
A SYSTEM FOR DEVELOPING PROGRAMS BY TRANSFORMATION

by

I
Martin Stephen Feather

Ph D

University of Edinburgh

1979

l, _1 A j. L, i, 4 ý .ý

ACKNOWLEDGEMENTS

ABSTRACT

Chapter

1. Introduction

2. The art of programming

1. Difficulties of progra. ariing

1. Structured programming

2. Verification

3. Program maintenance and modifiability

4. Sidestepping the problem

2. The potential of prograia transformat: ion

3. My own approach towards a transformation system

1. Underlying method of transforming

2. Level of transformation

1. Transformation context

2. Pattern directed transformation

3. Control of the system

4. The use of defaults

3. Review of state of the art

1. Overview

2. Martelli

3. Pepper et al

4. Manna and Waldinger

5. Darlington and Burstall

6. Burs tall Darlington

4. User view of system

1. ZAP program transforTation system pri^cr

2. ZAP program transformation system users' manual.

5. Transforming large examples

1. Transformation tactics

1. Combining tactic

2. Tupling tactic

2. Transformation strategies

3. The telegram problem

1. English specification

2. Design of protoprogram

3. NPL protoprogram

4. Transforming to efficient versicn

5. Final program

6. Modification of telegram problem

4. Simple compiler

1. Design of protoprogram

2. NPL protoprogram

3. Transforming to efficient version

4. Final program

5. Remarks on transformation examples

6. Transformation of a text formatter

1. Informal specification of the text formatter

2. Design of protoprogram

3. NPL protoprogram

4. Evaluation of text formatting programs

I. Satisfying informal specification

2. Resolving ambiguities in the informal specification

3. Changing/extending the program

5. Transformation to efficient %er!, ion

6. Final program

7. Implementation

1. General details

2. NPL level

3. Transformation level

1. Utility section

2. Control section

3. Transformation step section

1. Expansion of expression and pattern

1. Normalisation of iterative constructs

2. Normalisation of conditionals

3. Normalisation of where constructs

2. Matching of expression and pattern

3. Instantiating pattern to form answer

4. Default section

1. Type information default

2. Cases default

3. Pattern default

8. Conclusions

1. Summary

1. Adequacy of techniques and system

2. Range of applicability

2. Extensions

1. System improvements

2. Extending transformation methods

3. Comparison with other work

BIBLIOGRAPHY

APPENDIX - NFL

AC[ý ýdCý"ý L Eýi: ; EL"a r.: <T S

I would like to express my deepest gratitude to the following

people and organisations:

To my supervisor, Rod Burstall, for his constant encouragement

and assistance throughout;

To John Darlirigton who, with Rod Burstall, first aroused my

interest in program transformation and prcvided the underlying work

which served as my starting point, and has been helpful throughout;

To Dave McQueen, Alberto Pettorossi, Gordon Plotkin, Robin

Popplestone and Jerry Schwarz for useful discussions of

transformation and related topics;

To my past and present colleagues of the Department of

Artificial Intelligence for making my stay in Edinburgh so enjoyable;

To the Science Research Council for providing financial support

and computing facilities.

ABSTRACT

Much of the difficulty of programming can be atcribute: ' to the

clash between the goal of efficiency and other desirable goals, s! Lch

as clarity, reliability and m3difiability. 'I"his thesis proposes

program transfornat4. on as a suitable methodology for program

development to circumvent this difficulty.

Following this methodology, a program is developed by first

writing a simple str. aightforws. rd solution to the problem, unhampered

by efficiency considerations. Efficiency is then introduced in a

separate step by transforming the simple solution.

In order that this be a practical methodology, transformation of

large programs must be possible to perform reliably and easi. l y. 1"(. 'is

thesis presents an implemented machine-b::, sed transformation system

which attempts to realise these needs.

The system is based on a concise and powerful transformation

method due to Burstail and Darlington. The emphasis of the system is

on making it easy for the user to control the system through a

transformation. Guidance is expressed in a command language, so that

commands may be saved and re-run, modified, or viewed as

documentation together with the initial program.

The level at which guidance is given is higher that the

low-level underlying manipulations. Techniques for organising the

transformation of large programs at even higher levels are presented.

Some non trivial programs and their transformation as achieved using

the system illustrate these features.

�ý

CHAPTER I

INTRODii(; TIOIl

The use of computers is continur,. liy increasing, and a great deal

of research is being done into tn. - hardware and sof twar` aspects of

computing. Progress on the hardware side has led :o cheaper and more

efficient machines, so the cost (in both time and money) of providing

and maintaining software is becoming increasingly significant. Since

the late 1960's the existence of the so called software crisis has

been recognised - that is the difficulty of specifying, developing

and maintaining large pieces of software. Consequently there is a

great deal of interest in devising methods to ease the task of

programming.

My own research has concentrated on one of these potential

methods - program transformation. This is a design methodology that

suggests we produce a program in a two-stage process; firstly, write

a simple program without regard for efficiency of execution (so

freeing us to aim for clarity and correctness); the required

efficiency is achieved in the second stage, in which we' transform the

initial program. In making this separation we hope to benefit by

ending up with an efficient program (as we would if we used some

other design method), yet one which is much more reliable and bet-ter

documented through being derived from a simple initial program.

INTRODUCTION Pag. C,

Other reseý_. _-chers have already in-, ented ways of tr nsfo? -! ̂ i:, g

programs. Rather than look for yet more such ways, or t. ý _xtend them

to some new domain, my decision has been to take what appeared to be

a promising approach, invented by Burstail and Darlington, and

attempt to develop it further in the direction of practical

applicability Ly trying it on larger and more complex examples. If

transformation is to become a practical mcthodelogv, it must be both

easy and reliable to perform. This implies the need for a

machine-based transformation system to aid us in transforming

programs. Such a. system would provide reliability, and give

assistance by removing the drudgery of carrying out many small

operations by hand. Darlington had already developed a

semi-automatic system based on the transformation method he invented

with Burstall. Although his system performed impressively on small

examples, it did not seem to be practical for use on larger programs.

A major part of my work has been to produce my own

transformation system which is intended to be a suitable tool for use

on larger programs. The system adopts the Burstall-Darlington

transformation method as its underlying means of transforming

programs, however the transformation steps which the system

-implements are at a higher level than these underlying operations.

Each system step can be justified in terms of many small steps, but

the user is saved the need to think at the rather low level of the

small steps. An important design decision behind my system has been

to accept, in fact encou age, user guidance. As an investigation

into the practicality of transformation, I consider it better to see

how much can be- achieved with the aid of a machine-based system

ý 1"; 'RODUCTIOII ý; ;ý 1-3

rather than to see far a totally automatic a_pp((ci:

pushed.

To run my system, the user provides a series of c ýrýands

c;. n

-- =ý'
ci

specially designed control language. Such cor... ands r-ay be g-Zven at

the terminal., or stored in a disc file and executed (or a mint e of

both) . The commands form a readable account of the trausformütions

carried out, and serve as documentation showing how the initial

program is transformed to attain the final, efficient, program.

With the aid of my system I have tackled the transformation of

some non-tiivi. al programs. In doing so, the need to structure the

transformation process itself has become apparent. To organise a

large transformation, I have developed efficiency introducing

"tactics", and an overall "strategy" for applying these tactics. In

the same 'way that the transformation steps of my system are at a

higher level than the underlying transformation steps upon which they

are based, the tactics and strategy can be viewed as acting at a yet

higher level in the transformation process.

I have deliberately attempted transformations of programs

considerably larger than the examples hitherto tackled. My belief is

that an easily guided interactive system is the only way to deal. with

programs of this scale -a totally automatic approach suffers from

the combinatorial explosion of possibilities, and an entirely

hand-performed transformation of programs of this size would be too

tedious to perform correctly, if at all.

The layout of the remaining chapters of this thes. I&. s is as

follows :

7NTRODUCTI ON ýý¬-: _ 1-4

Chapter 2- E--n expansion of my mctiz? a: fo: l for prora Li

transformation, and for the design c±eci : dons bchi«d rl ý} st

Chapter 3- An examination of other re:; earcýý into program

tra-asformation. AE election of other people' illustrates

different approaches to, and uses of, trans£orý: `ýoý;.

Chapter 4- The instructions on how to make use of my trruisformation

system.

Chapter 5- The transformation of non-trivial programs. The tactics

and strategy I have developed are described. Two non-trivial

programs and their transformation as achieved with the aid of my

system are presented.

Chapter 6- The transformation of a text formatter. This program is

considerably larger than the examples pr_ esente: d in chapter 5, and l

discuss the difficulties which its transformation brought to l 4_ght.

Chapter 7- Significant implementation details of my sy3tem.

Chapter 8- Conclusions to be drawn from the work done, and possible

avenues for further research.

CHAPTER 2

TIIE ART OF ßRý sr. ý1%R'r=

This chapter, examines the task of pr. ogram. mfng to see why it is

hard, then expounds the potential of program transformation as a

programming method, and finally pres_TLts my own approach to

investigating whether this potential can be realised.

2.1 DIFFICULTIES OF PRt'ýGRAL'CMING

Computer programming remains a difficult task requiring much

effort and intelligence. Large software projects can require many

man-years of work to complete, and with the continuing hardware

developments, software costs are becoming the major expense. In

order to determine the causes of the difficulty, we must examine the

interactions between the goals we seek to satisfy w. ". erg programming.

Typically when writing a program we have some or all of the following

objectives in mind :

Correctness - the program should perform correctly the task we

intend it to do.

Efficiency - despite the continual reduction in costs of

hardware, and increases in performance, programs must sill be

TAE AUI OF PkCcRI? MINO rage Z-2

reasonably efficient. Often it will not be necessary to

achieve the ultimate efficiency ossJible, but there can still

be a large gap between an arbitrary program and a tolerably

efficient progian.

Clarity - ideally programs should be easy to understand. When

this is not so, supplementary documentation is required to

further clarify the behaviour of a program.

Modifiability - very often she program we first: produce will

need to be modified to perform differently later on. Ideally,

our initial program should be capable of relatively easy

modification when the desired changes in the task are not too

drastic.

It is the attempt to simultaneously satisfy these goals that

introduces much of the difficulty into programming. Efficiency in.

particular seems to interact unfavourably with the other goals. In

achieving efficiency we usually pay the price of decreased clarity,

and risk losing correctness. To achieve efficiency involves

combining what we originally conceive of as distinct activities so as

-to benefit from doing them all at the same time, thus destroying the

program's modularity.

A widely-used approach to developing programs is to write them

haphazardly, and then eliminate errors by testing. This can hardly

be regarded as ideal. We are unlikely to be able to test all paths

in the solution, and may well find that some errors remain

undetected, only to emerge later when the program is in use and some

THE ART OF PROGiW"MING Page 2-3

unforseen set of circumstances brie s' theme to light. What may seem a

clear feature to the programmer at the time of writing may be hard

for others, or even that same programmer some time later, to follow.

2.1.1 Structured Programming

Approaches to alleviate some of these difficulties have been

developed under the name of "structured programming". Noted texts on

this methodology include Dahl, Dijkstra and Hoare [1972], Dijkstra

[19761. Structured programming has two aspects - one is the feature

of a structured program: For example, we are encouraged to avoid the

arbitrary use of goto's, and instead use while-expressions and the

like. This does not tell us how to write structured programs, only

what features tend to make programs unstructured.

The other aspect is the orderly development of a program - i. e.

structured programming. I consider stepwise refinement, and data

abstraction. Stepwise refinement is the development of a program

from a specification of the problem by a progression of stages, each

going into more detail than its predecessor. Calls to procedures are

written first, before their bodies - in doing so clarifying what the

. procedures are to do. Whilst this is better than an entirely

haphazard development, we are not guaranteed to avoid introduction of

errors during the development. Also, we are expected to make

appropriate choices at each level of refinement. As we descend into

more detailed levels, the earlier decisions dictate constraints which

cannot be changed without going all the way back to them and re-doing

the development from there. A feature of stepwise refinement which

THE ART OF PROGRA ýS'i4ING Page

will be seen to contrast with transformation is the way in which the

overall structure of the final algorithm is fixed freTa the very start

of the development process. The process is, as its name suggests, a

refinement, descending into more detail but not carrying out any

major structural changes. Thus the approximate structure of the

final efficient algorithm must be present during all stages of

design. For purposes of clarity, modifiability and verification we

would like to deal with program structures not encumbered by the

additional complexities of efficiency. Stepwise refinement is of no

assistance in making major structural changes that incorporating

efficiency into a naive algorithm would require.

Data abstraction is the development of a program by building the

algorithm around the data structures appropriate to the problem, and

the operations we require upon them. This provides a form of

modularity. We make a distinction between the operations upon the

abstract types, which we use throughout the program, and the actual

representation of the types and implementation of the operations in

terms of features actually available in the language. This

implementation is hidden from the rest of the program. It gives us

the security of knowing that the objects we build up are well formed.

The modularity allows us to change the representation by only having

to consider the part devoted to representation, the calls to abstract

operations throughout the remainder of the program remaining

unchanged.

Unfortunately efficiency may force us to abandon our good ideals

once again. We are tempted to relax the barriers hiding

representations so as to be able to make computational short cuts

THE ART OF PROGRAMMING
2-

--

based upon our knowledge of the representation in use. For ý, ýcample,

we may be manipulating sets of objects. our representation for sets

may be such that for. a given set, selecLing elements from it ai 3ys

produces them in the same order. We might take advantage of this

property in the main body of the program, which could lead to trouble

if we were to change the representation later so that the property no

longer held.

2.1.2 Verification

If one of our Fundamental goals is correctness, we may be

prepared to put a lot of effort into developing a program and then

proving it correct with respect to some specification. Although this

does not aid modifiability or clarity, there may be occasions crhen

these are not regarded as essential - typically when we wish to

generate a "service" program which is to be used often, and must

perform faultlessly.

Program proving has developed from the early work of McCarthy

[1963], Floyd [19671, Manna [19691, Hoare [1969] and Burstall [1969].

The most intricate verifications have been performed by hand,

requiring considerable insights into the problems. To combine the

reliabilty of a machine based system with the intuition of a human,

work has been done to develop interactive verification systems (e. g.

Good (1970], Topor [1975]). Fully automatic verification systems have

had their greatest success on rather limited domains of programs.

Functional languages are seemingly easier to prove properties about

than conventional imperative languages. Work done by Boyer and Moore

[1975], and Aubin [19761 demonstrates this. Despite the considerable

THE ART OF PROC, RA i1NG Page 2-6

attention this area has received, there have no great

breakthroughs -- the main result to emerge has been the raalisntiorº

that program verification is hard.

Sometimes verification has the 11-eneicial side effect of

providing ins:. ghts into the behaviour of a program. For example,

assertional methods of verification can give rise to invariants which

are instructive about performance. To follow the whole of a

verification in order to understand the program may itself be rather

tedious. Indeed, for non-trivial programs, the entire verification

may be so lengthy that to follow through all of it would be of no

value in convincing us of its validity. This is one of the

considerations behind the implementation of LCF (Milner [1972], and

Gordon, Milner and Wadsworth [19761), which is designed to allow us

to make proof generators, taking us away from the detailed level of

the proof itself, and making the overall proof generation and

comprehension much easier (Cohn [1979]).

Despite this sort of advance, as a method of understanding

programs verification is not ideal. The intertwining of algorithmic

details with efficiency details means we must try to comprehend

details relating to both at once, instead of being able to break the

problem down.

Verification presupposes that we can produce an acceptable

specification. not always a trivial operation. Programs whose

description are given loosely in English, but for which no simple

formal specification are apparent are particularly hard to specify.

(How, for example, does one concisely specify a text formatting

program 7) . In writing the program we. must resolve ambiguities which

may be present in the informal presentation. The danger is that from

THE ART OF PRUGR, ýM'ILII7G Page 2-7

the final program alone it might not be clear how the , mbiguit Les

have been resolved - worse still, we t., ay never have noticed the

existence of some of them, and unwittingly :, "dc choices whicj turf'.

out not to be the best. An illustration of this is h_ Telegran:

Problem, criginal ly presented by Iiendcr on and Sno; idon j19723 as an

example of structured programming not preventing the int. roductiotn of

errors. The spec: _:. cfication of this problem is given in English, and

as such is inc_ompJ : ate. This is one of my examples in Chapter 5, co I

reserve further discussion of this until then.

2.1.3 Program Maintenance And Modifiability

In practice a considerable amount of effort is devoted to

program maintenance and modification. Once a program has been

written it may nerd modifying because its behaviour is not as

expected, or the desired biaviour -- i. e. the specification -

changes. Indeed, for many applications we may expect our

specification will change in the future, but at the time of initial

design cannot predict what these changes are to be. Making changes

in programs designed for efficiency is extremely hard to do

correctly. An adjustment to make one change may introduce other

undesirable changes in the process. Certainly the clearer and better

modularised a program is, the easier it will be to see how and where

to make a required change. Unfortunately even if our efficient

program is clear and well modularised, incorporating a succession of

ad hoc changes will break down modularisation, making further changes

increasingly hard to perform. This is observable in practice In the

development and maintenance of large programs, when after a certain

T1T9 ART OF PROGRAKMING Page 2-8

point it becomes worthwhile to re-write the ''retire program co, api et: Iy

rather than continue attempting to mat: - changes to what has

degenerated into ait unstructured mess. Structured prof ramming

techniques do not help us make changes in programs whilst preserving

structur. edness.

