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Abstract

Malignant ovarian tumours are diagnosed at an advanced stage in 75% of
cases and they have the highest mortality figures of all gynaecological

cancers. As the treatment of benign and malignant adnexal masses is

significantly different it is important to be able to reliably distinguish

between them preoperatively. Thus, women with malignancies could be
referred to cancer centres, whilst those with benign conditions could be

offered more conservative management.

The aims of this thesis are (1) To investigate the use of new tumour markers
in the preoperative diagnosis of ovarian cancer. (2) To validate previously

published models and compare their performance to subjective assessment

and to the models developed in this thesis. (3) To investigate the differences

between small asymptomatic masses and large masses and to investigate the

accuracy of published models on the diagnosis of malignancy in small
masses.

CA 125, CA 15-3 and CA 72-4 were significantly raised in the presence of

ovarian cancer. CA 72-4 was higher in mucinous cancers and CA 125 and CA

15-3 were higher in serous and endometrioid cancers. Her-2/neu and CA 19-9

were not significantly different in benign or malignant disease. Logistic

regression analysis showed age, CA125 and CA 15-3 to be the most valuable

discriminators. A neural network was designed and trained which gave a

sensitivity of 100% and a specificity of 90.9% on the test set. None of the six

published models tested prospectively performed as well as in their original

publication. The IOTA logistic regression model performed best and gave a

sensitivity of 81.8% and a specificity of 72.3%. Subjective assessment of the
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mass gave a sensitivity of 72.7% with a specificity of 81.8%. Small masses

were more commonly unilocular and large masses multilocular. Ascites,

papillary proliferations, detectable flow and the smoothness of the internal

wall discriminated well between benign and malignant small cysts. Age,

menopausal status and CA125 were not discriminatory. None of the

published models were as accurate as subjective assessment at diagnosing

malignancy. These data suggest that statistical models may be of less value

than tumour markers and subjective assessment in the diagnosis of ovarian

malignancy.

This work improves our ability to predict malignancy in a pelvic mass. As a

result of this work, further research might aim to combine the use of tumour

markers and subjective assessment to improve the preoperative diagnosis of

malignancy. It may thus be possible to provide care in a cancer centre for

those women that need it and to allow conservative management or

minimally invasive surgery for women with benign disease.
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1.1 Epidemiology and importance of ovarian cancer

Ovarian cancer is the biggest challenge facing gynaecological oncologists at

the present time. Epithelial ovarian malignancy is the most common ovarian
cancer and, due to its non-specific symptoms, the diagnosis is delayed until

the disease is advanced in over 70% of cases. Ovarian cancer affects around

one percent of women in the United Kingdom and has the highest fatality to

case ratio of all gynaecological malignancies (World Health Organisation,

2002). It is the fourth most common cause of death from malignancy in

women after lung, breast and colon cancers (Quinn et al 2001) (Table 1.1).

Once contracted, there is a 62% risk of dying from ovarian cancer as

compared to a 30% risk from breast cancer and 20% from endometrial cancer
in Western Europe. The mortality of ovarian cancer in the UK is 40% higher

than other developed countries within Europe and is the third highest in the
Eur-A countries'*' (Highlights on health, United Kingdom 2004, WHO). It

accounts for 6% of all cancer-related deaths in women in the UK, more than

all the other gynaecological cancers combined. The surgical treatment of
ovarian cancer is demanding and requires both physical and psychological
resilience from the patient.

The group comprises Andorra, Austria, Belgium, Croatia, Cyprus, the Czech Republic,
Denmark, Finland, France, Germany, Greece, Iceland, Ireland, Israel, Italy, Luxembourg,
Malta, Monaco, the Netherlands, Norway, Portugal, San Marino, Slovenia, Spain, Sweden,
Switzerland and the United Kingdom.
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Table 1.1: Epidemiology of the most common cancers in the United Kingdom in 2002

(International Agency for Research on Cancer, Lyon, France)

Cases
Crude

Rate/100000
Deaths

Crude

Rate/100000

Breast 40928 135.5 13303 44.0

Colon and rectum 16562 54.8 8278 27.4

Lung 15424 51.0 13390 44.3

Ovary 6707 22.2 4590 15.2

Corpus uteri 5956 19.7 1183 3.9

Non-Hodgkin lymphoma 4409 14.6 2260 7.5

Melanoma of skin 3959 13.1 807 2.7

Pancreas 3720 12.3 3596 11.9

Stomach 3675 12.2 2719 9.0

Bladder 3445 11.4 1683 5.6

Cervix uteri 3181 10.5 1529 5.1

The incidence of ovarian cancer is significantly lower in sub-Saharan Africa

than in Europe and the USA. The age-standardised rate is 6.6 per 100,000 in

Uganda compared with 12.4 in the UK (Parkin, 1997). The highest rates are

seen in Caucasian women in North America and Western Europe. Women

living in China and Japan have lower rates, a difference preserved with

immigration to the USA (Weiss, 1978).

The incidence of ovarian cancer shows two peaks in age, a small peak in the

late teenage years and a second at the age of 80 (Quinn, 2001). This reflects
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the two main types of ovarian cancer: non-epithelial and epithelial.

Approximately 90% of ovarian tumours are epithelial in origin. This occurs

more commonly in older women with a peak incidence at 56 to 60 years.

The age-specific incidence continues to increase until the age of 80 when it

slowly declines (Figure 1.1). The peak incidence of non-epithelial tumours is
between the ages of 15 and 25 years. Non-epithelial tumours comprise

tumours originating from germ cells, sex cord-stromal cells, ovarian

metastases and rare cancers such as sarcoma and small cell carcinoma. Germ

cell tumours make up two thirds of ovarian cancer presenting in the first two
decades of life but are rare over the age of 40.

The survival of women is markedly different with epithelial and non-

epithelial cancers. Epithelial tumours are relatively slow growing and are

usually diagnosed at an advanced stage. The usual presenting symptoms

such as abdominal pain or swelling, change in bowel habit, weight loss and

vaginal bleeding are non-specific and are commonly experienced by a large
number of the normal population (Flamm, 1988). Survival of women with

epithelial cancer is significantly altered by both age and the stage and grade

of disease. For all stages, women over the age of 50 have a 5-year survival of
15% whereas women below the age of 50 have a 40% 5-year survival. The

data for survival and percentage of women diagnosed at each stage is shown
in Table 1.2.
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Figure 1.1: Age specific incidence of all types of ovarian cancer in South Thames, 1995

Age at diagnosis
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Table 1.2: Survival of women with epithelial cancer by stage and the percentage of women

diagnosed in each stage

Stage 1 Stage II Stage III Stage IV

Confined to
ovaries

Confined to

pelvis
Positive
nodes or

peritoneal
implants

Distant
metastases

Stage at diagnosis (%) 21 7 63 9

5-year survival (%) 82 60-74 23-41 11

Non-epithelial tumours and specifically germ cell tumours grow rapidly and

usually present early with symptoms of pain secondary to capsule

distension, haemorrhage, necrosis or torsion. Germ cell tumours mainly

present in Stage I; 65% of dysgerminomas are Stage I at diagnosis and 90% of
these are unilateral (Bjorkholm et al, 1990). Survival of women with non-

epithelial tumours is significantly better then those with epithelial tumours.
This is due to the early age and stage of presentation and the high sensitivity
of germ cell tumours to chemotherapy (Williams et al, 1994).
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1.2 The management of women with an adnexal mass

The appropriate management of a woman presenting with a mass is

dependent on the ability to distinguish between a physiological, benign and

malignant tumour. A physiological tumour can be simply observed, in the
absence of significant symptoms, until it resolves spontaneously (Soutter,

2003). A benign tumour can be treated expectantly in the case of a small,

asymptomatic cyst. This is supported by work by Valentin in 2002. 134

postmenopausal women with asymptomatic, adnexal cysts of benign

appearance were followed up with ultrasound for up to 8 years. 9% of
women underwent surgery due to an increase in size or morphology and all

were found to be benign. The remaining 91% had either static or regressing

cysts for the duration of follow-up (Valentin, 2002). If surgery is required,

laparoscopic surgery allows a swift recovery to normal activities.

A malignant tumour should be staged and optimally debulked by a

gynaecological oncologist. A retrospective study of all women presenting

with ovarian cancer in the West of Scotland showed that survival was

significantly improved if a gynaecologist rather than a general surgeon

performed the surgery (Junor et al, 1987). Life expectancy was also

prolonged if the tumour was optimally debulked and if postoperative care

was carried out by a joint clinic. A prospective observational study

demonstrated a survival advantage for women managed by a subspecialist
in gynaecological oncology. Subspecialists were found to perform adequate

and appropriate surgery and to provide suitable adjuvant therapy more

often than a generalist (Kehoe et al, 1994).
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In view of these findings and those for other cancers, the Calman-Hine

Report, A Policy Framework for Commissioning Cancer Services, was published

in 1995. This proposed a plan for the management of cancer involving three
service levels: primary care; Cancer Units and Cancer Centres to improve the
outcome of people suspected of having cancer. A Cancer Unit is a team

involving a lead gynaecologist, a lead pathologist, a radiologist and a nurse

with a special interest in gynaecological cancer. It may be located in either

one or more collaborating district general hospitals serving a population of

200,000 people. A Cancer Centre is staffed by a multiprofessional

gynaecological oncology team. This would include two gynaecological

oncologists, a clinical oncologist, a medical oncologist, a radiologist, a

histopathologist, a cytopathologist and a clinical nurse specialist for a

population of 1 million.

These recommendations were reinforced by the publication of Improving
Outcomes in Gynaecological Cancers in 1999. This manual set out steps for the

appropriate management of women suspected of having ovarian cancer. A

woman presenting with symptoms or signs suggestive of early ovarian

cancer would be referred to her local Cancer Unit. There she would undergo

abdominal and pelvic examination, transvaginal ultrasound and CA 125

measurement. If these findings, along with her age, were suggestive of a

malignant mass then she should be referred without delay to a

multidisciplinary gynaecological oncology team at a Cancer Centre.

A gynaecological oncologist should carry out surgery through a midline

incision and any free fluid should be aspirated and submitted for cytological

investigation. In the absence of free fluid, peritoneal washings should be

taken. The ovarian tumour should be removed intact if possible. An
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international retrospective study of 1545 women with Stage I ovarian cancer

identified intraoperative cyst rupture as an independent poor prognostic
indicator for survival (Vergote et al, 2001). The contralateral ovary and

uterus should be removed and a systematic inspection of all visceral surfaces
and viscera should be conducted. Any suspicious areas should be biopsied

and an infracolic omentectomy performed. For full FIGO staging, a

diaphragmatic smear and exploration of the pelvic and paraaortic lymph
nodes is also required.

The management of a woman suspected of having an ovarian cancer differs

markedly from that of a tumour thought to be benign. The former would

require a staging laparotomy at a hospital geographically distant from her

home with the attendant risks of major abdominal surgery e.g. infection,

visceral injury, the need for blood transfusion, deep venous thrombosis and

perioperative death. The latter would have a choice of expectant or

minimally invasive day surgery. There is also a considerable difference in

the psychological impact of the diagnosis. The woman with suspected

benign disease would have a choice of management in many cases and

treatment would take place at her local hospital. She can choose to preserve

her uterus and contralateral ovary and thus her fertility. The woman with

suspected cancer would have the psychological burden of this diagnosis.
She would have little choice over the type of surgery required and fertility-

sparing surgery would be less feasible. The majority of gynaecological

cancer patients have chronic sexual problems following surgery. 31% of
women describe anxiety and 41% are depressed after gynaecological cancer

surgery (Corney et al, 1992). In addition, treatment may take place further

from home, friends and relatives increasing the sense of isolation and

displacement.
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Treatment is not required for functional ovarian cysts save in exceptional

cases of severe pain. Indeed surgical intervention in many cases can increase

morbidity and impair fertility.

Incidentally diagnosed pelvic masses are increasing in frequency due to the
increased availability of diagnostic imaging in primary and secondary care.

A large number of these asymptomatic women are thought to have an

ovarian malignancy and undergo the significant surgery with its attendant

physical and psychological risks (Timmerman et al, 1999a). Accurate

preoperative discrimination between benign and malignant disease would

particularly benefit this healthy population.
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1.3 The diagnosis of ovarian cancer

In most women, the diagnosis of ovarian cancer is made on histological

specimens taken at exploratory laparotomy.

Symptoms suggestive of ovarian cancer are often vague and non-specific,

particularly those of epithelial ovarian cancer. Irregular vaginal bleeding

may occur in early stage disease. If a pelvic mass is compressing the bladder
or rectum, local symptoms of urinary frequency or constipation may be
noted. Ascites and omental deposits can lead to abdominal distension,

bloating and abdominal pain. Increased intra-abdominal pressure may

cause nausea, anorexia or early satiety. Breathlessness may occur in late

stage disease due to a malignant pleural effusion or diaphragmatic splinting.

Non-epithelial tumours are faster growing and are more likely to present

with pain due to haemorrhage or capsule rupture (Berek, 2005).

The most important sign of ovarian malignancy is a pelvic mass. An

irregular, fixed pelvic mass is highly suggestive of cancer, particularly if

associated with shifting dullness and an upper abdominal mass representing

ascites and an omental cake. As women often report only abdominal

symptoms, examination may not include a vaginal examination and a pelvic
mass may be missed. The groin and neck examination may reveal enlarged

lymph nodes (Soutter, 2003).

Investigations include routine haematological and biochemical
measurements. Elevated liver enzymes or abnormal clotting times are

suggestive of extensive liver metastases. Specific tumour markers are
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discussed below. The primary radiological investigation is a pelvic

ultrasound. Other preoperative imaging includes a chest radiograph to

exclude lung metastases. Magnetic resonance imaging can identify the

planes surrounding a tumour and the presence of tumour invasion into

neighbouring structures. Computed tomography (CT) is useful in

assessment of extraovarian disease, in particular the presence of an omental

cake, diaphragmatic disease and implants in bowel mesentery. A recent

study investigated the use of CT in the preoperative prediction of

suboptimal cytoreduction in advanced ovarian cancer (Axtell, 2007).

Diaphragmatic disease and large bowel mesentery implants were found to

be most predictive of suboptimal cytoreduction. However, the high

accuracy of prediction was not confirmed on external validation at two other
US centres.

An extraovarian primary should be carefully excluded prior to planning

surgery. A barium enema or colonoscopy will identify the presence of a

colonic primary in patients with rectal bleeding or a change in bowel habit.

Women with a breast lump should undergo mammography to exclude a

primary breast cancer with ovarian metastasis.
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1.4 Ultrasound

1.4.1 The physics ofgray scale ultrasound

Ultrasound is reliant on the pulse echo principle. A pulse of sound waves

emitted by a transmitter can be reflected by a tissue interface and these can

be detected by a receiver. The elapsed time between emission and reception

can be measured and the distance from the tissue interface can be calculated

by the equation:

Distance = Speed x time

The speed of sound waves travelling in soft tissue is a known constant, 1540

metres/second, and is similar to that of fluid and blood. Modern ultrasound

machines have transducers that combine a transmitter and receiver. This is

constructed from a piezoelectric crystal that changes thickness when a

voltage is applied across it. When the voltage is pulsed, the crystal resonates

and produces high frequency sound depending on the thickness of the

crystal. The crystal also acts as the receiver by producing a small electrical

signal when hit by ultrasound waves. The crystal is used to produce bursts

of sound every thousandth of a second, lasting a millionth of a second. The

received echoes are quickly converted into an image allowing motion to be

followed. This is known as real-time imaging. The image produced is that

of a slice through a tissue. In order to examine an organ, the transducer is

angled and moved to view a number of slices. Thus, there are no fixed

projections: both the acquisition and interpretation of the images is

dependent on of the skill of the operator.
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Ultrasound frequencies for diagnostic use vary between 2.5 and 13

megahertz (MHz). Higher frequencies allow more definition of a structure

but their tissue penetration is limited. The speed of sound in bone and air is

markedly different from that of tissue. An interface between different
tissues causes reflection of a portion of the sound waves. The greater the

difference in speed of sound in the two tissues, the greater the proportion

reflected. A tissue/fluid interface causes a small proportion of the sound to

be reflected, the majority continuing through the tissues. This enables an

image to be obtained of the interface and the tissue beyond. At a tissue/air

interface there is a strong reflection: only one percent of the sound waves

continue to penetrate the air. This gives a good view of the interface but

minimal information about what lies beyond. This accounts for the inability

of ultrasound to examine a bowel lumen and the strong reflection seen in a

dermoid cyst containing a tooth or bone. This is known as acoustic

shadowing (Figure 1.2).
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Figure 1.2: Acoustic shadowing (AS) caused by a soft tissue/tooth interface in a dermoid

cyst

1.4.2 The physics of the Doppler effect

The Doppler effect allows assessment of the vascularity of a structure. When

an observer is moving relative to a wave source, the frequency measured is

different to the emitted frequency. If the source and observer are moving

towards each other, the observed frequency is higher than that emitted; if

they are moving apart, it is lower. This was first described by Christian

Andreas Doppler (1803 - 1853) in Austria (Doppler, 1843). This principle

allows the detection of ultrasound reflected by red blood cells flowing in
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tissues. The frequency shift can be measured by the transducer and blood
flow velocity calculated by the formula:

Frequency shift = 2xFixpxcos9

where C is the speed of sound in tissue and Fi the incident frequency of the
beam. Both C and Fi are constants. If the Doppler angle, 0, is also kept

constant, the flow velocity v can be calculated from the frequency shift. The
ultrasound transducer uses short pulses of sound, between which it remains

silent to allow echo reception. The frequency of the pulses is described by
the pulse repetition frequency (PRF).

Three types of Doppler assessment are available:

1.4.2.1 Colour flow Doppler

Colour flow Doppler allows an overview of blood flow within a region. It is

represented as superimposed colour on the gray scale image. Blood moving

towards the probe is shown in red, blood moving away in blue. Colour

Doppler is affected by the angle of insonation (0) and is limited by the PRF.

The maximum frequency shift that can be resolved is half the PRF, known as

the Nyquist limit. Frequencies higher than this will "wrap around" the

frequency scale and appear as frequency shifts in the opposite direction, a

phenomenon known as aliasing. Increasing the PRF in order to measure

high frequency shifts as seen in arterial flow will reduce the effective

penetration of the transducer.
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1.4.2.2 Power wave Doppler

Spectral or power wave Doppler enables the frequency shift for a small area

to be observed. The area is selected by a gate positioned at will on the colour

flow image. The Doppler signal obtained is plotted against time to give a

flow velocity waveform. Each vessel has a specific waveform that is

dependent on the characteristics of the vascular bed beyond; the recoil of the

vessel wall and the resistance of the vessels upstream. Arteries supplying

high resistance structures show absent or reversed flow at the end of

diastole. Those supplying low resistance vascular beds have persistent flow

throughout diastole. The waveform can be analysed to enable comparison

between vessels in the same subject and between different subjects. The

envelope of the waveform is outlined allowing the ultrasound machine to

calculate waveform indices. Commonly used indices are peak systolic

velocity (PSV), time-averaged maximum velocity (TAMXV), pulsatility index

(PI) and resistive index (RI). The peak systolic velocity is the maximum

observed velocity of the waveform (see Figure 1.3). The values S ( also

known as peak systolic velocity) and D (end diastolic velocity) are used in

the calculation of the waveform indices using the equations:

S-D S-D
RI = c PI =

mean

The RI takes values between zero and one, whereas the PI runs from zero to

infinity. The pulsatility index is able to reflect reversed end diastolic flow

because the mean flow velocity is the denominator. The Doppler variables

PI and RI were first described in the mid-1970's (Gosling and King, 1975,

Pourcelot 1974).
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Figure 1.3: Doppler waveform characteristics. PSV and S denote peak systolic velocity, D
is end diastolic velocity.

PSV

1.4.2.3 Power Doppler

The third type of Doppler is power Doppler. This was introduced to

overcome some of the limitations of conventional Doppler such as

dependence on the angle of insonation (0). Power Doppler measures the

energy of moving red cells, which is dependent on the amplitude of the

Doppler signal, the density of the red blood cells and the attenuation of the

intervening tissue. This is displayed as colour on the gray scale image. The

advantages of power Doppler are that it is less affected by artefacts; is

independent of 0 and is more sensitive to low flow than conventional

Doppler. It is good at delineating the course and calibre of vessels. Its
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limitations are that it does not show direction of flow or information on

blood flow velocity.

1.4.3 History of ultrasound

The piezoelectric effect was discovered by the Curie brothers in France in
1880. They observed that an electric potential would be produced when

mechanical pressure was exerted on a quartz crystal such as Rochelle salt

(sodium potassium tartrate tetrahydrate). The reciprocal behaviour of

achieving a mechanical stress in response to a voltage difference was

mathematically deduced from thermodynamic principles by the physicist
Gabriel Lippman in 1881.

Ultrasound was first used to examine the seabed and was employed in 1912

to search for the wreck of the Titanic. This technique was fast tracked in the
First World War to detect submarines and was known as SONAR (Sound

Navigation and Ranging). In 1954, Ian Donald, then Professor of Midwifery
at Glasgow University, was the first person to use ultrasound in obstetrics
and gynaecology. He successfully differentiated a fibroid uterus from an

ovarian cyst (Donald, 1958). At this time, ultrasound machines required

immersion of the patient in a water bath to allow the use of water as a

transmission medium. Donald built the first contact scanner using a jelly to

achieve acoustic coupling between the skin and the transducer. Scientists at

the Aloka plant in Japan added Doppler facilities and demonstrated blood
flow in tissues using ultrasound (Kaneko, 1961). In the late 1970's

miniaturisation technology enabled smaller transducers to be manufactured

with the marketing of rectal and transvaginal probes. These were able to use
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higher frequency ultrasound to achieve highly detailed images as the waves

no longer needed to penetrate through the abdominal wall. In 1983, colour

Doppler was developed enabling measurement of blood flow velocity and

spectral analysis.

1.4.4 Morphology

Adnexal masses vary considerably in their structure, which in many cases

reflects their histological derivation. Inspection of an adnexal mass with

gray scale ultrasound gives a large amount of information about the origin
and the structure of the mass. A number of investigators have assessed

masses ultrasonically and attempted to classify them as either benign or

malignant. Identification of the anatomical origin of the mass allows
differentiation between ovarian, tubal and uterine masses and those arising

from non-gynaecological organs (Figures 1.4 and 1.5).
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Figure 1.4: A cystic corpus luteum within the ovary. The ovarian contour is smooth and

encompasses the cyst (C denotes cyst). The cyst is unilocular and contains anechoic fluid.

The dimensions of the mass can be measured and the volume calculated.

The internal structure of a mass can aid classification. A mass may be

unilocular (comprising a single pocket of fluid); multilocular, containing a

number of pockets, or it may be solid (Figures 1.4,1.6 and 1.7).
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Figure 1.5: A fimbrial cyst lying lateral to the ovary. The ovarian contour curves away from
the cyst (C), which is clearly delineated by a rim of fluid beneath (arrowed). The cyst is

again unilocular, containing anechoic fluid.
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Figure 1.6: A mucinous cystadenoma. Note the characteristic multilocular appearance

containing mucin of low-level echogenicity.
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Figure 1.7: A small solid dermoid (D) placed laterally in the ovary (O) surrounded by healthy
ovarian tissue.

A series of 406 ovarian tumours showed that the risk of ovarian cancer was

typified by increasingly complex and bizarre internal cyst structure. 76% of
the ovarian cancers were correctly identified but a large number of dermoid

cysts were mistakenly identified as malignant (Kobayshi, 1976). Eight

morphological features were described that differentiated between benign

and malignant cysts in 91% of cases (Meire et al, 1978). These were the size

of the cyst, thickness of septae, presence of nodules, invasion of capsule and
fixation of the cyst. Although the study involved examination of 184

recorded images, histological outcomes only were available for 51. A more

robust study investigated the relation between the macroscopic appearance
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of ovarian tumours at pathological examination and histological type. Of
296 unilocular cysts without internal or external vegetations, only one was

malignant (0.3%) whereas 31 of 80 solid tumours were malignant (Granberg

et al, 1989).

