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Abstract

This work concerns the construction and testing of an optical tweezers-based

force transducer, and its application to a hard-sphere colloidal system. A

particle in an optical trap forward-scatters a fraction of the trapping light,

which is collected in order to give high-resolution information on the trapped

particle’s position relative to the trap centre. The system is then calibrated

to convert particle displacements to forces. The colloid used in this study is

a density- and refractive index-matched suspension of PMMA particles, radius

860 ± 70nm, with volume fractions in the range φ = 40 → 62%. Passive

microrheological measurements have yielded information about rearrangements

in a tracer’s cage of nearest neighbours, as well as highly localised measurements

of the high-frequency viscosity, where the presence of the colloidal host causes

around a tenfold increase compared to the bare solvent case. Measurements have

also demonstrated the effect of sample history on local short-time self-diffusion

coefficient, with perturbations caused by translating a particle within the sample

taking up to an hour to relax in a φ = 58% sample. The high resolution particle

tracking offered by this technique has also allowed for the first measurement of

structure at a shorter lengthscale than the ‘dynamic cage size’ observed using

other experimental techniques. In addition, active measurements have shown the

emergence of a yield stress on the order of 5Pa as the volume fraction approaches

the glass transition at φ ≈ 58%.

i



ii



Declaration

This thesis has been composed by me and has not been submitted in any previous

application for a degree. The work reported within was executed by me, unless

otherwise stated.

Laurence Wilson

April 2007

iii



iv



Acknowledgements

There are a number of people to whom I owe a great debt of gratitude for their

help and support during the preparation of this thesis. Firstly, I would like

to thank my supervisors Wilson Poon and Jochen Arlt; without their scientific

expertise, patience and enthusiasm, this project would have been impossible.

Special thanks are due to Rut Besseling and Andy Schofield for their help with

the provision and preparation of colloidal samples, as well as their willingness to

answer all manner of questions related to colloids. I would also like to acknowledge

fruitful discussions with Mike Cates, Richard Blythe and Gennady Chuev during

the analysis of results. Thanks also to Andrew Garrie and Hugh Vass for their

technical assistance, and to Bill van Megen for providing me with the results

of his light scattering experiments. The contributions of Lucio Isa and Andrew

Harrison in the proofreading of this thesis were also gratefully received.

On a less academic level, I’d like to acknowledge the other members of the

condensed matter and applied optics groups, as well as the other Usual Suspects,

for making JCMB such an enjoyable place to work. Outside the department, I

owe many thanks (and pints) to Adrian, Dave et al. from A.V. for protecting my

sanity through excessive volume. Above all, particular thanks are due to Alice,

Don and Kata who have an unnerving ability to sense when I need cheering

up. More generally, I should thank my family for the moral (and, on occasion,

financial) support during the preparation of this work. Finally, many, many

thanks to Emma for all her patience and understanding while I have been writing

this thesis.

v



vi



Contents

Abstract i

Declaration iii

Acknowledgements v

Contents vii

List of figures xi

1 Introduction 1
1.1 Optical tweezers . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Colloids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Optical tweezers in colloids . . . . . . . . . . . . . . . . . . . . . . 4
1.4 Thesis Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.5 Thesis layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2 Optical Tweezers Theory 11
2.1 Optical forces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.1.1 Radiation pressure . . . . . . . . . . . . . . . . . . . . . . 11
2.1.2 Optical gradient force . . . . . . . . . . . . . . . . . . . . 12

2.2 Analysis of data . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.2.1 Frequency domain analysis - theory . . . . . . . . . . . . 15
2.2.2 Frequency domain analysis - practice . . . . . . . . . . . . 17
2.2.3 Time domain analysis . . . . . . . . . . . . . . . . . . . . 19

3 Optical Setup and Characterisation 21
3.1 Optical tweezers basics . . . . . . . . . . . . . . . . . . . . . . . . 22
3.2 Apparatus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.3 Position detection . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.3.1 Small displacements (<400nm) . . . . . . . . . . . . . . . 28
3.3.2 Larger displacements (>400nm) . . . . . . . . . . . . . . . 29

3.4 Optical characterisation . . . . . . . . . . . . . . . . . . . . . . . 30
3.4.1 Verification of force calibration . . . . . . . . . . . . . . . 30
3.4.2 Calibrating lengthscales . . . . . . . . . . . . . . . . . . . 34

vii



CONTENTS

3.4.3 Aside - power spectra of normalised data . . . . . . . . . . 35

3.4.4 Verification of length scale calibration . . . . . . . . . . . . 37

3.5 Calibration summary . . . . . . . . . . . . . . . . . . . . . . . . . 41

4 Colloids Background and Methods 43

4.1 Observation tools . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.1.1 Light scattering . . . . . . . . . . . . . . . . . . . . . . . . 44

4.1.2 Confocal microscopy . . . . . . . . . . . . . . . . . . . . . 47

4.2 Hard-sphere colloidal systems . . . . . . . . . . . . . . . . . . . . 48

4.2.1 Nature and properties . . . . . . . . . . . . . . . . . . . . 48

4.2.2 Phase behaviour and metastability . . . . . . . . . . . . . 48

4.3 Rheology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.3.1 Macrorheology . . . . . . . . . . . . . . . . . . . . . . . . 53

4.3.2 Microrheology . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.4 Colloidal sample preparation and characterisation . . . . . . . . . 57

4.4.1 Stock sample preparation . . . . . . . . . . . . . . . . . . 57

4.5 Characterisation of stock . . . . . . . . . . . . . . . . . . . . . . . 59

4.5.1 Light scattering . . . . . . . . . . . . . . . . . . . . . . . 59

4.5.2 Characterisation of suspension medium . . . . . . . . . . 60

4.6 Preparation of individual samples . . . . . . . . . . . . . . . . . . 60

4.6.1 Sample cells . . . . . . . . . . . . . . . . . . . . . . . . . . 61

5 Static Measurements in Dense Colloidal Suspensions 65

5.1 Power spectrum analysis in dense colloidal samples . . . . . . . . 66

5.1.1 Ds
s on approach to the glass transition, φ = 54 → 57% . . 66

5.1.2 Ds
s at and above the glass transition, φ = 58%, 62% . . . . 71

5.2 Time-series data . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

5.2.1 Volume fractions below the glass transition . . . . . . . . . 75

5.2.2 Volume fractions above the glass transition . . . . . . . . . 82

6 Dragging measurements - Active Microrheology 85

6.1 Average forces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

6.1.1 First approximation - effective viscosity . . . . . . . . . . . 85

6.2 Displacement histograms . . . . . . . . . . . . . . . . . . . . . . . 91

6.2.1 Dragging experiments in samples with φ < φg . . . . . . . 91

6.2.2 Dragging experiments in samples with φ ≥ φg . . . . . . . 97

6.3 Size of Rearrangement events . . . . . . . . . . . . . . . . . . . . 101

6.3.1 The peak extraction routine . . . . . . . . . . . . . . . . . 103

6.3.2 Peak size distribution . . . . . . . . . . . . . . . . . . . . . 103

6.3.3 Variation with φ and drag speed . . . . . . . . . . . . . . . 105

viii



CONTENTS

7 Conclusion and Outlook 107
7.1 Optical characterisation . . . . . . . . . . . . . . . . . . . . . . . 107
7.2 Static measurements . . . . . . . . . . . . . . . . . . . . . . . . . 108
7.3 Dynamic measurements . . . . . . . . . . . . . . . . . . . . . . . . 108
7.4 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

A Timeline for experimental work 113

Bibliography 115

ix



CONTENTS

x



List of Figures

2.1 An ideal Lorenztian spectrum. . . . . . . . . . . . . . . . . . . . . 18
2.2 The effects of antialiasing on high-frequency data. . . . . . . . . . 19
2.3 An ideal mean-squared-displacement graph. . . . . . . . . . . . . 20

3.1 The numerical aperture of a lens is obtained from the geometry of
the focused beam, and the refractive index of the sample medium.
The immersion oil (which lies between the lens and the sample
slide) has been omitted for clarity. . . . . . . . . . . . . . . . . . . 22

3.2 Schematics for the two main optical tweezers configurations. In
the standard configuration, the particle’s weight (denoted g) and
the scattering force (denoted Fs, see section 2.1.1) are parallel,
whereas they are antiparallel in the inverted layout. . . . . . . . . 23

3.3 Schematic of the optical tweezers force-measurement system. . . . 24
3.4 Schematic of the effects of NA on trapping strength. . . . . . . . . 25
3.5 Schematic of the quadrant photodiode (QPD) signal processing.

The factor of V −1 in the expressions for Rx and Ry is related to
the normalisation of the signal, discussed in more detail in section
3.4.3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.6 Images recorded using a CCD camera attached to a computer with
a frame-grabbing card. . . . . . . . . . . . . . . . . . . . . . . . . 31

3.7 Displacements from equilibrium as a function of stage speed, as
recorded by the CCD camera. . . . . . . . . . . . . . . . . . . . . 32

3.8 Optical trap stiffness as a function of laser power, with both data
(red crosses) and theoretical prediction (green line). . . . . . . . . 33

3.9 Sensitivity of the detection system as a function of laser power. x
and y sensitivities are plotted on the left-hand vertical axis, and z
sensitivities on the right. . . . . . . . . . . . . . . . . . . . . . . . 35

3.10 One-dimensional mean-squared displacements for particles in a
bare solvent, with different laser powers (and hence trap stiffness).
The amplitudes of the long-time plateaux increase with decreasing

laser power; the curves are stacked in the same order as the figure
key. The thick line in the upper plot represents the mean-squared
displacement of a freely diffusing tracer in this solvent, calculated
using the solvent viscosity measured in section 4.5.2. . . . . . . . 36

xi



LIST OF FIGURES

3.11 Normalised x-axis power spectra for a selection of the experiments
in figure 3.10. Note that the high-frequency portions of the graphs
overlap. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.12 QPD response to a known bead displacement. The inset shows the
deviation from a straight line fit to the portion of data between -
0.35µm and 0.35µm. . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.13 Histograms of particle position from Stokes drag measurements.
The peaks in the negative and positive halves of the graph are
different heights in the case of the slower drag speed because the
recording does not cover a whole number of cycles of positive and
negative velocity. . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.14 Actual displacements against displacements according to QPD. . . 40

3.15 2D histogram of tracer position in bare solvent, at a sampling rate
of 2kHz, bin size 2.5nm. The colour bar indicates the number of
scans falling in each bin. . . . . . . . . . . . . . . . . . . . . . . . 42

3.16 Histograms of X- and Y-coordinates. The curved lines are
Gaussian fits to the data. . . . . . . . . . . . . . . . . . . . . . . . 42

4.1 Schematic of the light-scattering process. . . . . . . . . . . . . . . 45

4.2 Theoretical form factor for a spherical particle. . . . . . . . . . . . 47

4.3 Hard-sphere system phase diagram. . . . . . . . . . . . . . . . . . 49

4.4 Schematic of the α and β timescales. . . . . . . . . . . . . . . . . 50

4.5 The responses of an ideal liquid and an ideal solid to a step stress
and a step strain. . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.6 Light scattering results. . . . . . . . . . . . . . . . . . . . . . . . 60

4.7 Rheological measurements of solvent viscosity as a function of
temperature. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.8 Sample holder for high volume fractions. . . . . . . . . . . . . . . 63

4.9 Sample holder for low volume fractions. . . . . . . . . . . . . . . . 64

5.1 Power spectra for tracer motion in a φ = 54% suspension, mean
Ds

s/D0 = 0.119, compared to the literature value mean 0.12. . . . 67

5.2 Power spectra for tracer motion in a φ = 56% suspension, mean
Ds

s/D0 = 0.112, compared to the literature value mean 0.106. . . 67

5.3 Power spectra for tracer motion in a φ = 57% suspension, mean
Ds

s/D0 = 0.081 compared with the literature value mean 0.09. . . 68

5.4 Power spectra for tracer motion in a φ = 40% suspension compared
to a power spectrum from a bare solvent measurement. Ds

s/D0 =
0.290 in the sample with colloidal host, compared to the literature
value 0.30. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

xii



LIST OF FIGURES

5.5 Comparison of a power spectrum obtained from a 40% suspension
with one from a 57% sample. The 40% sample shows a larger
amplitude at high frequencies (hence lower viscosity), and flatter
low-frequency behaviour. . . . . . . . . . . . . . . . . . . . . . . . 69

5.6 A reproduction of figure 7 from reference [53]. This graph shows
the evolution of particle mean-squared displacements in samples
with 13 volume fractions ranging from φ = 46.6% → 58.3% from
left-most to right-most data. The thick line at the left hand side
describes the motion of a freely diffusing particle in bare solvent.
The horizontal axis is measured in units of Brownian time (the
time taken for a particle to diffuse its own radius in bare solvent)
and the vertical axis shows distance (normalised by particle radius)
squared. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

5.7 A summary of the measurements from this section. Red crosses
represent light-scattering measurements performed by van Megen
et al., and green crosses reflect values obtained by fitting straight
lines to the high-frequency data in figures 5.1 - 5.4. . . . . . . . . 71

5.8 Power spectra for tracer motion in a φ = 58% suspension, mean
Ds

s/D0 = 0.0952 for runs 1 and 5, compared with the literature
value mean 0.094. . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

5.9 Power spectra for tracer motion in a φ = 62% suspension, mean
Ds

s/D0 = 0.0597 from an average of the values obtained in runs
4-7, compared with 0.026 extrapolated from literature values. . . . 73

5.10 Comparison of Ds
s/D0 measured by this optical tweezers study

with previous light scattering studies. The red crosses are light
scattering data from reference [117], the green crosses are power
spectrum measurements from samples with volume fractions below
the glass transition, and blue stars are data from above the glass
transition. The order in which the measurements were made in the
glassy samples has been labelled; the cage relaxation time in the
φ = 58% sample has been found to lie somewhere between 15 and
60 minutes. Relaxation times in the φ = 62% sample are much
longer, although measurements here have put a lower bound of 1
hour on the relaxation time. . . . . . . . . . . . . . . . . . . . . . 74

5.11 Position-time displays of a static measurement in a φ = 57%
suspension. The axis at the right-hand side shows the optical
potential as a function of position. The data from which the short-
time histograms in figure 5.12 were drawn are indicated. . . . . . 76

xiii



LIST OF FIGURES

5.12 1D histograms showing particle x-position at three different times
during the course of a static-trap experiment in a φ = 57%
suspension. Histograms were made of subsections of the total data,
as indicated in the key, to illustrate the short-time behaviour of
the probe. The raw data corresponding to all these histograms
is presented in the time series figure 5.11. The trap stiffness was
κ = 4.11 × 10−3pN/nm. . . . . . . . . . . . . . . . . . . . . . . . . 77

5.13 A schematic diagram showing a cage of particles (numbered 1-
6) rearranging from state (a) to state (b). When the particles
numbered 4 and 5 relax into positions lower down the diagram, the
rest of the cage relaxes, shifting the position of the tracer relative
to the optical trap (denoted by the red circle). The size of the
rearrangement is exaggerated here; the actual probe displacements
observed are about 15% of that pictured. . . . . . . . . . . . . . . 77

5.14 Position-time series for a probe particle in a φ = 57% sample, note
the temporary jump at around 500-600 seconds. The right-hand
axis shows the optical potential energy (U = 1

2
κx2) due to the trap

- the trap stiffness is κ = 2.89 × 10−3. . . . . . . . . . . . . . . . . 78

5.15 (Left) A 2D histogram the measurement in figure 5.14 (tracer
position in a φ = 57% suspension), resampled at 2.5Hz; again,
the colour bar indicates the number of scans falling into each bin.
The total length of the measurement was 15 minutes. . . . . . . . 79

5.16 (Right) A subsection of the run in upper figure from 500-600
seconds, showing short-time behaviour in a cage structure. . . . . 79

5.17 2D histogram of tracer position over 800 seconds in a φ = 57%
suspension. The bin size here is 2.8nm, and the colour bar indicates
frequency. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

5.18 These graphs are subsections of the measurement in figure 5.17.
Figures (a)-(d) are successive 200 second portions (with timeframes
as labelled) showing relatively stable average position over their
duration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

5.19 Time series of the data in figure 5.20. The data has been resampled
from the original rate of 10kHz down to 3.3Hz. . . . . . . . . . . . 83

5.20 2D histogram of displacements in a φ = 62% glassy sample. At the
average particle position, the potential energy due to the optical
trap is ∼32kBT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

5.21 A time series of a measurement in a φ = 62% sample, where a
cage rearrangement occurs at around 1000 seconds. The horizontal
black lines show the range of data used to make the histograms in
figures 5.22 and 5.23, and the mean values for these ranges. The
cage rearrangement accompanies a decrease in optical potential
from 14.8kBT to 13.2kBT . . . . . . . . . . . . . . . . . . . . . . . 84

xiv



LIST OF FIGURES

5.22 2D histogram of data from the first 1000 seconds of the recording
in figure 5.21. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

5.23 2D histogram of data from 1200 seconds to the end of figure 5.21. 84

6.1 Force-time series for dragging experiments in two different volume
fractions, φ = 54 and 58%, at a speed of 0.4µm/s. The slight
negative detour at around 34 seconds in the lower volume fraction
measurement is due to mechanical backlash in the stage motor;
this region is excluded from the analysis of results. . . . . . . . . . 86

6.2 Average force as a function of stage speed and volume fraction.
At volume fractions below the glass transition (φ ≈ 58%), the
suspension appears fluid, with force measured tending to zero
at zero stage speed. Least-squares fits are included for volume
fractions below the glass transition, and the dotted horizontal
line is a guide to the eye, illustrating the qualitative change in
behaviour in the glassy sample. The φ = 0% is a schematic showing
the forces on a tracer in bare solvent, based on the viscosity
measured previously. . . . . . . . . . . . . . . . . . . . . . . . . . 87

6.3 A comparison of active rheology data with that obtained from light
scattering measurements. The effective diffusion coefficients from
dragging experiments are significantly smaller than those obtained
from passive techniques. . . . . . . . . . . . . . . . . . . . . . . . 89

6.4 Effective radius - the distance within which host particles will
directly collide with the probe. The green particles’ centres are
within one particle radius of the probe centre’s path; the red
particles’ centres lie just outside this, but within the effective
radius. The light grey particles’ centres lie outside the effective
radius. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

6.5 Drag histograms in φ = 54%. . . . . . . . . . . . . . . . . . . . . 91

6.6 Distribution of forces in a φ = 56% colloidal suspension during
dragging experiments. . . . . . . . . . . . . . . . . . . . . . . . . 93

6.7 Distribution of forces in a φ = 57% colloidal suspension during
dragging experiments. . . . . . . . . . . . . . . . . . . . . . . . . 94

6.8 Standard Deviation of the histograms in figures 6.5 to 6.7. The
standard deviation in drag measurements is always greater than
that in the static case, and generally increases with faster drag
speeds; in the highest volume fraction, this is not as apparent,
although the mean of the histograms (see figure 6.2) does show a
general increase. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

6.9 Third moment (skewness) of the histograms in figures 6.5 to 6.7.
The overall trend is a decrease in skewness with increasing drag
speed. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

xv



LIST OF FIGURES

6.10 Force histograms for a φ = 58% suspension. The average
displacement is essentially constant, and only increases at the
highest velocities. . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

6.11 At a volume fraction of φ = 62%, the shape of the force distribution
function is irregular, with a high mean value and large standard
deviation. The trapping laser was turned up to its maximum value
to perform these measurements, as the yield stress is large (around
1.2 Pa). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

6.12 Time-force series for a dragging measurement in a φ = 62%
colloidal glass. The data have been down-sampled to 2Hz. . . . . 100

6.13 Position-time series for the lowest and highest volume fractions,
at the same drag speed. The crosses mark out the corners of the
histogram bar for the higher volume fraction. One histogram bin
is equivalent to half a particle radius; although the average speed
in both is the same, the scatter of data points is much larger in
the case of the glassy sample. This is because the particle motion
in the non-ergodic sample is impeded by successive, relatively stiff
particle cages, which allow only erratic progress through the sample.100

6.14 Time-force series for a dragging measurement at 0.2µm/s in a φ =
62% colloidal glass. The data have been down-sampled to 2Hz. . . 102

6.15 A two second subsection of the measurement in figure 6.14. The
data have been down-sampled to 200Hz, so there is the same
number of data points in both the longer and shorter graphs. . . . 102

6.16 Example of peak detection routine, on a section of a measurement
in φ = 58%, drag speed 0.4µm/s. The red line represents
the original data, while the points are the peaks detected using
different time windows. The peaks have been translated vertically
for the sake of clarity. . . . . . . . . . . . . . . . . . . . . . . . . . 104

6.17 Size distribution of rearrangement events in a φ = 56% colloidal
suspension. The thick black lines show the highest and lowest
values of Υ (1.56 and 2.14 respectively). . . . . . . . . . . . . . . 105

6.18 Variation of Υ with drag speed. . . . . . . . . . . . . . . . . . . . 106

xvi



Chapter 1

Introduction

1.1 Optical tweezers

Optical tweezers, first realised by Arthur Ashkin in the mid eighties [1] are

most concisely described as a tool which uses the momentum of photons to

manipulate objects. They have allowed researchers to gain an unprecedented level

of control over their subjects; in the past, scientists have been passive observers

of microscopic events, or have only been able to influence samples intrusively (for

example, with micropipettes) or in the bulk (by washing an entire sample with a

chemical). Optical tweezers allow delicate and precise positioning of microscopic

bodies, such as fungal spores [2], so their interactions may be studied.

