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Lay Summary

In mathematics, a singular perturbation problem, such as a differential equation, usually con-
tains a small parameter, where the singular limit of the problem as this small parameter to
zero will perform a different type or structure with respect to the general solution of the prob-
lem. Such feature, is contrasted with that of a regular perturbation problem, as in that we
may find a general solution converging to the solution of the limiting problem. This solution
usually consist of a power series in terms of the small parameter, which is called a uniform
approximation to the problem. However, for a singularly perturbed system, when we set the
small parameter to zero, the nature of the problem will change depending on the disparate
length-scales or time-scales. To understand the solution of the problem, we can divided the full
problem into different subsystems, we can combine the solutions of the subsystems into a full
solution by matching certain conditions to make the solution smoothly. To that end, we ap-
ply some mathematical techniques, such as the method of matched asymptotic expansions and
the method of multiple scales. More recently, the geometric approach under certain regularity
assumptions has been developed completely, and based on dynamical system theory. However,
when that regularity is lost, we may consider the blow-up technique, which is also known as
geometric desingularisation, by appending the small parameter as a new variable that allows
us to study the singular problem in an equivalent system, higher dimension, but more regular
to explore the whole problem.

In this thesis, we consider two examples: the cut-off problem and the cAMP signaling sys-
tem, which are both singularly perturbed. So-called cut-off functions have been in introduced
into various mathematical models to improve the approximation of discrete phenomena. For
instance, in microscopic physics, the underlying numbers of particles are integer-valued; hence,
the discrete nature of the underlying models needs to be considered when performing a contin-
uum approximation via reaction-diffusion systems. In particular, the notion of a concentration
of particles will be invalid in regimes where no particles exist. Such regimes can be modeled by
a cut-off function, like a step function—taking some threshold as the concentration when only
one particle is present to react. Hence, there is a necessity to describe the effect of the cut-off
on the continuous model.

Secondly, the cAMP signaling system models the propagation of signals that control ag-
gregation of the amoeboid microorganism Dictyostelium discoideum. Two main types of dy-
namic behaviour are observed: autonomous oscillation [23, 24, 26] and relay of super-threshold
pulses [59,63]. In particular, relay behaviour has been linked with autonomous oscillation, rep-
resenting the excitability of the system, which is naturally motivated by a singularly perturbed
model. We discuss the system by several subsystems, and combine the results in an appropriate
form by using some mathematical techniques. In particular, we will apply the blow-up tech-
nique to explore the dynamics in different subsystems, allowing us to make a geometric display
of the structure of the full solution.
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Abstract

This thesis addresses the geometric analysis of traveling front propagation in singularly per-
turbed dynamical systems. The study of front propagation in reaction-diffusion systems has
received a significant amount of attention in the past few decades. Frequently, of principal
interest is the propagation speed of front solutions that connect various equilibrium states in
these systems. Meanwhile, the geometric approach for normally hyperbolic problem is devel-
oped completely, and based on dynamical system theory. However, in the degenerate case,
where the hyperbolicity is lost, we may consider the blow-up technique, which is also known as
geometric desingularisation, to resolve the nonhyperbolic parts.

We start with a two-component reaction-diffusion model with a small cut-off, which is a
sigmoidal type of the FitzHugh-Nagumo system with Tonnelier-Gerstner kinetics. We first
discuss the basic properties of the model without a cut-off, and we find two feasible cut-off
systems for two components. We aim to construct a heteroclinic orbit connecting the nonzero
equilibrium to the equilibrium at the origin for the cut-off system. However, the origin becomes
degenerate due to the cut-off term. Hence, we apply the blow-up technique, which can resolve
the degeneracy at the origin and regularize the dynamics in its neighborhood, where we can
use standard dynamical system theory. We perform a formal linearisation and derive a second-
order normal form in the blown-up dynamics to obtain the corresponding speed relation, which
implies the existence of the heteroclinic orbit. We present the two blow-up patching approaches,
numerical simulations and numerical comparison of the obtained results. We also discuss how
the cut-off threshold is involved in the global geometry and the effect on the related propagating
front speed and discontinuity position.

The second main topic of the thesis is a geometric analysis of a reformulated singularly
perturbed problem, based on the Martiel-Goldbeter model of a cyclic AMP (cAMP) signaling
system, which models the propagation of cAMP signals during the aggregation of the amoeboid
microorganism Dictyostelium discoideum. The mechanism is based on desensitisation of the
cAMP receptor to extracellular cAMP. We explore the oscillatory dynamics of the reduced two-
variable system without diffusion, which can be considered as the core mechanism in the cAMP
signaling system, allowing for a phase plane analysis of oscillations due to the simplicity of the
governing equations. There are two small parameters, which manifest very differently: while
one parameter is a “conventional” singular perturbation parameter which reflects the separation
of scales between the slow variable and the fast variable, the other parameter induces a different
type of singular perturbation which is reflected by the non-uniformity of the limit. Our resolu-
tion, which introduces the blow-up technique to construct a family of periodic (relaxation-type)
orbits for the singularly perturbed problem, uncovers a novel singular structure and improves
our understanding of the corresponding oscillatory dynamics.
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Chapter 1

Introduction

The study of dynamical systems, which was firstly introduced in celestial mechanics by Henri
Poincaré [52], has been popular. In mathematics, a dynamical system consists of a function
or functions describing the position of the state points depending on some parameter, which
are usually referred to as “time”, such as ordinary differential equation(ODE) and difference
equation(DE), also known as a vector field and a map in geometry, respectively. The basic
forms can be written as

dx

dt
� fpx, tq (1.1)

and

x ÞÑ gpxq (1.2)

where x P U � Rn and t P R1, U is an open set in Rn. Here, we focus on the continuous “ time”
case (1.1) the solution of the system f has the form φpx, tq with φtpxq � φpx, tq, also termed as
a flow φt : U Ñ Rn, which with given initial condition, satisfies φ0pxq � x0 and φt�s � φt � φs.
Here, we say φ defines a solution curve, trajectory or orbit for the corresponding ODE. The local
existence and uniqueness theorem has been proved, for proof see Coddington and Levinson [12],
Hirsch and Smale [34]. There are several important types of solutions, such as equilibrium
solutions and periodic solutions. Equilibrium solutions are also called fixed points or steady
states, the stability is usually determined by the method of linearisation. An equilibrium is said
to be hyperbolic when the eigenvalues of the corresponding linearised system have no zero real
part, and it can be called a saddle, a node (stable or unstable), a sink or a center depending
on the sign and imaginary part of the eigenvalues. From the geometrical point of view of
dynamical systems, we talk about “manifolds”, then the stability of a fixed point is described
locally by invariant manifolds, e.g., the stable, unstable and center manifolds. Moreover, for
some nonlinear systems, periodic solutions or orbits occur rather than equilibrium solutions,
where the well-known method of Poincaré Map is considered in the analysis, see Section 1.6
below. And solutions or flows connecting a set of equilibria are termed as heteroclinic orbits
connecting distinct equilibria and homoclinic orbits connecting one point to itself. Simple
dynamical systems, can be solved explicitly, while for some complex problems, we may try to
simplify them by two rigorous mathematical methods, the center manifold theorem and the
method of normal forms. The former is aiming to reduce the dimensionality of the space; more
information can be found in Marsden and McCracken [45], Carr [11], Henry [33], while the latter
helps simplify the nonlinearity by finding proper coordinate transformations, see Wiggins [72]
and Guckenheimer and Holmes [31].

In the analysis of dynamical systems, one can apply the basic dynamical system theory for
normally hyperbolic systems, when for simple singularly perturbed, one may concern standard
geometric singular perturbation theory. However, in case of a loss of hyperbolicity, one may use
some additional technique to support the study, such as geometric desingularisation—“blow-up”
technique, to resolve the degenerate part; then one can use the standard theory [19].
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1.1 Reaction-diffusion systems

A reaction-diffusion system in mathematical modeling can be represented in the form

Bu
Bt � f �D∇2u (1.3)

where u is a vector of uipx, tq, i � 1, ..., n with x and t the continuous space and time variables.
In models of interacting species or chemicals, ui is referred to as density or concentration, and
Di of the diagonal matrix D is the corresponding diffusion coefficient, and f is the reaction
(source) term. It was introduced by Turing [68] to model the mechanism of the chemical
basis of morphogenesis in theoretical biology. Since 1970, reaction-diffusion systems have found
widespread use in biology, chemistry, physics and ecology, e.g., animal dispersal, tumor invasion,
spread of epidemics.

The well known of a reaction-diffusion system containing one component in one spatial
dimension is given by

Bu
Bt � k u p1� uq �D

B2u

Bx2
(1.4)

where the parameter k and diffusion coefficient D are positive.
It was proposed by Fisher [22] modeling the spatial spread of a favoured gene, which extended

the population model with logistic growth. And a classical study was given by Kolmogorov
et al. [1]. Therefore, this equation is also well-known as the Fisher-Kolmogorov-Petrovskii-
Piskunov (FKPP) equation. More studies can be found in the books by Fife [21], Britton [7]
and Grinrod [30]. It has been widely used to develop the standard techniques in single-species
models, especially the analysis of travelling wave solutions.

1.2 Traveling waves

What is a travelling wave? Firstly, it is a wave that travels at a certain speed without changing
shape. The analysis of travelling waves in chemistry was popularised by Luther [44] who
presented the interesting discussion at a conference, and his results have been organized by
Showalter and Tyson [64], which has the same analytical form as Kolmogorov et al. [1] and
Fisher [22]; also see [3, 4] in biology.

1.2.1 Single-species models

Considering the FKPP equation here, the travelling wave solution is expressed as

upx, tq � upξq, ξ � x� ct (1.5)

where c denotes the corresponding speed of propagation and ξ is a new coordinate containing
spatial and time variable px, tq.

Such a wave is moving in the positive x-direction with speed c ¡ 0, which is not determined
yet. (Similarly, if we define the travelling wave by x � ct, the wave will move in the negative
x-direction.) Now, substituting the change of coordinate ξ � x� ct with c ¡ 0, we have

Bu
Bt � �cdu

dξ
,

Bu
Bx �

du

dξ
,

B2u

Bx2
� d2u

dξ2
(1.6)

before rewriting Equation (1.4) in upξq, we rescale it into a non-dimensional form via x� � x
b

k
D

and t� � kt. One then has the simple equation

Bu
Bt � u p1� uq � B2u

Bx2
(1.7)

here, we drop the � for the sake of simplicity.
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Now, Equation (1.7) is transformed from a partial differential equation (PDE) in px, tq into
an ordinary equation (ODE) in the wave variable ξ as follows,

u2 � cu1 � up1� uq � 0, (1.8)

where the prime denotes differentiation with respect to ξ. The valid range of u is r0, 1s which
allows the study of travelling front solutions, and u � 0 and u � 1 are the spatial homogeneous
steady states, while u   0 will be biological unrealistic in these models.

To discuss the dynamics in phase plane, one can find the corresponding the two-dimensional
first-order system

u1 �v (1.9a)

v1 �� cv � up1� uq (1.9b)

The steady-states of Equation (1.9) are p0, 0q and p1, 0q in pu, vq-space. The eigenvalues at the
point p0, 0q are λ� � � c

2 � 1
2

?
c2 � 4, which indicates the stability of this point: for c ¥ 2, it

is a stable node, while for c P p0, 2q, it is a stable spiral. The eigenvalues at the point p1, 0q
are λ� � � c

2 � 1
2

?
c2 � 4, which shows it a saddle point. One can construct such trapping

region and show that the heteroclinic orbit from p1, 0q to p0, 0q stays in this region for the
travelling front solutions, see Figure 1.1. Here, for ξ Ñ �8, pu, vq Ñ p1, 0q, and for ξ Ñ 8,
pu, vq Ñ p0, 0q, the travelling wave (or front) is equivalent to the heteroclinic orbit between the
two steady states. The orbit is given by

dv

du
� �cv � up1� uq

v
(1.10)

(a) (b)

Figure 1.1: (a) The trapping region of Equation (1.9) and trajectory for c ¡ 2. (b) traveling
front

There exist travelling wave solutions for all c ¥ 2. Here, c � 2 is the critical speed; while for
c   2, there will be oscillations around the origin, which is not physically realistic since u   0
for some ξ.

1.2.2 Multi-species models

There are many reaction-diffusion systems with several species, which make the study of solu-
tions more difficult and complex, especially for those with nonlinear reaction kinetics. Princi-
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pally, the study of the stability of the travelling wave solutions is an important aspect of the
analysis in multi-species models. Due to the number of reactants and the high dimension, there
are various possibilities to discuss the dynamics. When there exist several steady states, one
can find travelling wave solutions connecting two of them, or there may exist stable periodic
limit cycle solutions; one can even find the chaotic oscillations in three or more equation sys-
tems. For two-dimensional spatial model with Belousov-Zhabotinsky reaction, target patterns
(circular waves) were found experimentally by Zaikin and Zhabotinsky [73], while the analyt-
ical approach was studied for the Field-Noyes model by Tyson and Fife [70]. Target pattern
behaviour can be found in many biological models. In addition, there are also solutions like
spiral waves, which have been discussed by Newell [51], e.g. the dynamic of the slime mould
Dictyostelium discoideum, however, there still exist travelling wave solutions for certain param-
eter domains due to the complexity of biological parameters. Relevant research was produced
by Keller and Segel [40] and Keller and Odell [39]. Recently, many studies have been done for
multi-species models for their variety of wave solutions, however, there is still much more to
be discovered. For example, the Fitzhugh-Nagumo equation (FHN) is one important type of
system in excitable media of neuroscience, which has the form

Bu
Bt �upa� uqpu� 1q �D

B2u

Bx2
(1.11)

Bv
Bt �bu� γv (1.12)

with parameters 0   a   1 and b, γ ¡ 0. The nullclines can be sketched is in Figure 1.2.
There are three possibilities of equilibrium state: unique equilibrium, two equilibria and three
equilibria.

0 1

Figure 1.2: Graph for curve upa � uqpu � 1q � 0 (thick blue) and line bu � γv � 0 (red), the
nullclines of Equation (1.11) for various γ

In particular, when γ � 0, i.e., for a unique equilibrium state, solutions of travelling pulses
were obtained by Rinzel and Keller [56]; the three equilibrium state was discussed by Rinzel
and Terman [57]. Besides, Mckean studied the piece-wise linear type of FHN system in [47],
while Feroe discussed the stability of its travelling pulses in [20]. In addition, more general
results have been produced by Keener [38] and Tyson and Keener [71].

For an introduction to mathematical biology and applications, we refer to the book by
Murray [49,50].
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1.3 Geometric singular perturbation theory

In mathematics, a perturbation problem usually contains a small parameter, such as ε. For a
regularly perturbed problem, one may find a uniformly approximated solution to the limiting
problem as ε Ñ 0, while for a singularly perturbed problem, the solution is not uniformed.
Traditionally, there are basic methods of analysis for this kind of problems, such as the method
of matched asymptotic expansions and the method of multiple scales. The former provides
us to study the full problem by dividing the whole domain into several subdomains, where
solutions in those subdomains will be combined together by matching the boundaries to give an
approximation of the full problem via an asymptotic series. For the method of multiple scales,
one may introduce fast-scale and slow-scale variables for the independent variable, usually refers
to the “time”; then we investigate the dynamics with different time scales, and combine the
results in an appropriate form. Most recently, the geometric approach has been developed
completely under certain regularity and based on dynamical system theorem, for the standard
theory, we refer to Fenichel [19].

1.3.1 Two-scale slow-fast system

We consider singular perturbation problems in the following form

ε 9x �fpx,y, εq (1.13a)

9y �gpx,y, εq, (1.13b)

where the dot denotes differentiation with respect to time scale τ , px,yq P Rm � Rn with
m,n ¥ 1, and 0   ε ! 1. Here, the functions f and g are assumed to be Ck with k ¥ 3, and ε
is taken as the singular parameter. Introducing a new time scale via t � τ{ε, the reformulated
system of (1.13) becomes

x1 �fpx,y, εq (1.14a)

y1 �εgpx,y, εq (1.14b)

where the prime denotes differentiation with respect to time scale t.
The type of (1.13) belongs to the class of slow-fast systems: we note τ as the slow time

scale, while t is the fast time scale. Then Equations (1.13) and (1.14)are referred as the slow
and fast system, respectively. When ε � 0, both Equation (1.13) and (1.14) are equivalent.
When ε � 0 the corresponding limiting problems of systems (1.13) and (1.14) become

0 �fpx,y, 0q, (1.15a)

9y �gpx,y, 0q (1.15b)

and

x1 �fpx,y, 0q (1.16a)

y1 �0, (1.16b)

which are referred to as the reduced problem and the layer problem, respectively. The geometric
singular perturbation theory provides the approach for analysing system (1.13) with ε nonzero
but small by suitably combining the study of the limiting problems (1.15) and (1.16). The
dynamics of the layer problem (1.16) contains a set of equilibria, which is defined as S :� px,yq P Rm�n �� fpx,y, 0q � 0

(
and the flow under (1.16) is trivial. In the reduced problem,

the flow is defined on the set S, which is nontrivial. Assuming that we have an n-dimensional
manifold S0, which is contained in the set S, possibly with boundary. Under the hypothesis
that S0 is compact and normally hyperbolic (that is, the eigenvalues of the related linearised
system (the Jacobian Bf

Bx
��
S0

) are nonzero and uniformly bounded away from the imaginary

axis), then the critical manifold S0 persists as a locally slow manifold Sε, which is invariant
in the full system (1.13), and lies within Opεq to S0. The restriction of the flow of (1.13) to
Sε is a small and regular perturbation of the flow of the reduced problem (1.15). Moreover,
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the corresponding stable and unstable invariant foliations of S0 of (1.16) persist as those of
Sε within Opεq, respectively. The fundamental theorems of geometric singular perturbation
theory were established by Fenichel [19], and more introduction and applications were given by
Jones [35], Hek [32] and Kaper [36].

1.3.2 Nonhyperbolic fold point

The geometric singular perturbation theory was based on normal hyperbolicity, however, it fails
when normal hyperbolicity breaks down. One particular case is the fold point on the critical
manifold where there exists a zero eigenvalue of the relevant Jacobian matrix. Such phenomena
are found in relaxation oscillations problem; for the detailed description see books [29, 48, 53].
The theorem on extended of geometric singular perturbation theory to fold point is proposed
by Krupa and Szmolyan [42], where they present a detailed geometric approach for a generic
fold in the planar case of system (1.17):

ε 9x �fpx, y, εq (1.17a)

9y �gpx, y, εq, (1.17b)

9ε �0. (1.17c)

For the sake of simplicity, one can assume that the non-hyperbolic fold point of the critical
manifold S is at the origin in px, y, εq-sphere, i.e., fp0, 0, 0q � 0 and Bf

Bx p0, 0, 0q � 0, where
px, yq P R2, under the assumption that

B2f

Bx2
p0, 0, 0q � 0,

Bf
By p0, 0, 0q � 0, gp0, 0, 0q � 0

which guarantee the nondegeneracy in the neighbourhood of the origin on S. To facilitate a

clear description of the critical manifold and slow manifold, let B2f
Bx2 p0, 0, 0q ¡ 0, Bf

By p0, 0, 0q   0,

the dynamics of the two limiting problem are shown in Figure 1.2(a). The critical manifold
consists of the left attracting branch Sa and the right repelling branch Sr, where Bf

Bx px, y, 0q   0

and Bf
Bx px, y, 0q ¡ 0, respectively, i.e., S � Sa

� p0, 0q�Sr in px, yq-space. Moreover, the origin is
degenerate weakly attracting on the left-side and weakly repelling on the right-side. Here, the
folded manifold S is approximated by a parabola with opening to the top, where gpx, y, 0q   0
for all px, yq P S, which leads the direction of the reduced flow downwards towards the fold
point. The only solution of possible orbits approaching the fold point is to leave along the
weakly unstable fiber on x-axis in the layer problem.

(a) (b)

Figure 1.3: (a)The critical manifold S (blue), where S � Sa � p0, 0q�Sr, and layer problem
(green); (b) The smoothly perturbed slow manifold Saε, Srε(red) and sections.

Without loss of hyperbolicity on Sa and Sr away from the fold point, one can imply the
persistence of Sa and Sr by the standard theory by Fenichel [19] and Jones [35] that there
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exist locally smoothly perturbed slow invariant manifolds Saε and Srε for ε nonzero but small,
see Figure 1.2(b). Moreover, the stability of Saε remains the same as Sa, which is attracting,
while Srε stays repelling, and the slow flow on both is directed towards the origin. For the
corresponding layer problem, there are invariant stable foliations on Saε and unstable foliations
on Srε. The perturbed solutions of possible orbits follow Saε until they enter a section Σin close
to the fold point where there exists a transition connecting Saε to the perturbed fast unstable
fiber, which is parallel to the x-axis, in a section is defined as Σout. The following results have
been proven by Krupa and Szmolyan as Theorem 2.1 in [42].

Theorem 1.1. Under the assumptions made in this section there exists ε0 ¡ 0 small such that
the following assertions hold for ε P p0, ε0s:

1. The manifold Saε passes through Σout at the point pρ,Opε2{3qq, where ρ ¡ 0 small.

2. The transition map π : Σin Ñ Σout is a contraction with contraction rate Ope�c{εq, where
c is a positive constant.

The proof is based on the analysis of geometric desingularisation— the blow-up technique.

1.4 Geometric desingularisation

To resolve the degenerate origin in Equation (1.17), one can use a blow-up technique, where
the desingularisation theorem in a planar case was first introduced by Bendixson in 1901 and
rigorously proved by Seidenberg [62]. Later on, the technique as a useful tool in studying
nonhyperbolic singularities was extended to C8 vector fields by Dumortier [13]. The blow-up
technique is a method of coordinate transformation that allows us to study the singular part in
charts where in each chart the dynamics are at least partially hyperbolic and amenable to the
standard theory. There are many different types of blowing up a system, such as polar blow-up,
related directional blow-up, successive blow-up, quasi-homogeneous blow-up and so on; for more
details see Dumortier [14] and the book by Dumortier and Roussarie [17]. There is also a survey
on this method in [2], where one can find an overview of different examples of homogeneous and
quasi-homogeneous blow-up techniques. For a general introduction of the quasi-homogeneous
method, see the book by Bruno [10] and the article by Brunella and Miari [8].

Considering the fold point problem (1.17), where px, yq P R2, one can rewrite the system in
a canonical form via a suitably chosen scaling of px, y, εq and time t so that the new equation
becomes

x1 �� y � x2 �Opε, xy, y2, x3q, (1.18a)

y1 �εp�1�Opx, y, εqq, (1.18b)

ε1 �0, (1.18c)

where the third equation is appended for the blow-up method.
The fold point p0, 0, 0q is the nonhyperbolic equilibrium of (1.18) on the critical manifold

S. The blow-up transformation is obtained by quasi-homogeneous blow-up as

x � r̄x̄, y � r̄2ȳ, ε � r̄3ε̄, (1.19)

with r̄ P R and px̄, ȳ, r̄ P S2q, where the dynamics of the degenerate equilibrium of (1.18) are
solved in three charts Kipi � 1, 2, 3q, which are determined by ȳ � 1, ε̄ � 1 and x̄ � 1 in (1.19),
respectively. For the rigorous geometric analysis and proof we refer to Krupa and Szmolyan [42].

1.5 Normal forms

Many reaction-diffusion systems are complicated, e.g., containing multiple variables and with
nonlinearity; it is time-consuming for solutions for those systems. One may try to simplify the
dynamical system by reducing the dimension of a system or transforming into a linear system.
Two well-known techniques for simplifying dynamics are centre manifold theory and normal
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forms. The former provides an approach of reducing the dimension of phase space, while the
normal form method helps simplify the system by changes-of-coordinates. Here, we briefly
introduce the method of normal forms for vector fields; for more details see [31,72].

Considering a system of differential equations

x1 � fpxq, x P Rn (1.20)

where fpxq is a Cr-function with r ¥ 4. For the sake of simplicity, we assume the equilibrium is
the origin, i.e. fp0q � 0. One can rewrite Equation (1.20) by sorting the linear and nonlinear
terms as

x1 � Jx� F pxq, x P Rn (1.21)

where J is the n� n matrix for the linear part, and F pxq represents the nonlinear part.
To begin with, one can expand the Equation (1.21) into a series, which becomes

x1 � Jx� F2pxq � F3pxq � � � � � Fr�1pxq �Op||x||rq, (1.22)

where Fipxq, pi ¥ 2q denotes the i-th order term of the Taylor expansion of F pxq.
One aims to find a change-of-coordinate form as x � hpyq so that

Dhpyqy1 � fphpyqq; (1.23)

here, Dhpyq represents the derivatives of h with respect to y. If (1.23) becomes linear, then
the dynamics has been simplified to the simplest one. Otherwise, one can continue to obtain
a series of coordinate transformations which eliminate the relevant terms in the expansion of
F pxq from low to high order. In a first step, we rewrite the transformation x � hpyq as

x � y � h2pyq, (1.24)

where h2pyq consists of the near-identity transformation of y. After substituting (1.24) into
(1.22), we have

x1 � pI �Dh2pyqqy1 �Jpy � h2pyqq � F2py � h2pyqq
� F3py � h2pyqq � � � � � Fr�1py � h2pyqq �Op||y||rq (1.25)

where I is the n�n identity matrix, and F2py�h2pyqq � F2pyq�Op||y||3q�Op||y||4q; similarly,
the i-th order term is given by

Fipy � h2pyqq � Fipyq �Op||y||i�1q � � � � �Op||y||2iq, (1.26)

which then gives the equation

y1 �pI �Dh2pyqq�1
�
Jy � Jh2pyq � F2pyq �G3pyq � � � � �Gr�1pyq �Op||y||rq

�
(1.27)

where Gjpyqpj ¥ 3q represents the collection of all Op||y||jq terms due to the transformation
(1.24).

For ||y|| is small enough, that

pI �Dh2pyqq�1 � I �Dh2pyq �Op||y||2q (1.28)

Substituting (1.28) into (1.27), we then have

y1 �Jy � Jh2pyq �Dh2pyqJy � F2pyq � G̃3pyq � � � � � G̃r�1pyq �Op||y||rq (1.29)

where G̃j represents the collection of all Op||y||jq terms due to the transformation (1.28).
To eliminate the second-order term Op||y||2q in (1.29), one requires the equality

Jh2pyq �Dh2pyqJy � F2pyq � 0 (1.30)
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where h2pyq of the coordinate transformation (1.23) should satisfy the equality (1.30) so that one
can simplify (1.29) by removing the term F2pyq. Such a procedure motivates us to proceed to
higher order terms. Before moving to next step, we define the space of vector-valued monomials
of degree k as Hk, which has the form

Hk � span
!¹

y
mj
j ej

)
,

ņ

j�1

mj � k (1.31)

where the set teju, pj � 1, ..., nq represents a basis of Rn.
Recall the equality (1.30), which one can view as a linear map LJ of H2 to H2 so that

LJph2pyqq � Dh2pyqJy � Jh2pyq (1.32)

Now the set Hk can be written as

H2 � LJpH2q ` L2 (1.33)

where L2 refers to the complementary space to LJpH2q. Solution of the Equation (1.30) exists
when F2pyq P LJpH2q, i.e., LJpH2q � H2, that all the second-order terms of Op||y||2q can be
removed by the coordinate transformation. Therefore, the new equation contains the linear
part and nonlinear terms with order from 3 in y,

y1 �Jy � G̃3pyq � � � � � G̃r�1pyq �Op||y||rq (1.34)

Similarly, for any hkpyq P Hk, we have

LJphkpyqq � DhkpyqJy � Jhkpyq (1.35)

and

Hk � LJpHkq ` Lk (1.36)

where Lk refers to the complementary space to LJpHkq. The k-th order terms can be all
eliminated iff LJpHkq � Hk. The normal form theorem [72] is given

Theorem 1.2. Let x1 � fpxq be a Cr system of differential equations with fp0q � 0. Then,
there exists a sequence of analytical coordinate changes in the neighbourhood of the origin which
transforms the system into a normal form

y1 � Jy � F r2 pyq � F r3 pyq � � � � � F rr�1pyq �Op||y||rq, (1.37)

where F rk pyq P Lk, 2 ¤ k ¤ r � 1, and Lk is the complementary space to LJpHkq with Hk �
LJpHkq ` Lk.

Remark 1.1. The F rk pyq terms are named as resonant terms which cannot be removed by
near-identity changes-of coordinates, and the integer r indicates the order of resonance ,which
is obtained by

°n
j�1mj , where λi �

°n
j�1mjλj with eigenvalues λj pj � 1, ..., nq of the linear

operator LJp�q, i.e., LJp�q is not invertible with zero eigenvalues. For a detailed analysis and
applications of normal forms, please refer to the book by Wiggins [72] and Guckenheimer and
Holmes [31].

1.6 Poincaré maps

A Poincaré map is a discrete dynamical system which describes the continuous flow of associated
ODEs, the basic idea was first addressed by Poincaré [52]. This technique is usually used for
dynamical systems with periodic behaviour where one is interested in the periodic solution
instead of the entire flow of the system over time. Consider a system with differential equations

x1 � fpxq, x P Rn (1.38)
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where f : U ÞÑ Rn is Cr-function on the open set U � Rn. The solution of (1.38) is given by
φpt, �q. Assume that φpt, �q is periodic with period time T , i.e., for x0 P Rn that φpt� T,x0q �
φpt,x0q is true. One can define a section Σ which is transversal to the vector field of the system
at the point x0 with dimension n� 1. Then the Poincaré map P is given as

P : Σ ÞÑ Σ, x ÞÑ φptpxq, xq (1.39)

where tpxq is the first return time of the point x returning to Σ. If x0 is a fixed point of P ,
i.e., x0 P Σ, P px0q � x0, then the trajectory staring at the point will return to it after time
T , which refers to the periodic solution of the original system. If there is a point x belong to
the set S � tx1,x2, ...,xku such that P kpxq � x and P jpxq P S, pj � 1, 2, ..., k � 1q, which is
known as a period k point of P , the corresponding periodic orbit will pass through Σ for k
times before closing. One example of a periodic problem is shown geometrically in Figure 1.4.
For more examples see Wiggins [72].

Figure 1.4: The Poincaré map for the analysis of periodic orbits.
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Chapter 2

Front propagation in
two-component reaction-diffusion
systems with a cut-off

2.1 Introduction

The study of front propagation in reaction-diffusion systems has received a significant amount
of attention in the past few decades. Frequently, of principal interest is the propagation speed
of front solutions that connect various equilibrium states in these systems. In microscopic
physics, the underlying numbers of particles are integer-valued; hence, the discrete nature of
the underlying models needs to be considered when performing a continuum approximation
via reaction-diffusion systems. In particular, the notion of a concentration of particles will
be invalid in regimes where no particles exist. Such regimes can be modeled by taking some
threshold ε as the concentration when only one particle is present to react. In [9], Brunet and
Derrida introduced the basic idea of a cut-off, by including a so-called cut-off function in the
reaction kinetics of the Fisher-Kolmogorov-Petrowskii-Piscounov(FKPP) equation [1,22]. They
then discussed the effect of such a cut-off on the front propagation speed in FKPP-type systems.
They began with one FKPP-type equation in discrete space and time; the numerically simulated
results indicated that a logarithmic term was subtracted from the minimal speed obtained by
the same equation in the absence of a cut-off. To support this observation, they calculated the
leading correction of the traveling wave speed in the modified FKPP equation with a cut-off
threshold ε. By applying perturbation techniques and, specifically, matched asymptotics, they

found that vε � v0 � π2

pln εq2 ; here, the logarithmic term represents the difference to the critical

propagation speed v0 defined in the system without cut-off as simulation had observed.
In 2007, a rigorous asymptotic analysis for proving the shift in the speed of the FKPP

equation in the presence of a cut-off was given by Dumortier, Popović, and Kaper [15], via
geometric singular perturbation theory [35] and the blow-up technique [14]. They obtained the
same expansion of the speed as in [9] for a variety of cut-off functions. Moreover, they addressed
the geometric reasons of the structure in the leading order of the speed correction. Meanwhile,
Benguria and Depassier [5] obtained similar analytical results with a variational approach in the
same year. Most available studies have concluded that the single velocity of front propagation
in one-component systems will converge to the critical speed of the corresponding system with
no cut-off. However, there has been a lack of research into two-component systems with a cut-
off. The analysis of pattern formation arises in two-component non-equilibrium systems [37].
Front solutions in such systems can propagate with various speeds, which leads to more complex
dynamics. The general two-component reaction-diffusion model with a cut-off considered in the
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present chapter reads

Bu
Bt � �γ1u� v � θpu� aq � B2u

Bx2
, (2.1a)

Bv
Bt � ηpγ2u� vq � αθpu� aq �D

B2v

Bx2
. (2.1b)

where the parameters γ1, γ2, α, the ratio of the time scales η, the ratio of the diffusion coefficients
D and the discontinuity position a are constants; here, θpu � aq is the standard Heaviside
function, with θpu� aq � 1 for u ¥ a and θpu� aq � 0 for u   a. Equation (2.1) contains both
the so-called Rinzel-Keller kinetics [56] and the Tonnelier-Gerstner kinetics [74] as particular
cases:

• For α ¡ 0 and γ2 � 0, we obtain a sigmoidal system with Tonnelier-Gerstner kinet-
ics. The two-component system with Tonnelier-Gerstner reaction kinetics is one example
of the Morris-Lecar model, which is used to illustrate oscillations in the giant muscle
fiber of barnacles [67]. Due to its biophysical meaning and the fact that parameters
are measurable, it has received increasing attention in the computational neuroscience
community [74].

• For α � 0, the resulting equations are of classical FitzHugh-Nagumo (FHN) type, with
piecewise linear inhibition. While the classical FHN system was modified by Zemskov and
Méndez in [75], where they introduced a cut-off function θpu � εq in the reaction terms
with γ1 � 1, α � 0, and D � 1. They derived a relationship for the propagation front
speed c with the cut-off threshold ε and the discontinuity position a.

Here, we define the cut-off function by θpφ� εq, where φ � u or φ � v, and θ again denotes
the Heaviside function. Consider the following two-component system of reaction-diffusion
equations with the cut-off,

Bupx, tq
Bt � fpu, vqθpφ� εq � B2upx, tq

Bx2
, (2.2a)

Bvpx, tq
Bt � gpu, vqθpφ� εq �D

B2vpx, tq
Bx2

(2.2b)

with what is known as (piecewise linear) Tonnelier-Gerstner kinetics [74], whereby fpu, vq �
�u� v � θpu� aq and gpu, vq � �ηv � αθpu� aq, as shown in Figure 2.1. Here, ε is assumed
to be small and positive.
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Figure 2.1: Nullclines of fpu, vq � �u � v � θpu � aq � 0 (solid blue) and gpu, vq � �ηv �
αθpu� aq � 0 (dashed red).

We study propagating front solutions to Equation (2.2); to that end, we introduce the
traveling wave variable ξ � x�ct, with c ¡ 0 denoting the front propagation speed. Substituting
into (2.2), we obtain the pair of second-order ordinary differential equations

u2 � cu1 � fpu, vqθpφ� εq � 0, (2.3a)

Dv2 � cv1 � gpu, vqθpφ� εq � 0, (2.3b)

where the prime denotes differentiation with respect to ξ. Introducing the new variables w � u1

and z � v1 in (2.3), we find the four-dimensional first-order system

u1 � w, (2.4a)

v1 � z, (2.4b)

w1 � �cw � fpu, vqθpφ� εq, (2.4c)

z1 � � c

D
z � 1

D
gpu, vqθpφ� εq, (2.4d)

which will be the starting point for our analysis. In the absence of a cut-off, Equation (2.4) has
the steady states Q� � p0, 0, 0, 0q and Q� � p1 � α

η ,
α
η , 0, 0q, both with the same eigenvalues

λ1,2 � 1
2 p�c �

?
c2 � 4q, λ3,4 � 1

2D p�c �
a
c2 � 4Dηq. The front solution connecting Q�pξ Ñ

�8q to Q�pξ Ñ 8q will generate the discontinuity position a as a function of the front speed
c,

apcq � p1� α

η
q λ1

λ1 � λ2
� α

η

1

pλ1 � λ2qpλ3 � λ4q
�λ3

µ4
pλ2 � λ4q � λ4

µ3
pλ1 � λ3q

�
,

where µj � λ2
j � cλj � 1, pj � 3, 4q; for details see [74].