Ovarian volume was used to screen 6470 asymptomatic women for ovarian

cancer. They were either postmenopausal or over the age of 30 with a family

history of ovarian cancer. An abnormal scan was defined as an ovarian

volume of greater than 10cm3 if postmenopausal; 20cm3 if premenopausal; or
the presence of a papillary or complex tissue projection into a tumour

(Figure 1.8). In 90 women, (1.4%) the scan was persistently abnormal.

Eighty-two women had a laparotomy and eight, a laparoscopic

oophorectomy. Of these, six women had primary ovarian cancer, one had
metastatic colonic cancer, 77 had a benign tumour and six had a functional

cyst. One screen negative woman developed a Stage IIA cancer 11 months
after a normal scan. Although this gave an impressive negative predictive
value of 0.9998, the positive predictive value was only 0.0667 (DePriest et al,

1997).
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Figure 1.8: A serous cystadenofibroma. it is a muitilocular anechoic cyst divided by

septations bearing papillary projections (arrowed).

Granberg and co-workers scanned 180 women preoperatively and related

the ultrasound features to the pathology of the adnexal mass (Granberg et al,

1990). They concluded that a number of morphological features increased
the risk of malignancy: the presence of papillary proliferations; echogenic
areas within the cyst and septations of the cyst. A papillary proliferation is a

solid irregularity of the internal cyst wall which projects into the cyst cavity

and may be smooth or irregular in contour (Figure 1.8). A strand of tissue

dividing a cyst cavity into two locules is termed a septation. Using these

features, they were able to differentiate between malignant and benign

tumours with a sensitivity of 83% and a specificity of 92%.
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This research led to the development of morphological scoring systems by a

number of groups. The first scoring system was based on four

morphological features: cyst wall thickness, inner cyst wall structure, septal
thickness and echogenicity (Sassone, 1991). Each factor was scored, the total
added and, if greater than nine, a preoperative diagnosis of malignancy

made. The model was developed on a group of 143 women and achieved

100% sensitivity and 83% specificity with positive and negative predictive
values of 37% and 100%, respectively. This model misdiagnosed a large

proportion of dermoid cysts as ovarian malignancies; a similar finding to

that of previous investigators (Kobayashi, 1976).

This system was refined with the use of multiple linear regression analysis.

The wall thickness parameter was removed from the equation and the

presence of shadowing inserted in an attempt to decrease the misdiagnosis
of dermoid cysts. Each parameter was weighted to reflect its importance.

On a larger study population of 312 women, a sensitivity of 96.8% and a

specificity of 77% were achieved. The positive and negative predictive
values were 29.4% and 99.6%, respectively. This poorer performance of the
model was due to a persistently high number of false positive results despite

the modification of the model (Lerner et al, 1993).

This model was tested prospectively in 2000 on a study population of 173
women. A sensitivity of 92% with a positive predictive value of 33% and a

negative predictive value of 97% was achieved (Valentin, 2000). Although

the results were reproducible in this study, other groups have found the

model does not perform as well prospectively as in the original patient

group (Ferrazzi et al, 1997, Mol et al, 2001). This may be due to a number of
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factors; chief among them is the lack of definition of morphological

parameters in the literature.

In an attempt to cross this barrier, the International Ovarian Tumour

Analysis (IOTA) group led by Timmerman published a set of terms to

describe the sonographic features of adnexal masses in 2000. The leading

gynaecological scanners in Europe developed these terms. This enabled
different groups to standardise the way they described ovarian cysts and
allowed collaboration in a prospective multicentre trial. The IOTA trial

reported in 2006 describing the different morphological criteria between

borderline, primary invasive epithelial cancers, rare ovarian tumours and

metastases to the ovary. They found that borderline tumours and Stage I

primary epithelial invasive malignancies were commonly large, multilocular
and contained papillary projections. Stage II-IV invasive epithelial

malignancies were mostly solid with associated ascites. Metastatic tumours

and rare ovarian tumours were generally solid and richly vascularised

(Valentin et al, 2006).

1.4.5 IOTA classification of morphology

The adnexal lesion is defined as the part of an ovary or adnexal mass that is

judged by ultrasonography to be inconsistent with normal physiology. If the
lesion is a unilocular cyst within the ovary, surrounded by normal ovarian

stroma, then the whole ovary containing the cyst is termed the 'ovary', and

the cyst, the 'lesion'. If the abnormality is separate to the ovary e.g. a

hydrosalpinx, then the ovary and lesion are measured separately. Both

lesion and ovary are measured in three perpendicular planes. The volume of
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the lesion is calculated from these measurements according to the formula

for a prolate ellipsoid (71/6 x height x length x depth). The tumour origin is

classified as ovarian, tubal, other or uncertain.

The presence of ascites is defined as fluid outside the pouch of Douglas. The

depth of fluid in the pouch should be measured in its anteroposterior

diameter in the sagittal plane.

A septum is defined as a thin strand of tissue running across the cyst cavity

from one internal surface to the contralateral side. The thickness of the

septum is measured where it appears widest (other than at its interface with

the internal surface of the cyst wall). The operator should attempt to

measure the septum at right angles to the ultrasound beam in order to

decrease artefact and improve the accuracy of measurement.

An incomplete septum (as seen in a hydrosalpinx) is defined as a thin strand

of tissue running across the cyst cavity from one internal surface to the

contralateral side, but which is not complete in some scanning planes. If a

cyst has only incomplete septae, it is unilocular, despite the fact that in some

scanning planes it appears to be multilocular.

"Solid" is defined as echogenicity suggesting the presence of tissue e.g.

myometrium or ovarian stroma. There are two methods to distinguish

between solid tissue and a blood clot. The use of colour Doppler to identify

flow within the tissue confirms solid tissue. The absence of flow is

unhelpful. The second method is to gently push the structure with the
transducer and look for internal movement suggestive of a clot. In doubtful

cases, it should be classified as solid.
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Solid papillary projections are defined as any solid projections into the cyst

cavity from the cyst wall greater than or equal to 3mm in height. This

arbitrary measurement was defined by the IOTA group and aims to exclude
an irregular cyst wall but still include any significant solid projections into

the cyst. The largest is measured in three planes: height, base and base. If it
is unclear whether solid papillary projections or an incomplete septum is

present, the worst-case scenario is used and the solid part should be
classified as a papillary projection if their height is greater or equal to 3mm.

The "white ball" in a dermoid should not be classified as a papillary

projection.

The lesion is classified qualitatively into one of six classifications: unilocular;

unilocular with a solid component; multilocular; multilocular with a solid

component, or solid. A unilocular cyst is defined as a cyst without septae
and with no solid parts or papillary projections. Normal ovarian stroma is

not regarded as solid so a peritoneal pseudocyst encapsulating a normal

ovary would be classified as unilocular rather than unilocular-solid. A

unilocular cyst with a solid component is a cyst containing a measurable

solid component such as a papillary projection. A multilocular cyst is one

with at least one septum but no measurable solid component or papillary

projections. A multilocular cyst with a solid component is one with septae

and either a measurable solid component or at least one papillary structure.

A solid tumour is one when at least 80% of its volume is solid. It may

contain papillary projections protruding into the small cystic spaces within

the tumour. Some dermoids display a 'tip of the iceberg' sign or have

contents that are unclear: these are termed 'not classifiable'.
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The true number of locules within the lesion is noted after assessment in

various planes. In cystic solid tumours, the largest solid area is measured in
three different planes. In some cases, the largest solid component may be a

papillary projection; this should be measured as both the largest solid

component and largest papillary projection.

The internal wall is noted as being smooth or irregular. If there is a solid

papillary projection then the wall is irregular by definition. The external
wall of the lesion is not inspected. If the tumour is solid, the internal wall

cannot usually be classified as smooth or irregular but the external border of

the tumour is described as smooth or irregular. If there is any irregularity in
either the inner wall of any cyst or the surface of a solid component, the
lesion is described as irregular.

The dominant feature of the cystic contents is described as anechoic (black);

low-level echogenic (homogeneous low level echogenicity as seen in

mucinous tumours); ground glass (homogeneously dispersed echogenic

cystic contents as seen in endometriotic cysts); haemorrhagic (with internal
thread-like structures, representing fibrin strands, which may appear star-

shaped, cobweb-like or jelly-like) or mixed echogenicity (as often seen in

dermoid cysts). In a solid tumour, the dominant feature of any cystic

contents is described only if it can be assessed.

The presence of acoustic shadows, defined as loss of acoustic echo behind a

sound reflecting structure, is also noted.
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1.4.6 Subjective assessment

Some tumours have a distinct ultrasonographic appearance allowing

recognition of their histological type. With experience, an ultrasonographer

can often make a presumptive diagnosis based on the gray scale appearance

of the tumour alone. For example, a dermoid cyst is characteristically
located laterally in the ovary, surrounded by a rim of normal ovarian tissue

(Figure 1.7). They typically display mixed echogenicity and hair inside the

cyst may be recognised by the presence of spiculations. Areas of calcification

casting acoustic shadows may be seen due to bone or tooth formation

(Figure 1.2). 173 women were scanned preoperatively and in 42% of cases, a
correct specific diagnosis was made based on the gray scale image alone e.g.

endometrioma or dermoid cyst. An incorrect specific diagnosis was made in
7% and in 51%, a specific diagnosis was not reached. The diagnosis was then
reconsidered following the acquisition and analysis of the Doppler

waveform. In 3%, it changed the diagnosis from an incorrect one to the

correct specific diagnosis and in 1% it changed from correct to incorrect

(Valentin, 1999a).

Subjective assessment is a reliable tool for the diagnosis of histological type
in those tumours displaying a typical morphology. Flowever, in over half

the cases a specific diagnosis was not reached. The value of additional

Doppler interrogation was limited (Valentin 1999a).

1.4.7 Doppler assessment

The growth of malignant tumours is dependent on the diffusion of oxygen

and nutrients from their surroundings. A solid tumour cannot grow beyond
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one square millimetre without neovascularisation (Folkman, 2003). Tumour

angiogenesis involves migration and proliferation of endothelial cells and is

stimulated by cytokines including fibroblast growth factors, angiogenin and

vascular endothelial growth factor. Both cancer cells and other surrounding

cells produce these cytokines. They stimulate the development of new
arcades of vessels that penetrate the tumour from its external borders. The

new vessels display both structural and functional differences from normal

vessels. They are relatively abundant and display an irregular branching

pattern with arterio-arterial anastomoses; arterio-venous shunts and,

occasionally, thin walled vessels ending in tumour lakes. The functional

differences include an incomplete elastic smooth muscle layer leading to

poor control of distal perfusion. This results in little resistance to flow and

decreased variation in flow through the cardiac cycle. Poor endothelial

function renders the vessel more permeable to large molecular weight

proteins that increase the oncotic pressure surrounding the vessels. Arterio¬

venous shunts result in high velocity flow due to the large pressure gradient.

These changes lead to a wide variation in vascular flow within a tumour

(Vaupel, 1994).

Colour Doppler imaging can be used to visualise the structural changes in

vascular architecture and the functional changes can be assessed with

spectral Doppler. The lack of vasomotor control and the presence of arterio¬

venous shunts produce vessels demonstrating rapid flow with low

resistance. This gives rise to high peak systolic velocities with low resistance

and pulsatility indices.

A Croatian group used Doppler imaging to differentiate benign from

malignant adnexal masses (Kurjak, 1991). In the context of a screening

47



study for ovarian cancer, they identified 690 adnexal masses, 47 of which
were malignant primary ovarian cancers. They found the RI to be below 0.40

for all the malignant masses. Other groups also found a clear discrimination

between benign and malignant masses with high velocity, low resistance

flow in cancers and little or no flow in benign masses (Bourne et al, 1989).

Three parameters were described for the identification of benign ovarian

masses: peripheral location of vessels; high impedance parameters, and a

diastolic notch in the Doppler waveform (Figure 1.9). A diastolic notch is

caused by the recoil of the elastic smooth muscle coat of the vessel wall

following systole, which is characteristically absent in malignant vessels.
Ovarian cancers demonstrated centrally placed vessels and an absence of the

diastolic notch (Fleischer, 1993a).

Figure 1.9: A diastolic notch in the Doppler waveform.
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Further work compared the specificity of both gray scale and colour Doppler

imaging to identify the histology of adnexal masses. Doppler interrogation
was found to be helpful in identifying ovarian malignancies, ovarian torsion

and ectopic pregnancy. A greater accuracy was evident in postmenopausal
rather than premenopausal women (Fleischer et al, 1993). This may have

been due to the significant functional vascular changes in the normal ovary
with the high degree of neovascularisation during the development of the

corpus luteum. These vessels display a high peak systolic velocity and low
resistance index (Jauniaux et al, 1992), similar to that described in ovarian

malignancies. However, a significant overlap in Doppler signals from

benign and malignant masses was seen, in contrast to previous studies

(Fleischer et al, 1993).

Further doubt was shed on the use of Doppler in 1994. A wide range of PI
was recorded in different vessels within a single mass and a considerable

overlap was found between the range found in benign and malignant
tumours. PSV and TAMXV appeared to be better discriminators than PI

between benign and malignant cysts. A subsequent study found that

Doppler interrogation of solid pelvic tumours showed no significant

difference between TAMXV in benign and malignant tumours (Sladkevicius

et al, 1995).

A combination of two parameters (TAMXV and PI) improved the detection

of malignancy in a set of 51 women. The combined use of a cut off level of

greater than 12cm/s for TAMXV and a PI less than or equal to 1.0 gave a

sensitivity of 88.9% and a specificity of 88.1% (Tailor et al, 1996). Colour
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Doppler energy (CDE) was used to assess intraovarian blood flow and

compared to the findings of colour Doppler imaging (CDI). There was no

significant difference in discrimination between the two methods (Tailor et

al, 1998).

The intraobserver reproducibility of CDI was found to be greater than that of
CDE (Tailor et al, 1996). This may be due to the aliasing effect, which

identifies the areas with highest velocity flow and therefore is likely to cause

consistent placing of the Doppler gate at these points.

A Japanese group found PSV and serum CA 125 to be the most

discriminatory variables for the diagnosis of malignancy in 171 women with
an adnexal mass. Hata found a relation between prognosis and peak systolic

velocity in women with ovarian cancer. Worsening histological grade, a

lower apoptotic index and higher microvessel count were significantly

associated with a higher preoperative intratumoral PSV. However, he found

a wide variation in PSV in the 49 women recruited with a range of 4.3 cm/s

to 80.9 cm/s (Hata et al, 2002).
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1.5 Serum tumour markers

A serum tumour maker is a biochemical compound that may be produced

by, or released in response to, a tumour. They can be either tumour specific

or tumour associated antigens. Tumour specific antigens are unusual and
are typified by immunoglobulins released from B lymphocyte tumours.

Tumour associated antigens make up the majority of tumour markers in

clinical use. Although they are raised in the presence of a tumour, they are

also produced both in physiological states and in benign and other

malignant diseases. Most tumour-associated antigens are macromolecular

and may be enzymes, hormones, receptors, growth factors, biological

response modifiers or glycoconjugates.

1.5.1 CA 125

CA 125 is an antigen expressed by fetal amniotic and coelomic epithelium.
In adults, it is found in tissues derived from coelomic epithelium such as the

mesothelial cells of the pleura, pericardium and peritoneum. It is also found
in the mullerian epithelia of the tube, endometrium and endocervix.

Expression has also been discovered in epithelial cells outside the genital

tract including lung, breast and conjunctiva (Nap, 1998). The surface

epithelium of normal ovaries in the adult does not express CA 125 except in

inclusion cysts, areas of metaplasia and papillary proliferations (Kabawat et

al, 1983).
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It was first detected in 1981 by Bast et al, using a murine monoclonal

antibody OC125, raised in response to an immunologic challenge with an

ovarian cancer cell line (Bast et al, 1981). It is now known to be a mucin-type

glycoprotein with a molecular weight of over 200,000 daltons. It is highly

glycosylated and is rich in the amino acids serine, threonine and proline. It

has two major antigenic domains classified as A, the domain binding

monoclonal antibody OC125; and B, a domain binding monoclonal antibody

Mil.

The original immunoradiometric assay was a homologous assay using the
monoclonal antibody OC125 alone. This was prone to variability between

different CA 125 kits, which gave discordant, and in some cases discrepant

results. A second-generation heterologous CA 125 assay using both

monoclonal antibodies (OC125 and Mil) has since been developed. It has

been shown to give better analytical performance with fewer false positive

results at the same cut off value of 35 units per millilitre (U/ml) (Kenemans

et al, 1993). CA 125 was shown to be below 35 U/ml in 99% of healthy

female donors (Bast et al, 1983). This has been accepted as the upper limit of

normal in the general population. CA 125 levels are influenced by both

physiological and pathological events. Menstruation is associated with a

modest rise in CA 125 in 30% of women (Alagoz et al, 1994). CA 125 levels

are raised in the first trimester of pregnancy, with a median serum CA 125

level of 23.4 U/mL and a 95% reference interval of 5.28-70.15 (Aslam et al,

2000a). Benign conditions such as endometriosis, uterine fibroids, tubo-

ovarian abscess, benign ovarian cysts, ovarian hyperstimulation syndrome

and diverticulitis can all cause a rise in CA 125 titres (Ozaksit et al, 1995). As

the bulk of benign causes of a raised CA 125 level are seen only in

premenopausal women, some authors have advocated a lower cut off level
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for postmenopausal and hysterectomised women of 20 U/ml. (Alagoz et al,

1994). Malignant processes in the ovary, breast, colon, bladder, pancreas,
liver and lung are associated with an elevation of serum CA 125 levels.

Epithelial ovarian cancer is associated with an elevated CA 125 level in 85%
of patients (Bast et al, 1983, Canney et al, 1984). Over 90% of women with
advanced stage ovarian cancers have raised levels whereas only 50% of

women with Stage I cancer have an elevated level. Different histological

types of ovarian cancer are associated with varying levels of CA 125

elevation. Serous epithelial cancers are associated with the most significant
rise in CA 125 levels whereas mucinous and clear cell tumours show more

modest rises. Borderline tumours show a small elevation in CA 125 levels.

The mean CA 125 in borderline tumours is 44kU/l with a level of 1201 U/ml

in epithelial and 53 U/ml in non-epithelial ovarian tumours (Aslam, 2000a).

A raised CA 125 can be detected in asymptomatic women prior to the

diagnosis of ovarian cancer. Zurawaski in 1988 analysed 59 serum samples

from women who were diagnosed as having ovarian cancer 5 years later and

found a raised level in 25%. Skates assayed serum samples from 3554

asymptomatic Swedish women who had been enrolled in a screening study,
6 of whom went on to develop ovarian cancer. He found that CA 125 levels

demonstrated an exponential rise before the clinical diagnosis of ovarian

cancer (Skates 2003). Einhorn investigated the use of CA 125 in the pre¬

operative discrimination of adnexal masses (Einhorn et al, 1986). Using a

cut-off of 35 U/ml a raised CA 125 had a sensitivity of 78% and a specificity

of 95% in the detection of malignancy.
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2.5.2 CA 19-9

CA 19-9 is a mucin-type glycoprotein with a molecular weight of

approximately ten kilodaltons. It is defined as the antigen reacting with the

monoclonal antibody 1116 NS 19-9. This antibody was originally obtained

by inoculating BALB/c (albino strain) mice with a cell line (SW 1116) derived

from a human colorectal carcinoma.

The biological function of CA 19-9 is not clear. It has been suggested that it

may play an important role in metastasis, perhaps by acting as an anti-

adhesion molecule. CA 19-9 is elevated in ovarian mucinous

cystadencarcinoma and in other primary malignancies of the pancreas,

gastrointestinal tract, lung, bile duct and endometrium. It is expressed on

cell surfaces, particularly biliary and pancreatic duct cells and is raised in

80% of cases of pancreatic cancer and 70% of biliary cancers (Maestranzi et

al, 1998). Despite the identification of other mucin markers for pancreatic

cancer, CA 19-9 has been established as the 'gold standard' against which

other markers are evaluated.

CA 19-9 is also elevated in metastatic disease of the liver. Benign diseases

that may cause elevated CA 19-9 include pancreatitis, hepatocellular

jaundice and hepatic cirrhosis. It is significantly raised in obstructive

jaundice caused by stones in the common bile duct (Duffy 1998). CA 19-9 is

thought to be cleared by hepatic metabolism and excreted in bile, which

would explain the high concentrations in extra-hepatic biliary obstruction

(Maestranzi et al, 1998).

Human mucinous epithelial ovarian cancer cell lines have been found to

secrete CA 19-9 into their culture medium (Sato et al, 2002). 55.9% of women
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with epithelial ovarian cancer have an elevated serum CA 19-9 level (Kudoh

et al, 1999). The incidence of a raised CA 19-9 is higher in mucinous

carcinomas (76.9%) but is unrelated to tumour stage. All women with a

serum ratio of CA 125 to CA 19-9 of greater than 50 have either serous or

endometrioid cancer (Kudoh et al, 1999). Contrary to this, levels of CA 19-9

in Stage Ic ovarian cancer were found to be significantly higher than those of

Stage la cancers (565 U/ml vs 26 U/ml) (Murumatsu et al, 2005 ). CA 19-9 can

be used to discriminate between malignant and benign ovarian masses. A

cut-off of 40 U/ml gave a specificity of 81.1% with a sensitivity of 35.6% with

levels raised more commonly in malignant mucinous tumours (Gadducci et

al, 1992). CA 19-9 is also raised in 46% of borderline ovarian tumours and

in 57% of mucinous borderline tumours. Only 15% of CA125 levels were

raised in the mucinous group (Engelen et al, 2000).

Tissue expression of CA19-9 has been investigated in an attempt to identify
tumour markers that would complement CA 125. CA 19-9 is expressed in

29% of ovarian tumours which do not express CA 125. However, only 2% of

the tumours they studied were mucinous which may have led to an

underestimation of the number of tumours which express CA19-9 (Rosen et

al, 2005). CA 19-9 is elevated in the pressence of dermoid cysts with a mean

of 101 U/ml. CA 125, carcinoembryonic antigen (CEA) and alpha fetoprotein

(AFP) are not raised with dermoids. A raised CA 19-9 is significantly

associated with bilateral dermoid cysts (Dede et al, 2006).

Carbohydrate antigens are synthesised along the same pathway as normal

human blood group antigens. The Lewis blood group antigens Lewis a and

Lewis b are carbohydrate structures that form epitopes on glycolipids and

glycoproteins. The CA 19-9 level in the serum of an individual is dependent
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on the blood group antigens expressed by the individual. The CA 19-9

antigen is a sialylated form of the Lewis a (Lewis3) antigen. The Lewis gene

(Le) encodes a fucosyltransferase enzyme (Fuc) that is responsible for adding
fucose in an ai,4 linkage to the N-acetylglucosamine (GlcNAc-R) of blood

group oligosaccharides (Figure 1.10) (Itzkowitz, 1986).
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Figure 1.10: The synthesis pathway of the Lewis a antigen, the Lewis b antigen and
CA 19-9.

The Lewis b antigen is formed by the addition of two fucose molecules (Fuc) to N-

acetylglucosamine (GlcNAc-R) with the use of two fucosyltransferase enzymes and then the
addition of a galactose (Gal) molecule by the galactosyltransferase enzyme. The Lewis a

antigen is formed by the action of fucosyltransferase enzyme and the galactosyltransferase

enzyme adding fucose (Fuc) and galactose (Gal) respectively. The CA19-9 antigen is
formed by the sialation of N-acetylglucosamine (GlcNAc-R) by a a2,3 sialyltransferase

enzyme (Sia). The galactosyltransferase enzyme then adds galactose (Gal) and the

fucosyltransferase enzyme adds fucose (Fuc) with an a14 linkage to form the CA19-9

antigen.

Lewisb

Pi,3
Gal ► GlcNAc-R

^ ai,4 ^ ai,2
Fuc Fuc

Pi,3
Gal ► GlcNAc-R

Lewis3
' "w| ai,4

Fuc
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Because around 7% of the population lacks the Le gene, they are unable to

synthesise the CA 19-9 antigen. As a result, Lewis negative individuals with
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the blood type Lewis (a-b-) will have undetectable concentrations of CA 19-9

whatever the tumour burden. Clinically therefore, the maximal achievable

sensitivity of the CA 19-9 assay cannot be greater than 93% (Vestergaard

1999).

