1)
2 + BB0

∑

ix
2
i

− (AB1 + BB1)α
∑

ixiTxi + AB1α
∑

ixiTxi+1

+ (AB2 + BB2)
α2

2

∑

ixiTTxi −AB2
α2

2

∑

ixiTTxi+1

+ 1
P

∑

iVrem(xi) .

Now note that the top line is an expansion of dispersion energy terms in the dipole

limit. As Tr (Tn) is the n-body term, it might seem worrying that we truncate it at

the two body term, when we know that 3-body and higher interactions are important,

but the whole series can be cancelled by a suitable choice of virial estimator below.

Virial Estimator

There are two choices here: to exactly cancel some of the cross terms (xi − xi+1)
2 or

to approximately cancel the full dipole expansion of these terms. It turns out that

the latter is actually simplest even though at first it sounds more complicated. Like

the barker extimator, it can also be found also by simply expanding the harmonic-

reference virial estimator in λ = −αT via f → f
√

1 − αT as before. Here is the

harmonic-reference virial estimator

EV = EV + BV
∑

ix
2
i + 1

P

∑

iVext(xi) −AV
1
P

∑

ixi∇iVext ,

EV,dpl(β, P ) = EV0 − EV1αTr(T) + EV2
α2

2 Tr
(

T2
)

+BV0
∑

ix
2
i −AV0

1
P

∑

ixi∇iVrem + 1
P

∑

iVrem(xi)

−BV1α
∑

ixiTxi + BV2
α2

2

∑

ixiTTxi

+AV1α
1
P

∑

i [xT]i ∇iVrem −AV2
α2

2
1
P

∑

i [xTT]i ∇iVrem ,
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and because EV = 0, this simplifies to

EV,dpl(β, P ) = BV0
∑

ix
2
i −AV0

1
P

∑

ixi∇iVrem + 1
P

∑

iVrem(xi)

−BV1α
∑

ixiTxi + BV2
α2

2

∑

ixiTTxi

+AV1
α
P

∑

i [xT]i ∇iVrem −AV2
α2

2P

∑

i [xTT]i ∇iVrem .

Staging Estimator

This is the harmonic-reference staging estimator

ESt = 1
P

∑

iV (xi) −AV
1
P

∑

ixi∇iV

+
(

ESt − BSt
1
P

∑

iı xıD(i−ı)∇iφext

)

.

One possibility is to simply follow the same procedure as for the barker and virial

estimators; expanding the harmonic-reference estimator in T. That would give

ESt,dpl(β, P ) = 1
P

∑

iVrem(xi) + q2

2

∑

ixiTxx

+NESt0 −ESt1αTr (T) +ESt2
α2

2 Tr
(

T2
)

−AV0
1
P

∑

ixi∇iVrem − 1
P

∑

iı xıD0,(i−ı)∇iVrem

+AV1
α
P

∑

i [xT]i ∇iVrem + α
P

∑

iı [xT]ı D1,(i−ı)∇iVrem

−AV2
α2

2P

∑

i [xTT]i ∇iVrem − α2

2P

∑

iı [xTT]xıD2,(i−ı)∇iVrem ,

where Dn,(i−ı) ≡ ∂n

∂λn

[

BStD(i−ı)

]

.

However, this expansion is not used because it has two problems. Firstly, derivatives of

the vector Di are complicated to calculate and they should be avoided if possible.

Secondly and more seriously, the new energy term ESt is the actual energy of an

unperturbed harmonic oscillator at that temperature. Thus it does not disappear with

increasing P . If we expand it in T, then we will obtain all the n-body dipole-limit

dispersion terms that came out in the dipole-limit chapter. These cannot be simply

discarded, or the energy estimator would be incorrect.

For these two reasons, it is preferable to try a different approach for the dipole-reference

staging estimator, cancelling only the on-site, unperturbed harmonic contribution.

Using exactly the same derivation as for the harmonic-reference staging estimator,
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9.1. New Dipole-Expansion Density Matrix

the
∑

ix
2
i can be integrated out using the external effective potential.

ESt,dpl(β, P ) =
(

ESt − BSt
1
P

∑

iı xıD(i−ı)∇iφext

)

−AV0
1
P

∑

ixi∇iVrem + 1
P

∑

iVrem(xi)

−BV1α
∑

ixiTxi + BV2
α2

2

∑

ixiTTxi

+AV1
α
P

∑

i [xT]i ∇iVrem −AV2
α2

2P

∑

i [xTT]i ∇iVrem .

Note that there are two different potential-like terms now in the estimator, Vrem and

φext. Fortunately, this does not create any extra work, as the new terms simply use the

‘external’ drude-forces. Note also, that φext 6= Vext for the dipole-expansion case.

∇iφext = −F (x)
exti .
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Chapter 9. New High-T Density Matrices for the QDO

9.1.6 Analytic Tests for the Density Matrix

It is possible to obtain the discretisation-error of the path-integral approximation

very precisely for quadratic potentials in 1D. This can be extended to general dipole-

limit interactions, which we can calculate by diagonalising an dipole-dipole interaction

matrix, and then summing the energies of the uncoupled modes.

