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Abstract

The project is about learning temporal relations from unannotated text. This
e�ort builds on the work of Lapata and Lascarides (2006), who developed a sys-
tem that uses temporal connectors (after, before, while, when, as, once, until and
since) in unannotated text to build a system to determine intra-sentential temporal
relations.
In an extension of this approach, they used their system to determine TimeML

relations (before, includes, begins, ends and simultaneous) between events.
Since temporal connectors do not translate one-to-one to TimeML relations, the
main focus of this project is on disambiguating the temporal connectors into
TimeML relations to preprocess the training data and use the system to directly
learn the TimeML relations. This will be done using a rule-based system and will
be evaluated on the TimeBank corpus.

1 Introduction

Temporal Semantics plays a pivotal role in many language processing tasks, such as

information retrieval, question answering, recognising textual entailment and text sum-

marisation. The identi�cation of events and the understanding of how they relate to

each other is crucial in any text understanding task. For example, in a question an-

swering system, questions like the following are beyond the scope of any QA system, if

it lacks temporal semantics (Pustejovsky et al. 2003a: 2).

(1) a. Is Gates currently the CEO of Microsoft?

b. When did Iraq �nally pull out of Kuwait during the war in the 1990s?

c. Did the Enron merger with Dynegy take place?

Historically, approaches to the subject of temporal semantics in computational linguis-

tics have been mostly inference-based, rooted in symbolic AI (cf. Lapata and Lascarides

2006; Mani et al. 2005). But, as Lapata and Lascarides (2006: 88) point out, theory

based systems inevitably lack coverage, because they are built on simpli�ed assump-

tions about language. Because of this, more recent work has followed other �elds in

computational linguistics and has strived to �place more emphasis on the study of real

language as evidenced in collections of texts [. . . ]. Linguistic judgements about these

texts are then recorded in the forms annotations associated with the texts [. . . ].� (Mani

et al. 2005: 487)

A corpus-based approach to the temporal evaluation task can be broken down into the

following three tasks:

Task 1: Annotating times

Task 2: Annotating events

Task 3: Annotating temporal relations

- between times and events

- between events

- inter-sentential

- intra-sentential
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The �rst task deals with purely temporal entities, namely temporal expressions that

might refer to �times (�ve to eight), dates (July 1, 1867 ) durations (three months), or

frequencies or sets of regularly recurring times (weekly)� (Verhagen et al. 2009: 162).

The second task is to annotate the linguistic expressions that denote events, which

usually are verbs, the predicates of a sentence, but not necessarily (Verhagen et al. 2009:

163). The third task is to annotate temporal relations between those events (event-

event relations), as well as anchoring events in time (time-event relations). Event-event

relations may be inter-sentential or intra-sentential.

This last task of annotating event-event relations is not only di�cult from a computa-

tional point of view, but �is su�ciently complex that human annotators can realistically

identify only a small number of the temporal relations in text, thus compromising re-

call.� (Lapata and Lascarides 2006: 86)

The di�culty lies not only in indentifying, where temporal relations apply, but also in

choosing which relation applies: Setzer and Gaizauskas (2001) did a study with human

annotators, reporting an average of 40/68 precision/recall for annotating temporal re-

lations (the possibility of this task is bounded by the correct annotation of events, so

a low performance in Task 2 lowers recall for Task 3). Verhagen et al. (2009) report

similar �gures regarding the preparation of the corpus for the TempEval challenge, even

though they used only three temporal relations. (see Sections 2 and 3.1). Setzer and

Gaizauskas (2001) identify �ve possible reasons for this low �gure, three of which boil

down to �human error� (imprecision of the guidelines, lack of training/experience, an-

notator fatigue, annotator carelessness) and only one to the task itself, although it is

easily the most di�cult to overcome:

Consider the sentence All 75 people on board the Aero�ot Airbus died when it

ploughed into a Siberian mountain in March 1994. Is the relation between the

passengers dying and the plane crash one of causality and given that, did the

passengers die, after the plane crash? Or is a plane crash an event that contains

many subevents and is the death of the passengers part of it, which would imply

that the death occurred during the plane crash? Or did they happen roughly at

the same time, a relation covered by our temporal relation simultaneous? (Setzer

and Gaizauskas 2001: 8)

The inherent di�culty of temporal relation annotation only increases with the introduc-

tion of more relations. TimeML (Section 3.1 and Allen's Interval Algebra (Allen 1983),

on which most temporal relation marking schemas are based, allow for very �ne-grained

di�erences, adding the possibility that the passengers died iafter1 � immediately after

� the plane crashed, or that the plane crash started at the same time as the dying of

passengers, in which case begins would be the appropriate marking. The bigger the

inventory, the higher the imprecision.

Or, in the words of Steedman (2010):

1Incidentially, this is the example sentence to illustrate the meaning of ibefore in the TimeML

annotation guidelines. (Pustejovsky et al. 2002: 45)
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The general suspicion is that this is because such hand-built resources are both

too high-level in terms of ontology, and too small-scale in comparison to what a

mixture of animal evolution and social learning has put in our heads.

The mathematical beauty of a complete computational system like Allen's interval al-

gebra is thus compromised by the impreciseness of human cognition. The only choices

seem to be either to stick with it, or to introduce `fuzzy' relations which closer resemble

our intuitions about event ordering and give up on the inferential power of the calculus

(cf. Setzer et al. 2005: 583). Somewhat ironically, Allen's interval algebra was designed

with imprecision as a governing principle, albeit in a di�erent understanding: �The rep-

resentation should allow signi�cant imprecision. Much temporal knowledge is strictly

relative [. . . ] and has no relation to absolute dates.� (Allen 1983: 833).

In summary, temporal evaluation is not only crucial for various NLP tasks, but also

overall di�cult, for humans as well as machines, and therefore one of the most interesting

tasks in computational linguistics today.

This project is concerned with the annotation of intra-sentential event-event relations. It

is an extension of the system of Lapata and Lascarides (2006), who used overt temporal

connectors, after, as, before, once, since, until, when and while, to train a system that

could be used to insert them into text where they are not present, thus also being

able to predict temporal relations. They also trained their classi�er on purely temporal

relations. Because mapping from temporal relations as de�ned in TimeML to temporal

connectors is not one-to-one, they randomly split the ambigous temporal connectors

among the temporal relations that are applicable to them, and evaluated the classi�er

on TimeBank with promising results.

Their approach is one of few, if not the only one so far, that tried to train a classi�er for

temporal relations on unlabeled data. Unsupervised learning in this area can really only

deal with temporal relations through proxy, and temporal connectors seem a promising

choice for circumvention of the problem of data sparsity that is especially prevalent in

this area of computational linguistics, and to take advantage of learning from huge cor-

pora that has already bene�tted a wide variety of �elds within NLP today, by using an

indirect label of temporal relationship and turning it into an explicit one, incorporating

linguistically informed features.

The idea is to provide a reliable mapping of temporal connetors to temporal relations

by disambiguating the temporal connectors into TimeML relations before training.

The disambiguator will be rule-based, for reasons explained in Section 3.1. The most

promising features to base rules on seem to be tense and grammatical aspect (discussed

in Section 3.3) and lexical aspect (discussed in Section 3.4) based on the theoretical

foundations layed out in Dorr and Gaasterland (2007) and Dorr and Olsen (1997).

Evaluation will be performed by a) using only the disambiguator on TimeBank, to

test it on its own and see if the de�ned rule set is appropriate for the task, and most

importantly, the disambiguator will be used on the Bllip corpus, the same corpus the

original Lapata and Lascarides (2006) classi�er was trained on, to see if disambiguating

the training data into TimeML relations improves performance.
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In the following sections, I will �rst explore related work, then I will explain the tools

and concepts this project is based on in relevant detail in Section 3. Section 4 details

the workings of the disambiguator, which will be evaluated in Section 5. A discussion

of the performance of the system follows in Section 6.

2 Related Work

A wider interest in corpus-based approaches to temporal semantics is a rather recent

phenomenon; Mani et al. (2005: 488) date it to the late 1990s. The TimeML annotation

language was �rst released in 2003, and a dedicated TempEval challenge that evolved

from SemEval was �rst held in 2007 (Verhagen et al. 2009).

Earlier attempts at temporal evaluation involve common sense ontologies like CYC (to

which the quote from Steedman (2010) in Section 1 relates), and projects in its vein,

who are trying to exploit the notion that temporal information is transferred not only by

grammatical means but also implicitly derived through world knowledge: It is a well-

established fact that only the salient parts are expressed when communicating. One

specialised example of such an ontology is EventNet, a LifeNet derived ontology that

encodes the temporal relations between commonsense events (Espinosa and Lieberman

2005) and makes it accessible for computational purposes.

An example for an elaborate symbolic system is Lascarides and Asher (1993), who built

an extensive model based on defeasible logic that involves non-monotonic reasoning and

requires extensive domain knowledge. The advantage of a complex system like this is

that it functions very well as a general model of human cognition, but in a use-case

context, the amount of world knowledge and the reasoning processes required are too

vast to be feasible. Furthermore, as Lapata and Lascarides (2006: 88) point out, any

system involving non-monotonic reasoning becomes intractable, especially when facing

large amounts of data.

But even though symbolic models are not e�cient, the theoretical work expressed in

them can help �nd expressive features for corpus-based approaches (cf. Lapata and

Lascarides 2006: 110).

Accordinlgy, the goal in this project is to keep it simple, and to try �nding an e�cient

minimal set of rules which are rooted in actual real world data.

The availability of human-annotated corpora allows for supervised machine-learning

approaches: One of the �rst attempts at automated learning of temporal relations is

Mani et al. (2006), who trained a Maximum Entropy classi�er on TimeBank, using

transitive closure of temporal relations (i.e. if A before B and B before C then A

before C) to successfully increase the amount of training instances, a principle that is

elaborated upon in Chambers and Jurafsky (2008).

The features used were only the ones available in the TimeBank event tag. Their

classi�er outperformed all of the rule-based systems they compared it with (including

the ontology based ones), although one should not forget that this system was sort of

over�tted to this particular domain, trained on perfect features. Chambers et al. (2007)
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built a system based on the Mani et al. (2006) system, but with additional features,

most of which were taken from Lapata and Lascarides (2006). They could show a

slightly better performance with the enhanced feature set over Mani et al. (2006) as

well as Lapata and Lascarides (2006).

The TempEval challenge saw a variety of di�erent approaches to the challenge of anno-

tating times, events and temporal relations, one of them a shallow classi�er trained only

on the provided data-sets without using any deep NLP analysis that could be viewed

as a baseline (Verhagen et al. 2009: 170). Most other systems used a combination of

machine learning and rule-based approaches, and with only the one exception, they all

used syntactically and semantically informed features. Alas, most systems did not di�er

signi�cantly from the baseline provided by the shallow classi�er: This result in conjunc-

tion with the results by Mani et al. (2006) and Chambers and Jurafsky (2009) seem

to suggest that there is a ceiling e�ect regarding the performance of temporal relation

annotiation systems. One system developed by Pu�sca�su (2007) stood out, however, and

it used mainly knowledge-based and statistical methods. Interestingly, their system for

annotating intra-sentential event-event relations is mainly based on tense, connector

(temporal or otherwise) and dependency relations between clauses (cf. Pu�sca�su 2007:

486). This gives valid reason to be con�dent in the overall possibility of the disambgua-

tion task at hand here, with the tools chosen, even if the TempEval challenge used a

di�erent set of temporal relations (see Section 3.1).