1.5.3 CA 72-4

Cancer antigen 72-4 is a high molecular weight mucin that is found in many

carcinomas, particularly in colonic, gastric and ovarian primaries. It is also
known as tumour associated glycoprotein 72 (TAG 72). One of its epitopes,

sialosyl-2-6a -N-acetylgalactosaminyl, is recognised by the monoclonal

antibody B72.3. Serum contribution of CA 72-4 is minimal as the antigen is

only expressed in a few normal tissue types including secretory

endometrium and transitional colonic mucosa.

CA 72-4 has been shown to be elevated in 40% of gastrointestinal

adenocarcinomas. A combination of CA 72-4 and carcinoembryonic antigen

(CEA) has been used for the detection of colorectal cancer and in post¬

surgical follow up. In patients with no clinical evidence of disease

recurrence, both CEA and CA 72-4 remained negative (Guadagni et al,

1992).

The normal range of CA 72-4 is 0 to 6 U/ml. CA 72-4 is elevated in patients

with both ovarian and gastrointestinal cancer, with a lower degree of

expression in patients with breast, prostate and lung cancer. It is rarely

elevated in patients with benign disease (Gero, 1989).
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Immunohistochemical analysis of ovarian cancer has shown CA 72-4 antigen

to be present in the majority of histological types of cancer (Thor et al, 1986).
Serum levels are raised in around 50% of patients with ovarian cancer. The

assay has a low percentage of false positives and therefore has been

suggested as a confirmatory marker in women with a high CA 125 (Gero,

1989).

The sensitivity of CA 125 has been compared to CA 72-4 in the diagnosis of
ovarian cancer. Both markers had a similar sensitivity for the detection of

ovarian cancer but CA 72-4 had a better sensitivity in mucinous cancer and

CA 125 in serous cancer. A combination of the two markers gave no

advantage for follow-up (Hasholmer et al, 1996).

Eight tumour markers were evaluated in women with a pelvic mass. At a
cut off level for CA 72-4 of 3.8 U/ml, a sensitivity of 54.2% and a specificity of
91.6% was achieved. A logistic regression model combined CA 125, OVX1,

CA 15-3 and lipid associated sialic acid (LASA), which gave a sensitivity of
82.3% and a specificity of 93.2% in the preoperative detection of ovarian
cancer (Woolas et al, 1995).

50.5% of women with ovarian cancer have a level of CA 72-4 over 4 U/ml.

The performance of CA 72-4 in the prediction of ovarian cancer is 69.1%,

measured by the area under the curve (AUC) of a receiver-operator

characteristic curve. This is similar to the performance of CA 125 which

gives an AUC of 69.0% (Udagawa et al, 1998).

An Italian group measured the serum levels of CA 72-4 in 726 women. They

found that 66% of women with ovarian cancer showed elevated CA 72-4

levels and that these correlated to the clinical course of the disease through
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chemotherapy and follow-up. However, they did not find that addition of
CA 72-4 to CA 125 increased sensitivity (Scambia et al, 1990).

A Dutch group investigated the addition of CA 72-4 measurement after

physical examination, ultrasound examination and CA 125 estimation. They

developed a logistic model in a series of 155 women with a pelvic mass. CA
72-4 alone gave a sensitivity of 61% with a specificity of 93% and an odds
ratio of 4.9 in the prediction of malignancy. The addition of CA 72-4 to the

logistic model improved the diagnostic accuracy from 81 to 87% (Schutter et

al, 1997).

Skates et al investigated the use of CA 72-4 in combination with CA 125 and

macrophage colony stimulating factor (M-CSF) in screening for early stage

ovarian cancer. With the use of logistic regression, classification trees and

mixture discriminant analysis, they were able to detect early stage cancer

with a sensitivity of 70% and a specificity of 98% (Skates et al, 2004).

1.5.4 CA 15-3

CA 15-3 is a heterogeneous high molecular weight mucin, which is found in

the humanmilkfat globule membrane. It is coded for by the MUC1 gene and

produced by secretory epithelium. It is over-expressed in breast, ovarian

and lung cancers and shed into the serum. CA 15-3 is recognised by two

antibodies, DF3 and 115D8. The DF3 antibody was prepared using a

membrane-enriched fraction of a human breast cancer cell line and the

115D8 antibody was raised against antigens found in the human milkfat

globule membrane (Cheli et al, 1998).
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CA 15-3 levels are elevated in breast, ovarian and colorectal carcinoma

(Walach et al, 1998). CA 15-3 has been shown to be a useful marker in

metastatic breast cancer and indicates both disease progression and response

to therapy. It has also been found to rise prior to clinical detection of disease

recurrence (Safi et al, 1991, Cheli et al, 1998).

Drapkin et al in Boston, USA, studied MUC1 expression in papillary serous

and endometrioid ovarian carcinomas and compared it to inclusion cysts

and normal ovarian epithelium. They found that the ovarian cancers were

immunopositive for MUC1 whereas both the inclusion cysts and normal
ovarian epithelium were negative for MUC1 (Drapkin et al, 2004). Work by

Feng and colleagues showed that 90% of serous tumours, 62% of mucinous

tumours and 80% of clear cell tumours expressed MUC1. They found that

over expression of MUC1 was associated with a higher histological grade

and stage than those tumours that did not over- express MUC1. They

concluded that overexpression of MUC1 was linked to a worse prognosis in

ovarian cancer (Feng et al, 2002).

A combination of CA 15-3 and CA 72-4 was used to differentiate between

sera from women with elevated CA 125 with benign disease and ovarian

cancer. At least one of CA 15-3 or CA 72-4 was elevated in 77% of the

cancers but only in 6% of the benign cases. These markers could therefore be

used to increase the specificity of detection of ovarian cancer in elevated

levels of CA 125 (Bast et al, 1991). The use of CA 15-3 for the discrimination

between benign and malignant ovarian masses gave a sensitivity of 57.1%

with a specificity of 93.9% (Gadducci et al, 1992).
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Woolas found CA 15-3 to give a sensitivity of 62.5% with a specificity of
86.5% at a cut-off level of 32 U/ml in a population of women with pelvic
masses. He combined this value with four other markers as described in

section 1.5.3 (Woolas 1995).

1.5.5 HER-2/neu

HER-2/neu is a human oncogene that encodes a transmembrane growth

factor receptor with a molecular weight of 185 000 daltons. It is also known
as c-erbB-2 and pl05. The protein is made up of three portions: an internal

cytoplasmic structure with tyrosine kinase activity; a short hydrophobic
transmembrane section and an extracellular ligand-binding domain (ECD).

The ECD has a 44% sequence homology with the human epidermal growth
factor receptor. It has a molecular weight between 95 000 and 115 000

daltons. The ECD is shed into the bloodstream and can be measured in

serum.

The level of shed ECD is elevated in women with breast cancer, particularly

in the presence of metastatic disease. The HER-2/neu gene has been found to

be amplified in 25 to 30% of human breast cancers. Breast cancer patients

with multiple copies of the HER-2/neu gene have both a shorter time to

relapse and shorter overall survival. Multivariate analysis found HER-2/neu

HER-2/neu gene amplification to be the second strongest predictor after

lymph node positivity (Slamon et al, 1989). Raised serum concentrations of

HER-2/neu are associated with tumours that are more aggressive.
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HER-2/neu is also expressed by most ovarian cancers and is over-expressed
in approximately 30%. Slamon et al showed that gene amplification in

ovarian carcinoma was associated with decreased survival. Tumours with a

single copy of the HER-2/neu gene conferred a life expectancy five times

longer than those with more than five copies (Slamon et al, 1989). Tissue

expression of HER-2/new was investigated in frozen sections of normal
ovarian tissue and advanced epithelial ovarian cancer (Berchuk et al, 1990).

Thirty-two percent of the epithelial cancers stained heavily for HER-2/neu.

The survival of these patients was significantly worse than those whose

tumours did not over-express HER-2/neu: 15.7 months vs 32.8 months

respectively (p=0.001).

McKenzie et al investigated the relationship between tumour over-

expression and serum levels of HER-2/neu (McKenzie et al, 1993). They

found that the serum level was elevated in 15% of women with ovarian

cancer whereas 6% of healthy volunteers had elevated levels.

Immunohistochemistry of the ovarian cancer tissue showed 38% had over

expression of HER-2/new. The serum neu levels had a sensitivity of 29% with
a specificity of 93% in the determination of tumour over expression of HER-

2/neu. However, half of the serum samples were obtained post-operatively

and the authors postulated that the levels might have dropped following
decrease in the tumour burden.

Meden and co-workers established a normal range for HER-2/neu and

demonstrated increasing levels during pregnancy, which peaked in the third

trimester (Meden et al, 1994). In a later publication, they related an elevated
serum level of HER-2/neu to a poor prognosis in ovarian cancer. They used

a cut-off of two standard deviations above the normal mean. Women with a
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raised serum HER-2/neu had a survival of 7 months as opposed to 29

months. They postulated that a raised serum HER-2/neu defined a subgroup
of particularly aggressive tumours (Meden et al, 1997).

In vitro work demonstrated that over-expression of HER-2/neu in a breast

cancer cell line induces endothelial cell retraction, enhancing the metastatic

potential of the tumour cells. Herceptin® (a recombinant anti-HER2

antibody) significantly blocked this endothelial cell retraction (Carter et al,

2001).

50% of borderline ovarian tumours express HER-2/neu (Haaften-Day, 1996).

Eltabbakh and co-workers related HER-2/neu over-expression in borderline

tumours to FIGO staging, recurrence and survival. They found that of 42

tumours, 21% demonstrated over-expression of ITER-2/neu. Over-

expression was significantly more common in stage III than stage I tumours

(6/12 vs 3/30, p = 0.0157). No relationship between optimal debulking and

over-expression was identified and there were no recurrences in the follow-

up period (Eltabbakh et al, 1996).
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1.6 Statistical models

1.6.1 Risk ofmalignancy indices

Based on the success in discriminating between benign and malignant

ovarian masses using morphological markers, they were combined with

demographic variables and tumour markers to produce a risk of malignancy

index (RMI). This model multiplied the CA 125 level (U/ml) by the

menopausal status (1 for premenopausal or 3 for menopausal) and an

ultrasound score (Jacobs et al, 1990).

RMI = CA 125 x menopausal score x ultrasound score

The presence of multilocular cysts, bilateral lesions, solid areas, ascites and

intra-abdominal metastases scored 1 point each. The total ultrasound score

was calculated with a score of 0 for 0 points, 1 for 1 point and 3 for 2 or more.

The most discriminatory cut-off value was 200 for the diagnosis of

malignancy (Table 1.3). On a population of 143 patients (101 benign, 42

malignant), a sensitivity of 85% with a specificity of 97% was achieved. This

out-performed CA 125, the ultrasound score, age, menopausal status and the

clinical impression of malignancy.

This model is the best-known formula for the discrimination between benign

and malignant cysts. It is user-friendly as the ultrasound marking score can

be calculated with reference to an ultrasound report and the overall score

requires straightforward mental arithmetic. It can be used in any
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department with facilities for CA 125 estimation and basic ultrasound
evaluation.

Jacobs' model was refined using stepwise forward logistic regression to

identify the most significant variables. CA 125 was entered as a continuous

variable and menopausal status as one for premenopausal and four for

postmenopausal women. The ultrasound score was scored on the above
criteria but scores of 0 or 1 were given a value of 1 whereas scores of 2 and

above were given a value of 4. On a Norwegian population, the refined RMI

gave a sensitivity of 95% with a specificity of 87% whereas Jacobs' model

gave a sensitivity of 87% and a specificity of 91% at a cut-off of 200. Jacobs'
model performed less well in this study than in its original publication. The
model was designed on retrospective data analysis giving a best fit to that

cohort (Tingulstad et al, 1996).
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Table 1.3: Sensitivity, specificity and likelihood ratio for malignancy given a positive or

negative result for different levels of the risk of malignancy index (after Jacobs, 1990)

Sensitivity Specificity Likelihood ratio for

malignancy if result is

RMI

score
% 95% CI % 95% CI Positive Negative

25 100.0 91.4-100.0 62.2 51.9-71.8 2.7 0.00

50 95.1 83.5-99.4 76.5 66.9-84.5 4.1 0.06

75 92.7 80.1 -98.5 84.7 76.0-91.2 6.1 0.09

100 85.4 70.8-94.4 87.8 79.6-93.5 7.0 0.17

150 85.4 70.8-94.4 93.9 87.2-97.7 14.0 0.16

200 85.4 70.8-94.4 96.9 91.3-99.4 42.1 0.15

250 78.0 62.4-89.4 99.0 94.5-100.0 76.9 0.22

2.6.2 Logistic regression models

Anil Tailor in London developed a logistic regression model in 1997 based

on demographic and ultrasound criteria. He used logistic regression to

identify the most important of ten variables (age, maximum tumour

diameter, tumour volume, unilocularity, papillary projections, random

echogenicity, highest PSV, TAMXV, PI and RI). The retained variables were

age, papillary projection score (0 for absent, 1 for present) and time averaged
maximum velocity (TAMXV).
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The equation is shown below:

Probability =

(1 + e-z)

Where:

z = (0.1273 x age) + (0.2794 x TAMXV) + (4.4136 x papillary projection score)

-14.2046

A cut off of 0.5 was used which gave a sensitivity of 81.8% with a specificity

of 98.1%. A separate group of 15 cases was used to test the model; all were

correctly classified. An overall sensitivity of 86.7% and specificity of 98.1%
were achieved. A strength of this study was the use of a test set to

prospectively validate the model. The use of stepwise logistic regression

allowed independent evaluation of the variables with a calculated rather
than arbitrary weighting. However, the numbers in the study were small

with a total population of 67 women. Among them were 15 malignant cases

with 12 invasive epithelial cancers and 3 borderline tumours (Tailor et al,

1997).

Alcazar and Jurado in Pamplona developed an LRM based on morphological

criteria as described previously by Sassone and the vascularity of the tumour

(resistance index greater than 0.45). They prospectively tested their model

on 58 patients and achieved a sensitivity of 84.6% with an impressive

specificity of 100% (Alcazar and Jurado, 1997).

Timmerman, Bourne and Tailor collaborated in 1999 to develop a further
LRM (Timmerman et al, 1999a). They used a subset of their data to test it

prospectively against Jacobs' RMI and Lerner's morphological scoring
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system. Their model was the first regression model to combine menopausal

status, CA 125 levels and the presence of papillary projections with a

subjective semiquantative assessment of overall tumour vascularity, the
colour score. Their model gave a sensitivity and specificity of 95.9% and

87.1%, which outperformed both the RMI (67.3% and 91.1% at a cut off of

200) and the Lerner score (96.1% and 60.7%) respectively.

In 2005, the IOTA group published two new LRMs based on data obtained
from 1066 patients from nine different European centres (Timmerman, 2005).

Their model included 12 variables (personal history of ovarian cancer,

hormonal therapy, age, maximum tumour diameter, pain, ascites, blood flow

within a papillary projection, presence of an entirely solid tumour, maximal

diameter of solid component, irregular internal cyst wall, acoustic shadows
and colour score). With the new model applied to a test set of 312 patients, a

sensitivity of 93% and a specificity of 76% were obtained with a cut off of

0.10 for malignancy. The performance of previously published models

(Jacobs' RMI, Tailor's LRM, Timmerman's LRM) on the test set was

compared. None performed as well as the new LRM1 as shown in Table 1.4.

Notably, they did not find CA 125 to be a statistically discriminatory

variable.
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Table 1.4: Comparison of the performance of different models (after Timmerman et al,

2005)

Model tested Area under

ROC

SE Cut off Sensitivity

(%)

Specificity

(%)

IOTA LRM1 0.936 0.020 0.10 92.7 74.3

IOTA LRM2 0.916 0.021 0.10 89.9 70.7

Jacobs RMI 0.870 0.028 100 78.3 79.6

Tailor LRM 0.869 0.025 0.25 63.2 88.2

Timmerman LRM 0.903 0.023 0.25 79.7 80.8

1.6.3 Artificial neural networks

Artificial neural networks (ANNs) are data analysis tools that acquire

knowledge through learning. Neural networks are so called because of the

similarity between their structure and that of biological brains. When a

neuron fires in the physiological nervous system, the impulse is transmitted
across a synapse. It is received by the dendrite of another neurone and
causes an increase in the neurone's activation level. The activation level of

the neurone is dependent on the incoming impulses from surrounding

neurones and on the strength of the connection between them. Some

connections can be excitatory, others inhibitory. Neurophysiologists have
shown that animal learning is accompanied by changes in the morphology

and neurotransmitter release at neural synapses. They have postulated that

learning takes place by adjustment of the strengths of synaptic connections

(Stein, 1982).
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An ANN consists of at least three layers: an input layer, a number of hidden

layers and an output layer (Figure 1.11). The input layer is made up of a

number of nodes, each of which receives numeric input data. The data is

propagated through the layers to give an output from the model. Each data

parameter has its own input node. The data is processed by the node and is

passed on to each of the nodes in the next or hidden layer. The magnitude of

the signal passed on is dependent on the input data; the mathematical

equation used to process the data, and the strength of the connection

between the input node and the node of the hidden layer. The hidden layer

nodes similarly transform the signal and pass it on to all the nodes in the

output layer. The output layer consists of a node for each desired output.

Each connection between nodes has a weight or strength that denotes the

relative importance of the nodes in the preceding layer. Initially, the weights

are set at random. The model undergoes training when examples with

known outcomes are presented to the network. The network can be trained

using a number of algorithms. The classic method is supervised

backpropagation. The difference between the expected output and the

actual network output is calculated for each example as a mean square error.

The size of the mean square error is backpropagated to the weights in order

to minimise the error between actual and expected output. The weights

between each node are adjusted and another example is presented. With
each iteration, the error is recalculated and the weights readjusted. The

training of the network enables optimal adjustment of the weights to give a

maximum of correctly classified examples. Training can be continued either
ad infinitum until the mean square error has been minimised, or until a set

number of iterations has been performed. Minimisation of the mean square

error does not always provide the best model as this can cause overfitting of
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the data. This is similar to memorising the examples and gives a model that

is poor at generalising with new data. Two other methods may be employed
to avoid overfitting: limiting the number of hidden neurones and restricting

the size of weights used by the network.

The advantages of neural networks include an ability to compute a large
volume of data and to improve their performance with training. They are

able to adjust to dependence between input variables by varying the weights

on particular nodes. They are also able to discriminate and recognise

patterns within data. However, they are unable to determine the most

useful input variables and a large number of different networks must be

investigated to identify the best. Another disadvantage is the "black box"

nature of the hidden nodes, where the data is transformed out of sight. They

can be used in a wide variety of applications including decision-making,

classification and prediction.
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Figure 1.11: A simple neural network

Input Hidden Output
Layer Layer Layer

Neural networks have been used by a number of authors to predict

malignancy in adnexal masses based on a set of patient data. Tailor

published the first ANN designed for this purpose in January 1999. He
excluded the use of more than one variable in the same model that may be

co-dependent, such as age and menopausal status. After trialling 205
different ANNs, he developed a model with four demographic and

sonographic variables (age, largest diameter, papillary projections and

TAMXV) as inputs. The data set of 67 patients was split into a training (52)
and a test set (15). A decision value of 0.45 gave an impressive sensitivity of

100% with a specificity of 98.1% (Tailor et al, 1999).

Timmerman developed two further neural networks later the same year

(Timmerman et al, 1999b). The first network included the variables in
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Timmerman's logistic regression model (menopausal status, CA 125, colour
score and papillary proliferation). The second model included seven of a

number of input variables that had been identified by logistic regression as

the most relevant (menopausal status, CA 125, ascites, unilocularity,

smoothness of internal wall, presence of papillary structures and bilateral

masses). Around 100 networks were developed with a differing selection of

inputs and network architecture. After training the networks to a minimal
mean square error, the best performing model on the test set was chosen.
Timmerman also produced a LRM with the same inputs based on the same

training set of 116 patients and a test set of 57. The second, more complex
neural network outperformed both the simpler network and the logistic

regression model based on the same parameters with a sensitivity of 95.9%
and a specificity of 93.5% on the complete set.

A group from Leeds developed a neural network using the inputs of age,
Lerner's ultrasound score and CA 125 (Clayton et al, 1999). The ultrasound

score was calculated retrospectively from a review of 144 ultrasound images

by a radiologist. The exclusion criteria were not defined and there was a

significant amount of missing data. They also developed a logistic

regression model with the same inputs trained and tested on the same set of
women. The ANN achieved a sensitivity of 95.4% and a specificity of 77.7%,

outperforming the LRM on both (sensitivity 82.3%, specificity 51.2%).

Biagiotti and his group in Florence developed a number of ANNs and LRMs

based on demographic, morphologic and Doppler variables. They did not

use CA 125 in any of the models. They used stepwise logistic regression to

identify the most discriminatory variables and included five variables in

their two models (age, papillary formations, random echogenicity, PSV and
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RI). They had a test population of 166 women with a cross validation set of
41. The ANN based on the five input variables gave a sensitivity of 96%

with a specificity of 97.7%, significantly outperforming the LRM developed

using the same variables (Biagiotti et al, 1999).

These results suggest that an ANN performs better with raw morphological
data rather than data combined into an ultrasound score such as used in

Clayton's model. Clayton's model may have underperformed due to

retrospective collection of ultrasound data and the large amount of missing
data. The ANNs appear to have outperformed the published LRMs but as

yet have not been satisfactorily validated.

1.6.4 Decision trees

Decision trees or classification and regression trees (CART) are a method of

dividing cases into classes using one or more predictor variables. Their aim

is to predict the membership of a case based on previous examples. CART

are hierarchical and recursive in nature. They are able to split data a number

of times using the same variable as opposed to a linear analysis which allows

only a single split which could leave a substantial amount of the information
in the predictor variables unused. They are easily displayed graphically and

are easy to interpret. They are used in a wide ranging number of

applications including classification in botany, psychology (decision theory)

and data structuring in computer science.

Fisher described a classification example to place three different types of iris
flowers (Setosa, Versicol, and Virginic) into their classes (Fisher, 1936).
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These vary in breadth of petals: Setosa have petals of breadth less than 8mm;

Versicol between 8 and 17.5mm and Virginic greater than 17.5mm. Linear

analysis can divide two of the classes but not the third. A decision tree can

be developed to discriminate between the classes with two logical rules: if
the petal is narrower than 8mm, it is Setosa, if broader then Virginic or

Versicol. If the petal is then narrower than 17.5mm, it is Versicol, if broader

it is Virginic (Figure 1.12). Breiman described the classic computational

algorithms for classification trees in 1984 (Breiman et al, 1984).

A decision tree starts with a single parent node containing all the cases. The
data is then divided by a rule into two groups that pass to two child nodes.

These nodes then divide their cases based on further rules until the cases are

divided into their constituent groups at the final or terminal nodes. Decision

trees are so called because of their similarity in structure to a tree with a

single trunk branching many times until the leaves or terminal nodes are

reached. The trees are able to examine the effect of each variable, one at a

time. They are also flexible in their ability to deal with both categorical and
ordinal data.

They have been successfully applied to the diagnosis of ovarian malignancy

using tumour markers. A sensitivity of 90.6% and a specificity of 93.2% were

obtained with the use of 5 markers which was significantly better than the

use of CA125 alone. A number of paradoxical splits were identified in the

tree, where a small number of benign masses with a high level of one marker
could only be distingished from malignant masses by virtue of having a

higher serum level. Pruning these nodes reduced the sensitivity to 82.3%

(Woolas et al, 1995).
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Figure 1.12: A decision tree for the classification of irises. There are five nodes with the
three terminal nodes outlined in pink. The data is divided by two logical rules of petal width.

Iris type % n

Setosa 33.33 40

Versicolor 33.33 40

Virginica 33.33 40

T

Petal Width

> 0.800000

Iris type % n

Setosa 0.00 0

Versicolor 50.00 40

Virginica 50.00 40

< 0.800000

Iris type % n

Setosa 100.00 40

Versicolor 00.00 0

Virginica 0.00 0

Petal Width

< 1.750000

Iris type % n

Setosa 0.00 0

Versicolor 88.64 39

Virginica 11.36 5

> 1.750000

Iris type % n

Setosa 0.00 0

Versicolor 2.78 1

Virginica 97.22 35

1.6.5 Validation ofprognostic models

Validation of a model is defined as establishing that it works satisfactorily

for patients other than those from whose data it was derived (Altman and

Royston, 2000). A model can be invalid for two main reasons: statistical

invalidity and clinical invalidity. Statistical invalidity is when the model is

not the best that can be found, given the prognostic information. Clinical

invalidity arises when the prognostic information is too weak to permit
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development of a model that can accurately divide the data set into clinically
useful groups.