The study of Equation (2.4) is naturally performed in three regions I, II, and III, which are
defined by

Region I: ta   u   1, φ ¡ εu
Region II: tu   a, φ ¡ εu
Region III: tu   a, 0   φ   εu
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Our analysis of Equation (2.4) is motivated by the study of the FKPP model in [15]; there,
a rigorous geometric analysis was derived for the FKPP equation with a cut-off, where the
blow-up technique was applied to obtain a complete desingularisation of the flow around the
degenerate fixed point. While Equation (2.4) is also a cut-off problem, it is more complicated:
see Equation (2.4), the two-component system has a higher dimension than one one-component
after transformation to travelling wave ODEs; here, we have a 2-dimensional stable and unstable
manifold, which increases the difficulty in constructing the geometry. Therefore, our results
on two-component reaction-diffusion systems with a cut-off improve the understanding of the
cut-off effect on multi-species systems. The present chapter is intended to showcase how a
classical asymptotic analysis of cut-off reaction-diffusion dynamics can be re-interpreted within
the framework of dynamical systems theory; in particular, the structure of the corresponding
heteroclinic orbit in the equivalent blown-up space depends significantly on the speed c and
diffusion ratio D. Our analysis will rely on the blow-up technique in its formulation due
to [14], which was first applied in the study of limit cycles near a cuspidal loop in planar
vector fields [18]. The technique has since been applied in a variety of situations; it allows for
an extension of the classical geometric singular perturbation theory [35] past non-hyperbolic
singularities. Specifically, blow-up has allowed for a resolution of the effects of a cut-off in
reaction-diffusion systems; see [15,16,54,55]. We remark that, in that context, blow-up resolves
the discontinuities in the corresponding vector fields that may be induced by a cut-off.

The main result of our analysis can be summarised as follows

Principal Result 1. Let ε P p0, ε0q, with ε0 positive and sufficiently small, and let φ � v,
η � 0.12 and α � 0.08 be fixed. Then,

i. There exists a family of traveling front solutions of Equation (2.2) propagating between Q�

and Q� with corresponding c-a relation aεpcq with maximum speed cmax � pα � ηεq
b

D
αε

obtained by formal linearisation that region II vanishes, and cmax tends to 8 as εÑ 0.

ii. There also exists a critical value of the speed ccrit represents the intersection of curves of
aεpcq and a0pcq such that aεpcq � a0pcq|c�ccrit � 0.

iii. In panel (a) of Figure 2.2, there exists a saddle-node bifurcation in the c-a relation curve
for D P p1, D�q, the node point labeled by pab, cbq; note, D� � 5.1287 is obtained by
da0pcq{dc � 0. For a   ab, the traveling fronts with speeds c ¡ cb are stable, while
for c   cb, the corresponding fronts are unstable; two branches merge at a � ab, while
for a ¡ ab, no front solutions exist. In particular, the cut-off accelerates the front for
c P tp0, cbq� pccrit, cmaxqu; slows down the front in c P pcb, ccritq.

iv. In panel (b) of Figure 2.2, no bifurcation occurs for D P pD�, 22q, the cut-off accelerates
the front for c P p0, ccritq; slows down the front for c P pccrit, cmaxq.

v. For c fixed, cut-off pushes down the discontinuity position a corresponding to the singular
front solution for c P p0, ccritq, pulls up the position in c P pccrit, cmaxq.
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(a) (b)

Figure 2.2: The illustration of c-a relation: the perturbed solution aεpcq (red) and the singular
solution (thin black). (a) one bifurcation. (b) no bifurcations.

The proof of Principal Result 1 is organized as follows. In Section 2.2, we reproduce some
basic properties of Equation (2.4) in the absence of a cut-off: we restrict the flow to the 2-
dimensional unstable manifold in the “outer” region, see Section 2.2.1; similarly, we restrict
the flow to the 2-dimensional stable manifold in the “inner” region, see Section 2.2.2; then, we
discuss the two feasible types of trapping region around the origin depending on the speed c and
the diffusion ratio D, see Section 2.2.2.1, where for considering D ¥ 1 throughout our analysis,
the orbit is tangent to the weak-stable eigendirection around Q�, which lies in the second
quadrant in the pu, vq-phase space. In Section 2.2.3, we investigate the cut-off affected region of
the u-component and the v-component cut-off systems. Then, we mainly focus on the geometric
analysis of the v-component cut-off system, as the related orbit remains in a neighborhood of
Q�, where the blow-up technique is applied with no restrictions. The dynamics in the three
regions are illustrated in Section 2.3, where we establish the local and global geometric structure
of the singular orbit as well as the perturbed orbits in different ranges of the speeds. For a
detailed derivation, we study the transition in chart K1 via a normal form transformation in
Section 2.4: in Section 2.4.2, we start with the formal linearisation in region II in chart K1,
find the general solution by patching the boundaries and obtain the corresponding c-a relation
aεpcq, which is actually an implicit formulae; we prove the existence of a0pcq and persistence by
the Implicit Function Theorem. In particular, we observe the bifurcation scenarios in the c-a
relation and investigate the corresponding geometry in Section 2.4.3. To improve the accuracy
of our method, we proceed to a second-order normal form transformation in Section 2.4.4.
In Section 2.5, we perform the simulation, comparison and discussion of our results obtained
in the previous sections. We also discuss some results of the u-component cut-off system in
Section 2.6, which are obtained in a similar fashion as for the v-component problem; the details
are attached in Appendix A.3. In Section 2.7, we conclude with a summary of our observations
on the effect of a cut-off.

Remark 2.1. As we only consider front solutions in Equation (2.2), we need to restrict the
parameters α, η and the discontinuity position a in order to ensure that two steady states exist,
which implies the existence of a heteroclinic connection between the two states. We then get
a related range for a, with a P p0, 1 � α

η q; see Figure 2.1. When a ¡ 1 � α
η , there is only one

trivial steady state at the origin, and for a   0, there is a single non-trivial steady state.

15



2.2 Basic properties

We begin by reproducing some basic properties of Equation (2.4) in the absence of a cut-off,
where the governing equations read

u1 � w, (2.5a)

v1 � z, (2.5b)

w1 � �cw � u� v � θpu� aq, (2.5c)

z1 � � c

D
z � η

D
v � α

D
θpu� aq. (2.5d)

We consider travelling front solutions propagating from Q� � p1� α
η ,

α
η , 0, 0q when ξ Ñ �8 to

Q� � p0, 0, 0, 0q when ξ Ñ �8. The general solution to (2.5) can be written in the standard
Ansatz of the form u � Aeλξ and v � Beλξ in the “outer” region and “inner” region, which
are denoted by tu ¡ au andtu   au, respectively. Here, λ denotes one of the four possible
eigenvalues of the corresponding linearisation of (2.5).

The following result is obtained by a straightforward calculation:

Lemma 2.1. The steady states Q� � p0, 0, 0, 0q and Q� � p1� α
η ,

α
η , 0, 0q of Equation (2.5)are

hyperbolic saddle points. Both have eigenvalues λi pi � 1, ..., 4q, with λ1 � 1
2 p�c�

?
c2 � 4q p�q,

λ2 � 1
2 p�c�

?
c2 � 4q p�q, λ3 � 1

2D p�c�
a
c2 � 4Dηq p�q and λ4 � 1

2D p�c�
a
c2 � 4Dηq p�q,

here the eigenvalues λ1 and λ3 are positive, while λ2 and λ4 are negative. The correspond-

ing eigenvectors v1 � �
1, 0, λ1, 0

�T
, v2 � �

1, 0, λ2, 0
�T

, v3 � �
1, µ3, λ3, µ3λ3

�T
and v4 ��

1, µ4, λ4, µ4λ4

�T
, respectively, where µj � λ2

j � cλj � 1, pj � 3, 4q.
The dynamics in the “outer” region tu ¡ au can be restricted to the 2-dimensional unstable

manifold at Q�, where the general solution is expressed in the positive eigenvalues λ1 and
λ3, while the dynamics in the “inner” region tu   au can be restricted to the 2-dimensional
stable manifold at Q� where the general solution is expressed in the negative eigenvalues λ2

and λ4. In other words, the orbit leaving at Q� flows along the unstable eigendirections and
passes through the discontinuity point u � a, then to be attracted to the point Q� via the
2-dimensional stable eigendirections; for details see Appendix A.2 or [74].

2.2.1 Dynamics in the “outer” region

In the “outer” region, where u ¡ a, Equation (2.5) reduces to

u1 � w, (2.6a)

v1 � z, (2.6b)

w1 � �cw � u� v � 1, (2.6c)

z1 � � c

D
z � η

D
v � α

D
, (2.6d)

as θpu� aq � 1 in that region.
Our aim in the present section is to describe the flow of Equation (2.6); to that end, we

will derive an expression for the unstable manifold WupQ�q, where we recall that Q� � p1 �
α
η ,

α
η , 0, 0q denotes the unique steady state of (2.6). Then, we will restrict Equation (2.6) to

that manifold, as any traveling front solution to the corresponding system of reaction-diffusion
equations defined in (2.2) must leave a neighborhood of Q� along WupQ�q. We have the
following result:

Proposition 2.1. The unstable manifold WupQ�q can be written as a graph over pu, vq, with

wpu, vq � λ1

�
u� 1� α

η

	
� λ3 � λ1

µ3

�
v � α

η

	
and (2.7a)

zpu, vq � λ3

�
v � α

η

	
; (2.7b)
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here, λ1 � 1
2 p�c�

?
c2 � 4q and λ3 � 1

2D p�c�
a
c2 � 4Dηq denote the positive eigenvalues of

Equation (2.6) at Q�. The restriction of the flow of (2.6) to WupQ�q reads

upξq � A2eλ1ξ � A1

µ3
eλ3ξ � 1� α

η
, (2.8a)

vpξq � A1eλ3ξ � α

η
, (2.8b)

with µ3 � λ2
3 � cλ3 � 1, where A1   0 and A2 are coefficients that are as yet undetermined.

Proof. For the sake of simplicity, we first shift the steady state at Q� to the origin: introducing
the new variables û and v̂ via u � 1 � α

η � û and v � α
η � v̂, respectively, and rewriting (2.6)

accordingly, we find

û1 � w, (2.9a)

v̂1 � z, (2.9b)

w1 � �cw � û� v̂, (2.9c)

z1 � � c

D
z � η

D
v̂. (2.9d)

The eigenvalues and eigenvectors of (the linear system in) Equation (2.9) are given by λi and
v1 pi � 1, ..., 4q, respectively, in Lemma 2.1.

The unstable manifold xWup0q is most easily determined by diagonalising Equation (2.9):
defining the change-of-variable matrix P � rv1|v2|v3|v4s, we write u � Px, where u �
pû, v̂, w, zqT and x � px1, x2, x3, x4qT . One easily sees that, in terms of the new variable x,
Equation (2.9) becomes x1 � diagpλ1, λ2, λ3, λ4qx. Since, clearly, λ1 and λ3 are positive, while
λ2 and λ4 are negative, the manifold Wup0q is expressed as tx2 � 0 � x4u in x-space which,
together with u � Px, implies

û � x1 � x3,

v̂ � µ3x3,

w � λ1x1 � λ3x3,

z � µ3λ3x3.

Solving the above relations for wpû, v̂q and zpû, v̂q and reverting to the original variables u and
v, we find Equation (2.7), as claimed.

Next, we substitute Equation (2.7) into (2.6), which allows us to describe the flow on
WupQ�q in terms of pu, vq only:

u1 � λ1

�
u� 1� α

η

	
� λ3 � λ1

µ3

�
v � α

η

	
,

v1 � λ3

�
v � α

η

	
.

Solving, we obtain the general solution for the flow of (2.6) on WupQ�q, as stated in Equa-
tion (2.8).

2.2.2 Dynamics in the “inner” region

In the “inner” region, where u   a, Equation (2.5) reduces to

u1 � w, (2.10a)

v1 � z, (2.10b)

w1 � �cw � u� v, (2.10c)

z1 � � c

D
z � η

D
v, (2.10d)
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as θpu� aq � 0 in that region; where we recall that Q� � p0, 0, 0, 0q denotes the unique steady
state of (2.10). We have the following results:

Proposition 2.2. The stable manifold WspQ�q can be written as a graph over pu, vq, with

wpu, vq � λ2u� λ4 � λ2

µ4
v and (2.11a)

zpu, vq � λ4v; (2.11b)

here, λ2 � 1
2 p�c�

?
c2 � 4q and λ4 � 1

2D p�c�
a
c2 � 4Dηq denote the negative eigenvalues of

Equation (2.6) at Q�. The restriction of the flow of (2.6) to WspQ�q reads

upξq � B2eλ2ξ � B1

µ4
eλ4ξ, (2.12a)

vpξq � B1eλ4ξ, (2.12b)

with µ4 � λ2
4 � cλ4 � 1, where B1 ¡ 0 and B2 are coefficients that are as yet undetermined.

Proof. The derivation of Equation (2.11) is analogous to that of Equation (2.7), the details
are hence omitted. Substituting Equation (2.11) into (2.10), we obtain the flow on WspQ�q in
terms of pu, vq only:

u1 � λ2u� λ4 � λ2

µ4
v, (2.13a)

v1 � λ4v. (2.13b)

Solving, we find the general solution for the flow of (2.10) on WspQ�q, as stated in Equa-
tion (2.12).

2.2.2.1 Orbits behavior

The existence of orbits connecting Q� and Q� is guaranteed by patching method, cf. Appendix
A.2 or [74]. Here, we discuss the qualitative orbits near the origin. To that end, we construct
a trapping region of (2.13) in the “inner” region, and show that the completed orbit starting
at Q� along the unstable manifold WupQ�q must enter it and approach Q� inside it. Here,
we keep the notation of steady states Q� with Q� � p0, 0q in the pu, vq-phase plane, which
is a stable node as defined in Equation (2.13). The boundaries of the trapping region consist
of one of the stable eigendirections and one of the nullclines; there exists two structures of
trapping region as the corresponding strong/weak eigendirections may switch roles in terms of
the speed c and diffusion ratio D. To distinguish the strong/weak eigendirections, we obtain the
critical curve in pc,Dq with the criteria: λ2 � λ4, where the two stable eigendirections merge
together into a single direction, which is equivalent to µ4 � 0, i.e., c � D�η

p1�Dqp1�ηq ; see Figure

2.3. Resonance takes place along the curve; in particular, for D ¥ 1, there is no resonance.
Moreover, our construction of the trapping region helps to check if u will become negative.
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Figure 2.3: The critical curve in pc,Dq: λ2 � λ4 (blue), i.e., µ4 � 0
�
c � D�η

p1�Dqp1�ηq
�
.

We have the following results:

i. Trapping region T1: λ2   λ4 and µ4   0. The upper boundary is given by the nullcline of
u1 � 0, i.e., the line λ2u�λ4�λ2

µ4
v � 0, where v1   0 for v P p0, αη q implies that the vector field

points downward into the trapping region. The lower boundary is the line corresponding
to the weak-stable eigendirection with eigenvalue λ4, i.e., the line µ4u � v � 0. As the
derivative of the line is given by pµ4u� vq1 � λ2pµ4u� vq, the vector field points outwards
perpendicularly to the line, which is pointing into the trapping region for v P p0, αη q. Hence,

orbits flowing along the 2-dimensional WupQ�q at u � a must enter the trapping region
T1 on WspQ�q and approach Q� in weak-stable eigendirection, see Figure 2.6.

-0.5 0 0.5
-0.2

0

0.2

0.4

0.6

Figure 2.4: Trapping region T1: λ2   λ4 and µ4   0. The upper boundary: the nullcline of
u1 � 0 (red); the lower boundary: the weak-stable eigendirection (blue).

ii. Trapping region T2: λ2 ¡ λ4 and µ4 ¡ 0. The upper boundary is the line corresponding
to the strong-stable eigendirection with eigenvalue λ4, i.e., the line µ4u � v � 0. As the
derivative of the line is given by pµ4u� vq1 � λ2pµ4u� vq, the vector field points outwards
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perpendicularly to the line, which is pointing into the trapping region for v P p0, αη q. The

lower boundary is given by the nullcline of v1 � 0, i.e., the line v � 0, where u1   0 for
u P p0, 1q implies that the vector field points leftward into the trapping region; noting that
v � 0 also represents the weak-stable eigendirection with eigenvalue λ2. Hence, orbits
flowing along the 2-dimensional WupQ�q at u � a must enter the trapping region T2 on
WspQ�q and approach Q� in weak-stable eigendirection.
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-0.2

0

0.2

0.4

0.6

Figure 2.5: Trapping region T2: λ2 ¡ λ4 and µ4 ¡ 0. The upper boundary: the strong-
stable eigendirection (blue), ; the lower boundary: the nullcline of v1 � 0 (the weak-stable
eigendirection) (black).

In this chapter, we consider the case that D ¥ 1, which leads to λ2   λ4 and µ4   0 for
all speeds c, where the trapping region is same as shown in Figure 2.4 for c P p0,8q. Then we
have

Lemma 2.2. Orbits are connected at u � a between the “outer ” region and “inner” region; they
leave the state Q� and flow along the 2-dimensional unstable manifold WupQ�q to approach
the state Q� along the 2-dimensional stable manifold WspQ�q. The segment of orbits in a
neighborhood of Q� is tangent to the weak-stable direction with eigenvalue λ4 for all c ¡ 0 with
D ¥ 1, where the corresponding values of the u-variable are negative.

2.2.3 Preliminaries

By Lemma 2.2, the 2-dimensional stable manifoldWspQ�q of Equation (2.13) is trapped in the
second quadrant in pu, vq-phase space, where the value of the u-component is negative. There
are two feasible choices of cut-off component: the u-component or the v-component. By setting
ε small, e.g., ε � 0.05, we can see the affected region of a cut-off on the orbits of (2.5) in Figure
2.6, which are numerically computed by general patching solution see Appendix A.2 with speed
c � 0.1, 0.5, 1, 1.5, and 2, .
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Figure 2.6: The orbits of (2.5) in pu, vq-phase space by general patching (see Appendix A.2)
with speed c � 0.1, 0.5, 1, 1.5, 2 from top to bottom; the affected region of cut-off with ε � 0.05:
(a)u-component, (b)v-component.

Panel (a) in Figure 2.6 displays the affected region of the u-component cut-off, i.e., φ � u.
For ε small, e.g. ε � 0.05, the values of the u-variable are of the order of ε, while the values
of the v-variable vary with the speed c; for instance, when the speed c � 0.1 and c � 0.5, the
corresponding values of the v-variable are much greater than 0.1, which is definitely greater
than ε. In the limit as ε Ñ 0, the values of the v-variable are not as small as the u-variable,
which suggests a failure in the application of the blow-up technique, as we are going to blow up
in the neighborhood of the origin pQ�q. In order to approach this u-component cut-off system
via geometric desingularisation, we need to make an extra condition such that the values of the
pu, vq-variables are both small and inside the blown-up space; for details see Section 2.6.

Panel (b) in Figure 2.6 displays the affected region of the v-component cut-off, i.e., φ � v.
For ε small, e.g. ε � 0.05, the values of the v-variable are of the order of ε, while the values of the
u-variable are negative, in particular, for the values of c P p0.1, 2q, the corresponding absolute
values of the u-variable seems as small as the v-variable. In the limit as ε Ñ 0, the point at
the cut-off approaches Q�, which suggests no extra restriction in the application of the blow-
up technique, as the values of the pu, vq-variables remain in a neighborhood of Q�. Hence, we
mainly focus on the v-component cut-off system to showcase how a classical asymptotic analysis
of cut-off reaction-diffusion dynamics can be re-interpreted within the framework of dynamical
systems theory; for details see the following sections.

2.3 Geometric analysis of the v-component cut-off system

In this section, we desingularise the dynamics in a neighborhood of the origin of Equation (2.4)
with φ � v. To that end, we append the trivial equation ε1 � 0 in (2.4);

u1 � w, (2.14a)

v1 � z, (2.14b)

w1 � �cw � fpu, vqθpv � εq, (2.14c)

z1 � � c

D
z � 1

D
gpu, vqθpv � εq, (2.14d)

ε1 � 0. (2.14e)

The steady states of (2.14), which are denoted by Q�
ε and Q�

ε , respectively, are found at
p0, 0, 0, 0, εq and p1 � α

η ,
α
η , 0, 0, εq where ε is fixed and ε P r0, ε0s with ε0 suitably small; we

also define the corresponding lines of steady states: `� �  p0, 0, 0, 0, εq �� ε P r0, ε0s
(

and `� � p1 � α
η ,

α
η , 0, 0, εq

�� ε P r0, ε0s
(
. The traveling front solution of (2.14) that connects Q�

ε to Q�
ε

corresponds to the connection between Q� and Q� in Equation (2.4). In particular, the point
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Q�
ε on `� corresponding to Q� of Equation (2.4) is non-hyperbolic, as a double zero eigenvalue

occurs due to the cut-off term θpv � εq. Hence, we apply the blow-up technique, which can
resolve the degeneracy at the point Q�

ε and regularize the dynamics in its neighborhood, where
we can use standard dynamical system theory. We will construct a singular heteroclinic orbit
Γ connecting Q�

0 and Q�
0 in (2.14). Then, we will motivate the persistence of that orbit for ε

positive and small. As mentioned before, the phase space of (2.14) is divided into three regions,
I, II, and III, where the transition between regions I and III corresponds to the intermediate
region II.

Therefore, the dynamics of the v-component cut-off system is best studied in an equivalent
formulation of Equation (2.14) that results from a blow-up transformation of the corresponding
vector field near the origin in pu, v, w, z, εq-space. In a first step, we define the homogeneous
blow-up transformation

u � r̄ū, v � r̄v̄, w � r̄w̄, z � r̄z̄, and ε � r̄ε̄. (2.15)

We will require two coordinate charts K1 and K2 here, which are obtained for v̄ � 1 and ε̄ � 1,
respectively; hence, (2.15) yields

u � r1u1, v � r1, w � r1w1, z � r1z1, and ε � r1ε1 (2.16)

and

u � r2u2, v � r2v2, w � r2w2, z � r2z2, and ε � r2, (2.17)

respectively, for the coordinates in these charts. The change-of-coordinates transformation K12

between charts K1 and K2 is given by

K12 : pu1, r1, w1, z1, ε1q ÞÑ
�u2

v2
, r2v2,

w2

v2
,
w2

v2
,
z2

v2
,

1

v2

	
, (2.18)

whereas its inverse K21 � K�1
12 reads

K21 : pu2, v2, w2, z2, r2q ÞÑ
�u1

ε1
,

1

ε1
,
w1

ε1
,
z1

ε1
, r1ε1

	
. (2.19)

We define several sections for the flow of Equation (2.14) – or, rather, of the corresponding
blown-up systems in charts K1 and K2:

Σin
1 :�

!
pa
ρ
, ρ, w1, z1, ε1q

��� w1 P rw�, w�s, z1 P rz�, z�s, and ε1 P r0, 1s
)
, (2.20a)

Σout
1 :�

!
pu1, r1, w1, z1, 1q

���u1 P ru�, u�s, r1 P r0, v�s, w1 P rw�, w�s, and z1 P rz�, z�s
)
,

(2.20b)

Σin
2 :�

!
pu2, 1, w2, z2, r2q

���u2 P ru�, u�s, w2 P rw�, w�s, z2 P rz�, z�s, and r2 P r0, ε0s
)
.

(2.20c)

Here, ρ, u�, u�, v�, v�, w�, w�, z�, and z� are suitably chosen constants; we remark that, by
(2.19), the range for pu2, w2, z2q may be chosen identical to that for pu1, w1, z1q, as ε1 � 1 in
Σin

2 � K12pΣout
1 q. Moreover, the sections Σin

1 and Σout
1 clearly correspond to the respective

boundaries between regions I and II and between regions II and III, when expressed in chart
K1; recall Section 2.1.

Remark 2.2. For any object � given in the original pu, v, w, z, εq-variables, we denote the
corresponding blown-up object by �. Moreover, in chart Ki pi � 1, 2q, that object will be
denoted by �i.

Remark 2.3. The blow-up transformation defined in (2.15) is homogeneous in r̄. In general,
one may make a quasi-homogeneous Ansatz of the form u � r̄α1 ū, v � r̄α2 v̄, w � r̄α3w̄,
z � r̄α4 z̄, and ε � r̄α5 ε̄, where αi pi � 1, . . . , 5q are positive integers; see e.g. [14]. The
integers αi are determined by finding a distinguished limit in the resulting rescaling chart, i.e.,
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by balancing powers of r̄ there. An alternative, more systematic approach is produced by the
method of Newton Polygons [10]. Here, a homogeneous blow-up, with αi � 1 throughout, is
naturally suggested by the observation that the reaction kinetics in Equation (2.4) is piecewise
linear.

2.3.1 Dynamics in region I

In region I, where a   u   1 and v ¡ ε, the Equation (2.14) reduces to

u1 � w, (2.21a)

v1 � z, (2.21b)

w1 � �cw � u� v � 1, (2.21c)

z1 � � c

D
z � η

D
v � α

D
, (2.21d)

ε1 � 0, (2.21e)

as θpv � εq � 1 � θpu� aq in that region. Clearly, the dynamics in region I corresponds to the
dynamics in the “outer” region of (2.5). Hence, the geometric analysis in this region proceeds
as in Section 2.2.1.

Now, we introduce several notations for the sake of consistency and brevity. We define
the section Σ�, which represents the hyperplane tu � au in pu, v, w, z, εq-space. The point
of intersection of WupQ�

ε q with Σ�, we label by Pε. By Proposition 2.1 in Section 2.2.1, we
express the point Pε as follows:

Pε �
�
A2 � A1

µ3
� 1� α

η
, A1 � α

η
, λ1A2 � λ3

µ3
A1, λ3A1, ε

	
, (2.22)

for ε fixed and small.
In the limit as ε Ñ 0, the restricted flow in region I leaves from the non-trivial steady

state Q�
0 along the 2-dimensional WupQ�

0 q and terminates at P0 �
�
A2 � A1

µ3
� 1 � α

η , A1 �
α
η , λ1A2 � λ3

µ3
A1, λ3A1, 0

�
in the section Σ� , which is precisely the first portion of the singular

heteroclinic orbit Γ of Equation (2.14). We label this segment ofWupQ�
0 q by Γu. In particular,

the section Σ� corresponds to the section Σin
1 in chart K1 via the blow-up transformation in

(2.16). Meanwhile, from the definition of region I, we have upξq � a in Equation (2.8) in the
section Σ�; here, we take the corresponding ‘time’ ξ � 0 for the sake of simplicity. Then, we
obtain a constraint throughout the rest of chapter:

a � A2 � A1

µ3
� 1� α

η
. (2.23)

where A1 and A2 are coefficients that are as yet undetermined.

Remark 2.4. In the framework of Equation (2.6) in Section 2.2.1, we clearly find that the
2-dimensional unstable manifold WupQ�

ε q of the point Q�
ε at ε � 0 in region I is precisely

the unstable manifold WupQ�q of Equation (2.6). Thence, we write WupQ�q as WupQ�
0 q in

the following. And correspondingly, the unstable manifold Wup`�q of the line `� �  p1 �
α
η ,

α
η , 0, 0, εq

�� ε P r0, ε0s
(
, is defined as a foliation in ε with fibers WupQ�

ε q.

23



2.3.2 Dynamics in region III

In region III, θpv � εq � 0; hence, via the blow-up transformation in (2.17), Equation (2.14)
reduces to

u12 � w2, (2.24a)

v12 � z2, (2.24b)

w1
2 � �cw2, (2.24c)

z12 � � c

D
z2, (2.24d)

r12 � 0. (2.24e)

The steady states of (2.24) are the points on the pu2, v2, r2q-sphere; however, only the points
on the line `�2 �  p0, 0, 0, 0, r2q

�� r2 P r0, ε0s
(

are relevant here, which corresponds to `� after
transforming to the original pu, v, w, z, εq-variables. We denote the points on `�2 by Q�

ε2 for ε
fixed. Equation (2.24) may be solved exactly: rewriting the above equations with v2 as the
independent variable and keeping in mind that pu2, w2, z2qpv2q

��
v2�0

� p0, 0, 0q, we find the

family of orbits Γε2, which correspond to the 2-dimensional stable manifold Ws
2pQ�

ε2q,

Γε2 :
�
u2, w2, z2

�pv2q �
�
A3v

D
2 ,�cA3v

D
2 ,�

c

D
v2

	
, (2.25)

where A3 is a coefficient that will need to be determined by matching the boundaries of the
orbit in region II. For future reference, we emphasize that, since v2 must be non-negative and
decreasing, the constant A3 will be negative. The point of intersection of Γε2 with the section
Σin

2 in (2.20), which is labeled P in
ε2, is determined by taking v2 � 1 in Equation (2.25), whence

P in
ε2 :�

�
uin

2 , v
in
2 , w

in
2 , z

in
2 , r

in
2

	
�

�
A3, 1,�cA3,� c

D
, ε
	
, (2.26)

where ε is small.

Remark 2.5. The family of orbits Γε2 is parametrised by r2p� εq, as c and A3 are both
r2-dependent.

As for the singular orbit Γ2 corresponding to the 2-dimensional stable manifold WspQ�
02q

in the original pu, v, w, z, εq-variables, which is approximated by the weak-stable eigendirection
for ε sufficiently small, we obtain

Γ2 :
�
u2, w2, z2

�pv2q �
� 1

µ4
v2,

λ4

µ4
v2, λ4v2

	
. (2.27)

with P in
02 :�

�
1
µ4
, 1, λ4

µ4
, λ4, 0

	
, by taking v2 � 1.

Remark 2.6. The expression for Γ2 is obtained from the weak-stable eigenvector v4 ��
1, µ4, λ4, µ4λ4

�T
of Equation (2.10) at the origin, cf. Appendix A.2.

The geometry in chart K2 in pz2, r2, v2q-space is illustrated in Figure 2.7. The projection
of Γ2 in the pv2, z2q-plane is the line z2 � λ4v2 with slope λ4, which is at least as steep as
the projection of z2 � � c

Dv2 of Γε2 with slope � c
D , due to |λ4| ¡ | cD |, where λ4 � 1

2D p�c �a
c2 � 4Dηq by Lemma 2.1.
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(a)

0

1

0.010 -0.2 -0.4 -0.6 -0.8

(b)

Figure 2.7: The geometry of pz2, r2, v2q-space in chart K2: singular orbit Γ2 (blue), perturbed
orbit Γε2 (red). (a) Qualitative sketch, (b) Numerical simulation for D � 2, c � 1.5, ε � 0.01.

Regarding the geometry of pu2, w2, r2q-space in chart K2, there exist three distinct scenarios
due to varying levels of the speed c; here, we denote these levels by low speed, intermediate speed
and high speed, respectively. Here, the projection of orbit Γ2 in the pu2, w2q-plane is the line
w2 � λ4u2 with slope λ4, while the projection of the perturbed line Γε2 is πpΓε2q : w2 � �cu2

with slope �c.

i. Low speed: |�c|   |λ4|, i.e., c P p0,aηpD � 1qq by the definition. The basic local geometry
is shown in panel (a) in Figure 2.8; in particular, c is small enough to ensure uin

2   0 in
this scenario.

(a)

0.01

-0.9
-0.6

-0.3
0

0.1

0

(b)

Figure 2.8: The geometry of pu2, w2, r2q-space: singular orbit Γ2 (blue), perturbed orbit Γε2
(red). (a) Qualitative sketch with speed c P p0,aηpD � 1qq. (b) Numerical simulation for
D � 2, c � 0.2, and ε � 0.01.
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ii. Intermediate speed: | � c| ¡ |λ4| and uin
2   0, i.e., c P paηpD � 1q, cinq. Here, cin is

determined from uin
2 pcinq � 0, where uin

2 is defined in (2.26) for ε small. The basic local
geometry is shown in panel (a) Figure 2.9.

(a)

0.01

-0.0060.01
-0.003

0

0

(b)

Figure 2.9: The geometry of pu2, w2, r2q-space: singular orbit Γ2 (blue), perturbed orbit Γε2
(red). (a) Qualitative sketch with speed c P paηpD � 1q, cinq. (b) Numerical simulation for
D � 2, c � 1.5, and ε � 0.01.

iii. High speed: |�c| ¡ |λ4| and uin
2 ¡ 0, i.e., c P pcin, cmaxq. Here, cmax denotes the maximum

of the valid front propagation speed for ε fixed and small; in particular, the speed c is
unbounded in the singular case. For details, see Section 2.5. The basic local geometry is
shown in panel (a) in Figure 2.10.

(a)

0.01

-11 -0.5 0 0.5
0

-1

0

(b)

Figure 2.10: The geometry of pu2, w2, r2q-space: singular orbit Γ2 (blue), perturbed orbit Γε2
(red). (a) Qualitative sketch with speed c P pcin, cmaxq. (b) Numerical simulation for D � 2,
c � 2, ε � 0.01.
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2.3.3 Dynamics in region II

The dynamics in region II is naturally described in chart K1: substituting (2.16) into (2.14)
and noting that θpu� aq � 0, we find

u11 � w1 � u1z1, (2.28a)

r11 � r1z1, (2.28b)

w1
1 � �cw1 � p1� u1qθp1� ε1q � w1z1, (2.28c)

z11 � � c

D
z1 � η

D
θp1� ε1q � z2

1 , (2.28d)

ε11 � �ε1z1. (2.28e)

As we will only consider Equation (2.28) for ε1 P r0, 1s, cf. the definition of the section Σout
1

in (2.20), we may take θp1 � ε1q � 1 in the above equations. The steady states of (2.28) are
located at P�

1 � p 1
µ3
, 0, λ3

µ3
, λ3, 0q and P�

1 � p 1
µ4
, 0, λ4

µ4
, λ4, 0q. Here, r1p� vq is monotonically

decreasing in the original pu, v, w, z, εq-space, which implies that z1   0; recall the eigenvalues
λ3, λ4, which are positive and negative, respectively, with µ3, µ4   0. Hence, P�

1 is relevant in
our analysis as the value of the z1-coordinate is λ4p  0q. The following result is obtained via a
straightforward linearisation argument:

Lemma 2.3. The steady states P�
1 of Equation (2.28) are hyperbolic saddle points, with

eigenvalues λ2 � λ3p�q, λ3p�q, λ1 � λ3p�q, λ4p�q and �λ3p�q for P�
1 , and eigenvalues

λ1 � λ4p�q, λ4p�q, λ2 � λ4p�q, λ3 � λ4p�q and �λ4p�q for P�
1 . Both have the same

eigenvectors vipi � 1, ..., 5q, which are given by v1 � p�λ2, 0, 1, 0, 0qT , v2 � p0, 1, 0, 0, 0qT ,

v3 � p�λ1, 0, 1, 0, 0qT , v4 � p cp1�DqDµ3µ4
, 0, η�D

Dµ3µ4
, 1, 0qT and v5 � p0, 0, 0, 0, 1qT , respectively.

The singular limit of ε � 0 in (2.4) yields two limiting systems of equations, which are
obtained by setting r1 � 0 and ε1 � 0, respectively, in Equation (2.28):

u11 � w1 � u1z1,

w1
1 � �c0w1 � p1� u1q � w1z1,

z11 � �c0
D
z1 � η

D
� z2

1 ,

ε11 � �ε1z1

and

r11 � r1z1,

u11 � w1 � u1z1,

w1
1 � �c0w1 � p1� u1q � w1z1,

z11 � �c0
D
z1 � η

D
� z2

1 ;

here, c0 � cpεq��
ε�0

.

In the invariant plane tε1 � 0u, we define the orbit Γ�
1 , which is passing through P in

01, and
is attracted to P�

1 . We note here, that Γ�
1 corresponds to the 2-dimensional stable manifold

WspQ�
0 q after transformation to chart K1. To that end, we focus on orbits entering at P0 in

the section Σ�, where the 2-dimensional unstable manifold WupQ�
0 q in region I ends. We have

the following representation of P in
01:

P in
01 :�

�
uin

1 , r
in
1 , w

in
1 , z

in
1 , 0

	
�

�
A2 � A1

µ3
� 1� α

η

A1 � α
η

, A1 � α

η
,
λ1A2 � λ3

µ3
A1

A1 � α
η

,
λ3A1

A1 � α
η

, 0

�
(2.29)

where zin
1   0 as r1 should be decreasing. Recalling the eigenvectors vi pi � 1, ..., 5q defined in

Lemma 2.3, v2 and v3 correspond to the negative eigenvalues λ4 and λ2 � λ4, respectively; we
easily find that zin

1 � λ4, which is exactly the z1-coordinate value of P�
1 , i.e. z11 � 0. Then we
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obtain one constraint on Γ�
1 as

λ3A1

A1 � α
η

� λ4, (2.30)

which implies A1 � α
η

λ4

λ3�λ4
.