The simplest way to visualise the physical mechanism of optical tweezers is

to consider refraction. This phenomenon is well-known; light appears to ‘bend’

on passing from one medium into another with a dissimilar refractive index. The

incident beam of photons arrives with a certain momentum, which is changed

upon interaction with a medium - by Newton’s second law this constitutes a

force acting on the photons. Elementary mechanics also dictates that if a force

is acting on the beam of photons, an equal and opposite force must be felt by

the body responsible for the refraction. Whilst the physical magnitude of a

change in momentum of a photon is small when considered on a macroscopic

scale, microscopic dielectric bodies have masses low enough to be measurably

perturbed, and even picked up by only a few milliwatts of laser radiation.

The actual design of an optical tweezers system has remained largely the same

since its inception around twenty years ago1. A collimated laser beam directed

1Although examples of optical trapping (in a more general sense) were present before this
date, reference [1] is widely considered seminal for optical tweezers.
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Chapter 1. Introduction

into the back of a microscope objective lens forms a tightly focused spot in the

lens’ front focal plane. This focal spot attracts dielectric particles nearby to

its centre, where they are confined, but still buffeted by Brownian forces - a

phenomenon upon which the work in this thesis relies. Since the first realisation

of a single beam trap, various modifications have been suggested to increase the

flexibility of the apparatus. Some of the major improvements include the use of

galvanometer-mounted mirrors [3] to scan the laser across several locations in the

focal plane, allowing the creation of multiple traps or extended line traps. The use

of holographic systems [4, 5, 6] has allowed an extension of this concept, in order

to create user defined ‘optical potential landscapes’ in almost any configuration.

Making microscopic measurements of force is something that is of great

interest to researchers in many fields, from condensed matter physics [7, 8] to

fungal biology [9] and haematology (the study of blood) [10]. As an inherently

microscopic technique, optical tweezers are well suited to such a task. One of

the first papers to measure force and torque quantitatively using optical tweezers

examined bacteria ‘tethered’ to a surface [11], where torques of the order of

1×10−15Nm were measured. Most optical tweezers-based force measurements are

fundamentally linked to measurements of position; in a typical experiment, one

calibrates force measurements by applying a known force to a probe particle,

and measuring the response. This information may be used in later experiments,

where a probe’s displacement is measured and converted back to force. The force

calibration therefore has a critical dependence on the accuracy and resolution of

the position detection system.

In the late 1990s, the use of back focal plane interferometry to measure

position [12, 13] proved a major advance in optical tweezers-based force mea-

surement. Interferometric techniques are not subject to the diffraction limit,

and offer up to a hundred-fold increase in precision compared to standard video

techniques; systems based on this method have been used fairly recently to make

measurements of position down to Ångström level [14]. Position measurements

with a high enough resolution can also simplify the force calibration procedure, by

appealing to thermodynamic principles [15, 16]. This type of procedure (described

in detail in chapters 2 and 3) and techniques developed from it make up the bulk

of this thesis.
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1.2 Colloids

The term ‘colloidal system’ covers a wide range of substances, from airborne

smokes and mists to stained glass. These all come under the definition of

a colloid: “a dispersion of finely divided particles in a chemically distinct

dispersion medium”. The typical size of the finely divided particles is between

ten nanometres and ten micrometres (10−8-10−5m), which is small enough to be

affected by Brownian motion, but too large for quantum mechanics. Colloidal

suspensions have been studied by scientists for more than one hundred years,

stretching back at least as far as Faraday, who studied colloidal gold particles in

the 1850s [17]. The modern view of colloidal physics really takes shape with the

work of Perrin in the early 20th century; his efforts won him the 1926 Nobel prize

for physics, “for his work on the discontinuous structure of matter, and especially

for his discovery of sedimentation equilibrium”. At that time, the existence of

atoms as more than a conceptual device was in doubt; Perrin provided strong

evidence for their physical reality in a set of experiments on spherical colloidal

particles [18]. When observed through a microscope, the spherical particles moved

randomly due to thermal motions in their solvent suspension medium, and from

this Perrin was able to show that the particles obey the equipartition of energy.

He also showed that if left to settle under gravity, the concentration of particles

in a dilute suspension drops off exponentially with height. This last phenomenon

hints at the reason why scientists today are interested in colloidal systems — the

behaviour of Perrin’s dilute suspension was the same as that of gas molecules

under gravity in our atmosphere [19].

Colloidal systems exist in which transitions analogous to the more familiar

phase transitions such as freezing and boiling may be observed directly by

microscopy. The usefulness of colloidal systems as an analogy for atomic and

molecular thermodynamic systems becomes clear when the timescales of phase

changes are taken into account; colloidal systems typically relax from an unstable

state to their equilibrium phase states on timescales of seconds, minutes and

hours. Systems made of real atoms and molecules typically change phase over

much smaller intervals, of order 10−9s or shorter. The slow dynamics of colloidal

systems has allowed the systematic study of curious metastable physical states

such as glasses, which have a structure like a liquid, but mechanical properties

like a solid. It is also possible to ‘tune’ inter-particle forces, for example, by the
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Chapter 1. Introduction

addition of polymers or charged molecules to the solvent medium. These forces

are central in determining the behaviour of suspensions, and experiments with

varied inter-particle attraction have already led to the discovery of new phase

transitions [20].

As well as fundamental research, colloid science is of great interest to

industry. Many commercial products are colloidal in nature, from foodstuffs like

mayonnaise and milk to beauty products and petrochemicals. The production

of such materials could be simplified, and their shelf-life extended, if we had a

better understanding of the microscopic processes that govern their behaviour.

Colloidal systems are interesting not only due to their ubiquity, but also for

their mechanical properties — ‘rheology’ is the study of their deformation and

flow under an external force. Dense cornflour-water mixtures are an example of

a relatively commonplace colloidal substance that exhibits peculiar rheological

behaviour. When stirred slowly, the material acts like a liquid and the ‘wake’

of the stirring device closes up quickly as adjacent material flows into the void

behind it. When stirred faster, the material suddenly takes on the appearance

of a solid, and will fracture and form crumbs, returning to its fluid state some

time later; this is just one particular example of the counter-intuitive behaviour

of colloidal substances.

1.3 Optical tweezers in colloids

Optical tweezers are ideally suited to the study of colloidal systems. The samples

used in the first papers on optical tweezers – suspensions of micrometre-sized

dielectric particles [1] and bacteria [21] (which can be considered a ‘living’ colloid)

– were chosen because their size made them ideal subjects. The techniques used to

study colloids vary in sophistication from the simplest versions, where tweezers

are used to position particles prior to an experiment, through to complicated

force measurement systems, such as the one documented in this thesis. Some of

the more prominent experimental work in this field over the last fifteen years is

reviewed below.
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Manipulation of particles

One of the most straightforward uses for optical tweezers is as a positioning

aid in microscopy. Crocker et al. [22] examined the interaction energy of two

isolated, charged colloidal particles in a bath of electrolyte; this interaction is

of profound significance to colloid physics as it is central to predicting the phase

behaviour of large numbers of such particles. Two particles were positioned using

tweezers and then the trapping laser beam was switched off. The subsequent

motion of the particles is observed, and by this method Crocker et al. were

able to show that the interaction between the particles is in accordance with the

long established DLVO theory2. Extensions to this work in confined geometries

yielded other interesting results; experiments on pairs of particles, 0.5µm radius,

held between two charged glass surfaces (the separation of which is around 5µm)

showed a long-range attraction that is not predicted by the DLVO theory [24].

Other geometrical effects are examined in reference [25], where the hydrodynamic

coupling between particles and the sample cell wall is examined — special effort

is made here to eliminate the effects of charge, by the addition of HCl to the

solvent medium. An increase in solvent viscosity is observed close to the wall

(there is a decrease in the rate at which particles diffuse), and this was found

to be in agreement with theoretical predictions [26]. Faucheux et al. [27] have

demonstrated directed colloidal diffusion using an optical trap scanned in a ring.

A neutral density filter wheel was used to vary the laser intensity around the

ring’s circumference, producing an asymmetric, periodic sawtooth pattern. The

movement observed shows that this is an example of a ‘Brownian ratchet’ whereby

a modulated potential is used to extract directed motion from random noise.

Further investigations into diffusion have sought to elucidate the details of how

microscopic mechanical processes (molecular collisions which are time-reversible)

translate to irreversible macroscopic thermodynamic effects, testing the ‘transient

fluctuation theorem’ of Searle and Evans [28].

Other experiments on colloidal systems include the investigations of Dinsmore

et al. [29], who examined the entropic forces in a colloid made up of particles

of two different radii, 42nm and 230nm, in different environments. The small

2The DLVO potential – DLVO is an acronym for “Derjaguin-Landau-Verwey-Overbeek” –
describes the interaction energy of two charged particles, each surrounded by a cloud of ions
with the opposite charge to their own. See reference [23] for a review of interparticle interactions
and phase behaviour in colloids.

5



Chapter 1. Introduction

particles’ entropy is maximised when the volume per particle is maximised;

this results in the larger particles diffusing preferentially into corners and more

restricted spaces. Optical tweezers were used to position the larger particles at the

start of the experiments before being switched off so the freely diffusive motion

could be observed. As well as positioning particles and then releasing them, other

researchers have used tweezers to transport particles to particular locations where

they are immobilised, serving as templates for colloidal crystal growth [30].

Typically, colloidal particles for use with optical tweezers will be transparent

and have a refractive index higher than that of the suspensions medium; if they

do not, then stable trapping is impossible in a static Gaussian beam. By using

either a scanning laser beam [31, 32], or ring-shaped traps created by Laguerre-

Gaussian mode patterns [33], metal particles and particles with a lower refractive

index than the solvent have been trapped. This use of more exotic trap shapes

with non-Gaussian intensity distributions also provides other advantages; as well

as forming ‘hollow’ or ring-shaped traps, Laguerre-Gaussian beams have been

shown to have orbital angular momentum [34] which can be used to provide

a constant rotation speed for small arrays of particles [35]. Bessel beams [36]

have also been used to hold arrays of colloidal particles, even in two different

sample cells simultaneously (the cells were separated by a distance of around

100µm). This was possible due to the Bessel beam’s curious property of ‘self-

reconstruction’ whereby the perturbations to the optical field caused by trapped

particles are highly localised along the propagation direction.

The creation of non-Gaussian intensity patterns in the visual field of a

microscope has been facilitated by the use of diffractive optics placed in a plane

conjugate to the back focal plane of the objective lens. Either static patterns [4]

or computer-addressed spatial light modulators [37] may be used to generate the

trap arrays in the objective’s front focal plane. This kind of diffractively produced

array is capable of sorting colloidal particles in a liquid flow [38], by providing

an ‘optical potential landscape’ with a filtering effect that depends on the size of

the particles.

Microrheology with Optical Tweezers

Microrheology is an extension of conventional rheology to the level of individual

particles. Optical tweezers are an ideal tool for the investigation of the microrhe-
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ology of hard-sphere colloids, as existing experimental techniques developed for

rheological measurements in other complex fluids such as polymer or biopolymer

solutions [39, 40, 41], viral suspensions [42] and worm-like micelles [43, 44] may be

used — see reference [45] for an overview. Studies usually take the form of either

passive or active measurements. In the passive measurement case, the optical

trap is used to hold a particle still and measure fluctuations in its position, and

how they are affected by the surrounding medium. If the diffusive motion of a

single particle in the absence of host colloid (the ‘bare solvent’ case) is known,

the effect of the host colloid can be obtained. In the case of active measurements

the optical trap is weakened, or moved relative to the surrounding suspension,

and the forces that the trapped particle experiences are measured.

Passive studies in this field includes the studies by Meiners et al. [46] and

by Henderson et al. [7, 47] where the interactions between two neighbouring

colloidal particles in a very dilute suspension are measured with high precision,

using the same quadrant photodiode method for particle tracking that is used

in this thesis. The first authors found that although the suspension medium is

typically taken to show no long-time ‘memory’ effects in a colloid, the particles are

in fact hydrodynamically coupled; the second group of authors went on to show

that this interaction propagates at the speed of sound in the solvent. Greinert

et al. [48] studied the behaviour of a passive tracer particle (radius 550nm)

in a suspension of laponite clay, which is composed of disc-like particles 15nm

in radius, in water. The authors define an effective temperature for the tracer

particle, and monitor how it changes with time after the sample preparation,

measuring a marked increase as the sample becomes glassy. Experiments on

a similar system were conducted by Mizuno et al. [49], where the researchers

observe the mechanical response function of an ageing colloid, finding good

agreement with the fluctuation-dissipation theorem, apparently contradicting the

previous study.

Active measurements have also been performed on colloids. For example, Yada

et al. [50] investigated the interparticle forces between two colloidal particles in a

suspension of nematic liquid crystals, and how it is affected by defects in the local

structure. Smalyukh et al. [51] also conducted experiments on liquid crystals,

looking at the tension in line defects within a liquid crystal matrix. The study

that is most similar to this thesis is the one by Meyer et al., [8] where a large probe
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particle is dragged through a dilute host. Samples of refractive-index-matched,

irregularly shaped fluorinated ethylene propylene (FEP) particles, as well as

fluorescently tagged poly-methyl methacrylate (PMMA) spheres were used. It

was found that the viscosity of the suspensions increased with volume fraction

in the case of the FEP, as predicted theoretically. Analysis of the fluorescence

images acquired during dragging in the PMMA suspension show the formation

of a dense boundary layer of particles ahead of the probe, as well as a distinctive

‘wake’ forming behind the dragged particle.

1.4 Thesis Summary

In preparation for the experiments documented in this thesis, I have constructed

(in collaboration with postdoctoral researcher Dr. Jochen Arlt — a description

of the division of labour is presented in the appendix) an optical tweezers system

capable of highly accurate position and force measurement from open-bench

optical components, in contrast to most other optical tweezers systems that are

constructed around a commercially available microscope. Our type of system

has two main advantages; firstly that all conjugate focal planes are immediately

accessible, which helped with equipment positioning and beam alignment, and

secondly that we were able to choose specialised components to construct the

system, with a view to reducing experimental noise due to mechanical vibrations.

Colloidal samples of PMMA were prepared and characterised, with particular

attention paid to the density and refractive index matching of the suspension.

The radius of the particles was measured using static light scattering, which

also determined the sample polydispersity (the standard deviation of particle

size divided by the mean); an upper bound on this quantity had already been

established by observing that the samples crystallize. Sample cells were developed

and optimised for optical tweezers studies, with particular care taken when

dealing with high volume fractions, where self-filtration phenomena have been

documented [52].

Volume fractions above and below the glass transition were studied with

both passive and active techniques. The high position resolution and recording

bandwidth of this method have allowed measurements of the short-time self-

diffusion coefficient within a single cage, as well as providing a first sight of
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structure within the ‘dynamic cage’ observed by photon correlation spectroscopy

(dynamic light scattering) and confocal microscopy. The large-displacement

calibration has allowed the first non-linear microrheological measurements in a

hard-sphere glass, as well as the observation of a qualitative change from liquid-

like behaviour to that of a solid on approach to the glass transition. Finally,

an advanced peak-detection routine based on wavelet techniques has shown that

particle rearrangement events during drag measurements have no characteristic

time scale. The size distribution of stress relaxation events is governed by a

critical exponent, which varies as a function of drag speed. For drag speeds

below 1µm/s, the same general trend is apparent at all volume fractions: faster

drag speeds lead to more small relaxations, whereas slow drags have an event

distribution more biased towards large events.

1.5 Thesis layout

This thesis is composed of two parts: the theory, construction and characterisa-

tion of a force-calibrated optical tweezers system in chapters 2 and 3; and the

preparation of, and experiments on, a hard-sphere colloidal system in chapters 4

- 6.

Chapter 2 contains the theoretical background to the optical tweezers

technique, including a model of the optical trapping mechanism based on

electromagnetic theory. This chapter also introduces some of the mathematical

techniques used in the data analysis; their subtleties are explored in greater detail

in later chapters. Chapter 3 describes the main design principles behind optical

tweezers, and a description of the apparatus. Details of the careful calibration

procedure, as well as the cross-checks between calibration methods can also be

found here. Chapter 4 contains a brief background to the colloidal experiments,

including an introduction to rheology and other experimental techniques. Sample

characterisation data is also in this chapter, as are light-scattering measurements

to determine the particle core size, and bulk rheology measurements of the solvent

viscosity. Finally, this chapter gives details of sample cell construction and loading

procedures.

Chapters 5 and 6, give the main experimental results. Comparison is

made with other experiments in the literature, with particular reference to
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the light scattering measurements of van Megen et al. [53], and the bulk

rheological measurements on colloidal systems by Petekidis et al. [54]. Finally,

chapter 7 summarizes the information obtained, along with suggestions for future

experiments based on this study.
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Chapter 2

Optical Tweezers Theory

The theoretical basis for this study of optical tweezers is broken down here into

two sections. Firstly, a description of the trapping force is presented, based

on an electromagnetic approach adopted in reference [55], including a method

for quantitative predictions of trap stiffness. Secondly, specific methods of data

analysis are presented, particularly power spectrum techniques, and their use for

extracting trap stiffness and the diffusion coefficient for a trapped particle.

2.1 Optical forces

There are two competing processes central to optical trapping, both are functions

of electric field strength: radiation pressure (which is a function of E2) and the

optical gradient force (a function of ∇E2).

2.1.1 Radiation pressure

Optical trapping, like many other scientific phenomena, was first discovered by

accident. In the nineteen-seventies, Steven Chu and co-workers noticed that stray

dust inside a laser tube was being confined within a laser beam, as opposed to

diffusing in and out in a more random fashion [56]; this was later the subject of

an experiment by Ashkin [57] at the same laboratories. Once in a laser beam,

the dust was propelled in the direction of laser propagation by radiation pressure

(explained in this section). This propulsive effect was initially used to support

the weight of small droplets of water in an upward-pointing laser beam [58], in

the guise of ‘optical levitation’.

Although radiation pressure effects are small in magnitude, they are respon-
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sible for some macroscopic phenomena. An example would be the tails seen

following comets, due to the icy nucleus moving under gravity against a solar

‘headwind’ of photons. Radiation pressure can be approximately quantified using

a basic photon momentum picture. If a photon has momentum p = h̄k, upon

being reflected through 180◦ from an object it exerts a force F on the object

F =
∆ptotal

∆t
=

2p

∆t
(2.1)

The force exerted by one photon is exceedingly small, of order 10−27N, but

the force exerted by many photons in a laser beam can become significant under

some circumstances. For a beam with a total power P , resulting from a flux of Np

photons per unit time, a simple calculation of the force due to radiation pressure

would be:

P =
Npch̄k

∆t

F = 2Np
p

∆t

F = 2
P

c
(2.2)

For example, the force exerted by a laser beam of power 50mW is 300pN; this

force is very significant at microscopic length scales. To put it into perspective,

common protein-protein interactions occur with forces on the order of 20pN, and

unwinding a strand of DNA requires about 50pN [35].

2.1.2 Optical gradient force

The first experimental realisation of the optical gradient force in the manner of

optical tweezers was again by Ashkin, in the mid eighties [1], following on from

experiments into the confinement of particles in collimated laser beams. When

examining exactly how the gradient force in optical tweezers works, it is important

to recognise the length scales being considered. Other authors have analysed

optical trapping both in the λ ≪ r (ray optics regime) [59], or λ ≫ r (Rayleigh

regime, implying a dipole approximation for the trapped particle), where r is
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the approximate scale of the subject [12]. Both of these approximations have

only limited validity in this study, where λ ≈ r. The tight focusing of the laser

beam, effectively down to the diffraction limit, means that the scalar diffraction

approximations of the Rayleigh and ray optics descriptions are insufficient for

a rigorous analysis of the process. The authors in reference [60] have reported

that even higher order corrections to either Rayleigh or ray optics theories are

insufficient to accurately predict the trapping force on spheres with radii in the

range 0.5 ≤ r ≤ 5µm.