Validation can thus be statistical or clinical for any given model. A clinically

validated model is defined as one that performs satisfactorily on a new data

set according to context-dependent statistical criteria laid down for it

(Altman and Royston, 2000).

There are a number of reasons why a model may be invalid. Fitting the

model too closely to the training set of variables on which the model is

developed may produce an overoptimistic model. If the model is then tested
on the same data set then the performance is likely to be overestimated. This

risk can be minimised by reducing the number of variables included in the

model, either using clinical experience or statistical methods such as logistic

regression modelling.

Bias may be introduced when developing the model. This can be due to

missing data, which may not be missing randomly, or poorly defined
inclusion and exclusion criteria. A small sample size for model development

gives a low signal-to-noise ratio. This can lead to important variables being

missed from the model and unimportant ones being included. A number of

authors have suggested that the number of variables included in a model
should be relative to the size of the data set. Harrell concluded that for

regression modelling the size of the data set should be at least ten times the
number of potential prognostic variables that could be included in the model

(Harrell et al, 1984). Peduzzi reported simulation studies that showed that

parameter estimates in logistic regression models are unreliable when this
ratio is less than 10 (Peduzzi et al, 1996).
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For a model to be useful in clinical practice, it must be transportable to other

locations. Dissimilarity between patients in different centres may lead to

poor model performance. If a model includes all the important variables and
has attached sufficient weight to each then it should perform equally well in

centres with a different case mix. However, it is not possible to confirm that

a model indeed does contain all the important variables. It is important to

validate a model to ensure its performance is reproducible.

Validation of a model may be internal, temporal or external (Altman and

Royston, 2000). Internal validation involves splitting the dataset to test the

model on selected cases. This may be by division into a training set for

model development and test set to assess performance or by cross validation

by a leave-one-out method. Temporal validation is the collection of a

subsequent dataset in the same centre to test the model on. This is a

prospective method but is otherwise the same as splitting the original

dataset into two cohorts divided by time. Neither internal nor temporal
validation assesses how well a model will perform in a different population.
This can only be answered by external validation through the application of

the model to a dataset from a different centre.

1.6.6 Prospective validation ofmodels

Davies et al performed a retrospective temporal validation of Jacobs' RMI in

1993. The population consisted of 87 benign masses and 37 malignancies, 28

of which were primary epithelial ovarian cancer. Using the same cut off of

200, the RMI gave a sensitivity of 87%, a specificity of 89% and a positive

predictive value of 75% (Davies et al, 1993).
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Morgante et al retrospectively evaluated the two risk of malignancy indices
in a new population of 124 Italian women from Siena. This external
validation demonstrated that Tingulstad's model significantly outperformed

CA 125, menopausal status and Jacobs' RMI. They calculated the

performance of the models at different cut off values (Table 1.5). The

optimal cut off value for Tingulstad's RMI was 125 in the Italian population
as opposed to the originally described level of 200 (Morgante et al, 1995).

Table 1.5: Performance of Jacobs' and Tingulstad's RMIs at different cut off levels (after

Morgante, 1999)

Sensitivity (%) Specificity (%)

Cut off Jacobs' RMI Tingulstad's RMI Jacobs' RMI Tingulstad's RMI

25 97 97 60 57

50 94 94 75 70

80 81 90 80 78

100 77 84 90 86

125 74 81 92 90

150 65 77 94 91

200 58 74 95 93

250 54 65 96 94

Aslam et al carried out a prospective external validation of both Jacobs' and

Tingulstad's RMIs (Aslam et al, 2000b). She compared this to the

performance of Tailor's model, which was developed at King's College

Hospital, London. She found that all three models performed less well than
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in the original publication as expected. However, Tailor's model performed

particularly poorly with a sensitivity of 43% and a specificity of 92%. This
result was surprising as the validation was temporal rather than external

although the ultrasonographers were different from the original publication.
Aslam suggested that this was due to a difference in case mix between the
two studies. The malignancies in Aslam's dataset included 22% non-

epithelial cancers, a type that was absent in Tailor's dataset. His model

placed a high weighting on the presence of papillary projections, a feature
that is often absent in non-epithelial and some borderline tumours. Of the
other two models, their performance was similar with a sensitivity of 74%
and specificities of 92% (Jacobs) and 89% (Tingulstad). (Table 1.6)

Table 1.6: Prospective performance of Jacobs' RMI

Group Year of

Publication

Validation Cut-off

Value

Sensitivity

(%)

Specificity

(%)

Davies 1993 Temporal 200 89 87

Tingulstad 1996 External 200 71 96

Morgante 1999 External 200 58 95

Aslam 2000 External 200 74 92

Mol 2001 External 200 90 61

Timmerman 2005 External 100 78.3 79.6

Three logistic regression models were tested prospectively. Alcazar and
Timmerman's models were applied to a population from King's College and
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compared to the performance of Tailor's model. Timmerman's model

performed best with an area under the curve of 0.86. The sensitivities of the

other two models were disappointing as shown in Table 1.7. The three

models were combined but this gave no improvement on Timmerman's

results (Aslam et al, 2000c).

Table 1.7: Prospective performance of logistic regression models (after Aslam, 2000c)

Model Sensitivity Specificity Area under ROC

curve

95% Confidence

Interval

Tailor 45 93 0.86 0.77-0.94

Alcazar 9 99 0.69 0.58-0.81

Timmerman 73 91 0.85 0.89-0.98

Two logistic regression models were compared to the performance of pattern

recognition in a prospective study (Valentin et al, 2001). Both Tailor's and

Timmerman's models performed similarly (AUC 0.87 and 0.84 respectively)

but were less accurate than pattern recognition.

A paper describing the prospective external validation of Timmerman's

model was published in 2001( Mol et al, 2001). The experimental design of

this study was queried by the original group (Timmerman et al, 2001). The

data was collected between 1991 and 1998; however the end points for

analysis were not described until 1999. The colour score is a subjective

measurement of tumour vascularity and there was a dramatic improvement

in sensitivity of ultrasound equipment for the detection of colour flow

between 1990 and 1999. In addition, the CA 125 II immunoradiometric assay

82



used in the original publication was only available from 1994. The definition

of both papillary projections and menopausal status varies between different

models. It is unclear whether Mol et al retrospectively examined and

reclassified their data prior to the insertion in each model. Timmerman et al

have suggested that their model should be evaluated by independent
external assessors in well-designed, prospective studies.

1.6.7 Small masses

Small, asymptomatic adnexal masses are commonly detected in women

undergoing a scan for other indications. These indications include ovarian

cancer screening and irregular bleeding both in and outside pregnancy.

These masses can cause concern for the patient but may also lead to further

investigations and, in many cases, unnecessary surgery. The potential for

doing harm to this group of asymptomatic women is significant. In

Campbell's ovarian screening study in 1989, 65 masses were detected in the

healthy screening population for each cancer (Table 1.8). These women

underwent a staging laparotomy and its considerable attendant morbidity
for no personal benefit. There is little literature to guide management in this

increasingly common group of masses.

Bailey et al examined 506 cysts with a diameter smaller than 10 cm in

asymptomatic women over the age of 50 undergoing ovarian cancer

screening. Half were unilocular; the remainder had solid cystic tumours.

Half of the cysts resolved spontaneously. Of the women who underwent

surgery, none of the unilocular cysts was malignant as opposed to 8% of the

complex cysts.
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Table 1.8: Prevalence of adnexal masses and primary ovarian cancer in asymptomatic
women screened using ultrasound (after Valentin, 1999b)

Study n

Abnormal
ultrasound

finding

Operated on
due to

abnormal
ultrasound

Primary
ovarian
cancer

Operations
per cancer

n % n %

Campbell 1989 5479 326 5.9 326 5.9 5 65

van Nagell 1990 1000 31 3.1 24 2.4 0 OO

van Nagell 1991 1300 33 2.5 27 2.1 2 14

DePriest 1993 3220 44 1.4 44 1.4 3 15

Schulman 1994 2117 202 9.5 18 0.9 1 18

Kurjak 1994 5013 424 8.5 38 0.8 4 10 I

Parkes 1995 2953 87 2.9 9 0.3 1 9

All studies 21082 1147 5.4 486 2.3 16 30

Ferrazzi developed a morphological scoring system for masses with a mean

diameter of less than 5 centimetres in 1997 (Table 1.9). This was adapted
from Sassone's scoring system to decrease the false positive results found
with dermoids and haemorrhagic cysts.
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Table 1.9: Scoring system for small masses (after Ferrazzi 2005)

Score Capsule Septa Papillary
Excrescences

Echogenicity

1 <3mm Absent Absent Anechoic

2 >3mm Thin (<3mm)
Low echogenicity / ground
glass

3 Thick (>3mm)

4 Irregular,
solid

<3mm With solid areas

5 Irregular, not
applicable

>3mm Inhomogeneous, solid

He compared it to the performance of four other scoring systems on small
masses (Table 1.10). The same group then tested it prospectively in a

multicentre Italian study with 677 cases. With a score over eight denoting

malignancy, they found a sensitivity of 92% with a specificity of 76.9%

(Ferrazzi, 2005). There is no published literature on the efficacy of logistic

regression models or neural networks on this group of small, clinically
undetected masses.

Table 1.10: Comparison of the performance of Ferrazzi's scoring system to other

morphological scores on small masses (after Ferrazzi, 2005)

Ferrazzi Granberg Sassone De Priest Lerner

Cut off value for malignancy >8 >1 >8 >4 >3

Diagnostic accuracy (%) 69 53 63 52 63

p value (difference between
Ferrazzi's model)

- 0.0002 0.349 0.0001 0.142

85



1.7 Hypotheses

This thesis will investigate the following hypotheses:

1. Published models can be effectively applied to small asymptomatic

masses

2. Subjective assessment can be used to diagnose ovarian cancer in small

asymptomatic masses.

3. New tumour markers will improve the preoperative diagnosis of ovarian
cancer

4. Prospective testing of published models will confirm their accuracy in a

new population.
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1.8 Aims of the Thesis

1. To investigate the use of new tumour markers in the preoperative

diagnosis of ovarian cancer. To develop new models incorporating
tumour markers to diagnose ovarian cancer. This is addressed in chapter
3.

2. To externally validate published models in a new study population. To

compare the performance of these models to subjective assessment and to

the models developed in this thesis. This is addressed in chapter 4.

3. To investigate the differences between small asymptomatic masses and

large masses. To investigate the accuracy of published models on the

diagnosis of malignancy in small masses. This is addressed in chapter 5.
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Chapter 2

General Methods
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2.1 Setting, The Early Pregnancy & Gynaecology Assessment Unit

(EPAGU), King's College Hospital, London

The work contained in this thesis was carried out in the Early Pregnancy and

Gynaecology Assessment Unit (EPAGU) of King's College Hospital between

August 1999 and August 2001. King's College Hospital is a large London

teaching hospital situated in Camberwell, which primarily serves the

Lambeth, Southwark and Lewisham Health Authorities and their constituent

Primary Care Group Trusts (Figure 2.1). Whilst the bulk of the clinical
workload is provided by referrals from the local community, King's also acts

as a tertiary referral centre, having both a national and international referral

pattern. The local population of 700 000 is one of the most deprived in the
United Kingdom and has a large immigrant population of West Africans,
East Africans and Afro-Caribbeans. More recently there has also been an

increase in the number of refugees from Eastern Europe.

The hospital itself has 900 beds and employs over 4000 staff with an annual

budget of £264 million. In 2001, over 450,000 patients were treated. The
Women's and Children's care group consists of the Department of Obstetrics

and Gynaecology as well as the Department of Paediatrics. Within the

gynaecology unit, there are specialist services in acute gynaecological

scanning, oncology, colposcopy, menopause, urogynaecology, assisted

conception and family planning. In 2001, a total of 9386 women were

referred to the EPAGU, 5024 women with problems of early pregnancy and

4452 non-pregnant women with gynaecological complaints. The EPAGU

offers a tertiary referral ultrasound service for southeast London. At the time
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of this thesis, the regional cancer centre was located at King's College

Hospital and the EPAGU provided its diagnostic ultrasound service.

Figure 2.1: Local Health Authorities in London and South East London
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2.2 Subjects

All women were invited to participate following referral to the Early

Pregnancy and Gynaecology Assessment Unit. Referral was via their
General Practitioner, Accident and Emergency or a hospital consultant to

investigate a suspected pelvic mass. A woman was included if she was

found to have a non-physiological pelvic mass that was found to originate

from the adnexa as judged by ultrasonography. In the case of bilateral

tumours, the mass with the most suspicious morphological features as

judged by the ultrasonographer was included. In the case of a similar

appearance of both masses, the larger was documented. Informed consent

was obtained prior to ultrasound examination and venepuncture.

Women were excluded from the study for the following reasons: pregnancy,

refusal of transvaginal ultrasonography, lack of fitness for or refusal of

surgery, previous bilateral oophorectomy or the finding of a benign mass in

one ovary and a borderline or invasive mass in the other.

The women included in Study 2 are the same population as those in Study 3.

A number of these women did not consent to venepuncture so were not

included in Study 1, leading to a smaller number of women in the tumour

marker arm of the study.

Approximately a third of the women in the study were referred to the Early

Pregnancy and Gynaecology Assessment Unit for a tertiary level scan.

Referrals were taken from surrounding units including St Thomas' Hospital,
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Lewisham, Greenwich, Epsom and St Helier's. Due to the difficulty in

obtaining outcome details from other units, details of the patient pathway,

MRI and CT results and specific operative findings were not recorded.
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2.3 Data collection

A database file was set up using Microsoft Excel for Windows (Redmond,

WA, USA) to facilitate data entry and retrieval. Age, parity and the

menopausal status of each woman were recorded. A medical history was

taken including a personal history of breast or ovarian cancer, hysterectomy,

hormonal use and the presence of pain or irregular vaginal bleeding.

Women over the age of 49 who had undergone a hysterectomy were defined

as postmenopausal. Pain was graded on a scale of 0 to 3 with 0 being no

pain, 1, mild pain, 2, moderate pain necessitating analgaesia and 3, pain

severe enough to limit normal activities. A family history of relatives

affected by breast or ovarian cancer was documented.
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2.4 Ultrasound examination

All women were scanned by the same ultrasonographer (ACL). All
ultrasound examinations were performed in the dorsal lithotomy position

with an empty bladder. A 5MHz end-firing curved-array transvaginal probe
with B-mode and Doppler facilities was used, incorporating a field of view of
90° (Aloka SSD-5000, Aloka Co. Ltd, Tokyo, Japan). The wall filter was set at

50 Hz and the pulsed Doppler sample volume size was set at 1.0 mm. The

probe was cleaned with a hard surface disinfectant between patients and
covered with a probe cover throughout each examination. All ultrasound
examinations were performed within one month of surgery.

A detailed gray-scale examination of the pelvis was performed with

inspection of the uterus and contralateral ovary. The origin of the adnexal
mass was determined if possible and classified as ovarian, tubal, other or
uncertain. If the origin was doubtful, a sliding organs technique was

employed. Gentle pressure was applied with the transvaginal probe with the
other hand used to palpate the abdomen. This allows separate structures to

slide apart and identification of the origin of a mass.

The adnexal mass was judged to be the part of the mass or ovary that was

inconsistent with normal physiology. In the case of a persistent cyst within
an otherwise healthy ovary, the cyst was regarded as the mass and the cyst

and the ovary were measured separately. If the mass was identifiably
distinct from the ovary (e.g. a fimbrial cyst) then both the ovary and the mass

were again measured separately. If there was no recognisable ovarian tissue,
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then the ovary and the mass were indistinguishable and so the

measurements of both ovary and mass were the same. Measurement of the

volume of the mass (excluding healthy ovarian tissue) and the ovary was

made in three perpendicular planes using the formula for a prolate ellipsoid.

ti/6 x Di x D2 x D3

2.4.1 Morphology

The mass was classified into one of six groups according to the International

Ovarian Tumour Analysis (IOTA) definitions (Timmerman et al 2000):

unilocular, unilocular-solid, multilocular, multilocular-solid, solid or

unclassifiable. A unilocular mass was one containing a single cyst, which did

not contain a solid component (Figure 2.2).

Figure 2.2: Examples of unilocular cysts

Unilocular cyst

Hydrosalpinx with
incomplete septations
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A unilocular solid mass was a unilocular cyst with a measurable solid

component or at least one papillary projection (Figure 2.3). This category

may include a hydrosalpinx with a "beads on a string" appearance if the

solid parts are greater than 3mm in height.

Figure 2.3: Examples of unilocular solid cysts

A mass was defined as multilocular if it contained at least one complete

septum, which divided the cyst into two or more locules and had no

measurable solid component (Figure 2.4).

Figure 2.4: Examples of multilocular cysts
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A multilocular cyst with a measurable solid component or at least one

papillary projection was defined as multilocular solid (Figure 2.5).

Figure 2.5: Examples of multilocular solid cysts

If more than 80% of the mass was solid, it was classified as solid. A solid

mass could therefore contain small cystic structures within it. To distinguish

between a solid mass and a haemorrhagic cyst, two methods were employed.

Firstly, the mass was gently moved with the probe and the mass contents

were inspected visually. If the mass were composed of clot then the 'jelly¬
like' clot would be seen to move after pressure from the transducer. If it
were solid then no movement would be seen. The second method was to

survey the structure with colour Doppler. The presence of flow within
vessels was diagnostic of solid tissue. The absence of flow was not

informative and in the case of doubt, the mass was recorded as solid. A solid

mass could contain papillary projections projecting into the cyst cavities

(Figure 2.6).
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Figure 2.6: Examples of solid masses

Some masses could not be classified into one of the other three categories and

therefore were recorded as unclassifiable. An example of this is a dermoid

cyst with a "tip of the iceberg sign" demonstrating acoustic shadowing (the
loss of an acoustic echo behind a sound reflecting surface) causing the

structures behind it to be obscured.

2.4.2 Echogenicity

The echogenicity of the cyst contents was described as anechoic, low level

(homogeneous, low-level echogenicity as seen in mucin), ground glass

(homogeneous, echogenic fluid as typified by endometriotic cysts),

haemorrhagic (the presence of a stellate or 'jelly-like' clot with visible fibrin

strands) or of mixed echogenicity (as often seen in a mature teratoma). If a
solid tumour contained a cystic area, then its contents were described. The
internal cyst wall was described as smooth or irregular. If the mass was solid

then its external contour was described as smooth or irregular.
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2.4.3 Septum

A septum was defined as a strand of tissue dividing the cyst cavity and its

thickness measured perpendicular to the cyst wall at its widest point save at

its interface with the cyst wall (Figure 2.7). An incomplete septum (as seen in

a hydrosalpinx) was defined as a strand of tissue dividing the cyst cavity that

was incomplete in some scanning planes. If incomplete septa only were

present, the cyst was defined as unilocular despite its multilocular

appearance in some sections (Figure 2.2).

Figure 2.7: Measurement of septum thickness
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2.4.4 Papillary projection

A papillary projection was defined as a solid projection from the cyst wall
into its cavity greater than or equal to 3mm in height (Figure 2.8). The
number of separate papillary projections was recorded and their size

measured in three planes (Figure 2.9). The projections were described as

either smooth or irregular in outer contour. The presence of detectable flow
within the projections was recorded. If there was uncertainty as to whether a
solid projection from the cyst wall was a papillary projection or an

incomplete septation (e.g. the cogwheel excrescences seen in

hydrosalpinges), then the projection was classed as a papillary projection if
its height exceeded 3mm. The deposits of dense fluid at the base of
endometriotic cysts were not included as papillary projections but the
internal walls were classified as irregular.
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Figure 2.8: A serous cystadenoma consisting of a unilocular anechoic cyst with a single

papillary projection (arrowed).
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Figure 2.9: Measurement of a papillary projection

In some cases, it was difficult to measure a projection arising from a solid

area within a mass. An imaginary line was used to denote the base of the

projection from which its height could then be measured (Figure 2.10).
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Figure 2.10: Measurement of the height of a papillary projection arising from a solid area.

The presence of solid components was noted and the largest solid area was

measured in three dimensions.

2.4.5 Acoustic shadowing

The presence of acoustic shadowing defined as the loss of an acoustic echo

behind a sound reflecting surface (e.g. the fluid/fat interface of a dermoid

cyst) was recorded.

2.4.6 Ascites

Ascites was determined as free fluid outside the pouch of Douglas. The

depth of free fluid within the pouch of Douglas was measured
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anteroposteriorly in the sagittal plane (Figure 2.11). The fluid was judged to

be free rather than encapsulated (e.g. peritoneal pseudocyst) if it could be
moved out of the pouch of Douglas by gentle pressure with the probe.

Figure 2.11: Measurement of free fluid in the pouch of Douglas

2.4.7 Colour Doppler Imaging

Colour Doppler imaging was chosen to investigate the vascularity of the
mass. This method was validated in a population of 56 women with corpora

lutea and 69 women with known adnexal masses. The reproducibility and

diagnostic accuracy of colour Doppler imaging (CDI) and colour Doppler

energy (CDE) were compared. There was no significant difference in the

diagnostic performance of the two modalities. The reproducibility of CDI
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was superior to that of CDE for all four Doppler variables (time-averaged

maximum velocity (TAMXV), peak systolic velocity (PSV), resistance index

(RI) and pulsatility index (PI)) as shown in Table 2.1 (Tailor 1998).

Table 2.1: Reproducibility of blood flow indices with CDI and CDE (after Tailor, 1998)

Coefficient of Variability Intraclass Correlation Coefficient

Measurement CDI CDE CDI CDE

PSV 14.0 22.8 0.984 0.977

TAMXV 13.4 21.7 0.986 0.978

PI 14.8 17.6 0.888 0.885

RI 9.7 10.6 0.889 0.872

The whole mass was surveyed using CDI. The power, gain and pulse

repetition frequency were set for the maximum sensitivity for detection of

low velocity flow. Low velocity signals were filtered out by slowly

increasing the pulse repetition frequency and flow analysis was concentrated

on the highest velocity signals. These high velocity signals were also

identified by the phenomenon of aliasing. The pulsed Doppler range gate

was placed across the highest velocity signal and the Doppler flow waveform

recorded. Minute adjustments to the angle of the probe were made until the
audible signal was optimal. This was considered to be the optimal angle of

insonation for the vessel at that particular location and no angle correction
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was made. The Doppler parameters recorded were the time-averaged

maximum velocity (TAMXV), peak systolic velocity (PSV), resistance index

(RI) and pulsatility index (PI). These parameters were calculated

electronically from a smooth curve fitted to the Doppler waveform. If

multiple areas of high velocity were identified, the set of results with the

highest TAMXV was used.

A subjective estimation of the mass's vascularity was made on a scale

ranging from 1 to 4. This colour score was described by Timmerman in 1999

and has been used by a number of ultrasonographers (Valentin, 2002,

Timmerman 1999 and the IOTA group). No blood flow within the solid
areas of the mass was denoted as 1, 2 was given for minimal flow, 3 when
moderate flow was present and 4 when the mass appeared highly vascular.
This score was given once only for the mass as a whole.

At the end of the scan, the operator made a subjective decision as to whether
the mass was malignant or benign. It was then categorised as benign,
borderline or invasive. The likely histological type of the mass based on a

subjective impression during the scan was also noted e.g. endometrioma,
serous cystadenoma, mucinous cystadenocarcinoma.

Multiple photographic prints of the uterus, adnexal mass and contralateral

ovary were taken.
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2.5 Venous blood samples

Blood samples were taken with informed consent from a peripheral vein.
The blood was centrifuged within 2 hours for 15 minutes at 300 rpm and

aliquots of the supernatant stored at -20°C until analysis. Each aliquot was
thawed only once with any remaining serum discarded after thawing.
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2.6 Measurement of tumourmarkers

All assays were performed in duplicate and any samples where either of the

duplicate values did not fall into within 10% of the other were reassayed.
When a quality control value differed by greater than 10% from previous

assay means, the assay was repeated. The details of the assays are

documented in Appendix V.
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2.7 Histology

Surgery was carried out either laparoscopically or at laparotomy depending
on the surgeon's judgement. The whole tumour was removed in the

majority of cases, however in the case of disseminated ovarian malignancy or

endometriosis, representative biopsies were taken.

