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Abstract

The wreath product A wr"^" B of a group A with a group B

acting as a group of permutations on a set A is studied. The

X - radical of A wr^ B for general group classes X closed tinder
I

certain operations is characterised, and necessary and sufficient

conditions are given for A wr"^ B to be an X - group for some

special classes X .

Subsequently the X - residual of A wr^ B for general classes

X , closed under some closure operations, is characterised, and a

partial characterisation of the nilpotent residual of A wr^ B is

obtained.
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Chapter 1 Introduction and preliminary definitions

Section 1.1 Introduction

Let A be a group, and let B be a group acting as a group

of permutations on a set A. The wreath product W = A wr"^ B of

A and B is the split extension of the direct power A"^ by B,

acting as follows:

fk(A.) = f(Xb for all f e A"^, b e B, and A. e A

Let X be a class of groups; then the X - radical of any

group G is defined as

p(G : X) =^N : N e X >
and the X - residual of G is defined as

p#( G : X) = flj K : R 4 G, &/N e X ]
In this thesis we study X - radicals and X - residuals of

wreath products for various classes X.

We use P. Hall's language of closure operations; see page 4

for a list of special classes and closure operations used in

this thesis.

In Chapter 2 we characterise the X - radical of A wr"^ B,

where X = KQ> S^, D^, Nq> X. (X = X if every direct power
of an X - group is an X - group.)

If A jk X, the radical is given in terms of p( A J X) and

p(B : X); if A e X, the radical depends on when a wreath product

is an X - group. We suggest the general form of a theorem

specifying when A wr"^ B is an X - group, and extern! this to

LX.

In Chapter 5 we give conditions for A wr"^ B to be
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nilpotent, locally nilpotent, a Baer group, a Gruenberg group,

and a ZA-group. We then characterise p(A wr^ B : x) completely

for these classes X.

In Chapter 4 we study the X - residual of A wr"^ B for

various classes X, and characterise the residual for

X = <S, <J, Ro, Wo> X. (X = Wq X if and only if whenever A and
B are X - groups, then A wr^ B is an X - group.) We also show

how the general case can be reduced to more specific cases.

In Chapter 5 we study the nilpotent residual of A wr^ B.

Let C (a) = j b e B : Xb = A V A e a I, We reduce the
Jd

general case to two special cases, viz. B/C^(a) e Fp for some
prime p, and B/C^(a) / Fp for any prime p. We obtain lower bounds
for p„.(A wr^" B : N), and lower and upper bounds for the residual

of the standard wreath product A wr B (i.e. A wr^ B with A = B

and B acting in the right regular representation). We

characterise p^,(A wr"^ B : n) for the cases B/Cp(A) e Fp and B a
perfect group, and characterise p^A wr B : n) when A/A'and

B/P#(B : N) are periodic.

Section 1,2 Preliminary definitions and notation

Let A be a group and let A be a set. Then the

Cartesian power Cr A"^" of A is the group of all .functions from A

to A with componentwise multiplication, i.e.

■fg(A) = f(A)g(A) for all f, g e Cr AA, and all A e A
A

/ \
For f e Cr A , define the support o(f) of f by

o(f) = [ A e A : f(A) / 1 ]

Then the direct power Dr A^ of A is the subgroup of Cr A^"
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consisting of all functions from A to A with finite support.

We will usually write A'^ for Dr A"^ where no confusion will arise.

For A e A, define A, C Cr A^" byA

Aa = [ f e Cr AA : o(f) C [A] j
Then A. is isomorphic to A for all A e A, and Dr A^ is theA-

direct product of its subgroups A^ for A e A.
For f e Dr A^ and p e o(f), define f e A^ by f (aO = f(p) •

Then

f "

p b(f) fp
this product being well defined since the A^ commute element-
wise.

Let a e A and A e A. Then define a. e A, by a,(A) = a.A A A

Let A be a set and let B be a group. Call (A , B) a pair

if B acts as a group of permutations on A, i.e. if there erists

a map (A,b) i-> Ab from A x B -> A such that for each b e B, the

map A »-> Ab for A e A is a permutation of A, and moreover for all

A e A and bi,b2 e B, A(b.,b2) = (Ab^b^ Define C (a) & B byi3

C (a) = [ b e B : Ab = A V A e A ]
JD

Then say (A , B) is trivial if B = Cg(A), and faithful if
C (A) = [1]. (A. , B) is transitive if B acts transitively on. A.

Let A be a group, and let (A , B) be a pair. Then the

unrestricted wreath product _A W£^J3 is defined as follows* The

base group of A Wr^ B is Cr A^. Define B as a group of

automorphisms of Cr A^ by defining fb for all f f Cr and all

b f B by

fb(A) = f(Ab~1) V A e A

Then A Wr^ B is the split extension of Cr A"^ by B ftotlHB In this
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fashion. The elements of A Wr B are thus formal products bf,

where b e B and f f Cr A"\ with multiplication

(bf)(cg) = (bc)(f°g) for all b,c <f B and all f,g e Cr AA
We identify b e B with b1 and f e Cr A^ with 1f, making these into

"b .A.
actual products; and f = b fb as usual,, Cr A and B are now

subgroups of A Wr^ B, with Cr A^A A WrA B, [A Wr"^ B]/Cr A^ ~ B,

and Cr A^ fl B = [ 1 ].

Tl>e restricted wreath product A wr"^ B is defined as above,

with Dr A'^ replacing Cr A^.
The standard unrestricted wreath product A Wr B of two

abstract groups A and B is defined as A Wr B where (B , Bj is

the right regular representation of B. The standard restricted

wreath product A wr B is A wr B with (B , B) the right regular

representation of B.

X will denote a (group theoretic) class of groups, i.e. a

class 6f groups such that [1] e X and H "= G- e X => H e X. We

will often write "H is an X - group" for H e X.

We will use P. Hall's language of closure operations

(see e.g. [17] Volume 1 Chapter 1).

Some special operations are given by:

X = CX if the Cartesian product of any collection of

X - groups is an X - group

X ~ 0^ X if any Cartesian power of any X - group is an
X ~ group

X = D(D ) X if the direct product of any collection (any pair)t- o =

of X - groups is an X - group
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X = X if" any direct power of any X - group is an

X - group

X = LX if & is an X - group whenever every finite subset

of & is contained in some X - subgroup of G

X = N(N ) X if the product of any collection (any pair) of

normal X - subgroups is an X - group

Note that G e NX <=> G is generated by its subnormal

X - subgroups (see e.g. [17] Volume 1 Lemma 1.31).

X = NX if every group 4-s generated by its ascendant

X - subgr oups iS an * -

X = PX if for any group G whenever N A &, N e X, and

G/N e X then G e X
✓

X = PX if every group having an ascending series all

of whose factors are X - groups is an X - group

X = QX if every homcmorphic image of an X - group is

an X - group

X = ? if given a set (finite set) of normal subgroups

of G with G/N e X for N e /| , then G/n e X,

for any group G

X = SX if every subgroup of an X - group is an X - group

X = Sn X if every normal subgroup of an X - group is an

X - group

X = Wq X if whenever A is a group, (A , b) is a pair, and
A and B are X - groups, then A wr^ B is an

X - group

Some special classes are:

A abelian groups

5



Fp finite p-groups
G finitely generated groups

N nilpotent groups

Np nilpotent p-groups of finite exponent
S soluble groups

Sp soluble p-groups of finite exponent
T trivial groups

Z ZA - groups

NA and NA are the classes of Baer groups and Grueriberg groups

respectively.

If X is a class of groups and G is a group, then the

X - radical p(G : X) of G is defined as

p(G s X) = : N A G, N e X >

and the X - residual G : X) of G is defined as

p#(G : X) = n[ N i.NAG, G/N e X ]
Z+ will denote the set [1,2,3,....]

N will denote the set [0,1,2,....]

P will denote the set of primes in Z+
We will denote the dibect product of groups G! and G2 by G! x G2

6



Chapter 2 Radicals of wreath products

Section 2.1

We prove

Theorem 2.1,1 Let a be a group, (A , B) a pair, and X a class

of groups such that X = ^Q, S^, D^, X. Let W = A wrA B.
Then

(a) If A / X,

p(w : X) = { p(B : X) n Cfi(A) ]p(aa : x)
= [ p(B : X) HCb(a) ]p(A : X)A

(b) If A e X,

p(W : X) = ^.b, : bn Ab, a wrA b, e x) aa
The proof is accomplished with the aid of several lemmas.

Definition 2,1„2 Let A be a group and let A be a set. Let A e A.

Define the projection w^ : Cr AA -> A by
fco. = f(A) for all f e Cr AA

A

w^ is a homomorphism onto A. We will usually write the restriction
of co, to Dr AA as w., also.A A

Lemma 2.1,5 Let A be a group, (a , b) be a pair, and let

W = A wrA B. Suppose N is a normal subgroup of W such that

n ^ c (a)aA. Then 3 a e a such that (n h aA) on = a .B A

Proof: N 4 C^(a)aA => 3b eB and g <= AA such that bg e N
—— Jj

and b /■ Cb(a) .
Hence 3 a e a such that Xb / a. Let a e A. Then since n^ W,

(bg)3"^ e N => (bg) 1(bg)a^ e N => g 1a^bga^ e N n AA
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Now (g 1aAbgaA)wA = g(A) 1 )~1 g(^-)aA(A) = a (A); = a
and hence a e (N H AA) wA
Hence a < (N H AA)wa . By definition, (N H Aa)wa ^ a; and
so (N fl aa) wa = A .

Lemma 2.1.4 Let A be a group, (A , B) be a pair, and let

W = A wrA B. Let X be a class of groups such that X = ^Q, X;

suppose that A / X and that N is a normal X - subgroup of W.

Then N « Ct3(a)aa = cJa) x aa .Jd B

Proof: Suppose N/» C„(a)aA ; then by Lemma 2.1.3. 3 A e A such
""" ~ B

that a = (N H aa) wa , and s o a e<Q, S ^ X = X, which is a
contradiction. Hence N C_(a)aa.b

cJa)aa = c (a)x aa is immediate, since c (a) h aa = flj, andB B B

if f e AA, b e C^Ca) thenB

fb(A) = f(A) V A e A
b

i.e. f = f .

This gives us

Lemma 2.1.5 Let X be a class of groups such that X = <Q, sn>*>
and suppose that A is a group such that A / X. Let (A , B) be

a pair and let W = A wrA B. Let N be a normal X - subgroup of

W. Then

n «: <>, : b, A b, b1 < CL(a), bn e x>p(AA : x)B = =

Proof: By Lemma 2.1.4, N « CL(a) x AA ; let N„ and N. be the
u A

projections of N into C (a) and AA respectively. Then N an<3.B C

are subgroups of W, and since N is normal in W, AA
and N„ ^ B.

U

N e X => N and N e QX = X.
= A 0 = =
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Hence N. ^ p(AA : X) and N e^B, : B,4B, B, S C (a), B, (X>ii. = C B —

Hence N S NQN^ S <B, : B, A B, B, S C (a), B, e X>p(AA : X)

As an immediate corollary we have

Corollary 2.1,6 Let A be a group, (A , b) be a pair, and let

W = A wr B. Let X be a class of1 groups such that X = <Q, Sn> X,
and suppose A / X. Then

p(W : X) £ ^ B1 : B, A B, Bi * C (a), B, e X>p(AA : X)
B — —

To prove converse of Corollary 201.6, we will need the

following general results about radicals of direct products of

groups.

Lemma 2.1.7 Let I be a set and let [ i : i f I J be a

family of groups. Let X be a class of groups such that X = QX.

Then

p( Br G. : X) < Br p(&. : X) and
iel 1 iel 1 "

p( Cr &. : X) * Cr p(G. : X)
iel 1 ' iel 1

Proof: We prove the result for Br G. ; the proof for Cr G.
iel 1 iel 1

is the same.

Let H be a normal X - subgroup of Br G. . Then Hoi. 4 G. V i el,
iel 1 11

and Hok e QX = X Viel.

Hence H&>. ^ p(G. : X) Viel, and so
11 '

H < Br Ha. S Br p(G. : X)
iel 1 iel 1

H was any normal X - subgroup of Br G, ; therefore
iel 1
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p( Dr G. : X) ^ Dr p(G. : X)
iel 1 iel 1 ~

Lemma 2,1.8 Let j C. : i e I j be a family of groups, and let

X be a class of groups. Then

Dr p(G. : X) « p( Dr G. ; X)
i el 1 ~ iel 1 "

Proof: We use internal direct products. Let iel, and let

H be a normal X - subgroip of G. . Then since G. commutes with
= i l

G. for all j e I\[ij, H A Dr G. ; hence H « p( Dr G. : X).
J iel 1 iel 1

Hence p(G. : x) s p( Dr G. : X) for all iel, and so
1 "

iel 1 -

Dr p(G. : X) $ p( Dr G. : X)
iel 1 " iel 1

We have as an immediate corollary

Corollary 2,1.9 Let j G^ : i e I J be a family of groups. Let
X be a class of groups such that X = QX. Then

p( Dr G. : X) = Dr p(&. : X)
iel 1 - iel 1 "

Lemma 2.1.10 Let A be a group and let A be a set. Let X be

a class of groups. Then

p(A : X)A = < : N A A, N e X >

Proof: Let N be a normal X - sub group of A. Then N < p(A : X)

and so NA $ p(A : X)A ; hence

C l/ : N 4 A, N e X > S p(A 5 X)A
Let f e p(A : X)A and let a(f) = ( Ai, A2,....An }.
Then f(A'L) e p(A : X) for 1 e i « n J h«nce for each

i e (l,2,....nj 3 integer k-t , normal X ~ subgroups N-tj of A

for 1 ^ j $ k-t , and elements nij of NtJ for 1 « j ^ ki, ,

such that f (A-J = n -L in i.2 n ik
^ ,
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For 1 £ j $k[ , 1 $ i $ n , define ftj : A -> Nij by

f ij(Ai) = n-L j

f Lj(A ) = 1 V A/ Ai

Then f L j f Nij^ and

f = f11f1 a•••.f1k f2i....f2k .fni•••.fnk
1 2 n

<f : N A A, N e X >

and so p(A : X) = </: N A A, N e I )

Lemma 2a1.11 Let A be a group, (A , B) be a pair, and let

W = A wr^ B. Let X be a class of groups such that X = ^Q, S^, B.>X.
Then

p(AA : X) = p(A : x)A ^ p(w : X)

and < Bi : B, 4 B, B-, s= cJa), Bi eX>( p(W : X)15 = =

Proof: By Corollary 2.1„9 and Lemma 2.1„10

p(AA : X) = p(A : X)A = <C N71 : N 4 A, N e X >

N 4 A. and N e X => W and / e D X = X
P =

=> £ p(w : X)

Hence ('l/1 : NiJA, N el> « p(w : X) and so

p(AA : X) = p(A : X)A S p(w : X)

Let B! ^ B, B.) ^ C_(a). Then B,4 W ; for B.| is normalised
J-> -

by B, and commutes with AA (see proof of Lemma 201o4).

Hence { Bn : B, 4 B, B, s cb(a), Bm e X p(w : X)

Thus we have

Proposition 2.1.12 Let A be a group, let (A , B) be a pair, and

let W = A wrA B. Let X be a class of groups such that

= = Sn* D y ar"3' suPPose that A, ^ X. Then
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p(W : x) =^B, : El A B, B, « C (A), B, e X>p(AA : X)
= <^B, : B1 ^ B, B, $ CB(A), B, <r X>p(A : X)A

If further X = N X , then
= o =

p(W s X) = { p(B : X) n CB(A) ]p(AA : X)
= i p(B : X) n CB(A) }p(A : X)A

Proof: The first part of the proposition is immediate from

Lemma 2.1.11 and Corollary 2r1.6.

We show that if further X = N X , then
= o =

<B, : B, & B, B, $ Cb(a), B, e X> = p(B : x) C) Cfi(A)
For brevity we will write B = ^ Bi : B, ZsB, Bi £ cAa), B1 eX)J3 =

The inclusion B £ p(B : X) fl C_(a) is clear.
— = £>

Let b e p(B : X) n c(a). Since X = N X , 3N4 B such that
= B = 0 —-

N e X and b e N. Then b e N Pi C_(a ) , and N Pi C_.(A) e S X =
= B B n =

N fl C (A) 4 B since N B and C_(a) A B. Kence b e B , and-b n —

hence B = p(B : X) Pi C_(A) .
= 15

Thus we have Theorem 2.1.1 part (a).

None of the closure operations Q, S^, and may be dropped
from the hypotheses of Proposition 2.1.12.

I2p - closure: Let X be the class of groups of order 1 or 2 ;
then X = £Q, Sn>X but X £ X . Let A be the cyclic group of
order 4, generated by a, say; let B be the cyclic group of order

2, generated by b. Then A / X. Let W = A wr B. We will write

f e AB as (f(1),f(b)). Then

p(AB : X) = { 1, (1,a2), (a2,1), (a2,a2) ] and

p(A : X) = [ 1, a2 ]

so that p(AB : X) = p(A : x)B ; but p(w : X) = ( 1, (a2,a2) ]
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So p(AB : X) ^ p(W : X).

Sn - closure: Let D3 be the dihedral group of order 6, i.e.
E3 = ^a,b : a3 = b2 = 1, abab = 1^

= ( 1, a, a2, b, ab, ba j

Then ^a"> = C3, the cyclic group of order 5, is normal in D3.

Note that D3 = ^b, ab^, since a = (ab)b and ba = b(ab)b .

Let X = QDp(D3). We show that X / Sn X by showing that
C3 / X .

Let Abe any set and suppose 3 N^j D3A such that

D3A/N "= C3 . Then f3 e N for all f e D3A; in particular,

= (b^)3 e N and (ab)^ = (ab)^3 e N
Thus D3A -<"b, ab^A ^ N, which implies that C3 = [1],

a contradiction.

Hence C3 / X , and X ^ S X .'
= = n =

Let A = C3 = ^a^ ,say, so that A / X , and let B be the

cyclic group of order 2, generated by b,say. Let W = A wr B.

Then N:<(a,a~1), b > t D3 e X , and N4I; but N jL AB.
_g

Q - closure: Let X = F , the class of torsion-free groups.

Then X = X , but X ^ QX . Let A be the cyclic group of

order 2, generated by a , say, so that A / X ;let B be the

infinite cyclic group, generated by b, say. Let A = [A] , with

Ab = A . Let W = A wrA B = A x B , since B = CHCa) . Then
JD

p(A : X) = [1] and ^ Bn : B, 4 B, B, € cb(a) , B, cX) = B .
—s

Now ^ab^ 6f since W e A , and <ab^ e F ; hence <ab> $ p(w :

But

^ab> /& B = p(A : X) : B, A B, B, $ C_(a), B, eX>
= JD —

Novf consider the case A e X . We have
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Proposition 2,1.15 Let X be a class of groups such that

X = <*D , No>X , and let A be an X - group. Let (A , b) be a

pair and let W = A wr^ B. Then

p(W : X) ^^B^B^BjBiA71 e X > AA
Proof: X = ^Dp, Nq^ X implies that

p(W : X) - <TN : NA W, N e X, N js AA> ; for

A e X => AA e Dp X = X , and hence if N is a normal X - subgroup
of W, N.AA e Nq X = X , and N.AA Z AA ; so p(w : X) £ N.AA for
all such N, i.e.

p(W : X) = i N : AA =$ N £ W, N € X >

Now AA < N C W <=> N = (N n B)AA , where N H B 4 B ,

and so

p(W : X) = C BiAA : B, <0 B, B,AA e X >
= < Bi : B, d B, BiAA e X > AA

Now if Bi ^ B , (A , Bi) is clearly a pair with the same

action as (A , B) ; so since the action is unchanged,

A wrA B! = BiAA ^ BAA = A wrA B

Hence we have Theorem 2.1.1 (b) , and thus both parts of

Theorem 2.1.1 are proved.