2.1.4 Sidestepping The Problem

We see that we face the task of attaining several incompatible

goals. Fundamental to their incompatibility is the clash between

good structure and efficiency, both of which we desire. Because of

this, any approach to programming intended to produce just a single

program satisfying all our goals seems doomed to failure.

I now consider methodologies designed to get around this

problem:

An interesting approach that has received only a small amount of

attention is to describe a program in two parts. One part is a set

of recursion equations, predicate logic, or some similar presentation

of the basic description of the program. The other part is a set of

annotations which further indicate how the equations, logic, or

tahatever, are to be used to calculate the results.

We imagine the existence of a compiler which accepts both of

these parts, and runs the program in the indicated fashion. The

advantages of this apprcach stem from the additional modularity iae

get from the separation of the basic description (the "what" part)

from the operational aspects given in the annotations (the "how"

part). This modularity helps Improve the simplicity and clarity of

THE ART OF PROGR :' MING Page 2-9

the whole, thus making it poLenti1_iy easier to understand, verify

and modify, yet combined with the compiler the running progra! r. ne-: d

be hardly less efficient than c program we would have developed

conventionally. Work of this nature has been done by Hayes [1973],

Kowalski [1977], Schwarz [1977] and Warren [1977].

This approach may be unable to achieve quite the efficiency that

code compiled specially for the problem can. Also, it is not clear

how large a set of annotations, or whatever are used to specify the

"how" part, will suffice for most of the behaviours we are likely to

want. There is scope for further investigation in this area, but

this is not the direction L have chosen to investigate.

The approach I would like to consider in some detail is program

transformation.

2.2 THE POTENTIAL OF PROGRAM TRANSFORMATION

The "transformational" approach to programming suggests that we

develop programs by first ignoring efficiency aspects, writing the

clearest, most straightforward program possible to perform the task.

Then, as a separate process, transform this into a sufficiently

efficient version.

In the real world of commercial programming, M. Jackson [19751

has done much to highlight the fundamental difficulties in program

design, and his techniques for construction of programs are related

to the fundamental issues behind the transformational methodology.

By adopting this approach we do not have a single program which

we examine for each of our criteria, instead we have two programs --

THE ART OF i': '. ir; F. AIMIh? G Page ý--"iJ

the first simple program, which I caý_1 rIIO 0PROGRAi, will serve s

our precise specification. Because its design is unhampered by

efficiency considerations, it will reflect only :: fiat we want done,

without confusing us with the precise details of hoý'" it should be

done. This gives us the scope. to use any techniques we wish to

produce a clear program. We are now free to make use of functional

languages, based on expressions and recursion. Assignment can be

disallowed, since it is a major source of error introduced on

efficiency grounds. We can tailor data. types to our requirements

rather than to the implementation. High-level constructions related

to our data types can be permitted - for example, if we were dealing

with sets, we would want to converse in set expressions of the form

{ f(x) :x in S and p(x) } instead of having to explicitly construct

looping or recursion over set S. Modularity and data abstraction can

be used to divide large programs into self-contained pieces.

If we wish to prove correctness properties, it will be easier to

do so on the protoprogram than when efficiency has been incorporated.

Ambiguities in the informal specification will be resolved in the

design of the protoprogram - which we are much more likely to write

to perform as we desire -- and the choices made will be readily

determinable from this later.

Almost always our protoprogram will be unsuitable for practical

use. The transformation process aims to convert the protoprograrn

into an equivalent, but much more efficient, version. Provided the

transformations preserve correctness, the final program will be as

correct as the initial. one. The documentation for the final program

is the protoprogram together with a description of the transformation

THE ART OF PROGRAMMING Page .' --
I

steps applied to i. Further, ear-', fain ction of the cin_ i program has

its effect expressed in terms of the functions in the ^rotoprcfira7i.

Modification car now take two different forms. Thn first is

when the protoprogramm remains unchanged, but we need to adjust the

transformations in order to direct them towards changed efficiency

criteria. Sorting problems illustrate this feature - for example, if

for some domain comparisons are "cheap", our efficient algorithm

might perform many of them, reducing the number of exchanges between

items. If, however, we wish to sort in a different domain where

comparisons are expensive, we would want to change the

transformations to head towards an efficient program which minimises

comparisons rather than exchanges.

The alternative form of modification concerns changes to the

protoprogram, i. e changes in specification. The simplicity of the

protoprogram should permit changes to be incorporated easily and

correctly. This contrasts with the difficulty inherent in altering

efficient code - becwse this tends to be very intertwined, even

small changes may have far reaching and hard to determine

repercussions. Our crucial step is how the transformation of the

modified protoprogram goes through. Our hope is that the original

. transformation will not require much adjustment, and that detecting

where changes might be necessary will be easy. If this is the case,

we have avoided the need to re-do all the transformation work, and

reliable modification will not imply excessive amounts of effort. Of

course, for some changes the transformation will require very

significant adjustment, leading to a very different final program.

In such cases it would almost certainly have been impractical t",;

T! IE ART OF PROGRAMMING Page 2-12

modify the first efficient program, althº:, ugh perhaps this would not

be obvious until we had expended sonaz, futile effort tryr to do so.

Programming purely for clarity, discarding all thoughts of

efficiency, can be suprisingly hard for someone familiar with

conventional styles of programming. We tend to perform mental

optimisations when writing programs. The danger is that what may

seem at the time a simple optimisation can later seem rather hard,

and we then regret having attempted to take this short cut on

efficiency grounds. This is a habit which must be overcome if we are

to make the most of this approach to programming.

Compilers can be viewed as very straightforward, totally

automatic, transformers, converting from a source language in which

we can write and think more easily about programs, to machine code

for executing them. We sacrifice some efficiency in exchange for the

high level language. Novice however that the source code we write

closely influences the behaviour of the machine. Even in optimising

compilers the algorithmic changes are very low level (such as removal

of redundant calculations from loops). The improvements I am

concerned with here are of a much more sweeping nature, involving

overall modification of the algorithms used.

Thus program transformation has the potential to be an extremely

appropriate method of developing programs. Whether this potential

can be realised depends upon how easy or otherwise it will be to

carry out the transformation itself. If this turns out to be a long

and difficult activity, we lose the advantages we hoped for. A long,

hard to follow set of transformations does not serve as

documentation, would be hard to modify, and could well contain

THý ART OF PP. Orrc;. i-IMI NG Page "` iJ

errors. From the state of the art survey (Chapter 3) we see that

most of the work done so -'-,. r has been on only very sm -, 11 problems,

for which it has been a trivial operation to write tha final program

straight off, so these alone must not be regarded as a guarantee that

the method is appropriate for "real life" problems. We need to

assertain how the difficulty and length of the transfoT rlati', n

increases with the difficulty and length of the initial prograýi.

Intuitively we see there are some problems which are intrinsically

complicated without being particularly large (e. g. Dijkstra's

on-the-fly garbage collector, Dijkstra [1976aj) and at the other

extreme, large but simple problems (e. g. a payroll program). ; Worst of

all are those which are both complicated and large (e. g. eper_etir_g

systems). Schematically, the distribution probably looks like:

complexity
I
I.
I'.
I

0a0

06
""

"

"S

""

S

"S

S

0

0

9

3

0

f------------> --"---9--. ---------- . -... _---
Size

1- trivial problems
2- complex but small
3- large but simple
4- large and complex

Region 1 is as far as earlier machine--based transformation systems

have progressed. This thesis is an attempt to push into region 3.

Transformation work must be extended further into

problems to give

.4
0000

2

non-trivial

us an indication of how it will behave. As the

problems become larger but no more complicated we would hope that the

THE ART OF PROGRAMMING Page 2-14

difficulty of the transformation t-?; 7u_, j_d _. C ý increase excess. '".. -. "ely -

only its length. We might expect a si tuaLion analagouc to that in

program verification, where the cemp7_ete proof, ; hilst not having

much intellectual corteit, is so lengthy as to be practic:. 1i1}

unintelligible by humans.

This and other considerations lead us to suggest a machine based

transformation system. The advantages of this would include I

Reliability - the system would not make mistakes in performing

transformations. Provided our underlying method of

transformation was valid, we would be assured of maintaining

correctness.

Book-keeping - the relatively boring and repetitive tasks in

the transformation could be left to the system, thus greatly

easing the burden on us.

Discovery - the system might be able to assist in the

transformation process, suggesting alternatives to the user

running it, and/or filling in details when following a

user-provided suggestion.

Control - we might be able to issue commands to the system at a

" level above that of the basic transformation steps, thus

overcoming the difficulties associated with the sheer length of

the solution.

Making the assumption that a machine-based system is desirable,

we still have choices to make. Firstly, we must decide what the

basic steps of the transformation are to be. Since the correctness

of the entire transformation will depend' upon the correctness of the

THE ART OF PROGRAM NL C Page 2-15

individual steps, it u! nt be convc,; ient .. f -here wer:, only a limited

number of them, rather than allowing addit_ioiml ones to

introduced, each requiring verification. At the same tirtE we hiuSt

decide what language we will write tip i. ýiti: 0. pr(,,, -, ram i_n, And

between what languages the transformations act.

Secondly, we have to determine to what extent tLbe system will

behave. automatically. There is a trade-off between the need to

interrogate the user for guidance and the waste involved if the

system futilely goes down blind alleys rather than seek such advice.

At present it would be rash to claim that some particular

approach is the best - we must try those that appear plausible, and

see whether they confirm that program transformation co-, -, Id achieve

its potential as a good approach to developing programs.

2.3 MY OWN APPROACH TOWARDS A TRANSFORMATION SYSTEM

My two main objectives have been to:

explore further into the region of non-trivial problems;

develop a system capable of use by people not familiar with its

implementation.

With these in mind, the choices I made ware as follows:

2.3.1 Underlying Method Of Transforming

I chose the fold/unfold method developed by Burstall and

Darlington to be the backbone of wy system. This was partly beca: 2se,

at the time, both Burstall and Darlington were here at Edinburgh, and

THE AT OF PR_OGR ý3W. I. 11J ? ý: gcý ,-z6

their programs were available on the ccriputer., so r. t J:? ttoi l 2vel of

a system was alre: icy imple ented. R'. rst; a i had impIý---ranL2c an

interpreter for a simple functional erilbodvi,: -.; features

encouraging clear progr-: -: amin style. 1so Darl; L'-: (-, tcn's system-.

performed conv 2_rcirg1. y ors small examples, and done-by-hand

investigations indicated the basic approach prop ised. to extend to

somewhat larger examples. For a des. ripticn of their works see

Chapter 3.

It is important to note that the fold unfold steps work on a

simple recursive language, so any final program we get from their use

will remain in this language. In particular, the language is purely

applicative, having no form of side effects. Consequently there will.

be an unavoidable overhead if we remain in stich a language when we

need to modify part of a large data structure, since it will require

the complete reconstruction of that structure. To convert to a more

conventional iterative language as the last stage in a transfonnation

is outside the scope of these rules. This conversion will riot change

the program structure, and it is the ability to make very major

structural changes from protoprogram to efficient program that we

benefit from. The question of converting applicative style programs

to make use of destructive operations is a field I have chosen not to

enter, but one in which work is required. Research has been done by

Pettorossi [1978] on how to introduce destructive operations so as to

improve memory utilization whilst preserving correctness, and by

Schwarz [1978] on means of verifying that uses of destructive

operations within a program still nreserve correctness.

THY, ART OF PROGRAIINI IG Page 1--17

2.3.2 Level Of si ansfo rmation

Darlington's system operates at the level of the fold /ur fold

operations. pq The user's res onsi. bi.]_ities arc consequently a Sc, C it

this level - he sets switches to control folding, and accepts or

rejects individual folds.

The effects of working at this level are to make tackling small

examples easy, the user provides guidance by a small amount of switch

setting and answering yes/no questions asked by the system. Provided

the system need not do many folds (and does not have a large choice

of folds), such guidance will be easy to give.

Large examples are much harder, however. The unfold/fold steps

become noticably too small, there being many possible folds involved

in each transformation. The user is rapidly overwhelmed by the many

questions the system asks - particularly when the switches have been

set to cause the system to act in its most powerful manner.

Since one of my aims is to attempt larger examples, my system

must operate at a higher level than individual fold/unfold steps. I

achieve this by defining a context in which transformations are

carried out, and by introducing a new way of guiding transformation,

which I call pattern directed transformation.

2.3.2.1 Transformation Context - When tackling large problems, any

particular transformation will typically involve only a small part of

the entire program. Defining a context for a transformation limits

attention to only the parts which will be required.

Within a context the following will be indicated:

T1! E ti RT 0iP?, 0GR. AFIf1NG Page 2-18

equations to be used for folding «nd unfolding

lemmas to be used during unfolding

functions which may occur Within the answer sought:

2.3.2.2 Pattern Directed Transformation - This is the means by

which an individual transformation is indicated. The user gives the

approximate fors; of the answer he expects in the form of a ap ttern

(so called because it contains variables which will be used in

matching). The transformation process becomes:

expanding the expression to be evaluated (unfolding using

equations, applying reductions whenever possible);

expanding the pattern;

matching the expanded expression and pattern, and if successful,

using the bindings formed by the match to instantiate variables

within the original pattern to give the answer.

Pictorially

L. H. S.

V unfold

expanded
L. H. S.

R. H. S. (pattern)

.I information .I
from V unfold
match I

.I MATCH expanded
R. H. S.

The advantage of this approach is that the single step of giving

a pattern may cause a transformation which is based on very many

fold/unfold steps. Pattern directed transformation forms the higher

level at which transformations are carried out within my system.

The price paid for moving to this higher level is the need to

THE ART OF PROGRAMMING º'age 2-19

give a pattern representing the approximate shape of the answer

sought. This turns out to be only a email price, however. For

simple transformations only very simple patterns will be required,

and my implementation is able to generate such simple patterns itself

if so requested. For more complex transformations the powe of this

approach rests in the ability to express only an approximation of the

answer sought - the details of how to do this I leave until the

description of how to use my system, Chapter 4.

2.3.3 Control Of The system

I intend that the system should provide an overall service to

the user - that is, not only permit transformations to be carried

out, but also ease the users task of introducing, testing or saving

initial, intermediate or final versions of programs. This becomes of

use on. larger examples, when the transformation is no longer the

simple matter of making a single conversion from initial to final

version, but is split into several stages.

To control the operation of all aspects of the system I have

developed a control language and documented this (Chapter 4). I had

in mind users not familiar with the intricacies of the implementation

who would want to make use of the system (not the case with

Darlington's system which is primarily a research tool). The control

statements serve as a readily comprehensible record of the

transformations carried out when tackling a problem.

TIDE ART OF PROGRAMMING Pagc 2--20

2.3.4 The Use Of Defaults

The application of the system to perform simple transformarions

is eased by incorporating defaults which the user may direct the

system to apply. In the earlier section on pattern directed

transformation it was mentioned that the system is able to generate

simple patterns itself. This is one form of default. The other form

is concerned with making use of the data types of programs written in

NPL to generate simple "type information". Type information is used

to split the transformnation of a function into several. cases (by

considering cases of the argumment(s) of that function), and is used

in the generation of default patterns.

The approach of providing defaults for the user to apply when he

thinks appropriate contrasts with the heuristic strategies built in

to Darlington's system. The latter involve the user in making a few

initial decisions, after which the system goes ahead applying the

heuristics to perform the entire transformation. Again it seems that

Darlington's approach works well on small problems, but not on larger

ones. With larger problems the degree of difficulty of individual

transformations may vary enormously, and a heuristic powerful enough

to cope with the harder transformations (if such a heuristic exists),

will be unnecessarily powerful for the simpler ones. If the user is

in control, however, he can use defaults for the simpler

transformations, and guide the system through the harder ones

himself.

CHAPTER 3

REVIEW OF THE STATE OF THE ART

In this chapter I review and contrast other peoples' work in the

field of program synthesis and t. ransfor3mation.

3.1 OVERVIEW

The underlying features characterising the different approaches to

program transformation and synthesis are as follows:

The rules for manipu' ating programs - at one extreme any change ter... u

in a program which can be verified might serve as a valid

transformation step. At the other extreme there may be a fixed set

of small manipulations which can be repeatedly applied to achieve

large transformations.

Degree of automation - at one extreme transformations may be

performed by hand. At the other a machine based system attempts

transformations entirely automatically. Between these extremes lies

the approach of using a machine based system, but relying to some

extent on human guidance. Clearly the degree of automation will

influence the complexity of transformations which can be attempted.

A system making use of human guidance would be able to achieve much

more than a fully automatic system. Likewise, hand-performed

transformations might be hard co carry out ever. on user-assisted

2 REVIEW OF THE STATE OF TIsi? ART Page

systems. However, we may have more coniid nce in the transformations

performed on a machine based system, 3n_d long but not particularly

complex transformations ray be too unwieldy to do en_tir? iy by hand.

