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Abstract

This thesis addresses the problem of generating a range of natural sounding pitch
contours for speech synthesis to convey the specific meanings of different into-
nation patterns.

Where other models can synthesise intonation adequately for short sentences,
longer sentences often sound unnatural as phrasing is only really considered at
the sentence level. We build models within a framework of prosodic structure
derived from the linguistic analysis of a corpus of speech. We show that the use
of appropriate prosodic structure allows us to produce better contours for longer
sentences and allows us to capture the original style of the corpus. The resulting
model is also sufficiently flexible to be adapted to suitable styles for use in other
domains.

To convey specific meanings we need to be able to generate different accent
types. We find that the infrequency of some accent and boundary types makes
them hard to model from the corpus alone. We address this issue by developing
a model which allows us to isolate the parameters which control specific accent
type shapes, so that we can reestimate these parameters based on other data.
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CHAPTER 1

Introduction

The primary goal of the work described in this thesis is to improve the generation
of synthetic intonation for speech synthesis. However, we will go about this in
such a way as to meet two secondary goals: The first of them is to understand
how linguistic theory can be appropriately exploited to improve the generation
of synthetic intonation. The second is to provide a flexible and robust intonation
model. This model must be able to generate different intonation patterns for the
same input text to match different intended meanings of the text. These goals
will become more specific as the thesis proceeds.

1.1 Intonation Modelling

Intonation modelling for speech synthesis is now one of the big issues facing
speech synthesis systems. The quality of synthesised phonetic material has pro-
gressed sufficiently that “what is being said” is sufficiently clear that “how is it
being said” is a question which is raised in the mind of the listener.

From the perspective of speech synthesis we are addressing the question: “How
do we best model intonation?” This leads us to first ask: “What is intonation?”.

As we shall see definitions of intonation vary. Ladd (1996, p. 6) says: “Intonation,
as I will use the term, refers to the use of suprasegmental phonetic features to con-
vey ‘post-lexical’ or sentence-level pragmatic meanings in a linguistically structured
way.” whereas Cruttenden (1997, p. 7) says: “Intonation involves the occurrence
of recurring pitch patterns, each of which is used with a set of relatively consis-
tent meanings, either on single words or on groups of words of varying length.”

1
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We will address this issue of definitions in section 1.2.2, where we will make it
clear what we mean when we talk about intonation.

The problem of intonation modelling for speech synthesis is summed up by the
following quote regarding segmental effects on pitch:

However, we believe that our understanding of perception of pitch in
fluent, meaningful speech is currently not sufficient to make strong
claims about the imperceptibilily of any aspect of speech, so currently
we have no other option but to model any effect on any acoustic fea-
ture that can be clearly demonstrated in natural speech.

(van Santen & Hirschberg 1994)

We have some basic intuitive ideas about what natural pitch should sound like,
but we just don’t understand enough to know how the pitch associated with a
specific segment, in a specific syllable with a specific accent, in a specific word
in a specific phrase with a specific phrase type, in a specific context, spoken by a
specific speaker, should behave.

To actually generate intonation for speech synthesis we need:

1. A formal description of the intonation in terms of a given intonation theory,
be it ToBI (Silverman, Beckman, Pitrelli, Ostendorf, Wightman, Price, Pier-
rehumbert & Hirschberg 1992), Tilt (Taylor 1994), IPO (’t Hart, Collier &
Cohen 1990) or something else. Description systems are discussed further
in the next chapter. A description is used to specify the type of intonation
we require. We may be given this information explicitly, for example in
a concept to speech system. We may be given hints to what this should
be like in terms of some mark-up, or we may be given only the text and
expected to derive this information from it.

2. A way of converting the above intonation description into an appropriate
pitch contour, or at least a set of target points which represent a pitch contour
and possibly some timing modifications to apply to segments.

Consider the simple sentence “It was the best butter.” (Carroll 2000, p. 71).
Carroll here uses italics on the word ‘best’ to signify emphasis. We can con-
sider this a very simple formal description of intonation. The combination of the
given emphasis on the word ‘best’, and the full stop at the end of the utterance
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strongly suggests , assuming British Standard English, that the pitch contour that
we would want to associate with the utterances would look something like:

It was the best butter.
(1)

The pitch contour describes the change in perceived pitch as the utterance is
spoken. For now this change can be considered relative; later on we will need to
specify absolute frequency values when we come to actually generate speech.

The point is that we have derived what we expect the pitch, or f0, contour to look
like solely from the extra-segmental material that the author usefully provided
for us. A text-to-speech system would more likely be presented with “It was
the best butter.” and default stress rules contained within the synthesiser would
probably be applied, placing the the phrasal stress, along with an appropriate
accent on the final noun, and giving us something like:

It was the best butter.
(2)

There are also pitch movements associated with phrase boundaries that need
to be considered, but these are usually easier to place as they only occur at the
end of phrases, which are generally easier to find than accents, using clues from
punctuation or syntax.

So far we have implicitly assumed that an accent is some sort of obvious ‘bump’
in pitch. What these bumps should actually look like turns out to be quite a
complex problem, and is one of the questions that this thesis attempts to answer.

There are actually two things we need to model here. We need to model how the
pitch range changes over the utterance as a whole and we then need to be able to
overlay pitch events successfully onto this range to produce a resulting contour.

Modelling pitch range would not be a major problem for the above examples as
the utterances are so short. A pitch contour that ends slightly lower than it starts
with the pitch going up and back down again in the right place for the accent
would be acceptable.
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Pitch range becomes more of an issue in more complex utterances, for example
(Carroll 2000, p. 79):

A large rose-tree stood near the entrance of the garden: the roses
growing on it were white, but there were three gardeners at it,
busily painting them red.

(3)

This utterance consists of a number of phrases, separated by punctuation, but
the relationship between adjacent phrases is not necessarily the same. The pitch
range will change between adjacent phrases, but not in the same way every time.
Once we have identified the phrases, we need a way to express the pitch range
of that phrase so that we can independently add appropriate pitch movements
within that range. To discuss these issues in more detail we first formalise some
of the ideas presented above.

1.2 Definitions of Terms

Speech synthesis and intonation, although both seemingly innocent terms, have
in common in that you can tell someone on the street that you study them and
they can have absolutely no idea what you are talking about. Furthermore, we
have already seen that in the case of intonation, it is difficult to pin down exactly
what intonation is and what it is not. Different experts give slightly different
definitions. As the reader may be well acquainted with one field but not the
other we will formally introduce both intonation and speech synthesis.

1.2.1 Speech synthesis

Speech synthesis is somewhat easier to pin down than intonation. In the most
general sense speech synthesis is the production of ‘synthetic’ speech using a
personal computer or other computing device. By this we mean producing an
electronic signal which when played through a speaker or similar transducing
device resembles human speech enough for the human brain to interpret it as
such. More technically, this means that the signal must contain a reasonable
representation of the voicing and the different harmonic resonances associated
with the the underlying formants in the vocal tract.

There are currently three general methods that can produce acceptable synthetic
speech to varying degrees.
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The first method is waveform synthesis. This type of synthesis concentrates on
producing an acoustic signal which resembles speech. A source/filter model
is generally employed, the source representing the glottal source and the filter
representing the effect the vocal tract has on the source (Holmes, Mattingly &
Shearme 1964). Systems include: MITalk (Allen 1987), YorkTalk(Coleman 1990)
and PAT (Lawrence 1953)

The second method of producing synthetic speech is articulatory speech synthe-
sis. Here an attempt is made to model the articulatory processes that produce
speech, by modelling the articulators themselves. Where waveform synthesis
models the effect of speech, articulatory synthesis models the cause. Articulatory
synthesis is a hard task, partly due to the difficulty in measuring the real articu-
latory processes as real speech is produced and partly due to the mathematical
and computational complexity needed in the resulting models.

Progress is being made in this measuring of the articulatory processes with var-
ious techniques such as electropalletography, x-ray microbeam and EMA. As
technology improves and our ability to model such processes progresses artic-
ulatory synthesis will become more widespread, but currently articulatory sys-
tems are impractical for general use.

The third and currently most popular form of speech synthesis is concatena-
tive speech synthesis which involves chopping up pre-recorded real speech and
gluing pieces of it back together to produce a suitable result. Signal process-
ing techniques may be used here to modify the pieces to provide more suitable
transitions between pieces. The size of the pieces can vary from sentences or
words right down to syllable or phoneme sized pieces. Generally the more sig-
nal processing that is required to produce pieces that consistently join together
the worse the quality of the resulting speech is. The currently most commonly
used pieces are diphones, which are units which start at the steady state centre of
one segmental phone and end at the steady state centre of the next. The theory
is that these units are easier to concatenate than individual phones due to the
steady state at each end. Current research is aiming to enable the use of more
general pieces of varying sizes, as this can reduce the amount of signal process-
ing required to join the units together. The term unit selection is usually used to
describe this type of synthesis. Examples of concatenative speech synthesis sys-
tems include: Festival (Taylor, Black & Caley 1998), rVoice (Rhetorical Systems
Ltd. 2000), Laureate (Page & Breen 1996), AT&T NextGen (Syrdal, Wightman,



6 CHAPTER 1. INTRODUCTION

Conkie, Stylianous, Beutnagel, Schroeter, Strom, Lee & Makashay 2000) and DE-
MOSTHeNES (Xydas & Kouroupetroglou 2001).

A completely separate issue in speech synthesis concerns the type of input to
a system. Levelt (1989) considers the human speech act to consist of a chain
of events which starts by an idea being formed in the brain. This idea is then
formalised as a sentence in a language and then it is spoken. Speech synthesis
systems can be considered to follow at least part of this chain.

Traditionally speech synthesis systems have been Text-To-Speech (TTS) systems,
where the input is a string of typed words equivalent to the formalised sentence
in Levelt’s terms. The system then converts these into a stream of phonemes, and
synthesises them by one of the above methods. However, research is currently
shifting towards building systems which perform Concept-To-Speech, where the
speech synthesiser is tied to a language generation system, the ‘brain’ in Levelt’s
terms. These systems have the advantage that they can provide the synthesiser
with more information to synthesise from. As well as the words to be spoken,
syntactic, semantic, and prosodic information can be given that otherwise the
synthesiser would have to derive or predict for itself. This thesis deals primarily
with diphone based concatenative synthesis, both from a text-to-speech and a
concept-to-speech point of view. As we are primarily concerned with the gener-
ation of an appropriate pitch pattern for a given context rather than figuring out
a likely context from the word string, will we lean towards a concept-to-speech
approach, to avoid some of the complications that having to decide upon suitable
intonation from text alone would introduce.

1.2.2 Intonation

As already stated we need to be clear about what we consider intonation to in-
clude. There are in fact a number of terms we need to be familiar with: intonation,
prosody, suprasegmental, pitch accent and tune.

We consider intonation to be the part of the acoustic speech signal that cannot
be accounted for from the segmental structure of an utterance alone. This view
fits somewhere in between the views of Ladd and Cruttenden which we saw in
section 1.1. This component of speech is described as being suprasegmental. Into-
nation then is a quantifiable entity, unlike prosody which we consider to describe
the way in which something is being spoken, rather than actually being part of
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what is being spoken. With this view, intonation can be thought of as the mani-
festation of the underlying prosody, and the terms can be used interchangeably
when this is not a need to differentiate between the abstract and the physical.

For example, back in (1) the prosody dictates that there should be an accent on
the word ‘best’ and an overall decline in pitch across the utterance. This is re-
alised by the illustrated intonation contour.

Part of the difficulty with these terms is that the properties that they describe are
often very difficult to tease apart from the segmental structure. For example stress
is a lexical property: certain syllables in certain words are stressed and certain
others are not, but stress and prosody are by no means independent. Emphasis is
placed more on some words that others in a spoken utterance and this prominence
tends to manifest itself in prosodic changes to the stressed syllable in the words.
We call this accenting. Pitch variation is one particular way of accenting words
and syllables, duration and intensity variation are other ways of accenting which
can be used along with pitch variation or on their own.

Sometimes the term intonation is just used to refer to the pitch patterns brought
about by the prosody. Cruttenden (1997) tends to take this approach. Others
tend to use the term intonation to refer to both pitch patterns and the underly-
ing prosody, de Pijper (1983) for example, whilst others, use both prosody and
intonation either interchangeably or in the way described above (Beckman &
Pierrehumbert 1986, Ladd 1996, Taylor 1994). In this thesis we try to use the
term intonation when refering to pitch patterns, and prosody when refering to
the underlying structure which governs them.

Intonational Phonology and the Autosegmental-Metrical (AM) approach (Liberman
1975, Bruce 1977, Pierrehumbert 1980, Ladd 1996) cover a group of theories of
particular interest that take the view that the intonation is comprised of a se-
ries of discrete pitch movements. The theories study the underlying structure of
prosody and the relationship between this and the resulting intonation.

The AM approach considers the intonation in languages such as English to be
made up of sequences of pitch accents and boundary tones (which may be refered to
as phrase tones or edge tones). Pitch accents are pitch movements which associate
with stressed syllables in particular words of phrases, whilst boundary tones
associate with the end of phrases.
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At the lowest level intonation can be considered to result from a series of prosodic
pitch targets. Theories of prosody and intonation try to explain the placement
of these targets and the changes of pitch between them. Some theories take
the targets (highs and lows) themselves as the main component of intonation
(Pierrehumbert 1980) while others take the changes between target levels (rises
and falls) as the components of intonation (’t Hart et al. 1990). There is no real
evidence to suggest that one method is more correct than the other, or even that
they are not mathematically equivalent, and it is probably the viewer’s perspec-
tive or the use to which the ideas are being put which makes one approach more
appropriate than the other.

As our concern is speech synthesis, where the application of a theory is easiest
where it can be treated as a sequence of distinct ordered processes, we choose
to concentrate our attention on models and theories which are compatable with
such an approach. We are interested in two specific models, primarily a model
that is based on Pierrehumbert’s thesis and later work (Pierrehumbert 1980, Beck-
man & Pierrehumbert 1986, Pierrehumbert & Hirschberg 1990) which has led to
the ToBI (Silverman et al. 1992) annotation scheme. These are discussed in sec-
tions 2.1 and 2.3. We will also consider the Tilt model (Taylor 1994, Taylor 1998)
(see section 2.7) which provides a model more suited towards automatic analysis
and synthesis.

Tune

Tune describes the gross melodic pattern of intonation and captures a notion of
the regularities and repetitions found in intonation. For example, in English,
questions and statements have a different tunes associated with them, and this
difference is one of the ways in which a question is clearly heard as a question.

The choice of tune is related to the role of the utterance in the discourse. State-
ments of fact often employ neutral declarative contours where questions may use
interrogative contours. That is not to say a given discourse role automatically de-
termines contour type, but there will a subset of tunes appropriate for any given
role, which the speaker can employ. (Pierrehumbert & Hirschberg 1990) push
the interpretation of tune further as we will see in section 2.1

The pitch pattern associated with a given tune on different phrases will be similar
but will not necessarily be identical, as both the amount of segmental material
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and the number and location and choice of the individual pitch accents them-
selves will also have an effect on the resulting contour. In the autosegmental-
metrical framework, tune defines, or possibly restricts, the type of pitch accents
used and through them controls the overall shape of the contour. For example a
statement tune may restrict pitch accents to H accents and the final boundary to
an L (see section 2.1 for the explanation of H and L).

Pitch range

In simplest terms pitch range is just that, the range of pitch employed by a partic-
ular speaker at a particular time and can be specified by a minimum and maxi-
mum pitch. More complex representations attempt to capture more information
about the distribution of the pitch points in frequency space.

Difficulties arise when trying to relate these descriptions to abstract linguistic
ideas about pitch range, for example when making comparisons between two
instances of pitch range, or in our case modelling pitch range.

The first problem regards the theoretical aspect of what pitch range actually is.
For descriptive analyses it is generally assumed to be the particular range of pitch
employed by a given speaker. From a production point of view however it could
be regarded as the potential range that could be employed for production by a
given speaker. Are these the same thing? For example, given some speech from
a particular speaker, how do we know if they have used their full pitch range?
All we can really do is assume that if we take enough speech, then the speaker
will have used their full pitch range.

There are many statistics which can be used to describe pitch range, most of
which are suitable for some purposes, but are not particularly suited to ours. Ab-
solute minimum and maximum pitch, for example does describe pitch range, but
does not say much about the distribution of points. Level and span (Ladd 1996)
are effectively the same measurements with level being the absolute minimum
and span being the difference between maximum and minimum. Variations on
this theme include the idea of a topline and a baseline (Bruce & Gårding 1978)
which are effectively maxima and minima which change over the course of the
utterance. This idea is theoretically attractive, but difficult to deal with for pro-
duction purposes as decisions need to be made about how exactly these lines
change over the course of an utterance. Liberman & Pierrehumbert (1984) take
this notion further in their study of intonational invariance across pitch range
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where they propose the use of a fixed baseline with a moving reference line and
ways to control pitch range without whole-phrase preplanning.

All of these maximum and minimum descriptions have their uses. However,
they tend not to be specified in an algorithmic way guaranteed foolproof for
speech synthesis: for example, the way in which declination is specified may
cause problems in a very long utterance and result in very artificial sounding
intonation. The other main issue with pitch, and pitch range in particular, is on
what scale to measure it: the linear Hertz scale, a logarithmic semitone scale,
or one of the more complex scales like Mels or Barks, designed to relate to hu-
man perception of pitch. The logarithmic scales are particularly favoured when
directly comparing male and female pitch ranges as on a linear scale the span
of a female pitch range is about twice that of a male pitch range, whereas on
a logarithmic scale they are more or less the same. This may be important in
descriptive systems to ease comparison between male and female voices, but is
not such a concern for speech synthesis as the computational methods employed
allow us to process and analysis pitch range in more complex ways. Here we
ususally treat a pitch contour as a series of pitch points sampled at, say, every
ten milliseconds. Calculating the mean and standard deviation and other such
statistics of these points is reasonably trivial, and using one scale or another to
measure pitch rarely make a difference. Explicitly treating pitch range as a distri-
bution also allows us to normalise pitch range and easily compare different pitch
ranges, and pitch points within different pitch ranges. (See section 7.3.1.)

1.3 The Road Ahead

We continue in the next chapter by taking a closer look at the literature which
discusses intonation, prosody and speech synthesis. In Chapter 3 we consider
the tools and resources that we need to carry out the work described here. Chap-
ters 4–6 concentrate on the analysis of the corpus that we have chosen to work
with, first looking at phrase structure and then at the accents and boundaries
within phrases.

Chapter 7 then describes the development of a framework based around prosodic
structure and models built within this framework. Chapter 8 deals with the eval-
uation of these models and Chapter 9 discusses the improvement of one partic-
ular model to be more suitable for other styles of speech. Finally Chapter 10
discusses the outstanding issues we have come across and draws our conclu-
sions.



CHAPTER 2

The Literature

2.1 Pierrehumbert’s Theory of Intonation

Pierrehumbert (1980) and later work (Beckman & Pierrehumbert 1986, Pierre-
humbert & Hirschberg 1990) has made a great impact on the theory of intonation.
The Pierrehumbert theory provides a phonological description of observed pitch
range phenomena in a way which is particularly appropriate for use in speech
technology. As it is the primary intonation theory used in the work carried out
here, it makes a good starting point and comparison for other systems.

In this theory the tune of an utterance is specified as a sequence of tones which
form pitch accents, phrase accents and boundary tones. Pitch accents mark promi-
nences. There are two pitch accents made up of single tones: H* and L*, and four
made from pairs of tones: L*+H, L+H*, H*+L and H+L*. The diacritic ‘*’ marks
the alignment of the tone; that is the starred tone in either a simple pitch accent or
a complex one aligns with the stressed word—or some constituent of a stressed
word. The unstarred tones in the complex pitch accents lead or trail the starred
tone, but it is the starred tone which determines the pitch accent alignment, and
which categorises a complex tone as high or low.

Complex utterances are divided into two levels of phrase. An intermediate phrase
consists of at least one pitch accent followed by a simple H or L (sometimes H-
and L-) phrase accent or phrase tone. An intonational phrase is made up of one
or more intermediate phrases followed by an additional tone, referred to as a
boundary tone, marked by a ‘%’, i.e. either high (H%) or low (L%).

11
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Earlier work in the British school framework (Crystal 1969, O’Connor & Arnold
1961) makes a clear distinction between nuclear and pre-nuclear inventories.
There the nuclear, generally the last, accent is considered to have a different sta-
tus to those that precede it. This, in the view of Pierrehumbert & Hirschberg
(1990), misses important generalisations between nuclear and pre-nuclear ac-
cents which have a distinctly different status within the British framework. Pier-
rehumbert’s (1980) theory drops the distinction between nuclear and pre-nuclear
accent.

Pierrehumbert & Hirschberg also claim that that the use of level tones to describe
intonation, rather than tone rises and tone falls as in the British school system,
allows identical constituents of differing tunes to be equated. The example of H*
H-H% and H* L-L% is given, where both tunes contain the tone H*. This infor-
mation is lost in approaches that use rises and falls. Of course Pierrehumbert &
Hirschberg’s (1990) argument here is based on the assumption that it is indeed
the high and low peaks in the contour that are important. This is reinforced by
requiring only two tones, as opposed to the four suggested by Pike (1945) and
Liberman (1975). Pierrehumbert’s (1980) catathesis rule, which allows for H* ac-
cents to be downstepped in staircase style sequences is also argued to bring out
similarities that would be otherwise missed.

2.2 Catathesis

Catathesis or downstep is a compression and lowering of pitch range, and is
effectively what makes the Pierrehumbert theory work with only two tones H
and L. Pierrehumbert considers catathesis to be triggered by an H L H tonal se-
quence which includs a bi-tonal pitch accent such as in the sequence H*+L H*+L
L-L%. The result of catathesis is that the second H* is lower than expected at this
point in the utterance as the pitch range has been lowered and compressed. This
view of catathesis is questioned by Ladd (1983) where it is suggested that down-
step is controlled by an independent feature which can be set on given pitch
accents. The notation ‘!’ is prepended to accent descriptions to show they are
downstepped: H* becomes !H* when downstepped, L*+H becomes !L*+H and
so forth. Pierrehumbert & Hirschberg (1990) however reanalyse catathesis in an
attempt to resolve issues both with the H L H trigger and the feature interpreta-
tion of downstep. They say that downstep is triggered by the presence of H+L
combination bi-tonal pitch accents alone.
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2.3 ToBI

ToBI (Silverman et al. 1992), short for Tones and Break Indices, is a proposed
standard for transcribing English prosody. Originally developed for varieties of
American English it has been since adapted to other dialects and other languages
(Mayo, Aylett & Ladd 1997, Reyelt, Grice, Benzmüller, Mayer & Batliner 1996,
Campbell & Venditti 1995).

The system comprises of a series of parallel labelling tiers. The first is a tonal tier
which contains pitch events based on Pierrehumbert’s theory. This tier includes
labels for the pitch events and often additionally includes ‘HiF0’ labels to mark
the highest f0 peak in each phrase. A break index tier is used to mark breaks on
a 0 to 4 scale (0 to 6 in an extended version) which measure the strength of as-
sociation between adjacent words. And a miscellaneous tier is used for marking
hesitations, disfluencies, non-speech and the like. An example of the system in
use is shown in figure 2.1.

The break indices with values of 3 and above relate to prosodic boundaries. The
3 is a ‘-’ boundary and 4 to a ‘%’ boundary. In the extended version of the system
5 is used for ‘%’ boundaries stronger than those marked 4, such as those with
particularly long pauses, and 6 is used to signify end of utterance.

Part of the philosophy of ToBI is that it provides a framework within which dif-
ferent labellers can be consistent in their labelling. This is an obvious benefit
where such labelling is intended for uses in speech synthesis, for example to
train statistical models.

This is not to say that there are not any problems with this transcription system.
There is an underlying problem in achieving the levels of consistency required
for training statistical models brought about by both ambiguity in the tonal tier
and the break index tier. The number of different types of accents in Pierrehum-
bert’s theory and the similarity between certain accents, or at least the similarity
in accents when realised in speech, presents a problem. On paper, distinct clear
accent shapes seem like a good idea. However, in the real world making these
distinctions is not always easy: the f0 traces that you see do not always exhibit
the clear accent shapes that are expected, so it is not always obvious what type
an accent is or even sometimes if there is an accent at all. Syrdal & McGory (2000)
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show that although labellers tend to have a high agreement on the place of ac-
cents, the level of agreement on type is much lower, and possibly problematic for
training TTS intonation models.

The shape of accents within categories has been shown to vary with the segmen-
tal material on which they occur. Grabe’s (1998) thesis demonstrates how pitch
accents can be compressed or truncated where there is less sonorant material for
them to be realised on.

This raises the question of whether accent shapes in general form more of a con-
tinuum, and it is only the perception of them which is categorical. The Tilt model
(Taylor 1998) (see section 2.7) treats accents in this way.

However, whatever ToBI’s drawbacks are it has certainly furthered intonation
research by the sheer fact that it allows researchers to present intonation patterns
to each other in a standard way which can be easily understood.

2.4 Pitch Lowering Effects

We saw in section 2.2 that the progressive lowering of pitch in an utterance was
accounted for in Pierrehumbert’s (1980) approach by catathesis or downstep.
However, this is not the only way to account for such pitch lowering. Some
theories attribute pitch lowering to declination (Cohen & ’t Hart 1967) rather than
downstep. Declination describes a more general lowering of pitch across the ut-
terance as a whole, rather than a stepped lowering related to specific pitch events.
The models considered in the next section attribute pitch lowering to declination
rather than catathesis.

Extra pitch lowering that occurs at the end of phrases or utterances, where the
pitch reaches a lower level than elsewhere in the utterance, is often called fi-
nal lowering. Final lowering is compatible with both declination and catathesis
views of pitch lowering and can be found incorporated into models of both types.
Whatever view of pitch lowering is taken at some point, either within an utter-
ance or between utterances, pitch will reach a lowest point and then jump back
to some higher level. This is usually called reset or declination reset.
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2.5 Other Models of Interest

There are various other intonation models described in the literature which are
aimed at speech synthesis which we consider for completeness:

2.5.1 The IPO approach

In the IPO approach, originally for Dutch intonation and later for English intona-
tion (de Pijper 1983) the natural pitch contour is ‘replaced’ by a series of discrete
stylised pitch movements, which have been specified in a standardised way to
be perceptually equivalent to the original contour. A grammar specifies which
pitch movements can be used at a given time.

The approach uses pitch movements rather than pitch levels as its atomic units, but
these movements occur between three levels of pitch making eight distinct move-
ments. These movements comprise of steep and shallow rises and falls between
either two adjacent levels of the pitch range or across all three levels. Addition-
ally each movement can be aligned with a syllable in three ways; denoted early,
middle or late; leading to 24 movements in total.

The IPO approach takes the view that declination (see section 2.4) causes the
downward trend in f0 as an utterance progresses. Both the top and bottom lines
which control the position of the high and low targets decline through the utter-
ance.

A typical example (taken from Ladd (1996)) is the ‘hat pattern’ which is a ‘type 1
rise’ (a low to high rise early in the accented syllable) followed by a ‘type A fall’ (a
high to low fall early in the accented syllable). If these two movements occur as
part of the same accent then the result is a ‘pointed hat’ otherwise they result in
a ‘flat hat’ with a stretch of flat contour between rise and the fall. Phonologically
the rise and the fall are considered obligatory, whereas the flat stretch between
the rise and fall, along with flat stretched preceding the rise and following the
fall are considered optional.

The approach makes direct use of resynthesis techniques to produce the stimuli
for the perceptual evaluations of what parts of the intonation contour are salient
to the listener for the purpose of developing the set of pitch movements. Willems,
Collier & ’t Hart (1988) extends de Pijper’s (1983) description for English and
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provides quite a complex rule based approach for the synthesis of British English
intonation.

2.5.2 Superposition models

The main other type of model is the overlay or superposition model. Here the
complex pitch contour is regarded as being made up simpler signals superim-
posed on top of each other. These tend to separate out accent movement from
declination as independent components.

The best known example of such a model is the Fujisaki model (Fujisaki 1983)
which is a generative model. Here the f0 contour is comprised of a phrase com-
ponent and an accent component. The components are referred to as ‘commands’
and are represented in the frequency domain by a sequence of impulse responses
and a series of step functions respectively. The functions are then added in such
a way as to produce a smooth f0 contour in the time domain. Figure 2.2 shows
the structure of the model along with an example of what it produces.

The superpositional approach can also be seen in some more theoretical linguis-
tic models of intonation, a good example being that of Grønnum (1992). Her
hierarchical intonation model of Danish overlays components representing dif-
ferent temporal scopes, the longest being the length being the paragraph level
and the shortest being that of a stress group.

This idea of dual components is often dismissed in intonation theory, possibly
because this element of the intonation is often less interesting to the researcher.
It is studied to some extent in the form of declination, and in English at least a
general lowering of pitch is expected as a phrase progresses.

Realistically, any intonation model used for speech synthesis is likely to have an
underlying phrase component, even if it is considered to be flat, to control the
pitch range of a given speaker. It is likely in speech synthesis that downstep can
accomplish the same effect as a phrase component could if used in the right way.

One of the goals of this thesis is to examine to what extent a phrase component
can be teased apart from the f0 contours, and how accounting for phrasing ef-
fects on pitch range can give us more control over how we describe and position
pitch events using theories which do not in their own right recognise a phrase
component.
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Figure 2.2: The Fujisaki model of intonation. In the frequency domain, a phrase
component consisting of a series of impulses is added to an accent component
consisting of a series of steps. The resulting contour in the time domain consists
of a series of decays generated by the phrase component overlaid with a series
of rise and falls generated by the accent steps.
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2.6 Accent Alignment

So far we have only explicitly considered the placement of accents in terms of
their pitch. Accents also align with the segmental material of an utterance in
a particular way. To avoid confusion we adopt the term positioning to describe
pitch placement and reserve alignment to describe the placement with respect to
the segmental material.

Santen, Shih & Möbius (1998) discuss alignment based on the sonorant rhyme
(or s-rhyme) which they define as being the part of the syllable from first non-
initial sonorant through to the end of the last sonorant (see section 2.12.2 for
more detail and a description of their proposed linear model of peak position
dependent on various duration measures including this s-rhyme duration). The
unusual definition of the s-rhyme is interesting as it gives an idea of the level
of detail at which the syllabic structure needs to be examined, suggesting that
the relationship between pitch event and syllabic structure is not necessarily a
simple one.

Assuming then that pitch events align with syllables in some fashion, to model
them we need to be aware of just how much of the speech we need to include to
ensure that we have the full syllabic context which governs alignment. In other
words, is considering the syllable that the pitch event aligns with in isolation
enough? If not, what other syllables and syllabic information do we need to
consider? Do we need the preceding and following syllables or do we need to
look at the foot or the word? Arvaniti, Ladd & Mennen (1998) for example, show
that for Greek, accent alignment can certainly occur with the next syllable under
certain conditions.

With accent alignment in mind we now consider a model which explicitly ac-
counts for an accent’s alignment as well as its position.

2.7 The Tilt Intonation Model

The tilt intonation model (Taylor 1994, Taylor 1998) is a model orientated towards
speech technology. It is a descriptive model which provides a parameterised
representation of the change in pitch related to intonation events. It therefore
makes very few assumptions about the underlying intonation theory. It assumes
only that pitch events occur in a linear fashion at given times and have distinct
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starts and ends, and is appropriate to describe an intonation theory based around
peaks and troughs (pitch movements) or rises and falls (pitch targets). The stan-
dard use of the theory assumes that there are two types of pitch events: accents
and boundary tones, but, as they are treated in exactly the same manner, one
could use only one type if a theory dictated.

Each event is characterised by a set of five independent parameters which com-
pletely describe the pitch movement:

Amplitude The amplitude of the event.
Duration The duration of the event.
Tilt A measure of the shape on the interval [-1:1]. -1 is a pure rise, 0 is a rise-fall

and +1 is a pure fall. (See equations 2.1–2.4 below.)
Position A measure of the f0 position relative to a baseline (usually 0 Hz)
Time A measure of the time position of the event.

The amplitude and duration parameters can be extracted directly from a labelled
intonation contour. Figure 2.3 shows the way the tilt parameter affects the accent
shape. The time and position parameters are flexible in what they are measured
relative to. Time is usually measured relative to the start of the vowel that the
pitch event is assigned to.

The tilt model is usually used in conjunction with a labelling scheme which uses
a simple set of labels to identify accents and boundaries. ‘a’ is used to signify all
types of pitch accent and ‘b’ or sometimes ‘rb’ and ‘fb’, to distinguish between
rising and falling, are used for boundaries. Where a single pitch movement can
be attributed to an accent and a boundary a single label is used. For example
‘afb’ would be used to label an accent and falling boundary. From the point of
view of a strict phonetic description, this may be better than a ToBI description
as it makes a distinction between where there are separate pitch movements for
each event and where a single pitch movement occurs for multiple events.

Along with the theory, Taylor provides an algorithm (an implementation of which
is included with Festival) for automatic analysis of pitch events in terms of tilt.
Given an f0 contour and the above labels marking pitch events, the necessary
parameters can be extracted, or derived in the case of the tilt parameter, au-
tomatically from the data using the mathematical definition of tilt specified in
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equations 2.1–2.4. The pitch event is first split into a rise portion and a fall por-
tion and the amplitudes ��������� and �
	���
�
 , and durations ��������� and ��	���
�
 , of each
part are calculated from the pitch contour.

The amplitude and duration parameters are calculated by summing their respec-
tive components and the following intermediate parameters are then calculated
(not to be confused with the actual amplitude and duration parameters them-
selves):

����� ���������
� ��������� ��� � �
	���
�
 �� ���!����� �#"$� �
	���
�
 � (2.1)

���!� ��%'&(�)� ���������
� �*	(��
+


�,�!����� " �*	��-
+
 (2.2)

(2.3)

����� �'./�/
0.1� " 	

����� �'./�/
0.1� �

����� �'./�/
0.1� � 	

rise

rise-fall

fall

Figure 2.3: Pitch event shapes as they relate to Tilt parameter value.
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and from them the tilt parameter is derived:

����� �'./�/
0.1� ���!� ����� � " ���!� ��%�&(�
� (2.4)

It is easier to produce more consistent hand labelled speech data with this model
than with ToBI as the labeller, human or automatic, needs to make fewer deci-
sions when assigning a label as most of the parameters are calculated automati-
cally from the data. There are no specific accent or boundary type categorisations
inherent in the model like in the Pierrehumbert theory, but Taylor (2000) illus-
trates how the parameter space could be partitioned into categories if so desired
(see figure 2.4).

There is a particularly large overlap between the H*, L+H* and H*+L categories
in figure 2.4. This suggests that there is not an clear invertible mapping between
these phonological categories and their phonetic realisations. This is essentially
saying that pitch contours of some H*, L+H* and H*+L accents look the same.
This may have implications for the generation of intonation as it suggests that
the data that models are trained on may contain ambiguities.

Tilt works well as a descriptive system in that it is relatively easy to assign tilt
parameters to given stretches of pitch contour, and tilt can describe the variation

rising

falling

early late

Tilt

Position

H%

L*+H

L*

H+L*

L+H*

H*
H*+L

Figure 2.4: Taylor’s schematic suggesting a comparison between Pierrehumbert
style accent categorisations and tilt parameters.
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in pitch event realisation to a great extent, but it does not provide a mechanism
for accounting for that variation in terms of a linguistic interpretation, which
effectively makes it unsuitable for modelling intonation for speech synthesis on
its own. Rather, tilt is a good candidate to model the particular shapes of accents
of predetermined phonological categories. The lack of a large dataset containing
a variety of different pitch accent types that is consistently labelled has probably
contributed to the lack of interest shown in tilt in speech synthesis systems to
date.

Tilt is used in the analysis phase of the work described in this thesis as tilt param-
eters are available for pitch events in the dataset used and they provide a useful
way of finding the peak position of pitch accents.

2.8 Prosodic Structure

When studying intonation alone, finding and describing an accent of a given
type in a given place is often the final goal, but in the context of speech synthesis
knowing that an accent is found in a certain place under certain conditions is not
enough. We need to be able to recreate that accent, that is we need to know how
to place such an accent with respect to its prosodic context in a given speaker’s
pitch range. To do this we need some understanding of the underlying prosodic
structure and some understanding of how this relates to pitch range. Prosodic
structure is used to account for high level patterns in intonation, such as the
difference in pitch range between two phrases of the same utterance. Different
theories take different views to how prosodic structure should be represented.

2.8.1 Hierarchical structure

We next need to concern ourselves with the questions: To what size chunks of
speech do tune and pitch range apply, and how do these chunks relate to each
other? The term IP (intonational phrase) is often used to refer to such chunks of
speech, but there are different ideas concerning how big such a chunk is and
what it should be called. As Ladd (1986) points out, the definitions of the phone-
mic clause (Trager & Smith 1951), the macro-segment (Hockett 1958), the tone
group (Halliday 1967), the breath group (Lieberman 1967) and the intonational
phrase (Pierrehumbert 1980), all describe potential IPs in one way or another.
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Ladd (1986) then summarises these IP definitions as the largest phonological
chunks into which utterances are divided. They extend from one phonetically
definable boundary to the next, have a specifiable intonational structure, and are
phonological units which are assumed to relate to syntactic or discourse level
structure.

However, Ladd (1986) points out there is a problem with the definition of bound-
aries: the general assumption is that the domains over which phonological struc-
ture is specified are defined by the audible phonetic boundaries which occur in
the speech stream. If something is structurally an IP then it is assumed to have
boundaries, and if something has boundaries it is assumed to be an IP, leading
to a somewhat circular definition.

Two such IP levels of phrasing are generally assumed. These are proposed in var-
ious ways, but basically they consist of big intonation phrases (IPs) containing
littler intonation phrases (ips): e.g. single and double bar boundaries (O’Connor
& Arnold 1961), major and minor tone groups (Trim 1959) and intermediate
phrases and intonational phrases (Beckman & Pierrehumbert 1986). The general
definition is that the little ip has the nuclear structure, that is contains one pri-
mary stressed unit, and the big IP consists of little ips and has an audible break
associated with it. This is not to say that all of these definitions of big versus little
are the same, just that they all accept two levels of phrasing.