One method is to analytically integrate a series of coupled Gaussians. The coupling

between neighbouring beads on the chain (which is caused by the kinetic energy

operator) can be represented by a tridiagonal matrix, and the integration involves

calculating the determinant of that matrix[SSCW81]. For a density matrix with

coefficient n, a, b and an external potential with coefficient c, we simply state the

result,

ZP =
∏P

i

∫

xi

n√
2π

exp
{

−1
2a(xi − xi+1)

2 − 1
2b(x

2
i − x2

i+1) − 1
2c(x

2
i − x2

i+1)
}

=
[

n√
a

]P
AP/2

AP−1
, where A =

a+(b+c)+
√

2a(b+c)+(b+c)2

a ,

FP = − 1
β logZP , EP = − ∂

∂β logZP .

The free-energy FP can be calculated trivially, and we can use numerical derivatives

to obtain the energy EP . We found we needed quadruple-precision to calculate these.

Here we will refer to this method as Gaussian Integration.

The other method, Numerical Matrix Multiplication[TBB83] is to numerically

integrate (convolve) two spatially-discretised density matrices to form a third, by

spatially-discretising the following formula: For convenience, we elected to recursively

square the density matrix each time. This is to use the choice p1 = p2.

∫

y
ρp1(x, y; p1τ) ρp2(y, x

′; p2τ) = ρ(p1+p2)

(

x, x′; (p1+p2)τ
)

,

∫

y
ρP (x, y;Pτ) ρP (y, x′;Pτ) = ρ2P (x, x′; 2Pτ) ,

EP = − 1
ZP

∂
∂βZP ,

where ρp means the density matrix that has been formed from a p-fold discretisation

of the density operator ρ̂.

Fig. 9.1 was made via the analytical Gaussian Integration method, studying a

harmonic perturbation to the potential, which is λ times as strong as that of the

unperturbed potential.
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9.1. New Dipole-Expansion Density Matrix

For the simple-harmonic reference (triangles), the error always falls like P−2. This

is because of the higher-order commutators between the simple harmonic reference-

operator, and the external potential, which come in at order τ3 or P−3 (where

τ = β/P ). But as the chain is P beads long, the total error is P times bigger, at

P−2.

The dipole-expansion density-matrix (circles) converges better than this because,

in this ideal case, the entire external potential has been folded into the reference

propagator, so there is no commutator. As the error falls like P−4, we can infer

that the first errors in the dipole-expansion density matrix come in at order τ5.

Unfortunately this is of no use to us unless we can improve the operator decomposition

to remove the higher-order commutators. There is a decomposition that would allow

us to do this [Suz86, Suz94, Chi97], but it is complicated to implement, so we have

not used it at this stage. The overall error using our conventional splitting method,
(

e−τH′/2eτH0e−τH′/2
)P

, should fall like P−2.
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Figure 9.1: The log discretisation-error of the free energy with beads, at ~ω/kT =
10.0, under the perturbation potential λ

2mω
2x2, for various values of λ (see color key),

using the simple-harmonic reference (triangles) and the new dipole-expansion reference
(circles), but without the new dipole-expansion-virial estimator, demonstrating that
the new reference is more accurate and converges as O

(

τ4
)

compared O
(

τ2
)

for the
old reference.
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9.1. New Dipole-Expansion Density Matrix

Fig. 9.2 shows a similar graph, but this time the discretisation error in the energy

calculated for a periodic 108-atom FCC crystal in the dipole-limit. It displays similar

convergence, for exactly the same reasons, even though there are now 324 degrees

of freedom. It was calculated by diagonalising the dipole-dipole interaction matrix,

and summing the energy over each independent mode. The dipole-expansion density-

matrix permits either a minimum 100-fold improvement in accuracy, or a minimum

10-fold improvement in bead number.
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Figure 9.2: The discretisation-error of the energy with beads, at ~ω/kT = 10.0,
for the dipole-limit periodic FCC crystal, with 108 atoms, calculated using NMM,
using the simple-harmonic reference (red) and the new dipole-expansion density matrix
with dipole-expansion-virial estimator (green). This shows that the dipole-expansion
reference remains the most accurate and quickly-converging, when applied to a complex
many-body system.
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Fig. 9.3 shows the convergence in terms of absolute energies, making it more

obvious how much better the dipole-expansion density-matrix is. Note, however, that

convergence does not really get under way until P ≈ ~ω/kT = 10.0. This is a general

observation when discretising density matrices [MM08]. However, it converges very

quickly after that.
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Figure 9.3: Another view of the previous result, showing the total energy with beads, at
~ω/kT = 10.0, for the dipole-limit FCC crystal with 108 atoms (and periodic images),
calculated by NMM, using the simple-harmonic reference (red) and the new dipole-
expansion density matrix with dipole-expansion-virial estimator (green), This graph
makes it more obvious how much the bead number can be decreased by using the
dipole-expansion reference propagator for systems in the dipole-limit.
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Fig. 9.4 shows how the new dipole-expansion-virial energy estimator (section 9.1.5)

converges compared to the naive virial estimator (which we highlight by showing that

it is equivalent to the Gaussian integration result). The convergence rate is very similar