Note: The standard case

Theorem 2.1.1 (b) gives only

p(A wr B : X) = ^B1 : B, 4 B, Bi A"6 e X > AB
= ^B, : B, 6 B, AWBB1 X > AB

where A wr Bt is no longer the standard wreath product.
B

However, the groups A wr Bi in this expression are isomorphic
T

to the standard wreath products A 1 wr Bi , where Ti is a
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(left) transversal to Bi in B. (See proof of Theorem 5.4 of [14].)

Unrestricted wreath products

Lemmas 2.1.3, 2.1.4, 2.1.5, and.2.1.6 also hold for

unrestricted wreath products without change of proof, and so we

have

Proposition 2.1,14 Let A be a group, let (A , b) be a pair, and

let W = A WrA b . Let X be a class of groups such that

X = <Q, Sn> X and suppose that A / X . Then
p(W : X) ^Bi i B, A B, B, «= Cfi(A), B, e X>p(Cr AA : X)

Corollary 2.1.9 does not hold for Cartesian products;

e.g. let X be the class of abelian p-groups for some prime p.

Let G be any abelian p-group with infinite exponent. Then

p(G : X) = G , but p(Cr G^ : X) < Cr G^ ; Cr G^ contains elements

of infinite order which cannot be contained in the join of any

finite number of p-groups.

Clearly, to characterise the radical further, we need

conditions for W to be an X - group. We look at some conditions

for general classes X in Sections 2.2 - 2.4, and in Chapter 3

obtain conditions for some specific group classes.

Section 2.2 P - closed classes

We have immediately

Proposition 2,2.1 Let X be a class of groups such that

X =^P, S, D^> X . Let A be a group, let (A , b) be a pair, and
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let W = A wrA B . ;then

W e X <=> A e X and B e X

Proof: W e X => A and B e SI = X

Now suppose A <= X ard B e X . Then AA e X = X , and so

A^B e PX = X . Hence we have the result.

In this case, if A e X ,

^Bi : B, 4 B, A wrA Bi e X> = (B, : B, 4 B, B, e X >

= p(B : X)

and so we have

Theorem 2.2.2 Let X be a class of groups such that

X = <Q, S, D , P>X . Let A be a group, let (A , B) be a pair,

and let W = A wrA B . Then

(a) If A/X,

p(W : X) = [ p(B : X) n Cfi(A) ]p(A : x)A
= [ p(B : X) H C (A) ]p(AA: X)

(b) If A e X ,

p(W : X) = p(B : X)aA

Examples of such classes are soluble groups and v-groups

for any set of primes tt. In [15], D.B. Parker proves this

result for standard wreath products with X the class of finite

7r-groups for any set v of primes.

Section 2.3 Some conditions for I to be an X - group

Let X be a class of groups.

Note that if X = •CS , D , D > X , then
= n p o =
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A wrA B e X <=> A e X and B e X

if A or (A , B) is trivial; for then W = AA x B .

Suppose we have a hypothesis of the following form

Hypothesis (*) Let X be a class of groups partitioned into

non-empty 'subclasses' Xp for i e I , where if G e Xp and

H G , then H e Xp . Suppose also that for each i e I, there

exists a class of pairs X; such that if A is any group and

(A , B) is any pair, then

A wrA B e X <=> 3 i ( I such that A e Xp and (A , B) e Xi

If X = Sn X , then A wrA B e X implies that A e X ,

and so (*) can always be satisfied by taking each Xp to

comprise all copies of a single group in X , and then choosing

JCl appropriately. The interest in (*) comes when there are

relatively few elements in I . For example, for X = N yye show

in Chapter 3 that (*) holds with the Xp as T, Np\ T for
p e P , and N\^L^ Np , and suitable -

Now consider the X - radical of A wr^ B .

Let X be a class of groups such that X=^Q, S,D,N>X.
= = n p o =

Let A e X , let (A , b) be a pair, and let W = A wr^ B .

Then we have from Theorem 2.1.1 (b)

p(W : X) = <*Bi : B, A B, a wrA Bn e X > aa
Suppose (*) holds, and define

p( (A , B) : X-) = : M£ B, (A , M) e Xi >
for i e I o

A e X => 3 i € I such that A e Xp ; thus

<"B, : B, a b, a wrA Bn e X>aa
= : B, 4 B, (A , Bj *3ti>AA by (*)

1,7



i.e. ( Bi : 3, A B, A wrA B, e pAA = p( (A , B) : X^) AA
Hence we have

Theorem 2.301 Let X be a ^ 0. S . N . D "V - closed class, and
_ n» o' p '

suppose (*) holds for x . Let a be a group, let (a , b) be a

pair, and let W = a wrA B.

If A jk X , then

p(W : X) = { p(B : X) nCfi(A) ]p(aa : x)
On the other hand, if 3 i e I such that A e X^ , then

p(W : X) = p( (A , B) : ^)aA

Standard case The above result is valid for the standard case,

but involves calculation of p( (B , B) : jL) . The following

may in some cases be more straightforward.

Suppose we have

Hypothesis (*) (standard) Let X be a class of groups partitioned

into non-empty subclasses Xjj for i e I, where if G e Xjj and

H ~ G , then H e X^ . Suppose also that for each i e I, there

exists a class of groups X.^ such that if A and B are any groups,

then

AwrBeX <=> 3 i e I such that A e Xjj and B e X-j_2

Note that if (*) holds, then so does (*)(standard), with

Xj_2 = [ B : (B , B) e £■ } for all i <= I.

Let X be a class of groups such that (*)(standard) holds,

and such that X =(Q, S^, D , Nq^X , Suppose further that any
non-trivial direct power of an Xp^ - group is an Xjj - group,

for all i e I. Let B be any group, and suppose A e X, so that

there exists i e I such that a e Xi1 .

18



Let Bfl O B and let T1 be a left transversal to B.| In B.

Then

A^1 wr Bi e X <=> Bi e

T
since A 1 e Dp Xp-j = X-jj ; and hence by the remarks after
Proposition 2.1.13,

p(A wr B : X) =^B, : B, 4 B, B, e Xi2>AB
= p(B : Xi2)AB

Thus we have

Theorem 2.3.2 Let X be a {Q, s . L , N ) - closed class cf
_

n p' o

groups such that (*)(standard) holds for X. Suppose further

that any non-trivial direct power of an X^ - group is an

X±i - group, for all i e I. Let A and B be groups. Let W = A wr B .

If A jk X,

p(W : X) = p(A : X)B = p(AB : X)

If on the other hand, 3 i e I such that A € Xp-j,

p(W : X) = p(B : Xi2)AB

For example, let X = N. Then we have

Theorem 2,5.5 [1] Let A and B be non-trivial groups. Then

AwrB e X <=> 3 prime p such that A e Kp and B f Fp

Clearly A wr B e I <=> A e N and B e N , if A or B is

trivial.

Thus we may take I = P U j0,lj, and

X01 = T , = N\Up Np , Xp1 = Np \ T for all p e P

X02 = N , X12 = T , Xp2 = Fp for all p e P

and (*)(standard) holds.
If A e T, then p(w : N) = p(B : N)aB = p(B : N), and if
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k e N \ pUp Np , p(w : N) = p(B : T)aB = AE = p(A : n)B
Therefore since N = ^Q, S , D , N > N, we have

= ' n' p' o =

Theorem 2.5.4 Let A and B be groups,and let W = A wr B .

If A is trivial,

p(-W : N) = p(B : N)

If A * P& Sp >
B B

p(W : N) = p( A : N) = p( A : N)

Finally.. if 3 p f P such that A e Np , then

p(W : N) = p(B : Fp)AB

Section 2.4 Extension to W f LI

Let X be a class of groups for which we have a set I and

classes X± and ^^such that hypothesis (*) holds. Given that
X and LX are Closed under certain operations, we obtain necessary

and sufficient conditions for Vi to be a locally - X - group.

Define (Ai , B^ to be a subpair of (A , B) if ^ C A,

bi < B, and (A^ , bi) is a pair with the same action as (A , b).

Note that if Bi « b , (A , Bi) is always a subpair. If ;£ is

a class of pairs, then say 36 = S if every subpair of an

- pair is an - pair.

Let be a class of pairs. Then say

(A , B) e L <=> for all finite subsets Ai of A and B^ of B,

3 A2 and B2 such that A, C A2 , Bi C B2 and

(A2 , B2) is an ^ - subpair of (A , B)
Note that if X = { B : (B , b) <r X J, and , then

B e LX <=> (B , B) e L .

If Xp is a subclass of groups such that T ^ Xp , let LXp
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/(XOH-WuCaI
denote [ L(Xp U T) ] \ T, i.e. al]7 groups A for which any finite

subset lies in an Xp - subgroup, and let SX^ denote [ S(Xp U T) ] \ T;
LT = T = ST as usual.

Then we have

Theorem 2.4.1 Let X be a class of groups with Hypothesis (*)

holding. Suppose also that S(Xp U T) = Xp U T for each i e I.

Let A be a group and let (A , b) be a pair. Then

A wrA b e LX <=> 3 i e I such that A e LXj_ and (A , b) e L

Proof: Note first that X = SX , since S(Xp U T) = X± U T for

all i el.

We prove first that the conditions are sufficient.

Suppose 3 i e I such that A e LXp and (A , B) e L

Let W = A wr"^" B and Let H be any finite subset of W. Define

= [ f e A^" : 3 b e B such that bf e H j

Eg = [beB : 3 f e A'^ such that bf e H]

HA = [ f(A) : f e HA , A e A ]
H0 = U{ cr(f) : f e HA |

Then since H is finite, so are H^, H^j H^, and H^. Hence since
A e LXp , there exists Ai £ A such that H C Ai e Xi , and sinceA —

(A , B) e L , 3 Af C A and B, ^ B such that C A,, C Bi ,

and (An , Bi) is an subpair of (A , B) . Identify A"^"1 with

[ f : f e A"^ and o(f) C ^ ]; then we have

H C <^Ha, Hb> S A^B, « W
But Ai^B-j = Ai wr^1 B.j f X , by (*) ; so H is contained in an

X - subgroup of W. Therefore W e LX ,

Conversely, suppose W e LX . Then A e SLX £ LSX = LX .

If Ai and A2 are any finitely generated subgroups of A then
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<"a, yf}k23is also finitely generated, and so since X = SX ,

<^Ai yf kzJt Xj_ for some i e I. If A = jlj, then

A =<A1/^A2')f Xi , and so A e LXi . If A £ [ 1 j, and A, £ [l] k2 ,

then At and k2 are elements of S(Xi U l) \ T ( X^; i.e. any two

non-trivial finitely generated subgroups of A both lie in .

Hence A e LX^ .

Now let Ai and Bi be finitely generated subgroups of A and

B respectively,and let A1 be any finite subset of A . Then
A B

A, 1 is a finitely generated subgroup of W, and so, since

W f LX , ki wrAl^1 Bi = A^^B^ e X . Hence since k: e Xp ,

by (*) we have that (AiB.! , B<) e 36 .£

So (A! , B,) C (A^! ,Bi) e 36-; and (A , B) e L

Hence result.

Therefore we have, by Theorem 2.4.1 and Theorem 2.3.1,

Theorem 2.4.2 Let X be a class of groups such that (*) holds,

with S(X^UT) =XpUT for all i e I. Suppose further that

LX = ^Q, Sn, Dp, No> LX . Let A be a group, let (A , B) be a
pair, and let "W = A w/ B .

If A / LX ,

p(W :LX) = [ p(B : LX) nCB(i) } p(kA : LX)
On the other hand, if 3 i f I such that A e LXi » then

p(W : LX) = p( (A , B) : L*f )aA

For the standard case we have

Theorem 2.4.5 Let X be a class of groups with (*)(standard)

holding, and S(Xn U T) = Xp-j U T for each i e I. Let
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A and B be groups. Then

A wr B ei,X <=> 3 i e I such that A e LXp-j and B e LXp2

Proof; The proof is very similar to that of Theorem 2.4.1 ;

we give an outline.

To prove that the conditions are sufficient, suppose there

exists i e I such that A e LXjj and B e LX^g and- le'b H C A wr B
be a finite subset. Define

H B = ! f f A^ ) 3 b f B such that bf f H !
A ■

Let Hg and be as before. Let

Ha = U| c<f) : f e HaB ] U Hg

Then H C {H^n^H > = wr di> e X , by (*)( standard)
and so W f LX .

Now suppose We LX ; then 3 i e I such that A e LXp-j

as before. Let A^ C A and B< CB be finite subsets; then

^Ai^^Bi) e G and so {Ai^Bld3i) e X ; hence dA^t wr <fB^ e X ,

and so B) e Xp2 . Hence B e LX^ > an(l we have the result.

Note; This result is an immediate corollary to Theorem 2.4.1,

if Xj_2 = [ B : (B , B) but it also holds if we have only

(*)(standard) and not (*).

Theorem 2.4,4 Let X be a class of groups for which (*)(standard)

holds, and suppose that S(Xp.| U T) = Xi1 U T V i e I. Suppose

further that LX = Q, S^, D , Nq~> LX . Let A and B be groups, and let
I = A wr B .

If A Jk LX ,

p(w : LX) = p(AB : LX) = p(A ; LX)B
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If there exists i e I such that A e LX^-j ,

p(W : LX) = p(B : LXi2)AB

For example, let X = N. Then from Theorem 2.3.3,,we have

Theorem 2„4a5 Let I = [0,1] UP, and let

ioi = I , Xn = N v p^> fp , xp1 = Np\T V p e P and
X02 = 2 » X12 = T , Xp2 = ?P for a11 P 6 P

Let A and B be groups. Then

A wr B ei-N <=> 3 i e I such that A e^Xp-j and B e'-Xi2

and since LN =/Q, S , N . D S LN we have
= * n o p' ~

Theorem 2.4.6 Let A and B be groups and let W = A wr B .

If A = [1],

p(W : LN) = p(B : LN)

If 3 p e P such that A e LNp \ T ,

p(W : LN) = p(B : LFp)AB
Otherwise,

p(W : LN) = p(AB : LN) = p(A : LN)B
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Chapter 5 Necessary and sufficient conditions for W to be an

X - group for some special classes X

In this chapter we give conditions for A wr"^ B to be a

Baer group (Theorem 5.2.1), a nilpotent group (Theorem 3.3.1), a

locally nilpotent group (Theorem 3.4.1), a Gruenberg group

(Theorem 3.5.1), and a ZA - group (Theorem 3.6.1). We then use

these results- to obtain p(W : X) for these classes X .

Section 5.1 Preliminary results

Let (A , B) be a pair and let A' C A , Then define

Ctj(A?) = [ b e B : Xb = A V AeA'iB

Lemma 3.1.1 Let (A , B) be a pain. Let A' C A . Then C^(A')
B

is a subgroup of B ; and if A'B C A', then Cri(A ) ^ B .
— B

Proof; The proof consists of straightforward checking.

Lemma 5.1.2 Let (A , B) be a pair, and let A' C A, A'B C A'.

Then

(a) (A' , {B/CB(A')D is faithful pair, with action
AbC„(A') = Xb. V A e A'

B

(b) Let the orbits of B on A be j A : i e I j. Then the

orbits of [B/C.rXA')] on A' are j A. : j € J j, whereB J

j e j <=> a. c a'
J

Proof: (a) The action is well defined on A', for if b,y3 e B,

then bCfi(A') = ^(a')
=> b/T1 e cb(a')
=> Ab^"1 = A V A e A'

=> Ab = A/? V A € A '

=> XbC_(A') = A/5C (A') V A e A'B B
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and A e A' => AbC_(A') = Ab e A' V b e B.
13

bC^A') is a permutation since b is.13

(b) <t>j£ J since (p £ A', and A'B C A' means that A' must contain

at least one orbit A.. Let A. be an orbit of B on A such that
J J

A. C A'. Then if A, A' e A. , there exists b e B such that
J ~ J

Ab = A', i.e. AbC^A') = A' ; so A. C A' for some orbit A' of'B j — j J

B/C (A') on A.'
.D

Now let A' e A' ; then if A e A. C A' , there exists
J J - J

j3 e B such that

A = A'/3CB(A') = A'/3
=> A' e A. . Hence A' C A. .

J J - J

Hence A'. = A. , and so the orbits of B/C (a') on A'are precisely
J J B

| A. : j e J J.
J

Thus we have in fact that B/C„(a') acts precisely as B on a'13

but is faithful.

Lemma 5.1.5 Let (A , B) be a pair, and let A' be a subset of A

such that A'B C A'. Let the orbits of B/C^Ca') on A' be
j A. : j e J J, Then for all j e J

J

b/Cb(A.) ~ iB/CB(A-)!/(CB(A.)/CB(A')l = iVCjjUhl/CjB/c^jUj)
Proof: A'B C A' => (^(A') A B and hence C (A') A C (A.) ,—— — B B B j

and so the first part of the lemma is immediate from the 3rd

Isomorphism Theorem.

Cb(Aj)/Cb(a') = C£B//c is routlne checking.B
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Lemma 5.1.4 Let A be a group, let (A , B) be a pair, and let

W = A wr^ B . Then

{A wrA B]/CB(A) ^ A wrA {B/Cb(a) j
Proof: C-^Ca) A W since C^(a) is normal in B, and is normalised
—— h B

by AA (see proof of Lemma 201.4).

Define 0 : W -* A wrA [B/C(A)] by bf0 = bC (A)fB B •

0 is clearly well defined.

0 is a homomorphism :

Let b,c e B and f,g e AA. Then since Ac = AcClCa) V A e A,B

(bfcg) 0 = bcCB(A)fGg
= bocB(/0foCB(A)8
= bCB(A)f cCB(A)g
= (bf)0 (cg)0 as required.

0 is clearly an epimorphism, and

bf0 = 1 <=> bC (a) = 1 and f = 1 <=> bf e c (a), so Ker 0 = CL(a)B B B

Hence

[A wrA B]/CB(A) = A wrA {B/Cb(a)]

Proposition 5.1.5 Let A be a group, let (A , B) be a trivial

pair, and let W = A wrA B . Let X be a class of groups such

that X =<D , D , S >X . Then
= o' p* n =

W <r X <=> A e X and B e X

Proof: ^b(a) ~ ® ^ W = AA x B , from which the result is
immediate.