Moreover, the puin
1 , w

in
1 q-coordinates of P in

01 should stay on the stable manifold WspP�
1 qof

P�
1 , i.e., on the projection of the stable eigendirection v3 onto the pu1, w1q-plane with direction

vector p�λ1, 1qT ; here, the projection of the stable manifold WspP�
1 q is represented by the line

u1 � 1
µ4
� λ1pw1 � λ4

µ4
q � 0. Hence, the puin

1 , w
in
1 q-coordinates should satisfy this line equation.

Then, we obtain another constraint on Γ�
1 as

A2 � A1

µ3
� 1� α

η

A1 � α
η

� 1

µ4
� �λ1

�
λ1A2 � λ3

µ3
A1

A1 � α
η

� λ4

µ4

�
(2.31)

which implies A2 � λ2

λ1�λ2
p1� α

η q � α
η

λ2

pλ1�λ2qpλ3�λ4q
�
λ3

µ4
p1� λ1λ4q � λ4

µ3
p1� λ1λ3q

�
.

Combining the above expressions for A1 and A2, substituting into a � A2 � A1

µ3
� 1� α

η in

(2.23), we finally obtain the sought-after relation between c and a

a0pc0q �
�

1� α

η

	 λ1

λ1 � λ2
� α

η

1

pλ1 � λ2qpλ3 � λ4q

�
λ3

µ4
pλ2 � λ4q � λ4

µ3
pλ1 � λ3q

�
(2.32)

and the representation of Γ�
1

Γ�
1 :��u1, r1, w1, z1

�pξq
�
��
uin

1 � 1

µ4

�
epλ2�λ4qξ � 1

µ4
, rin

1 eλ4ξ,
�
win

1 � λ4

µ4

�
epλ2�λ4qξ � λ4

µ4
, λ4

	
(2.33)

where puin
1 , r

in
1 , w

in
1 q are as defined in (2.29).

Similarly, in the invariant plane tr1 � 0u, the orbit passing through P out
01 � p 1

µ4
, 0, λ4

µ4
, λ4, 1q,

which is labeled Γ�
1 , is attracted to P�

1 in backward “time”, for ξ Ñ �8:

Γ�
1 :� �

u1, w1, z1, ε1

�pξq � � 1

µ4
,
λ4

µ4
, λ4, e�λ4ξ

	
(2.34)

Remark 2.7. The points P in
01 and P out

01 correspond to the points P0 �
�
A2 � A1

µ3
� 1� α

η , A1 �
α
η , λ1A2 � λ3

µ3
A1, λ3A1, 0

�
in (2.22) and P in

02 � �
1
µ4
, 1, λ4

µ4
, λ4, 0

�
, under the transformation in

(2.16) and K12 in (2.18), respectively.

Thus, The orbit Γ1 in chart K1 consists of the union of Γ�
1 and Γ�

1 . The local geometry in
chart K1 in pz1, ε1, r1q-space is illustrated in panel (a) in Figure 2.11; numerical simulation for
D � 2, c � 1.5, and ε � 0.01, see panel (b).
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(a)

00
-0.5

0.05

1-1

(b)

Figure 2.11: The geometry of pz1, ε1, r1q-space: singular orbit Γ1 (blue), perturbed orbit Γε1
(red); (a) Qualitative sketch. (b) Numerical simulation for D � 2, c � 1.5, ε � 0.01.

The local geometry in chart K1 in pu1, w1, ε1q-space is illustrated in panel (a) in Figure
2.12. Note that, as there are three distinct geometric scenarios in chart K2, cf. Section 2.3.2,
we should have three corresponding local geometries in chart K1 as well; however, for the sake
of simplicity, we only show the qualitative sketch of the intermediate speed here; numerical
simulation for D � 2, c � 1.5, and ε � 0.01, see panel (b).

(a)

-110 0 1 2

1

0

-10
0

(b)

Figure 2.12: The geometry of pu1, w1, ε1q-space: singular orbit Γ1 (blue), perturbed orbit Γε1
(red); (a) Qualitative sketch. (b) Numerical simulation for D � 2, c � 1.5, ε � 0.01.

Remark 2.8. We note that Equation (2.28) is derived from the linear system in (2.14) in
region II, which can be solved explicitly in terms of the independent variable ξ; for details
see Appendix A.1.1, where an explicit solution is given in Equation (A.3). Transforming that
solution to chart K1, via the transformation in (2.16), we obtain r1 � vg2pξq, u1 � ug2pξq{vg2pξq,
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w1 � wg2pξq{vg2pξq, z1 � zg2pξq{vg2pξq.

2.3.4 Global geometry in blow-up space

To summarize, the singular heteroclinic orbit Γ connecting the equilibria Q�
0 and Q�

0 is defined
as the union of the orbits obtained in the above sections, Γ̄u, Γ̄� and Γ̄� as well as of the
singularities at the points P̄�

1 and P̄ in
0 . The global geometry in blown-up coordinates in pz̄, ε̄, v̄q-

space is illustrated in Figure 2.13, where the scenario is independent of the value of speed; for
details see Section 2.3.2.

Figure 2.13: The geometry of pz̄, ε̄, v̄q in blow-up space. Qualitative sketch: singular orbit
(blue), perturbed orbit (red).

The geometry in pū, w̄, ε̄q-space varies with different speeds: the singular orbit Γ̄�
1 seems

to cut through the blown-up sphere due to the choice of coordinates in pū, w̄, ε̄q-space, and
is attracted by P̄�

1 , before approaching Q̄�
0 on Γ̄�

1 ; in particular, the perturbed orbits persist
on each side of the singular orbit Γ corresponding to the low speed c P p0,aηpD � 1qq and

intermediate speed c P paηpD � 1q, cinq, respectively, see Figure 2.14 and Figure 2.15; however,
for high speeds c P pcin, cmaxq in Figure 2.16, the perturbed orbit is not shown to be cutting
through the blown-up sphere, as uin

2 ¡ 0 is defined in chart K2; for details see chart K2 in
Section 2.3.2. We will also discuss how speeds change the orbit in the original pu, vq-phase
space in Section 2.5.4.
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Figure 2.14: The geometry of pū, w̄, ε̄q in blow-up space with low speed c P p0,aηpD � 1qq.
Qualitative sketch: singular orbit (blue), perturbed orbit (red).

Figure 2.15: The geometry of pū, w̄, ε̄q in blow-up space with intermediate speed c P
paηpD � 1q, cinq. Qualitative sketch: singular orbit (blue), perturbed orbit (red).
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Figure 2.16: The geometry of pū, w̄, ε̄q in blow-up space with high speed c P pcin, cmaxq. Quali-
tative sketch: singular orbit (blue), perturbed orbit (red).

2.4 Existence and asymptotics of aεpcq

In this section, we motivate the persistence of the singular heteroclinic orbit Γ, which is con-
structed in the previous section, for ε positive and sufficiently small. To that end, we combine
the dynamics in the three regions obtained in Section 2.3.2.

In region I, the orbit Γu corresponds to the unstable manifoldWupQ�
0 q of the point Q�

0 will
persist as the unstable manifold WupQ�

ε q of Q�
ε . The manifold Wup`�q of the line `� is then

defined as a foliation in ε P r0, ε0s, with fibers WupQ�
ε q.

Similarly, in region III, the orbit Γ2 corresponds to the stable manifold Ws
2pQ�

02q of Q�
02 will

perturb smoothly for r2 ¡ 0 small and u2 ¤ 1, to the manifoldWs
2pQ�

ε2q of Q�
ε2. And the stable

manifold Wsp`�2 q of the line `�2 is then given by
�
εPr0,ε0sW

spQ�
ε2q. Next, we need to show the

existence of Γ1, which connects Γu and Γ2 in the region II, where we use the patching method
at the corresponding boundaries. The argument will be carried out entirely in region II, i.e., in
chart K1. To that end, we firstly recall the definition of the two sections Σin

1 and Σout
1 for the

flow of (2.28) defined in (2.20) and we label the corresponding patching points by P in
ε1 and P out

ε1 ,
respectively. In particular, the section Σin

1 and the point P in
ε1 correspond to the section Σ� and

the point Pε defined in Section 2.3.1, respectively, after blow-up transformation to chart K1.
Similarly, the section Σout

1 and the point P out
ε1 correspond to the section Σin

2 and the point P in
ε2

of (2.26) in chart K2 in Section 2.3.2, respectively, under the change-of-coordinates K12. In
other words, the section Σin

1 defines the boundary between regions II and I, while Σout
1 defines

the boundary between regions II and III; in particular, the corresponding patching points are
represented as

P in
ε1 :��uin

1 , r
in
1 , w

in
1 , z

in
1 , ε

in
1

�
(2.35a)

�
�
A2 � A1

µ3
� 1� α

η

A1 � α
η

, A1 � α

η
,
λ1A2 � λ3

µ3
A1

A1 � α
η

,
λ3A1

A1 � α
η

,
ε

A1 � α
η

�
,

P out
ε1 :��uout

1 , rout
1 , wout

1 , zout
1 , εout

1

� � �
A3, ε, �cA3, � c

D
, 1

�
. (2.35b)

Next, we aim to approximate the transition map Π1 : Σin
1 Ñ Σout

1 that yields the corre-
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sponding portion of the persistent heteroclinic orbit that lies in this region II.

2.4.1 Transition map Π1

To approximate the transition map for the flow of Equation (2.28) between the two sections
Σin

1 and Σout
1 defined in (2.20), we begin by dividing out a factor of �z1 from (2.28), which

corresponds to a transformation of the independent variable that leaves the corresponding phase
portrait unchanged. (We note that �z1 is positive and, hence, that the direction of the flow is
unaltered, since we are restricting to a neighbourhood of P�

1 here.) Then, we shift P�
1 to the

origin in chart K1 by defining the new variables pU,W,Zq via u1 � 1
µ4
� U , w1 � λ4

µ4
�W and

z1 � λ4 � Z. In sum, we hence obtain the transformed system of equations

U 1 � 1

µ4
� U �

λ4

µ4
�W

λ4 � Z
, (2.36a)

r11 � �r1, (2.36b)

W 1 � �
�cpλ4

µ4
�W q � p1� 1

µ4
� Uq

λ4 � Z
� λ4

µ4
�W, (2.36c)

Z 1 � c

D
� η

Dpλ4 � Zq � λ4 � Z, (2.36d)

ε11 � ε1. (2.36e)

where the prime now denotes differentiation with respect to the new independent time τ .
The principal equilibrium of Equation (2.36) is now located at the origin. A standard

linearisation argument yields:

Lemma 2.4. The origin is a hyperbolic saddle point for (2.36), with eigenvalues δ1 � �λ1

λ4
� 1

p�q, �1, δ2 � �λ2

λ4
� 1 p�q, δ3 � �λ3

λ4
� 1 p�q, and 1.

We observe that resonances between the eigenvalues of the linearisation of (2.36) about the
origin exists if and only if D � 1. However, as the pU,W,Zq-subsystem in {(2.36a),(2.36c),
(2.36d)} is decoupled, i.e., independent of pr1, ε1q, these resonances are not realised. Hence,
Equation (2.36) may be linearised to any order in pU, r1,W,Z, ε1q via a sequence of near-
identity transformations that only involve pU,W,Zq; in particular, it follows that the former
will be defined on pr1, ε1q P r0, as � r0, 1s, as no restriction has to be made on the two variables
r1 and ε1. In fact, we can easily solve Equations (2.36b) and (2.36e) to find r1 � pA1 � α

η qe�τ
and ε1 � ε

A1�α
η

eτ , respectively; by patching the pr1, ε1q-coordinates at the boundaries, i.e.,

rin
1 pτ1q � A1 � α

η , rout
1 pτ2q � ε, εin

1 pτ1q � ε
A1�α

η
and εout

1 pτ2q � 1; here, we choose τ1 � 0 for

simplicity, then determine the corresponding value τ2 � τ� � ln
A1�α

η

ε .
In a first step, we expand the common denominator in Equation (2.36) via

1

λ4 � Z
� 1

λ4

�
1� 1

λ 4
Z � 1

λ2
4

Z2 �OpZ3q
�
,

keeping in mind that we assume |Z| to be small. Substituting into (2.36), we find that Equa-
tions t(2.36a),(2.36c),(2.36d)u become

U 1 � U � 1

λ4
W � 1

µ4λ4
Z � 1

λ2
4

WZ � 1

µ4λ2
4

Z2 �Op3q, (2.37a)

W 1 � � 1

λ4
U �

� c

λ4
� 1

	
W � 1

µ4
Z � 1

λ2
4

UZ � c

λ2
4

WZ � 1

µ4λ4
Z2 �Op3q, (2.37b)

Z 1 �
� η
D

1

λ2
4

� 1
	
Z � η

D

1

λ2
4

Z2 �Op3q, (2.37c)

where Op3q denotes terms of order 3 and upwards in pU,W,Zq.
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2.4.2 Formal linearisation

In this subsection, we consider a formal linearisation of Equation (2.36) which is linear of (2.37),

in the corresponding new variables ppU,xW, pZq:
pU 1 � pU � 1

λ4

xW � 1

µ4λ4

pZ, (2.38a)

xW 1 � � 1

λ4

pU �
� c

λ4
� 1

	xW � 1

µ4

pZ, (2.38b)

pZ 1 �
� η
D

1

λ2
4

� 1
	 pZ. (2.38c)

The eigenvalues of Equation (2.38) at the origin are given by δi � � λi
λ4
� 1 (i � 1, 2, 3), as

defined in Lemma 2.4, where δ2   0, with corresponding eigenvectors v1 � � � λ2, 1, 0
�T

,

v2 � � � λ1, 1, 0
�T

, and v3 � � cp1�Dq
Dµ3µ4

, η�D
Dµ3µ4

, 1
�T

. Defining the change-of-variable matrix

P � rv1|v2|v3s, we write w � ppU,xW, pZqT � Px, and x � px1, x2, x3qT ; then, Equation (2.38)
becomes x1 � diagpδ1, δ2, δ3qx, which has the following general solution for x: xi � Cie

δiτ ,
with undetermined coefficients Ci (i � 1, 2, 3). It follows that the general solution for w can be
written as

pU � �λ2C1eδ1τ � λ1C2eδ2τ � cp1�Dq
Dµ3µ4

C3epδ3τq, (2.39a)

xW � C1eδ1τ � C2eδ2τ � η �D

Dµ3µ4
C3eδ3τ , (2.39b)

pZ � C3eδ3τ . (2.39c)

Here, we can denote the approximation to the general solution of (2.36) by the formal

linearisation in (2.39) as pΓ1, noting that we have obtained the explicit solutions for r1 �
pA1� α

η qe�τ and ε1 � ε
A1�α

η
eτ . We convert the patching points P in

ε1 and P out
ε1 at the boundaries

in (2.35) into the new variables ppU,xW, pZq by the formal linearisation, which yields

pP in
ε1 :��pU in, rin

1 ,
xW in, pZ in, εin

1

�
(2.40a)

�
�
A2 � A1

µ3
� 1� α

η

A1 � α
η

� 1

µ4
, A1 � α

η
,
λ1A2 � λ3

µ3
A1

A1 � α
η

� λ4

µ4
,
λ3A1

A1 � α
η

� λ4,
ε

A1 � α
η

�
at τ � 0,

pP out
ε1 :��pUout, rout

1 , xW out, pZout, εout
1

�
(2.40b)

�
�
A3 � 1

µ4
, ε, �cA3 � λ4

µ4
, � c

D
� λ4, 1

	
at τ� � ln

A1 � α
η

ε
,

2.4.2.1 Patching at boundaries of (2.40)

We can determine all coefficients Ai, Ci pi � 1, 2, 3q by patching the general solution between

the two sections pΣin
1 and pΣout

1 at the points of intersection pP in
ε1 and pP out

ε1 , i.e., we solve the

particular solution with specific boundary condition (2.40) in ppU,xW, pZq, which completes the
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construction of the orbit pΓ1 in chart K1; we have the patching equations as follows:

A2 �A1{µ3 � 1� α
η

A1 � α
η

� 1

µ4
� �λ2C1 � λ1C2 � cp1�Dq

Dµ3µ4
C3, (2.41a)

λ1A2 � λ3{µ3A1

A1 � α
η

� λ4

µ4
� C1 � C2 � η �D

Dµ3µ4
C3, (2.41b)

λ3A1

A1 � α
η

� λ4 � C3, (2.41c)

A3 � 1

µ4
� �λ2C1eδ1τ

� � λ1C2eδ2τ
� � cp1�Dq

Dµ3µ4
C3eδ3τ

�

, (2.41d)

�cA3 � λ4

µ4
� C1eδ1τ

� � C2eδ2τ
� � η �D

Dµ3µ4
C3eδ3τ

�

, (2.41e)

� c

D
� λ4 � C3eδ3τ

�

. (2.41f)

From the above equations, we cannot find explicit solutions for all the coefficients Ai and Ci
in dependence of the speed c and the cut-off threshold ε. Instead, we obtain two simplified
equations with A1 and A2 remaining, denoted FipA1, A2, c, εq � 0 pi � 1, 2q:

F1 :� λ3A1

A1 � α
η

� λ4 � λ3

� ε

A1 � α
η

	δ3
, (2.42a)

F2 :� cpD � 1q
Dµ3µ4λ2

2

� ε

A1 � α
η

	δ1 � pη �Dqλ3

Dµ3µ4

� ε

A1 � α
η

	δ3 � µ3λ1A2 � λ3A1

µ3pA1 � α
η q

� λ4

µ4

�
�
λ3pDλ2

1 � cλ1 � ηq
Dµ3µ4

� ε

A1 � α
η

	δ3 � pλ3 � λ1qA1 � µ3λ1p1� α
η q

µ3pA1 � α
η q

� λ1 � λ4

µ4

�

�
�

1

1� λ2
1

� λ2
1

λ2
2p1� λ2

1q
� ε

A1 � α
η

	δ1�δ2�
, (2.42b)

where δ1, δ3 ¡ 0, δ1 � δ2 ¡ 0, a P p0, 1 � α
η q and ε P p0, A1 � α

η q, which is necessary for the
existence of a front connecting the two steady states as mentioned in Section 2.1. Then, we
can calculate the values A1 and A2 numerically by solving Fi � 0 pi � 1, 2q for given small ε.
Recalling the constraint in (2.23), after substituting the results of A1 and A2, we obtain

aεpcq � A2 � A1

µ3
� 1� α

η
, (2.43)

which is the desired c-a relation formulae by formal linearisation patching. We will discuss the
numerical simulation of Equation (2.43) in Section 2.5.

Remark 2.9. To clarify, the coefficients Ai pi � 1, 2, 3q and Ci pi � 1, 2, 3q depend on the speed
c and the cut-off threshold ε, i.e. Ai � Aipc, εq pi � 1, 2, 3q and Ci � Cipc, εq pi � 1, 2, 3q, but
we may suppress the dependence by Ai and Ci for short. Similarly, the equations Fi pi � 1, 2q
depend on pA1, A2, c, εq, i.e. Fi � Fi pA1, A2, c, εq.

2.4.2.2 Existence and uniqueness

In the singular case of ε � 0 in FipA1, A2, c0, 0q � 0 pi � 1, 2q in (2.42), we obtain the corre-
sponding singular limit of the speed relation as a0pc0q, which gives us an explicit expression for
a as a function of c:

a0pc0q �
�

1� α

η

	 λ1

λ1 � λ2
� α

η

1

pλ1 � λ2qpλ3 � λ4q

�
λ3

µ4
pλ2 � λ4q � λ4

µ3
pλ1 � λ3q

�
(2.44)

which corresponds to the existence of the singular orbit Γ, and can be verified by the general
patching method of Equation (2.4) without cut-off; for details see Appendix A.2 or [74].
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For ε � 0, we know that we have an unique solution of the speed c-a relation by solving
A1, A2 in (2.42a)-(2.42b), cf. Equation (2.44). Now the proof of the existence of a0pc0q, which
is equivalent to proving that we can get the unique solution from the two constraints Fipc0, 0q �
0 pi � 1, 2q by applying the Implicit Function Theorem. According to the Implicit Function
Theorem, we consider the Jacobian matrix with respect to A1 and A2 at pc, εq � pc0, 0q for
the singular case, where

�
A1, A2

�|pc0,0q is the only one pair of solutions satisfying constraints
(2.42a)-(2.42b). Now, the general Jacobian Jε for this two-equation system yields

Jε �
�
BF1

BA1

BF1

BA2BF2

BA1

BF2

BA2

�
�

���α
η

λ3

pA1�α
η q2 �

λ3δ3
A1�α

η

�
ε

A1�α
η

	δ3
0

BF2

BA1
� λ1

A1�α
η
.

��� (2.45)

In the singular case ε � 0, note that, A1 � α
η

λ4

λ3�λ4
is obtained by Equation (2.30), the

corresponding determinant of J0 is

DetpJ0q
��
pc0,0q �� η

αD
� 2c20 � 8Dη �D

a
c20 � 4Dη

�
c0 �

a
c20 � 4

�
c0 �

a
c20 � 4Dη

. (2.46)

It is obvious that DetpJ0q is nonzero as the numerator is nonzero with the well-defined denom-
inator. Then, we can say that there exists a unique solution A1 and A2 such that equations
Fi � 0 pi � 1, 2q in (2.42) for ε and |c � c0| sufficiently small, which is equivalent to the exis-
tence of aεpcq in Equation (2.43), i.e., to the persistence of a0pc0q for ε positive and small by
the Implicit Function Theorem.

Remark 2.10. For ε small, the same procedure as above shows that the determinant of Jε
has the form

DetpJεq
����
pc,εq

� α

η

λ3

pA1 � α
η q2

� λ1

A1 � α
η

� λ3δ3ε
δ3

pA1 � α
η qδ3�1

, (2.47)

which is nonzero.

2.4.2.3 Valid speed range

From the results of formal linearisation patching, we observe that there exists a maximum value
of the speed c for ε nonzero. In particular, we find an explicit expression via the obtained two
constraints Fi pi � 1, 2q, as the value of r1 at pP in

ε1 is at least greater or equal to the value atpP out
ε1 , the transition map exists for A1 � α

η ¥ ε with transition time τ ¥ 0. From the numerical
simulation in Section 2.2.3, see Figure 2.6, the value of the v-variable at u � a is decreasing as
c increases, i.e., pP in

ε1 approaches pP out
ε1 . Region II is eliminated with the transition time τ � 0

by setting
A1�α

η

ε � 1 in (2.42a). Hence, we can obtain the maximum speed cmax expressed by
the formula

cmax � pα� ηεq
c
D

αε
. (2.48)

2.4.3 The bifurcation scenarios

According to the numerical simulation of the speed relation a0pcq, cf. Figure.2 in [74], we
observe that there exists one saddle-node bifurcation for a certain value of D, which is obtained

by the equation da0pcq
dc � 0:

da0pcq
dc

�����
c�c0

�� 2

pc2 � 4q 3
2

p1� α

η
q � α

η

2Dcpc2 � 2Dη � cq
pc2 � 4q 3

2 pc2 � 4Dηq 3
2

�
λ3

µ4
pλ2 � λ4q � λ4

µ3
pλ1 � λ3q

�

� α

η

1

pc2 � 4q 1
2 pc2 � 4Dηq 1

2

�
λ3

µ4
pλ2 � λ4q � λ4

µ3
pλ1 � λ3q

�1
, (2.49)
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where 1 denotes the derivative with respect to c. When ε is positive and small, it is too com-
plicated to get explicit expressions for A1 and A2 so that we cannot express aεpcq as a function
of the speed c explicitly. Hence, the bifurcation points may not be produced straightforwardly

by solving daεpcq
dc � 0, and can be evaluated numerically as in Section 2.5 below.

Panel (a) in Figure 2.17 shows the number of bifurcation points in the c-a relation curve,
where one bifurcation exists on the left-hand curve with D   D� � 5.1287, i.e., one solution

of the speed c such that da0pcq
dc � 0. Between the two branches of curves for D P pD�, 22q,

there exists a single speed for each suitable value of a , while the right-hand curve allows two
bifurcation points with D ¡ 22 approximately, which we do not discuss in detail here, as for
large D, the factor 1

D will play a role as another small parameter. More results on the effect of
varying the values of the parameters α, η,D can be found in [74]. In panel (b) of Figure 2.17,
we plot the numerical simulation of a0pc0q with D � 2, 4, 6, 8, 10; we can clearly find the change
of bifurcation scenarios.
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(b)

Figure 2.17: (a) The bifurcation behavior in the singular case for D P p0, 30q and c P p0, 8q. (b)
The bifurcation of a0pc0q, with D � 2, 4, 6, 8, 10.

Let’s take D � 2 for example; then, the critical value pab, cbq at the bifurcation, is found

where da0pcbq
dc � 0. When a ¡ ab, there is no solution for the speed here, which indicates that

there does not exist a heteroclinic orbit connecting Q�
0 and Q�

0 ; when a � ab, we have a unique
speed cb, which corresponds to the existence of an unique orbit at c � cb, while for 0   a   ab,
there exists two possible values of the speed that lead to two possible orbit constructions, where
the upper branch corresponds to the stable speed and the lower branch refers to the unstable
speed; for details see [57,75].

To investigate the geometry of such bifurcation behavior, we recall the transition map Π1,
recall Section 2.4.1; there we have shifted P�

1 to the origin, with shifted boundaries (2.40).
We discuss how the discontinuity position a is involved in the construction of a singular orbit,
keeping the constraint (2.23)

�
a � A2�A1

µ3
�1�α

η

�
in mind, we can explore the orbit construction

via two aspects, as we can solve the expression of either coefficient A1 or A2 in terms of a,
i.e., express A1 with respect to pa,A2q or A2 with respect to pa,A1q. Meanwhile, one of the
constraints Fipc, 0q � 0, pi � 1, 2q is satisfied, which corresponds to patching the pair of variables

ppU,xW q or pr1, pZq at the boundaries, recall (2.40), with the other pair undetermined. Note that,
since the variables r1 and ε1 are decoupled in (2.36) and solved explicitly, the pr1, ε1q-variables
are patched automatically.

2.4.3.1 Variables ppU,xW q are patched and pr1, pZq varies

We have patched the pair of variables ppU,xW q at the boundaries in pP in
ε1 of (2.35), i.e. we have

F2pc, 0q � 0, with the expression A1 obtained from the constraint (2.23), which means the
front solution in the original pu,wq-variables have been completed for all speeds c while the
front solution in the pv, zq-variables are to be determined with a certain speed. The resulting
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equations are given as follows

A1 � µ3

�
a� 1� α

η
�A2

	
, (2.50)

a

A1 � α
η

� 1

µ4
� �λ1

�
λ1A2 � λ3

µ3
A1

A1 � α
η

� λ4

µ4

�
. (2.51)

By solving the above equations, we obtain the solution A1, A2 in dependence of pa, cq, that is

A1pa, cq � µ3

� pλ2
1 � 1qa� λ2

1p1� α
η q � α

η
1�λ1λ4

µ4

λ2
1 � λ1λ3 � µ3p1�λ1λ4q

µ4

�
, (2.52)

A2pa, cq �
α
η

1�λ1λ4

µ4
� a� pa� 1� α

η q
�
λ1λ3 � µ3p1�λ1λ4q

µ4

	
λ2

1 � λ1λ3 � µ3p1�λ1λ4q
µ4

. (2.53)

To complete the patching in pr1, pZq-variables, we substitute the above A1pa, cq and A2pa, cq into

the boundary condition in (2.40) that rin
1 � A1pa, cq� α

η and pZ in � λ3A1pa,cq
A1pa,cq�α

η
�λ4, the singular

orbit exists iff pZ in � 0, corresponding to the constraint F1pc, 0q � 0, i.e. there should be

intersection between the prin
1 ,

pZ inq-curve and pZ in � 0 at a certain value of c; local geometry can
be found in Figure 2.11. After computing the numerical values depending on varying positive
speeds for a fixed value of a, we have the following Figure 2.18: when a � 0.21   ab, there
are two intersections of the prin

1 ,
pZ inq-curve with pZ in � 0 in the prin

1 ,
pZ inq-phase plane, which

implies two speeds to construct the orbit, while for a � 0.22 ¡ ab, there is no intersection, i.e.,pZ in   0 for all c ¡ 0 with rin
1 ¡ 0, which implies the fact that for a ¡ ab no heteroclinic orbits

exist; see Figure 2.18. Note that, ab denotes the value of a at the bifurcation.

-1 -0.5 0 0.5
0

0.1

0.2

0.3

Figure 2.18: The evaluated prin
1 ,

pZ inq-curve for fixed a � 0.21 (solid blue), and a � 0.22 (dotted
red); with D � 2 and ε � 0, the bifurcation value evaluates to ab � 0.2185.

2.4.3.2 Variables pr1, pZq are patched and ppU,xW q varies

We have patched the pair of variables pr1, pZq of the boundaries in pP in
ε1 of (2.40), i.e. F1pc, 0q � 0,

with the expression A2 obtained from the constraint (2.23), which means the front solution in
the original pv, zq-variables have been completed for all speeds c while the front solution in the
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pu,wq-variables are to be determined completed with a certain speed. The resulting equations
are given as following

A2 � a�
�A1

µ3
� 1� α

η

	
, (2.54)

λ3A1

A1 � α
η

� λ4 � 0. (2.55)

By solving the above equations, we obtain the solution of A1, A2 in dependence of (a,c), that is

A1pa, cq � α

η

λ4

λ3 � λ4
, (2.56)

A2pa, cq � a� 1� α

η
� α

η

λ4

µ3pλ3 � λ4q . (2.57)

To complete the patching in ppU,xW q-variables, we substitute the above A1pa, cq and A2pa, cq into

the boundary condition in (2.40) that pU in � a
A1pa,cq�α

η
� 1
µ4

and xW in � λ1A2pa,cq�λ3
µ3
A1pa,cq

A1pa,cq�α
η

� λ4

µ4
.

We evaluate the shortest distance between the point ppU in,xW inq of pP in
01 in (2.40) and the projected

line ` : pU�λ1
xW � 0 in the ppU,xW q-plane, which corresponds to Γ�

1 as defined in (2.33) in Section
2.3.3:

Dist � 1

1� λ2
1

�����
#
η

α

λ3 � λ4

λ3

�
pλ2

1 � 1qa� λ2
1p1�

α

η
q
�
� λ1λ4pλ1 � λ3q

µ3λ3
� 1� λ1λ4

µ4

+����� (2.58)

An orbit exists iff Dist � 0, corresponding to the constraint F2pc, 0q � 0, i.e. there should be
zeros of Dist at some positive speed. We compute the numerical values of Dist over a range of
positive speeds, see Figure 2.19. When a � 0.21   ab, there are two roots with Dist � 0-axis,
which leads to two feasible orbits, while for a � 0.22 ¡ ab, there is no intersection, i.e., Dist ¡ 0
for all c ¡ 0, which implies the fact that for a ¡ ab no orbits exist.

0 0.5 1 1.5 2
0

0.1

0.2

0.3

Figure 2.19: The evaluated Dist between pP in
01 and the line ` of in ppU,xW q-plane, for fixed

a � 0.21(solid blue) and a � 0.22 (dotted red); with D � 2, the bifurcation value evaluates to
ab � 0.2185.

In Figure 2.20, we illustrate the geometric position of the point ppU in,xW inq and the line ` in

39



ppU,xW, pZq-space as well as the projection into the ppU,xW q-plane, with c � 0.2.
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Figure 2.20: (a) The approximated position of pP in
01 in ppU,xW, pZq-space and the line ` (solid blue)

with the corresponding unstable manifold (dashed red). (b) The position of pP in
01 and the line `

in the ppU,xW q-plane with projected unstable manifold labeled proj (dash-dotted red).

Remark 2.11. The stable manifold and one of the two unstable directions lie in the plane
t pZ � 0u of ppU,xW, pZq-space, and the other unstable direction is shown projected in Figure 2.20.
The 3-dimensional plot is computed with D � 2 and c � 0.2; as the actual position varies with
the speed, we only show one case here.

2.4.3.3 Summary

Both results of the above two aspects in our geometric construction agree with each other, in
that, for a ¡ ab, there is no valid singular orbit between Q�

0 and Q�
0 , and for a � ab, there

is an unique orbit, while for 0   a   ab, there exist two solutions, one stable wave and one
unstable wave. In addition, for ε ¡ 0 small, we may find similar results for fixed aεpcq in the
same manner as above, which will not be studied explicitly due to the complex expression for
aεpcq obtained in Section 2.4.

2.4.4 Second-order normal form

In the formal linearisation of Equation (2.37), we only considered the linear terms, neglecting
higher order terms. Next, we perform a normal form transformation, which will allow us to
eliminate rigorously the quadratic terms from Equation (2.37):

Proposition 2.3. Let

β � D2λ4
4 � cD2λ4

3 �D2λ4
2 � 4Dηλ4

2 � 2cDηλ4 � 4η2;

then, the near-identity transformation

U � ũ� D
�pλ4 � 1qp2η2 �Dcηλ4q � β

�
βµ4

�
Dλ4

2 � η
	 z̃2 � D

Dλ2
4 � η

w̃z̃,

W � w̃ � Dλ4

�
β � pλ4 � 1qp2η2 �Dηλ2

4 �Dηq�
βµ4

�
Dλ4

2 � η
	 z̃2 � D

Dλ2
4 � η

ũz̃ � cD

Dλ2
4 � η

w̃z̃,

Z � z̃ � η

Dλ2
4 � η

z̃2
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transforms Equation (2.37) into

ũ1 � ũ� 1

λ4
w̃ � 1

µ4λ4
z̃ �Op3q, (2.59a)

w̃1 � � 1

λ4
ũ�

� c

λ4
� 1

	
w̃ � 1

µ4
z̃ �Op3q, (2.59b)

z̃1 �
� η
D

1

λ2
4

� 1
	
z̃ �Op3q. (2.59c)

Proof. We make the Ansatz

U � ũ � α1ũ
2 � α2w̃

2 � α3z̃
2 � α4ũw̃ � α5ũz̃ � α6w̃z̃,

W � w̃ � β1ũ
2 � β2w̃

2 � β3z̃
2 � β4ũw̃ � β5ũz̃ � β6w̃z̃,

Z � z̃ � γ1ũ
2 � γ2w̃

2 � γ3z̃
2 � γ4ũw̃ � γ5ũz̃ � γ6w̃z̃,

which we differentiate with respect to the independent variable. Thus, for instance, we find

U 1 � p1� 2α1ũ� α4w̃ � α5z̃qũ1 � pα4ũ� 2α2w̃ � α6z̃qw̃1 � pα5ũ� α6w̃ � 2α3z̃qz̃1,

which we equate to (2.37a), rewritten in terms of pũ, w̃, z̃q:

U 1 ��ũ� α1ũ
2 � α2w̃

2 � α3z̃
2 � α4ũw̃ � α5ũz̃ � α6w̃z̃

�
� 1

λ4

�
w̃ � β1ũ

2 � β2w̃
2 � β3z̃

2 � β4ũw̃ � β5ũz̃ � β6w̃z̃
�

� 1

µ4λ4

�
z̃ � γ1ũ

2 � γ2w̃
2 � γ3z̃

2 � γ4ũw̃ � γ5ũz̃ � γ6w̃z̃
�

� 1

λ2
4

�
w̃z̃ �Op3q�� 1

µ4λ2
4

�
z̃2 �Op3q�

Collecting terms in like powers of pũ, w̃, z̃q, substituting in for w̃1 � � 1
λ4
ũ�� c

λ4
�1

�
w̃� 1

µ4
z̃�Op2q

and z̃1 � �
η
D

1
λ2
4
� 1

�
z̃ �Op2q from (2.37), expanding p1� 2α1ũ� α4w̃� α5z̃q�1 and solving for

ũ, we find the transformation for u, as claimed. The argument for rw and z̃ is similar.

The second-order normal from transformation obtained in Proposition 2.3 allows us to elim-
inate the quadratic terms from Equation (2.37), which improves the accuracy of the approxi-
mation to the c-a relation aεpcq; recall Equation (2.43). The derivation in second-order normal
form follows the same process as the formal linearisation patching in Section 2.4.2.

Firstly, we invert the transformation as follows

ũ � U � D
�pλ4 � 1qp2η2 �Dcηλ4q � β

�
βµ4pDλ4

2 � ηq Z2 � D

Dλ2
4 � η

WZ �Op3q,

w̃ �W � Dλ4

�
β � pλ4 � 1qp2η2 �Dηλ2

4 �Dηq�
βµ4pDλ4

2 � ηq Z2 � D

Dλ2
4 � η

UZ � cD

Dλ2
4 � η

WZ �Op3q,

z̃ � Z � η

Dλ2
4 � η

Z2 �Op3q.