In the general case, to compute the forces acting on a dielectric due to

electromagnetic radiation, it is necessary to integrate the Maxwell stress tensor

across the surface of the dielectric [61];

Fi =

∮

σikdSk (2.3)

Where the stress tensor σik has elements that are functions of the electric and

magnetic field strengths at the dielectric’s surface:

σik =
1

4π
[εEiEk + BiBk −

1

2
(εEiEi + BiBi)] (2.4)

A full mathematical treatment of the interaction of a dielectric sphere with an

ideal focused Gaussian laser beam is presented in reference [62], where reasonable

qualitative agreement with experiment is found. The discrepancies found are

attributed to spherical aberrations in the experimental system, whose inclusion

in the mathematics complicates the problem significantly.

A version of the argument using two key simplifying assumptions, as suggested

in reference [55], has proved useful in providing accurate quantitative predictions

of the force on a dielectric due to a focused laser beam. One assumes firstly

that the electric field terms in the stress tensor dominate, and secondly that

the main contribution to the interaction between laser and particle arises from

the gradient in electric field strength squared. This approach neglects interference

effects, and the force can be deduced from the change in dipole interaction energy

as a function of particle position. The dipole interaction energy of a dielectric

with polarisation P in an external field E0 is given by [63]:

U(r) = −1

2

∫

V

E0 · P dV (2.5)
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Where the polarisation, given by

P = ε0χE (2.6)

becomes

P = ε0χE0 (2.7)

if the dielectric susceptibility χ = εr−1
4π

is assumed to be much less than one. This

allows a simplification of equation 2.5 to

U(r) = −χ

2

∫

V

ε0E
2
0dV (2.8)

U(r) = −α

∫

V

IdV (2.9)

Giving an expression for U(r) in terms of the energy density of the focused beam

I =
ε0E2

0

8π
integrated over the volume of the particle inside the beam. The term

α represents the difference in permittivity between particle and the surrounding

medium, α = εp

ε0

−1. Both the particles in this study and the suspension medium

have a permeability close to 1, so the approximation n ≈ √
ε for refractive index

is a good one. This term therefore shows that the trapping force is directly

proportional to the square of the difference in refractive index between a particle

and its environment; the force approaches zero for particles close to the index-

matched limit.

In order to compare results with theory directly, the approach of reference

[64] to the work in reference [55] has been adopted. In order to simplify the

integration, the particle in the optical trap is approximated as a cube, and the

stiffness of the optical trap is found to be

κ/P = kRac erf

(

ac√
2

)

erf

(

ac

ǫ
√

2

)

e−(1/2)a2
c , (2.10)

where κ is the trap stiffness, P the laser power, ac the position coordinate within

the beam, normalised by the beam waist size, and the eccentricity ǫ (the ratio

of length to width of the putative ‘trapping volume’, where the optical potential

well is deeper than ∼ 3kBT ). The constant kR = 4(np − nm)ǫ/cω0 is used to

verify that the equation yields correct values for stiffness in the limit of small
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particle size (the Rayleigh regime where a ≪ λ). A comparison of theory with

experiment is presented in the optical setup chapter.

2.2 Analysis of data

The data acquired is analysed using two different viewpoints: Frequency domain

and time-domain. The two methods for analysis are equivalent, but highlight

different aspects of colloidal behaviour. The initial work was performed using

a frequency-domain analysis which allows easy comparison with existing light-

scattering data (see chapters 4), where a comparison of high-frequency viscosity

has been particularly fruitful.

The time-series analysis is perhaps more intuitive, and is used to illustrate

concepts such as different caging lengths in dense suspensions, and other dynamic

effects. The time series analysis adopts much of the language developed in

dynamic light-scattering (DLS) studies [17, 65], although the data obtained here

is intrinsically noisier as this technique does not share the many-particle averaging

of DLS. The arguments below are developed for the case of a probe particle in

a Newtonian fluid, that is, it is assumed that the optically trapped particle is

suspended in a fluid whose viscosity is a constant at all frequencies. This holds

true for experiments performed on a particle in a bare solvent where perturbations

in the arrangement of liquid molecules relax on a timescale far shorter than our

experimental timescale. Deviations from this ideal behaviour demonstrated by

a particle suspended in a colloid will shed some light on the properties of such

systems.

2.2.1 Frequency domain analysis - theory

The motion of a trapped particle in one dimension may be modelled as a damped,

driven harmonic oscillator, that is to say that the restoring force is a linear

function of displacement1. As motion in the other two spatial dimensions is

expected to be uncorrelated, a similar description (most likely with slightly

different parameters) may be provided for these axes. One caveat to this

statement is that the shape of the optical potential in the z-axis is not symmetrical

1Physically, this is true only for small displacements from the equilibrium position - see
chapter 3.
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about the origin; as well as the effect of radiation pressure along the optical axis,

the presence of the particle in the optical trap perturbs the light distribution

further downstream. This effect is most significant at larger probe displacements,

where the deviation of the scattered field from the unscattered field is greatest.

Nevertheless, a high degree of success has been achieved by modelling the motion

of a probe particle of radius a in a viscous solvent using a Langevin equation with

a harmonic potential [66]. The particle motion is driven by random, uncorrelated

Brownian forces F (t) which have an average value of zero, and a power spectrum

which is constant for all values of f (i.e. a true ‘white’ noise). The fluid in which

the particle is suspended has a Stokes drag coefficient ξ0 = 6πηa which opposes

motion; the particle is also confined within an optical potential, assumed to be

harmonic in form, with stiffness κ:

mẍ(t) + ξ0ẋ(t) + κx(t) = F (t) (2.11)

When exploring solutions to this equation it is worth noting that during all of

these experiments, the inertial timescale of the fluid molecules (given by tinert ≡
m/ξ0) is several orders of magnitude shorter than the timescales on which our

colloidal system operates [16]. This allows us to drop the inertial term mẍ(t).

Following the method of Gittes et al. [15], the resulting equation may be solved

by means of Fourier transformation from time-domain to frequency-domain:

x(t) = F
−1[X(f)] =

∫

∞

−∞

X(f)e−2πfitdf

The Langevin equation (without the inertial term) then assumes the following

form in the frequency domain:

(fc − if)X(f) =
F (f)

2πξ0
(2.12)

Where we have introduced the term fc = κ/2πξ0, the characteristic ‘corner

frequency’ of the trap [67]. This complex function can be made more accessible

by squaring its modulus, thus expressing the particle’s movements in terms of a

power spectrum

4π2ξ2
0(f

2
c + f 2)Sx(f) = SF (f) (2.13)

As previously remarked, the power spectrum of the transformed Brownian force
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F (f) has a constant value across all frequencies, F (f) = 4ξ0kBT . Solutions to

equation (2.13) take the form of a Lorentzian distribution,

Sx(f) =
kBT

ξ0π2(f 2
c + f 2)

(2.14)

Conceptually, the particle in the trap experiences free diffusion over short

timescales (i.e. high frequency, f ≫ fc) but is bound by the optical potential at

low frequencies - the corner frequency delineates the two regimes. As an aside,

there are different conventions on how to assign an amplitude to the theoretical

power spectrum; for example, the amplitude at zero frequency in reference [16] is

only half of that in references [15, 68]. This difference stems from whether negative

frequencies are taken into account when producing power spectra. Parseval’s

theorem states that the total power in an observed signal is the same in both

frequency and time domains, so if |P (f)|2 is an even function (which it is in our

case), both conventions are shown to be equivalent

∫

∞

−∞

|P (t)|2dt =

∫

∞

−∞

|P (f)|2df = 2

∫

∞

0

|P (f)|2df . (2.15)

2.2.2 Frequency domain analysis - practice

The time-series data acquired in this experiment is discrete and purely real-

valued. The Fourier transform of such a data set is generally complex; typically,

part of the information extracted (the phase information) is discarded, leaving a

power spectrum as a function of frequency, as detailed above. Data obtained using

this method is quite noisy when initially transformed; the standard deviation of

each frequency point is approximately the same as the mean [15]. To improve the

accuracy of the fit parameters obtained, a single data set is divided into sections

of equal length whose power spectra are then averaged.

When analysing the power spectrum obtained in a typical experimental run,

a Lorentzian function (shown in a log-log plot in figure 2.1) is fitted to the

data in order to determine both the trap stiffness and sensitivity — the latter

allows a conversion between the raw particle position in volts, and its physical

position in metres. The ‘knee’ of the graph (at x = 1 in the figure) is the corner

frequency which is directly proportional to the trap stiffness, as described in the

previous section. In order to obtain the sensitivity of the apparatus, a ratio is

17



Chapter 2. Optical Tweezers Theory

 1e-006

 1e-005

 0.0001

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 0.0001  0.001  0.01  0.1  1  10  100  1000  10000

P
(f

)

f

Figure 2.1: An ideal Lorenztian spectrum.

taken between the high frequency behaviour obtained in the experiment and that

predicted using equipartition theory, essentially the ratio between measured and

calculated diffusion coefficients (in V2/s and m2/s respectively - this process is

described in more detail in chapter 3).

One difficulty in using frequency-domain analysis is the finite bandwidth of

the recording apparatus. Although precautions have been taken in the analogue

circuitry upstream of the acquisition card (namely an 80kHz low-pass filter),

there is still the risk of aliasing, that is, signals at frequencies above the Nyquist

critical sampling frequency fN (5 or 10kHz in this case) are ‘folded back’ on to

lower frequencies (see figure 2.2, especially data lying above 5kHz)2. However,

our system is designed with the idea of examining the behaviour of colloidal

suspensions at frequencies that are relatively low for this type of technique3; for

calibration purposes there is sufficient data for an accurate fit below 4kHz on the

2The Nyquist frequency represents a theoretical limit on the information content that can
be recorded by discrete sampling at a finite sampling rate. For example, a sine wave may only
be accurately recorded if it is sampled at twice its own frequency.

3Several authors have performed studies at in the high frequency regime, particularly in
references [69, 49].
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2.2. Analysis of data

frequency scale. At these frequencies, the contribution to the power spectrum

from erroneous data that has ‘folded back’ from frequencies above fN is small

compared to that from the true data.
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Figure 2.2: The effects of antialiasing on high-frequency data.

2.2.3 Time domain analysis

Position-time data is often a more intuitive way of visualising information than

using the Fourier transform method. The concept of mean-squared displacement

is a concise way of visualising the extent of a particle’s freedom to move within an

optical potential well, and the data produced lends itself well to the extraction

of physically relevant quantities such as the diffusion coefficient. For a finite

position variance (such as that exhibited by a particle in an optical trap in the

long-time limit), the particle’s mean-squared displacement can be estimated from

the position autocorrelation function [7]:

〈∆x2(τ)〉 = 2σ2 − 2〈x(t)x(t + τ)〉 (2.16)
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Chapter 2. Optical Tweezers Theory

With σ2 being the variance of the (position) data set; the angle brackets indicate

averages over all values of t. At timescales much longer than the inertial timescale,

an idealised mean squared displacement takes the form

〈∆x2(τ)〉 =
2kBT

κ
[1 − e−κτ/ξ0 ], (2.17)

which is sketched in figure 2.3 below. The long-time limit of this function is

proportional to the variance of the signal, as is the area under the power spectrum.
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Figure 2.3: An ideal mean-squared-displacement graph.

Figure 2.3 shows free diffusion at very short times (the diffusion constant is

found from the initial slope of the graph), followed by the confinement by the

optical trap at longer times (the plateau level). In systems with slower dynamics

(i.e. Colloidal glasses) we may expect to see more features in the long-time regime,

up to tens of seconds, as the caging lengthscale approaches that of the optical

trap confinement.
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Chapter 3

Optical Setup and

Characterisation

This chapter concerns the design, construction and calibration of an optical

tweezers system. In the first section, basic design principles are given, including

the importance of numerical aperture and the practical considerations relating to

radiation pressure. The second section contains information about the particular

setup used for this study1, which relates directly to the third section, where the

technique for detecting the position of a trapped particle in three dimensions is

outlined. The final section of this chapter gives information about the calibration

of the system, which is composed of two parts - force calibration and position

calibration. The force calibration is achieved by applying a known force to the

trapped particle, and measuring its displacement using a CCD camera attached

to the system. For a truly harmonic potential, the displacement should be

proportional to force. This is true here for small displacements, beyond which

the force is mapped to displacement empirically.

The position detection system used for the main body of this work relies

on a technique, described in detail in section 3.3, which involves the collection

of scattered light to produce a voltage signal from a photodiode. As with

the force-displacement relationship, this signal is linear for small displacements

from the trap centre. In this regime, a volts-to-nanometres calibration may be

obtained from power spectra of bead motion; this was outlined in chapter 2 and

the practical details are explained in this chapter. For distances larger than

about 250nm from the equilibrium trap position, the photodiode response shows

1The apparatus was originally built by Dr. Jochen Arlt and myself; the division of labour
has been detailed in the appendix of this thesis.
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Chapter 3. Optical Setup and Characterisation

significant nonlinearity. To correct for this, the CCD camera is used to record

particle displacements (again, imposed by fluid flow), which are used to map the

photodiode signal to actual distances.

3.1 Optical tweezers basics

Fundamentally, optical tweezers are formed by tightly focusing a laser beam, and

using the focal spot to pick up and move small dielectric particles, whose radius is

typically of the order of 0.25–1µm. A key consideration is the numerical aperture

of the objective lens (see figure 3.1); this is defined as nm sin(θ/2), where nm is

the refractive index of the surrounding medium and θ is the beam cone angle.

Typically, a water- or oil-immersion lens is used for tweezing. This is because the

Objective Lens

Laser q

nm

Slide

Sample

Figure 3.1: The numerical aperture of a lens is obtained from the geometry of the
focused beam, and the refractive index of the sample medium. The immersion oil
(which lies between the lens and the sample slide) has been omitted for clarity.

numerical aperture of the system is ultimately limited by the lowest refractive

index through which the laser light passes. Thus by eliminating air from the

beam path between objective and sample, numerical apertures greater than 1.0
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3.2. Apparatus

are possible. The most common method for implementing optical tweezers is to

incorporate them into an optical microscope. Although they can be used with

standard microscopes, an inverted configuration is usually employed (see figure

3.2), to offset the particle’s weight with the laser radiation pressure.

Sample Chamber

Laser

Laser

Objective Lens

Objective LensIllumination

Illumination

g Fs g

Fs

Standard Configuration Inverted Configuration

Figure 3.2: Schematics for the two main optical tweezers configurations. In the
standard configuration, the particle’s weight (denoted g) and the scattering force
(denoted Fs, see section 2.1.1) are parallel, whereas they are antiparallel in the
inverted layout.

3.2 Apparatus

The setup [fig 3.3] used is built around an Nd:YAG solid state laser operating

at λ =1064nm, focused into a custom-built microscope. A λ/2 retarder and

polarizing beamsplitter are used to regulate the amount of power delivered to

the sample; when this scheme is used, the laser may be operated well above the

lasing threshold (total output power is of order 200mW) to take advantage of the

better intensity stability. The actual amount of power at the sample is smoothly

variable from a few microwatts to almost 200mW (allowing for losses in the rest

of the optical system). The power delivered to the sample is monitored by a

10% pick-off mirror just before the final set of optics leading to the objective. In
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Laser ( =1064nm)l

PBS

Beam
Dump

l/2

CCD

QPD
(Quadrant
Photodiode)

Ir Oil Immersion
Objective

Oil Immersion
Condenser

Dichroic
Mirror

Dichroic
Mirror

Aperture

Aperture
Beam
Relay

Beam
Expander

Sample

Force Measurement Setup

10% Pick-off
Mirror

Beam Power
Monitor

Figure 3.3: Schematic of the optical tweezers force-measurement system.

order to move the optical trap within the microscope’s field of view, an imaging

system with a magnification of one (denoted ‘Beam Relay’ in figure 3.3) is used to

image the surface of a mirror onto the back focal plane (BFP) of the microscope

objective [70]. The surface of the mirror is therefore conjugate with the BFP of

the objective, so as it is tilted, the angle between the beam axis and the objective’s

optical axis (which intersect at the BFP) is varied, without moving the point of

intersection; this angular displacement in the BFP of the objective corresponds

to a lateral displacement in the front focal plane. This arrangement ensures that

the amount of laser power passed into the objective, and hence the strength of

the trap, is unchanged as it is translated across the field of view. The aperture

placed close to the mirror on the left-hand side of the beam relay is a useful

addition. In our setup, the laser beam is wider than the mirror here, and this

causes stray reflections from the optical component’s edge. The aperture can be

used to block these unwanted reflections which are detrimental to the microscope

image quality and the trap strength.

A Nikon 100× oil immersion lens, with a numerical aperture (NA) of 1.4 is

used both to focus the beam and to image the sample. The large numerical

aperture of the objective lens is important because it has direct relevance to the

relative trapping strengths in directions perpendicular and parallel to the laser

axis - the trapping force is greatest in regions of strongest intensity gradient (as
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3.2. Apparatus

outlined in section 2.1.2).

Strong Axial
Trapping

Strong Lateral
Trapping

Figure 3.4: Schematic of the effects of NA on trapping strength.

Figure 3.4 shows schematically the effects of numerical aperture on trap

strength. The beam with the largest numerical aperture has the strongest axial

intensity gradient, leading to the strongest axial trapping [71, 72]. The opposite is

true for the case with the strongest lateral trapping, where the variation in beam

intensity along the beam axis on either side of the waist changes slowly, giving a

dominant lateral trapping force [73]. A diaphragm may be used to decrease the

beam width in the BFP (either at the physical location, or a conjugate plane), so

a compromise between longitudinal and lateral trapping strength can be achieved.

The samples used in this work have a refractive index of around 1.49, which is

close to that of both glass and the immersion oil used; optical aberrations inherent

in water-based samples [74] are thus expected to be minimal and trapping remains

strong even deep into the sample. The condenser lens plays a critical role in the

force measurement setup because it collects the laser light downstream of the

particle; both scattered and unscattered light are needed, as it is the interference

pattern of these which gives information used for particle tracking [12]. The

condenser used in this study was a 1.4NA oil-immersion condenser made by Nikon;

this relatively specialist lens allows for a large range of numerical aperture values

in the collection system, which is essential for high-resolution particle tracking

[75]. An aperture in the BFP of the condenser controls the effective numerical
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Chapter 3. Optical Setup and Characterisation

aperture of the detection system.

The light passing out of the condenser is reflected from a dichroic mirror

(which passes the microscope illumination) and through a lens which demagnifies

the BFP image on to a quadrant photodiode (QPD) under strong reverse bias.

The effect of the reverse bias is to increase the bandwidth of the photodiode,

and reduce noise. The photodiode used here (a Hamamatsu S7479 model) is

a pin-type device made from silicon. Other groups studying optical tweezers,

with an interest in high-frequency behaviour [76, 77], have noted that silicon is

increasingly transparent at wavelengths greater than 850nm, which limits the

detection bandwidth in the infra-red — these groups have turned to specially

engineered pn-type Si photodiodes, or those made from other semiconductors,

such as InGaAs devices. However, as mentioned in chapter 2, all of the

information we are interested in is obtained at frequencies below 5kHz, our system

would not benefit greatly from such a modification.

The photocurrent generated by the laser light incident on each quadrant of

the photodiode was converted to a voltage using analogue circuitry. The resulting

voltages were recorded using a bandwidth of up to 20kHz using a 12-bit National

Instruments data acquisition system (National Instruments PCI-MIO-16E-4), via

a Labview frontend2. The voltages recorded can be converted to a record of

particle position in the suspension when the instrument is correctly calibrated

(see below).

The image in the BFP is a result of the interference between the light scattered

by the trapped particle and the unscattered part of the beam. In essence, it is

the projection of the Fourier transform of the particle’s profile; as the particle is

buffeted by Brownian motion in the suspension medium, the scattering pattern

shifts in the BFP, and hence in the image on the QPD. The axial (z-) position of

the particle is given by the total intensity of laser light incident on the detector.

The Gouy phase shift [13, 75] acquired as the laser radiation passes through its

geometrical focus gives rise to a phase shift between the scattered and unscattered

light (the scattered light does not experience the phase shift) which is position-

dependent. By measuring the changes in total intensity at the detector, the

particle’s axial position can be recovered. A lateral displacement of the trapped

particle gives rise to a change in the angle between the unscattered light and the

2The data acquisition routine was written by Dr. Jochen Arlt.
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3.3. Position detection

scattered light, corresponding to a lateral shift in the scattering pattern in the

BFP of the condenser. The shift in the scattering pattern registers as a difference

in voltage between the left and right halves of the detector for one in-plane axis,

and the top and bottom halves for the other (denoted Rx and Ry in figure 3.5).