Notation: Let X be a class of groups and let p be a prime. Then

Xp will denote the class of X - p - groups.
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Section 502 We NA

Recall that for primes p, Sp is the class of soluble p-groups

of finite exponent.

Define classes $ p of pairs for primes p by
(A , B) e 6P <=> b e NA and. B/C^(a) is a p-group.

We prove

Theorem 5.2.1 Let A be a group, let (A , B) be a pair, and let

W = A wr^ B . Let I = [0,1] UP , and partition NA into subclasses

10 = T , Xp = Sp \ T for all p e P, X1 = NA \ Up |p
Define classes of pairs

_>£0 = { (A , B) : B e NA J >6p = <2>p for all p e P

3^1 = I (A, b) : B eM and Cfi(A) = B ]
Then

W e NA <=> 3 i e I such that A e X^ and (A , B) e

This result is valid for standard wreath products; however

if we put X±2 = [ B : (B , B) e ] for all i e I , we have

Theorem 3.2.2 Let A and B be groups and let W = A wr B . Let

I = [0,1] UP , and let

Xqi = T , X-j .| = NA \ Sp , Xp-j = Sp \ T for all p e P
Xq2 = NA , X12 = T , Xp2 = (NA)p for all p e P
Then

AwrB e NA <=> 3 i el such that A e Xp-j and B e Xp2

To prove Theorem 5.2.1, we require the following theorem,

and two lemmas of P, Hall.
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Notation: For any group G, subgroups H, K,

[H,K] = ( [h,k] : h e H, k <r K ;

commutators are left normed, i.e. [h,k.!,k2] = [[h,k1],k2] etc.

G' = G^ = [G,G] and G^ = [G^n~1^,G^n~1^] for all n e Z .

We will write H sn G to mean that H is a subnormal subgroup of G.

Theorem 5.2.5 [[17] Volume 2 Theorem 7.17]

Let G be a non-trivial soluble p-group of finite exponent and let

& be the minimum length of a norma], series of G with elementary

abelian factors. Then [G, g g ] = [1] for all g e G
< r >

where r= 1+p+p2 +•"•••• +p . In particular, G is a

Mr
Bare group and an r - Engel group.

Lemma 5.2.4 [ [7] Lemma 4] Let A be a group and let (A , B) be

a transitive pain. Let W = A wr^ B . Suppose N4 W and

B HN/cJi Then (a')A £ N .
E>

The lemma is stated and proved for the faithful case in

[7b we will require this more general form. The proof is

essentially the same as in [7] .

Corollary 5.2.5 Let A be a group and let (A , b) be a transitive

pair. Let W = A wrA B . Suppose N is subnormal in W and

N H B ji C^(a). Then there exists n e Z+and A e A such that

Ain) 5 N •

Proof: Since N H B / C^(a), 3 A e A and b e N H B such that
— 23

Ab £ A * We prove by induction on k that if H £ N is any
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subnormal subgroup of W of defect k , then A $ H .

A

Suppose k = 1, and let H 2s N be any subgroup of defect 1 .

Then H ^ W ; and H H B > N f) B implies that H HB / ClCa) .Jd

Hence by Lemma 3.2.4 , (a')^ H , and so A' £ H certainly.

Suppose the result holds for some k £ 1 and suppose H £ N

is subnormal of defect k + 1 . Then 3 H1 ^ W such that H £ Hi

and H.| is subnormal of defect K. N 5 H ( Hi , and so by the

(k)induction hypothesis, A^ < H, .
(k)

Let a, a e A . Then

[a^, a^] = [a^a^k, a^] since Ab jL A

= [a. ,b, a ] e H since b e N < H and H 4 H,A A

So A^C+"'^ $ h ; hence result by induction.
In particular, ^ N where n is the defect of N ,

Lemma 5.2.6 [ [7] Lemma 7 ] Let A be a group, let (A , b) be

a non-trivial faithful pair, and let W = A wr^ B . Let T be a

subnormal subgroup of W such that / T ^ b . Then A is of

exponent p for some prime p and r 2 0 ; and if A / |l], then
g

T is of exponent p for some s > 0 .

This lemma is stated in [7] for (A , B) transitive, but is

valid with the same proof for (A , B) intransitive.

Proof of Theorem 3,2.1

Note firstly that if A -[1j,

A wr^ B e NA <=> B e NA

Thus we obtain classes Xq = T and = [ (A , B) : B € NA J.
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Now suppose that neither A nor (A , B) is trivial. We

show that

A wrA B f NA <-> 3 pfP such that A f Sp and (A , B)
Suppose firstly that 3 p e P such that A e Sp and

(A , B) e t^p . Then AA e Sp and so by Theorem 3.2.3, AA is
a Baer group. Hence for all f e AA, <£> sn A^A W , and so

<£ f y sn W. Thus we require to show that for all b e B,

^b> sn W, for then W will be generated by subnormal Baer subgroup

and w'ill therefore be a Baer group.

Let b e B. Then ^b> CL(a)/C (a) is a cyclic p-group andB B

hence

AA[ Ch(A)/C (A)] e Sp $ NA by Theorem. 3.2.3B 15 — =

Hence ^b>Cfi(A) sn AA^b>CB(A) .

Now B e NA => <b> gJa) e NA and <. b*> sn <b> C (a) sn B ; so
= B = B

(. b> sn (. b> C_(a) sn AA <b> c (a) sn A7^ = W . Therefore W is
-D B

a Baer group, and these conditions are sufficient.

Conversely, let W e NA . We show firstly that A is soluble

Since B > C^Ca), there exists an orbit 0 such that B > C^Cg).15 15

Let B = B/C-g( ®) > ani W = A wr B . Then W e QS(w), and
so W e NA . Let 1 c e B . Then < c"> is subnormal in W, of

defect n, say; and so by Corollary 3.2.5, there exists 0 e 0 such

that A^ $ < c > . But <c7 H A® = (1 j ; so A^^ = [ 1 ], and
so A^ = [1] , i.e. A is soluble.

Now consider Wf = A wrA {b/Cb(a) j. Wf W/Cb(a) and so

Wp <f Q(NA) - NA . C_(a) < B and so there exists b e B \ C.(A)I = — B B

such that <b> cJa) is subnormal in W~ . Then by Lemma 3.2.6B I

there exists a prime p such that A is a p-group of finite exponent
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and C b^ C.r,(.A) has p-power order.B

Hence A ( SD and B/C^Xa) is a p-group. B is clearlyB

a Baer group since NA = S(NA). Hence (A , b) e ^ , and the
conditions are necessary.

So now we have classes XD = Sp^T, and X = £ for-r -? p p

all p € P.

Suppose finally that (A , B) is trivial. Then

A wr"^ B e NA <=> A f NA and B e NA , by Proposition 3.1.5;

so we obtain classes Xi = NA \ Sv and1
= peP =P

J6. =| (A , B) : B € NA and B = C (A) j.
1 -D

Hence we have Theorem 3.2.1.

Section 3.3 W e N

Define a class of pairs by

(A , B) e <=> B e N

Let p be a prime and define classes of pairs ^ , iC and

£ as follows:
Jinits

(A , B) e fC <=> B/ChCs) is a/p-group for all orbits 0
P B /»

(A , B) e
p <=> (A , B) e and 3 n e N such that

|B/C^,( ©) I $ pn for all orbits 0 .B

(A , B) <=> (A,B)e^
^ and B e N

We prove

Theorem 5.5.1 Let I = £0,1] UP and define subclasses of N by

X0 = T , Xi = N \ pUp Np , Xp = Np \ T for all p <r P
and classes of pairs

-*0 = = ^ ^ : (A , B) e and B = C^Ca) ] and
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= £ for all p e P ,

Let A be a group and let (A , B) be a pair, Then

A wr"^" BeN <=> 3 i e I such that A e Xp and (A , B) e

Putting X±2 = i B : (B , B) e 1 f°r aH i e I, we

have for the standard case

Theorem 5.5.2 Let A and B be groups. Let I = [0,1] UP, and let

=01 = 1 ' =11 = N \ pUp Np , Xp-j = =p\ T V p f P

i02 = 2 » 112 = | » Xp2 = Fp for all p e P

Then

A wr B e N <=> 3 i e I such that A e Xp-] and B e Xp2

These extend results of G. Baumslag and J.D.P. Meldrum, viz

Theorem 505.5 [1] Let A and B be non-trivial groups and let

W = A wr B . Then

W e N <=> there exists prime p such that A e Np and B e Fp

Theorem 5,5,4 [ [13] (unpublished). ] Let A be a group, and

let (A , B) be a pair such that BeN, Let W = A wr"^ B ,

Then

W e N <=> A wr0 [b/cJq) } is nilpotent of bounded class for
— 13

each orbit 0

This result is required for the proof of Theorem 3.3,1 ;

we prove it using a similar proof (Proposition 3.3.10).

Theorem 5,5,5 [ [15] (unpublished) ] Let A be a non-trivial

group and let (A , b) be a non-trivial faithful transitive pair.

33



Then

W e N <^> there exists prime p such that A e Kp and B e Fp

To prove Theorem 3.3.1 we will need several results about

the nilpotency class, of nilpotent wreath products.

Notation: Denote the lower central series of a group & by

y,(G) = G

y^+^(G) = [ya(G),&] for all ordinals a

y^(G) = yp(&) ^or a"^ GGmit ordinals A

Lemma 505.6 Let A be a group, let (A , b) be a pair, and let

W = A wr"^ b . Let f e A^" and let b^,...,b^_ e b . Then
o( [f,b1,....,bk] ) C c<f)b and
|o( [f,bl5....,bk] )| s 2k | o(f) |

Proof: We prove by induction on i that for 1 $ i k,

o( [Tjb^ ,b±] ) C o(f)B and
k( [f,b^,....,b_^] )| ^ 2" | o(f) |

Suppose i = 1 . Then [f,b^] = f f^ and so
C o(f 1) U o(fb1)
= o(f) U o(f)b1
C a(f)B

and ^([f,^]) | £ 2 | o<f) |
Suppose the result holds for some i, 1 $ i k-1 . Then

[f»b^,....,bp+^ J = [fjb^,*...»b^] [f,b^,....,b^] "+ and so

°([f,b^,... • ,b^+^ ] ) C cr( [f, b^,.... ,bp] )u cr( [f,b^,.... ,b^] )b^
C cr(f)B by the induction hypothesis
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and. | ci([f,b1b±+1]) | ^ 21 a( [f,b_j, .... ,b^]) |
1 I 1

$ 2 |a(f)| by the induction

hypothesis

Hence we have the result.

Lemma 5,5,7 Let A be a non-trivial group, let (A , B) be a

pair, and let W = A wr"^ B. Let 0 be an orbit of A , and suppose
.non- njtC)<*+to<

there exists/integer n such that 2 < |©|. Let 0 e 0 and let

1 / f e A„ . Then there exists b„,....,b . e B such that'6 1 n+1

• • • • >bn+-] J ^ ^
Proof: We prove by induction on k that [f,b b ] / 1

1 K+l

for 0 $ k $ n

Let k = 0. 1 < |0|, and so there exists 0, ( 0 such that

01 / 0 . Since B is transitive on 0 , there exists b^ e B such
that 0b

^ = 01 . Then

[f^Koi) = f(0i)"1f(0i)b1 = f(0) / 1
Hence 01 e cr([f,b^]) and [f,b^] £ 1 .

Now suppose the result holds for some k, 0 ^ k < n . Then

by the induction hypothesis there exists b^, ,... e B such
that [f,b b ] f 1 ; hence there existsI 1C+T

M e cKffjb^ 'bk+1^) S aCf)B C 0 by Lemma 3.3.6. Also by
Lemma 3.3.6,

| o( [f,b^,.,.. ,b^ ^ ]) | $2^+1|o(f)| = < | ©| , and hence there
exists A e 0 \ o( [f ,b^,.... ,b ^ ]) . Then since B is transitive
on 0, there exists b e B such that /ib = A ; and so

■iC+zd Kl+kj

[f,b-),...*»bk+1,bk+2](A) = [fjb^,.. .,bk+1 ] (A) [f,b1,... ,Bk+1 ](^k+2)
= »"b1»• - - »"bk+1 ] (A*) £ 1
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Hence result by induction. In particular, putting k = n we

have the result.

We have the following corollary

Corollary 5„508 Let A be a non-trivial group, let (A , B) be

a pair, and let Yf = A wr^ B. Suppose W e N , and let n(w)

be the nilpotency class of W. Then each orbit of A is finite,

and hence B/C^(0) is finite for all orbits 0 ; further
| B/C^( 0) | e 1 for all orbits 0 .

Proof: Let 0 be an orbit and suppose 2*^^ < 101. Then by

Lemma 3.3.7, Vn^) +2 ^ ^ ^ ^' which is a contradiction.
Hence | 01 $ 2*^^ for all orbits 0, and so

|b/Cb(©)I S 2n^W^! for all orbits 0.

The following lemma is proved in rather more general form

than is required here; it is needed for a later chapter.

Lemma 5.5.9 Let A be a group, let (A , B) be a pair, and let

W = A wr^ B. Then

(a) y (W) = [AA, W] y (b) for all n e Z +'n 'n-1 'n

(b) Let Wf = A wrA {B/CB(./0j. Then

[AA,nW] = [AA,nWf] for all n e N
(c) Suppose [A^ : i el] is a family of groups such that

A = Dc A. . Then
• -r !mel

[AA, W] = Dr Dr [A®, A^B] for all n e N
n

i el 6 an orbit 1 n 1
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Proof; (a) [This is essentially proved in [13]]

The proof is hy induction on n.

The case n = 1 is immediate:

yi(w) = W = AAB = [AA, qW] (B)
Suppose the result is true for some n £ 1. Then

yn+1(w) = tyn(w),w]
= [ ^W]yn(B), W] by the induction hypothesis

= <[ [AA,n_1W], W]Vn(B\ [yn(B),W] >
= [AA, rW] [ y ( B) , A7^] since [AA, W] A W

= [AA,nW]<[yn(B),B], [yn(B)3AA]B>
= [AA,nW][AA yn(B)]yn+1(B) since [AA, yn(B)] is

normalised by B

« tAA,nW]yn+1(B) since [AA,yn(B)] s [AA,nW]
(See e.g. [6], The result is a corollary to Theorem 10.3.6)

Clearly [aA rW] yn+1 (b) «yn+1(w); hence

tAA>nWhnt1(B) = yn+1(w)
Hence result by induction.

(b) [This is also proved In [13] ]

Let f e a , b e B, /3 e c (a). Then

fb/3(A) = f(A^"1b"1) = fb(A) V A e A

i.e. fbCB(-A) = fb

Hence (aA)B = (AA) ^B/Cb(^ I ? and [AAB] = [AA, B/cJa)] .

The result then follows from this.

(c) Note that A. wr® B = A?B $ W for all i e I and all 0.
li

We prove by induction on n that

[AA> W] = Dr Dr [A? , W] for all n e N
iel 0 an orbit 1 n
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The case n = 0 is immediate:

[AA, W] = AA = Dr Dr A? = Dr Dr [A® , W]
iel 0 an orbit 1 iel 0 an orbit

Suppose the result holds for some n 2= 0. Then

[AA XI = [ Dr Dr [A? , W], W]
+

iel 0 an orbit

Since A®^4 W , [A? , W] ^ A? for all iel and all orbits 0 :
l i n x

further [A. ,A.] = [1} if i £ j and [A^,A^] = (1.J if E and $J

are distinct orbits # Hence

[ Dr Dr [A? , W], W] = <1[A? , W] ,w] : i e I, 0 an orbit^
iel 0 an orbit

= Dr Dr [A® W]
iel 0 an orbit

Hence result by induction.

Again since [A. ,A.] = [1j = [A^,A^] if i j and E £ $ ,
■*" J

Dr Dr [A® , W] = Dr Dr [A? , A®B] V n e N
iel 0 an orbit 1 n iel 0 an orbit 1 n 1

Hence result.

Proposition 5„5.10 [ [13] (unpublished) ] Let A be a group,

let (A , B) be a pair, and let W = A wrA B. Then
©

W e N <=> B e N and A wr [B/Cg(^) } is nilpotent of bounded
nilpotency class for all orbits 0 of A

Proof: Denote A wr® B by Wq and A wr® [B/C^C©)] by .

W e N => B e SN = N , and WQf e QSN = N , with n(WQf) S n(w)
for all orbits 0O

Now suppose B e N and is nilpotent for all orbits 0,

with n(WgP ^ n , say. Let m = max( n , n(B) ). Then
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y „(w) = [aa, w]y (B)m+1 'm 'm+1

Dr [Ae,mW0]
0 an orbit

Dr [A®, W ]
0 an orbit

= |1J

Hence W is nilpotent.

by Lemma 3.3.9 (a)

by Lemma 3.3.9 (c)

by Lemma 3.3.9 (b)

by hypothesis

Lemma 5.5,11 Let G be a group. Then every subgroup H of G

induces a transitive permutational representation of G by assigning

to ary element a of G the permutation Hr Hra of the right

cosets of H„ All transitive permutational representations of G

can be obtained in this way.

See e.g. [9] p120.

Lemma 505.12 Let a be a group. Let (ai, b) and (a2, b) be

two pairs, (a1} b) being the representation induced by H, say,

and (a2, b) the representation induced by G, say, where

H < G ^ b. Let Wi = A WrAl b and W2 = A Wr^2 bc Then there

exists a monomorphism from W2 into W1.

Proof: Let R be a right transversal to G in b and S be a right

transversal to H in G. Then SR = [sr : s e S, r e R] is a

right transversal to H in b. We may write

A1 = ^Hsr : s e S, r e Rj

A2 = [Gr : r e R]

with (Hsr)b = Hsrb and (Gr)b = Grb for all b e b.
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Define 6 i W2 -*■ W, by

be = b V b <r B

and fe(Hsr) = f(Gr) for all s e S, r e R, and

f cCrA^1

(Note that even if the support of f is finite, the support of

f6 need not be„)

Then f6 is well defined:

Let s,Si e S and r,r.) e R such that Hsr = Hs^ .

-X -1
Then srr! s.| e H < G

-1
=> rri e G

=> Gr = Gr,

=> fe(Hsr) = fe(Hs1r1)

and so 6 is well defined.

6 is a homomorphism:
A?

Let b,c e B and f,g e Cr A . Let s e S and r e R.

Then (f°)fl(Hsr) = f°(Gr)
= f(Grc_1)

and (fe)°(Hsr) = fe(Hsrc 1)
-1

Let r! e R and Si e S be such that Hsrc = Hs1r1 .

-1 -1 -1
Then src ri St eH ( G

=> rc ri e G

-1
=> Grc = Gr!

Hence (fe)°(Hsr) = f(Gri) = f(Grc "*) = (fC)e(Hsr).
So (f e)c = (f°) e .

Also, (f°g)e(Hsr) = f°g(Gr)
= (fe)C(Hsr) ge(Hsr)
= (fe)cge(Hsr)
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Hence (bfcg)6 = bc(f°g)0 = (bf)e(cg)0 as required.