The problem with supervised automated approaches in this area of computational se-

mantics is data sparsity: The only available corpus annotated with temporal relations

is TimeBank, which is rather small (see Section 3.1 for statistics), even when expanded

through transitive closure. Another approach to overcome the problem of data sparsity

is to use unsupervised learning: As already mentioned, this necessitates the need for a

proxy that can be used to learn temporal relation indirectly. Chambers and Jurafsky

(2009) is an approach to learn `narrative schemas', i.e. the typical participants and their

actions in a speci�c situation. This could possibly be used to infer temporal relations

based on the typical ordering of tasks, like it is encoded in ontologies like EventNet.

This is an interesting method, in that it brings the concept of world knowledge back

into the picture in a computationally managable way.

The other main source of this project are Dorr and Gaasterland (2007), whose system

will be described in great detail in Sections 3.3 and 3.4. Su�ce to say here, that they

employ a rule-based system, that was developed in the conetxt of machine translation to

accurately translate sentences via an interlingua that is oriented at a lexical conceptual

structure (cf. Dorr 1992b). This principle was then employed in Dorr and Olsen (1997)

for other NLP tasks as well, and in its recent form is implemented in a multi-document

summarisation system (cf. Dorr and Gaasterland 2007). The long development cycle

of this project suggests that it is well thought out, as well as easily deployable. The

most thorough account of the idea behind all these projects can be found in Dorr and

Gaasterland (2002).

As far as concerns the related work in this particular area, and although the work by
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Dorr provides a great foundation from which to start, nothing like this project has been

entertained yet, and the hope is that it can open a door for unsupervised methods in

the area of temporal relation annotation.

3 Background

As mentioned before, this project is primarily based on Lapata and Lascarides (2006)

and Dorr and Gaasterland (2007), Dorr and Olsen (1997). Both of these systems were

developed from a summarisation inspired point of view, with Lapata and Lascarides

(2006) trying to insert temporal connectors into generated text and Dorr and Gaaster-

land (2007) describing part of a sentence-ordering module in a multi-document sum-

marisation system. This project is not designed for a speci�c use-case, but rather in

the spirit of the TempEval challenge, trying to serve as a tool for temporal relation

annotation between events.

When conceiving this project, the original plan was to train the disambiguator on

TimeBank, but this proofed infeasible due to the small size of TimeBank, containing

only a small number of temporal connectors (see Section 3.1 for statistics on this).

Another TimeML annotated corpus is the AQUAINT TimeML corpus (also called

Opinion Corpus), but it is only half the size of TimeBank, so even when putting the

two corpora together, the number of instances of temporal connectors is still too small

to train a robust disambiguation system. In addition to the small number of connectors

in TimeBank and the opinion corpus, these two are also the only TLink annotated

corpora available for testing, which means that the number of available training data

would be further reduced, since the data would have to be split into a test and a training

set. In that case, the test data would probably be too small to deliver meaningful results.

There is also the WikiWars Corpus (Mazur and Dale 2010), which is about double the

size of TimeBank, but it is annotated in Timex2 only, i.e. it contains only annotation

of temporal expressions and events (Task 1 and 2), but not of temporal relations between

events and thus cannot be used in this task, neither for evaluation nor training.

In light of this, the disambiguator would have to be rule-based. The system described in

Dorr and Gaasterland (2007) lays the foundation for extracting intra-sentential temporal

relations using tense and aspect (both grammatical and lexical).

The shortcomings of rule-based approaches has already been touched upon in the Intro-

duction. To avoid falling into that trap, the rules were acquired from in-domain real life

data, namely the Penn Treebank Wall Street Journal Corpus. This is the same corpus

that Dorr and Gaasterland (2007) used to verify their theoretical assumption, so their

approach is also grounded in real life data and not too abstract to be widely applicable,

even though it is mainly based on observations on toy examples, (i.e. by combining

example sentences comprised of only a subject and a verb with a certain lexical aspect

that is cycled through all tenses and aspects with another such sentence and listing all

the possible temporal relations that can theoretically hold between these sentences, so

their approach is not enough to disambiguate the data, but only limits the number of
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choices that can be made under certain (grammatical) conditions.

In this project, I make the assumption that in real world data, especially in the domain

of news articles, i.e. a text type whose main purpose is to relate information about

events, an actual temporal relation will be speci�ed and extractable. Starting from this

assumption, it should be possible to detect patterns in the data and make them into

rules.

Combining the rule-based approach of Dorr and Gaasterland (2007) with the approach

of Lapata and Lascarides (2006) might give us the advantage of bene�tting from both a

rule-based system and a machine-learning system. The following sections describes the

foundations on which the disambiguator is built.

3.1 Temporal Relations

The de-facto annotation standard for temporal relations is TimeML2, and its accom-

panying corpus is TimeBank3 which both were released in 2003. The latest version of

TimeBank is 1.2.1, released in 2006. TimeML is an extension of the Timex2 markup

language, an XML annotation standard for dates and times. Timex2 enables annota-

tions of dates and times (Task 1), TimeML adds the capability of tagging events (Task

2) and relations between these events, as well as between times and events (Task 3).

EVENTs are anything that can happen or occur, usually a verb, but not necessarily

(Pustejovsky et al. 2003a: 3). The similarity between events in the TimeML sense and

verbs in general is mirrored in the fact that the EVENT tag in TimeML categorises

events into classes much like verb classes and also records the tense and grammatical

aspect of the expression, as well as modality and polarity, as attributes of the EVENT

tag (Pustejovsky et al. 2003a: 4).

Furthermore, TimeML provides three di�erent LINK tags that speci�y di�erent kinds

of relations between events, or between times and events.

1. TLINK: represents the temporal event-event relation or event-time relation.

2. SLINK: non-temporal relations between events (e.g. modal, referring to other

possible worlds).

3. ALINK: `aspectual' relations between events, i.e verbs that modify other events,

namely initiates, culminates, terminates or continues an event.

With the additional SLINK, TimeML captures the fact mentioned in Section 2, that

events may be related in non-temporal ways, even though that relation is expressed

with temporal means like modality, which is a part of the TAM (tense-aspect-modality)

complex. Such relations may be

1. Modal: relating to hypothetical events.

2. Factive: an event relating to the veracity of another event

2http://timeml.org/site/index.html, see also Pustejovsky et al. (2003a) and Pustejovsky et al.
(2002)

3http://timeml.org/site/timebank/timebank.html, see also Pustejovsky et al. (2003b)
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3. Counterfactive: an event relating to the non-veracity of another event

4. Evidential: events that are reported or perceived

5. Negative Evidential: events that are reported or perceived as not having taken

place

6. Negative: negated events

Temporality and causation are intricately interwoven in our language. The proximity

of reported events is taken as a clue for, not necessarily a causative realtionship, but

what Moens and Steedman (1988) call a `contingency' relationship: they explain the

status of the when-connector as not-strictly-temporal, but also not-strictly-causal, with

the concept of contigency, i.e. the expectation of the reader is that the events combined

by the connector are involved in a relationship that is beyond pure temporality. They

give the example of a chain of causative relationships, in which only the next event can

be inferred, i.e. the relation is not transitive. The splitting of the during relation also

captures a relation beyond pure temporality, since it assumes that one event starts (or

ends) the other, i.e. some kind of contigent relationship between the events is assumed.

Consequently, causation is also dealt with in TimeML, albeit not in its own tag, but

rather as a possible inference given certain combinations.

TimeML also features a Signal tag, that is used to mark linguistics expressions that

give clues about temporal relationships, such can be temporal prepositions like during,

or temporal quanti�ers such as twice, and also temporal connectors of the kind discussed

in the next section (Pustejovsky et al. 2003a). The Signal tag will be relevant for the

�rst evaluation in Section 5.1.

Corpus → TimeBank Opinion PT3 Bllip

↓ No. of ... Corpus WSJ

articles 185 73 2,499 98,732
words 61K 35K 1M 30M

TLinks 6418 5365 n\a n\a
temporal connectors 181 2686 90862

Table 1: Corpora Statistics

The TimeML relations, speci�ed as the relType attribute in TLinks, are based on

Allen's Interval Algebra (Allen 1983), pictured in Table 2. There are, however, some

di�erences between TimeML relations and Allen relations: Allen's relations allow for

multiple relations to be valid between two events, while TimeML forces annotators

to pick only one. The original TimeML speci�cation also doesn't include overlap

(Pustejovsky et al. 2003a), although the TempEval challenge was based around the

simpli�ed tag-set of before, after and overlap, with additional tags for ambiguous

cases before-or-overlap, overlap-or-after and vague (cf. Verhagen et al. 2009:

167). This overlap tag, however, captures all events where the time-line of the two

events isn't strictly distinct (as it is in the before and after relations), whereas

Allen's overlap (o, oi) relation is distinct from the during relation and does not hold



Disambiguating Temporal Connectives 12

Allen TLink Illustration

X < Y before
Y

X
Y > X after

X m Y ibefore
Y

X
Y mi X iafter

X o Y
overlap Y

X
Y oi X

X s Y begins
Y

X
Y si X begun_by

X f Y ends
Y

X
Y � X ended_by

X d Y is_included
Y
X

Y di X includes

X = Y simultaneous Y
X

Table 2: Allen Relations - TimeML relations

where one event is contained in the other.

The whole set of relTypes is before, after, includes, is_included, during,

during_inv, simultaneous, iafter, ibefore, identity, begins, ends, begun_by,

ended_by. The di�erence between identity and simultaneous is that the former

relates identical events, the latter events that occupy the same space in time. The dif-

ference between during and is_included is that during applies especially to events,

but mostly times, that express a duration (Pustejovsky et al. 2002: 45).

It can be said that in general, every annotation task uses its own set of relations as they

see �t, for the reasons discussed in the introduction. The most common reduction is to

fold inverse relations into one relation. As has already been mentioned the relation of

events in real text is not always as clear-cut as the strict de�nitions in Allen's algebra

(Setzer et al. 2005: 583), and the decision, which temporal relations are useful, is

dependant on the task.

A markup for a sentence containing a temporal connector extracted from theTimeBank

corpus is shown in Figure 1.

3.2 Temporal Connectors

The editors of Mani et al. (2005) state in their reader on temporal semantics in com-

putational linguistics, that event-event relations may be either implicit or explicit and

that �[t]he primary mechanism for explicit relation is the temporal conjunction, typi-

cally used to relate the event expressed in a subordinated clause to one in a main clause�

(Mani et al. 2005: 496). This is also the main idea behind the system developed by

Lapata and Lascarides (2006): to train a model on explicit temporal connectors that is

able to insert these connectors where they are not present, e.g into a sentence like (2),
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He <EVENT eid="e68" class="REPORTING">said</EVENT>

<EVENT eid="e69" class="OCCURRENCE">construction</EVENT> would n't

<EVENT eid="e70" class="ASPECTUAL">resume</EVENT>

<SIGNAL sid="s227">until</SIGNAL> market conditions

<EVENT eid="e73" class="OCCURRENCE">warrant</EVENT> it.

