
Institute of Geography Online Paper Series: GEO-014 

 

 

Implementing a New Data Model  

for Simulating Processes  
 

F. E. Reitsma  and J. Albrecht  
 

Institute of Geography, 

 School of Geosciences,  

The University of Edinburgh,  

Drummond Street,  

Edinburgh EH8 9XP, UK 

Telephone: +44 0131 650 9138 

Fax: +44 0131 650 2524 

Email: femke.reitsma@ed.ac.uk 

 

Department of Geography, 

 Hunter College,  

City University of New York,  

695 Park Avenue,  

New York, NY 10021, USA 

Telephone: 212 772 5221 

Fax: 212 772 5268 

Email: jochen@hunter.cuny.edu 

 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Edinburgh Research Archive

https://core.ac.uk/display/429704440?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


2 

Copyright 

 

This online paper may be cited in line with the usual academic conventions. You may also 

download it for your own personal use. This paper must not be published elsewhere (e.g. mailing 

lists, bulletin boards etc.) without the author's explicit permission 

 

Please note that : 

• it is a draft; 

• this paper should not be used for commercial purposes or gain;  

• you should observe the conventions of academic citation in a version of the following or 

similar form: 

 

Reitsma, F. and J. Albrecht (2005).  Implementing a New Data Model for Simulating Processes, 

online papers archived by the Institute of Geography, School of Geosciences, University of 

Edinburgh.  



3 

 

Abstract 

The paper describes the development of a new methodological approach for simulating 

geographic processes through the development of a data model that represents a process.  This 

methodology complements existing approaches to dynamic modelling, which focus on the states 

of the system at each time step, by storing and representing the processes that are implicit in the 

model.  The data model, called nen, focuses existing modelling approaches on representing and 

storing process information, which provides advantages for querying and analyzing processes.   

The flux simulation framework was created utilizing the nen data model to represent processes.  

This simulator includes basic classes for developing a domain specific simulation and a set of 

query tools for inquiring after the results of a simulation.  The methodology is prototyped with a 

watershed runoff simulation. 

1. Introduction 

There are many different methodologies for modeling geographic processes, such as partial 

differential equations or agent based modeling. Any of these approaches assume a certain 

conceptualization of the entities they are concerned with, whether it is explicitly formalized 

within an ontology or implicit in the underlying assumptions of the model.  This paper presents a 

new data model for simulating processes that aims to advance process modeling.  The approach is 

founded on a theory and subsequent conceptualization that takes process as the modeling 

primitive.  The advantages of raising process to the fore lie in the ability to pose novel types of 

questions and explore process dynamics and their causal interactions.   
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This process perspective contrasts with current approaches to modeling processes, where the 

process, while formalized in the model, is not explicitly represented.  Rather, the state of the 

modeled system at each instant of time is typically represented.  As such, the methodology 

presented in this paper provides a complementary technique to traditional approaches.  Section 2 

explores the representations used in modeling geographic processes by considering current 

methods in the light of their conceptual underpinnings.  Section 3 follows with a description of a 

process oriented data model, which forms the basis for querying and analysis of processes. The 

structure of the simulator that implements this data model is then given in Section 4, and the 

results of a small test case implementation are presented in Section 5.  Section 6 concludes the 

paper. 

 

But first, some caveats.   In what follows, reference to an object in terms of object-oriented 

implementation will be clearly stated in order to avoid confusion with the use of the term object 

to represent a static primitive.  Furthermore, unless made otherwise specified, the use of the term 

process in the paper will typically refer to a geographic process such as erosion, sediment 

deposition, or migration, as opposed to a computational process. 

2. Modeling Geographic things  

As expressed in the introduction, it is assumed that geographic process models do just that, model 

geographic processes.  However, it is argued here that this is precisely not what typical modeling 

methods do.  In what follows, four arguments are presented for a methodology that takes process 

as its primitive; namely, it is processes which should be modeled rather than future system states, 

the need for storage and query of process information, the potential for process analysis and 
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uncovering causality within models, and the utility of the process construct as the basis for 

interoperability and greater query and analysis efficiency.  These arguments are not predicated on 

what cannot be done, rather, on what is not being done in dominant approaches to modeling 

geographic processes due to the focus on modeling future system states. 