Tumours were staged by the attending gynaecologist according to the

International Federation of Gynaecology and Obstetrics (FIGO) classification

(Appendix I). Histological specimens were mounted on blocks and one

section per centimetre was taken for examination by a pathologist. The

tumours were classified in accordance with the World Health Organisation

classification and were graded as well-differentiated (Grade 1), moderately
differentiated (Grade 2) or poorly differentiated (Grade 3).

As previously noted, all women underwent a repeat scan prior to surgery.

At this time, eleven masses were noted to have resolved spontaneously.

Surgery was cancelled for these women and the outcome of spontaneous

resolution was recorded.
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2.8 Statistical analysis

The Statistical Package for Social Sciences version 10.0 (Statistical Analysis

Systems, Chicago, Illinois) was used to analyse data. Details of individual
tests are documented in the relevant chapters. The level of statistical

significance was chosen as p<0.05.
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2.9 Prospective testing of published models

Six models were tested prospectively on the data set of 170 women. Four of
the models have been tested prospectively by other authors: Jacobs' Risk of

Malignancy Index, Tingulstad's Risk of Malignancy Index, Tailor's logistic

regression model and Timmerman's logistic regression model (Aslam 2000,

Valentin 2001, Mol 2001). Although, Timmerman's neural network model

has been tested prospectively by Mol in 2001, significant concerns over the

study methodology have been raised by the group who published the

original model (Timmerman at al, 2001). The logistic regression model

published by the IOTA group in 2006 has not been prospectively validated.

The details of all six models are shown in Table 2.4. In each model, 0 denotes

the absence of a variable and 1, its presence. The symbol e is the
mathematical constant and base value of natural logarithms.

Statistical analysis and the construction of ROC curves were carried out

using SPSS for Windows as previously described.
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Table2.2:Prospectivelytestedmodels:asummaryoftheirequations,variablesandyearofpublication Author

PublicationYear
VariablesIncludedinModel

Equation

Jacobs

1990

Ultrasoundscore(0to3) Menopausalstatus(1or3)
CA125(kU/L)

UxMxCA125

Tingulstad

1996

Ultrasoundscore(0,1or4) Menopausalstatus(1or4)
CA125(kU/L)

UxMxCA125

TailorLRM

1997

Age(years) TAMXV Papillaryprojectionscore(0or1)
p=1/(1+e"z) where

z=(0.1273xage)+(0.2794xTAMXV)+4.4136x papillaryscore-14.2046

TimmermanLRM
1999

Menopausalstatus(0or1)
CA125(kU/L) Ascites(0or1) Unilocularity(0or1) Smoothinternalwall(0or1) Papillaryprojectionscore(0or1) Bilateralmasses(0or1)

p=1/(1+e"z) where
z=(0.5948xmenopausal)+(0.0205xCA125)+(0.5446 xascites)-(0.762xunilocularity)-(1.1606xsmooth)+ (1.5409xpapillary)+(0.7633xbilateral)-1.0889



Author

PublicationYear
VariablesIncludedinModel

Equation

TimmermanNN
1999

Menopausalstatus(0or1)
CA125(kU/L) Ascites(0or1) Unilocularity(0or1) Smoothinternalwall(0or1) Papillaryprojectionscore(0or1) Bilateralmasses(0or1)

p=1/(1+exp(zy)) where
zy=2.9753h-,+4.1980h2-3.8616

inwhich h-i=1/(1+exp(zi))withz-i=-1.0792menopausal+1.9383 CA125+0.71242ascites-1.2664unilocular- 1.3741smooth+0.8298papillary+1.5316bilateral- 0.5485 h2=1/(1+exp(z2))withz2=1,0766menopausal+ 0.1376CA125+1.0112ascites-0.8320unilocular- 1.6941smooth+2.9541papillary+1.4654bilateral- 1.8129

IOTALRM

2006

Personalhistoryofovariancancer(0or1) Currenthormonaltherapy(0or1) Age(years) Maximummassdiameter(mm) Painduringexam(0or1) Ascites(0or1) Bloodflowwithinpapillaryprojection(0or1) Purelysolidtumour(0or1) Maximaldiameterofsolidcomponent(<50mm) Irregularinternalcystwall(0or1) Acousticshadows(0or1) Colourscore(1to4)

p=1/(1+e"z) where
z=-6.7468+1.5985xhistoryofovariancancer-0.9983 xhormonaltherapy+0.0326xage+0.00841xmaximum massdiameter-0.8577xpainduringexam+1.5513x ascites+1.1737xbloodflowwithinpapillaryprojection+ 0.9281xpurelysolidtumour+0.0496xmaximaldiameter ofsolidcomponent+1.1421xirregularinternalcystwall- 2.3550xacousticshadow+0.4916xcolourscore



2.10 Decision tree analysis

Data was analysed using a Classification and Regression Tree (CART)

software package Statistical Package for Social Sciences Answer Tree

(Statistical Analysis Systems, Chicago, Illinois). Two types of trees were

'grown', one with three coded outputs or terminal nodes: benign, borderline
and invasive, the second with two terminal nodes: benign and malignant.

The stopping rules for the iterative process were that the tree should have a

maximum of five levels, a minimum of 10 cases were to be present for a split

to be calculated and any given split should not generate a group with less
than 5 cases. Six variables were used for construction of the decision tree and

these included age, CA 125, CA 19-9, CA 72-4, CA 15-3 and HER-2/neu. All

were entered as continuous variables. The accuracy of the models was

judged by the risk estimate, which gives the proportion of cases classified

incorrectly.

V fold cross validation was used to identify the trees with the best average

accuracy at predicting values. This technique for assessing the trees allows a

random sample of the data to be tested on the tree and the generated

predictions compared to the known outcomes. This is done multiple times to

identify the smallest effective tree. 10 folds of cross-validation were used.
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2.11 Artificial neural network analysis

The dataset was split randomly into a training set comprising approximately

two thirds of the cases and a test set containing the remainder. The
calculations during the development of the neural networks were

programmed in Thinks Pro 1.05, (Logical designs Consulting Inc). All

calculations of receiver operating characteristic (ROC) curves, the areas

under these curves and confidence intervals for these areas were computed

using the Statistical Package for Social Sciences version 10.0 (Statistical

Analysis Systems, Chicago, Illinois).

Ten one-hidden-layer feed forward neural networks were designed based on

morphological variables and a further two networks were designed using

tumour marker variables. A limited number of parameters and hidden

nodes were included in the model to avoid overtraining and consequent bad

generalisation on new examples. The learning rule was Multilayer Normal
Feed forward and the error calculations were based on mean square error.

As this is a scale variant technique, the inputs were scaled prior to input.

Her-2/neu was multiplied by 0.1; age, CA 15-3 and CA 72-4 were multiplied

by 0.01 and CA 125 and CA 19-9 were multiplied by 0.001. To bias the
network performance towards accurate detection of malignant masses, those

inputs were given a double weight. Training consisted of repeating

iterations of the network equations until the mean square error between the

desired output and actual output of the network was minimised.

Overtraining was avoided by stopping training once test set error began to

increase after the initial decrease. The network had the functionl/(l+exp(-z))
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as a saturation characteristic where exp() is the natural exponent and z is the

weighted sum of the input variables for the node.

The models were then validated on the test set of cases. A manual selection

of the best performing network was based on the area under the ROC curve

and specificity and sensitivity for both the training and test sets. A manual

selection of the best performing network was based on the area under the

ROC curve and specificity and sensitivity for both the training and test sets.
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2.12 Ethics Committee approval

The Local Research and Ethics Committee of Kings College Hospital (00-048)

granted approval for all ultrasound examinations, venesection and assays

performed in 2000. All patients were given a patient information leaflet and

informed consent was taken before inclusion in the study. The patient's

General Practitioner (GP) was informed of the trial by letter. The patient

information leaflet, consent form and GP letter are included in the

Appendices II to IV.
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Chapter 3

The use of novel tumour markers to predict the

presence of malignancy
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3.1 Background

CA 125 has long been established as a discriminatory variable in the pre¬

operative diagnosis of ovarian cancer (Bast 1983). More recently, other
tumour markers have been identified in the serum of women with ovarian

cancer. This study investigates the use of four tumour markers: CA 19-9, CA

72-4, CA 15-3 and Her-2/neu.

CA 19-9 is a mucin-type glycoprotein with a molecular weight of

approximately ten kiloDaltons. It is expressed in biliary and pancreatic

tissues and is thought to aid metastasis through its action as an anti-adhesion

molecule. Serum CA 19-9 is raised in 29 to 57% of primary ovarian tumours

(Kudoh 1999, Gadducci 1992, Rosen 2005). It is commonly expressed by
mucinous tumours and is elevated in 76.9% of mucinous ovarian

cystadenocarcinomas (Kudoh 1999).

CA 15-3 is expressed by the MUC1 gene in patients with breast, ovarian and

lung carcinoma and shed into the sera. It is a heterogeneous high molecular

weight mucin and produced by secretory epithelium. MUC1 has an

inhibitory role in cell to stroma interaction, hypothesised to be a key factor in

the detachment of cells from stroma allowing for the dissection of the

connective tissue and enabling the spread of cells (Nassar 2004).

Immunostaining studies have shown CA 15-3 to be present in papillary

serous and endometrioid cancers but absent in ovarian epithelium and

inclusion cysts (Drapkin, 2004). Work by Feng found that over-expression of

CA 15-3 was associated with a higher histological grade and stage than other
tumours (Feng 2002). Serum CA 15-3 is elevated in 56% of women with
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ovarian cancer (Devine, 1994) CA 15-3 diagnoses ovarian malignancy with a

sensitivity of 57.1% and a specificity of 93.9% (Gadducci, 1992).

Serum CA 72-4 is a high molecular weight glycoprotein that is raised in the

presence of gastrointestinal and ovarian cancer. It is elevated in 50 to 66% of
ovarian cancer patients (Gero 1989, Scambia 1990, Udagawa 1998). CA 72-4

is expressed in few normal tissues such as endometrium and transitional
colonic mucosa. Serum levels in healthy volunteers are low, giving CA 72-4

a high specificity in the diagnosis of malignancy (Woolas 1995, Hasholmer

1986, Gero 1989).

Her-2/neu is over expressed in 30 to 32% of ovarian cancers on tissue

staining (Slamon 1989, Berchuk 1990). It encodes a transmembrane growth
factor receptor with a molecular weight of 185 000 Daltons. The extracellular

domain is shed into serum and is elevated in 15% of women with ovarian

cancer (Mackenzie, 1993). It confers a poor prognosis for grade and stage

(Slamon 1989, Berchuck 1990, Meden 1997). Over-expression of HER-2/neu

induces endothelial cell retraction, enhancing the metastatic potential of the

tumour cells (Carter, 2001).

Several groups have combined tumour markers to improve pre-operative

diagnosis of ovarian cancer. Woolas measured eight different markers in the
serum of women with a pelvic mass of varying histology: 45% of the masses

were malignant, including ovarian cancer, endometrial cancer, sarcoma,

colorectal cancer and squamous cell cancer. He used a complex decision tree

with twenty terminal nodes and inputs of CA 125, OVX1, lipid-associated

sialic acid (LASA), CA 15-3 and CA 72-4. This gave a sensitivity of 82.3 with
a specificity of 93.2% (Woolas 1995). In a further study on the same data set,

Zhang developed a neural network using CA 125, CA 15-3, CA 72-4 and
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LASA to diagnose malignancy. They achieved a sensitivity of 79% in the

diagnosis of malignancy with a specificity of 87.5%. They compared the

results to CA 125 alone, which achieved a higher sensitivity (82.4% with a

lower specificity (68.4%).

In an attempt to improve ovarian cancer screening Skates measured CA 125

II, CA 15-3, CA 72-4 and macrophage-colony stimulating factor (M-CSF) in a

population of healthy controls and women with ovarian cancer. They found

for a set specificity of 98%, a combination of CA 72-4, M-CSF and CA 125

gave a sensitivity of 85% with the use of classification trees, logistic

regression analysis and mixture discriminant analysis (Skates, 2004).

Few groups have examined tumour markers in combination with other
variables for the preoperative diagnosis of ovarian cancer. Schutter
combined an ultrasound scoring system, physical examination, and CA 125

and CA 72-4 values to diagnose malignancy. CA 72-4 alone at a cut-off of

3U/ml gave a sensitivity of 61% with a specificity of 93%. The addition of

CA 72-4 to the logistic model improved the diagnostic accuracy from 81 to

87% (Schutter 1997).

The aim of this study was to evaluate the diagnostic potential of tumour

markers in women with adnexal masses and to develop new models for the

preoperative diagnosis of ovarian cancer.
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3.2 Methods

Demographic and ultrasound variables were measured and recorded as

described in Sections 2.3 and 2.4.

3.2.1 Venous blood samples

Blood samples were taken with informed consent from a peripheral vein.
The blood was centrifuged within 2 hours for 15 minutes at 300 rpm and

aliquots of the supernatant stored at -20°C until analysis. Each aliquot was
thawed only once with any remaining serum discarded after thawing.

3.2.2 Measurement of tumour markers

All assays were performed in duplicate and any samples where either of the

duplicate values did not fall into within 10% of the other were reassayed.
When a quality control value differed by greater than 10% from previous

assay means, the assay was repeated. Assays were performed as described

in Section 2.6.

3.2.3 Artificial neural networks

The data set was randomly split into two sets for the development of the
neural networks; a training set consisting of approximately two third of the
cases and a test set containing the remainder of the cases. The variables used
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for classification were age, CA 125, CA 15-3, CA 72-4, CA 19-9 and Her-

2/neu. Forward stepwise logistical regression was used to identify the most

significant variables in the training set. This process of randomly splitting
the data set and the application of logistic regression was repeated a total of
seven times. The desired network output was coded as '0' for benign and '1'
for malignant masses. Seven different neural networks were developed.

Receiver operator characteristic curves were constructed for each of the
models and the diagnostic performance of the models was compared using

the areas under the curve.
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3.3 Results

One hundred and thirty-five women were included in the study. Their mean

age was 45 with an interquartile range of 33 to 54 years. All women had

blood assayed for CA15.3, CA19.9, CA72.4, CA 125 and Her-2/neu.

3.3.1 Histology

Twenty of the masses were invasive; twelve were borderline with one

hundred and two benign masses. The histological classification is shown in

Table 3.1.

Table 3.1: Histology of masses

Histological Type Nature Number of masses

Endometrioma Benign 23

Dermoid cyst Benign 26

Serous cystadenoma Benign 13

Mucinous cystadenoma Benign 14

Fibroma Benign 2

Simple ovarian cyst Benign 2

Peritoneal pseudocyst Benign 1
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Histological Type Nature Number of masses

Tubal Benign 6

Cystadenofibroma Benign 12

Miscellaneous Benign 4*

Serous cystadenoma Borderline 6

Mucinous cystadenoma Borderline 5

Cystadenofibroma Borderline 1

Serous cystadenocarcinoma Invasive 5

Mucinous cystadenocarcinoma Invasive 3

Endometrioid adenocarcinoma Invasive 5

Granulosa cell Tumour Invasive 1

Clear cell carcinoma Invasive 2

Undifferentiated carcinoma Invasive 4

* Includes 2 tubo-ovarian abscesses, 1 fibroid and 1 thecoma

3.3.2 Tumour markers

CA 125 was higher in the borderline and invasive groups of masses than in

the benign group (p<0.001, Kruskal Wallis test) (Table 3.2). It was also

significantly higher in the malignant group than the benign group (p<0.001,
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Mann-Whitney U test).

CA 72-4 was also significantly higher in the invasive than benign and
borderline groups (p=0.005, Kruskal Wallis test) and in the malignant as

compared to the benign group (p=0.002, Mann-Whitney U test).

CA 15-3 was higher in the invasive than the borderline and benign groups

(p=0.010/ Kruskal Wallis test). It was also higher in the malignant group than
the benign group (p=0.003, Mann-Whitney U test).

There was no significant difference between the groups with CA 19-9 (p=0.26

Mann-Whitney U test) or Her-2/neu. The distribution of tumour markers in

benign, borderline and invasive masses are shown in Figures 3.1-5.
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Table 3.2: Values of CA 125, CA 72-4, CA 15-3, CA 19-9 and Her-2/neu with different
histology. Values are mean with standard deviations in brackets.

Benign Borderline Invasive All Malignant

37.8 144.8 1420.9 982.3

CA 125

(58.0) (173.2) (2641.7) (2211.6)

1.08 5.31 61.5 42.2

CA 72-4

(1.81) (12.1) (118.3) (99.1)

15.4 37.7 66.5 56.6

CA 15-3

(6.50) (57.6) (89.2) (80.0)

17.9 2486.7 1543.1 1867.5

CA 19-9

(37.3) (6903.5) (4369.9) (5282.1)

8.9 9.0 9.8 9.5

Her-2/neu

(1.9) (2.3) (2.5) (2.4)
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Figure 3.1: Distribution of CA 125 with benign, borderline and invasive masses
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Figure 3.2: Distribution of CA 72-4 with benign, borderline and invasive masses
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Figure 3.3: Distribution of CA 15-3 with benign, borderline and invasive masses
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Figure 3.4: Distribution of CA 19-9 with benign, borderline and invasive masses
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Figure 3.5: Distribution of Her-2/neu with benign, borderline and invasive masses
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Comparison of the ROC curves (Figure 3.6 and Table 3.3) showed CA 125 to

be the best discriminator between benign and malignant masses. Age and

CA 15-3 had a similar ability to differentiate between the groups. CA 125

was a significantly better discriminator than CA 19-9, CA 72-4 and Her-2/neu

(using the methods of Hanley and McNeill to compare the AUC).

Figure 3.6: Receiver Operator Characteristic curve for tumour markers and age against
benign and malignant histology
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Table 3.3: Area under the ROC curve for tumour markers and age.

Variable Area under curve 95% Confidence interval

CA 125 0.874 0.801-0.947

CA 72-4 0.747 0.643-0.851

CA 15-3 0.778 0.673-0.884 !

CA 19-9 0.628 0.507-0.748

Her-2/neu 0.571 0.455-0.686

Age 0.797 0.717-0.878

3.3.2.1 Tumour markers in benign disease

CA 125 differed significantly (pO.OOl, Kruskall Wallis test) between the four

groups of benign tumours: dermoid, endometrioma, serous cystadenoma
and cystadenofibroma, and mucinous cystadenoma (Table 3.4). CA 72-4 was

also significantly different between the groups (p=0.001, Kruskall Wallis test).
Pairwise comparisons between the groups were carried out for CA 125 and
CA 72-4. A Mann Whitney U test was used to compare the groups with a

Bonferroni adjustment for significance. Both tumour markers were higher in
endometriomas than dermoids (p<0.01). They were also both higher in

endometriomas than in the serous cystadenoma group (p<0.01). CA 125 was

higher in endometriomas than in mucinous cystadenomas (p=0.048). CA 125

was higher in mucinous cystadenomas than in the serous cystadenoma

group although not significantly so (p=0.09). There was no difference
between either dermoids and serous cystadenomas or dermoids and

mucinous cystadenomas for CA 72-4 or for CA 125.
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Her-2/neu, CA 15-3 and CA 19-9 values did not differ between the four

benign groups.

Table 3.4: Values of CA 125, CA 72-4, CA 15-3, CA 19-9 and Her-2/neu with different
benign histologies. Values are mean with standard deviations in brackets.

Dermoid Endometrioma Serous

cystadenoma and
cystadenofibroma

Mucinous

cystadenoma

n 26 23 19 14

CA 125
22.5

(19.9)

82.5

(97.3)

12.9

(9.3)

26.1

(23.5)

CA 72-4
1.1

(2.4)

1.5

(1.7)

0.658

(1.26)

1.5

(2.3)

CA 15-3 15.1 (6.3)
18.0

(6.5)

13.7

(5.7)

14.3

(6.3)

CA 19-9
21.9

(31.7)

24.3

(39.3)

6.7

(10.3)

28.0

(74.0)

Her-2/neu
8.9

(1.9)

8.4

(1.4)

8.6

(1.2)

8.5

(1.8)

3.3.2.2 Tumour markers in invasive disease

CA 125 levels were higher in endometrioid, clear cell, serous and

undifferentiated cancers than in mucinous cystadenocarcinomas (Table 3.5).

CA 72-4 and CA 19-9 were higher in mucinous and endometrioid cancers.

CA 15-3 was highest in endometrioid and serous cancers. None of these
trends were statistically significant due to the small numbers in each group.
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Table 3.5: Values of CA 125, CA 72-4, CA 15-3, CA 19-9 and Her-2/neu with different
invasive histologies. Values are mean with standard deviations in brackets.

Serous Mucinous Clear cell Endometrioid Undifferentiated

n 5 3 2 4 4

1086.6 334.6 2186.4 3196.6 1173.5
CA 125

(1170.7) (293.5) (2781.2) (5653.8) (1764.9)

47.1 119.3 2.5 72.2 100.5
CA 72-4

55.8) (205.0) (3.2) (119.6) (187.0)

74.5 26.5 56.6 106.6 27.1
CA 15-3

(87.4) (6.8) (51.6) (157.1) (13.0)

5.3 6609.9 385.1 2916.4 6.3
CA 19-9

(6.1) (9083.8) (504.7) (5809.1) (7.4)

8.2 9.2 10.4 12.5 10.6
Her-2/neu

(2.3) (1.3) (1.6) (3.1) (2.9)

3.3.3 Decision tree analysis

Two types of decision trees were designed, the first to discriminate between

benign and malignant adnexal masses, the second to discriminate between

benign, borderline and invasive masses. Data variables entered into the
models were age, CA 125, CA 15-3, CA 19-9, CA 72-4 and Her-2/neu.

The first model retained two variables, CA 125 and CA 15-3, after pruning.

The decision rules were:

CA 125 > 278 denotes a malignant mass

CA 15-3 > 61.69 denotes a malignant mass
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The model comprised five nodes with two levels as shown in Figure 7. The

model had three terminal nodes: node 3 contained the cases classified as

benign and nodes 2 and 4 contained the cases classified as malignant. This

model gave a sensitivity of 56.3% with a specificity of 98.1% for the diagnosis
of malignant masses.

The second model again retained the same variables CA 125 and CA 15-3.

The structure of the model was similar with five nodes and two levels. The

three terminal nodes classified the cases into benign (node 3), borderline

(node 4) and invasive (node 2). This model did not perform well in the

classification of borderline tumours with a sensitivity of 9.1% and a

specificity of 98.4%. However, the detection of invasive malignancy had a

sensitivity of 67% with a specificity of 97.3%. This gave a weighted kappa

value of 0.654 for the agreement between the decision tree and histological
outcome. A weighted kappa between 0.61 and 0.80 suggests good agreement

(Altman).
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Figure 3.7: Decision tree 1 for the discrimination between benign and malignant masses.
The percentages of benign and malignant are shown with the absolute numbers in each
node.

Mass type % n

Benign 76.30 103

Malignant 23.70 32

CA125 (Improvement=0.1429)

<278

Mass type % n

Benign 86.44 102

Malignant 13.56 16

> 278

Mass type % n

Benign 5.88 1

Malignant 94.12 16

CA 15-3 (lmprovcment=0.0393)

<61.69

Mass type % n

Benign 87.83 101

Malignant 12.17 14

> 61.69

Mass type % n

Benign 33.33 1

Malignant 66.67 2

138



Figure 3.8: Decision tree 2 for the discrimination between benign, borderline and invasive
masses. The percentages of benign and malignant are shown with the absolute numbers in
each node.

Mass type % n

Benign 76.30 103

Borderline 8.15 11

Invasive 15.56 21

1—

= 278

CA125 (Improvements. 1359)
i

Mass type % n

Benign 86.44 102

Borderline 7.63 9

Invasive 5.93 7

>278

Mass type % n

Benign 5.88 1

Borderline 11.76 2

Invasive 82.35 14

CA 15-3 (Improvement=0.0296)

= 61.69 > 61.69

Mass type % n Mass type % n

Benign 87.83 101 Benign 33.33 1

Borderline 6.96 8 Borderline 33.33 1

Invasive 5.22 6 Invasive 33.33 1

3.3.4 Artificial neural networks

The inputs for all the networks were selected using logistic regression from

age, CA 125, CA 19-9, CA 72-4, CA 15-3 and Her-2/neu. The inputs were pre-

processed to standardise the size of the inputs to the network: Her-2/neu was

divided by 10; age, CA 15-3 and CA 72-4 were divided by 100; CA 125 and
CA 19-9 were divided by 1000.