Ladd (1986) also takes this view with his major phrase (MP) and tone group (TG),
but in a hierarchical fashion, defined thus:

Major Phrase An MP is set off by audible prosodic breaks—rhythmically
organised1 pauses marked by actual silence and/or the prolon-
gation of the pre-pause syllable, accompanied, in many cases, by
the additional pitch movements (boundary tones, in the current
terminology) such as a rise following an accentual fall. [Ladd’s
(1986) footnote]

Tone Group A TG, on the other hand, is merely a structural unit of
intonational phonology—the domain within which a nucleus is

1See Scott (1982) for instrumental evidence that the duration of boundary pauses depends on
the place of the pause in the foot of the structure of the utterance; for a theoretical treatment see
Selkirk (1984, ch. 6).
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defined—and the boundary between TGs need not be accompa-
nied by any rhythmic break or additional pitch movement at all.
That is an MP is broken down in to TGs such that each TG con-
tains only one nuclear accent. The boundaries between TGs may
not be marked by pauses as the MP boundaries are.

For example:
���

�����

My brother

��� �

lives in Denver

(4)

Where the ‘s’ and ‘w’ represent a ‘strong’ versus ‘weak’ metrical relationship
between the two TGs.

The hierarchical approach is in distinct contrast to the main theoretical position
of Pierrehumbert (1980), which is that intonation contours are considered linear
strings of tones, although it is not completely incompatible with it, as there is no
reason why TGs cannot be considered to consist of strings of tones.

The strict layer hypothesis (SLH)

A general assumption often made with prosodic structure is that it is non-recursive,
that is any given level of structure has to be made up of only of units of the level
below it. Ladd questions this in two respects; consider:

The book on the table, it seems to me, was a gift from my mother. (5)

Cooper & Sorensen (1981) found that declination is interrupted by the parenthet-
ical and continues after it as if it wasn’t there. This suggests the structure:

[The book on the table [it seems to me] �
	
was a gift from my mother] �
	

(6)

rather than:

[The book on the table] �
	 [it seems to me] �
	
[was a gift from my mother] �
	

(7)

as would be imposed by the SLH.
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Secondly consider:

Would you like some more tea, Ian? (8)

The tag ‘Ian’ is obviously preceded by an intonational boundary, but does not
exhibit the properties of a full IP. Pitch movement on the tag is usually a contin-
uation of the pitch movement in the tail of the preceding phrase. Suppose the
tag is treated as a MP, (it is after all set off by audible boundaries), leading to a
recursive structure:

TG’

TG � MP
� (9)

Here the ‘s’ and ‘w’ again represent metrical weight, which we need not be over
concerned with here, and the ’ superscript marks the TG as being a parent of a
node with a similar status. This kind of structure would also allow the analysis:

MP

TG’
�

TG
�

My brother

MP �

who is a geologist

TG �

lives in Denver

(10)

However, this idea is problematic. It suggests that “who is a geologist” has the
necessary intonational tune to stand on its own as an utterance, which is proba-
bly not the case, but would provide grounds for an interesting experiment.

2.9 The Effect of Prosodic Structure on Intonation

Some of the issues concerning prosodic structure and the effect it has on into-
nation are also discussed by Ladd (1990). Here, Ladd considers downstep as a
metrical relationship between intonational constituents. This takes an alternate
view to Pierrehumbert, and Ladd’s (1983) earlier work where downstep was con-
sidered an independent feature, rather than a property of particular accents. This
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view attempts to answer Beckman & Pierrehumbert’s (1986) criticisms that hav-
ing down-step triggered by a feature forces a relation between the down-stepped
accent and the preceding one, as this not only goes against the grain of Pierre-
humbert’s (1980) theory in the pitch events are supposed to be independent en-
tities but also allows for nonsensical accent sequences. Downstepping the first
accent in a sequence is meaningless for example, as there is nothing to down step
from.

Ladd discusses a register phenomenon which is a factor placed orthogonal to other
factors which contribute to the variation of pitch. Ladd asserts that a speaker
has a predefined pitch range, which is idealised as constant and that register is
defined as a frequently-changing sub-set of this range, and specific target types
have fixed positions within the register. Nuclear accents are set to the top of the
register, and the only scaling that is allowed is down scaling, i.e. the lowering of
the pitch of pre-nuclear accents within the register.

This provides a two-way distinction as shown in Figure 2.5. Note here how the
choice of tone is independent from the underlying metrical structure.

l h h l

tree

H HL H HL tones

non–down-stepped down-stepped register

B
T

B
T

Figure 2.5: Ladd’s two-way down-step distinction. The ‘l’ and ‘h’ represent the
phonological high low relationship in metrical terms. The ‘h l’ ordering trigger-
ing downstep. The ‘H’ and ‘L’s represent the intonational tones, and the ‘T’ and
’B’ represent the top and bottom of the pitch range.

Ladd shows the need for a metrical approach based on the results of an experi-
ment (Ladd 1988) where sentences with different and/but constructions were pro-
duced by a variety of speakers. For example:

Allen is a stronger campaigner, and Ryan has more popular poli-
cies, but Warren has a lot more money.

(11)
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Allen is a stronger campaigner, but Ryan has more popular poli-
cies, and Warren has a lot more money.

(12)

Here the structure of the sentences is the same, but there are clear differences in
pitch range between the two types, suggesting the need for a metrical distinction
to cause the down scaling of pitch range outlined above.

Sentences like these are generally interpreted as the but opposing the conjoined
propositions of the and, see Figure 2.6.

[A and B] but [C] or [A] but [B and C]

[but]

[and]

A B

C

[but]

A [and]

B C

Figure 2.6: And/but distinction using trees

The but attachment can be thought of as being higher in the tree than the and
attachment. Experimental evidence showed that there is a significant difference
in the heights of the initial high tones of the sub-phrase dependent upon whether
it is preceded by an and or a but. Ladd suggests that this shows the existence of
an underlying hierarchical prosodic structure, but leaves unresolved the exact
nature of a mapping from a tree structure to a set of tone heights.

While the idea of hierarchical structure controlling pitch range at the phrase
boundary level seems appropriate, it is hard to judge whether it is a suitable
explanation for the control of downstep within a phrase from the experiments
described here. This point aside, from a practical point of view for speech syn-
thesis, the need for large consistently labelled trees would currently make this
theory unmanageable.

2.10 Intonation and Meaning

The general accord on pitch accents is that they render salient the material with
which they are associated, irrespective of type. Pierrehumbert & Hirschberg also
suggest that the lack of a pitch accent, where one would normally be expected,
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reduces the salience normally associated with a particular item, unless of course
the item is being made salient by some other means.

In terms of Pierrehumbert’s (1980) theory, Pierrehumbert & Hirschberg (1990)
suggest that items marked salient with an H* are regarded as new to the dis-
course, and an intonational phrase of only H* accents signals that the proposition
realised by the phrase should be added to the mutual belief space of the listener.
When accompanied by an L phrase accent (and either boundary tone) the result
is neutral declarative intonation. For example:

It is
H* L L%
raining. (13)

If, on the other hand, the phrase accent is an H and the boundary tone an H%,
then an element of questioning is introduced. Information is still being proposed
by the use of H*s, but agreement is being sought after. For example:

You got my
H* H H%
letter? (14)

The L* accent on the other hand is said to mark salience that is not intended to be
added to the listener’s mutual belief space. The accents comprising of complex
tones are said to evoke salience of some scale and express different relationships
between the accented item and others in the discourse.

AGREED
" �

�
L+H* L*+H

� H*, (H*+L) L*, (H+L*)

Table 2.1: Steedman’s meanings of pitch accents.

Commitment
�����

L, LL%, HL%
�����

H, HH%, LH%

Table 2.2: Steedman’s meanings of Boundaries
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Phrase and boundary H and L tones are used to signify continuation or separa-
tion respectively between phrases. The phrase tones express such a relation be-
tween intermediate phrases and boundary tones between intonational phrases.

An alternative interpretation of the meaning and intonation is proposed by Steed-
man (2002) reflecting ideas from Prevost & Steedman (1994). It differs from
Pierrehumbert & Hirschberg’s (1990) approach in that it looks at the meaning
of pitch events within an information-structural framework. Steedman suggests
that pitch accents mark words as not-given or kontrast (after Vallduví & Vilkuna
(1998)) rather than strictly new to the discourse, and that there are only two fur-
ther binary-valued dimensions along which the meaning of pitch accents need
be distinguished. The first is theme and rheme (Halliday 1967, Bolinger 1958,
Bolinger 1961). The second dimension is whether or not the particular theme
or rheme is mutually agreed upon. In this theory boundary tones divide into
two classes, marking if the commitment to the content of the phrase or utterance
lies with the speaker or the hearer.

Steedman summarises with the information shown in tables 2.1 and 2.2. In ta-
ble 2.1,

�
and � are theme and rheme respectively and the � AGREED feature sig-

nifies mutual agreement. So for example, L+H* is used to mark mutually agreed
upon themes and L* to mark rhemes which are not mutually agreed upon. In ta-
ble 2.2

�����
and

�����
denote speaker and hearer commitment respectively, so LH%

may be used as a boundary where the speaker is implying that it is the hearer
who is committed to the content of the utterance. For example:

H: Congratulations. You’re a millionaire!

S: I’m a
L* LH%

MILLIONAIRE?
(15)

Here the speaker implies that the hearer is committed to a non-agreed rheme.

The obvious advantage from a speech technology viewpoint of Steedman’s (2002)
approach when compared to Pierrehumbert & Hirschberg’s (1990) is that rather
than just interpreting the meaning behind various combinations of pitch accents
and boundaries, it provides an algorithmic means of applying pitch events to
text to convey a given meaning. Steedman goes on to formalise this in terms of a
Combinatory Categorial Grammar (CCG). Steedman’s theory is used to provide the
accent descriptions used in the examples discussed in section 3.4.2 and for the
pitch contours used for the evaluation in section 9.3.
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2.11 Statistical Modelling Techniques

Historically, in intonation modelling as with many other aspects of speech tech-
nology, rule based approaches (by rule we tend to mean hand crafted heuristics
based upon observation, as opposed to the equations which govern statistical
systems) have been first superseded by brute-force statistical approaches which
have later been refined to use linguistic knowledge. This results in a continuum
of approaches, with strictly rule based systems at one end and strictly statistical
approaches at the other.

A statistical basis for a system can achieve reliability and consistency with a cer-
tain level of accuracy which is considered a safe compromise compared to rules
which may perform particularly well in many situations, but fail miserably in a
small number of unpredictable circumstances.

Building a statistical model usually involves training on a corpus of data, where
the model ‘learns’ an association between an input which is generally a parame-
ter vector representing an entity, and the output which is the entity itself. Once
trained, the model can generate a suitable entity from a given input vector.

There are many techniques for learning these kinds of association, neural net-
work (NN), classification and regression trees (CART) and linear regression (LR)
models are three particular examples used in the speech synthesis domain. We
take a closer look at CART and LR models as they are of particular interest. Neu-
ral Networks are not discussed in detail as they are a less popular approach for
intonation generation. They have however been used to do waveform synthe-
sis (Karaali, Corrigan & Gerson 1996), to model intonation (Sun 2001, Holm &
Bailly 2002) and to detect accents for speech recognition (A.Taylor 1995). Recur-
rent neural networks (RNNs) prove popular for these tasks as they have a limited
ability to model time dependencies.

Linear regression models

Linear regression (LR) models assume that a predicted variable (� ) can be mod-
elled as the sum of a set of weighted real-valued factors.

� ����� " ��� ��� " � � � �
" �����	� "�
�
�
�" ��
���
 (2.5)
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The factors ( ��� ) represent parameterised properties of the data, and the weights
( �)� ) are trained, usually using a stepwise least squares linear regression tech-
nique.

Often subsets of mutually exclusive binary valued factors are used. This parti-
tions the model into parts where only a subset of weights contribute towards the
predicted variable in a given context. For example � � and � � may contribute only
to the predicted f0 of accented syllables, while � � and � � may only contribute to
unaccented syllables.

A simple example of a linear regression model is shown in figure 2.7. Here f0 is
predicted by the presence of an accent or a boundary and the number of syllables
from the start of the utterance. An � � component causes a peak on accents, and
an � � component causes a dip at a boundary. If a syllable has no pitch event
associated with it then both ��� and � � are zero valued so their associated weights
make no contribution to the predicted f0. � � is always positive valued and causes
the f0 to decline through the utterance.

Classification and regression trees

A classification and regression tree (CART) (Breiman, Friedman, Olshen & Stone
1984, Breiman, Friedman, Olshen & Stone 1993) model is a binary decision tree.
As a classifier the model assigns a candidate class, from a predetermined set of
classes to a target based on the values of parameters describing that target. As
a regression tree the model estimates a parameter, where the possible values of
that parameter fall into classes with different means and standard deviations. In

� � ��� � 	 �)����� " 	������ " � ��� �
" � � 
 ����� Syl Event � � ��� � 	 �

2 none 49
� � Syllable is accented � �
	 	�� 6 accent 62
� � Syllable is a boundary � �
	 	�� 8 none 46
��� Number of syllables from start

of Utterance.
� 	�	�� �

12 boundary 39

Figure 2.7: An example simple linear regression model. The linear model on the
left is used to calculate pitch targets for a selection of syllables from a hypothet-
ical utterance of twelve syllables, where there is an accent on the sixth syllable
and a boundary after the last syllable.
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speech synthesis CARTs are widely used to model segment durations (for exam-
ple Riley (1992)), but as we shall see they can also be used for accent prediction
and pitch contour generation.

The leaves of the decision tree specify the class a target case falls into, and each
node of the tree contains a binary decision based on one of the recorded param-
eters for the case. A very simple CART intonation prediction model is shown
in figure 2.8. The example shows the sentence “The cat sat on the mat.” Each
syllable is parameterised by the features: POS (part of speech), Stress and Punc
(following punctuation). The tree classifies accent class for each syllable. Param-
eter values for the words ‘sat’ and ‘mat’ are shown. ‘Mat’ receives an accent but
‘sat’ does not. An interesting point to note is that the tree does not necessarily
use all of the parameters in its decision making process, and it may use different
parameters for different circumstances depending on which branches are taken.
In this example the Punc feature is not used at all and the POS feature is only
used on the left branch of the tree.

The example tree here was constructed by hand, but trees in general are con-
structed by a data driven training process. For classification this works by re-
peatedly partitioning the data into a subsets of classes, where each split adds a
node in the tree until all classes are accounted for individually at the leaf nodes.
In reality the leaves of the tree tend to list probabilities of a case being in each
class, and the class with the highest probability is chosen to classify an unknown
case. In the above example the restricted set of classes representing accent type
is ‘H*’ and ‘NONE’.

���
NONE

NONE

yes no

n v,det,pp

Stress?

POS?

Example: “The cat sat on the mat.”

Word: sat mat
POS: v n

Stress: yes yes
Punc: none .

Accent Class: NONE
� �

Figure 2.8: Simple accent predicting CART.
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For classification, the partitioning is performed to find the division which best
partitions the data so that cases of the same class are placed in the same subset.
For regression the partitioning is done to minimise the error in the predicted
variable. The value of the predicted variable is taken to be the mean value of the
class a case is classified as. If figure 2.8 were being used for regression, each class
would be accompanied by a mean and standard deviation which are calculated
from the individual members of that class in training.

One of the main advantages of CART models is that they are non-linear and can
handle non-linear data potentially better than linear models like the LR model
above. This doesn’t however mean that they are problem free. They do not guar-
antee the best possible solution, just a local maximum, and a classifier may well
classify a proportion of its training data incorrectly. Their efficiency however,
usually makes up for these drawbacks.

2.12 Intonation in Speech Synthesis

We will now briefly look at a few speech synthesis systems and the approaches
they take. However, as speech synthesis has become more commercial fewer de-
tails about exactly how intonation is generated are published, and when methods
are published the details concerning actual implementations are often lacking.

As most speech synthesis systems are modular in design, they often allow for
more than one approach to intonation generation to be used. This can be par-
ticularly useful for multilingual systems where intonation research has gone in
different directions for the different languages.

2.12.1 Festival intonation generation

Festival is the speech synthesiser which we use in the work carried out here, so
we start by examining its approach to intonation.

The Festival speech system (Taylor et al. 1998) allows for a variety of intonation
modelling techniques to be used. Its default approach however is a statistical
one where intonation generation happens in a number of steps. Each step in the
intonation generation process builds upon the information generated previously,
adding new relations or supplementing the information in the items of existing
relations. The steps taken can be summarised as:
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1. Assign phrase breaks.
2. Assign symbolic pitch events for syllables (ToBI accents and boundaries).
3. Assign durations to segments.
4. Assign contour target points to syllables.
5. Produce f0 contour from target points.
6. Produce speech using durations and f0 contour.

Steps 2 and 4 are of particular interest as these are the steps that are changed in
the work described in this thesis.

Pitch event assignment

The default accent assignment module provided by Festival, works in the fol-
lowing way.

Pitch events are assigned using two CART classifiers trained on the f2b dataset
described later in section 3.5. A portion of this data is saved for testing and not
used in the training phase. One model predicts the presence of accents, the other
predicts the presence of boundaries. The accent CART classifies syllables into
the classes H*, !H*, L+H*, L*, L*+H and NONE based on punctuation, minimal
part of speech information and the position of a syllable within the utterance.
The outcome is that most nouns get accents assigned to them. Prediction of H*
accents is reasonably good, around 70% correct on the data reserved for testing.
Prediction of accents which occur less frequently in the training data, L* and
L*+H in particular, is much worse. For example, none of the 176 L* accents in the
saved test data were predicted correctly.

A similar CART model predicts boundaries from the set H-, L-, L-L%. L-H%,
H-L% and NONE. This performs very well in predicting L-L% (90% correct), but
much worse in predicting other boundaries. These results are due to the nature
of the dataset used for training (see section 3.5).

The CART models are used to generate ToBI accent and boundary labels which
are assigned to syllables. These CART models predict reasonable labels relating
to some “general idea of a default intonation pattern”, which usually means a
sequence of H* accents followed by an L-L%. If the required intonation pattern
for a particular utterance is different from this—in particular, if it is one contain-
ing pitch events which the models do not predict very well—the output from
Festival is going to be wrong. This result can be particularly disappointing for
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concept to speech systems trying to use Festival, where the required accent se-
quence is known to the language system, but Festival predicts pitch events based
only on the text. This is one of the issues we will address with the models we
build in later chapters.

Contour generation

Contour generation in Festival (Black & Hunt 1996) is carried out using three LR
models. Each model predicts the f0 at a different point of a syllable (start, middle
and end). The factors incorporate information like the type of accent present,
position of phrase breaks, syllable stress and syllable position. They consider
this information for a five syllable window centred on the current syllable. This
allows f0 on syllables around an accent to be affected by the presence of the
accent, which means f0 movement is not restricted to occur on the syllable that
is marked with the pitch event. For example the peak of an L+H* could occur in
the syllable following the one the accent is assigned to.

The LR models are used to produce a series of pitch target points. Linear inter-
polation is used to fill in f0 values between the specified targets.

These models generate reasonable contours when the input comes from the above
CART prediction models, but work less well when pitch events are otherwise
specified. This is again thought to be related to the dataset which both models
(for the prediction and contour generation stages) are trained upon. It is our
intention to produce an alternative model which produces good intonation irre-
spective of the input source pitch events.

What is of interest here is the fact that these models rely predominantly on lexical
information, particularly part of speech, and a predicted simple phrase structure.
The result of this is that intonation produced is relatively neutral, and can pro-
duce neutral declarative pitch contours and simple question contours, but does
not extend to being adaptable to express more than one meaning for a particular
phrase.

2.12.2 The Bell Labs text to speech system

The most prominent recent detailed description of how intonation generation is
performed outside of Festival is provided by Santen et al. (1998), where they dis-
cuss two approaches to intonation production. The first is referred to as ‘the tone
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sequence approach’. Here a number of abstract H and L targets are assigned to
an utterance based on analysis of the text. The actual pitch values represented
by these target points are determined in relation to parameters which specify
an appropriate pitch range, typically represented as step functions. The second
approach is a superpositional approach. This model attempts to address the vari-
ation in accents due to the segmental structure on which they occur. The position
of accent peaks are predicted by a linear equation relating to the syllabic struc-
ture, this peak is then imposed upon an estimated phrase curve.

The tone sequence approach

The tone sequence approach relies on a series of predicted ToBI accent and bound-
ary labels just like Festival does, although they include the additional use of ini-
tial boundary tones H% and L%.

A number of pitch target points are then assigned for each label. These target
points are temporally aligned with respect to the syllable with which they are
associated by values stored in a lookup table based upon five factors derived
from experimental data.

Pitch range is modelled by three lines: a top-line, a reference line and a base
line. Pitch target points are then scaled in relation to the lines controlling pitch
range. Each pitch event is assigned a prominence factor. Boundary targets are
positioned within the pitch range using the prominence factor. For example an
initial H% with prominence factor of 0.5 will be positioned halfway between the
reference line and the top line.

H* accents are modelled as a step up in pitch using three target points. A low and
a high point are positioned close together to produce a sharp rise, followed by a
second high point to produce a plateau. The position of the highs is governed by
the following equations:

� ��� � ����� " � 
�� ��� � � �����	� 
 (2.6)

� � 
 � � �
� � � 
��
� � ��� � �����	� 
 (2.7)

where � ��� and � � 
 are the high and low target positions, � is the prominence
factor and ����� and

��� � are the reference and top-line frequencies respectively.



38 CHAPTER 2. THE LITERATURE

Phrase accents consist of a single target point positioned in a similar way to
which the target points of accents are, and final boundary tones are placed the
same way as phrase initial boundaries.

Downstep is modelled by lowering the top-line using the following equation:

��� � � � ����� "�� 
�� ��� � ��� � � ����� � 
 (2.8)

Where
��� � � and

��� � ��� � are the current and previous top-line frequencies and
�

is
a downstep factor which varies from zero to one.

The superpositional approach

This approach uses a linear regression model to predict accent alignment within
a superpositional framework, and is proposed as an improvement to the above
tone sequence model particularly for English. The notion of s-rhyme (short for
sonorant rhyme, previously mentioned in section 2.6) is introduced. The s-rhyme
is defined as consisting of the first non-initial sonorant of the accented syllable
through to the last sonorant, for monosyllabic groupings, or the last segment of
the accented syllable for polysyllabic groupings. Material preceding the s-rhyme
is considered to be the onset and material following the remainder.

Alignment anchor points for an accent’s peak position and pre and post peak
heights (measured as percentiles of total peak height) are modelled using a linear
regression model. The model is trained on contours which have had an estimated
phrase component removed, as this is modelled as a separate component.

Each alignment point (
� � ) is then modelled with the following linear regression

model:
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 (2.9)

where � ,
�

and
�

are trained coefficients parameterised over onset and coda type
( � and

�
).
�

is a intercept again parameterised on onset and coda type.

It should be noted that the linear regression model is being used here differently
from the way it is used in the Festival. Festival uses linear regression to model
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pitch targets at particular points in every syllable, whereas here it was being used
to model the alignments in time of specific pitch heights relating to pitch events.

This model is used within a superpositional framework where multiple com-
ponent contours are used to compose a final pitch contour. Three components
minor phrase curves, accent curves and segmental perturbation curves are discussed.
The anchor points modelled above are used in computing the accent curve. The
perturbation curves are used to control effects related to the transition from an
obstruent to a sonorant and the minor phrase curves are simple declining phrase
components.

Both of these approaches are to some extent rule-based approaches, but the rules
are complex and derived from statistical analysis. The way in which statistical
results are combined with linguistic knowledge is similar to the way in which
the work described in this thesis is carried out by using linguistic knowledge to
improve statistical models.

Black & Hunt (1996) demonstrate that Festival’s linear regression approach is
clearly better than the Bell Labs’ tone sequence approach both in resulting out-
put and ease of implementation. It is more difficult to judge how the Bell Labs’
superpositional approach compares to other models as there is not a sufficiently
detailed description available to re-implement it. Festival’s linear regression ap-
proach has the advantage of modelling the pitch on every syllable rather than
just modelling pitch movements related to pitch events—this means that pitch
effects relating to lexical stress are inherently modelled. Additionally, not need-
ing to make the assumption that each of the components of the superpositional
model are sufficiently independent to be suitably extracted from the data is an
advantage. And finally, as we shall see in chapter 9, using this approach will
enable us to expand the model to produce effects not found in the data it was
originally trained upon.

2.13 Summary

As we have seen there are numerous theoretical approaches to studying intona-
tion, each focusing particularly on a specific aspect which the researcher finds in-
teresting. Unfortunately generating intonation for speech synthesis is generally
“uninteresting” as it is not the finer details that interest the theoretical researcher
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we are concerned with. A speech synthesis system needs to be able to produce a
reasonable intonation pattern for any given input, interesting or otherwise.

Some intonation theories are highly descriptive in a phonological sense, for ex-
ample, the ToBI system and the work of Pierrehumbert. This system can pre-
cisely describe pitch events at a phonological level, but tells us very little beyond
an abstract description of what a particular piece of f0 contour would look like
for a given accent configuration. Pierrehumbert (1981) addresses this problem to
an extent by proposing a rule based model which generates f0 contours using a
series of pitch targets and transition rules. However, this model is very simplistic
and only generates neutral declarative intonation patterns.

Other models like tilt, give us a reasonable description of what the f0 contour
looks like, but very little information about the phonological status of a pitch
event. There is a clear divide here between the description of accents at the
phonological level and at the acoustic realisation level. We work towards clos-
ing this gap and in chapter 9 we demonstrate a model for intonation generation
which can generate particular shapes for specific phonological descriptions.

Other recent intonation research in the speech technology field which will not
be discussed here includes MOMEL Hirst, Di Christo & Espesser (2000), an al-
gorithm for the automatic modelling of f0 curves. This model uses what the
authors call modal regression. This model shows potential as it does not require
labels to specify the position of pitch events and is intended to model a wider
range of curve shapes than the tilt model does. Prosodic models based around
production and perception (Dogil & Möbius 2001b, Dogil & Möbius 2001a) and a
phonetically motivated model of prosody (Möbius & van Santen 2000) have also
been proposed.



CHAPTER 3

Tools and Resources

3.1 Further Defining our Goals

In chapter 1 we expressed one of our goals as being to understand how linguis-
tic theory can be appropriately exploited to improve the generation of synthetic
intonation. We now become more specific and express that goal as an attempt to
answer the following questions:

1. What type of linguistic information, specifically concerning phrasing and
accenting, is useful for automatically generating intonation for speech syn-
thesis?

2. Can using the correct information give us intonation which is not only ac-
ceptably natural, but can it be of a recognised style?

3. How does this type of linguistic information relate to the type of informa-
tion a language system is likely to provide, and can we use the information
provided by a language system in a useful way?

We will use the answers to provide a better linguistic framework for intonation
models for speech synthesis along with example models implemented in this
framework. By framework we mean a set of constraints which restrict the vari-
ability of intonation by providing a context for individual components of the
model. These ideas are described in detail in Chapter 7.

The approach we take to develop a better model is to try to use the the right
linguistic knowledge in the right way to constrain a model. Instead of blindly
throwing data at a modelling technique, we actively analyse a data set before

41
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starting to construct a model. We choose to use linguistic knowledge to build
a framework within which a variety of models can be built. The idea of the
framework is to provide a foundation on which either a full statistical model or
a rule based model can be built. We also hope to gain a better understanding of
how intonation works on the scale of a large corpus and learn how to cope with
and use effectively the large amount of variation that occurs in a data set of this
size.

3.2 Festival and its Methods.

Festival is used to produce the majority of the synthetic speech for the work car-
ried out here. Festival was chosen in preference to other possible ‘better’ systems
for a number of reasons. The better systems are generally commercial unit selec-
tion systems, which do not currently allow their prosody modules to be modified
in a ways suitable for carrying out this kind of research. Prosodic improvements
in such systems are achieved by choosing appropriate units which require little
or no alteration to the underlying prosodic content. As unit selection system ar-
chitectures become more open, it will be possible to carry out more research into
how to choose these units appropriately with respect to prosody. The results of
the work carried out here are applicable for use with unit selection and could
be used either as part of the target cost or as part of a post selection prosodic
modification mechanism.

Our main aim is to improve intonation by the use of richer linguistic information
and in doing so to discover what linguistic input is needed to generate better
intonation. This is important not only to improve intonation models for diphone
synthesis, but also for applications where voice transformation is used, where
the characteristics of one voice are being mapped onto another.

The commercial nature of unit selection synthesisers also dictates that they are
generally closed systems which allow little or no manipulation of the processes
they use to do speech synthesis. Festival on the other hand is a completely open
and modular system which allows us to manipulate the synthesis process as we
wish, and hence, provides an ideal platform for this research. In some ways the
resulting speech synthesis output may not sound as good as that produced from
a commercial unit selection system, but we will have more control over all stages
of the synthesis process which is particularly useful when wanting to generate
multiple intonation patterns, say as specified by a language system, rather than
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being restricted to a single pattern predicted by the system. This open access also
allows us to see what is happening at intermediate stages in the synthesis and
make it easier to understand and solve problems.

We have already seen how Festival usually generates intonation in section 2.12.1.
This section introduces the data structures that Festival uses, concentrating on
those which are related to intonation generation.

3.2.1 Festival internals

It is useful to have a basic understanding of the internal structures Festival uses
to represent data as these often direct the formulation of models and the way
data can be manipulated.

Festival stores data as Heterogeneous Relation Graphs (Taylor, Caley & Black
2001). The way in which Festival uses these is described from the bottom up. At
the most basic level are structures called items. An item is a single data entity
such as a pitch accent or a segment. Items consist of features, which are key-value
parameters describing the entity. A name feature usually exists to identify the
item and an end feature will exist if the item is time-aligned. Items are used to
represent all the data components required for synthesis: tokens, words, sylla-
bles, segments, pitch events, diphones, etc.

Items then make up relation objects. A relation is a structured set of items. Rela-
tions are generally lists or trees with an item at each node. The SEGMENT relation,
for example, is a list of the items describing the segments being used for synthe-
sis. The SYLLABLESTRUCTURE relation is a list of trees: the top nodes are items
from the WORD relation, the daughters of these are items from the SYLLABLE re-
lation and their daughters are the items in the SEGMENT relation. This illustrates
how items may be part of more than one relation.

Intonation event prediction involves creating a list relation called INTEVENT

which contains symbolic accents and boundaries. An INTONATION tree rela-
tion associates the events with syllables. Contour generation involves creating
an F0 relation which contains pitch target points. These structures are normally
created by the models discussed in section 2.12.1. The models which we develop
in later chapters to replace the current intonation models will take up the job of
creating these relations.
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3.3 Text to Speech vs Language System Input

The type of intonation model which is used by a particular speech synthesis sys-
tem may be governed by how the system is intended to be used.

To generate useful intonation we need to be aware of what we are generating
intonation for and what we are generating it from. The context a system is be-
ing used in determines what resources are available to the system and what is
expected from the system.

As we saw in Chapter 1, the input to a speech synthesiser has in the past gen-
erally been plain text, just a list of words. Here the synthesiser has no point of
reference or context to tell it what this text is for or where it is from. There will be
different intonation contours which could be applied to the text to give different
meanings. Picking one without knowing the context of the utterance may well
be acceptable in some circumstances, but it others it may be catastrophic.

For example, intonation can be associated with the utterance: “Please proceed
via the blue corridors and stairs to the emergency exit,” to convey subtly different
meaning and avoid ambiguity as to whether any stairs can be used or whether
only blue stairs should be used.

There is increasing demand for speech output from language systems. Language
systems are systems that generate textual descriptions to satisfy requests which
are effectually database queries, although they tend to include background infor-
mation so the answer to the current query can be influenced by the information
that has previously been presented.

This type of system, and concept to speech systems in general, often need to con-
vey a particular meaning for a given utterance, for example, to contrast the infor-
mation currently being presented with that contained within the last response.
This desired effect is precisely one where the general type of intonation produced
by the statistical approaches used by TTS systems is unsatisfactory.

As the output text from a language system has been generated from a particular
semantic concept, where the intended meaning is known, the language system is
in a very good position to provide a lot more than just text output. The chances
are that in generating the output text, all of the language processing information
that the synthesiser needs, for instance, part of speech and focus information,
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were used in constructing the output. The language system may be able to pro-
vide phrasing and phrasal stress, syntax, semantics, accent position and possibly
even duration information to the synthesiser.

The potential of this information is enormous. All of the information the synthe-
siser needs to predict can be provided by the language system with one hundred
percent consistency with that used to generate the text.

However, as most speech synthesis systems are designed to be text-to-speech
systems they may have difficulty using more complex input. If a speech syn-
thesis system is not designed to use this information it may ignore it. It may
even discard it and regenerate parts of it itself and come up with something
which is entirely different from which the language system specified, something
which is less appropriate and contains errors. Most speech synthesis systems are
designed to be text-to-speech systems and have difficulty with more complex
input.

3.4 Text Input From Language and Dialogue Systems

We turn our attention to some example marked-up input that we could be re-
quired to generate speech from. We look specifically at the output of language
systems which have influenced the work carried out here by their need for into-
nation that is better than Festival is able to provide using the models it uses for
text only input. We consider what each system is trying to achieve in terms of
intonation and compare what can be made available to the synthesiser by each
system to attain the desired result.

3.4.1 Multilingual personalised information objects (M-PIRO )

M-PIRO (M-PIRO 2000) is a system designed to deliver highly personalised de-
scriptions of museum exhibits. The system generates texts that describe museum
objects taking into consideration the user’s interests, preferences and previous
exchanges with the system.

The system is designed to work in a number of virtual environments. The pri-
mary environment is a web based virtual museum. Speech synthesis output is
available here, but not of primary importance as the text can be read from the
screen. The environment where speech synthesis plays a major role is the CAVE
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(Cruz-Neira, Sandin, DeFanti, Kenyon & Hart 1992) environment. This is a vir-
tual reality (VR) environment where a user sees projected three dimensional im-
ages of museum objects, together with speech commentary. Bad speech output
here results in a confused user.

The language generation component of M-PIRO generates texts by natural lan-
guage generation from internal descriptions of objects and the semantic relations
between different objects and by incorporating canned text where phrases would
be difficult to generate from scratch.

M-PIRO can output either text or syntactic structure expressed in SOLEML (based
upon Hitzeman, Black, Taylor, Mellish & Oberlander (1999)), an XML mark-up
language. The additional information provided by the mark-up is of interest
here.

Table 3.1 shows an extract of SOLEML illustrating the kind of information which
is provided to the synthesiser. The text actual text of the example is highlighted
in bold to make it easy to pick out. Along with basic syntactic structure and
accurate part of speech information, noun phrases (NPs) contain additional in-
formation marking them as new or important. In the example the NP at line 2
has the newness feature value old marking the text ‘this complex’ as not new
to the discourse. The importance feature is used less frequently, and does not
appear at all in the example. The actual use of these features in M-PIRO is still
under review, but the intention is to make them useful for aiding the generation
of intonation.

This mark-up falls short of directly specifying intonation. Suitable intonational
phrasing does not necessarily correspond directly to any of the units in the syn-
tactic structure. The work carried out here in adapting Festival to use this struc-
ture is discussed in section 10.2.

3.4.2 Embodied believable agents (MagiCster )

The MagiCster project (MagiCster 2002) is concerned with the development of
believable conversational interface agents. This involves information delivery in
a dialogue context using animated characters and synchronised speech synthe-
sis. Although the project is still in its infancy and the language generation com-
ponent of the dialogue system is still at the development stage, an agreed mark-
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00 <relation name="Syntax" structure-type="tree">
<elem phrase-type="S">
<elem phrase-type="NP" newness="old">
<elem lex-cat="DT" href="words.xml#id(w1)">this</elem>
<elem lex-cat="N" href="words.xml#id(w2)">complex</elem>

05 </elem>
<elem lex-cat="V" href="words.xml#id(w3)">was</elem>
<elem lex-cat="V" href="words.xml#id(w4)">created</elem>
<elem phrase-type="PP">
<elem lex-cat="IN" href="words.xml#id(w5)">during</elem>

10 <elem phrase-type="NP" newness="old">
<elem lex-cat="N" href="words.xml#id(w6)..#id(w8)">
the hellenistic period</elem>

</elem>
</elem>

15 <elem lex-cat="CC" href="words.xml#id(w9)">and</elem>
</elem>
<elem phrase-type="S">
<elem phrase-type="NP" newness="old">
<elem lex-cat="PRP" href="words.xml#id(w10)">it</elem>

20 </elem>
<elem lex-cat="V" href="words.xml#id(w11)">dates</elem>
<elem phrase-type="PP">
<elem lex-cat="IN" href="words.xml#id(w12)">from</elem>
<elem phrase-type="NP" newness="new">

25 <elem lex-cat="N" href="words.xml#id(w13)..#id(w19)">
between circa 230 and 220 B C</elem>

</elem>
</elem>

</elem>
.
.
.
</relation>

Table 3.1: An extract from a SOLEML example utterance.
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up format and example dialogues in different domains are available to perform
speech synthesis on.

The mark-up language that has been developed by this project is APML. APML
was designed to directly incorporate elements which describe intonation based
on Prevost & Steedman (1994) and Steedman (2002) discussed in section 2.10.
The result is input which not only directly supplies appropriate intonational
phrasing for the text but also provides consistently assigned pitch accent and
boundary labels which relate directly to the meaning that is meant to be con-
veyed by the utterance.

An extract of APML is shown in table 3.2. All words which are to be be ac-
cented are embedded within emphasis elements which specify the appropri-
ate accent type. Separate boundary elements specify boundary tones and in-
tonational phrasing. The MagiCster system differs from the M-PIRO system in
that MagiCster’s design incorporates the requirements of speech output directly
within the system, where in some respects speech is an afterthought in the design
of the M-PIRO system. For this reason we concentrate on using MagiCster ex-
amples when evaluating the generation of pitch contours from ToBI accents (see
section 9.3) as the APML mark-up gives us a appropriate accent specification
with a known meaning to express. However, both the M-PIRO and MagiCster
systems use the contour generation models developed by the work described in
this thesis.

3.5 F2b – and The Boston Radio News Corpus

We now shift attention to the dataset we build models from and test against.
The main body of data we have analysed is the f2b section of the Boston Radio
News Corpus (Ostendorf, Price & Shattuck-Hufnagel 1995). This data set has
been chosen because it is a reasonably sized data set of adequately complex sen-
tences of read speech of a specific style from an individual speaker, and has been
widely studied by the linguistics community. This data set is also currently used
for the training of the default English intonation models for the Festival speech
synthesis system, which can provide a good comparison for any final model.