<MAKEINSTANCE eventID="e68" eiid="ei2051"

tense="PAST" aspect="NONE" polarity="POS" pos="VERB"/>

<MAKEINSTANCE eventID="e69" eiid="ei2052"

tense="NONE" aspect="NONE" polarity="POS" pos="NOUN"/>

<MAKEINSTANCE eventID="e70" eiid="ei2053"

tense="NONE" aspect="NONE" polarity="NEG" pos="VERB" modality="would"/>

<MAKEINSTANCE eventID="e73" eiid="ei2054"

tense="PRESENT" aspect="NONE" polarity="POS" pos="VERB"/>

<TLINK lid="l43" relType="AFTER"

eventInstanceID="ei2053" relatedToEventInstance="ei2054" signalID="s227"/>

<SLINK lid="l132" relType="MODAL"

eventInstanceID="ei2054" subordinatedEventInstance="ei2053"/>

<SLINK lid="l103" relType="EVIDENTIAL"

eventInstanceID="ei2051" subordinatedEventInstance="ei2053"/>

<ALINK lid="l127" relType="REINITIATES"

eventInstanceID="ei2053" relatedToEventInstance="ei2052"/>

Figure 1: Example TimeML markup for a sentence with a temporal connector: He said con-

struction wouldn't resume until market conditions warrant it.

thus also providing a model capable of inferring that John kissed the girl after he had

met her.

(2) John kissed the girl he met at a party.

To do this, they trained a classi�er on the overt temporal connectors after, as, be-

fore, once, since, until, when and while, testing di�erent conjunctive and disjunctive

combinations of the following featureset:

1. Temporal Signature (T)

Tense and grammatical aspect of the verb.

2. Verb Identity (V)

Exploiting the lexical relationship between supersenses of verbs.

3. Verb Class (VL, VW)

Levin verb classes and WordNet supersenses.

4. Noun Identity (N)

Information about the relationship between subjects (e.g. part-whole), based on

WordNet supersenses.

5. Noun Class (NW)

WordNet supersenses.
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Relation Connector

before after, before, once, when
after, before, since, until, when

includes as, when, while
when, while

simultaneous as, when, while
when, while

begins since
until, when, while

ends until
after, before, since, when, while

Table 3: Mapping of temporal connectors to temporal relations. The upper line in each cell
shows the mapping used by Lapata and Lascarides (2006) and the lower line the
mapping by Dorr and Gaasterland (2007)

6. Adjective (A)

Temporal Adjectives can provide clues about the temporal ordering.

7. Syntactic Signature (S)

Number of NPs, VPs, PPs, ADJPs and ADVPs contained in the parse tree.

8. Argument Signature (A)

Captures direct and indirect objects of the verb and whether it is modi�ed by an

adverbial or preposition.

9. Position (P)

If the main clause is sentence initial or not.

Conjunctive model in this context means that the features of main and subordinate

clause are assumed to be interdependent, whereas in the disjunctive model, features

are assumed to be independent. In the �rst experiment, they tested their models on

a training set from the Bllip corpus that contained sentences with their connector

removed. Their results found that a disjunctive model using only Verb Identity and

Syntactic Signature outperformed all other combinations of features.

In the next step, they used an ensemble training method combining several classi�er

models that use di�erent feature combinations. These classi�ers are trained individ-

ually and their output is combined in a decision tree (Lapata and Lascarides 2006:

102-104). They again trained a conjunctive and a dsjunctive version, both of which

outperformed the individual models. The disjunctive model again outperformed the

conjunctive model. The feature combinations of the submodels of the disjunctive clas-

si�er is pictured in Table 4.

The most successful feature was syntactic signature, and it is consequently a feature

in every submodel. Other important features are verb identity and position, which are

almost in every submodel.
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Disjunctive Ensemble Submodels

ANWNPSV APSV ASV PRSVW PSVN SVL NPRSTV
PRS PRST PRSV PSV SV

Table 4: Disjunctive Ensemble Submodels:
A: adjectives, V: verb identity, VW: WordNet verb supersenses, VL: Levin verb
classes, N: noun identity, NW: WordNet noun supersenses, P: clause position, R:
argument signature, S: syntactic signature, T: tense signature.

In another experiment, they trained a classi�er for TimeML relations using the dis-

junctive ensemble method. Like the quote in the beginning of this chapter suggests,

temporal connectors and TimeML relations �are more or less semantically compati-

ble� (Lapata and Lascarides 2006: 106) and so a mapping from temporal connectors

to TimeML relations is possible. However, this mapping is not one-to-one, since one

connector can be used to express several TimeML relations. Lapata and Lascarides

(2006) randomly split the ambiguous connectors among the corresponding TimeML re-

lations, adding a number randomly put together sentences for training a no-temp-rel

for cases where no temporal relation holds between events. They admit that this split

is �far from perfect� (Lapata and Lascarides 2006: 108), mainly because the ambigous

connector since had to be assigned to the begins relation exclusively for lack of another

representative connector.

Furthermore, they reduced the set of TimeML relations by collapsing inverse relations

(includes � is_included, before � after, begins � begun_by and ends �

ended_by) and collapsing ibefore and iafter into before. The resulting set of

eight relations and the mapping of the connectors to TimeML relations is pictured in

Table 3. The table also contains the mappings of Dorr and Gaasterland (2007), and

contains a con�ict regarding the connectors since and until, a short discussion of this

follows in Section 4.1.

TimeBank Bllip

No. % No. %
after 56 30.9 13,228 15.9
as 14 7.7 15,904 19.0
before 23 12.7 6,572 7.8
once 5 2.8 638 0.8
since 17 9.4 2,742 3.3
until 25 13.8 5,307 6.3
when 35 19.2 35,895 42.8
while 6 3.3 3,524 4.2
Total 181 100 83,810 100

Table 5: Number of instances of temporal connectors in TimeBank and Bllip
(TimeBank Statistics according to http://timeml.org/site/timebank/browser_

1.2/displayTags.php?tagtype=signal, Bllip statistics according to (Lapata and
Lascarides 2006: 93))
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3.3 Tense and Grammatical Aspect

The tense of a verb can be one of past, present or future. To explain how tense relates

the time of the utterance to the event uttered, we can assume a speech time S and an

event time E, such that S and E are identical for the present tense, S is after E for

the past tense, and E is after S for the future tense. This gives us an insight into how

events can be ordered by their tense if we have a reference time, in the case of a news

article, this would be the document creation time, in the case of an utterance, it would

be the time of the utterance.

Grammatical aspect in English can be one of perfect, progressive or unmarked. The

grammatical aspect is a non-inherent feature of verbs, i.e. it can be derived from its sur-

face from. The English aspectual system di�ers from that in languages with a dedicated

aspectual system in several ways: Firstly, the grammatical aspect is closely associated

with the tense (hence the names �past perfect� and so on). Secondly, the English lan-

guage o�ers the option to leave the grammatical aspect unmarked by using a simple

tense. The English tense-aspect combination can be described with the simple tense

as being unmarked, the progressive describing a process, and the perfect describing a

culmination, (cf. Moens and Steedman 1988: 18-22). The term ` aspect' describes the

point of view that the speaker has on the event: a progressive highlights the ongoing

event, i.e. the event in its progression, whereas the perfect moves the focus to the

achieved event, mostly highlighting the result of the event in question.

English perfect really serves a double purpose, on the one hand it marks an event as

�nished and draws focus to its result, a function that is associated solely with gram-

matical aspect in other languages, on the other hand it simply marks anteriority of an

event relative to another time: To explain the di�erence between past simple and past

perfect, we need to introduce a third point in time, a reference point R that refers to

a point between an event and the time of speech. In the simple tenses, the reference

point is identical with the event time. In perfect tenses, the reference point lies after

the event time. Progressive tenses can then be seen as intervals rather than points in

this schema (cf. Reichenbach 2005: 71-73).

It seems intuitive to assume that most of the temporal information about events is

encoded in the tense and aspect of the verb expressing said event. This assumption is

also made in TimeML, where the event tags contain this information about events.

However, linguistic means to express temporality, apart from unexpressed temporal re-

lations that need to be resolved with world knowledge, do not only express temporal

relations. The problem is twofold: A temporal expression may also express other rela-

tions, such as causal relations, or a temporal expression may be ambiguous and convey

several temporal relations. The system of tense, aspect and modality is multifunctional

in that respect, and it probably is mostly a re�ection of how we process time, events and

causality. Due to the way humans process and store information, temporal information

is not neatly separable from information about how events relate to each other in ways

other than purely temporally.
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progressive perfect simple gerund total

progressive 0.13 0.05 2.29 0.01 2.48
perfect 0.05 0.49 4.45 0.03 5.02
simple 1.88 1.99 84.38 0.77 89.02
gerund 0.09 0.15 3.17 0.07 3.48
total 2.15 2.69 94.29 0.87

Table 6: Percentage of aspect combinations in corpus

present past future gerund total

present 27.35 9.30 0.30 0.54 37.48
past 8.79 45.02 0.06 0.24 54.11
future 4.67 0.16 0.08 0.02 4.93
gerund 1.95 1.44 0.02 0.07 3.48
total 42.75 55.92 0.45 0.87

Table 7: Percentage of tense combinations in corpus

If we consider example (2) again, in a sentence like 3, the temporal relation is marked

explicitly by using the present perfect tense: The event marked with a perfect aspect is

therefore �nished before the other event takes place.

(3) John kissed the girl he met at a party.

(4) John kissed the girl after he had met her at a party.

A reason for not explicitly marking the temporal relation, instead relying on the lis-

tener to know the ordering in which such events usually occur becomes clearer when we

consider sentence 4: a version that would express all the details relevant to the tem-

poral ordering of events would draw the attention of the reader away from the events

expressed: the overspeci�cation of the temporal details implies to the reader that the

temporal ordering is somehow of signi�cance. The reason for this is expressed the

Gricean maxime �Be relevant�: if a temporal ordering is assumed to be clear to the

reader, be it through world knowledge, i.e. that you �rst have to meet somebody before

you can kiss them, or other means, no e�ort is made to make it more explicit by using

a marked tense, as was explained through Example 4.

Another way to mark temporal relations explicitly through tense is to mix tenses as

in(5):

(5) Trustcorp Inc. will become Society Bank & Trust when its merger is completed

with Society Corp. of Cleveleand, the bank said.

Dorr and Gaasterland (2007) describe a constraint on the mixing of tenses: They con-

sider a Reichenbachian tense structure called Complex Tense Structure (CTS) and a

formulate constraints on this structure, called Constraint on Derived Tense Structure
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(CDTS): In a pair of main clause and subordinate clause, the three time points speech

time S, event time E and reference point R are associated to each other like so (for

past simple - past simple):

E2,R2 S2

E1,R1 S1

The constraint states, that these associations between the time points of a CTS are not

allowed to crossover. In the case of a present simple - past simple combination, this

constraint is violated:

S2,E2,R2

E1,R1 S1
HH

HHHH

This takes also the grammatical aspect of the perfect into account, since none of the

association from any of the time points are allowed to crossover. The list of allowable

tense combinations is pictured in Table 8.

Main clause (matrix) Subordinate Clause (adjunct)

{fut, fut perf} {pres, pres perf, fut, fut perf}
{past, past perf} {past, past perf}
{pres, pres perf} {pres, pres perf}

Table 8: Allowable tense combinations according to CDTS

So, tense and aspect can encode a temporal ordering. But, as is visible from Tables 7

and 6, unmarked tenses are by far the most common, accounting for over 80% of total

combinations, and within-tense combinations make up a total of over 70%. Obviously,

additional features will need to be considered for disambiguation.