Noting that we have obtained the explicit solutions for r1 � pA1 � α
η qe�τ and ε1 � ε

A1�α
η

eτ .

Then, we transform the boundary conditions at P in
ε1 and P out

ε1 of (2.35) in section Σin
1 and Σout

1

into rP in
ε1 and rP out

ε1 in section rΣin
1 and rΣout

1 for our second-order normal form patching:

rP in
ε1 :�

�
ũin, rin

1 , w̃
in, z̃in, εin

1

	
at τ � 0, (2.60a)

rP out
ε1 :�

�
ũout, rout

1 , w̃out, z̃out, εout
1

	
at τ� � ln

A1 � α
η

ε
, (2.60b)

where the corresponding transformed values at the boundaries in the pũ, w̃, z̃q-variables are
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detailed in Appendix A.1.2, after eliminating higher order terms .

Patching at boundaries (2.60)

We can determine the related new coefficients Ai, Ci pi � 1, 2, 3q in the general solution of
Equation (2.59) with the Op3q-terms omitted, by patching at the boundaries between the two

sections rΣin
1 and rΣout

1 at the points of intersection rP in
ε1 and rP out

ε1 , i.e., we solve the particular
solution with specific boundary condition (2.60) in pũ, w̃, z̃q, which completes the construction

of the orbit rΓ1 in chart K1; here, rΓ1 denotes the approximation to the portion of the heteroclinic
orbit Γ1 in chart K1 in region II by the second-order normal form patching; for details on the
patching process, see Appendix A.1.2.

We obtain two simplified equations containing A1 and A2, are defined as rFipA1, A2, c, εq �
0 pi � 1, 2q,

rF1 : �
� λ3A1

A1 � α
η

� λ4

	
� η

Dλ2
4 � η

� λ3A1

A1 � α
η

� λ4

	2

�
�
λ3 � ηλ2

3

Dλ2
4 � η

	� ε

A1 � α
η

	δ3
, (2.61)

rF2 : �
�
λ2

3α3 � pDλ2
4 �Dλ3λ4 � ηq
µ4pDλ2

4 � ηq
��
cpDλ2

4 �Dcλ3 � ηq �Dλ3

	
�
�
λ2

3β3 � λ4

µ4
� Dλ3p1� cλ4q

µ4pDλ2
4 � ηq

��
Dλ2

4 �Dcλ3 � η
	

� pDλ2
4 �Dcλ3 � ηqp1� cλ2q �Dλ2λ3

pλ1 � λ2q
�
ũin � λ1w̃

in � Dλ2 � ηλ1 � c

Dµ3µ4
z̃in

	� ε

A1 � α
η

	�δ1
� pDλ2

4 �Dcλ3 � ηqp1� cλ1q �Dλ1λ3

pλ2 � λ1q
�
ũin � λ2w̃

in � Dλ1 � ηλ2 � c

Dµ3µ4
z̃in

	� ε

A1 � α
η

	�δ2
�
�
cλ3p1�Dq

µ3µ4
� pDλ2

4 �Dcλ3 � ηqc
2p1�Dq � pη �Dq

Dµ3µ4

�
z̃in

� ε

A1 � α
η

	�δ3
(2.62)

Then, we can calculate the values of A1 and A2 by solving rFi � 0 pi � 1, 2q numerically for
given ε small, then substituting into the constraint of the c-a relation curve:

ãεpcq � A2 � A1

µ3
� 1� α

η
. (2.63)

Note that, we suppress the dependence on c and ε here for simplicity, i.e. Ai � Aipc, εq,
Ci � Cipc, εq, and rFi � rFipA1, A2, c, εq. The proof of the existence of ãεpcq follows the same
procedure as for aεpcq in Section 2.4, which is equivalent to proving that we can get the unique

solution from the two constraints rFi � 0, pi � 1, 2q by the Implicit Function Theorem. We
find analogous results numerically as well, i.e., the persistence will be obtained by the Implicit
Function Theorem.

2.5 Numerical simulations

In this section, we present the numerical simulations of the obtained speed relation aεpcq and
ãεpcq defined in (2.43) and (2.63), respectively, by formal linearisation and the second-order
normal form in Sections 2.4.2 and 2.4.4, respectively. We also display the c-a relation obtained
by the general patching, labeled apc, εq, are obtained by matching the general solution at the
patching points: connecting regions I and II, and regions II and III, respectively, for the sake
of the continuity of the general solution in each region in the original ODE system; for details
we refer to Appendix A.1.1.

Remark 2.12. We use the notation apc, εq representing the speed c-a relation obtained by
general patching, which is not an explicit formula for a depending on pc, εq.
Remark 2.13. The parameters αp� 0.08q and ηp� 0.12q are fixed in the numerical computa-
tions throughout this chapter. Other choices of α and η give qualitatively similar results, which
are not shown here.
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2.5.1 Simulation of aεpcq

We first compute the result of aεpcq obtained by formal linearisation in Section 2.4.2, in a range
of values for the cut-off threshold ε in Figure 2.21, where ε � 0.1, 0.05, 0.01, 0.001 and ε � 0
for the values of D � 1, 2, 5 and 10. In the limit as ε � 0 (thin solid black), the upper branches
of the curves show that the speed c grows as a decreases and may reach infinity when a Ñ 0;
in particular, for D � 1, 2 and 5, one saddle-node bifurcation occurs in agreement with the
study of bifurcation scenarios in Section 2.4.3, which admit the existence of a neutrally stable
front at the bifurcation [57]. Moreover, we find the curves would cross the horizontal a-axis to
negative values of the speed c, which should be considered in a symmetric situation; here, we
only consider c ¡ 0.

For D fixed, e.g., D � 1, the valid range of the speed c becomes wider as ε Ñ 0, i.e.,
the value of cmax increases by decreasing ε; the same phenomenon occurs for D � 2, 5, 10,
in agreement with the definition of cmax in Equation (2.48) in Section 2.4.2.3. The fit of the
perturbed curves to the singular curve improves as ε decreases; in particular, for ε sufficiently
small, e.g. ε � 0.01 (dashed cyan) and ε � 0.001 (dotted magenta), the perturbed curves are
close to the corresponding singular one, while for ε � 0.1 (solid blue) and ε � 0.05 (dash-dotted
red), the numerical simulations suggest that these values of the cut-off threshold are too large.
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Figure 2.21: Speed relation obtained by formal linearisation patching aεpcq, for D � 1, 2, 5, 10,
with ε � 0.1, 0.05, 0.01, 0.001 and ε � 0, for fixed η � 0.12, α � 0.08.

.

We approximately compute the values of pab, cbq at bifurcation points for ε � 0.01 and
ε � 0.001; see Table 2.1. For D � 1, 2 and 5, we find that the perturbed bifurcation point
approaches the corresponding singular one as εÑ 0; note that, no bifurcation exists for D � 10.
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Table 2.1: Approximated bifurcation points pab, cbq obtained by formal linearisation patching
aεpcq, for D � 1, 2, 5 with ε � 0.01, 0.001 and 0, for fixed η � 0.12, α � 0.08.

ε 0.01 0.001 0

D � 1 p0.2570, 0.5983q p0.2578, 0.5914q p0.2579, 0.5915q
D � 2 p0.2174, 0.6396q p0.2184, 0.6403q (0.2185, 0.6407)
D � 5 p0.1667, 0.1577q p0.1671, 0.1946q (0.1671, 0.1957)

2.5.2 Comparison of aεpcq and apc, εq

In this section, we compare the results of aεpcq and apc, εq, which are obtained by formal
linearisation patching and general patching with D � 1, 2, 5, 10 and ε � 0.01, 0.001; see Figure
2.22. The solid red curves correspond to the results of aεpcq by formal linearisation patching;
the dash-dotted blue curves describe the results of apc, εq by general patching; while the thin
black curves represent the corresponding singular solutions. The small rectangular area along
the curves is zoomed-in to the bottom left axes.

For fixed values of D , e.g. D � 1, we observe that the fit of the formal linearistion patching
method improves as ε decreases, and the error of formal linearisation and the singular limit is
about Opεq; the same phenomenon is found for D � 2, 5 and 10. For ε small and fixed, e.g.
ε � 0.01, the fit also improves as D increases, which suggests that the value of 1

D plays a role
of an additional “small” parameters such that the accuracy of formal linearisation patching
improves; the same phenomenon is found for ε � 0.001.

Moreover, the red hexagram along the curve denotes the intersection of the curves, obtained
by formal linearisation patching and in the singular limit; the corresponding speed at the
intersection is labeled by ccrit. The value of ccrit increases as ε decreases for D fixed; also, it
grows with the value of D for ε small and fixed.

For c   ccrit, the perturbed curve lies inside of the singular curve, i.e., the value of aεpcq
is less than a0pcq; while for c ¡ ccrit, the perturbed curve lies outside of the singular curve,
i.e., the value of aεpcq is greater than a0pcq in its valid speed range. When one bifurcation
occurs, i.e., for D � 1, 2 and 5, the cut-off speed (ε ¡ 0) remains higher than the singular speed
below the bifurcation and above the critical intersection at ccrit; while the cut-off speed stays
below the singular speed in the range of speeds between the bifurcation and intersection ccrit.
In addition, for D � 10, i.e., when no bifurcation occurs, the cut-off speed stays above the
singular speed for c ¡ ccrit, while it remains below it for c   ccrit.
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Figure 2.22: Speed relation obtained by formal linearisation patching aεpcq (solid red), general
patching apc, εq (dash-dotted blue) and the singular limit a0pcq (thin solid black), for D �
1, 2, 5, 10 with ε � 0.01, 0.001 and ε � 0, for fixed η � 0.12, α � 0.08; here, ccrit (red hexagram),
the small rectangular area is zoomed-in to the bottom left axes.
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2.5.3 Simulation of ãεpcq

Now, we compare the error of the two blow-up patching approaches with general patching. We
define the error ∆ãε, which is obtained from the results of second-order normal form patching
and general patching, i.e., ∆ãε � ãεpcq � apc, εq. Similarly, the error ∆aε is obtained by the
results of the formal linearisation patching and general patching, i.e., ∆aε � aεpcq � apc, εq.
Note that, the computations are carried out by prescribing the numerical values for the speed
c and D.

In Figure 2.23, we display the error ∆aε (solid red) for ε � 0.1 with D � 1, 2, 5 and 10; there,
we observe that the order of the error ∆aε is Opε2q, which is better than the expected Opεq by
formal linearisation. Likewise, we simulate the error for ε � 0.01 and ε � 0.001, in Figure 2.24
and Figure 2.25, respectively; here, we find the same performance as that we have observed
an order of Opε2q by formal linearisation. In order to explain this unexpected performance of
the order Opε2q by formal linearisation, we recall Equations (2.37) in Section 2.4.2; there, we
find that the Z-variable is decoupled, and the plane tZ � 0u is invariant. Hence, the solution
obtained for the Z-variable in Equation (2.38) is actually the exact solution, which enhances
the accuracy of the formal linearisation patching.

As for the error ∆ãε (dash-dotted magenta), which is illustrated in Figure 2.23 through
Figure 2.25 for ε � 0.1, 0.01 and ε � 0.001, with D � 1, 2, 5 and 10, we observe that an
accuracy of the order of Opε2q is provided by second-order normal form patching, which is
in agreement with the accuracy expected from the second-order normal form transformation.
Moreover, as we have observed that both formal linearisation and second-order normal form
patching have an accuracy of the order Opε2q, the latter still performs slightly better than the
former.
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Figure 2.23: Numerical simulation of ∆aε (solid red) and ∆ãε (dash-dotted magenta), for
c P r0, cmaxs, with D � 1, 2, 5, 10 and ε � 0.1, and η � 0.12, α � 0.08 fixed.
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Figure 2.24: Numerical simulation of ∆aε (solid red) and ∆ãε (dash-dotted magenta), for
c P r0, cmaxs, with D � 1, 2, 5, 10 and ε � 0.01, and η � 0.12, α � 0.08 fixed.
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Figure 2.25: Numerical simulation of ∆aε (solid red) and ∆ãε (dash-dotted magenta), for
c P r0, cmaxs, with D � 1, 2, 5, 10 and ε � 0.001, and η � 0.12, α � 0.08 fixed.

47



In addition, the accuracy is improved with the value of D, which is in agreement of our
suggestion in Section 2.5.2 that the factor 1

D plays role of a “small” parameter.
We have observed that the formal linearisation patching method has provided an accuracy of

order Opεq in Section 2.5.2, which fits well with the singular limit. We then represent the error
ãεpcq � a0pcq, which is obtained by the results of the second-order normal form patching and
the singular limit, see Figure 2.26. For ε � 0.01 (a) and ε � 0.001 (b), with D � 1, 2, 5 and 10,
we observe that ãεpcq � a0pcq is approximately of the order of Op εD q, where we have combined
the factor of 1

D with the order Opεq observed in Section 2.5.1; meanwhile, ãεpcq � a0pcq has
a root at c � c̃crit, where c̃crit corresponds to the intersection of the results by second-order
normal form patching and the singular limit; recall the definition of ccrit, which is defined in
Section 2.5.2 for the formal linearisation, i.e., by aεpcq � a0pcq|c�ccrit � 0.
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Figure 2.26: Numerical calculation of ãεpcq�a0pcq in the valid speed range, with D � 1, 2, 5, 10
and (a) ε � 0.01 and (b) ε � 0.001, for η � 0.12, α � 0.08 fixed .

Remark 2.14. We may proceed to a higher-order normal form transformation in the study
of the transition through chart K1, in order to obtain a higher accuracy. However, the formal
linearisation patching seems to provide a good approximation to our general solution with Opε2q
accuracy. While the second-order normal form improves the accuracy of patching in blown-up
space slightly within the order of Opε2q, we do not proceed to a third-order normal form and
further in this thesis.

2.5.4 Simulation of the orbits

Recalling the basic properties of Equation (2.5), the four eigenvalues λi pi � 1...4q depend on
c and D. The values of the strong/weak eigenvalues vary as well, although the strong/weak
eigenvectors do not switch as we consider D ¥ 1 here. This will lead to interesting behavior
in that the patching position varies at the cut-off threshold. And the shape of the orbit in
pu, vq-phase space will change depending on the speed as well. For example, for D � 2 and
ε � 0.01, here, we recall the numerical c-a relation for D � 2 and ε � 0.01 in Figure 2.27.
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Figure 2.27: Speed relation obtained by formal linearisation patching aεpcq (solid red) and the
singular limit a0pcq (thin solid black); for D � 2 and ε � 0.01; η � 0.12, α � 0.08 fixed.

We simulate the front solution at different speeds numerically, and plot the corresponding
orbit in pu, vq-coordinates; see Figures 2.28 through 2.30. The perturbed orbit (dash-dotted
diamond) obtained from the front solution by formal linearisation patching consists of three
segments, which are divided by two red dots corresponding to the discontinuity position and
the cut-off threshold, respectively. The singular orbit is indicated by a dashed blue line with
the “outer” region and the “inner” region separated by the corresponding discontinuity position
(blue diamond). In addition, we zoom in to the parts of the orbits around the origin (top left
axes) and the discontinuity position (bottom right axes).

i. Low speed: Here, we take c � 0.05 as the example for the low speed case. We find that
the perturbed orbit follows a similar path as the singular orbit in region I and region II
until reaching the cut-off threshold ε; here, we take ε � 0.01 for example. For v P p0, εq
in region III, where the reaction term is switched off, the corresponding values of u in the
perturbed orbit are greater than those in the singular orbit, and u stays negative in that
range; Meanwhile, this perturbation of the orbit agrees with the behavior of the c-a relation,
where for c � 1 P p0, cbq, the value of aεpcq|c�1 is less than a0pcq|c�1; see Figure 2.28. The
local geometric structure in the equivalent blown-up space can be found in Section 2.3.2;
see Figures 2.7 and 2.8.
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Figure 2.28: The orbits in pu, vq-phase space: perturbed orbit (dash-dotted red) and singular
orbit (dashed blue), with discontinuity position and cut-off threshold (colored diamond), at
speed c � 0.05, for D � 2 with ε � 0.01, and η � 0.12, α � 0.08 fixed.

ii. Intermediate speed: Here, we take c � 1 and c � 1.55 as two examples for the intermediate
speed case. We find that the perturbed orbit follows a similar path as the singular orbit in
region I and the most part of region II. However, around the cut-off threshold in region II,
e.g., for v P pε, 2εq, the corresponding values of u in the perturbed orbit are greater than
those in the singular orbit. Likewise, in region III, i.e. for v P p0, εq, the corresponding
values of u in the perturbed orbit are greater than those in the singular orbit and u stays
negative; see Figure 2.29; The local geometric structure in the equivalent blown-up space
can be found in Section 2.3.2, see Figure 2.7 and 2.9. Meanwhile, this perturbation of the
orbit agrees with the behavior of the c-a relation, where for c � 1 P pcb, ccritq, the value of
aεpcq � a0pcq|c�1   0; for c � 1.55 P pccrit, cmaxq, the value of aεpcq � a0pcq|c�1.55 ¡ 0; see
the numerical simulation in Figure 2.22.
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Figure 2.29: The orbits in pu, vq-phase space: perturbed orbit (dash-dotted red) and singular
orbit (dashed blue), with discontinuity position and cut-off threshold (colored diamond), at
speed c � 1 and c � 1.55, for D � 2 with ε � 0.01, and η � 0.12, α � 0.08 fixed.

iii. High speed: Here, we take c � 2 as the example for the high speed case. We find that the
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perturbed orbit follows the similar path as a singular limit orbit in region I and the most
part of region II. However, around the cut-off threshold in region II, e.g., for v P pε, 2εq,
the corresponding values of u in the perturbed orbit are greater than those in the singular
orbit. Likewise, in region III, i.e. for v P p0, εq, the corresponding values of u in the
perturbed orbit are much greater than those in the singular orbit and u stays positive;
see Figure 2.30; The local geometric structure in the equivalent blown-up space can be
found in Section 2.3.2, see Figure 2.7 and 2.10. Meanwhile, this perturbation of a front
solution agrees with the behavior of the c-a relation, for c � 2 P pccrit, cmaxq, the value of
aεpcq is greater than a0pcq; moreover, the error of aεpcq � a0pcq|c�2p� 0.01q is greater than
aεpcq � a0pcq|c�1.55p� 0.005q; see the numerical simulation in Figure 2.22.
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Figure 2.30: The orbits in pu, vq-phase space: perturbed orbit (dash-dotted red) and singular
orbit (dashed blue), with discontinuity position and cut-off threshold (colored diamond), at
speed c � 2, for D � 2 with ε � 0.01, and η � 0.12, α � 0.08 fixed.

The observations around the discontinuity position u � a: for c � 0.05 and 1, i.e., c   ccrit,
we clearly find that the values of the u-coordinate of the patching points aεpcq are to the left
of the singular patching point a0pcq, i.e., aεpcq � a0pcq|c�0.05,c�1   0, which agrees with our
numerical observation of aε and a0 in Figure 2.27; there, the perturbed aεpcq curve stays slightly
inside the singular limit of a0pcq. For c � 1.55 and 2, i.e., for c ¡ ccrit, we clearly find that
the values of the u-coordinate of patching points aεpcq are to the right of the singular patching
point a0pcq, i.e., aεpcq � a0pcq|c�1.55,c�2 ¡ 0, which agrees with our numerical observation of aε
and a0 in Figure 2.27; there, the perturbed curve aεpcq stays slightly outside the singular limit
of a0pcq.

When one bifurcation scenario occurs, i.e., for D P p1, D�q as defined in Section 2.4.3, with
ε positive and small, the cut-off accelerates the front corresponding to the singular one in a
range of speed c P tp0, cbq� pccrit, cmaxqu, i.e., the cut-off accelerates the unstable speed and
top part of the stable speed. By contrast, in a range of c P pcb, ccritq, the cut-off slows down
the related stable fronts. When we take D P pD�, 22q, no bifurcation occurs in the c-a relation,
then, the perturbed speed is slightly lower than the singular speed in a range of c P p0, ccritq,
while it is higher in c P pccrit, cmaxq.

We can also find such a shift in the cut-off speed in the numerical simulation of the second-
order normal form patching, see Figure 2.26, where the sign of ãεpcq�a0pcq changes at c � c̃crit;
note that, the value of c̃crit is similar to ccrit within the order of Opε2q, hence, the observations
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corresponding to the critical speed c̃crit by second-order normal form are omitted here, which
are in agreement with those for ccrit by formal linearisation.

To summarize the effect of a cut-off on the pu, vq orbits of our two-component reaction-
diffusion systems (2.4), the local curvature of the perturbed orbits around the origin changes
depending on the value of ε and the speed c; in particular, the perturbed orbits are restricted in
the first quadrant in the pu, vq-phase space in a specified range of the values of pc, εq, i.e., the cut-
off could prevent the u-variable reacting in the negative area, which makes the corresponding
system more realistic biologically. Moreover, for ε sufficiently small, the perturbed speed may
stay below the singular speed in a particular speed range, e.g., c P pcb, ccritq and c P p0, ccritq
for one bifurcation and no bifurcation, respectively, which performs similarly to the recent
research on the FKPP equation with a cut-off; there a logarithmic term was subtracted from
the minimum speed obtained in the absence of a cut-off; for details see [9, 15].

2.6 Speed condition in u-component cut-off system

The dynamics of the u-component cut-off system is best studied in an equivalent formulation
of Equation (2.4) with φ � u that results from a blow-up transformation of the corresponding
vector field near the origin in pu, v, w, z, εq-space. The approach follows the same procedure
as that we followed for the v-component cut-off system. Hence, we do repeat the analysis; for
details see Appendix A.3. Note that, we also keep the symbols for the basic notation for the
sake of simplicity, e.g., we reuse Ai, Ci pi � 1, 2, 3q denoting the corresponding coefficients in
the analysis of u-component cut-off system.

As we have observed in Section 2.2.3, we require an extra condition on applying the blow-up
technique so that the value of v stays in a neighborhood of the origin. To that end, we define
a valid range of the speed consisting of a maximum and a minimum speed.

The maximum speed c follows the same idea as we have given in the v-component cut-off;
see Section 2.4.2.3. Recall the definition of the region II, i.e., u P pε, aq, and a P pε, 1� α

η q; where
the restriction on a is necessary for the existence of a front connecting the two steady states as
mentioned in Section 2.1. We can approximate the maximum speed by setting a

ε � 1 in the c-a
relation Fε in Equation (A.42), which is an explicit formula obtained by formal linearisation
patching, i.e., the region II is eliminated and the transition time given by τ � τ� � 0. Then
we obtain an equation Fc1 � ε, where

Fc1 :� αc

4η2

pc�?
c2 � 4qpc�

a
c2 � 4Dηqpc�Dc�D

?
c2 � 4�

a
c2 � 4Dηq

cpD � 1qpc�
a
c2 � 4Dηq � 2Dη � 2D2

�1

4
p1� α

η
qpc�

a
c2 � 4q2, (2.64)

where the value of cmax satisfies Fc1|c�cmax � ε.
The minimum speed is defined to ensure the value of v stays in a neighborhood around the

origin. Here, we define a “small” quantity σ, which is a constant or a function in dependence
on ε; if the value of v at the cut-off threshold u � ε satisfies the inequality v|u�ε ¤ σ, then
we treat this point of pu, vq|u�ε as a neighborhood of the origin. Transferring this inequality
into the equivalent blown-up space in chart K1, i.e. v � v1r1 with u � r1, we obtain that
vout

1 rout
1 ¤ σ; note that, vout

1 � �D
c A3 is defined in Σout

1 of (A.40), and the solution of A3 is
given in (A.41). Hence, the desired formula for v p� vout

1 rout
1 q is labeled by Fc2 � σ:

Fc2 :� � Dα

c
a
c2 � 4Dη

��
c�

a
c2 � 4Dη

�4

16D3 η2
� 1

�� ε
a

	 c�
?
c2�4D η

D pc�
?
c2�4q , (2.65)

where the values of c and a are obtained by the corresponding speed relation Fε � 0 in (A.41).
The minimum speed cmin satisfies the above equation Fc2 � σ; the speed in a range of

c ¥ cmin will support the application of the blow-up technique in the u-component cut-off
system.

52



In all, the valid speed range for the u-component cut-off system via the blow-up technique
is represented by pcmin, cmaxq, where Fc1|c�cmax � ε and Fc2|c�cmin � σ with Fε � 0.

For a more extensive discussion and numerical results, we refer to Appendix A.3.

Some numerical results

Here, we approximate the values of cmin and cmax by setting σ � ε for ease of computation,
for the corresponding valid speed range see Table 2.2.

Table 2.2: Approximated valid speed range pcmin, cmaxq, for D � 1, 2, 5 and 10 with ε �
0.01, 0.05, 0.01, and σ � ε, for fixed η � 0.12, α � 0.08

ε 0.1 0.05 0.01

D � 1 p0.5050, 2.8136q p0.6302, 4.2291q p0.8766, 9.8919q
D � 2 p0.8677, 2.8005q p1.1870, 4.2191q p2.1936, 9.8878q
D � 5 p1.6132, 2.7507q p2.4080, 4.1885q p5.5943, 9.8755q
D � 10 p2.4176, 2.6570q p3.6717, 4.1349q p8.7047, 9.8548q

Then, we present the comparison of the results of formal linearisation patching pFεq and the
general patching solution pGεq with D � 1, 2, 5, 10 and ε � 0.05; see Figure 2.31. We find that
the fit varies with different D: the fit is good for D � 1 and 2, while for D large, e.g. D � 5
or 10, the fit is bad in the range of the speed c P p0, 1q, which suggests the valid speed range of�
cmin, cmax

�
as mentioned above. For instance, when D � 5, cmin � 2.4080, we find the fit is

good above the minimum valid speed; the same phenomenon occurs for D � 10.
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Figure 2.31: Speed relation obtained by formal linearisation patching Fε, general patching Gε
and the singular limit a0pcq, for D � 1, 2, 5, 10 with ε � 0.05, for fixed η � 0.12, α � 0.08; here,
the small rectangular area is zoomed-in to the bottom left axes.
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2.7 Conclusions

Originally, the two-component system with Tonnelier-Gerstner reaction kinetics is one example
of the Morris-Lecar model, which is used to illustrate oscillations in the giant muscle fiber of bar-
nacles [67]. Due to its biophysical meaning and the fact that parameters are measurable, it has
received increasing attention in the computational neuroscience community [74]. In this chap-
ter, we have discussed the two component reaction-diffusion system with Tonnelier-Gerstner
kinetics with a cut-off by a combination of geometric analysis and numerical simulations.

For v-component cut-off system,

• We display the local and global structure of the singular and perturbed orbits in the blown-
up space; in particular, there exist three distinct scenarios of orbits in pū, w̄, ε̄q-space: low,
intermediate and high speed, which are determined by the position of corresponding P in

2

in chart K2.

• The existence of the singular orbit Γ is equivalent to the existence of the transition in chart
K1, where we observe the bifurcation behavior in the c-a speed relation. Then we perform
a formal linearisation and derive second-order normal form to obtain the corresponded
relation aεpcq and ãεpcq, respectively; and the formal linearisation patching provides good
accuracy between aεpcq and apc, εq.
• The maximum speed cmax is obtained by the criteria that region II vanishes via by formal

linearisation analysis, and cmax will tend to 8 as εÑ 0; there also exists a critical value
of speed ccrit represents the intersection of the curves of aεpcq and a0pcq.
• For ε sufficiently small, the cut-off will affect the propagating speed in different speed

range: accelerate the front or slow it down. In other words, cut-off pushes down the
discontinuity position a corresponding to the singular front solution for c P p0, ccritq, pulls
up the position in c P pccrit, cmaxq.

For u-component cut-off system, the approach follows the same procedure as that we followed
for the v-component cut-off system. Due to the specific situation as we have discussed in Section
2.2.3, extra speed condition is required to ensure that the solution stays in the neighborhood
of the origin, hence

• We define a valid range of the speed by pcmin, cmaxq, cmin is defined to ensure the value
of v stays in a neighborhood around the origin, cmax follows the same idea as we have
given in the v-component cut-off that region II vanishes.

• We perform a formal linearisation and derive second-order normal form to obtain the cor-
responded relation, see Appendix A.3; and the formal linearisation patching alos provides
good accuracy for the speed in its valid range pcmin, cmaxq, cmin.

• The cut-off could prevent the u-variable from becoming negative, which makes the corre-
sponding system more realistic biologically.

For further work, as our analysis is not fully rigorous, but as there is no resonance in the
underlying system, we do not consider the effect of higher order terms of the system in our
transition in chart K1, one may use more accurate normal form transformation and estimate
the effect of more terms on the related system to proceed a more accurate approach.
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Chapter 3

Oscillations in a cAMP signaling
model for cell aggregation

3.1 Introduction

In the present chapter, we perform a geometric analysis of a singularly perturbed model for a
cyclic AMP (cAMP) signaling system that controls aggregation of the amoeboid microorganism
Dictyostelium discoideum. The life cycle of Dd contains many basic processes throughout the
development of biology, in particular, the Dd cells, which are randomly located, will secrete
cAMP transferring information in the media through cell membrane. The extracellular cAMP
will activate the production of cAMP from intracellular ATP by binding the activate state of the
receptor. There exist the transitions between the activate state and the desensitized state via
a conformational change. The concentration of intracellular cAMP should remain within some
concentration level so that the cells can function normally, when concentration of intracellular
cAMP exceeds some limit, then cells secrete cAMP. The propagation of cAMP performs the
wavelike biological pattern formation, which has been studied for many different mathematical
models.

The periodic synthesis of pulses of cAMP constitutes an example of a biochemical oscilla-
tion of clear physiological significance [24]. Two main types of dynamic behaviour are observed
in cAMP signaling systems: autonomous oscillation [23, 24, 26] and relay of super-threshold
pulses [59, 63]. The model of cAMP signaling due to Goldbeter and Segel [27, 28] shows that
both types of dynamics are caused by the auto-catalytic regulation of adenylate cyclase, the
latter enzyme being activated on the binding of extracellular cAMP to the cell receptor [25,58].
Moreover, relay behaviour has been linked with autonomous oscillation, which represents the
excitability of the system. In the model by Goldbeter and Segel, the substrate ATP plays a role
in the oscillation and relay response; however, it has been shown experimentally that intracellu-
lar ATP remains constant during the oscillation [60], and that the relay results from the absence
of ATP consumption when the cAMP receptor is uncoupled from adenylate cyclase upon incu-
bation with caffeine [66]. These observations were made under the assumption that adenylate
cyclase is an allosteric enzyme; moreover, significant variation is required in the concentration
of ATP. Goldbeter and Martiel considered another situation, whereby the mechanism is based
on desensitisation of the cAMP receptor to extracellular cAMP, see Figure 3.1.

Figure 3.1: Model of the cAMP signaling system [46]
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The full model proposed by Martiel and Goldbeter, which consists of seven differential
equations, can be reduced to the three-variable system

dρT
dt

� �f1pγqρT � f2pγqp1� ρT q, (3.1a)

dβ

dt
� qσφpρT , γq � pki � ktqβ, (3.1b)

dγ

dt
� kt

h
β � keγ, (3.1c)

with

f1pγq � k1 � k2γ

1� γ
, f2pγq � k1L1 � k2L2γ

1� cγ
, (3.2a)

φpρT , γq � αpλθ � εY 2q
1� αθ � εY 2p1� αq , and Y � ρT γ

1� γ
. (3.2b)

Here, ρT represents the total fraction of receptor in the active state, while β and γ denote
intracellular and extracellular concentrations, respectively, of cAMP. Moreover, c, α, λ, θ, ε, σ,
h, ki, kt, ke, kj , Lj (j � 1, 2), and q are suitably defined parameters; details can be found in [46].
Equation (3.1) can be reduced further to a two-variable system for sufficiently large value of
the parameters q, ki, and kt, which allows a quasi-steady-state assumption to be made for β:

Equation (3.1b) implies β � qσ φpρT ,γqpki�ktq . Therefore, the effective dynamics is then characterised

by the following planar system of nonlinear ordinary differential equations (ODEs),

dρT
dt

� �f1pγqρT � f2pγqp1� ρT q, (3.3a)

dγ

dt
� qσkt
hpki � ktqφpρT , γq � keγ. (3.3b)

While experiments [46] indicate that q " 1, whereas ki and kt are of the order 1, and hence lower
than what is expected for a quasi-steady-state assumption, numerical simulation shows that the
planar system in (3.3) provides a reasonably good approximation for the three-variable system
in (3.1). Therefore, (3.3) can be considered as the core mechanism in the cAMP signaling
system, allowing for a phase plane analysis for relay and oscillation due to the simplicity of the
governing equations.

With these observations in mind, we now introduce the singular perturbation problem con-
sidered in the present chapter, which is based on a model that was proposed by Liţcanu and
Velázquez in [43] as a rescaled version of the three-variable Martiel-Goldbeter model, Equa-
tion (3.1):

Rτ prx, τq � κpU � Pεq
�
µpU � εq � pU � dεqR

pU � ε
c qpU � εq

�
, (3.4a)

Wτ prx, τq � bεpU � εq2 �ΘR2U2

pU � εq2 � ΛR2U2
�W, (3.4b)

Uτ prx, τq � Urxrx � ΓrW � U s. (3.4c)

The state variables, which are now denoted by R, W , and U , correspond to the total proportion
of receptors in the active state ρT , the concentration of intracellular cAMP β, and the concen-
tration of extracellular cAMP γ, respectively; the model parameters are defined in Table 3.1,

with τ � pki� ktqt and x �
b

D
ki�kt x̃. In particular, Equation (3.4) incorporates an extracellu-

lar cAMP diffusion term, as introduced in [69]; correspondingly, R, W , and U are functions of
both space x̃ and time τ . The main result of [43] is a proof for the existence of traveling pulse
solutions of (3.4) in one spatial dimension on the basis of singular perturbation theory, under
the assumption that the parameters κ and ε are small, cf. again Table 3.1; moreover, asymptotic
formulae are derived for these pulse solutions in a number of relevant scaling regimes.

Here, we study oscillatory dynamics in Equation (3.4) in the absence of diffusion. Imposing
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a quasi-steady-state assumption on W , as was done for (3.1) above, and noting that R, W , and
U now depend on τ only, we first reduce the model to the two-variable system

Rτ � κpU � PεqµpU � εq � pU � dεqR
pU � ε

c qpU � εq , (3.5a)

Uτ � bεpU � εq2 �ΘR2U2

pU � εq2 � ΛR2U2
� U. (3.5b)

Given the definition of the parameters κ and ε in [43], which are both assumed to be small, (3.5)
is singularly perturbed. Here, we emphasise that the impact of these two parameters on the
dynamics of (3.5) manifests very differently: while the parameter κ is a “conventional” singular
perturbation parameter that reflects the separation of scales between the slow variable R and
the fast variable U , the parameter ε induces a different type of singular perturbation which
affects mainly the geometry of the corresponding critical manifold S00 and which is reflected by
the non-uniformity of the limit as ε Ñ 0 in Equation (3.5); specifically, that limit will depend
fundamentally on whether U " ε or U � Opεq therein. Correspondingly, the limit as κ Ñ 0
in Equation (3.5) can be studied using Fenichel’s geometric singular perturbation theory [19],
while the structure of the resulting asymptotics in ε can be resolved rigorously via the blow-up
technique [14]. For an introduction to geometric singular perturbation theory and blow-up in
the context of the present family of problems, the reader is referred to Appendix A of [41].

Our analysis of Equation (3.5) is, in fact, motivated by the study of the Goldbeter-Lefever
model [61] in [41]; there, the critical manifold was found to consist of two non-hyperbolic lines
and one normally hyperbolic line. The blow-up method was then applied to obtain a complete
desingularisation of the flow near that manifold, allowing the authors to prove the occurrence
of relaxation oscillation in the system.

While Equation (3.5) shares some characteristics of the Goldbeter-Lefever model studied
in [41], it is slightly more degenerate: as will turn out, the critical manifold here is the union of
one non-hyperbolic line in the “inner” region and one normally hyperbolic curve in the “outer”
region, which meet in a degenerate steady state at the origin. Moreover, the U -variable has
to be scaled with the singular parameter ε due to the presence of the term pU � εq2 � ΛR2U2

in (3.5b), as ε cannot be eliminated by a simple change-of-coordinates, which represents the
major conceptual difference to the model considered in [41]. Therefore, the resulting singularly
perturbed structure of Equation (3.4) is novel; our resolution of that structure, and in particular
of the highly degenerate dynamics near the origin in pR,U, εq-space, results in improved under-
standing of the oscillatory dynamics that is observed in the reformulated singular perturbation
problem of cAMP signaling, Equation (3.5).