We choose this data set over more variable speech styles such as found in the
switchboard corpus (Godfrey, Holliman & McDaniel 1992) and the various map
task corpora (Anderson, Bader, Bard, Boyle, Doherty, Garrod, Isard, Kowtko,
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<turnallocation type="take">
<performative type="greet">

<rheme>
Good
<emphasis x-pitchaccent="Hstar"> morning </emphasis>
Mr Smith <boundary type="LL"/>

</rheme>
</performative>

</turnallocation>

<performative type="inform">
<theme belief-relation="gen-spec" affect="sorry-for">

I’m sorry to
<emphasis x-pitchaccent="LplusHstar"> tell </emphasis>
you <boundary type="LH"/>

</theme>
<rheme>

that you have been
<emphasis x-pitchaccent="Hstar"> diagnosed </emphasis>
as
<emphasis x-pitchaccent="Hstar">suffering</emphasis>
from a
<emphasis x-pitchaccent="Hstar" adjecti-

val="small">mild</emphasis>
<emphasis x-pitchaccent="Hstar">form</emphasis>
of what we call
<emphasis x-pitchaccent="Hstar">angina</emphasis>
<emphasis x-pitchaccent="Hstar">pectoris</emphasis>.
<boundary type="LL"/>

</rheme>
</performative>

Table 3.2: An extract from an APML example utterance.
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McAllister, Miller, Sotillo, Thompson & Weinert 1991) where we feel there is too
much variation in speech style and insufficient data from individual speakers.
We require at least an hour of clear speech from an individual speaker, annotated
both with segment and intonation labels. The above corpora are both large in
overall size but do not contain a suitable amount of data from individual speak-
ers. We also choose f2b over less variable styles such as TIMIT (Garofolo 1988)
where the short utterance style lacks the more complex prosodic structure which
we wish to study.

The broadcast news style of speech provides clear and consistent intonation. It
is also an appropriate style for a speech synthesiser, particularly when forming
part of an information providing system, which is currently one of the main uses
for speech synthesis.

The intonation labelling carried out on f2b is also useful to us, as there exists
good hand coded ToBI labelling along with CSTR’s hand coded and automati-
cally coded accent/boundary labelling used for automatically deriving tilt pa-
rameters, both of which are available to us.

We intend to use the CSTR labelling predominantly for identifying pitch events.
The more general labels of ‘a’ and ‘b’ are more useful to us here than a wide range
of ToBI labels. The tilt parameters can subdivide the CSTR labels into smaller cat-
egories where appropriate. This classification is not as detailed as using the full
ToBI inventory, but provides a simple and consistent set of pitch event types. A
simpler model and the ability to generate intonation of an accent of unspecified
type, for example where a language system just specifies a word to be empha-
sised, is deemed more important than being able to handle a full ToBI inventory.
Furthermore, ToBI labels can always be mapped on to an appropriate more gen-
eral classification. The problems with this mapping discussed in section 2.7 are
not significant here since there are very few non H* accents from the categories
that overlap.

Figure 3.1 shows an example utterance from the data set along with ToBI la-
bels and CSTR a/b intonation labelling (IL). ‘Fb’ and ‘rb’ mark falling and ris-
ing boundaries respectively, whilst ‘sil’ marks silence, and ’c’ marks connecting
pieces of contours which contain no pitch events. The utterance consists of 5
phrases which are clearly marked at the ends with ‘%’ boundary tones in the
ToBI accent tier and fb/rb labels in the IL tier. In this example there is a one-to-
one correspondence between the boundary labels in different labelling schemes.
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There is also very good agreement between accent positions with the two la-
belling schemes, the main difference being that the penultimate accent, an ‘L*’, is
not recognised in the IL tier. The form of IL labelling used here does not include
a description of accents which are not of the general rise-fall type1.

Figure 3.2 shows a longer more complex utterance, which spans two sentences,
and shows two obvious levels of phrasing: that represented by ‘%’ ToBI bound-
aries within the sentences and that represented by ‘%’ ToBI boundaries between
the sentences.

Towards the end of this utterance we see the use of the ToBI labels ‘!H-’ and ‘L-’.
It is interesting to see how these correspond with the labels in the IL tier. The
‘L-’ (along with the preceding ‘L+!H*’) matches an ‘afb’ accent in the IL tier, as
described in section 2.7 whereas the ‘!H-’ has no corresponding boundary in the
IL tier. This highlights some of the discrepancies that occur between label sets.

Another property of this particular style of intonation is hinted at by the ToBI
‘HiF0’ markers. When in phrases containing more than one accent, they are usu-
ally found associated with the first accent in the phrase, which is usually not the
nuclear accent of the phrase. This is a property we shall be particularly interested
in later on.

3.5.1 Problems with f2b

F2b is one of the best speech databases available for training intonation models,
as it consists of a large amount of speech from a single speaker and is intonation-
ally labelled. It does however have a major drawback in that the broadcast news
style of speech does not provide much variation in accent specification. Table 3.3
shows the distribution of pitch events and boundaries. 83% of accents are H* and
58% of boundaries are either L- or L-L%. As we shall see this causes problems
when trying to build models to generate other types of accents and boundaries.
This also accounts for why Festival’s TTS intonation models generally only pre-
dict H* accents and L boundaries.

1Labellers can signify such an accent but it will have been removed from the datafile shown
as this example is intended for tilt model training purposes.
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3.6 Processing F2b’s Pitch Contours

For the work carried out here, the raw f0 files were processed in an attempt to
provide an f0 from which more accurate measurements could be automatically
taken than from the raw f0 file itself. The raw f0 is often suitable for manual anal-
ysis where the experimenter can correct for octave errors and other pitch tracking
errors. The automatic tools are not able to discern such problems, so knowledge
of what the f0 contour should look like is used in an attempt to minimise the
errors found in it.

In an attempt to correct octave errors made by the pitch tracker any f0 values
below 100Hz were considered halving errors and doubled accordingly. No max-
imum thresholding was done because visual inspection showed that this kind
of error occurs less often, and correcting it would interfere with the some of the
higher H* pitch accents which reached 300Hz and above. The corrected wave-
form was then median filtered by an order seven filter to remove outlier points.
The order was chosen by visual inspection of the pre- and post-filtered pitch
tracks, in an attempt to remove glitches, whilst not destroying some of the finer
structure of the f0 contour.

3.7 Preparing F2b for Analysis and Model Building

We use tools provided by Festival to access the linguistic and acoustic data we are
interested in in a meaningful way. Although Festival is primarily a speech syn-

Accent Count
L* 190
H* 3846
L*+H 12
L+H* 553

Boundary Count
H- 472
L- 339
H-H% 4
H-L% 40
L-H% 670
L-L% 1300

Table 3.3: Numbers of pitch accent and boundaries types in f2b
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thesis engine, the way in which it stores information needed to produce speech is
useful for analysis purposes. Tools developed to aid training of statistical mod-
els allow easy automated extraction of information related to individual compo-
nents of a quite complex data structure.

We compile the f2b corpus of speech and subsequent additional labelling as a
database in the format in which Festival stores and manipulates speech. Recall
from section 3.2 that this database consists of utterances made up from a series
of relations, items and features.

We wish to collate lists of features related to all the pitch events in the corpus
which we can carry out statistical analysis on. So we need to extract features
which provide information concerning where each pitch event is placed in the
prosodic structure of its utterance along with features which describe the pitch
event in terms of shape, alignment and positioning. The advantage of the Festi-
val utterance structure over simple label files is that once built correctly the tree
relations allow us to automatically access information that is indirectly related
to a given entity. In the case of pitch events it allows us to access information
regarding the syllable that they are associated with, and from there we can get
information regarding the word or the individual segments.

We need to ensure that all of the corpus we are interested in is compiled into
such a database. Fortunately this has been partially constructed from the f2b data
whilst building previous intonation models for Festival, and already contains the
following information:

� Text mark up: Phrase/Word/Syllable/Segment alignment.
� Prosody mark up: Phrasing/Tilt pitch event placing/Target f0 points

There are a number of issues concerning this structure with regard to the nature
of this analysis. Most of the issues concern the fact that there is a lot of data we
would like to use which is not available in the default utterance structure. This
is primarily because we are using this tool out of its intended context.

Firstly, there is no representation of the actual f0 contour in the utterance. The ut-
terances consist of primarily linguistic information. The f0 contour is a secondary
property of the original f2b waveforms. To solve this, the f0 contour is extracted
from the waveform and turned into a relation type object and incorporated into
the utterance structure.
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The second issue concerns voicing of segments. There are features which will tell
us if a segment is phonologically voiced or not (i.e. whether the phoneme it is
meant to represent is one of the vowels or voiced consonants). They do not how-
ever, tell us is that voicing has been phonetically realised. The value returned
is based on the type of label of the segment, and does not necessarily mean that
the segment is actually phonetically voiced. For example, the ‘t’ segment in the
word “stop” will be marked as unvoiced, as /t/ is an unvoiced segment. Pho-
netically however, the ‘t’ may be voiced. To obtain an account of where voicing
actually starts in the syllable we produce a relation which marks beginning and
end of voiced sections within the utterance. The information within this relation
is derived from the f0 track.

A third issue arises due to conflicting information regarding pitch events. Pitch
event alignment information comes from two sources: the hand-labelled pitch
event files and the files automatically generated by the tilt alignment program.
The start and end times of a pitch event are regarded as the start and end times of
the event itself as perceived by the labeller in the case of the hand labelled files.
However, in the case of the tilt files the start and end points of a pitch event are
the start and end points of a piece of pitch contour which the automatic aligner
tool which accompanies the tilt tools thinks best represents the pitch event. These
points do not necessarily coincide exactly.

It seems more appropriate for this analysis to use the start and end points as
originally perceived by the original labeller, so this information is incorporated
into the utterance.

The third point we need is the peak position of the pitch event. The only way
we can acquire peak position information for a pitch event acurately is from the
tilt information (as peak position is one of the parameters). The peak position
lies within the start and end of the accent as defined by tilt, but this does not
necessarily mean it lies within the accent start and end times as defined by the
original labels as these may not coincide with the tilt start and end times as dis-
cussed above.

For example: consider a pitch event which is a falling boundary. If this is a
straight fall in pitch then the peak position would be expected to be right at the
start of the accent. If in the derivation of the best fit tilt parameters the start po-
sition was moved back a few milliseconds in time, then the peak position would
be moved back accordingly. The peak position now lies before the start time of
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the hand labelled accent position, which is problematic. Interpretation of peak
positions are therefore treated with care. Fortunately in the case of rise-fall ac-
cents where peak position is most meaningful, falling outside of the accent is less
of a problem, as the peak position tends to be away from both the start and and
end of the accent.

A fourth issue is that the phrasing derived for this study (see Chapter 4) is not
the same as the phrasing already present in the utterance, so an additional re-
lation with the new phrasing has to also be added. With the above information
appropriately added to the utterance structure, all of the information we need
for this analysis is now available.
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CHAPTER 4

Phrasing: Analysis and Modeling

We begin our analysis of f2b by looking at the prosodic structure. Based on the
literature we have discussed in chapter 2 we test two hypotheses.

4.1 Initial Hypotheses

Hypothesis 1: Our initial hypothesis is that the f2b utterances exhibit at least two
levels of phrasing structure.

We test this hypothesis by investigating the effect of assuming that the data con-
forms to various different configurations of phrasing structure, looking for sta-
tistical effects relating to each of the structures in question.

Hypothesis 2: Our second hypothesis is that the speech of f2b can be sufficiently
modeled by phrases containing a maximum of 3 distinct types of sub-phrases,
namely an initial, a medial and a final sub-phrase type.

By sufficiently we mean where we gain more by having a simplified model than
we lose by forcing the constraints that simplify the model. In simplifying the
phrasing structure we will lose the ability to generate more complex phrasing
patterns if they exist, but the simpler model will make the choice of assigning
strucutre more robust as there will be only three categories to choose from. We
will also be able to model those categories more accurately as we will have more
data available for each category.

Our first step in analysing the data of f2b is to decide upon a phrasing struc-
ture which we will impose on the data to divide it up into sections which we
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will then analyse. As we have seen, the literature suggests that there are two or
three levels which we should concern ourselves with, but how these levels actu-
ally manifest themselves is not so clear-cut and various structures are proposed
usually accounting for two levels each. These two levels don’t necessarily cor-
respond to each other across different theories, suggesting that a possible third
level may exist. The style of speech in question may also have an effect on the
number of levels, with styles that employ shorter or simpler utterance structure
not exhibiting the full structural range.

We choose our levels of prosodic structure based on our interpretation of the
existing label sets, specifically the ToBI break indices, discussed in section 3.5.
We attempt to show that such a classification is backed up by statistical analysis.
This approach differs from what is usually considered the standard linguistic
approach where particular examples of data are derived to exhibit a particular
distinction to show a hypothesis is true. Here we apply statistical techniques to
determine whether the data as a whole exhibits particular properties. We do this
because rather than being interested in specific local effects in the data, we need
this kind of judgment concerning the data set as a whole to produce a model for
speech synthesis.

We take the ToBI break indices assigned to the data as our starting point. How-
ever, we do not use these directly because they pose a number of problems for
us. Firstly there are five levels of break specified that are bigger than the break
between words, where we are only interested in at most three: specifically, utter-
ance level breaks and two levels that are related to the breaks in different levels
of sub-utterance phrasing.

Here also there is not always the level of consistency within the labeling that we
would like for this type of analysis. This type of data is often difficult to label,
the distinction between levels ‘3’ and ‘4’ being a particularly hard distinction to
judge at times. There are a few very notably long ‘phrases’ if we take a too literal
interpretation of the break index data.

We actually partition the data in two separate ways: a simple method which
takes the break indices as is and a second or complex way which attempts to
simplify the structure of the data to help with our analysis and enable us to pro-
duce a well defined model of prosodic structure.
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We will call our two levels of phrasing IP and TG. These terms are loosely based
on those used by Ladd (Ladd 1996, ch. 6) but are not necessarily meant to re-
late to phrase units of the the exact same size and type as used there. An IP
can be thought of as an intonation phrase but we do not wish to call it that ex-
plicitly because it may or may not be what others, particularly (Pierrehumbert &
Hirschberg 1990) call an intonational phrase. Similarly TG can be thought of as a
Tone Group which we consider to be a sequence of tones ending in some kind of
boundary, and nothing more. An utterance (U) then consists of one or more IPs
each of which in turn consists of one or more TGs.

Our basic approach then is to propose that the end of an IP requires a break
index of at least 5, which is usually equivalent to a boundary tone accompanied
by a pause. We then define the end of a TG as requiring a break index of 3 or 4.
The justification for combining the levels 3 and 4 is that the TG would then end
with either a ToBI tone of type ‘X-’ or a ‘X-Y%’ which means that our TG should
contain one one accent carrying phrasal stress, zero or more other accents, and
end with either a phrase tone or a boundary tone.

There is a reasonable argument that we should have grouped entities ending in
indices 4 and 5 together as they are both marked by a boundary tone, but this
would not give us a TG unit necessarily consisting of only one accent carrying
phrasal stress. The existence of internal phrase boundaries and multiple phrasal
stresses within the smallest phrasal unit suggests that a categorisation using a
smaller smallest phrasal unit may be more appropriate.

The 4–5 break index distinction is particularly difficult one to make and to further
investigate this issue, and to look at the options for producing a simpler model,
the second more complex partitioning of the data concentrates on attempting
to restrict the allowed prosodic groupings. This is done by insisting that an IP
consists of at most three TGs. The partitioning is carried out based on the break
indices as before, except where there would be an IP of more than three TGs,
an extra IP break is inserted at the strongest (highest break index) TG bound-
ary. If all boundaries have equal break index values, an IP break after three TGs
is made. Some of the cases where IPs of more than three TGs occur can be ac-
counted for by break indices of 4 being used instead of 5 due to the lack of a
pause between phrases, where if it were not for this pause omission a index of
5 would have been used. There are other cases where this 4–5 distinction is not
apparent and it is harder to justify the inclusion of an IP break, but nevertheless
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the idea is useful for examining the possibility of producing a simpler intonation
model. If it is a bad choice, the statistical results should reflect it.

One possible problem with this analysis is the way TGs from IPs of different
lengths are analysed together. What is to say that the second TG in an IP con-
sisting of four TGs is expected to have the same characteristics as the second TG
in an IP consisting of three TGs? Results from IPs of a fixed number of TGs are
then compared to the overall results to investigate this. A further complication
involves the TGs being of arbitrary length. Grabe (1998) shows that the heights
of accents in a series are affected by the amount of intervening material. If this
has consequences for the pitch range of a TG sized unit it may be complicating
the results.

To address this issue we will also consider an analysis which compares TGs from
IPs of different lengths to see if the pitch range characteristics of the nth TG in
an IP are affected by the total number of TGs in the IP. This analysis concerns the
behaviour of the overall pitch range structure as the number of TGs in the IP is
varied. For example, if we compare an IP consisting of 2 TGs to one consisting of
3 TGs, are the pitch range characteristics of the second TG the same in each case?
If we expect that pitch always lowers to the same level at the end of an IP (there
may be multiple IPs to a sentence so we may or may not expect this phenomenon
to occur) then we may expect the second TG which is IP final to be lower, or at
least finish lower, than the second TG that is non final.

TG1
TG2

TGf

IP of 3 TGs
baseline

(a)

TG1

TGf

(b)

TG1
TGf

IP of 2 TGs ?

or

Figure 4.1: Two possible alignments for the first TG in an IP of 2 TGs compared
to the first TG in an IP of 3 TGs.

Alternatively, do initial TGs in an IP align with each other, or is this alignment
dependent on the number of TGs in the IP? Figure 4.1 shows a pictorial repre-
sentation of the relationship: if a reset in pitch range, to a default starting pitch
range, is expected at the beginning of the IP, we may expect the alignment as
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shown in figure 4.1a. However, if the IP is not the domain over which a full reset
occurs we may get a reset as represented in figure 4.1b where the reset is such
that there is space to step down once to the final TG in the IP. We may of course
find neither of these alternatives, and find something completely different. There
is also the question of IPs containing a single TG, does this TG look like a TG1 or
a TGf or does it have distinct properties of its own.

This leads us to the following hypotheses which we test in section 4.3:

Hypothesis 3: If the TG is IP final it will exhibit different properties to TGs of the
same position in longer IPs.

Hypothesis 4: Full pitch range reset occurs at the end of an IP.

4.2 Initial Analysis

An investigation considering our two levels of sub-utterance categorisation is
now addressed. A selection of pitch range characteristics are measured for each
phrase.

The analysis was carried out with three sets of TG categorisation:

type 0 which is based on the basic scheme outlined above and the TGs are con-
secutively numbered through the IP.

type 1 as type 0, but the final TG in an IP is always labelled � (for final).
type 2 based on the restrictive TG categorisation where only three TGs are al-

lowed per IP, causing an IP break at the strongest break index.

The IPs are categorised in two different ways:

type 0 where IPs are just consecutively numbered.
type 1 where the final IP in an utterance is always labeled � .

These different combinations are then combined to produce the following data
sets for analysis:

t00 : type 0 IP labels and type 0 TG labels
t01 : type 0 IP labels and type 1 TG labels
t12 : type 1 IP labels and type 2 TG labels
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The motivation behind the groupings is as following:

The t00 grouping is considered a baseline control. It is the simplest application of
a two level structure required to test Hypothesis 1. The t00 grouping compares
the structure of two utterances by aligning them with each other from left to
right. We tend to left align things by default probably because we read from left
to right, but we should not necessarily assume that prosodic structure behaves
this way. Aligning to the left groups all the TGs at the start of IPs together, but
does not group the IP final TGs together. If we expect to see IP final effects, such
as final lowering we need to consider right alignment as well. In other words, if
the boundary at the end of an IP is a significant entity then it would make sense
that the TGs that are IP final would share properties and that aligning them as
a group in the analysis is the correct thing to do. t01 is introduced to do this,
comparing the effect of the final categorisation of TGs. Finally t12 is used to test
the feasibility of a simplified model and test Hypothesis 2.

4.2.1 Methodology

The variables that were measured for each TG are:

start f0 Measured as the first f0 point in the TG.
end f0 Measured as the last f0 point in the TG.
min f0 The lowest f0 value reached in the TG.
max f0 The highest f0 value reached in the TG.

�
f0 Calculated as max f0 - min f0.

mean f0 Calculated as the mean f0 value over the interval.
sd f0 The standard deviation of the f0 values over the interval.

Multivariate analysis of variance was then carried out on the data to find the
statistically significant variations in the above dependent variables attributable
to the given factors. The results presented in this section should be considered
motivation for the further analysis carried out in section 4.3 because of the prob-
lems outlined below. They results of this initial analysis are still discussed to
show us some general trends that cannot be seen from the more focused results
of section 4.3.
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The results presented here are possibly not accurate levels of significance because
of technical complications due to the nature of the experimental design1. The re-
analysis of the data in the next section addresses this problem and removes this
uncertainty. It is also currently not possible to determine where the significant
differences within a factor lie — be it between all levels of the factor or limited
to between just two levels. This is also resolved with the reanalysis. Mean and
standard deviation for all the f0 values in a TG are not analysed here but are
considered in the re-analysis.

4.2.2 Results

Figures 4.2–4.4 show graphically the gross pitch range structure that is present
in the database. Means and standard deviations for each variable for each factor
grouping for each data set are shown in appendix A, tables A.1–A.18

The overall picture for the t00 data is shown in Figure 4.2. The regular structure
of the pitch range starts to degrade towards the end of the third IP due to the
sparseness of the data from that point onwards.

A particularly distinct feature concerns the first TG in each IP. The first TG in
an IP appears to have a greater pitch range and a higher mean than the other
groupings. The f0 mean of the non-initial TG is around 165-170Hz whereas the
means of the f0 in the IP-initial TGs are around 200Hz. This shows that the
first TG may have some special status. Another interesting feature is that the
minimum f0 seems to be pretty constant across all of the TGs. There are no other
clear effects shown by the graphical representation. The data is unable to show
any effect caused by IP final TG, as final TGs are scattered throughout the groups,
their position being dependent upon the number of TGs in a particular IP.

Statistical analysis (see Table 4.1) shows the interaction between IP type and TG
type shows start f0 to be significant at 1%, i.e the probability that the variability
found within the variable start f0 is due to chance and not due to the interaction
caused by the grouping of tg type and IP type is less than 0.01.

This is the only time start f0 shows up as significant, which is intuitively ex-
pected as it is the only grouping which includes all the IP initial TGs and only the
IP initial TGs in the category TG1—the other groupings put some IP initial TGs

1The design of the model contains empty cells which the usual analysis of variance method
cannot correctly account for.
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Figure 4.2: Graphical representation of pitch range for t00 data. The pitch range
of each TG is represented by a grey bar. The mean pitch range is marked on each
bar with a dashed line and +/- 1 standard deviation is indicated by the darker
portion of the bar. Start, max and end f0 are also indicated by connected points
drawn overlaying each bar.
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IP type by TG type
Multivariate Tests of significance

(Pillais,Hotellings,Wilks) � � � 
 ���
Univariate tests

Variable F(22,2773) significance
start f0 1.49 � � � 
 �
	
end f0 1.00
max f0 1.46
delta f0 1.77 � � � 
 � �

TG type
Multivariate Tests of significance

(Pillais,Hotellings,Wilks) � � � 
 ���
Univariate tests

Variable F(6,2773) significance
start f0 1.70
end f0 1.78
max f0 3.63 � � � 
 �
	
delta f0 2.19 � � � 
 � �

IP type
Multivariate Tests of significance

(Pillais,Hotellings,Wilks)
Univariate tests

Variable F(5,2773) significance
start f0 1.99
end f0 1.39
max f0 0.39
delta f0 0.85

Table 4.1: MANOVA results for ����� ����� data.
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IP type by TG type
Multivariate Tests of significance

(Pillais,Hotellings,Wilks) � � � 
 � �
Univariate tests

Variable F(22,2772) significance
start f0 1.10
end f0 1.48
max f0 1.09
delta f0 1.51

TG type
Multivariate Tests of significance

(Pillais,Hotellings,Wilks) � � � 
 �
	
Univariate tests

Variable F(7,2772) significance
start f0 1.81
end f0 3.59 � � � 
 �
	
max f0 4.07 � � � 
 �
	
delta f0 1.75

IP type
Multivariate Tests of significance

(Pillais,Hotellings,Wilks) � � � 
 � �
Univariate tests

Variable F(5,2772) significance
start f0 1.37
end f0 1.97
max f0 0.36
delta f0 1.37

Table 4.2: MANOVA results for ����� ���
	 data.
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in the TGf category. The graphical representation suggests that the significant
difference is between the first TG and the others—with no significant difference
between the later categories.

There is a less significant interaction (at the 5% level) and a main effect for the
variable delta f0 (max f0-min f0, i.e. the overall pitch range), suggesting the po-
sition of the TG in the IP affects the overall pitch range used. Again it is thought
that this is most likely to be a IP initial TG verses other TGs distinction. This
result along with max f0 showing up as significant at 1% for the main effect
TG type, reflect the differences we see in Figure 4.2.

The graphical representation of pitch range for the t01 in figure 4.3 shows similar
characteristics to the t00 data, in that the IP initial TGs again seem to have a larger
and higher pitch range. The IP final TG category shown here for the first time
appears to be slightly lower than the other categories, but not to the same extent
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Figure 4.4: Graphical representation of pitch range for t12 data
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IP type by TG type
Multivariate Tests of significance

(Pillais,Hotellings,Wilks) � � � 
 �
	
Univariate tests

Variable F(10,2789) significance
start f0 0.77
end f0 2.65 � � � 
 �
	
max f0 1.69
delta f0 2.19 � � � 
 � �

TG type
Multivariate Tests of significance

(Pillais,Hotellings,Wilks) � � � 
 �
	
Univariate tests

Variable F(2,2789) significance
start f0 1.67
end f0 6.33 � � � 
 �
	
max f0 17.91 � � � 
 �
	
delta f0 6.39 � � � 
 �
	

IP type
Multivariate Tests of significance

(Pillais,Hotellings,Wilks)
Univariate tests

Variable F(5,2789) significance
start f0 0.25
end f0 1.41
max f0 1.68
delta f0 1.61

Table 4.3: MANOVA results for ����� ��	�� data.

to which the IP initial TGs are higher. The only significant effects (see table 4.2)
found here are for end f0 and max f0 found significant at the 1% level for the
main effect TG type. The max f0 result reflects the IP initial TG high maximum,
and the end f0 result reflects the lower end to the IP final TG.

The t12 data in figure 4.4 shows an apparent downwards linear trend across TGs
in all IPs where there is enough data to get a reasonable results. Start, end, max,
min and mean f0 values all get lower as the TG position progresses through the
IP, although min f0 is affected less than the other variables. Delta f0 and end f0
are significant (see table 4.3) at the 1% level as an interaction between the two
factors and as a main effect for TG type, and max f0 is significant as a main effect
for TG type, again reflecting what we see graphically.
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4.2.3 Interpretation

We can accept Hypothesis 1 because the results clearly shows that the IP is a
distinct level of intonational phrasing, with a reset occurring at the end of it, and
the general trend of the results across all three methods of grouping is that effects
are predominantly TG type related, IP type being significant as an interaction
with TG type. The t12 grouping additionally allows us to accept Hypothesis 2.

The possibly of there being some IP level effects is left open to debate, as there
are some weak interactions attributable to IP categorisation, but no clear overall
picture. If is difficult to tell exactly what role the TG plays from the data analysed
so far as the trends found could just be the outcome of the TGs position within
the IP, although the significant results for the effect TG type suggest there is a
distinct TG unit of phrasing. Further analysis of the internal structure of the TGs
is needed to say more about this. This is an obvious next step as the results given
here show the pitch range effects due to of the IP context of the TG, which would
need to be normalised in some way when investigating the internal structure of
the TG.

4.3 Second Analysis

The initial analysis of the pitch range characteristics suggested that there were
only three types of distinct TG. A complete statistical analysis was hindered by
the complexity of the model being analysed, mainly due to the classification of
TG that was used.

We now consider adjustments and simplifications to the model which not only
allow a full statistical analysis of the data but also provide a better classification
for comparing TGs in different positions within the IP, and within IPs consisting
of different numbers of TGs. The number of TGs which comprise an IP will
be referred to as IP length. The position of a TG within an IP will be described
numerically by the variable TG type and the position of an IP within an utterance
will be described numerically by the variable IP type. The variables TG type and
IP type take integer values from 	 to � where � is the IP length and Utterance length
respectively. Under certain circumstances the � � � TG takes the alphanumeric
value f to denote the final TG in an IP. We then go on to consider the issues
involved with taking this study further and analysing the alignment of the pitch
events themselves which occur within the TGs.
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4.3.1 Analysing IPs of specific length

A new analysis was carried out by splitting the data into groups of IPs of the
same length. Two of the major problems concerning the analysis can be over-
come by treating the data in this manner.

First, each TG can be considered the � � � TG in an IP of length � , where � is fixed
for each analysis. By doing this the data set is reduced into a series of subsets,
each subset containing IPs consisting of a fixed number of TGs. This removes
variation due to IP length in any given subset of data. Additionally this allows
the comparison of TGs in particular positions across subsets with different IP
lengths — this was not possible before as IP-final TGs were classified in such a
way that their position in relation to the beginning of the IP was not known. This
sub-setting also means that IP-initial TGs and IP-final TGs are both individually
grouped together within a subset. This too could not be achieved with the basic
analysis grouping methods—the variable IP length limited us to either IP-initial
or IP-final TGs being grouped together but not both.

Secondly this sub-setting eliminates major problems with the statistical analysis
involving empty cells in the design, as there no longer are any. For example,
previously there was no data for the fifth TG in an IP of length 4, as it doesn’t
exist — resulting in the cell in the model being left empty.

The new design is still unbalanced so the analysis of variance needs to be car-
ried out using a sequential sums-of-squares calculation2, where each term in the
model is only adjusted for those preceding it—resulting in an orthogonal de-
composition. The more usual unique sums-of-squares calculation assumes that
all the cell means are derived from the same number of data items. When this
is not the case the sums-of-squares for various components of the model do not
add up to the total sum of squares as required.

Repeated contrasts are also calculated on both factors (
� � ����� � and

� � ���	� � ) which
compare adjacent category values (e.g. initial TG and second TG, second TG and
third TG, etc.). Cells where � � 	 � are removed from the calculations as graphi-
cal representation of the data in these cases suggest that they should be treated as
outliers. The following dependent variables were analysed as part of the design:

2This is usually an option which can be easily set in most statistical packages which carry out
analysis of variance.



74 CHAPTER 4. PHRASING: ANALYSIS AND MODELING

start f0 The f0 value at the onset of voicing at the beginning of the TG.
end f0 The f0 value at the cessation of voicing at the end of the TG.
max f0 The maximum f0 value within the TG.

�
f0 The difference between the maximum and minimum f0 values within the

TG.
mean f0 The mean f0 value within the TG, calculated as

� 	 �
 for each pitch
tracked f0 point within the TG.

std f0 The standard deviation from the TG mean.

(min f0 had to be omitted as it is a linear combination of max f0 and
�

f0.)

Main effects and interactions

The ANOVA results (see Table 4.4, additionally see tables A.19–A.24 for data
summaries) are quite striking in that

��� ����� � is found to be a main effect, signif-
icant at 1% for all of the variables in each of the subsets. This appears to be part
of a weak interaction with

� � ����� � for the subset containing IPs of length 2. The
only other significant results are for

� � ���	�
� as a main effect for � ������� � � in the
subset of

� � � � ��� � � 3, this is only at 5% and as it is not consistently found in the
other subsets will be ignored.

These results only show that for each dependent variable the distributions for
each level of the

� � ���	�
� factor are not all the same.

The results for each individual group are now examined more closely by looking
at the repeated contrasts which involve the TG type. Repeated contrasts have
been chosen over other contrast types as it is difficult to justify a suitable refer-
ence category from the

��� ����� � factor. Initial TG or final TG could be argued
as viable candidates, but it is felt that repeated contrasts will show any trends
in the data more clearly as neither initial nor final can really be considered as a
reference or default category at this stage. There is also little justification for com-
paring the pitch range parameters of an individual TG to those of the population
as a whole as this would probably mask any downtrend effects.

Repeated contrasts show up significant differences between adjacent TGs. The
initial analysis suggested that the initial and final TGs differ from each other and
from medially positioned TGs (see figure 4.3), but that all medially positioned
TGs are effectively the same. For this hypothesis to hold we would expect to see
a contrast between first and second TGs and between penultimate and final TGs.
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TGs per TG type IP type TG type by IP type
IP Variable � � � � � �

F(1,482) F(2,482) F(2,502)
2 Start f0 62.54 � � � 
 �
	 0.66 3.92 � � � 
 � �

End f0 66.42 � � � 
 � 	 1.21 3.32 � � � 
 ���
Max f0 378.34 � � � 
 �
	 1.37 3.35 � � � 
 � �

�
f0 200.57 � � � 
 � 	 0.67 4.10 � � � 
 ���

Mean f0 372.32 � � � 
 �
	 0.47 2.53
Std f0 191.88 � � � 
 �
	 0.70 5.24 � � � 
 �
	

F(2,750) F(3,750) F(6,750)
3 Start f0 58.24 � � � 
 �
	 2.47 � � � 
 � � 0.73

End f0 97.68 � � � 
 � 	 3.15 1.37
Max f0 207.83 � � � 
 �
	 0.94 0.73

�
f0 76.19 � � � 
 �
	 0.75 0.78

Mean f0 264.15 � � � 
 �
	 1.14 0.29
Std f0 63.52 � � � 
 � 	 0.31 1.52

F(3,580) F(2,580) F(6,580)
4 Start f0 22.23 � � � 
 �
	 0.47 0.23

End f0 28.02 � � � 
 � 	 0.35 1.37
Max f0 86.70 � � � 
 �
	 1.24 2.61

�
f0 29.83 � � � 
 �
	 0.18 1.43

Mean f0 124.77 � � � 
 �
	 2.01 0.81
Std f0 31.16 � � � 
 � 	 0.80 3.16

F(4,395) F(1,395) F(4,395)
5 Start f0 10.28 � � � 
 �
	 2.85 0.50

End f0 18.07 � � � 
 � 	 0.20 1.55
Max f0 40.54 � � � 
 �
	 0.18 0.43

�
f0 19.71 � � � 
 �
	 2.52 0.47

Mean f0 56.64 � � � 
 �
	 0.06 0.54
Std f0 16.89 � � � 
 � 	 0.07 1.24

F(5,240) F(1,240) F(15,240)
6 Start f0 11.83 � � � 
 �
	 0.68 0.92

End f0 6.44 � � � 
 �
	 1.87 0.32
Max f0 20.18 � � � 
 �
	 0.68 1.21

�
f0 6.76 � � � 
 �
	 1.23 1.20

Mean f0 34.12 � � � 
 �
	 1.77 0.81
Std f0 6.56 � � � 
 � 	 1.76 1.34

Table 4.4: ANOVA Results for Analysis of IPs of Equal number of TGs
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Dependent Variable t-test results
TGs TG type Start f0 End f0 Max f0

�

f0 Mean f0 Std. f0
per IP contrast t p t p t p t p t p t p

2 1–2 5.90 � � ��
�
��

8.12 � � �
�

��

16.15 � � ��
�
��

11.41 � � �
�

��

16.23 � � ��
�
��

11.03 � � �
�

��

3 1–2 3.47 � � ��
�

��

2.56 � � �
�

��

9.67 � � ��
�

��

7.13 � � ��
�

��

10.35 � � ��
�

��

5.42 � � ��
�

��

2–3 3.25 � � ��
�

��

6.15 � � �
�

��

3.93 � � ��
�

��

1.84 4.05 � � �
�

��
1.71

4 1–2 3.29 � � ��
�

��

1.06 6.16 � � ��
�

��

4.37 � � ��
�

��

7.97 � � ��
�

��

3.58 � � ��
�

��

2–3 1.05 1.13 1.09 0.85 1.92 -0.09
3–4 1.46 4.04 � � �

�
��

2.13 � � ��
�
��

0.41 2.09 � � �
�
��

0.98

5 1–2 5.58 � � ��
�
��

5.76 � � �
�
��

11.82 � � ��
�
��

8.44 � � ��
�
��

13.67 � � ��
�
��

7.46 � � ��
�
��

2–3 1.28 1.16 -1.03 -1.42 0.16 -1.35
3–4 -1.87 0.50 -1.29 -1.01 -0.69 -0.67
4–5 -2.26 � � ��

�
��

0.14 -3.36 � � ��
�
��

-2.98 � � ��
�
��

-4.67 � � ��
�
��

-2.42 � � ��
�
��

6 1–2 6.79 � � ��
�
��

4.61 � � �
�
��

8.42 � � ��
�
��

4.52 � � ��
�
��

11.82 � � ��
�
��

3.95 � � ��
�
��

2–3 0.47 -1.38 -1.56 -0.79 -1.56 -1.14
3–4 -1.61 -0.25 -1.36 -0.62 -0.52 -0.70
4–5 -1.28 0.46 -0.25 -0.32 -0.81 0.42
5–6 -1.99 � � ��

�
��

0.04 -1.37 -0.71 -3.63 � � ��
�
��

-0.06
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The contrast results show clearly that the first and final TGs of an IP differ from
those between them (see Table 4.5). For all groups the only repeated contrasts
found to be significant are between the first and second TGs in an IP, or between
the penultimate and the final TGs.

For IPs of length 2, all of the variables tested showed a contrast significant at 1%.
For IPs of length 3, the final-penultimate position contrast is lost for

� � � and
� � � 
 � � , and the initial–second contrast for � � � � � has dropped to 5%, but the
other 9 contrasts remain at 1%. For IPs of length 3, the � � � � � initial–second con-
trast is no longer significant, and in addition to the loss of the final–penultimate
contrast for � � � 
 � � , it has also been lost for � ����� � � � . IPs of length 5 and 6 have
all the initial–second contrasts at 1%, while IPs of length 5 have all but the � � � � �
final–penultimate contrast, and IPs of length 6 have only this contrast for � ������� � �
and � � � � � � .

The general trend seen here is that all initial–second contrasts for all variables are
significant at 1%, as opposed to the final–penultimate contrasts which are only
evident in 60% of the cases. The exception is for the variable � � � � � � for which
a contrast is always present — suggesting that there is a definite average pitch
range distinction, even when this is not clearly shown by the other variables.