2.1 Modeling Processes 

Every knowledge base or knowledge-based system is committed to some conceptualization, 

either explicitly or implicitly (Gruber, 1993).  Similarly, modeling methods are also constrained 

by an explicit, or more commonly, implicit conceptualization.  Typical approaches to modeling 

geographic processes are committed to conceptualizations that focus on modeling future system 

states rather than the processes themselves.   Between state time slices, amendment vectors 

(Langran, 1993; Peuquet, 1994; Wachowicz, 1999), cellular automata (CA) state changes, and 

agent movements (Benenson and Torrens, 2004), the nature of the process is not explicitly 

represented and recorded.  While processes are specified as rules or equations in traditional 

approaches, there are no data models or data structures that represent process dynamics, 

regardless of whether they can be derived by reevaluating the rules between time slices.  As 

expressed by Claramunt et al., “[c]urrent spatio-temporal models are oriented toward the 

representation of the evolution of spatial entities.  However, none of them provides basic 

constructs to specify the underlying knowledge describing processes occurring in the real-world” 

(Claramunt et al., 1997: 16). 

 

GIS are committed to an implicit conceptualization based on static objects or system states, where 

temporal representations are mainly concerned with the states and changes of states of these 

objects or fields (Yuan, 1996).  The typical data model primitives available to the user are points, 

lines, polygons, and pixels, or combinations of these (Cova and Goodchild, 2002).  As a 



6 

consequence, temporal extensions to GIS are lacking in their ability to reason about and model 

processes (Clarke et al., 2001; Frank, 2001; Pang and Shi, 2002; Raper and Livingstone, 1995; 

Worboys, 2001).  These inadequacies of current GIS to support processes are due to a lack in 

theoretical foundation (Kavouras, 2001). 

 

From their earliest days GIS were not designed or pre-conceptualized as dynamic modeling tools.  

However, they have been extended to represent dynamic phenomena; the two main approaches 

being: temporally extending GIS, and coupling GIS to environmental models.  Temporal 

extensions to GIS typically involve either snapshots, where each layer represents an instance in 

time, or amendments vectors, where each entity is associated with a list that contains information 

regarding each change in the entity (Langran, 1993; Peuquet, 1994; Wachowicz, 1999). For both 

these approaches, change is interpolated between consecutive system states, whether it be 

between system states or object states.  Alternatively, time can be represented by space, as has 

been developed in time geography which implements Hägerstrand’s classic model of temporal 

phenomena (Hägerstrand, 1967; Miller, 2003).  Computational implementations of time 

geography represent the potential path of an individual as a spatial extent which changes over 

time as the individual moves through space over time (Bernard and Kruger, 2000).   

 

Similar difficulties are found in modeling approaches linking GIS and dynamic models, even with 

the purported savior of integration and process representation, object-orientation (Bian, 2000; 

Raper and Livingstone, 1995; Wachowicz, 1999).  The development of object-orientated 

programming languages has engendered much research in object-oriented GIS, modeling, and 

databases.  However, object orientated approaches typically handle time by time-stamping objects 

or their attributes  (Stefanakis, 2003), where change is represented as the difference between an 

old state and a new state with a new time stamp (for example Yuan, 1996; Yuan, 2001; Zhang 
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and Hunter, 2000), with no reference to the processes that might have changed those objects in 

the model.   

 

The data models of Cellular Automata (CA) and Agent Based Modeling (ABM), although 

dynamic, are still based on system or object states at instants of time; “[e]ach agent has internal 

states and behavioral rules.  Some states are fixed for the agents life, while others change through 

interaction with other agents or with the external environment” (Epstein and Axtell, 1996: 4).  

Modeled processes are typically represented as the relationship between the current and future 

states of cells or agents, defined by a set of behavioral rules.  Processes are therefore implicit to 

the model, embedded in the rules of the agent or cell, yet they are not explicitly modeled, nor can 

they be directly inferred from changes between recorded system states.  For example, in an ABM 

of urban sprawl, each agent may have a set of behavioral rules defining their movement and 

interactions.  At each time step, the system state is logged in the form of agents and their 

attributes. However, whether the future system state of sprawled urban form is a direct result of 

processes such as rent increases in the inner city or increases in crime, is not represented or 

stored.  The extent of an ABM’s ability to discuss process is to link the initial model setup or 

specification with the output through some form of spatial pattern metric, where the measure of 

spatial pattern provides some indication of which processes occurred where (Parker and 

Meretsky, forthcoming; Rand et al., 2003). 