Motivated by [41], and in accordance with the numerical values given in Table 3.1, we

rescale the parameters µ � µ̃ε
1
2 , d � d̃ε

1
2 , and b � b̃ε in (3.5). These scalings broadly agree

with assumptions made in [43], where µ � d, µ � ε, and b ! 1 were considered; however, we

rescale µ and d with ε
1
2 instead of with ε here, which is consistent with the basic geometry of

oscillation found in [46] for the three-dimensional system, Equation (3.1). Moreover, we rewrite
the resulting equations in the equivalent form

R1 � κpU � Pεq pU � εq2 � ΛR2U2

pU � εqpU � ε
c q

�
µ̃ε

1
2 pU � εq � pU � d̃ε

3
2 qR�, (3.6a)

U 1 � b̃ε2pU � εq2 �ΘR2U2 � U
�pU � εq2 � ΛR2U2

�
, (3.6b)

which is obtained by formally multiplying the right-hand sides in (3.5) with a factor of pU �
εq2�ΛR2U2. (Since that factor is non-negative, the corresponding transformation of time does
not change the direction of the flow.) Here, the prime now denotes differentiation with respect
to the new, rescaled time.

The following is the main result of our analysis:

Theorem 3.1. Let pκ, εq P p0, κ0q � p0, ε0q, with κ0 and ε0 positive and sufficiently small.
Then, there exists a unique family of attracting periodic cycles Γκε for Equation (3.6), which
tends to Γ0ε as κÑ 0 uniformly for ε P p0, ε0s, and to the singular cycle Γ00 as pκ, εq Ñ p0, 0q.

A visualisation of the assertions of Theorem 3.1 can be found in Figure 3.2, where the

57



Table 3.1: Definition and numerical values, with orders of magnitude, of the parameters in
(3.4); cf. [43], where the quantities in the second column are defined.

Parameter Definition Order of magnitude Numerical value

κ k2p1�L2q
ki�kt ! 1 0.0023

µ m�d
m�1 ! 1 � d 0.1274

ε M�1 ! 1 0.1258
d 1�L1

c�L1
! 1 0.1

b αqσkt
pki�ktqh

λθ
1�αθ ! 1 0.01587

Γ ke
ki�kt � 1 2.1052

Λ pAµ2q�1 � 1 0.2966
Θ ΛBε � 1 or " 1 1.5087
c " 1 100

P k1
k2

" 1 100

singular cycle Γ0ε is sketched in addition to the nullclines of Equation (3.6) and a sample cycle
Γκε which was obtained numerically. Here, the values of the relevant parameters are as specified
in Table 3.1, with the exception of κp� 0.00023), µp� 0.13q, and dp� 0.071q; the latter two are
chosen such that the unique equilibrium in the system is shifted to the middle upper branch of
the U -nullcline with a restriction for ε   εmaxp� 0.2q, thus allowing for excitability and, hence,
oscillatory dynamics.

10-3 10-2 10-1 100
0.1

1

Figure 3.2: Nullclines and periodic cycles for Equation (3.6): R-nullcline (solid black); U -
nullcline (dot-dashed black); periodic cycle Γ0ε (dashed red); numerically computed periodic
cycle Γκε (solid purple), with κ � 0.00023, µ � 0.13, d � 0.071, and ε � 0.1258, other
parameters see Table 3.1; equilibrium (red dot). Log scale for U -axis.

In the remainder of the chapter, we will prove Theorem 3.1 by constructing a family of
periodic (relaxation-type) cycles for Equation (3.6); as is common in singular perturbation
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theory, we will first identify a singular cycle when κ � 0 � ε, where the cubic-shape of slow
manifold S0ε vanishes to the critical manifold S00, where the fold points vanish as well, see
Figure 3.3 and Figure 3.4 . Subsequently, we will show the persistence of that cycle for κ and ε
positive, but small. Our analysis follows that of Kosiuk and Szmolyan [41] in spirit, subject to
the appropriate modifications due to differences in the singular structure of (3.6); in particular,
our focus is on the resulting asymptotics in ε, which is discussed in detail, whereas the relatively
standard perturbation analysis with respect to κ is treated in a more cursory fashion.

3.2 Singular dynamics

For ε ¡ 0, asEquation (3.6)representsaslow� fastsysteminstandardform, with singular per-
turbation parameter κ, we rewrite the corresponding flow on the slow time-scale to obtain the
equivalent formulation

9R � pU � Pεq pU � εq2 � ΛR2U2

pU � εqpU � ε
c q

�
µ̃ε

1
2 pU � εq � pU � d̃ε

3
2 qR�, (3.7a)

κ 9U � b̃ε2pU � εq2 �ΘR2U2 � U
�pU � εq2 � ΛR2U2

�
. (3.7b)

In our analysis, we hence first consider the singular limit of κ � 0 in Equations (3.6) and
(3.7). The small ε dynamics in that limit will be studied separately in different regimes Rj
pj � 1, 2, 3q, which are defined in Section 3.3 below.

3.2.1 Slow-fast analysis for κ � 0 and ε ¡ 0

Setting κ � 0 in Equations (3.6) and (3.7) for fixed, positive ε defines two limiting systems, the
“layer problem”

R1 � 0, (3.8a)

U 1 � b̃ε2pU � εq2 �ΘR2U2 � U
�pU � εq2 � ΛR2U2

�
(3.8b)

and the “reduced problem”

9R � pU � Pεq pU � εq2 � ΛR2U2

pU � εqpU � ε
c q

�
µ̃ε

1
2 pU � εq � pU � d̃ε

3
2 qR�, (3.9a)

0 � b̃ε2pU � εq2 �ΘR2U2 � U
�pU � εq2 � ΛR2U2

�
. (3.9b)

The critical manifold S0ε, which is defined by (3.9b), is precisely the U -nullcline in Equa-
tion (3.6). The manifold S0ε is S-shaped; For @ ε P p0, ε0s, there exists a folded structure that
S0ε � Sa�0ε

�Sr0ε
�Sa�0ε , see Figure 3.3 for an illustration; linearisation of the layer problem,

Equation (3.8), about S0ε gives

BU 1

BU � 2b̃ε2pU � εq � 2ΘR2U � �pU � εq2 � ΛR2U2
�� 2U

�pU � εq � ΛR2U
�
,

which has zeroes at U � UA0ε � Opε2q and U � UC0ε � 2
3

ΘR2

1�ΛR2 � 4
3p1�ΛR2qε � Opε2q. Hence,

S0ε consists of three branches, which are separated by the two fold points A0ε :
�
UA0ε, R

A
0ε

�
and C0ε :

�
UC0ε, R

C
0ε

�
; the left branch Sa�0ε and the right branch Sa�0ε are attracting under

the layer flow of Equation (3.6), while the middle branch Sr0ε is repelling. (Here, the R-
coordinates of A0ε and C0ε are found by solving (3.9b), evaluated at UA0ε and UC0ε, respectively,

with RA0ε �
b

1�b̃
Θ �

b
1�b̃
Θ ε�Opε2q and RC0ε �

b
6
Θε

1
2 �Opεq.) In particular, we can apply the

results of the extended geometric singular perturbation theory to the fold points in our proof
of Theorem 3.1, for details see [42].

We denote the unique equilibrium of (3.6), which is found in the intersection of the R-
nullcline with S0ε, by E0ε; see Figure 3.3. (Due to our assumptions on the parameters d, µ,
and Θ, E0ε is, in fact, located on the middle branch Sr0ε of S0ε.) Analysis of the reduced
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flow on S0ε shows that R increases below the point A0ε on Sa�0ε , while it decreases on Sa�0ε .
(The direction of the flow on Sr0ε, as indicated in Figure 3.3, is determined by the sign of the

term rµ̃ε 1
2 pU � εq � pU � d̃ε

3
2 qRs in (3.9a).) Hence, we obtain the following standard singular

relaxation-type dynamics for κ � 0 and fixed, positive ε: orbits starting on Sa�0ε jump at the
fold point A0ε and reach a point D0ε on Sa�0ε along the 1-dimensional stable manifold thereof;
they then follow the reduced dynamics on Sa�0ε until they reach the fold point at C0ε, from
where they jump back to a point B0ε on Sa�0ε along the 1-dimensional stable manifold thereof;
finally, they follow the reduced dynamics on Sa�0ε until they reach A0ε, at which point the above
dynamics repeats. Correspondingly, we define the singular cycle Γ0ε, which consists of the
heteroclinic orbit ΓAD0ε connecting A0ε to D0ε under the layer flow of (3.8), the segment ΓDC0ε

of Sa�0ε from D0ε to C0ε, the heteroclinic orbit ΓCB0ε connecting C0ε to B0ε under the layer flow,
and the segment ΓBA0ε of Sa�0ε between B0ε and A0ε; cf. again Figure 3.3.

Remark 3.1. Here and in the following, reduced dynamics is depicted in blue, while the
corresponding layer flow is shown in green; double arrows indicate hyperbolicity, while non-
hyperbolic dynamics is indicated with single arrows.

0 1

0.5

1

0.006 0.012
1

1.1

1.2

Figure 3.3: Critical manifold S0ε for Equation (3.8).

As Equation (3.6) constitutes a two-parameter singular perturbation problem, we are inter-
ested in the double limit as κ and ε tend to zero simultaneously.

3.2.2 Slow-fast analysis for κ � 0 � ε

As will turn out, the limit as pκ, εq Ñ p0, 0q in Equation (3.6) is significantly more singular for
fixed ε than the limit of κÑ 0 considered in the previous subsection.

For pκ, εq � p0, 0q, (3.6) yields the seemingly simple layer problem

R1 � 0, (3.10a)

U 1 � ΘR2U2 � U
�
U2 � ΛR2U2

�
, (3.10b)
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which corresponds precisely to the system that is obtained from (3.8) for ε � 0. Equation (3.10)
admits the critical manifold S00, which consists of the curves Sr00 �

 pR, 0q ��R ¡ 0
(

and Sa�
00 � pU,Rq ��U � ΘR2

1�ΛR2 , R ¡ 0
(
, which meet in the origin Q. Linearisation of Equation (3.10)

about S00 shows that the curve Sa�
00 is normally hyperbolic, while Sr00 – the R-axis – and the

point Q are non-hyperbolic; see Figure 3.4 for an illustration.

0 1
0

1

Figure 3.4: Critical manifold S00 for Equation (3.10).

In particular, it follows that, for U and R bounded away from zero, the critical manifold
Sa�

0ε introduced in the previous subsection is a regular perturbation (in ε) of the manifold Sa�
00

defined above. Hence, standard theory [19] can be applied to show the persistence of Sa�
00 for κ

and ε positive and small in that case:

Proposition 3.1. Let ε P r0, ε0s be fixed, and let κ P r0, κ0q, with ε0 and κ0 positive and
sufficiently small. Moreover, let U P rα, 1s and R P rβ, 1s, with α and β positive and small, but
independent of pκ, εq. Then, the following statements hold:

1. For κ � 0, Equation (3.8) admits the critical manifold

Sa�0ε �  pR,Uq ��R P rβ, 1s, U � Φ0ε

(
; (3.11)

here, the function Φ0ε satisfies

Φ0ε � ΘR2

1� ΛR2
� b̃

1� ΛR2
ε2 �Opε3q. (3.12)

2. The manifold Sa�0ε is normally attracting, with a single negative eigenvalue � Θ2R4

1�ΛR2 .

3. The reduced flow on Sa�0ε is given by

9R � � Θ2R5

1� ΛR2
� Θ2R4µ̃

1� ΛR2

?
ε�Opεq,
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which implies, in particular, 9R   0 for ε sufficiently small.

4. For κ positive and small, the manifold Sa�0ε perturbs to a manifold

Sa�κε �  pR,Uq ��R P rβ, 1s, U � Φκε
(
, (3.13)

where Φκε � Φ0ε �Opκq is regular in pκ, εq to any order therein.

Remark 3.2. Comparison of Figures 3.3 and 3.4 shows that the manifolds Sa�0ε and Sr0ε merge
into Sr00 in the limit as ε Ñ 0, this makes Sr00 degenerate; in other words, the left attracting
branch of the critical manifold S0ε vanishes. Correspondingly, the points B0ε and C0ε coalesce
into the origin Q in that limit.

3.3 Scaling regimes

The discussion in Section 3.2 indicates that, for ε � 0, essential portions of the sought-after
relaxation cycle Γκε for Equation (3.6) are “hidden” in the non-hyperbolic line Sr00 and the
point Q; specifically, it is intuitively clear that Sa�0ε and Sr0ε merge into Sr00 in that limit, while
the fold point C0ε converges to the point Q, the origin. Appropriate rescalings of R and U
are required in order to make these aspects of the dynamics visible in different scaling regimes.
These regimes are denoted by Rj (j � 1, 2, 3), and are defined as follows:

1. Regime R1: U � Opε2q, R � Op1q;
2. Regime R2: U � Opεq, R � Opε 1

2 q;
3. Regime R3: U � Op1q, R � Op1q.

In particular, the “outer” and “inner” regions, which are mentioned in the Section 3.1, are
covered by Regime R3 and Regimes Rj (j � 1, 2), respectively; see Figure 3.5.

0
0

Figure 3.5: The scaling regimes R1, R2, and R3
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The above scalings in U – which then imply the corresponding scalings of R – can be sub-
stantiated via the method of Newton polygons [10]. In particular, it shows that the parameter
b is of the order Opεq is needed, as assumed above. In this section, we will discuss the geometry
in the above regimes in turn to motivate how the “full” singular dynamics of Equation (3.6) can
be desingularised to allow for a description of the resulting, global oscillation. Our discussion
will be substantiated, and made fully rigorous, in subsequent sections, where a desingularisation
will be achieved via the blow-up technique. In particular, as the three regimes introduced above
do not overlap, it is not a priori evident how to match them; here, we will show that matching
can be accomplished in various coordinate charts after blow-up, as was also done in [41]. (We
emphasise that these charts are not covered by the scaling regimes themselves, but that they
are found by our blow-up analysis.)

3.3.1 Regime R1: U � Opε2q, R � Op1q
Regime R1 covers a neighbourhood of the R-axis that is, however, bounded away from the
origin Q. Correspondingly, we introduce the scaling

R � R1 and U � ε2U1 (3.14)

in that regime. For the sake of definiteness, we assume that U1 P r0, ᾱ1s and R1 P rβ1, β̄1s,
where β1 is small, β̄1 is Op1q and ᾱ1 is large, corresponding to our assumption that the original

variables U and R satisfy U � Opε2q and R � Op1q; see Figure 3.6.
After dividing out the factor ε2, we obtain the following system of equations from Equation

(3.6):

R1
1 � κε

1
2 pεU1 � Pq pεU1 � 1q2 � ΛR2

1ε
2U2

1

pεU1 � 1qpεU1 � 1
c q

�
µ̃pεU1 � 1q � pε 1

2U1 � d̃qR1

�
, (3.15a)

U 1
1 � b̃pεU1 � 1q2 �ΘR2

1U
2
1 � U1

�pεU1 � 1q2 � ΛR2
1ε

2U2
1

�
, (3.15b)

which represents a slow-fast system in standard form for κ small.
When κ � 0, Equation (3.15) yields the layer problem

R1
1 � 0, (3.16a)

U 1
1 � b̃pεU1 � 1q2 �ΘR2

1U
2
1 � U1

�pεU1 � 1q2 � ΛR2
1ε

2U2
1

�
; (3.16b)

considering the limit of ε � 0 in (3.16), we obtain

R1
1 � 0, (3.17a)

U 1
1 � b̃�ΘR2

1U
2
1 � U1. (3.17b)

The critical manifold for Equation (3.17) – which follows from the corresponding reduced prob-
lem – is defined by equation b̃�ΘR2

1U
2
1�U1 � 0; we denote that manifold as S001

. The manifold
S001 consists of a left attracting branch Sa�001

, where U1   2b̃, and a right repelling branch Sr001

with U1 ¡ 2b̃; these two branches are separated by a fold point at A001
:

�
1

2
?

Θb̃
, 2b̃

�
. The

branch Sr001
is asymptotic to the U1-axis as U1 Ñ 8, while the branch Sa�001

intersects the

U1-axis in the point B001
is at p0, b̃q. Orbits starting close to the U1-axis are rapidly attracted

to Sa�001
; they then follow the reduced dynamics until they reach the fold point at A001

, where
they jump in the positive U1-direction along an orbit of the layer problem, Equation (3.16),
which we denote by ΓA001

. The geometry in regime R1 is summarised in Figure 3.6; for details
on the passage past a singularly perturbed planar fold, the reader is referred to [42], as well as
to the summary in Appendix A of [41].

Remark 3.3. We note that the steady state E0ε is not visible in regime R1: given our choice
of µ and d, with µ̃

d̃
¡ 1

2
?

Θb̃
, the equation tb̃�ΘR2

1U
2
1 �U1 � 0u��tR1� µ̃

d̃
u admits no real solutions

for U1. In particular, it follows that the reduced flow in the R1-variable is directed upwards to
A001

on S001
.
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0
0

Figure 3.6: Critical manifold S001
and fast dynamics in Regime R1

Remark 3.4. The critical manifold S001
corresponds to appropriately specified portions of

Sa�0ε and Sr0ε, as defined in Section 3.2.1, in the limit as ε Ñ 0, while the fold point at A001

corresponds to A0ε in that limit. In some sense, which is to be specified later, the point C0ε is
retrieved for U1 Ñ8 on Sr0ε1 in the limit as εÑ 0.

3.3.2 Regime R2: U � Opεq, R � Opε 1
2 q

Regime R2 covers a neighbourhood of the origin Q; recall Figure 3.5. We introduce the scaling

R � ε
1
2R2 and U � εU2; (3.18)

here, we assume that U2 P r0, ᾱ2s and R2 P r0, β̄2s, where ᾱ2 and β̄2 are large, corresponding

to our assumption that the original variables U and R satisfy U � Opεq and R � Opε 1
2 q,

respectively.
After division through a factor of ε2, Equation (3.6) becomes

R1
2 � κpU2 � Pq pU2 � 1q2 � ΛεR2

2U
2
2

pU2 � 1qpU2 � 1
c q

�
µ̃pU2 � 1q � �

U2 � d̃ε
1
2

�
R2

�
, (3.19a)

U 1
2 � b̃εpU2 � 1q2 �ΘR2

2U
2
2 � U2

�pU2 � 1q2 � ΛεR2
2U

2
2

�
, (3.19b)

which again represents a slow-fast system for κ small.
The layer problem obtained for κ � 0 now reads

R1
2 � 0, (3.20a)

U 1
2 � b̃εpU2 � 1q2 �ΘR2

2U
2
2 � U2

�pU2 � 1q2 � ΛεR2
2U

2
2

�
; (3.20b)
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setting ε � 0 in (3.20), we find the simplified system

R1
2 � 0, (3.21a)

U 1
2 � ΘR2

2U
2
2 � U2pU2 � 1q2; (3.21b)

the corresponding critical manifold, which is denoted as S002 , is defined by equation ΘR2
2U

2
2 �

U2pU2 � 1q2 � 0. The manifold S002
consists of a left attracting branch Sa�002

, corresponding
to tU2 � 0u, a middle repelling branch Sr002

, with 0   U2   1, and a right attracting branch
Sa�002

, where U2 ¡ 1. The branches Sr002
and Sa�002

are separated by a fold point C002
:
�

2?
Θ
, 1
�
.

Orbits follow the slow flow on the branch Sa�002
until they reach the fold point at C002 , where

they jump to a point B002
on Sa�002

and then follow the slow flow on Sa�002
; see Figure 3.7 for an

illustration. We note that the fold point at A0ε – and, hence, the fast jump to D0ε – is not
visible in this regime. Finally, by our assumptions on the parameters d and µ, the steady state
at E002

:
�
Θµ̃2, µ̃� 1

Θµ̃

�
is located on the upper middle repelling branch Sr002

. (That state is is

found in the intersection of S002
with the R2-nullcline

 
R2 � µ̃pU2�1q

U2

(
.)

0
0

Figure 3.7: Critical manifold S002 and fast dynamics in Regime R2

Remark 3.5. The critical manifold S002 corresponds to appropriately specified portions of
Sa�0ε , Sr0ε, and Sa�0ε , as defined in Section 3.2.1, in the limit as ε Ñ 0. In particular, the fold
point at C002

corresponds to C0ε, in that limit, while the point B002
is referring to B0ε. The

jump point at D0ε corresponds to the limit as U2 Ñ 8 on Sa�0ε2
, while the fold point at A0ε is

found in the limit as R2 Ñ8 on Sa�0ε2
in the limit of εÑ 0.

3.3.3 Regime R3: U � Op1q, R � Op1q
In regime R3, Equation (3.6) depends on ε in a regular fashion. We consider U3 P rα3, ᾱ3s, and
R3 P rβ3, β̄3s, where α3 and β3 are positive and small, with ᾱ3 and β̄3 are Op1q, corresponding
to our assumption that the original variables U and R satisfy U � Op1q and R � Op1q,
respectively.
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For κ � 0 in (3.6), we obtain the layer problem given in (3.16), while the limit of ε � 0
yields the singular layer problem

R1
3 � 0, (3.22a)

U 1
3 � ΘR2

3U
2
3 � U3

3 p1� ΛR2
3q. (3.22b)

The critical manifold for Equation (3.22), which we denote as Sa�003
, is defined by equation

ΘR2
3 � U3p1 � ΛR2

3q � 0, and is normally attracting. The reduced flow on Sa�003
for ε � 0 has

the form

9R3 � �U2
3R3p1� ΛR2

3q; (3.23)

hence, R3 is decreasing on Sa�003
; see Figure 3.8.

0
0

Figure 3.8: Critical manifold Sa�003
and fast dynamics in Regime R3

For ε ¡ 0, the curve Sa�003
perturbs regularly to the analogue, in regime R3, of the family

of the saddle-type critical manifolds that was denoted by Sa�0ε in Section 3.2.1. Standard
theory [19] implies that orbits to the left of the critical manifold Sa�003

are rapidly attracted by

the slow manifold corresponding to Sa�003
; they then follow the slow flow on that manifold.

Remark 3.6. In the limit as ε Ñ 0, the critical manifold Sa�003
corresponds to the portion of

Sa�0ε where U3 and R3 are Op1q. The point D003 P Sa�003
corresponds to the point D0ε P Sa�0ε

in that limit, while the singular orbit connecting the point A003 – which is not visible in this
regime – to D003

corresponds to the saddle-type fibre of the point D0ε in the limit as εÑ 0.
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3.3.4 Summary

To summarise our discussion of the three regimes Rj (j � 1, 2, 3), we define the singular cycle
Γ00 for Equation (3.6) in the limit of pκ, εq � p0, 0q as

Γ00 � ΓAD00
�

ΓDQ00
�

ΓQA00 ,

where the orbit ΓAD00 corresponds to the fast fibre of (3.8) that connects the points A00 :�
1

2
?

Θb̃
, 0

�
and D00 :

�
1

2
?

Θb̃
, Θ

4Θb̃�Λ

�
, the orbit ΓDQ00 is the segment of the critical manifold Sa�00

between the points Q00 : p0, 0q and D00, and ΓQA00 is the segment of the critical manifold Sr00

between the points Q00 and A00; see Figure 3.9. We emphasise again that the flow on Sr00 is

not defined, i.e., that the segment ΓQA00 is degenerate; that degeneracy will be partially resolved
by blow-up.

For pκ, εq Ñ p0, 0q, regime R1 collapses to the non-hyperbolic line Sr00, while regime R2

collapses to the non-hyperbolic origin; in particular, the points B00 and C00 coincide in the
double singular limit as Q00, as the fast fibre connecting them vanishes. In regime R3, on the
other hand, that limit is regular, as can be seen from the fact that the manifold Sa�00 remains
normally attracting.

In conclusion, the degenerate geometry of Γ00 has hence been locally resolved in the scaling
regimesRj (j � 1, 2, 3); however, to obtain a global picture, we need to investigate the transition
between these regimes via blow-up in order to achieve a uniformly valid, geometric description
of the oscillation in the two-parameter singular perturbation problem, Equation (3.6).

0
0

Figure 3.9: Critical manifold S00 for Equation (3.10) and the singular cycle Γ00.

3.4 Blow-up analysis

Given the highly singular nature of Equation (3.6) in Regimes R1 and R2, we apply the blow-up
technique to desingularise the dynamics in a neighbourhood of the non-hyperbolic R-axis, with
a particular focus on the degenerate equilibrium at the origin. To that end, we consider the
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augmented vector field that is obtained by appending the trivial equation ε1 � 0 in (3.6):

R1 � κpU � Pεq pU � εq2 � ΛR2U2

pU � εqpU � ε
c q

�
µ̃ε

1
2 pU � εq � pU � d̃ε

3
2 qR�, (3.24a)

U 1 � b̃ε2pU � εq2 �ΘR2U2 � U
�pU � εq2 � ΛR2U2

�
, (3.24b)

ε1 � 0. (3.24c)

Our analysis will proceed in two steps: first, we will blow up the origin in the extended pR,U, εq-
space, which will allow us to give a rigorous description of the dynamics in Regime R2; the
non-hyperbolic line Sr00 – which corresponds to Regime R1 – will be recovered in one of the
phase-directional charts in that blow up, and will be desingularised via a second (cylindrical)
blow-up transformation. The dynamics that is obtained in the various coordinate charts, post
blow-up, will then be combined into a global description of the flow of Equation (3.6) near the
degenerate R-axis that is uniformly valid in both κ and ε.

Remark 3.7. Recall Section 3.2.1, we here label the family of critical manifolds of system
(3.24) by S0ε, where S0ε � Sa�0ε

�FA0ε
�Sr0ε

�FC0ε
�Sa�0ε for ε P r0, ε0s, with fold curves FA0ε :� pA0ε, εq

�� ε P r0, ε0s
(

and FC0ε :�  pC0ε, εq
�� ε P r0, ε0s

(
.

3.4.1 Blow-up of the non-hyperbolic origin

We recall that RegimeR2 is specified by U � Opεq and R � Opε 1
2 q in Section 3.3.2. In reflection

of these scalings, we introduce the following quasi-homogeneous blow-up transformation of the
origin in Equation (3.24):

R � ρ̄r̄, U � ρ̄2ū, and ε � ρ̄2ε̄, (3.25)

with pr̄, ū, ε̄q P S2. In other words, the degenerate origin corresponding to ρ̄ � 0 in Equa-
tion (3.25) is blown up to the 2-sphere in R3. We will require two coordinate charts in our
analysis, which we denote by K1 and K2; these charts are obtained for r̄ � 1 and ε̄ � 1,
respectively, which implies

R � ρ1, U � ρ2
1u1, and ε � ρ2

1ε1 (3.26)

and

R � ρ2r2, U � ρ2
2u2, and ε � ρ2

2, (3.27)

respectively, for the coordinates in these charts.

Remark 3.8. For any object �κε given in the original pR,U, εq-variables, we denote the cor-
responding blown-up object by �κ. Moreover, in chart Ki, that object will be denoted by
�κi .

Lemma 3.1. The change-of-coordinates transformation K12 between charts K1 and K2 is given
by

K12 : pρ1, u1, ε1q ÞÑ
�
ρ2r2,

u2

r2
2

,
1

r2
2



; (3.28)

its inverse K21 � K�1
12 reads

K21 : pr2, u2, ρ2q ÞÑ
�

1?
ε1
,
u1

ε1
, ρ1

?
ε1



. (3.29)

We will first consider the dynamics in the “rescaling” chart K2; then, we will study the
flow in the “phase-directional” chart K1; in particular, the latter will allow us to describe the
transition between the “outer” and “inner” regions, which correspond to Regimes R1 and R2,
respectively, in Section 3.3.
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3.4.2 Dynamics in chart K2

In chart K2, the blow-up transformation defined in (3.25) is expressed as in (3.27); substituting
into Equation (3.24), we find

r12 � κρ4
2pu2 � Pq pu2 � 1q2 � Λρ2

2r
2
2u

2
2

pu2 � 1qpu2 � 1
c q

�
µ̃pu2 � 1q � pu2 � d̃ρ2qr2

�
, (3.30a)

u12 � ρ4
2

!
b̃ρ2

2pu2 � 1q2 �Θr2
2u

2
2 � u2

�pu2 � 1q2 � Λρ2
2r

2
2u

2
2

�)
, (3.30b)

ρ12 � 0. (3.30c)

By dividing out a factor of ρ4
2 from the right-hand sides in Equation (3.30), we obtain the

desingularised dynamics in chart K2:

r12 � κpu2 � Pq pu2 � 1q2 � Λρ2
2r

2
2u

2
2

pu2 � 1qpu2 � 1
c q

�
µ̃pu2 � 1q � pu2 � d̃ρ2qr2

�
, (3.31a)

u12 � b̃ρ2
2pu2 � 1q2 �Θr2

2u
2
2 � u2

�pu2 � 1q2 � Λρ2
2r

2
2u

2
2

�
, (3.31b)

ρ12 � 0, (3.31c)

which is a slow-fast system in standard form, with the (small) singular perturbation parameter
κ; correspondingly, the variable r2 is slow, while u2 is fast. We observe that K2 corresponds
precisely to Regime R2, as Equation (3.31) is equivalent to (3.19), with pR2, U2q � pr2, u2q,
ε � ρ2

2, and the (trivial) equation ρ12 � 0 appended. Hence, the geometric singular perturbation
analysis in chart K2 proceeds as in Section 3.3.2; the relevant dynamics in blow-up space is
again illustrated in Figure 3.7.

We first consider the flow of Equation (3.31) in the invariant plane tρ2 � 0u, which is
governed by

r12 � κpu2 � Pq u2 � 1

u2 � 1
c

�
µ̃pu2 � 1q � u2r2

�
, (3.32a)

u12 � Θr2
2u

2
2 � u2pu2 � 1q2, (3.32b)

ρ12 � 0. (3.32c)

Equation (3.32) is again a slow-fast system in standard form, with singular perturbation pa-
rameter κ; correspondingly, the variable r2 is slow, while u2 is fast. The corresponding layer
problem reads

r12 � 0, (3.33a)

u12 � Θr2
2u

2
2 � u2pu2 � 1q2, (3.33b)

ρ12 � 0. (3.33c)

It follows immediately from Section 3.3.2 that the critical manifold for Equation (3.33) consists
of the three branches Sa�02

, Sr02
, and Sa�02

; the former equals a segment of the r2-axis, and is

normally attracting under the flow of (3.33). The manifold Sr02

�Sa�02
is parabolic in shape; in

particular, Sr02
is normally repelling, while Sa�02

is normally attracting, outside of a neighbour-

hood of the fold point at C02
:
�

2?
Θ
, 1, 0

�
at which hyperbolicity is lost. See again Figure 3.7

for an illustration. (Here, we note that the notation �02
in chart K2 is equivalent to �002

in
Regime R2.)
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3.4.3 Dynamics in Chart K1

In chart K1, the blow-up transformation defined in Equation (3.25) is given as in (3.26). Sub-
stituting into Equation (3.24), we obtain the equivalent system of equations

ρ11 � κρ5
1pu1 � Pε1q pu1 � ε1q2 � Λρ2

1u
2
1

pu1 � ε1qpu1 � ε1
c q

�
µ̃ε

1
2
1 pu1 � ε1q �

�
u1 � d̃ρ1ε

3
2
1

	�
, (3.34a)

u11 � ρ4
1

!
b̃ρ2

1ε
2
1pu1 � ε1q2 �Θu2

1 � u1

�pu1 � ε1q2 � Λρ2
1u

2
1

�)
,

� 2κρ4
1u1pu1 � Pε1q pu1 � ε1q2 � Λρ2

1u
2
1

pu1 � ε1qpu1 � ε1
c q

�
µ̃ε

1
2
1 pu1 � ε1q �

�
u1 � d̃ρ1ε

3
2
1

	�
,

(3.34b)

ε11 � �2κρ4
1ε1pu1 � Pε1q pu1 � ε1q2 � Λρ2

1u
2
1

pu1 � ε1qpu1 � ε1
c q

�
µ̃ε

1
2
1 pu1 � ε1q �

�
u1 � d̃ρ1ε

3
2
1

	�
. (3.34c)

Dividing out a factor of ρ4
1 from the above equations and setting dividing out a factor of ρ4

1

from the resulting equations, as before, and setting

F1pρ1, u1, ε1q � pu1 � Pε1q pu1 � ε1q2 � Λρ2
1u

2
1

pu1 � ε1qpu1 � ε1
c q

�
µ̃ε

1
2
1 pu1 � ε1q �

�
u1 � d̃ρ1ε

3
2
1

	�
,

we obtain the system

ρ11 � κρ1F1pρ1, u1, ε1q, (3.35a)

u11 � b̃ρ2
1ε

2
1pu1 � ε1q2 �Θu2

1 � u1

�pu1 � ε1q2 � Λρ2
1u

2
1

�� 2κu1F1pρ1, u1, ε1q, (3.35b)

ε11 � �2κε1F1pρ1, u1, ε1q, (3.35c)

which is a slow-fast system with singular perturbation parameter κ; correspondingly, the vari-
ables ρ1 and ε1 are slow, while u1 is fast.

Remark 3.9. A priori, it may seem that the denominator pu1 � ε1qpu1 � ε1
c q in F1pρ1, u1, ε1q

may cause non-uniformity in the limit as pu1, ε1q Ñ p0, 0q. However, one can show that F1 at
pu1, ε1q � p0, 0q vanishes at least to the order Op2q; hence, the vector field in (3.35) is C3-smooth
in u1 and ε1, which is sufficient for our purposes.

Setting κ � 0 in Equation (3.35) gives the layer problem

ρ11 � 0, (3.36a)

u11 � b̃ρ2
1ε

2
1pu1 � ε1q2 �Θu2

1 � u1

�
pu1 � ε1q2 � Λρ2

1u
2
1

�
, (3.36b)

ε11 � 0, (3.36c)

The corresponding critical manifold S01
is the hypersurface in pρ1, u1, ε1q-space defined by the

set

b̃ρ2
1ε

2
1pu1 � ε1q2 �Θu2

1 � u1

�pu1 � ε1q2 � Λρ2
1u

2
1

� � 0. (3.37)

The flow in the invariant plane tρ1 � 0u is governed by

u11 � Θu2
1 � u1pu1 � ε1q2 � 2κu1F1p0, u1, ε1q, (3.38a)

ε11 � �2κε1F1p0, u1, ε1q, (3.38b)

with

F1p0, u1, ε1q � pu1 � Pε1qu1 � ε1

u1 � ε1
c

�
µ̃ε

1
2
1 pu1 � ε1q � u1

�
.

(One can show that the expansions of both u1F1p0, u1, ε1q and ε1F1p0, u1, ε1q in pu1, ε1q vanish
at least to Op2q; recall Remark 3.9.) Setting κ � 0 in Equation (3.38), we obtain the layer
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problem

u11 � Θu2
1 � u1pu1 � ε1q2, (3.39a)

ε11 � 0. (3.39b)

The critical manifold of Equation (3.39), which is denoted by Ŝ01
, is the set

 
u1

�
Θu1 � pu1 �

ε1q2 � 0
�(

; it consists of a normally attracting left branch Ŝa�01
corresponding to the invariant

line tu1 � 0u with ε1 positive, a normally repelling middle branch Ŝr01
that corresponds to

u1 P p0, Θ
4 q, and a normally attracting right branch Ŝa�01

corresponding to u1 P pΘ
4 ,Θs. The

branches Ŝr01
and Ŝa�01

are separated by the fold point C01
:
�
0, Θ

4 ,
Θ
4

�
; the equilibrium E01

:�
0, Θ3µ̃4

pΘµ̃2�1q2 ,
Θ2µ̃2

pΘµ̃2�1q2
	

, which is easily obtained from (3.37), lies on Ŝr01
due to our assumptions

on the parameters µ and Θ, while Ŝa�01
and Ŝr01

intersect in the non-hyperbolic point P1 :

p0, 0, 0q. (We note that, clearly, all three branches of Ŝ01
are intersections of S01

with the
plane tρ1 � 0u.) From the corresponding reduced problem, we see that ε1 increases above E01

on Ŝr01
and on Ŝa�01

, while it decreases below E01 on Ŝr01
and on Ŝa�01

. Hence, orbits follow

the slow manifold Ŝa�01
until they reach the fold point at C01

, where they jump to the point

B01
:
�
0, 0, Θ

4

� P Ŝa�01
.