3.4 Lexical Aspect and Intervals

The lexical aspect, also known as aktionsart or aspectual type, is an inherent feature of

the verb and as such cannot be derived from its surface form (unlike the non-inherent

grammatical aspect). Lexical aspect divides verb into states and events, and usually

further subdivides events into subclasses. These categorisations are �based on their

behaviour in a variety of syntactic and semantic frames that focus on their features�

(Dorr and Olsen 1997: 152), i.e. which lexical aspect a verb has is typically decided

by watching how it can be used in certain contexts, depending on the feature set used.

What these features are and what subcategories are appropriate descriptions is a con-

tentious area in the �eld of theoretical linguistics, and also depends on which area of

di�erences between verbs a researcher wants to highlight. Dorr and Olsen (1997) are of

course interested in the elements of verbs that relate to temporality4 and consequently

4Other areas of interest might be the complexity of the event expressed in a verb, or if a change of
state is involved etc.
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use the features dynamicity [±d], telicity [±t] durativity [±r] (called atomicity [±a]
in (Dorr and Gaasterland 2007)), and the subcategories activity, accomplishment and

achievement. The mapping of feature distribution to lexical aspect is pictured in Table

9.

Lexical Aspect Telic Dynamic Durative Examples

State + know, have

Activity + + march, paint

Accomplishment + + + destroy

Achievement + + notice, win

Table 9: Featural Identi�cation of Lexical Aspect (Dorr and Olsen 1997: 153)

The basic distinction is between states and events, i.e. events have dynamicity whereas

states do not. Durativity speci�es whether events have a duration, and telicity applies

if an event has an inherent goal, like destroyed in Example (6). March, on the other

hand, is atelic.

(6) The soldiers destroyed the bridge in an hour.

* The soldiers marched in an hour.

But the lexical aspect of a verb is not only a function of the verb itself, it can change with

the context in which it appears. Dorr and Olsen (1997) employ a so-called �privative�

account of lexical aspect features: Unmarked features can become marked through

additional elements in the sentence, but not the other way around: Marked features

cannot become unmarked5 For example, the atelic verb march can be coerced into a

telic one by introducing a path to the sentence (Dorr and Olsen 1997: 152):

(7) The soldiers marched.

The soldiers marched to the bridge.

The soldiers marched to the bridge in an hour.

Consequently, to compute the lexical aspect, it is necessary to take into account the

context in which the verb appears. For this purpose Dorr and Olsen (1997) compiled a

dictionary of 10,000 English verbs that encodes their meaning and the sentences that

they can engage in in a �lexical conceptual structure� (LCS). The LCS for the examples

in (7), i.e. atelic and telic march, are given in Figure 2. The algorithm for extracting

the lexical aspect from its LCS is given in Figure 3 and explained in Section 4.2.4.

Dorr and Gaasterland (2007) condense the temporal information conveyed by the lexical

aspect class, using dynamicity [±d], telicity [±t] durativity [±r] (called atomicity [±a]
in (Dorr and Gaasterland 2007)), in combination with the non-inherent grammatical

aspect feature progressiveness [±p]. they determine if a verb describes an interval or a

5For a more detailed account of this particular theory, see (Olsen 1994). For a di�erent account of
how coercion works and which types of coercions are permissive and which are not, see Moens and
Steedman (1988).
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(act loc (* thing 2) (at loc (thing 2) (thing 11))

(march+ingly 26))

(go loc (* thing 2)

((* from 3) loc (thing 2) ([at] loc (thing 2) (thing 4)))

((* to 5) loc (thing 2) ([at] loc (thing 2) (thing 6)))

Figure 2: Lexical Conceptual Structure for atelic and (coerced) telic march

point event: They assume an Event E to have a starting time Es and a �nishing time

Ef :

(8) a. He winked.

b. He laughed.

c. He knew Spanish.

In a point event, start and �nishing time are the same as in (8a). A closed interval

has an endpoint as in (8b). An open interval has no endpoint as in (8c). Note that all

examples in (8) are in the past simple tense.

The inclusion of the progressiveness feature is necesseary, because point events can be

coerced into interval events by the progressive tense, as evidenced by the examples in

(9) (cf. Gisborne 2010: 17):

(9) a. I dropped a pencil.

b. I was dropping a pencil.

The event described in (9a) is a point event that takes place once. The progressive tense

in (9b) coerces the event into an interval event, by making the event into a repeated

action. Or, in the terms of Dorr and Olsen (1997), the use of the progressive changes

the unmarked durativity feature to marked.

So in this account of lexical aspect, we can see how lexical and grammatical aspect are

related: Progressive aspect marks a non-durative verb as durative, and perfect aspect

marks an atelic word as telic. Consequently, the incorporation of the lexical aspect in

this form provides us with an additional feature that is closely related to that of tense

and grammatical aspect and is capable of �lling the void of unmarked (i.e. simple)

within-tense combinations.

They made a thorough analysis of all possible Allen relations that can be expressed

by a temporal connector depending on the tense and aspect of the matrix and adjunct

verb through analytical � not empirical � analysis, and sorted their �ndings into tables

according to permissible tense-combinations, sorting them within the tables according to

the interval of the matrix and adjunct verb. The interval expresses if the event expressed

by the verb has duration based on the lexical aspect of the verb. The mapping of lexical

aspect to intervals is pictured in Table 10.
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Interval Lexical Aspect

open
[-d] [±t] [±a] [±p]
[+d] [-t] [±a] [+p]

point
[+d] [±t] [+a] [-p]
[+d] [+t] [+a] [-p]

closed
[+d] [+t] [-a] [±p]
[+d] [-t] [±a] [-p]

Table 10: Intervals corresponding to aspectual features

Mat/Adj after WHEN WHILE

C/C > oi s si d f > = o oi s d f
C/O oi mi f = oi s si d mi f = o oi s d f
C/P > oi s d f > = o oi s d f
O/C > = o oi s si d di m mi f � > = o oi s d f
O/O oi mi f = oi s si d di mi f = o oi s d f
O/P > oi s d f > = o oi s d f
P/C > oi s si d = s d f
P/O oi m f > oi s si d > = s d f
P/P > = oi s d > = s d f �

Table 11: Possible Allen Relations for past/past matrix/adjunct verbs depending on their
interval according to (Dorr and Gaasterland 2007: 1694)

4 Implementation

4.1 Extraction of Rules

In order to discover disambiguating rules, the Wall Street Journal section of the Penn

Treebank corpus was analysed for tense, grammatical and lexical aspect. These features

were selected for several reasons: The work in Dorr (1992a), Dorr and Olsen (1997),

Dorr and Gaasterland (2002) and Dorr and Gaasterland (2007) gives plenty of reason to

assume that tense, grammatical and lexical aspect can serve as distinguishing features

in this particular disambiguation task, while also laying an excellent foundation for

the exploitation of said features in this task. Tense and grammatical aspect (this was

called Temporal Signature in Lapata and Lascarides (2006: 94-95), see also Section

3.2; the combination of tense, grammatical and lexical aspect will be called Temporal

Signature from here on out.) wasn't a very useful feature in the original system, but

in their classi�er it was supposed to be a predictor of temporal connectors, and they

can occur with every possible Temporal Signature combination. Within those temporal

connectors, on the other hand, it is reasonable to believe that the temporal signature

is a distinctive feature for temporal relations in conjunction with temporal connectors.

One need only look at the examples presented in Dorr and Gaasterland (2002: 39-41),

which feature the same verbs and connectorswith varying are tenses and aspects, to

see that these are distinguishing features in this task. And lastly, the decision to avoid



Disambiguating Temporal Connectives 22

features that are used in the classi�er is a concious one to avoid bias towards a feature

that was used for disambiguation in the classi�er.

The decision to base the ruleset on a corpus analysis rather than theoretical linguistical

assumptions is the same as the one behind corpus linguistics in general: theoretical

assumptions that are based on anecdotal and simpli�ed data can never represent the

full picture of language use, and considering only toy examples likely leads one to

overlook phenomena that do not immediately spring to mind. In the other extreme, it

can lead one too put to much signi�cance on occurrences that are rare.

A drawback of the empirical approach is that it might be too narrow, i.e. only applicable

to a certain domain, because every text type has its own set of idiosyncrasies. In this

case, the domain might be as small as the Wall Street Journal, although, more likely,

the domain in this case is �news articles.� To �nd out, the disambiguator would have

to evaluated on a di�erent domain, which is currently not possible. On the other hand,

if one operates within-domain, this can be an advantage, because the rules extracted

are hand-tailored for this domain, and also because it eliminates the need to take all

possibilities of language production. The more codi�ed the domain, the easier it becomes

to describe.

Two starting assumptions were made: Hypothetical events, usually marked with a modal

verb, were not removed, even though the events they express are not actual events, but

are situated in another possible world � for which the SLink provides an annotation

tag � with the reasoning that hypothetical events, at least with regard to the feature

set used in the disambiguator as well as the classi�er, do not behave di�erently from

actual events, and can consequently be used for training.

The second one concerns the treatment of verbs that fall under the ALink, i.e. words

that mark a beginning or ending of another event (its argument) were treated as auto-

matically classifying their argument event as either begins or ends respectively.

4.1.1 Rules based on temporal signature

After, before, until: These connectors are not disambiguated: The analysis of Dorr

and Gaasterland (2007) described in Section 3.4 suggests that the relationship expressed

by these connectors is relatively consistent: Accordingly, after and before were mapped

to the before relation, and until was mapped to the ends relation. Additional Allen

relations for before according to Dorr and Gaasterland (2007: 1694) are `overlaps' and

`�nishes inverse' (apart from `meets' which is folded into the before relation anyway),

`overlaps inverse' and `�nishes' for after. The possible relations given for until are

`meets' and `starts', and for since, the possible relations given are `meets', `after', and

`�nishes', which is odd, because this is the inverse mapping to Lapata and Lascarides

(2006: 108). There seems to be a di�erent understanding of what these relations mean

between the two papers. Table 3 pictures the mappings as presented in the respective

papers.
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Once: Several relations can be encoded using once. The examples in (10) show di�er-

ent temporal signature combinations that are signi�cant:

(10) a. Although the network isn't connected to the computer systems that

operate either Galileo or the shuttle, part of the network will carry analyses

of Galileo data once the craft gets spaceborn.

b. Once this plan is approved, Tan Sri Basir said, most of Bank Bumiputra's

nonperforming loans will have been fully provided for.

c. The Oakville plant could face losses, once the additional car-making

capacity across North America is operating.

d. Typically, developers option property and once they get the administrative

approvals, they buy it.

The combination Future Simple + Present in (10a) marks a begins relation: The main

clause event will begin when the subordinate clause event starts. Progressives also mark

a begin relation, as in (10c): An ongoing event starts another event. This is also true

for progressives in the main clause, in that case the subordinate event sets o� the main

clause event. The combination Future Perfect + Present in (10b) marks a ends relation:

The main clause event will be achieved when the subordinate event ends. The default

for once is the before relation as in (10d): the subordinate event is a precondition to

the main event.

Since: This connector is di�cult, because it can be used as a purely causal connector.

Dorr and Gaasterland (2007: 1694) allege, that since does only convey a temporal

meaning in certain interval combinations, essentially all combinations that involve an

open interval, but examination of the corpus data did not con�rm this. All of the

instances in the development set with open intervals for since were stand-alone �be� as

in Examples (11a,b,d,e), only one of which does not denote a temporal relation, namely

(11a).