 

Similarly, equation based models (EBM) also focus on system states and their update. An EBM, 

in its simplest form, is a function that can be applied to some observable, and in its spatial form, 

is typically a partial differential equation.  These observables are measurable characteristics of 

interest that may change over time.  EBMs are based on a set of equations that express 

relationships among observables, their evaluation producing the evolution of the observables over 

space and time. The equation itself represents the process, but its operation is not recorded.  As 
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with ABM, in EBM there are ad hoc solutions for determining the path of a process and which 

process is operating where, but no general solution or data model which addresses this directly.  

The vector field represents both direction and magnitude at each instant of time; for example, 

wind fields.  This comes much closer to the data model represented here.  However, vector fields 

are utilized to represent the movement of some mass as opposed to the processes that are involved 

in that movement. 

 

The modeling methodology presented in this paper focuses on the representation and storage of 

processes expressed in current models with a process oriented data model, complementing 

existing methods of process modeling. This approach avoids the loss of information through the 

cracks of time, such as through the imposition of an inappropriate temporal granularity that 

misses changes, as it requires representation at the level of the defined process.   

2.2 Storing and Querying Processes 

Within the field of spatio-temporal Database Management Systems (DBMS), spatial formalisms 

have been temporally extended (Abraham and Roddick, 1999; Griffiths et al., 2001).  

Traditionally spatio-temporal DBMS involved extensions of the relational data model (Peuquet 

2001), yet of late there has been a transition from relational data models to object models 

(Griffiths et al., 2001).  The focus of spatio-temporal data modeling for spatio-temporal DBMS is 

on objects and their relationships, such as their spatio-temporally extended entity-relation model 

(STER) (Huang and Claramunt, 2002).   These objects and relationships are temporally extended 

and have histories that specify their changes, where the object or the attribute is time stamped.  

For example, MOD (Moving Objects Database) systems are designed for applications such as 

tracking delivery vans, taxicabs, or military vehicles (Libourel, 2001).  As discussed earlier with 
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modeling approaches, this focus on representing objects at an instant of time results in a loss of 

information about processes. 

 

In terms of change, there are two types typically evident in a database: schema evolution and data 

evolution (Erwig et al., 1999).  For data evolution, most spatio-temporal database modeling 

emphasizes the snapshot view, where change can be interpolated between time slices of system 

states or object states (Claramunt and Parent, 2003).  These changes have also been used in 

constraining the evolution of objects represented in a database, defining permissible and 

prohibited evolutions in the database where evolution or change is modeled as a temporal 

relationship between two states.  More recently Mountrakis et al. (2002) developed a change-

oriented data model for the storage and querying of spatio-temporal information, which allows 

them to store the change between time slices that represent objects such as buildings or cadastres, 

and query those changes at multiple levels of abstraction.  However, in order to understand the 

changes in our modeled system we need to know the processes that caused those changes, that is, 

to explicitly store causal relations defined in our model. 

 

Storing the process information of a dynamic model allows for process queries.  Data can be 

mined for process information or classified into process types automatically or manually (Merz 

and Blöschl, 2003; Yuan, 2001), however current approaches to representing model results do not 

allow for easy querying of process information.  For example, Figure 1 below expresses this 

difficulty.  Here the location of the black point moves from time one (t1) to time two (t2), yet 

given knowledge of the system state at each of those times, the process by which the point moves 

is not stored.  Our ability to determine the process typically depends upon an in-depth knowledge 

of the model and the system it represents, and has the potential to result in the wrong process.  In 

order to accurately determine the processes in operation the model must be rerun, applying the 

rules or equations over again.  However, there are currently no common data models for 
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representing processes, therefore extraction of this process information leaves us with no way to 

analyze or query it. 

 

 

Figure 1. Process inference 

 

In the traditional theoretical framework, by definition process is something that occurs between 

system states.  That is, process is the translation between system or object states at different 

times, therefore it cannot be represented in one time slice.  Consequently, queries about where a 

process is occurring at an instant of time cannot be expressed with current approaches.  Only two 

basic types of queries may be asked of attributes of the representation: “what is at a specific 

location?” or “where is a certain attribute?”, the composition of which define the realm of 

possibilities (Goodchild, 2003; Peuquet, 2002).  With the dynamic extensions of ABM, CA, and 

EBM, these queries are temporally qualified, yet there remain the two fundamental types of 

queries that can be asked.  For example, given a specific agent, what are its associated properties 

at time x?  Or, given a specific set of cells (i.e. location), what are its associated properties at time 

x?  In terms of change queries, attributes and entities are queried as to if and when they changed 

by interpolating between these states.   