6 is a monomorphism:

Let b,c e B and f,g e Cr A^"2, and suppose bf0 = eg© ,

Then b = c and ftf(Hsr) = g0(Hsr) for all s e S, r e R

=> b = c and f(Gr) = g(Gr) for all r e R

=> b = c and f = g

Hence 0 is a monomorphism.

Corollary 5.5.15 Let A be a group, let (A , b) be a transitive

pair, and let W = A Wr^ b. Then we may embed W in A Wr B .

Proof: Let (A , B) be the representation induced by H, say.

The right regular representation (B , B) is induced by flj ^ H ;

so by Lemma 3.5.12 we may embed A Wr^" B in A fr B,

We will require the following theorem

Theorem 5„5.14 [ [18] Theorem 4.7 ] Let p be a prime and let

A f Kp and B e Fp . Let W = A wr B. Let A have exponent p

and B have order p . Then W is nilpotent of class n(w) and
C t—2Ik n(A) p (2p - 1) if B is not cyclic

n(w) « j t-1I n(A) p (kp - k + 1) if b is cyclic

Hence we have

Proposition 5.5.15 Let p be a prime, and let A e Np and

(A , B) e £ . For orbits 0 of A let Wgp = A wr0 {B/CB(8)|.
Then f N for all orbits 0, and there exists n e Z4" such

that n(WQf) € n for all orbits 0.
Proof; Let 0 be an orbit. A e Np and B/C (0) e Fp implies that
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A wr [B/Cg(0)J e N by Theorem 3.3„3.
Note that since B/C (©) is finite, A Wr Sb/C^C©)] = A wr 1b/CB B

and A Wr^B/cJ 0) j = A wr® [B/C ( fl) j.B B

Hence by Corollary 3.3.13, is nilpotent.

(A , B) e => there exists t e N such that

|B/CB( 0) | £ pt for all orbits 0 .

Hence by Theorem 3.3.14, if the exponent of A is p ,

f' t-2
k n(A) p (2p - 1) if B is not cyclic

n(A wr [b/G (0)|< L
n(A) p (kp -k+1) if B is cyclic

= n say

and so by Corollary 3.3.13, n(Wg^) « n .

Since 0 was any orbit, we have the result.

Proof of Theorem 5.5.1

If A e T , then clearly A wr"^" BeN <=> BeN; thus

we obtain classes Xo and

We now show that if A jk T and (A , B) is non-trivial,

A wr^ BeN <=> 3peP such that A e N^ and (A , B) e ^ ^

We prove first that these conditions are necessary.

Let W e N . Then W is a Baer group and so by Theorem 3.2.1

there exists prime p such that A f Sp and B/Cb(a) is a
p-group. A « W and so A e SN = N ; hence A e N .

Let 0 be an orbit of B on A . Then C^(a) ^ C (©) andB B

so B/CB(e) = [B/Cb(a) ]/[Cb(g)/Cb(a) ] ; therefore B/Cb( ©) is a
p-group.

j^y Corollary 3.3.8, B/Cb(©) is finite of bounded order
for all orbits 0 . Thus (A , B) e . B is a subgroup
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of W, and so B e SN = H; so (A , B) e •Ap , and so the conditions
are necessary,,

Conversely, suppose there exists p e P such that A f Wp
and (A , b) e £ . Then by Proposition 3.3.15,

A wr^3 iB/cJe)] is nilpotent of bounded class for all orbits 0 „-B

Then since B e N , by Proposition 3o3.10 W e N . Thus the

conditions are sufficient, and we have the result.

Thus we obtain classes Xn and for all p e P .=p P

Finally, suppose (A , B) is trivial; then

A wr^ BeN < > A e N and B e N

n _

and so we have the remain^ subclass of N , X1 = N \ Np
with = [ (A , B) : B e N and B = g(a) j

i = r>

Section 3.4 W e LN

We have

Theorem 5,4,1 Let I = [0,1] UP , and let

x0 = T , |1 = N \ pUp Np , Xp = Np \ T V p e P

260 = ti , = { (A , B) : B e N and B = Cfi(A) ]
31 = f for all p e P

P P

Let A be a group, let (A , B) be a pair, and let W = A wr B.

Then

W e LN <=> 3 i f I such that A e LXp and (A , B) e L

Proof: This is immediate from Theorem 2.4.1 and Theorem 3.3.1,

since S(X^_ U T) = X^_ U T

For the standard result we have
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Theorem 3.4.2 Let A and B be groups,, Let I = £0,1 j U P and let

£01 = I > *11 = N v Np , Xp2 = Np\ T V p e P

Xq2 = N , X-) 2 = T , Xp2 = |p for a11 P e p

Then

A wr B e LN <=> 3 i e I such that A e LXp-] and B e LXp2

Proof; This is immediate from Theorem 2„403 and Theorem 30302„

Section 3.5 W e NA

Let ST- | (A , B) : B e NA J.

We prove

Theorem 5,5.1 Let I = [0, UP , and define

X0 = T , X-] = NA \ (NA)p , Xp = (NA)p\ T V p e P
= j , = [ (a , B) ; B e na and B = C (a) jU i — ij

= L ^ H for all p e P
p p y *

Let A be a group and let (A , B) be a pair. Then

A wr^ B e NA <=> 3 i e I such that A e Xp and (A , B) e

Putting Xp2 = i B : (B , B) e 36"p ] for all i e I, we
have

Theorem 5.5.2 Let I = [0,1] UP , and let

X01 = T , In = NA \ pUp (M)p , Xp1 = (%)p\ T V p e P
Xq2 = NA , X12 = T , Xp2 = (m)p for all p <r P
Then

A wr B e NA <=> 3 i f I such that A e Xp-] and B e Xp2
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We require the following well known lemma.

Lemma 5.5,5 [See e.g. [17] Volume 2] Let G be any group.

Then G e NA <=> G e LN H PA

Proof of Theorem 5.5.1

If A = [lj, I e NA <=> B e NA , trivially. Thus

we obtain classes Xq = T and ^
Now suppose A and (A , B) are not trivial. We show that

W e NA <=> 3 pep such that A e (NA.)p and (A , B) e L H
Suppose firstly that W e NA . Then W is locally nilpotent

and so by Theorem 3.4.1 there- exists prime p such that A e LNp
and (A , B) e L Ti^* . Since B is a subgroup of W, B f S(NA.) = NA

and so ( A , B) e L H ST. Similarly, A e NA , and so
* —. J* —

A e NA H LNp = (NA)p , since LNp = (LN)p , as periodic locally
nilpotent groups are locally finite (see e.g. [10] p190]), and

NA < LN .

Now suppose that B e NA , and there exists prime p such

that A e (NA)^ and (A , B) e L /C • Then A e LN-p and
== Jr p zzr

(A , B) e L£ ; therefore by Theorem 3.4.1, W e LN .

A e NA => A e PA by Lemma 3.5.3, and so A^ e D (PA.) =PA ;

r <•

and B e NA => B e PA by Lemma 3.5.3.

Hence W e P(PA) = PA , and so W e LN D PA = NA by Lemma3.5.3.

A) -n and ^
_

P

Suppose finally that (A , B) is trivial. Then by

So we have'classes Xp = (NA)p and x = L ^ n g- .

Proposition 3.1.5,
* * *»

W f NA <=> A e NA and B e NA ; hence we obtain classes

X1 = NA \ pUep(NA)p , and = [(A , B) : B e KA and B = Cfi(A) ] .
Theorem 3.5.1 is now completed.
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Section 3.6 W e Z

*
B

Recall that Z is the class of ZA - groups, i.e. groups with

an ascending central series.

Let ;? = [ (A , B) : B e Z j.

We prove

Theorem 3.6.1 Let I = [0,1] UP , and define

Xo = T , Xi = Z \ Zp , Xp = |pV T V p e P

= 2* , ^ [ (A , B) : B e Z and B = C (A) j
= /C n 2 for all p e P

P P

Let A be a group and (A , B) be a pair. Let W = A wr^ B.

Then

W<=Z <=> 3 i e I such that A e Xp and (A , B) e

Putting Xp2 = j B : (B , B) e ^ , we have

Theorem 5,6.2 Let A and B be groups. Let I = [0,1 J U P, and let

X^ = T , X„ = Z \pUp Zp , Xpi = Zp\ T V p e P
?02 = ^ j X12 = T , Xp2 = Fp for all p e P

Then

A wr B e Z <=> 3 iel such that A e aril B e Xp2

This extends an unpublished result of J.D.P. Meldrum [12],

viz

Theorem 5.6.5 Let A and B be non-trivial groups. Then
* s

AwrBeZ <=> 3 prrme p such that A e Z_ and. B e F„
— ~}r

To prove Theorem 3.6.1, we require the following preliminary

re suits.
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For any group g and subgroups H and K, denote the subgroup

of K which centralises H by C^Ch).K

Let G be a group. Then the upper central series of G is

given by £q(g) = [1}
^(G) = [ g e & > Sh = for a-11 h e G ]

^n+/G^n^ = £,(&An(G)) for a11 ordinals n
£.(g) = Li £ (g) for all limit ordinals aAv ' p<A V

Lemma 506.4 Let A be a non-trivial group, let (A , b) be a

pair, and let W = A wr^ B. Let H comprise all f e A'A with

fixed value on each orbit of B on A, i.e. f(Ab) = f(A) V A e A

and b e B. Then

q(w) = (q(b) ncb(a))(H n q(aa))
Proof! q(w) = cW(B) n Cw(aA) ; we prove that Cw(b) = C1(b)h
and Cw(AA) = Cb(a)^(A ) , whence

c,(w) = (c/b) ocb(a))(h n ^(aa))
Note firstly that £ (b)h is a subgroup of w, since h is

normalised by b. Now

bf e CW(B)
"K -P

<=> § = p v /? e b

<==> /3b= § V /3 e B

<=> /3b = /3 and f^l f V /? e B

<=> b e £ (b) and f(Ac) = f(A) V c e B

<=> be £ (b) and f e h

Hence (^(b) = £.,(b)h.
Ctj( A) £. (aa) is clearly a subgroup of W since C_(a) andB 1 B

q(AA) are normal subgroups of W.
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Then

bf € CW(AA)
hf A

=> g = g for all g e A
-1b A

=> f g f = g for all g e A

»j
If b jk C.g(A), then there exists A e A such that Ab / A . Le
1 / a e A and let g = a^ . Then a = g(A) = f ^g^f(A) =1,
which is a contradiction. Hence b e C^Ca), and so g = g for

all g e AA . Therefore f ^ gf = g for all g e AA, and s o

f e q(aa)0 Hence cw(aa) s cfi( a) ^ (aa) .
Conversely, if bf e C (a)£ (AA), then for all g e AA,b 1

b f , A\
g = g and g = g , and so bf <r C (A J.

Hence CW(AA) = C£( A) ^ (A^ .

Lemma 506.5 [ [13] (unpublished) ] Let A be a group, let (A

be a pair, and let W = A wrA B. Let W„ = A wrA Ib/C^A) j.i b

Then D A'^ = Cm(w) H AA for all ordinals m

Proof: The proof is by induction on m.

CQ(w) n aa = [ 1 ] = C0(wf) n AA immediately.
Suppose that m > 0 and the result holds for all smaller

ordinals.

If m-1 exists, then by the induction hypothesis

WP Ww) oaA
Let f e ^(w) nAA. Then [f,b] e n aA for all b er
and so [f,b] e ^ (W^,) flAA for all b e B, by the induction
hypothesis.

Hence [f,bC (a)] = [f,b] <r £ (w_) h aa for all b e b.b m-1 i

Clearly [f,g] e n AA = H AA for all g e AA.
Hence f e £ (W ) H AA, and so £ (w) H AA $ £ (wj n AA.

m f bm bm f
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A similar argument shows that ^ ^ ^ ^m(^) ^ AA, and
so we have equality,.

If i is a limit ordinal, we have

£ (w) n aa = ( u c (w)) n aa
m vp<m

= u (C (w) n aa)
p<m /i

= Um ( £ (Wf) H AA) by the induction hypothesis
=^ ^V> "aA
= !^(wf) n aa

Hence result by induction.

Lemma 5.6,6 [ [12] (unpublished) J Let G be1 any group, let

H ^ G, and let G = G/H. Suppose H G) for some ordinal

m0 Then

^(&) ^ r(G)]/H for all ordinals r
Proof: The proof is by induction on r.

The result is true by hypothesis for r = 0.

Suppose that r > 0 and the result holds for all smaller

ordinals.

If r-1 exists, then for all g e G,

gH e ^(G) => [gH,G] «: Sr_1 (G) $ by the induction
hypothesis

=> ^ * Wi(t)
=> e C_i+r(c)

Hence ^(g) $ (G)j/tl as required.
Suppose r is a limit ordinal. Then
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L(G) 'sVrL®

= !.&
- !W(G)!/H

Hence result by induction.

Lemma 3.6.7 S
fVp

Proof: Let (A , B) <r JC and let (Ai , Bi) be a subpair of

(A , B) o Let 0 be ary orbit of B-i acting on A, . Then 6 is

contained in some orbit E of B acting on A .

Then CD(z) S CL(e) and Cn ( z) < CL ( 0) ; and CL(e)<4 B
r> D D\ IJ-I J3

ani CP (0) 4 Bi . Also R (Z) = Bt HC (Zj. Then
Jj ^ £> J 1J

Bi/CBi(0) = iBi/CBi(2)l/iCBi(0)/cBi(2)] and

Bi/CBi(z) = Bi/lB, nCB(s)l = [B1Cb(e)1/Cb(e) ^B/Cb(e) e Fp
Hence since Fp = QSFp , B^/C^ (©) e Fp ; further since
there exists n such that |b/cb(z)| $ pn for all orbits e of B
on A , we have that

|b,/cbi(q)[ « pn ;
0 was any orbit, and so (At , Bi) e , as required.

Lemma 3.6.8 Let A be a group, let (A , b) be a pair, and let

W = A wrA b. Let Q A A. Then &A/^ W and

W/&A ~ [A/Gr] wrA B

Proof: G A A -> GA A AA; and if f e GA b <r B, then

f (A) e G V A <f A , and so e & . Hence GA4 W.

Define 6 : W -> [A/Gj wrA B by
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(bf) 0 = b(f0) for all b e B arid all f e AA , where f 0 : X ~> -A/G

is given by (f 0) ( A) = f ( A) G V A e A .

f0 is clearly well defined, as is 0 .

0 is a homomorphism:

Let b,c e B, f,g e Then

(f°g)0(A) = f°g( A)G = f( Ac"1)g( A)G = (f0)C(g0)(A) V . A e A

and hence (bfcg) 0 = bc(f°g)0 = (bf)0(cg)0

Ker 0 = GA:

Let b e B and f e AA. Then

bf 0 = 1 <=> b = 1 and f0 = 1

< => b = 1 and f( A) e G V A e A

<=> bf e &A
0 is an epimorphism:

Let bf e [a/&] wrA B . Let T be a transversal to G in A

and define g : A -> G by g( A) = t where f(A) = tG V A e A

and t f T, Then g is well defined, and g0 = f; for

g0(A) = g( A) G = f( A) V A <r A

Hence bg e A wrA B and (bg)0 = bf .

Hence W/&A = [A/&] wtAB.

Proof of Theorem 5.6.1

If A = [1] , then W e Z <=> B e Z , clearly; thus we

have classes Xq = T and q = 2 "

Now suppose that neither A nor (A , b) is trivial. We

prove that

WeZ <=> 3 p e P such that A e Zp and (a,B) ^ 2- P

Suppose that WeZ. Then W e LN , Let 0 be any



u

non-trivial orbit and. let W = A wr [b/C (©)} e QS(w). Then
Ql Jj

* e LN , and so by Theorem 3.4.1 there exists prime p such

that A € LNp and (0 , B/C^C©)) e L
A a subgroup of W and Z = SZ implies that A e Z , so A is a

2 - p - group as required,.

Suppose that 0 is infinite„ Then

[ f e A® : f has fixed value ] = [1]

and so S-jCWq^) = [ij , by Lemma 3.6.4, which is a contradiction
since is a Z - group. Hence Q is finite, and so B/C^(0)
is finite. Hence slnoo i> K—by Lomma S.G.y.

P P

(0 , B/C„( 0)) er £ , i.e. B/C (0) is a finite p-group0 Therefore
n p rs

(A , B) e ^p * Since B is a subgroup of W, B is a Z - group,
and so (A , B) e /C fl J .

Suppose conversely that there exists prime p such that

A e Zp and (A , B) e /C H. To prove that W e Z , we

use essentially the argument used in [12J to prove Theorem 3.6.2.

Let A be a Z - p - group, say C^Ca) = A, and let
(A , B) e 6 ^ , We show that there exists an ordinal

it' such that for all orbits 0,
0 / 0 \

A $ ^'^A wr B);
this implies that

0
A $ £ ,(w) for all orbits 0

since A and A commute elementwise for distinct orbits 4* and 2 .

Then A"^" « C^Cw) , and hence W <r Z , since W/£ ,(w) is
then a factor of B, a Z - group.

„0

prove by induction on /3 that for all ordinals j3 there exists an

Let 0 be any orbit and let Wn„ = A wr [b/CLCo)] . Wet)l Jj
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ordinal /?' dependent on /3 such that

C/j(A") ^'(W0f)'
Suppose >3 = 1. For integers k £ 0, let he the subgroup

of C.,(A) consisting of all elements of order at most p^". Let
0

wr {B/C (e)] . Then is nilpotent for all kj say

W, has class c, .k k

Let f e £.(A0). Then there exists k such that f e A^ .

Let gi,...,gm be a sequence of arbitrary elements in I ,bl

where m 2 ; say g;, = b [f-L for 1 $ i £ m .

Then bi e W, for 1 ^ i ^ m 0
1C

Now [g,bif1} .. . . ,bmfm] = [g,b1j.. ,.,bm] for all g e ^(aA) ,* so
in particular,

[fjbifu ,bmfm] = [f ,b 1, .... ,bm] = 1

since [f,bi,.... ,bm] <r y = 111 •

Hence f <r £ (W_„) for all m » c. , and so f <r £ (W_„) .
m 0f k or 0f

Hence ^(A ) $ ^W(w0f) > s0 take 1' = 10 •

Now let )3 be an ordinal ? 1 , and suppose the result holds

for all smaller ordinals.

Suppose /? is a limit ordinal. Then

^ M i(A<3)
< C »(W^„) by the induction hypothesis

p</3 p N 0f

= where

Suppose y3 = p + 1 . Then there exists p' such that
,0\

i < Q
P

w = Wgj^/^CA9) ~ [a/£^(a) wr9 {B/CB(e)] by Lemma 3.6.8, we have

qUVrUH8) * cM(w)

£ (A ) $ C 'yt' • By the first part of the proof, putting
r r
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i.e. iC^UVk^Hs £U(W)
. 0» ,

Then by Lemma 3.6.6, putting H = £ (.A ; and m = ^ ,

< IWVi/k<i(A0)i and3°

£,+i(a6) 4wv
So take (|i + l)'=/i' + w0

Hence result by Induction. In particular, since AA = ^(A"^),
0 / 0\ ,

A = A '* 'twere exists 7r such that

A® = C^A®) < ^.(Wgj.) .
By Lemma 3.6.5,

V(V nA0 = C7r'(A W'e B) n A@
hence

A < ^ as re(luire^«

Note that it' is independent of 0.