A B

C D

V = (A+B+C+D)

R = (A+C-B-D)/V

R = (A+B-C-D)/V

x

y

Figure 3.5: Schematic of the quadrant photodiode (QPD) signal processing. The
factor of V −1 in the expressions for Rx and Ry is related to the normalisation of
the signal, discussed in more detail in section 3.4.3.

Data was recorded as a byte stream of digitisation levels, which range from

0 to 4095. The voltage corresponding to one digitisation level can be chosen so

as to ensure that the whole range of the signal is recorded, whilst optimising the

resolution of the recorded signal. Typical scales used were a sum (z-axis) signal

recorded over the range 0V to 10V, and lateral (x- and y-axes) scale from -1V to

+1V. The exact ranges used depend on the trap strength being used; a stronger

trap requires a more powerful laser beam, so optical neutral density filters to stop

the QPD from saturating become necessary at the highest trap strengths.

3.3 Position detection

A description of the optical trapping mechanism, complementary to that put

forward in chapter 2, is to say that optical tweezers operate by manipulating

dielectric particles3 using the momentum of the photons in a laser beam [35].

3Metal particles may also be trapped [31, 78], although the mechanism is slightly different.

27



Chapter 3. Optical Setup and Characterisation

The tracer (trapped) particles used in this study are all transparent at the laser

wavelength used, and are distinct from their environment in having a different

dielectric constant (and therefore refractive index). The tracers’ negligible

absorption at λ0 = 1064nm is important in this experiment; particle heating

can give rise to detrimental side-effects such as reductions in local viscosity and

violent (on a micron-scale) convection currents4. Although the particles do not

absorb the laser light, they do scatter it, and it is this phenomenon that allows the

high resolution particle tracking at the heart of the force-measurement technique.

3.3.1 Small displacements (<400nm)

Lateral position detection

The pattern in the back focal plane of the condenser is essentially the Fourier

transform of the tracer particle’s refractive index profile; this takes the form

of an Airy disk-like pattern of concentric light and dark circular fringes. A

mathematically rigorous description of the distribution of radiation in this plane

is quite intricate and beyond the scope of this research [75], but a simplified

expression along the lines of reference [12] gives some insight into the mechanism

responsible. As the trapped particle moves relative to its equilibrium position

in the laser focus, the cone of light it scatters is deflected through an angle

proportional to this displacement. As we are using a quadrant detector for these

experiments, the most convenient expression is one that describes the fraction of

the luminous intensity scattered into each half of the detector plane, ∆I/Itotal

as a function of displacement x along that same axis. For a particle of relative

refractive index nr in a solvent of refractive index ns, near the focus of a beam of

waist w:
∆I

Itotal
=

32
√

πnsa
3

λ0w

n2
r − 1

n2
r + 2

e−2(x2/w2)

∫ x/w

0

ey2

dy (3.1)

It is quite surprising in some ways that this approximation is successful in

describing results of trapping experiments using a 1µm polystyrene bead, as the

equation is strictly only valid for a dipole at small displacements from the centre

of the beam. Indeed, when applied to our system, the refractive index difference

4Several studies looking at heating effects in different particle/solvent combinations. Other
works [79, 80] have found increases in temperature on the order of 10K/W under 1064nm
irradiation for most sample combinations. The powers used in this study would result in
sample heating of no more than 1.5K in the worst case.
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included in the prefactor gives rise to a maximum fractional intensity of around

1.5 (i.e. Scattered intensity greater than the incident intensity). This expression

is only correct for small displacements from the equilibrium position in the optical

trap, but its basic form (with a correctly scaled amplitude) seems to be about

right for particles in our system - see section 3.4.4 for details of the comparison

between experiment and theory.

Axial position detection

Axial position detection also relies on interference effects, but in a more subtle

fashion. There is an anomalous phase effect in focused light beams [81] whereby

the change in phase along the optical axis is not a linear function of displacement,

due to the effects of finite wavelength. This phenomenon is harnessed to give

information about the trapped bead’s axial position [13]; the light scattered by a

probe particle interferes with the unscattered light further down the system, with

a phase difference determined by the particle’s axial displacement relative to the

geometrical focus. The diameter of the aperture in the BFP of the condenser

has a subtle effect on the axial resolution of the position-detection system; as the

aperture is reduced, thereby restricting the numerical aperture of the system, the

detection volume available is enlarged - this effect is analogous to the reduction

in axial trapping stiffness by reducing the numerical aperture of the incoming

beam. As the beam becomes narrower, the intensity varies more slowly on

either side of the focus, stretching the ‘focal region’ longitudinally. This increases

the effective detection volume and (somewhat counter-intuitively) the detection

system sensitivity [75]. It should also be noted that the size of the condenser’s

numerical aperture affects lateral and axial sensitivities in opposite senses.

3.3.2 Larger displacements (>400nm)

There is little in the literature, either in theory or experiment, that discusses

position sensing at large displacements using a QPD. According to other sources

[12], the response of the photodiode detector is linear for small displacements,

but departs significantly from linearity at larger displacements. This difference

has been documented in other studies focusing on instrumentation [82], but most

applied studies thus far have been working in the small displacement range (used

in this work as a passive rheology technique). The main challenge in interpreting
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the system’s response to large displacements is that there is a non-linearity not

only in the sensitivity of the detection, but also in the force-displacement relation

of the optical trap. In order to correctly calibrate the system for investigating

the larger displacement regime, video microscopy can be used to provide an

independent measurement of particle displacement.

3.4 Optical characterisation

In this section, the force and lengthscale calibrations are verified using video

microscopy and image processing. Firstly, an independent measurement of the

trap stiffness is obtained, from video microscopy and an imposed force on the

probe particle (independent of the QPD). Secondly, the lengthscale calibration is

verified by comparing particle displacements measured by video imaging and the

QPD reading (independent of the imposed force).

3.4.1 Verification of force calibration

In order to test the instrument, a number of experiments were performed on a

control system (a Melamine tracer particle in the index/density matching solvent

used for preparing the colloidal samples - see chapter 4). The first part of the

calibration involves confirming the force constant (stiffness, κ) obtained from

the power spectrum analysis. To achieve this, a known force is applied to a

trapped bead by fluid flow - the flow is laminar as the system operates at very

low Reynolds’ numbers, Re ∼ 1×10−5. The displacement from equilibrium is

measured with a CCD camera connected to an image grabbing card. Imaging a

particle’s motion under flow provides not only a measurement of the detection

non-linearity (see below), but also the nonlinearity of the optical potential, which

can be important for large-displacement experiments5. The force is applied by

holding a particle in the optical trap and moving the sample fluid around it by

translating the sample stage; the resulting viscous force is related to the velocity

of the liquid via the familiar Stokes equation, and is balanced by the force due to

5This nonlinearity has been exploited in reference [83] where experiments are performed
using a constant-force configuration.
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the optical potential gradient:

F = 6πηav = κx. (3.2)

A range of stage speeds (from 40 to 170µm/s) allows a range of forces to be applied

to the particle. The sample stage was translated over a distance of around 75µm,

with a periodic triangle-wave motion. This meant that the particle was at its

maximum displacement on either side of the equilibrium position for the majority

of a translation cycle. The images recorded were post-processed using IDL6 to

give time-averaged particle positions, adding the pixel amplitudes in successive

frames and dividing by the total number of frames. The two circular features in

the resulting images (examples are shown in figure 3.6) show the average positions

of maximum displacement.

Stationary
Particle

Drag Speed

44.5 m/sm

Drag Speed

60.8 m/sm

Drag Speed

93.3 m/sm

Drag Speed

m/s113m

Drag Speed

m/s136m

Figure 3.6: Images recorded using a CCD camera attached to a computer with a
frame-grabbing card.

6The IDL routines were modified from programmes written by Eric Weeks.
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The number of pixels between the same edge of the upper and lower image of

the particles gives the distance between the two diametrically opposite positions;

half of this figure gives the displacement from equilibrium in terms of pixels. A

precision ruled slide was then imaged and analysed to give the conversion factor

between pixels and micrometres. A comparison of applied force to the recorded

(calibrated) displacement gives a value for the trap stiffness. This experiment

was repeated at several different laser powers; as the trap stiffness is directly

proportional to the laser power (see equation 2.9), it is straightforward to rescale

the results to lie on the same line. The results presented in figure 3.7 have been

normalized in terms of the maximum power.
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Figure 3.7: Displacements from equilibrium as a function of stage speed, as
recorded by the CCD camera.

The value of stiffness extracted from the power spectrum measurements agrees

with the small-displacement measurements under flow to within the error on the

CCD data. At larger stage speeds, the measured displacements are almost 50%

larger than a linear stiffness would suggest; the tracer is in the anharmonic region

of the optical trap. In order to correctly describe the optical force at these larger

displacements, a third-order term is included in the force-displacement equation,

F = κx + ϑx3, (3.3)
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where ϑ is a fitting parameter. This allows a much more accurate measurement

of large forces in the colloidal experiments.

Comparison with theory

After the power-spectrum stiffness calibration had been checked, it was possible

to make a direct comparison with the theory outlined in section 2.1.2. A particle

was trapped at 20µm from the lower surface of the sample cell, and recordings

made of its position using several different laser powers (and hence trapping

stiffnesses). Equation 2.10 was used to obtain predictions of the trapping stiffness

as a function of power, using the value ǫ = 3 from reference [55], and the value

for beam waist size ω0 from the parameters used in reference [12] adjusted to

reflect our different solvent refractive index. The results are presented in figure

3.8, where good agreement is found.
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Figure 3.8: Optical trap stiffness as a function of laser power, with both data
(red crosses) and theoretical prediction (green line).
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3.4.2 Calibrating lengthscales

As described in chapter 2, the power spectrum of a trapped bead’s motion in bare

solvent is given by a Lorentzian function,

Sx(f) =
D0

π2

1

(f 2
c + f 2)

, (3.4)

where

D0 =
kBT

6πη0a
=

kBT

ξ0
. (3.5)

Here fc is the corner frequency, η0 is the bare solvent viscosity and a is the particle

radius. For small bead displacements within the trap, the detector response

is linear, implying that the power spectrum of the recorded voltage signal is

also a Lorentzian. This recorded power spectrum may be fitted, using D0 and

fc as fitting parameters; the measured value of D0 (in V2·Hz for the recorded

signal) leads to the conversion between volts and nanometres (the equivalent

quantity for the physical power spectrum is measured in m2·Hz). This procedure

was performed using several different laser powers, and it was found that the

sensitivity (in mV/nm) is directly proportional to laser power (see figure 3.9).

Clearly, the z-axis sensitivity (measured on the right-hand vertical axis) is much

smaller than that of the x- and y-axes. This is because the z-position signal (as

described in chapter 3) is a fluctuation on the order of millivolts, on top of a signal

on the order of volts (i.e. fluctuations in the total received power at the QPD);

the z-position resolution is limited by the dynamic range of the data acquisition

card.

Although values for the sensitivity and stiffness were actually obtained from a

power spectrum analysis, a more intuitive representation of the same data is the

particle mean-squared displacement. The results in figure 3.10 show the mean-

squared displacements as a function of laser power (all powers are equivalent to

those at the back focal plane of the microscope objective). As was discussed

in chapter 2, there are two main features of interest here: The initial slope

(determined by the diffusion coefficient for a tracer particle) and the long-time

plateau level (which is determined by the trap stiffness).

The viscosity of the solvent at lab temperature, η0 = 2.56 × 10−3Pa·s, has

already been measured (section 4.5.2), so it is straightforward to obtain a value

for the diffusion constant. The value obtained, D0 = 8.85 × 10−14m2/s, can
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Figure 3.9: Sensitivity of the detection system as a function of laser power. x
and y sensitivities are plotted on the left-hand vertical axis, and z sensitivities
on the right.

be used to predict the evolution of a tracer’s mean-squared displacement in the

absence of an optical trap, 〈∆x2(τ)〉 = 2D0τ . This function is plotted as a thick

line in the upper graph of figure 3.10. As expected, all of the measured curves

tend to this line at the shortest times, when free Brownian motion dominates.

3.4.3 Aside - power spectra of normalised data

The diffusion constant is central to the first stage of the main results chapters,

examination of ‘normalised’ power spectra (more precisely, the power spectra

of normalised data), which allow the comparison of diffusion constant between

different samples, independent of trap stiffness. In all experimental runs, the

raw signal from the QPD is recorded as a sequence of voltages; these voltages

may be converted into positions using the sensitivity calibration outlined above.

However, the detector sensitivity is proportional to laser power; different powers

give different values for the raw diffusion coefficient (in V2·Hz). In order to
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Figure 3.10: One-dimensional mean-squared displacements for particles in a bare
solvent, with different laser powers (and hence trap stiffness). The amplitudes
of the long-time plateaux increase with decreasing laser power; the curves are
stacked in the same order as the figure key. The thick line in the upper plot
represents the mean-squared displacement of a freely diffusing tracer in this
solvent, calculated using the solvent viscosity measured in section 4.5.2.

compare experiments with different laser powers, the x and y voltage signals are

divided by the z signal (the total power at the QPD) at each time point, so that

only relative signal fluctuations are observed7. At high frequencies, the particle

behaviour is not affected by the laser trap, and the normalisation (division by the

z-signal) gives high frequency behaviour that is independent of trap power. The

effects of this are illustrated in figure 3.11, where it can be seen that although

the laser power varies by a factor of ten across the range of measurements, the

high-frequency data overlaps; only the value of the corner frequency is affected.

At higher frequencies (f ≫ fc), the freely diffusing behaviour is independent of

trap strength, and (by virtue of the normalisation) free from the power-dependent

7This procedure also removes erroneous correlations between the x/y voltage signals and the
z signal.
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in figure 3.10. Note that the high-frequency portions of the graphs overlap.

sensitivity, with an amplitude that is again directly proportional to the tracer’s

diffusion coefficient in bare solvent, D0. With a colloidal host present, the high-

frequency amplitude decreases. This is because the diffusion coefficient – strictly

speaking, the short-time self-diffusion coefficient, Ds
s – is inversely proportional to

the high-frequency viscosity (η∞). Frequency-dependent viscosity is discussed in

more detail in chapter 4, but broadly speaking, the increased viscosity in colloidal

samples is due to hydrodynamic interactions between probe and host particles.

This phenomenon offers a method of obtaining Ds
s for a suspension, by comparing

the relevant portion of a colloidal power spectrum to the same range in a bare

solvent measurement. Fits to the data give estimates of the standard asymptotic

error in the corner frequency and spectrum amplitude; both are typically less

than 1%.

3.4.4 Verification of length scale calibration

Small Displacements

To verify the small-displacement lengthscale calibration obtained from the power

spectrum method, a particle was stuck to the surface of a glass slide and scanned
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through the focus of the laser, (the centre of the optical trap) in a direction

perpendicular to the optical axis. A calibrated piezoelectric transducer (PZT)

was used to translate the sample stage, in order to move and record the stage

position with a high enough precision [67, 84]. There are certain difficulties to
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Figure 3.12: QPD response to a known bead displacement. The inset shows the
deviation from a straight line fit to the portion of data between -0.35µm and
0.35µm.

this technique, such as scattering from the slide/solvent interface, and ensuring

accurate centering of the particle along the axes perpendicular to translation.

The former is less of a concern in this case, because the refractive index difference

between the solvent and glass is small (around 1%, corresponding to a Fresnel

reflection coefficient of 3.3×10−3), so little scattering is expected. The second

issue (that of alignment) is more troublesome, but as long as the particle is close

to being centred in these planes (i.e. the centre of the particle passes within

∼200nm of the geometrical laser focus), the voltage signal recorded by the QPD

will vary linearly with displacement.

The graph in figure 3.12 shows the result of this experiment performed with

the stuck bead translated through the laser beam close to the region of highest

intensity. The inset to the graph shows the deviation of the QPD response
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3.4. Optical characterisation

from a straight line fit to data between -0.35µm and 0.35µm. Although there

is significant nonlinearity in the QPD response for large displacements from

the trap centre, this measurement shows that the response of the system to

small displacements is linear, in agreement with [82]. The value extracted

for the sensitivity of the trap is 0.455±0.005mV/nm, which is within the

experimental errors of 0.44±0.02mV/nm, the value extracted from the power

spectrum measurements at the same laser power. The theory curve in figure 3.12

was obtained using the formulae in [12]. As discussed in chapter 2, there are some

issues with the applicability of this theory to our optical tweezers system. It is

worth noting, however, that the overall shape of the theory curve is not totally

dissimilar to the data.

Larger Displacements

Full lengthscale calibration of the system relies on a comparison between video

microscopy and the data obtained using the QPD. The position measurement

system was set to record during the force calibration runs, so a set of apparent

displacements was recorded. The effect of an additional flow force is that the

equilibrium position of the particle is shifted relative to the non-flow condition,

but as the optical potential is parabolic, the probability distribution of particle

positions is still Gaussian. Histograms of particle position were made across

the length of a measurement, and the modal bead positions extracted (the

distribution of particle positions is of course bimodal, as the stage velocity reverses

periodically - see figure 3.13). The work in [82] shows that the discrepancy

between actual displacements and those measured by the QPD increases rapidly

outside the linear range of the trap, and the results in figure 3.14 show a similar

trend, with the reported and actual displacements diverging significantly beyond

200nm from the trap centre. The data was fitted using a cubic curve knowing

that the reported displacements are approximately correct for small values. The

best fit was given by:

y = (2.10608 × 10−6)x3 + x, (3.6)

which is plotted in the figure 3.14, along with a line to demonstrate a 1:1

correspondence. This equation was used to map larger displacements obtained

by the QPD on to actual displacements when making measurements on colloidal

systems.
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3.5 Calibration summary

The final results in this chapter (figures 3.15 and 3.16) show the results of a typical

measurement in bare solvent, with the correctly calibrated lengthscales. Figure

3.15 shows a 2D histogram of particle position over time. A one-dimensional

projection of the distribution is Gaussian - projections of the X- and Y-positions

are shown in figure 3.16 along with fitted curves. The variance of the histogram

is given by σ2 = kBT/κ, as implied in section 2.2.3. This allows us to use the

fitting procedure to extract a value for the stiffness of the trap, which gives a

final confirmation of both lengthscale and force calibration methods. The values

extracted from histogram fits are κx = 6.08 ± 0.03 × 10−6 and κy = 7.01 ±
0.07 × 10−6N/m, which agree well with the values κx = 6.3 ± 0.3 × 10−6 and

κy = 7.0 ± 0.3 × 10−6N/m obtained by a power spectrum analysis.
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Chapter 4

Colloids Background and

Methods

Colloid science is the study of a wide variety of substances, all characterised by

a particular material nature, and a particular length scale. The material nature

of these systems is that of a dispersion of finely divided particles in a chemically

distinct dispersion medium; the length scales are such that the particles are small

enough to be affected by Brownian motion but too large for quantum effects to

prevail. The dispersion medium is generally taken to be a continuum, with bulk

properties such as dielectric constant and density, simplifying both theory and

experimental considerations.

There are many reasons for studying colloidal systems. For example, industrial

interest in academic research findings is widespread, encompassing fields as

diverse as the stabilisation of paints and foodstuffs to the dynamics of soot in

industrial smokestacks. Another area in which colloidal physics has had a great

influence is in the field of condensed matter science: colloids can be shown to

act as a tunable model atomic system. The main body of new work in this

thesis examines the material properties of one of the best characterised colloidal

systems, a so-called hard-sphere system.

4.1 Observation tools

One of the advantages that colloidal lengthscales offer is that individual particles

are large enough to be observable with standard optical techniques but small

enough to be influenced by Brownian motion. As well as optical tweezers, two

other techniques deserve a mention: Light scattering and confocal microscopy.
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Chapter 4. Colloids Background and Methods

The former (in static form) operates in reciprocal space and offers a high-

resolution, ensemble-averaged picture of colloidal shape and structure. The latter

is a real-space technique for making precise quantitative measurements of particle

position.