In the invariant plane tε1 � 0u, F1pρ1, u1, 0q � �u2
1p1� Λρ2

1q implies

ρ11 � �κρ1u
2
1p1� Λρ2

1q, (3.40a)

u11 � u2
1

�
Θ� u1p1� Λρ2

1q
�� 2κu3

1p1� Λρ2
1q, (3.40b)

which, for κ � 0, yields the layer problem

ρ11 � 0, (3.41a)

u11 � u2
1

�
Θ� u1p1� Λρ2

1q
�
. (3.41b)

The critical manifold for Equation (3.41), which is denoted by Š01
, is defined by equation

u2
1

�
Θ � u1p1 � Λρ2

1q
� � 0. A straightforward calculation shows that Š01

consists of a right

attracting branch Ša�01
corresponding to the invariant curve u1 � Θ

1�Λρ21
and the non-hyperbolic

line Šr01
, given by tu1 � 0u. Both branches of Š01

are intersections of the critical manifold S01

for Equation (3.36) with the plane tε1 � 0u. From the corresponding reduced problem, we find
that ρ1 is decreasing on Ša�01

. Finally, the curves Ša�01
and Ŝa�01

intersect on the u1-axis at the
point Q1 : p0,Θ, 0q; see Figure 3.10 for an illustration.
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Figure 3.10: The geometry in chart K1: critical manifolds and reduced flows in blue; orbits of
layer problem in green.

We may summarise the above discussion as follows:

Lemma 3.2. For ρ1 or ε1 sufficiently small, the critical manifold S01 for Equation (3.37) has
the following properties:

i. The manifold S01
� Sa�01

�Sr01

�FC01

�Sa�01
is smooth away from the line Šr01

.

ii. The manifold S01
has a folded structure; specifically, it is divided by the fold curve FC01

into

two branches Sr01
and Sa�01

, whereas the branches Sa�01
and Sr01

intersect cusp-like along Šr01
.

iii. The branches Sa�01
and Sa�01

are attracting under the layer flow of Equation (3.36), while
the branch Sr01

is repelling.

iv. The restriction of Sa�01
, Sr01

, and Sa�01
to the invariant hyperplane tρ1 � 0u corresponds to

Ŝa�01
, Ŝr01

, and Ŝa�01
, respectively; correspondingly, the fold curve FC01

reduces to the point
C01

.

v. In the invariant hyperplane tε1 � 0u, Sa�01
and Sr01

coalesce into Šr01
, while Sa�01

corresponds

to Ša�01
in that limit.

Proof. The proof follows from the Implicit Function Theorem, in combination with the struc-
tural stability of folds; see [41] and the references therein for details. In particular, the geometric
singular perturbation theory has been extended to the fold point by Krupa and Szmolyan [42],
where they present a detailed geometric approach for a generic fold in the planar case of system.
For more analysis of the fold curve in R3, we refer to the results of [65].

Summing up we have the following situation in chart K1: the segment ΓDQ̌01
of the singular

orbit is initialised close to the point D01
:
�

1

2
?

Θb̃
, 4Θ2b̃

4Θb̃�Λ
, 0
�
, which is obtained in chart K4 in

the following section; the orbit is attracted to Ša�01
and then follows the slow flow on Ša�01

until
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it reaches the point Q̌1; the continuation of ΓDQ̌01
past Q̌1 is given by the orbit ΓQ̌C01

along the

slow flow on Ŝa�01
to the fold point at C01

, where the orbit ΓCB01
represents the jump along the

fast flow to the point B01 on Ŝa�01
; the orbit ΓBP̌01

then follows the slow flow on Ŝa�01
to the origin

P1. The continuation of the orbit is located on the degenerate (non-hyperbolic) line Šr01
; to

resolve that degeneracy, we require a further blow-up transformation, which is introduced in
the subsequent subsection.

3.4.4 Blow-up of the non-hyperbolic line

To analyse the dynamics in a neighbourhood of the non-hyperbolic line Šr01
recovered in chart

K1, we introduce the quasi-homogeneous, cylindrical blow-up transformation

ρ1 � r̄, u1 � δ̄2ū, and ε1 � δ̄ε̄. (3.42)

We will require the coordinate charts K3 and K4, which are obtained for ε̄ � 1 and ū � 1,
respectively; hence, we have

ρ1 � r3, u1 � δ2
3u3, and ε1 � δ3 (3.43)

and

ρ1 � r4, u1 � δ2
4 , and ε1 � δ4ε4, (3.44)

respectively, for the coordinates in these charts.

Lemma 3.3. The change-of-coordinates transformation K34 between charts K3 and K4 is given
by

K34 : pr3, u3, δ3q ÞÑ
�
r4,

1

ε2
4

, δ4ε4



; (3.45)

its inverse K43 � K�1
34 reads

K43 : pr4, δ4, ε4q ÞÑ
�
r3, δ3

?
u3,

1?
u3



. (3.46)

3.4.5 Dynamics in chart K3

In chart K3, the blow-up transformation defined by ε̄ � 1 in Equation (3.42) is given as in
(3.43). Substituting into Equation (3.35), we obtain the equivalent system of equations

r13 � κr3δ
5
2
3 pδ3u3 � Pq pδ3u3 � 1q2 � Λr2

3δ
2
3u

2
3

pδ3u3 � 1qpδ3u3 � 1
c q

�
µ̃pδ3u3 � 1q �

�
δ

1
2
3 u3 � d̃r3

	�
, (3.47a)

u13 � δ2
3

!
b̃r2

3pδ3u3 � 1q2 �Θu2
3 � u3

�pδ3u3 � 1q2 � Λr2
3δ

2
3u

2
3

�)
� 2κδ

5
2
3 u3pδ3u3 � Pq pδ3u3 � 1q2 � Λr2

3δ
2
3u

2
3

pδ3u3 � 1qpδ3u3 � 1
c q

�
µ̃pδ3u3 � 1q �

�
δ

1
2
3 u3 � d̃r3

	�
,

(3.47b)

δ13 � �2κδ
7
2
3 pδ3u3 � Pq pδ3u3 � 1q2 � Λr2

3δ
2
3u

2
3

pδ3u3 � 1qpδ3u3 � 1
c q

�
µ̃pδ3u3 � 1q �

�
δ

1
2
3 u3 � d̃r3

	�
. (3.47c)

Dividing out the factor δ2
3 and defining dividing out the factor δ2

3 from the resulting equations,
and defining

F3pr3, u3, δ3qp� F1pr3, δ
2
3u3, δ3qδ�2

3 q � δ
1
2
3 pδ3u3 � Pq pδ3u3 � 1q2 � Λr2

3δ
2
3u

2
3

pδ3u3 � 1qpδ3u3 � 1
c q

�
�
µ̃pδ3u3 � 1q �

�
δ

1
2
3 u3 � d̃r3

	�
,
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we obtain the system

r13 � κr3F3pr3, u3, δ3q, (3.48a)

u13 � b̃r2
3pδ3u3 � 1q2 �Θu2

3 � u3

�pδ3u3 � 1q2 � Λr2
3δ

2
3u

2
3

�� 2κu3F3pr3, u3, δ3q, (3.48b)

δ13 � �2κδ3F3pr3, u3, δ3q, (3.48c)

which is a slow-fast system in standard form, with singular perturbation parameter κ; corre-
spondingly, the variables r3 and δ3 are slow, while u3 is fast. Here, the prime now denotes
differentiation with respect to a new time variable. For κ � 0 in (3.48), one obtains the layer
problem

r13 � 0, (3.49a)

u13 � b̃r2
3pδ3u3 � 1q2 �Θu2

3 � u3

�pδ3u3 � 1q2 � Λr2
3δ

2
3u

2
3

�
, (3.49b)

δ13 � 0. (3.49c)

The corresponding critical manifold S03
is described by a hypersurface in tpr3, u3, δ3qu-space

that is defined by the set

b̃r2
3pδ3u3 � 1q2 �Θu2

3 � u3

�pδ3u3 � 1q2 � Λr2
3δ

2
3u

2
3

� � 0. (3.50)

The flow of Equation (3.48) in the invariant plane tr3 � 0u is governed by

u13 � Θu2
3 � u3pδ3u3 � 1q2 � 2κu3F3p0, u3, δ3q, (3.51a)

δ13 � �2κδ3F3p0, u3, δ3q, (3.51b)

with

F3p0, u3, δ3q � δ
1
2
3 pδ3u3 � Pq δ3u3 � 1

δ3u3 � 1
c

�
µ̃pδ3u3 � 1q � δ

1
2
3 u3

�
,

which is again a slow-fast system with respect to κ; correspondingly, the variable ε3 is slow,
while u3 is a fast variable. Setting κ � 0, we obtain the layer problem

u13 � Θu2
3 � u3pδ3u3 � 1q2, (3.52a)

δ13 � 0. (3.52b)

The critical manifold in the plane tr3 � 0u, which we denote by Ŝ03 , is defined by equation
u3

�
Θu3 � pδ3u3 � 1q2� � 0. It consists of an attracting left branch Ŝa�03

– the δ3-axis, a

repelling middle branch Ŝr03
, and an attracting right branch Ŝa�03

. The branches Ŝr03
and Ŝa�03

are separated by a fold point at C03
:
�
0, 4

Θ ,
Θ
4

�
; here, we note that the equilibrium E03

:�
0, pΘµ̃

2�1q2
Θ , Θ2µ̃2

pΘµ̃2�1q2
	

lies in Ŝr03
. Moreover, Ŝa�03

and Ŝr03
intersect the u3-axis in the points

P̂3 : p0, 0, 0q and Q̂3 : p0, 1
Θ , 0q, respectively. All three branches of Ŝ03

are intersections of S03

with the plane tr3 � 0u. From the corresponding reduced problem, we conclude that δ3 is
increasing on Ŝr03

above E03 and on Ŝa�03
, while it is decreasing on Ŝr03

below E03 and on Ŝa�03
.

Hence, orbits follow the slow manifold Ŝa�03
until they reach the fold point at C03 , where they

jump to the point B03
:
�
0, 0, Θ

4

� P Ŝa�03
.

Next, we consider the flow of Equation (3.48) in the invariant plane tδ3 � 0u, which is
governed by

r13 � 0, (3.53a)

u13 � b̃r2
3 �Θu2

3 � u3. (3.53b)

The corresponding critical manifold, which is denoted by Š03
, is defined by equation b̃r2

3 �
Θu2

3 � u3 � 0; it consists of a left attracting branch Ša�03
corresponding to u3 P r0, 1

2Θ q and a

right repelling branch Ša�03
which corresponds to u3 P p 1

2Θ ,
1
Θ s. The two branches are separated
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by a fold point at A03
:
�

1

2
?

Θb̃
, 1

2Θ , 0
�
. Both branches are intersections of S03 with the plane

tδ3 � 0u. The geometry in chart K3 is summarised in Figure 3.11. Due to F3pr3, u3, 0q � 0,
the reduced flow in δ3 � 0u is degenerate; however, for δ3 positive and small, orbits follow the
corresponding sheet Sa03

of S03 until they reach the fold curve FA03
and then jump forward to a

point D03
, which is not visible in this chart.

Remark 3.10. When δ3 is small, given our choice of µ and d, with µ̃

d̃
¡ 1

2
?

Θb̃
, the term�

µ̃pδ3u3 � 1q � �
δ

1
2
3 u3 � d̃r3

��
in F3pr3, u3, δ3q, rewritten as

�pµ̃� d̃r3q � u3δ
1
2
3 � µ̃u3δ3

�
, admits

the positive sign of r13 for r3 ¤ 1

2
?

Θb̃
, and it follows that the reduced flow in the r3-variable is

directed upwards to A03
on Sa03

; recall Remark 3.3.

Figure 3.11: The geometry in chart K3.

We conclude with the following result, the proof of which is analogous to that of Lemma 3.2:

Lemma 3.4. For r3 or δ3 sufficiently small, the critical manifold S03
for Equation (3.50) has

the following properties:

i. The manifold S03 � Sa�03

�FA03

�Sr03

�FC03

�Sa�03
is smooth.

ii. The manifold S03 has a folded structure; in particular, the branches Sa�03
and Sr03

are

separated by the fold curve FA03
, while Sr03

and Sa�03
are separated by the fold curve FC03

.

iii. The branches Sa�03
and Sa�03

are attracting under the layer flow of Equation (3.49), while
the branch Sr03

is repelling.

iv. The restriction of Sa�03
, Sr03

and Sa�03
to the invariant hyperplane tr3 � 0u corresponds to

Ŝa�03
, Ŝr03

and Ŝa�03
, respectively. Correspondingly, the fold curve FC03

reduces to the point
C03

.

v. In the invariant hyperplane tδ3 � 0u, Sa�03
and Sr03

reduce to Ša�03
and Šr03

, respectively.

The fold curve FA03
tends to the point A03

in that limit.

75



In summary, the segment ΓC03
of the singular orbit follows the slow flow on Ŝa�03

to the fold

point C03 ; the orbit ΓCB03
represents the jump along the fast flow to the point B03 . The segment

ΓBP̂03
then follows the slow flow on Ŝa�03

until it reaches the origin P̂3, continuing with the orbit

ΓP̂A03
that corresponds to the segment of Ša�03

between P̂3 and the fold point A03 ; finally, the
orbit jumps along the fast flow to the right for u3 large. We label the corresponding segment
by ΓA03

. The large-u3 dynamics of Equation (3.48) is then naturally studied in chart K4.

3.4.6 Dynamics in chart K4

In chart K4, the blow-up transformation defined by ū1 � 1 in Equation (3.42) is given as in
(3.44). Substituting into Equation (3.35), we obtain the equivalent system of equations

r14 � κr4δ
5
2
4 pδ4 � Pε4q pδ4 � ε4q2 � Λr2

4δ
2
4

pδ4 � ε4qpδ4 � ε4
c q

�
µ̃ε

1
2
4 pδ4 � ε4q �

�
δ

1
2
4 � d̃r4ε

3
2
4

	�
, (3.54a)

δ14 �
1

2
δ3
4

!
b̃r2

4ε
2
4pδ4 � ε4q2 �Θ� �pδ4 � ε4q2 � Λr2

4δ
2
4

�)
,

� κδ
7
2
4 pδ4 � Pε4q pδ4 � ε4q2 � Λr2

4δ
2
4

pδ4 � ε4qpδ4 � ε4
c q

�
µ̃ε

1
2
4 pδ4 � ε4q �

�
δ

1
2
4 � d̃r4ε

3
2
4

	�
,

(3.54b)

ε14 � �1

2
δ2
4ε4

!
b̃r2

4ε
2
4pδ4 � ε4q2 �Θ� �pδ4 � ε4q2 � Λr2

4δ
2
4

�)
� κε4δ

5
2
4 pδ4 � Pε4q pδ4 � ε4q2 � Λr2

4δ
2
4

pδ4 � ε4qpδ4 � ε4
c q

�
µ̃ε

1
2
4 pδ4 � ε4q �

�
δ

1
2
4 � d̃r4ε

3
2
4

	�
.

(3.54c)

By dividing out the factor δ2
4 and defining dividing out a factor of δ2

4 , and defining

F4pr4, δ4, ε4qp� F1pr4, δ
2
4 , δ4ε4qδ�2

4 q � δ
1
2
4 pδ4 � Pε4q pδ4 � ε4q2 � Λr2

4δ
2
4

pδ4 � ε4qpδ4 � ε4
c q

�
�
µ̃ε

1
2
4 pδ4 � ε4q �

�
δ

1
2
4 � d̃r4ε

3
2
4

	�
,

we obtain the simplified system

r14 � κr4F4pr4, δ4, ε4q, (3.55a)

δ14 �
1

2
δ4

!
b̃r2

4ε
2
4pδ4 � ε4q2 �Θ� �pδ4 � ε4q2 � Λr2

4δ
2
4

�)� κδ4F4pr4, δ4, ε4q, (3.55b)

ε14 � �1

2
ε4

!
b̃r2

4ε
2
4pδ4 � ε4q2 �Θ� �pδ4 � ε4q2 � Λr2

4δ
2
4

�)� κε4F4pr4, δ4, ε4q, (3.55c)

which is a slow-fast system with singular perturbation parameter κ; correspondingly, the vari-
able r4 is slow, while δ4 and ε4 are fast. Here, the prime now denotes differentiation with
respect to ξ.

Remark 3.11. The denominator pδ4� ε4qpδ4� ε4
c q in F4pr4, δ4, ε4q may be expected to render

the limit as pδ4, ε4q Ñ p0, 0q in (3.55) non-uniform; recall Remark 3.9. Since, however, the
expansion of F4 at pδ4, ε4q � p0, 0q vanishes at least to the order Op2q, one again has at least
C2-smoothness in δ4 and ε4.

Setting κ � 0 in (3.55), we obtain the layer problem

r14 � 0, (3.56a)

δ14 �
1

2
δ4

!
b̃r2

4ε
2
4pδ4 � ε4q2 �Θ� �pδ4 � ε4q2 � Λr2

4δ
2
4

�)
, (3.56b)

ε14 � �1

2
ε4

!
b̃r2

4ε
2
4pδ4 � ε4q2 �Θ� �pδ4 � ε4q2 � Λr2

4δ
2
4

�)
. (3.56c)

The corresponding critical manifold S04
is described by the hypersurface in tpr4, δ4, ε4qu-space
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that is defined by the set

b̃r2
4ε

2
4pδ4 � ε4q2 �Θ� �pδ4 � ε4q2 � Λr2

4δ
2
4

� � 0 or δ4 � 0 � ε4. (3.57)

We consider the flow of Equation (3.56) in the invariant plane tδ4 � 0u, which is governed
by

r14 � 0, (3.58a)

ε14 � �1

2
ε4

�
b̃r2

4ε
4
4 �Θ� ε2

4

�
. (3.58b)

The corresponding critical manifold is defined by

b̃r2
4ε

4
4 �Θ� ε2

4 � 0 or ε4 � 0;

it consists of a lower repelling branch Šr04
corresponding to ε4 P r?Θ,

?
2Θq and an upper

attracting branch Ša�04
with ε4 P p?2Θ,8q, which are separated by the fold point A04

:�
1

2
?

Θb̃
, 0,

?
2Θ

�
, as well as of the attracting r4-axis, which we denote by Sr04

. All three

branches are found in the intersection of S04
with the plane tδ4 � 0u. Orbits follow the

slow manifold Ša�04
until they reach the fold point at A04

, where they jump forward to the point

P̌4 : p 1

2
?

Θb̃
, 0, 0q P Sr04

.

In the invariant plane tε4 � 0u, Equation (3.56) reduces to

r14 � �κr4δ
2
4p1� Λr2

4q, (3.59a)

δ14 �
1

2
δ4
�
Θ� δ2

4p1� Λr2
4q
�� κδ3

4p1� Λr2
4q, (3.59b)

as F4pr4, δ4, 0q � �δ2
4p1� Λr2

4q then. The corresponding layer problem is obtained for κ � 0,

r14 � 0, (3.60a)

δ14 �
1

2
δ4
�
Θ� δ2

4p1� Λr2
4q
�
, (3.60b)

which implies that the critical manifold satisfies

Θ� δ2
4p1� Λr2

4q � 0 or δ4 � 0;

that manifold consists of a right attracting branch Ša�04
, which intersects the δ4-axis in the

point Q̌4 � p0,?Θ, 0q, and the repelling r4-axis, which we again denote by Sr04
. Orbits starting

close to P̌4 P Sr04
leave along the unstable manifold thereof and jump to the point D04

:�
1

2
?

Θb̃
, 2Θ

?
b̃?

4Θb̃�Λ
, 0
�

in Ša�04
; then, they follow the slow manifold Ša�04

until they reach the point

Q̌4. An illustration of the resulting geometry can be found in Figure 3.12.
Similarly, in the invariant plane tr4 � 0u, the flow of Equation (3.56) is governed by

δ14 �
1

2
δ4
�
Θ� pδ4 � ε4q2

�� κδ4F4p0, δ4, ε4q, (3.61a)

ε14 � �1

2
ε4

�
Θ� pδ4 � ε4q2

�� κε4F4p0, δ4, ε4q, (3.61b)

where

F p0, δ4, ε4q � δ
1
2
4 pδ4 � Pε4q δ4 � ε4

δ4 � ε4
c

�
µ̃ε

1
2
4 pδ4 � ε4q � δ

1
2
4

�
.

(Again, one can conclude C3-smoothness of the vector field in (3.61) as pδ4, ε4q Ñ p0, 0q due to
the fact that the expansions of δ4F4p0, δ4, ε4q and ε4F4p0, δ4, ε4q in pδ4, ε4q vanish at least to
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Op2q; recall Remark 3.11.) Setting κ � 0, we obtain the layer problem

δ14 �
1

2
δ4
�
Θ� pδ4 � ε4q2

�
, (3.62a)

ε14 � �1

2
ε4

�
Θ� pδ4 � ε4q2

�
; (3.62b)

the corresponding critical manifold, which is denoted by Ŝ04
, is defined by the set

Θ� pδ4 � ε4q2 � 0
(

or tδ4 � 0 � ε4.

The branch obtained from the first condition above is a line that consists of an attracting

right segment Ŝa�04
connecting the point Q̌4 to the fold point at C04

:
�
0,

?
Θ
2 ,

?
Θ
2

�
and a

repelling left segment connecting the point Q̂4 : p0, 0,?Θq to C04 ; the corresponding equilibrium

E04
:
�
0, Θ

3
2 µ̃2

Θµ̃2�1 ,
Θ

Θµ̃2�1

�
lies in Ŝr04

. The reduced flow on Ŝr04
is increasing above E04

, while it
decreases below E04 until it reaches the fold point at C04 .

Figure 3.12: Singular geometry in chart K4.

In conclusion, we have the following result:, the proof of which is again analogous to that of
Lemma 3.2:

Lemma 3.5. For r4, δ4, or ε4 sufficiently small, the critical manifold S04
for Equation (3.57)

has the following properties:

i. The manifold S04 � Sa�04

�FA04

�Sr04

�FC04

�Sa�04
is smooth away from line Sr04

.

ii. S04
has a folded structure; in particular, the branches Sa�04

and Sr04
are separated by the

fold curve FA04
, while Sr04

and Sa�04
are separated by the fold curve FC04

.

iii. The branches Sa�04
and Sa�04

are attracting under the layer flow of Equation (3.56), while
the branch Sr04

is repelling.
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iv. The restriction of Sr04
and Sa�04

to the invariant hyperplane tr4 � 0u corresponds to Ŝr04

and Ŝa�04
, respectively. Correspondingly, the fold curve FC04

reduces to the point C04 .

v. In the invariant hyperplane tδ4 � 0u, Sa�04
and Sr04

reduce to Ša�04
and Šr04

, respectively.

The fold curve FA04
tends to the point A04 in that limit.

vi. The restriction of Sa�04
to the invariant hyperplane tε4 � 0u corresponds to Ša�04

.

vii. The manifold Sr04
consists of equilibria for Equation (3.55), with 1-dimensional stable man-

ifold in the hyperplane tδ4 � 0u and 1-dimensional unstable manifold in the hyperplane
tε4 � 0u

To summarise, the segment ΓAP̌04
of the singular cycle is initiated close to the fold point at

A04 and is attracted to Ša�04
, where it jumps forward along the fast flow to the point P̌4; the

orbit ΓP̌D04
then leaves along the unstable manifold and is attracted by Ša�04

connecting to the

point D04
; the orbit ΓDQ̌04

follows the slow flow Ša�04
to the point Q̌4 and continues as the orbit

ΓQ̌C04
along the slow flow on Ŝa�04

until it reaches the point C04 , where the orbit ΓC04
represents

the jump back which is, however, not visible in chart K4, but is discussed in K3 already.

3.4.7 Global geometry in blow-up space

We now summarise the global geometry of the blow-up space, which we label Mκ; the above
analysis implies that Mκ consists of the sphere MU and the cylinder MR, which are obtained
by the blow-up transformation in (3.25) at the origin Q in pR,U, εq-space and the blow-up in
(3.42) of the non-hyperbolic line Šr01

in chart K1 of the former, respectively; see Figure 3.14.

Lemma 3.6. The critical manifold of system (3.24) in blow-up space M0 is defined as

S̄0 � S̄a�0
� F̄A0

� S̄r0
� F̄C0

� S̄a�0 ;

here, the branches S̄a�0 and S̄a�0 are attracting under the layer flow that is induced by Equa-
tion (3.8) after blow-up, while the branch S̄r0 is repelling. Moreover, S̄a�0 and S̄a�0 are separated
by the fold curve F̄A0 , while S̄r0 and S̄a�0 are separated by the fold curve F̄C0 . Recall Remark
3.8, the notation of �κ corresponding to the original object �κε after blow-up.

Lemma 3.7. The singular cycle Γ̄00 is defined by

Γ̄00 � Γ̄AP̌00
�

Γ̄P̌D00
�

Γ̄DQ̌00
�

Γ̄Q̌C00
�

Γ̄CB00
�

Γ̄BP̂00
�

Γ̄P̂A00 . (3.63)

Here, the heteroclinic orbit Γ̄AP̌00 is located on the cylinder MR and represents the fast jump

from the point Ā0 to the point P̌ P S̄r0 ; the heteroclinic orbit Γ̄P̌D00 lies in the plane tε̄ � 0u,
connecting P̌ to the point D̄0 P S̄a�0 ; and Γ̄DQ̌00 represents the transition on S̄a�0 from D̄0 to

the point Q̌. On the sphere MU , the segment Γ̄Q̌C00 on S̄a�0 connects the point Q̌ to the fold
point at C̄0; Γ̄CB00 denotes the heteroclinic connection from C̄0 to the point B̄0 P S̄a�0 , followed

by the orbit Γ̄BP̂00 from B̄0 to the point P̂ . The final part Γ̄P̂A00 is located on the cylinder MR,
and denotes the transition on S̄a�0 from P̂ to the fold point at Ā0. (Here, we label the orbits in
blow-up space by Γ̄κε for clarify, with the singular cycle Γ̄00 defined by pκ, εq Ñ p0, 0q.)

An illustration of Γ̄00 and Γ̄0ε can be found in Figure 3.14 and the corresponding charts
Ki pi � 1, ..., 4q in Figure 3.13.
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Figure 3.13: The charts Ki (i � 1, . . . , 4) in blow-up space M0.

Figure 3.14: Geometry in blow-up space M0: the singular cycle Γ̄00 and the orbit Γ̄0ε.
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3.5 Poincaré map and existence

To prove the persistence of the singular cycle Γ̄00 for κ and ε sufficiently small, we construct a
Poincaré map in the neighborhood of Γ̄00 which is obtained through the concatenation of three
transition maps Πi, i � 1, 3, 4, between the specific sections for the flow in blow-up space Mκ;
see Figure 3.15.

Figure 3.15: The sections of the Poincaré map

i. The transition map Π1 : Σ1 Ñ Σ3 is initialised in a section Σ1; the corresponding flow is
attracted to the slow manifold S̄a�κ , which it follows up to the non-hyperbolic fold curve
F̄C0 , where it jumps along the heteroclinic connection Γ̄CB00 to reach a section Σ3.

ii. The transition map Π3 : Σ3 Ñ Σ4 is initialised in a section Σ3; the corresponding flow is
attracted to the slow manifold S̄a�κ , which it follows up to the non-hyperbolic fold curve

F̄A0 , where it jumps along the heteroclinic connection Γ̄AP̌00 to reach a section Σ4.

iii. The transition map Π4 : Σ4 Ñ Σ1 is initialised in a section Σ4; it then follows the hetero-
clinic Γ̄AP̌00 , passing through the hyperbolic line S̄r0 and along the heteroclinic Γ̄P̌D00 to reach
a section Σ1.

The Poincaré map Π : Σ1 Ñ Σ1, which is a global return map, is now defined as the
composition Π � Π4 �Π3 �Π1. Here, we note that the maps Πi (i � 1, 3, 4) are constructed in
charts Ki, respectively; details can be found in the following subsections.

Remark 3.12. The sections Σ1, Σ3, and Σ4 are defined so that they are transversal to the
heteroclinic orbits Γ̄P̌D00 , Γ̄CB00 , and Γ̄AP̌00 , respectively; see again Figure 3.15.
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3.5.1 Transition map Π1

The transition map Π1 is constructed in chart K1 as a mapping between the sections Σ1 and
Σ3. To that end, we define these sections in chart K1 as

Σin
1 :�

!
pρ1,

Θ
4 , ε1q

��� ρ1 � 1

2
?

Θb̃
P rρ�, ρ�s, ε1 P rε�, ε�s

)
and (3.64a)

Σout
1 :�

!
pρ1,

Θ
8 , ε1q

��� ρ1 P rρ�, ρ�s, ε1 � Θ
4 P rε�, ε�s

)
, (3.64b)

respectively. (Here, ρ�, ρ�, ε�, and ε� are suitably chosen constants.)

Lemma 3.8. For pκ, εq P p0, κ0s � p0, ε0s with κ0 and ε0 positive and sufficiently small, the
transition map Π1 is a contraction with contraction rate Ope�ν{κq, where ν is a positive constant.

The restriction of Π1 to the leaf tε � constantu satisfies ε1 � 4Θb̃ε in Σin
1 and ρ1 �

b
4
Θε in

Σout
1 .

Proof. The passage past a regular fold point is studied in detail in [42]; in particular, it follows
from the analysis therein that orbits initiated in Σin

1 are attracted by the extended slow manifold
S̄a�κ at a contraction rate of the order Ope�ν{κq, while the distance between the intersection
of that extended manifold with Σout

1 to the singular cycle Γ̄00 is of the order Opκ2{3q. For ε
fixed, we make use of the fact that ε � ρ2

1ε1 in chart K1 to conclude that ε1 � 4Θb̃ε in Σin
1 and

ρ1 �
b

4
Θε in Σout

1 .

Remark 3.13. While our approximation of the transition map Π1 is performed in chart K1,
the dynamics in that chart can also be recovered in Regime R2. Hence, the results of [42] on
passage past a singularly perturbed planar fold can be applied to Equation (3.19). For a more
detailed analysis in chart K1, we refer to [65], where folds in R3 are studied.

3.5.2 Transition map Π3

The transition map Π3 is constructed in chart K3 as a mapping between the sections Σ3 and
Σ4. Then, the section Σ3 is obtained by transformation of the section Σout

1 defined in (3.64)
from chart K1 into chart K3 via (3.43); the section Σ4 is defined directly in chart K3, which
yields

Σin
3 :�

!
pr3,

2
Θ , δ3q

��� r3 P rr�, r�s, δ3 � Θ
4 P rδ�, δ�s

)
and (3.65a)

Σout
3 :�

!
pr3,

1
Θ , δ3q

��� r3 � 1

2
?

Θb̃
P rr�, r�s, δ3 P rδ�, δ�s

)
, (3.65b)

respectively. (Here, r�, r�, δ�, and δ� are suitably chosen constants, as before.)
We have the following result, the proof of which is analogous to that of Lemma 3.8:

Lemma 3.9. For pκ, εq P p0, κ0s � p0, ε0s with κ0 and ε0 positive and sufficiently small, the
transition map Π3 is a contraction with contraction rate Ope�ν{κq, where ν is a positive constant.

The restriction of Π3 to the leaf tε � constantu satisfies r3 �
b

4
Θε in Σin

3 and δ3 � 4Θb̃ε in

Σout
3 .

Remark 3.14. Again, the map Π3 can alternatively be approximated in Regime R1, i.e., by
reference to Equation (3.15), to which the results of [42] apply. A more detailed analysis in
chart K3 can be based on [65].

3.5.3 Transition map Π4

The transition map Π4 is constructed in chart K4 as a mapping between the sections Σ4 and
Σ1. Here, Σ4 is obtained as the image of the section Σout

3 from chart K3 in chart K4 via the
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transformation K43 defined in (3.46), while the section Σ1 is the image of the section Σin
1 from

chart K1 in chart K4 under the following transformation K41,

K41 : pr4, δ4, ε4q ÞÑ
�
ρ1, u

1
2
1 , ε1u

� 1
2

1

�
. (3.66)

Hence, the sections Σ4 and Σ1 in chart K4 are represented as

Σin
4 :�

!
pr4, δ4,

?
Θq

��� r4 � 1

2
?

Θb̃
P rr�, r�s, δ4 P rδ�, δ�s

)
and (3.67a)

Σout
4 :�

!
pr4,

?
Θ
2 , ε4q

��� r4 � 1

2
?

Θb̃
P rr�, r�s, ε4 P rε�, ε�s

)
, (3.67b)

where the constants r�, r�, δ�, δ�, ε�, and ε� are defined as above.

Lemma 3.10. For pκ, εq P p0, κ0s � p0, ε0s with κ0 and ε0 positive and sufficiently small, the
transition map Π4 : Σ4 Ñ Σ1 satisfies

prin
4 , δ

in
4 ,
?

Θq ÞÑ �
rout
4 ,

?
Θ
2 , εout

4

�
,

with δ4 � 4
?

Θ b̃ε in Σin
4 and ε4 � 8

?
Θ b̃ε in Σout

4 . In particular, as the restriction of Π4 to a
leaf tε � constantu satisfies

rout
4 � rin

4 �Opκ ln εq,

the map Π4 is at mostly weakly expanding.

Proof. Recall the governing equations in chart K4, as given in Equation (3.55); by dividing out

the factor 1
2

!
b̃r2

4ε
2
4pδ4 � ε4q2 �Θ� �pδ4 � ε4q2 � Λr2

4δ
2
4

�)
, we obtain the new system

r14 � κr4F̃4pr4, δ4, ε4q (3.68a)

δ14 � δ4 � κδ4F̃4pr4, δ4, ε4q, (3.68b)

ε14 � �ε4 � κε3F̃4pr4, δ4, ε4q, (3.68c)

where F̃4pr4δ4, ε4q is smooth and Op1q. Since the corresponding linear system is given by

r14 � 0,

δ14 � δ4,

ε14 � �ε4,

we can approximate the transition for ε constant by noting that δ4 � 4
?

Θ b̃ε in Σin
4 and

ε4 � 8
?

Θ b̃ε in Σout
4 due to ε � r2

4δ4ε4 in chart K4. Next, we approximate the transition time
T4 under Π4, which is of the order Op� ln εq. Finally, as r4 is Op1q, we can approximate r4 by
r14 � κOp1q, from which the statement of the lemma follows.

3.5.4 Proof of Theorem 3.1

To conclude the proof of Theorem 3.1, we combine the above asymptotics of the transition
maps Πi (i � 1, 3, 4) into the Poincaré map Π, which yields

Theorem 3.2. For pκ, εq P p0, κ0s� p0, ε0s with κ0 and ε0 positive and sufficiently small, there
exists a unique family of attracting periodic cycles Γ̄κε in the blown-up vector field Mκ. That
family tends to Γ̄0ε as κ Ñ 0 uniformly for ε P p0, ε0s, and converges to the singular cycle Γ̄00

as pκ, εq Ñ p0, 0q.
Proof. The proof follows from a combination of Lemmas 3.8, 3.9, and 3.10.

Theorem 3.1 is a direct consequence of Theorem 3.2 after blow-down.
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3.6 Discussion

In the present article, we have performed a geometric analysis of a singularly perturbed two-
variable model for a cyclic AMP (cAMP) signaling system. The model is obtained from a scaling
of the three-variable Martiel-Goldbeter model [46] which is due to Liţcanu and Velázquez [43].
The planar system resulting from a quasi-steady state assumption, Equation (3.5), represents
a two-parameter singular perturbation problem; the presence of two parameters in the model
manifests in a highly degenerate, and non-standard, singular limit which is resolved via a
combination of geometric singular perturbation theory and the desinbgularisation technique
known as blow-up. In particular,

• Our approach allows us to describe in detail the global geometry of the problem in the
limit as both model parameters tend to zero;

• The underlying critical manifold which is desingularised in the process consists of one non-
hyperbolic line in the “inner” region and one normally hyperbolic curve in the “outer”
region which meet at a degenerate equilibrium at the origin.

• Our resolution allows us to construct a family of periodic (relaxation-type) cycles for
Equation (3.4), thus shedding light on a novel singular perturbation problem and improv-
ing our understanding of the corresponding oscillatory dynamics.

In future, we intend to extend our analysis to the three-variable reaction-diffusion system
(3.4) [43], which incorporates an extracellular cAMP diffusion term, as introduced in [69].