Domain of transformations - this concerns the start and end

points of the transformation or syn t'; e& . _. S . The distinction between

transformation and synthesis is that the former begins with some

executable (but perhaps intolerably inefficient) program and aims to

improve efficiency, whereas the latter starts with some

non-executable specification, and derives an executable program from

it. The rules for manipulating programs will restrict the domain of

the transformation. Some rules are unable to deal with programs

involving assignment or side effects, hence the end point of a

transformation using these will require conversion into a

conventional form to take advantage of such effects.

In the following sections I illustrate different approaches to

transformation and synthesis by presenting work of other researchers

in this area.

3.2 Martelli

3.3 Bauer et al

3.4 Manna and Waldinger

3.5 Darlington and Burstall

3.6 Burstall and Darlington

Briefly, the nature of their work in light of the

characteristics of transformation is as follows:

3.2 Martelli -a hand performed transformation of a complex

algorithm

3.3 Bauer et ai -a proposed ui"chine based system relying

REVIEW OF THE ST T"r' THE ART °2 3-3

Entirely on user guidance for dove" oping prc'--, ams

3.4 Manna and Waldinger -- a totally automatic program synthesis

system

3.5 Darlington and Burstall -a semi-automatic transformation

system, applying schemata to perform certain classes of improvements

in programs

3.6
,
Burstall and Darlington -a semi-automatic system applying a

small set of rules to perform synthesis and transformation on

recursion equations

3.2 MARTELLI

References: Martelli [1978)

In this paper Martelli applies done-by-hand transformations to a

non-trivial algorithm. The problem he considers is to copy cyclic

data structures. The initial program is a simple recursive solution

to the problem, and the derived final program is a realistic

algorithm requiring only bounded workspace and linear time.

His objectives are to demonstrate the correctness of the final

program by proving that the transformations preserve equivalence, and

also to obtain a better understanding of the efficient version by

seeing how it can be derived.

All versions of the program are written in PASCAL. The

transformations between them are quite complex, requiring a good deal

of ingenuity, as do the proofs that they retain equivalence. The

transformation steps are motivated to deal with one aspect of the

problem at a time, and it is this which permits a clear understanding

of the whole process.

_ý-L page RLý'ýEº: OF T%{F. STATE OF 'iii:: ART

'. M. is work it]ustrat, ý:; huu an entirely Iia_id-p rfori d

trans£orniation can change ü simple program into a h: hly efficient

one. The steps of the transfor: ra ion are not sysLtimatised, hence

they can be as pouc-iful as necn. ssary, but. requires verification. To

perform a transformation on a similar algorithm would require as much

effort again, and it would be very hard to carry out such a

transformation on any existing machine-based system.

Such hand performed transformations serve as aids to

understanding and verifying complex programs. Particularly

interesting is the investigation of classes of algorithms resulting

from the alternate ways of transforming a single initial

specification. Work of this nature includes Darlington (1976a], In

the area of sorting algorithms, Schmitz [1978], in the area of

transitive closure algorithms, and Gerhart, Lee and deRoever (1979],

in the area of list copying algorithms.

3.3 BAUER ET AL

References : Bauer, Broy, Partsch, Pepper and Wossner [1978]. Bauer,

Partsch, Pepper and Wossner [1977]. Broy [1977], [1978]. Gnatz

[1977]. Gnatz and Pepper [1977]. Kreig-Bruckner [1978]. Partsch and

Pepper [1976], [1977].

The objective of this group is to develop what they call a

system for "computer aided, intuition guided programming". By

"computer aided" they mean the system is designed to take from the

programmer the burden of clerical work. This includes production of

new program versions from old ones by application of formal rules,

REVIEW OF THE STATE OF THE {! RT Page 3-55

preservation of all versions, and dccumenLation of the development

history. By "intuition guided" they mean ;t ý' l1 be up to the user

to direct the whole development process. They do not seek to

introduce heuristics to control autom3ti_r_- program development.

Their system has not yet been implemented, but they have already

investigated, by hand, examples to help decide what features are

required. The kernel of the system is to be an extendable catalogue

of transformations (presumably all proved correct), much -. k., -. n to the

early scheme work of Darlington rnd. Burstall. Essentially a

transformation consists of two program schemata, the "input

template", and the "output template" together with preconditions to

be satisfied before the transformation will be applied. Sometimesd

it is also necessary to specify the location, within an actual

program, where a transformation is to be applied.

The transformations are intended to cover the following areas:

introduction of user-provided definitions

manipulation of functional procedures

defining language extensions

manipulating iterative programs

changing between recursive and iterative versions

The user may use the system to introduce his own transformations

- in which case he has the responsibility of ensuring their

correctness.

Control of the system is carried out by the user. who selects an

aparopriate transformation to be attempted at each step, perhaps

backtracking if a blind alley has been entered, until a suitable

version of the program has been reached. There is deliberately no

REVIEV OF THE STATE OF T,, - , 1.7L, - ART Page 3-6

incorporation of strategy into the systeru, which acts as "slave" to

release the -user from clerical work and risk of careless error.

Attention has been paid to the book-keeping side of the system,

which must fulfill certain tasks in a reasonably economical manner.

Typical tasks are:

go back to an earlier version (backtracking)

continue with an earlier version (independent development of

individual parts)

go back or continue with an earlier version which fulfills some

specific condition

record some transformation

show the current stage of development (of the whole program or

of parts of it)

Since they started some time after the earliest work in this

field, they have been able to incorporate many of the discoveries

into their. plans. Their domain is wide ransine - all the way from

high-level specifications down to assembler code.

Examples they present in the referenced papers are:

Tower of Hanoi (recursive to iterative)

Fibonacci numbers (recursive to iterative)

fuse -a numeric function akin to Fibonacci (recursive to

iterative)

Chinese Rings problem (recursive to iterative)

Gray-Code generation (iterative to efficient assembler)

REVIEW OF THE STATE OF T's-IL ART Page 3-7

Their proposed system relies u: -, or. a large and extcasibie set of

rules to modify programs. This gixes their s- tc: n the scope to

tacklE: a very NA ie range o, problems. Two im-Port-apt points remain to

be made.

Firstly, their system is not yet iraplpnerant_ed. The prcposa±_s

seem well thought out, but it remains to be seen if they can be

sucessfully implemented, and how well their system will perfora, in

practice.

Secondly, their decision has been to rest the burden cf guidance

of the system entirely on the user. This may prove to be an

excessive burden when attempting large transformations involving many

steps. Again, this can only be finally determined when the system

has been implemented.

3.4 MANNA AND WALDINGER

References: Manna and Waldinger [1975), [19771, [1977a], Waldinger

[1977]

The authors are involved in investigating and implementing

techniques for deriving programs systematically from given

specifications. Their approach is to transform specifications by

repeated application of rules until a satisfactory program is

produced. Specifications are presented in predicate logic. The

target-language is LISP-like.

They represent knowledge in the form of many rules within the

system. The knowledge is about the subject domain, numbers, lists,

sets, etc., meaning of constructs in the specification and target

N

REVIEW OF THE STi\TE OF RE ALT Page 3-S

languages; basic programming principle:,.

The synthesis process is driver: by att. mpts to ac h eve goals.

The rules encoding programming prif: cipies attempt to satisfy these

goals, so deriving an executable program. Rules of this nature

include:

Conditional formation rule: when attempting to prove or

disprove some subgoal of the form prove T=, introduce a case analysis

and consider separately the cases in which P is true and P is false.

This causes the introduction of a conditional expression into the

program being synthesised.

Recursion-formation rule: if, in attempting to achieve some

goal we need to achieve a subgoal which is a precise instance of that

original goal, try to achieve this by expressing the subgoal as a

recursive case of the outer goal. This leads us to introduce

recursive calls within our programs -- but it is necessary to ensure

termination when introducing such calls. This rule is equivalent to

the "fold" rule of Burstall and Darlington (see last section of this

chapter), and the two groups discovered their rule independently at

about the same time.

Procedure-generalization principle: this principle suggests

that if, when tackling some goal, we are led to achieve a subgoal

which is not precisely an instance of the original. goal, then

generalise to get a goal for which both are instances. This causes

an attempt to synthesise a more general program. The authors relate

this to theorem-proving work, where it is often necessary, in proving

a theorem by mathematical induction, to prove a more general theorem,

so that the inductive hypothesis will be strong enough to allow the

proof of the inditctive step to succeed. The recursion-formation rule

REVIEW OF THE STATE OF THE :: RT Pý: ýe 3-9

turns out to be a degenerate case of this ä. iul c.

In addition to the the usual syntbesi, from specification to

recursive program, they have also ue; ýd Ci-ir' techniques to produce

straight-line structure-changing (i. e. x7ith side effects) programs.

This latter feature has been implemented in systere of its own (see

Waldinger (1977]). Most of the synthesis work has been implemented in

their DEDALUS system, designed to be fully automatic in its

operation. The only controls they provide over selection of an

appropriate rule from several. possible candidates are to (possibly)

attach some extra condition. to rules to limit their application

(which could be. used, for example, to prevent a rule from being

repeatedly applied to the subexpressions it produces), and to have a

preference ordering between rules.

The implementation incorporates the principles of conditional

formation, recursion formation, and the special case of procedure

generalization in which a new procedure may be formed but no

generalization is required. DEDALUS is able to produce termination

proofs for recursive programs which do not involve mutual recursion.

Representative programs constructed by DEDALUS are:

The subtractive, Euclidian and binary greatest common divisor

algorithms.

The remainder from dividing two integers.

Finding the maximum element of a list.

Testing if a list is ordered.

Testing if a number is less than every element of a list of

numbers.

Testing if every element of one list of numbers is less than every

element of, another.

�- iF:: EW 0 I' Tliý STATE Or T:;,: :
ý. L" Page 3-i:. ý

Union, intersection, we-r. L-Y. snAp, subset ar, ' cartesian product: of

sets.

The methods the, : lave derived for syn 4 lesi: i seer poe _rf u? ,

however their implem-a ntatior, "f these iato an c-Uton)atýc 3yS; r' 1?, s

behind somewhat. If the full power of the generalization technique

is to be included, controls over it will need to be created.

Certainly better strategies for selection of appropriate rules will

be required. If they wish to continue providing termination proofs,

it would be nice to see their automatic provision of these extended

to handle mutual recursion. The characterising feature of their work

is the intention that their system be totally automatic. This

severely limits the size of problems they are able to tackle, and the

indication is that as they attempt larger problems, the combinatorial

explosion of possibilities will force their system into excessive

searching.

Synthesis work has also been done by Green et al, [19751, [1976]

and [1977]. Wegbreit [1976] considers how analysis of program

performance can highlight areas for improvement, and help guide the

transformations to achieve this improvement.

3.5 DARLINGTON AND BURSTALL

References: Darlington [1972], Darlington and Burstall [1975]

The earlier work of Darlington and Burstall was a mainly schema

driven method of converting programs written in a non-imperative

language of recursive definitions into an imperative language. The

transformations were carried out (largely automatically) by a maci*in(

REV. L lt:! -' Or TRE S TA-T; _ OF THE AYJ Page : >-' 1

based system, which could b ;- ided to cry one of four_ typ- o*

improvement:

Recursion reneval

Elimi. nstirLg redundant computation by merging common.

subexpressions and combining "Loops

Replacing procedure calls by their bodies

Causing the pro,,, am to re--use data cells which are no longer

needed

Their objectives were to develop transformations to improve the

efficiency of programs and implement these in a system which would

act as an assistant to the programmer, allowing him to program in. a

lucid style and use the system to help derive an efficient final

program.

Transformations were carried out using built-in rules consisting

of a recursive schema, an iterative schema, and conditions to be

satisfied to ensure the iterative schema was equivalent to the

recursive one. With a small amount of user control, the system was

able to perform conversions by matching the initial solution to the

schema and conditions of the indicated transformation, instantiating

the iterative schema to get the final. result if there was a

successful match.

This method could tackle relatively complex examples provided

they fitted one of the provided transformations. The transformation3

were not complete, and there was no provision for the user to extend

them.

Darlington's work typifies the use of sets of complex

transformations to manipulate programs. This approach has received

attention of others since then, including Standish et al, (1976) and

RE`JIt, IUF, ; ýý. S)'pTý ý, r'rtr Aka Page 3-12

i1 97 6s.) , and Loveman (179773,

Kib"lEi as p: 7. rt of his r.. heslF won-- IKiit
ý_ýý ýý }ý ýjý'ý Pý ýc

ý CD; 'ýf' 7 Cry' r' rý, r rr ý; -, syste.,, cs. ý_ý Cl ..., ý. vlý.. a_ý.. _ýed type of

aptir, isation on programs in ei? basis of his

system is a set of. 50 trarsfornatio c, in fact small schemata, which

are applied by the system with a minimal ai^our_t of user c uidance.

His system accepts a program together with a constraint on its input.

data structure, and simplifies the program i. c take advantage of th:. t

constraint, but makes no attempt to modify the algorithms invoi. ved.

3.6 BURSTALL AND DARLINGTON

References : Burstall, R. and Darlington, J. [19771, Clark, K. and

Darlington, J. [1977], Darlington, J. [19753, [19761, [1976a], [1977]

and [1978).

With the experience they had gained from their earlier work,

Burstall and Darlington were led to further consider improvements to

be made to programs in recursion equation form. Influenced by Boyer

and Moore's [1975] program for proving facts about LISP programs,

they adopted the view that as much manipulation as possible should be

performed before removing recursion. They developed a set of six

transformation rules on recursive equations which formed an elegant

yet powerful method to manipulate such programs. Darlington was

responsible for the development of a machine based system to carry

out transformation and synthesis using these rules. Burstall

developed a simple recursion equation language - NPL - for which he

wrote a type checker, parser and interpreter. This language was

I< NI EN OF THE STATE OF THE ART Page 3 13

inspired by the transformation work, and was designed to provide a

vehicle for encouraging s clear, lucid p ograncning e. Darlir. ton

adopted a slightly restricted subset of NN.? L as the input to his

system.

This small set of rules proved to be both flexible and powerful.

The areas Darlington has applied it to are:

Synthesis - by providing reduction rules for new constructs,

definitions using them can be converted into orthodox recursion

equations. He synthesised conventional sorting algorithms by hand

from a single very straightforward specification (defining sorting as

selecting the ordered permutati. cn from all the permutations of the

input), which provided insights into what classes of sorting

algorithms there are in addition to showing the utility of the

approach.

Automatic transformation - one of his objectives has been to push

automatic transformation as far as possible. In all but the very

simplest examples, transformation involves the introduction of

subsidiary functions. Darlington discovered that, when seeking to

make a recursive definition which was not immediately possible, the

partial success could in many cases be used to indicate precisely the

subsidiary function required. This means-ends type reasoning he

terms "forced folding", and having implemented it, is able to tackle

a much wider range of problems near-automatically.

Unfree data types - his latest work is to investigate extending (at

present by hand) the techniques to achieve transitions between unfree

data types i. e. those data types whose operations obey certain laws.

REVIEW OF THE STAT? OF TriE ART DaGý 2-14

Since Vila ; a'rho1e approach fords the bas-i-:; of my work, 1 shall

describe it in more detail:

Burstall and Darlington's set of rules rianipula%e recursion

equations. Burstall has developed and implemented a language based

around these, which he calls NPL. See the appendix for an informal

introduction to NPL.

Transformation Rules: these act upon the recursion equations,

to produce new equations. They are:

Definition: - Introduce a new recursion equation whose left hand

expression is not an instance of the left hand expression of any

previous equation.

Instantiation: - Introduce a substitution instance of an existing

equation.

Unfolding: - If E <= E' and F <= F' are equations and there is

some occurrence in F' of an instance of E, replace it by the

corresponding instance of E' obtaining F"; then add the equation F'

<= F

Folding: - If E <= E' and F <= F' are equations and there is some

occurrence in F' of an instance of E', replace it by the

corresponding instance of E obtaining F"; then add the equation F <=

F". (This rule is the equivalent of Marina and Waldinger's Recursion

Introduction Rule - see their section in this chapter)

REVIEW OF THE STATE OF THE ART Page 3-15

Abstraction: - We may introduce a ;. rihere clause, by deriving from

, ticr. E <= a previous equaticn E <= E' ane"a eg", 1-

where <ul., .. , un>==<Fl, ..., Fn>.

Laws :- We may transform an equation by using on its right hand

expression any laws we have about the primitives (associativity,

commutativity, etc.) obtaining a new equation.

The referenced papers contain : any examples of the use of these

rules to perform transformation. Within the documentation to my own

system I present some of these examples (see ZAP Transformation

System Primer, Chapter 4). Application of these rules preserves

partial correctness of programs. Termination may be lost. if folding

is used without care - in practice this pitfall is easily avoided.

Kott [1978] has investigated how we can restrict the use of folding
1,

so as to guarantee preserving termination.

Darlington has implemented the fold/unfold work into a system

written in POP-2 on the Dec-10 at Edinburgh University. His system

is designed as a research tool rather than a prototype programmer's

assistant, and as such, some knowledge of the internal workings of

the system is required to control it. Darlington (1977] provides an

'excellent account of this work.

Darlington's system uses the fold/unfold steps as the operations

to manipulate definitions. The responsibilities of the user are

concerned with guiding the application of these operations, as are

the inbuilt heuristics of the system.