4.1.1 Light scattering

Scattering experiments have been used for many years to probe the structure of

materials. Scattering of radiation in the optical range in particular has relevance

to colloid science because the wavelength of light is comparable to the size of the

particles. Although there are many highly rigorous descriptions of the scattering

of electromagnetic waves from inhomogeneous media (see, for example, chapter

13 in reference [81]), this study uses only one aspect of the field: Static light

scattering to determine the core radius of the colloidal particles1. It is assumed

here the scattering of light is elastic (which is reasonable as the momentum

imparted to a colloidal particle by a photon is many orders of magnitude smaller

than the thermal agitation the particle receives from the solvent). The incident

and scattered wavevectors are related by Q = ks − ki, and the magnitude of the

scattering vector Q is related to the scattering angle θ by

Q =
4πn

λ
sin(θ/2), (4.1)

where λ is the vacuum wavelength and n is the refractive index of the suspension

medium. This is illustrated in figure 4.1 below. Static light scattering (SLS) is

used in this work to characterise the colloidal samples, to provide an accurate

determination of our host particle core size. The approach to determining the

particle size is that described in [23], outlined here. In the first-order Born

approximation (single scattering limit), the field scattered by a single particle

is obtained by summing the contributions from individual scattering volumes

1This is the smaller of the two measures which could be considered the particle ‘size’; the
other is the hydrodynamic radius of the particle, which includes the coating of polymer hairs
used for stabilising the particles against aggregation and the solvent dragged around as the
particle moves.
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Figure 4.1: Schematic of the light-scattering process.

throughout the sphere, and is proportional to

b(Q) = 4π

∫ R

0

r2dr[np(r) − nm]
sin(Qr)

Qr
, (4.2)

where r is a position from the centre and R is the radius of a particle. The term

np(r) describes the refractive index profile of a particle, and nm is the refractive

index of the suspension medium. For the sake of simplicity, the particles are taken

to have a constant refractive index for r < R. This approximation neglects the

solvent penetration that occurs when particles are transferred from one medium

into another (as the particles absorb slightly [85]), but the results show that this

is not a bad approximation. Averaging over N particles with centres at positions

ri, the time-dependent scattered electric field and scattered intensity are given
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by

E(Q, t) =

N
∑

i=1

bi(Q)eiQ·ri(t) (4.3)

I(Q, t) = |E(Q, t)|2. (4.4)

The particles used in this study are fairly monodisperse (polydispersity ≤ 8%

[86] - see section 4.4.1); this property, in conjunction with time-averaging reduces

equation 4.4 to

〈I(Q)〉 = N [b(0)]2P (Q)S(Q). (4.5)

P (Q) and S(Q) are the form factor and structure factor respectively, and the

N [b(0)]2 gives the total scattered intensity at Q = 0 due to contributions from all

N particles in the scattering volume. In a very dilute sample, the interparticle

distance will typically be large compared to the particle radius; S(Q) → 1. In this

limit, the scattered radiation can be used to give a highly accurate measurement

of the particle core radius via a measurement of the form factor:

P (Q) =

[

b(Q)

b(0)

]2

(4.6)

after removal of the background. The form factor can be used to extract the

particle radius, or more accurately, the value for r at which the step change in

refractive index occurs. For a sphere of radius R,

P (Q) =
9

(QR)6
(sinQR − QR cos QR)2. (4.7)

This equation is independent of n, as it only describes the form of the particle (the

refractive index difference between particle and surrounding affects the relative

amount of scattered power). Figure 4.2 shows the theoretical form for this

measure, taking R as 1 (from equation 4.6 it can be seen that the function P (Q)

is dimensionless). The simplest way to empirically determine particle size is to

use the minima in the form factor; these are found [87] at

QR = tan QR = 4.49, 7.73, 10.90, ... (4.8)
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The data obtained (see section 4.5.1) were fitted using the theoretical form factor,

and the polydispersity of the sample was estimated using the method of Fairhurst

[87].
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Figure 4.2: Theoretical form factor for a spherical particle.

4.1.2 Confocal microscopy

Confocal microscopy has become a ubiquitous tool in the study of colloidal

structure and dynamics. Although no experiments using the technique were

performed for this research, results obtained by others (e.g. [88]) lay some of

the groundwork for the analysis here. The application of confocal microscopy

to dense colloidal systems [89, 90] has allowed the tracking of tens of thousands

of fluorescent particles with a time resolution of up to 1Hz. The real strength

of confocal microscopy is that it is a real-space technique capable of quantifying

the positions of individual particles to within around 40nm, in all three spatial

dimensions. Although light scattering has a higher position resolution, it

is inherently an ensemble average measurement, and gives little information

about the evolution of locally heterogeneous structures. Confocal microscopy
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has allowed direct visualisation of the in-cage diffusion that occurs in dense

colloidal systems [88]. Optical tweezers measurements are complementary to the

microscopy in that they are capable of producing a much higher time-resolution

(around four to six orders of magnitude higher sampling frequency [69]), but only

for a single particle at a time.

4.2 Hard-sphere colloidal systems

4.2.1 Nature and properties

Although many exotic colloidal systems may be envisaged, the simplest to

consider is a suspension of ‘hard’ spherical particles, which interact in a billiard

ball-like fashion. Barring hydrodynamic interactions, the particles do not

influence each other until they touch, whereupon they encounter an infinitely

high repulsive barrier (also assuming that the particles do not deform when they

collide). Experimentally, such a system can be realised by the combination of

three distinct techniques: refractive index matching (to suppress van der Waals

forces), the addition of a salt [91] to the solvent medium in order to mitigate the

effect of residual charge on the colloidal particles (charge stabilisation), and the

addition of polymer hairs (steric stabilisation). A layer of polymers anchored

to the surface of the colloidal particles creates an exclusion zone of around

10nm from the core surface [85]. When the polymer halo of another colloidal

particle approaches the exclusion zone, the hairs’ configuration space is restricted,

giving a repulsive entropic force that pushes the approaching particle away. The

experiments in this study use both methods to stabilise the colloidal suspension

and ensure that the interparticle behaviour is as close to an ideal HS interaction

as possible2.

4.2.2 Phase behaviour and metastability

The phase behaviour of hard-sphere colloidal systems lends itself well to computer

simulations, and such studies [92, 93, 94] have been shown to be in good agreement

with experiment [95, 86]. A simple temperature/volume fraction phase diagram

2In experiments, this picture is not quite physically accurate, and the infinitely high repulsive
barrier is not a step but a very steep slope - the colloids can be held to be ‘slightly soft’ [86].
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4.2. Hard-sphere colloidal systems

(fig 4.3) may be constructed. The volume fractions φf = 49.4% and φm = 54.5%

are notable as the lower and upper bounds of the fluid-crystal coexistence region

(respectively the freezing and melting points). A long-lived metastable glassy

state has been observed in samples with volume fractions greater than φg ≈ 58%

but lower than the random close packing fraction of φrcp = 64%. This glassy

phase is a non-ergodic state (i.e. distinct from fluid) but with no long range

order (i.e. distinct from a crystal). Light scattering experiments [96] have

shown that in a glass, a particle’s Q-space time-autocorrelation function shows a

number of specific features. At extremely short timescales, a particle undergoes

ballistic motion; although this regime has been studied using optical tweezers

[77], these dynamics are assumed to be far faster than anything studied here,

an approximation which allowed us to drop the inertial term from the Langevin

equation for particle motion in chapter 2. The solvent in which the particles

are submerged behaves as a continuum, imparting Brownian motion; this gives

the random driving force seen in the right-hand side of equation 2.11. In
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Figure 4.3: Hard-sphere system phase diagram.

colloidal suspensions with volume fractions close to, but below the melting point

(φm = 54.5%) the sample is ergodic, albeit with a lower diffusion constant than

that in bare solvent [53] - this is equivalent to saying that the particle ‘sees’ a

higher solvent viscosity. The position autocorrelation function for a particle in

such a suspension decays with a characteristic time τ . Close to, but below the

49



Chapter 4. Colloids Background and Methods

glass transition (φ ≈ 58%), the decay of the position autocorrelation function

occurs on two distinct timescales, τα and τβ (this is illustrated schematically in

figure 4.4). The β timescale describes an in-cage diffusion, where the particle

is coupled with its neighbours hydrodynamically, but otherwise acts as a freely

diffusing particle in a medium of enhanced viscosity. This timescale is relevant

for movements smaller than the average cage size, which is around 15% of the

particle radius [97]. The particle’s motion is then confined by the cage, causing

the autocorrelation function to level off. The longer α timescale then corresponds

to cage rearrangements, whereby the cage is significantly deformed or broken

in an entropically-driven rearrangement process [98]; this is a longer timescale,

which diverges quickly from the β timescale for volume fractions approaching

the glass transition [99]. Above the glass transition, the particle’s long-distance

motion is arrested, and although there may be slight rearrangements, the shell

of nearest neighbours around most particles does not change on experimental

timescales. Furthermore, it has been shown that at extremely long times, the

in-cage diffusion slows in a process known as colloidal ageing [100, 101]. This

hints that there are slight cage rearrangements persisting even at these higher

volume fractions.

log( )t

<x(0)x( )>t

b

a

Figure 4.4: Schematic of the α and β timescales.
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4.3 Rheology

Rheology is the study of deformation and flow. Rheometric studies have proved

a useful tool for exploring the non-equilibrium behaviour of colloidal systems. A

basic way to investigate the rheology of a system is to apply a constant shear strain

(for example, a step strain function in time) and measure the stress response. In

a simple (Newtonian) fluid, initial stress build-up relaxes and energy is dissipated

in viscous heating of the fluid. For an ideal solid (in the linear response regime)

the material deforms and stores energy, up to its elastic limit, where it deforms

irreversibly. Most substances have a response which lies somewhere between

these extremes, and their response is termed ‘visco-elastic’. A substance’s stress

response, σ(t), to a step shear strain function γ0 (or equivalently a delta-function

shear rate), is described by a time-dependent shear modulus G(t)

G(t) =
σ(t)

γ0
, (4.9)

in the long-time limit, G(t) tends to zero for a liquid, and some finite value Ge

for a solid. Similarly, the response to a step stress, σ0, defines viscosity,

η(t) =
σ0

γ̇(t)
, (4.10)

which becomes the more familiar steady-shear viscosity η0 at long times in the

case of a Newtonian liquid, but diverges in the case of an ideal solid. These

properties are summarised in schematic form in figure 4.5. In fact, the behaviour

of a real solid differs from the ideal case at large stresses. Beyond a certain stress

(the ‘yield stress’) solids will deform irreversibly.

Another way to examine a system’s response to shear is to use frequency

domain methods; instead of applying a delta-function shear rate in time (a step

strain), we apply a delta function shear frequency. This approach is useful from a

practical point of view as it gives an accessible presentation of the shear modulus

as a function of shear rate (high frequencies correspond to high shear rate).

Probing a material’s frequency response is relatively easy to achieve by applying

a shear rate which varies sinusoidally in time,

γ(t) = Re(γ0e
iωt). (4.11)
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The response function is then examined as a complex, frequency-dependent shear

modulus, the frequency-domain equivalent of equation 4.9

G∗(ω) = iω

∫

∞

0

G(t)eiωtdt

= G′(ω) + iG′′(ω) (4.12)

where the real and imaginary parts represent the storage and loss parts of the

response function respectively. The limiting cases of this function (an ideal

Newtonian fluid and an ideal elastic solid, as before) are shown in equations

4.13 and 4.14,

Ideal fluid

G∗(ω) = G′′(ω) = ωη (4.13)

Ideal solid

G∗(ω) = G′(ω) = Geq (4.14)

where Geq is the equilibrium shear modulus, the energy per unit volume stored

by the stressed material, the idea being that no energy is dissipated as heat in

shearing an ideal solid.

4.3.1 Macrorheology

Macrorheology probes the mechanical response of a macroscopic quantity of

a material. The results obtained are the ‘bulk’ response of a system to an

external force; in the case of a colloidal system, the sample size is sufficiently

large compared to the suspended particle size that it behaves as a continuous

medium. Dense colloidal suspensions (with volume fractions above the melting

point φm = 54.5%) are described as soft solids; although the equilibrium phase is

a crystalline solid for a hard-sphere suspension at this volume fraction, flow can

be induced with extremely small shear stresses, for example tilting the vessel in

which the suspension is contained. This phenomenon is known as shear melting

[102].
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Hard-sphere colloidal solids below the glass transition - 49.4% < φ < 58%

At low strains and shear stresses the viscoelastic response is linear, that is to

say that the storage and loss moduli are independent of applied strain, in the

manner described in section 4.3. Several authors have performed macrorheological

experiments in this regime, for example, references [103] and the low-strain range

of measurements in reference [104]. To take the latter as an example, the authors

studied a suspension of hard spheres with a radius of 0.21µm. They found that

the sample’s storage modulus, G′(ω) dominates the complex response function

for all but the lowest volume fractions (i.e. φ < 52%), and both loss and

storage moduli tend toward frequency independence for the low-frequency range

at volume fractions close to the glass transition. In the opposite (high-frequency)

limit, the viscosity dominates, tending to a constant value, η∞. This is closely

related to a quantity central to the analysis presented in this thesis, the short-time

self-diffusion coefficient, defined as

Ds
s =

kBT

6πη∞a
, (4.15)

which describes the diffusion of a particle at short timescales.

At higher strains, non-linear behaviour is observed [105]. The loss modulus

remains approximately constant as a function of strain, whereas the storage

modulus falls away rapidly beyond a certain critical strain, γc. This critical

value corresponds to the strain required to rearrange a cage of particles; when a

cage is sheared beyond a certain limit, the identities of its constituent particles

change. This means that there is an upper limit to the amount of stress that can

be recovered after shear, and this is set by γc.

I describe shear rates here in terms of the Péclet number, which is given by

Pe = τB/τγ̇ , where τB is the time a particle takes to diffuse a distance of its

own radius in the absence of host particles, and τγ̇ is the time taken to actively

separate two particles by the same distance by mechanical shearing. Written out

more fully, this quantity is given by

Pe = γ̇a2/2D0, (4.16)

where γ̇ is the shear rate, a is the particle radius and D0 is the diffusion coefficient

in bare solvent. At the lowest Péclet numbers, a Newtonian viscosity is observed,
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which then gives way to shear thinning behaviour (viscosity decreases as shear

rate increases); this is because as shear rate is increased, τγ̇ becomes short

compared to the Brownian time, so Brownian relaxations do not occur fast enough

to compensate for the shearing action. This shear-thinning behaviour is limited

by the increasing importance of hydrodynamic interactions which at first lead to

a second Newtonian plateau in viscosity, and finally to shear thickening at the

highest shear rates [106, 107].

Hard-sphere colloidal glasses - 58% < φ < 64%

Broadly speaking, the behaviour of a colloidal glass at low shear rates and stresses

is like that of a solid, with a dominant, frequency-independent storage modulus

(see equation 4.14) [104]. This solid-like behaviour is attributed to ‘cage elasticity’

in [54], where an individual particle’s cage of neighbours deforms but does not

break. There is a caveat to this assertion, however, as ‘creeping’ behaviour

occurs at the very lowest shear rates [108], and step shear experiments [109].

Creep behaviour is characterised by the recovery of strain in a very slow process

driven by Brownian motion. The viscosity of a glassy sample only truly diverges

(implying true solid behaviour) at γ̇ = 0. At finite shear rates and strains, shear

melting causes the suspension to act like a highly viscous fluid, with a high-

frequency viscosity that diverges as the volume fraction approaches φRCP ≈ 64%

[110, 111, 112]. After shear melting, crystallization may occur [113]. Finally, a

clearly-defined yield stress emerges on approaching the colloidal glass transition.

This occurs where the loss modulus becomes dominant over the storage modulus,

and is characterised by an irreversible deformation. The strain required to achieve

this is around 15% [109] (cf. the cage size reported in [97]).

4.3.2 Microrheology

Microrheology is the microscopic counterpart to conventional (macro-) rheology.

Instead of examining the bulk properties of a suspension, the stress/strain

response is examined on a much smaller lengthscale, using probes that are

typically in the micrometre size range. Glassy colloidal laponite systems have

been examined using passive microrheology [48, 49], to investigate their aging

behaviour by examining the modified Brownian fluctuations of a trapped particle

in a suspension, and observing how this changes over time. The transition
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from fluid-like behaviour to glassy behaviour is seen as a drastic reduction in

the trapped particle’s mean-squared displacement, and an increase in the high-

frequency viscosity.

Active microrheological measurements have also been made on colloidal

systems, exploring both the linear [49] and nonlinear [8, 114, 115] regimes. In

the linear regime, it has been shown that active microrheology results in F-Actin

solutions match both passive microrheological measurements and bulk rheology.

Two different approaches are adopted in the above references for nonlinear

rheology; constant velocity and constant force approaches. If a microscopic

particle is trapped and pulled through a suspension, it may be moved either with

constant force (and thereby variable velocity) of constant velocity (and therefore

variable force).

Reference [114] is a study which used magnetic tweezers as a constant force

probe of a hard-sphere colloidal suspension. Forces in the range 0.1-10pN were

applied to magnetic beads (radius 2.25µm) which were embedded in a suspension

of particles approximately half their radius. Average yield forces for cages of

nearest neighbours were extracted, with values of around 0.5pN for volume

fractions around φ = 52 − 56%. Interestingly, the yield force appears to be

independent of volume fraction in this range. The second reference listed above,

[8], used a constant velocity setup, much like the one in this study. Probe particles

with radii 0.5µm, 1.4µm and 1.6µm were used in suspensions of particles that were

significantly smaller, of order 80nm. The concentrations investigated here were

all below the freezing volume fraction, the densest suspension having φ = 31%.

The results obtained were broadly in line with bulk rheology of complex fluids in

the Newtonian regime, except for the smallest probe size at the highest speed,

which exhibits some shear thinning.
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4.4 Colloidal sample preparation and character-

isation

4.4.1 Stock sample preparation

The (PMMA) particles used in this study were synthesised by Dr. Andrew

Schofield according to standard preparation methods, dyed with fluorescein (to

allow the possibility of later confocal microscopy studies) and sterically stabilised

using PHSA ‘hairs’. The fact that the particles crystallise (albeit slowly, on a

timescale of days) puts an upper bound of 11% on the polydispersity [23], and

this is confirmed by static light scattering measurements, which also allow for a

measurement of the particle core radius. The particles were initially produced in

the solvent dodecane, which has an inappropriate refractive index and density for

this study. Although the index of bulk PMMA is known, there are complications

arising from using such small particles; firstly, there is an amount of swelling

due to the particles’ slight absorption of the solvent they are suspended in. This

results in a variation of the refractive index of the particle across its diameter, and

it is strictly this form factor that is measured in static light scattering studies.

The ideal particles for this optical tweezers study are refractive index-matched

with the solvent they are suspended in, and neutrally buoyant. In the general

case, this is achieved by using a mixture of three solvents, but as will be discussed

later, a two-component mixture was found to give satisfactory results.

The initial batch of particles was transferred from being suspended in

dodecane to being suspended in a mixture of cis- and trans-decalin (‘decalin’ is the

trade name of decahydronaphthalene). To achieve this, the particles were placed

in a centrifuge (the densities both of dodecane and decalin are lower than that

of the PMMA particles), and when a sediment had formed, the supernatent was

discarded. The vessel containing the sample was then re-filled with decalin and

the close-packed sediment re-dispersed. After each wash cycle, the supernatent

fluid was examined in an Abbe refractometer and compared to a control sample

of decalin; after seven washes, the refractive indices were the same to within the

error of the instrument (±0.0003).

In order to make the particles neutrally buoyant, the solvent was modified by

adding measured volumes of cyclohexylbromide (CHB), which is known to have

a higher density than PMMA. The particles in the new solvent were re-dispersed
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and then spun in a temperature-controlled centrifuge; if a sediment or cream

formed, the appropriate solvent was added and the centrifuge repeated until the

particles remained in suspension for at least 48 hours at 5000rpm.

The refractive indices of the component solvents were measured using a white-

light Abbe refractometer at 22◦C and found to be nCHB = 1.504 and ndeca =

1.472, placed either side of the literature value for bulk PMMA (at the Sodium D

line) nPMMA = 1.49. As has been previously mentioned, the concept of refractive

index matching is a somewhat tenuous one because the particles are not entirely

homogeneous due to solvent absorption near their surfaces as well as inherent

inhomogeneities in the PMMA superstructure. Calculations by Tlusty et. al.[55]

outlined in chapter 2 have shown that the trapping force is directly proportional

to a constant α, defined by

α =
n2

p

n2
s

− 1 (4.17)

As the relative permeability µr of the particles used is close to one, the

approximation n ≈ √
εs, where εs is the dielectric constant of the solvent may

be made. The trapping (and hence sensing) volume of the optical tweezers is

highly localised by use of a high numerical aperture objective (see chapter 3),

with the e−1 intensity point being smaller than a particle diameter in all axes.

This, coupled with the low refractive index difference between colloidal host and

solvent medium minimises the chance of the laser influencing the movement of

the host particles. Measurements of solvent refractive index were made on either

side of the density matching composition (i.e. using one sample in which the

particles form a sediment under centrifuge, and another where they cream) and

no difference was found down to the third decimal place. Based on this, the

more sensitive criterion of density matching was chosen as the critical solvent

composition property.

Tracer particles made of melamine resin (which has a bulk refractive index

of 1.7) were obtained3, and were sterically stabilised by Dr. Andrew Schofield

in the same manner as the PMMA. The particles were then dried in a vacuum

oven, and re-dispersed in supernatent obtained from the density-matched samples.