So we can safely conclude that there are clear pitch range differences between
individual TGs in an IP, and those differences specifically manifest themselves as
a very clear distinction between the TG which is IP-initial and those that follow
it. There is also a distinction between the pitch range characteristics of the final
TG in the IP and those that preceded it, although this may not always be as clear
as the IP-initial distinction.

Across-subset effects and contrasts

We now turn our attention to Hypotheses 3 and 4. We look at results for the first
three TG positions for IPs containing up to 6 TGs. We will also look at the TG
category IP final, but this is considered in isolation, as the data is drawn from the
t01 data set (where IP final TGs are classified together) and is hence not consistent
with the t00 data which is used elsewhere in this analysis.

The analysis of variance results, shown in Table 4.6, reveal in general no interac-
tions and show

� � � � ��� � � to be a clear main effect for most variables. There is
also a significant main effect for IP type for some variables but which particular
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variables differs depending on the TG position. There are no significant IP type
contrasts between individual values of IP type making interpreting this effect
difficult. We therefore concentrate on the IP length main effect.

The repeated measures contrasts show that significant differences only occur be-
tween the categories which involve a TG in IP final position. For example, there
is only a contrast for the third TG in an IP, between IPs of length 3 and 4; here
the TG is in final position in the IP of length 3, and in non-final position in the
IP of length 4. This seems to be generally true for all of the dependent variables
measured.

This confirms hypothesis 3 that an IP final TG has special status, and the TG’s
finalness overrides properties defined by its relative position from the beginning
of the IP. These results also show us that all IP initial TGs (excluding IP final ones
of course) have the same properties, suggesting that the correct relationship is as
shown in in figure 4.1a, confirming hypothesis 4.

4.3.2 Resynthesis using TG and IP structure

To verify that the above results would be a reasonable and useful addition for a
prosodic model of speech synthesis, the following hypotheses were informally
tested by way of resynthesis techniques:

Hypothesis 5: An utterance from the data set resynthesised in such a way that
the pitch range for each TG, characterised by a mean and standard deviation,
is equal to the average pitch range for that type of TG found in the data set,
should be comparable to the original utterance. If this is not the case, then the
TG categorisation is probably not a good categorisation.

Hypothesis 6: If an utterance generated by a TTS system does not incorporate
such a detailed model of prosodic structure, then the prosody of this utterance
should be able to be improved upon by imposing this finer level of structure
upon it. This essentially imposes the structure we assume for the analysis onto
an unstructured utterance. If no improvement occurs by using this structure
then it suggests that the assumed structure does not capture the structure of the
database.
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TG IP length IP type IP length by IP type
Position Variable � � � � � �

F(5,709) F(1,709) F(5,709)
1 Start f0 1.92 2.12 0.52

End f0 7.79 � � � 
 � 	 0.60 � � � 
 ��� 0.08
Max f0 2.04 4.31 0.65

�
f0 0.38 2.79 0.87

Mean f0 15.38 � � � 
 �
	 0.59 � � � 
 �
	 0.38
Std f0 0.16 12.84 0.73

F(4,662) F(1,662) F(4,662)
2 Start f0 2.74 � � � 
 � � 0.00 0.57

End f0 14.64 � � � 
 �
	 0.64 2.67 � � � 
 � �
Max f0 16.14 � � � 
 �
	 10.81 � � � 
 �
	 0.33

�
f0 5.76 � � � 
 � 	 8.52 � � � 
 � 	 0.06

Mean f0 22.49 � � � 
 �
	 8.69 � � � 
 �
	 1.04
Std f0 7.27 � � � 
 �
	 13.18 � � � 
 �
	 0.40

F(3,456) F(1,456) F(3,456)
3 Start f0 0.59 0.00 2.26

End f0 25.33 � � � 
 �
	 0.31 2.29
Max f0 11.56 � � � 
 �
	 4.97 � � � 
 � � 1.54

�
f0 2.70 � � � 
 ��� 4.82 � � � 
 ��� 0.67

Mean f0 21.47 � � � 
 �
	 1.45 1.16
Std f0 3.06 � � � 
 � � 5.28 � � � 
 � � 1.39

F(5,709) F(1,709) F(5,709)
f Start f0 5.43 � � � 
 �
	 2.64 0.84

End f0 2.06 12.07 � � � 
 �
	 0.99
Max f0 21.22 � � � 
 �
	 2.67 2.16

�
f0 20.95 � � � 
 � 	 2.82 2.12

Mean f0 10.59 � � � 
 �
	 3.94 � � � 
 � � 2.15
Std f0 14.99 � � � 
 �
	 4.22 � � � 
 � � 2.18

Table 4.6: Anova Results for Cross Comparison of TGs in the same Positions in
IPs of Different Lengths. (Note: groups 1-3 are from t00 data sets and group f is
from t01 data set and is a separate test.)
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Dependent Variable t-test results
TG IP length Start f0 End f0 Max f0

�

f0 Mean f0 Std. f0
pos. contrast t p t p t p t p t p t p

1 1–2 -1.25 -3.12 � � ��
�

��

-1.81 0.21 -4.48 � � ��
�

��

-0.60
2–3 -0.39 -2.59 � � ��
�

��

-0.92 0.99 -2.49 � � ��
�

��

0.64
3–4 0.39 -0.74 -0.01 0.31 -1.50 -0.04
4–5 0.36 -0.38 -0.39 -0.98 0.04 -0.46
5–6 -2.28 � � �

�
��

-0.53 -0.42 0.61 -2.41 � � ��
�

��
0.54

2 2–3 -2.49 � � �
�

��

-7.36 � � ��
�

��

-7.01 � � ��
�

��

-4.28 � � ��
�

��

-7.17 � � ��
�

��

-4.83 � � ��
�

��

3–4 0.26 0.89 0.11 0.30 -0.82 0.34
4–5 -0.46 -0.42 0.59 0.77 -0.67 0.81
5–6 0.05 1.70 0.32 -0.20 0.52 0.40

3 3–4 0.37 -7.64 � � ��
�
��

-5.55 � � ��
�
��

-2.76 � � ��
�
��

-5.15 � � ��
�
��

-3.30 � � ��
�
��

4–5 0.91 0.52 0.95 0.59 -0.95 0.81
5–6 0.85 0.51 0.31 -0.12 -0.88 0.06

f 1–2 3.91 � � �
�
��

1.06 9.91 � � ��
�
��

9.94 � � �
�
��

6.80 � � ��
�
��

8.49 � � ��
�
��

2–3 1.20 1.61 -0.93 -1.11 -0.88 -1.61
3–4 0.74 -0.36 -0.16 -0.48 -0.03 -0.49
4–5 -0.51 1.19 0.31 0.27 1.27 0.36
5–6 0.39 -1.54 -0.65 -0.02 -0.41 0.25

Table
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These hypotheses were tested using only the TG mean and standard deviation
values with respect to the total number of TGs to the IP and the TG position in
the TG (IP length and tg type respectively).

Hypothesis 5. was tested using a crude fixed frame LPC resynthesis method. An
informal comparison was made of utterances resynthesised with their original
f0s to those with f0s normalised across each TGs and rescaled with respect to
the average mean and standard deviation parameters for that TG position. The
utterances with the altered f0 were found to be similar to those with the original
f0. Although no formal evaluation was carried out, these results suggest that the
average parameters are a reasonable representation of individual TGs.

Hypothesis 6. was tested by generating example sentences with Festival. The
resulting f0 was normalised with respect to the f0 mean and standard deviation
of the utterance as a whole, and then scaled appropriately with respect to the the
mean and standard deviation found for that TG position. The normalisation was
carried out in the usual way by calculating:

� � 
 ����� � � � � �
�

where
�

is the f0 mean and � the f0 standard deviation. The rescaling is the
reverse process using different mean and standard deviation values.

� � � 
���
+�!% � � � 
 �!��� �
"��

Additional constant scaling and offset parameters were also included to compen-
sate for the fact that the original f2b utterances were spoken by a female (only a
male Festival voice was available). Festival was then used to resynthesise the
utterance with this new f0.

The initial result of this process sounded rather unnatural, particularly at the
TG1–TG2 boundary where a noticeably unnatural sounding drop in pitch of-
ten occurred. A better result than this was found by not using the values for
the IP initial TGs, but using TG2 values for TG1s. Phrase initial highs were of
course lost — phrase initial is used here and not sentence-initial as the data sug-
gests phrase initial highs can occur at all IP level boundaries, whether a sentence
boundary or not. This result suggests that mean and standard deviation calcu-
lated across the TG are generally sufficient to capture some sort of pitch range
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effect which can improve the naturalness of synthesised speech. However, what
they do not seem able to capture is the more subtle effect of phrase initial highs.
As this is the case it also seems unreasonable to expect to account accurately for
f0 behaviour related to sentence final lowering.

The results also suggest that f0 mean and standard deviation alone would not
be enough to position pitch elements within a TG if all TGs were treated equally
and only distinguished by the f0 mean and standard deviation. There are two
options for a model: either IP initial, IP medial and IP final TGs would have to be
treated separately, or different and/or additional parameters would be needed
to describe the f0 behaviour across the TG.

Therefore, the way in which we treat TG types differently will depend on how
we consider the structure of TGs in differing positions to vary from each other.
If we consider all TGs to be equal in structure and differ only in overall level or
range then ideally we would want a general model which captures pitch range
behaviour in this way. On the other hand if we consider the structure of an IP ini-
tial tone group to differ from an IP medial TG, to differ from an IP final TG, then
perhaps a model which treats these TG types as different is more appropriate.

So, we need to decide if the phenomenon of phrase initial high is specifically
associated with phrase initial TGs themselves or is just a pitch event which nat-
urally occurs at the beginning of phrase initial TGs. That is to say, if we assume
that the f0 contour is made up of pitch events plus an overlying phrase contour,
we need to decide with which the phrase initial high is associated. Teasing apart
pitch range of a phrase from the pitch of pitch events within it is quite difficult
as to a large extent the pitch range is partially if not completely defined by the
realisation of pitch events.

A similar argument exists for final lowering, which we have so far seen no evi-
dence for in this data. That is not to say that there is any strong evidence against
it either, as we have not yet examined descending sequences of accents and as-
sociated boundaries. We return to the issue of final lowering when we consider
boundaries in chapter 6.



CHAPTER 5

Pitch Event Analysis

Our attention now shifts from looking at how prosodic structure affects pitch
range to seeing how pitch events are realised within the prosodic units found to
be significant in the previous chapter, namely tone groups (TGs).

Our intention is to learn how to represent pitch events within TGs in such a way
as to be useful when modelling intonation for speech synthesis. We intend to
use the knowledge about prosodic structure acquired in the previous chapter
to group pitch events with like prosodic structure together and hence minimise
variation within a given group. This approach helps us to reach our goal of being
able to capture the intonation style of the database being analysed.

In this chapter we focus in on the tone group (TG) and continue the analysis
started in the previous chapter by now looking at how pitch events are affected
by both the phrasing structure which surrounds them and the segmental material
on which they are placed.

5.1 Pitch Event Alignment

We can consider a pitch contour to be a function of time—at a given time there
is a related pitch value. The nature of this function however is not simple and is
really dependent on considerably more than just time. We can take a step back
and consider the modelling of intonation to be the defining of this function which
we can then plug values (e.g. time, TG number, etc...) into to generate a pitch
contour.

83
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We cannot currently expect to be able to fully define this function in a mathemat-
ical sense as we do not fully understand the underlying processes which result
in intonation. We can however look at various aspects of the resulting function
and consider pitch events in terms of these.

There are three particular aspects of pitch contours relating to pitch events which
we can analyse. These are event shape, event time alignment and event pitch po-
sitioning. Shape considers the overall shape of the pitch event and is generally
related to the type of pitch event in question, as specific accents and boundaries
have specific shapes. Time alignment considers how this shape is positioned
with respect to time (or the segmental structure of the utterance), and pitch posi-
tioning considers how the shape is positioned with respect to pitch.

Using the above aspects of pitch, we can consider a pitch contour representing a
pitch event as being as being a particular shape which manifests itself at a par-
ticular pitch at a particular time. A graphical representation of shape, pitch posi-
tioning and time alignment is shown in figure 5.1. Here the pitch event is stylised
as three points, a start, a peak and an end, with a smooth curve connecting these
points. The shape is that of a rise-fall accent. The time alignment of the event
is shown relative to the segmental material with which it is associated. This is
usually a syllable or the voiced part of a syllable. The three points representing
start, peak and are shown as these are the points we will use to characterise pitch
events throughout the analysis. The small f0 tails at each end of the accent show
that the start and end of the accent do not necessarily occur at the start and the
end of the voiced portion of the syllable.

5.1.1 Pitch shape

Pitch shape governs how the f0 changes through the duration of the pitch event.
The nature of this change accounts for an accent or boundary’s type. This type
can be described by associating a given linguistic theory that describes pitch
events with the accent shape. Here we will currently only distinguish between
general shapes which we will call falls, rises, and rise-falls, as this classification
is easily available from the Tilt (Taylor 1994) parameters.

5.1.2 Pitch positioning

We need to associate this local f0 shape with the overall pitch range of the ut-
terance, and more specifically we need to associate this locally to the parameters
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which control the pitch level for the TG in which the accent occurs, to give the
accent position in the local pitch range.

5.1.3 Time alignment

Time alignment governs how the pitch event aligns itself with the syllabic struc-
ture with which it is associated. It is possible to consider the alignment of the
pitch event with the syllable in a number of ways. First there is the issue of ab-
solute alignment versus relative alignment. The points on the pitch event can be
related absolutely in time to the syllabic structure (e.g. the pitch event start is 60
milliseconds from the start of the syllable). Tilt (see section 2.7) measures time
alignment in this way. Or they can be related relatively (for example, the pitch
event start is 30% of the way through the syllable).

There is also the question of which part of the syllabic structure the pitch event
is best related to: the syllable as a whole, or specific parts of the syllable. If it
is specific parts of the syllable then a decision needs to be made as to which
parts — onset/rhyme, onset/nucleus/coda or some alternative division based
on voiced/unvoiced distinctions, like the Bell Labs model (see section 2.12.2)

voicing

onset nucleus coda onset

syllabic structure

sta
rt

pe
ak

en
d

Time alignment

sta
rt

pe
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itc

h
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si
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Figure 5.1: Stylised representation pitch event alignment with a syllable
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which uses the s-rhyme to describe alignment. Unless pitch events align consis-
tently at the same point in all syllables, however they are measured, there is also
the need for a classification of syllables.

Grabe’s (1998) finding that the peak positions of locally down-stepped accents
are affected by the amount of segmental material between successive accents
implies that the analysis here needs to consider not just details concerning the
segmental material which the accent is associated with, but also at least some
knowledge of the segments surrounding accents and the segmental distance be-
tween accents.

There is insufficient data available to address the general problem of pitch event
alignment with different segmental material. We currently have just over 4100
accent type pitch events. If we assume this data is balanced in the sense that each
accented syllable type is represented an equal number of times, then using say
25 onset types and 19 vowel types, then ignoring codas completely we would get
475 different syllable types. This would be fewer than 10 examples of each. Pho-
netic features could be used to group different dimensions of onsets and vowels,
reducing the number of categories, but this still assumes that time alignment is
only affected by the onset and nucleus of a one syllable context. We do not how-
ever abandon time alignment completely, we use it to distinguish sub classes
of accent within the rise-fall category of accent as determined by tilt parameter
value.

5.2 Accent Types and Alignment

Figure 5.2 is a scatter plot of start time vs tilt value for accents in the f2b database.
It shows that these accents fall into three groups, highlighted by lines in the fig-
ure. The main group of points (just looking at the distribution along the y-axis)
in the centre of the plot with tilt values just greater than zero are “rise-fall” ac-
cents and two secondary groups representing “rise” and “fall” located at the top
and bottom of the plot respectively with tilt values close to +/- 1.

Additionally there is a scattering of points with late start times. These points are
few in number and are considered outliers and removed from the analysis.

Figure 5.3 is a further scatterplot. It shows peak time vs tilt value for accents la-
belled ‘a’. Here we see a somewhat linear relation between tilt value and peak
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time, the ‘falling’ accents having early peaks and the ‘rising’ accents having late
peaks as we would expect.
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Figure 5.2: Scatterplot for accents, showing start time plotted against tilt value.
This plot shows a sample of 12.5% of pitch events labelled ‘a’. Lines are added
to highlight the groupings.
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Figure 5.3: Scatterplot for accents. Showing peak time plotted against tilt value.
This plot shows a sample of 12.5% of pitch events labelled ‘a’.

In the analysis we carry out we concentrate solely on the rise-fall accents. We
don’t consider there to be sufficient data to produce a rigorous analysis of the
other categories. However, the means and standard deviations for the accents
which fit into these groupings are summarised in Appendix B so that the data is
available to anyone who wishes to include them in a model.

5.3 Hypotheses

We are interested in how sequences of accents in a TG position themselves, and
we are specifically interested in how this positioning relates to the pitch range
we find in different TGs, with a particular interest in how the accents in IP initial
TGs manifest themselves.

Listening to the data we are working with suggests that the first accent in an IP
initial TG is higher than the first accent in non-ip initial TGs. That is, there is
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something about the start of a phrase which causes the first accent to be particu-
larly high in pitch. This is one of the properties of the speech we are looking at
that we try to demonstrate as significant.

The hypotheses we are testing here are:

Hypothesis 1: Accents in sequences have distinct pitch positioning and descend
in pitch towards the end of the TG.

Hypothesis 2a: The pitch of the first accent in an IP initial TG is higher than that
of first accents in non IP initial TGs.

Hypothesis 2b: The accents in IP initial TGs are positioned at a higher pitch than
would be expected by a general downward trend in pitch from the start to the
end of the TG.

The pitch range effects we saw in the previous chapter could be caused by either
Hypothesis 2a or 2b, or it may be the case that both are true or of course neither.

5.4 Methodology

We use the Festival tools to extract the following information relating to each
pitch event in the f2b corpus.

� Prosodic structure information: the position in the phrase of the tone group
containing the pitch event, and the total number of tone groups in the
phrase.

� Pitch event description: pitch event type, and its relative position in the
tone group, and the total number of pitch events in the tone group. The tilt
value of the accent to classify its shape.

� Voicing information: the start/end time of voicing segment which overlaps
with the syllable which the pitch event is associated with.

� Pitch event timing information: start/peak/end time.
� Pitch event f0 information start/peak/end f0 values (Hz). Including f0 val-

ues normalised with respect to the tone group mean and standard devia-
tion f0.
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Time values are specified relative to the start of the syllable that a pitch event is
associated with. This is considered to be more useful than absolute time values
(which would be relative to the start of the utterance).

The utterance building process (see section 3.2) often highlights cases where dif-
ferent data sources do not mesh together well. This happens when the label files
representing the original data do not align sufficiently with each other or data is
just missing. Utterances which could not be built in a satisfactory manner were
discarded and not used in the analysis.

5.5 Results

We first examine the relationship between the relative position of accents within
the utterance structure and the pitch at which the accent is realised. With statis-
tical analysis in mind, accent position is specified by the independent variables
accent number and accent count. For example, if an accent has accent number 2
and accent count 4, then it is the second accent in a group of 4.

Accent f0 is measured in three places: at the start, peak and end of the accent. The
peak should be distinct from the start and end of each accent as all the accents
involved are ‘rise-fall’ accents so three points should be sufficient to capture a
crude representation of shape.

Figure 5.4 shows the average f0 accent positions for accents in sequences of up to
4 accents in length. The accents are grouped by accent number; that is, the first
accent from sequences, irrespective of sequence length, are grouped together. A
consequence of this grouping method is that the final accents in sequences of
different lengths are not grouped together. The closeness of the accents within
the groups as shown and a noticeable difference between the groups (specifically
the first three groups) suggests that grouping the accents like this is preferable
to, say, grouping the accents as final, penultimate, anti-penultimate, etc.

The overall pattern of the accents is a distinct downward trend which suggests
Hypothesis 1 holds. We see in figure 5.4 that there is a reasonable distinction
between the pitches of the first three accents in a sequence, but the distinction
between the pitch of third and fourth accents in a sequence of four accents is
negligible. This may be due to the pitch range baseline being reached or just
that there is less data available to make up this category, resulting in a higher
variance.
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Figures 5.5– 5.7 show the same data but separated into three subsets. This allows
us to consider Hypothesis 2 in more detail, where we need to consider the accents
in IP initial TGs and particularly the first accent in an IP initial TG.

Each subset contains the accent sequences from TGs with specific positions within
an IP. Figure 5.5 shows data for IP initial TGs, figure 5.6 shows data from IP me-
dial TGs and figure 5.7 shows data from IP final TGs. The analysis of the overall
pitch range of specific TGs in the previous chapter showed significant differences
between the pitch range of IP-initial/medial/final TGs. It could not however
show whether this relationship was attributable to the TG as a whole or to spe-
cific pitch events within the TG. To some extent pitch range is an abstract concept
in that it is predominantly realised by pitch events. The bits of pitch contour be-
tween pitch events are regarded as uninteresting because pitch is assumed to
be resting at a default level in the absence of explicit pitch targets. With this in
mind, the pitch range for a given TG can be seriously affected by the position of
one pitch event within it. In our case a higher pitch range could be the result of
just one accent which is raised in pitch within a TG or it could be the result of
all of the accents being raised in pitch. The former we consider the effect of the
pitch event, the latter we consider to be a more general pitch range property of
the TG. Analysis of the pitch positions of these subsets for accent sequences is
used to attempt to clarify this point.
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Figure 5.4: Pitch of rise-fall accents in sequences of up to 4 accents.
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Figure 5.5: Pitch of rise-fall accents in IP initial TGs.
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Figure 5.6: Pitch of rise-fall accents in IP medial TGs.
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Firstly if we compare the IP medial TGs (figure 5.6) with the results for all TGs
combined (figure 5.4) we see that there is very little difference in the position
and height of the accents. This is what we would expect as most of the TGs are
IP medial. However, if we compare the IP initial TGs (figure 5.5) with the IP me-
dial TGs (figure 5.6) we find that the accents in the IP initial TGs are positioned
higher than the accents in the IP medial TGs, although not uniformly so. Accent
1 is about 45Hz higher in the IP initial TG, but by accent 2 this difference has de-
creased to about 20 Hz, and by accent 3 it is negligible, suggesting that the pitch
range effect is not simply an overall TG effect, nor an isolated effect affecting
only the very beginning of the TG or only the first pitch event in the TG.

We now carry out an analysis of variance with the above data (see Tables 5.1
& 5.2). From the above observations we take TG type and accent number as inde-
pendent variables, and use start, peak and end f0 values for dependent variables.
Table 5.1 shows a clear effect for each independent variable with each depen-
dent one (� � � 
 ���
	 ).

Moving to the contrasts, in the first row of table 5.2 we see a clear contrast be-
tween IP initial and IP medial TGs. The second row shows contrasts between IP
medial and IP final TGs but only for peak and end position of the accent. The
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Figure 5.7: Pitch of rise-fall accents in IP final TGs.
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third and fourth rows of the table show clear contrasts between the first and sec-
ond accents in a sequence and the second and third accents in a sequence, but no
distinction between third and fourth.

The accent position contrasts reflect what we saw graphically, and allow us to
accept Hypothesis 1, for at least the first three accents in a sequence.

The interaction contrasts are a little harder to interpret but show a particular
contrast between the interaction of TG position and accent position for the TG
initial/TG medial vs. first accent/second accent interaction. This suggests that
the pitch position of the first accent in an IP does have some special status, inde-
pendent of being either in the initial TG or being the initial accent in a TG. This
is true for the start, the peak and the end position of the accent and shows hy-
pothesis 2a to be true. Hypothesis 2b is also shown to be true as the first row of
the contrasts table shows significant differences in pitch for start, peak and end
positions between IP initial TGs and IP medial ones.

Figure 5.8 shows a representation which could be the basis of a model for f0 at
each accent position based on the group means. The start f0 points are grouped
together on the left, a central group contains the peak positions and a final group
contains the end positions. The different lines represent points from different
TG positions and the points on each line represent the accents in a sequence in
that TG. An example f0 sequence is shown by the dashed line joining equivalent
points from the three groups. These points would represent the second accent
in an IP initial TG. Some of the start and end points for the fourth accent in a
sequence are higher than might be expected. This is probably due to there being
less data for these accents than for the first three accents.

TG position accent position TG pos. * accent pos.
F(2,3049) p F(3,3049) p F(6,3049) p

start f0 19.23 � 
 ��� 	 54.50 � 
 ���
	 49.85 � 
 ��� 	
peak f0 39.76 � 
 ��� 	 107.33 � 
 ���
	 128.81 � 
 ���
	
end f0 20.19 � 
 ���
	 96.38 � 
 ���
	 104.01 � 
 ��� 	

Table 5.1: ANOVA results
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start f0 peak f0 end f0
TG pos. contrasts t p t p t p

initial/medial 4.57 � 
 ���
	 6.21 � 
 ��� 	 3.62 � 
 ���
	
medial/final 0.17 .169 2.65 .008 3.16 � 
 ���
	

accent pos. contrasts t p t p t p
first/second 9.92 � 
 ���
	 13.54 � 
 ��� 	 12.54 � 
 ��� 	
second/third 3.13 � 
 ���
	 4.86 � 
 ��� 	 5.27 � 
 ���
	
third/fourth -0.10 .924 0.04 .969 -0.77 .439

interaction contrasts t p t p t p
i/m–1/2 8.13 � 
 ���
	 9.32 � 
 ���
	 6.24 � 
 ���
	
i/m–2/3 0.99 .320 0.61 .539 2.14 .032
i/m–3/4 -2.07 .038 0.14 .887 1.66 .097
m/f–1/2 -2.19 .028 0.17 .868 1.79 .074
m/f–2/3 1.75 .080 1.35 .178 -0.28 .778
m/f–3/4 -0.22 .822 -0.17 .861 -0.26 .798

Table 5.2: Repeated contrasts
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Figure 5.8: Summary of rise-fall accent group means, showing potential basis for
a model.



CHAPTER 6

Boundaries

We continue our analysis by now considering the boundary pitch events at the
end of TGs. We categorise boundary tones as two types: falling boundaries and
rising boundaries.

6.1 Background

To describe accents we considered three points: a start point, a peak point and an
end point. We can do this too with boundaries, but if we suspect the boundary to
be a strict fall or a rise the peak position will be at the start of a falling accent and
at the end of a rising accent and redundant. The peak position is also redundant
as we intend to eventually model boundaries in the same way as simple falls or
rises.

So before we start the formal analysis of boundaries, we take an informal look
the peak position (as assigned by the tilt program) to confirm that ignoring it is
acceptable. We first look at falling boundaries and we test to see if the peak of a
falling boundary is indeed at the start of it.

Hypothesis 1: The peak of a falling boundary is at the start of it.

To test this hypothesis we simply compare the start time of the boundary with
the peak time. Figure 6.1 shows a plot of the start time of falling boundaries
plotted against the difference between the peak and the start time of the accent.
If hypothesis 1 is true we would expect the difference between the peak and start
times to be zero and give us something like a straight horizontal line. Start time

97



98 CHAPTER 6. BOUNDARIES

� � 
 � � � 
 � � � 
�� � � 
 � � � 
 	 � 
 � � 
 	 � 
 � � 
��
� � 
��

� � 
��

� � 
 �

� � 
 	

� 
 �

� 
 	

� 
 �

� 
��

� 
��

boundary
peak
minus
start time
(s)

boundary start time (s)

♦

♦

♦

♦

♦

♦
♦

♦
♦

♦

♦

♦

♦

♦♦

♦

♦

♦♦
♦

♦

♦

♦
♦

♦

♦

♦
♦

♦

♦

♦
♦ ♦

♦♦
♦

♦

♦

♦

♦

♦
♦

♦ ♦
♦

♦ ♦
♦

♦
♦

♦
♦

♦

♦♦♦
♦

♦♦
♦

♦ ♦

♦

♦ ♦

♦
♦

♦

♦

♦♦

♦

♦

♦

♦

♦

♦

♦
♦♦

♦

♦

♦
♦

♦

♦
♦

♦
♦

♦ ♦

♦
♦

♦

♦

♦

♦

♦

♦

♦

♦

♦

♦

♦

♦♦

♦
♦

♦
♦ ♦

♦

♦
♦

♦♦

♦
♦

♦

♦ ♦♦

♦ ♦

♦

♦

♦

♦

♦

♦

♦

♦
♦

♦

♦ ♦

♦
♦

♦

♦♦

♦

♦

♦

♦
♦
♦

♦

♦

♦

♦

♦

♦

♦♦

♦

♦♦

♦

♦

♦

♦

♦

♦

♦
♦

♦
♦

♦♦

♦

♦

♦♦

♦♦

♦

♦♦

♦
♦♦

♦
♦

♦
♦ ♦♦♦♦

♦
♦

♦

♦

♦
♦

♦

♦

♦♦
♦
♦

♦♦

♦
♦

♦

♦

♦

♦
♦♦

♦

♦

♦

♦
♦

♦

♦
♦ ♦

♦♦

♦

♦♦ ♦

♦

♦

♦
♦

♦♦
♦

♦

♦

♦
♦

♦

♦

♦

♦

♦♦♦♦ ♦

♦

♦

♦

♦
♦♦

♦

♦

♦
♦ ♦ ♦

♦

♦
♦

♦

♦♦

♦

♦

♦

♦

♦

♦
♦♦

♦

♦

♦

♦

♦

♦

♦

♦
♦
♦

♦

♦

♦
♦

♦♦

♦
♦

♦

♦

♦

♦

♦

♦♦

♦

Figure 6.1: Scatter plot showing falling boundary start time plotted against time
from boundary start to boundary peak.

plotted on the x-axis is really only used to space the points out and make the
plots readable.

However, what we actually see are three groupings of points: a large grouping
around the origin, a small grouping above the origin and a small group to the
right of and below the origin.

The first oddity of this plot is that there are quite a few points with negative �

values. A negative � value represents a boundary with a peak before its start.
Peaks before starts come about because of the way in which the peak position
is calculated. Recall from section 3.7 that the peak position is extracted from the
tilt parameter representation that was calculated by the automatic tilt aligner. To
interpret the graph we should consider all peak-time differences between

� � 
 	
and � to be equivalent to zero (as the tilt aligner can move the start point by up
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to 0.1s). With this in mind we then see that the main group in the centre of the
plot gives us our straight horizontal line.

The smaller grouping above it represents a small number of points where the
peak is some way into the boundary. Within this group the points that have high
peak-start times also have negative start times, suggesting that the boundary
has been labelled as starting outside the voiced part of the syllable. The peak is
placed by the tilt aligner after this point in the main part of the syllable.

The grouping to the bottom right is somewhat harder to account for. Here the
boundary starts quite a long way into the syllable, but the peak is effectively
where you would expect it to be near the start. This would appear to have been
brought about by either a labelling inconsistency, or the tilt model choosing to
represent a much larger section of f0 than the hand labels specify. Either way,
the peak is generally at or before the start of the boundary, so these points are
not treated as outliers as points in this quadrant of the graph were for accents.
The general picture is that peaks do occur close enough to the start to accept
hypothesis 1 and drop the peak position for falling boundaries.

We now consider rising boundaries. Rising boundaries are a more complicated
class of boundary than falling boundaries, as they may manifest themselves as
either a rise or as the lack of a fall, the latter resulting in a reasonably flat contour.

Our next hypothesis tests this assumption:

Hypothesis 2: Rising boundaries fit into two categories: a strictly rising category
and a not-falling category.

Figure 6.2, a plot of f0 start position plotted against peak minus start position,
shows us three distinct clusters of points like those we saw for rising boundaries.
As with falling boundaries the start time can be adjusted by the automatic tilt
labeller. Here the largest grouping is with accent start around � and accent peak
minus start around � 
 � . This represents the strict rising boundary, where the
peak is clearly after the start of the accent. The two smaller clusters represent
boundaries with the peak closer to the start, but from this plot there is no way of
telling if they represent non-falling boundaries or otherwise.

An additional plot of f0 peak minus start time plotted against end minus peak
time helps make the situation clearer. This is shown in figure 6.3. Here we see
two clusters. The first is a cluster along the � -axis with end minus peak times
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Figure 6.2: Scatter plot showing rising boundary start time plotted against time
from boundary start to boundary peak.

close to. These are the group of strictly rising boundaries and match the top
cluster in figure 6.2. A second cluster forms to the negative side of the � -axis just
above the origin. This represents the other two clusters in the previous figure.
The negative peak minus start time suggests the peak is in the beginning of the
accent in a region added by the tilt aligner. This group is characteristic of the
non-falling rising boundaries. However, as we shall see boundaries may occur
in this cluster for other reasons.
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Figure 6.3: Scatter plot showing rising boundary start to peak time plotted
against peak to end time.
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Figures 6.4 and 6.5 show examples of rising boundaries. Figure 6.4 is an example
from the lower cluster of figure 6.2, whereas figure 6.5 shows an example from
the upper cluster of figure 6.2. Figure 6.4 shows nothing too surprising, a rising
boundary with the peak somewhere near the end. The peak is not necessarily
right at the end, which could be due to micro intonational effects or due to pitch
tracking errors associated with the cessation of voicing at the end of the syllable.
What we do see is that modelling this boundary with a simple rise would be
reasonably appropriate.
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Figure 6.4: Figure showing a rising boundary with peak position located towards
the end of the accent. Label tiers show (from the top) intonation labelling, words
and segments.

Figure 6.5 is not as straightforward. Again, this shows what looks like a rea-
sonably straightforward rising boundary, except for the fact that it occurs in the
upper cluster of figure 6.2, which would indicate that the peak is close to the
start of the boundary rather than the end. This has come about as a side effect
of the tilt aligner moving the start of the boundary back into the previous accent,
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resulting in an overall fall, with the peak at the beginning. In this situation using
the hand labelled start and end points to analyse the boundary produces much
better results than using the tilt orientated data. It is also worth noting that over
50 of the rising boundaries in the database have tilt values between 0.2 and 1
which suggest an overall fall in pitch. This suggests that either the tilt aligner is
not very good at modelling rising boundaries or that more than half of the rising
boundaries actually fall.

To summarise, we see that the peak position in boundaries may be problematic
and we are better to just use start and peak position alone.
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Figure 6.5: Figure showing a rising boundary with peak position located towards
the begining of the accent. Label tiers show (from the top) intonation labelling,
words and segments.
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6.2 Falling Boundaries

We now begin to look at the pitch positioning of falling boundaries. We consider
only the start and end points of boundaries as discussed in the previous section.

The overall pitch range results in chapter 5 were not too clear concerning what
is happening at the end of each type of TG, but suggested that a falling bound-
ary which is IP final should be lower than an IP internal one. So we test this
hypothesis.

Hypothesis 3: The TG position affects the f0 positioning of falling boundaries.
Specifically we expect to see the falling boundaries in final TG position being
lower than those in medial or initial position.

The ANOVA results for the falling boundaries data are shown in tables 6.1 and 6.2.
There is no significant effect for the starting-pitch position, and the significant ef-
fect for the ending-pitch position is a contrast between IP medial and final TGs.

So, although IP final falling boundaries end lower than non IP final ones they
start at the same position. This allows us to accept a modified form of hypoth-
esis 3, which states specifically that (the ending position of) falling boundaries
in TGs in IP final position end lower. This is not particularly problematic as we
would expect the position from which the boundary falls to depend more on the
surrounding material than its TG position. For example an accent on the preced-
ing syllable may have a drastic effect upon the boundary start position.

Finding no contrast for end position between initial and medial IPs provides
evidence for the pitch range baseline remaining pretty constant except for final
lowering.

TG position
F(2,963) p

start f0 1.89 .152
end f0 14.68 � � 
 ���
	

Table 6.1: Anova results for pitch position of falling boundaries

6.3 Rising Boundaries

There are two ways in which rising boundaries could behave. The point to which
they rise could either be affected by the position of the TG in which they resides
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or it could be independent of the position in the TG. We take the former as our
hypothesis and leave the latter as the null hypothesis.

Our hypothesis for how rising boundaries behave is then as follows:

Hypothesis 4: Rising boundary pitch position is dependent upon the position of
its TG within an IP.

Anova results for these data are shown in tables 6.3 and 6.4. Here we see a clear
effect for the end position, but also quite a strong effect for start position. The
contrast results show that the end position is significantly different between all
three categories IP initial, IP medial and IP final. This suggests that the pitch
position of rising boundaries is affected by TG position and that the f0 points
analysed in rising boundaries exhibit behaviour more like accents than of falling
boundaries. This allows us to accept hypothesis 4.

The group means for both falling and rising boundaries are shown in figures 6.6
and 6.7. Along with the accents means shown in figure 5.8, these points would
be sufficient to produce a simple rule based model for speech synthesis. We
demonstrate this in chapter 7.3.

start f0 end f0
TG pos. contrasts t p t p

Initial/Medial -0.46 .644 -0.22 .827
Medial/Final -1.46 .144 4.90 .000

Table 6.2: Repeated contrasts for pitch position of falling boundaries

TG position
F(2,963) p

start f0 4.11 .017
end f0 16.04 .000

Table 6.3: ANOVA results for pitch position of rising boundaries

start f0 end f0
TG pos. contrasts t p t p

Initial/Medial 1.96 .050 3.38 .001
Medial/Final 1.30 .195 3.13 .002

Table 6.4: Repeated contrasts for pitch position of rising boundaries
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Figure 6.6: Summary of falling boundary group means, showing potential basis
for a model.

	 ���
	�	 �
	�� �
	 � �
	 � �
	 � �
	 � �
	 � �
	 ���
	 ���

Start f0 End f0

f0
(H

z)

� � Initial TG
� � Medial TGs
� � Final TG

	

	







�

�

Figure 6.7: Summary of rising boundary group means, showing potential basis
for a model.
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6.4 Combined Accents and Boundaries

As well as basic rising and falling boundaries we need to consider pitch events
where an accent and a boundary fall on the same syllable. These are labelled as
a single entity in the data and are analysed as such.

We revert to using three points for analysis here as we expect these pitch events
to incorporate an accent and thus to have a meaningful peak contained within
them. As these pitch events are a combination of an accent followed closely by
a boundary, we assume that there is some level of coarticulation and formulate
our hypotheses accordingly.

Hypothesis 5: We expect the start and peak positions of a combined accent and
boundary to follow that of an accent.