This completes the proof, and so we have classes Xp = Zp ,

and = /cp H if" f"01" all primes p.
Finally, if (A , B) is trivial, by Proposition 3.1.5

A "" «-*
A wr B e Z <=> A e Z and B e Z ; so we obtain classes

|l = C \ |p and ^ = i (A , B) : CB(A) = B e Z j , and
/

\
P

Theorem 3.6,1 is complete.

Section 5.7 Radicals of W

Recall

Theorem 2.3.1 Let X be a / Q, S , N , D*?-closed class of groups,
.....— _ 'n o p

and suppose (*) holds for X. . Let A be a group, let (A , B) be a

pair, and let W = A wrA B.
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If A jk X , then

p(W : X) = |p(B : x) HCB(il)!p(AA : X)
= {p(B : X) n CB( A) ] p(A : X)A

On the other hand, if there exists i e I such that

A e Xi , then

p(W : X) = p( (A , B) : X
*

We now have hypothesis (*) holding for X = N, LN, NA, NA,

and Z . Further, all the hypotheses of Theorem 2.3.1 on X are

satisfied for these classes.

Note that in each case we have a class X-j € X corresponding

to ^ where consists of trivial pairs with B e X ; hence

in this case

p( (A , B) : >^)AA = ('B, : Bn 4 B, (A , B,) e >£ 1 > p(AA : X)
= {p(B : X) n CB(A)lp(AA : X)

since (A , Bi) is trivial if and only if B.) ^ C^Ca).Jd

Also we have a class Xq = T corresponding to , the class

of all pairs (A , B) with B e X . Then

p( (A , B) : ^q)aA = p(B : x) .
Thus we have bj< Theorem 2.3.1 and the above remarks

Theorem 507.1 Let A be a group, let (A , B) be a pair, and let

W = A wrA B.

(a) Baer radical of W

(1) If A = [Ij, p(W : NA) = p(B : NA)

(2) ifA^pyp|p,
p(w : NA) = [p(B : NA) n CBU)]p(AA : NA)

(3) If 3 p e P such that A c Sp\ T

p(W : NA) = p( (A , B) : g p)AA

55



(b) Fitting radical of W

(1) If A = [1], p(W : N) = p(B : N)

(2) If A / Np , then
p(W : N) = [p(B : n) nCB(A)jp(AA : N)

= [p(B : N) nCB(A)Ip(A : n)A
(3) If 3 p e P such that A e Np ^ T ,

p(W : N) = p( (A , B) :^p)AA
(c) Hirsch-Plotkin radical of W

(1) If A = [1], p(W : LN) = p(B : LN)

(2) If A Jk pL^ LNp , then
p(W : LN) = [p(B : LN) He (A)jp(AA : LN)— = £> =

= [p(B : LN) nCB(A)lp(A : LN)A
(3) If 3 p e P such that A eLNp \ T ,

p(W : LN) = p( (A , B) : l / ?)aA
(d) Gruenberg radical of W

(1) If A = {1], p(W : NA) = p(B : NA)

(2) If A Up (NA)p , then
p(W : NA) = [p(B : NA) Pi CB(A)]p(AA : NA)

= [p(B : NA) nCB(A)]p(A : NA)A
(3) If 3 p c P such that A e (NA)p \ T ,

p(W : NA) = p( (A , B) : L n J*)aA
(e) ZA - radical of W

(1) If A = hi, P(W : §) = p(B : z)
(2) If A / Zp , then

p(W : Z) = {p(B : Z) n Cb(a)]p(aA : z)
= jp(B : §) n CB(A)]p(A : z)A

(3) If 3 p e P such that A e Zp \t
p(W : g) = p( (A, B) : <pn^)
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This result is valid for the standard case, but can also be

written as follows.

Theorem 5.7.2 Let A and B be groups, and let W = A wr B.

(a) Baer radical of W

(1) If A =[1}, p(W : NA) = p(B : NA)

(2) If A / pL^Sp ,

p(W : NA) = p(AB : NA) = p(A : NA)B
(3) If 3 p € P such that A e Sp \ T ,

p(W : NA) = p(B : (na)p)aB
(b) Pitting radical of W

(1) If A = [1], p(W : N) = p(B : N)

(2) If A / Np ,

p(w : N) = p(AB : N) = p(A : n)B
(3) If 3 p e P such that A e Kp \ T ,

p(W : N) = p(B : Fp)AB
(c) Hirsch-Plotkin radical of W

(1) If A = [ 1 j, p(W : LN) = p(B : LN)

(2) If A/pUpLNp,
p(V! : LN) = p(AB : LN) = p( A : LN)B

(3) If 3 p e P such that A e LNp \ T ,

p(W : LN) = p(B : LFp)AB
(d) Gruenberg radical of W

(1) If A = [1], p(W : NA) = p(B : NA)

(2; If A/p^(NA)p,
p(W : NA) = p(AB : NA) = p( A : NA)B

(3) If 3 p e P such that A e (Na) \ T ,

p(W : NA) = p(B : (NA)p)AB
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(e) ZA - radical of W

(1) If A = [11, p(W : Z) = p(B : z)

(2) If A Zp ,

p(w : Z) = p(AB : z) = p(A : z)B
(3) If 3 p e P such that A € Zp \ T

p(w : Z) = p(B : Fp)AB

Note Case (a) of Theorem 3.7.1 is very similar to work of

B.I. Plotkin [16]; the results were, however, obtained independently,,

He proves in [16]

Theorem Let A be a group, let (A , B) be a faithful pair, and

let W = A wrA B . Then

(1) If there exists prime p such that A e Sp , then -p(w . NA)—t
—OLlui Iijijuy p(W : NA) = AAp( (A , B) : )

(x) Qicktc , ^(10:
J0C. Lennox has obtained similar characterisations of the

Fitting and Hirsch-Plotkin radicals in the standard case

(unpublished).
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Chapter 4 Residuals in wreath products

In this chapter we obtain some results on the x - residual

of A wr"^" B for general classes X , and show that we may reduce

the general case to some more specific cases.

We also characterise the residual for the special case

X = S, W . R >X , with some restrictions on A and B/C (a)o
= 00= D

Section 1 Reduction theorems

Let G be a group and let X be a class of groups. Let

N < G, and suppose N < P^G ! X).
n

Then N ^ G : X) and hence

p#(G/N&) = D[m/N& : m/N&A G/ng, [G/N&]/[m/N&] e x]

= :NCa/lG, G/M e Xj

- P*(G)/N&
Q.

Hence to obtain p#(G) we need only look at G/N .

In particular we have

Lemma 4.1.1 Let G be a group and let X be a class of groups.

Let H ^ G. Then

(a) If X = SX , p^H : X) s p^G : X) n H

(b) If X = Sn X and H sn &, p#(H : X) p#(G : X) n H
Proof; Let N A &, &/N. e X . Then N Pi H £ H and

H/(N OH) = (HN)/N « G/N .

If X = SX , H/(N H H) <r SX = x .

If X = S^ X , and H sn G , then (HN)/N sn G/N and so

h/(n n h) e sn x = x .

Hence in either case, I^(N fl H) e X ; hence p^(H : X) ^ N (1H
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N was any normal subgroup of G such that G/N e X ; hence

p„(H : X) $ p^(G :X)HH

So we may factor out residuals of subgroups.

For wreath products in particular, we have the following

reduction theorem

Theorem 4,1,2 Let A be a group, let (A , B) be a pair, and let

W = A wr^ B. Let X be a class: of groups.

(1) Suppose X = Sn X . Then p#(A : X.)A $ P^Cw : X) and
W/p^A : x)AGT [A/P*U : X) J wrA B

(2) Suppose X = QSX , (A , B) is transitive, and B/C^(a) / X ,

Then (a')A « P*(W • X) and

Y//(A')A^ IVA'J wrA B

(3) Suppose X = SX and A e A . Then p^B : X) < p^(w : X)
and W/{p#(B : X)!f?Aw ! X) {B/p+(B : X) J

i.e. in case (l) we need only consider A e RX , in case (2) we

need only consider A c A , and in case (3) we need only consider

B e BX .

To prove the theorem we will need some preliminary results.

Lemma 4.1.3 bet M be some index set and let { Gffi : m e M }
be a family of groups. Let X be a group class such that

X = S X . Then
= n =

pA Dr G : x) = Dr pA G : X)m =
„ m =

m eM meM

Proof; { Dr & ]/[ Dr p#(& : X) ] -V Dr G /p (G : X) under
meM meM meM " m
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f Dr p<[(G :X)»-> f' where f'(m) = f(m)pijI(G : X) for all m e M.
meM m

Dr Gm/P*(Gm : € D(RX) = RX ; and so
meM

p.( Dr G : x) $ Dr pA G : X)
m = „ m =meM meM

To prove the reverse inclusion we consider Dr G as an
meM

Internal direct product.

By Lemma 4.1.1, since X = S X , and G & Dr G for all
= n = m m

meM

meM,

P*(G • X) « P#( Rr G„ : X) for all m e Mm = v
,, m

meM

=> Dr p (G : x) e p ( Dr G : x)
„ m = „ m

m eM m eM

Hence Dr pA G : X) = pA Dr G : X)
meM meM

We may now prove Theorem 4.1.2 (l).

Proof of Theorem 4,1.2 (l)

Since X = Sn X , by Lemma 4.1.1 p^(: x) ^ p^(W : X);
therefore by Lemma 4.1.3,

P*U : X)A = p#(AA : X) <= p#(W : X)
By Lemma 3.6.8,

W/P#(A : X)A<^ [Vp^Ca : X)j wrA B

Hence we have the result.

Lemma 4.1.4 Let A be a group, let (A , B) be a pair, and let

W = A wrA B. Let X be a class of groups such that X = QSX ,

and suppose that B/C^(a) A X . Let N /J W, with W/N e X .

Then N n B / CAA)0
£>
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Proof Suppose the contrary. Then N fl B A Cg(-A) an<i
b/(N HB) ~ (BN)/N W/N eX; so b/(N D b) e SX = X .

Then B/cJa) ~ [B/N H b]/{CL(A)/(N H b) ] e QX = X , which is a
r> r> = =

contradiction. Hence nob / c (a)0
-D

Proof of Theorem 4.1.2 (2)

Suppose X = QSX , (a , B) is transitive, and B/C^(a) ^ X 0
if

Then using Lemma 3.2,p and Lemma 4.1.4, we see that

Nhf, W/N <r X =» (A')A ^ N

and so (a')A « W : X).

By Lemma 3.6.8,

W/(a')a<= [A/A'] wrA B ;

hence we have Theorem 4.1.2 (2).

In order to be able to factor out subgroups of B, we need

some further properties of pairs.

Definition Let (A , b) be a pair and let D ^ b. Define

A/D to be [ AD : A e A ], i.e. the set of D - orbits of A .

Lemma 4,1.5 Let (A , b) be a pair and let D a b. Then

(a) (A , B)/D = (A/D , B/D) is a pair with action

(AD)bD = AbD for all A e A and b e B

(b) (Yd , b) is a pair with action

( AD)b = AbD for all A e A and b e B

Proof; Note firstly that

AD = pD <=> A, p lie in the same D - orbit

<=> 3 d e D such that Ad = p

(a) Let b,/3 eB and A, p e A be such that bD = /3D and
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AD = pD . Then there exists d1}d2 f B such that b = /5&1 and

A = pd2 o Then

(Ab)D = (pi2 /5Q.i)d = ( p/3 d2^d1)D = (p/3)D since d2^d< e Dc

Hence the action of B/D on h/j) is v.'ell defined.

To show that bD is a permutation, note that 1D is the
_ ^

identity permutation on A/D , and that (bD)(b D) = 1D for all

b e B.

Finally, let A e A and bi ,b2 e B0 Then

( AD)^(b,D)(b2D)] = (AD)(b1b2D) = (Ab1b2)D = ( Ab,D)(b2D)
= i(AD)(b1D)](b2D)

(b) Let A, p e Abe such that AD = pD. Then there exists d e D

such that A = pi ; hence for all b e B,
"K V»

(Ab)D = (pib)D = (pbd )D = (pb)D since d £ D.

Hence the action of B on h/D is well defined.

The proof that b acts as a permutation for all b e B is

similar to that for part (a).

Finally, let A e A , b.,,b2 e B. Then

(AD)(b1b2)= Ab^aD = (Ab,D)ba = {(AD^jba

Hence we have the result.

Lemma 4,1.6 Let (A , B) be a pair and let D ^ B. Then

(YD , B)/D = (A/D , B/D)
<XK&

If H $ 31is a normal subgroup of B, then

[(A , E)/Hj/i//Hj ^ (A , B)/D
Proof; (Yd)/® = [ «D : a e

= [(AD)D : A e Aj
= [AD ; A e A] = A/D
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and (AD)DbD = (ADb)D = (AbD)D = AbD = ADbD for all A ( A and

b f B , i0e. the action is correct,,

Hence (A/D , B)/D = (A , B)/D

[(A , B)/Hl/[D/H] = (1VH]/[D/H] , [B/H]/[D/Hj)
Now [A/H]/[D/H} = [ a(D/H) : a e A/E 1

= { AH(D/H) : A e A !
= [ AD : a e a ]

for (i e AD => p = Ad for some d e D

=> /H = AHdH

=> jlHe AH(D/H)
and pH e AH(d/h) => /4i = AHdH for some d e D

=> [i = Adh for some h e H

and Adh e AD since H ^ D.

So AD = AH(D/H) for all A e A .

Also, for all A e A and b e B,

( AH(d/h))bH(d/H) = ( AHbH) (d/h)
= ( AbH) (D/h)
= AbD

= ADbD

so the action is correct. Hence [(a , b)/h]/[d/H] ^ (a , b)/d
as permutation groups, via ad k> ad for all a e a and

(bh) (d/h) l-> bD for all b eB,

Let 0 be a set and let G be a permutation group on Q.

Let Q' CO , and define

s&(n') = { g e g : Q'g = a' ]
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Lemma 4„1.7 Let (A , B) be a pair, and let D A B0 Then

(a) (A , b) is transitive <=> (A , b)/D is transitive

(b) If ( A , B) is the right regular representation of B, then

(A , B)/D is the right regular representation of B/D.

(o) clB/Dj(VD) = {s adnorbit sb(s)!/d
Proof: (a) Let (A , B) be transitive. Let AD,/iD e h/D.

Then there exists b e B such that Ab = /i ; so ADbD = pD.

Hence (A , B,)/D is trans it ive„

Let (A , b)/D be transitive. Let A,n e A . Then there

exists b e B such that ADbD = /£), which implies that there

exists d e D such that Abd = p. Hence (A , b) is transitive.

(b) Let (A , B) be the right regular representation of B.

Then A = B and so A/D = [ AD : A(A|=jbD:bfBj = B/D

and B/D acts by right multiplication as required.

(c) Let b e J. a D0orbit SB(s) . Then
ADbD = (Ab)D = (AD)b = AD for all A e A

=> bD e c[b/D1(Vd)
30 haD-lrbit

Let bD e j( VD) • Then AbD = AD for all A e A, and
so Ab and A lie in the same D-orbit for all A e A ; hence

b €
Z a D—orbit SB(Z) * Hen°e C ^ E^D J <^ S L a D^bit SB(S)^

Hence result.

Lemma 4.1,8 [cf [4], standard case] Let a be an abelian group,

let (a , b) be a pair, and let w = a wr^ b. Let d Ab, Then

w/dw = [a wrA B]/[[aa,d]d] = a wr7^0 [b/d] and

w/[aa,d] ? a vir b .
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Proof; DW - [W,D]D = < [AA,D]B, [B,D]>D = [AA,D]D.
Hence [AA,D] = Pi AAA W also0

Let b* be the image of b e B under the natural homomorphism

from B onto B/t> , and extend * to a map from W to A [B/D]

by bf »-> b*f* for all b e B and all f e AA
where f* : h/D -> A is given by

f*(AD) =^11^ f(p) V A e A
f* is well defined since A e A and only a finite number of

the f ( p) are not 1.

* is a hcrnomorphism:

Let b,c e B and f,g e AA. Then

(f°)«(AD) =
^ 5 ^ f°( ti) v A e A

= v AeA

and (f*)cE)( AD) = f*(Ac~1D) V A e A

fL-iD f((,) v A e A
-1 -1

Hence since c D = Dc ,

(f°)* = (f*)cD
Also (fg)*(AD) =

^ ^ fg(p) V A e A
= n . f(p) n ^ g( p) V A e A

p e A3 v p e A)

since A e A

= f*g*(Ad) V A e A

So (fg)*=f*g*

Hence (bfcg)* = (bc)*(f°g)*
= b*c*(f*)C*g*
= (bf)*(cg)*

Hence * is a homomorphism.
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* is an epimorphism:

Let b*f e A wr"^^ [B/d|. Let A be a set of D-orbit

repre sentatives.

Define g : A -> A by

g(S) = f(SD) V S e A

g( A.) = 1 V A e A \ A

Then g*( §d) =
^ FI ^ g( p) V 5 e A

= g( 8) V 6 e A

= f( 8d) V S e A

Henoe g* = f

and so (bg)*'= b*g* = b*f

Hence * is an epimorphism0

Ker * = [A"^,D]D:
If d e D then d* = D, and so D < Ker *; hence

[AA3D]D = DW « Ker *

Nov/ let bf e Ker *. Then (bf) * = b*f* =1, and so

b* = 1 = f*; hence b e D and f* = 1.

We prove that for any f e A^, f* = 1 => f e [A"^,D],
Let A be a set of D-orbit representatives. For A e o(f) let

d e D be such that M. e A .

A A

If M = A , [f, ,dj = 1 . (f. is the A-component of f)A A A A

Otherwise, °([fA ,dA^ = i MA^ *

Let g = f x [fx ,4X] .
Then o(g) C A ; for

e(6) C«UX iA,MAi
= U A eUc(f) SMa'
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Let A e o(f) \ A . Then A Ad^ and f(A)[f^ ,d^](A) = 1
Let p * cr(f), p A . Then

tf„ -V(A) = VAr,fJMJ1)
" v<>

If Ad = p then A = pd e A , which is a contradiction0p p *
S° Ad^1 £ p , and [f^ ,d^](A) = 1 .

Hence g( A) = f(A)[f d](A) [1 [f ,d](A)A A
p e a(f) \ [A| ^ "

= 1
\J

Hence o(g) C A (f) = *■
Also, g* = 1 ; for g* = f*^ Ji ,f) [>dd*
f* = 1 by hypothesis.

Let A e cr(f) .

(a) If A = AdA , [fA ,dA] = 1 , and so [fA .dj* = 1 .