The resulting suspension is one of density- and near-index-matched particles,

with sparsely distributed high-index tracer particles to be used as handles by the

3From Microparticles GmbH.
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optical tweezers. The tracer particles were already characterised by the vendor

using scanning electron microscopy, and were found to have a radius of 0.95µm

and a polydispersity of 4.7%. The treatment of the tracers is also simplified by

their remarkable level of chemical inertness; they are impermeable to most organic

solvents (including the substances used here) and are reported to be damaged only

by hot sulphuric acid ([116]).

4.5 Characterisation of stock

A dilute suspension of PMMA particles was characterised using static light

scattering, to obtain values for the average core radius (the PHSA hairs with

which the PMMA was coated add approximately 10nm to this value4). The

sample was diluted to around φ ≈ 0.01 for the light scattering experiments which

operate in the single-scattering limit.

4.5.1 Light scattering

A Krypton-ion laser operating at the 647nm line was used to probe the small-

angle Q-vectors which yield information on the form factor of the particles (see

fig.4.6). A dilute suspension of PMMA particles in a 80%/20% mixture of

CHB/Decalin (an early iteration of the density-matching solvent) was used as

a scattering target. The solvent composition was chosen because it is close to

refractive index matching, which is required for the single-scattering regime. The

sample temperature was controlled using a heat bath; this provided a way of

varying the refractive index contrast between the particles and medium, as the

solvent refractive index depends on temperature more strongly than that of the

particles. Initially, a background measurement was made on a scattering target

containing only the solvent medium, to record the scattering from elsewhere in the

system. Experiments were then performed at 20◦C and 17◦C on target containing

PMMA particles, from which the background level was subtracted. The results

are presented below in figure 4.6. The form factor was fitted, and a value for the

particle core radius of 860nm±70nm was obtained.

4Although the PHSA does have an inherent polydispersity in polymer chain length, it is
dwarfed by the uncertainty in particle size and is thus ignored herein.
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Figure 4.6: Light scattering results.

4.5.2 Characterisation of suspension medium

An accurate knowledge of the physical properties of the solvent medium is

essential to this study. The key property of dynamic viscosity must be measured

to a high precision in order to extract meaningful data from our experiment;

this was achieved using a commercial rheometer and a conventional concentric-

cylinder geometry. The rheometer was driven using a set shear rate, so the

dynamic viscosity could be extracted; several runs at different temperatures were

performed, and a graph of the measured viscosity is given in figure 4.7. The

figure shows some noise at the lowest shear rates, this is due to the mechanical

limitations of the rheometer. The viscosity was obtained by fitting a straight line

of constant viscosity to the data series at shear stresses ≥ 0.06 Pa. The medium

behaved as a Newtonian fluid (as expected) at all shear rates examined, and the

value for solvent viscosity at lab temperature was found to be 2.56 × 10−3 Pa·s.

4.6 Preparation of individual samples

Samples of different volume fraction were produced for the main experiments. In

order to do this, the stock density matched sample was subjected to centrifuge
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Figure 4.7: Rheological measurements of solvent viscosity as a function of
temperature.

at around 30◦C to obtain a close packed sediment (the sample is only density-

matched at room temperature) and supernatent fluid, which was decanted.

The sediment is taken to have a volume fraction of φ = 64%. The decanted

supernatent fluid was filtered to remove any extraneous particles, and then added

back to small amounts of the sediment in separate jars, in order to produce the

various volume fractions required. The samples were all stored with one of the

longest side walls of the chamber pointing downward; this way, the tracers (which

are heavier than the host colloid) fall to this side, and are more easily located.

4.6.1 Sample cells

Two different types of sample cell were used, one for samples with volume fraction

below the freezing point (φf = 49.4%), the other for higher volume fractions. This

decision was motivated by the work of Mark Haw [52] who showed that jamming

effects lead to unreliable transferral of high volume fraction samples: when using a

syringe to transfer sample matter, particles jam easily in narrow needle openings,

meaning that solvent is drawn through a jammed arrangement of particles and
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into the syringe, giving a lower-than-expected final volume fraction. This was

avoided by using a thick sample chamber with a wide opening, composed of two

microscope coverslips glued to form a bridge across the gap between two 1mm-

thick sections of glass slide. One end of the sample chamber was sealed using UV-

curing glue, and the other left partially open (see figure 4.8). A spatula was used

to transfer the denser samples into the chamber, which was then plugged with a

third piece of glass slide and sealed with epoxy resin. A range of different volume

fractions were produced (φ = 40−62%), along with a sample cell containing only

the supernatent fluid, which was used for calibration of the optical trap. Small

pieces (around 1mm in length) of iron wire were placed in the higher-volume

samples before sealing; these could be moved around using a strong magnet in

order to break up crystallites that may have formed in the glassy samples.

The second type of cell (figure 4.9) was made for use with the sub-glassy

samples. Using a standard microscope slide as a base, a coverslip cut into three

sections was used to make the walls of two thin capillaries, which were glued into

place. A second coverslip was glued on top of this and the ends of the cell partially

sealed with UV curing glue, giving a sample chamber with a height of around

200µm. The cell chambers were filled by capillary action (the sample volume

fractions here are too low to be affected by the self-filtration phenomenon) from

a drop of sample on a separate slide, one chamber with the colloidal suspension,

and the other with the density-matching solvent with tracer particles but no host

(for calibration measurements). The ends of the cell sealed with epoxy resin. This

type of sample cell was used so that the calibration and measurement procedures

could both be done without having to change the sample on the stage. The

incorporation of a small air bubble into these samples is useful as it may be used

to break up crystallites in the way that the wire was used in the higher volume

fraction samples.
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Figure 4.8: Sample holder for high volume fractions.
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Figure 4.9: Sample holder for low volume fractions.
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Chapter 5

Static Measurements in Dense

Colloidal Suspensions

This chapter reports my measurements of the short-time self-diffusion coefficient

(Ds
s) in dense suspensions, and the dynamic fluctuations in cages of particles as

perceived by a caged particle. In summary, my measurements of Ds
s for φ ≤ 58%

match well with existing light-scattering data from van Megen and co-workers

[117]. In the glassy samples, however, Ds
s depends strongly on local history. If

a tracer is moved to a different position in the sample, stresses incurred in the

process take a relatively long time to relax, giving rise to a time-dependent Ds
s.

This is shown by a much greater spread in the diffusion coefficient data at volume

fractions above the glass transition, φg ≈ 58%.

The second half of this chapter contains two-dimensional histograms and

time series of recordings of probe particle position in samples both above and

below φg. Whereas confocal microscopy studies conducted previously [88, 97]

have already shown particles diffusing within their cages, these measurements

are limited both by position resolution (±50nm) and time resolution (around

100Hz sampling rate). My measurements show that there are two distinct cage

lengthscales emerging; a smaller ‘microcage’ size not resolved before, and a larger

‘dynamic’ cage size seen in dynamic light scattering and confocal microscopy.

Measurements here also show the finite relaxation time of stresses in samples

close to φg, corresponding to rearrangements in the local structure. At the

highest volume fraction studied (φ = 62%), some cages persist for longer than

the experimental timescale even in the presence of an optical force of up to 1pN,

which indicates a finite yield stress.
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5.1 Power spectrum analysis in dense colloidal

samples

5.1.1 Ds
s on approach to the glass transition, φ = 54 → 57%

Values for the short-time self-diffusion coefficient were obtained by fitting a

straight line to the high-frequency portion of the power spectra on a log-log

graph, and comparing the intercept on the vertical axis with that from the bare

solvent case. Measurements were carried out on colloidal suspensions with volume

fractions approaching the glass transition (φg ≈ 58%). It was suspected that the

density may vary slightly between different regions of the sample, especially given

the manner in which it was agitated before the measurements were made1. As a

result, the sample stage was translated between sample runs so that a few sample

locations may be examined, and an average obtained for Ds
s/D0. Initially, a

probe particle was located (usually at the bottom of the sample cell, as the

tracers are heavier than the solvent medium), trapped, and raised a distance of

20µm into the sample, to minimise the effects of the cell wall. The setup was

allowed to equilibrate for around an hour before the first measurement, and then

a recording was taken. Between subsequent runs, the particle was moved to a

different location in the sample, and allowed to rest for about five minutes after

being moved, to allow the surrounding suspension some time to relax. In the

literature on bulk glassy rheology, this equilibration period is simply referred to

as the waiting time, tw, and this terminology is adopted herein.

The results in figures 5.1, 5.2 and 5.3 give values for the short-time self-

diffusion coefficient in good agreement with existing data in reference [53],

and have a similar experimental spread. The samples with φm < φ < φg

are susceptible to crystallisation on experimentally accessible timescales2, which

would give erroneous results for Ds
s. Samples with volume fractions in this range

have been left standing in order to observe crystallisation, which was found to

occur on a timescale of around a month for all volume fractions below φg studied

here.

1As previously mentioned in the sample preparation section, the samples were stirred using
a magnet and a small piece of wire prior to loading, to break up crystallites.

2Reference [96] suggests crystallisation times of <10 minutes for a = 201nm particles with
a polydispersity around 4%, significantly lower than in our system.
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Figure 5.1: Power spectra for tracer motion in a φ = 54% suspension, mean
Ds

s/D0 = 0.119, compared to the literature value mean 0.12.
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Figure 5.2: Power spectra for tracer motion in a φ = 56% suspension, mean
Ds

s/D0 = 0.112, compared to the literature value mean 0.106.
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Figure 5.3: Power spectra for tracer motion in a φ = 57% suspension, mean
Ds

s/D0 = 0.081 compared with the literature value mean 0.09.
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frequencies (hence lower viscosity), and flatter low-frequency behaviour.

The fact that our results agree well with light scattering data obtained from

metastable fluids also suggests that sample crystallisation has been avoided; to

this end, a final measurement was made at 40% (below the freezing-point volume

fraction, φf = 49.4%). At this volume fraction, a hard-sphere suspension behaves

as a fluid, thus eliminating the risk of sample crystallisation. The results of the

experiment on the φ = 40% sample (presented in figures 5.4 and 5.5), are found

to affirm this method of measuring Ds
s. The results are also compared both to

a bare solvent measurement (figure 5.4) and to a φ = 57% data set (figure 5.5).

These graphs serve to illustrate the three noticeable changes apparent upon the

introduction of host particles into the medium, and these features become more

pronounced with increasing volume fraction: A lowering of the relative power at

high frequencies, a shift in the corner frequency, and a non-uniform increase in

the power at low frequencies. The first and second phenomena may be explained

by an increase in the effective viscosity, due to the presence of the host particles.

Over very short timescales, a particle’s cage of nearest neighbours is essentially

static, and the only interaction is hydrodynamic; denser samples have smaller

cages and hence show stronger hydrodynamic coupling between particles.
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Figure 5.6: A reproduction of figure 7 from reference [53]. This graph shows
the evolution of particle mean-squared displacements in samples with 13 volume
fractions ranging from φ = 46.6% → 58.3% from left-most to right-most data.
The thick line at the left hand side describes the motion of a freely diffusing
particle in bare solvent. The horizontal axis is measured in units of Brownian
time (the time taken for a particle to diffuse its own radius in bare solvent) and
the vertical axis shows distance (normalised by particle radius) squared.

The increase in the low-frequency part of the spectrum is due to fluctuations

in the position of the probe particle’s neighbours in the suspension, which occur

on timescales of a few seconds. This may be thought of as a dynamic ‘cage

exploration time’, where the exact shape of a particle’s cage fluctuates and the

volume available for exploration is greater than the static cage (short-time) case.

Figure 5.6 shows data from light-scattering studies [53] which support this idea.

The horizontal axis is measured in units of the Brownian time (the time taken

to diffuse one particle radius in bare solvent). The vertical axis gives the mean-

squared displacement in units of the particle radius squared, hence the graph for

the bare solvent case, the thick solid line, has a gradient of unity. The mean

squared displacements do not strictly plateau after the initial, diffusive cage

exploration phase (below log(0)τB). Instead, they increase as the cage shape

fluctuates slightly; this effect is explored in more detail in section 5.2.

The final graph in this section, figure 5.7, shows a summary of my measure-
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ments of Ds
s. The value of the data points in the figure is not correlated with

the order in which measurements were made3, for example, there is no evidence

of a time-dependent short-time self-diffusion coefficient (which may imply aging

behaviour). Similarly, by virtue of the translation of the probe particle between

measurements, there appears to be no strong variation of this quantity between

different places in the sample.

5.1.2 Ds
s at and above the glass transition, φ = 58%, 62%

The power spectrum results at φ = 58% (figure 5.8) show a departure from

the previous results - the spread in Ds
s extracted from the power spectra

is significantly greater than that between experimental runs in lower volume

3The ordering of the measurements has been excluded from the figure in the interests of
clarity.
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fractions. Moreover, this spread is related to the waiting time, tw. The particle

was moved within the sample and allowed to relax for an hour (as in previous

experiments) before run 1. Again, like previous experiments, the particle was

moved within the sample for runs 2-4. Run 5 was conducted the following day.

As mentioned in chapter 4, in samples with volume fractions below φg, the sample

is ergodic; the particles will diffuse around the whole sample volume, subject to

a long-time diffusion constant Dl, which decreases to zero at the glass transition

[118]. Specifically, the approach to the glass transition is marked by the emergence

of the distinct α and β timescales which describe the long- and short-time (in-

cage) diffusion respectively. Although it is not measured directly, these data

suggest that there is some relaxation timescale lying between fifteen minutes

(five minutes rest time plus ten minutes recording) and one hour; the data in

reference [96] would seem to suggest that this is plausibly the α timescale4. The

short-time diffusion coefficient measured from the first and last runs is in good

agreement with the published value.

Figure 5.9 shows data from a φ = 62% suspension; as in the previous figure,

the measurements in figure 5.9 were spread over two days. Runs 1-3 were

conducted in succession, with a waiting time of an hour before run 1, then 5

minutes before runs 2 and 3. Runs 4-7 were conducted the following day, using

a low laser power to centre the particle in the optical trap (the laser beam was

used as a position sensor only, as the trapping force is so weak5), before the

power was raised to the typical experimental level of 35mW in the BFP. The

particle was not translated between runs 4 and 7; however, the trap stiffness

was varied, which is why there is a greater spread in data at low frequencies.

Runs 4-7 are in order of increasing trap stiffness. Here, whether the waiting time

was one hour or five minutes seems to make little difference, although when the

particle was left stationary in a sample overnight, the diffusion coefficient drops

substantially. The behaviour in figure 5.9 is characteristic of a glassy sample

(although a thorough investigation of whether this long-time relaxation is ageing

behaviour [101, 48, 49] is beyond the scope of this study); furthermore, the short-

4This paper gives the α time at around 100 seconds for particles of radius a = 205nm in
a φ = 57.4% sample; this would equate to around 73 minutes if our larger particles and more
viscous solvent were used.

5This principle has been used before, for example in reference [119], where the optical layout
contains two different beams, one at low power for position sensing and one at a high power for
trapping.
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5.1. Power spectrum analysis in dense colloidal samples
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Figure 5.8: Power spectra for tracer motion in a φ = 58% suspension, mean Ds
s/D0

= 0.0952 for runs 1 and 5, compared with the literature value mean 0.094.
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Figure 5.10: Comparison of Ds
s/D0 measured by this optical tweezers study with

previous light scattering studies. The red crosses are light scattering data from
reference [117], the green crosses are power spectrum measurements from samples
with volume fractions below the glass transition, and blue stars are data from
above the glass transition. The order in which the measurements were made in
the glassy samples has been labelled; the cage relaxation time in the φ = 58%
sample has been found to lie somewhere between 15 and 60 minutes. Relaxation
times in the φ = 62% sample are much longer, although measurements here have
put a lower bound of 1 hour on the relaxation time.

time diffusion coefficient after a long waiting time (i.e. In runs 4-7) is reasonably

consistent with a φ = 62% hard-sphere glass — Ds
s/D0 = 0.0597, compared to

0.026 extrapolated from the values in reference [53].

Figure 5.10 summarises the data presented thus far; all values of Ds
s/D0 are

presented together as a function of φ. My measured values for the short-time

self-diffusion coefficient are compared to those kindly provided by W van Megen

[120], based on a collection of published experimental results [117]. The spread in

measured values for Ds
s/D0 becomes much larger at the glass transition, reflecting

the effect of drastically increased cage relaxation time, as detailed above.
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5.2. Time-series data

5.2 Time-series data

This section is concerned with the size and dynamics of cage structures in dense

colloidal systems. Several studies [88, 97, 100, 121] have used confocal microscopy

to examine the evolution of the mean-squared displacements of particles in cages.

The plateau at intermediate timescales in such data6 allows a rough estimate of

the size of a particle’s cage of nearest neighbours in a dense suspension, as well

as a mean lifetime for this cage.

The optical tweezers-based techniques here offer a far higher position reso-

lution investigation of in-cage dynamics. The precision of confocal microscopy

is essentially diffraction limited, although advanced fitting algorithms [122] have

increased the resolution down to around ±30nm in the best case. Optical tweezers

sidestep the real-space diffraction limit by using an interferometric position-

detection technique, allowing refined position measurements down to the sub-

nanometre scale, at sampling rates several orders of magnitude higher than

confocal microscopy. This offers new insight into cage dynamics within single

cages, where transient ‘microcage’ structures are observed. Integrated over time,

these give rise to the larger cage sizes seen in previous studies. The cage lifetime is

also seen to extend with increasing volume fraction, and lower bounds are placed

on the yield stress of a cage in glassy suspensions.

5.2.1 Volume fractions below the glass transition

The data in the power spectra provide accurate and precise information about

the short-time behaviour of a colloidal suspension, but do not provide a very

detailed account of the long-time behaviour. To examine this area in more detail,

position-time measurements are examined next. Figures 5.11 and 5.12 show

histograms of particle position as a function of time, in a φ = 57% suspension.

As can be seen from the first figure (which gives raw data in nanometres), the

particle’s location is relatively stable for the first 150 seconds. The second figure

shows that the distribution of particle positions is Gaussian in shape (the 60

second section shown is parabolic on this semi-log plot - a fit to the data based

on a Gaussian distribution is included). After this initial period, the particle’s

6See figure 5.6 for examples of mean-squared displacement curves; although this is actually
data from light-scattering experiments, the same information could in principle be extracted
by confocal microscopy measurements.
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Chapter 5. Static Measurements in Dense Colloidal Suspensions

environment shifts7 away from the equilibrium trap position. By doing so, the

particle gains a little potential energy from the optical field, but the second law

of thermodynamics implies that the sample as a whole is (with overwhelming

probability) in a more entropically favourable state.
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Figure 5.11: Position-time displays of a static measurement in a φ = 57%
suspension. The axis at the right-hand side shows the optical potential as a
function of position. The data from which the short-time histograms in figure
5.12 were drawn are indicated.

The histogram showing particle position over the same length of time, but

later in the measurement (325-387.5 seconds) is still fairly Gaussian, although

it is now subject to a small optical potential, less than 0.1kBT . The data have

actually been shifted 8nm to the right so as to provide a comparison with the

earlier data, and a tendency towards the zero potential direction (to the right for

unshifted data) can still be seen. The outer curve shows the position histogram

for the entire measurement, and is non-Gaussian on this timescale (around seven

minutes). All distributions have been normalised by maximum amplitude.

This type of rearrangement is shown schematically in figure 5.13, with

considerably exaggerated scale; the actual motions observed experimentally are

of the order of 8% of a particle radius. When particles numbered 4 and 5 move

slightly, the other particles in the cage rearrange, including the central, shaded

7Structural rearrangements occur continuously in metastable colloidal fluids, driven by
Brownian motion; this has been documented in confocal microscopy studies, for example,
references [88, 97].
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5.2. Time-series data
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Figure 5.13: A schematic diagram showing a cage of particles (numbered 1-6)
rearranging from state (a) to state (b). When the particles numbered 4 and 5
relax into positions lower down the diagram, the rest of the cage relaxes, shifting
the position of the tracer relative to the optical trap (denoted by the red circle).
The size of the rearrangement is exaggerated here; the actual probe displacements
observed are about 15% of that pictured.
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Chapter 5. Static Measurements in Dense Colloidal Suspensions

particle, which represents the probe. The laser trap (represented by the red dot)

remains stationary, and lies much closer to the edge of the probe’s edge.