Hypothesis 6: We expect the end position of a combined accent and boundary to
behave as if it were a boundary.

What we are suggesting then is that the front part, i.e. the start and peak of
the accent and boundary combination behaves like an accent and the back part,
namely the end, behaves like a boundary. In section 5.5 we saw that TG position
was a main effect for start, peak and end position and contrasts were significant
for all but start position in TG medial/final position. So for hypothesis 5 to be
true we would expect to see these effects for the accent and boundary combina-
tions.

In the previous sections in this chapter we saw that end position between the
TG medial/final contrast was the only effect for falling boundaries and that end
position was an effect for both TG initial/medial and medial/final contrasts for
rising boundaries. This means that for our hypotheses to hold we would need to
see effects for start and peak position to show accent-like behaviour and an end
effect only between medial and final position to show boundary-like behaviour.

6.4.1 Accent and falling boundary combinations

The ANOVA results for combined accent and falling boundary combinations are
shown in tables 6.5 and 6.6. Here we see that there is an effect for start and peak
position but not for end position. Turning to the contrasts we see that it is only
the TG IP medial versus TG IP final contrast which shows up as significant, at
5% for start position and at 1% for peak position.
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This is not really sufficient evidence to accept either hypothesis 5 or 6 for accent
and falling boundary combinations. The contrasts to accept hypothesis 5 are only
partial and the end position effects that would allow us to accept hypothesis 6
are missing.

TG position
F(2,242) p

start f0 10.98 � 0.001
peak f0 9.86 � 0.001
end f0 2.75 0.065

Table 6.5: ANOVA results for pitch position of combined accent and falling
boundaries.

start f0 peak f0 end f0
TG pos. contrasts t p t p t p

Initial/Medial 1.64 .101 0.24 .811 -0.62 .535
Medial/Final 2.53 .012 3.41 � .001 2.19 .030

Table 6.6: Repeated contrasts for pitch position of combined accent and falling
boundaries.

6.4.2 Accent and rising boundary combinations

The anova results for combined accent and rising boundary combinations are
shown in tables 6.7 and 6.8, and are somewhat uninspiring. Start position is the
only effect, and only presents itself as a weak contrast between TG initial/medial
position, not allowing us to accept either hypothesis 5 or 6 for accent and rising
boundary combinations.

TG position
F(2,46) p

start f0 5.78 0.006
peak f0 1.01 0.373
end f0 1.34 0.271

Table 6.7: ANOVA results for pitch position of combined accent and rising
boundaries.
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6.4.3 Conclusions

There could be a number of reasons for poor results with combined accent and
boundaries. Firstly there is limited data for these pitch events, particularly in the
case of combined accent and rising boundary where there are only a total of 49
available for use in the analysis. This unfortunately prevents trying to split the
data into further caregories.

Secondly, as the number of data points for these combined accent and boundary
events is low we have not included the factor accent number which represents the
number of preceding accents. This played a part in accent position, although
TG position was a clear main effect in its own right, so an effect would still be
expected here for TG position without accent number being used. There is in-
sufficent data to carry out a full analysis including the number of accents in the
sequence which ends in the combined accent boundary. But a partial analysis
with the falling boundaries showed results no different to those without this fac-
tor included.

The outcome is that these results do not really show that these combined pitch
events are a straightforward combination of an accent followed by a boundary.
However, for modelling purposes there is no reason why they cannot be mod-
elled as a class of their own. With this in mind, the mean values for these pitch
events are shown in figures 6.8 and 6.9.

start f0 peak f0 end f0
TG pos. contrasts t p t p t p

Initial/Medial 2.15 .037 0.16 .877 0.36 .724
Medial/Final 1.49 .143 1.21 .230 1.30 .199

Table 6.8: Repeated contrasts for pitch position of combined accent and rising
boundaries.
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Figure 6.8: Summary of combined accent and falling boundary group means,
showing potential basis for a model.
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Figure 6.9: Summary of combined accent rising boundary group means, showing
potential basis for a model.
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CHAPTER 7

From Data to Model

This chapter deals with the issue of moving from data analysis to an intonation
generating model. So far the analysis carried out in chapters 5 and 6 has collated
a large amount of statistical information about f0 position for specific prosodic
contexts within the data. We now turn the results of this analysis into a means
of modelling intonation for speech synthesis. We first develop a framework us-
ing prosodic structure and we then demonstrate two models built within this
framework.

7.1 Introduction

Our first aim here is to produce a framework within which intonation models
can be built. The point of the framework is to allow different types of model,
for example the rule based models or statistically trained models discussed in
section 2.11, to be constructed with the same structure. The framework can be
thought of as a set of theoretic constraints within which a model is built. These
constraints may be represented by parameters but this is not crucial.

To clarify the distinction between model and framework, we can consider ToBI
as an alternative framework. ToBI is not really an intonation model for speech
synthesis, it is an intonation description system. It does not tell us what a given
f0 contour looks like, it allows us to classify given intonation contours. How-
ever, ToBI can be used as a framework in which to build an intonation model
for speech synthesis. The ToBI framework would specify that pitch events are
to be modelled in sequences to correspond to those allowed by the description
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system and would constrain the assignment of phrase breaks to correspond to
break indices in an appropriate manner.

The specifics of how a model is then constructed within this framework are flexi-
ble and left to anyone choosing to use it. For example Festival currently contains
two intonation models built within the ToBI framework. The first is the statisti-
cal CART tree model, discussed in section 2.12.1, which predicts ToBI accents and
boundaries, and then statistically generates an f0 contour from these. The second
is the rule based model of Jilka, Möhler & Dogil (1997), which constructs f0 tar-
get points by rule from assigned ToBI labels1. These models are very different in
nature but both adopt the ToBI ideas as their basis.

7.2 The Framework

The framework being proposed here is designed to constrain pitch event se-
quences in a similar way to which a framework built around ToBI would. How-
ever, the details we wish to concentrate on with this framework are not those
that ToBI is concerned with. Where ToBI focuses on sequences of pitch event
types and the relationship between neighbouring pitch events, the framework
we are developing here focuses on the relationship between sequences of pitch
events rather than the events themselves. This reflects the different goals of a
description system, which needs to show fine differences in detail, and a gener-
ation system which needs to produce broadly acceptable intonation. The details
within accent sequences are not ignored but are just considered less important—
and are therefore not explicitly part of the framework. The primary difference
then between the framework proposed here and a ToBI based framework is that
this framework specifies prosodic structure at the phrase level, whereas ToBI pri-
marily concentrates on specifying structure within the phrase.

To an extent the internal details of accent sequences in this framework are left to
be general and flexible enough to incorporate existing frameworks such as ToBI
or tilt within our framework. That is, the constraints laid down by the framework
being developed here are designed to not contradict any of those which define
the ToBI or similar frameworks. As they operate at different levels of the prosodic
structure, constraints placed by the use of ToBI would not conflict with our con-
straints and hence a ToBI or similar framework could be incorporated within the

1This model is not discussed here because it is not in general use and is not capable of gen-
erating contours in all situations. It has particular problems when accents and boundaries occur
close together.



7.2. THE FRAMEWORK 115

framework proposed here and we could use this combined framework to build
an actual model for generation. This approach is taken in chapter 9, where a
linear regression model is built within our framework using ToBI.

The framework proposed here concentrates on providing prosodic structure to
place sequences of accents within.

Using the utterance structure developed in previous chapters, we deem an ut-
terance to consist of one or more IP phrase type units. Each IP consists of one
or more TG phrase type units. The results of chapter 4 indicate that the relative
position of the IP within the utterance is not regarded as important, whereas the
relative position of the TG within an IP is. Following this, we use a three way
initial-medial-final distinction rather than an � -way distinction. This structure is
illustrated by figure 7.1. Each TG then consists of a sequence of accents followed
by a boundary. This is illustrated in figure 7.2.

The framework can be regarded as a series of finite state networks. These are
shown in figure 7.3. Here the top diagram shows that an utterance is just a se-
quence of one or more IPs. The middle diagram shows that an IP is a sequence of
TGs. The status of the first and last TG are considered distinct from any medial
TGs. If there is only one TG in an IP then it is treated as a final TG. This is so that
any final lowering properties modelled by this TG are manifested. A separate
class of TG representing IPs consisting of only one TG was not used to simplify

Utterance

� � � � � � 
�
 


��� � � � � � � � 
�
 
 ��� 	 ��� � � � � � � � 
�
 
 ��� 	 ��� � � � � � � � 
�
 
 ��� 	

Figure 7.1: Utterance structure adopted by the framework.

TG

� � � � ��� 
�
�
 �

Figure 7.2: TG structure adopted by the framework
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the model because the analysis that our distinctions are based upon was not suf-
ficient to provide us with this distinction. Initial TG properties will be lost for
IPs of one TG and in circumstances where it is considered crucial to accommo-
date this, for example in a system which generates many very short utterances,
a separate TG category could be added.

The lower diagram shows the internal structure of a TG. A TG consists of a se-
quence of at least one accent followed by a boundary. Where there are more than
four accents in a sequence, the third one is duplicated as our analysis showed
that after the third accent in a sequence the variation between subsequent non-
final accents was small and mostly insignificant.

In the case where there is only one accent in a TG, data representing the first
accent in a sequence is used. This is chosen because the analysis showed the
first accent in TGs was raised significantly in pitch compared to the other ac-
cents in the TG. This effect may be related to the broadcast news domain that the
data is taken from and may not be universal. In a situation where this raising
is not expected to occur or is just not wanted, it would be preferable to adapt
the framework to use the last accent from the sequence so that the initial high
position properties are lost.

If the assumption that the final accent in a sequence is the nuclear accent is being
made, it may be more appropriate for the final accent to be the one which is used
in a single accent sequence. We do not make this assumption here. Lone accents
could alternatively be treated as a special case.

The three networks shown in figure 7.3 form a recursive transition network rep-
resenting the utterance as a whole. However, the network is really only compo-
sitional as there are only calls to the TG network from the IP network and only
calls to this from the U network. So, the whole system can be thought of as an
abreviated description of a single large finite state network, where for example,
there is a seperate TG network in the place of each of the

��� � , � � � and
� � 	

nodes in the IP network.

Using the framework as described so far, each pitch event for which we need to
generate an f0 contour can be parameterised by three variables: TG type, Event
type and Accent number as follows:

TG type:
� � � 	 � � � or

� � 	
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Pitch event type: � � 	 � � 	 ����	�� � 	 ����	 � � � or ��� �
Accent number 	 
�
 � (accents only)

We refer to the parameters associated with a given accent which describe its
prosodic position within the utterance as its context, opposed to those which de-
scribe the accent itself, which we refer to as its description. Description would
include f0 position and time alignment with segmental structure, context would
include TG type.

The principle behind the modelling techniques being developed here is that a
pitch event should be modelled in its context and that context is provided by
the framework. The framework can now be thought of as providing the set of
context parameters specified above. A model is built within this framework by
modelling pitch events which have the same parameter values together.

There are a couple of extra inclusions which could be made to the framework,
which are not used here as the data analysed was considered insufficient to carry
out the analysis appropriately to provide such a framework.

Pitch event context could be made more specific by including an extra param-
eter Accent count which holds a count of the total number of accents in the TG.
This would then cause accents in different length sequences to be modelled inde-
pendently. As this increases the number of contexts significantly, which would
in turn increase the complexity of any model based on the framework, it is not
used here.

A further reason for not using such a finer distinction between pitch events is that
the accent context may need to include Accent type. By accent type we mean a
categorisation which determines accent shape. Although accent type is generally
considered to describe the accent rather than its context, if tune is considered to
limit accent type choice this also makes it part of the context.

It is not always necessary to model accent type at all, as a model built within
the framework may implicitly account for accent type, like Tilt does with the tilt
parameter (see section 2.7). Most accent description systems however do make a
distinction between accent types, for example H* versus L+H* in ToBI.

As the need for an accent type specification is model dependent, it is not included
within the framework, but is suggested as an extension to the framework to be
used where appropriate. If the ToBI pitch events, for example, were being used
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by a model, the ToBI framework would be incorporated within this framework
using the accent type parameter.

One of the ramifications of providing a detailed context within which to model
pitch events is that the framework also implicitly incorporates the modelling of
declination and final lowering. This is because their effects on pitch events at
different positions in the utterance are captured by the use of context. Thus any
declination or final lowering present in data that a model is based upon would
be retained with the framework. For example, if third accents in sequences are
lower than their preceding neighbour because of declination, this will be cap-
tured by the use of context and seen in resulting synthesis.

We now consider the implementation of two models using the framework de-
scribed so far in this chapter. The first is a simple rule based model and the
second is a more complex statistical model.

7.3 Simple Hat Model

This section describes a Festival implementation of a very simple intonation
model built within the framework described in section 7.2 This model extends
the idea of a model which places simple ’hats’ on accented syllables. Each accent
is represented by three pitch targets, at the beginning, middle and end of the
accented syllable. An f0 contour is then generated in a “join-the-dots” fashion.
This generates an intonation pattern like that shown in figure 7.4

Festival incorporates a simple hat model as it is easy to implement and easy to
use when no other model is available, for example when developing a synthe-
siser for a new language.

The intention here is to produce a better model from it by using the framework
described in section 7.2. This serves well to demonstrate our framework and if
successful will provide the groundwork and a baseline for building other mod-
els.

A simple hat model was implemented using the described framework. The pitch
target points for each pitch event instead of being single fixed predetermined val-
ues are predetermined values based on the context provided by the framework.
The specific values the model assigns are based on the mean values found by the
analysis in earlier chapters. Our intention is to show that the variability of the
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target values introduced by the context turns the simple hat model into a viable
model for speech synthesis.

7.3.1 F0 normalisation

At this point an issue of normalisation arises. We have mean start, peak and end
position f0 values for all accent contexts prescribed by the framework. These
were produced as a byproduct of the ANOVA tests carried out as part of the
analysis. However, these values are specific to f2b. As there is not currently a
Festival voice of this speaker, these values are not appropriate. Furthermore, as
all of the standard Festival voices are male speakers and f2b is female the values
cannot be used at all without a suitable transform to rescale to an appropriate
male pitch range.

Therefore, to build a model from these values we have two options available
to rectify the pitch range problem: we can either apply an arbitrary scaling to
all the f2b values to move them into our speaker pitch range or we can define
a contextual normalisation process which provides us with a set of normalised
parameters which we can scale to any speaker they are being applied to. The
normalised parameters will then need suitable scaling factors to map to a new
speaker, which could be calculated by either a little analysis of that speakers
pitch range, or by estimation. We choose the normalisation process as this al-
lows the data to be easily adapted to any given voice, and provides a process
for adapting other data. We realise that the actual differences between a male
and female voice are much more complex than the simple pitch range scaling
suggested here, but the deficiencies in the resulting quaility of diphone synthesis
make it not worthwhile to do anything more complicated.

For our model then, we normalise each target point of a pitch event with respect
to the TG component of the target. That is, we normalise target points relating to
pitch events in initial TGs with respect to the measured mean and standard devi-
ation of the f0 measured throughout all initial TGs in the database and likewise
for other contexts.

The normalisation process is a simple calculation of a Z-score for each TG type.
The resulting Z-scores are then used by reversing the process using a mean and
standard deviation related to the pitch range of the voice being used rather than
that found by the analysis. The equations used for this process are 7.1 and 7.2.
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Equation 7.1 gives the transformation from pitch values within the database to
the normalised values which are part of the model The mean value of partic-
ular target points in a TG context (

� . � .�� ) is converted into a z-score ( � ) using the
database mean (

���
� .�� ) for the overall pitch range of the specific TG type and its re-

lated standard deviation ( �
�
� .�� ). This normalises a given target point with respect

to the pitch range relating to the type of TG that it is in, opposed to normalising
with respect to the pitch range of the speaker as a whole which would be more
variable.

The normalised target values for f2b are shown in table 7.1.

Accent number Start target Peak target End target
Initial TG

1 0.47 1.40 0.42
2 -0.18 0.52 -0.24
3 -0.48 0.23 -0.53
4 0.02 0.43 -0.66

arb -0.59 0.04 0.20
afb -0.15 -0.06 -1.74
rb -0.86 -0.20
fb -1.19 -1.34

Medial TG
1 0.23 1.26 0.32
2 0.15 1.02 -0.02
3 -0.16 0.62 -0.26
4 -0.15 0.83 0.20

arb -0.68 1.13 1.56
afb 0.20 0.84 -1.24
rb -0.61 0.32
fb -0.80 -1.15

Final TG
1 0.37 1.24 0.24
2 0.22 1.03 0.10
3 0.05 0.74 -0.32
4 0.04 0.92 0.03

arb -0.40 1.05 1.76
afb 0.36 0.80 -1.54
rb -0.68 0.56
fb -0.53 -1.60

Table 7.1: Normalised target point frequencies for pitch events in each prosodic
context.
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Equation 7.2 then takes the normalised target value and scales it to the new
speaker’s pitch range for a given TG context using the appropriate mean and
standard deviation (

���
� .�� and �

�
� .�� ), this produces a target point ( � � ) which is used

for synthesis.

� �
� . � .�� ��� � � .��

�
�
� .�� 	 (7.1)

� � � � �
�
� .�� "���� � .�� (7.2)

To use normalised target scores we need to know means and standard devia-
tions calculated over the set of TG contexts for the target voice (

���
� .�� and �

�
� .��

in equation 7.2. Unless there is sufficient data recorded from the speaker of the
diphones to calculate this information from, these parameters will have to be es-
timated, and fine-tuned to produce an acceptable pitch range. This fine-tuning
was done by producing a series of examples with different means and standard
deviations and choosing the most natural sounding.

There are other, possibly better, ways to model and ‘normalise’ pitch range. Pat-
terson’s (2000) approach seems particularly promising. This approach is not used
here as the tools to use such an approach automatically within a speech synthesis
system are currently not available.

7.3.2 The model implementation

This simple model has been implemented for the ked diphone voice for Festival.
The model works on an utterance which has been hand labelled for accents and
boundaries at the syllable level. This is done to reflect the input expected by
a language system, as this is our target application. The voice specific mean
and standard deviations required to produce actual target values from the nor-
malised target values were estimated by starting with values suitable for a male
speaker and then repeatedly adjusting them based on the results of synthesis.
The selected values are shown in table 7.2. The mean for initial TGs was selected
to be slightly higher than that of subsequent TGs to reflect that found by the
original analysis of f2b.

Resulting synthesis shows that the effects of declination and final lowering can
be modelled implicitly as expected and are clearly visible in the example shown
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in figure 7.5. The differences in the height of accents between the different TG
contexts and within sequences in the same context are reflected by the resulting
target points.

7.3.3 Conclusions

This model, even though simple, produces reasonable results especially when
considering that there is no accent timing being taken into account and all ac-
cents are placed over complete syllables. Even a naïve listener can tell that this
model is an improvement on the original simple hat model which has no varia-
tion between accents. As there is little extra cost involved to produce this model
in place of the simple hat model, this suggests that the use of prosodic structure
is worthwhile.

This model is still an order of magnitude worse than the standard statistical tech-
niques used for text-to-speech (this can be seen from the evaluation results pre-
sented in section 8.3). This is not surprising considering that the standard sta-
tistical techniques account for many aspects of speech that this simple model
does not. This model however, makes a good intonation model for testing a new
language or dialect before a better model can be built.

The challenge is to show that the addition of prosodic structure can also be used
to improve upon the standard statistical models to provide the flexibility re-
quired for intonation models where the intonation is dictated externally rather
than by the synthesiser’s analysis of the input text.

The simple hat model will be evaluated in the next chapter, but we first build an
accompanying statistical model.

TG
���
� ��� �

�
� ���

i 110 15
m 100 15
f 100 15

Table 7.2: Voice parameters for festival’s ked diphone voice.
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7.4 A Statistical Model

In this section we describe the building of a statistical LR model for Festival using
the framework described in section 7.2. As the f2b speaker is American, we build
a new intonation model for one of Festival’s existing American English voices.

7.4.1 Background

Both CART and LR models (see section 2.11) can be used to predict the f0 target
values for a given syllable, although in practice LR models are prefered as they
tend to produce better results in this situation. Like the hat models described in
section 7.3 they predict an f0 value at three points for each syllable. Unlike the
hat models they predict f0 values for all syllables rather than just the accented
ones. This means that the peak of an accent is not modelled explicitly like it
was in the hat models, where it was forced to be in the middle of the syllable.
If for example, a peak falls at the end of a syllable then the f0 at the end of the
syllable could well be the highest f0 value with a decline into the next syllable.
Figure 7.6 shows a stylised example of what type of f0 variation these kinds of
model can produce. Here, accent 1 has a central peak just like accents generated
by the hat models. Accent 2 however, has a slight dip preceded by a late peak.
This configuration of f0 points is more complex than what could be generated by
the hat models.

The framework developed earlier in this chapter can be incorporated directly
into a LR model, by including features such as ‘TG type’ and ’accent count’ both
for the current syllable and the surrounding syllables, so that a component which
represents the variation between the different contexts specified by the frame-
work is incorporated into the resulting model.

7.4.2 Evaluation measures

Results for LR models are usually reported using the root mean square error (RMSE)
and Correlation ( � � ). The original pitch contour from real speech is compared to
the pitch contour resulting from resynthesis using the same text and other lin-
guistic information. RMSE scores a point by point average f0 error for a target
contour and correlation shows how well the contour’s variation follows a tar-
get contour. The use of these scores for intonation is somewhat ungrounded
as they do not correlate well with perceptual ratings of the difference between
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contours, which means that two contours which are perceived as conveying the
same meaning may have a large RMSE score. See Clark & Dusterhoff (1999) for
further discussion on this. However, in the absence of a robust well proven al-
ternative we resort to reporting RMSE and ��� values here.

We compare two new models to the default linear regression model which Festi-
val uses. Our aim is to produce a model which is more flexible than the default
Festival model and hence more suitable for use with language systems. We have
reduced the number of labels identifying accents, but increased the richness of
the explicit prosodic structure, with the intention that the richer prosodic struc-
ture allows us (or the language system) to be more prescriptive about where
accents occur. Lists of specific features used in both the default model and the
model trained here are given in Appendix C.

Model 1 is a model which is trained on the set of features that the default Festival
model is trained on except that the features relating to accent/boundary type
have been changed to accommodate the simplified pitch event labelling scheme
being used here, and in addition features are added to represent the TG context
defined by our framework. This model is later refered to as the Context LR model
when compared with other models.

Model 2 is an an attempt to use the framework much more explicitly. Here each
position in the framework is represented by a feature, so there is a feature for
“second accent in a IP-medial TG”. Features for previous and next syllable are
included here but as this already results in 200 features, features for two syllables
away from an accented syllable are not included. Also this model is not trained
using a stepwise procedure as most of the features are mutually exclusive from
each other. See section 9.2 for discussion of the consequences of mutually exclu-
sive features.

Model syllable start syllable mid syllable end
RMSE � � RMSE � � RMSE � �

Default Festival 27.88 0.25 28.29 0.33 27.14 0.29
Model 1 32.73 0.22 31.39 0.36 30.19 0.33
Model 2 37.48 0.21 31.42 0.38 - -

Table 7.3: RMSE and ��� comparisons of various linear regression intonation
models
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Results for these models are shown in table 7.3. Model 1 is shown to be compa-
rable to the default Festival model. Its RMSE values are slightly worse than the
default Festival model, but its correlation values are slightly better. This is the re-
sult of trading accent specifications for prosodic structure. If good synthesis can
be achieved with this model then we have achieved the flexibility we require.

Results for model 2 proved much worse, suggesting that there was insufficient
data to train the large number of parameters in that model. This model is aban-
doned at this point.
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Utterance (U)
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Figure 7.3: Finite state networks representing the prosodic framework. The top
model represents the overall utterance structure, the middle model the IP struc-
ture and the bottom model the TG structure.
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Figure 7.4: Example of the intonation pattern generated by a simple hat model.
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Figure 7.5: Example intonation contour for the utterance ”The bartender and a
mechanic who stopped by to watch the programme expressed their displeasure
with their congressman.”
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Figure 7.6: Example of a stylised intonation pattern generated by a statistical
model.



CHAPTER 8

Evaluation

The aim of this chapter is to further evaluate the models described in the pre-
vious chapter. As well as taking a closer look at the output generated by these
models we will verify that the synthetic speech produced by the models is ac-
ceptable to human listeners and an improvement on currently available intona-
tion models.

One of our main goals was to try to capture the quality of the broadcast news
style of speech, and we shall evaluate perceptually if we have been able to achieve
this. We shall also consider if our models are suitable for more general use by
looking at speech from other domains.

With other domains in mind, our hypothesis is that a large amount of what
makes broadcast news sound like broadcast news is related to the placement of
accents rather than the shape of the accents themselves. Broadcast news contains
a lot of accents and they often occur in unusual places. As we are de-coupling
the contour generation from the accent prediction, we should be able to generate
speech which sounds less like read news by placing accents more appropriately.

8.1 The Broadcast News Domain

We first look at an example utterance from the data set that was used to train the
models. This particular utterance is one that was removed from the training data
(omission usually results from a missing label file). Figure 8.1 shows the natural
speech and pitch contour. The most notable feature is the wide variation in f0
from a resting level of around 150Hz to peaks of around 280Hz, with very little

129
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evidence of declination across the utterance as a whole. There are however quite
large dips to around 100Hz at the L-L% boundaries.

expressed their displeasure with their congressman
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Figure 8.1: Example Broadcast News utterance from f2b. Natural Speech, female
speaker.

We compare this contour with two synthesised contours. We use Festival as the
synthesis platform, as it allows us to control the intonation in a way commercial
synthesisers do not currently allow. This is more appropriate as we are particu-
larly interested in using the input from language systems which would want to
provide intonation patterns explicitly or at least provide strong hints to what an
intonation pattern should be.

We compare Festival’s default LR model, which is the best choice of model cur-
rently available for use by a language system using Festival, with the Context LR
model developed in the previous chapter.
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Synthetic speech was produced using Festival in two ways. One method was
to use the hand marked ToBI labels in conjunction with the default LR target
prediction model. The second method was to map the set of ToBI labels onto to
the simpler ‘a/b’ labels used by the Contextual LR model, using the following
simple mapping:

��� � � � � � ��� ���
� � ���� � � � � � � � ���
��� �

��� � � � ��� �
� � � ��� � ��� � �� � � � � � ���

� �

and including the relevant TG context information along with these symbols.

Figure 8.2 shows the synthetic pitch contours that are produced.

Comparison of the two synthetic contours reveals that they are reasonably sim-
ilar. This is expected as they are essentially models of the same type trained
on the same data. The differences however are interesting. Looking at what
equates to the first TG of the utterance, the section relating to “The bartender
and a mechanic”, both contours produce a pronounced first accent, but only the
Context model produces the dip towards the end of the word ‘bartender’ found
in the natural speech. The default LR model then goes on to produce an accent
of almost equal height on ‘mechanic’ where as the Context LR model produces
a smaller accent, which again is a better match to the natural speech. In gen-
eral the boundaries are reproduced more accurately and relative accent height
is improved. These features are what we would expect to see based on the im-
provement in correlation that was found over the default LR model in the previ-
ous chapter. The context provides extra information about how individual pitch
events differ from others that are close by.

Overall pitch placement and pitch range are harder to comment on as the syn-
thetic speech is based on a male voice rather than the female voice of the original
data. The pitch range of the Festival model declines a little over the utterance,
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where it seems to not do so, or reset more frequently, in the natural speech, but
this effect is very marginal.

8.2 The Museum Domain

In recent years museums have moved from just having information cards next to
exhibits to having pre-recorded speech which is accessed by various means when
one looks at an exhibit. This has led to research into the automatic generation of
this type of information with the aim of making the content more dynamic, with
particular interest in the ability to make comparisons between recently visited
exhibits and to personalise the information with a particular target group of visi-
tors in mind. This research interest in the museum domain has led to a potential
application for speech synthesis and has generated data to test synthesis with.

The domain is similar to broadcast news in that preprepared information is spo-
ken aloud, but different in that the style is a generally calmer style than broadcast
news, with less accenting, and less dramatic pitch variation.

The text shown in figure 8.3 is a sample from the M-PIRO project (see section 3.4.1).
We consider how well we can generate intonation for it. This utterance has been
generated by a language system, which can also supply information that should
strongly influence where pitch events should be placed. As the system does
not currently make this information available, the utterance was read by a male
speaker and ToBI labels were assigned by a human labeller.

This utterance was used as a test to show how well the contextual LR model
performs in this domain. We consider two issues: Does the model produce into-
nation acceptable for use in a domain other than that for which it was intended,
and is it better than Festival’s default LR model for input not generated by the
CART prediction method that the default LR model is designed to work in con-
junction with. More specifically, does the model produce reasonable intonation
when the accent marking is externally provided and not predicted by Festival’s
own analysis of the text which would not necessarily provide the correct accents
and would result in worse sounding intonation.

We again stick to using Festival as other ‘better’ synthesisers don’t necessarily
allow us to control the intonation in an appropriate way. Synthetic speech was
produced using Festival in the same way as in the previous section.
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Figure 8.2: Example Broadcast News utterance from f2b. Synthesised speech.
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This exhibit is a type  A amphora. 
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It was created during the historical period called the archaic period
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Figure 8.3: Example utterance from the Museum domain. Natural Speech, male
speaker.
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Figures 8.4–8.6 show the intonation contours of the synthetic speech. These are
not shown with the natural speech as differences in segmental durations mean
the utterances do not align well.
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Figure 8.4: Museum domain synthetic speech (part 1)

Comparison of the synthetic contours reveals that they are similar as the previous
examples were. On closer inspection the contour generated by the Contextual
LR model is slightly ‘bumpier’. In figure 8.4 the three accents towards the end of
the phrase are more distinct and compare more favourably to the pattern found
in the natural speech. In figure 8.5 the Contextual LR model shows clear small
perturbations representing the lexical stress of unaccented words, which is not
so obvious in the default Festival model. The default Festival model probably
fails to account for lexical stress because it is expecting ‘over accented’ input,
where an accent is likely to be present on much of the lexically stressed material.
The Contextual LR model’s ability to model unaccented material in this way,
whilst still retaining clear accented material suggests that we may have achieved
our goals in that the Contextual LR model produces good intonation where the
accent marking is provided by an external source, and it is suitable for a domain
other than that which it was trained on. We will see whether this is in fact the
case in section 8.3.
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Figure 8.5: Museum domain synthetic speech (part 2)
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Figure 8.6: Museum domain synthetic speech (part 3)
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Visually, the Contextual LR model also seems generates more distinct bound-
aries, particularly noticeable at the end of figures 8.4 and 8.6 which are IP final
boundaries. This suggests that the use of prosodic structure that contributes to
the ‘context’ part of the model is appropriate. So as long as the Contextual LR
model proves to be perceptually acceptable, the example here suggests that we
can generate better intonation than the Festival default model with a slightly
reduced set of symbols.

8.3 Perceptual Evaluation

A simple perceptual evaluation experiment was performed, where listeners were
asked to judge which of a pair of utterances was ‘most appropriate’. The inten-
tion was to obtain a result to show that the intonation produced by the models
is reasonable, based on a qualitative measure rather than the quantitative mea-
sures which we have previously expressed scepticism about, namely RMSE and
correlation. We restricted ourselves to this form of evaluation, as more complex
paradigms for evaluating synthetic speech are somewhat undeveloped, and it is
not clear which type of questions really need to be asked to obtain results that
can be interpreted in a meaningful way.

8.3.1 Methodology

We had two basic models we wished to evaluate: the Contextual Hat model and
the Contextual LR model. There were also a number of natural and synthetic ut-
terances we could compare to, ranging from completely natural speech through
natural speech re-synthesised to completely synthetic speech produced by vari-
ous other methods.

The experiment was designed to test two hypotheses. The first hypothesis is
that subjects find discriminating between different, but quite similar, synthetic
intonation patterns difficult. This hypothesis is based on the finding of Clark
& Dusterhoff (1999). The second hypothesis is that subjects prefer the natural
intonation over all the synthetic varieties, but prefer the new Context LR model
over the other synthetic varieties.

To try to control for segmental quality all the speech was created by diphone
synthesis using Festival. The overall speech rate was also controlled as much as
possible to provide comparable utterances. Attempts to include the intonation



138 CHAPTER 8. EVALUATION

from other speech synthesis systems in the experiment by overlaying pitch and
duration information from these systems onto Festival’s diphones produced very
unnatural sounding speech. As the resulting speech was clearly distinct from the
other samples, particularly with respect to overall pitch range and speech rate, it
was not used in the evaluation.

This highlights a problem with manipulating the intonation of speech in general.
Duration and f0 interact with each other in such a way that it makes it very
difficult to manipulate one without the other, and realistically we do not know
how to manipulate either well enough and consistently enough to change the
duration of an utterance and keep it natural.

The result is that many of the manipulations that initially seem the right thing to
do in producing synthetic speech for evaluation are not possible. For example,
the only realistic way of altering the overall speaking rate of a natural utterance
is to get the original speaker to say it again. Manipulating the duration by any
means other than adjusting individual segment lengths relative to their context
results in unnatural speech. Even if it were possible to adjust segments in this
way, adjusting the f0 contour to match these adjustments is then itself a problem.
This makes it very difficult to obtain natural speech that is similar enough to
synthetic speech that listeners can make comparison judgements on and base
those judgement on the particular aspect you are interested in.

Next, having obtained natural speech, we want to re-synthesise it to degrade its
quality to match that of the synthetic speech. This can be done by taking the
segmental timings and pitch contour of the natural speech and using them to
produce synthetic speech. Unless the default phone durations and pitch values
are very close to those of the natural speech, the quality of the resynthesis turns
out worse than that of synthesis because more signal processing is required to
produce the required result, This is particularly true of diphones. We could al-
ways degrade the synthetic speech as well, but we are then moving away from
making comparisons to actual synthetic speech as it is output from the synthe-
siser.

Comparing two speech synthesis systems is generally harder as you tend to have
no control over either durations or pitch to start with. If you do have control and
you manipulate them, you are probably moving the quality of the synthesis away
from its optimum and are no longer making a fair comparison.



8.3. PERCEPTUAL EVALUATION 139

With this in mind the following utterance types were chosen for use in the eval-
uation.

Natural (Nat) Diphone synthesis is performed using segment durations and a
pitch contour extracted from a recording of the sentence spoken by a real
speaker, so that the prosodic component of the utterance is completely nat-
ural. This type of synthesis emulates natural speech as closely as possible.

Festival Default (FD) Here the intonation is produced using Festival’s default
intonation model. This consists of a CART symbolic prediction stage fol-
lowed by a LR target generation stage. Duration is predicted by a Z-score
CART model. All models are trained on f2b. This type of speech provides
a comparison with Festival as a text-to-speech system.

Festival Assigned (FA) Here pitch event labels are supplied to the same LR gen-
eration stage as above. This type of speech can be considered as the best
Festival can do when intonation is assigned externally.

Contextual Hat (CHM) Intonation is generated by the Contextual Hat model
discussed in section 7.3. Durations are based on the the same Z-score model
as above.

Contextual LR (CLR) Intonation is generated by the Contextual LR model de-
scribed in section 7.4. Durations are again based on the Z-score model
above

The stimuli were made as similar as possible on non-prosodic dimensions. In
particular an overall speaking rate was used to match that of the natural utter-
ance, as any further manipulation of this utterance would make it less natural.

To reduce the load on the listener only a subset of all the possible pairwise com-
parisons was used. The comparisons that were used are shown in figure 8.7.
The choices consider the Contextual LR model and Festival Assigned model as
the likely candidates for a real synthesis application. The comparisons were de-
signed to see how listeners judge them against each other and the other synthesis
types.

Each sentence1 was tested by 10 comparisons, the 5 comparisons above and the
same 5 again but with the presentation order reversed. Where the same ‘appro-
priateness’ judgement was made irrespective of order a positive judgement was

1The M-PIRO sentence is actually two sentences, but we shall call it a sentence to minimise
confusion.
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considered to have been made; disagreement with respect to order was consid-
ered to signify uncertainty.

Three sentences were tested: a short Timit sentence, a longer f2b sentence and an
M-PIRO sentence—a sentence generated by a real language system, an intended
application for this research.

To judge appropriateness the listeners were asked to judge which of each pair
they thought most appropriate for a given style of speech: the broadcast news
style in the case of the f2b sentence (from this domain) and the Timit sentence
(not from this domain) and a style suitable for a museum guide for the M-PIRO
sentence.

A sample of natural broadcast news was provided for comparison for the broad-
cast news style, and it was suggested to listeners that they were helping to select
a candidate to become a news broadcaster. For the museum style, the subjects
were just asked to say which they would prefer as a museum guide.

Each block of 10 utterance pairs for the sentences were combined and randomised
within the block for each listener. Listeners were presented with pairs of utter-
ances on a web page. Individual stimuli were played by clicking on icons. Sub-
jects could listen to each stimulus in a pair as many times as they liked and in
any order before making a decision.

8.3.2 Results

Twenty seven native English speaking subjects took part in the experiment. Ini-
tially a second non-native group was also included, but this was dropped as dif-

FD FA

CLR CHM

Nat

Figure 8.7: Comparisons used for perceptual experiment
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ferent levels of competence in English and different first languages made it diffi-
cult to justify treating these subjects as a valid uniform group. The subjects were
a mix of British English and American English speakers all listening to American
English speech. No trends were found to suggest that their background affected
their performance.

The first hypothesis, that speakers found discriminating between stimuli difficult
was evaluated by analysing the consistency of the subjects judgements for each
repeated pair of stimuli. If a subject made the same judgement the second time a
stimuli pair was presented as they did the first time it was presented, they were
judged consistent for that pair.

To be consistent a subject was required to judge a significant number of stimuli
consistently. We calculate level of consistency as follows at the 5% level: there
were 15 pairs of stimuli overall and the probability of making the same judge-
ment twice for two pairs of stimuli is 0.5. The number of stimuli pairs needed
to be judged consistent so that the probability that this would happen by chance
is less than 0.05 can be calculated by examining the c.d.f. of a binomial dis-
tribution with � � 	 � and � � � 
 � . We find that � � � ��� � 	 � � � 


�
� � � and

� � � ��� � 	�	 � � 

� � � �

. As this is a discrete distribution, we choose the
� � 	 � as

being close enough to 0.95 to be suitable.