(slightly better) except from the opposite direction, showing that this estimator is

viable (as good as any other). As we already showed, it can be extended trivially to

the staging-virial method, but that detail is not relevant to these tests, which do not

require statistical sampling.
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Figure 9.4: The total energy with beads, for the dipole-limit FCC crystal, at ~ω/kT =
10.0, with 108 atoms (and periodic images), using the new dipole-expansion density-
matrix, calculated using NMM. (red) is the naive virial energy estimator for this density
matrix. (green) is the new dipole-expansion-virial energy estimator. (blue) is the exact
Gaussian Integration result for comparison. This shows that the dipole-expansion-virial
energy estimator converges no worse, and possibly better, than the problematic naive
estimator.
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9.2 New on-site plus Coulomb Density Matrix

When we tested the dipole-expansion density matrix for the QDO full model, we found

that gave very little improvement in terms of bead number. This is not that surprising

when one considers that the dipole-limit wavefunction captured only about 50% of

the variational energy when compared to the harmonic wavefunction, at the energy

minimum of the dimer.

The coulomb-expansion trial wavefunction described in section 6.3 was found be

vastly superior to the dipole trial wavefunction. If a density matrix could be constructed

along similar lines, it could perhaps lead to real improvements in convergence with bead

number.

There are three overlapping approaches we can take; we can attempt to generate a

coulomb correction to the harmonic oscillator density matrix by (a) solving an equation

similar to eqn.6.2, (b) writing down and symmetrising the DMC propagator that is

implied by the DMC operators described above, or (c) writing down the DMC trial

hamiltonian that is implied by the DMC wavefunction (and thus operators).

9.2.1 Approach (a): Solving a PDE directly, or partially

For simplicity following Sec. 6.3, we begin with the base Hamiltonian,

H = − ~
2

2m
∇2 +

mω2

2
r2 − Q2

| r −R | +
Q2

| R | , (9.1)

and write an ansatz for the density matrix associated with that Hamiltonian as

ρ(r, r′; τ) = ρH.O.(r, r
′; τ) exp[−F (r, r′; τ)] . (9.2)

All the perturbation is now buried in F (r, r′; τ). Inserting the ansatz into the Bloch

equation yields

∂F (r, r′; τ)
∂τ

= − Q2

| r −R | +
Q2

| R | −
~

2

2m

[

| ∇F (r, r′; τ) |2 −∇2F (r, r′; τ)
]

−~ω

[

(r − r′)
sinh(τ~ω)

+ 1
2r tanh

(

τ~ω

2

)]

· ∇F (r, r′; τ) . (9.3)

Following the example of Sec. 6.3, we simplify the expression by neglecting the ∇2F

term, which was approximately zero, and the |∇F |2 term, which is related to 3-body
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correlations, leaving an approximate relation,

∂F (r, r′; τ)
∂τ

= − Q2

| r −R | +
Q2

| R |

−~ω

[

(r − r′)
sinh(τ~ω)

+ 1
2r tanh

(

τ~ω

2

)]

· ∇F (r, r′; τ) . (9.4)

Next, we can make the following approximation

F (r, r′; τ) = 1
2

[

F̃ (r; τ) + F̃ (r′; τ)
]

, (9.5)

which will give O
(

τ3
)

convergence provided that F̃ (r; τ) → τV (r) in the small-τ limit,

so that the simple Trotter-Suzuki decomposition reappears,

ρ(r, r′; τ) = ρH.O.(r, r
′; τ) exp(−τ

2

[

V (r) + V (r′)
]

) , correct to O
(

τ3
)

.

If the large-τ limit, we would like to recover the zero-temperature limit of the density

matrix as a product of ground-state wavefunctions

ρ(r, r′; τ) → ψ
(HO)
0 (r)ψ

(HO)
0 (r′) exp(−[FT(r) + FT(r′)]) exp(−τE0) ,

where FT(r) is the function we derived in Sec. 6.3.

In order to derive an equation for F̃ (r; τ), we insert the Eq. 9.5 into Eq. 9.4 and set

r = r′ to yield

∂F̃ (r; τ)

∂τ
= − Q2

| r −R | +
Q2

| R |

−~ω

2
tanh

(

τ~ω

2

)

r∂F (r; τ)

∂r
,

which can be solved using Laplace Transforms subject to the boundary condition,

F̃ (r, 0) = τV (r) = 0 ,

V (r) = V (r, θ, φ) = − Q2

| r −R | +
Q2

| R | ,
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Chapter 9. New High-T Density Matrices for the QDO

to yield the elliptic integral

F̃ (r; τ) =
2

~ω

∫ r

rp(τ)
dy
V (y, θ, φ)

y







1

1 −
(

rp(τ)
y

)2






,

where p(τ) = sech [τ~ω/2] .

It is easy to see that F̃ (r; τ) behaves as specified reducing to τV (r) +O(τ3) at small τ

and to FT (r) as τ goes to infinity (p(τ) → 0).

Since we cannot evaluate the eliptic integral in closed form, we seek approximations:

F̃ = − 2

~ω

∫ r

rc(τ)
dr′

φ(r′)
r′

= FDMC[r] − FDMC[rc(τ)] ,

∂
∂τ F̃ = +

1

~ω

1

c(τ)

∂c

∂τ
× φ [rc(τ)] ,

−~ωr ∂
∂r F̃ = φ [r] − φ [rc(τ)] .