(b) Otherwise,

[fA ,dA]*( pD) =1 if pD / AD

[fA,aA]*(®) = [fA,aA](A)[fx,aA](MA)
= 1

So [f »dA]*= 1 for all A e a(f).
Hence g* = 1.

Therefore g = 1 and so

f =

A JWfA 'dA^1 f [aA'D]
Hence Ker * = [a\d]D , and

W/[[AA,D]D] ^Am^ [B/D] .

To show that

W/[AA,D] = A wr^D B ,

define 0 : W -> A wr^D B by (bf) 0 = bf* .
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Then 0 is well defined since * is.

0 is a homomorphism since if f e AA, c e B,

(fC)*(^) = P ad f(pC"1) =pPac-1d f(p) = fHAc"1d) = (f*)°(AD)
for all A e A .

0 is an epimorphism, for if bg f A wr"^^ B, by the first part of

the proof there exists f <r A wrA B such that f* = g ; then

bf e A wr^ B and (bf)0 = bg 0

Ker 0 = [AA,D] : for let bf <r W. Then

(bf) 0 = 1 <=> bf* = 1 <=> b = 1 = f* <=> b = 1 and f e [AA,D]
Hence result.

Note For the standard case, the first part of the lemma gives

|A wr b]/[[AB,D]D] ~A w [b/DJ by Lemma 4.1.7 (b).

We may now complete the proof of Theorem 4.1.2.

Proof of Theorem 4.1.2 (5)

Suppose X = SX and A is abelian. Then by Lemma 4.1.1

p+( B : X) S p+(W : X)
=> [aa,p^(B : x) ] p#(B : X) $ p#(W : x)
and then by Lemma 4.1.8,

W/[[AA,p),(b : x)]p#( B : x)l^AvrA/p^B : X) [B/p#(B : X) ]
So we have the result.

Theorem 4.1.2 is now proved.
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Section 4.2 The case X = W X
= o =

Let X be a class of groups and define^closure operation WQ
by

X = WQ X <=> whenever A e X , B e X , and (A , B) is a pair,
then W = A wr"^ B e X

Note that W < ^ D .P^; and if X = SX also, then
o * p ' = =

A wr"^" BeX <-> A e X and B e X

An example of such a class is the class of soluble groups.

We require some properties of a special type of pair, namely

a quasi-regular pair.

Definition: A parr (A , B) is quasi-regular if and only if given

A, p e A there exist only finitely many b e B such that Ph = p .

Let ^ be a class of pairs. Then define a class X( ^6 )

of groups to be all groups B for which there exists a pair

(A , B) in .

Similarly, let X be a class of groups. Then define a class

(x) of parrs to be all pairs (A , B) with BeX.

Then if ^ is any class of pairs, C )); and

if X is any class of groups, x(3£~ (x)) C X .

Now let X be a class of groups and let = 36" (x). Then

we make the following definition.

Definition:

(A , B) e R <=> (a) B <r RX and

(b) given A, p <r A, A / p , there exists

K A B, B/K e X such that p / AK

Then we have
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Lemma 4.2.1 Let I be a class of groups such that X = Rq X ,

and let (A , B) be a pair such that (A , B)/p+(B : X) is
quasi-regular. Let (x). Then

(A , Bj/p^B : X) aX
Proof: Clearly B/p#(B : X) e RX .

We require to show that given A, p e A such that

Ap#(b : x) / pp^B : X), there exists B with p^B : x) < K

and B/K e X such that

PP„(B : X) / Ap^B : x) [K/Piic(B : x) ]
Let (b1p#(B : X),.. .jbmp^B : X) } be those permutations

such that Abip^B : x) = pp#(B : X) . Then for 1 $ i < m,

there exists Ki A B such that B/Kl e X and p^{B : x) $ Ki , with

bip^B : x) Jk Kj/p#(B : X).
Let K = O

< Ki . Then K B, p^B : X) « K, and

B/K e R X = X .' o - =

Suppose pp^CB : X) e Ap^B : X) [K/p^B : X) j . Then there exists

k e K such that PP*(B : x) = Akp./B : X)
=> there exists i e such that kp#(B : x) ^bip^B : X)
=> there exists i c such that b;.p#(B : X) e Ki/p^B :

which is a contradiction.

Hence pp#(B : X) / Ap^B : X)[K/p^(B : X)J , and we have the

re suit.

The following is a generalisation of Lemma 9 from [8]; there

it is proved for the standard case.

Let X be a class of groups, and let (A , b) be a pair.

Then the class X wr^ B is the class of all groups of the form
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A wrA B with A e X .

Lemma 4.2.2 (i) Let X be a class of groups. Let A be a group

and let (A , B) be a pair; suppose A e RX , Then

a wrA b e r(x wrA b)

(ii) Let X be a class of groups and let Y be a class of groups

such that Y = Rq Y . Let A c RX D A and (A , B) ( R ^
where = 3v(y). Then given 1 / f e W = A wrA B, there exists

y
N W such that w / N and w/N = A wr B for some A = A(w) e X ,

B = B(w) e Y , and pair (S , B) e ^ .

Proof: (i) Let 1 / bf e f = A wrA B. We require to find

K^I such that- bf / K and w/K ^ G wrA B for some G e X 0

If b / 1, take K = AA; for bf / AA , and W/AA = B ~ [1 ] wrA B0

Suppose b = 1. Then f / 1 and so there exists A e A and

1 / a e A such that f(A) = a. Hence there exists H A A such

that a / H and A/H e X . Then HAXi W, f / HA, and

W/HA = [A/H] wrA B, by Lemma 3.6.8 ; so take K = HA.
(ii) By part (i), we may suppose a f X h a . Let 1 / bf e W„

If b / 1, there exists Ki B, B/K e Y such that b / K ; so

b / k[aak] and W/[K[aa,K]| = a wr^K [B/K] by Lemma 4.1.8. So

take N = K[aA K], S = Js/K, B = B/K .

Suppose b = 1. Then f / 1 ; let o(f) = [Ai,...,An].

If n = 1, let K = B. If n » 2,

(A , B) e R ^ ~> there exists K2, ...,Kn <3 B such that B/Kl e Y
and A;, / A^i for 2 $ i < n

Let K = „ O Kl . Then in either case. K A B and2 « x « n

B/K e Rq Y = Y . Further, Ai / AtK for 2 S i ^ n, since
K $ K-l for 1 i ^ n. Hence
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fj y - f(Ai) ^ 1
i.e. f / K[AA,K]
/Hso W/[K[AA,K]] = A wr^K [B/kJ by Lemma 4.1.8.

So take N = K[AA,K], 2 = l/K, B = B/K .

Hence resuit <>

Now consider the case X = W X .
= o =

Lemma 4.2,5 Let X be a class of groups such that X = ^S, Wq> X o

Let A be a group and let (A , B) be a pair such that B e X .

Let W = A wrA B. Then W : X) = p#(A : x)A.
Proof: Let G 4 A, with A/G e X . Then by Lemma 3.6.8,

W/GA^ [a/G] BeX since X = Wq X .

Hence p^W : X) < GA for all such G ; and so

P*(w : X) « n[ GA : G <3 A, V& f | I
= P*(A : X)A

X = SX => p#(A : X)A s p^Cw : X) by Theorem 4.1.2 (l)
Hence p+(W : X) = Pjjc(A : X)A .

Lemma 40204 Let X be a class of groups such that X = ^S, W , R_______— _ _ , o 3 o

and let ^ = ^£(x). Let A e A H RX and (A,B) e R^f ; let

W = A wrA B. Then W e RX .

Proof: By Lemma 4.2.2 (ii), given 1 ^w ef, there exists NhW

such that w / N and W/N = A wr B where A e X and B e X ;

then since X = WQ X , Awr BeX. Hence W e RX .

Hence we have

Proposition 4.2.5 Let X be a class of groups such that

73



X = / S, Wq, Q, Rq"> X , and let = M(X). Let A be a group
and let (A , B) be a transitive pair such that (A , B)/pijt(B : x)
is quasi-regular. Define p^{A : X)A by

p+(A : X)A/(A')A = P*(VA' : ^)A
Then if A f A or B/C^(a) / X ,

P*(W : X) = p^B : X)[AA,Pijc(B : X)]~^(A : |TA(A')A
Proof: If A e A then clearly (A')A 5 P*(W : X); and if

B/Cg(A) / I j by Theorem 4.1.2 (2), (a')A < P*(W : X) ; so in
either case

P„(W : X)/(A')A= P*UVA'] wrA B : X)
So let A = A/A'. Then since X = SX , by Theorem 4.1.2 (l)

P*(A : X)A ^ p„.( A wrA B : X)
and

P#(A wrA B : X)/p^(A : X)A ^ p^( [A/p^A : X) ] wrA E : X)
Let G = A/p*(A : X) . G e A ; so by Theorem 4.1.2 (3)

p#(B : x)[GA,p^(B : x)] « pjG wrA B : X)
and

P*(G "wrA B : X)/[p„(B : X)[GA,Pj!c(b : X)] ]

= pjGwr ' $ [B/p#(B : X) J : X)

Since (A , B)/p,(B : x) is quasi-regular, (A , B)/p#(B : X) e R

by Lemma 4.2.1; hence by Lemma 4.2.4, since G e A H RX ,

p#(G : [B/p^(B : X)j : x) = (1J
Hence p/GwrAB : X) = p#(B : xHG^p^B : X) ]
=> p»([VA'J wrAB. : X) = p#(B : X) [ [a/a']A, p#(B : x)]p#(VA' :

=> pt(AwrAB : X) = p#(B : X)[AA,p#(B : X)]'^Ja7'"xTA(A/)A
as required.
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Chapter 5 The nilpotent residual of A wr"^" B

In this chapter we obtain some results on A wr"^ B : N)

for general A and (A , B), and characterise the residual completely

for certain special cases.

In Section 5.1 we give preliminary results and show that we

can reduce the general case to two special cases, viz B/Cg(A) e Fp
for some prime p, and B/C^(a) /k 1J^ Fp , with certain other
conditions. In Section 5.2 we give some results on these special

cases; we characterise the residual for the case B/C^(a) f Fp ,

give some lower bounds for the general case, and give some upper

bounds for the standard case. In Section 5.3 we 'lift' some of

these results back to the case W = A wr b where a/a' and b/y (b)

are periodic. Section 5.4 deals with the case b a perfect group,

when ws characterise the residual completely.

Preliminary results

We will denote the first limit ordinal by w.

The following is well known.

Lemma 5.1,1 Let & be a group. Then p*( & : N) = yj_ G) ,

Let A be an abelian group, written multiplicatively, and

let (A , B) be a pair. Let W = A wr^ B. Let ZB be the integral

group ring of B, i.e. ZB is the set of formal sums Z n,b where
beB

n^ e Z for all b e B and all but a finite number of the n^ are
zero. Addition and multiplication are defined by

E r^b + Z n^b = E (n^ + m^b and
b <rB b eB b <rB

75



b^b ^ b^b = be"" b?B nA'b
/3<rB £/?'=b

We make A"^" into a right ZB - module in a standard way with

the following action:

( E lib]f^fB ' = n (fnb)b
beB

where has its usual meaning in A wr^ B0

Define b to be the ideal of ZB generated as an ideal by

[1 -b : b f B j, i.e. b is the augmentation ideal of ZB.

Then we have

Lemma 5.1.2 [3] Let B be a group, and let ZB be the integral

group ring of B. Then

b = Zj Z(1 - b) = [ Zj r b : Zj r = 0 }
b eB b eB b eB

Define

aa = aa
AA- = : f e AA, b B^

. , a+1 , a ,

a = = (a - )= for all ordinals a

A A Tia
A - = C\Q A - for all limit ordinals /?

OKp r
Let & be apy group, and let H and K be subgroups of G.

Define

[H,K] s^thjk] : h e H, k e K >

[H,a+^K] = [[H, ^kJ,K] for all ordinals a

[H,pK] = [H, K] for all limit ordinals A
Much of the following lemma is contained in the unpublished

paper [13] and in [2].

Lemma 501,5 Let A be a group, let (A , B) be a pair, and let

76



W = A wrA B. Then

(0 yn+i(w) = CAA,nW]yn+1(B) for all n c N
and y (w) = [AA, W]y (b)

CO CO (0

Further, if A e A then

^ yn+/W^ = '■A'A,nB-'yn+/B^ f°r a11 n e N
and YW(W) = [AA,wB]yw(B)
and

a hn a a
(3) A = = [A ,nB] = yn+1(w) H A for all n eN
and AA = = [AA, B] = y (w) H AA

0) (0

Proof; (1j By Lemma 3.3.9 (a),

y «(W) = [AA, W]y .(B) for all n e N'n+1 'n 'n+1

Hence y (w) = Pi y (w)'or up '
neZ

= n [aa, W]y .(b)
„+ L sn ui+1 'neZ

= n [AA, W] n y .(b) since AAi4 w and
nd5+ n neZ+ n+1

a A OB = [1]
= [A , ff]y (B)

01 0)

Hence resuit0

(2) Suppose A e A . We show by induction on n that

[AA, W] = [AA, B] for all n e N
n n

If n = 0 the result is trivial.

Suppose the result holds for some n > 0 ; then

[AA, n+1W] = [AA, nW,A^]
= ^[AA,nB,B], [AA,nB,AA]B >
= [AA,n+^B] since A e A

Hence result by induction.

Hence from part (1),

yn+-|(W) = ,nB"'yn+1^B^ aS reclui:red*
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Also, y (w) = H y (w)'or _+ 'n
neZ

= n [AA, B]y ,(W)
n 'n+1

neN

- [AA,„B]yu(B)
(3) We prove the first equalities hy induction on n ; the second

equalities follow from part (2)®

For n = 0, the result is trivial.

Suppose the result holds for some n £ 0. Then

. , n+1 , , n ,

AA^ = (AAM =

= : f cAAbl , WB>

,b] : f e [AA, B], b e B> by the induction'n

hypothesis

Hence by induction,

AA = = [AA, b] for all n e N
n

Also, aa = = n = n [aa, b] = [aa, b]
neN neN n u

The next four lemmas will be required for several later

results.

Lemma 5.1.4 Let A be a group, let (A , B) be a non-trivial

transitive pair, and let W = A wrA B. Let G ^ A. Then

[ga,Aa] « [ga,B]a
Proof: Since (A , B) is non-trivial, there exists A e A and

b e B such that Ab ]L A . We show that

[Ga,Aa] S [Ga,B]a
Let a e G, a e A . Then

^ = [aAaAb'aA] = taA'aA^
—1 —1

[a> = [a.,**,] since Ab / A
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and so < [&A,B,AA] $ [GA B]A
Let /J e A . Then there exists /3 e B such that n - A/3 . Then

^G/i,A/P = '■GA/5'AA/3^ = ^ ^&A'AA^ and

[G^A^]^ ^ [GA,B]A^ = [GA,B]A since [GA,B] is normalised by B.
A

Hence Dr [G ,A ] < [G ,B] . We now prove that
A<rA A A

[GA,AA] = Dr [G A ]
A<rA

Clearly Dr [G,,Aj < [GA AA]
n A A AAeA.

Let f e GA, g e AA. We prove that [f, g] e Dr [G ,A.] .
. . A A
AeA

N U
If cr( f) cr( g) = cp f then [f,g] = 1 e Dr [G 3A.], and we have

\ a A AAeA

nothing to prove.
o

Now suppose that o(f) cr(g) = [Ai,...,Anj, so that

Cf'g] = ^A,* '' '♦fAn^A/ gAn"'
We prove by induction on k that

'■fA1',,,'fAn'^gA1*,*,#gAn-' e<[GA,AA] : AeA>
Suppose k = 1. Then [f^,g^]. e £ [G^A^] : A e A> trivially.
Suppose the result holds for some k, 1 $ k $ n - 1. Then

[fA1*-ofAK +1,gA1---gAk + 1]
f ^ f*

= A1,,,fAk,gAk + 1^ Ak +1^fA,*,,fAk'gA1"*gAK-' Ak + 1 ^ + 1 *

tfAk+1,gAk + i;i[fAk + /sAl-,,gA(<^A,EW
= [fAl*-"f^jgA1---gAk][fAk + 1»gAk + ,;i
f <,'[&a,Aa] : A e A "> by the induction hypothesis.
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and Dr [G.,aJ = < [&.,A.] : A f i)
v . A A A A
AeA

Hence [GA,AA] = Dr [G,,A,] , and we have the re suit c
n ■« A A
AeA

Corollary 5.1.5 Let A he a group, let (A , b) he a non-trivial

transitive pair, and let W = A vir^B . Then

yw(W) * [Aa,b]yw(B)
Proof: By Lemma 501.3, y (w) ^ [AA,W]y (b) ; we: show that

0) CO

[AA,W] = [AA,B] .

We have [AA,W] = [A^A^B] = [AA,B](AA) '
A A A a -A-

Now (A )' = [A ,A ] « [A ,B]A by Lemma 5.1.4

= [AA,B] since [AA,B] A W

Hence [AA,W] = [AA,B] .

Lemma 5.1.6 Let a ha- a group, let (a , b) he a pair, and let

W = A wrA B . Let W„ = A wr A [b/C (a)] . Then1 r>

[aa, w] = [aa, Wj for all n e N
n n f

and [AA, W] - [AA, WjCJ 0) X

Proof: By Lemma 3.3.9(h),

[AA,nW] = [AA>n^p] all n e N , and so

[aa, w] = . n [aa, w] = n [aa, wJ = [aa, w ] .w
neN n n f W f

Lemma 5.1.7 Let A he an abelian group, let (A , B) he a pair,

and let W = A wrA B . Let N $ A and M $ B 0 Then

na n [aa,m] = [na,m]
A1so, if [N^ : i e I ] is a set of subgroups of A, then

[ n N-f , m] = n ka n [aa,m] = n [na ,m]
iel 1 iel 1 iel 1
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Proof: Working in A wrA M , recall that

f e [AA,M] <=> f* = 1

where f* : Js/\L A given by

f*(AM) = nMf(p) V A e A (Lemma 40108)
Let f e NA H [AA,M], Then f e NA and f* = 1 ; i.e. in

N wrA M , f is an element of [NA,M]0
A

Hence NA H [A ,M] [N^M]
(NA)^ e NA for any subgroup N of A ; hence [NA,M] as NA H [AA,M] ,

and so we have equality.

For any set [ : i f I | of subgroups,

n NA = { n N. ]A ; hence
iel 1 iel 1

[ n na m] = [{ n n }A,m]
iel

and further

iel

= [ n N ]A n [aa,m]
iel

= n nAn [aa, m]
iel

n [Nf n [aa,m] J

by the above

as required,

iel

A
= . H [N, ,M]
iel

by the first part.

Reduction theorems

Let A be a group, let (A , B) be a pair, and let

W = A wrA B . It was shown in Theorem 40102 that, since N = QSN ,

(1) If (A , B) is transitive and B/C^(a) jk N , then
(a')A ^ s0 we neei only consider A e A .

(2) y (a)A a= y (w) and so we need only consider A e RN .