 

time 

t1 t2 

? 
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Spatio-temporal databases are designed to store historical, present, and possible future data (e.g. 

for planning purposes), “they are not designed to record which processes activate a change” 

(Claramunt et al., 1997).  To understand, query, and explain processes, processes must be 

represented and consequently stored.  How or why-questions cannot be easily asked or answered 

with a computational method based on current approaches focused on what, where, and when 

questions. 

2.3 Process Analysis and Causality 

Modeling a process is not merely tracking and storing the movement of some object, such as an 

agent.  Recording change does not equal process.  For example, recording the change of 

landscape morphology does not give an indication of the processes causing its change, such as 

erosion or tectonic uplift.   Clearly change in the attributes of entities can be recorded and 

associated with changes in model structure or initial conditions.  But with current data models we 

cannot hunt the processes that caused those changes.   

 

Analyzing the interaction of processes is important to determining how various processes 

propagate through the system over time, and to ascertain which spatio-temporal points in the 

model to tweak.  In simulating processes, insights may be gained into their causal relations by 

storing information about their interactions.  Questions regarding how the rules of the process 

affect the dynamics of the process (rather than the pattern produced by the process) may be better 

explored by modeling and storing process information. 

2.4 Efficiency and Interoperability 

In querying or analyzing processes, an argument can be made for the inefficiency of attempting to 

recreate processes each time in order to query the results as to where certain processes caused 
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changes in system states.  The proposed methodology of explicitly storing process information 

attempts to overcome this problem, allowing for queries similar in nature to current system state 

queries, such as querying for the location of processes, their attributes, interactions, or their 

change over time.  Furthermore, state information can be derived from the modeling approach 

presented in this paper, so there is no loss of information.  For example, in modeling the process 

of coastal erosion, the various eroded states of the system can be directly extracted from the 

process model, as will become clear in the methodology discussion below.  However, storing this 

added level of information also results in a new explosion of information, akin to the overload 

currently being experienced with system state data such as remote sensing imagery.   

 

The proposed approach of modeling and simulation with process as the single primitive provides 

a basic construct, which if applied to models of different domains could facilitate interoperability 

between models.  Common representations of space-time, which has been one of the key 

problems of integrating GIS and environmental models, potentially allow interoperation at the 

process level rather than the model level, removing the effort required in translating between 

models.  This could be an important boon to modelers of complex systems deriving their model 

components from different fields of study and the future development of eScience modeling 

initiatives on the Grid (Pouchard et al., 2003; Reitsma and Albrecht, 2005). 

3. Process Data Model 

A process data model is the single modeling primitive used in the simulation framework 

discussed in Section 4 below.  This representative device can be expressed in tuple form as:  

(x1, y1, x2, y2, st, {a1, a2,...}, {r1, r2, …}) 
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Or it may be presented graphically as a (node,edge,node) triple, as illustrated in Figure 2.  Each 

(node,edge,node) will be henceforth referred to as a nen.   The location of the process is identified 

by x1, y1, x2, y2, which expresses the spatial extent of the process.  The st represents the spatio-

temporal granularity of the process, which may be a function of the amount of energy that 

initiates the process. For example, given some threshold breaking push, the spatio-temporal 

granularity expresses how far and over what time period the process will operate in response to 

that push.  The set {a1, a2, ...} defines the set of attributes of the process.  The set {r1, r2, …} 

defines the set of rules of the process that govern its dynamics and interaction with other 

processes.  For example, a set of rules for modeling the process of sediment transport in the 

longshore may define the spatio-temporal extent of an instance of that process as 5m/hour, 

depending on various relationships it holds between other processes operating in the nearshore.   

 

 

 

 

 

 

Figure 2.  Process representation 

 

Note that this is only a representation of a point process, which might best represent processes 

such as runoff in a watershed.  It can also be extended to areal or linear feature and into the third 

spatial dimension, representing processes such as sediment transport in the nearshore, migration, 

and El Niño. 

(x1, y1) 

(x2, y2) 



14 

4. Simulator Structure 

The implementation of the conceptual model lies in a field of possibilities.  Varying the approach 

taken to implement a conceptual model, although a technical issue, will also have implications for 

the results of the model (Gulyás, 2002).  While recognizing this conundrum, one must begin 

somewhere.  In what follows the approach taken will be described, including some of the design 

issues and assumptions in the development of the process simulation tool, which is called flux.  

The simulator presented is but one implementation of the general concept of representing process 

and of the data model discussed above. 