If we make an approximation that ~2

m∇ log ρ0 is a constant equal to −~ωr, then we have

a solution if

∂

∂τ
log c = −~ω/2 ,

c(t) = e−τ~ω/2 .

This solution obeys two limits nicely; for small τ , c(t) → (1− τ~ω/2), and F converges

to −τφ :

F̃ → − 2

~ω

rτ~ω

2
×
[

φ(r)

r

]

= −τφ(r) ,

then for large τ , c(t) → 0, and F converges on the DMC ground-state trial wavefunction:

F̃ → 2FDMC[r] − 2�����FDMC[0]

= 2FDMC[r] .

In reality, however, ~2

m∇ log ρ0 is not a constant, and so we would have to add correction

terms, order by order.
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9.2. New on-site plus Coulomb Density Matrix

9.2.2 Approach (b): Symmmetrise the DMC propagator

The DMC propagator is not the same as the density matrix, but we know that if the

DMC propagator P (x→ x′; τ) was exact, then it would be related to the density matrix

as follows

P (x→ x′; τ) = ρ(x, x′; τ) × ΨT(x′)
ΨT(x)

.

We can symmetrise the DMC propagator by multiplying it by the same propagator in

the reverse direction, yielding an expression for the density matrix itself, in terms of

the DMC propagator.

P (x→ x′; τ) P (x′ → x; τ) = [ρ(x, x′; τ)]2 ,

ρ(x, x′; τ) =
√

P (x→ x′; τ) P (x′ → x; τ) .

This gives a general form,

P (x→ x′; τ) = exp

{

−τ
2

[

ĤΨT

ΨT
− Ē

]}

× exp

{

− [x′ − (x+ ∆(x))]2

2σ2(x)

}

× exp

{

−τ
2

[

ĤΨT(x′)
ΨT(x′)

− Ē

]}

,

ρ(x, x′; τ) = exp

{

−τ
2

[

ĤΨT(x)

ΨT(x)
+
ĤΨT(x′)
ΨT(x′)

− 2Ē

]

− [x′ − (x+ ∆(x))]2

4σ2(x)
− [x− (x′ + ∆(x′))]2

4σ2(x′)

}

,

where ∆ and σ are functions of τ as well as position.

However, we only know the DMC propagator to 1st order in τ . That means for

PIMD we have to design 2nd order in τ correction via more careful analysis, perhaps

by looking at the operator decomposition.
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9.2.3 Approach (c): Use DMC trial-Hamiltonian

DMC splits the Hamiltonian into two parts; Â, the diffuse-drift operator, and B the

external potential, population operator. In the most naive splitting, with no importance

sampling or trial wavefunction, the splitting is Â = T̂ vs B̂ = V . For the simple

harmonic trial wavefunction, this changes to Â = T̂ + 1
2mω

2x2, vs B̂ = V − 1
2mω

2x2.

At first sight, this looks as if terms in the potential are simply being transferred across

from one operator to another, but this is naive. In fact, what is happening, is that Â is

a fictitious- or trial-Hamiltonian which is the exact eigenoperator for a particular new

trial wavefunction that we have chosen. In general, Â and B̂ are defined as follows (for

now we neglect constant terms such as the normalisation Ē).

Â = T̂ − T̂ΨT

ΨT
= − ~

2

2m
∇2 +

~
2

2m

∇2ΨT

ΨT
,

B̂ = +
T̂ΨT

ΨT
+ V =

ĤΨT

ΨT
.

Investigating this, may help to better understand the first two approaches, or generate

new insights.
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Chapter 10

Xenon - PIMD simulations

We use the same Quantum Drude model of Xenon to test the new density matrix in

PIMD, primarily to test its efficacy on a realistic system, presenting convergence tests

in terms of bead-number, and timesteps, for static configurations, and faux-mass for a

liquid. Finally we test the new density matrix on two fluid state-points.

10.1 Dipole-Limit ‘machinery tests’

The dipole limit is useful for testing our PIMD machinery, because we can obtain

analytic results (or at least, in the case of NMM, numerically very accurate results).

The tests in this section converged quickly because they were run with fewer beads than

would be needed for an accurate simulation, and because we used a higher termperature

(β~ω = 5.152 instead of β~ω = 10.0, which we use for all the simulations after this

section), which also reduces the required number of beads.
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Chapter 10. Xenon - PIMD simulations

We simulated a dipole-limit Xenon dimer (Fig. 10.1) for various discretisations P ,

and for two kinds of density matrix; the basic harmonic-reference density matrix and

the dipole-expansion density matrix, for the dipole-expansion density matrix, we also

used the approximate dipole-expansion-virial estimator derived above. For each of these

density matrices, we calculated exact energies by integrating the estimator numerically,

using Numerical Matrix Multiplication (see sec. 9.1.6) in conjunction with matrix-

diagonalisation, which is trivial for the dipole-dimer case (see sec. 3.3). As the dipole-

expansion-virial estimator is only approximate, the normal relation E = −∂/∂β logZ

is not valid, so the Gaussian Integration method (also sec. 9.1.6) is not an option.
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Figure 10.1: Convergence of the interaction energy with bead number P , for a static
dipole-limit Xenon dimer, simulated using PIMD, using the harmonic density matrix
(red) and the dipole-expansion density matrix (green), compared with values calculated
by NMM (circles), with β~ω = 5.152, demonstrating that the PIMD code predicts
correctly (with converged timestep and respa number).
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10.1. Dipole-Limit