Notation: E' [ul /F1, ..., un/Fn] means E' with occurrences of F1 ,...,
replaced by u1 ,..., un respectively.

REVIEW OF THE STATE OF TM ART Page 3-16

The user's res2_r. '.: ibiii. ties fall into several classes:

(1) He must provide an appropriate set of instantiations for the

functions he wants to improve. Some of these he presents as base

cases - these are unfolded completely, or until. some pre-set effort

bound is exceeded. The pre-set effort bound can be adjusted by the

user should he expect the default setting to be inappropriate. For

nor base cases, the stratgey the system implements is one of carrying

out a sequence of"unf_oldings, abstractions and applications of laws,

followed by foldings.

(2) The user indicates to the system on occasions when a fold

has been found whether the result is acceptable - he can veto it,

accept it and stop, or accept it but request the system to search for

more folds. The system itself rejects obviously undesirable folds

(e. g. ones that lead to recursions which definitely do not

terminate).

(3) The user supplies in advance laws which will be required for

the transformation. These are in the form of equations which will be

applied whenever possible during each unfolding. In Darlington's

current system it is not possible to indicate associativity or

commutativity of functions; instead explicit reduction rules

tailored for the transformation being attempted must be given.

(4) The user pre-sets switches to control the search for folds.

There are two such switches - ONLYTOPFOLDS and DOCLEVERFOLDS.

ONLYTOPFOLDS, if set to true, will restrict the system to

seeking a fold only with the function being transformed. This is

appropriate if the user is looking for a recursion involving the

function in question, and does not anticipate any other folds will be

required to achieve this.

REVIrj' OF THE STATE OF ýý;: ART Pago 3-17

DOCL"EV'YFOLr S, if set to true, indicates that the systei

when attempting a fold, introduce a new function in order to achieve

the fold. l'he basis of this is a technique Darlington terms 'forced

folding'. This technique, developed and implemented by Darlington,

makes use of the failure to fold to indicate how to rearrange the

expression being transformed to permit the fold.

e. g.

+++ nutn * num <= nwn
-i-H- -num + ni. un <= num
---- 0+M <= M[1ý

--- (succ N) +M <= succ (N + M) [2 J

+-F-f- twon(num) <= num /// twon(N) computes 2 to the power N
+4-f- sum(num) <= num sum(N) computes 0+1+... +N

---- twon(O) <= 1 [3]

--- twon(succ N) <- 2* twon(N) [4]

--- sum(O) <= 0 [51

--- sum(succ N) <= (succ N) + sum(N) [6]

+f+ g(num) <= num
--- g(N) <= twon(sum(N)) [7]

g is the function to be transformed. Consider cases 0 and succ N
for its argument:

g(O) <= twon(sum(O)) by 7
<= twon(O) unfolding 5
<= 1 unfolding 3 [81

g(succ N) <= twon(sum(succ N)) by 7
<= twon((succ N) + sum(N)) unfolding 6
<= twon(succ (N + sum(N)) unfolding 2
<= 2* twon(N + sum(N)) unfolding 4

Now we are stuck - folding with the definition of g fails.
Suppose we have a new function h which satisfies

twon(N f Y) = h(N, twon(Y)) [91

then we would have

g(succ N) <= 2* twon(N + sum(N))
<= 2* h(N, twon(sum(N))) by 9
<= 2* h(N, g(N)) folding with 7 [10]

Thus h is just the function we require to allow a fold with g.
Transforming the specification of h to get a recursive definition is

relatively straightforward, we find

REVIEW OF THE STATE OF THE AR-l' Page 3-18

--- h(O, M) <= M
--"- h(succ N, M) <= 2* h(N, M)

The key to discovering h is the failure of the attempt to fold the

expression 2* twon(N + sum(N)) with the definition of g,

g(N) <= twon(sum(N)).

We see that all the portions of g's definition are present within the

expression - unfortunately so is the unwanted portion "N +*". h is

defined to move this unwanted portion outside of twon(...) so that a

fold with g will become possible:

twon(N + Y) _,. h (N, twon(Y))

so that 2* twon(N -F sum(N))=2* h(N, twon(sum(N)))

The use of this technique allows the system to do some examples

requiring the introduction of new functions. When the system is able

to force a fold by the introduction of such a new function, the user

is asked if this is acceptable, and if it is, the system is invoked

recursively to transform the new function.

The technique can cause the rearrangement of expressions to

permit a fold without necessarily introducing a new function.

e. g.
--- g(N) <= < fib(succ N) , fib(N) > [1]
--- fib(succ succ N) <= fib(succ N) + fib(N) [2]

.

(fib is the fibonnaci function)

transforming,

g(succ N) <= < fib(succ succ N) , fib(succ N) >
<= < fib(succ N) + fib(N) , fib(succ N) > unfolding 2

attempting to fold with I fails, but forced folding suggests the
rearrangement

<=<ui+u2, ul>
> b(succ N) , fib(N) where < ul , u2 ><f.!.

REVIEW OE THE STATE OF THE ART Page 3-11

to allow a fold with 1:

<-<ul+u2, ul >where <iil : u2>==g(N)

(5) The user sets a switch to inhibit or allow generalisation of

expressions during the unfold /apply laws /fcid process; if switched

on, when encountering an expression contaiiiing multiple occurrences

of the same variable, the generalisation is to rename these to

distinct variables, and a new function, with the generalised

expression as the right hand side of its defining equation, is

created.

e. g. we might have

Cart(consset(c, X), Y) <= <: <c, b> :b in Y :>+

<: <a, b> :a in X, b in Y :>

The multiple occurrences of Y would be renamed, to give the

following new function

newf l (c, Y1, X, Y2) <= <: <c, b> :b in Yl :>+

<: <a, b> :a in X, b in Y2 :>

so that

Cart(consset(c, X), Y) <= newfl(c, Y, X, Y)

Again the user is asked to accept or reject the introduction of

this new function, and if he accepts, the system is invoked

recursively to transform it.

Most of the code to provide this generalisation facility was

written by myself, and it now resides as part of Darlington's system.

Synthesis can be achieved by writing programs making use of set

constructs etc., and transforming them to conventional recursive

programs not making use of such constructs. Darlington has

REVIEW OF THE STATE OF THE ART Page

incorporated a set of laws for these constructs which are commonly

needed in transformations of this type.

The system is also able to synthesise functions defined by

implicit equations - that is equations whose left ua? lr sides are

general expressions containing recursive functions among the

arguments (recall that NFL expects only variables and constructors to

occur there, so such definitions are unexecutable) For a.. ample,

defining the inverse of REVERSE by

REVINVERSE (REVERSE (L)) <= L

the system can, from this, synthesise the definition of REVINVERSE,

which turns out to be REVERSE, of course.

Typical programs whose transformation has been done using the

system are:

cartesian product

fibonnacci

diagonal search

matching as inverse of substitution

a version of treesort

CHAPTER 4

USER VIEW OF SYSTEM

This chapter presents the documentation for my ZAP program

transformation system. This is in two parts:

Pr imer

Users' Manual

The primer introduces the user to the underlying transformation

method in addition to the use of the system.

The users' manual details the commands available and serves as

the definitive explanation of the system.

ZAT Program ransf_ormation System PT-im r Page 2

ZAP PROGRAM T%ANSi OR4J\TIO SYSTEM PRIMER

This document serves as an introduction to using the ZAP

transformation system. A definitive expl_ r, c. tion of its facilities is

given in the ZAP Program Tra. nsfoira : lion System Users' Manual. ZAP is

implemented in POP2 on a DEC-10.

The presentation here is in the form of three example

transformations, each done first by hand, and then again as they

could be tackled using the system.

The examples are

1. Scalar Product

2. Testing trees for equality of tips

3. Parsing example

The system transforms definitions written in NPL. The user is

assumed to be familiar with NPL - see appendix for an informal

introduction to NPL. There is no distinction between upper and lower

case, but for readability I adopt the convention of using lower case

for constants, constructors and functions, and upper case for

variables and commands to the transformation system.

The underlying method of transformation is due to Darlington and

Burstall. See Darlington [1975], [1976] and Burstall and Darlington

(1977] for detailed expositions of this method, together with many

examples. For an overview see Burstall and Feather (1978]. I have

done the transformation of the Telegram Problem (presented in Feather

[1978]) using this system.

ZAP Program Tr, yr. sformation System Primer Page 4-3

Introduction

The ZAP transformation system is designed to aid the

transformation of non-trivial programs. The system is based around

the following three concepts for transformation:

A CONTEXT mechanism restricts attention o: L the sys ter. and the

user to the relevant details for the current transformation.

The fundamental transformation step of the system involves

seeking guidance from the user in the form of a GOAL consisting of a

left hand side, the expression to be transformed, and a right hand

side, called a PATTERN, which expresses the shape of the answer the

user desires. The justification of this step is that it can be

considered as the application of many steps of Burstall and

Darlington's transformation method. The advantage is that it

replaces many of their steps by the single step.

The system generates DEFAULT information to aid in suggesting

simple goals for transformations. The user is thus able to let the

system try these defaults on what he anticipates will be easy

transformations, and use his insight to guide the system through more

complex transformations.

Overall control of the system is achieved by giving a sequence

of transformation commands. These may be typed in interactively as

the transformation takes place, or stored in a disc file and called

in to be used when required. In practice a convenient way to develop

a transformations is to regard the sequence of commands as a program

to be interactively debugged. When this "meta program" has beer,

perfected, it, together with the initial program, serves as

documentation of the final transformed program.

ZAP Progrý, Transformation System Primer Pace '=-'a

SCALAR PRODUCT

(This example is tc: ken from Bu; -stall and Darli_n con i9i)

Given a function scalar product, writter. ". ", on vectors,

defined by

xýýý ýýX. Y.
4-1 ., d

we might wish to compute a. b + c. d

Rewriting this in NFL, we have

--- dot(X, Y, O) <= 0 [1]

dot(X, Y, succ N) <= dot(X, Y, N) -+(. ', ' sub succ N)*(Y sub succ N)

[2)

(using an infix "sub" to access components of vectors)

and we want

--- f(A, B, C, D, N) <= dot(A, B, N) + dot(C, D, N) [31

This is a clear definition of f, but we do not really need two

separate recursive calculations (i. e. two independent loops).

The hand transformation of f goes as follows:

Consider cases 0 and succ N for f's last argument, thus

f(A, B, C, D, O) <= dot(C, D, O) + dot(C, D, O) by 3

<= 0+0 unfolding 1

<= 0 property of 0 and +

ZAP Program Transformation System: Primer Page 4-5

f (A, B, C, D, succ N) <= dot(A, B, succ N) + dot(C, D, ucc N) by 3

<= dot(A, B, N) + (A sub -ucc N)*(B sub succ N)

dot(C, D, ") + (C sub suce N)*(D sub succ N)

unfolding 2

<= dot(A, B, N) + dot(C, D, N) +

(A sub succ N)*(B sub succ N) +

(C sub succ N)*(D sub succ N)

re-arranging using associativity and commutativity of +

<= f(A, B; C, D, N) + (A : pub succ N)*(B sub succ U)

+ (C sub succ N)*(D sub succ N)

folding with 3

This completes the redefinition of f, without using dot.

The whole process has gone through the following stages:

Definitions -- of f and dot.

Transforming f by considering cases - f(A, B, C, D, O) and

f (A, B, C, D, succ N).

The transformation involved -

unfolding using equations for f and dot

rearranging using properties of +

folding to get final. definitions involving

f, +, *, sub, but not dot.

The transformation system commands to achieve the same process are as

follows (comments for the purpose of this primer are in square

parentheses):

START [enters system]

DEF I give-here NPL definitions of f and dot...]

ZAP Program Tra^sfo. -c,; ation :; yster. ý Px i? ̂ el: Pagc2

END

CONTE'Tr [prepare to do tr -nsformation - first create the

context in which this is to be done:]

UNFOLD f dot [declare that equations for f and dot are to be

used in unfoldin process]

USING f [state which of the functions declared for uufolding

we are prepared to allow in the transformed equations;

LEMMAS ASSOCIATIVE + [declare to be associative)

COMMUTATIVE + [declare + to be commutative]

IDENTITY +0 [declare 0 to be identity for +. This

serves to reduce O+N or N+O to N when

unfolding al

TRANSFORM [having created context, now totally redefine f]

GOAL f (A, B, C. D. 0) [expressions following keyword COAT,

will be the left hand sides of new

GOAL f(A, B, C, D, succ N) equations for f]

END [At this point the system goes ahead trying to transform the

I left hand sides it has been given. f(A, B, C, D, O) expands (by

unfolding and applying reductions) to 0, which, since it is

a constant, is an acceptable answer. Provided expanding

leads to an expression all of whose functions (if any) are

constructors, constants (i. e. functions not being used for.

unfolding in the current context), or declared as usable (by

means of the USING command), that expanded expression will

be accepted as the answer. This we term a base case, since

typically base-cases of recursions fall into this class.

Thus the equation f (A, B, C, D, C) <= 0 has been found.

f(A, B, C, D, suce N) unfolds to

ZAP Program. ýfransformtiou Systems Primer Page 4--7

dot(A, B, N) + (A sub succ N)*(B sub succ N) + do-, (C, D, N)

(C sub succ N)*(D sub succ N)

Since this contains function dot, it is not ? cceptab-le as

the answer, so the system asks the user for a "pattern". Tr

its crudest form, a pattern is simply the right hand side 4: e

expect as the answer, which in this case would be

f (A, B, C, D, N) + (A sub succ N)*(ß sub suce N)

+ (C sub succ N)*(D sub succ N)

Having typed this in 9 the system checks that this

expression, unfolded, is equal (up to associativity and

commutativity) to the unfolded left hand side. Since it is,

the new equation formed by this as right hand side is

added.]

DELETE f (A, B, C, D, N) [delete old definition of f]

END [to end the transform block]

STOP [to exit from the system]

This completes the commands to the system. During the

transformation the system had to request the user to supply a

"pattern". If the user has in mind the answer he expects /desires, he

can specify this in the GOAL command by putting after the left hard

side the symbol <= followed by the pattern.

From this simple example the method of transforming using the

system can be seen. Instead of trying undirected unfolds, rewrites

and folds, the user provides the answer he is looking for, and the

system verifies this. Used in this basic way, the system is merely

verifying user provided definitions. The power of the system comes

into play by allowing the user to specify approximately the answer he

ZAP Program, Transformation System Primer Page 4-8

requires. The system will (if possible) fill in details to get the

precise answer. Thus the user is able to manually guide the systen

with his intelligence and knowledge, without having to be tediously

explicit.

The first way in which this is achieved is to include in a

"pattern" the special function symbol. $$, which the system will match

to portions of the expression. It is able to match to tuple and

where constructions, and functions which would be permitted in a base

case - namely, constants, constructors and declared usable functions.

Thus in the example we could have given as a pattern for

f(A, B, C, D, succ N) $$(A, B, C, D, N, f(A, B, C, D, N))

indicating that we expect an answer containing a call to f(A, B, C, DN)

and expressions possibly involving A, B, C, D and N, formed with usable

functions constructors (e. g. succ) and constants (e. g. 0).

Using this, the transformation commands for the exampla are:

START
DEF

[give here NPL definitions for f and dotl
END
CONTEXT

UNFOLD f dot

" USING f
LEMMAS ASSOCIATIVE +

COMMUTATIVE +
IDENTITY +0

TRANSFORM
GOAL f (A, B, C, D, 0)
GOAL f (A, B, C, D, succ N) <= $$ (A, B, C, D, N, f (A, B, C, D, N))

END
DELETE f (A, B, C, D, N)

END
STOP

ZAP Program Transformation System Primer Iahe 4-9

This transformation essentially converts i to recurse on its

last argument, which is of type nu: m (natural number). Default

mechanisms within the system are able to suggest straightforward

recursions of this nature. and we can make use of them to both

generate cases to consider, and simple patterns to try.

To indicate in the left of a goal that we are to consider cases

of some argument of a function, we prefix that argument by CASESOF.

The cases are derived from the right hand sides of NPL data

definitions (e. g. since natural numbers are defined in NPL by

DATA num <= 0 -H- succ num, for there try cases 0 and succ N).

To cause simple recursive patterns to be generated, involving

recursive calls of the left side of the goal, formed by replacing

some argument by its recursive case, we prefix such arguments by

RECURSE. (for natural numbers, the recursive case of succ N is N).

Goals containing RECURSE create simple recursive patterns consisting

of $$ around all the free variables of the goal's left hand side, and

that left hand side with recursive cases substituted in.

e. g. GOAL f(A, B, C, D, REC URSE succ N) produces pattern

$$ (A, B, C, D, N, f (A, B, C, D, N))

Using these features in this example, we can simplify the two

goals to the following one:

GOAL f (A, B, C, D, RECURSE CASESOF N)

2 Testing trees for equality of tips

(This example is taken from Burstall and Darlington [19751)

ZAP Program Transfornazion System Primer Page 4-ý0

This probici is to test whether two given binary trees have the

same sequence of tips.

tree 1

I'
I'

/\
/\ /\

AB /\
/\

/\ /\
CDEF

e. g.

tree ?,

/\
/\ /\

/cn\

/\ /\
A3EF

tree 3

/\ /\
/cn\

/\ /\
ZBEr

Trees 1 and 2 do have equal sequences of tips, but trees I and 3 do

not. A straightforward solution woutcý be to write a function to

"flatten" a tree into a list of its tips, and write another function

to test for equality of lists. Thus flattening trees 1 and 2 would

give lists [A BCDE F] and [A BCDE F], which are equal. But

this method applied to trees 1 and 3 foolishly computes the whole of

the lists [A BCDE F] and (Z BCDE F] before noticing that they

disagree in the very first element. We will try to obtain an

improvement which avoids this.