The data set was split into randomly selected training and test sets. The
most significant variables were then selected using forward stepwise logistic

regression. The data was then split six further times. All the data splits
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except one yielded the same input variables. Six splits gave age, CA 15-3 and
CA 125. The other split gave CA 72-4 in addition. Two types of neural
networks were developed: networks with three input variables (age, CA 125

and CA 15-3) and networks with four inputs (age, CA 125, CA 15-3 and CA

72-4).

The networks were developed by changing the network architecture based

on trial and error. Twelve models were trained and cross-validated using the

test set of patient records. The best network was manually selected using the

sensitivity and specificity values, together with the area under the ROC

curve, using both the training and test set.

The first network (TNN1) contained a single hidden layer with three input

nodes, two hidden nodes and one output node. Training was stopped after
654 iterations when the training error was 0.283 and the test error 0.3701.

The mathematical equation of TNN1 is:

Y= l/(l+exp(zy)) with zy = -2.6988hi - 2.8536h2 + 1.7429

Where:

hi = l/(l+(exp zi)) with zi = -2.8428(age) - 1.2728(CA 15-3) -4.5840(CA 125) + 2.2115

h2 = l/(l+(exp z2)) with Z2 = -1.6406(age) - 1.3794(CA 15-3) - 4.8990(CA 125) +1.6554

With the probability of malignancy set at 15%, TNN1 gave a sensitivity of
84.2% and a specificity of 79.16% on the training set. When cross validated

on the test set, this decision level gave a sensitivity and specificity of 100%
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and 90.9% respectively. An ROC curve constructed on the training, test and

complete data set gave an area under the curve of 0.911; 0.959 and 0.932

respectively (Figure 10).

The second network (TNN2) had four selected inputs: age, CA 125, CA 72-4

and CA 15-3. The inputs were pre-processed to standardise the size of the

inputs to the network: age, CA 15-3 and CA 72-4 were divided by 100, and
CA 125 was divided by 1000. The network consisted of four input nodes,

two hidden nodes and one output node. Training was stopped at 540

iterations when the test error was 0.3662 with a training error of 0.2794.

The mathematical formula of the network is:

Y= l/(l+exp(zy)) with zy = -1.9169hi -3.3743h2 +1.7135

Where:

hi = l/(l+(exp zi)) with zi = - 2.2524(age) -1.3998(CA 72-4) - 2.7744(CA 15-3) - 4.8949(CA

125) +3.7748

h2 = l/(l+(exp z2)) with za = - 2.0157(age) -0.9519(CA 72-4) - 1.5292(CA 15-3) - 3.3407(CA 125)
+ 2.4497

At a probability of malignancy set at 20%, the second neural network gave a

sensitivity of 88.9% and a specificity of 81.8% on the training set. Cross

validation on the test set gave a sensitivity of 60% with a specificity of 90.9%.

An ROC curve constructed on the training, test and complete data set gave

an area under the curve of 93.2%, 85% and 89.9%. The ROC curve for the

whole data set is shown in Figure 3.9 below.
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Figure 3.9: Receiver Operator Characteristic curve for the two neural networks
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Table3.6:ComparisonoftheperformanceofTNN1andTNN2 TherewasnosignificantdifferencebetweentheAUCforthecompletesetsofthetwonetworksusingthemethoddescribedbyHanleyandMcNeil (1983).
Network

DataSet

n

Probabilityof malignancy (%)

Sensitivity (%)

Specificity (%)

Areaunder ROCcurve (%)

95%CI

TNN1

Training

91

15

84.2

79.2

0.911

0.813,1.0

Test

42

15

100

90.9

0.959

0.893,1.00

Complete

135

15

-

-

0.932

0.874,0.99

TNN2

Training

91

20

88.9

81.8

0.932

0.874,0.99

Test

42

20

60

90.9

0.85

0.71,0.99

Complete

135

20

-

-

0.899

0.835,0.963



3.4 Discussion

The tumour markers CA 125, CA 15-3 and CA 72-4 were all significantly

related to the histological outcome. All three tumour markers were higher in

borderline than benign masses and in invasive than borderline masses. Her-

2/neu was not significantly different between benign, borderline and

invasive masses. CA 19-9 was higher in the borderline group than the

benign and invasive groups, although this failed to reach significance. This
is consistent with the findings of other workers who have found a

proportionally higher CA 19-9 than CA 125 in borderline tumours (Engelen

et al, 2000).

Of all the markers, CA 125 was the most significantly different between the

benign and malignant groups and the benign, borderline and invasive

groups. The mean level of CA 125 in borderline tumours was 144 kU/1. This

was higher than the level of 44kU/l found in a previous study (Aslam, 2000).

Both CA 15-3 and CA 72-4 were more significantly different between benign

and malignant than between benign, borderline and invasive masses.

The best univariate discrimination between benign and malignant masses

was seen with CA 125, age, CA 15-3 and CA 72-4 on comparison of the ROC

curves. The AUC for CA 125 was 0.874 and 0.747 for CA 72-4. This is an

improved performance on previous work, which found the AUC to be 0.69

for CA 125 and 0.691 for CA 72-4 (Udagawa, 1998).

CA 125 was significantly elevated in endometriomas as compared to

dermoid cysts and serous cystadenomas. Previous workers have found a

raised CA 125 level in endometriosis and a decrease in serum CA 125 with
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gonadotrophin-releasing hormone agonist therapy (Ozaksit, 1995). CA 72-4

was also higher in endometriomas than in dermoid cysts and serous

cystadenomas. CA 19-9 was not higher in dermoid cysts in this study, in
contrast to previous findings (Dede, 2006).

CA 125 was also higher in serous, clear cell and endometrioid cancers and

lower in mucinous carcinomas. CA 19-9 and CA 72-4 were raised in

mucinous tumours as found in previous studies (Kudoh 1999, Gadducci

1992, Rosen 2005) although this did not reach significance. Her-2/neu was

not raised significantly in any of the groups of ovarian cancer. CA 15-3 was

raised in serous and endometrioid cancers as found in previous work

(Drapkin, 2004).

The decision tree models identified CA 125 and CA 15-3 as the strongest

predictors of malignancy amongst the tumour markers. This is consistent

with the univariate marker analysis, which showed CA 125 to be the most

significant predictor of malignancy (AUC 0.874) with CA 15-3 as the second

strongest predictor (AUC 0.778). The benign vs malignant decision tree gave

a good specificity of 98% but a less impressive sensitivity of 56.3%. The
second decision tree gave an improved performance on the detection of

malignancy with a sensitivity of 67% whilst maintaining a good specificity of

97.3%. It was less good at detecting borderline tumours with a low

sensitivity of 9.1%. Previous studies have also found borderline tumours

difficult to classify (Aslam, 2000, Valentin, 2001).

Overall, the second model gave good agreement between prediction and
outcome with a kappa value of 0.654. The most predictive cut off levels in

this study are similar to the initial cut offs levels used in Woolas' decision

tree. That group used a CA 125 of 101.55 with a CA 15-3 of 64.9 kU/1. With
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the use of five tumour markers and a complex model with 41 nodes, his

group found a sensitivity of 82.3% with a specificity of 93.2% (Woolas 1995).

The second decision tree in this study gave an improved specificity but the

sensitivity was lower at 67%. This was a much simpler model with only four
nodes and, due to its simplicity, is likely to generalise better to new

populations.

The neural networks performed significantly better than the decision trees.

Their non-linear decision boundaries allowed a better fit to the complex data

set. The optimal design of a network including the number of input and
hidden nodes is a difficult task which is only answered by the trial and

training of a large number of networks to identify the best among them. A

large network with a high ratio of nodes to case examples will fit the data

well but is likely to generalise poorly when applied to new populations.

However, an overly simple network will not be able to retain sufficient
information in the weights between the nodes for effective discrimination.

These neural networks performed better than the previously published
network (Zhang 1999). This may be due to a number of factors. The network
of Zhang was complex with 30 nodes with 144 internodal connections. The

models in this study were simpler: TNN1 has six nodes and eight internodal

connections; TNN2 has seven nodes with 10 internodal connections. As

described above, this avoids overfitting of the data and thus generalises

better when confronted with new cases. Zhang et al tested their network on

a heterogeneous collection of pelvic masses including 44 non-ovarian

malignancies (e.g. lymphoma, colon carcinoma and lymphoma). As the
network was only trained on examples of ovarian cancer, poor generalisation

in the diagnosis of non-ovarian cancer may be expected.
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The results of TNN1 are hopeful but need to be assessed by prospective

validation in a new population. Previous publications have highlighted the

problem of local minima (Timmerman, 1999b). This is the difficulty of

assessing the network performance using mean square error during training.

Training is stopped when the mean square error is minimised but due to the
non-linear nature of the neurones, further training may lead to a decrease

beyond that in the mean square error.

A combination of tumour markers has been shown to provide an improved

preoperative diagnosis of ovarian cancer. The use of tumour markers is at

least as good as that of morphological models. The application of neural
networks to the tumour marker data has provided encouraging results.

These results need to be validated in a well-designed prospective trial before

they can be used in clinical practice.

147



Chapter 4

A prospective evaluation of models for the diagnosis of

ovarian cancer
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4.1 Background

The diagnostic performance of published models in the diagnosis of ovarian
cancer varies significantly with reported sensitivities ranging from 0.85 to

1.00 and specificities from 0.77 to 0.97 (Jacobs 1990, Lerner 1994, Tailor 1997,

Timmerman 1999, Timmerman 2006). This variation is likely to represent

differences in the models, study population and ultrasound technique

between centres. All the models were designed based on retrospective data

analysis and therefore the results cannot be reliably applied to new

populations. Four models have been tested prospectively in different centres

on new datasets to validate their performance: Jacobs, Tingulstad, Tailor and

Timmerman's logistic regression model.

The aim of this study is to validate the performance of models that have not

been tested prospectively and to compare their performance to previously

validated models. This is the first clinical validation of the IOTA logistic

regression model. Timmerman's neural network has been tested

prospectively (Mol, 2001) but significant queries have been raised regarding

the study methodology.
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4.2 Population

One hundred and seventy six consecutive women referred to King's College

Early Pregnancy and Gynaecology Assessment Unit with a clinical suspicion
of a pelvic mass or found on scanning to have a mass were recruited into the

study. All women underwent a transvaginal ultrasound scan with colour

Doppler imaging and CA 125 estimation as part of the clinical investigation
of the pelvic mass.

4.2.2 Inclusion Criteria

The inclusion criteria were the presence of a pelvic mass that appeared to

originate from the adnexa on ultrasonography and patient consent to

inclusion in the study.

4.2.2 Exclusion Criteria

The exclusion criteria were: pregnancy; refusal of transvaginal

ultrasonography; lack of fitness for, or refusal of, surgery; previous bilateral

oophorectomy or the finding of a benign mass in one ovary and a borderline
or invasive mass in the other. In the case of bilateral tumours, the mass with

the more suspicious morphological features, as judged by the

ultrasonographer, was included. In the case of a similar appearance of both

masses, the larger was documented. Informed consent was obtained prior to

ultrasound examination and venepuncture.
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4.3 Statistical analysis

A database file was set up using Microsoft Excel for Windows (Redmond,

WA, USA) to facilitate data entry and retrieval. Statistical analysis was

performed using SPSS for Windows (Version 10.0; SPSS Inc, Chicago, IL,

USA). Variables were assessed for normality using Q-Q plots. The normally

distributed continuous variables were compared to the presence of

malignancy using the independent paired samples t test. The nonparametric

variables were compared to the histology using the Mann-Whitney test.

Nominal variables were compared to the histology using Fisher's exact test.

The data set was randomly split into two sets for the development of the
neural networks; a training set consisting of approximately two thirds of the

cases and a test set containing the remaining one third. Forward stepwise

logistical regression was used to identify the most significant variables in the

training set. As there was a large amount of variability in the histological

types of masses included in the data set, the random splitting of the data set

and logistical regression were repeated ten times. The desired network

output was coded as '0' for benign and '1' for malignant masses. Ten

different neural networks were developed.

Receiver operator characteristic curves were constructed for each of the

models and the diagnostic performance of the models was compared using

the areas under the curve.
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4.4 Results

One hundred and seventy six women were included in the study. Six

women were excluded from data analysis (3.4%): five women declined

surgical excision of the mass and one woman had a borderline tumour of the
left ovary and a benign cyst of the right. Of the 170 women, 137 had benign

masses, 12 were borderline and 21 were invasive malignant tumours (Table

4.1). The majority of the benign masses comprised endometriomas, dermoid

cysts and cystadenomas. Nine rare tumours were included in a

miscellaneous group of benign tumours. These were one Brenner tumour,

one paramesonephric cyst, four tubo-ovarian abscesses, one benign steroid
cell tumour, 1 hydatid of morgagni and 1 benign leydig cell tumour. The
borderline tumours were all epithelial in origin. They were staged according
to the FIGO guidelines (Appendix I) and all found to be Stage la tumours.

The invasive tumours were predominantly found to be Stage I or Stage III.

Twenty of the twenty-one invasive tumours were epithelial in origin, with

one leiomyosarcoma of the ovary.
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Table 4.1: Histological classification of the adnexal masses

Histological Type Nature Stage
Number in

Stage

Total

number

Endometrioma Benign - - 21

Dermoid cyst Benign - - 19

Serous cystadenoma Benign - - 15

Mucinous cystadenoma Benign - - 18

Fibroma Benign - - 12

Simple ovarian cyst Benign - - 17

Peritoneal pseudocyst Benign - - 5

Tubal Benign - - 7

Cystadenofibroma Benign - - 14

Miscellaneous Benign - - 9

Serous cystadenoma Borderline I 6 6

Mucinous cystadenoma Borderline I 5 5

Cystadenofibroma Borderline I 1 1

Serous cystadenocarcinoma Invasive I 2

II 1

III 6
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Histological Type Nature Stage
Number in

Stage

Total

number

IV 1
10

Mucinous cystadenocarcinoma Invasive

I 2

3II 1

Endometrioid adenocarcinoma Invasive

I 1

3III 2

Clear cell carcinoma Invasive II 1 1

Undifferentiated carcinoma Invasive

I 2

3II 1

Leiomyosarcoma Invasive I 1 1

4.4.1 Demographic variables

86 of the women were Caucasian (50.6%); 63 were black or black British

(37.1%); 14 Asian or British Asian (8.2%); 3 Chinese or other ethnic group

(1.8%), and 4 were of mixed race (2.4%).

112 of the women were premenopausal (66%). Of the 58 women who were

postmenopausal, the mean age for menopause was 4.3 years previously. 17

of the women had previously undergone a hysterectomy.
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46 of the women had never been pregnant (27%) and 88 had one or more

children (range 1 to 8). 36 women had had one or more miscarriage (range 1

to 6) and 31 women had had one or more terminations of pregnancy (range 1

to 5).

24 of the postmenopausal women were using hormone replacement therapy

(42%). 32 of the premenopausal women were using hormonal contraception,

25 were using the combined oral contraceptive pill, 4 intramuscular

progesterone injection, 2 the progesterone only pill and 1 the levonorgestrel
intrauterine system. 53 of women (31%) had previously taken the combined

pill for an average of 9.6 years (range 1 to 26 years).

Seven of the women had a personal history of breast cancer; none had a

personal history of ovarian cancer. Seventeen women had a family history of

breast cancer and five women of ovarian cancer.
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Table4.2:Comparisonofdemographicvariablestohistology Variable

Benign

Malignant

Mean Difference

95%CIDifference betweenmeans
Statistical test

P

Meanage(SD)

42.4(14.3)
52.4(19.1)

-9.883

-15.7to-4.1
t-test

0.007

Yearspostmenopausal(SD)

11.0(8.1)
16.7(12.4)

-5.711

-11.1to-0.2

t-test

0.41

Menopausal(%)

27.7

57.6

_

.

Chi-Square

0.001

Hysterectomy(%)

8.0

18.0

_

_

Chi-Square

0.155

Meannumberofpreviouspregnancies(range)
2.3(0-8)

1.9(0-5)

_

_

Chi-Square

0.31

Hormonaluse(%)

35

27.3

_

_

Chi-Square

0.42

Personalhistoryofbreastcancer(%)
3.6

6.1

_

_

Chi-Square

0.38

Personalhistoryofovariancancer(%)
0

0

_

_

Chi-Square

1.00

Familyhistoryofbreastcancer(%)
10.2

9.1

_

_

Chi-Square

0.49

Familyhistoryofovariancancer(%)
2.2

6.1

-

-

Chi-Square

0.41



The presenting symptom leading to the scan referral was most commonly

pain, abnormal bleeding or abdominal distension (Table 4.3). Nineteen

adnexal masses were incidental findings in women having scans for non-

gynaecological reasons.

Seventy-three women presented with pelvic pain. The severity of the pain

varied from mild pain to pain severe enough to limit daily activities (Table

4.4). There was no significant difference between the severity of pain in

benign and malignant masses. Urinary symptoms and abdominal distension
were more commonly associated with invasive and borderline masses

(p=0.017).

Table 4.3: Comparison of presenting symptom to histology

Presenting Symptom Benign (%) Malignant (%) Total

Abnormal bleeding 39 (84.8) 7(15.2) 46

Abdominal distension 16 (64.0) 9 (36.0) 25

Pain 62 (84.9) 11 (15.1) 73

Urinary symptoms 3 (42.9) 4 (57.1) 7

Incidental 17 (80.6) 2 (19.4) 19

Difference between groups p = 0.017 (Fishers exact test)
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Table 4.4: Severity of pain

Pain grade Severity of pain Benign Malignant Total

0 None 74 22 96

1 Mild 40 5 45

2 Requiring analgaesia 4 4 8

3 Limiting activity 19 2 21

4.4.2 Ultrasound variables

All women were examined with ultrasound. Thirty-five women had

bilateral masses; the remaining one hundred and thirty five women had a

single mass only. The masses predominantly appeared to arise from the

ovaries (90%) with 5% of masses of tubal origin. In 2% the origin was

uncertain and the mass arose from a structure other than the tube or ovary in

3% of cases.

The size of the masses ranged from 10 mm to 251 mm in longest dimension
with a median of 71mm and an interquartile range of 60.75. Their volume

was spread between 10 mm3 to 3187 mm3 with a median of 101 mm3 and an

interquartile range of 346.5 (Table 4.5).
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Table 4.5: Distribution of tumour size/mm and volume/mm3 in benign and malignant tumours

Variable Nature Mean Standard

deviation

Test of

significance

P

Tumour diameter 1 Benign 77.4 44.7

t-test

0.002

Malignant 110.7 48.6

Tumour diameter 2 Benign 63.6 34.5

t-test

0.002

Malignant 89.8 42.1

Tumour diameter 3 Benign 51.7 28.6

t-test

0.002

Malignant 73.6 35.3

Volume Benign 270.7 497.8

Mann-Whitney

0.001

Malignant 605.9 628.0

The majority of the masses were unilocular, multilocular or multilocular
solid with only four cases being unclassifiable (Table 4.6). There was a

significant difference between the distribution of benign and malignant
masses in the different morphological groups (Fishers exact test p=0.001).

The number of locules in the multilocular and multilocular solid categories

ranged from two to greater than ten with a median of three (Table 4.6).
There was no difference in the number of locules between the benign and

malignant masses (Mann-Whitney U Test p=0.55).
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Table 4.6: Locularity of adnexal masses

Unilocular Unilocular

solid

Multi-

locular

Multi-

locular

solid

Solid Unclassifiable

Benign 43 12 41 19 19 3

Malignant 6 4 2 13 7 1

Total 49 16 43 32 26 4

The echogenicity of the cyst fluid was found to be anechoic in 37% of the
masses and low level in 25% (Table 4.7). There was no significant difference

in the echogenicity of cyst fluid in benign and malignant masses (Fishers
Exact Test p=0.082)

Table 4.7: Echogenicity of cyst fluid

Anechoic Low level Ground

glass

Haemorrhagic Mixed Solid

Benign 54 30 15 2 29 7

Malignant 9 12 2 0 7 3

Total 63 42 17 2 36 10

p = 0.082 (Fishers exact test)
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Acoustic shadows were present in 15% of masses. Papillary proliferations

were seen in 20.3% of the cases whereas ascites was only present in 9.3%

(Table 4.8).

Table 4.8: Presence of binary ultrasound variables in benign and malignant masses

Variable present Benign Malignant Test of significance p value

Ascites 6 10 Fishers Exact <0.001

Bilateral 22 13 Chi-Square 0.006

Smooth internal wall 106 13 Chi-Square <0.001

Papillary projection 22 13 Chi-Square 0.006

Acoustic shadows 16 2 Chi-Square 0.53

4.4.3 Doppler variables

93 of the masses had blood flow detectable on colour Doppler imaging

(54.7%). 4 of the avascular masses were malignant (5.2%) whereas 29 of the
masses with detectable flow (30.8%) were malignant (p<0.001, Chi-Square

test). The calculated variables from the Doppler waveform are summarised
below (Table 4.9). The subjective colour flow score given for the whole mass

was 2 (denoting minimal flow) in 41 masses, 3 (denoting moderate flow) in
27 and 4 (increased flow) in 24 of the masses. (Table 4.10)
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Table 4.9: Doppler variables in benign, borderline and invasive masses

Benign Borderline Invasive P*

9.1 19.7 30.7

PSV (SD) <0.001

(13.4) (21.1) (21.7)

6.0 14.3 20.6

TAMXV (SD) <0.001

(9.7) (15.9) (14.3)

2.1 1.5 0.74

PI (SD) <0.001

(1.1) (1.2) (0.38)

0.83 0.66 0.56

Rl (SD) <0.001

(0.23) (0.29) (0.23)

^significance calculated using Kruskal Wallis U test

Table 4.10: Distribution of colour score

Colour Score Definition Benign Malignant Total

1 No flow 74 (94.9%) 4 (5.1%) 78

2 Minimal flow 35 (85.4%) 6 (14.6%) 41

3 Moderate flow 20 (74.1%) 7 (25.9%) 27

4 Increased flow 8 (33.3%) 16 (66.7%) 24

P<0.001 Chi-Square test
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4.4.4 Diagnosis of borderline tumours

All demographic, ultrasound and Doppler variables were analysed for
discrimination between benign, borderline and invasive tumours. All

Doppler variables (colour score, PSV, TAMXV, RI and PI) were significantly
different between the three histological groups (p<0.001). The most

significant variables were the Doppler variables, age, ascites, smooth wall,

tumour diameter and the presence of bilateral lesions (Table 4.11).

Table 4.11: Significant variables in the discrimination between benign, borderline and
invasive masses

Variable Benign Borderline Invasive Statistical test p value

Age (mean) 42.4 48.3 54.5 One way ANOVA 0.002

Most common

presenting symptom

Pain Pain Distension Fisher's exact 0.026

Menopausal (%) 28 55 59 Fisher's exact 0.005

Flow present (%) 46 63 100 Chi square <0.001

Tumour diameter

/mm (mean)

77.4 119.5 106.4 One way ANOVA 0.001

Volume

/mm3

270.7 620.6 600.1 Kruskall Wallis 0.003

Papillary

proliferations (%)

16 27 45 Fisher's exact 0.006
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Variable Benign Borderline Invasive Statistical test p value

Bilateral (%) 16 27 50 Fisher's exact 0.002

Ascites (%) 4 27 32 Fisher's exact <0.001

Smooth (%) 77 64 27 Fisher's exact <0.001

4.4.5 Subjective assessment ofmass

Thirty two masses were subjectively found to be invasive or of borderline

malignancy on assessment of both gray scale and Doppler appearance of the

mass. One hundred and twenty one masses were felt to be benign in

appearance; the remaining seventeen masses were difficult to classify. An

attempt was made to identify the histological type of the tumour based on its

gray scale and vascular appearance. Ovarian cancer was the most common

subjective diagnosis (29 masses); four masses were classified as borderline
ovarian tumours. Serous and mucinous cystadenoma were also commonly

diagnosed (18 masses each) as were dermoids (23 masses) and

endometriomata (16 masses). Twenty masses were difficult to classify into a

histological type (Figure 4.1).