Next, we did essentially the same thing, but for a dipole-limit Xenon periodic FCC

solid, containing 32 atoms (Fig. 10.2). The only difference here was that we had to use

the exact periodic sum of dipole-interaction tensors for our dipole-expansion reference

propagator. This is fine for static configurations, because it is not necessary to calculate

Tr(T2) in this case, as it appears only as a normalisation factor in the partition function,

and does not appear at all in the dipole-expansion-virial estimator. However, moving

the atoms would require calculating gradients of Tr(T2), periodically summed which is

not as trivial. The reason for this choice was that it is needed for performing the matrix

diagonalisation that is fed into NMM. It was necessary to compares NMM apples with

PIMD apples and not oranges.

-16.0

-14.0

-12.0

-10.0

-8.0

-6.0

-4.0

-2.0

0.0

 64 32 16 8 4 2 1

en
er

gy
 /m

H
ar

tr
ee

beads P

harmonic d.m.
dipole-expansion d.m.

Figure 10.2: Convergence of the interaction energy with bead number P , for a static
dipole-limit Xenon FCC periodic solid with 32 atoms, simulated using PIMD, using
the harmonic density matrix (red) and the dipole-expansion density matrix including
reciprocal-space terms (green), each compared with values calculated by NMM (circles),
with β~ω = 5.152, demonstrating that the PIMD code predicts correctly (with
converged timestep and respa number).
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Chapter 10. Xenon - PIMD simulations

10.2 Xenon dimer (static atoms)

In figure 10.3, we present a timestep-study for the Xenon dimer, using P = 80

beads, as a particular tough case. Hereafter in this section, we use the converged

timestep t = 0.01/ωPIMD. For the dimer case, the potential is especially cheap, and

the computational time is dominated by the internal chain dynamics, especially the

thermostats. Therefore there was little to be gained from an Nrespa study, so we omitted

it, simply choosing Nrespa = 1.
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Figure 10.3: Convergence of the interaction energy with timestep, for a static Xenon
dimer, simulated using PIMD, using the harmonic density matrix (red) with P = 80
beads, β~ω = 10.0 and separation R = 8bohr (near the minimum)

Next we performed two convergence-with-P studies, one with a separation of 8bohr

(Fig. 10.4), near the minimum of the total interatomic potential, and the second with

a separation of 12bohr (Fig. 10.5), a little further out. At 8bohr, the dipole-expansion

density-matrix seems to cause slightly improved convergence, but at 12bohr, it makes a

significantly greater difference, because the interaction is more strongly dominated by

the dipole-dipole interaction at that range. However, in neither case is the convergence

particularly good. This suggests we may need to further improve the density matrix.
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10.2. Dimer
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Figure 10.4: Convergence of the interaction energy error with bead number P , for a
static Xenon dimer, separated by 8bohr, simulated using PIMD, using the harmonic
density matrix (red) and the dipole-expansion density matrix (green).
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Figure 10.5: Convergence of the interaction energy error with bead number P , for a
static Xenon dimer, separated by 12bohr, simulated using PIMD, using the harmonic
density matrix (red) and the dipole-expansion density matrix (green).
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Chapter 10. Xenon - PIMD simulations

However figure 10.6 shows that, at least when PIMD is converged with P , for

example at P = 160, and where kT = 1/β is small enough, it reproduces the exact

ground state energy as calculated with very accurate DMC, at least within its error-

bars. Therefore PIMD, is a viable way to simulate the ground-state Born-Oppenheimer

surface.
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Figure 10.6: Interaction energy vs separation R, for static Xenon dimers, simulated
using PIMD, P = 160 beads, using the harmonic density matrix (red) and the dipole-
expansion density matrix (green), compared with very accurate DMC results (blue
circles).
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10.3. Solid

10.3 Xenon FCC solid (static atoms)

We performed some tests in order to choose parameters for the Xenon liquid simulations.

We use two different timesteps; a short one for the internal dynamics of the chain

(this can be thought of as a kind of intramolecular dynamics), and a long one for the

external (intermolecular) forces / dynamics. We do this because the internal dynamics

are relatively cheap, but the intermolecular forces tend to be more expensive. For the

dimer (above), the intermolecular forces are cheap, so we simply used Nrespa = 1. We

perform a number of short ‘internal’ steps before the forces can be calculated for the

‘external’ step, and so the ratio of timesteps them must be a positive integer, which we

denote Nrespa.