The NPL definitions are as follows:

DEF
DATA trees(alfa) <= tip(alfa) ++ tree(trees(aifa), trees(alfa))

VAR A, B : alfa VAR L1, L2 : list alfa
VAR S, T, S 1, S2, T1, T2 : trees (alf a)

INF 6 <> /// we write <> as infix append for lists
+++ list alfa <> list alfa <= list alfa

(1] --- nil <> L2 <= L2
--"- A:: L1 <> L2 <= A:: (L1 <> L2) [2]

+f-1- eqlist(list alfa, list alfa) <= list alfa
list equality

---- eglist (nil, nil) <= true [31
eglist(nil,: %:: L2) <= false [4]

- eglist(A:: L1, nil) <= false [5]

-- eglist(A:: L1, B:: L2) <= A=B and eglist(I. I, L2) [G]

ZAP' Program Transformation System Primer Page 4-11

+++ flatten(t-rees(alfa)) <= list alfa
/// list of tips of tree

- flatten(tip(A)) <= A: mil [7)
[8j - flatter. (tr. ee(T1, T2)) := flatten(T1) <> flatten(T2)

±++ egtips(trees(alfa), trees(alfa)) <= truval
/// equality of tip sequences

- eqtips(S, T) :- egl: i. st(flatten(S), flatten(T)) [L91

END

The improvement we seek is to compare the leftmost tip of each

tree before doing unnecessary work on the remainder of the trees.

One way of achieving this improvement is to restructure each tree in

order to bring the leftmost tip to the top of the left branch. e. g.

I'
I'

/\
/\ /\

AB/\
/\

/\ /\
CDEF

_ý

/\
A\

\
/\

B\
\
/\

I'
/\

/\ /\
CDEF

e

/\ /\ /\
/\ _>

/\/\\
/\ /\ /\ /\ /\

/CD\ZBc\B\

/\\\
/\ /\ /\ /\

ZBEFD\C\
ý

I'
EF

\
/\

D\
\
I'

EF

Having performed this restructuring, the leftmost tips can be

compared, and only if they are equal need the right branches be

compared.

This neat form of restructuring is due to McCarthy. Burstal].

ZAP Progra.. i Transformation System Primer _ _.
ý_ ýý1ý

and Darlington [1975; present an alternative xiay of i*. uprcv ng; the

initial solution. Their improvement is similar in spirit, but uses a

more general function to compare the tips of two lists of trees.

The hand transformation of eqtips to do the tree restructuring

is as follows:

consider for each argument of egtips the cases
tip(A)
tree (tip(A), T.)
tree(tree(T1, T2), T)

eqtips(tip(A), tip(B)) <= eqlist(flatten(tip(A)), tip(B))) by 9
<= eglist(A:: nil, B:: nil) unfolding 7
<= A=B and eqlist(nil, nil) unfolding 6
<= A=B and true unfolding 3
<= A=B by property of and [101

egtips(tip(A), tree(tip(B), T))
<= eqlist(flatten(tip(A)), flatten(tree(tip(B), T))) by 9
<= eglist(A:: ril, B:: flatten(T)) unfolding 7,8,2,1
<= A=B and eqlist(nil, flatten(T)) unfolding 6
<= A-B and false since we know that flatten of a tree

contains at least one tip, so
egli. st (ni. l, f latten(T)) = false

<=-false by property of and (ii]

egtips(tip(A), tree(tree(T1, T2), T)) <= false [12]
similarly to derivation of 11

egtips(tree(tip(A), S), tree(tip(B), T))
<= eqlist(flatten. (tree(tip(A), S)), flatten(tree(tip(B), T)))
<a A=B and eglist(tlatten(S), flatten(T))

unfolding 8,7,2,1,6
<= A=B and eqtips(S, T) folding with 9 1133

egtips(tree(tip(A), S), tree(tree(T1, T2), T))
<= eqlist(flatten(tree(tip(A), S))

, flatten(tree(tjree(T1, T2), T))) by 9
<= eglist(flatten(tree(tip(A), S)),

(flatten(T1)<>flatten(T2))<>flat. ten(T))

unfolding 8
<= eqlist(flatten(tree(tip(A), S)),

flatten(T1)<>(flatten(T2)<>flatten(T)))
by associativity of <>

<= eqlist(flatten(tree(tip(A), S)),
flatten(tree(T1, trce(T2, T))))

folding with 8
<- egtips(tree(tip(A), S), tree(T1, tree(T2, T))) (14]

folding with 9

ZAP Program Transformation System Primer Page 4-13

similarly, we find

egtips(tree(tip(A), S), tip(B)) <= false (15;

egtips(tree(tree(S1, S2), S), tip(B)) <= false [16)

egtips(tree(tree(Sl, S2), S), tree(tip(B), T))
<= egtips(tree(Sl, tree(S2,5))lr. cee(tip(B), T)) [17j

egtips(tree(tree(S1, S2), S), tr. ec(tree(Tj, T2). T))
<= egtiPs(tree(S1, tree(S2, S)), tree(Tý, tree(T2, l))) [181

Equations 10 - 18 form the new dafintion of eqtips. In order to

perform the same transformations using the system, we would give the

following commands

CONTEXT
USING eqtips and
UNFOLDALL egtips
LEMMAS ASSOCIATIVE <>

COMMUTATIVE egiist
--- eqlist(nil, flatten(T)) <= false
--- eglist(A:: nil, L1<>L2)

<= (eglist(A:: n il, Ll) and eqlist(nil, L2)) or

ý.,
(eqlist(A:: nil, L2) and eglist(nii, Ll))

--- eglist(nil, Li<>I, 2) <= eglist(nil, Ll) and eglist(nil, L2)
TRANSFORM

GOAL eqtips(tip(A), tip(B))
GOAL eqtips(tip(A), tree(tip(B), T))
GOAL egtips(tip(A), tree(tree(T1, T2), T))
GOAL eqtips(tree(tip(A), S), tip(B))
GOAL egtips(tree(tip(A), S), tree(tip(B), T))

<= $$(A, B, eqtips(S, T))
GOAL egtips(tree(tip(A), S), tree(tree(T1, T2), T))

<= $$(egtips(tree(tip(A), S), tree(T1, tree(T2, T)))
GOAL egtips(tree(tree(S1, S2), S), tip(B))
GOAL egtips(tree(tree(S1, S2), S), tree(tip(B), T))

<= $$(egtips(tree(Sl, tree(S2, S)), tree(tip(B), T)))
GOAL egtips(tree(tree(S1, S2), S), tree(tree(T1, T2), T))

<= $$(egtips(tree(S1, tree(S2, S)), tree(T1, tree(T2, T)))
END
DELETE eqtips(S, T)

END

The goal mechanism has saved us the many small steps of

unfolding, applying properties of functions, and folding. Even so,

it is still tedious to have to give nine goals corresponding to each

combination of the cases the two arguments of eqtips can take.

ZAP Program Transformation Syster. ý Primer Page 4-14

Equally tedious is the need to specify rather simple patterns fcr

several of these goals.

The key to our solution is to consier cases

tip(A), tree(ti. p(A), T), tree(tr. ee(T1, T2), T)

for arguments of type trees(aifa) .

When transforming a call involving the case tree(ti. p(A), T) 'Look for a

recursion involving a call on T. Similarly, when a call involves the

case tree(tree(T1, T2), T) look for a recursion involving a call to

tree(T1, tree(T2, T)).

The system can do much of the work for us if we first give type

information about type trees (alfa) . The form this takes is

TYPEINFO T <= tip(A)
<= tree(tip(A), T) ,T
<= tree(tree(T1, T2), T) , tree(T1, tree(T2, T))

T is a variable of type trees(alfa), and following each "<=" is one

of the cases we want to split this type into, each such case followed

by its recursive case(s) if any.

Once this type information has been given, the single goal

GOAL eqtips(RECURSE CASESOF S, RECURSE CASESOF T)

will be expanded into the nine goals, with simple recursive patterns

generated for each one. Thus the transformation commands to make the

, improvement need only be:

CONTEXT
TYPEINFO T <= tip(A)

<= tree(tip(A), T) ,T
<= tree(tree(T1, T2), T) , tree(T1, tree(T2, T))

USING eqtips and
UNFOLDALL eqtips
LEMMAS ASSOCIATIVE <>

COMMUTATIVE eglist
--- eqlist(nil, flatten(T)) <= false

--- eglist(A:: n il, Ll<>L 2)
<- (eglist(A:: nil, L1) and eglist(ni. 1, L2)) or

(eglist(A:: n il, L2) and egii_st(nil, L1))

--- eglist(nil, L1<>L2) <= eglist(nil L1) and eglist(nil, L2)

?l

! ýý Yru ; raw ., t-, '; sform arir, n
S;,

- -: 1
-- ern , -- ii^e_ ýdce -,, -15

rllýtllýSFGi'1,
z

G

,
ým

AT, e-jtip:, (ýýECCS-, SOr s, SUi: ý=}., C:., FSUF Tj
hPlD
DELETE e : jtips(:. S , T)

END

The systfrt has a default mechanism to Ie_, ýýrate se

: ýnformation if we do n(-, t pro-v: de -Y. " ,
i13;, e, ýer 10. t't, e tvr-o

trc. esfalfa) it would gE'Tlc! Z, +tE: the equivai en* cf

TYPEINFO T <= tip(A)
<= tree(, ',, T) ; S, `ý

hence for the solution ve are a4ming for h. cre, r-ust supply our oiý; 7

more sophisticated type info_ixi. a _. ioas

3 Parsing Example

(This example is taken from DarlingLon [1976])

So far. the transformations have Liv' 1ved restructuring chc

definitions in terms of already defined functions. This ex ip1e 7lll

illustrate ho the system Cd. n assist in deriving auxiliary functions

when these are required to permit the desireed restructuring.

The problem is to take input it the form of a stream of tý. xt

(letters and spaces) on fixed length rcoords=:. d convert this dream

into a stream of words, one word per record.

For example, the sentence THE CAT SAT would be recorded,

records of length 3 as

{ [TIDE][CA] [T S' [AT]]

and the reqvired output is

Ve
7, AP º'r;; (ýY., rrý L=. _i -c: C; -sýn: a , 7, - - Yri

L
tT iirý J FL G , ýýT

JI
, (3) t1 1,1

rucL re. The naive progrdt-h works by f irsl- ?
atten ,: g the input s

Ttºus 1-111)(--- at)ove input . ouii b(---- convey ter! into

[THE, Ci'AT SAT]

This s then, rest. r.: r" tur ed into the desired output. can eptimi.

this two pass program into a one paýýs one. Lists ý-re :_ scd to

represent the records and words.

The NPL definitions are as follows:

DEF
DATA character <- ap ++ sp
/// ap's are letters and Fp is the space

+++ translate(list list character) <= list character

---- translat. e(CLL) <- parEe(: ýi. atten(CLI,)) [1]

-H-I- fiatten(list list clhhar2. cter) <= list character

--- flat ten(nii;) <=- nil (2)

---- flatten((C:: CT.,):: CLL) <= C:: flatten(CL:: CLL) (31

--- flatten(nil:: CLI.) <= f_latten(CLL) [4]

+++ parse (list character) <= list list charactin-r

--- parse(CL) <= firstw(CL) :: pür5e(restw(CL)) (5)

-+++ firstw(list character) <= list
character

selects the firs word off a flat 11 t
--- firstw(nil) nil [6]

--- firstw(ap:: CL) <= ap::? ir5tw(CL) [7]

--- firstw(sp:: CL) <= nil [8]

+-i-+ restw(li,, t character) <= lisL character
/// removes the first: word and following spaces

--- restw(nil) <= nl [91

--- r. estw(ap:: CL) <= restw. 7(CL) [10)

--- restw(sp:: CL) <== skipsp(CL) [1]J

+++ skip: -p(I Lst char, -cter) <= 1iL charac ter

removes all spaces up to

---- skipsl)(nil) <= nil [12]

rýsp(CL) (13]
--- :; kipsp(sn:: CL) <_ sk4

.
--- rkipsp(^p:: CL) <= ? p:: CL (141

LAP 7. -ýT. ýsfcrý: lt. c::: , -, - I ö&t' ý

T :.: 1L ý'. _r! I tr, _, _s -_acion of s gc: 'F: as fo, 1oc.

First, define a new function, pr, rsel

+++ p; rse l (list list character) <- tu,. ie2(l1st character,
14-st list chaLE; c'. -er)

Parsel is to take the origL a]_ structured list and return a pair

consisting of the first w, _or- of the li ct, and the parse of the re t

of the moist, thus:

---- Pa-rsel(i, I,) <= <firstT. ý(flartei: ("L)), parse{restw(ilattc: ý(ýI. [.))>

Now transform this definition of parsel by consideri_n; cases nil,
nil:: CLL, (ap:: CL):: CLL and (sr;:: CL):: CLL for is ar-ument:

parsel(nil) <- <firstw(flatten(ril.)), parse(restw(flatter(n .?.
))>

parse. l (nil: : CLL) <= <firstw(flottea(CLL)), pacse(ies. s'; (ilatter. (C`, L))>

untolcding
<= parsel(CLL) folding

parse] ((ap:: CL):: CLL) <= <ap:: fi_stw(flatten(CL:: CLL)),
parse(restw(flatten(CL:: CLL))>

unfolding
<= <ap:: W, WL> where <W, W L>

<firstw(flatten(CL:: CLL)),

parse(restw(flatten(CL:: CLL)))
abstracting

<= <ap:: [1, WL> where <11, ;, ýL> parse I (CL:: CLL)
folding

parsel((sp:: CL):: CLL) <= <nil, pai-se(skipsp(fiatten(CL:: CLL)))>

unfolding

We now come to a non trivial part of the transformatior:: We

would like to define parseý((sp:: CL):: CLL) recursively, but the

unfolded expression is not quite of the appropriate form to allow us

to do this. If we introduce an auxiliary function skipspz such that

skipsp(flatten(CLL)) = flatten(skipspz(CLL)) then we can get ;i

recurs t. ve definition. skipspz does on the structured moist what

skipsp does on the flattened list. Darlington has developed a +_thod

of deriving tL definition of auxilia: 'y functions when se? ':: r: ̀ to

Q : T. r+TIs"fUL'. i3ý"iiif! ;. "ý.! Ff, P`ý_IIcr Page ,-

force a f_ol;: soi; je fu; ictior. cs-ýe [197~ý] for details of

this) . For the
present, let u fissure t't skipsp 2 hzs bean

introduced, and proceed from there:

<= <nil, parse (s1-, *Fs-) (fi.: at-terl(CL: : CLL)))>
ý ,. k1 epeat. i; ýg p_-<_-Aous line)

<= <nil, parse(f_1. ut. i. tr: (s'r.
-ipspz(CL: : CLL)))>

using skipsp7
<= <r_il, firstv, (fl. attenk;. s, ipspz(CL: : CLL))): :

parse (res', -(f? a~tc: k'skipspz(Ci:: : CLL))) 1>
unfo. i. di: -) II

<-: <nil, W: : WL> , t-ere
<firstw(f=i-: ttecL(sicip. ý7pz! CL: : CL?.))),

parse(r. estý.:; f, aLten(skips; ý-7(CL: : CLL))) j>
abstracting,

<= <nil, W: : WL> where <L-', Tw'L>
rýaisel(skipspz(CL: : ýLý.))

folding

Now define translate using parse l:

translate(CLL) <== f. irstw(flarten_(CLL)): : parse(restw(fiatten(CL: -)))

unfolding
W: : WL where <W, WTL> ==

<firstw(flatten(CLL)), parse(restw(flatten((1LL)))>
abstracting

<= W:: WL where <W, WL> == parsel(CLL)

Finally we have to synthesise skipspz. Recall that skipspz must
satisfy

flatten(skipspz(CLL)) = skipsp(iial_ten(CLL))

Thus we need
flatten (skipsp:, (ni1)) = skipsp (f latten(nil))

= nil
= flatten(nil) folding with [2]

for which we need:
skipspz(nil) <= nil

flatt. eu(skipspz(ni1:: CLL)) = skipsp(flatten(: 'il:: CLL))

= ski_psp(flatten(CLL))
flatten(skipspz(CLj))

using our defining equation for skipspz
for which we need
skipspz(nil:: CLLL) <= skipspz(CLL)

flatten(sk--,
-psPz

((ap:: CL):: CLL) = skipý. p(fl2tte; º(: CL:: CLL))

skipsp(ap: :f .l r-- tten(CL: : '. LL))
=- ap: :fl. attý,:, (CI.: : CLL)

= f]. atten((at.:: CL):: CLL) folc: ng [;;
for which we need
s}_i. pspz((.; p: ; CL):: CLL) <_ (ap:: CL):: CLL

'-/`L : '? arr:?., Tr? ný. ýc., ýrr:: 7rioiL Pnitner "ag. - ý, , ýý

f1aCr_eci(sý pcp ((ý.
.). T))_s:. '.! ý(`lzttn: ; (s I; . (: tL) : : CI ?ýý` ýý. ýsCL. Ci., ý s

= s; :, f ,o (ýtý: lat teP: CLý))

skf»ý1ý(f! _cýrtý".,
r'I,:: C'_L)

- f. 1 ae n(s'r, (GT L: LL)

us-i_n(our def. ýu;
_ng

ecliaL'"on for
fo -C :i ch we need
skipý. pz((, rý: : CL): : Ci, L) : -- skipspz(CT : CLL)

This cer, =pi etes th<< hand transfoi, aa tiei .

in the hand transformation, fun tion p r_ 1 was tailored

specifically for translate. Hence it would be appropriate to cc"; nbiie

its introduction with the redefinition of tr. an.)'_ate. This would hnvc

the advantage o` ensuring that the ? vr_ ýp iar_e de. inition. of a new

function for use by translate (as well as its type ration) would

be created as we transformed translate.