 

From the discrete confines of the computer to the imposed structure of object-orientation, 

technologically the model is constrained to a particular framework.  The straitjacket of choice is 

Java, including the incorporation of the RePast (Recursive Porous Agent Simulation Toolkit) 

library, an open source agent-based modeling environment created by Social Science Research 

Computing at the University of Chicago (http://repast.sourceforge.net/).  RePast is primarily used 

for its display and scheduling classes, and also has the advantage of containing Java classes for 

importing GIS raster data (ESRI ASCII raster files).  As a caveat, the agent-based environment is 

not used to do agent-based modeling per se; rather, its classes are used in order to simulate 

process as the primitive modeling construct.   

4.1 Parameterization 

For the sake of modeling, a new basic construct is introduced that extends the ontology from the 

single primitive of process, to a type of restricted process, termed here a parameter.  Parameters 

are instituted due to the difficulty of defining a complete system of processes in any domain, or 

indeed, modeling the whole world, and typically represent the external input to the model.   A 
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process can be modeled as a parameter in the sense that it is an encapsulated process, where none 

of the internal workings of the process are evident in the parameter, merely a representative 

value.   

 

Parameters are practical abstractions for modeling geographic processes that are purposefully 

defined by the researcher in two scenarios.  First, parameters are defined when we do not want to 

or cannot model the whole process, for reasons such as minimizing the complexity of the 

processes modeled or restrictions imposed by software, hardware, or other external influences.   

Second, parameters are defined when the observed temporal grain of the phenomenon exceeds the 

temporal extent of the model.  For example, in the first case, to model the process of runoff in a 

watershed the process of precipitation must be included; however, we may not want to model the 

whole process of precipitation.  Precipitation can then be included in the model as a parameter, 

represented as a value at a point or over some area to be used by the runoff process model.  

Extending this example to the second case, the geomorphology of the watershed may be 

considered a parameter in the runoff model.   Changes in geomorphology are measured with a 

temporal granularity that exceeds the temporal extent of the process model, that is, 

geomorphologic changes are observed to take longer than the time the model takes to run, yet 

they are included because geomorphology has an impact on runoff processes. 

 

Parameters impact on the processes being modeled and can be modified by those processes.  

However, they have no behavior of their own.  Parameters influence processes whereby the 

process registers its presence and value at a specific location.  Parameters are modified by 

processes when their values are changed by a process.    For example, in a model of erosion, the 

erosion process will affect the geomorphology, and the geomorphology will influence the 

dynamics of the erosion process.  Yet, geomorphologic change is outside the temporal extent of 

the model and therefore geomorphology has no defined behavior of its own. 
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4.2 Flux 

The simulator, called flux, inherits and extends a number of basic operating classes from Repast, 

namely scheduling classes, display classes, and a base model class.  The objects developed in the 

flux package in turn form the base set of classes for a domain model (Figure 3).  The flux package 

contains a set of interfaces and default classes that define the basic structure of the process model, 

including methods that must be implemented by an inheriting domain model.  The objective was 

to develop as much generic functionality within the flux classes, thereby minimizing the code to 

be developed within the domain model.   

 

RePast flux Domain Model

 

Figure 3.  Model Inheritance Structure 

 

The process model consists of three base classes from which domain specific models may inherit 

methods and properties, namely: process, parameter, and model.  The model class forms the 

modeling environment for the processes and parameters; it is incorporated in order to define 

operational aspects such as the initiation of the model, its display, and parameter scheduling.  The 

process and parameter classes define the common properties and methods that all inheriting 

process and parameter instances implement.  All aspects of the model are conceptually 

encapsulated within these three classes.  The model class only contains methods pertaining to the 

setup, scheduling, and recording of the processes and parameters.  The setup method creates the 

processes and parameters that initiate the model.  The scheduling method iterates over the 

parameters and specifies the creation of the process instances based on the thresholds defined in 

the methods of each process class. 
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The general class structure of the modeling primitives in the flux package is presented in Figure 4 

below; a modified UML class diagram.  The STEntity is the top-level interface that specifies the 

methods that any inheriting process or parameter instance, such as ProcessDefault and 

ParameterRasterDefault, must implement.  For example, these methods include set and get 

methods for the properties: temporal grain, spatial grain, temporal extent, and spatial extent. 

 

 

 

 

 

 

 

 

 

Figure 4.  Model Class Structure of Primitives 

 

The Process interface extends the STEntity interface with added methods that an inheriting 

process is required to implement.  For example, set and get methods for properties defining the 

location of the process, that is, the x1, y1, z1, x2, y2, and z2.  The ProcessDefault class 

implements the Process interface with a set of generic properties and methods that are widely 

applicable to processes in other domains.  For example, methods that take care of the display of 

the process as a node-edge-node triple and the recording of the process are included in this 

interface.  Inheriting classes would then specify methods defining their own behavior and for the 

creation and destruction of other processes as a consequence of interactions. 