First we performed a timestep study for the ‘internal’ timestep, and then chose a

timestep of t = 0.02/ωPIMD, which seems cautious, but these forces/dynamics are not

expensive so it does not matter too much.
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Figure 10.7: Convergence of the interaction energy per atom with timestep with
Nrespa = 1, for a static Xenon FCC periodic solid in the full Quantum Drude model,
with 108 atoms, simulated using PIMD, using the dipole-expansion density matrix
(green) with P = 160 beads, β~ω = 10.0. Results are compared to the ground-state
energy previously calculated via DMC (dotted line).
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Then we try to push up Nrespa as far as possible in order to increase the total

timestep evolved between calculations of the expensive external force. We chose

Nrespa = 4, giving a long timestep of t = 0.08/ωPIMD. Note that the scale of this

graph is very much smaller and thus more detailed than the previous graph.
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Figure 10.8: Convergence of the interaction energy per atom with Nrespa, with short
timestep t = 0.02/ωPIMD, for a static Xenon FCC periodic solid in the full Quantum
Drude model, with 108 atoms, simulated using PIMD, using the dipole-expansion
density matrix (green) with P = 160 beads, β~ω = 10.0 Results are compared to
the ground-state energy previously calculated via DMC (dotted line).
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10.4. Liquid

10.4 Xenon Liquid (moving atoms)

To study the liquid, we need to be able to move the atoms. But first we need to choose

a suitable faux-mass for the Quantum Drude dynamics, or equivalently by choosing a

faux-frequency ωMD for them. We do this using the relation ωMD = γωnuc, where ωnuc is

the characteristic frequency of the xenon atoms, estimated from the standard Lennard

Jones potential. A corrolary of this is that γ captures the ratio of the LJ timestep to

the PIMD timestep, and is thus a factor in the overall computational cost (alongside

the bead number P ). We first try γ = 1 (and found that it corresponded to a timestep

of 2∆tLJ, and then increase γ, thus increasing the the frequency of the Quantum

Drudes (and reducing the corresponding timestep to 2∆tLJ/γ), until the measurable

(in this case the compressibility factor) shows convergence. When that happens it

indicates that the nuclei are effectively adiabatically separated; the rate of heat flow

from Quantum Drudes to the nuclei is sufficiently slow as to be negligible compared to

the action of the thermostats on the atoms. Unfortunately this graph shows that, with

our current thermostatting method, convergence is excruciatingly slow.
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Figure 10.9: Convergence of the compressibility factor (pressure) as a function of γ,
with short timestep t = 0.02/ωPIMD, and Nrespa = 4, for a periodic Xenon liquid in
the full Quantum Drude model, with 108 atoms, simulated using PIMD, using the
dipole-expansion density matrix (green) with P = 160 beads, β~ω = 10.0
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Chapter 10. Xenon - PIMD simulations

This figure explains the problem: the atom temperature is too hot. If we assume

that the heat-flow in is inversely proportional to γ (see eqn. 8.2 on pg. 155), and

assume that the heat-flow out is proportional to the temperature perturbation ∆T of

the atoms, then once a steady state is reached, and the heat flows are balanced, we get

c1/γ = c2∆T =⇒ ∆T ∝ 1/γ. We include a fit to the data, which agrees with this

reasoning at least for small perturbations (large γ).
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Figure 10.10: Convergence of the observed atom temperature as a function of γ, plus
a fitted curve, thermostatted by Nosé Hoover Chains at T=610K, using short timestep
t = 0.02/ωPIMD, and Nrespa = 4, for a periodic Xenon liquid in the full Quantum Drude
model, with 108 atoms, simulated using PIMD, using the dipole-expansion density
matrix (green) with P = 160 beads, β~ω = 10.0

The problem is that Nosé Hoover Chain (NHC) thermostats are designed for

equilibrium contexts, and cannot cope with non-equilibrium (non-adiabatic) conditions,

even in a steady state. Ordinary Nosé Hoover Dynamics (NHD - chains of length 1)

happen to be simple enough to deal with steady states of heat flow, but the whole point

of NHC was to randomize and therebyy soften the rather harsh damping effect of NHD

which can be non-ergodic. This suggests we need to forget about strict adiabaticity

and try thermostats designed for non-equilibrium situations. We leave this for future

work.
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This final graph shows that the converged PIMD result did indeed come out very

close to the experimental value.
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Figure 10.11: Compressibility factor as a function of density (LennardJones reduced
units are used) for xenon at: 610 K (red) and 310 K (green), with short timestep
t = 0.02/ωPIMD, and Nrespa = 4, for a periodic Xenon liquid in the full Quantum
Drude model, with 108 atoms, simulated using PIMD, compared with Lennard-Jones
potential and experimental data from NIST. with P = 160 beads, β~ω = 10.0
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Chapter 10. Xenon - PIMD simulations

10.5 Conclusions on the new Density Matrices

In these two chapters, we have introduced the dipole-expansion approximate density

matrix and estimator, and found that it is feasible in PIMD simulation, that it

also reproduces the very close approximation to the ground-state energy for static

configurations of Xenon, and reproduces the same results for the liquid Xenon in the

large bead number limit, compared to the simple harmonic density matrix.

We found that the new dipole-expansion density matrix is a vast improvement on

the simple harmonic approximate density matrix, in the context of a dipoles-only or

dipole-limit potential, but that it adds very little in the context of the full Coulomb

potential, owing to the fact that higher-multipole effects are significant and converge

slowly with bead number P .

This provided motivation to attempt to develop a density matrix specifically for the

full Coulomb potential (with damping), and we sketched some promising approaches,

but have not developed it yet to the extent that it can be coded and evaluated.
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Chapter 11

Future Work: Water - a

Quantum Drude Model

Water is of very wide interest from earth-sciences [CCS+99, GD09] to molecular biology,

so a transferable model that accurately reproduces its detailed properties [EK69], over

a wide range of states and phases, will be of interest to researchers across many fields.