(11) a. However, a Canadian Embassy o�cial in Tel Aviv said that Canada was

unlikely to sell the Candu heavy-water reactor to Israel since Israel hasn't

signed the Nuclear Non-Proliferation Treaty.

b. Since NBC's interest in the Qintex bid for MGM/UA was disclosed, Mr.

Wright hasn't been available for comment.

c. The 486 is the descendant of a long series of Intel chips that began

dominating the market ever since IBM picked the 16-bit 8088 chip for its

�rst personal computer.

d. The bond issue is TVA's �rst public o�ering since the Financing Bank was

created in 1974, primarily to �nance the TVA.

e. In Brussels, it was the �rst trading day for most major shares since stocks

tumbled on Wall Street Friday .
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If it appears with a perfect tense in the subordinate clause (Example (11a)), it is in

most cases not used in a temporal sense. A perfect tense in the subordinate close on

the other hand marks a begins relation (Example (11b)). So does a point event in the

subordinate or main clause as in Example (11c). Example (11d) shows a disallowed

tense combination (present-past) that is not uncommon with the since connector: It

orders an event into an interval that has an event as its starting point. The event that

is the starting point of the interval speci�ed by it, however, is completed before the

event in the main clause takes place � it only serves as a reference point in the past.

The relation that applies here is before. Dorr and Gaasterland (2007: 1698) term this

behaviour Extended past up to present, it �enables coherent rendering of an enduring

state that leads up to the starting point of a current event.� which is particularly often

the case in connection with since and consequently, CDTS violations in conjunction with

since are not reanalysed in the disambiguator. Essentially the same use of the connector

since is pictured in Example (11e): a simple state tense (auxiliary + in�nitive) in the

main clause indicates use of since: anchoring an event on a timeline by referencing a

past event. Senteces like these were consequently marked as before. Since also rarely

appears with progressives, at least there were no instances in the development corpus.

Because of this, all instances of since with progressive tense were dropped.

As, while, when: These connectors have some rules in common, likely because they

primarily engage in overlapping relations. Progressives combined with other tenses/aspects

designate an event that includes the other event if the other event is a point event, or are

simultaneous if the other event is an interval event. In these instances, the subordinate

event serves as a reference frame for the main clause event.

(12) The proposed merger comes as K-mart's pro�t is declining and sales at its core

discount stores are rising more slowly than at such competitors as Wal-Mart

Stores Inc.

(13) Mr. Dinkins did fail to �le his income taxes for four years, but he insists he

voluntarily admitted the �oversight� when he was being considered for a city job.

(14) While she is wondering whether to live it up, and do something even more

dramatic, say get married, her life is further complicated by the reappearance of

an old �ame, David, a �lm critic and actor who always seems to be just on the

brink of stardom.

As: A perfect tense in the main clause describes an event that was set o� by the event

in the subordinate clause. The subordinate event might still be ongoing.

(15) a. A number of those polled predict the dollar will slip as the Federal Reserve

eases interest rates.
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b. And he noted that even if there aren't any reductions in the current C-5B

contract payments, Lockheed will lose that business in the next few years

as the last of the planes are delivered.

c. A widening of the de�cit, if it were combined with a stubbornly strong

dollar, would exacerbate trade problems � but the dollar weakened Friday

as stocks plummeted.

d. Prices of Treasury bonds surged in the biggest rally of the year as investors

�ed a plummeting stock market.

e. Recently, a contractor saved her from falling three stories as she

investigated what remained of an old Victorian house torched by an

arsonist.

The combination Future-Present in Example (15a) marks the event in the subordinate

clause as the trigger for the main clause event: The temporal relation here is begins.

In Example (15b), the future tense is paired with a stative event. In these cases, the

subordinate event marks the ending condition of the main clause event.

Simple tenses are sorted depending on their interval pairing: if both intervals are the

same (Example (15c)), the relation is simultaneous, if a point event is involved in the

main or subordinate clause (Example (15d)), the point event often serves as a trigger

for the other event, so sentences involving point events and interval events belong to

the begins relation. Sentences involving mixed intervals are belong to the includes

relation (Example (15e)).

When:

(16) a. If it �nds one and gets into the system, it will display a screen when a user

logs on that says, � Worms Against Nuclear Killers . . . �.

b. Atsushi Muramatsu, Nissan's executive vice president for �nance, helped set

the tone in December 1986, when the company was heading toward the

�rst operating loss by a Japanese auto maker since the nation's postwar

recovery.

c. Periods before the advent of futures or program trading were often more

volatile, usually when fundamental market conditions were undergoing

change.

Mixed tense (future - present) signals a before relation, as in Example (16a) Mixed

grammatical aspect (progressive - simple, simple - progressive) denotes an includes

relation (Example (16b)), or an simultaneous, if the adjunct event is an interval

(Example (16c)), but before relations are also possible in that combination. It might

be an worth excluding this combination, if the results become too noisy. Perfect aspect

is not a very reliable predictor of the temporal relation
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(17) a. Technically, Mr. Kaiser noted that a lot of traders had bought into the

market when the price was in the $1.24 to $1.26 range, thinking there was

support at the $1.20 level.

b. The young John Gutfreund had been discovered by Billy Salomon of

Salomon Bros. when he was still a bearded liberal, and put to work as a

trader, and then as a rough-and-tumble syndicator.

c. Essentially, Mr. Freeman had invested heavily in the Beatrice leveraged

buy-out, when he was told by another prominent trader, Bernard �Bunny�

Lasker, that the deal was in trouble.

d. When they return to their desks at 1 p.m., they have pedaled 20 miles.

Examples (17a-b) show an includes relation, whereas (17c-d) show an before rela-

tion. The additional rule described in the next section doesn't apply here, for Examples

(17a,d) have di�erent subjects, and in Examples (17b,d), the subjects in main and

subordinate clause are identical. See Section 4.1.2 for an explanation. Since this dis-

tribution is roughly equal, this tense combination was deemed unpredictable and left

out.

For simple - simple pairings, intervals are not su�cient for predicting temporal relations,

additonal disambiguation features needed to be found. These are described in the next

Section.

4.1.2 Additional Rules

An e�ort was made to discover rules that are more robust for disambiguation than tem-

poral signature, for the temporal connectors when and while, this e�ort was successful:

the discovered rules both belong to the realm of discourse relations.

(18) a. When she met the local press for the �rst time on Friday, Mrs. Hills

�rmly reiterated the need for progress in removing barriers to trade in

forest products, satellites and supercomputers, three areas targeted under

the Super 301 provision of the 1988 trade bill.

b. But when the company revealed Lisa's poor sales late in 1983, the stock

plummeted to a low of $ 17.37 a share, according to the suit.

When is by far the most used temporal connector, in all corpora. It makes up for almost

50% of all sentences containing temporal connectors. It also the most diverse of all the

temporal connectors: Potentially, it can express any temporal relation (cf. also Table

11). Consider the following examples from Moens and Steedman (1988: 15):

(19) When they built the 39th Street bridge,

a. a local architect drew up the plans.

b. they used the best materials.

c. they solved most of their tra�c problems.
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In this example, when serves to express a before relation in (19a), an includes relation

in (19b) and an after relation in (19c), and all examples are in the past simple tense,

so temporal signature is not enough for disambiguation.

In attempt to further disambiguate, it is worth looking at the context in which the

connector appears: Looking at the corpus, it seems like identity of subject plays a role:

If the subjects of main and subordinate clause are identical, as in Example (18a), the

subordinate clause usually sets a reference time to when the event in the main clause

happened, i.e. the main event is included in the subordinate event. In opposition, if

the subjects di�er, as in Example (18b) usually one event brings about the other, i.e.

the main event happens after the subordinate event.

This is not a perfect predictor, Example (19c) o�ers a counter-example, but in most of

the cases, this was a good predictor.

Additionally, for same-subject sentences, if the events have matching intervals, their

relation is simultaneous, if not, their relation is includes.

(20) a. Domestic items fell 29% , while re-exports rose 56%.

b. One stuck to old-line business tradition, while the other embraced the

change.

c. Euro Disneyland shares made a debut like Snow White yesterday while

most of the London stock market looked like it had eaten the Evil Queen's

poisoned apple.

d. While coal is abundant and cheap, it is also polluting.

While is often used in contrasting contexts, in fact, it can be used in a purely con-

trasting way as in (20d). Lapata and Lascarides (2006: 94) state that the percentage

of non-temporal use of while in the Bllip corpus was 13.3%. They estimated that

number by randomly selecting 30 examples from the corpus. It can be argued that

even in these contexts, while retains a temporal connotation, if ever so slightly. In

any case, while can be used to contrast two events in a temporal way, i.e. two events

are described to take place simultaneously. To test for a contrasting context, we can

test for synonymity/antonymity of verbs. Examples 20 a. - b. illustrate a variety of

contrasting contexts that express simultaneity, with a. showing a contrast expressed in

the antonymity relation between the verbs, b. expresses the contrast in subjects and

c. expresses a contrast that can probably not be recognised without extensive world

knowledge.

Testing for contrasting subjects is not an easy task, for contrasting subjects rarely are

in an antonymy relationship � the contrast much rather springs from the relationship

they have with each other, which is usually only available through world knowledge, e.g.

the opposition of �Euro Disneyland shares� and �most of the London stock market� is

not easily derivable. Only if contrasting pronouns are used as in (20b) is the opposition

easily derivable.
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4.1.3 The Ruleset

An overview of all the rules that are applied for disambiguation and the lisp-code of the

function implementing the rules are given in the appendix. Note that in the code, while

and when have already been disambiguated, the results are read in at the start of the

function. Also, for as and when, a function checks beforehand if the matrix verb (the

verb of the main clause) or the adjunct verb (the verb of the subordinate clause) belong

to a prede�ned set of words signalling `start' or `end'. If they do, they are automatically

sorted into the respective relations before the function is called.

4.2 The Algorithm

In this section, I will �rst outline the algorithm of the disambiguator and then discuss

every step in a dedicated subsection.

1. Prepare the data:

Extract SBAR-TMP nodes and make the data lisp-readable.

2. Extract matrix and adjunct verbs:

Find the VPs that correspond to the main verbs of main and subordinate clause.

3. Infer tense and grammatical aspect:

Using a pattern matcher, infer the tense and grammatical aspect of the extracted

VPs, reanalyse if a clash is found.

4. Infer interval:

Infer the corresponding intervals for matrix and adjunct verb.

5. For temporal connector when:

Find subject nodes, run coreferencer on sentences.

6. For temporal connector while:

Determine if verbs are in a synonymity/antonymity relationship.

7. Apply rules:

Sort sentences into TimeML relations according to set of rules.

8. Train the classi�er:

Use the preprocessed training data to train the classi�er.

4.2.1 Preparing the data

To avoid analysing sentences whose matrix/adjunct verbs do not have a temporal re-

lation, the �rst step is to extract only sentences that contain a SBAR-TMP node,

signalling a temporal relation. The fact that the Bllip corpus is automatically parsed

introdues some noise into the data. Also, certain characters have to be escaped to make

the sentences lisp-readable.
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4.2.2 Extracting main and subordinate verb

The pattern-matcher was taken from Dorr and Gaasterland (2007)6 and adjusted for

use with the Bllip Corpus. Furthermore, there was a mistake in the pattern-matcher

that prevented composite tenses containing an in�nitive such as �will be� and �did <in-

�nitive>�, because it excluded VB (= in�nitive nodes). This was because the pattern-

matcher prefers the VP closest to the temporal connector, and if the pattern-matcher

allows VB nodes, this may lead to the algorithm collecting meaningless VP nodes. The

exclusion of VB nodes for the Bllip is valid, since it uses AUX for auxiliaries and not

VB like Penn Treebank.