 

ProcessDefault

«interf ace»

STEntity

«interf ace»

Parameter

«interf ace»

Process

ParameterRasterDefault



18 

The Parameter interface specifies various get and set methods for a parameter, such as its ID and 

Value.  The ParameterRasterDefault is but one implementation of Parameter, and extends 

RePast’s RasterSpace class to incorporate added functionality such as a generic method for raster 

coloring.  In contrast to a process class, a parameter class is not spatially dynamic, that is, it does 

not have a changing set of x1, x2, or y1, y2 properties. Rather, it is located at a point or over an 

area.  This conforms to the classic data models of point, line, polygon, and pixel.  The parameter 

contains the following properties: temporalGrain, temporalExtent, spatialGrain, spatialExtent, and 

inputFile.  The temporalGrain of the parameter defines how often it is updated; for example, 

precipitation as a parameter may be updated hourly with new input.  The temporal extent defines 

the total number of times the parameter is updated.  The spatial grain and extent, although 

typically implicit in the input file of a raster or vector layer, is specified as it may form the basis 

of the spatial extent of the process.   

 

Figure 5 below presents the display of a sample simulation.  The visible raster layer is a digital 

elevation model, and the process is groundwater flow.  
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Figure 5. Sample flux display GUI 

4.3 Behavior 

For modeling processes, three notions of space-time are subscribed to, absolute, relative, and 

relational.  In absolute space-time the four axes of space-time are used as a measurement 

framework, describing the relationships among processes through time, dictating the update of 

input parameters, and initiating the model.  Within this absolute spatio-temporal reference 

framework, processes create a relative space-time through their behavioral rules and properties.   

This internal time relative to processes’ internal dynamics, defines their temporal extent with 

reference to the absolute framework.  Thirdly, each process experiences relational space-time 

when other processes or parameters influence it.  For example, the relative space-time of a 

process could change in response to synergistic forces with other processes. 
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In creating this spatio-temporal manifold, the behavior of a process is defined by a set of rules.  

These rules not only define the dynamics of each process in relation to parameters, but the 

interaction among processes.  Whenever a process changes, it records its identity and properties 

to an external database, which forms the basis for query and analysis. 

4.4 Queries  

The output of the process model is used to query processes for their state at an instant of time or 

their dynamics over an interval of time.  This is in contrast to typical approaches to modeling, 

which allow for queries of the state of the system rather than the processes that caused that state.  

These two base types of queries can be applied to properties or attributes of the processes, which 

includes spatial location.  Given the nature of the process data model, the spatial character of a 

process includes: direction, location, and extent.  The results of a simulation are queried with 

SQL by utilizing the JDBC API to access and query the database via an ODBC interface to 

connect to the database (http://java.sun.com).  Depending on the type of query, the output can be 

provided in text file, graph, or visual display (Figure 6).    
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model output

Process Query GUI

SQL submitted 
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text file
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model output

Process Query GUI
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Figure 6 Query operation over database 

 

A GUI has been developed to simplify querying of the database, allowing the user to query for 

states and changes of the processes stored in the database.    These two types of queries extend the 

system state queries by resolving the processes that are occurring at each instant of time or over 

an interval of time.  Furthermore, system states can be determined from the attributes of the 

processes. 

4.4.1 Process State Query 

Process state queries characterize the state of the modeled system at an instance or over an 

interval of time.  For example, questions such as “Where is a process over an interval of time?” or 

“What process is operating at an instant of time?” can be asked based on the process’ attributes or 

spatial characteristics.  For spatial queries, this can include the location and the direction of the 

process at an instant of time.  
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The results of process state queries at an instant in time or over an interval of time can be 

represented as a table of process instances or represented visually as a static display of the 

processes within the space defined by the model, for example, the distribution of infiltration 

processes within the space defined by a watershed parameter.  Additionally, in the case of a query 

over an interval of time, a graph can be produced that represents some attribute or a count of the 

selected processes (y-axis) over the interval of time (x-axis).  The values of location may also be 

specified as particular values of X and Y or with any other integer operators.   