Essentially we VLsh to express translaL (CLL) as

W:: WL where. <W, WL> == pcrsel (CLL)

parsel being the new function.

The way we would do this in the system is to prefix the na-me of

the new function by the special symbol && within our goal, thus:

GOAL translate(CLL) <= W:: WL where <W,. i. > &&parsei(CLL)

The process works by making the new function act as a function

variable to match a portion of the expression, iýý much tie same way

, that $$ does, but in this case the instantiation becomes he

definition of the new function rather than a portion of the right

hand side of the transformed equation.

It is here that we see a need for another class of lu Is ab ie

f unctions . We intend introducing a TI T' unction drf in t-Lc n

i. nvoiN-es functions parse, flatten, restw and firsts-. Ii we siR, n

declare a1] these functions to be usabla, Lee: ý. -, ansion

ýý ý -; ? ýýe t_: i; t Pr. ogr.. iý, Tr. ý_rýSfor. T,: ý-tio: i Sy3i_elý

transl ate(CI, L) will turn omt to be a brise cý. . We r- c: ui re ", class

of functions which may occur in our answer, but C: ay nct occur

in a base case. Because T intend this new class o u_ ? b). 3fu ictior. s

to be more restricted in their application, -e term them us: " ý1 , iut

RESTRICTED.

They ire declared in the USIN': cc:; r, c; ariI, after an extra . _i-y",: ore.. -

RESTRICTED.

e. g. USING i'_ESTRICTED flatten firstvord

Such usable restricted functions may ocr ur in the right hi, nd

side of a transformed equation only if we explicitly give them _n the

pattern, and/or match them to new function-,: y ý: ea! is of the &&

facility). They inhibit acceptance of Lhe expression as a base case,

and are NOT matched by $$. Intuitively, this is the cla:, s of

functions that we expect to occur in the answer, but who's use we

wish to exert some control over. The example done with the aid of

this feature will illustrate these points. The commands given to the

system are as follows:

START
DEF

(give here NPL definitions of translat fl tters, parse, f irstw;

restw and skipsp]
END

CONTEXT
UNFOLD translate parse
USING REST.: ICTED flatten f-i_r_stt..: xestw parse [theF"e are usable,

but restrictell]
TRANSFORM

GOAL translate(C1, L) <= W:: WL where &&parsel(CLL)

END
END

1.1: Pi 47ý; , ý; "ý Tnýr; SfoLm-'tJ _on
`:; E :"_: ^. T -, i7T'ier I ag,, 4-21

The }stc c-. r"i; -. ds a& def±_- ;
-t -o., of pa', el.

parseI(CLL) <= :f 'Li-stw(flattý^(Ct4L)): karse res -(fi c 1- (CLL);)=

which it aids to he NP-, cquat o:, s, haw:; itZde the type, defiritI cu

for Pa r, el. thus we have redefined tr_ar. sý. atc ür. _' introduced parcel

all in ä sing

c step. Now redefine- pr. _r3el .

CONTEXT
UNFOLD parse lf irs `w ý"1att. eu r)arse restw
US'LNG parsel ý FSTRZC'I. ̀I: D :; icipsp flatten
TRANS F ORM

GOAL parsei(nil) [we expect this to he a bese case!
GOAL parse l(nil i: CLL) <= ý(rparse1(CLL))
GOAL parse I((ap:: CL)):: CLL) <-- $$(ap, oars`I! CL:: CLL))
GOAL par. se1. ((sp:: CL):: (LL) <=- $$(parse ?U "skipsp--(CL:: CLL)))

END
DELETE parsel(CLL)

END

parsel (nil.) expands to simply <nii, nil> i. e. a base case

parsel(nil:: CLL) (i. e. at end of current section of and

parsel((ap:: CL):: CLL) (i. e. found alphanumeric .£ current word)

recurse simply, to give:

parsel(nil:: CLL` parsel(CLL)

parsel((ap:: CL):: CLL) <= <ap:: I!, WL>

where <W, WL> _= parsel(CL:: CLL)

parsel((sp:: CL):: CLL) has no immediate recursion with

parse1(CL:: CLL). It corresponds to reaching a space in the input,

terminating the word we were building up. We expect, therefore, that

we should skip spaces In the input until an alpnanummeric (or end of

input) is reached, and continue with parsel from that point.

However, skipsp acts on the flattened input, list character, u} ereas

parse works on list]ist character, so we need a new skipspz whi__r,

will be analogo. is to ski-psp. The way w` introduce this Js by ; ring

ZAP Program Transformation System Primer Page 4-22

the && facility in the pattern. The system 'finds

parse]. ((sp:: CL) :: CI. L) <= <nil, W:: WL>

where <W, WL> -_- parsel(skipspz(CL:: CLL))

and as a definition of skipspz,

flatten(skipspz(CLL)) <= skipsp(flatten(CLL))

Darlington terms such a definition an "implicit" definition,

since it is not in the usual form of having the defined function on

the outside of the left hand side. The system always attempts to

rearrange such a definition to bring the function being defined to

the outside of the left hand side. To do this it will introduce

inverses, thus:

skipspz(CLL) <= iflatten(skipsp(flatten(CLL)))

iflatten(flatten(CLL)) <= CLL

iflatten is the inverse of flatten.

In general, inverses will not be uniquely defined, if they exist at

all. The intention is to transform a definition making use of

inverses into one without any such uses, applying only inverse

properties of the introduced inverse functions.

In this manner we use the system to transform skipspz:

'CONTEXT
UNFOLD skipsp flatten skipspz iflatten
USING skipspz
LEMMAS --- iflatten(C:: flatten(CL:: CLL)) <= (C:: CL):: CLL
TRANSFORM

GOAL skipspz(nil)
GOAL skipspz(nil:: CLL) <= $$(skipspz(CLL))
GOAL skipspz((ap:: CL):: CLL)
GOAL skipspz((sp:: CL):: CLL) <= $$(skipspz(CL:: CI. L))

END
DELETE skipspz(CLL)

END

ZAP Program Transformation System Primer Page 4-23

This is another opportunity to make use of type information to

simplify our goals:

Firstly, introduce our own information for type list list char

TYPEINFO CLL <= nil
<= nil:: CLL , CLL
<= (ap:: CL):: CLL , CL:: CLL
<= (sp:: CL):: CLL , CL:: CX. L

once this has been given, our 4 goals can be encapsulated in one by:

GOAL skipspz(RECURSE CASESOF CLL)

The system finds

skipspz(niP.) <= nil

skipspz(nil:: CLL) <= skipspz(CLL)

skipspz((ap:: CL):: CLL) <= (ap:: CL):: CLL

skipspz((sp:: CL):: CLL) <= skipspz(CL:: CLL)

ZAP Program 'transformation System Users' Manual Page 4--,

ZAP PROGRAM: TRANSFORMATION SYSTEM USERS' MANUAL

INTRODUCTION

This manual describes an interactive system to allow a user to

transform NPL programs into NPL programs. NPL is a first-order

recursion equation language. See the appendix for an informal

introduction to NPL. The underlying method of transforming is due to

Darlington and Burstall, see Darlington [1975], [1976] and Burstall

and Darlington (1.9771 for detailed expositions of this method, with

many examples. For introductory examples to informally demonstrate

the use of the system, see the ZAP Program Transformation System

Primer (previous section). The NPL interpreter and parser were

written by Rod Burstall, and my system makes use of code written by

John Darlington which links with NPL.

The syntax of the control language of the system is given in

B. N. F. Underlined words, called "reserved words", are represented by

the same words without underlining in an actual program. There is no

distinction between upper and lower case. For readability I adopt

the convention of lower case for constants, constructors and

functions, and upper case for reserved words and variables.

Description of the system is in the following stages:

1. Control of system

2. Transformation features

3. Syntax of control language

ZAP Progr-? m Transformation System Users' Manual Page 4-25

1. CONTROL OF SYSTEM

To run the system, at monitor level type the MIC command

/ZAP [450,463]

When initialisation is complete, 'READY' will be printed. The user

is then inside POP-2, with the transformation system compiled. The

system transforms from and to NPL. This manual assumes the user is

familiar with NPL. The NPL interpreter is available and may be used

to test initial and final programs. Any NPL definitions (subject to

restriction detailed in [1.2]) made outside the transformation

system are passed in upon entry to the system.

1.1 Overall Control

The syntax of the overall control of the system is as follows:

<control> :: = START <control contents> STOP

<control contents> :: = <empty> I
<control command> <control contents>

<control command> :: = <def block> I <introduce block> I
<context block> I <infile command>
<typeinfo command> I <val block>
<state command> j </// command> ý
<delete comand> I <write block>
<showspecs block>

Thus to enter the system, type START. After this the system is

then waiting for one of the following:

DEF block - to provide the initial NPL program to be

transformed [1.2]

INTRODUCE block - to introduce auxiliary definitions (1.3]

CONTEXT block - to transform definitions [1.4]

ZAP Program transfrrwz. tioýý System Users' Manual Page 4--2-6

INFILE command - to cause commands to be taker from a

disc file [1-5j

TYPEINFO command - to provide information about data types [1.6]

VAL block - to evaluate an expression [1.7]

STATE command - to Save current state of definitions or

restore a previously saved state [1.8;

command - to include comments. Reads up to next reserved

word, ignoring all intermediate POP2 items (1.9]

DELETE command - to delete equations [1.10]

WRITE block - to write definitions out to a disc file [1.11]

SHOWSPECS block - to display she definition of a function in terms

of the original functions [1.12]

STOP - to exit from the system

These are now described in detail.

1.2 The DEF block

Syntax : <def block> :: = DEF <NPL> END

<NPL> is any sequence of NPL definitions that may appear in a

"DEF... END" block of normal NPL, with the following restrictions:

The type overloading of functions (i. e. using the same function

symbol to indicate different operations depending upon the types of

its arguments) is not permitted.

The reserved words of the transformation system may not be used

- these are ASSOCIATIVE COMMUTATIVE CONTEXT DELETE DISPLAY GOAL

IDENTITY INFILE INTRODUCE LEMMAS RESTORE RESTRICTED SAVE START STOP

ZAP Program Transformation System Use:. -s' Manual Page 4-27

TRAS"lSFOR21 TYP. E INFO UNFOLD UNFOLDALL USING WRITE WRITEALL.

In addition, the following symbols have special meaning to the

system: $$ && AUTO CASESOF RECURSE

NPL if /ifnot clauses may be used in the DEF and INTRODUCE

blocks, but will be converted to make use of the conditional

function, COND. Where the syntax demands an NPLEM, if /i fnot

clauses may not be used.

The purpose of this command is to present the initial program,

which serves as the specification.

1.3 The INTRODUCE block

Syntax : <introduce block> :: = INTRODUCE <NPL> END

This acts precisely as the DEF block. Its purpose is to

introduce auxiliary definitions which are not to be regarded as part

of the specification.

1.4 The CONTEXT block.

The purpose of this block is to set up a context in which

transformations take place. Amongst the features declared within a

context are equations to be used for unfolding, and lemmas to aid in

unfolding and matching.

To understand the uses of all the features, we must first

understand the way in which transformation is performed.

Transformations change the right hand sides of equations and may

ZAP Program Transformations System Users' Manual Page 4-28

introduce new functions and their definitions. The fundamental way

in which a transformation is carried out is as follows:

A function with instantiated arguments is supplied. This, if the

transformation succeeds, will be the left hand side (henceforth

referred to as L. H. S.) of a new equation. Also supplied is an

expression which is to be the right hand side (henceforth referred to

as R. H. S.) of the new equation. It is valid to introduce such a new

equation If we can show that the L. H. S., unfolded using existing

equations and rewrite rules, is equal to the R. H. S., similarly

unfolded. Schematically,

L. H. S.

V unfold

expanded
L. H. S.

R. H. S.

unfold V

expanded
R. H. S.

If they are equal, we add the equation L. H. S. <= R. H. S.

existing NPL definitions.

to the

The context in which a transformation occurs is set up by the

commands of the CONTEXT block. These are now described, and further

details of the transformation process are given in [1.4.5]

Syntax :
<context block> :: = CONTEXT <context contents> END

<context contents> :: = <empty> I
<context command> <context contents>

<context command> :: _ <using command> ý <unfold command> I

<lemmas command> ý <typeinfo comand>
<introduce block> ý <infile command>
<transform block> ý <delete command>
<val block> I </// command> I
<state command> I <context block> ý

ZAP Program Transforii tion System Users' manual Page 4-29

<showspecs blcck>

Briefly, these act as follows:

UNFOLD command -- declares functions whose equations will be used to

unfold L. H. S. and R. H. S. - 11.4-11

USING command - declares which functions may occur in the R. H. S. of

a transformed equation. [1.4.2]

LEMMAS command - introduces rewrite rules for unfolding, and

indicates functions to be associative and/or

commutative. [1.4.3]

TRANSFORM block - transform equations of a function [1.4.4]

CONTEXT block - nested entry to CONTEXT' block. Within nested

CONTEXT blocks, an inner block inherits the

context set up by the surrounding block.

The remaining commands perform the same functions as they did at the

outer level of the system.

1.4" 1 The UNFOLD Command

Syntax : <unfold command> :: =- UNFOLD <namelist> I
UNFOLDALL <namelist>

This command names functions whose equations are to be used to

unfold the L. H. S. and R. H. S. in transformations. Successive UNFOLD

commands in the same CONTEXT block supplement the list of such

functions. (on entry to the system, this list is empty).

ZAP Program Transformation System Users' Manual Page 4-30

The basic form of this command is to give the names of functions

to be used after the reserved word TJNFO,, D. However. it is often

convenient to use all the relevant NPL equations for unfolding,

without having to name them explic. tly. By giving function names

after the reserved word UPNFOLP)ALL, all the equations which are used

directly or indirectly by those named functions will be included for

unfolding.

e. g. UNFOLD length +

states that equations for length and + are to be used in

unfolding.

e. g. UNFOLDALL length

states that all equations used directly or indirectly by length

are to be used in unfolding.

1.4.2 The USING command

Syntax : <using comand> : := USING <using contents>

<using contents> <namelist> 11
<namelist> RESTRICTED <namelist>

This command specifies functions additional to constants and

constructors (constants are recognised by having no equations), which

may occur in the R. H. S. of a transformation. There are two classes

of such functions - restricted and unrestricted. Only functions

named after the reserved word RESTRICTED are restricted. The use of

the distinction between restricted and unrestri'ted is described

later. See [1.4.5) and [2.1).

ZAP Program Transformation System Users' Manual Page 4-31

Successive USING commands in the same CONTEY7 bloc'.: suppleý_-ent

each of these classes, the last mention oý a function name

determining which class it is in. Initially only Core (conditional

function) and = (equality function) are usable (both unrestricted).

e. g. USING length succ

declares length and succ to be usable, unrestricted.

e. g. USING + RESTRICTED append length

declares + to be usable, unrestricted, and append and length to

be usable, restricted.

1.4.3 The LEMMAS command

Syntax :
<lemmas command> :: = LEMMAS <lemmas contents>

<lemmas contents> :: = <empty> I
<npleqnlist> <lemmas contents> I
ASSOCIATIVE <namelist> lemmas contents>
COMMUTATIVE <namelist> <lemmas contents> j
IDENTITY <NAME> <NPLEXPN> <lemmas contents>

<npleqnlist> :: = <empty> I --- <npleqn> <nplegnlist>

<npleqn> : := <NPLEXPN> <= <NPLEXPN>

This command does one of four things:

Firstly, re-write rules can be provided, vhich will be used in

the unfolding of the L. H. S. and R. H. S. Since these rewrite rules will

be applied whenever possible during the unfolding, no rule or set of

rules should be capable of being repeatedly applied indefinitely.

(e. g. including the rules A*(B4C) <= (A*B)+(A*C) and

ZAP Program Transformation System Users' Manual Page L-32

(A*B)+(A*C) <- A*(B-+C) would lead to infinite looping.:

Secondly, functions may be declared to be associative. she

effect is to cause the equality test between expanded L. H. S. and

expanded R. H. S. during transformation to take the associativity into

account -- i. e. it will test for equality up to associativity of thesc

functions.