For the prediction of malignancy, a sensitivity of 72.7 with a specificity of
81.8% was achieved.
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Figure 4.1: Subjective classification of the masses into histological types.
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Table 4.12: Comparison of subjective impression to histology

Subjective Impression Benign (%) Borderline (%) Invasive (%) Total

Benign 112 (92.6) 7 (5.8) 2(1.7) 121

Borderline 2(50) 0 2(50) 4

Invasive 9 (32.1) 2(7.1) 17 (60.7) 28

Uncertain 14 (82.4) 2 (11.8) 1 (5.9) 17

P < 0.001 (Fishers exact test)
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Table 4.13: Univariate analysis of all binary end points

Variable

Benign Malignant P

Number % Number %

Nulliparity 36 26.3 10 30.3 0.457

Family history ovarian cancer 4 2.9 1 3.0 0.49

Family history breast cancer 6 4.4 1 3.0 0.46

Personal history breast cancer 6 3.6 2 6.1 0.38

Flyste rectomy 11 8.0 6 18.0 0.155

Postmenopausal 38 27.7 19 57.6 0.001

Bilateral masses 22 16.1 13 39.4 <0.001

Ascites 6 4.4 10 30.3 <0.001

Papillary projection 22 16.1 13 39.4 0.006

Smooth internal wall 106 77.4 13 39.4 <0.001

Acoustic shadows 16 11.7 2 6.1 0.53

4.4.6 Prospective testing ofmodels

Six models were tested prospectively: Jacobs' Risk of Malignancy Index;

Tingulstad's Risk of Malignancy Index; Timmerman's logistic regression
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model; Tailor's logistic regression model; Timmerman's neural network and
the IOTA logistic regression model. The sensitivities ranged from 45.5 to 81.8

with specificities between 65.7 and 94.1 (Table 4.14). The performance of all
models was poorer than in the original publications. Both risk of malignancy
indices had a lower sensitivity for the detection of ovarian cancer in this data
set than in the original study, however Jacobs' RMI performed better than

Tingulstad's RMI and Timmerman's LRM. The neural network gave a good

sensitivity and specificity but both were significantly lower than in the

original publication. The IOTA model performed well with a good

sensitivity and reasonable specificity. Subjective assessment of the mass

gave a sensitivity of 72.7% and a specificity of 81.8% in the diagnosis of

malignancy.
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Table4.14:Comparisonoftheprospectiveperformanceofdifferentlogisticregressionmodels Model

Publication date

Cutoff

Accuracyinoriginalstudy

Accuracyatvalidation

Sensitivity (%)

Specificity (%)

Areaunder ROCcurve
Sensitivity (%)

Specificity (%)

Areaunder ROCcurve

95%CI

Jacobs'RMI

1990

200

85

97

-

54.5

90.5

0.781

0.628,0.865

TingulstadRMI

1996

200

80

92

-

45.5

65.7

0.634

0.540,0.729

TailorLRM

1997

0.5

93

90

0.98

45.5

94.1

0.822

0.734,0.910

TimmermanLRM

1999

0.25

94

83

0.97

54.5

78.8

0.728

0.697,0.859

TimmermanANN

1999

0.60

94

95

0.98

69.7

79.6

0.791

0.688,0.893

IOTALRM

2005

0.10

93

77

0.95

81.8

72.3

0.857

0.788,0.926



4.4.7 Artificial neural networks

The data set was randomly divided ten times into training and test sets.

Multivariate logistic regression analysis of the ten different training sets

yielded different significant variables. These are shown in Table 4.15. A

neural network was developed from each of these sets of variables and

applied to the each test set. The ROC curves for each neural network (NN)

are shown in Figure 4.2.
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Table4.15:Thesignificantvariablesineachdataset Dataset

1stVariable

2ndVariable

3rdVariable

4thVariable

5thVariable

1

Menopause

Colourscore

Bilateral

Internalwall

-

2

Volume

CA125

Colourscore

-

-

3

Tumourdiameter

CA125

Colourscore

-

-

4

Tumourdiameter

Colourscore

-

-

-

5

Tumourdiameter

Colourscore

Bilateral

-

-

6

Menopause

Colourscore

Bilateral

Ascites

CA125

7

Rl

Volume

CA125

Ascites

-

8

PSV

Volume

Internalwall

Bilateral

Ascites

9

Age

Tumourdiameter

Colourscore

Bilateral

Ascites

10

Tumourdiameter

Colourscore

Bilateral

Ascites

-



Figure 4.2: The receiver operator characteristic curve for the ten morphological networks.

1 - Specificity

The best neural networks were NN1 and NN6. NN1 had four variable

inputs menopausal status (meno), colour score (colour), bilaterality of masses

(bilat) and presence of ascites (asc). There was one layer of three hidden
nodes. Training of NN1 was halted after 910 iterations when the mean

square error on the training and test sets were 0.375 and 0.282 respectively.
The mathematical formula to calculate the prediction value of the network

is:

Y= l/(l+exp(zy)) with zy = 0.8403hi + 1.7496h2 - 4.6023h3 - 0.2953

where:
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hi = l/(l+(exp zi)) with zi = -1.4230(meno) + 1.1496(colour) + 0.8762(bilat) +

1.2193(asc) -1.1187

h2 = l/(l+(exp Z2)) with Z2 = 0.1758(meno) + 0.8412(colour) - 0.4694(bilat) +

0.2071(asc) -0.2436

h3 = l/(l+(exp Z3)) with Z3= -2.062344(meno) -0.8894(colour) -0.7488(bilat) -

0.7515(asc) + 3.1671

With a probability of malignancy of 0.5, NN1 gave a sensitivity of 72.2% with
a specificity of 90%. The area under the ROC curve was 0.894.

The sixth network (NN6) had five variable inputs menopausal status (meno),

colour score (colour), CA 125/1000 (CA 125), bilaterality of masses (bilat) and

presence of ascites (asc). There was one layer of three hidden nodes.

Training was stopped after 3280 iterations when the test error and training

error were 0.324 and 0.319 respectively.

The mathematical formula of the network is:

Y= l/(l+exp(zy)) with zy = 4.8013hi + 4.3906h2 - 4.0762hs + 0.4708

where:

hi = l/(l+(exp zi)) with zi = -2.6141(meno) + 3.5595(colour) - 0.6878(CA 125)
+ 2.4030(bilat) - 3.3074(asc) -1.5492
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hi = l/(l+(exp zz)) with z2 = -3.3334(meno) + 2.5809(colour) -1.4407(CA 125) +

1.5831(bilat) -3.37736(asc) -1.9517

h3 = l/(l+(exp Z3)) with Z3 = -1.8254(meno) -0.8672(colour) -8.8538(CA 125) -

1.3481(bilat) +1.6700(asc) + 5.040331

At a probability of malignancy of 60%, the second neural network gave a

sensitivity of 85.7% with a specificity of 88.6%. The area under the ROC
curve was 0.904. The performance of the networks is summarised in Table
4.16.
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Table 4.16: Comparison of the performance of all neural networks

Neural Network Area under

ROC curve

95% CI

Upper Bound Lower Bound

1 0.894 0.833 0.955

2 0.877 0.811 0.942

3 0.872 0.803 0.942

4 0.872 0.803 0.942

5 0.850 0.783 0.918

6 0.904 0.847 0.960

7 0.865 0.797 0.933

8 0.865 0.795 0.934

9 0.887 0.826 0.948

10 0.878 0.811 0.944

There was no significant difference between the AUC for the models using the methods of

Hanley and McNeill (1983).
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4.5 Discussion

4.5.1 Univariate analysis

The variables with the best discrimination between benign and malignant

masses were menopausal status, tumour volume, the presence of a smooth
internal wall and ascites. 40.6% of multilocular solid tumours were

malignant as compared to 4.7% of multilocular tumours without solid parts.

This is a similar finding to Timmerman's study in 1999 and Valentin in 1994.

All the Doppler variables including the colour score were significantly

associated with malignancy. A larger tumour has an increased risk of

malignancy and is more likely to present with pressure symptoms. This may

explain the relation between malignancy and presentation with urinary

symptoms or abdominal distension.

The presence of papillary proliferations and bilateral lesions were less

significantly associated with malignancy in this dataset, compared to

previous studies (Timmerman 2005, Tailor 1997). Echogenicity of cyst fluid

and number of locules within the tumour were not predictive of malignancy

in this study, in contrast to the IOTA study (Timmerman, 2005). The

difference may be due to the considerably larger numbers in the IOTA study,

enabling a true difference to be detected. A personal or family history of
breast or ovarian cancer was unrelated to malignancy in this study. The

numbers of women in these categories were small so a true difference may

not have been identified.
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The best variables at discriminating between benign, borderline and invasive

masses were the Doppler variables, age, ascites, smooth wall, tumour

diameter and the presence of bilateral lesions. These variables are similar to

those with best discrimination between benign and malignant groups.

Menopausal status, although significant, was less discriminatory than age in

contrast to the discrimination between benign and malignant. The two

variables are dependent but menopause is a binary endpoint whereas age is

continuous. This is likely to explain why the difference between the ages of
the groups is more significant than menopausal status.

4.5.2 Subjective assessment

Subjective assessment of the masses gave a sensitivity of 72.7% with a

specificity of 81.8% in the diagnosis of malignancy. This is lower than that in
other reported studies. Valentin produced a sensitivity of 88% with a

specificity of 96%(Valentin, 1999). However she is an ultrasonographer of

great experience. At the start of this study, the operator was a relatively

inexperienced scanner, which may have contributed to the low sensitivity in

this study. Timmerman's study in 1998 examining operator experience in

subjective assessment demonstrated a higher accuracy with greater scanning

experience. The operators in training achieved a sensitivity of 86.7 to 90.4%

and specificity between 63.2 and 70.1%. These inexperienced scanners may

have been advantaged by the prior selection of still images by the scanner

performing the scan.
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4.5.3 Prospective evaluation

This study has provided an external validation of six models. The IOTA

LRM has not previously been validated; this study shows a strong

prospective performance. Timmerman's neural network has previously been
tested prospectively (Mol 2001), but considerable concerns about the study

methodology were raised by the authors of the original study (Timmerman,

2001). This study has shown that diagnostic models perform less well when
tested prospectively than in the studies in which they were developed. In
the original publications, the sensitivities were all over 80% with specificities

mostly over 90%. In this study, the sensitivities ranged from 45.5% to 82%
with specificities of 66% to 94%.

Jacobs' RMI had a fair prospective performance with a lower sensitivity than
in the original publication. A significant variation in the reported sensitivity

exists in previous publications (Davies 1993, Tingulstad 1996, Morgante 1999,

Timmerman 1999, Aslam 2000, Mol 2001, Timmerman 2005). The original

paper did not describe a rigid classification for the ultrasound findings and
therefore interpretation may vary between different centres and different

ultrasonographers.

The three other models that have previously been tested prospectively gave a

similar sensitivity and specificity to those found by other investigators

(Morgante 1999, Aslam 2000, Valentin 2001). These results support the

findings in this study.

Timmerman's neural network showed lower accuracy in discriminating
between benign and malignant masses than in the original publication. Its

performance was more accurate than that of the risk of malignancy indices.
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This is an expected finding as the neural network provides a more complex
non-linear fit to the data that cannot be achieved by the RMI or LRM models.
It showed a higher sensitivity but similar specificity to both the Tailor LRM
and the Timmerman LRM.

The IOTA LRM gave the best performance of all the prospectively tested
models.

These findings can be explained by a number of factors. Models developed
and tested on the same data set have an over-optimistic level of diagnostic

accuracy. To make a model workable in clinical practice, only a small
number of variables are used to make up the model. The selection of
variables for insertion into a model is dependent on their discrimination

between groups in the data set. Therefore, the development of the model is

data-dependent and it provides a best fit for the examined data set. If the
examined data set contains a small number of cases then the model is likely

to perform poorly when applied to a new data set (Altman 2000).

Timmerman's neural network was based on a data set of 173 patients.

However the IOTA LRM was designed on a data set over 5 times larger. A

model developed using a large number of examples gives a better

generalisation and this partly explains the greater accuracy of the IOTA
model.

Both Timmerman's LRM and ANN and the IOTA model all include colour

score as a variable. This is a score which is awarded subjectively by the

operator. The inclusion of a subjective variable decreases the reproducibility
of the results obtained from these three models.

The clear definition of inclusion and exclusion criteria is important to define

the sample data set. Excluded cases must be accounted for individually, as
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cases excluded due to missing data may not be randomly spread through the
data set (Altman 2000). Both Timmerman's ANN and the IOTA LRM detail

the cases excluded from analysis. In development of the ANN, 18 patients

were excluded (9.4%) because the level of CA 125 had not been measured.

The IOTA data set had 83 exclusions (7%) due to missing data in 42 cases,

mainly because no operation had been performed. Neither model appears to

suffer from significant bias due to case exclusion.

The transportability of the models to a new centre with a different case-mix

relates to their performance at prospective testing. The ANN was developed

in one centre whereas the IOTA LRM was developed after a multicentre,

international recruitment of patients. Because the IOTA model was designed
on patients from different centres, it is not surprising that it performs well
when tested prospectively on a new data set from a single centre.

In the original dataset of Timmerman's ANN, 28% of the masses were

malignant. 26% of these were metastatic invasive tumours from other

primary tumours (e.g. colon, endometrium or breast) and 10% were

borderline tumours. In the IOTA data set, 25% of the cases were invasive.

15.8% were metastatic tumours and 20.7% were borderline. In the data set of

this study, a similar proportion of cases were malignant. However all the

invasive malignancies were primary and 36% were borderline tumours. The

similarity of the IOTA data set to that of this study may also explain its good

performance in this study. Both original papers described the methods of
classification and examination technique in detail. Despite this, subtle

differences are difficult to avoid and are likely to have affected the

classification of papillary projection and colour score in this study. Although
this would decrease the prospective accuracy of the models, it would affect
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both models similarly and does not explain the difference in their

performance.

The value of morphological models is questionable. This study has not

confirmed the accuracy found in the original publications of the models.

There is a large degree of intrinsic variability in this data set which may

explain the variable performance of different models. A larger dataset would

enable more robust conclusions to be drawn and stronger models to be

developed. However, even the model designed on a large data set performed
less well prospectively than in the original study. The IOTA model is

complex and contains twelve different variables. Considerable sonographic

expertise is needed to record these variables. Given the good performance of

subjective assessment in the hands of an experienced sonographer, then this

may be better than a statistical model.

4.5.4 Artificial neural networks

The data set was divided ten times to give ten different training and test sets.

When each training set was analysed using logistic regression, different

significant variables were produced for each training set. Overall, nine

different variables were identified as significant (menopausal status, colour

score, PSV, RI, tumour diameter, tumour volume, ascites, bilateral lesions

and CA 125). The number of significant factors varied from two to five in

different training sets. Ten neural networks were developed, one for each set

of significant variables and tested on the respective test set. The performance

of the networks was mixed with AUC's of between 0.85 to 0.904.
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The finding of different significant variables in different randomly selected

portions of the data set implies a large degree of heterogeneity in the cases.

None of the variables was found to be significant in every training set. A

wide variety of different histological types were included in the data set,

which may explain the difficulty in classifying the cases. For example, the
data set included twelve fibromas, a Brenner tumour, a benign steroid cell
tumour and a Leydig cell tumour. These are all solid and richly vascularised
and may be bilateral. Occasionally, they are accompanied by ascites with a

modest rise in CA 125. They also all benign but these characteristics make
correct classification difficult. Within the malignant masses, twelve of the

thirty-three were borderline tumours. These are also notoriously difficult to

classify (Aslam 2000, Valentin 2001).

This degree of variability within the data set suggests that the morphological
variables are poor classifiers. In addition, the neural networks constructed

using a selection of them are unlikely to generalise well when applied to a

new population. To develop a good neural network, a larger data set would
be required, given the large degree of variability within the case mix.

Subjective assessment performed as well as any of the models tested

prospectively in this study, despite the relative lack of experience of the

operator at the start of the study period. Given an experienced operator,

none of the models offers a significant benefit. However, an inexperienced

scanner may find the models useful to improve the diagnostic accuracy of his
or her predictions.
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Chapter 5

The application of models to incidentally found small
masses
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5.1 Background

Radiological imaging is increasingly becoming a first line investigation for
women with a broad variety of abdomino-pelvic symptoms. Some

gynaecologists consider that a transvaginal scan should be an integral part of

every gynaecological examination (Valentin, 1999b). Women with pain or

irregular vaginal bleeding are investigated with pelvic ultrasound. CT and

MRI may be employed in cases of suspected renal calculi, persistent

abdominal pain or back pain. The use of radiological investigations can lead
to detection of adnexal masses that have not been clinically suspected. These
masses may be found incidentally whilst scanning the abdomen for non-

pelvic indications or during ovarian cancer screening. The women in whom

these masses are detected are often asymptomatic and healthy. These

findings will at best cause worry to the woman scanned. In many cases,

additional further testing will be employed and at worst, they will lead to

potentially harmful treatment. It is particularly important to be able to

discriminate between malignant and benign masses in this population to

avoid significant iatrogenic harm.

Bailey et al followed asymptomatic postmenopausal women with masses of
less than 10 cm in maximum diameter. Two hundred and fifty six masses

were unilocular, none of which was malignant at surgery or had developed
cancer after 3 years follow-up. One hundred and fifteen masses were

persistent and complex and 8% of these were malignant (Bailey, 1998).

Ferrazzi et al refined Lerner's morphological scoring system for the diagnosis
of malignancy and applied it to a subset of masses with a mean diameter of 5
cm or less (Lerner 1994, Ferrazzi 1997). The new scoring system gave a
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sensitivity of 92% and a specificity of 53% for the diagnosis of malignancy in
the subset of small masses. This was tested prospectively in a multicentre

study that gave a sensitivity of 92% and a specificity of 76.9% (Ferrazzi,

2005).

None of the published statistical models has been applied to small adnexal

masses. All these models were developed on a heterogeneous group of

masses, the bulk of which were large and clinically detectable (Jacobs 1990,

Tingulstad 1996, Tailor 1997, Timmerman 1999). There are reasonable

doubts as to whether these models can be successfully applied to small

masses. The measurement of tumour diameter and volume are likely to be
redundant in a population of small masses. The models tested in this study

do not incorporate either tumour diameter or tumour volume as variables, so

may be more likely to diagnose malignancy accurately than models that do

encompass these variables.
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5.2 Population

One hundred and seventy women were included in this study. Sixty-six

women had masses smaller than 5 cm in mean diameter. None of these

masses was detected clinically prior to the scan. The demographic,
ultrasound and Doppler variables for this group were compared to the

hundred and four women with a large, clinically detectable mass.

185



5.3 Results

5.3.1 Histology ofsmall masses

Of the sixty-six patients with small masses, sixty were benign; three were

borderline and three were invasive. The histology of the masses is shown in
Table 5.1.

Table 5.1: Histology and stage of small adnexal masses

Histological Type Nature Stage Number of
masses

Endometrioma Benign - 10

Dermoid cyst Benign - 8

Serous cystadenoma Benign - 6

Mucinous cystadenoma Benign - 5

Fibroma Benign - 1

Simple ovarian cyst Benign - 14

Tubal Benign - 4

Cystadenofibroma Benign - 7

Miscellaneous Benign - 5

Serous cystadenoma Borderline I 2

Mucinous cystadenoma Borderline I 1

Serous cystadenocarcinoma Invasive III 1

Mucinous cystadenocarcinoma Invasive II 1

Leiomyosarcoma Invasive I 1

Total 66
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5.3.2 Presenting symptoms

The most common indications for the scan were pelvic pain and bleeding.

Eight masses were detected incidentally either at ovarian cancer screening or

with another radiological modality e.g. CT or MRI. All the borderline and

invasive masses presented with either pain or abnormal vaginal bleeding

(Table 5.2).

Table 5.2: Presenting symptoms of small masses

Benign Borderline Invasive All histology

Incidental
8 0 0 8

Pain
32 2 1 35

Bleeding 19 1 2 22

Abdominal distension
1 0 0 1

Total
60 3 3 66

5.3.3 Univariate analysis

There was a difference in the presence of ascites, papillary proliferations,
detectable flow and the smoothness of the internal wall between benign and

malignant small cysts. Other variables were not significantly different
between the groups (Table 5.3).
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Table 5.3: Demographic and morphological variables by histology of mass

Variable Benign
n=60

Malignant
n=6

Significance
P

Mean age (Standard deviation) 41.9 (13.9) 46.8 (24.2) 0.641

Mean diameter/mm (Standard deviation) 42.0 (12.6) 44.5 (8.6) 0.195

Menopausal (%) 28 50 0.271

Detectable blood flow (%) 47 100 0.013

Simple unilocular cyst (%) 47 33.3 0.188

Papillary proliferation (%) 13.3 50 0.022

CA 125 < 35 U/ml ( %) 16.7 33.3 0.199

Acoustic shadows (%) 10 16.7 0.613

Bilateral (%) 15 33.3 0.251

Ascites ( %) 1.67 33.3 <0.001

Smooth (%) 75 33.3 0.032

5.3.4 Comparison of large and small masses

There were no significant differences between any of the demographic
variables in women with large and small masses (Table 5.4). Significantly
more of the small masses were unilocular and a greater proportion of the

large masses were multilocular solid (Table 5.5). None of the small tumours

presented with urinary symptoms and, unsurprisingly, significantly less
presented with abdominal distension (Table 5.6).
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Table 5.4: Demographic and morphological variables in large and small masses

Variable Large masses
n=104

Small masses
n=66

Significance
P

Age (mean and standard deviation) 45.6 (16.2) 42.3 (14.9) 0.175

Postmenopausal (%) 36 30 0.478

Hysterectomy (%) 12 8 0.401

Flow (%) 55 51 0.579

Acoustic shadows (%) 11 11 0.593

Papillary (%) 23 17 0.338

Bilateral (%) 23 17 0.338

Ascites (%) 13 5 0.108

Smooth (%) 69 71 0.864

Table 5.5: Presenting symptoms of large and small masses

Presenting Symptom Large masses n=104 Small masses n=66

Bleeding (%) 22 35

Distension (%) 22 3

Incidental (%) 11 12

Pain (%) 38 50

Urinary (%) 7 0

Chi Square Test p=0.001
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Table 5.6: Locularity of large and small masses

Locularity Large masses n=104 Small masses n=66

Unilocular (%) 18 45

Unilocular Solid (%) 9 11

Multilocular (%) 30 18

Multilocular Solid (%) 25 9

Solid (%) 17 12

Unclassifiable (%) 1 5

Chi Square Test p=0.001

5.3.5 Subjective assessment

Subjective assessment gave a sensitivity of 83% in the diagnosis of

malignancy. A correct diagnosis of the specific type of adnexal mass was

made in 51% of cases. Dermoid cysts and endometriomas were more

correctly classified than fibromas, tubal cysts and cystadenomas (Table 5.7).

Table 5.7: Accuracy of subjective assessment in the specific diagnosis of masses

Diagnosis Sensitivity (%) Specificity
<%)

PPV

(%)
NPV

(%)
Accuracy

(%)

Malignancy 83.3 78.3 27.7 97.9 80.3

Cystadenoma 50 89.6 64.3 82.7 78.8

Dermoid 100 98.3 88.9 100 98.5

Endometrioma 70 96.4 77.8 94.7 92.4

Sex cord tumour 50 100 100 98.5 98.5

Fibroma 33.3 98.4 50 96.9 95.5

Tubal 50 96.6 60 95.8 92.4
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5.3.6 Prospective performance ofstatistical models

The performance of the statistical models in the small masses and in the

whole dataset of 170 masses is shown in Table 5.8. Tingulstad's RMI and

Timmerman's LRM and ANN were the best performing models. Jacobs' RMI
at a cut off of 200 and Tailor's LRM had excellent specificity but only

diagnosed one of the six malignancies. At a cut off of 100, Jacobs' model had
an increased sensitivity to 33.3% with a slight sacrifice in specificity.
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Table5.8:Performanceofmodelsonsmallmasses Model

Publication Date

CutOff

Variablesinmodel

Smallmasses(n=66)
Wholedataset(n=170)

Sensitivity (%)

Specificity (%)

Sensitivity (%)

Specificity (%)

JacobsRMI

1990

200

Ultrasoundscore,menopausal score,CA125

16.7

98.3

54.5

90.5

JacobsRMI

1990

100

Ultrasoundscore,menopausal score,CA125

33.3

93.3

60.6

85.4

TingulstadRMI

1996

200

Ultrasoundscore,menopausal score,CA125

83.3

60

45.5

65.7

TailorLRM

1997

0.5

Age,papillaryprojection,TAMXV
16.7

93.3

45.5

94.1

TimmermanLRM
1999

0.25

Menopausalscore,papillary projection,CA125,colourscore
66.7

81.6

54.5

78.8

TimmermanANN
1999

0.6

Menopausalstatus,CA125, ascites,unilocularity,smoothnessof internalwall,presenceofpapillary structuresandbilateralmasses
66.7

83.3

69.7

79.6

Subjective

-

-

-

83.3

78.3

72.7

81.8



5.4 Discussion

The incidence of malignancy was lower in the group of small masses (9.1%)
than in the group of large masses (19.4%). This is consistent with a previous

study that found a 7.7% incidence of malignancy in a similar population

(Ferrazzi, 2005).