We now categorise subjects as consistent or inconsistent based on their ability to
make 10 or more consistent judgements. 13 out of the 27 subjects, approximately
half, were able to make a consistent judgement, validating our first hypothesis
claim that this task is difficult. A closer look at the distribution of the level of con-
sistency of individuals compared to how they would be expected to perform by
chance alone strongly suggests that the subjects fall into two groups. Figure 8.8
shows a peak in the distribution around 8 pairs judged consistently. This reflects
the behaviour we would expect by chance, and approximately half of the sub-
jects fall into this category. A second much flatter component of the distribution
then stretches out to the right relating to where subjects can perform the task.
Some overlap between the components is to be expected as the subjects that are
consistent may not show a preference for each stimuli pair.

We now consider the nature of the actual judgements made by the subjects. To
do this we concentrate on those judgements made by the group of consistent
subjects. The inconsistent subjects are not considered further at this point.
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Figure 8.9 illustrates the judgements made by the subjects. The figure is split up
into the three sentence types. For each sentence type, the different model types
are shown as black boxes containing white text. The judgements between two
tested model types are shown as a line, running between the two relevant boxes,
with a number at each end indicating the percentage of times this stimulus was
preferred. Preference values over 65%, which we will see are significant, are
circled with a circle with a radius proportional to the preference value. This is
designed to allow the significant trends shown by the diagram to be seen at a
glance.

We see the following trends in the results. For both the Timit sentences and the
f2b sentences, there is no obvious trend towards preferring the natural intonation
contour over the synthetic ones that it was compared to. This is not necessarily
surprising for the Timit sentences as the natural intonation here is not specif-
ically broadcast news style that subjects were asked to rate as their preferred
choice. The synthetic intonation patterns are a somewhat closer approximation
to broadcast news style, although somewhat less natural than the natural Timit
intonation. The natural f2b intonation obviously is broadcast news style, so it

0

1

2

3

4

5

6

7

8

�

no. of subjects

4 5 6 7 8 9 10 11 12 13 14 15

expected distribution

inconsistent subjects

consistent subjects

Figure 8.8: Frequencies of number of stimuli pairs judged as consistent by indi-
vidual subjects.
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is unclear as to why subjects don’t find it the best example of the style. This is
possibly because of the way in which the pitch range has been mapped from the
original female speaker to the male synthesised voice, although this is done in
the same manner as it was for the LR models.

For the Timit sentences there is a clear preference for the CLR model, in all three
comparisons made against it, suggesting that the use of the TG parameters in
the model do make a difference and help to capture the style. Statistically, as 26
judgements are being made for each stimuli pair, 2 from each of 13 consistent
subjects, 17 of these judgements (65%) must be made in favour of one stimulus
to produce a significant response with � � � 
 � � . For the Timit sentences only
the comparisons involving the CLR model prove significant, and for the f2b sen-
tences only the CLR comparison with natural discussed above is significant.

The preference for the CLR model against the other synthetic models is not main-
tained for the f2b sentences, in fact there are no clear trends at all for these sen-
tences other than the CLR-natural comparison discussed above. This is most
likely due to the length of the utterances. The f2b utterances are nearly twice as
long as the Timit ones, with the intonation utilising the full range of TG structure.
We can conjecture that with longer sentences it becomes harder to make a com-
parison judgement on the sentence as a whole. Instead, subjects tend to make a
judgement based on a small part of the utterances which they find particularly
salient, possibly because it is particularly good or particularly bad. Different
subjects focusing on different thing and individual subjects focusing on different
parts of the utterances at subsequent presentations result in no clear preferences.

There is also no preference between the rule based ‘hat’ model CHM and the
FA model, suggesting that adding the TG information to such a simple model
is not sufficient to make it as good as statistical models. The Festival assigned
model is also never preferred to any of the other models, suggesting that accent
assignment is less critical than the generation of a good contour once an accent
is assigned.

For the museum sentences, the preference for natural intonation was significant.
This is the expected result, and contrasts the above results for the broadcast news
style sentences, adding more weight to the argument that the broadcast news
style is not considered 100% natural by listeners. There is a also a significant
trend towards liking the CLR model over the other synthetic models, which sug-
gests that the CLR model is suitable for other uses than broadcast news. As far
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as hypothesis 2 is concerned it is accepted for the Timit sentences, rejected for the
f2b sentences, and also accepted for the museum sentences.

8.4 Conclusion

We have seen that only half of subjects are able to make a simple preference
judgement consistently. The results found here reinforce the ideas presented
in Clark & Dusterhoff (1999), that untrained subjects find it very difficult to
make judgements on synthetic intonation patterns, particularly when the differ-
ences between the synthetic patterns are small when compared to the differences
between synthetic and natural examples. This highlights the need for careful
screening when performing perceptual experiments involving synthetic intona-
tion and particularly the need for consistency checking.

This consistency problem raises the questions: if so few subjects can consistently
make useful judgements, then what is the value of the experiments and are the
results from those that are consistent meaningful if they only reflect such a small
portion of the general population?

One of the other problems encountered here concerns the length of the stimuli,
particularly in the case of the f2b sentences, and it is not obvious how it can be
resolved. Presenting shorter stimuli is one solution, but this is not an available
option when wanting to specifically evaluate the overall pitch contour of a long
phrase.

We believe that the problems are to a large extent related to the methodology
being employed rather than in the data or with the subjects, and that because
of methodological problems some of the results may be more useful than oth-
ers. Problems with the methodology lie in the fact that very little work has been
done specifically developing techniques for evaluating the perception of syn-
thetic intonation, and the techniques adapted from other types of study, partic-
ularly where the stimuli are much shorter, do not work as well as they might.
Part of the reason for carrying out these experiments then is to discover what
the problems are and to refine the methodology to overcome them, as we have
seen that careful processing of the obtained responses can still yield useful and
meaningful results.

The results of the experiment show that the CLR model is a clear improvement
on its predecessors and that incorporating TG context information does produce
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a better model. The fact that the CLR model was the preferred broadcast news
style model, and also preferred for the less specific museum style, shows that the
model achieves both of its primary goals of capturing the style of the data it was
trained on, but also being useful for situations other than reading the news. It is
likely that the model captures enough of the broadcast news style to be appro-
priate for that style, but captures it in a way that it can be used for other styles
too.

As far as a building a better model for more general use than broadcast news, we
recommend that the modelling techniques used here are appropriate, but the f2b
dataset is not appropriate training data. Unfortunately other large, good quality,
single speaker datasets that are intonationally labelled are not freely available.
We attempt to find a resolution for this problem in the next chapter.



CHAPTER 9

LR Models with ToBI Input

9.1 Refining the Model

The new models discussed and evaluated so far have taken our simple accent
and boundary classification to specify pitch event type. We recall that the deci-
sion to use this form of input was based on both wanting to have a model with a
simple input which could be used without needing to subscribe to the complex-
ities of ToBI and the fact that f2b is somewhat biased towards H* accents, with
83% of accents being H* or !H*. The outcome of this bias is that we can gener-
ate broadcast news style speech from an intonation description which is simpler
than ToBI and this model is general enough for wider use, but it does only gen-
erate one type of accent, in ToBI terms, which may restrict its usefulness.

There are situations where the specific nature of the ToBI accents, particularly
those other than H*, may be important. For example, Pierrehumbert & Hirschberg
(1990) suggest that the L*+H accent is particularly good at expressing uncer-
tainty, and the L* accent for accenting content already introduced into the dis-
course. Broadcast news rarely requires such constructs but they become much
more important in a more general dialogue orientated systems. For example: L*
can be used to express contrasts and L*+H can be used when asking for confir-
mation.

As just noted, the problem with the f2b data is that it contains relatively few
low tone accents, and hence it is very difficult to train a model on f2b which
can produce such accents. The LR model trained on f2b which comes with Fes-
tival fails to generate these accents accurately. A model trained with the TG

147
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structure framework developed here and ToBI labels for accents would also be
expected to fail to capture these accents as none of the differences between the
original Festival model and the models developed here focus on strengthening
the importance of these types of accents, and hence there is no reason to expect
our model to perform any better. This hypothesis was tested by building such
a model. The model was built by replacing the simplified accent labelling we
have employed up to now by the original ToBI labels and retraining the model.
The resulting model is one which contains the prosodic structure components of
the framework developed in chapter 7 but then relies on ToBI mark-up for pitch
event descriptions.

Example output from this model is shown in figure 9.1. Here the utterance “the
cat sat on the mat,” is shown with the three different pitch contours: [H* H*
L-L%] a normal statement contour, [L*+H L*+H L-H%] a contour expressing un-
certainty and [L* L* L-H%] a contour to suggest that the hearer should already
know that the cat was sitting on the mat.

The figure shows only very slight differences in f0 for these three quite different
contours, specifically all the accents look like H* accents and all the boundaries
look like L-L%. This clearly validates our hypothesis that there is insufficient
data for f2b based models to reproduce these types of pitch events.

The format of the LR model allows us to gain more insight into how the model
treats these pitch events. Recall that the LR model consists of a sum of weighted
factors (see Appendix C for a full list). The factors representing different pitch
events are mutually independent and hence the contributions of the factors for
different pitch event types can be seen by examining their respective weights.
The weights for the L* and L*+H pitch events are shown in table 9.1 along with
those of H* which are shown for reference. For each pitch event the values shown

Accent syllable has pitch
event

previous syllable
has pitch event

s m e s m e
H* 21.0 15.0 7.3 0.0 0.0 0.0
L* 0.0 -27.2 -25.7 -14.2 0.0 0.0

L*+H 0.0 0.0 0.0 0.0 0.0 0.0

Table 9.1: Weights for features representing the f0 points for the syllable contain-
ing and the syllable following a pitch event.



9.1. REFINING THE MODEL 149

are the contributions made to an f0 target point in Hertz by the presence of a par-
ticular pitch event. Target points are shown for the start, middle and end of the
accented syllable and the following syllable. It should be noted that these values
are each only the contribution of a singe factor in a sum of thirty or more factors,
some which will increase pitch and others which will decrease pitch: for exam-
ple the factor ‘syllable is stressed’ may contribute to a rise in pitch of a stressed
syllable independently from a factor representing the presence of an accent. Ze-
ros mean that a factor was not considered to make a significant contribution to
f0 to be used as a factor and was therefore excluded by the stepwise training
procedure. This is the case for all of the weights which contribute to the L*+H
accents.

The stepwise procedure works by adding the factors to the model one by one
in order of perceived importance. This order is judged by calculating which of
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Figure 9.1: “The cat sat on the mat” with three different pitch contours generated
by a ToBI based model.
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the remaining factors can most improve the correlation of the model to a subset
of test data. If no factor can significantly improve the correlation the procedure
halts. The idea is that factors which do not uniquely contribute to representing
the data, because they are noise or completely dependent on other factors, are
excluded from the model.

The H* contributions raise the pitch in the accented syllable. The L* contribu-
tions lower the pitch at the end of the accented syllable and the beginning of
the following syllable, but using the model shows that this is not sufficient to
counter rises caused by other factors. The L*+H contributions as noted above are
nil. This is not unexpected as these accents are effectively a small group of out-
liers in the data and a model which does not model them correctly is still going
to model the 83% of accents and over 98% of syllables well. In the case of L*+H,
there are only 12 accents in the training data of 12600 syllables. The problem is
that in evaluating the L*+H factors the resulting change to all syllables is taken
into consideration, and as 98% of syllables are unaffected, the factors are judged
not significant.

Closer inspection of the L* and L*+H data shows that they are very noisy. Fig-
ure 9.2 shows a 20% sample of the L* accents from f2b. There is a clear mixture
of accent shapes that one might expect to be categorised as an L* and shapes that
one would not. Between 120 and 140 Hz there are a large number of roughly flat
accents, some which dip slightly but more which peak slightly. Between 160–200
Hz are a selection of more varied shapes, but again most do not look like stereo-
typical L* accents. There is also one largely erroneous shape peaking above 280
Hz.

Figure 9.3 shows all of the L*+H accents in the training data. The general shape
that would be expected for an L*+H accent would be a dip in pitch within the
accented syllable followed by a late peak at the end or into the next syllable. It
is clear here that there is pitch movement on both the accented and following
syllables, but not necessarily as would be expected for an L*+H accent. Some
accents peak rather early, and some, particularly those starting at around 200Hz
seem to just fall. This could well be the result of bad labelling.

Better ‘sample’ accents can be seen by making a comparison with L* and L*+H
accents taken from the ToBI examples database which accompanies te ToBI train-
ing materials. These are shown in figures 9.4 and 9.5. The ToBI data clearly shows
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a much cleaner distribution of points making up these accent shapes even though
the data is from different speakers in a range of recording conditions.

We can however go further than just comparing these values. We can attempt
to use the data from the ToBI examples to supplement the model in such a way
that it is better able to generate L* and L*+H pitch events. The ToBI data cannot
be added to the f2b data as the speaker pitch range characteristics are too varied
and there is insufficient ToBI data to make a significant difference anyway. The
structure of the LR model however can be exploited in a more subtle way.

Means of the measured f0 are calculated for syllable start, mid and end points
for the accented syllable. For the L*+H, means of the start, mid and end points of
the following syllable are also calculated. Example target accents are then syn-
thesised using the model previously trained on f2b. Three sentences were used,
with a rich enough prosodic structure to provide a total of eight accents, ensur-
ing there is at least one accent sample in each TG context. From these, mean
f0 target values were also computed to correspond to those obtained from the
ToBI dataset above. The difference between the f2b target points and the equiv-
alent ToBI mean is calculated and regarded as the error in the model. The ToBI
means were compressed by 0.6 in pitch range and then lowered by 40Hz in an at-
tempt to match the pitch range of f2b. This scaling is rather arbitrary but proved
more effective than the standard normalisation procedure that has been used
elsewhere. The problem is that the ToBI data comes from different speakers with
different pitch ranges and there are insufficient examples to calculate the indi-
vidual speaker pitch ranges in an accurate enough way to use the normalisation
procedure.

The linear scaling that was used is demonstrated in figure 9.6. The initial com-
pression was used to remove some of the excessively high values in the L*+H
accents. The subsequent shift was then used to move the average pitch closer to
f2b’s average pitch.

One of the ToBI L*+H examples was however excluded from the calculations as
an outlier as it appeared to be extreme and sound a little unnatural.

These means are summarised in table 9.2. The error value is then incorporated
directly into the model. This is done by exploiting the fact that there are factors
in the linear model which independently represent the presence of these accents.
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Figure 9.2: L* accents in f2b. This plot shows a random sample (20%) of the L*
accents in the f2b data. Each line is a single L* accent. Each line consists of three
points: the f0 at the start, middle and end of the syllable.

accent syllable next syllable
start mid end start mid end

ToBI L* 177 145 167
adjusted ToBI L* 147 124 140
f2b L* 173 163 157
error -26 -39 -17
ToBI L*+H 182 189 290 308 304 238
Adjusted ToBI L*+H 151 156 229 242 239 191
f2b L*+H 180 196 186 178 173 163
error -29 -40 43 64 66 128

Table 9.2: Mean f0 target point values for f2b model and ToBI data.
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Figure 9.3: The 12 L*+H accents in the f2b data set. Each accent is represented
by 6 points making up a line. The first three points make up the accent syllable
and the later points make up the following syllable, the dotted lines show the
connection between syllables. Large discontinuities at this join generally relate
to an unvoiced section between syllables.



154 CHAPTER 9. LR MODELS WITH TOBI INPUT

�

� �

���

	����

	 � �

�����

� � �

� ���

f0 (Hz)

start mid end
Accented Syllable

�

�

�

�

�

�
�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

	

	

	

Figure 9.4: L* accents from ToBI examples
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Figure 9.5: L*+H accents in ToBI.
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The calculated error value for a target point was added to the value of the previ-
ously trained weight for that factor.

The new factor weights are shown in table 9.3. These are obtained by adding the
error values from table 9.2 to the original model values from table 9.1.

Some of these values may seem extreme, but this is because they are intended
not just to model the particular contour in question but to counteract the other
factors in the default contour which may be opposing the required contour.

Synthesis from the resulting model gives pitch contours which are better than the
unaltered model. The shapes of both the L* and L*+H accents are more like those
that would be expected, but the pitch, especially with the H in the L*+H accents,
sounds artificially exaggerated. This is seems to result from a combination of the
exaggeratedness of some of the ToBI examples and the difficulty in mapping the

Original
pitch
range

x 0.6

Compressed
pitch
range

- 40Hz

Lowered
compressed
pitch range

Figure 9.6: Linear scaling as applied to the ToBI example data. Pitch range is first
compressed by 60% from the top and then lowered by 40 Hz.

Accent syllable has pitch
event

previous syllable
has pitch event

s m e s m e
L* -5 -66 -43 -14 0 0

L*+H -29 -40 43 64 66 128

Table 9.3: Manipulated weights for features representing the f0 points for the
syllable containing and the syllable following a pitch event.
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average ToBI pitch range to that of f2b. Example accents are shown in figure 9.7.
Artificially large high stretches are apparent following both L*+H accents.

This leads us on to consider the notion of an idealised f2b accent. We have shown
that the LR models can be manipulated by incorporating an error correction
based on example ToBI data, but the correction relating to a ‘sample’ ToBI accent
based on the average of a selection of ToBI accents is not really similar enough
to f2b’s pitch movements to provide a appropriate correction. This raises the
question: is it possible to use our experience of the f2b data and our expectations
of what we would expect to see with regard to L* and L*+H accents to produce
‘idealised’ f2b L* and L*+H accents and apply an error correction with respect to
these?

The advantage of this approach is that an individual accent for each category can
be tailored to fit directly into a single controlled context. This context can be cre-
ated by the synthesis of a single sentence. The contour of this synthetic sentence
can then be manually adjusted to represent the idealised accent. The error from
the model can be calculated and the original model adjusted. As we will have
only adjusted parameters which control the accent in question independently of
its context, these adjustments should be applicable to other contexts as well and
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Figure 9.7: “The cat sat on the mat” with adjusted pitch contours generated by a
adjusted ToBI model.
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produce reasonable synthesis results for accents in these other contexts. The abil-
ity to do this is directly helped by the way in which the model parameterises the
framework, as discussed in chapter 7 independently from the accent specifica-
tion.

Table 9.4 shows the figures for such an adjustment for the L* and L*+H accents.
Comparison with the previously adjusted weights of table 9.3 shows that these
adjustments are similar to the ToBI adjusted weights but less pronounced.

Figure 9.8 shows synthesis using these adjustments. The first accent in each fig-
ure is the manually adjusted accent that was used to perform the calculation,
and later accents in the example show the model producing an appropriate pitch
pattern in other contexts. After an initial error correction to match a visual repre-
sentation of ‘idealised’ accents further finer adjustments were made to improve
upon the perceived quality of the accents (this is why the adjusted parameters are
rounded to the nearest 5Hz). The resulting accents sound slightly exaggerated,
but are less dramatic than the accents made with ToBI adjustments. This pro-
vides a suitable compromise which produces clearly distinct accent types which
do not seem too artificial.

The discussion here has concentrated on L* and L*+H but the arguments are
equally valid for other accents and boundaries. L-H%, H-H% and L+H* were
also manipulated in the same way as L* and L*+H. Resulting weights for the ToBI
adjustments and the idealised f2b adjustments are summarised in appendix D.
The use of L-H% adjustments is also demonstrated in figures 9.7 and 9.8 as L-H%
is used as an appropriate boundary tone for the example contours. There were
however some problems with finding a suitable idealised L+H* accent. This is
discussed later insection 10.3.

Accent syllable has pitch
event

previous syllable
has pitch event

s m e s m e
L* adjusted weights -5 -45 -20 -10 -5 0

L*+H adjusted weights -5 -30 20 60 60 5

Table 9.4: Calculations for manually adjusted model weights.
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9.2 Changing the Model

We have shown that parts of the LR models can be manually altered based on
new data or a combination of intuition and examining the resulting synthesis.
This section takes a more detailed look at the extent to which we can do this and
the implications and consequences of such actions.

We need to know whether altering a given parameter will have an undesirable
effect on the resulting model. This is effectively asking how changing a given
parameter will affect the resulting model.

To answer this question we need to understand both the structure of the variables
being used to train the parameters in the model, including their relationship to
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Figure 9.8: “The cat sat on the mat” with three different pitch contours gener-
ated by a manipulated ToBI based model. Grey contours show the equivalent
unmanipulated contour.
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each other, and the way in which they contribute to defining the dependent vari-
able f0.

As we will be discussing how independent two variables are of each other in
terms of the correlation between them, to avoid confusion we will refrain from
calling the variables from which the parameters are trained ‘independent vari-
ables’ and call them ‘factor variables’ instead. We will also not call f0 the ‘depen-
dent variable’ but rather the ‘predicted variable’.

9.2.1 Correlation between factors

We start our analysis of the LR f0 model we have built here by looking at the cor-
relation between the input factor variables by calculating the Pearson correlation
coefficients between all pairs of input variables. As there are 88 input variables
there are 3828 unique pairs of correlations. These are presented graphically in
figure 9.9. A table of such values would be very difficult to interpret. The key to
variable names and descriptions is given in table C.1. Recall that most variables
come in groups where the main variable is supplemented by four others which
provide a 4 syllable window. That is, if variable A registers some property of the
current syllable, the variable p.A registers this property for the syllable previous
to this syllable and pp.A registers this property for the previous-previous sylla-
ble. n.A registers it for the next syllable and nn.A registers it for the next-next
syllable.

The general picture that figure 9.9 shows is that there is a large amount of low
level correlation between pairs of factor variables. Correlations tend to show up
as short diagonal strips in the figure. This is a direct result of the grouping of
parameters representing a window of syllables. For example: if variable A cor-
relates with variable B for a given syllable then for the next syllable, variable p.A
will correlate with variable p.B by the same amount since these two correlations
compare exactly the same properties of syllables. Also, where there is a strong
correlation between such a series of variables there is often a weaker correlation
surrounding the strip suggesting that when variable A correlates with variable
B strongly, variable A will also correlate less strongly with variable p.B and/or
n.B.

A example of this is visible between the variables 5–9 on the � -axis and 20–24
on the � -axis, representing a correlation between a syllable being TG medial and
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having an H* accent. Such a correlation is a little surprising, but can be inter-
preted as saying that there are a lot of H* accents in IP medial TGs. In such a
situation a correlation between the next or previous syllable belonging to a me-
dial TG and the presence of an H* accent, or a correlation between a medial TG
syllable and the next or previous syllable carrying an H* accent is understand-
able due to the locality properties of the TG variable. If the current syllable is a
medial TG syllable then the syllables either side are likely to be too.

Some groups of variables are somewhat more independent than others, the 30-34
group (L*+H accent), the 50-54 group (H-L% boundary) and 55-59 group (H-H%
boundary) in particular. More generally the groups which are the most indepen-
dent are the groups representing the accent and boundary classifications – with
the exception of H* and L-L%.
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Figure 9.9: Correlations between factor variables used in LR model. Colour rep-
resents the r-value of the correlation. See table C.1 for key to variables names on
each axis.
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The variables representing the pitch events other than H* and L-L% could be
independent, i.e. not correlated with each other for two reasons: they could
be independent because the data is structured in a way that makes them truly
independent or they could be independent because there is insufficient data for
correlations between these variables to be seen. The latter case is most plausible
as the H* variables do correlate with other variables and they have equal status
with the other accent variables within the structure of the data. This is useful in
its own right as we can use this lack of correlation where it would be expected to
indicate that the data is insufficient to train the related parameter.

The variables representing the non H* accents and non L-L% boundaries are the
ones that we wish to change, as these are the pitch events which occur less fre-
quently in the data. The indepenence of these variables helps to ensure that any
variance they contribute to the resulting model is unique, i.e. is additive and
contains no redundancy, and that we will not be adversely affecting the contri-
butions of other parameters.

9.2.2 Factor contributions to the predicted variable

In building the original model we used a greedy stepwise procedure to compute
and add parameters, one by one, to the model whilst holding existing parameters
constant to cope with the dependent contributions between the factor variables.
When considering changes to individual parameters after training of the model
has finished we need a better understanding of the relationship between the re-
sulting parameters to judge how the changes will effect the overall model. We
need to consider how an individual parameter contributes to the model with
respect to other parameters in the model. To do this we need to know how in-
dividual factor variables depend on each other and more specifically how the
interaction between factor variables accounts for the differences in the variance
of the predicted variable f0.

To demonstrate this interaction we consider two simple examples where we have
two factor variables (A and B) from which we wish to model a third predicted
variable (X).

Firstly, if A and B are independent, i.e the correlation between them is zero,
then each variable will make its own individual contribution to the variance of
X depending on how well it correlates with X. Alternatively, if A and B are not
independent and correlate with each other, then they still each contribute to the
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variance of X but any contribution which can be attributed to the region of de-
pendence between A and B is redundant for one of the variables. So, if factor
variables are not completely independent then the contribution they make to a
predicted variable may not be unique.

In the model building process the consequences are as follows: variable A is
added to the model and any variance in X that it can account for contributes
towards the value of its parameter. Next variable B is added to the model, and
the variance that it can account for is added to the model. This excludes any
variance accountable by B which has already been accounted for by A as this is
already present in the model. The result is that variable B contributes to less of
the variance of X than it would do independently of A.

The order in which A and B are added to the model is chosen by the stepwise
procedure, so that the one which correlates most with the predicted variable is
added first. There is no general reason why the parts of A and B that contribute
to the variance in X are the same parts of A and B that correlate with each other.
There may or may not be some or complete overlap, and the size of this overlap
determines the amount of independent contribution. The correlation between A
and B alone is not sufficient to determine how much each can account for the
predicted variable, although it should be obvious that the more the correlation
between two factor variables the less likely they are to independently contribute
towards the variation in the predicted variable.

From a statistical point of view, changing a parameter value can be thought of
as the result of changing the distribution of the underlying variable that that pa-
rameter is trained on. If this distribution is changed, then the amount by which
it correlates with another variable will be changed too. This in turn affects the
amount of independent contribution that the other variables make to the result-
ing f0. Therefore if we change a parameter, we can no longer assume that we
have the most appropriate parameter values for any other factor variables that it
correlates with.

We can now make our first observation concerning how we should go about
making changes to the parameters of the model. The observation is that if we
change a parameter in the model, we should consider retraining all parameters
that we subsequently added to the model after this parameter was added in the
original training. This may or may not be practical, so we consider ways to relax
this condition.
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9.2.3 Structure underlying the variables

The factor variables that we used to build the model were specifically chosen
to represent the underlying linguistic properties that we expected to be useful
in predicting f0. The variables carry some of the underlying linguistic structure
into the model.

The accent parameters, for example, that we changed in section 9.1 only con-
tribute to groups of data points in the resulting model which are specific to where
accents occur. The effect on the synthesis produced from the altered model is lo-
calised to the syllables immediately surrounding the type of accents for which
parameters were changed. This localised effect is a direct result of the inher-
ent structure of these specific factor variables. These binary valued variables are
specifically designed to only affect localised areas in the resulting model, playing
a specific role in the larger prosodic structure developed in Chapter 7.

Hierarchical structure

Recall that the prosodic structure is a hierarchical design. In terms of the result-
ing model which predicts f0, the higher a variable is in the structure, the more
f0 points it directly affects. Also the nature of the design means that each vari-
able affects localised stretches of f0 contour, which at the bottom of the structure
relate to individual syllables, and at the top of the structure whole phrases. The
nature of this structure, and its relationship to other parts of the data can be
demonstrated with a subset of the parameters:

tgs TG is initial
tgm TG is medial
tge TG is final
stress Syllable is stressed
lstar Syllable has an L* accent
hstar Syllable has an H* accent

There is a clear hierarchical relationship between stress and the lstar and hstar
parameters as shown in figure 9.10. The parent stress variable affects all stressed
syllables, whereas the child accent variables only affect subsets of stressed sylla-
bles.
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The consequence of a child–parent relationship in the hierarchy is that there is a
clear overlap in the portions of the two variables which account for the variance
of the predicted f0. Changes to one of the parameters representing such a vari-
able, will interfere indirectly with the resulting contribution made by the other.
As stated above, this interference is indirect in that the other parameter is not
wrong per se, it just no longer reflects the value it would have been trained to
given the change elsewhere in the model.

For example, changes to the stress parameter would affect target points for all
stressed syllables, including all of those with H* and L* accents. The structure of
the data is such that a change to the stress parameter may override the effects of
the lstar and hstar parameters. The converse is also true, where changes to the
accent parameters would affect at least a portion of stressed syllables. However,
as the lstar and hstar parameters are leaves in the structure, if the stress parame-
ter is already fixed, changes to the lstar or hstar parameters can be made safely,
without interfering with the effect of the stress parameter. If we change an accent
parameter this is akin to training this parameter with respect to other parameters
as it was initially trained in the model building process, where the stepwise pro-
cedure attempted to work out the required order in which to include parameters
to avoid interference. Furthermore, as the parameters representing the accents
L* and H* are ‘mutually exclusive’ and each only has an effect on a localised part
of the resulting f0 contour, alterations to either the L* or H* parameter will not
have an effect one the other. For example altering the value of the L* parameter
will have no knock-on effect on the H* parameter even if the H* parameter was
added to the model after the L* parameter. The reason for this is that the con-
tributions make by each of the parameters are independent, due to their mutual
exclusivity. Although there is a correlation between the H* and L* variables, due
to the fact that both variables have value zero for all syllables carrying neither
H* or L*, the contributions they make to the predicted variable comes only from
the uncorrelated parts.

stress

hstar lstar

Figure 9.10: Hierarchical relationship between stress, hstar and lstar parameters
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In general, where there are hierarchical dependencies in the data, adjusting leaf
nodes of the structure is safe, but adjusting other parameters is not. This is not to
say other parameters could not be adjusted, it just means that adjusting may have
a knock-on effect on other parameters, namely their children in the hierarchical
structure. For example in a working model, like the adjusted one we created in
the previous chapter, the stress parameter would raise pitch on stressed syllables,
and the L* parameter would compensate for this on L* accented syllables. This
should come about naturally by the stepwise training procedure – in a perfect
dataset stress would correlate more than L* with f0 and would be included in
the model earlier. If the stress parameter were subsequently increased, the result
would be to exaggerate stress on stressed syllables, but it would also produce an
effect on L* syllables as the L* parameter was trained against the old stress value.

This brings us to our second observation: a variable that is mutually exclusive to
the variable representing a changed parameter makes no contribution to the pre-
dicted variable, and so does not require a parameter adjustment, even if added
to the model after the changed parameter.

Hierarchy and linear regression

It is worth stepping aside for a moment to relate the idea of hierarchy to the
greedy algorithm used in the stepwise linear regression procedure. It is obvious
that where hierarchy exists the parent parameter ideally needs to be added to
the model first. The greedy algorithm knows nothing about the structure of the
underlying data and only orders parameters by how much more variance of the
predicted variable they can account for. In practise the parameters do get added
to the model in the correct order, as the parent can account for more variance.
This is due to the fact that compared to the number of stressed syllables there
are relatively few syllables of each accent type, therefore the stressed variable
naturally accounts for a larger portion of the f0 in the data as a whole.

For a situation where this is not the case, there are hierarchical linear regression
techniques, where the parameter value representing a variable in a hierarchical
relationship is a sub-equation in its own right. This is illustrated in equation 9.1.
Here variable ��� is the parent in the hierarchical relationship and the variables
� � to � � are its children. The parameter relating to � � is no longer a single value
but a sub-model consisting of an independent component

� � and other compo-
nents relating to each of its children in the structure. The dependencies between
parameters are much clearer here as they contribute directly to the model, and
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particularly changing a parent parameter involves taking into account the pa-
rameters of any children.

� � � � � " � � ��� " � � � �
" 
 
�
 "

� 
 � 
 (9.1)

� � � � � "�� � � � "�� � � �
"�
�
�
 "�� � � �

Cross hierarchy parameters

There are other parameters that by definition cross this stress–accent hierarchical
structure. The tgs, tgm and tge parameters specified above are such an exam-
ple. This arises because the TG context of a syllable is unrelated to that syllable’s
accent or stress properties. The mutual exclusivity of the tgs, tgm and tge pa-
rameters would allow the parameter representing one to be changed without the
rest requiring adjustments.

As they represent a property of speech which is independent of stress and ac-
centing, we make the assumption that their contribution to the predicted vari-
able will be independent from the stress and accent parameters. The expected
result of altering one of these parameters would be to shift the pitch range of
the TG represented by the parameter up or down. This kind of adjustment is
unlikely to be necessary as there is sufficient original data for these parameters
to be reasonably trained. They could however be altered to emulate the speaker
changing pitch range or in the process of using the model for a different speaker.

From this point onwards the relation between parameters becomes less clear as
we consider the following additional parameters:

accent count This is the nth accent in this TG.
syl in Number of syllables since last TG break
syl out Number of syllables to next TG break
ssyl in Number of stressed syllables since last TG break
ssyl out Number of stressed syllables to next TG break
asyl in Number of accented syllables since last TG break
asyl out Number of accented syllables to next TG break
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The first parameter, accent count sub-categorises accented syllables but in a way
which is independent of the accent type categorisation parameters hstar and
lstar.

The syl in and syl out parameters and the ‘s’ and ‘a’ versions of them all count
the relative position of the current syllable with respect to the TG it is in. It is
unlikely that these parameters make a completely independent contribution to
f0, particularly as there is a high correlation between these variables reducing the
amount of possible independent contribution each could make. Altering any of
these parameters would probably have repercussions elsewhere in the model.

Our specific model is further complicated by the fact that it does not just have
parameters which consider the current syllable, but it has parameters which con-
sider the two syllables to either side of the current syllable. As syllables are not
randomly distributed within utterances, properties of adjacent syllables are not
going to be independent of properties of the current syllable. If a syllable is
stressed (or accented) then the chances are that the previous and next syllables
are going to be unstressed (or unaccented). Or alternatively, if an accented syl-
lable belongs to an initial TG then the chances are that the syllable next to this
accented one does as well, and it is even more likely to belong to the same TG if
the accent is the first accent in a sequence or the syllable is the first syllable in the
TG. These relations lead to many interactions between the parameters, in a way
that is difficult to express. However, as the correlations between a variable pre-
senting a given syllable and one representing an adjacent syllable are generally
lower that the correlations between parameters representing the same syllable,
the likelihood is that the interference caused by these parameters is very limited
and they can be treated in the same way as the relevant parameter for the given
syllable.

In summary, we are led to the conclusion that the parameters we can safely
change are those which are completely independent of other parameters, those
which are clearly the children in a hierarchical dependency with other parame-
ters and those which are mutually exclusive to each other. Independent param-
eters are easy to find through simple correlation calculations, but working out
exactly which parameters meet the hierarchical dependency criterion is more
difficult. To our advantage we find that where there is insufficient data to train
a parameter properly we find the underlying variable correlates less with other
variables that we might believe to really be the case, which both allows us to see
a potential problem with the performance of the model and allows us to safely
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adjust the parameter in an appropriate manner. It is to our advantage that these
parameters that we can change are the ones we generally will want to change.

It may seem surprising that the parameters that we want to change are the ones
we can change, but this is more likely to be the result of our expectations and
understanding rather than coincidence. Expectation of how the model should
behave in a particular situation is brought about by our understanding of the
model and the underlying processes. This understanding is also what allows us
to develop ways in which to safely manipulate and improve upon the model.
Conversely, we expect less from the parts of the model which we do not under-
stand so well, and do not feel so compelled to control the behaviour related to
those parts of the model.

9.3 Evaluating the Altered Model

This section tests the hypothesis that the altered ToBI CLR model is preferred by
listeners to the unaltered ToBI CLR model. A perceptual experiment was carried
out using the same basic methodology as used for the experiment carried out in
section 8.3, although the number of stimuli and subjects were adapted to be more
appropriate for making a comparison between two models.

9.3.1 Methodology

The sentences used in this experiment were taken from the MagiCster project
(see section 3.4.2). The text is an example paragraph of a doctor giving a patient
a diagnosis of what is wrong with them. The primary reason for using these
texts is that they are marked up with ToBI pitch events which are generated from
an underlying concept along with the text to convey a particular meaning – this
removes the need to predict pitch events from the text itself – and removes one
step where possible error or inconsistencies could be introduced.

Five relatively short sentences were taken from the paragraph of diagnosis and
synthesised using both the ToBI trained CLR model and the altered ToBI trained
CLR model. The texts are marked up using APML, the XML markup language
described in section 3.4.2 which specifies simple semantic structure including
pitch accents and boundary tones. Festival was adapted to read this markup and
to use the pitch event and phrasing information from the AMPL directly instead
of assigning its own accents, boundaries and phrase breaks.
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The text of the whole paragraph was presented to subjects to provide context to
the individual sentences. The sentences make use of the accents H* and L+H*
and the boundaries L-L% and L-H% of which L+H* and L-H% have both been
modified as described earlier in this chapter in the altered model. The full texts
and ToBI mark-up are shown in table 9.5. Two sentences from the original para-
graph were not used as they did not employ pitch events which had been altered
in the altered CLR model.

Each sentence pair was presented 4 times to each subject, twice with the altered
variant presented first and twice with the unaltered variant presented first. The 4
variants for each sentence were then combined making 20 stimulus pairs in total.
These were then were presented to the subjects as a single block in a different
random order for each subject.

Six of the subjects who were found to be consistent in the previous experiment
were chosen to take part in this experiment giving a total of 120 responses, 24
for each sentence. The subjects were asked to decide which of each pair they
thought sounded the most natural.

9.3.2 Results

The total responses for each sentence are shown in table 9.6. Overall 79 out to
the 120 stimuli pairs presented showed a preference for the altered model over
the unaltered model. This is significant at � � � 
 �
	 in a binomial test. Looking at
the results sentence by sentence it is clear that the altered model is preferred for
sentences 1, 2, 4 and 5, but the unaltered model is preferred for sentence 3. Each
of these individual results are significant at � � � 
 ��� .

We also consider individual subjects results for each sentence, because although
the overall results are very uniform with a 75% preference for the altered model
(for all sentences except sentence 3), this 75% is made up of different scores from
each subject in each case. Figure 9.11 shows the results for each subject. Here we
see that the preferences of each subject are somewhat different. By themselves
only subjects 2 and 4 make a significant preference (at � � � 
 � � ) for the altered
model over all sentences; the others only show a trend in this direction. There
is also a reasonable amount of variation between how consistent subjects are in
making judgements, subject 2 being completely consistent and subjects 1 and 3
being the least consistent.
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Good
H*
morning Mr.

L-L%
Smith.