4.2.3 Inferring tense and grammatical aspect

The extracted VP nodes are then matched against patterns these had to be adjusted to

work with the Bllip corpus, since it uses an AUX tag for auxiliary verbs, which Penn

Treebank doesn't. If there is a clash found, (i.e. a past-present combination), tenses

are reanalysed in the following ways: For since, clashes are allowed (see Section 4.1). If

the present tense verb is a modal, mark it as past simple. If none of these apply, try

to �nd a VP node above the one currently used. If reattachment doesn't succeed, the

sentence is dropped. Clashes involving perfect aspect of either tense are not reanalysed,

since (Dorr and Gaasterland 2007: 1698) identify these as one-way causal relationships,

in which the subordinate event causes the event in the main clause. These sentences

are automatically dropped.

4.2.4 Inferring interval

The pattern matcher was taken as the basis. It was enhanced with an algorithm to

deduce the non-inherent lexical aspect, or rather to deduce intervals based on lexical

aspect, combining the approaches described in Dorr and Gaasterland (2007) and Dorr

and Olsen (1997). To deduce an interval (see Section 3.4), several steps are taken:

First, the lemmatised verb form is looked up in an lexical conceptual structure (LCS)

dictionary7. If there are several options, the algorithm sees if they all produce the

same interval. If this is not the case, the argument structure as given by the �le is

matched against the full VP of the verb in question: The �rst argument is �lled by the

subject. The full VP is then searched for NP nodes (direct objects) and PP and TO

nodes (indirect objects). All available prepostions within the VP node are extracted

and saved as the argument structure of the verb in question. This structure is then

matched with the argument structure and the longest match is then returned, allowing

for partial matches where not all positions are �lled.

From the returned LCS structure, the lexical aspect is then derived using the algorithm

from (Dorr and Olsen 1997: 156) pictured in Figure 3: The top node is examined for

one of the telicity indicators CAUSE, LET, GO. If one is found, the verb is marked

6Available at ftp://ftp.umiacs.umd.edu/pub/bonnie/CDTS-Solution-2006.lsp
7Available at http://clipdemos.umiacs.umd.edu/englcslex/download.html
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as telic. CAUSE and LET also signal dynamicity and durativity, GO only dynamicity.

If none is found, the top node is checked for atelicity indicators ACT, BE, STAY. If

one is found, it is checked whether on of the inside nodes contains one of the coercion

markers TO, TOWARD or FORTEMP, if one is found, telicity is marked. BE, STAY

indicate durativity, ACT indicates dynamicity and durativity. The set of features is

then returned and the corresponding interval is then looked up in a table like Table 10.

initialize T(L):= [∅T], D(L):=[∅D], R(L):=[∅R]
if Top Node L ∈ {CAUSE, LET, GO} then
T(L):=[+T]
if Top Node of L ∈ {CAUSE, LET} then
D(L):=[+D], R(L):=[+R]

else if Top node of L ∈ {GO} then
D(L):=[+D]

end if
end if
if Top Node of L ∈ {ACT, BE, STAY} then
if Internal Node of L ∈ {TO, TOWARD, FORTemp} then
T(L):=[+T]

end if
if Top Node of L ∈ {BE, STAY} then
R(L):=[+R]

else if Top node of L ∈ {ACT} then
D(L):=[+D], R(L):=[+R]

end if
end if
return T(L), D(L), R(L)

Figure 3: Algorithm for Lexical Aspect Determination

4.2.5 When connectors

After the temporal structure has been determined, the sentences are sorted by their

temporal connectors into two tables, one corresponding to time intervals and one to

tense and grammatical aspect, i.e. every sentence is sorted into two disjunct matrices,

one representing its tense combination and the other its interval combination. From

there, the rules are applied to sort them into TimeML relations.

For the temporal connectors when and while, additional processing has to be done. To

sort the when-sentences, a coreference resolver is applied to determine if the subjects of

matrix and adjunct verbs co-refer. The coreferencer used for this is part of the Stanford

CoreNLP package8. Pretrained coreferencers usually work on raw text, which means

that they re-parse the already parsed input. This is unforunate and should be avoided

by implementing a dedicated coreferencer into the system, but this was not within the

scope of this work. Also, a coreferencer is necessarily more accurate when it is run

on a whole text instead of just a single sentence, but in view of the available time,

8http://nlp.stanford.edu/software/corenlp.shtml
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the choice was made to run it only on isolated sentences. The coreferencer outputs an

XML �le which was parsed using python and all sequences tagged as co-referring were

compared to the NP-SBJ nodes of the matrix and adjunct sentence, which relies on the

parser to identify the same sequences as subjects, another reason to prefer a dedicated

coreferencer that doesn't re-parse.

4.2.6 While connectors

To determine the synonymity or antonymity of the while-sentences, the WordNet9 API

from the Natural Language Toolkit10 is used. To �nd out which sense of a lemma we

need to compare, the same argument matcher is used that was used to �nd the cor-

responding LCS, only this time it returns one or several WordNet sense keys. Since

these keys are di�erent in each version of WordNet, WordNet version 1.6 was used,

because the LCS lexicon used contained only references to WordNet 1.5 and 1.6. The

results are fed into WordNet, which looks up the antonyms() and similar_tos()

for each sense key and sees if there is a non-empty intersection between the returned

antonyms/synonyms of the matrix verb and the sense key of the adjunct verb. The al-

gorithm acts greedy, in that it compares all lemmas in the synsets, since the antonyms

and synonyms in WordNet do not include �weak� antonyms like rise and fall, but only

�strong� antonyms like increase and decrease. It might have been better to use a sim-

ilarity function as provided by the WordNet API, since antonyms should still have a

higher similarity rating than completely unrelated words, because they still belong to

the same domain. This could be used to make a reverse search, i.e. excluding words

that are below a certain threshold, which would have to be determined in some way.

However, in this approach, the similarity measure wasn't used.

4.2.7 Applying the rules

Once all the extra rules are applied, the sentences are sorted into their corresponding

TimeML relation: The algorithm iterates through the tensetable and the rules speci�ed

in Section 4.1 are applied. If interval is part of the rule, intersection or disjunctions

with the interval-table are generated. The full algorithm is attached in the appendix,

together with the corresponding lisp code.

After everything is sorted, the last step is to retrieve the fully parsed sentences, for

we have only been dealing with sentence numbers so far, and produce �les with the

preprocessed training data.

9http://wordnet.princeton.edu/
10http://www.nltk.org/
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5 Evaluation

5.1 Disambiguator only

In the �rst evaluation, the diambiguator was tested on its own to verify if the right

assumptions have been made regarding the set of rules that was used.

The disambiguator was tested on TimeBank by taking the Wall Street Journal articles

from Penn Treebank, and acquiring raw text �les of the other data in the corpus. These

were parsed using the Charniak Parser11. In the case of Penn Treebank, only SBAR-

TMP nodes were considered, in the other case all parses were fed into the disambiguator,

which probably led to some sentences being overlooked by the disambiguator due to false

parses. Because event annotation wasn't part of this project, the output was ver�ed

using the signalID of the connector in the corresponding TLinks. If the connector

had no signalID, the temporal relation of the nearest events to the left and right of

the connector was chosen. If there weren't any, the relation couldn't be veri�ed (`no

relation' in Tables 12 and 13.)

correct incorrect no relation Total

before 11 0 0 11
after 28 1 0 29
until 9 6 1 16
when 13 7 4 24
while 1 0 2 3
as 6 2 0 8
since 4 2 0 6
once 3 0 0 3

Total 76 18 7 100

Table 12: Disambiguation results by connector

correct incorrect no relation Total

before 53 4 0 61
includes 5 5 6 12
simultaneous 7 1 0 8
begins 1 2 0 3
ends 9 6 1 16

Total 75 18 7 100

Table 13: Disambiguation results by relation

The total number of connectors tested doesn't match up with the numbers given in

Table 5, not only because some parses were not valid, but also because not all temporal

connectors in TimeBank have a signal tag, and secondly because not all temporal

connectors with a signal tag in TimeBank do actually connect two sentences, for

instance, since and after are often used as prepositions.

11http://www.cs.brown.edu/~ec/\#software
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The results are shown in Tables 12 and 13: Table 12 shows the disambiguated con-

nectors and whether they were disambiguated correctly, incorrectly or if no TLink was

available. Table 13 shows the temporal relations and whether they were correctly identi-

�ed, whether they were incorrectly applied, and what label was applied to non-existant

relations.

The test data isn't very meaningful, because the numbers are so small, and because

56% of connectors were not disambiguated (after, before and until). Still, we can glean

from the results that in the case of after and before, it was the right decision not to

disambiguate. In the case of until, it might be worth considering to disambiguate this

connector as well, but it is almost the only source of training data for the ends relation.

On the other hand, higher quality training data might be preferrable to more training

data.

The numbers for when are promising: a majority of the disambiguated cases agreed with

the data, even though the coreferencer prefers the before relation, which is unfortunate

and should be remedied with a dedicated coreferencer that doesn't re-parse. It is worth

considering additional rules that might help disambiguate when further after coreference

resolvement.

Regarding while, there isn't much to conclude from the data, and the one correctly

identi�ed while-sentence contained a perfect synonym, i.e. the same word in both main

and subordinate clause and was correctly identi�ed as simultaneous.

The begins relation is di�cult, it is a rare relation in TimeBank in general, and there

is not much in terms of tense and lexical aspect to discern a begins relation from an

includes relation. Including trigger words, i.e. words that signal a beginning is really

the only clue. The same can be said about ends.

Once disambiguation seems to work perfectly, although none of the cases were cases

where any of the rules applied that deviate once from the default interpretation, but on

the other hand, there weren't any wrongly disambiguated instances either, so we can

say that the rules for once are working as expected.

As and since are mostly correctly disambiguated, since was labelled as includes, when

it should have been simultaneous, and the same is true for as. This has probably to

do with the interval feature, either verbs are given the incorrect interval by the disam-

biguator, or the annotators might consistently prefer simultaneous over includes,

when the timelines are approximately the same, regardless of the actual time intervals

involved, i.e the disambiguator might be overly speci�c.

In conclusion, these results are rather good, considering that some of the rules apply only

to the majority of cases, so there is some noise to be expected. Additionaly, the events

that the signalID refers to are not necessarily the verbs on which the disambiguation

was based, so a few disagreements are to be expected because of this as well.
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5.2 Disambiguated training data

The disambiguator was then used to preprocess the training data for the Lapata and

Lascarides (2006) classi�er. The results are shown in Table 14. Table 15 shows the

number of training instances.

not preprocessed preprocessed
TLink Accuracy F-score Accuracy F-score

before 46.4 47.6 47.3 48.5
begins 10.5 7.8 11.2 10.3
ends 14.1 3.7 14.1 5.6
includes 50.0 51.5 52.6 53.4
simultaneous 46.7 47.8 48.9 51.2

Table 14: Evaluation Results

TLink not preprocessed preprocessed

before 31,643 20,270
begins 2,810 3,447
ends 5,333 5,344
includes 21,859 23,441
simultaneous 22,165 6,583
Total 83,810 59,085

Table 15: Number of training instances

The raw data wasn't available, and so no signi�cance test could be performed. The

results for the preprocessed training set are slightly better, even though the new training

set was only 70% the size of the original training set. In this regard, the improved result

for the simultaneous relation is especially remarkable, since the number of training

instances for this relation was only 30% the size of the original number. But overall,

the results are rather disappointing.