4.4.2 Process Change Query 

A process change query involves the search for patterns of change that define the dynamics of the 

process over an interval of time.  As with process state queries, the three outputs of table, display, 

and graph, also apply to process change queries.  The attribute change of a process over an 

interval of time can be queried in a number of qualitatively different ways.  For example, find 

processes that have changed an attribute: 

- from value a to value b 

- from positive values to negative values 

- from greater than a to less than b 

- from the range a to b to the range c to d 

- by percentage or absolute change 

More complicated expressions can then be built up from these simple primitives, defining 

complex patterns of change. 

 

The spatial change of a process is based on the location attributes of the process: x1, y1, x2, y2.  

With the nen data model, the basic form of query is defined as a change in location; change in 

orientation is also included as it is a useful qualitative abstraction that has meaning in models of 

processes where direction is important.   The change of location of a process can either be defined 
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with a specific (x1, y1, x2, y2) location or with a region, such as that defined by a bounding box.  

Thus there are four basic combinations: from specific location to location, from specific location 

to region, from region to specific location, or from region to region.  For example, in Figure 7 

below, a query can be expressed that searches for processes that moved from the dashed square at 

time one (t1) to the dashed square at time two (t2). 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.  Example of a spatial change query  

 

For orientation, the query involves specifying the change in the relationship between the x1 and 

x2 and/or y1 and y2.  The relationships are specified by the three relational operators: equals (=), 

greater than (>), and less than (<).  For example, Figure 8 illustrates the following query: select 

processes that have changed in orientation such that the process attribute 2 12 1t ty y> . 

 

t1 t2 

  

   

   

   

 

   



24 

 

Figure 8. Example of a process spatial change query for orientation 

 

Beyond the simple process query, which is a basic analytic device, new quantitative measures 

need to be derived from the process model that allows for comparison between models.  This and 

other analytical questions go beyond the scope of this paper, but form the obvious next step 

towards a better understanding of the operation of processes. 

5. Simulation and Results 

The results of the queries may be displayed in a chart, two-dimensional display, or text file, 

depending on the query type.  For example, displaying results in a chart only applies to queries 

for a certain quantity over time, such as the value of an attribute from time step 5 to time step 45.   

A sample chart output is displayed below in Figure 9, where time is the x-axis, and a count of 

processes from a dummy simulation is the y-axis.  The chart display utilizes the JFree Java 

library, which includes classes for plotting charts. 
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Figure 9. Sample chart, and graph output 

 

In order to simulate the model, it was necessary to introduce two new classes: ProcessController 

and ParameterController.  These two classes were implemented in order to control their 

respective process and parameter classes and instances, providing a useful intermediary between 

the process model and the process classes.  These two classes are defined in the flux package, 

where the ParameterController is an interface with methods to be implemented, and the 

ProcessController forms an abstract class with a few generic methods.  

5.1 Simulation Behavior 

A sample operation of the model is depicted in Figure 10 below as a UML activity diagram.  At 

the initiation of the model a series of setup methods are implemented, such as the creation of the 

ProcessController and ParameterController and the display surface.  The model then iterates over 

a set of commands that update any of the parameters needing to be updated, calls the 

ProcessController to operate its processes, updates the display, and then calls a method that 

records the results of each process in a text file at the end of the model run.  When the Process 

controller is called to operate, it iterates through each process until the process runs out of energy.  
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This property of process energy is used to calibrate the relative and relational spatio-temporal 

extents of the process with the parameter defined model update.  Each time a process instance is 

created or changed it is recorded in a text file containing all records of the class of processes it 

belongs to.  Currently the ID, location, energy, and value of the process are recorded.  However, 

this can be extended to any property of the process.   

 

 

Figure 10. Sample simulation diagram 

 

As expressed earlier, the scheduled time forms the absolute framework within which relative and 

relational notions of time are implemented.  The scheduled time is typically defined by an input 

parameter, such as the hourly input of precipitation; the relative time of associated processes is 

specified by the operation of the process; and the relational time is defined by its interaction with 
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other processes.  Each operation or interaction requires a certain amount of energy, which is 

relative to the absolute time defined by the scheduler.   

5.2 Sample Simulation 

For the purposes of testing the methodology a very simple watershed model was simulated, which 

describes the hydrological processes of the watershed.  The watershed model involved the 

following restricted set of processes: Hortonian overland flow, groundwater flow, infiltration, 

percolation, saturation excess runoff, and surface ponding.  The data used to define the 

parameters for the simulation is taken from the Reynolds Creek Experimental Watershed 

(RCEW), which is a high-quality long-term dataset created by the U.S. Department of Agriculture 

Agricultural Research Service’s Northwest Watershed Research Center in Boise, Idaho, United 

States (http://www.nwrc.ars.usda.gov).  For a full description of the RCEW, see the special issue 

of Water Resources Research introduced by Marks (2001). 