Figures 5.14, 5.15 and 5.16 show a different measurement in the same φ = 57%

suspension, where a large but temporary cage rearrangement may be seen, which

reverses during the measurement. Figure 5.14 shows the time series for a 15

minute measurement which has been down-sampled from 10kHz to 2.5Hz in order

to keep the file size manageable. At around 500 seconds into the recording, the

particle position jumps approximately 75nm in the positive y-direction, where

it remains for about 100 seconds; it then moves back to around the original

(optical equilibrium) position. Figures 5.15 and 5.16 shows 2D histograms of this

measurement, which serve to illustrate the dynamic cage size and shape. Figure

5.16 shows the subsection of this recording where the probe particle has moved

from the equilibrium trap position. The potential difference between the average

of the original position, and average of the displacement between 500 and 600

seconds, is 2kBT .
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Figure 5.15: (Left) A 2D histogram the measurement in figure 5.14 (tracer
position in a φ = 57% suspension), resampled at 2.5Hz; again, the colour bar
indicates the number of scans falling into each bin. The total length of the
measurement was 15 minutes.

Figure 5.16: (Right) A subsection of the run in upper figure from 500-600 seconds,
showing short-time behaviour in a cage structure.

The next 2D histograms (figures 5.17 and 5.18) are from a third measurement

on the same sample. Again, the probe particle is able to diffuse within its

cage of nearest neighbours, but does not escape from the cage. This is also

seen in dynamic light-scattering studies, which show that the long-time diffusion

coefficient (which is related to the average cage lifetime) decays very quickly on

approach to the glass transition [53]. Figures 5.17 and 5.18 show subsections of

this measurement, where the probe particle is localised by its neighbours for a

time, before the whole cage shifts position. The graphs show movement on very

short lengthscales - on the order of 1nm - which would be practically impossible

to record using confocal microscopy. It should be noted that cumulatively, these

movements give a 2D histogram showing a cage size of the same order as the

putative cage size suggested by reference [97] for a φ = 56% sample (around

15% of a particle radius, which in our case corresponds to 130nm). The graphs

in the shorter-time sections show that for small time windows, ‘microcages’ are

observed, where the distribution of particle positions is approximately Gaussian,

and persists for long enough for a particle to diffusively explore its environment.

These microcages are too large to correspond to the ‘static cage’ limit, which

is the free volume available to a diffusing particle if its shell of nearest neighbours
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Chapter 5. Static Measurements in Dense Colloidal Suspensions

were static. One could consider a thought experiment to illustrate this idea; if

the particles making up a cage were prevented from diffusing using extremely stiff

optical traps, the remaining space within which the caged particle may diffuse is

the static cage size VSC . This quantity is obtained as a fraction of the particle

radius from the volume fraction of the suspension:

VSC = 1 − φ

φrcp
, (5.1)

where φrcp = 64% is the random close packing volume fraction. For a 57%

sample, the radius of the static cage is 33nm, which is around half the width

of the distributions in figure 5.18, suggesting that the microcages observed here

have a size somewhere in between the static cage limit and the dynamic cage size

observed by confocal microscopy and light-scattering methods. Indeed, when

the evolution in their position is integrated over appropriate times (that is,

longer than the β timescale, but shorter than the final lifetime of the cage), the

microcages give a distribution of particle positions very similar to that observed

by the other techniques.

 1

 10

 100

X Position [nm]

Y
 P

o
s
it
io

n
 [
n
m

] 150

75

0

-75

-130

140700-70-140

Y
 P

o
s
it
io

n
 [
n
m

]
Y

 P
o
s
it
io

n
 [
n
m

]

Figure 5.17: 2D histogram of tracer position over 800 seconds in a φ = 57%
suspension. The bin size here is 2.8nm, and the colour bar indicates frequency.
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5.2. Time-series data

(a) 0-200 seconds.
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(c) 400-600 second
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(b) 200-400 seconds
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(d) 600-800 seconds
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Figure 5.18: These graphs are subsections of the measurement in figure 5.17.
Figures (a)-(d) are successive 200 second portions (with timeframes as labelled)
showing relatively stable average position over their duration.
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5.2.2 Volume fractions above the glass transition

In glassy samples, the dynamics slow considerably. Short-range in-cage motion

still occurs, but on an even shorter length scales, as there is less free volume

available in these denser samples. There are still discrete jumps in particle

position, but they are much less frequent. In the following graphs (in a volume

fraction of φ = 62%), the optical trap is displaced from the probe particle

centre. The particles have average optical potential energies of up to 32kBT

(corresponding to an optical force of 1.0pN) which, although relatively large by

equilibrium thermodynamic standards, is still insufficient to produce large-scale

cage rearrangements at this high density. To calculate the local stress due to the

optical potential, the approach adopted in chapter 6 (where the optical force is

divided by the cross-sectional area of the probe, πa2) yields a value of 0.37Pa. This

value is much lower than the putative yield stress of the sample, also calculated

in the chapter 6 (around 42Pa), which explains why no substantial relaxation is

observed over these timescales - only a very long-time Brownian relaxation would

be expected at this stress.

Figures 5.19 and 5.20 show particle motion at an optical potential energy of

32kBT ; the time-resolved measurements show that there are occasional detours

towards the zero-potential region, but the particle’s trajectory is still dominated

by its cage. Figures 5.21, 5.22 and 5.23 show data from a different experiment in

the same φ = 62% sample. There is a slight rearrangement approximately fifteen

minutes into the experimental run, but this only lowers the probe’s potential

energy by around 1.5kBT . The overall shape of the particle’s 2D histogram is

also non-circular - this shows the compromise in the particle’s trajectory when the

optical force competes with the confining effect of the neighbouring host particles.

As has been shown previously, local stresses can persist for a long time.

Figures 5.21 - 5.23 show the results of experiments conducted five minutes after

translation through the sample, after which time the stresses are not expected to

have relaxed substantially. Future work on glassy and near-glassy samples should

include long-time experimental runs conducted after a period of steady dragging,

to investigate the relaxation of accumulated stresses.
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Figure 5.19: Time series of the data in figure 5.20. The data has been resampled
from the original rate of 10kHz down to 3.3Hz.
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Figure 5.20: 2D histogram of displacements in a φ = 62% glassy sample. At the
average particle position, the potential energy due to the optical trap is ∼32kBT .
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Figure 5.21: A time series of a measurement in a φ = 62% sample, where a
cage rearrangement occurs at around 1000 seconds. The horizontal black lines
show the range of data used to make the histograms in figures 5.22 and 5.23,
and the mean values for these ranges. The cage rearrangement accompanies
a decrease in optical potential from 14.8kBT to 13.2kBT .
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Figure 5.22: 2D histogram of
data from the first 1000 seconds
of the recording in figure 5.21.
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Figure 5.23: 2D histogram of
data from 1200 seconds to the
end of figure 5.21.
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Chapter 6

Dragging measurements - Active

Microrheology

In order to further investigate the properties of colloidal suspensions, optical

tweezers were used to impose larger local stresses on the colloidal host via

a melamine tracer. This was achieved by translating the sample stage itself

while keeping the optical trap stationary; the tracer was forced past its nearest

neighbours, which impeded its progress, pushing it out of the equilibrium trap

position (this type of measurement is referred to as a ‘drag measurement’ herein).

Using the force-calibration presented in chapter 3 and the cross-sectional area of

a tracer, this increasing displacement was converted into a stress measure, which

peaks at the local yielding stress of the suspension. Experiments were performed

at several different stage speeds and volume fractions.

6.1 Average forces

6.1.1 First approximation - effective viscosity

The most straightforward analysis of the drag measurements is to examine the

(nominal) average force acquired from the average displacement from equilibrium,

as a function of drag speed and volume fraction. The measurements were started

with the stage stationary, and the particle in the optical trap. After around

thirty seconds, the stage was activated and the particle dragged through the

suspension, typically for around 3000 seconds (50 minutes). The displacement

from equilibrium varies significantly as a function of time, as the surrounding

colloid is highly inhomogeneous. An example of force-time measurements (same
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Chapter 6. Dragging measurements - Active Microrheology

stage speed, different volume fractions) is given below in figure 6.1. Qualitatively

speaking, it can be seen that the average force increases as a function of volume

fraction. The fluctuations about the mean also increase in higher volume fractions

— the probe particle experiences a greater range of forces as it is dragged through

the host suspension.
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Figure 6.1: Force-time series for dragging experiments in two different volume
fractions, φ = 54 and 58%, at a speed of 0.4µm/s. The slight negative detour at
around 34 seconds in the lower volume fraction measurement is due to mechanical
backlash in the stage motor; this region is excluded from the analysis of results.

In order to obtain average forces from these measurements, the initial

quiescent section of the measurement and the first 50 seconds of dragging are

discarded on the assumption that what remains constitutes ‘typical’ dragging

behaviour. In the case of the results in figure 6.1, the first 30 seconds constitutes

the quiescent period, so a total of 80 seconds is removed from the data set before

the rest of the analysis is conducted. This procedure was conducted manually on

each set of data. The arithmetic mean is taken of these remaining data values,

and is presented as a function of φ and drag speed in figure 6.2.
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6.1. Average forces

A striking feature of the graph is that it shows an abrupt change of behaviour

as a function of volume fraction. Below the glass transition at φ ≈ 58%, the

behaviour appears largely consistent with that of a Newtonian fluid1, that is to

say that the measured force is directly proportional to the flow speed, albeit

with large fluctuations and an enhanced viscosity (see figure - least-squares fits

are included to illustrate this trend). Error bars to indicate the spread of data

are omitted for the sake of clarity, as the standard deviation is approximately the

same as the mean (the standard deviation of these data are examined in figure 6.8

at the end of section 6.2). Effective viscosities are obtained from the forces and
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Figure 6.2: Average force as a function of stage speed and volume fraction.
At volume fractions below the glass transition (φ ≈ 58%), the suspension
appears fluid, with force measured tending to zero at zero stage speed. Least-
squares fits are included for volume fractions below the glass transition, and the
dotted horizontal line is a guide to the eye, illustrating the qualitative change in
behaviour in the glassy sample. The φ = 0% is a schematic showing the forces
on a tracer in bare solvent, based on the viscosity measured previously.

1The data point at 0.8µm/s in the 57% suspension is a special case — this is discussed in
the next section.
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Chapter 6. Dragging measurements - Active Microrheology

drag speeds using Stokes law, ηe = Favg/6πav. Least-squares fits to the data were

performed, yielding values of 36.3, 49.9 and 74.5mPa·s for the φ = 54%, 56% and

57% suspensions respectively, which are much higher than the value of 2.56mPa·s
for bare solvent. The φ = 0 line represents the expected average force on this size

of tracer in bare solvent, based on the viscosity measured in chapter 4.

Shear measurements may be described in terms of the dimensionless Péclet

number outlined in chapter 4. This number may be said to embody the relative

importance of diffusion to the overall particle behaviour; it is given by Pe =

τB/τγ̇ where τγ̇ is the time taken to separate two identical adjacent particles

by a distance equal to their radius by mechanical shearing, and τB is the time

a particle takes to diffuse a distance of its own radius by Brownian motion.

Shear dominated measurements will have Péclet numbers greater than 1, and

measurements dominated by diffusion will have numbers less than 1. In the Péclet

number range of our experiments (Pe = 1-40), samples with a volume fraction

under φg would be expected to act as a viscous fluid [105, 106]. Näıvely, one might

suggest that the viscosity observed is close to, or the same as, the high-frequency

viscosity obtained during the passive microrheological measurements in chapter 5,

which coincided well with the existing light scattering measurements. Figure 6.3

shows a comparison of active, passive and light scattering measurements, in terms

of diffusion coefficients2(Ds/D0 for the passive and light scattering measurements,

De/D0 for the dragging measurements). Clearly, the observed viscosities are

significantly larger than those obtained from passive measurements.

The above data would suggest that at least part of the above assumption

(Stokes’ law is valid, the suspension acts as a continuum) is not viable. All of

the values measured in dragging experiments are approximately a factor of two

larger than those measured by light scattering and passive microrheology. In

many ways this is not surprising; the values from the other techniques pertain to

high-frequency behaviour, and all of the work here is at relatively low shear rates.

Theoretical work by Squires et al. [123] on dilute suspensions of charged colloidal

particles finds that there are two distinct limiting cases for local perturbations

caused by nonlinear microrheology. At the highest shear rates, the mechanical

motion of the probe particle dominates the local structure. The leading half of

the probe is surrounded by a dense layer of host particles, and this layer also lines

2Effective diffusion coefficients may then be defined as De = kBT/6πηea.

88



6.1. Average forces

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.46  0.48  0.5  0.52  0.54  0.56  0.58  0.6  0.62  0.64

D
s
/D

0
  
, 
 D

e
ff
/D

0

φ

Light scattering (WvM et al)
Passive measurements
Active dragging

Figure 6.3: A comparison of active rheology data with that obtained from
light scattering measurements. The effective diffusion coefficients from dragging
experiments are significantly smaller than those obtained from passive techniques.

the probe’s wake, which has been swept clear — this is the behaviour seen by

Meyer et al. [8], where the probe is moved fast through small host particles. At

lower shear rates, diffusive motion is dominant; the high density region extends

further from the probe in the direction of motion, and the particle’s wake extends

symmetrically behind (the host density pattern is described as a ‘diffusive dipole’).

In this low-shear-rate regime, the high-density region in front of the probe extends

its influence significantly. Unpublished results of dragging experiments using

magnetic tweezers apparatus undertaken by Weeks and co-workers [124] have

also suggested that the shear zone extends well beyond the radius of the probe.

In light of this, it could be argued that the most obvious modification to the

basic Stokes description is to assign an effective radius to the dragged particle.

If a host particle has a position in the plane perpendicular to the drag direction

which separates its centre from the probe’s by less than two particle radii, the

particles will collide, otherwise they will not. This idea is illustrated in figure 6.4,
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where the particles whose contact angle with the probe is less than 45◦ are drawn

in green, and those with contact angle between 45◦ and 90◦ drawn in red.

2a 4a

x

y,z

T

Tracer

Figure 6.4: Effective radius - the distance within which host particles will directly
collide with the probe. The green particles’ centres are within one particle radius
of the probe centre’s path; the red particles’ centres lie just outside this, but
within the effective radius. The light grey particles’ centres lie outside the effective
radius.

An effective radius may be introduced, which is twice the physical radius of

the probe particle; this quantity goes some way towards reconciling the physical

probe dimensions with the extent of its influence. Although the exact motion

of particles around the dragged tracer will be complex, and a fruitful area for

further study3, our measurements (while not giving a complete picture) at least

add weight to the argument that a region greater than the cross-sectional area of

the probe must be considered in any description of the shearing action.

3Initial studies, on a system where the probe is much larger than the host are presented in
reference [8].
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6.2. Displacement histograms

6.2 Displacement histograms

In this section, histograms of the force experienced by the probe particle are

presented as functions of both dragging speed and volume fraction. These show

the mean force experienced by a tracer, and the range of forces for each case.

Broadly speaking, the drag speed dictates the average displacement, and the

volume fraction determines the total range of forces. At volume fractions below

the glass transition, the forces roughly follow a Stokes-type relationship, where

force is proportional to velocity, albeit with a viscosity much greater than that

in the bare solvent case. At the glass transition, both the average forces and the

range of forces increase significantly, and are independent of drag speed.

6.2.1 Dragging experiments in samples with φ < φg

To look in more detail at the behaviour of a dragged particle, the frequency-

distribution of forces at different drag speeds is examined, and presented here.

As previously seen in figure 6.1, the trapped particle’s motion is erratic. The force

experienced by the probe as it is forced through the host colloid varies according

to the configuration of its nearest neighbours; histograms are a way of examining

the distribution of forces over the whole length of a measurement.
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Figure 6.5: Drag histograms in φ = 54%.
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Figure 6.5 shows a selection of the drag measurements in the φ = 54% sample

(the rest are omitted for the sake of clarity). Unlike dragging measurements

in bare solvent (see chapter 3), the histograms of particle position are non-

Gaussian, particularly at low speeds. This is illustrated by the measurement

at the lowest speed (a Gaussian fit is included for comparison); the distribution

is obviously skewed towards the zero-potential region. At first sight, this is at

odds with the work in references [114] and [125], which examine the response

of a colloidal system to a probe driven with a constant force, in experiment

and simulation respectively. Habdas et al. found that if a constant force was

applied to probe particles in a dense suspension, the distribution of velocities

produced was Gaussian; one might suggest that if a probe is dragged at a constant

velocity, the distribution of forces on the probe would also be Gaussian4. In fact,

optical tweezers experiments are subtly different to those using magnetic tweezers;

although the velocity of the trap is constant, the probe velocity and probe force

both vary. If a probe particle is displaced from its equilibrium position by the

surrounding colloidal host, upon building up sufficient force to break its cage

(due to increasing optical potential), it will momentarily be travelling faster than

the trap, as it is pulled towards the equilibrium trap position. This situation

may lead to the biasing of the force distribution towards the equilibrium position

(which does not arise in constant-force experiments).

Another factor which might contribute to the asymmetry relates to the actual

value of the optical potential at a particular position - at small displacements,

Brownian forces still dominate the probe motion. For example, in figure 6.5 a

force of 0.2pN (equivalent to a displacement of 45nm) corresponds to an optical

potential energy of ∼ 1kBT . Optical potentials around this value represent the

crossover regime between Brownian-dominated forces and trap-dominated forces,

so a purely trap-dominated Gaussian distribution is perhaps unlikely. At higher

drag speeds, the distribution of positions is more Gaussian, and this would seem

to add weight to the ‘competing Brownian/trap force regime’ hypothesis. In the

experiments of Habdas et al., the probe experienced a constant force, which gave

rise to a Gaussian distribution of instantaneous velocities; the same is true for

our experiments at high drag speeds where the optical potential is significantly

greater than kBT . This idea is quantified at the end of the section (figure 6.9)

4This is consistent with a generalised Stokes approach to viscous drag force.
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with a comparison of the third moment of the distribution of forces.
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Figure 6.6: Distribution of forces in a φ = 56% colloidal suspension during
dragging experiments.

Figures 6.6 and 6.7 show a selection of the force-drag speed histograms

obtained in dragging measurements in the φ = 56% and 57% samples. As in

figure 6.5, the histograms generally broaden and become more Gaussian with

increasing drag speed (the clearest evidence of non-Gaussian behaviour is in the

highly asymmetric wings of the distribution). The result obtained at the highest

speeds in both graphs are more irregular in shape than the other measurements;

this is because the particle escaped the optical trap relatively soon after the drag

measurement was started, so only a limited data range was available for producing

the histogram5. All measurements are normalised by the total number of counts.

The φ = 57% measurement also shows the start of a trend which becomes

clearer in the φ = 58% sample; there is a narrower spread in the mean of the

histograms, and they are more irregular in shape. This is due to the emergence

of friction-like, stick-slip behaviour [126] — this idea is described in more detail

in the next section, where the effect is more prevalent. At the lowest shear rates,

surrounding particles have time to rearrange to accommodate the probe particle

as it moves, but at higher speeds the probe motion is more intermittent as it

5Both samples have a useful recording time of around 200 seconds, as opposed to ∼ 3000
seconds for the other measurements.
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Figure 6.7: Distribution of forces in a φ = 57% colloidal suspension during
dragging experiments.

successively gets stuck, and is then released when the accumulated force exceeds

the local yield force. The microrheological study of Habdas et al. supports

this idea. In that work, increasing forces were applied to many magnetic beads

simultaneously, and their progress observed by confocal microscopy. A certain

yield force is needed in order to move the tracer particles through suspensions

with volume fraction greater than the melting point (φm = 54.5%), and there is

quite a spread in the data obtained (±30% of the mean). This could be attributed

to local fluctuations in the yield force due to spatial inhomogeneity; indeed, my

measurements have a similar spread, which is likely due to the same phenomenon.

The standard deviations of the histograms at all drag speeds and volume

fractions below φg are presented in figure 6.8. All drag measurements have a

standard deviation that is significantly higher than in the static (zero speed) case,

and generally speaking, the standard deviation increases with drag speed. It is

worth remarking also that the standard deviation of the results in the φ = 57%

sample shows a smaller spread; again, this is taken to mark the onset of solid-like

behaviour which becomes even clearer in the φ = 58% sample.

The amount of asymmetry in each histogram may be quantified by examining

the third moment of the distribution (the mean and variance of a data set are
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Figure 6.8: Standard Deviation of the histograms in figures 6.5 to 6.7. The
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the first and second), given by [127]:

Skew(xj) =
1

N

N
∑

j=1

[

xj − x̄

σ

]3

. (6.1)

Figure 6.9 gives the skewness of all of the histograms in drag speeds below

φg. Although the spread of data precludes any speculation as to the form of

the decreasing skewness, the data at drag speeds less than or equal to 1µm/s

show a distinct downward trend. This means that the histograms become more

symmetrical at higher drag speeds, and this reflects the decreasing importance of

Brownian motion at increasing distances from the trap centre. The data point

at 0.8µm/s in the φ = 57% suspension should be treated with caution, as the

graph in figure 6.7 shows the emergence of a different, solid-like behaviour in this

volume fraction.
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Figure 6.9: Third moment (skewness) of the histograms in figures 6.5 to 6.7. The
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6.2.2 Dragging experiments in samples with φ ≥ φg

As the volume fraction increases past φg ≈ 58%, two main features become

apparent. Firstly, as seen in figure 6.2, the measured average force is largely

independent of drag velocity. This velocity-insensitivity is well known in solid

friction experiments, like those in reference [126]. That letter details the force

necessary to drag a piece of sandpaper across carpet. The evolution of force with

time observed by Feder et al. is strikingly similar to that in our experiments — a

system accumulates force up to a certain critical value and then relaxes, with both

accumulation and relaxation processes occurring as a hierarchy of smaller steps.