(3) If A e A , y (b) < yu(w) and so we need only consider

81



Bel,

We show that we can improve (l) to

(4) If (a , B) is transitive and B/C (a) / U h , thenB
peP

(A')A £ y (w) and so we need only consider A e A 0
w =

and we have the further reduction

(5) we need only consider (A , B) transitive,,

(4) and (5) arise from Theorem 5.1„17 and Lemma 5.1.8

respectively.

Thus we have two basic cases to look at:

(1) b/c (aJ e fp for some prime p , (a , b) transitive, and

a ern

(2) B/C-g(A) / U Jp , (A , B) transitive, Bel, and A e A •
peP

We also show in the course of the proofs of (4) and (5)

that if A is a periodic residual!y nilpotent group, we may in fact

reduce to the case A a p-group for some prime p.

We look first at reduction (5). We require the following

lemma.

Lemma 5,1.8 Let A be a group, let (A , B) be a pair, and let

W = A wr^ B . Suppose A = Dr A. for some index set I and
id 1

subgroups A^ . Then
y (A wrA b) = [ Dr Dr [A® , A? b]jy (b)

id 8 an orbit

0
= K w B) : i e I, 0 an orbit ^

Proof: By Lemma 303.9,

[AA, W] = Dr Dr [A? , A^B] for all n
n . ~ ^ , ., - x n 1id 0 an orbit

<r N
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Now

H Dr Dr [a? , a^B] =
neN iel 0 an orbit

i n 1
Dr Dr { H [A? , A?B]ji n i
iel 0 an orbit neN

since

[A? A?B] n [A? . A^B] = [1 ] if i/j orB/SJ n j

Hence

y (W) = [ n [AA, W] ] y (B)'or ' „T 'n J 'orneN

= { H Dr Dr [A® , A%] ] y (b)
neN iel 0 an orbit 1

= [ Dr Dr [ A®* , A®b]} y (b)
• -r r\ -I • i 1 0) 1 d>iel 0 an orbit

= <C y„(A^wr® B) : iel, 0 an orbit }

by Lemma 50103

by the above

Hence result.

We have as an immediate corollary

Proposition 5.1.9 Let A be a group, let (A , B) be a pair,

and let W = A wrA B . Then

0
y (w) = / y (A wr B) : 0 an orbit >'
w w

Hence we need only consider (A , B) transitive.

We now consider reduction (4) . We show firstly that if

(A ,' B) is transitive and A is infinite, then (a')A ^ y (w) ;
CO

and then we prove that if (A , B) is transitive and

B/Cb(a) e [P ON] \ U F„ , (a')A S y ,(w) . These two resultsB = = T-. =r CO
peP

and reduction (l) then show that if (A , B) is transitive and

B/C (A) / U Fp, (a'<)A « y (W) .
peP . u'

The following proposition, which gives us the first part of
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the above, is proved for the standard case in [8],

Proposition 5.1 ,,10 Let A be a group and let (A , b) be a

transitive pair with A infinite. Then (A')A < '

Proof: If A is trivial, then (a')A « y (w) immediately.■ 0)

Suppose A is non-trivial,,

Let n e N, p e a , and 1 £ f, g e a^ o From the proof of
Lemma 5„5.7, since 2n < |a|, there exist b1,...,bn+1 e B such

that

[f,b1,...0,bn +1](p) = f(/i) tok£r< b=bV --

Then [f,g] = [[f,b„ . .. .,bn + 1] ,g] ;
>fcjb

for [[f,L1,....,bn + 1] ,g](fj) = [f(^),g(/j)]
i.iri'i abaiae ^ Q~i and if A / /J ,

[[f*bi,....,bn + 1],g](A) = 1

since g(X) =1 .

Hence [f,g] <r yn + 3(w) . Hence A^ < yn + s(w) , and so since
(A , B) is transitive, (a')A $ yn+3(w) . n was any integer;

so

(a')A * n y (w) = y (w)
neN n w

To show that if B/C-g(A) f [P H Nj \ U ?p , then
pep

(A.')A < yjw) , we need several preliminary results; these resultsCO

and their proofs are due mainly to ideas of Dr J. A. Hulse0

Lemma_5.1.11 (cf [8]) Let B be a group and let ZB be the

integral group ring of B. Let p be a prime and n a fixed positive

integer o For i e N define b. = ^ x e b : xB ey (b) } 0

i,n 'n^
Then p |ijn Bi-1,n B-^n +(Bi,n)P for 911 1 e z+
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Proof: Throughout the proof we will write IL for IL
^ for brevity,

Let x e [ x e B : xP e 1 > u = ^~x • Then

P_1 /P\
x? = (l-u)P = 1 - pu + Z (^iJ (-u)P + (~u)P ; so

i=2

p-1

p(l-x) = pu = 1 - x5 + Z (i) (-u)"3" + (-u)P .

i=2 7

fP\Now p divides ViJ for 1 i $ p-1 ; so we have

p-1

p(l-x) =pu=1-xP+pZv. u^t^ (l)
i=2 1

for some e Z+ , 2 ^ i ( p-1 .

We show by reverse induction on j that

p u^ € bi_i + bpP for all j > 1 ,

If j » p , p uJ e bpP ^ bp_-j B^ + bpP .

Now suppose that 1 ^ j < p , and that
k TD

p u e bp_-j B^ + bp for all k > j .

i-1
p-1

Then p u^ = (l-x^) u^ ^ + p Z v. u3"*^ ^ ± uP+"^
i=2 1

from (1).

Since x e 5 x e b : xP ey (b) } , xP is an element of b. .'n J i-1

and so (1-x^) u*3 ^ e *>i-1 Bp •

Since j-1+i > j for i > 2 , the induction hypothesis shows

that ,

P~

p Z v. ui+j 1 <r bp--] B. + bpP ;
i=2 1 1

and finally, since p+j-1 > p , uP+^ ^ e bpP . Hence
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p uJ e bi_-) + b±_i B + bpP + bpP = b^_1 B^ + bpP
Hence result by induction.

In particular, for j = 1 ,

pu e bp_-j B_^ + bpP
By [b] Proposition 1, bp is the right ideal of ZB_^ generated by

[1-x : xP e yn(B) ] ; p(l-x) e bp_-) B^ + bpP for all such
x ; hence

p
p bp « bp_i B^ + bp

Lemma 5.1.12 Let b be a group and let zb be the integral group

ring of B . Let p be a prime and let n be a positive integer.

Let b. = x : xP e y (Bj ^ for all i e N . Then
i, n * n

P1 bpjri $ bn + (bpjn)P
for all i e N .

Proof: Let i e N . If i = 0 , the result holds since b„ = y (b),
— —- ' 0,n n '
and, hence bo5n < bn from [3]0

Suppose now that i > 0 . We show by induction on r that

PP |i,n « |i-r,n B±^n + (lijn)P for 1 « r $ i .

The ca,se r = 1 is given by Lemma 5.1.11 .

Suppose 2 $ r $ i and the result holds for r-1 . Then
r r—1

P Bi,n - P P Bi,n

« pi ^_i-(r-l) n Pp n + (^i,n)Pl by the induction
hypothesis

S bp^r-!)--!^ B^n + (bijn)P + p(bijn)P
by Lemma 5.1.11

= bi-r,n + (^i,n)^
Hence result by induction.

86



Hence taking r = i ,

P |i,n < l0jn B^n + (bijn)P
< bn B + (bpjn)P as noted before

4 l" + <ii,n)P

Leinma 5.1.15 Let B be a group and let ZB be the integral group

ring of B. Let n e Z + and let

B. - / b e B : bpl e y (B) > for all i e Ni,n ^ hr

Then

bi,„ 0 " yplm) U (1 - /*) bi>n 5 bmln(n+1',n+2)
for all y e B , all m » 0 , and all n > 1 0

Proof: The proof is by induction on n .

The case n = 1 is immediate, as min(n+1 ,m+2) = 2 .

Suppose that n > 1 and ^

5i,n-1 0 - ypim) u (1 - ypim) li,n-1 4 for all n, e N.
We prove that

li,n (1 - yplm) U (1 - yO li,n 4 bmfe(n'm+2) for all m 1 0
by induction on m .

The result is immediate for m = 0 since min(n+1,m+2) = 2 .

Suppose m > 0 and

|i,n 0 -ypi(m"1,) u( 1 - ypi(Dl"1)) bijn < ^to(n+1,m+l)
Let x e B. and y e B . Now

i,n

(1-x)(1 - yP ) - px(l-x)(l - yP ^
P1--" ,i(m-1) r-. i(m-l) .

= (1-x)(1 - y )( Zj y P - p ) (*)
r-0
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px-1
y rpi(m-1) i

The sam of the coefficients of k = Zj y - p is
r=0

zero, and. hence k e b .

c • (* \( * min(n+1 ,m+l)So since (1-x)(.1 - y ) e ^ *>y "the

induction hypothesis,

P1-!
(. W. p-^111 y rpi(m 1) iv min(n+2,m+2)(1-x)(1 - y )( Z_. y r - p ) e b v '

r"^
< , min(n+1,m+2)

We now show that

i i . \/. p1^' 1 \ min(n+1,m+2)
p (1-x)(,1 - yr ) e b v 5 7

By Lemma 5.1.12,

p1 (1-x) e bn + (bisn)P

N«r bn (1 - X*-"1"1') « bn+1 S bmijl(n+1'm+S) and

„ _i(m-l) ^ifm-l)
(tl,n) (1 - y ) « (|i,n) (bi;n (1 - yP ))

< (bi,n)P"1 bJ"™{n+1',D+l)
p-1 > 1 , SO

(!i,n>P (i - ypi(m"1)) < X(l,,'""2)
^min(n+1 ,m+2)

Hence by induction on m, for all m > 0,

(1-X)(1 - yp=Un) e bm;b:l(n+1 »m+2) from (*)•
Hence we have the result by induction on n .

( The proof that (1 - yP" ) bpjn ^ ^min(n+1,m+2) similar.)

Let B be any group and p any prime. Define subgroup B by
wp

B = [ b e B : b has p-power order mod y^B) for all n e Z+j.
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Denote (B : Np) by .

We nov.r have

Proposition 5.1.14 Let A be an abelian group, let (A , B) be a

pair, and let W - A wrA B . Let p be any prime„ Then

[AA,B ,B ] $ y (w)L

wp p CO

and [AA,B ,B ] ^ y (w)
p h)p wv

Proof: Let ZB be the integral group ring of B ; AA is a ZB - module

as before.
i(n)

Let x e b ; say xr e y (b) for all n e Z . Then
wp 'n

x e Bp(n) n for all n e Z . By Lemma 5.1.15, taking m = n,
i(n)n 1

(1-x)(1 - y9 ) e bn+ for all y e B and all n e Z+
i.e. in multiplicative notation,

„i(n)n A a

[fj^y5 ] e [A ,n+1B] for all y e B, all f e A ,

and all n e Z+

By a well-known result [see e.g. [6]; the result is a corollary

to Theorem 10.3.6],

[f*x>yn+1(B)] < '-■^n+i^ for a11 y e B» a11 f e aA'
and all n e Z+

and hence
. i(n)n .

[A ,x,yn+1,B) BP ] < [A ,n+1B] for all n e Z+
i(n)n

Nov/ b < y .(b) b for all n e Z and so
p 'n+1

[A ,x,3 ] < n [AA, B] S y (W)
neZ

x was any element of B : so
wp

[AA,B ,B ] * y (W)'
wp 5 p 'or

Similarly,

[AA,Bp ,Bwp ] s£ yu(w)
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This gives us the following corollary.

Corollary 5.1.15 Let A be a group and let (a , B) be a faithful

transitive pair. Suppose B e [F H N] \ U F . Then
A PeP

(a') != y,,(w) .

Proof: Let p e P be such that B £ 11 ] B / , where for
p 1 ' ' p

any set of primes n , B^ is the Sylow IP-subgroup of B , and

p' = P \ [pj. Applying Proposition 5.1.14 to <a>wrA B for

a e A, we have

[ <a> AjBp ,B ,] S yw( <a> wrA B) s= y^(A wrA B)
since B = B and B , = B because B = B x B ,.p wp P P P P

We show now that we may pick A e A , z e B , and y e B ,
P P

such that | f A, Az, Ay, Ayz ] | £• 3 .

Suppose firstly that (A , b ) is transitive. 2 < |b| $ |a|!
and so a| £ 3. b , £ [ 1 ] => there exists y e b , and a e Ap ^ p
such what Ay A . Pick p <r A \ [A,Ay] ; then there exists

z e B^ such that Az = p . Then A, Az, and Ay are distinct.
Suppose (A , B^ is intransitive. B / [1] => there exists

A e A such that A > AB > [A] . Let v e A \ AB . Then thereP P

exists x e Bp and y f B^, such that Axy = v ; replace A by Ax
as AB = AxB . Then Ay = v . AB £ I A] => there existsP P P

z e Bp such that Az/^A. If Az = Ay , then v = Ay e ABp ,
a contradiction. Hence A, Az, and Ay are distinct.

So |{ A, Ax, Ay, Azy ]| £ 3 .

Now let a e A and let p e A . Then

, z 1, y 1](A) = ( Az) a^( A)a^( Ay) a*^"( Ayz) .

Now choose p e [ A, Ay, Az, Ayz ] such that p is distinct from the
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Thua we see that we have

Theorem 5,1,17 Let (A , B) be a transitive pair and suppose that

B/Cg(A) / Pp . Let A be a group and let W = A wrA B . Then
(A')A « y (W)

u

So we have reduction (4), i.e. in this case we need only consider

A e A .



-1 -1 4-1
other three elements; then [a^ ,z ,y ] = a . Hence if a is
any other element of A,

-"1 — 1 i 1
[&A ' aA^ = >z 5y ] (sign as appropriate)

e y (A wrA B)'of

since [a^ ,z \y 1] € [ <a>A,Bp , and so A^ $ y^(A wrA B) .
Hence since (A , B) is transitive, (a')A ^ y (A wrA B) .

Thus we have

Proposition 5.1.16 Let A be a group, let (A , B) be a transitive

pair-, end let W = a v.rA B . Suppose B/CLCa) e [F HNj \ U Fp
A A PeP=

Then (a') « y (a wr B) .
oj

Proof: (A , B/C^CA)) is transitive since (A , B) is, and so by-— "
r>

Corollary 5,1.15

(A')'" $ yw(A wrA {b/Cb(a)]) n aj
= y (A wrA B) H AA by Lemma 5.1 c60CJ

Hence resulto

We now show that we can make further reductions in the case

A a per5.odic residually nilpotent group.
n«xt

The^result is well-known; see for example [17] Volume 2.
Lemma 5.1.13 A periodic locally residually nilpotent group is the.

direct product of its Sylow subgroups.

In particular, if A e RN and A is periodic, then A = Dr A.
peP P

where Ap is the Sylow p-subgroup of A for p e P .

Hence we have a further corollary to Lemma 5.1.8, viz
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Proposition 5.1.19 Let A be a periodic residually nilpotent

group and let (A , B) be a transitive pair. Let A^ be the Sylow
p-subgroup of A. Then

y (a wrA b) = [ Dr [aa , a^bjjy (b)
CO pep P w P (0

= ^ y (a wrA b) : p e P >'(0S p

Hence in this case we need only consider a a p-groupD

Also from Lemma 5.1.8, if A e A H G , it is clear that we

need only consider a wrA B where A is a cyclic p-group for some

prime p, or A is the infinite cyclic group .

Section 5.2 The case B/Cg(A) e Fp , and some upper and lower

bounds for the general case.

This section contains two main types of result;

Theorems 5.2.1 and 5.2.2 give upper and lower bounds for y (w)
(j)

for quite general cases, and Theorems 5.2.4 - 5.2.7 deal with

more specific cases, chiefly for standard wreath products.

For the case B/C_(a) e f , ws characterise the residual13

completely (Theorem 5.2,3).

For any prime p and group &, we will denote p#(G : Np) by
G .

P

Note that (G )A = (&A) for any set A and group G .x
wp wp 17
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Theor3m 5.2.1 Let a be a group, let (a , b) be a pair, and let

W = a wr B . Then

(a) ,Bup] £ yw(w) for all p e P

(b) y (b)[aa ,b ] != y (w) for all p e pCO Cjp P 0)

(c) If A e A or B/C (a) e Nq for some prime q, then
n A

y (b).H [{AP y (a)] ,b ] ^ y (w) for all p € P , andor +L1 'n } ' wp rur r 'neZ r
. n A

y (B). H [A ,bp y (b)]A « y (w) for all p e Por „+ wp ' 'n /ojneZ

Theorem 5.2.2 Let A be a group and let (A , B) be a non-trivial

transitive pair such that B/Cg(A) e Fp for some prime p . Let
W =. A wrA B . Then

yw(w) s n + [[ap yn(a)]a,b]a y (b)
neZ

These two results allow us to prove

Theorem 5. 2.5 Let A be a group and let be a pair such that

B/Cg(A) e Fp for some prime p. Let W = A wrA B and let
£ = J a e A : [a] is an orbit of B on A J, Then

n 0

y (w) = ^ y (A)2, n [[AP y (a)]®,B]A ^y (b) : 0 a non-trivial orbit
neZ W

= [AA ,B]yw(B) ■ if A e A

The following result provides the key to the proof of

Theorem 5.2.1. Part (a) is stated in [5], but not proved; it is

an extension of Lemma 1 of [11] .

Lemma 5.2.4 Let G be a group and V a normal subgroup of G. Let
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v <r V and g e G.

(a) If there exists m <f N such that [vm,G] = [ij, then
n_

[v,Gm ] £ [v»n&] for all n > 1 .

(b) If there exists m e N such that [V, gm] = [1], then

,g] < fo:r a11 n ^ 1 •

Proof: (a) The proof is by induction on n.

The result is clear for n = 1 .

Now suppose the result holds for some n > 1 0 To show that
mn

[v, G ] $ [V, .jG] it will be sufficient to show that
[v,gm ] e [V,n+1&] for all get, as [V,n+^] A & .

mn-1
Let g e G , and let K = [v, G »G]« Tnen modulo K,

[v, g ] lies in the centre of G; hence
mn mn~'' m

[vsg ] = [v,(g )m]
= [v,gm ]m mod K

r m mn—^ -i[v ,g ] mod K

= 1 mod K

Hence [v,gm ] e [v,Gm ,G] € [V, G,G] by the induction hypothesis

= [V'n+P]
Hence result by induction.

(b) The proof is by induction on n .

The result is clear for n = 1 .

Suppose the result holds for some n £ 1 ; V & G => [V,n ^G]A G
mn

and so it will be sufficient to show [v ,g] e ^>n+1 ^°r
v € V.