Therefore a major target of the Quantum Drude formalism is to create a model of water

that is transferable from one context to another.

Bernal and Fowler [BF33] produced an early model of water, but Rahman and

Stillinger [RS71] were the first to simulate water using the model ST2, and were followed

by many others including SPC [BPvG+81], TIPS2, TIP3P, and TIP4P [JCM+83].

Sommerfeld and Jordan [SJ05], have used a limited Quantum Drude model of

water with a perturbation theory approach, to simulate the polarisation of water in

response to an excess electron. However, that model treated Drude-Drude interactions

with a mean-field approach (classical polarisation plus dispersion in a Lennard-Jones

form), and thereby neglected much of the many-body character of the Quantum

interaction (some many-body character but only those interactions mediated by the

electron itself). Furthermore, they fitted their model only to the dipole polarisability

of water. Quantum Drudes, however, can be fit to best reproduce also the quadrupole

polarisability, octopole polarisability, and C6, C8, and C10 dispersion coefficients. A

consequence of this could be that the spatial distribution of their Quantum Drude

oscillator was sub-optimal, and that in turn could mean that the effects of spatial

confinement in clusters or condensed matter (that is, reduced effective polarisability)

were incorrectly modelled.
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Chapter 11. Future Work: Water - a Quantum Drude Model

Here we present the general outline for a new model of water based on a

recent TIP4P model [AV05], augmented by a Quantum Drude to capture many-body

dispersion and polarisation. We present the Quantum Drude parameters that best

reproduce the polarisability properties of water (all three of the isotropic dipole-,

quadrupole- and octopole-polarisabilities) and then compare its dispersion properties

with those of the real model. We also sketch how the rest of the model will be fitted,

including the short range repulsion, and how to generalise the use of damping terms

from the Xenon model.
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11.1. The Base Model

11.1 The Base Model

The Water molecule has a permanent or mean charge distribution as well as a

fluctuating or polarisable part. We can base a new model of water on an existing

model, for example TIP4P.

104.56◦

0.9572Å0.1546Å

HH

O

M

Figure 11.1: TIP4P model of water [AV05]. Blue represents the size of the molecule
(half the Van-der-Waals radius)

This has a charge qM placed at the M -site, and a charge qH on the two hydrogen

(H) sites. A water molecule is charge-neutral, fixing qM = −2qH. The oxygen (O) site

interact only with the O-site in other molecules, as the centre for a repulsive potential

Vrep, whereas the other sites interact via coulomb potentials. The H-M potential is

attractive, and can get very close (a typical H-O distance is roughly 1.7Å), so it needs

to be damped to prevent unphysical ‘yanking’, but the others, H-H and M-M are

repulsive and, because they are heavy sites that behave classically, there is no need to
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Chapter 11. Future Work: Water - a Quantum Drude Model

damp them.

VH-H = qHqH/ |rH-H| ,
VM-M = qMqH/ |rM-H| ,
VH-M = qMqM erf (αHrM-M) / |rM-M| ,
VO-O = Vrep (rO-O) (empirical repulsive potential to be fitted).

11.2 Adding a Drude

The Xenon model (previous chapter) has a mobile Drude with charge qD whose

harmonic potential is centred on a drude-centre with cancelling charge qd. To simplify

model building, we can start from a TIP4P (or other) potential as a framework

for underlying charge distribution, and add a neutral (Drude)-(drude-centre) pair to

capture the polarisation and dispersion behaviour. In the case of TIP4P we have a

choice to add it to the O-site or the M-site.

11.2.1 Fitting Drude Parameters

Because for Xenon there are no permanent fields, the fitting focussed on getting the

dispersion coefficients correct, rather than the polarisabilities, so the model was fitted

using exact rules for α1, C6 and C8.

For water, we care about polarisabilities just as much, if not more than dispersion

coefficients, so we would like to find a best fit to all of α1, α2, α3, C6, C8, C10. However,

we have only 3 unknowns to fit, so there will not be an exact solution in general, so

one option is to minimise some fitting function, and weight the relative importance of

each parameter.

Glenn Martyna and Troy Whitfield fitted Drude parameters for water using the

following fitting function [unpublished work].

f(q,m, ω) =

k1

(

α1(q,m, ω)

α1expt
− 1

)2

+ k2

(

α2(q,m, ω)

α2expt
− 1

)2

+ k3

(

α3(q,m, ω)

α3expt
− 1

)2

+k4

(

C6(q,m, ω)

C6expt
− 1

)2

+ k5

(

C8(q,m, ω)

C8expt
− 1

)2

+ k6

(

C10(q,m, ω)

C10expt
− 1

)2

,

where k1-6 are weight factors (a high value results in smaller deviation), which can be

set to tighten particular parameters in preference to others, and where we treat the
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following relations as functions of q, m, and ω.

α1 =
q2

mω2
, C6 = 3

4α1α1~ω ,

α2 = 3
4

(

~

mω

)

α1 , C8 = 5
(

~

mω

)

× C6 ,

α3 = 5
4

(

~

mω

)2
α1 , C10 = 245

8

(

~

mω

)2 ×C6 .

Another option is to follow a direct fitting procedure derived from these relations,

(1) ω =
1

~

4C6

3α2
1

,

(2) m =
~

ω

3α1

4α2
,

(3) q = ±
√

mω2α1 .