Correspondingly, R, W , and U are functions of both space x̃ and time τ , with x �
b

D
ki�kt x̃;

cf. again Table 3.1.The main result of [43] is a proof for the existence of traveling pulse solu-
tions to (3.4) in one spatial dimension on the basis of singular perturbation theory, under the
assumption that the parameters κ and ε are small; moreover, asymptotic formulae are derived
for these pulse solutions in a number of relevant scaling regimes. We expect that a geometric
construction of these solutions can be based on the framework established here, in the con-
text of our simplified two-variable Equation (3.5). However, in preliminary work, we have not
managed to find a scaling for regime R1 that allows us to establish an overlap with R3; recall
our discussion in Section 3.4. That failing may, in fact, suggest that Equation (3.5) is ill-posed
in some sense, and is reflected in the fact that a key non-linear eigenvalue problem in Section
4.1.2 of [43] has to be solved numerically to allow for the calculation of the unique velocity of
travelling pulses. Hence, we believe that further investigation is warranted.
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Appendix A

Cut-off front propagation

A.1 Dynamics of the v-component cut-off system

Recall the Equation (2.14) of the v-component cut-off system:

u1 � w, (A.1a)

v1 � z, (A.1b)

w1 � �cw � fpu, vqθpv � εq, (A.1c)

z1 � � c

D
z � 1

D
gpu, vqθpv � εq. (A.1d)

The steady states Q� � p0, 0, 0, 0q and Q� � p1� α
η ,

α
η , 0, 0q of Equation (A.1) in the absence of

cut-off are hyperbolic saddle points. Both have eigenvalues λi pi � 1, ..., 4q, with λ1 � 1
2 p�c �?

c2 � 4q p�q, λ2 � 1
2 p�c �

?
c2 � 4q p�q, λ3 � 1

2D p�c �
a
c2 � 4Dηq p�q and λ4 � 1

2D p�c �a
c2 � 4Dηq p�q, here the eigenvalues λ1 and λ3 are positive, while λ2 and λ4 are negative.

The corresponding eigenvectors v1 �
�
1, 0, λ1, 0

�T
, v2 �

�
1, 0, λ2, 0

�T
, v3 �

�
1, µ3, λ3, µ3λ3

�T
and v4 �

�
1, µ4, λ4, µ4λ4

�T
, respectively, where µj � λ2

j � cλj � 1, pj � 3, 4q.

A.1.1 General patching

We consider the travelling front solutions propagating from Q� when ξ Ñ �8 to Q� when
ξ Ñ �8. The general solutions for this problem in the regions can be written as follows:
In region I: u ¥ a and v ¥ ε, for ξ ¤ ξ0

ug1pξq � A2e
λ1ξ � A1

µ3
eλ3ξ � 1� α{η, (A.2a)

vg1pξq � A1e
λ3ξ � α{η, (A.2b)

wg1pξq � λ1A2e
λ1ξ � λ3

µ3
A1e

λ3ξ, (A.2c)

zg1pξq � λ3A1e
λ3ξ. (A.2d)

In region II: u ¤ a and v ¥ ε, for ξ0 ¤ ξ ¤ ξ�

ug2pξq � A21e
λ1ξ �A22e

λ2ξ � B23

µ3
eλ3ξ � B24

µ4
eλ4ξ, (A.3a)

vg2pξq � B23e
λ3ξ �B24e

λ4ξ, (A.3b)

wg2pξq � λ1A21e
λ1ξ � λ2A22e

λ2ξ � λ3

µ3
B23e

λ3ξ � λ4

µ4
B24e

λ4ξ, (A.3c)

zg2pξq � λ3B23e
λ3ξ � λ4B24e

λ4ξ. (A.3d)
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In region III: u ¤ a and v ¤ ε, for ξ ¥ ξ�

ug3pξq � A0e
�cξ, (A.4a)

vg3pξq � B0e
� c
D ξ, (A.4b)

wg3pξq � �cA0e
�cξ, (A.4c)

zg3pξq � � c

D
B0e

� c
D ξ, (A.4d)

where λ1,2 � �c�?c2�4
2 , λ3,4 � �c�

?
c2�4Dη

2D , and µj � λ2
j � cλj � 1 pj � 3, 4q.

Then we can solve for all coefficients Aij , Bij by patching the three regions together, using
the conditions for continuity of functions. We obtain the front solutions explicitly, by choosing
ξ0 � 0 for the sake of simplicity.

We have all the coefficients written as

B24 � α{η
1� λ4

λ3

, (A.5a)

B23 � �λ3

λ4
epλ4�λ3qξ� α{η

1� λ4

λ3

, (A.5b)

A1 � �α{η � λ3

λ4
epλ4�λ3qξ� α{η

1� λ4

λ3

� α{η
1� λ4

λ3

, (A.5c)

B0 � �α
η

λ3

λ4
e�λ3ξ

�

, (A.5d)

A22 � λ1

λ1 � λ2
p1� α

η
q � α{η

pλ1 � λ2qpλ3 � λ4q
�
λ4pλ1 � λ3q

µ3
� λ3pλ1 � λ4q

µ4

�
, (A.5e)

A21 � �λ1

λ2
A22e

pλ2�λ1qξ� � 1

λ2λ4

� 1

µ4
� 1

µ3

� α{η
1� λ4

λ3

epλ4�λ1qξ� , (A.5f)

A2 � �1� α

η

�
1� 1

µ3
� � 1

µ4
� 1

µ3

� 1

1� λ4

λ3

�
�A21 �A22, (A.5g)

A0 � ecξ
�

�
A21e

λ1ξ
� �A22e

λ2ξ
� � �� λ3

λ4µ3
� 1

µ4

� α{η
1� λ4

λ3

eλ4ξ
�

�
. (A.5h)

And two constraints ug2pξ0q � a, vg2pξ�q � ε, which are obtained at the patching points,
are expressed as equations Gipa, ξ�, c, εq � 0 pi � 1, 2q:

G1pa, ξ�, c, εq :� A21 �A22 � 1

µ3

λ3

λ4
epλ4�λ3qξ� α{η

1� λ4

λ3

� 1

µ4

α{η
1� λ4

λ3

� a, (A.6a)

G2pa, ξ�, c, εq :� α

η

λ3

λ4
eλ4ξ

� � ε. (A.6b)

here, the c-a relation is labeled by apc, εq.

Existence and uniqueness

In the singular limit defined as ε � 0 and ξ� Ñ8 in Equation(A.6), we can obtain an explicit
expression of singular limit apc0, 0q,

apc0, 0q � p1� α

η
q λ1

λ1 � λ2
� α

η

1

pλ1 � λ2qpλ3 � λ4q
�λ3

µ4
pλ2 � λ4q � λ4

µ3
pλ1 � λ3q

�
(A.7)

which is also the result of the general patching method for the singular system, for details see
Appendix A.2 or [74]. In particular, the denominators pλ1 � λ2q, pλ3 � λ3q, µ3 and µ4 are
well-defined; the existence of a0pc0q has been proved in Section 2.4 as well.

For ε small, we know that we have an unique solution of the speed c-a relation by solving
a, ξ� in (A.6a)-(A.6b). To that end, we prove that there exists a unique solution from the two
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constraints Gipc0, 0q � 0 pi � 1, 2q by applying the Implicit Function Theorem. We consider
the Jacobian matrix with respect to a and ξ� at pc, εq � pc, εq,

J �
� BG1

Ba
BG1

Bξ�
BG2

Ba
BG2

Bξ�

�
�

�
�1 BG1

Bξ�
0 α

η λ3eλ4ξ
�

�
, andDetpJq��pc,εq � �α

η
λ3eλ4ξ

�

It is clear that DetpJq is nonzero as λ3 is nonzero and ξ� is bounded for ε positive and small.
Then, we can say that there exists a unique solution a and ξ� such that equations Gi|pc,εq �
0 pi � 1, 2q in (A.6), which is equivalent to the existence of apc, εq, i.e., to the persistence of
apc, εq for ε positive and small by the Implicit Function Theorem.

Numerical simulation

For the bifurcation result, we solve the two constraints (A.6) numerically and obtain the relation
between speed c and discontinuity position a for the cut-off sigmoidal system, plotted with
D � 1, 2, 5, 10 with ε � 0.1, 0.05, 0.01, 0.001, see Figure A.1.
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Figure A.1: Speed relation obtained by general patching apc, εq, for D � 1, 2, 5, 10, with ε �
0.1, 0.05, 0.01, 0.001 and ε � 0, for fixed η � 0.12, α � 0.08.
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A.1.2 Second-order normal form of the v-component cut-off system

Recalling Proposition 2.3 in Section 2.4.4, we invert the transformation as follows

ũ � U � D
�pλ4 � 1qp2η2 �Dcηλ4q � β

�
βµ4

�
Dλ4

2 � η
	 Z2 � D

Dλ2
4 � η

WZ �Op3q, (A.8a)

w̃ �W � Dλ4

�
β � pλ4 � 1qp2η2 �Dηλ2

4 �Dηq�
βµ4

�
Dλ4

2 � η
	 Z2 � D

Dλ2
4 � η

UZ � cD

Dλ2
4 � η

WZ �Op3q,

(A.8b)

z̃ � Z � η

Dλ2
4 � η

Z2 �Op3q. (A.8c)

We have the transformed boundary values

rP in
ε1 :�

�
ũin, rin

1 , w̃
in, z̃in,

ε

A1 � α
η

	
at τ � 0, (A.9a)

rP out
ε1 :�

�
ũout, ε, w̃out, z̃out, 1

	
at τ� � ln

A1 � α
η

ε
, (A.9b)

where pũin, w̃in, z̃inq has the form

ũin �
�A2 � A1

µ3
� 1� α

η

A1 � α
η

� 1

µ4

	
� D

�pλ4 � 1qp2η2 �Dcηλ4q � β
�

βµ4

�
Dλ4

2 � η
	 � λ3A1

A1 � α
η

� λ4

	2

� D

Dλ2
4 � η

�λ1A2 � λ3

µ3
A1

A1 � α
η

� λ4

µ4

	� λ3A1

A1 � α
η

� λ4

	
,

w̃in �
�λ1A2 � λ3

µ3
A1

A1 � α
η

� λ4

µ4

	
� Dλ4

�
β � pλ4 � 1qp2η2 �Dηλ2

4 �Dηq�
βµ4

�
Dλ4

2 � η
	 � λ3A1

A1 � α
η

� λ4

	2

� D

Dλ2
4 � η

�
�
�A2 � A1

µ3
� 1� α

η

A1 � α
η

� 1

µ4

	
� c

�λ1A2 � λ3

µ3
A1

A1 � α
η

� λ4

µ4

	�� λ3A1

A1 � α
η

� λ4

	
,

z̃in �
� λ3A1

A1 � α
η

� λ4

	
� η

Dλ2
4 � η

� λ3A1

A1 � α
η

� λ4

	2

,

and pũout, w̃out, z̃outq has the form

ũout �A3 � 1

µ4
� D

�pλ4 � 1qp2η2 �Dcηλ4q � β
�

βµ4

�
Dλ4

2 � η
	 �

� c

D
� λ4

	2

� D

Dλ2
4 � η

�
� cA3 � λ4

µ4

	�
� c

D
� λ4

	
,

w̃out �
�
� cA3 � λ4

µ4

	
� Dλ4

�
β � pλ4 � 1qp2η2 �Dηλ2

4 �Dηq�
βµ4

�
Dλ4

2 � η
	 �

� c

D
� λ4

	2

� D

Dλ2
4 � η

�
�
�
A3 � 1

µ4

	
� c

�
� cA3 � λ4

µ4

	��
� c

D
� λ4

	
,

z̃out �
�
� c

D
� λ4

	
� η

Dλ2
4 � η

�
� c

D
� λ4

	2

,

We can determine the related coefficients Ai, Ci pi � 1, 2, 3q by patching the general solutions

for pũ, w̃, z̃q between the two sections rΣin
1 and rΣout

1 at the points of intersection rP in
ε1 and rP out

ε1 ,
i.e., we solve the particular solution with specific boundary condition (A.9) in pũ, w̃, z̃q, which

completes the construction of the orbit rΓ1 in chart K1; here, rΓ1 denotes the approximation to
the general solution of (A.8) by the second-order normal form transformation. We have the
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patching equation as follows

ũin � �λ2C1 � λ1C2 � cp1�Dq
Dµ3µ4

C3 (A.10a)

w̃in � C1 � C2 � η �D

Dµ3µ4
C3 (A.10b)

z̃in � C3 (A.10c)

ũout � �λ2C1eδ1τ
� � λ1C2eδ2τ

� � cp1�Dq
Dµ3µ4

C3eδ3τ
�

(A.10d)

w̃out � C1eδ1τ
� � C2eδ2τ

� � η �D

Dµ3µ4
C3eδ3τ

�

(A.10e)

z̃out � C3eδ3τ
�

(A.10f)

From the above equations, we find that the coefficients Ai, Ci pi � 1, 2, 3q depend on the speed
c and cut-off threshold ε. After some work, we obtain two simplified equations denoted asrFipA1, A2, c, εq � 0, pi � 1, 2q

rF1 : �
� λ3A1

A1 � α
η

� λ4

	
� η

Dλ2
4 � η

� λ3A1

A1 � α
η

� λ4

	2

�
�
λ3 � ηλ2

3

Dλ2
4 � η

	� ε

A1 � α
η

	δ3
, (A.11)

rF2 : �
�
λ2

3α3 � pDλ2
4 �Dλ3λ4 � ηq
µ4pDλ2

4 � ηq
��
cpDλ2

4 �Dcλ3 � ηq �Dλ3

	
�
�
λ2

3β3 � λ4

µ4
� Dλ3p1� cλ4q

µ4pDλ2
4 � ηq

��
Dλ2

4 �Dcλ3 � η
	

� pDλ2
4 �Dcλ3 � ηqp1� cλ2q �Dλ2λ3

pλ1 � λ2q
�
ũin � λ1w̃

in � Dλ2 � ηλ1 � c

Dµ3µ4
z̃in

	� ε

A1 � α
η

	�δ1
� pDλ2

4 �Dcλ3 � ηqp1� cλ1q �Dλ1λ3

pλ2 � λ1q
�
ũin � λ2w̃

in � Dλ1 � ηλ2 � c

Dµ3µ4
z̃in

	� ε

A1 � α
η

	�δ2
�
�
cλ3p1�Dq

µ3µ4
� pDλ2

4 �Dcλ3 � ηqc
2p1�Dq � pη �Dq

Dµ3µ4

�
z̃in

� ε

A1 � α
η

	�δ3
(A.12)

Then, we can calculate the values of A1 and A2 by solving rFi � 0 pi � 1, 2q numerically for
given ε small, then substituting into the constraint of the c-a relation curve:

ãεpcq � A2 � A1

µ3
� 1� α

η
. (A.13)

Note that, we suppress the dependence on c and ε here for simplicity, i.e. Ai � Aipc, εq,
Ci � Cipc, εq, and rFi � rFipA1, A2, c, εq. The proof of the existence of ãεpcq follows the same
procedure as for aεpcq in Section 2.4, which is equivalent to proving that we can get the unique

solution from the two constraints rFi � 0 pi � 1, 2q by the Implicit Function Theorem. We
find analogous results as well, i.e., the persistence will be obtained by the Implicit Function
Theorem.

A.2 Dynamics of the singular system

Recall the Equation (2.5):

u1 � w, (A.14a)

v1 � z, (A.14b)

w1 � �cw � u� v � θpu� aq, (A.14c)

z1 � � c

D
z � η

D
v � α

D
θpu� aq. (A.14d)
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The steady states Q� � p0, 0, 0, 0q and Q� � p1 � α
η ,

α
η , 0, 0q of Equation (A.14)are hyper-

bolic saddle points. Both have eigenvalues λi pi � 1, ..., 4q, with λ1 � 1
2 p�c �

?
c2 � 4q p�q,

λ2 � 1
2 p�c�

?
c2 � 4q p�q, λ3 � 1

2D p�c�
a
c2 � 4Dηq p�q and λ4 � 1

2D p�c�
a
c2 � 4Dηq p�q,

here the eigenvalues λ1 and λ3 are positive, while λ2 and λ4 are negative. The correspond-

ing eigenvectors v1 � �
1, 0, λ1, 0

�T
, v2 � �

1, 0, λ2, 0
�T

, v3 � �
1, µ3, λ3, µ3λ3

�T
and v4 ��

1, µ4, λ4, µ4λ4

�T
, respectively, where µj � λ2

j � cλj � 1, pj � 3, 4q.
We consider the travelling front solutions propagating from Q� when ξ Ñ �8 to Q� when

ξ Ñ �8. The general solutions for this problem in the regions can be written as follows:
In region I: u ¥ a, for ξ ¤ ξ0

ug1pξq � A2e
λ1ξ � A1

µ3
eλ3ξ � 1� α{η, (A.15a)

vg1pξq � A1e
λ3ξ � α{η. (A.15b)

wg1pξq � λ1A2e
λ1ξ � λ3

µ3
A1e

λ3ξ, (A.15c)

zg1pξq � λ3A1e
λ3ξ (A.15d)

In region II: u ¤ a, for ξ ¥ ξ0

ug2pξq � A22e
λ2ξ � B24

µ4
eλ4ξ, (A.16a)

vg2pξq � B24e
λ4ξ, (A.16b)

wg2pξq � λ2A22e
λ2ξ � λ4

µ4
B24e

λ4ξ, (A.16c)

zg2pξq � λ4B24e
λ4ξ. (A.16d)

Then we can solve for all coefficients Aij , Bij by patching the two regions together, using
the conditions for continuity of functions. We obtain the front solutions explicitly, by choosing
ξ0 � 0 for sake of simplicity.

We have all the coefficients written as

B24 � α{η
1� λ4

λ3

, (A.17a)

A1 � α{η
1� λ4

λ3

, (A.17b)

A22 � 1

λ1 � λ2

�
λ1p1� α

η
q � α{η

λ3 � λ4
pλ4pλ1 � λ3q

µ3
� λ3pλ1 � λ4q

µ4
q
�
, (A.17c)

A2 � �1� α

η
r1� 1

µ3
� p 1

µ4
� 1

µ3
q 1

1� λ4

λ3

s �A22, (A.17d)

and the singular limit of the speed relation

apc0, 0q � p1� α

η
q λ1

λ1 � λ2
� α

η

1

pλ1 � λ2qpλ3 � λ4q
�λ3

µ4
pλ2 � λ4q � λ4

µ3
pλ1 � λ3q

�
(A.18)

Numerical simulation

We approximate numerically the c-a curves for the original sigmoidal system without cut-off ,
see Figure A.2, for D � 1, 2, 5, 10 with fixed η � 0.12, α � 0.08.
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Figure A.2: The system without cut-off: Front speed c vs discontinuity position a relation, with
D � 1, 2, 5, 10, fixed η � 0.12, α � 0.08.

A.3 Geometric analysis of the u-component cut-off system

The dynamics of u-component cut-off system is best studied in an equivalent formulation of
Equation (2.4) with φ � u that results from a blow-up transformation of the corresponding
vector field near the origin in pu, v, w, z, εq-space. To that end, we append the trivial equation
ε1 � 0 in (2.4);

u1 � w, (A.19a)

v1 � z, (A.19b)

w1 � �cw � fpu, vqθpu� εq, (A.19c)

z1 � � c

D
z � 1

D
gpu, vqθpu� εq, (A.19d)

ε1 � 0 (A.19e)

The steady states of (A.19) are Q�
ε and Q�

ε , where we keep the notations as they are same as
those in v-component cut-off system.

Due to the change of cut-off component, the two coordinate charts K1 and K2 of the
homogeneous blow-up transformation are obtained by ū � 1 and ε̄ � 1, respectively; yields

u � r1, v � r1v1, w � r1w1, z � r1z1, and ε � r1ε1 (A.20)

and

u � r2u2, v � r2v2, w � r2w2, z � r2z2, and ε � r2, (A.21)

respectively, for the coordinates in these charts. The change-of-coordinates transformation K12
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between charts K1 and K2 is given by

K12 : pr1, v1, w1, z1, ε1q ÞÑ
�
r2u2,

v2

u2
,
w2

u2
,
w2

u2
,
z2

u2
,

1

u2

	
, (A.22)

whereas its inverse K21 � K�1
12 reads

K21 : pu2, v2, w2, z2, r2q ÞÑ
� 1

ε1
,
v1

ε1
,
w1

ε1
,
z1

ε1
, r1ε1

	
. (A.23)

We define several sections for the flow of Equation (A.19) – or, rather, of the corresponding
blown-up systems in charts K1 and K2:

Σin
1 :�  pa, v1, w1, z1, ε1q

�� v1 P rv�, v�s, w1 P rw�, w�s, z1 P rz�, z�s, and ε1 P r0, 1s
(
,

(A.24a)

Σout
1 :�  pr1, v1, w1, z1, 1q

�� r1 P r0, as, v1 P rv�, v�s, w1 P rw�, w�s, and z1 P rz�, z�s
(
,

(A.24b)

Σin
2 :�  p1, v2, w2, z2, r2q

�� v2 P rv�, v�s, w2 P rw�, w�s, z2 P rz�, z�s, and r2 P r0, ε0s
(
.

(A.24c)

Here, v�, v�, w�, w�, z�, and z� are suitably chosen constants; we remark that, by (A.23),
the range for pv2, w2, z2q may be chosen identical to that for pv1, w1, z1q, as ε1 � 1 in Σin

2 �
K12pΣout

1 q. Moreover, the sections Σin
1 and Σout

1 clearly correspond to the respective boundaries
between regions I and II and between regions II and III, when expressed in chart K1; recall
Section 2.1.

A.3.1 Dynamics in region I

In region I, where a   u   1, Equation (A.19) reduces to

u1 � w, (A.25a)

v1 � z, (A.25b)

w1 � �cw � u� v � 1, (A.25c)

z1 � � c

D
z � η

D
v � α

D
, (A.25d)

ε1 � 0 (A.25e)

as θpu� εq � 1 � θpu� aq in that region. Clearly, the dynamics in region I corresponds to the
dynamics in the “outer” region of (2.5). Hence, the geometric analysis in this region proceeds
as in Section 2.2.1 as well.

Here, we show the expressions of the point Pε as follows:

Pε �
�
A2 � A1

µ3
� 1� α

η
,A1 � α

η
, λ1A2 � λ3

µ3
A1, λ3A1, ε

	
, (A.26)

for ε fixed and small; for ε � 0, P0 �
�
A2 � A1

µ3
� 1� α

η , A1 � α
η , λ1A2 � λ3

µ3
A1, λ3A1, 0

�
in the

section Σ� , recall the constraint in (2.23)

a � A2 � A1

µ3
� 1� α

η
. (A.27)

where A1 and A2 are coefficients that are as yet undetermined.
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A.3.2 Dynamics in region III

In region III, where θpu � εq � 0; hence, by the blow-up transformation in (A.21), Equa-
tion (A.19) reduces to

u12 � w2, (A.28a)

v12 � z2, (A.28b)

w1
2 � �cw2, (A.28c)

z12 � � c

D
z2, (A.28d)

r12 � 0 (A.28e)

The steady states of (A.28) are the points on the pu2, v2, r2q-sphere, however, only the points
on the line `�2 �  p0, 0, 0, 0, r2q

�� r2 P r0, ε0s
(

are relevant here, which can correspond to `�

after transforming to the original pu, v, w, z, εq-variables. We denote the points on `�2 by Q�
ε2

for ε fixed. Equation (A.28) may be solved exactly: rewriting the above equations with u2 as
the independent variable and keeping in mind that pv2, w2, z2qpu2q

��
u2�0

� p0, 0, 0q, we find the

family of orbits Γε2, which correspond to the stable manifolds Ws
2pQ�

ε2q,

Γε2 :
�
v2, w2, z2

�pu2q �
�
� D

c
A3u

1
D
2 ,�cu2, A3u

1
D
2

	
, (A.29)

where A3   0 is to be determined by matching the boundaries of the orbit in region II. The
point of intersection of Γε2 with the section Σin

2 in (A.24), which we denote by P in
ε2 is determined

by taking u2 � 1 in Equation (A.29), whence

P in
ε2 :

�
uin

2 , v
in
2 , w

in
2 , z

in
2 , r

in
2

	
� p1,�D

c
A3,�c, A3, εq. (A.30)

where ε is small.

Remark A.1. The family of orbits Γε2 is parametrised by r2p� εq, as c and A3 are both
r2-dependent.

As for the singular orbit Γ2, which corresponds to the stable eigendirection of WspQ�
0 q in

the original pu, v, w, z, εq-variables, we obtain

Γ2 :
�
v2, w2, z2

�pu2q �
�
µ4u2, λ4u2, µ4λ4u2

�
. (A.31)

with P in
02 :� �

1, µ4, λ4, µ4λ4, 0
�
, by taking u2 � 1.

Remark A.2. The expression for Γ2 is obtained from the weak-stable eigenvector v4 ��
1, µ4, λ4, µ4λ4

�T
of Equation (A.14) at the origin, cf. Appendix A.2.

Remark A.3. Here, λi (i � 1, . . . , 4) and µj pj � 3, 4q are defined as in Lemma 2.1 in the
analysis of the u-component cut-off system.

A.3.3 Dynamics in region II

The dynamics in region II is naturally described in chart K1: substituting (A.20) into (A.19)
and noting that θpu� aq � 0, we find

r11 � r1w1, (A.32a)

v11 � �v1w1 � z1, (A.32b)

w1
1 � �cw1 � w2

1 � p1� v1qθp1� ε1q, (A.32c)

z11 � � c

D
z1 � η

D
v1θp1� ε1q � z1w1, (A.32d)

ε11 � �ε1w1. (A.32e)

As we will only consider Equation (A.32) for ε1 P r0, 1s, cf. the definition of the section Σout
1 ,

we may take θp1 � ε1q � 1 in the above equations. The steady states of (A.32) are located at
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P�
1 � p0, 0, λ1,2, 0, 0q and at rP�

1 � p0, µ3,4, λ3,4, µ3,4λ3,4, 0q.
The following result is obtained via a straightforward linearisation argument:

Lemma A.1. The steady states P�
1 and rP�

1 of Equation (A.32) are hyperbolic saddle points,
with eigenvalues

λ2 p�q, λ1 � λ2 p�q, λ3 � λ2 p�q, λ4 � λ2 p�q, and � λ2 p�q forP�
1 ,

λ1 p�q, λ2 � λ1 p�q, λ3 � λ1 p�q, λ4 � λ1 p�q, and � λ1 p�q forP�
1 ,

λ4 p�q, λ1 � λ4 p�q, λ2 � λ4 p�q, λ3 � λ4 p�q, and � λ4 p�q for rP�
1 ,

λ3 p�q, λ1 � λ3 p�q, λ2 � λ3 p�q, λ4 � λ3 p�q, and � λ3 p�q for rP�
1 .

The singular limit of ε � 0 in (A.19) yields two limiting systems of equations, which are
obtained by setting r1 � 0 and ε1 � 0, respectively, in Equation (A.32):

v11 � �v1w1 � z1,

w1
1 � �c0w1 � w2

1 � 1� v1,

z11 � �c0
D
z1 � η

D
v1 � z1w1,

ε11 � �ε1w1

and

r11 � r1w1,

v11 � �v1w1 � z1,

w1
1 � �c0w1 � w2

1 � 1� v1,

z11 � �c0
D
z1 � η

D
v1 � z1w1;

here, c0 � cpεq��
ε�0

.

In the invariant plane tε1 � 0u, we define the orbit Γ�
1 , which is passing through P in

01, and

is attracted to rP�
1 . We note here, that Γ�

1 corresponds to the 2-dimensional stable manifold
WspQ�

0 q after transformation to chart K1. To that end, we focus on orbits entering at P0 in
the section Σ�, where the 2-dimensional unstable manifold WupQ�

0 q in region I ends. We have
the following representation of P in

01:

P in
01 :� �

rin
1 , v

in
1 , w

in
1 , z

in
1 , 0

� � �
a,
A1 � α

η

a
,
λ1A2 � λ3

µ3
A1

a
,
λ3A1

a
, 0



(A.33)

where A1   0 as in Proposition 2.1.
Similarly, in the invariant plane tr1 � 0u, the orbit passing through P out

01 � p0, µ4, λ4, λ4µ4, 1q,
which is labeled Γ�

1 , is attracted to rP�
1 in backward “time”, for ξ Ñ �8

Γ�
1 :� �

v1, w1, z1, ε1

�pξq � �
µ4, λ4, λ4µ4, e�λ4ξ

	
(A.34)

Remark A.4. The points P in
01 and P out

01 correspond to the points P0 �
�
A2� A1

µ3
� 1� α

η , A1�
α
η , λ1A2 � λ3

µ3
A1, λ3A1, 0

�
and P in

02 � �
1, µ4, λ4, λ4µ4, 0

�
, under the transformation in (A.20)

and K12 in (A.22), respectively.

Break in construction of Γ�
1

Recall Section 2.2.3, in the u-component cut-off system, the value of u is always negative before
approaching the origin, see panel (a) in Figure 2.6, which implies that that the current chart K1

and K2 are not proper for the u-component cut-off system. We need more charts, e.g. ū � �1.
The local geometry in chart K1 in pu1, w1, ε1q-space is illustrated in panel (a) in Figure A.4,
there Γ�

1 is repelling away in w1-coordinate.
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(a)

0

0.10
0.2-4 -2 0

1

(b)

Figure A.3: The geometry of pr1, w1, ε1q-space: the singular orbit (blue), the perturbed orbit
(red); (a) Qualitative sketch. (b) Numerical simulation at D � 2, c � 1.5, ε � 0.01.

We present the simulations of orbits in chart K1 for c � 2, 4, 6, 8, with D � 2 and ε � 0.0001;
see Figure A.3. For the speed c � 2, the perturbed orbit Γε1 (red) repels away in the w1-
coordinate, in agreement with Γ�

1 (blue), while c increases, the perturbed orbit approaches Γ�
1

for r1 ¡ 0, which implies that the value of the original variable v at the cut-off remains in
the neighbourhood of the origin. Hence, we can still apply the blow-up technique to obtain an
approximation of the perturbed orbits in chart K1 in region II, with suitably chosen speeds,
e.g., for c � 8, Γε1 approaches Γ�

1 in r1 ¡ 0.
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1

Figure A.4: The approximated geometry of pr1, w1, ε1q-space, for D � 2 and ε � 0.0001.
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A.3.4 Existence and asymptotics of the c-a relation

In this section, we motivate of the asymptotic heteroclinic orbit Γ for ε positive and sufficiently
small. To that end, we combine the dynamics of the three regions obtained in the previous
Sections.

In region I, the unstable manifold WupQ�
0 q of the point Q�

0 will persist as the unstable
manifold WupQ�

ε q of Q�
ε . The manifold Wup`�q of the line `� is then defined as a foliation in

ε P r0, ε0s, with fibers WupQ�
ε q.

Similarly, in region III, the orbit Γ2 corresponds to the stable manifold Ws
2pQ�

0 q of Q�
0 will

perturb smoothly for r2 ¡ 0 small and u2 ¤ 1, to the manifoldWs
2pQ�

ε2q of Q�
ε2. And the stable

manifold Wsp`�2 q of the line `�2 is then given by
�
εPr0,ε0sW

spQ�
ε2q. Next, we need to prove the

existence of Γε1, which connects Γu and Γε2 in the region II, where we use the patching method
at the corresponding boundaries. The argument will be carried out entirely in region II, i.e.,
in chart K1. To that end, we firstly recall the definition of the two sections Σin

1 and Σout
1 for

the flow of (A.32) defined in (A.24) and we label the corresponding patching points by P in
ε1 and

P out
ε1 , respectively. In particular, the section Σin

1 and the point P in
ε1 correspond to the section

Σ� and the point Pε defined in Section A.3.1, respectively, after blown-up transformation to
chart K1. Similarly, the section Σout

1 and the point P out
ε1 correspond to the section Σin

2 and the
point P in

ε2 of (A.30) in chart K2 in Section A.3.2, respectively, under the change-of-coordinates
K12. In other words, the section Σin

1 defines the boundary between regions II and I, while
Σout

1 defines the boundary between regions II and III; in particular, the corresponding patching
points are represented as

P in
ε1 :� prin

1 , v
in
1 , w

in
1 , z

in
1 , ε

in
1 q �

�
a,
A1 � α

η

a
,
λ1A2 � λ3

µ3
A1

a
,
λ3A1

a
,
ε

a



, (A.35a)

P out
ε1 :� prout

1 , vout
1 , wout

1 , zout
1 , εout

1 q � �
ε, �D

c
A3, �c, A3, 1

�
, (A.35b)

Next, we aim to approximate the transition map Π1 : Σin
1 Ñ Σout

1 that represents the
corresponding portion of the persistent heteroclinic orbit lies in this region II.

A.3.4.1 Transition map Π1

To approximate the transition map for the flow of Equation (A.32) between the two sections
Σin

1 and Σout
1 defined in (A.24). We begin by dividing out a factor of �w1 from (A.32), which

corresponds to a transformation of the independent variable that leaves the corresponding phase
portrait unchanged. (We note that �w1 is positive and, hence, that the direction of the flow is
unaltered, since we are restricting to a neighbourhood of P�

1 here.) Then, we shift P�
1 to the

origin in K1 by defining the new variable W via w1 � 1
2 p�c�

?
c2 � 4q �W . In sum, we hence

obtain the transformed system of equations

r11 � �r1, (A.36a)

v11 � v1 � z1

1
2 pc�

?
c2 � 4q �W

, (A.36b)

W 1 �
?
c2 � 4W � v1 �W 2

1
2 pc�

?
c2 � 4q �W

, (A.36c)

z11 � z1 �
c
D z1 � η

Dv1

1
2 pc�

?
c2 � 4q �W

, (A.36d)

ε11 � ε1. (A.36e)

where the prime now denotes differentiation with respect to the new independent time τ .
The principal equilibrium of Equation (A.36) is now located at the origin. A standard

linearisation argument yields:

Lemma A.2. The origin is a hyperbolic saddle point for (A.36), with eigenvalues �1, δ1 �
�λ1

λ2
� 1 p�q, δ2 � �λ4

λ2
� 1 p�q, δ3 � �λ3

λ4
� 1 p�q and 1.
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We observe that resonances between the eigenvalues of the linearisation of (A.36) about the
origin exist if and only if D � 1. However, as the pv1,W, z1q-subsystem in (A.36b) through
(A.36d) is decoupled, i.e., independent of pr1, ε1q, these resonances are not realised. Hence,
Equation (A.36) may be linearised to any order in pr1,W, v1, z1, ε1q via a sequence of near-
identity transformations that only involve pv1,W, z1q; in particular, it follows that the former
will be defined on pr1, ε1q P r0, as � r0, 1s, as no restriction has to be made on the two variables
r1 and ε1. In fact, we can easily solve Equations (A.36a) and (A.36e) to find r1 � ae�τ and
ε1 � ε

aeτ , respectively; by patching the pr1, ε1q-coordinates of the boundaries, i.e., rin
1 pτ1q � a,

rout
1 pτ2q � ε, εin

1 pτ1q � ε
a and εout

1 pτ2q � 1; here, we choose τ1 � 0 for simplicity, then determine
the corresponding value τ2 � τ� � ln a

ε .
In a first step, we expand the common denominator in Equation (A.36) via

1
1
2 pc�

?
c2 � 4q �W

� 2

c�?
c2 � 4

�
1� 2

c�?
c2 � 4

W �OpW 2q
�
,

keeping in mind that we assume |W | to be small. Substituting into (A.36), we find that
Equations (A.36b) through (A.36d) become

v11 �v1 � 2

c�?
c2 � 4

z1 � 4

pc�?
c2 � 4q2Wz1 �Op3q, (A.37a)

W 1 � 2

c�?
c2 � 4

v1 � 2
?
c2 � 4

c�?
c2 � 4

W � 4�
c�?

c2 � 4
�2 v1W � 8�

c�?
c2 � 4

�3W
2 �Op3q,

(A.37b)

z11 �
η

D

2

c�?
c2 � 4

v1 �
�

1� 2

D

c

c�?
c2 � 4

	
z1 � 4

D

c�
c�?

c2 � 4
�2Wz1

� η

D

4�
c�?

c2 � 4
�2 v1W �Op3q, (A.37c)

where Op3q denotes terms of order 3 and upwards in pv1,W, z1q.