(1)
I’m sorry to

L+H*
tell

L-H%
you that you have been

H*
diagnosed as

H*
suffering

from a
H*
mild

H*
form of what we call

H*
angina

H* L-L%
pectoris.

This is a
H*
spasm of the

H* L-L%
chest resulting from overexertion when the

H*
heart is

L-L%
diseased.

(2) To
L+H*
solve this

L-H%
problem there are two

H*
drugs I would like you to

L-L%
take.

(3) The
L+H*
first

L-H%
one is

H* L-L%
Aspirin which is an

H* L-L%
analgesic.

That is it
H*
relieves the

H* L-L%
pain.

(4) I have
L+H*
prescribed

L-H%
it to cure your

H* L-L%
angina.

(5)
The

L+H*
only

L+H* L-H%
problem is that this drug can be associated with some

H*
side

L-L%
-effects.

Table 9.5: Pargraph of text used in the perception experiment to evaluate al-
tered ToBI CLR model. The numbered sentences were used in the experiment;
the lighter unnumbered lines were not as there would have been no difference
between the models.

ToBI Altered
Sentence 1 6 18
Sentence 2 6 18
Sentence 3 17 7
Sentence 4 6 18
Sentence 5 6 18
Total 41 79

Table 9.6: Distribution of responses for experiment evaluating the naturalness of
the altered ToBI CLR model.
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9.3.3 Conclusions

The level of consistency in this experiment was lower than that found in the pre-
vious experiment. This was to be expected as the difference between stimulus
pairs here was much less than in the previous experiment, as the models being
used only produce localised difference in pitch around particular pitch events.
We interpret the low level of consistency as meaning that the subjects found this
task particularly difficult. This interpretation was reinforced by subject’s com-
ments after the experiment saying that it was harder than the previous experi-
ment.

The second sentence produced a significant result which was against the overall
trend. The prosodic structure of the second sentence for which subjects preferred
the unaltered model is very similar to that of the other sentences, so there is no
obvious difference between this sentence and the others to suggest why listeners
prefer the unaltered version of the model for this sentence and the altered model
for the other sentences.

0

4

-4

altered

original

Subject 1

Sentence
1 2 3 4 5

0

4

-4

Subject 2

Sentence
1 2 3 4 5

0

4

-4

Subject 3

Sentence
1 2 3 4 5

0

4

-4

altered

original

Subject 4

Sentence
1 2 3 4 5

0

4

-4

Subject 5

Sentence
1 2 3 4 5

0

4

-4

Subject 6

Sentence
1 2 3 4 5

Figure 9.11: Results by subjects for experiment comparing the ToBI CLR model
with the Altered ToBI CLR model.
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The major difference between the resulting pitch contours for sentence 3 is that
a clear rise in pitch is perceivable on the L-H% for the altered model, where it is
clearly missing from the unaltered model. This leads us to believe that subjects
either found the way in which this rise was generated to be unnatural or they
thought that the allocation of a rise in that particular location sounded less natu-
ral than the absence of it. As the generated rise is very similar to rises generated
elsewhere in the other sentences, we assume that it must be the allocation of it
which is guiding subjects’ judgements. The most likely reason for this is that the
L-H% boundary sounds unnatural when placed at the end of such a short phrase
in the middle of a sentence. The overall conclusion is that the modifications to
the ToBI CLR model are worthwhile, and that listeners find the output of the
modified model more natural.
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CHAPTER 10

Discussion

We have been able to build models which can improve the quality of the pitch
contours we can generate, in that our models can generate a wider range of pitch
events than H* and L-L%. However there are a number of issues that have been
raised during this building process which we need to address.

10.1 Accent Specification

A consequence of the models developed here is that we are now in a position
to generate contours for utterances which are annotated with ToBI pitch accents
and boundaries. The ability to do this raises some interesting issues with regard
to accent specification. Subtle differences in accent specification now lead to clear
differences in the final pitch contour.

The output of previous models was mostly determined by the location of accents,
and accent type made little difference, as we saw in section 9.1. Specifying the
correct accent type now becomes more critical as the choice is reflected in the re-
sulting contour. Although in general this improves the quality of the synthesised
intonation, there is the potential to produce bad, or at least confusing, pitch con-
tours with this new model. With the other models, specifying a bad sequence of
accent types would result in a non-specific neutral declarative type contour be-
ing generated, where now it will result in a contour which reflects the specified
accent sequence, be it meaningful or otherwise.

ToBI is designed to be used for annotating real examples of speech and not to
provide a specification of what makes a valid accent sequence for production
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purposes. Its only constraints are to ensure that tunes end with phrase and
boundary tones. This lack of constraint is not really a problem with short ut-
terances with only a single pitch accent, or two or three accents of the same type,
as all such combinations will be meaningful. However, whether all combinations
of different types of accents are acceptable as valid sequences in longer sentences
is an area of research which has not really ever been addressed from a production
point of view.

Steedman’s theories (Prevost & Steedman 1994, Steedman 2000, Steedman 2002)
provide us with a safety net in a model which can provide suitable accent specifi-
cation for any reasonably formed utterance, guaranteeing a meaningful resulting
contour. Whether this guarantees us a natural sounding contour (rather than a
theoretically valid one) is unclear particularly where longer utterances are con-
cerned as the production of such sentences has never been formally evaluated.

Long complex sentences pose particular problems because, as we have noted
before, the literature tends to concentrate on short examples to illustrate spe-
cific points. For example, the average number of words in Pierrehumbert &
Hirschberg’s (1990) examples is five, and the longest example provided with
fully specified intonation is only nine words long. There are longer and more
complex sentences in the examples but their intonation is not specified as they
are only used as contexts to elicit some of the more obscure intonation patterns
that the authors wish to demonstrate. Other literature tends to follow these ex-
amples or variations of these examples.

In contrast, in a randomly chosen description of a museum object from the M-
PIRO project (see section 3.4.1) comprising of 12 sentences, only one sentence
contains fewer than 9 words; the average number of words is seventeen and the
maximum is fifty-four! The compositional nature of Steedman’s models could
certainly provide mark-up for sentences of this length. The resulting intonation
contours may or may not sound natural for a number of reasons:

Firstly, the assignment of accent and boundary type as prescribed by the theory
is very rigid, and may produce an accent specification which sounds synthetic
due to its regularity.

The differences in accent type which result from the given/new and plus/minus
agreed status of the material being accented may not be sufficient to provide nat-
ural sounding intonation. For example M-PIRO descriptions of museum objects
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often contain a series of sentences describing various aspects of an object where
the object is the theme of each sentence. After a few repetitions the default theme
accenting strategy starts to sound stagnant and a human speaker would proba-
bly adjust their accenting strategy to compensate for this. The theory does not
account for this.

There are other reasons why accent type decisions may not be so straightforward.
For example, rhythmic considerations (Giegerich 1980) would require the noun
phrase “The New York Metropolitan Museum of Art” to have multiple accents
on it irrespective of whether it should be accented otherwise. The position of
those accents may further be governed by the context the noun phrase is used in.

There are also unresolved problems with the actual contour generation stage of
synthesis. The pitch range control needed to provide suitable pitch placement
of individual sub phrases in relation to each other within long utterances is cur-
rently beyond our abilities. Speech data with a suitable amount of variation in
prosodic structure along with a theory to account is currently unavailable. We
return to this issue in section 10.4.

10.2 Appropriate Mark-up

Results using data from the M-PIRO project raise another issue. Synthesis results
from SOLEML (see section 3.4.1) have so far proved disappointing. The reason
for this is that unlike the APML mark-up (see section 3.4.2) used elsewhere the
SOLEML mark-up does not explicitly specify prosodic information. Reasonable
prosodic phrasing was obtained from the mark-up using the following simple
rules:

� An Utterance break occurs following the last word in an S constituent as
long as the next word is not a conjunction or a preposition (as this gener-
ally signifies a sentence being used as a constituent to another). An L-L%
boundary is associated with this phrase break.

� An IP break occurs after the last word in an NP when the following word
is not a verb. This type break has an L-H% boundary associated with it.

In general these rules provide reasonable intonation phrasing, but they are far
from foolproof. For example, a sentence starting with a preposition would cause
the sentence preceding it to not be ended with a big IP break and L-L% boundary.
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The lack of pitch accent specification in the mark-up meant that pitch accents
needed to be predicted as they would from plain text input. In an attempt to
achieve better results than Festival’s default prediction model, a simple set of
rules using the newness information was proposed. The following accent types
are assigned to the syllables in nouns carrying primary lexical stress in the fol-
lowing circumstances:

� H* is assigned to words which are marked as new.
� L+H* is assigned to words which are marked as old.

This is a little simplistic but without other information, such as theme and rheme,
it was difficult to find a better alternative. There are also H* versus L+H* issues
which are discussed in the next section which need to be considered. These rules
also over-generate and place accents on all nouns, and do not allow for accents
to be placed on other parts of speech. The importance feature is not used enough
or at least not used in an appropriate way by the system to be useful in deciding
what should be accented and what should not. It is hoped that by the end of the
M-PIRO project additions to the XML output can be made to aid speech synthesis
further.

The point to be made is that mark-up in itself is not sufficient to specify good in-
tonation. The mark-up has to be appropriate. It is the case that for the museum
domain within which the M-PIRO system works, L* and L*+H accents may not
be needed as the system is only providing descriptive information which does
not necessarily require L* and L*+H accents. Because of this, reasonable, but cer-
tainly not great, synthesis can be obtained from SOLEML mark-up, but it would
be much harder to obtain reasonable results from SOLEML in a domain where a
wider variety of accents are used.

It has been suggested that the resulting synthesis may be better than Festival’s
default synthesis primarily because phrase prediction from SOLEML does not
incorrectly insert breaks in the middle of longer sentences which Festival other-
wise tends to do. For this reason the Altered ToBI model developed here is being
used by the M-PIRO project.
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10.3 The L+H* Debate

We have so far neglected to discuss the L+H* pitch accent, both in the develop-
ment and testing of the ToBI orientated model in chapter 9 and in the discussion
in this chapter. The reason for this is that what the L+H* accent actually looks
like, and specifically what makes it different from an H* accent is difficult to an-
swer. Whereas Steedman posits this accent as the major accent associated with
agreed themes, Ladd is entirely sceptical about its status as a phonologically dis-
tinct entity. Opinions also differ as to how the pitch contour associated with such
an accent differs to that of an H*. Pierrehumbert & Hirschberg’s (1990) stylised
contours show the difference as an initial rise preceding the aligned H*. How the
pitch moves into these accents is not shown on the diagrams making it difficult
to know how L+H* and H* are really supposed to differ. Assuming the pitch is
not high before these accents, they are both going to involve a rise into the H*.
Could the nature of this rise be the difference?

Changing the shape of this rise by altering the parameters for L+H* in the model
discussed in chapter 9 proved unfruitful. A delayed and therefore sharper rise
was perceived as no different from the standard H*. Including more of a low
before the H*, to emphasise the rise, resulted in the accent sounding like L*+H
rather than H* or L+H*. In fact generating a perceivable three way contrast be-
tween the accents L*+H, L+H* and H* has so far proved impossible. It is possible
that the approach to modelling a syllable’s pitch at three points allows insuf-
ficiently fine modifications to produce the desired contrast, but unlikely as the
suggested contour shapes have all been obtainable using this approach.

Ongoing research by Calhoun, Steedman and Ladd suggests the main difference
between L+H* and H* is an alignment one, with L+H* having a delayed and
possibly extended peak. So far, attempts to synthesise this sound no different
from a standard H*. It is entirely possible that any effect of a delayed peak is lost
if there is insufficient voiced material after where the peak would normally be as
Calhoun’s data is based upon voiced material designed to carry such an effect.

Our position then on the L+H*
�
H* distinction is that our model could in princi-

ple support such a distinction and does at the moment produce slightly different
contour shapes for L+H* and H*. However we are not aware of definitions of
H* and L+H* that yield two perceptually distinguishable natural sounding con-
tours.
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It is difficult to confirm or deny the existence of L+H* based on the data anal-
ysed here. The accents marked as L+H* in f2b are marked to identify shapes the
labellers considered to be L+H*. What led them to make an L+H* decision is not
known, but they were unlikely to have marked L+H* to identify themes. So we
can only conclude L+H* does not seem to be distinct from H* in the way it is
labelled in f2b. We cannot tell if there are distinct distributions in the shape of
the combined sets of H* and L+H* as they are used in themes and rhemes as no
information structure is available to us.

10.4 Suitable Prosodic Structure

We return to the issue of prosodic structure. We have demonstrated that im-
provements can be made in the synthesis of intonation by the use of prosodic
structure. Specifically we have shown that the modelling of utterance initial high
accents, the overall declination of pitch range and utterance final falls can be im-
proved by employing an appropriate structure.

We based the structure purely on the results of analysing the f0 patterns in the
f2b corpus rather than deriving prosodic structure from other other linguistic
structures such as syntactic or semantic structure. We took this approach as there
was no way to obtain a more detailed consistently annotated prosodic structure.

This provided us with a framework for prosodic structure which is independent
from the specific semantics or syntactic structure of an utterance. This, however,
does not mean such a relationship could not be used to decide upon how to
use the prosodic structure during synthesis. Moreover, the lack of a predefined
relationship allows complete flexibility in defining such a relationship.

The use of the prosodic structure developed here does result in improved syn-
thetic intonation but there are areas in which further improvements could be
made if more appropriate data were available. Employing the structure de-
veloped here results in better synthetic intonation than is obtained without the
structure, but the currently used distinctions between structural units are not
completely adequate to make all of the contrasts that we may be required to gen-
erate.

A contrast that cannot be made was demonstrated by Ladd (1988) (see section 2.9),
where similar utterances, which in our framework would each consist of 3 TGs,
have differences in prosodic structure. The utterances are of the form “A and B
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but C” or “A but B and C”, A,B and C being three separate main clauses with
the same number of accented words in each. Recall from section 2.9 that the dif-
ferences found between the two forms are attributed to a different hierarchical
prosodic structure for each form due to the fact that ‘but’ makes stronger bound-
ary than ‘and’.

The problem we are faced with is that our framework does not allow for such a
distinction to be made. This is not surprising as such a distinction is not overtly
marked in the data from which we derived our model. TGs were only marked
as being IP initial, medial or final. Patterns like this contrast may or may not
exist in the f2b data but they are not marked in such a way that they could be
distinguished.

This type of distinction between TGs could be easily accommodated within the
framework we developed by using a metrical classification if it were available.
TG position specified by position within the metrical structure of an utterance
rather than by linear position as is currently done. More data may be needed
as there would be more categories and a suitably consistent structure would be
needed to be specified.

It would be difficult to derive such a structure from the f2b data. The major dif-
ficulty would be getting consistent labelling, particularly where more than three
TGs are involved, as the number of possible structure combinations becomes
large. The structure of broadcast news is also somewhat regular, and may not
be able to provide sufficient contrasts between TGs to be useful. Additionally a
larger number of distinct TG types would probably reduce the number of pitch
events available for training in each TG to a level where it was not possible to
train a reasonable model anyway.

The preferred way to implement such a scheme would be to create a new cor-
pus of speech where texts have been generated by a language system which can
supply suitable metrical structure along with the text. This would simplify mat-
ters considerably in that the structure would be consistently marked-up across
the corpus and in a meaningful way which related to some underlying concept
being used by the language system. The recorded speech would of course need
to be checked for its consistency with the generated structure, but this would
be a much easier task than arbitrarily trying to decide what the structure of a
given complex utterance was from scratch. The corpus would probably need to
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be somewhat larger than the hour or so of the f2b data to provide a balanced set
of metrical structures.

10.5 The Need for Better Data

A particular problem that we found with the f2b data relates to the distribution
of accent types. Recall that during the analysis phase of the development of our
framework and models, we considered only peaked accents along with falling
and rising boundaries. This reduced set of pitch accents was then used to build
models which produced acceptable intonation for broadcast news. Attempts to
progress further and build models using a wider variety of accent shapes using
ToBI pitch event descriptions highlighted the fact that f2b is very unbalanced in
its use of different pitch events (see section 3.5.1). This problem was overcome
by taking advantage of the structure of the LR models being used and adapting
parameters controlling the generation of pitch events to produce more suitable
output.

The distribution of different pitch events that f2b uses is not necessarily unnat-
ural, it is just that H* and L-L% are generally more frequent than other pitch
events. The lack of intonationally balanced (with respect to pitch events, in the
same way phonetic data would be phonetically balanced) is another pointer sug-
gesting that current datasets that are available are not ideal for building struc-
tured intonation models for speech synthesis.

Based on the problems we have encountered with the data that is currently avail-
able we can summarise what we would like to see in a dataset ideally suited for
this type of research.

� A large amount of data from a single speaker. This is probably the primary
need for building intonation models. We ideally need multiple hours of
data from an individual speaker.

� A large amount of variation in what is being spoken. Read news alone will
not produce a model suitable for general use. A collection of data from
different domains would be more appropriate.

� A balanced set of pitch events. The dataset needs to be constructed to in-
clude more of the less frequent pitch events than would occur naturally.
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� Complex prosodic structure. The dataset should include longer utterances
covering a variety of different prosodic constructions. Ideally these utter-
ances would be provided with a predetermined structure eliminating the
need for labellers to guess what it is.

� Clear speech which can be easily pitch tracked, or the inclusion of a laryn-
gograph signal would also be helpful.

The above summary describes a dataset which would be needed to take the next
step forward with the research carried out here, and it is hoped that it can provide
a useful specification for anyone considering recording speech data to achieve
similar goals.

10.6 Further Uses of the Altered CLR Model

The parameters of the CLR Model were altered in chapter 9 to improve the re-
alisation of pitch events which were otherwise badly generated due to the lack
of data. The same method could however be used to alter parameters for other
purposes. The method could be used to modify the realisation of pitch events be
more appropriate for a different dialect where data in that dialect is insufficient
to train a complete model on. This could even be extended to a different lan-
guage as many such language or dialectal differences concern only differences
in peak alignment and shape which could be modelled appropriately within the
three syllable window around the syllable the accent is assigned to. Adding new
accent types is also possible.

The criteria for using a model on a different language or dialect from which it
was trained would then be twofold: firstly the pitch movements on unaccented
material would need to be considered similar enough or unimportant enough to
be compatible with that produced by the model in its original form. Secondly
the pitch events in the inventory of the target language or dialect need to be able
to be specified as ‘relative’ pitch movements through the three syllable window
centred around the syllable to which the event is assigned. Relative in this sense
means relative to the pitch level the syllables would receive if they were unac-
cented, from this the parameter errors that need to be added into the model could
be calculated.
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10.7 Conclusions

Recall from chapter 1 that we set out with our primary goal was to improve
synthetic intonation for speech synthesis in a way which helps us to understand
more of the linguistic issues which need to be taken into accout to do this task
well.

The Altered ToBI model developed in chapter 9 has achieved our primary goal.
We have not only produced a model which we have demonstrated to be better
than previous models but we have produced a model which is much more flex-
ible than previous models in that it can generate intonation relating to a wide
range of intended meaning for a given utterance. As an added bonus we have
done this in such a way that a model can be adjusted to compensate for deficient
data where accent types are not as frequent as we would like.

Our linguistic approach to developing this model has forced us to face a number
of issues in linguistic theory. Although these issues have been quite diverse in
nature and relate to different aspects of prosody and intonation from prosodic
structure and pitch range to accent assignment, there is a common underlying
theme which ties them together. Most of the problems and issues we have had
to face have come about because linguistic theories have been developed around
simple examples, which are constrained in ways which we cannot guarantee
when being required to synthesise speech. Rather than being critical of the lack
of research into more complex constructions it is hoped that this thesis has shown
the need for research into this area and will lay down the challenge for further
work.
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Phrasing Analysis Summaries

First Analysis Summaries

� � � � �
�

� � � � � � ����� � ��� � ���

mean 174.59 161.48 154.11 153.52 154.85 151.42 190.75� � � sd 54.09 36.51 31.97 28.74 33.83 35.24 45.22
n 450 425 304 184 85 36 7

mean 175.00 166.13 153.63 156.61 146.59 148.30 148.46� �
� sd 43.79 34.22 31.03 32.52 29.16 28.06 25.19

n 290 261 174 93 56 25 12
mean 165.82 163.26 150.74 164.89 164.72 175.00 173.15� � � sd 38.56 35.37 30.42 52.40 49.42 42.02 27.28

n 104 98 62 21 9 5 4
mean 172.40 171.74 147.47 114.12 173.11 116.85 131.51� � � sd 47.03 31.14 31.26 13.14 43.06 6.37 .

n 30 26 16 4 3 2 1
mean 136.92 161.83 114.03 185.69� ���

sd 29.50 32.87 14.59 .
n 7 7 3 1

mean 105.78 134.42� ���
sd . .
n 1 1

Table A.1: Start f0 by IP and TG for analysis t00
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� � � � �
�

� � � � � � � ��� � ��� �����

mean 157.16 145.46 142.22 140.42 141.07 133.32 151.72� � � sd 37.90 30.72 29.13 34.37 32.76 30.66 22.42
n 450 425 304 184 85 36 7

mean 162.76 142.72 139.34 140.66 136.84 133.33 118.90� �
� sd 37.68 32.01 40.95 30.98 28.90 24.15 9.95

n 290 261 174 93 56 25 12
mean 164.24 140.18 137.80 136.96 146.42 161.72 118.52� � � sd 36.77 33.84 32.42 25.03 43.97 40.35 6.30

n 104 98 62 21 9 5 4
mean 155.11 139.85 139.42 118.61 130.42 122.08 114.51� � � sd 37.92 34.53 25.89 15.86 21.83 13.33 .

n 30 26 16 4 3 2 1
mean 149.21 124.73 117.85 105.78� � �

sd 39.64 24.15 19.39 .
n 7 7 3 1

mean 191.67 132.92� � �
sd . .
n 1 1

Table A.2: End f0 by IP and TG for analysis t00

� � � � �
�

� � � � � � � ��� � ��� �����

mean 128.72 119.04 116.85 114.95 116.81 118.26 132.57� � � sd 27.66 16.48 14.75 13.46 17.32 16.35 12.04
n 450 425 304 184 85 36 7

mean 131.79 119.22 116.05 117.52 115.30 114.93 112.41� �
� sd 28.20 17.73 15.96 16.41 12.39 11.36 7.49

n 290 261 174 93 56 25 12
mean 130.39 120.16 114.77 114.64 128.14 153.63 112.02� � � sd 26.37 20.26 14.94 12.79 30.67 40.82 5.46

n 104 98 62 21 9 5 4
mean 122.63 121.82 120.36 108.76 110.47 107.83 102.81� � � sd 24.24 21.32 18.57 8.12 8.82 5.54 .

n 30 26 16 4 3 2 1
mean 128.13 114.32 104.77 110.15� � �

sd 21.28 10.49 3.48 .
n 7 7 3 1

mean 105.78 111.21� � �
sd . .
n 1 1

Table A.3: Min f0 by IP and TG for analysis t00
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� � � � �
�

� � � � � � ����� � ��� � ���

mean 258.88 207.94 205.55 207.41 210.31 207.79 219.89� � � sd 42.58 33.64 31.15 34.14 39.86 32.37 31.55
n 450 425 304 184 85 36 7

mean 253.12 218.09 213.14 208.90 208.93 204.68 195.56� �
� sd 33.21 39.79 35.82 27.81 30.60 27.78 26.75

n 290 261 174 93 56 25 12
mean 255.37 216.83 205.08 217.12 205.73 211.36 205.06� � � sd 27.69 30.71 29.03 53.39 46.97 49.60 17.93

n 104 98 62 21 9 5 4
mean 248.35 212.42 207.64 213.16 240.70 232.53 210.51� � � sd 35.51 35.03 21.50 40.41 47.10 39.88 .

n 30 26 16 4 3 2 1
mean 244.00 215.91 195.30 185.69� ���

sd 22.72 27.45 14.02 .
n 7 7 3 1

mean 254.91 213.73� ���
sd . .
n 1 1

Table A.4: Max f0 by IP and TG for analysis t00

� � � � �
�

� � � � � � ����� � ��� � � �

mean 130.16 88.90 88.71 92.46 93.49 89.53 87.31� � � sd 46.62 33.97 32.04 34.18 40.24 30.23 32.69
n 450 425 304 184 85 36 7

mean 121.33 98.87 97.09 91.37 93.63 89.75 83.15� �
� sd 43.16 41.51 37.50 27.85 31.40 30.65 27.55

n 290 261 174 93 56 25 12
mean 124.98 96.67 90.31 102.49 77.60 57.73 93.03� � � sd 39.84 34.59 27.51 53.93 38.64 33.30 23.20

n 104 98 62 21 9 5 4
mean 125.72 90.60 87.28 104.40 130.23 124.71 107.69� � � sd 38.88 32.90 26.84 43.46 44.07 34.34 .

n 30 26 16 4 3 2 1
mean 115.87 101.59 90.53 75.54� ���

sd 31.14 20.37 12.49 .
n 7 7 3 1

mean 149.12 102.52� ���
sd . .
n 1 1

Table A.5: Delta f0 (Max-Min) by IP and TG for analysis t00
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� ��� � ��� � ��� � ��� � ��� � ��	 � ��
 � ��� � ���
mean 189.41 168.53 158.79 159.68 169.64 178.76 189.42 155.69
� � sd 45.62 36.53 31.14 33.73 34.81 38.24 34.67 31.16

n 425 304 184 85 36 7 7 443
mean 185.25 166.55 157.14 157.47 156.28 151.43 158.68
� � sd 40.35 33.93 28.97 36.64 39.07 31.87 28.64

n 261 174 93 56 25 12 290
mean 179.51 164.15 165.05 150.89 144.79 172.93 158.43
� � sd 33.62 32.16 29.52 39.21 34.81 50.87 28.16

n 98 62 21 9 5 4 104
mean 173.23 174.95 179.58 153.87 149.96 141.62 156.20
� � sd 36.96 28.47 17.33 18.46 25.23 . 35.13

n 26 16 4 3 2 1 30
mean 167.51 184.51 130.01 156.38
� � sd 20.47 41.44 . 21.61

n 7 3 1 7
mean 170.29 161.62
� 	 sd . .

n 1 1

Table
A

.6:Startf0
by

IP
and

TG
for

analysis
t01
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� ��� � ��� � ��� � �� � ��� � ��	 � ��
 � ��� � ���

mean 155.00 144.17 143.90 149.13 153.16 170.46 148.97 127.08
� � sd 38.91 30.56 30.87 31.15 36.04 43.72 31.08 25.89
n 425 304 184 85 36 7 7 443

mean 157.40 147.19 148.16 143.34 144.69 141.98 121.02
� � sd 36.85 33.70 32.59 36.41 34.05 27.04 18.87
n 261 174 93 56 25 12 290

mean 158.70 146.02 145.23 139.81 167.63 172.51 121.93
� � sd 34.76 33.25 31.42 24.76 36.08 24.47 20.71
n 98 62 21 9 5 4 104

mean 152.31 141.11 162.98 117.06 143.57 119.80 121.55
� � sd 38.64 31.81 22.02 13.83 16.05 . 21.53
n 26 16 4 3 2 1 30

mean 152.78 135.98 103.30 111.66
� � sd 40.63 29.91 . 11.31
n 7 3 1 7

mean 190.27 111.57
� 	 sd . .
n 1 1

Table
A

.7:End
f0

by
IP

and
TG

for
analysis

t01
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� �� � ��� � � � � �� � �� � ��	 � � 
 � ��� � � �
mean 128.96 120.41 120.38 123.48 127.63 132.22 124.37 112.66
 � � sd 25.75 17.67 18.04 19.51 25.62 25.70 20.41 11.45

n 425 304 184 85 36 7 7 443
mean 129.10 120.79 121.55 119.18 120.18 121.50 112.32
 � � sd 26.74 17.72 18.21 18.51 19.13 14.17 9.54

n 261 174 93 56 25 12 290
mean 125.65 123.22 121.08 113.49 127.72 160.99 114.61
 � � sd 22.89 21.32 17.66 17.29 21.23 33.70 11.57

n 98 62 21 9 5 4 104
mean 125.89 125.27 142.21 115.77 115.18 100.52 111.19
 � � sd 25.88 16.99 11.48 15.60 .45 . 9.50

n 26 16 4 3 2 1 30
mean 138.90 118.37 103.30 107.79
 � � sd 23.54 15.66 . 6.71

n 7 3 1 7
mean 148.48 111.57
 � 	 sd . .

n 1 1

Table
A

.8:M
in

f0
by

IP
and

TG
for

analysis
t01
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� �� � ��� � � � � ��� � �� � ��	 � � 
 � ��� � � �

mean 257.47 212.44 209.51 211.99 209.53 210.65 219.58 199.71
� � sd 41.58 32.34 31.31 33.32 31.34 46.06 31.84 32.52
n 425 304 184 85 36 7 7 443

mean 253.25 221.51 218.86 213.67 216.52 208.33 202.65
� � sd 29.66 34.97 30.81 30.70 31.03 26.73 27.65
n 261 174 93 56 25 12 290

mean 252.21 220.41 213.32 200.54 211.11 223.15 206.71
� � sd 26.83 29.39 36.03 47.24 50.56 46.78 30.83
n 98 62 21 9 5 4 104

mean 252.15 218.43 213.79 225.34 220.45 198.52 207.44
� � sd 32.84 34.97 18.17 39.32 46.29 . 31.29
n 26 16 4 3 2 1 30

mean 244.37 229.92 177.54 201.20
� � sd 22.29 18.40 . 21.65
n 7 3 1 7

mean 254.33 212.96
� 	 sd . .
n 1 1

Table
A

.9:M
ax

f0
by

IP
and

TG
for

analysis
t01
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� �� � � � � � � � �� � �� � � 	 � � 
 � � � � � �
mean 128.52 92.03 89.13 88.51 81.90 78.43 95.21 87.05
� � sd 48.08 36.13 34.58 35.33 32.00 43.78 39.78 33.68

n 425 304 184 85 36 7 7 443
mean 124.14 100.72 97.31 94.49 96.34 86.84 90.33
� � sd 40.17 40.69 36.32 34.50 35.74 32.09 29.09

n 261 174 93 56 25 12 290
mean 126.56 97.18 92.24 87.05 83.38 62.16 92.09
� � sd 36.98 35.74 35.07 43.22 42.67 36.55 31.25

n 98 62 21 9 5 4 104
mean 126.26 93.16 71.57 109.58 105.27 98.00 96.25
� � sd 43.40 34.99 29.64 26.76 45.84 . 31.16

n 26 16 4 3 2 1 30
mean 105.47 111.55 74.25 93.41
� � sd 25.11 2.74 . 24.74

n 7 3 1 7
mean 105.85 101.39
� 	 sd . .

n 1 1

Table
A

.10:D
elta

f0
(M

ax
f0

-M
in

f0)by
IP

and
TG

for
analysis

t01
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� ��� � ��� � ��� � �� � ��� � ��	 � ��
 � ��� � ���

mean 196.19 168.63 169.14 167.84 170.33 167.78 176.27 158.35
� � sd 26.36 17.61 19.65 19.06 25.17 26.50 16.12 15.53
n 425 304 184 85 36 7 7 443

mean 195.75 173.30 171.17 168.47 167.86 167.18 160.25
� � sd 21.48 18.98 18.18 20.83 19.46 17.42 13.95
n 261 174 93 56 25 12 290

mean 195.63 173.46 168.92 159.43 178.30 188.23 161.84
� � sd 20.06 18.57 21.47 31.40 41.55 35.27 13.36
n 98 62 21 9 5 4 104

mean 190.26 175.03 180.88 161.59 169.24 161.44 162.01
� � sd 20.97 21.34 14.12 20.33 .96 . 16.42
n 26 16 4 3 2 1 30

mean 185.06 166.15 144.61 154.59
� � sd 17.86 4.52 . 5.44
n 7 3 1 7

mean 198.19 171.77
� 	 sd . .
n 1 1

Table
A

.11:M
ean

f0
by

IP
and

TG
for

analysis
t01
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� ��� � ��� � ��� � ��� � ��� � ��	 � ��
 � ��� � ���

mean 36.55 25.21 24.70 25.22 24.22 19.23 26.84 23.48
� � sd 14.21 10.46 10.31 11.30 10.00 9.29 12.88 9.67
n 425 304 184 85 36 7 7 443

mean 33.48 28.23 27.59 26.81 27.84 23.81 24.66
� � sd 11.57 12.37 9.97 11.29 11.08 10.99 8.20
n 261 174 93 56 25 12 290

mean 33.50 27.76 27.58 24.02 21.95 20.28 25.61
� � sd 10.39 10.45 11.09 12.60 11.32 15.61 8.76
n 98 62 21 9 5 4 104

mean 34.65 26.99 22.50 33.45 26.23 28.59 27.40
� � sd 12.69 10.86 9.32 5.18 8.56 . 9.17
n 26 16 4 3 2 1 30

mean 31.76 32.60 21.40 25.33
� � sd 7.61 1.78 . 5.33
n 7 3 1 7

mean 28.88 23.16
� 	 sd . .
n 1 1

Table
A

.12:Standard
D

eviation
f0

by
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and
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for
analysis

t01
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� �� � ��� � � � � �� � �� � � 	 � ��
 � ��� � � �
mean 1.26 1.07 1.06 1.03 1.01 .92 .97 1.27
� � sd .42 .46 .44 .41 .37 .43 .42 .48

n 425 304 184 85 36 7 7 443
mean 1.29 1.07 1.04 1.07 .94 1.02 1.24
� � sd .46 .46 .38 .40 .34 .42 .45

n 261 174 93 56 25 12 290
mean 1.31 .94 .90 1.04 .86 .50 1.18
� � sd .44 .36 .36 .52 .13 .26 .41

n 98 62 21 9 5 4 104
mean 1.23 .89 .72 .82 1.05 1.77 1.20
� � sd .33 .31 .16 .16 .19 . .41

n 26 16 4 3 2 1 30
mean 1.05 1.23 1.36 1.15
� � sd .26 .36 . .51

n 7 3 1 7
mean 1.68 1.79
� 	 sd . .

n 1 1

Table
A

.13:TG
duration

by
IP

and
TG

for
analysis

t01
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� � � � �
�

��� 	
mean 173.07 165.32 154.45� � � sd 53.59 35.71 34.22

n 318 211 400
mean 172.97 166.66 153.58� �

� sd 42.58 41.77 31.58
n 103 66 132

mean 164.87 176.60 143.19� � � sd 46.45 35.70 28.02
n 23 14 29

mean 154.18 182.35 145.26� � � sd 36.61 20.33 35.28
n 7 4 8

mean 135.85 151.44 158.10� � �
sd . . 39.02
n 1 1 2

mean 169.57 164.91 155.46� � 	 sd 44.67 35.27 32.75
n 524 333 631

Table A.14: Start f0 by IP and TG for analysis t12

� � � � �
�

��� 	
mean 158.59 151.71 139.75� � � sd 38.53 29.76 29.52

n 318 211 400
mean 158.51 151.20 136.78� �

� sd 38.72 33.48 28.94
n 103 66 132

mean 175.73 126.10 135.36� � � sd 33.16 26.28 28.66
n 23 14 29

mean 144.04 120.83 138.81� � � sd 32.05 10.52 26.77
n 7 4 8

mean 151.44 143.74 104.26� � �
sd . . 2.15
n 1 1 2

mean 160.44 150.43 131.92� � 	 sd 35.17 32.26 32.92
n 524 333 631

Table A.15: End f0 by IP and TG for analysis t12
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� � � � �
�

� � 	
mean 128.60 123.19 114.54� ���

sd 27.18 19.37 13.79
n 318 211 400

mean 133.20 120.90 114.60� ���
sd 29.62 19.52 14.39
n 103 66 132

mean 137.87 118.75 108.10� ���
sd 32.92 22.18 7.06
n 23 14 29

mean 119.27 119.12 109.41� ���
sd 20.03 7.38 11.13
n 7 4 8

mean 129.88 112.96 106.45� ���
sd . . 5.24
n 1 1 2

mean 129.04 123.19 114.23� ���
sd 25.52 19.37 13.21
n 524 333 631

Table A.16: Min f0 by IP and TG for analysis t12

� � � ���
�

� � 	
mean 250.77 211.99 205.10� � � sd 46.86 31.29 34.37

n 318 211 400
mean 242.33 225.58 206.00� �

� sd 37.39 50.69 30.62
n 103 66 132

mean 257.69 229.24 206.94� � � sd 25.31 35.88 28.24
n 23 14 29

mean 251.97 198.08 220.64� � � sd 47.90 29.99 32.78
n 7 4 8

mean 274.97 226.59 182.41� ���
sd . . 4.64
n 1 1 2

mean 250.74 221.31 208.04� � 	 sd 35.79 36.37 34.69
n 524 333 631

Table A.17: Max f0 by IP and TG for analysis t12
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� � � � �
�

��� 	
mean 122.17 88.80 90.56� � � sd 50.00 33.41 35.28

n 318 211 400
mean 109.13 104.68 91.39� �

� sd 45.98 53.12 33.48
n 103 66 132

mean 119.81 110.49 98.84� � � sd 40.87 44.36 25.54
n 23 14 29

mean 132.70 78.96 111.23� � � sd 50.31 37.03 32.77
n 7 4 8

mean 145.10 113.62 75.96� � �
sd . . .60
n 1 1 2

mean 121.70 98.12 93.81� � 	 sd 40.53 39.07 34.83
n 524 333 631

Table A.18: Delta (Max-Min) f0 by IP and TG for analysis t12
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Second Analysis Summaries

IP TG start f0 end f0 min f0 max f0 delta f0 mean f0 sd f0
0 0�

176.65 128.70 110.54 249.81 139.26 174.95 36.43
N 24 24 24 24 24 24 24

� 45.77 28.29 9.76 47.70 48.24 17.75 13.27
1 0�

178.36 131.21 111.94 233.25 121.30 171.53 31.72
N 25 25 25 25 25 25 25

� 36.44 25.97 9.14 32.74 34.92 15.91 9.95
2 0�

172.39 132.04 111.98 258.03 146.05 175.14 39.49
N 6 6 6 6 6 6 6

� 24.82 37.19 10.05 31.90 32.34 9.63 9.30
3 0�

150.16 118.34 107.29 211.30 104.00 156.66 28.14
N 4 4 4 4 4 4 4

� 6.21 10.93 5.96 31.17 26.18 10.32 7.94
Table A.19: Summaries for IPs containing 1 TG.
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IP TG start f0 end f0 min f0 max f0 delta f0 mean f0 sd f0
0 0�

190.65 147.64 122.30 253.45 131.15 190.99 36.08
N 121 121 121 121 121 121 121

� 44.84 38.93 20.80 40.24 45.42 23.23 13.40
1�

155.84 131.47 113.55 191.27 77.73 155.12 20.54
N 121 121 121 121 121 121 121

� 33.27 30.88 13.77 27.40 26.56 16.18 7.64
1 0�

181.69 149.52 124.83 251.22 126.39 189.11 34.59
N 87 87 87 87 87 87 87

� 38.64 34.45 22.22 26.16 33.21 19.41 9.86
1�

162.15 120.53 113.04 201.31 88.27 160.13 24.22
N 87 87 87 87 87 87 87

� 27.72 19.80 9.71 28.10 30.05 14.19 7.94
2 0�

173.39 157.32 125.47 250.13 124.66 188.38 33.53
N 36 36 36 36 36 36 36

� 29.86 31.39 21.48 27.98 36.85 16.04 10.49
1�

161.89 122.93 112.78 206.47 93.70 161.14 25.16
N 36 36 36 36 36 36 36

� 30.40 23.45 11.58 30.60 30.32 15.40 8.98
3 0�

165.17 154.64 118.04 249.90 131.86 184.35 39.87
N 8 8 8 8 8 8 8

� 27.86 42.71 16.78 27.13 24.48 15.53 9.65
1�

167.94 127.07 109.03 203.20 94.17 159.49 25.91
N 8 8 8 8 8 8 8

� 29.87 27.93 6.98 33.85 34.90 18.51 9.32
4 0�

159.75 140.72 133.53 245.99 112.46 178.38 32.98
N 4 4 4 4 4 4 4

� 10.03 10.03 6.54 20.65 20.76 12.81 5.03
1�

150.81 114.72 107.95 204.77 96.82 156.06 24.84
N 4 4 4 4 4 4 4

� 18.97 15.04 9.46 28.38 32.94 2.03 5.11
5 0�

170.29 190.27 148.48 254.33 105.85 198.19 28.88
N 1 1 1 1 1 1 1

� . . . . . . .
1�

161.62 111.57 111.57 212.96 101.39 171.77 23.16
N 1 1 1 1 1 1 1

� . . . . . . .
Table A.20: Summaries for IPs containing 2 TGs.
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IP TG start f0 end f0 min f0 max f0 delta f0 mean f0 sd f0
0 0�

190.85 155.07 132.17 256.31 124.14 195.48 35.88
N 120 120 120 120 120 120 120

� 46.22 34.95 27.09 45.22 51.52 27.64 15.13
1�

169.22 145.26 119.13 213.29 94.16 168.58 25.64
N 120 120 120 120 120 120 120

� 35.44 28.84 15.18 32.83 35.88 17.43 10.77
2�

153.02 124.17 112.28 196.91 84.63 156.87 23.46
N 120 120 120 120 120 120 120

� 28.00 23.10 10.43 30.61 33.03 14.95 9.88
1 0�

184.93 161.51 130.80 255.28 124.49 196.38 33.11
N 84 84 84 84 84 84 84

� 33.39 37.46 27.44 27.29 41.22 17.04 11.31
1�

165.93 151.51 121.62 223.43 101.81 171.25 28.98
N 84 84 84 84 84 84 84

� 33.40 30.63 19.06 31.71 36.81 18.17 11.52
2�

157.82 120.33 112.94 200.99 88.04 160.93 24.09
N 84 84 84 84 84 84 84

� 26.49 16.03 10.02 22.31 24.39 12.59 7.32
2 0�

178.94 158.58 124.61 253.47 128.86 197.21 33.43
N 39 39 39 39 39 39 39

� 30.86 36.41 23.47 27.71 38.58 21.54 11.08
1�

160.63 137.61 119.35 218.30 98.95 170.92 27.64
N 39 39 39 39 39 39 39

� 33.08 28.14 19.25 28.45 35.73 16.92 10.70
2�

150.17 118.72 114.81 199.81 85.00 160.32 23.53
N 39 39 39 39 39 39 39

� 23.48 14.30 10.89 24.10 23.59 11.83 6.76
3 0�

168.74 135.86 116.95 262.65 145.70 191.37 37.17
N 11 11 11 11 11 11 11

� 34.31 32.23 17.91 31.94 41.81 17.71 10.63
1�

165.96 137.77 122.18 210.36 88.18 169.00 25.88
N 11 11 11 11 11 11 11

� 26.49 29.76 16.13 24.11 27.90 15.31 9.48
2�

142.98 115.53 112.48 201.69 89.21 162.27 27.17
N 11 11 11 11 11 11 11

� 32.28 11.99 10.95 22.48 25.14 12.63 9.02
Table A.21: Summaries for IPs containing 3 TGs.