Here we have the results for the direct parameterisation.

q 1.063
m 0.2881
ω 0.6287

Property Value Target Dev.

α1 9.92 9.92 0.0%
α2 41.08 41.08 0.0%
α3 377.96 377.00 0.3%
C6 46.40 46.40 0.0%
C8 1280.86 1141.70 12.2%
C10 43313.24 32400.00 33.7%

Table 11.1: Drude parameters which have been fitted to best reflect the polarisability
properties of the water molecule
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11.2.2 Damping of Coulomb Interactions

For the Xenon model, there is only one kind of classical particle that carries charge,

the ‘nucleus’ at the drude-centre that carries a charge opposite to that of the Drude

particle.

For water, however, there are now potentially 3 different kinds of charge centres

with which the Drude particle may interact, and each coulomb interaction will need to

be damped to prevent the Drude from getting close to the centre of a potential well.

VDD VDd Vdd

↓ ↓
(unique) VDH VdH

VDM VdM

γDD γDd γdd

↓ ↓
γDH γdH

γDM γdM

where Vyz(r) =
qyqz[1−exp(−γ4

yzr
4)]

|r| .

As a first estimate, we can assume γDM = γDH = γDd and γdM = γdH = γdd.

Next, we can estimate these values by scaling the lengths from the Xenon model.

The lengthscales can be compared in different ways. Most obvious is to look at the

ratio of the Lennard-Jones length parameter, σLJ. Another option is to look at the

characteristic lengthscale defined by the Drudes themselves, as they have been fitted

independently of such considerations. Either way, because γ is an inverse length, we

would get

γH2O =
σXe

σH2O
× γXe .

From this initial estimate, the parameters could be tuned, alongside or before fitting

the O-O repulsion potential below. In particular, it might be necessary to change the

damping on the D-H attraction, as with the M-H damping previously, because the

Drude particle can get even closer. In that case, we can vary the parameters γDH and

γdH together, keeping their ratio the same.

11.2.3 Fine-tuning, and O-O repulsion

To add the short range repulsion and to fine-tune the model, we can begin by looking

at the energies of different water-dimer geometries, with the energies calculated from

high-accuracy quantum simulations in or parameterised potentials, already calculated

in this way, such as that of Xantheas [BLXL99]. Meanwhile the geometry configurations

themselves can be sampled from simulations of liquid water and ice that use simpler

classical models of the water molecule (fitted to bulk behaviour), which will help ensure
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that the samples are relevant to the configurations that actually exist in condensed-

phase water. We can also perform further fine-tuning by examining the properties of

water in the various phases of ice.
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Chapter 12

Conclusions

The Quantum Drude model has been characterised with analytical theory, showing

that coefficients for the polarisability and dispersion asymptotic series, agree with

experiment. Fast simulation methods that are specifically suited to Quantum Drudes

have been developed. The Quantum Drude model has been applied to a realistic

system, Xenon, which is difficult to model because its long-range interactions are pure

dispersion, obtaining very good results also in agreement with experiment. A path to

the future has been outlined: the use of Quantum Drude models to treat water.

Using analytic theory, we showed that Quantum Drudes reproduce the properties

of many real atoms and molecules fairly accurately, including polarisabilities, two-body

and three-body dispersion coefficients. Through matrix diagonalisation (in the dipole-

limit) and diagrammatic expansions, we showed Quantum Drudes can be expected to

capture many-body, multipole polarisation, as well as many-body, multipole, mixed-

species dispersion, and everything in between, in a realistic way. Although the Quantum

Drude model does not treat repulsion inherently, we can simply add two-body repulsion

corrections (or even many-body repulsion, should the need arise), in line with what is

standard practice for the current state of the art. Therefore, Quantum Drudes are very

promising for building high-accuracy force-fields for biomolecular simulation, and we

have laid out the steps required to build such models.
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We have made progress in developing high-accuracy methods for simulating Quan-

tum Drudes with DMC, including improved propagators and improved population-

conserving methods and the approximate ‘Coulomb’ trial wavefunction, which is a step

beyond multipole-expansions. In the process, we have gained a better understanding

of the wavefunctions, including the basic ‘Coulomb’ perturbation on one hand, and

on the other hand the many-body multipole recursive expansion which inspired the

diagrammatic expansion mentioned above. Some of these developments have in turn

suggested new avenues for PIMD density matrices. Even though we have not yet

completely solved the problem, we have also made good headway into improving the

Path Integral discretisation, through the dipole-expansion density matrices, as a proof-

of-concept, and our sketches towards a ‘Coulomb’-reference density matrix.

Through DMC simulations and PIMD simulations, we have demonstrated that the

Quantum Drude works, using Xenon as test model. The Quantum Drude model of

Xenon is accurate in the condensed phase even though it was fit in the gas-phase, due

to its ability to capture many-body dispersion. This demonstrates that it is possible

to produce truly transferable potentials using the Quantum Drude formalism.

Finally, we sketched a model of water, which we believe will be of wide interest

once it is finished and we begin simulating it. It will then be possible to extend the

force-fields of proteins and other biomolecules, leading to a very open-ended research

path. Thus we have made a good deal of progress, and there is plenty more still to be

done.
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