A.3.5 Formal linearisation

In this subsection, we consider a formal linearisation of Equation (A.36) which is obtained by
neglecting terms of order 2 and upwards in (A.37):

v̂11 � v̂1 � 2

c�?
c2 � 4

ẑ1, (A.38a)

xW 1 � 2

c�?
c2 � 4

v̂1 � 2
?
c2 � 4

c�?
c2 � 4

xW, (A.38b)

ẑ11 �
η

D

2

c�?
c2 � 4

v̂1 �
�

1� 2

D

c

c�?
c2 � 4

	
ẑ1. (A.38c)

The eigenvalues of Equation (A.46) at the origin are given by δi ¡ 0 (i � 1, 2, 3), as defined

in Lemma A.2, with corresponding eigenvectors v1 � p0, 1, 0qT , v2 �
� � Dλ3

η , Dλ1λ3

ηpδ1�δ2q , 1
�T

,

and v3 � �
1
λ3
,� λ1

λ3pδ1�δ3q , 1
�T

. Defining the change-of-variable matrix P � rv1|v2|v3s, we

write w � pv̂1,xW, ẑ1qT � Px, and x � px1, x2, x3qT ; then, Equation (A.38) becomes x1 �
diagpδ1, δ2, δ3qx, which has the following general solution for x: xi � Cie

δiτ , with undetermined
constants Ci (i � 1, 2, 3). It follows that the general solution for w can be written as

v̂1 � �Dλ3

η
C2eδ2τ � 1

λ3
C3eδ3τ , (A.39a)

xW � C1eδ1τ � Dλ1λ3

ηpδ1 � δ2qC2eδ2τ � λ1

λ3pδ1 � δ3qC3eδ3τ , (A.39b)

ẑ1 � C2eδ2τ � C3eδ3τ . (A.39c)
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Here, we can denote the approximation to the general solution of (A.36) by the formal

linearisation as in (A.39) as pΓ1, noting that we have obtained the explicit solutions for r1 � ae�τ

and ε1 � ε
aeτ . We convert the corresponding boundaries in (A.35) into the new variables

pv̂1,xW, ẑ1q by formal linearisation, which yields

pP in
ε1 :� �

a, v̂in
1 ,

xW in, ẑin
1 ,

ε

a

� � �
a,
A1 � α

η

a
,
λ1A2 � λ3

µ3
A1

a
� λ2,

λ3A1

a
,
ε

a



at τ � 0 (A.40a)

pP out
ε1 :� �

ε, v̂out
1 ,xW out, ẑout

1 , 1
� � �

ε,�D
c
A3,�c� λ2, A3, 1

	
at τ� � ln

a

ε
, (A.40b)

A.3.5.1 Patching at boundaries

We can determine all coefficients Ai, Ci pi � 1, 2, 3q by patching the general solutions between

the two sections pΣin
1 and pΣout

1 at the points of intersection pP in
ε1 and pP out

ε1 , i.e., we solve the

particular solution with specific boundary condition (A.40) in pv̂1,xW, ẑ1q, which completes the

construction of orbit pΓ1 in chart K1. We obtain the explicit solutions for all the coefficients in
dependence of pa, c, εq:

C1 �λ1

� ε
a

	δ1 � λ1α

aη

Dλ2
3

Dλ2
3 � η

� 1

δ1 � δ2
� Dλ2

3

ηpδ1 � δ3q
	� ε

a

	�δ2�δ1
(A.41a)

C2 �� λ3α

a

1

Dλ2
3 � η

(A.41b)

C3 � α

aη

D2λ4
3

pDλ2
3 � ηqpDλ3 � cq

� ε
a

	�δ2�δ3
(A.41c)

A1 � α

Dλ2
3 � η

�D2λ4
3

η2

� ε
a

	δ3�δ2 � 1
	

(A.41d)

A2 �a
�� ε

a

	δ1 � c

λ1
� 1



� α

Dλ2
3 � η

�
Dλ2

3

ηpδ1 � δ2q
�� ε

a

	δ1�δ2 � 1



(A.41e)

� D2λ4
3

η2pδ1 � δ3q
�� ε

a

	δ1�δ2 � � ε
a

	δ3�δ2
� λ3

µ3λ1

�
D2λ4

3

η2

� ε
a

	δ3�δ2 � 1


�

A3 �
�
� λ3α

a

1

Dλ2
3 � η

� α

aη

Dλ4
3

pDλ2
3 � ηqpDλ3 � cq

	� ε
a

	�δ2
(A.41f)

Recall the constraint in (A.27), after substituting the results of A1 and A2, we obtain
the equation Fεpa, c, εq � 0, which is the desired c-a relation equation by formal linearisation
patching; here, we suppress the dependence for simplicity.

Fε :�1� α

η
� a

� c

λ1
� 2

	
� a

� ε
a

	δ1 � α

Dλ2
3 � η

�
Dλ2

3

ηpδ1 � δ2q �
λ1 � λ3

µ3λ1



(A.42)

� αDλ2
3

ηpDλ2
3 � ηq

�
1

δ1 � δ2

� ε
a

	δ1�δ2 � Dλ2
3

ηpδ1 � δ3q
�� ε

a

	δ1�δ2 � � ε
a

	δ3�δ2
� λ1 � λ3

µ3λ1

Dλ2
3

η

� ε
a

	δ3�δ2�

where δ1, δ1 � δ2, δ3 � δ2 ¡ 0, and a P pε, 1� α
η q, which is necessary for the existence of a front

connecting the two steady states as mentioned in Section 2.1.

A.3.5.2 Existence and uniqueness

In the singular limit of ε � 0 in (A.42), we obtain the corresponding singular orbit by F0 � 0,
which gives us an explicit expression for a as a function of c, that reads

a0pc0q � p1� α

η
q λ1

λ1 � λ2
� α

η

1

pλ1 � λ2qpλ3 � λ4q
�λ3

µ4
pλ2 � λ4q � λ4

µ3
pλ1 � λ3q

�
(A.43)
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which corresponds to the existence of the singular orbit Γ, and can be verified the general
patching method of Equation (A.19) without cut-off, for details see [74].

For ε positive and small, the existence of the function Fε, we obtain BFε
Ba ,

BFε
Ba �p1� δ1q

� ε
a

	δ1 � c

λ1
� 2� αDλ2

3

ηpDλ2
3 � ηq

1

a

�
�
� ε
a

	δ1�δ2 � Dλ2
3

η

�
δ2 � δ1
δ1 � δ3

� ε
a

	δ1�δ2 � δ2 � δ3
δ1 � δ3

� ε
a

	δ3�δ2


� λ1 � λ3

µ3λ1

Dλ2
3

η
pδ2 � δ3q

� ε
a

	δ3�δ2�

where we numerically find that BFε
Ba |pa�,c�,εq � 0 , where the values of pa�, c�, εq satisfy the

constraint Fεpa�, c�, εq � 0. According to the Implicit Function Theorem, there exists a unique
function a � apc, εq that satisfies Fεpapc, εq, c, εq � 0.

Finally, we can approximate the position of the saddle-node bifurcation point on the curve

tFε � 0u by solving da
dc �

BFε
Bc
BFε
Ba

� 0. As BFε
Ba is nonzero, by the above, we only need to compute

BFε
Bc � 0, under the constraint that Fε � 0.

BFε
Bc �a

�
δ11
� ε
a

	δ1
ln
� ε
a

	
� 1

λ1
� c

λ2
1

λ11

�
� αp�δ12pDλ2

3 � ηq � 2Dλ3λ
1
3q

pDλ2
3 � ηq2

�
Dλ2

3

ηpδ1 � δ2q
�� ε

a

	δ1�δ2 � 1




� D2λ4
3

η2pδ1 � δ3q
�� ε

a

	δ1�δ2 � � ε
a

	δ3�δ2
� λ1 � λ3

µλ1

�
D2λ4

3

η2

� ε
a

	δ3�δ2 � 1


�

� α

Dλ2
3 � η

�
2Dλ3λ

1
3

ηpδ1 � δ2q
�� ε

a

	δ1�δ2 � 1



� 4D2λ3

3λ
1
3

η2pδ1 � δ3q
�� ε

a

	δ1�δ2 � � ε
a

	δ3�δ3

� pλ11 � λ13qµ3λ1 � pλ1 � λ3qpµ13λ1 � µ3λ

1
1q

µ2
3λ

2
1

�
D2λ4

3

η2

� ε
a

	δ3�δ2 � 1



� Dλ2

3

ηppδ1 � δ2q2q
�
pδ1 � δ2qpδ11

� ε
a

	δ1 � δ12
� ε
a

	δ2q ln
� ε
a

	
� p

� ε
a

	δ1 � � ε
a

	δ2qpδ11 � δ12q



� D2λ4
3

η2pδ1 � δ3q2
�
pδ1 � δ3qpδ11

� ε
a

	δ1 � δ13
� ε
a

	δ3q ln
� ε
a

	
� p

� ε
a

	δ1 � � ε
a

	δ3qpδ11 � δ13q



� λ1 � λ3

µ3λ1

�
4D2λ3

3λ
1
3

η2

� ε
a

	δ3 � D2λ4
3

η2
δ13
� ε
a

	δ3
ln
� ε
a

	
� δ2

� ε
a

	δ2
ln
� ε
a

	
�

where 1 denotes the derivative to c. The above expression is too complicated to allow for an
analytic solution; hence, we will evaluate it numerically in Section A.3.7 below.

A.3.5.3 Valid speed range

The dynamics of u-component cut-off system is best studied in an equivalent formulation of
Equation (2.4) with φ � u that results from a blow-up transformation of the corresponding
vector field near the origin in pu, v, w, z, εq-space. The approach follows the same process as
those we have derived for v-component cut-off system. Hence, we do not show the repeated
analysis; for details see Appendix A.3. Note that, we also keep the symbols for basic notations
for the sake of simplicity, e.g., we reuseAi, Ci pi � 1, 2, 3q denoting the corresponding coefficients
in the analysis of u-component cut-off system.

As we have observed in Section 2.2.3, it requires an extra condition on applying the blow-up
technique so that the value of v stays in a neighborhood of the origin. To that end, we define
a valid range of speed consists of a maximum and a minimum speed.

The maximum speed c follows the same idea as we have given in v-component cut-off; see
Section 2.4.2.3. Recall the definition of the region II, i.e., u P pε, aq and a P rε, 1� α

η s, which is
necessary for the existence of a front connecting the two steady states as mentioned in Section
2.1. we can approximate the maximum speed by substituting a

ε � 1 in the c-a relation Fε in
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Equation A.42, which is an explicit formula obtained by formal linearisation patching, i.e., the
region II is eliminated and the transition time τ � τ� � 0, then we obtain an equation Fc1 � ε,
where

Fc1 :� αc

4η2

pc�?
c2 � 4qpc�

a
c2 � 4Dηqpc�Dc�D

?
c2 � 4�

a
c2 � 4Dηq

cpD � 1qpc�
a
c2 � 4Dηq � 2Dη � 2D2

�1

4
p1� α

η
qpc�

a
c2 � 4q2 (A.44)

where the value of cmax satisfies Fc1|c�cmax � ε.
The minimum speed is defined to ensure the value of v stays at least in a neighborhood

around the origin. Here, we define a “small” quantity σ, which is a constant or a function
in dependent on ε; if the value of v at the cut-off threshold u � ε satisfies the inequality:
v|u�ε ¤ σ, then, we treat this point of pu, vq|u�ε as a neighborhood at the origin. Transferring
this inequality into the equivalent blown-up space in chart K1, i.e. v � v1r1 with u � r1, we
obtain that vout

1 rout
1 ¤ σ; note that, vout

1 � �D
c A3 is defined in Σout

1 of (A.40), and the solution
of A3 is given in (A.41). Hence, the desired formula of v p� vout

1 rout
1 q is labeled by Fc2 � σ:

Fc2 :� � Dα

c
a
c2 � 4Dη

��
c�

a
c2 � 4Dη

�4

16D3 η2
� 1

�� ε
a

	 c�
?
c2�4D η

D pc�
?
c2�4q , (A.45)

where the values of c and a are obtained by the corresponding speed relation Fε � 0 in (A.42).
The minimum speed cmin satisfied the above equation Fc2 � σ; the speed in a range of

c ¥ cmin will support the application of blow-up technique in u-component cut-off system. We
note here, λi pi � 1, ...4q are as defined in Lemma 2.1.

In all, the valid speed range for u-component cut-off system via the blow-up technique is
represented by pcmin, cmaxq, where Fc1|c�cmax � ε and Fc2|c�cmin � σ with Fε � 0.

A.3.6 Second-order normal form

In the formal linearisation that resulted in Equation (A.36), we neglected terms of higher order
in pv1,W, z1q. Next, we perform a normal form transformation, which will allow us to eliminate
all quadratic terms from Equation (A.37):

Proposition A.1. Let

β � pD � 1qc�c�a
c2 � 4

�� 2pD � ηq and γ �
a
c2 � 4

�
c�

a
c2 � 4

�
;

then, the near-identity transformation

v1 � ṽ1 � 4D

βγ
z̃2 � 2

�
D
?
c2 � 4� cpD � 2q�

βγ
ṽ1z̃1 � 2

γ
�Wz̃1,

W � �W � 2
�
D
?
c2 � 4� cpD � 2q�

βγ
ṽ2

1 �
c�?

c2 � 4

γ
�W 2 � 2

�
cDpc�?

c2 � 4q � 2pc2 � ηq�
βγ

ṽ1
�W

� 4D

βγ
ṽ1z̃1 �

2D
�
c�?

c2 � 4
�

βγ
�Wz̃1,

z1 � z̃1 �
2η
�
D
?
c2 � 4� cpD � 2q�

Dβγ
ṽ2

1 �
4c

βγ
z̃2

1 �
2η

Dγ
ṽ1
�W � 2

�
cDpc�?

c2 � 4q � 2pc2 �Dηq�
Dβγ

ṽ1z̃1

� 2c

Dγ
�Wz̃1
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transforms Equation (A.37) into

ṽ11 � ṽ1 � 2

c�?
c2 � 4

z̃1 �Op3q, (A.46a)

�W 1 � 2

c�?
c2 � 4

ṽ1 � 2
?
c2 � 4

c�?
c2 � 4

�W �Op3q, (A.46b)

z̃11 �
η

D

2

c�?
c2 � 4

ṽ1 �
�

1� 2

D

c

c�?
c2 � 4

	
z̃1 �Op3q. (A.46c)

Proof. We make the Ansatz analogous as those in Section 2.4.4 of v-component cut-off system,
details are omitted here.

The obtained second-order normal form transformation allows us to eliminate the quadratic
terms, which improves the accuracy of the approximation in Equation (A.37); in particular, the
results obtained by the new system (A.46) will also be improved. To that end, the derivation
follows the same process as the formal linearisation pathing in Section A.3.5. Firstly, we invert
the transformation as following

ṽ1 � v1 � 4D

βγ
z2

1 �
2
�
D
?
c2 � 4� cpD � 2q�

βγ
v1z1 � 2

γ
Wz1 �Op3q,

�W �W � 2
�
D
?
c2 � 4� cpD � 2q�

βγ
v2

1 �
c�?

c2 � 4

γ
W 2 � 2

�
cDpc�?

c2 � 4q � 2pc2 � ηq�
βγ

v1W

� 4D

βγ
v1z1 �

2D
�
c�?

c2 � 4
�

βγ
Wz1 �Op3q,

z̃1 � z1 �
2η
�
D
?
c2 � 4� cpD � 2q�

Dβγ
v2

1 �
4c

βγ
z2

1 �
2η

Dγ
v1 W � 2

�
cDpc�?

c2 � 4q � 2pc2 �Dηq�
Dβγ

v1z1

� 2c

Dγ
Wz1 �Op3q

Then, we transform the boundary conditions at P in
ε1 and P out

ε1 of (A.35) in section Σin
1 and Σout

1

into rP in
ε1 and rP out

ε1 in section rΣin
1 and rΣout

1 for our second-order normal form patching:

rP in
ε1 :� �

a, ṽin
1 ,

�W in, z̃in
1 ,

ε

a

�
at τ � 0 (A.47a)

rP out
ε1 :� �

ε, ṽout
1 ,�W out, z̃out

1 , 1
�

at τ� � ln
a

ε
, (A.47b)

where the transformed boundaries in pṽ1,�W, z̃1q-variables after eliminating higher order terms
are detailed in Appendix A.3.9.

We can determine the related new coefficients Ai, Ci pi � 1, 2, 3q in the general solution
of Equation (2.59) with the Op3q-terms omitted, by patching at the boundaries between two

sections rΣin
1 and rΣout

1 at the points of intersection rP in
ε1 and rP out

ε1 , i.e., we solve the particular
solution with specific boundary condition (A.47) in pũ, w̃, z̃q, which completes the construction

of the orbit rΓ1 in chart K1; here, rΓ1 denotes the approximation to the general solution of (2.59)
by the second-order normal form patching; as for details on the patching process, see Appendix
A.3.9; there, we then obtain two equations rFεi � 0 pi � 1, 2q in dependence on pa,A1, c, εq. The

results of the c-a relation by the second-order normal form patching is labeled by rFε.
We prove the existence by following the same procedure for aεpcq in Section 2.4, which

is equivalent to proving that we can get the unique solution from the two constraints rFεi �
0 pi � 1, 2q by applying the Implicit Function Theorem. We find similar results as well, i.e., the

persistence of rFε for ε ¡ 0 small will be obtained by the Implicit Function Theorem.

A.3.7 Numerical simulation

In this section, we present the numerical simulations of the obtained speed relation Fε and rFε
defined in (A.42) and (A.59), respectively, by formal linearisation and the second-order normal
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form in Sections A.3.5 and A.3.6, respectively. We also display the c-a relation obtained by the
general patching, labeled Gε, are obtained by matching the general solution at the patching
points: connecting regions I and II, and regions II and III, respectively, for the sake of the
continuity of the general solution in each region in the original ODE system; for details we refer
to Appendix A.3.8.

A.3.7.1 Simulation of Fε

We first compute the result of Fε obtained by formal linearisation in Section A.3.5, in a range
of values for the cut-off threshold ε in Figure A.5, where ε � 0.1, 0.05, 0.001 and ε � 0 for the
values of D � 1, 2, 5 and D � 10. In the limit of ε � 0 (solid black), the upper branches of
the curves show that the speed c grows as a decreases and may reach infinity when a Ñ 0; in
particular, for D � 1, 2 and D � 5, one saddle-node bifurcation occurs in agreement with the
study of bifurcation scenarios in Section 2.4.3, which admit the existence of a neutrally stable
front at the bifurcation [57]. Moreover, we find the curves would go across the horizontal line
axis to negative values of the speed c, which should be considered in a symmetric situation;
here, we only consider c ¡ 0.

For D fixed, e.g., D � 1, the valid range of the speed c becomes wider as ε Ñ 0, i.e.,
the value of cmax increases by decreasing ε, the same phenomenon occurs for D � 2, 5, 10, in
agreement with the definition of cmax in Equation (A.44) in Section A.3.5.3. The fit of the
perturbed curves to the singular curve improves as ε decreases; in particular, for ε sufficiently
small, e.g. ε � 0.001 (dotted magenta), the perturbed curves persist to the corresponding
singular one, while for ε � 0.1 (dash-dotted blue) and ε � 0.05 (dashed red) with D large, e.g.
D � 5 or D � 10, in a range of the speed, e.g. c P p0, 1q, the bad performance suggests that
our blow-up patching fails in that speed range. Recall the valid speed range of

�
cmin, cmax

�
in

Section A.3.5.3, here, we approximate the values of cmin and cmax by setting σ � ε for easy
computation; the corresponding valid speed range see Table A.1.
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Figure A.5: Speed relation obtained by formal linearisation patching Fε, for D � 1, 2, 5, 10,
with ε � 0.1, 0.05, 0.001 and ε � 0, for fixed η � 0.12, α � 0.08.

.
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Table A.1: Approximated valid speed range pcmin, cmaxq, for D � 1, 2, 5 and D � 10 with
ε � 0.01, 0.05, 0.01, and σ � ε, for fixed η � 0.12, α � 0.08

ε 0.1 0.05 0.01

D � 1 p0.5050, 2.8136q p0.6302, 4.2291q p0.8766, 9.8919q
D � 2 p0.8677, 2.8005q p1.1870, 4.2191q p2.1936, 9.8878q
D � 5 p1.6132, 2.7507q p2.4080, 4.1885q p5.5943, 9.8755q
D � 10 p2.4176, 2.6570q p3.6717, 4.1349q p8.7047, 9.8548q

We approximately compute the values at bifurcation points via solving equations Fε � 0
and BFε{Bc � 0, for ε � 0.1, 0.05 and ε � 0.001; see Table A.2. For D � 1, 2 and D � 5, we
find that the perturbed bifurcation approaches the corresponding singular one as ε Ñ 0; note
that, no bifurcation exists for D � 10.

Table A.2: Approximated bifurcation points pab, cbq obtained by formal linearisation patching
Fε, for D � 1, 2, 5 with ε � 0.1, 0.05, 0.001 and ε � 0, for fixed η � 0.12, α � 0.08

ε 0.1 0.05 0.001 0

D � 1 p0.2822, 0.6094q p0.2651, 0.6276q p0.2574, 0.5985q p0.2579, 0.5915q
D � 2 p0.2507, 0.7014q p0.2289, 0.7464q p0.2149, 0.6949q (0.2185,0.6407)
D � 5 p0.2094, 0.8101q p0.1791, 0.9267q p0.2149, 0.6949q (0.1430,0.9212)

A.3.7.2 Comparison of Fε and Gε

In this section, we compare the results of Fε and Gε, which are obtained by formal linearisation
patching and general patching with D � 1, 2, 5, 10 and ε � 0.01, 0.05, 0.001; see Figure A.6.
The solid red curves correspond to the results of Fε by formal linearisation patching; the dash-
dotted blue curves describe the results of Gε by general patching; while the thin black curves
represent the corresponding singular solutions. The small rectangular area along the curves is
zoomed-in to the bottom left axes.

We find that the formal linearisation patching results Fε match the general patching solution
Gε well above the bifurcation point, where the error between them is Opε2q, i.e. both methods
perform well for stable fronts, while for ε � 0.1 (dash-dotted blue) and ε � 0.05 (dashed red)
with D large, e.g. D � 5 or D � 10, in a range of the speed, e.g. c P p0, 1q, the bad performance
suggests the valid speed range of

�
cmin, cmax

�
in Section A.3.5.3, approximated values of cmin

and cmax by setting σ � ε, see Table A.1. The bad performance of general patching Gε may
due to the computation limitation.
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Figure A.6: Speed relation obtained by formal linearisation patching Fε, general patching Gε
and the singular limit a0pcq, for D � 1, 2, 5, 10 with ε � 0.01, 0.05, 0.001, for fixed η � 0.12, α �
0.08; here, the small rectangular area is zoomed-in to the bottom left axes.

A.3.7.3 Simulation of rFε
We approximate the solutions of the equations rFεi � 0 pi � 1, 2q in (A.59), which are obtained
by the second order normal form transformation patching. Then compare the results with those
obtained by formal linearisation patching and the general patching as well; see Figure A.7. We
find that the second order normal form patching provides a better fit to the general patching
than the formal linearisation for ε � 0.1 and ε � 0.05, as the maximum error is much smaller
around the bifurcation, which seems to be Opε3q . When ε is decreasing, the second-order
normal form patching is time-consuming that the formal linearisation patching would provide
a qualitative approximation to the results of general patching. Moreover, there might be some
computation limitation around the bifurcation node and below, which are omitted here.
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Figure A.7: Speed relation obtained by formal linearisation patching Fε (solid red), second-order

normal form rFε (dotted magenta), general patching Gε (dash-dotted blue) and the singular limit
a0pcq (solid black), for D � 1, 2, 5, 10 with ε � 0.1, 0.05, for fixed η � 0.12, α � 0.08; here, the
small rectangular area is zoomed-in to the bottom left axes.
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A.3.7.4 The effect of the cut-off

From the numerical simulation of the results among the three methods: the formal linearisar-
ion patching method, the second-order normal form transformation patching method and the
general patching method for Equation (A.19), we observe that the cutoff prevents u-variable
reacting in the negative region for ε ¡ 0 small, so that the front profiles are shifted to the
positive region in pu, vq-variables. Moreover, as in the singular limit case by the general patch-
ing method, the speed may grow to infinity as a tends to 0, the cutoff also prevents unlimited
speed, where the maximum value of speed decreases as the cutoff threshold ε increases at fixed
discontinuity position a, i.e. speed range gets smaller as ε increases.

A.3.8 General patching

We consider the travelling front solutions propagating from Q� when ξ Ñ �8 to Q� when
ξ Ñ �8. The general solutions for this problem in the regions can be written as follows:
In region I: u ¥ a and v ¥ ε, for ξ ¤ ξ0

ug1pξq � A2e
λ1ξ � A1

µ3
eλ3ξ � 1� α{η, (A.48a)

vg1pξq � A1e
λ3ξ � α{η. (A.48b)

wg1pξq � λ1A2e
λ1ξ � λ3

µ3
A1e

λ3ξ, (A.48c)

zg1pξq � λ3A1e
λ3ξ (A.48d)

In region II: ε ¤ u ¤ a, for ξ0 ¤ ξ ¤ ξ�

ug2pξq � A21e
λ1ξ �A22e

λ2ξ � B23

µ3
eλ3ξ � B24

µ4
eλ4ξ, (A.49a)

vg2pξq � B23e
λ3ξ �B24e

λ4ξ, (A.49b)

wg2pξq � λ1A21e
λ1ξ � λ2A22e

λ2ξ � λ3

µ3
B23e

λ3ξ � λ4

µ4
B24e

λ4ξ, (A.49c)

zg2pξq � λ3B23e
λ3ξ � λ4B24e

λ4ξ. (A.49d)

In region III: u ¤ ε, for ξ ¥ ξ�

ug3pξq � A0e
�cξ, (A.50a)

vg3pξq � B0e
� c
D ξ, (A.50b)

wg3pξq � �cA0e
�cξ, (A.50c)

zg3pξq � � c

D
B0e

� c
D ξ (A.50d)

where λ1,2 � �c�?c2�4
2 , λ3,4 � �c�

?
c2�4Dη

2D , and µj � λ2
j � cλj � 1 pj � 3, 4q.

Then we can solve for all coefficients Aij , Bij by patching the three regions together, using
the conditions for continuity of functions, with two more constraints ug2pξ0q � a, ug2pξ�q � ε.We
obtain the front solutions explicitly, by choosing ξ0 � 0 for simplicity.

All the coefficients are the same as in (A.5), while two constraints obtained at the patching
points are ug2pξ0q � a, ug2pξ�q � ε, written as

Gε1pa, ξ�, c, εq :� A21 �A22 � 1

µ3

λ3

λ4
epλ4�λ3qξ� α{η

1� λ4

λ3

� 1

µ4

α{η
1� λ4

λ3

� a � 0, (A.51a)

Gε2pa, ξ�, c, εq :� �λ1

λ2
� 1

�
A22eλ2ξ

� �
�λ3 � λ1

µ3

λ3

λ4
� λ1 � λ4

µ4

	 α{η
1� λ4

λ3

eλ4ξ
�

λ2
� ε � 0.

(A.51b)
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Existence and uniqueness

In the singular limit defined as ε � 0 and ξ� Ñ8 in Equation (A.51), we can obtain an explicit
expression of apc0, 0q,

apc0, 0q � p1� α

η
q λ1

λ1 � λ2
� α

η

1

pλ1 � λ2qpλ3 � λ4q
�λ3

µ4
pλ2 � λ4q � λ4

µ3
pλ1 � λ3q

�
(A.52)

which is also the result of the general patching method for singular system, for details see
Appendix A.2 or [74]. In particular, the denominators pλ1 � λ2q, pλ3 � λ3q, µ3 and µ4 are
well-defined; the existence of a0pc0q has been proved in Section 2.4 as well.

To that end, we prove that there exists a unique solution from the two constraintsGεipc0, 0q �
0 pi � 1, 2q in (A.51) by applying the Implicit Function Theorem. We consider the Jacobian
matrix with respect to a and ξ� at pc, εq � pc, εq,

J �
�� BGε1

Ba
BGε1
Bξ�

BGε2
Ba

BGε2
Bξ�

�� �
���1

BGε1
Bξ�

0
BGε2
Bξ�

�� , andDetpJq��pa�,ξ�,c�,εq � �BGε2Bξ�

We compute the determinant of J for each solution pa�, ξ�, c�, εq, which satisfyGεi � 0 pi � 1, 2q
and find that J tends to a small nonzero limit for c large for ε � 0.0001. Then, we can say
there exist a solution for these two equation (A.51), and there also exist a unique solution for
Gε by the Implicit Function Theorem, i.e., the persistence of Gε for ε positive and small by the
Implicit Function Theorem.

Numerical simulation

For the bifurcation result, we solve the two constraints (A.51) numerically and obtain the
relation between speed c and discontinuity position a for the u-variable cut-off sigmoidal system,
plotted with D � 1, 2, 5, 10 with ε � 0.1, 0.05, 0.001, see Figure A.8.
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Figure A.8: Speed relation obtained by general patching Gε, for D � 1, 2, 5, 10, with ε �
0.1, 0.05, 0.001 and ε � 0, for fixed η � 0.12, α � 0.08.
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A.3.9 Derivation of second-order normal form patching

Recall the transformed the boundaries rΣin
1 and rΣout

1 for our second-order normal form patching

in (A.47), where pṽin
1 ,

�W in, z̃in
1 q has the form

ṽin
1 � vin

1 � 4D

βγ
pvin

1 q2 �
2vin

1 z
in
1

βγ

�
D
a
c2 � 4� cpD � 2q

�
� 2

γ

�
win

1 � λ2

�
zin

1 , (A.53a)

�W in � win
1 � λ2 � 2pvin

1 q2
βγ

�
D
a
c2 � 4� cpD � 2q

�
� c�?

c2 � 4

γ

�
win

1 � λ2

�2

�
2
�
cDpc�?

c2 � 4q � 2pc2 � ηq
�

βγ
vin

1

�
win

1 � λ2

�� 4D

βγ
vin

1 z
in
1

� 2D

βγ

�
c�

a
c2 � 4

��
win

1 � λ2

�
zin

1 , (A.53b)

z̃in
1 � zin

1 � 2ηpvin
1 q2

Dβγ

�
D
a
c2 � 4� cpD � 2q

�
� 4c

βγ
pzin

1 q2 �
2η

Dγ
vin

1

�
win

1 � λ2

�
(A.53c)

� 2vin
1 z

in
1

Dβγ

�
cDpc�

a
c2 � 4q � 2pc2 �Dηq

�
� 2c

Dγ

�
win

1 � λ2

�
zin

1

and pṽout
1 ,�W out, z̃out

1 q has the form

ṽout
1 �

�
� D

c
� c�?

c2 � 4

γ

�
A3 � 2D2

βγc

�
c�

a
c2 � 4

�
A2

3 (A.54a)

�W out �
��c�?

c2 � 4

2
� pc�?

c2 � 4q3
4γ

�
� 2D

βγc

�
2cpD � 1q � ηpc�

a
c2 � 4q

�
A3

� 2D3

βγc2
?
c2 � 4

A2
3, (A.54b)

z̃out
1 �

�
1� p�c�?

c2 � 4q
γ

pη
c
� c

D
q
�
A3

� 2

βγc

�
Dηp�c�

a
c2 � 4q � c2Dηpc�

a
c2 � 4q � cpD � 2q

�
A2

3 (A.54c)

We then determine the coefficients Ci, Aipi � 1, 2, 3q by matching the boundaries in (A.47),
which yields

ṽout
1 � �Dλ3

η
C2eδ2τ

� � Dλ1λ3

ηpδ1 � δ2qC3eδ3τ
�

, (A.55a)

�W out � C1eδ1τ
� � 1

λ3
C2eδ2τ

� � λ1

λ3pδ1 � δ3qC3eδ3τ
�

(A.55b)

z̃out
1 � C2eδ2τ

� � C3eδ3τ
�

(A.55c)

ṽin
1 � �Dλ3

η
C2 � Dλ1λ3

ηpδ1 � δ2qC3 (A.55d)

�W in � C1 � 1

λ3
C2 � λ1

λ3pδ1 � δ3qC3 (A.55e)

z̃in
1 � C2 � C3 (A.55f)
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We obtain the explicit expressions of coefficients as following,

C1 �
��W out � ηpδ1 � δ2qṽout

1 �Dλ1λ3z̃
out
1

Dλ2
3pλ1 � δ1 � δ2q � λ1pδ1 � δ2qpηṽout

1 �Dλ3z̃
out
1 q

Dλ2
3pδ1 � δ3qpλ1 � δ1 � δ2q


� ε
a

	δ1
(A.56a)

C2 � �ηpδ1 � δ2qṽout
1 �Dλ1λ3z̃

out
1

Dλ3pλ1 � δ1 � δ2q
� ε
a

	δ2
(A.56b)

C3 � pδ1 � δ2qpηṽout
1 �Dλ3z̃

out
1 q

Dλ3pλ1 � δ1 � δ2q
� ε
a

	δ3
(A.56c)

A2 � �A1

µ
� a� 1� α

η
(A.56d)

where ṽout
1 ,�W out, z̃out

1 are terms of order 2 in A3. Then, Equation (A.55) reduce to

ṽin
1 �ηpδ1 � δ2qṽout

1 �Dλ1λ3z̃
out
1

ηpλ1 � δ1 � δ2q
� ε
a

	δ2 � λ1pηṽout
1 �Dλ3z̃

out
1 q

ηpλ1 � δ1 � δ2q
� ε
a

	δ3
(A.57a)

�W in ��W out
� ε
a

	δ1 � ηpδ1 � δ2qṽout
1 �Dλ1λ3z̃

out
1

Dλ2
3pλ1 � δ1 � δ2q

�� ε
a

	δ1 � � ε
a

	δ2�
� λ1pδ1 � δ2qpηṽout

1 �Dλ3z̃
out
1 q

Dλ2
3pδ1 � δ3qpλ1 � δ1 � δ2q

�� ε
a

	δ1 � � ε
a

	δ3�
(A.57b)

z̃in
1 �� ηpδ1 � δ2qṽout

1 �Dλ1λ3z̃
out
1

Dλ3pλ1 � δ1 � δ2q
� ε
a

	δ2 � pδ1 � δ2qpηṽout
1 �Dλ3z̃

out
1 q

Dλ3pλ1 � δ1 � δ2q
� ε
a

	δ3
(A.57c)

where ṽin
1 ,

�W in, z̃in
1 are terms of order 2 in A1. We rewrite the right-hand side of Equation

(A.57) in the powers of A3, label the coefficients by Lijpa, c, εq pi � 1, 2, 3, j � 1, 2q

ṽin
1 � L12A

2
3 � L11A3 (A.58a)�W in � L22A
2
3 � L21A3 � L20 (A.58b)

z̃in
1 � L32A

2
3 � L31A3 (A.58c)

As A3   0, we solve equation (A.58a), which implies A3 � 1
2L12

�
� L11 �

a
L2

11 � 4L12ṽin
1

	
.

Then, we obtain two constraints, denoted by rFεi � 0 pi � 1, 2q,

rFε1 :� �W in � L22

4L2
12

�
L11 �

b
L2

11 � 4L12ṽin
1

	2

� L21

2L12

�
L11 �

b
L2

11 � 4L12ṽin
1

	
� L20

(A.59a)rFε2 :� z̃in
1 � L32

4L2
12

�
L11 �

b
L2

11 � 4L12ṽin
1

	2

� L31

2L12

�
L11 �

b
L2

11 � 4L12ṽin
1

	
(A.59b)

Remark A.5. Here, Ci � Cipa,A3, c, εq pi � 1, 2, 3q, the values of
�
ṽin

1 ,
�W in, z̃in

1

�
, Aj pj � 2, 3q

and rFεi pi � 1, 2q are in dependence of pa,A1, c, εq.
Remark A.6. To solve equation (A.58a), we should obtain two roots of A3, 1

2L12

�
� L11 �a

L2
11 � 4L12ṽin

1

	
and 1

2L12

�
� L11 �

a
L2

11 � 4L12ṽin
1

	
according to numerical simulation that

L11,12 are negative, since ṽin
1 is positive, we find that the formal root is more reasonable.

Existence and uniqueness

The existence of a unique solution for Equation rFεi � 0 pi � 1, 2q in (A.59), follows the same
procedure as in previous proofs by the Implicit Function Theorem. Now the determinant of the

Jacobian matrix of (A.59) becomes DetpJq��
a�,A�

1 ,c
�,ε

�
��� B rFε1Ba

B rFε2
BA1

� B rFε2
Ba

B rFε1
BA1

���. We numerically

compute the values of DetpJq and find that ∆ are nonzero at least for ε � 0.0001, which implies

the persistence of rFε for ε positive and small by the Implicit Function Theorem.
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