There are several possible explanations for this:

1. The disambiguation was not successful

2. The feature set from the original system is not the best for this task

3. The data is too diverse after disambiguation

4. A combination of the above

Ad 1) Possibly the disambiguator didn't do a very good job. As can be seen from

Table 15, a lot of sentences (30%) were dropped by the disambiguator, either because

it couldn't infer a tense or lexical aspect, because none of the rules applied, or because

a CDTS con�ict couldn't be resolved. Maybe the data produced was still too noisy to

produce better results: This is a strong possibility, since many of the rules were not

strictly dismabiguating.
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On the other hand, the evaluation of the disambiguator on its own was not too bad. If

it indeed did a bad job, the results should have been worse due to lesser training data.

In addition, the results are very similar to the original results, and even though the data

was from the same corpus, it was split among the relations in a di�erent way, which

should have lead to more di�ering results, especially in the case of begins, because the

training data used for this relation was entirely di�erent, (i.e. no exclusive mapping of

since to this relation.) Admittedly, the results for before and ends especially were

to be expected, ends was trained on essentially the same set. before was somewhat

more diverse, but the majority of this training set is probably comprised of before and

after sentences, as it was in the original system. This suggests that the feature set used

in the classi�er is somehow biased. The similarity of the results is more di�cult to

explain than simply better, or worse for that matter, results would be.

Ad 2) It stands to reason that the most prominent feature in the ensemble model,

syntactic signature, is not a very useful, or maybe somehow biased feature when it

comes to annotating pure temporal relation. Lapata and Lascarides (2006: 104) state:

Our results so far [. . . ] indicate that the syntactic complexity of the two clauses is

another key predictor. [. . . ] Soricut and Marcu (2003) �nd that syntax trees are

useful for inferring discourse relations, some of which have temporal consequences.

It seems that syntax trees are less useful in inferring temporal relations than they are

in inferring discourse relations � which makes a lot of sense, after all, when inserting

discourse markers into text, the syntactic structure is pre-formed to house a speci�c

discourse marker (especially in a cloze task), whereas several di�erent temporal discourse

markers can express the same temporal relation and be syntactically diverse.

The performance of both versions of the annotator regarding the begins and ends

relation was explained with the comparably small number of training instance in Lapata

and Lascarides (2006: 109), but the equally small set of instances for the simultaneous

relation in the preprocessed version casts doubt on this assumption.

Most likely, these two relations are not su�ciently captured through the features used:

As has already been pointed out in the previous section, these relations are also di�cult

to capture with the features that were used in the disambiguator.

The training set for ends was essentially the same as the one in the original system and

consequently scored the same. As could be seen from the last Section, until on its own

is not a good indicator for this relation.

Ad 3) This is related to the last point, i.e. that the feature set is not capable of

capturing the idiosyncrasies of the data set now that the variance in the data is bigger,

because of the presence of a variety of temporal connectors with their speci�c syntactical

pecularities.

Ad 4) Lastly, it is of course entirely possible, that both systems were not up to the

task, although, in that case, we would have expected worse results.
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6 Conclusion

6.1 Discussion

The project was about trying to disambiguate temporal connectors to use them as

indirect markers of temporal relations in text, to propel the use of unsupervised learning

techniques in the �eld of temporal semantics.

Disappointingly, the overall outcome of this project is rather inconclusive: The �rst

evaluation isn't particularly meaningful with such a small test set, and the outcome of

the second evaluation is surprising at best. It can't really be decided if the disambiguator

is working as expected, or if it could contribute to unsupervised learning of temporal

relations. A �rst step to test this would be to test di�erent feature sets in the classi�er

and see if they produce signi�cantly di�erent results for both the preprocessed and the

unprocessed data set, i.e. essentially readjusting the features to the new task. After all,

the best feature sets were determined not for the temporal relation annotation task, but

for the insertion of temporal connectors task, and only then applied. It is reasonable

to think that these two task have di�erent requirements regarding the features that are

useful in discerning them, especially for begins and ends, which show the most room

for improvement.

Mani et al. (2006) report an F-Score of 45.16 for begins without transitive closure, and

83.87 with transitive closure, using only the features available in the TimeML event

tag. The question is, which of these features are important to the relation and how to

integrate them into either the classi�er or the disambiguator.

Chambers et al. (2007) don't report their results splitted by temporal relation, but it

would be interesting to know if any of the additional features, which were mainly taken

from Lapata and Lascarides (2006), were useful in the classi�cation of the begins

relation.

In an application, the question is how useful those relations really are. Allen states that

he included further subdivisions to the during relation, because �it provides a better

computational model.� (Allen 1983: 834)

From an NLP point of view, it might be advantageous to only include the subdivions

of during when they are necessary, e.g. in a recognising textual entailment task, where

it is necessary to reason over events and their relation to each other, the inclusion of

begins and ends might make it easier to entail non-temporal relationships between

events. In an ordering task,the exact nature of an inclusion relation is irrelevant.

It would be desirable to have a set of relations that can be agreed upon by the commu-

nity, but this isn't very likely, on the on hand because of di�erent requirements regarding

what kind of relations are relevant to a given task, and on the other hand regarding the

granularity of our perception of time and the implications that come in a bundle with

a temporal expression.
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6.2 Improving the Disambiguator

The inclusion of the lexical aspect as an interval, at least in theory, is useful for circum-

venting the absence of an aspectual marker in the English simple tenses. The usefulness

of the distinction between closed and open intervals, however, is not clear. It was also

di�cult to extract rules regarding intervals for connectors that were rare in the devel-

opment set, because one example doesn't make a rule. Reviewing the data extracted

from the Bllip corpus would help extracting more rules for rare connectors.

One big problem with the disambiguator was that it relies on so many outside factors

that can signi�cantly harm performance, i.e. quality of parses, accuracy of the interval

feature, accuracy of the coreferencer, the verb has to be in the LCS lexicon and in

WordNet.

Something that could be done to improve disambiguation is �nding additional features

for the disambiguation of when: Many of the rules used for the disambiguation of when

were not good predictors, but merely reduced the ambiguity in a set of when sentences.

Since this is the most used and most ambiguous temporal connector, it is to be expected

that more features would lead to improved results, in both the disambiguation task and

the temporal relation annotation task, since most of the training data consists of when-

sentences. Inclusion of some kind of world knowledge like EventNet might be useful,

looking at the way events usually relate to each other.

While disambiguation did not work very well, using the functions provided by NLTK

for the Synset class. Most of the words were not correctly identi�ed as synonyms or

antonyms. A more lenient measure would be more useful. An idea might be to use a

similarity measure, which could also be applied to antonyms, since they usually belong to

the same domain and are usually more related than unrelated words. A problem might

be that words that appear together in a context probably are from a close domain, so

setting a threshold for this measure might be di�cult.

6.3 Evaluating the Disambiguator

The disambiguator itself was primarily designed to produce input for another system,

so evaluation was primarily built around this. Testing on TimeBank was di�cult, due

to the small size of TimeBank and the even smaller number of sentences containing

temporal connectors, not all of which express any temporal relation, or at least do not

contain events annotated with TLinks.

One evaluation method might be to present the disambiguated sentences and let them

decide if the temporal relation is correct. But human annotators are expensive, and also

not very reliable, although it might be easier to decide if a given relation is acceptable

than to assign a relation. Another di�culty here is that no events were annotated, so

the judgements might di�er with regard to what constitutes the main event expressed

in main and subordinate clause. There also isn't a baseline for this task. An easier

method could be to modify the disambiguator and disambiguate for the relations in the

TempEval challenge and test on their data, given that it contains sentences containing
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temporal connectors. In any case, the biggest problem in evaluating the disambiguator is

to �nd annotated data. While �nding the rules, it became also apparent that it should be

possible to disambiguate the unfolded relations, i.e. includes, is_included, before

and after, (the others are problematic, see above).

A thusly modi�ed disambiguator might then also be useful in a sentence ordering task,

although it has the disadvantage that it only works on temporal connectors.

6.4 Summary

The project described in this dissertation did not yield satisfying results: The appli-

cability of the rules itselfs could not be su�ciently veri�ed, and the main reason for

undertaking it did return inconclusive results.

Even though the question if temporal connectors can be used in unsupervised learning

of temporal relations could not be a�rmed, it could also not be denied, and several

possible remedies have been named to further explore this possibility.

The main insight that can be gained from this project is that temporal semantics and

discourse semantics have di�erent requirements in terms of what features are useful in

each task, which might be surprising, considering that they are semantically related and

that techniques from both of them can be applied to the other.
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A Tools used in the disambiguator

The following tools were used in the disambiguator:

CDTS-solution ftp://ftp.umiacs.umd.edu/pub/bonnie/CDTS-Solution-2006.lsp

A lisp script for splitting parsed input into relevant parts, extracting subject nodes, VP

nodes, temporal connectors, main and adjunct clauses. Also provides a pattern matcher

for �nding associated tenses.

LCS lexicon http://www.umiacs.umd.edu/~bonnie/verbs-English.lcs

A lisp-readable lexicon of over 10,000 English verbs. It provides the following informa-

tion for each verb:

− The lemmatised form of the verb

− The Levin class of the verb

− The WordNet sense key

− A PropBank style role-list string

− A grid of theta-roles

− An LCS representation

− Additional information about positions in the LCS form, e.g �optional�, �animate

+�.

Stanford CoreNLP http://nlp.stanford.edu/software/corenlp.shtml

An NLP tool that provides a variety of functions useful for NLP tasks. It works on raw

input and outputs an XML �le.

PythonOnLisp http://common-lisp.net/project/python-on-lisp/

Pythononlisp provides an interface for accessing python modules in lisp, used here for

lemmatising verbs and accessing WordNet.