This hierarchy of steps is explored in greater detail in section 6.3, but a central

feature, the critical yield force, is demonstrated in figure 6.10; the average force

is roughly constant for all drag speeds. The work in references [109] and [54] on
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Figure 6.10: Force histograms for a φ = 58% suspension. The average
displacement is essentially constant, and only increases at the highest velocities.

sheared colloidal suspensions shows the emergence of a yield stress for suspensions

with volume fractions around φg ≈ 58%; the results in these references give yield

stresses of around 1.5Pa for a volume fraction of φ = 58.4% and around 10Pa

for a φ = 62.0% suspension. Estimates of the yield stress in these measurements

were made from our measurements by examining the raw data in the force-time

series. In order to convert average force (as described previously) to stress, an

effective area over which the force is applied must be invoked. It is not entirely
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clear which area should be considered in this case; in the absence of a suitable

alternative the particle’s cross-sectional area (πa2) is used here. In order to

make a comparison with the results of Petekidis et al., the stress must be scaled

appropriately. Stress is a form of energy density, σ ∼ a−3, so our values of yield

stress should be scaled accordingly. The resulting values – 42Pa and 63Pa for the

φ = 58% and φ = 62% samples respectively – overestimate the yield stress by

around a factor of ten. In fact, the authors in reference [109] use two different

methods for extracting a yield stress, which give two quite different values - the

method based on flow curves (graphs of shear stress against shear rate) is more

comparable to our own method and is typically lower than, although within an

order of magnitude of, the other (sample creep) method. Another factor affecting

our value is the highly localised nature of the measurement; the vast majority of

the rest of the colloidal suspension is not perturbed by the shearing action and

thus is not shear-thinned, unlike the macroscopic case. The value of this kind

of comparison between macro- and microrheology seems quite limited, certainly

in the quantitative sense. In the former case, all particle cages in a sample are

sheared, whereas in the microrheological case, the vast majority of cages are

unsheared. To this end, it is interesting to note that the results obtained by

Habdas et. al [114], measured on a sample with similar properties (probe size,

host size, solvent viscosity) to our own, show very similar values for the yield

force of dense suspensions, typically on the order of ∼1pN. This value is broadly

in agreement with the theoretical results cited in that paper [128] based on the

estimates of the free energy barrier localising a particle. It would seem reasonable

to suggest that there is further work, both theoretical and experimental, that is

required in order to bridge the gap between micro- and macrorheology.

At the highest volume fraction (φ = 62%), a stronger trap (stiffness κ =

6.5pN/nm, around 60% stronger than previous measurements) was necessary,

as the probe experiences much larger range of forces. This can be seen in the

histograms of figure 6.11, where particle force distribution becomes increasingly

broad and irregular. This implies that both the range and the mean value of cage

yielding forces increase with volume fraction as random close packing (φ = 64%)

is approached. The mean values of the histograms are apparently different, but

given the poor quality of the data, this may be misleading; this graph is included

only in the interests of completeness, and the average forces have been omitted
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Figure 6.11: At a volume fraction of φ = 62%, the shape of the force distribution
function is irregular, with a high mean value and large standard deviation.
The trapping laser was turned up to its maximum value to perform these
measurements, as the yield stress is large (around 1.2 Pa).

from figure 6.2. If the range of possible cage yielding forces is sufficiently large

(which is hinted at by the broad observed distributions), the true distribution of

forces may not have emerged, and that longer data sets are needed — this would

account for the irregular histogram shape. Figure 6.12 serves to demonstrate

the erratic motion of the tracer through the glassy sample; the sharp peaks in

the figure are typically followed by sudden troughs, as the particle jerks onward

through the host (implying that the stress relaxation happens suddenly rather

than gradually). The tracer is stopped, an optical force builds up, and the particle

pushes forward for a relatively large distance before becoming obstructed again.

Figure 6.13 shows another method of quantifying this motion. The probe’s

absolute position in the sample is obtained, by subtracting the stage velocity

from the position-time series, giving a recording of the probe’s position relative

to the sample cell. This data is then binned in terms of position (bin size is half

a particle radius), giving the dwell time in each position range. The data from

the 62% sample is compared to data at the same drag speed in a 56% sample.

The jerky motion is readily apparent in the spread of data at the higher volume

fraction; this representation also shows that the regions of stronger obstruction

are seemingly random in distribution, and do not apparently occur in clusters.
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Figure 6.12: Time-force series for a dragging measurement in a φ = 62% colloidal
glass. The data have been down-sampled to 2Hz.
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6.3 Size of Rearrangement events

This section is the final part of the analysis of dragging measurements on

dense colloidal systems. On inspection of a typical force-time data series (for

example, see figure 6.14), there appears to be a hierarchy of different sizes of

cage rearrangement events; for example, two large rearrangements just after

1150 seconds, followed by two smaller ones. An enlarged subsection of this

experiment showing the two smaller events is presented in figure 6.15; high-

frequency Brownian noise is more significant at this timescale (the signal is

generally noisier), but a hierarchy of events still seems apparent. At first glance,

the two recordings look similar, hinting that there may be no single characteristic

timescale upon which the system operates. This final results section examines

the apparently scale-free behaviour in a quantitative fashion.

In order to count the number of events occurring on a particular timescale, a

procedure based on wavelets [129] is used. Wavelet techniques can be thought of

as an extension of Fourier transform methods, into the realm of transient signals.

The Fourier transform has been used in this thesis to provide the spectral content

of an entire signal (in this case particle position)6. The signal corresponding to

a tracer breaking a cage of particles, however, is an inherently transient event,

suggesting a time-varying frequency spectrum. The wavelet transform offers a

wide choice of basis function, or ‘wavelet’, all of which are localised in time. The

transformed function is expressed as a sum of wavelet functions with the same

basic shape, but different amplitudes, temporal scaling factor (dilation) and time

coordinates; the wavelet transform of a one-dimensional function is inherently a

two-dimensional entity. Strictly speaking, a wavelet transform does not offer an

entirely arbitrary choice of basis function7, but for our purposes the conditions

are relaxed slightly as we are not necessarily concerned with preserving the total

information content of the signal. The routine I use here discards time and

amplitude information, and is concerned solely with the number of peaks that

occur on a particular timescale.

6The power spectrum of Brownian forces is constant at all frequencies, and does not change
with time, which makes the Langevin equation ideal for solution by Fourier methods.

7See reference [129] for details.
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Figure 6.14: Time-force series for a dragging measurement at 0.2µm/s in a φ =
62% colloidal glass. The data have been down-sampled to 2Hz.

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 1.3

 1167  1167.5  1168  1168.5  1169

F
o

rc
e

 [
p

N
]

Time [s]

Figure 6.15: A two second subsection of the measurement in figure 6.14. The
data have been down-sampled to 200Hz, so there is the same number of data
points in both the longer and shorter graphs.
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6.3.1 The peak extraction routine

The mathematical kernel of the peak extraction routine used8 is based on the

fitting of a quadratic function to the data, which is examined over a particular

time window (or equivalently, at a particular dilation). The raw data is discretely

sampled; in order to keep file sizes manageable, the original data is down-sampled,

typically from 10kHz to around 5Hz. At these frequencies, the optical trap

dominates the particle motion, and it is this that we are primarily interested

in.

The fitting routine sifts through the data, looking at a particular time window

(or equivalently, number of data points) to determine if there is a peak in that

region. If the data at the start and end of a time window are lower than the data

in the middle, the programme attempts to perform a quadratic fit procedure,

with the amplitude, peak time and second derivative as fit parameters. If a peak

is detected, the fit parameters are noted and the time window moves on. This

process is illustrated in figure 6.16; clearly, the short time windows pick out more

peaks, and the longer ones pick out fewer. The exact time location of the peak

depends upon the window size, but this is relatively unimportant, as only the

total number of peaks are considered for each window size.

The number of peaks detected is recorded for a range of window sizes, and

at all drag speeds and volume fractions (except the highest, φ = 62%). Looking

at figure 6.16, some peaks are clearly detected by all time windows (for example,

the peak between 106 and 107 seconds). In order to correct for this, the number

of peaks detected at a particular window size is subtracted from the number of

peaks detected at the next largest window size. This leaves only the number of

peaks specific to the window length in question, as smaller peaks that are not

local maxima are not counted.

6.3.2 Peak size distribution

The data obtained using the fitting routine takes the form of a distribution of

number of peaks as a function of window length. Such a distribution is presented

in figure 6.17, where the distribution is normalised by the third data point9.

8One of the built-in routines of National Instruments corp.’s Labview 7.1 development suite.
9This choice is somewhat arbitrary, but is chosen to highlight the trend in data at larger

time windows.
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Figure 6.16: Example of peak detection routine, on a section of a measurement
in φ = 58%, drag speed 0.4µm/s. The red line represents the original data, while
the points are the peaks detected using different time windows. The peaks have
been translated vertically for the sake of clarity.

At the shortest time windows (the first two data points), Brownian fluctuations

start to interfere with the statistics by producing ‘false’ peaks, as the crossover

between Brownian force-dominated motion and trap-dominated motion occurs

at this timescale, around 5-10Hz. If too large a time window is used (greater

than about 2 seconds), the signal becomes noisy, as there are insufficient events

to establish a trend, and because there is a limit to the maximum event size

(the probe is ultimately contained by the trap). Intermediate times seem to

approximately follow a power-law behaviour,

N ∝ ∆t−Υ (6.2)

where N is the number of events, ∆t is the length of the time window, and Υ is

a parameter. A fit is performed between 0.25 seconds and 1.5 seconds, to give

a value for Υ, which varies between 1.4 and 2.6. This parameter is a way of

characterising the size distribution of cage rearrangement events at a particular
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drag speed and a particular volume fraction. A larger value of Υ means that

there are more events at a shorter time-scale.
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Figure 6.17: Size distribution of rearrangement events in a φ = 56% colloidal
suspension. The thick black lines show the highest and lowest values of Υ (1.56
and 2.14 respectively).

What is noticeable from looking at figure 6.17, is that Υ increases with

drag speed. It might be suggested that the higher drag speeds give faster

rearrangements simply because the probe is driven faster, but that would not

necessarily affect the shape of the distribution; if this were true, the entire

distribution in figure 6.17 would just be shifted to the left for faster speeds, as

the particle is driven at a constant velocity. Lines fitted to the highest and lowest

drag speed measurements (with exponents Υ = 2.14 and 1.56 respectively) have

been included, and offset from the data to provide a visual guide to the range of

exponents.

6.3.3 Variation with φ and drag speed

Figure 6.18 shows a summary of this type of data for all volume fractions and

all drag speeds. Broadly speaking, it would seem that the trend seen in figure
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6.17 (Υ increases for greater dragging speeds) is present in all volume fractions

φ < 58%, below 1.5µm/s drag speed. Qualitatively, this means that at higher drag

speeds, the accumulated stresses relax in the form of many small rearrangements

(cage breaking) events, as opposed to fewer large ones — the opposite is true

at lower drag speeds. Although the total range of exponents is not great, this

is still a systematic trend across all volume fractions. The data at 58% is less

conclusive; this is perhaps not surprising, as there are many other factors, such

as the mean force (figure 6.2) and standard deviation (figure 6.8) that show a

qualitative change at the glass transition.
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Figure 6.18: Variation of Υ with drag speed.
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Chapter 7

Conclusion and Outlook

In this final chapter, I summarise the main findings of my experiments, and

suggest some interesting possibilities for future work.

7.1 Optical characterisation

Usually, calibration data would not be included in a summary of results, but as I

have remarked previously (in chapter 3) there appears to be little in the published

literature that deals with large-displacement trap calibration. It was found that

there are two distinct nonlinearities that are of importance for a well-calibrated

experiment: non-linearity in position detection and anharmonicity in the optical

force profile. The nonlinearity in the position detection causes an overestimation

of particle displacement when judged by the QPD data alone, with an error of

∼ 100% at a displacement of a particle radius. The trap profile anharmonicity

leads to forces being overestimated by up to 33% at a displacement of one particle

radius from the equilibrium position. Both of these details may be eliminated

by making measurements using a CCD camera, applying a known force to a

trapped particle by means of a fluid flow, and measuring the displacement by a

basic image analysis. It was found that the deviations from the linear behaviour in

both cases were well accounted for by a third-order correction, with no significant

improvement in a fit to the data upon the addition of higher-order terms to the

fitted equation.
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7.2 Static measurements

In chapter 5 it was found that values for the short-time self-diffusion coefficient Ds
s

in samples with volume fractions below the glass transition φg agree very well with

values obtained from static light-scattering measurements, both in the average

value and the spread of values obtained. The spread in values is attributed to

local inhomogeneities inherent in the samples. In samples with volume fractions

at and above φg ≈ 58%, the measured value of Ds
s depends strongly on the

sample’s local history. In the φ = 58% sample, local perturbations caused by

moving the probe particle around in the sample are slow to relax, taking between

15 minutes and an hour to return to their nominal ‘equilibrium’ value. This effect

is more profound for φ = 62%, where the relaxations take much longer to relax -

an upper bound on the relaxation time of 16 hours is found.

The high sampling rate afforded by this optical-tweezers technique is exploited

in the second half of chapter 5. By examining time-resolved data, it has been

shown that the cage structures observed by confocal microscopy are in fact the

sum of several ‘microcages’, due to fluctuations in cage shape and position,

wherein the particle has sufficient time to diffusively explore each microcage.

At the higher volume fractions, an effective ‘yield force’ is hinted at, as optical

forces of up to 0.66pN are applied to a particle for up to 50 minutes, and only a

very slight relaxation is observed.

7.3 Dynamic measurements

In the active (dragging) measurements, the difference between sub-glassy samples

and glassy samples once again becomes clear. At volume fractions in the range

φ = 54% → 57% the behaviour is essentially fluid, with no yield stress observed.

It was possible to extract values for an ‘effective viscosity’ based on a Stokes-

type model. These effective viscosities are found to be around a factor of two

higher than those measured in the static measurements; it was suggested that

the introduction of an ‘effective radius’ for the particle, based on geometrical

considerations, may go some way towards accounting for this discrepancy.

At a volume fraction of φ = 58%, the behaviour of a dragged particle is

dominated by the yielding force of the sample. The displacement histograms at

different speeds have a similar average displacement and spread of data. This
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follows a trend observed by Petekidis and co-workers [54], where a yield stress

emerges upon reaching the glass transition. Although my values for the yield

stress are not in good agreement with the bulk rheology data, this is unsurprising

in many ways, as the shearing measurement is highly localised, in an otherwise

unperturbed medium. The highest volume fraction studied, φ = 62% shows the

largest spread of data; at this volume fraction, a greater trap stiffness must be

used (about 60% stronger than previous measurements). The results for yielding

forces in both φ = 58% and φ = 62% are in good agreement with a directly

comparable microrheological study by Habdas et al. [114].

Finally, the distribution of sizes in force build-up and relaxation events is

examined. It was found that at dragging speeds up to 1µm/s, the distribution

of event sizes is biased in favour of the smaller events, with larger events being

rarer. This bias increases with drag speed, and occurs at all drag speeds, and in

all volume fractions up to and including φg = 58%, where data is available.

7.4 Future work

This thesis is a first investigation of optical tweezers based microrheology of dense

hard-sphere suspensions; there are many unanswered questions that result from

it. Although a wealth of experimental data is available, a theoretical model of

the microrheology is still under development. Squires et al. [123] have developed

a mathematical description of the microrheology of very dilute suspensions of

particles with a hard-sphere radius much larger than the hydrodynamic radius,

allowing hydrodynamic interactions to be neglected. The model describes the

formation of a dense boundary layer in front of the dragged particle — a

phenomenon which is appealing when explaining the results of my dragging

experiments. Incorporating confocal imaging into the optical tweezers setup

would be able to lend experimental support to this idea, and also give empirical

evidence to aid the extension of the theoretical work to denser samples.

Initial examination of the dragging data prompted the suggestion that the

particle was moving forward in a series of discrete steps, remaining in one location

until it had built up sufficient force to break through the neighbouring particles,

and then catch up with the optical trap; the colloidal host acts as a solid barrier

– a ‘brick wall’ – impeding particle progress. Data to support this description is
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seen in the constant force experiments of Weeks et al. [114], where the probe’s

position in the sample is constant for hundreds of seconds at a time, before the

probe particle suddenly moves onward. However, there are two respects in which

that situation is subtly different to the one here. Firstly, my optical tweezers

experiments are not constant-force experiments, indeed both the force driving the

probe and the probe velocity vary. Secondly, the structures blocking the probe’s

progress are not the static, hard barriers implied by the ‘brick wall’ description;

instead, they are elastic objects, which deform and then finally yield. A careful

investigation of the data showing the probe’s position relative to the sample (from

which figure 6.13 is derived), preferably in conjunction with confocal imaging,

would give a valuable insight into the nature and elastic response of the relevant

colloidal micro-structures.

An extension of the experimental setup to include a second optical trap would

give valuable information regarding the interaction between two neighbouring

particles. The idea of ‘microcages’, introduced in chapter 5, could be used

to extend the work of Weeks et al. [97], which describes the collective

rearrangements that are necessary for relaxations in dense suspensions. The

correlation of particle motion between two particles at various separation

distances would give insight not only into the frequency and size of these events,

but also (by altering the probe particle separation) into the spatial extent. Here,

the optical tweezers technique comes into its own, as it has a fifty-fold increase in

spatial resolution, and a thousand-fold increase in time resolution over confocal

studies.

A two trap setup would also provide useful information on drag measurements;

by dragging one particle and holding a second still, the effect on the micro-

sheared host could be measured, for example in terms of a decreased short-time

self-diffusion coefficient that comes with an increase in local density. Similarly,

by dragging two particles at once (either side-by side or along the same path),

the response of a perturbed region to further action could be probed. This

has particular relevance to the work by Meyer et al. [8] which describes

microrheological measurements at high shear rates in suspensions where the

probe is much larger than the host, which acts as a continuous medium. The

trapped particle in this case collects a boundary layer of high particle density

close to its surface, and this layer is sheared off to line the probe’s wake. The
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interaction of two dense boundary layers could prove interesting, as two adjacent

probes being dragged side-by-side are brought together; also, the forces acting

on a probe travelling at the same speed, but a distance behind another would

give information about the relaxation of the local suspension, and how it varies

throughout a sample.
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Appendix A

Timeline for experimental work

The prototype force measurement setup was built before I began my PhD work,

in October 2003. After some preliminary measurements using a Helium-Neon

laser conducted initially by Dr. Arlt, and then by myself, the apparatus was

dismantled and moved into a new laboratory space in January of 2004. The

experiment was reconstructed both by myself and Dr. Arlt, and the laborious

process of alignment was also shared between us. The next 18 months were spent

characterising and optimising parts of the optical system, as well as improving

experimental protocol. Once the system had been upgraded (to incorporate new

passive vibration-damping components) and the stock colloidal samples prepared,

I undertook a final full realignment in September 2005 when the location of the

pick-off power meter was changed to that shown in chapter 3. This configuration

was used for all of the experimental work herein, with minimal modification to

ensure that the optical trap is in the centre of the imaging camera’s field of view.

The calibration of the detection system, including the correction of non-

linearities (see chapter 3) was performed in the Autumn of 2005, allowing

measurement of average particle position at nanometre resolution, and forces as

small as 90fN. This information allowed the collection of the data which makes up

the main body of this thesis. With the exception of the results from the φ = 40%

suspension (which were obtained in 2005), all of the experimental work included

in this thesis was performed between April and August of 2006, following the

departure of Dr. Arlt in March of that year. The analysis work was performed

by myself between September 2006 and March 2007.

Computer programmes for raw data acquisition were written by Dr. Arlt in

2003, along with those for the analysis of power spectrum data (see chapter 3);

I modified the power spectrum programmes in 2006 to allow multiple files to be
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processed at the same time. The programmes for the linearization of position

and force data were written exclusively by myself in late 2006. The programmes

for results analysis (such as the production of 2D histograms and the production

of peak-size distributions) were written by myself, with support from programme

libraries included with National Instruments corp.’s Labview v7.1 development

suite.
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