Two of the six malignant masses in this study were unilocular cysts. One
was a stage Ha mucinous cystadenocarcinoma, the other a stage la borderline
mucinous cystadenoma. They both demonstrated moderate vascularity with
low level echogenicity and a CA 125 value within the normal range. This

finding contrasts with previous studies showing an extremely low incidence

of malignancy in unilocular cysts (Bailey 1998, Valentin 2002). This may be
due to the smaller size of the masses in this study. This finding reinforces the

need for follow-up in a small, incidentally diagnosed ovarian cyst.

The best discriminatory variables between benign and malignant small cysts
were ascites, papillary proliferations, detectable flow and the smoothness of
the internal wall. This contrasts with the univariate analysis on the whole

dataset. Age, tumour diameter, menopausal status, bilateral lesions and
tumour volume were all significant variables in large masses.

Some of the diagnostic models performed well in the small mass group.

Both Jacobs' RMI and Tailor's LRM gave a lower sensitivity in the small

compared to the large masses. This is likely to be due to a number of factors.
The RMI is based on multiplication of the CA 125 level, menopausal score
and ultrasound score, which varies from 0 to 3. Any mass scoring zero on

the ultrasound criteria is therefore classed as benign, whatever the

menopausal status and CA 125 level. Thus, a unilocular cyst with an
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irregular internal wall, papillary proliferations and pronounced vascularity
will be classified as benign. In addition, CA 125 was raised in only two of the
six malignant masses and menopausal status was not a significant variable.
This led to a low sensitivity but an impressive specificity of 98.3% in the
small mass group. The sensitivity was improved to 33% by lowering the cut¬

off to 100 with only a small drop in specificity.

Tailor's LRM gave a good specificity but a low sensitivity in the small

masses. Age was not significantly different between the benign and

malignant masses. This is likely to be the main factor in the poor

performance of the Tailor model as papillary projections and vascularity
were significantly different between the groups.

Tingulstad's RMI has an ultrasound score ranging from 1 to 4 and thus does

not suffer from a similar lack of sensitivity. The RMI performed better on the

small mass group than on the whole dataset despite its retention of

menopausal status and CA 125 as variables.

Both of Timmerman's models performed well in the small mass group. The
LRM included the papillary projection score and colour score, both of which
were significant variables. The ANN included three significant variables

(ascites, smoothness of internal wall and the presence of papillary structures)

but also four non-significant variables (menopausal status, CA 125,

unilocularity and bilaterality). This gave the ANN a small improvement in

specificity over the LRM but still detected only 4 out of 6 malignant masses.

All the models except Jacobs' RMI and Tailor's model performed at least as
well in the small mass group as they did in the whole dataset. Subjective
assessment was also as effective at discriminating between benign and

malignant masses in the small mass group. This is a somewhat surprising
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finding. Smaller masses may be expected to be more troublesome to

characterise both subjectively and using models. This study has
demonstrated that demographic variables such as age and menopausal status
are non-discriminatory and CA 125 was not elevated in four of the six

malignant masses. However, morphological and Doppler variables still
allowed accurate classification of the majority of the masses.

Subjective assessment of the mass was better than the models in the

diagnosis of ovarian cancer. The correct specific diagnosis was made in 51%
of cases, which is consistent with previous publications (Valentin 2001, Jermy

2001). In this study, a sensitivity of 83.3% was achieved in the diagnosis of

malignancy. This equates well to other studies published on the diagnosis of

larger masses in which sensitivity ranges from 82 to 98% (Timmerman 1999,

Valentin 2001). Subjective analysis has been shown to improve with

increasing experience of the sonographer (Timmerman, 1999). Statistical
models may help less experienced sonographers to improve their diagnostic

accuracy but rigorous adherence to the described definitions is essential.

The hypothesis that the published models can be applied to small

asymptomatic masses is supported by the findings for Timmerman's models
and Tingulstad's RMI. Subjective diagnosis has been shown to be superior to
all the models in the diagnosis of ovarian cancer in small asymptomatic
masses.

195



Chapter 6

General Discussion
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6.1 Introduction

This chapter summarises the results obtained in this thesis. Detailed
discussion accompanied each chapter and therefore only the wider context of
this work is discussed here. Finally, suggestions for further study are

presented.
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6.2 Synopsis of Results

The aim of this thesis has been to investigate the use of tumour markers and

mathematical models in the preoperative diagnosis of ovarian cancer. Work

has concentrated on the development of new mathematical models, the

validation of previously published models, and the application of these

models to incidentally diagnosed small masses.

The tumour markers CA 125, CA 15-3 and CA 72-4 were found to be

valuable markers in the discrimination of benign from non-benign masses

and were used to construct new mathematical models. Her-2/neu and CA

19-9 were not discriminatory for the diagnosis of ovarian malignancy. Two

decision tree models were developed, one for the differentiation of benign

from non-benign masses, the second for classifying benign, borderline and

malignant masses. The retained variables in the two trees were CA 125 and

CA 15-3. Both models achieved an excellent specificity for the diagnosis of

malignancy. The sensitivity of the first model was 56.3% and the second
67%. As found in previous studies, borderline tumours were difficult to

classify (Aslam 2000, Valentin 2001). Two neural networks were constructed

using tumour markers and demographic variables and these were shown to

give superior discrimination to the decision tree analysis. The first network
used CA 125, CA 15-3 and age as inputs and obtained a sensitivity of 100%

and a specificity of 90.9% on the test set. This outperformed the only

previously published network to use tumour markers (Zhang 1999).

Two models were validated clinically in this study: the IOTA model and
Timmerman's neural network. Neither of these models had been
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satisfactorily validated in the literature. The best performing model at

prospective validation was found to be the IOTA model. This had a higher

sensitivity than all the other tested models and maintained a good specificity.
The neural network also performed well with an adequate sensitivity and

good specificity. In contrast, Jacobs' risk of malignancy index achieved a low

sensitivity in this study. A significant variation in its performance has been

found previously (Davies 1993, Tingulstad 1996, Morgante 1999, Timmerman

1999, Aslam 2000, Mol 2001, Timmerman 2005). Subjective assessment was as

good as the best model in the discrimination of benign from non-benign
masses.

Ten neural networks were developed using morphological parameters. The

data set was randomly divided into training and test set ten times. For each
division of the data, different morphological variables were significant on

regression analysis. A network was developed for each set of variables. The

performance of these networks was no better than either the validated
models or subjective assessment.

The models were applied to a group of incidentally diagnosed small masses.
Timmerman's neural network and logistic regression model classified the
masses accurately whereas Jacobs' RMI and Tailor's LRM gave a low

sensititivity in the diagnosis of malignancy. Subjective assessment was a

better discriminator than any of the models in this group.

The value of morphological models is questionable. Their accuracy has not
been confirmed in this thesis. Subjective assessment performed as well than

any of the morphological models both in the large and small masses. The
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new tumour marker models in this study were at least as good as the

morphological models.

A comparison of all the models tested and developed in this thesis is

displayed in Table 6.1.
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Table6.1:Anoverviewoftheperformanceofallmodelsinvestigatedinthethesis. Model

Application

Variables

Sensitivity

Specificity

AUC

95%CI

Jacobs'RMI

Prospective

CA125,Menopause,Ultrasoundscore
54.5

84.7

0.621

0.528 0.715

TingulstadRMI

Prospective

CA125,Menopause,Ultrasoundscore
45.5

65.7

0.634

0.540 0.729

TailorLRM

Prospective

Age,TAMXV,Papillaryprojection

45.5

94.1

0.822

0.734 0.910

TimmermanLRM

Prospective

Menopause,CA125,Papillaryprojection, Colourscore

54.5

78.8

0.728

0.697 0.859

TimmermanNN

Prospective

Menopause,CA125,Ascites,Unilocularity, Smoothwall,Papillaryprojection,Bilateral
69.7

79.6

0.791

0.688 0.893

IOTALRM

Prospective

Historyofovariancancer,Hormonaluse,Age, Tumourdiameter,Pain,Ascites,Papillary projectionwithflow,Entirelysolidtumour, Diameterofsolidpart,Irregularinternalwall, Acousticshadows,Colourscore

81.8

72.3

0.857

0.78 0.926

LawrenceNN1

Retrospective
Menopause,Colourscore,Bilateral,Ascites
72.2

90

0.894

0.833 0.955

LawrenceTNN1

Retrospective
Age,CA125,CA15-3

100

90.9

0.959

0.893 1.00



Model

Application

Variables

Sensitivity
Specificity

AUC

95%CI

LawrenceTNN2

Retrospective
Age,CA125,CA15-3,CA72-4

60

90.9

0.85

0.71 0.99

Subjectiveassessment
-

-

72.7

81.8

-

-



6.3 Discussion: The wider context

Research is undertaken to further our knowledge and understanding of the
environment. Within medical research it is hoped that the understanding

gained may lead to benefit for patients. The studies in this thesis increase our

understanding of an aspect of the diagnosis of ovarian cancer. As radiological

investigations become more commonly and widely available, the correct

diagnosis of incidentally found masses is of greater concern. The validation
of models in the classification of these masses has opened up the possibility of
confident preoperative diagnosis. This knowledge could be used to plan

conservative or minimally invasive surgery. The potential risks of major
abdominal surgery and the psychological sequelae of a potential cancer

diagnosis could then be avoided.

The studies in this thesis have demonstrated that subjective assessment of a

mass by an experienced sonographer is at least as good as statistical models in
the diagnosis of malignancy. Expertise in ultrasound is therefore an

important skill in gynaecology. Ultrasound training for gynaecologists
enables dissemination of experience between individuals and centres. The

Royal College of Obstetricians and Gynaecologists in the United Kingdom has

recently developed a Special Skills Module in Gynaecological Ultrasound to

promote training in this area. For those scanners who have not yet accrued

significant experience, statistical models can aid diagnosis.

A limitation of this thesis is the number of women included in the studies.

Although the numbers are greater than most published series, they are
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nonetheless small. The results presented here must therefore be interpreted
within this context.

The ability to detect ovarian cancer at an early stage is an attractive concept.

A number of trials screening for ovarian cancer have investigated this

potential (Jacobs 1999, Skates 2003). Due to the significant morbidity of

surgery for presumed ovarian cancer, a screening programme must minimise

its false positive diagnoses. The work in this thesis could be used to create a

second-line test of expert ultrasonography. This could be offered to screen-

positive women in order to exclude benign adnexal masses.
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6.4 Suggestions for future studies

The tumour markers models developed in this thesis enabled accurate

preoperative discrimination of benign from malignant masses. These models
should be validated in a prospective, multicentre study. The analysis of large
numbers of small proteins in the serum of patients with ovarian malignancy
has become possible through the use of mass spectroscopy (Petricoin 2003).

This emerging field of proteomics may yield valuable markers that could be

incorporated into statistical models.

The use of tumour markers could be combined with ultrasound to increase

their specificity. The use of subjective analysis could exclude those benign

tumours with high levels of tumour markers such as endometriomas and
dermoids. The subsequent application of tumour markers would yield a

lower number of false positive results. Alternatively, subjective analysis
could be used to characterise the tumours into specific types. The tumour

marker models could then be applied to those masses found difficult to

characterise.

Measurement of the learning curves of trainee ultrasonographers may enable
more targeted training in the diagnosis of ovarian malignancy. A cut off

experience level may be identified above which subjective assessment of the
tumour is more accurate than application of published models.

New ultrasound modalities have been developed that may improve the

sensitivity of imaging of blood flow in tumours. The use of three-dimensional
colour Doppler assessment to visualise the spatial geometry of vessels may
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improve the detection of malignancy. Intravenous contrast agents such as

microbubbles may allow dynamic quantification of blood flow within a mass.

Studies on hepatic imaging have shown increased sensitivity in the diagnosis
of metastases and the detection of smaller lesions than previously possible

(Blomley, 2001). A pilot study in ovarian cancer has shown promising results

(D'Arcy, 2004).
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Appendix I: International Federation of Gynaecology and Obstetrics

(FIGO) staging for primary carcinoma of the ovary

Stage Stage Description

Stage 1 Growth limited to the ovaries

IA Growth limited to one ovary; no ascites containing malignant cells. No
tumour on the external surface; capsule intact

IB Growth limited to both ovaries; no ascites containing malignant cells. No
tumour on the external surface; capsule intact

IC Tumour either stage 1A or 1B but with tumour on the surface of one or

both ovaries; or with capsule ruptured; or with ascites present containing

malignant cells or with positive peritoneal washings

Stage II Growth involving one or both ovaries with pelvic extension
IIA Extension and/or metastases to the uterus and/or tubes

IIB Extension to other pelvic structures
IIC Tumour either Stage IIA or IIB but with tumour on the surface of one or

both ovaries; or with capsule ruptured; or with ascites present containing

malignant cells or with positive peritoneal washings

Stage III Tumour involving one or both ovaries with peritoneal implants outside the

pelvis and/or positive retroperitoneal or inguinal lymph nodes. Superficial
liver metastasis equals Stage III. Tumour is limited to the true pelvis but
with histologically proven malignant extension to small bowel or

omentum.

IIIA Tumour grossly limited to the true pelvis with negative nodes but with
histologically confirmed microscopic seeding of abdominoperitoneal
surfaces.

IIIB Tumour of one or both ovaries with histologically confirmed implants of

abdominoperitoneal surfaces, none exceeding 2cm in diameter. Nodes

negative.
IIIC Abdominal implants >2cm in diameter and/or positive retroperitoneal or

inguinal nodes.

Stage IV Growth involving one or both ovaries with distant metastasis. If pleural
effusion is present, there must be positive cytologic test results to allot a
case to Stage IV. Parenchymal liver metastasis equals Stage IV.
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Appendix II: Information sheet on the value of biochemical markers and

ultrasound in the management of ovarian cysts.

KING'S
COLLEGE

HOSPITAL

We are asking for your help with research that is being carried out in our hospital. We are trying to improve the
care we offer to women with ovarian cysts by reducing the need for operations to remove them.

What is the problem?

Today you have had a scan, which showed a cyst arising from one of your ovaries. Sometimes it can be difficult to
decide whether cysts like yours need to be removed surgically or whether it is safe to leave them alone.
What are we trying to do?
We believe that by measuring different biochemical markers in the blood, we may be able to tell which ovarian

cysts may cause problems in the future, requiring an operation to remove them and which can be measured without
an operation.

What happens if you decide to take part?

These biochemical markers are measure in the blood. We routinely take a blood sample to check a well-established
marker called CA125 and we will take an extra blood sample to check the new biochemical markers at the same

time.

How will measuring these markers affect your care?
As the value of these biochemical markers has not yet been investigated, these results will not affect your care.
However, if they are found to be useful then they may benefit women in the future.
Do you need to do anything else?
No. This study does not need any extra visits to hospital or blood tests.

What if you decide not to take part?

Participation is voluntary and you may decide not to take part or to withdraw at any time without giving a reason.

This will not affect the medical care you receive in any way.

What happens now?

If you agree to take part in the research study then we will ask you to sign a consent form. We will give you a letter
for your doctor, which will include a contact telephone number in case of emergency.

Please do not hesitate to ask the doctors or nurses after you if you have any questions. Thank you for your help.

Alex Lawrence Davor Jurkovic

Study Investigator Consultant Obstetrician and Gynaecologist
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Appendix III: GP letter

Early Pregnancy and Gynaecology Ultrasound Unit

Ruskin Wing

King's College Hospital
Denmark Hill

London SE5 9RS

Dear Doctor,

Your patient has consented to take part in our study "The value of biochemical markers and

ultrasound in the management of ovarian cysts". This involves the routine ultrasound scan

and CA125 estimation. One extra blood sample has been taken at the time of CA125

estimation for the analysis of novel tumour markers. The study does not involve any other

procedures or hospital visits. As the value of these markers has not yet been evaluated, the
care of your patient will not be affected. However, if they are found to be of value, they may
benefit women in the future.

If you have any questions regarding the study, please contact me on 0171 346 3168.

Yours sincerely,

Mr. Davor Jurkovic

Consultant Obstetrician and Gynaecologist
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Appendix IV: Consent form: Study of the value of biochemical markers

and ultrasound in the management of ovarian cysts.

KING'S
COLLEGE

HOSPITAL

I understand the scan I have had today has shown a cyst arising from my ovary. This research study is

investigating whether ultrasound scans can be used with markers in the blood to tell whether an ovarian cyst

requires surgical removal.

I have been fully informed and have received the patient information leaflet "Study of the value of biochemical

markers and ultrasound in the management of ovarian cysts".

All information gained will be confidential and there is no possibility of my being identified.

I agree to have a second sample of blood taken for the measurement of new markers. I understand that taking part
in the study will not help my care but may benefit women in the future.

I understand that if I decide not to take part in the study or later withdraw, I do not have to give a reason for my
decision and it will not prevent me from obtaining the health care I need.

I have had all my questions answered satisfactorily and I consent to enter this study.

Name

Hospital Number

Signature of patient
Date

Signature of investigator

Date approved by ethics committee 15/2/2002 Number 00-048
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Appendix V: Tumour marker methods

All assays were performed in duplicate and any samples where either of the

duplicate values did not fall into within 10% of the other were reassayed.
When a quality control value differed by greater than 10% from previous

assay means, the assay was repeated.

HER-2/neu

HER-2/neu assay was performed using a commercially available magnetic

particle separation immunoassay on the random access automated Bayer

Immuno 1 immunochemistry analyzer (Bayer Corporation, New York, USA).

The assay uses two monoclonal antibodies (Mab) that bind to independent

binding sites on the HER-2/neu extracellular ligand-binding domain (ECD).

Reagent 1 contains the Mab NB-3, which is conjugated to fluorescein.

Reagent 2 contains a monoclonal Fab fragment, which is conjugated to

alkaline phosphatase. The serum samples were thawed at room temperature

and mixed thoroughly before use. Reagent 1 (65 pL), Reagent 2 (65 pL), and
serum sample or calibrator (20 pL) are incubated for 20 minutes at 37°C.

Magnetic particles covalently coated with anti-fluorescein Mab (20 pL) are

then added to capture sandwich immunocomplexes. After 28 minutes, the

magnetic particles are washed and a colorimetric substrate reagent

containing para-nitrophenyl phosphate is added causing an indicator
reaction. The alkaline phosphatase (ALP) in the antibody conjugate reacts

with the para-nitrophenyl phosphate to form para-nitrophenoxide and

phosphate (Figure A.l). The concentration of the HER-2/neu is proportional
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to the concentration of para-nitrophenoxide. This is measured

photometrically by the rate of increase of light absorbance at a wavelength of
either 405 or 450nm.

Figure A.1: The colorimetric reaction of p-nitrophenyl phosphate

para-nitrophenyl phosphate ALP para- nitrophenoxide

+ +

H,0
Mg2

phosphate

Evaluation of results

The average absorbency (Y) of each reference standard is plotted against its

corresponding concentration (X) to form a calibration curve using a cubic-

through-zero curve-fitting algorithm. The value of each sample is

determined by simple interpolation from this curve.

Specificity, Sensitivity and Precision

The assay was tested for specificity by the manufacturer, and found to have

cross-reactivity with human epidermal growth factor of less than 0.06%. The

assay sensitivity was found to have a minimum detectable concentration of

O.lng/mL. The intra-assay precision was 1.6% and inter-assay precision

ranged between 1.1 to 1.7% (Payne, 2000)
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Cancer Antigens (CA 15-3, CA 19-9, CA 72-4)

The assay for the cancer antigen 15-3 (CA 15-3) used a commercially
available solid phase sandwich immunoassay format (Bayer Corporation,
New York, USA). A monoclonal antibody specific to CA 15-3 (115D8

Antibody Conjugate) or Reagent 1 was mixed with the serum sample or

control and monoclonal ImmunoMagnetic Particles (mIMP ®) and incubated

on the random access automated Bayer Immuno 1 immunochemistry

analyzer. The DF3 Enzyme Conjugate or Reagent 2 is then added and

incubated for a second time during which the antibody complex is bound.

Following this, the complex is washed and the para-nitrophenyl phosphate

(pNPP) substrate is added. The alkaline phosphate in the antibody conjugate

reacts with the pNPP to form para-nitrophenoxide and phosphate.

Increasing absorbance, due to the formation of para-nitrophenoxide, is

monitored at 405 nm and 450 nm. Samples with values above the upper

range of the calibration curve were diluted with Bayer SETpoint CA 15-3

Assay Zero Calibrator to bring the concentration within the calibration curve

and reassayed. A sample with no CA 15-3 will have the minimum label

bound, while a sample having a high CA 15-3 will have maximum label
bound. Thus, the dose-response curve is proportional to the DF3 reactive
determinants in the sample.

A similar method is used for the CA 19-9 assay with the monoclonal

antibodies: 1116-NS-19-9 Antibody Conjugate (Reagent 1) and 1116-NS-19-9

Enzyme Conjugate (Reagent 2).
The CA 72-4 assay uses two monoclonal antibodies specific to CA 72-4: cc49

Antibody Conjugate (Reagent 1) and B72.3 Enzyme Conjugate (Reagent 2).
The reagents for all assays are light sensitive so once opened were stored in
the dark at four degrees centigrade.
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Evaluation of results

The average absorbency (Y) of each reference standard is plotted against the

corresponding concentration (X) to form a calibration curve using a cubic-

through-zero curve-fitting algorithm. The value of each sample is
determined by simple interpolation from this curve.

Sensitivity and Precision

The minimum sensitivities (Table A.l) and precision (Table A.2) are shown

below.

Table A.1: Minimum sensitivities of cancer antigen assay kits (data supplied by
manufacturer with assay kit).
Cancer Antigen Minimum detectable (U/mL)

15-3 0.2

19-9 0.8

72-4 0.3

Table A.2: The intra and inter-assay coefficients of variation for cancer antigen assays (data

supplied by manufacturer with assay kit).

Cancer Antigen
Intra-assay Coefficient of

Variation (%)

Inter-assay Coefficient of
Variation (%)

15-3 3.0 4.0

19-9 3.5 4.5

72-4 3.0 6.0
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Cancer Antigen 125

CA 125 assay was performed as previously described using a heterologous

assay using monoclonal antibodiesMil and OC125 incubated on the random
access automated Bayer Immuno 1 immunochemistry analyzer (CA 125 II,

Bayer Corporation, New York, USA) according to the manufacturer's
instructions.
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Appendix VI: Conference proceedings

Lawrence AC, Aslam N, Elson CJ, Salim ZR and Jurkovic D. Incidental

discovery of small adnexal tumours: how well do the conventional

diagnostic models work? 29th British Congress of Obstetrics and

Gynaecology. Birmingham, UK. July, 2001.

Lawrence AC, Aslam N, Woelfer B, Elson CJ and Jurkovic D. Diagnosis of
ovarian cancer with ultrasound, serum CA125 and logistic regression. 10th

World Congress on Ultrasound in Obstetrics and Gynaecology.

Zagreb, Croatia. October, 2000.

Lawrence AC, Aslam N, Elson CJ, Salim ZR and Jurkovic D. Incidental

discovery of small adnexal tumours: how well do the published models
work? 11th World Congress on Ultrasound in Obstetrics and Gynaecology.

Melbourne, Australia. October, 2001.
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