NLTK http://www.nltk.org/

The Natural Language Toolkit, a python module that provides various APIs and func-

tionality relevant for NLP tasks. Used here to access and process the various corpora,

including WordNet, lemmatising,

B Disambiguation Rules

Require: before = {}, begins = {}, ends = {}, includes = {}, simultaneous = {}

if connector ∈ {after, before} then

before ∪ sentence

else if connector == once then
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if matrix/adjunct ∪ {fut perf/pres,fut perf/pres perf} then

ends ∪ sentence

else if matrix/adjunct ∈ {fut/pres} then

begins ∪ sentence

else if matrix ∈ {progressive} or adjunct ∈ {progressive} then

begins ∪ sentence

else

before ∪ sentence

end if

else if connector == since then

if matrix/adjunct ∪ {simple/perfect} then

begins ∪ sentence

else if matrix/adjunct ∈ {pres/past} then

before ∪ sentence

else if matrix/adjunct ∈ {simple/simple} then

if interval of adjunct == point then

begins ∪ sentence

else

before ∪ sentence

end if

end if

else if connector == as then

if matrix/adjunct ∪ {fut/pres state} then

ends ∪ sentence

else if matrix/adjunct ∈ {fut/pres} then

begins ∪ sentence

else if matrix ∈ {progressive} then

if interval of adjunct == point then

includes ∪ sentence

else

simultaneous ∪ sentence

end if

else if adjunct ∈ {progressive} then

if interval of matrix == point then

includes ∪ sentence

else

simultaneous ∪ sentence

end if

else if matrix ∈ {perfect} and not adjunct ∈ {perfect} then

begins ∪ sentence

else if adjunct ∈ {perfect} and not matrix ∈ {perfect} then

before ∪ sentence

else if matrix/adjunct ∈ {simple/simple} then

if interval of matrix == interval of adjunct then

before ∪ sentence

else if interval of matrix ∈ {open, closed} and interval of adjunct ∈ {open, closed}

then
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includes ∪ sentence

else

begins ∪ sentence

end if

end if

else if connector == while then

if matrix ∈ {progressive} then

if interval of adjunct == point then

includes ∪ sentence

else

simultaneous ∪ sentence

end if

else if adjunct ∈ {progressive} then

if interval of matrix == point then

includes ∪ sentence

else

simultaneous ∪ sentence

end if

else if matrix == synonym(adjunct) or matrix == antonym(adjunct) then

simultaneous ∪ sentence

else

includes ∪ sentence

end if

else if connector == when then

if matrix ∈ {progressive} then

if interval of adjunct == point then

includes ∪ sentence

else

simultaneous ∪ sentence

end if

else if adjunct ∈ {progressive} then

if interval of matrix == point then

includes ∪ sentence

else

simultaneous ∪ sentence

end if

else if matrix/adjunct ∈ {fut/pres} then

before ∪ sentence

else if matrix/adjunct ∈ {simple/simple} then

if np-sbj of matrix == np-sbj of adjunct then

includes ∪ sentence

else

before ∪ sentence

end if

end if

end if
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C Lisp Code

(defun sort-into-timeml ()

(let ((rel-table (make-array +relations-length+ :initial-element nil))

(once-f (make-zip (intersection *future* *perfect*) *present*)) ;ends

(once-s (make-zip (intersection *future* *simple-all*) (intersection *present* *simple*))) ;starts

(since-s (make-zip *perfect* *simple-all*)) ;starts

(since-b (make-zip *present* *past*)) ;before

(since-e (make-zip *simple* *simple-all*)) ;allowed tenses

(as-s (make-zip *future* (intersection *present* *simple*))) ;starts

(as-f (make-zip *future* (intersection *present* *simple-state*))) ;finishes

(when-b (make-zip *future* *present*)) ;before

filein

before inc sim begins ends)

(with-open-file (in "when-before" :direction :input)

(setf filein (read in nil nil)) (setf before (append before filein)))

(with-open-file (in "when-inc" :direction :input)

(setf filein (read in nil nil)) (setf inc (append inc filein)))

(with-open-file (in "when-sim" :direction :input)

(setf filein (read in nil nil)) (setf sim (append sim filein)))

(with-open-file (in "while-inc" :direction :input)

(setf filein (read in nil nil)) (setf inc (append inc filein)))

(with-open-file (in "while-sim" :direction :input)

(setf filein (read in nil nil)) (setf sim (append sim filein)))

(destructuring-bind (xx yy z) (array-dimensions *tense-table*)

(dotimes (x xx)

(dotimes (y yy)

;after,before

(setf before (append before (aref *tense-table* x y 0) (aref *tense-table* x y 2)))

;until

(setf ends (append ends (aref *tense-table* x y 5)))

;once

(cond ((member (list x y) once-f :test 'equal) (setf ends (append ends (aref *tense-table* x y 3))))

((member (list x y) once-s :test 'equal) (setf begins (append begins (aref *tense-table* x y 3))))

((or (member x *progressive*) (member y *progressive*)) (setf begins (aref *tense-table* x y 3)))

(t (setf before (append before (aref *tense-table* x y 3)))))

;since

(cond ((member (list x y) since-s :test 'equal) (setf begins (append begins (aref *tense-table* x y 4))))

((member (list x y) since-b :test 'equal) (setf before (append before (aref *tense-table* x y 4))))

((member (list x y) since-e :test 'equal)

(and (setf begins (append begins

(intersection (aref *tense-table* x y 4)

(aref *aspect-table* 3 1 4))

(intersection (aref *tense-table* x y 4)

(aref *aspect-table* 3 2 4))

(intersection (aref *tense-table* x y 4)

(aref *aspect-table* 3 3 4))

(intersection (aref *tense-table* x y 4)

(aref *aspect-table* 1 3 4))

(intersection (aref *tense-table* x y 4)

(aref *aspect-table* 2 3 4))

(intersection (aref *tense-table* x y 4)

(aref *aspect-table* 3 3 4))))

(setf before (append before

(set-difference (aref *tense-table* x y 4)

(aref *aspect-table* 3 1 4))

(set-difference (aref *tense-table* x y 4)

(aref *aspect-table* 3 2 4))

(set-difference (aref *tense-table* x y 4)
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(aref *aspect-table* 3 3 4))

(set-difference (aref *tense-table* x y 4)

(aref *aspect-table* 1 3 4))

(set-difference (aref *tense-table* x y 4)

(aref *aspect-table* 2 3 4))

(set-difference (aref *tense-table* x y 4)

(aref *aspect-table* 3 3 4)))))))

;as

(cond ((member (list x y) as-s :test 'equal) (setf begins (append begins (aref *tense-table* x y 1))))

((member (list x y) as-f :test 'equal) (setf ends (append ends (aref *tense-table* x y 1))))

((member x *progressive*)

(and (setf sim (append sim

(intersection (aref *tense-table* x y 1)

(aref *aspect-table* 1 3 1))

(intersection (aref *tense-table* x y 1)

(aref *aspect-table* 2 3 1))

(intersection (aref *tense-table* x y 1)

(aref *aspect-table* 3 3 1))))

(setf inc (append inc

(set-difference (aref *tense-table* x y 1)

(aref *aspect-table* 1 3 1))

(set-difference (aref *tense-table* x y 1)

(aref *aspect-table* 2 3 1))

(set-difference (aref *tense-table* x y 1)

(aref *aspect-table* 3 3 1))))))

((member y *progressive*)

(and (setf sim (append sim

(intersection (aref *tense-table* x y 1)

(aref *aspect-table* 3 1 1))

(intersection (aref *tense-table* x y 1)

(aref *aspect-table* 3 2 1))

(intersection (aref *tense-table* x y 1)

(aref *aspect-table* 3 3 1))))

(setf inc (append inc

(set-difference (aref *tense-table* x y 1)

(aref *aspect-table* 3 1 1))

(set-difference (aref *tense-table* x y 1)

(aref *aspect-table* 3 2 1))

(set-difference (aref *tense-table* x y 1)

(aref *aspect-table* 3 3 1))))))

((and (member x *perfect*) (not (member y *perfect*)))

(setf begins (append begins (aref *tense-table* x y 1))))

((and (member y *perfect*) (not (member x *perfect*)))

(setf before (append before (aref *tense-table* x y 1))))

(t

(and (setf sim (append sim

(intersection (aref *tense-table* x y 1)

(aref *aspect-table* 2 2 1))

(intersection (aref *tense-table* x y 1)

(aref *aspect-table* 2 1 1))

(intersection (aref *tense-table* x y 1)

(aref *aspect-table* 3 3 1))))

(setf begins (append begins

(intersection (aref *tense-table* x y 1)

(aref *aspect-table* 2 3 1))

(intersection (aref *tense-table* x y 1)

(aref *aspect-table* 3 2 1))

(intersection (aref *tense-table* x y 1)

(aref *aspect-table* 3 1 1))
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(intersection (aref *tense-table* x y 1)

(aref *aspect-table* 1 3 1)))

(setf inc (append inc

(intersection (aref *tense-table* x y 1)

(aref *aspect-table* 1 1 1))

(intersection (aref *tense-table* x y 1)

(aref *aspect-table* 1 2 1)))))))

;while

(cond ((member x *progressive*)

(and (setf inc (append inc

(intersection (aref *tense-table* x y 7)

(aref *aspect-table* 1 3 7))

(intersection (aref *tense-table* x y 7)

(aref *aspect-table* 2 3 7))

(intersection (aref *tense-table* x y 7)

(aref *aspect-table* 3 3 7))))

(setf sim (append sim

(set-difference (aref *tense-table* x y 7)

(aref *aspect-table* 1 3 7))

(set-difference (aref *tense-table* x y 7)

(aref *aspect-table* 2 3 7))

(set-difference (aref *tense-table* x y 7)

(aref *aspect-table* 3 3 7))))))

((member y *progressive*)

(and (setf sim (append sim

(intersection (aref *tense-table* x y 7)

(aref *aspect-table* 3 1 7))

(intersection (aref *tense-table* x y 7)

(aref *aspect-table* 3 2 7))

(intersection (aref *tense-table* x y 7)

(aref *aspect-table* 3 3 7))))

(setf inc (append inc

(set-difference (aref *tense-table* x y 7)

(aref *aspect-table* 3 1 7))

(set-difference (aref *tense-table* x y 7)

(aref *aspect-table* 3 2 7))

(set-difference (aref *tense-table* x y 7)

(aref *aspect-table* 3 3 7)))))))

;when

(cond ((member (list x y) when-b :test 'equal) (setf before (append before (aref *tense-table* x y 6))))

((member x *progressive*)

(and (setf inc (append inc

(intersection (aref *tense-table* x y 6)

(aref *aspect-table* 1 3 6))

(intersection (aref *tense-table* x y 6)

(aref *aspect-table* 2 3 6))

(intersection (aref *tense-table* x y 6)

(aref *aspect-table* 3 3 6))))

(setf sim (append sim

(set-difference (aref *tense-table* x y 6)

(aref *aspect-table* 1 3 6))

(set-difference (aref *tense-table* x y 6)

(aref *aspect-table* 2 3 6))

(set-difference (aref *tense-table* x y 6)

(aref *aspect-table* 3 3 6))))))

((member y *progressive*)

(and (setf sim (append sim

(intersection (aref *tense-table* x y 6)

(aref *aspect-table* 3 1 6))
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(intersection (aref *tense-table* x y 6)

(aref *aspect-table* 3 2 6))

(intersection (aref *tense-table* x y 6)

(aref *aspect-table* 3 3 6))))

(setf inc (append inc

(set-difference (aref *tense-table* x y 6)

(aref *aspect-table* 3 1 6))

(set-difference (aref *tense-table* x y 6)

(aref *aspect-table* 3 2 6))

(set-difference (aref *tense-table* x y 6)

(aref *aspect-table* 3 3 6))))))))))

(setf (aref *relations* 0) (delete-duplicates (append (aref *relations* 0) before)))

(setf (aref *relations* 1) (delete-duplicates (append (aref *relations* 1) inc)))

(setf (aref *relations* 2) (delete-duplicates (append (aref *relations* 2) sim)))

(setf (aref *relations* 3) (delete-duplicates (append (aref *relations* 3) begins)))

(setf (aref *relations* 4) (delete-duplicates (append (aref *relations* 4) ends)))

(with-open-file

(out "relations-final"

:direction :output :if-exists :supersede :if-does-not-exist :create)

(format out "~a" *relations*))))