Thirdly, functions may be declared to be commutative, so that

the equality test will take this into account. Further, such a

declaration causes symmetric versions of equations and reductions for

the commutative function to be added if not already present, so as to

enhance the unfolding process. e. g.

if we have equations for eglist, a function to test equality between

two lists:

- eglist(nil, A2:: L2) <= false

- eglist(A1:: L1, A2:: L2) <= A14: 2 and eglist(L1, I, 2)

and reduction

- egiist(nil, L1<>L2) <= eglist(nil, L1) and egi. ist(nil, L2)

Then declaring eqlist to be commutative will add the equation

- eglist (A2:: L2, ni. 1) <= false

and the reduction

- eqlist (L1<>L2, nil) <= eglist(nil, L1) and eglist(nil, L2)

to be used during unfolding.

Lastly, the identity for a (binary) function can be declared.

After reserved word IDENTITY, the function name is given, followed by

the expression which is its identity. This will cause applications

of that function to its identity to be reduced during the unfolding

ZAP Program Transformation System Users' Manual Page 4-33

of R. H. S. 's and L. H. S. 's.

Since these are user-provided details, the validity of the

transformation will depend upon the validity of these details.

Successive LEMMAS commands in the same block supplement these

details.

e. g. LEMMAS --- N+ succ M <= sticc (N + M)

ASSOCIATIVE +-

COMMUTATIVE +-*

IDENTITY +0

These add rewrite rule N+ succ M <= succ (N + M), declare

functions +, - and * to be both associative and con, mutative(adding

symmetrical versions of all equations and reductions for these

functions) and declare 0 to be the identity of +.

1.4.4 The TRANSFORM Block

Syntax :

<transform block> :: = TRANSFORM <goal list> END

<goal list> :: = <empty> j <goal> <goal list>

<goal> :: = GOAL <left hand side> I

GOAL <left hand side> <= <pattern>

<left hand side> :: = NPLEXPN>

<pattern> <NPLEXPN>

These are the commands which cause transformations to be carried

out.

ZAP Program Transformation System Users' Minuai Page 4-34

After the initial reserved word, a list of goa. 1s is given. Each

goal is an expression to become the left hand side of a new equation,

optionally followed by "<=" and a pattern. A pattern is the u: eens by

which the desired R. H. S. of the new equation is given. In its

simplest form, this will be the exact expression the user expects is

the R. H. S.

Used in this fashion, the transformation system acts as a

verifier, merely checking user-provided definitions. Patterns can

also be used to aid in the discovery of new definitions - achieved by

giving as a pattern only the approximate shape of the answer desired,

letting the system fill in the details. This is explained fully in

section 2.

If a left hand side is mentioned more than once in the goals,

then the corresponding patterns (if any) will be tried in the order

in which they appeared.

If all the patterns for a left hand side fail, the system will.

enter into an interactive dialogue with the user to get another

pattern, or be told to abandon the attempted transformation.

Provided all the left hand sides are successfully transformed,

the system will then take the following action:

If any of the new equations have left hand sides identical to

those of existing equations in NPL, the existing equations are

removed from NPL and saved by adding them to the "specifications

list". Saving them enables us to later look back and see how

functions were originally defined. The SHOWSPECS command, [1.12),

does this.

All the new equations are added to NPL.

ZAG Program Transformation Systei Users' Manual Page 4-35

The context in which the transformation takes place will be that

at the point where the TRANSFORM block occurs.

e. g. Suppose we have funnyplus, so called because it behaves like

plus but for the order of its arguments in its recursive call,

defined as follows:

+-I-+ funnyplus(nurs, num) <= num
---- funnyplus(O, M) <= 0
---- funnyplu. s(succ N, 1:) <= succ funnyplus(M, N)

Having created the appropriate context, we might say

TRANSFORM
GOAL f unnyplus (succ N, M) <= succ f unnyplus (N, M)

END

This will attempt to transform the second of the equations for

funnyplus. If the goal given is successful, this will change to

- funnyplus(succ N, M) <= succ fun ayplus(N, M)

and save the old equation by adding it to the "specifications

list".

e. g. Suppose we have length, append and lap defined as follows:

+++ length(list atom) <= num
+++ append(list atom, list atom) <= list atom

" +++ lap(list atom, list atom) <= num
length(nil) <= 0

- length(A:: AL) <= succ length(AL)

--- append(ni1, AL1) <= AL1

--- append(A:: AL, AL1) <= A:: append(AL, AL1)

--- lap(AL, AL1) <= length(append(AL, AL1))

then, having created a suitable context, we could say

TRANSF OKM
GOAL lap(ni1, AL1) <= length(A. L1)
GC1AI. lap(A: : AL, AL1) <= succ lap (AL, AL1)

END

ZAP Program Transformation system users' Manual Page 4-36

This will attempt to redefine lap, and if the goal is
successful, will give

--ý lap(ni1, AL1) <= length(AL:)
--- lap(A:: AL, AL1) <= succ lzp(AL, AL1)

1.4.5 Further details about transformation

Commands for preparing the context for a transformation have now

been described. Two important details of the transformation process

can now be mentioned:

(i) There are three classes of functions;

Unusable

Usable, unrestricted

Usable, restricted

If all the functions within the expanded L. H. S. are either usable,

unrestricted, or unusable but simply constructors or constants

(within the current context), and the expanded L. H. S. contains no

iterative expressions, this is termed a "basecase". The equation

L. H. S. <= expanded L. H. S.

is added to the equations, and no R. H. S. in the goal is required.

Typically base cases of recursive functions fall into this class,

hence the terminology "basecase".

(ii) The only unusable functions that an R. H. S. of a goal may

contain are constructors and constants (within the current context).

ZAP Program Trans ormatior. System Ur, --rs' Manuell Page 4-3:

1.5 The INFILE command

Syntax : <InfA. e commanC> : := Iirt'lL. E <i ILL;. k'iE>

By defaults the input of commands to the system is taken from

the user's terminal. Commands stored in a disc file may be used

instead. To cause command input to come from such a file, use the

I NF I IMF command.

e. g. INFILE (F1LEI. EXT]

Would cause command input to come from file FILE 1. FXT

Upon end-of-file being reached, input reverts to the user's

terminal.

1.6 The TYPEINFO command

Syntax : <typeinfo command> :: = TYPEINFO <nplexpn> <typeinfo cases>

<typeirfo cases> :: = <= <nplexpr. list> I
<= <nplexpnlist> <typeinfo cases>

This command is one of the features present to reduce the effort

of using the system. The user can save himself some later effort by

specifying some information about data types in advance.

Type information will be used for two purposes - suggesting

cases of an argument to consider, and aiding in the generation of

simple patterns.

Splitting transformation into cases is done by looking at the

cases an argument can take. The type of the argument will influence

the cases we would consider.

ZAP Program. Transformation system Users' Manual Page 4-38

e. g. For an argument of type num (natural number), we might consider

the cases

0 and succ N

alternatively, we might consider

0,1 and succ succ N

e. g. For an argument of type trees(alfa) (binary trees of alfa's),

we might consider the cases

tip(A) and tree(T1, T2)

alternatively, we might consider

tip(A) , tree(tip(A), T) and tree(tree(T1, T2), T)

Generating a simple pattern will involve forming simple recursive

calls to the function being transformed. The type of the function's

arguments determine the recursive calls which could be made.

e. g. When transforming a call to a function with argument of type

num, in the form succ N; f(succ N,...), we might generate a

pattern including the recursive call with argument N; f (N, ...)

for call f(succ succ N,...) the pattern might include calls

f (N, ...) and/or f(succ N,...)

e. g. When transforming a call to a function with argument of type

trees(alfa), in the fora tree(T1, T2); g(tree(T1, T2),...) we

might generate a pattern including the recursive calls with

arguments T1 and T2; g(T1, ...) and g(T2,...)

The essence of the above is that for each data type there may be some

way (or ways) of splitting the type into cases, and for some of these

cases there may be "recursive" cases which can be used to form

ZAP Program Transformation Systen Users' Manua,). Page 4-39

recursive calls in patterns.

e. g. type case recursive cases (if any)

num 0
succ NN

trees(alfa) tip(A)
tree(T1., T2) Ti 9 T2

trees(alfa) tip(A)
tree(tip(A), T) T

, tree(tree(TI, T2), T) tree(T1, tree(T2, T))

The TYPEINFO command is a means of specifying such information. The

syntax for presenting the information is very similar to the above

layout. Instead of naming the type, any expression of that type

suffices. Each cases is preceeded by the symbol "<=", and followed

by its recursive cases (if any), separated by commas.

e. g.
TYPE INFO N <= 0

<= succ N, N

TYPEINFO T <= tip(A)
<= tree(T1, T2) , Ti , T2

TYPE INFO T <= tip(A)
<= tree(tip(A), T) ,T
<= tree(tree(T1, T2), T) , tree(T1, tree(T2, T))

If the user has not provided type information about a type, the

system applies a default mechanism to generate such information if it

is required. This works by looking at the NPL DATA declaration for

the type in question; each of the cases in the DATA declaration

becomes a case in the type information. Recursive cases are formed

by spotting occurrences of the type within the cases of the DATA

declaration.

e. g. DATA num <= 0 4+ succ num

ZAP Proi; ram Tr t,,!; format:: -n Suscem Users' Manual Page

d ; ýF_r, ý re c:

TYPTT1__ ;N0
<= succ N, N

e. g. DATA list(alfa) <= nil ++ alfa :: list(alfa)

generates

TYPE INFO Li <= nil
<= A:: L ,L

/
J

For straightforward problems, the default type information will often

suffice. The user can override this by providing his own type

information when the default is not appropriate (as in the egtips

example presented in the Primer).

Using one information

In order to cause a transformation goal to be expanded into

several goals by considering cases of some argument, prefix the

argument by CASESOF. The current type information will be used to

suggest the cases.

e. g. GOAL f unnyplus (CASESOF N, M)

expands to (using default type information for type num)

GOAL f. unnyplus (0 , M)

GOAL funnyplus(succ N, M)

Prefixing several. arguments by CASESOF will create all combinations

of cases

e. g. GOAL funnyplus(CASESOF N, CASESOF M)

expands to

GOAL f unnyplus (O , 0)

GOAL funnyplus(0 , succ M)

Zt', P Program Tran:, formation Systems user:, ' Manua' Vage 4 +}

GOAL f unnypl-is (succ N, 0)

GOAL funnyplus(succ N, succ M)

The details of how to generate simple recursive patterns are left

until section (2-21

1.7 The VAL block

Syntax : <val block> :: = VAL <NPLEXPN> END

The NPL expression is evaluated using the current NPL equations.

Hence this can be used to test and compare functions.

1.8 The STATE command

Syntax : <state command> :: = SAVE I RESTORE <NUMBER>

The current state of NPL definitions and the specification list

may be saved by giving the command SAVE. The system responds with

the number of the state where they have been saved, which may be

restored later by giving command RESTORE, followed by the appropriate

number. Successive SAVE commands cause the state to be saved in

successively numbered locations.

1.9 The /// command

Syntax : </// command> : := /// <pop2 itern;. ist>

ZAP Program Transformation Brate-n Users' : Manual Page 4-42

<pop2 itemlist> : := <empty> I <i'0P2 ITE*i> <pop2 ;` eý lisr>

This provides a comment facility. After ///, pop2 items are

read and discarded until a reserved word is encountered. The

reserved words are ASSOCIATIVE COMMUTATIVE CONTEXT DELETE DISPLAY

GOAL IDENTITY INFILE INTRODUCE LEMMAS RESTORE RESTRICTED SAVE START

STOP TRANSFORM TYPEINFO UNFOLD UNFOLDALL USING WRITE. Since a pop2

string is a single pop2 item, reserved words may occur within such

comments provided they are within string quotes.

e. g.

this is a comment

e. g.

/// 'this is a comment within string quotes@

1.10 The DELETE command

Syntax : <delete command> :: = DELETE <nplexpnlist>

This command removes equations from NPL. After the reserved

word DELETE, give the left hand sides of the equations to be removed.

Equations deleted from NPL are saved on the "specifications list",

which may be accessed later to determine how functions were

originally defined. The SHOWSPECS command does this accessing, see

(1.12) for details of this.

ZAP i'rogr-I-,.
. 'ran�- {_=o-rmation -ý3

1.11 The WL T rE ý-1ock

Syntax <wri_te block> :: - WRITE <FILTý,; -_?: E> <r. anelist> EDi 'J, -, . IF, % LL

<FILENAME> <na: nc]_irt> END

This command allows current NPL c efinitions to be written ro a

disc file.

If. the reserved word WRITE is given, only the equations of

named functions will. be written to file.

If the reserved word WýT'Zi ITEALL is used, all equations of both the

named functions and any function used di. ractly or indirectly by them

will be written to file.

The destination file is specified after the appropriate reserved

word, and followed by the function names.

Output is an NPL DEF... END block, including the type

declarations for all the functions whose equations are to be listed,

variable declarations for all variables used, and finally the

equations themselves. After this, the specifications of all used

functions (in terms of the original functions) are printed.

e. g.

WRITE [LEN. NPL] alength

might write the following:

DEF

-H-+ alength(list atom, num) <= num
VAR N: num
VAR A: atom
VAR AL : list atom
--- alength(nil, N) <= N

--- nlength(A:: AI,. N) <= alength(AL, succ N)
END

ZAP Program Transformation System Users' Manual Page 4-l'. 4

SPECIFICATIONS
alength(AL, N) <= N+ length(AL)

1.12 The SHOWSPECS block

Syntax : <showspecs block> :: = SHOWSPECS <namelist> END

This command displays the definitions of the named functions in

terms of the original functions.

e. g. if function alength had originally been defined by

alerigth(AL, N) <= N+ length(AL)

and later transformed to get a recursive definition,

SHOWSPECS alength END

would cause the original definition to be displayed.

2. TRANSFORMATION FEATURES f

The basic transformation system has now been presented. Some

features have been mentioned but not fully explained. It is

certainly possible to use the system as described, but the following

facilities will ease the use of the system.

2.1 Patterns for transformations

As stated earlier, the approach to transformation is to supply

an L. H. S. and R. H. S. which are expanded and compared. There are

often occasions when the user has an idea of the form of R. H. S. he

desires, and he may wish to specify that fora without having to give

every detail.

ZAP T'L odrain Transf orm-, tion ýys tem Usars' ': an:. ai

of which MATCH to functions

The key to making this possible is the inclusion in the R. H. S.

function. variables

Pýýe 4--4 5

- hence the

terminology "pattern" for the

process then becomes:

L. H. S.

V unfold

expanded
L. H. S.

supplied F. H. S. The transformation

R. H. S. (pattzrn)

0i information I

from V unfold
match

MATCH expanded
R. H. S.

Bindings formed in the match between expanded L. H. S.

expanded R. H. S.

answer.

are

and

used to instantiate the R. H. S. to form the

There are two types of function variables, used for different

purposes.

The simpler use of them is to match to portions of the

expression and thus save the user the need to specify those portions

precisely in his pattern. Function variables to do this form of

matching are represented by the symbol $$.

The other use of them is to match to portions of the expression

which are to be taken as the definition of a new function, the

portions within the expression being replaced by calls to the new

function. Function variables to do this form of matching are

represented by the symbol &&, followed by a (new) name to serve as

the new function's name.

iý., { ý ' Pr, _ýýrar,?. ý rar, ; :f az;. iatiac Sýý: ^rs'
T

2.1.]. $$

Page 4-46

The symbol $$ within a pattern is used for af unc do i qttern is

to match to portions of the expression. $$ will match to

constructors (including where and
<.

�C> constructs) ,

usable-unrestricted f_uncti. ons, and functions which are constants

within the current context (i. e. have no equations declared for use

in unfolding), provided they have not been declared restricted.

Note, therefore, that $$ will NOT match to iterative

expressions, any restricted functions, or unusable functions with

equations in the current context.

e. g. with the following definitions

+f-+- sum(list num) <= num
+++ squares (lis t num) <= list num
--- sum(nil) <= 0

--- sum(N:: L) <= N+ sun(L)
--- squares(nil) <= nil
--- squares(N:: L) <= (N*N) :: squares(L)
+++ sumsquares(list num) <= num

--- sumsquares(L) <= sum(squares(L))

we might perform the following transformation

CONTEXT
UNFOLD sumsquares sum squares
USING sumsquares
TRANSFORM

GOAL sumsquares(nil.)
GOAL sumsquares(N:: L) <= $$(N, sumsquares(L))

END
END

The first GOAL has only the L. H. S. sumsquares(nil). This unfolds to

0, which, being a constructor, is a basecase, so the equation

sumsquares(nil) <= 0

is added.