_mn-1 m11-''
Let v e V and let K = [v *g,G]» Modulo K, [v , g]

lies in the centre of G; so
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r mn 1 r, mn \m[v ,gj = [(v ) ,g]
_ r m11-1 -,111
= LV ,gj moi K

r Hln-'' IDt
Lv ,g J mod K

= 1 mod K

Hence [v ,g] e [v"1 >g>&] < [V, &,&] by the Induction hypothesis

= tV'n+1G]
Hence result by induction,,

We may now prove Theorem 5.2.1„

Proof of Theorem 5,2.1

pr(n)(a) Let p be any prime. Let b e B , say b e y (b) for
cop 'n

all n e Z+. Then

A r(n)
[A ,b^ ] = 1 mod yn ^(w) for all n e Z+

=> by Lemma 5.2.4(b),
r/ A\ pr(n) (n~1 ) r A -I / \ +[(A ) ,b] « [A JnW^yn+1Cw) for all n <r Z

= yn+1 (W) for all n e z+
Now y (a) ^ y (w) for all n e z+ and so

n 'n'

Then

[fyn(A) A^ ^ ^]A,b] $ yn+1(w) for a11 :

AA/{y (A) APr(n)(n 1^jA € Np for all n e S+

-A / /,\ pr(n)(n-1) a
=> A < (y (a) A ) for all n e Z

p n '

=> [AA ,b] S yn+1 (W) for all n e Z+
=> [AA ,b] S yw(W) .

Hence since b was any element of B , [AA ,B ] ^ y (w) .v

cop p ' cop 'co

(b) Let p be any prime. Let f e > SSW

for all n e Z+.
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pp(n)
Then [f ,W] = 1 mod

^ (w) for all n e Z
=> by Lemma 5.2.4,

T,r(n)(n-1) »

[f,WF ] $ [A , W]y „(*) for all n <r Z+
n n+1

Vn+1^ for all n e Z+
pr(n)(n-1) .

=> [fjB ] £ ^(w) for all n e Z
y (b) ^ y (w) for all n e Z+ and so'n 'n

„r(n)(n-l)
[f ,B y (B)] £ y ,(w) for all n e Z'n 'n+1

r(n)(n-l) _

B/[b y (b)] e Np for all n e Z , and. so

pr(n)(n-1)
B $ B y (B) for all n e Z
p n

=> [f>Bp] ^ yn+1^ for a11 n e Z +
=> [f,B ] « y (W)

p w

f was any element of (aA) = AA : hence
up up

[AA ,B ] S y (W) .
up p fu

(c) We prove part (c) in the two cases a e a and B/C^(a) e Na= b =^-

separately.

(l) Suppose V = B/Cb(A) e Nq for some prime q. We show first
n f)A

that H [[ap y (a)]A,B ] $ y (w) . Let W„ = a wrA V .

neZ wp w f

We show that

( a) ia.\
wp

n
+ [[AP yn(A)]A,V ]A s [AA, W ] for all primes p

neZ

If p A q , V = 11] and s o'
wp J

n
+ ^aP y^A^A,Vn-o^A ** Wj trivially.

neZ P w f
£ k

V * > ' and so there exists k e N such that v^ e y ("V") for
all n e Z+ , and all v e V .
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fry] J.3.R
Hence as in the proof of part (a)^, for all v e V,

[(AA)^k^ 1\v] $ [AA,n Wf] for aU n <r Z+
from Lemma 5.2.4; therefore

[(AA)qk(n 1)jVj $ [aA j fQr all n f z+
n i

=> [[yn(A) Aqk^n 1 ]A,V] * [AA,n Wf] for all n e Z +
Therefore as kn £ n and kn ^^(n-l) for all n e Z+, and

[AA,n Wf] A W^ for all n e Z+, we have
kn a A A

Uy^U) Aq I ,V] S [A >n Wf] for all n e Z +
vn . A

=> n
+ UVj^CA) Aq ]A,V] $ [A , W ]

neZ

Since kn ■> « as n -» °° } we may say

H
+ [[yn(A) Aqn]A,V]A « [AA,w WJ

neZ

i.e. n [ iy (A) A^itv fA S [AA Wf]
neZ ^

Now for all primes p, [b C (a)]/C (a) $ [b/C (a)] , and so for
cdp d d B aip

all primes p,

n [iyn(A) Apn!A,BBpfA = n [[yn(A) ApniA,!B cb(aJ/cb(a)]aanez. n^Z

aa
« n

+ [|yn(A) Aiy.v ]
neZ r

« [aa,„wf]
= [AA, W] by Lemma 5.1.6

U)

£ y (w) as required.

We now prove that

n7* [AtP .BP"yn(B)fA < y„(w) •neZ r

We show first that for allprimes p

<> [C >vPVv»aA« uA. VneZ
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The result is trivially true if p = q , for then

VP y (V) = [1] for large enough n .

/ Pn +
Suppose p / q . Then V = V for all n e Z . Let

A pr(n) A +
f e A , say f e y (A ) for all n e Z . Then as in

u>p n

part (b),
pr(n)(n-1) A _ +[f,VP yn(v)] S [A ,n Wf] V n e Z+

=> [f,Vyn(v)] S [AA,n Wf] V n e Z+
=> [AAp ,Vyn(v)] £ [AA,n Wf] V n <r Z +
=> [A^p >Vyn(v)]A * [AA,n Wf] V n e Z +
=> n [AA ,vpny (v)]A = n [aa ,vy (v)]A

nez+ WP n neZ+ wp n

6 [AA,„Wf]
For all primes p, [BP yn(B)CB( a) ]/Cfi( a) < VP yn(v) , and so for

A AA

all primes p,

tAtp .Bpnyn(B)f"= n UA ,iBp°yn(B)c (A)S/c (a)]
n <rZ r n eZ r

$ [AA. 71J = [AA, W] <= y (W)
(0 1 CO CO

Henoe result.

(2) Now suppose A <= A . Let p be a prime and define Ap ^ A
by Ap = A^p = j a e A : a has p-power order j . The required
results now become

pn A
^ [(A ) ,B ] < y (w) for all primes p
„ + wp wneZ

H [AA ,BP y (B)] $ y (w) for all primes p
^7+ P nneZ

The first result follows almost immediately from part (a).
Let p be any prime. By Lemma 5.1.7, since A is abelian,
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n [(apn)a,b ] = [ n (apn)a,b ] = [aa ,b ]
neZ+ neZ+ wp P wp

Hence from (a),

[(Apn)A,Bup] = [AA .Bj « yjw) .

We now prove the second/equality. For meN and any prime

p, define fi (a) = [ a e a : a^ = 1 ]: then
m,p

a_ = A.._ = u fi„ „(a)

a p111
t in emu. u-eo j. c w A-nl rrn"— r-p

mj p

so as before,

P WP meN m'P

Let meN and let f e 0 (a)A. Then [f^ ,W] = 1 and
m,p

[f,Bpm^n ^yn(B)] « [AA,nW] V n e Z+
Hence [fi (a^b1^ (b) ] < [aA, W] v n e z+m,ps ' 'n n

"
+ [nn,,p(A)A'BPm(n"1>>'n(B)] 4 [AV]neZ

Now for any m e Z+,

n^z+ [nm,p(A)A BpmCn"1>>'n(B)] = ^ tnm,p(A)A BPVB»
For let f be an element of the left hand side, and let n e Z+.
Then there exists k e Z+ such that k > n and m(k-l) > n ; so

f e [0 (A)a,bpk("n 1Vv(B)^l « (A)a,bpny (b)] . Hencem, p * 'k m?P n

feH [0 (A)A,Bpny (B)].
neZ+ m>P n

Now let f be an element of the right hand side, and let n e Z+.
Then there exists k e Z+ such that k > n and k > m(n-l); then

f e [fi (A)A bpky (b)] « [fi (a)a,bp,^n ^ y (b)] . Hence
m,p 'k m,p 'n

fe n [fi (A)A,Bpm^n"^y (B)].
m,p 'nneZ fr
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Therefore for all m e Z+, and clearly for m = 0 also,

n
+ [nm p(A)A.Bpny_(B)] « y (») («)

neZ ,P n W

Now n [AA ,Bpny (b)]
neZ+ P n

= AA H fl [A ,BP y (b)] by Lemma 5.1.7
p „+ 'nneZ

f U nmp(A)A3n UA,BP"y (B)]meN 'y neZ

U {Q (A)A n H [AA,Bpny (B)]]
meN neZ

u In [q (a)Vv(b)]!
meN neZ 'P

^ y (W) from (*)

Hence result. This completes part (c) of Theorem 5.2.1.

Thus the proof of Theorem 5.2.1 is completed.

Proof of Theorem 5.2.2 Y/e have A any group, and (A , B) non-

trivial and transitive such that V = B/C_(a) e Pp for some primeB

p.

Let W„ = A wrA V . For n e Z+ write A = AP y (a) :1 n n

then A/An e Kp for all n e Z+.
Let n e Z+. Then AA A W_ and

n f

Wp/A^ = [A/An] wrA V e N by Theorem 5.3.1. Therefore there
exists k e Z+ such that y (w ) £ AA , and so

k x n

yk+1 (Wf) * [An 'Wf] = <[An >V]» [An ^
£ [AA ,V]A by Lemma 5.1.4

Therefore y (w„) $ [AA ,V]A V n e Z+'or f n

A.
=> y (W) « [An jB] Yw(®) V n e Z+ by Lemma 5.1.6

A AA
=> ^ n

+ ^An yJB) as required,
n eZ
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Proof of Theorem 5.2.5 By Lemma 5.1.8,

yu(w) = ^ yw(A wr^ B) : 6 an orbit *>
Let [o] be a trivial orbit. Then A wr^ B = x B and so

yw(Awria] B> = yw(ACT) >< yw(B)
So yt/A wr B) : cr e S> = yw(A)Z.yw(B)

Let 0 be a non-trivial orbit. Then
%

B/Cb(0) ?[B/CB(A)i/iCB(e)/CB(A)j eFp , and so by Theorem 5,^.2,

y (A wr9 B) < H+ [(AP y(A))9,B]A"y (b)w + n u)
neZ

But n [(A^y (A))0,B]A"
neZ

n [(A^y (a))6,b/c (e)]A0
r-y » n Jj

neZ

H [(A^y (A))0,{B/C (e)j ]A°
neZ n P

s* y (A wr0 [B/C (0)]) HA0 by Theorem 5.3.1 (c)CO Jd

/ 0 \ 0
= y (A wr Bj D A by Lemma 5.1.6U

0

Hence y (A wr0 B) = H [(AP y (a))0,B]A y (b) and soor , 'nx ' 'or '
neZ

y (w) = ^y (a) , n [(AP y (A))",B]y (b) : 0 a non-trivial orbit ^(d CJ „+ n S U)neZ

as required.

If A € A , then y (a) = [1] and

H [(Apny (A))A,B] = [ H (APV U))A3B] by Lemma 5.1.7
neZ neZ n

= Up,B]
Hence yo/A wr"'V B) = [AA ,B]yu(B) in this case.

We now consider standard wreath products. We prove
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Theorem 5.2.4 Let A be an abelian group, and let B be any group.

Let W = A wr B . Then

yjw) £ [A® ,B][AB,Bp]yw(B) for all primes p

non- tribal
Theorem 5,2,5 Let A be a p-group and let B be a/p'-group, where

p is a prime. Let I = A wr B . Then

y (W) = [AB,B]y (B)
ClI w

Tiieorem 502.6 Let A be an abelian p-group and let B be a p-group

for some prime p. Then

y„(w) = [A® ,B][AB,Bp]yB(B)
Theorem 5,2.7 Let p be a prime. Let A be an abelian p-group,

i u> <a cyv-oop fvcK-Ha.f ii o- ^ - gnoyp.
and suppose - R n , ,.,ViQyp -p n s a. p-rreup nnrl B , in n-p -p.p p

p '-gr-nnp, Then

yu(w) = [AB,Bp,][A® »B]y^(b)

The following result provides the key to most of these

theorems.

Tiieorem 5,2.8 [8] Let p be a prime. Let A e A H RNp and
let B e RNp . Then A wr B e RNp .

This gives us immediately

Proposition 5.2.9 Let p be a prime and let A c A H RNp . Let

B be a group and let I = A wr B 0 Then

yjw) « [AB,5p]y(a(B)
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Proof: Since A e A ,

W/[[Ab,bp]bp] =* A wr [b/b ] by Lenima 4.1.8
Then by Theorem 5.2,8, A wr [b/b ] e RNp $ RN , and so

y (W) £ [AB,B ]B/ur P P

But y (w) n B -■ y ( D ) ( D j honoip ^ j' fiU ' n ' -*or 'or p

y (w) « [AB,B ]y (B)
W P CO

We may now prove Theorem 5.2.4.

Proof of Theorem 5.2.4 Let p be a prime. Since A/Ap e RNp ,

by Proposition 5.2.9 we have

y ( [a/a] wr b) S [(a/a )b,b ]y (b)
y y p u)

Under the isomorphism from [a/apj wr b to w/aB constructed in
Lemma 3.6.8, [( ^/Ap)B>Bp]y^(B) maps onto [ [AB,Bp]Apy/B) ]/aB , and
30 s ia^b/a^b) • yja

Since A e A , y/w) PO? « CAB,B hence

yjyi) 4[ab,bp]a® n [ab,b] j
= [Ab,BJ!Ab n [A ,B]J W«l

Jtr Jr

= [AB,Bp][AB ,B] W6)
rB .nr.B -and so y (W) *= [A* ,B][A ,b ]y (b)

w p p u)

Proof of Theorem 5.2.5 Let A be a p-group and let b be a p'-group

for some prime p. Then b = b and A = A , and so byp wp J
b b •—

Theorem 5.2.1 (b), [A ,b] = [A ,b ] « y (w).
wp p w

Since (B , B) is non-trivial and transitive, by Lemma 5.1.5

y (W) $ [AB,B]y (B) ; therefore y (w) = [AB,B]y(B) .
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Proof of Theorem 5.2.6 Since A and B are p-groups, = A and

B = B . Hence by Theorem 5.2.1 (a) and (b),
wp

[ABJBp][A® , B] s yw(w) and so

[AB,B ][AB ,B]y (B) S y (W)
p p Cu OJ

But by Theorem 5.2.4,

yw(W) == [AB,Bp][AB ,B]yw(B) ; therefore

y(w) - [ab,b][ab ,b]y (b)
ii) P P OJ

Proof_of Theorem 5.2.7 Since A is a p-group, A^p = A -j-
P - "R i P i ^ - "R ~ . Then by Theorem 5.2„1 (b),
ppwpp PP

[AB,B A = [AB ,B ] ^ y (w) , and soL '
p wp ' p ' ur ' '

yw(w)/[AB..Bp ] = yw(w/[AB,Bp ]) = y^A wr^B/Bp * b)
by Lemma 4.1.8.

Now C_(B/B ) = B , and soB p P

A^B/Bp ^ H y^(A wr^B//Bp ^ B) = yw(A wr^B//Bp ^ [E/5p }) H ^
by Lemma 5.1.6

= y^(A wr [B/Bp ]) n A^B//Bp ^
by Lemma 4.1.7 (b)

= UlB/5p B/f ]

by Theorem 5.2.6

= [I1B/BP b/b ]
p p

.pinoo B ~ B .

P P

= [ApB//<BP ^>B] by Lemma 5.1.6
Hence wr^^P ^ B) = [A^B//BP ^,B]y^(B) and so

Yj.1l) = [A® ,B][AB,Bp hjs)
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Section 5.3 The case A/A' and B/y (B) periodic, with
CO

B/ U Fp
peP

We characterise y (A wr B) where A is a group such that
CO

A/A' is periodic, and B is a group such that B / U Fp and
peP

B/y (B) is periodic.

Theorem 5<,5.1 Let A and B be groups and let W = A wr B . Suppose

A/A' and B/y (b) are periodic, and that B / U Fp . For aqyW
peP =

prime p let A^ /k' be the Sylow p-subgroup of A/A', and for any
set of primes n let B^ /y (b) be the Sylow n-subgroup of B/yw(B).
Then

y (W) = i Dr [A® ,B ] [TaJ® ,B] J [aV^B)] (A')® V„(b)
peP r r v u

Pro.0f; By Theorem 5.1.17, (A') ^ y^(w) ; therefore

yj,W)/(A')B = y^(W/(A')B) ~ yj^[k/k'\ wr B) by Lemma 3.6.8
Let A = A/A' and W = A/A' wr B . Then

[AB,y,.(B)]y (B) $ y (W) , and soCO CO co —

yuW/iUB.yu(B)]yu(B)! = y^s/lt/.y^Bjiy^B)!)
= y (A wr [B/y^(B)j) by Lemma 4.1.8

Let B^ = B/y (b) and let W# = A wr B^ ; let Bn /yw(B) = B„n for
all sets n of primes. , g c ^ g

J &r\cl iv 0*.*^ »
Since A/A'/is periodic, A/A' = Dr A /k' = Dr A say,/,by Lemma 5.1.18

peP P peP
TKa«-> ^ ) c*+<o< S.0 IS* c. jiv-

AV*d so by Lemma 5.1.8, S.

yJl*) = Dr (4, wBJ = Dr [A®* ,B ][TaJ®*,bJ
peP peP

1
J 1711 11 r, -I r.l ^ 1 Ul.l.. r. . H „llim J_ T7 ■■ T>^ Uy T.ommq S 1 IS.
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Hencej ^ ru<© °®*V)
yjw) = | Br [A® ,Bp HTT7® ,B]j UlyjB)] y<j(B)
and. so

yw(w) = I Dr [a® /sp 3Ua~Tb ,b]} [ab,y((j(b)] (a')B yw(B)
Hence result.

Section 5.4 B a perfect group

We may characterise y (A wrA B) completely for the case B

a perfect group. We prove

Theorem 5.4.J. Let A be a group, let (A , B) be a pair with B

perfect, and let W = A wrA B . Define EC A by

Z = ( a e A : [a] is an orbit of B on A ]. Then

yw(w) = yw(A)s.[AAN e,b]b
Proof: Let 0 be an orbit and let Wq = A wr~ B . If 0 = jaj for
some a e Z , then (0 , B) is trivial and W_ = A9 x B = A x B :' v ' 0 a

hence y^WQ) = y^ x y^B) = y^) x B .

If 0 / [cr] for any a e Z, then (0 , B) is non-trivial and

hence B/C (0) £ N , since B is perfect. We show that this implies
-D =

that [A0,B] < yJWQ), whence [A9,B]B $ y^(W©).
Let N^Wg , with Wg /N f N . Then by Lemma 4.1.4,

N H B ^ 0^(0) , and hence by Lemma 3.2.4, (a')® < N . We nowB

r © n

show that [A ,B] =$ N .

Let f e A9 and b e B . N.A9 > y (w)A9 = W since B < y (w),
0 rand so there exists g e a such that bg e N ; hence ^ N .

Now [f,bg] = [f,g][f,b]S and so since (a')9 < N , [f,g] e N

and so [f,b]S e N . Hence [f,b] e N , since N A. w . Hence
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[A0,B] « N .

N was any normal subgroup of Wq such that Wg /N e N ; and so
as required.

By Corollary 5.1.5,

yw(WQ) « [A6,B]yw(B) = [A0,B]B ; hence

yw(w0) = [a0,b]b .

Therefore by Lernma 5.1.8,

= ^yJW0^ : 6 an orbiO
= { y (Aq.)B, [A0,B]B : o e S, 0 an orbit, 0 C A\ J ^
= ya(A)S [AAN !,B]B .

Hence result.
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