 

A subset of the RCEW was selected in order to develop and test the simulation, namely Upper 

Sheep Creek.  The input parameters clipped to the bounding box describing Upper Sheep Creek 

include a digital elevation model, an infiltration capacity layer, a layer defining hydraulic 

conductivity, and hourly updated data layers of precipitation.  The infiltration capacity was 

derived from soils data, utilizing the soil hydrologic group.  The hourly precipitation data layers 

were generated by interpolating a surface over the whole watershed before clipping these layers 

to the Upper Sheep Creek subset.   

 

At each hourly time step the precipitation input is updated, which initiates one of three processes, 

Hortonian overland flow, infiltration, or surface ponding  Each process type has a set of rules 

defining its behavior. For example, the rule defining the initiation of these processes expresses 
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that if the precipitation exceeds the infiltration capacity of the soil and depending on the slope 

characteristics, an instance of Hortonian overland flow will be generated; otherwise either 

infiltration will occur or if there is no downhill slope and the precipitation exceeds the infiltration 

capacity surface ponding will occur.  The spatio-temporal dynamics of the groundwater flow, 

Hortonian overland flow, and saturation excess flow is governed by the simple D8 rule that routes 

the process in a single direction based on the minimum elevation in its 8 cell Moore 

neighborhood.  Although hydrologically limited, the example presents the advances of the 

methodological approach in considering process as a data modeling primitive.   

 

Three time slices of the simulation are presented in Figure 11 below.  The graduated green 

background represents the digital elevation model, where light green illustrates high elevation 

(highest elevation is at bottom right corner) and black low elevation (lowest elevation is at top left 

corner).   The green nens represent the process of groundwater flow, the blue nens represent 

Hortonian overland flow, the orange nens represent percolation, and the yellow nens the process 

of infiltration.  No surface ponding occurs in this simulation and at these time steps no saturation 

excess takes place.  From the three time steps in Figure 11, the dynamics of the processes can be 

viewed.  Following an initial phase of infiltration, percolation and Hortonian overland flow 

subsequent to rainfall, the process of groundwater flow dominates in the watershed.   
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Figure 11.  Simulation at three time steps, in progressive order from left to right. 

 

The advantage of data model that represents process is that it can be queried and analyzed.  

Consequently, insight can be gained as to where and when certain processes dominate, which 

may lead to a better understanding of the modeled system and give guidance to better ways of 

interacting with that system.  For example, in Figure 11 above it is evident that the process of 

Hortonian overland flow dominates in certain upland parts of Upper Sheep Creek.  This is in 

contrast to typical approaches to modeling that generate results expressing where some energy or 

mass is at an instant of time within the system, such as water in our watershed, with no 

information of the processes that caused that state.   

 

With the nen data model the state of processes can be queried, such as asking which process 

instances or process types have the greatest energy or are moving the most water at a particular 

time or over period of time.  Because the nen data model represents a process as a spatially 

extended entity at any moment in time, its dynamics such as changing direction and velocity can 

also be analyzed.  Furthermore, the interaction among processes can be explored, such as the use 

of network analysis to develop new measures of process interaction and extent.  Finally, the 

methodology developed can also provide the testing ground for different definitions of processes, 
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where it is possible to visualize and measure how descriptions of processes within the model 

compare to known spatial dynamics of processes. 

6. Conclusion 

The primary methodologies for modeling geographic processes have focused on generating future 

system or object state representations and analyzing these system or object states and the 

differences between them.  An approach presented in this paper furthers our representational 

capabilities such that process information is explicitly represented and stored with the nen data 

model.  This has the advantage of allowing for exploration into the dynamics of process 

interactions, explanation of those dynamics, and ultimately of presenting a new epistemological 

window onto the subject matter.  Consequently, as a novel way of simulating the geographic 

phenomena studied it may provide new insights into how those geographic phenomena operate.   

 

The nen data model provides new avenues for analysis and exploration.  Such process analysis 

not only involves analysis of the results of the simulation with novel analytical techniques suited 

to the data model, but also analysis of process definitions and how both quantitative and 

qualitative knowledge might be utilized and tested with the approach developed.  It also raises 

questions of whether other new data models may provide further opportunities for exploring new 

aspects of well studied systems and furthering our understanding of those systems. 
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