202 APPENDIX A. PHRASING ANALYSIS SUMMARIES

IP TG start f0 end f0 min f0 max f0 delta f0 mean f0 sd f0
4 0�

165.40 165.99 136.09 225.69 89.60 184.60 26.01
N 2 2 2 2 2 2 2

� 26.77 90.54 48.26 6.11 42.15 21.90 12.49
1�

189.48 146.45 120.04 231.92 111.87 163.65 33.63
N 2 2 2 2 2 2 2

� 57.32 33.63 21.77 25.56 3.79 1.75 .21
2�

154.30 107.19 107.19 203.23 96.05 150.70 28.10
N 2 2 2 2 2 2 2

� 29.81 .28 .28 .55 .28 11.08 7.93
Table A.22: Summaries for IPs containing 3 TGs (cont).

IP TG start f0 end f0 min f0 max f0 delta f0 mean f0 sd f0
0 0�

182.83 159.32 130.84 261.46 130.62 200.11 37.67
N 99 99 99 99 99 99 99

� 46.31 44.03 27.35 37.87 45.34 27.60 13.38
1�

166.88 142.18 120.11 212.55 92.44 168.46 25.43
N 99 99 99 99 99 99 99

� 37.09 32.29 19.70 31.12 36.46 17.28 10.59
2�

156.36 143.76 117.99 209.77 91.78 166.26 24.94
N 99 99 99 99 99 99 99

� 31.35 30.95 16.86 32.08 35.97 17.63 10.57
3�

153.39 126.64 111.91 199.63 87.72 158.59 23.70
N 99 99 99 99 99 99 99

� 27.61 25.80 9.60 27.79 29.24 13.65 8.88
1 0�

188.93 163.87 135.55 250.21 114.65 200.20 31.45
N 38 38 38 38 38 38 38

� 49.00 38.24 31.77 38.10 52.94 26.97 14.33
1�

166.14 148.14 122.35 223.36 101.01 174.71 28.37
N 38 38 38 38 38 38 38

� 37.80 37.66 17.06 38.40 45.90 17.23 12.84
2�

160.74 150.41 124.71 227.23 102.53 172.18 30.23
N 38 38 38 38 38 38 38

� 28.01 29.31 15.38 32.43 37.84 14.60 10.66
3�

152.24 119.85 111.01 199.35 88.34 159.32 24.84
N 38 38 38 38 38 38 38

� 30.90 17.95 8.97 22.19 22.72 11.61 6.70
Table A.23: Summaries for IPs containing 4 TGs.
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IP TG start f0 end f0 min f0 max f0 delta f0 mean f0 sd f0
2 0�

191.45 150.07 123.44 253.49 130.04 199.69 33.61
N 11 11 11 11 11 11 11

� 42.22 33.96 21.47 23.96 34.57 23.27 11.52
1�

169.85 165.05 130.84 228.47 97.64 178.97 28.90
N 11 11 11 11 11 11 11

� 32.46 38.67 25.24 27.90 36.86 22.35 9.75
2�

166.46 142.14 116.39 209.61 93.22 164.94 28.02
N 11 11 11 11 11 11 11

� 26.96 35.73 16.65 30.11 36.84 15.10 12.13
3�

151.17 121.74 117.27 212.89 95.62 165.08 29.15
N 11 11 11 11 11 11 11

� 26.53 21.35 16.59 29.81 33.25 10.93 8.74
3 0�

150.77 181.33 150.77 227.39 76.62 189.07 21.19
N 1 1 1 1 1 1 1

� . . . . . . .
1�

181.33 200.72 162.32 234.70 72.38 198.23 23.02
N 1 1 1 1 1 1 1

� . . . . . . .
2�

200.72 177.78 150.81 200.72 49.90 168.24 14.87
N 1 1 1 1 1 1 1

� . . . . . . .
3�

163.88 107.03 107.03 175.75 68.73 153.58 17.73
N 1 1 1 1 1 1 1

� . . . . . . .
4 0�

202.80 174.59 166.03 275.27 109.24 212.69 38.34
N 1 1 1 1 1 1 1

� . . . . . . .
1�

174.59 115.04 115.04 225.93 110.89 171.17 30.55
N 1 1 1 1 1 1 1

� . . . . . . .
2�

130.01 103.30 103.30 177.54 74.25 144.61 21.40
N 1 1 1 1 1 1 1

� . . . . . . .
3�

182.85 108.34 108.34 182.85 74.52 156.50 21.77
N 1 1 1 1 1 1 1

� . . . . . . .
Table A.24: Summaries for IPs containing 4 TGs (cont).
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name count num st f0 pk f0 en f0 st f0n pk f0n en f0n
a 1.00 1.00

Mean 187.84 216.27 182.07 .24 1.29 .14
StdDev 48.42 41.25 37.46 1.49 .63 1.04
N 560 560 560 560 560 560

2.00 1.00
Mean 179.96 213.81 186.25 .00 1.27 .35
StdDev 54.35 45.18 40.81 2.13 .85 .90
N 820 820 820 820 820 820
2.00
Mean 164.43 195.32 167.39 -.39 .86 -.15
StdDev 52.31 32.13 29.75 2.06 .86 .88
N 654 654 654 654 654 654

3.00 1.00
Mean 181.82 213.97 190.78 .20 1.34 .56
StdDev 49.47 43.85 38.29 1.79 .77 .84
N 307 307 307 307 307 307
2.00
Mean 163.55 198.37 173.22 -.35 .94 .08
StdDev 58.28 34.02 29.05 2.03 .76 .85
N 286 286 286 286 286 286
3.00
Mean 153.89 185.44 158.48 -.64 .59 -.38
StdDev 48.55 30.99 24.10 2.05 1.00 .81
N 239 239 239 239 239 239

4.00 1.00
Mean 175.54 212.89 188.40 .06 1.42 .55
StdDev 46.53 46.90 46.02 1.71 .83 1.05
N 60 60 60 60 60 60
2.00
Mean 160.37 198.28 180.24 -.31 1.02 .38
StdDev 51.92 32.75 30.11 1.48 .76 .86
N 65 65 65 65 65 65
3.00
Mean 150.93 182.27 161.69 -.68 .45 -.33
StdDev 51.35 28.60 24.85 1.81 .80 .79
N 68 68 68 68 68 68
4.00
Mean 155.08 185.21 161.39 -.52 .81 -.09
StdDev 49.42 20.94 21.29 2.34 .81 .98
N 48 48 48 48 48 48

Table B.1: Accent summaries for sequentially numbered TGs.
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name count num st f0 pk f0 en f0 st f0n pk f0n en f0n
5.00 1.00

Mean 195.08 216.79 191.89 .60 1.41 .55
StdDev 46.79 39.62 34.80 1.27 .90 .98
N 9 9 9 9 9 9
2.00
Mean 163.29 203.03 163.66 -.11 1.26 -.19
StdDev 62.42 33.51 25.98 1.83 .96 1.06
N 11 11 11 11 11 11
3.00
Mean 168.85 194.11 177.71 -.09 .64 .05
StdDev 22.99 32.16 35.65 .68 .53 .80
N 13 13 13 13 13 13
4.00
Mean 138.28 180.33 172.49 -1.11 .35 .09
StdDev 65.98 29.42 24.49 2.65 .86 .70
N 12 12 12 12 12 12
5.00
Mean 168.65 190.13 167.08 -.36 .42 -.15
StdDev 21.33 24.10 38.15 .61 .96 1.32
N 4 4 4 4 4 4

6.00 1.00
Mean .00 254.62 218.61 -4.62 2.29 1.31
StdDev . . . . . .
N 1 1 1 1 1 1
2.00
Mean 229.53 229.53 185.19 1.61 1.61 .40
StdDev . . . . . .
N 1 1 1 1 1 1
3.00
Mean 165.32 220.55 132.71 -.13 1.36 -1.02
StdDev . . . . . .
N 1 1 1 1 1 1
4.00
Mean 148.21 176.33 176.33 -.60 .16 .16
StdDev . . . . . .
N 1 1 1 1 1 1
5.00
Mean 140.04 140.04 127.76 -.82 -.82 -1.15
StdDev . . . . . .
N 1 1 1 1 1 1
6.00
Mean 173.70 173.70 161.62 .09 .09 -.24
StdDev . . . . . .
N 1 1 1 1 1 1

Table B.2: Accent summaries for sequentially numbered TGs (cont).
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name count num st f0 pk f0 en f0 st f0n pk f0n en f0n
afb 1.00 1.00

Mean 162.35 179.64 127.04 .36 1.28 -1.48
StdDev 34.32 23.48 21.87 1.29 .54 .90
N 50 50 50 50 50 50

2.00 2.00
Mean 157.60 178.54 125.68 -.08 .88 -1.51
StdDev 46.73 25.07 22.58 1.95 .79 1.04
N 95 95 95 95 95 95

3.00 3.00
Mean 161.53 179.61 129.15 -.17 .45 -1.39
StdDev 38.19 29.49 15.16 1.16 .93 .60
N 45 45 45 45 45 45

4.00 2.00
Mean 163.10 166.32 170.21 .78 .97 1.21
StdDev . . . . . .
N 1 1 1 1 1 1
4.00
Mean 166.74 183.75 132.34 .02 .70 -1.39
StdDev 21.28 17.96 19.10 .91 .47 .59
N 13 13 13 13 13 13

5.00 5.00
Mean 112.68 180.79 131.58 -1.26 .69 -1.22
StdDev 159.35 63.02 9.94 5.32 2.57 .35
N 2 2 2 2 2 2

arb 1.00 1.00
Mean 158.75 177.97 193.13 -.47 .44 1.46
StdDev 23.83 32.72 25.09 .49 .78 .79
N 8 8 8 8 8 8

2.00 2.00
Mean 158.68 182.69 188.88 -.55 .34 .69
StdDev 15.60 26.61 17.62 .59 .96 1.32
N 14 14 14 14 14 14

3.00 3.00
Mean 167.67 176.85 196.43 -.45 .13 .60
StdDev 24.37 46.37 20.21 .50 1.67 .82
N 4 4 4 4 4 4

Table B.3: Accent summaries for sequentially numbered TGs (cont).
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name count num st f0 pk f0 en f0 st f0n pk f0n en f0n
fb .00 .00

Mean 164.64 164.64 126.88 .98 .98 -1.67
StdDev . . . . . .
N 1 1 1 1 1 1

1.00 .00
Mean 77.16 123.67 118.04 -3.53 -1.60 -1.84
StdDev 67.66 14.24 42.44 3.24 .95 1.75
N 38 38 38 38 38 38

2.00 .00
Mean 76.30 125.69 110.81 -3.81 -1.41 -2.62
StdDev 70.68 15.50 46.81 4.02 .81 3.33
N 68 68 68 68 68 68

3.00 .00
Mean 71.26 129.02 114.20 -3.15 -1.61 -2.04
StdDev 75.41 28.37 45.14 2.68 .92 1.41
N 26 26 26 26 26 26

4.00 .00
Mean 137.55 111.13 135.51 -.98 -2.03 -1.06
StdDev 9.87 4.07 7.86 .53 .49 .51
N 3 3 3 3 3 3

rb .00 .00
Mean 138.14 178.63 178.52 -1.59 1.23 1.22
StdDev 26.66 13.97 13.79 .84 .53 .52
N 4 4 4 4 4 4

1.00 .00
Mean 117.05 175.58 181.75 -2.46 .04 .22
StdDev 75.81 33.66 22.95 3.44 1.41 .98
N 110 110 110 110 110 110

2.00 .00
Mean 104.03 165.71 175.26 -2.98 -.19 .23
StdDev 75.36 34.23 22.39 3.91 1.61 1.01
N 116 116 116 116 116 116

3.00 .00
Mean 91.03 164.26 173.94 -2.81 -.40 .04
StdDev 71.84 43.63 31.74 2.68 1.51 .88
N 46 46 46 46 46 46

4.00 .00
Mean 61.97 140.93 156.58 -3.70 -.92 -.44
StdDev 75.51 30.12 18.44 3.07 1.68 1.17
N 14 14 14 14 14 14

5.00 .00
Mean 62.11 136.19 152.28 -4.44 -1.35 -.93
StdDev 85.07 27.20 27.18 4.17 1.11 1.17
N 5 5 5 5 5 5

Table B.4: Accent summaries for sequentially numbered TGs (cont).
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name count num st f0 pk f0 en f0 st f0n pk f0n en f0n
a 1.00 1.00

Mean 218.64 249.27 205.49 .39 1.30 .01
StdDev 42.10 40.35 42.53 .88 .57 1.22
N 166 166 166 166 166 166

2.00 1.00
Mean 214.69 250.01 216.85 .46 1.38 .54
StdDev 45.31 45.88 44.20 1.02 1.09 .90
N 234 234 234 234 234 234
2.00
Mean 172.23 207.92 181.00 -.73 .39 -.37
StdDev 60.51 34.12 32.77 1.84 .85 .79
N 185 185 185 185 185 185

3.00 1.00
Mean 210.07 245.36 217.66 .57 1.56 .78
StdDev 39.63 41.34 37.60 .99 .74 .87
N 94 94 94 94 94 94
2.00
Mean 175.59 211.17 183.34 -.28 .74 -.05
StdDev 56.85 33.98 28.53 1.48 .70 .71
N 91 91 91 91 91 91
3.00
Mean 151.78 192.01 162.51 -1.05 .30 -.59
StdDev 57.39 34.06 26.46 2.03 1.00 .76
N 79 79 79 79 79 79

4.00 1.00
Mean 214.31 259.11 232.33 .60 1.68 1.03
StdDev 43.60 41.58 49.07 1.09 .61 .83
N 12 12 12 12 12 12
2.00
Mean 161.23 219.38 202.28 -.68 .91 .49
StdDev 68.46 39.27 37.62 1.91 .84 1.03
N 16 16 16 16 16 16
3.00
Mean 150.99 199.62 174.89 -1.01 .43 -.27
StdDev 61.77 22.98 21.42 1.90 .61 .65
N 19 19 19 19 19 19
4.00
Mean 182.44 197.77 156.09 .14 .57 -.70
StdDev 36.12 29.75 24.09 1.24 1.17 .90
N 12 12 12 12 12 12

Table B.5: Accent summaries for accents in initial TGs.
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name count num st f0 pk f0 en f0 st f0n pk f0n en f0n
5.00 1.00

Mean 223.91 270.63 202.66 1.64 2.98 1.03
StdDev . . . . . .
N 1 1 1 1 1 1
3.00
Mean 177.43 199.80 171.04 -.03 .66 -.16
StdDev 7.03 19.15 15.90 .56 .42 .18
N 3 3 3 3 3 3
4.00
Mean 156.92 164.31 163.17 -.67 -.40 -.45
StdDev 9.61 16.04 14.42 .28 .02 .08
N 2 2 2 2 2 2

afb 2.00 2.00
Mean 178.09 182.61 129.55 .25 .43 -1.51
StdDev 26.75 38.09 14.04 .98 1.24 .37
N 6 6 6 6 6 6

3.00 3.00
Mean 157.56 190.56 131.92 -.96 -.20 -1.64
StdDev 61.76 42.03 17.61 1.38 .84 .75
N 12 12 12 12 12 12

4.00 4.00
Mean 191.52 200.06 144.47 .44 .82 -1.21
StdDev 5.92 9.27 35.45 .40 .75 1.21
N 3 3 3 3 3 3

arb 2.00 2.00
Mean 165.46 190.18 192.66 -.60 .03 .09
StdDev 9.24 24.63 19.48 .56 .69 .60
N 9 9 9 9 9 9

3.00 3.00
Mean 167.67 176.85 196.43 -.45 .13 .60
StdDev 24.37 46.37 20.21 .50 1.67 .82
N 4 4 4 4 4 4

fb 1.00 .00
Mean 62.87 129.50 121.64 -2.57 -1.26 -1.44
StdDev 72.94 10.94 16.00 1.55 .24 .21
N 4 4 4 4 4 4

2.00 .00
Mean 69.57 121.42 140.73 -3.17 -1.76 -1.28
StdDev 74.67 5.36 26.86 2.28 .46 .61
N 8 8 8 8 8 8

3.00 .00
Mean 94.77 114.23 130.72 -2.56 -2.17 -1.67
StdDev 77.99 7.91 19.94 1.93 .59 .43
N 6 6 6 6 6 6

Table B.6: Accent summaries for accents in initial TGs (cont).
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name count num st f0 pk f0 en f0 st f0n pk f0n en f0n
rb 1.00 .00

Mean 140.59 182.40 190.37 -1.78 -.31 -.09
StdDev 72.13 32.73 17.74 2.53 1.31 .76
N 35 35 35 35 35 35

2.00 .00
Mean 111.97 169.05 178.28 -2.55 -.33 .04
StdDev 75.53 34.67 22.88 3.46 1.50 .96
N 51 51 51 51 51 51

3.00 .00
Mean 89.49 172.55 185.40 -2.67 -.70 -.13
StdDev 74.45 55.30 38.99 2.14 1.58 .89
N 18 18 18 18 18 18

4.00 .00
Mean 64.85 137.77 151.80 -4.15 -1.27 -.69
StdDev 76.51 30.28 19.10 4.08 1.44 .86
N 4 4 4 4 4 4

5.00 .00
Mean 103.52 132.58 165.23 -2.05 -1.43 -.37
StdDev 89.69 27.69 4.50 2.27 1.31 .24
N 3 3 3 3 3 3

Table B.7: Accent summaries for accents in initial TGs (cont).
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name count num st f0 pk f0 en f0 st f0n pk f0n en f0n
a 1.00 1.00

Mean 176.47 206.67 176.02 .04 1.29 .20
StdDev 48.43 34.36 31.41 1.90 .72 1.00
N 262 262 262 262 262 262

2.00 1.00
Mean 167.17 203.27 179.88 -.27 1.22 .35
StdDev 55.17 35.49 32.82 2.34 .64 .88
N 328 328 328 328 328 328
2.00
Mean 169.75 196.85 165.31 -.06 1.03 -.11
StdDev 45.44 32.97 27.63 1.53 .87 .93
N 265 265 265 265 265 265

3.00 1.00
Mean 160.61 198.51 179.77 -.32 1.17 .45
StdDev 56.75 35.91 34.20 2.28 .83 .88
N 97 97 97 97 97 97
2.00
Mean 161.60 191.84 170.95 -.34 .99 .23
StdDev 57.02 31.04 27.15 2.27 .69 .85
N 94 94 94 94 94 94
3.00
Mean 155.84 184.57 157.36 -.46 .72 -.31
StdDev 43.06 32.03 25.77 2.18 1.06 .92
N 81 81 81 81 81 81

4.00 1.00
Mean 174.82 208.24 180.38 .25 1.50 .50
StdDev 38.01 41.04 37.03 1.16 .90 1.12
N 28 28 28 28 28 28
2.00
Mean 163.68 193.03 171.49 -.14 1.10 .28
StdDev 50.22 26.02 20.82 1.39 .54 .86
N 26 26 26 26 26 26
3.00
Mean 144.97 176.69 162.86 -.73 .42 -.14
StdDev 47.83 27.52 22.76 1.65 .85 .80
N 27 27 27 27 27 27
4.00
Mean 152.05 183.23 165.39 -.88 .89 .14
StdDev 43.81 16.88 21.14 2.97 .54 .91
N 20 20 20 20 20 20

Table B.8: Accent summaries for accents in medial TGs.
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name count num st f0 pk f0 en f0 st f0n pk f0n en f0n
5.00 1.00

Mean 206.12 225.57 195.59 .72 1.51 .35
StdDev 46.41 39.13 51.24 1.06 .65 1.47
N 4 4 4 4 4 4
2.00
Mean 130.64 206.33 161.62 -1.10 1.51 -.24
StdDev 66.33 42.00 29.55 1.97 1.23 1.34
N 6 6 6 6 6 6
3.00
Mean 171.61 188.52 177.45 .09 .52 .04
StdDev 24.42 40.65 44.91 .58 .62 .98
N 7 7 7 7 7 7
4.00
Mean 120.85 186.30 185.79 -1.70 .55 .60
StdDev 83.38 37.07 22.72 3.40 .99 .37
N 7 7 7 7 7 7
5.00
Mean 173.92 198.83 168.24 -.23 .68 -.08
StdDev 22.72 20.43 46.63 .68 .98 1.61
N 3 3 3 3 3 3

afb 1.00 1.00
Mean 177.47 203.95 140.99 -.01 1.53 -.89
StdDev 41.64 28.08 16.04 .93 .35 .75
N 7 7 7 7 7 7

2.00 2.00
Mean 155.11 195.08 132.47 -.71 1.04 -1.34
StdDev 71.29 23.24 16.92 3.21 .60 .52
N 21 21 21 21 21 21

3.00 3.00
Mean 173.28 187.54 125.56 .20 .99 -1.73
StdDev 32.88 20.54 11.58 1.17 .87 .52
N 8 8 8 8 8 8

4.00 4.00
Mean 142.13 179.10 122.06 -.73 .50 -1.60
StdDev 5.41 41.09 13.51 .47 .88 .38
N 2 2 2 2 2 2

arb 1.00 1.00
Mean 162.67 184.42 200.18 -.56 .45 1.43
StdDev 22.78 29.34 16.46 .45 .84 .85
N 7 7 7 7 7 7

2.00 2.00
Mean 146.38 174.80 182.29 -.69 .99 1.36
StdDev 20.99 27.77 14.63 .51 1.37 1.55
N 4 4 4 4 4 4

Table B.9: Accent summaries for accents in medial TGs (cont).
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name count num st f0 pk f0 en f0 st f0n pk f0n en f0n
fb .00 .00

Mean 164.64 164.64 126.88 .98 .98 -1.67
StdDev . . . . . .
N 1 1 1 1 1 1

1.00 .00
Mean 85.74 119.34 134.75 -3.42 -1.82 -1.19
StdDev 71.40 10.44 35.49 3.52 1.12 .81
N 13 13 13 13 13 13

2.00 .00
Mean 58.87 130.66 131.31 -4.48 -1.40 -1.38
StdDev 71.87 21.80 18.11 3.82 .95 .81
N 19 19 19 19 19 19

3.00 .00
Mean 45.90 156.14 129.04 -5.65 -.91 -1.95
StdDev 79.50 60.84 21.45 3.71 1.69 .33
N 3 3 3 3 3 3

4.00 .00
Mean 136.76 111.99 134.72 -1.29 -2.04 -1.35
StdDev 13.83 5.35 10.94 .05 .69 .05
N 2 2 2 2 2 2

rb .00 .00
Mean 138.14 178.63 178.52 -1.59 1.23 1.22
StdDev 26.66 13.97 13.79 .84 .53 .52
N 4 4 4 4 4 4

1.00 .00
Mean 107.35 175.84 180.24 -2.57 .30 .40
StdDev 74.27 32.39 22.79 3.52 1.38 1.04
N 65 65 65 65 65 65

2.00 .00
Mean 98.45 168.74 175.83 -3.50 .09 .42
StdDev 77.16 33.63 21.58 4.43 1.64 1.04
N 50 50 50 50 50 50

3.00 .00
Mean 115.91 159.15 165.98 -1.94 -.32 -.01
StdDev 61.95 32.99 23.10 2.56 1.43 .81
N 20 20 20 20 20 20

4.00 .00
Mean 68.05 143.43 163.14 -3.01 -.90 -.41
StdDev 85.35 34.77 18.92 2.71 2.03 1.47
N 7 7 7 7 7 7

5.00 .00
Mean .00 141.60 132.84 -8.02 -1.24 -1.77
StdDev .00 36.44 40.70 4.04 1.21 1.73
N 2 2 2 2 2 2

Table B.10: Accent summaries for accents in medial TGs.
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name count num st f0 pk f0 en f0 st f0n pk f0n en f0n
a 1.00 1.00

Mean 171.58 193.91 164.83 .45 1.30 .19
StdDev 37.24 28.11 25.86 1.07 .51 .84
N 131 131 131 131 131 131

2.00 1.00
Mean 162.37 191.75 165.29 -.13 1.21 .17
StdDev 45.56 33.01 28.71 2.57 .83 .88
N 242 242 242 242 242 242
2.00
Mean 150.73 181.50 157.94 -.52 1.08 .01
StdDev 49.95 22.70 24.85 2.73 .69 .87
N 193 193 193 193 193 193

3.00 1.00
Mean 171.87 193.24 172.86 .28 1.22 .43
StdDev 35.78 30.66 23.42 1.86 .65 .73
N 98 98 98 98 98 98
2.00
Mean 150.80 189.64 164.50 -.52 1.07 .08
StdDev 62.35 32.20 29.39 2.36 .84 .99
N 86 86 86 86 86 86
3.00
Mean 154.74 181.53 154.19 -.38 .89 -.24
StdDev 50.26 25.88 17.09 2.14 .81 .64
N 60 60 60 60 60 60

4.00 1.00
Mean 149.06 187.35 171.26 -.60 1.13 .35
StdDev 46.06 38.58 42.82 2.54 .81 1.08
N 18 18 18 18 18 18
2.00
Mean 159.07 186.12 175.34 -.07 1.03 .53
StdDev 23.58 31.15 28.25 .81 1.01 .72
N 19 19 19 19 19 19
3.00
Mean 150.49 168.68 145.48 -.52 .44 -.67
StdDev 45.72 26.71 21.53 2.00 .92 .81
N 19 19 19 19 19 19
4.00
Mean 136.44 179.02 161.26 -.60 .96 .13
StdDev 59.45 13.59 19.93 2.14 .78 1.02
N 15 15 15 15 15 15

Table B.11: Accent summaries for accents in final TGs .
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name count num st f0 pk f0 en f0 st f0n pk f0n en f0n
5.00 1.00

Mean 159.58 181.42 175.50 -.32 .55 .37
StdDev 49.16 18.81 11.75 1.48 .19 .11
N 3 3 3 3 3 3
2.00
Mean 197.47 198.31 157.61 1.07 1.10 -.25
StdDev 34.60 33.47 28.53 .65 .60 1.01
N 3 3 3 3 3 3
3.00
Mean 146.77 197.99 173.27 -.59 .87 .01
StdDev 37.59 34.84 39.14 1.42 .64 1.00
N 2 2 2 2 2 2
4.00
Mean 159.49 175.34 146.32 -.01 .62 -.54
StdDev 24.03 14.43 4.55 1.14 .75 .00
N 2 2 2 2 2 2

6.00 1.00
Mean .00 254.62 218.61 -4.62 2.29 1.31
StdDev . . . . . .
N 1 1 1 1 1 1
2.00
Mean 229.53 229.53 185.19 1.61 1.61 .40
StdDev . . . . . .
N 1 1 1 1 1 1
3.00
Mean 165.32 220.55 132.71 -.13 1.36 -1.02
StdDev . . . . . .
N 1 1 1 1 1 1
4.00
Mean 148.21 176.33 176.33 -.60 .16 .16
StdDev . . . . . .
N 1 1 1 1 1 1
5.00
Mean 140.04 140.04 127.76 -.82 -.82 -1.15
StdDev . . . . . .
N 1 1 1 1 1 1
6.00
Mean 173.70 173.70 161.62 .09 .09 -.24
StdDev . . . . . .
N 1 1 1 1 1 1

Table B.12: Accent summaries for accents in final TGs (cont).
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name count num st f0 pk f0 en f0 st f0n pk f0n en f0n
afb 1.00 1.00

Mean 159.89 175.68 124.77 .42 1.24 -1.58
StdDev 32.90 20.39 21.99 1.34 .56 .90
N 43 43 43 43 43 43

2.00 2.00
Mean 156.81 173.83 123.34 .11 .92 -1.56
StdDev 38.55 21.99 25.29 1.42 .74 1.23
N 63 63 63 63 63 63

3.00 3.00
Mean 162.22 170.70 127.76 .25 .70 -1.19
StdDev 23.45 22.12 8.93 .84 .84 .28
N 21 21 21 21 21 21

4.00 2.00
Mean 163.10 166.32 170.21 .78 .97 1.21
StdDev . . . . . .
N 1 1 1 1 1 1
4.00
Mean 164.79 177.01 128.18 .22 .78 -1.37
StdDev 18.82 11.50 11.03 .99 .24 .39
N 7 7 7 7 7 7

5.00 5.00
Mean 112.68 180.79 131.58 -1.26 .69 -1.22
StdDev 159.35 63.02 9.94 5.32 2.57 .35
N 2 2 2 2 2 2

arb 1.00 1.00
Mean 131.29 132.83 143.81 .17 .35 1.62
StdDev . . . . . .
N 1 1 1 1 1 1

2.00 2.00
Mean 146.87 146.87 181.25 .50 .50 3.44
StdDev . . . . . .
N 1 1 1 1 1 1

Table B.13: Accent summaries for accents in final TGs (cont).
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name count num st f0 pk f0 en f0 st f0n pk f0n en f0n
fb 1.00 .00

Mean 74.58 125.24 107.01 -3.79 -1.52 -2.31
StdDev 67.20 16.45 47.19 3.38 .92 2.17
N 21 21 21 21 21 21

2.00 .00
Mean 87.24 124.32 94.09 -3.54 -1.31 -3.55
StdDev 69.76 13.10 53.68 4.41 .80 4.13
N 39 39 39 39 39 39

3.00 .00
Mean 74.29 124.66 94.75 -2.75 -1.72 -2.56
StdDev 80.94 20.29 58.42 2.96 .77 1.91
N 12 12 12 12 12 12

4.00 .00
Mean 139.13 109.42 137.09 -.37 -2.00 -.48
StdDev . . . . . .
N 1 1 1 1 1 1

rb 1.00 .00
Mean 97.74 150.00 161.37 -4.09 -.44 .17
StdDev 86.52 36.16 27.04 5.09 1.68 1.11
N 10 10 10 10 10 10

2.00 .00
Mean 92.74 142.34 162.00 -2.88 -.68 .19
StdDev 72.58 28.48 20.96 3.61 1.90 1.04
N 14 14 14 14 14 14

3.00 .00
Mean 36.87 156.61 168.28 -5.26 .04 .55
StdDev 63.03 42.44 30.16 3.11 1.71 1.02
N 7 7 7 7 7 7

4.00 .00
Mean 43.94 139.29 147.63 -4.71 -.51 -.20
StdDev 76.11 29.16 16.52 3.27 1.51 1.03
N 3 3 3 3 3 3

Table B.14: Accent summaries for accents in final TGs (cont).
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APPENDIX C

Features Used in the Linear Regression
Models

Feature descriptions:

tgs Initial TG
tgm Medial TG
tge Final TG
accent count The number of an accent in the TG.
hstar H* accent on syllable
!hstar !H* accent on syllable
lstar L* accent on syllable
lstarplush L*+H accent on syllable
lstarplush+ L*+H or L*+!H accent on syllable
accent other Other ToBI accents not matching any of those specified above.
a Tilt style accent.
afb Tilt style accent and falling boundary
arb Tilt style accent and rising boundary
fb Tilt style falling boundary
rb Tilt style rising boundary
lminuslpc L-L% boundary tone
lminus L- boundary tone
lminushpc L-H% boundary tone
hminus H- boundary tone
hminushpc H-H% boundary tone
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hminushpc+ H-H% or !H- boundary tone
endtone other Other ToBI boundaries not matching those specified above.
syl break The strength of the break after this syllable.
old syl break The strength of the break after this syllable.
stress Syllable is stressed
syl in Number of syllables since last phrase break.
syl out Number of syllables before next phrase break.
ssyl in Number of stressed syllables since last phrase break.
ssyl out Number of stressed syllables before next phrase break.
asyl in Number of accented syllables since last phrase break.
asyl out Number of accented syllables before next phrase break.
last accent Number of syllables since last accented syllable.
next accent Number of syllables before next accented syllable.
sub phrases Number of minor phrase breaks since the last major phrase break.
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Features used in each model

Description Default Festival Context LR Context ToBI
TG context: tgs tgs

tgm tgm
tge tge
accent count accent count

Accents: hstar a hstar
!hstar
lstar lstar
lstarplush+ afb lstarplush
accent other arb

Boundaries: lminus lminus
hminus hminus
lminuslpc fb lminuslpc
lminushpc rb lminushpc
hminushpc+ hminushpc
endtone other hminuslpc

Misc: old syl break syl break syl break
stress stress stress
syl in syl in syl in
syl out syl out syl out
ssyl in ssyl in ssyl in
ssyl out ssyl out ssyl out
asyl in asyl in asyl in
asyl out asyl out asyl out
last accent last accent last accent
next accent next accent next accent
sub phrases sub phrases sub phrases

Table C.1: Table showing which features are used in which models. TG context,
accent and boundary features, syl break and stress features are duplicated for
‘previous previous’, ‘previous’, ‘next’ and ‘next next’ syllables. The remaining
features are not.
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APPENDIX D

Adjusted Parameters in the Altered ToBI
Model

accented
syllable

next
syllable

s m e s m e
Original Model 0 -27 -26 -14 0 0

Adjusted Parameter -5 -66 -43 -14 0 0
Table D.1: Parameter adjustments for L*

accented
syllable

next
syllable

s m e s m e
Original Model 0 0 0 0 0 0

Adjusted Parameter -29 -40 43 64 66 128
Table D.2: Parameter adjustments for L*+H

accented
syllable

next
syllable

s m e s m e
Original Model 11 13 10 0 0 0

Adjusted Parameter 12 21 7 11 6 0
Table D.3: Parameter adjustments for L+H*
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accented
syllable

next
syllable

s m e s m e
Original Model 0 -34 -33 0 0 0

Adjusted Parameter -13 -35 -36 -1 0 0
Table D.4: Parameter adjustments for L-L%

accented
syllable

next
syllable

s m e s m e
Original Model 0 -20 -5 0 0 0

Adjusted Parameter -20 0 40 0 0 0
Table D.5: Parameter adjustments for L-H%
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