The second GOAL has L. R. S. sumsquares(N:: L). This unfolds to

ZAP Program Tra^sfor: nat j. rn System Users' Manual Page 6-447

(N*N) + sum(squares(L)), not a basecase since functions sum and

squares occur within it, neither of which have been declared as

usable. The R. H. S. is the pattern $$(N, surosquares(L)), which unfolds

to $$(N, sum(squares(L))). Matching the expanded pattern and expanded

L. H. S. succeeds, binding $$ to

lambda xy. x*x +y

(note that although neither * nor + have been declared usable, they

do not have equations within this context, hence may occur within the

binding of $$). The $$ in. the unexpanded R. H. S. is instantiated to

give the answer

sumsquares(N:: L) <= N*N + sumsquares(L)

Clearly the above example was so simple that we could have

easily anticipated the precise form of the answer and typed it as the

goal without recourse to using $$. However, the advantages of

matching become apparent both in tackling less trivial examples, and

in using patterns generated by the system itself - section [2.2].

If the pattern contains several occurrences of the symbol $$,

these need not bind to the same expression, so the single symbol $$

suffices for multiple occurrences of function variables in patterns.

"2.1.2 ä& Matching

The purpose of including the $$ function variable within a

pattern was to save having to specify detailed portions of answers.

An alternate way in which matching can be of help is to introduce new

functions whose definitions arise from extracting portions of

expressions being transformed.

Function variables for this purpose are represented by the

ZAP Program Trar. sLormaiion System Users' Manual Page -p J

special symbol && followed by a new name which, if the match is

successful, will be taken as the name of the newly defined function.

Function variables of this nature riay match to any constructors,

usable functions (both restricted and unrestricted), and functions

which are constants within the current context (i. e. have no

equations defined for unfolding). Thus they fail to match only with

unusable functions with equations for unfolding in the current

context.

Ambiguity is avoided by not permitting any function variable (of

either type) to occur within an argument of a function variable of

the && type.

e. g. with the following definitions

-F++ wordsof(list char) <= list word
--- wordsof(ap(A):: CL) <= firstword(ap(A):: CL) ::

wordsof(ap(A):: CL - firstword(ap(A):: CL))

we might perform the following transformation

CONTEXT
UNFOLD wordsof firstword
USING wordsof RESTRICTED firstword -
TRANSFORM

GOAL wordsof (ap(A):: CL) <= W:: wordsof (REI1CL)

where <W, REMCL> _= &&wordandrem(ap(A):: CL)

END
END

For this single goal, the L. H. S. is wordsof(ap(A):: CL). This unfolds

to

f irstword(ap(A):: CL) :: wordsof(ap(A):: CL - firstword(ap(A):: CL))

which is not a base case, because it contains resticted functions -

and firstword.

The R. H. S. is W:: wordsof (REMCL)

.. where <W, RE11CL> __ &&wordandrem(ap (A) :: CL)

ZAP Program Transformation System Users' Manual Page 4-49

this does not unfold any further.

Matching the expanded L. H. S. and expanded R. H. S. binds

&&wordandrem to

lambda x. <f irstword (x) ,x-f irstword (x) >

Instead of using this to instantiate the variable in the answer, this

becomes the definition of new function wordandrem:

----- wordandrem(x) <= <firstword(x) ,x- firstword(x)>

The transformed answer includes a call to this new function:

---- wordsof(ap(A):: CL) <= W :: wordsof (REMCL)

where <W, REMCL> == wordandrem(ap(A):: CL)

The system generates the type declaration for the new function, and

within the context declares the function to be usable, restricted, so

that further goals in the same context (if any) may make use of it.

From the above example the usefulness of the restricted class of

usable functions can be seen - by declaring functions to be

restricted, the only way they may occur in the answer is to be

explicitly mentioned in the pattern, or to be incorporated as part of

the definition of a new function. We therefore have stricter control

over occurrences of such functions in the answer.

2.2 Supplementing and generating patterns

In section [1.6] the Typeinfo command was described. The means

by which the user, or the system itself, could specify information

about a data type were explained. This information included a list

of 'recursive cases' for each case we split the data type into. This

information can be of use when seeking a suitable R. H. S. during a

ZAP Program Transformation System Users' Manual Page -5©

transformation. Very often we expect the transformed equation for

some function to involve recursive calls to that function.

e. g. when transforming function lap,

-H-f lap(list atom, list atom) <= num

we may expect the equation for lap(A:: AL, AL1) to involve

the recursive call lap(AL, AL1)

i. e. lap is recur sing on its first argument

The recursive calls arise by replacing argument(s) in the L. H. S.

by their recursive cases. Some data types may have more than one

recursive case (e. g. a binary tree would have its right and left

branches) which would give rise to more than one recursive call. In

order to make the specification of such patterns easier, the

following facilities have been provided:

When giving a goal, to indicate we wish a pattern to recurse

upon an argument of the left hand side, prefix that argument by the

symbol RECURSE.

e. g. GOAL lap(RECURSE A:: AL , AL1) <=

causes the pattern

$$(A, AL, AL1, lap(AL, AL1))

to be generated

The generated pattern consists of $$ with argumments all free

variables of the L. H. S., plus recursive calls formed by substituting

recursive cases for the indicated arguments within the L. H. S.

Occurrences of the special constant AUTO within the pattern specified

at the right hand side of the goal will then be replaced by this

derived pattern.

e. g.
GOAL lap(RECURSE A:: AL, AL1) <= AUTO

is equivalent to

ZAP Progrn: a Tran,, formation System Users' Manual Page 4"-51 J

COAL lap(A:: AL, ALZ) <= $$(A, AL, ALI, lap(AL, ALI))

e. g.
GOAL f unnyplus (REGURSE succ N, M) <= AUTO + AUTO

is equivalent to
6OAL f unnyplus (suc c N, M) <= $$ (N, M, f unnyplus (N, 14)) +

$$ (N, M, f unnyplus (N, M))

If several arguments are prefixed by RECURSE, this causes

several recursive calls to be included.

e. g.
GOAL f unnyplus (RECURSE succ N, RECURSE succ M)

is equivalent to
GOAL f unnyplus(succ N, succ M) <=

$$ (N, M, funnyplus(N, succ yI), funnyplus(succ N, M),
funnyplus(N, M))

Prefixing an argument which does not have a recursive case (e. g.

a variable) by RECURSE will not cause any extra recursive call within

the derived pattern.

There are some defaults to simplify further:

If the L. H. S. of a goal contains occurrences of RECURSE, and no

"<_" followed by a pattern has been provided, AUTO is assumed as tie

pattern. If the pattern provided contains occurrences of AUTO, but

there are no occurrences of RECURSE within the L. H. S., each argument

of the L. H. S. is prefixed by RECURSE.

e. g.
GOAL lap(RECURSE A:: AL, AL1)

is equivalent to
GOAL lap(RECURSE A:: AL, AL1) <= AUTO

e. g.
GOAL lap(A:: AL, All) <= AUTO

is equivalent to
GOAL lap(RECURSE A:: AL, RECURSE AL1) <= AUTO

ZAP Program Transformation System Users' Manual Page x--52

Goals making use of both this facility and CASESOF have the

CASESOF arguments expanded before RECURSE is applied.

e. g.
GOAL lap(RECURSE CASESOF AL, AL1)

expands to
GOAL lap(nll, AL1) <_ $$ (AI. 1)
GOAL lap(A:: AL, AL1) <= $$(A, AL, ALl, lap(AL, ALI))

3. SYNTAX OF CONTROL LANGUAGE

<control> :: = START <control contents> STOP

<control contents> :: = <empty> I <control command> <control contents>

<control command> :: = <def block> I <introduce block> I
<context block> I <infile command>
<typeinfo command> I <val block> ý
<state command> I </// command> ý
<delete command> j <write block> ý
<showspecs block>

<def block> := DEF <NPL> END

<introduce block> :: = INTRODUCE <NPL> END

<context block> :: = CONTEXT <context contents> END

<context contents> :: = <empty> I
<context command> <context contents>

<context command> :: = <using command> I <unfold command> I
<lemmas command> ý <typeinfo command>
<transform block> ý <delete command>
<introduce block> ý <infil. e command> (

<val block> I< /// command> i

<state command> I <context block> ý

<showspecs block>

<infile command> :: = INFILE <FILENtXE>

<val block> :: = VAL <NPLEXPN> END

< command> <pop2 itemlist>

<state command> :: = SAVE I RESTORE <N'JMBEF. >

<delete command> :: = DELETE <nplexpnlist>

ZAP Program Transfornaltion System Users' Manual Page A-53

<write block> WRITE <FILELAME> <namelist> END
WRITEALL <FILENAME> <namelist> END

<showspecs block> :: = SHOWSPECS <namelist> END

<using command> :: = USING <using contents>

<using contents> :: = <namelist> I
<namelist> RESTRICTED <namelist>

<unfold command> :. -= UNFOLD <namelisz> I UNF OLL'ALL <namelist>

<lemmas cominnand> :: = LEAS <lemmas contents>

<lemmas contents> :: = <empty> I
<nplegnlist> <lemmas contents>
ASSOCIATIVE <namelist> <lemmas contents> ý
COMMUTATIVE <namelist> <lemmas contents>
IDENTITY <NAME> <NPLEXPN> <lemmas contents>

<typeinfo command> :: = TYPEINFO <nplexpn> <typeinfo cases>

<typeinfo cases> :: = <= <nplexpnlist>
<_ <nplexpnlist> <typeinfo cases>

<transform block> :: = TRANSFORM <goal list> END

<goal list> :: = <empty> I <goal> <goal list>

<goal> :: = GOAL <left hand side> I
GOAL <left hand side> <= <Pattern>

<pattern> :: = <NPLEXPN>

<left hand side> :: = <NPLEXPN>

<namelist> :: = <empty> I
<NAI4E> <namelist>

<nplexpnlist> :: 2- -aNPLEXPN> I <NPLEXPN> , <nplexpnlist>

-<nplegnlist> :: = <empty> I --- <npleqn> <nplegnlist>

<npleqn> :: = <NPLEXPN> <= <NPLEXPN>

<pop2 itemlist> :: = <empty> I <P0P2 ITEM> <pop2 itemlist>

The following are assumed:

<NUMBER> is any unsigned integer

<NAME> is any identifier suitable for use as the name of an
NPL function

<NPL> is any sequence of NPI, definitions which ýº-ou1d be permitted

within an NPL DEF... END block, subject to the restrictions

ZAP Program Transformation System Users' Manual Page 4-54

outlined in (1.2]

<NPLEXPN> is any expression not using if/ifnot constructs.

Note: the following reserved words may not occur in NPL definitions
or expressions to be used by the system:
ASSOCIATIVE COMMUTATIVE CONTEXT DELETE DISPLAY GOAL IDENTITY
INFILE INTRODUCE LEMMAS RESTORE RESTRICTED SAVE START STOP
TRANSFORM TYPEINFO UNFOLD UNFOLDALL USING WRITE WRIT LL

In addition, the following symbols have special meanings to the
system: $$ && AUTO CASESOF RECURSE

<FILENAME> is any file specification suitable for pop2

ZAP Program Transformation System Users' Manual Page 4-55

Index to main syntactic elements in User's Manual

<context block> [1.4]
<control> [1.11
<def block> [1.2]
<delete command> [1.10]
<goal> L'1-4.41
<introduce block> [1.3]
<infile command> (1-51
<left hand side> [1-4-41
<1 emma sc ommand > (1-4.31

<pattern> [1.4-4] and (2-11
<showspecs block> [1.12]
<state command> (1-81
<transform block> [1.4.4]
<typeinfo command> (1.6]
<unf o ld command> [1-4-1]
<using command> [1-4-21
<va-, block> [1.7]
<write block> [1.11]
</// command> [1-91

CHAPTER 5

TRANSFORMING LARGE EXAMPLES

In this chapter i consider the trans for, n, ition of large prcrrt. iis

using my system. Firstly, I discuss commonly used tactics to

introduce beneficial changes into the structure of a program, and the

need for a strategy to guide the use of these on non-trivial

problems. Then I present two large examples which I have transformed

using my system.

S. 1 TRANSFORMATION, TACTICS

The lowest level operations underlying the transformations my

system performs are the rules of unfolding and folding . The system

raises the user above this bottom level. - for individual

transformations he provides patterns which express the structure of

the answer required, and the system tries to fill in the details,

maintaining equivalence with the existing definition by linking with

a series of small unfold/fold etc. steps.

The structure of the initial program will typically not be at

all geared towards efficiency. Each transformation causes some

change in structure, and the intention is to improve the eftic=encv

of the initial program dramatically by a series of changes. The

efficiency irmpi ovements come about from one of several classes of

Page _ý-. _

manipui<_otions: My in-, cstigat1c have been in the domain of

transformations between recursion equal ion programs, were major

changes in structure are carried out. As a final stage to my

trans: _ormati_ons, I introduce extra arguments to functions. 'T'hese

arguments act as accumulators for results being bu1.1t up, so as to

get the recursion equations : into a form suitable for straightforward

conversion into an i. pp-rative language. she term ; 'accumulators"

originates from thc of. 1M11'oore [19741.

The bulk of iy attention has been on the transformations between

recursive programs. Iliese transformations are used to make

improvements in two classes, each of which sugests a 'tactic' to be

used in transformation to improve efficiency. The tactics are:

5.1.1 Combining Tactic

This tactic is intended to overcome the inefficiencies resulting

from the embedding of two or more functions. When we have an

expression of the form f(g(x)) we seek to improve this by defining a

new function --- fg(x) <= f(g(x)) and seeking a recursive definition

of fg which will compute the result in one pass rather than two.

e. g. suppose we have function squares, which given a list of numbers,

returns the list of those numbers squared:

--- squares(nil) <= nil

--- squares(N:: L) <= N*N :: squares(L)

and function sum to suhl the numbers of a list

--- sum(nil) <= C

--- sum(N:: L) <_ N+sum(L)

then we can ccaipute the sum of t. he- squares of a list of numbers

-3 LARGE P: -,, bt SO

oy
sum(squares(L))

This is obviously inefficient, as ati intprrcediate structure, the

list Of squared numbers. is produced completely and then

consumed. The combining tactic suggests es is we define

---- sgsur(L) <= sum(s quares(L))

and find a recursive definition, which turns out to be

---- sgsurn(nil) <= 0

--- sgsum(N:: L) <= N--N + sqsum(L)

In simple cases, the improvement from applying this tactic can

also be achieved by evaluating the equations using lazy evaluation

(call by need) which causes evaluation to be deli ec until absolutely

necessary. In more complex problems, the attempt to produce a

recursive definition of the newly introduced function may not be

straightforward, and lazy evaluation not sufficient to achieve the

improvements that transformations can provide.

5.1.2 Tupling Tactic

This tactic is intended to overcome the inefficiencies resulting

-from there being two or more separate calls to differing functions

with the same argument. When an expression is of the form

... f (x) ... g(x) .. we seek to improve this by defining a new f unction:

fandg(x) <_ <f (x) ,g
(x) > which computes the pair of results

simultaneously.

e. g. suppose we wish to compute the standard deviation of a list of

number:, ; we will require both the sULI of those nur.: bers, ard tho

TRANSFORMING LARGE EXAMPLES Page 5-4

sum of their squares. These can be profitably computed together

by defining

--- sumandsqsum(L) <= < surL(L), sgsiim(L) >

and transforming this to get

---- sumandsgsum(nil) <_ <0,0>

--- sumandsgsum(N:: L) <= < N+N1 , N*N+N2 >

where <N 1, N2> :.: = sumandsqsum (L)

This will save us the computation involved in traversing each

argument separately. Work by Pettorossi [1977] has demonstrated that

this may also allow improvements in memory utilization. In

non-trivial tuplings, some of the common calculations of each

previously separate function need not be done more than once.

5.2 TRANSFORMATION STRATEGIES

On sizeable problems, there will be many ways of applying the

transformation tactics to achieve improvements. It might be the case

that order of application of tactics is not crucial, and whichever we

choose, we will end up with a suitably efficient program. If,

however, we do not follow any systematic approach, we increase the

risk. of getting lost in a morass of detail during the transformation.

In particular, we would find it hard to draw parallels from already

completed transformations. If we modify the protoprogram and need to

adjust the transformation to accomodate the modification, a strategy

behind the transformation would help us pinpoint the portions

potentially needing change.

A strategy is required to guide the application of the tactics.

In the examples that follow, 1 use a straighforward strategy which

TRANSFORMING LARGE EXAMPLES Page 5-5

appears at least to satisfy our requirements of standardising the

approach, and leading to a suitable final program.

The strategy I adopt is the very basic one of always seeking

improvements from the 'inside out' By this I mean that if some

function f uses another function g, first improve g before tackling

f. When there are several embedded functions to combine, unless we

feel confident enough to try them all at once, combine them from the

inner outwards e. g. f(g(h(X))) - first combine gh(X) <= g(h(x)), then

combine fgh(X) <= f(gh(X)).

I do not claim that this basic strategy is the "best" in any

sense. There may be a more appropriate strategy, or there may even

be no general strategy which guides us through the transformations by

the easiest path. I argue only that this is systematic, and works in

practice.

TRANSFORMIN(LARGE EXAMPLES Page 5-6

5.3 THE TELEGRAM PROLLEM

This example originates from Henderson and Snowdon [1972). They

used it as a programming exercise, developed a solution, and then

discovered that their solution behaved unsatisfactorily at the less

explicitly specified boundary of the problem. I am not suggesting

some program as the definitive solution to the telegram problem.

Since the specification in English is somewhat ambiguous, I would

argue that some degree of choice is left to the programmer. My

concern is that it should not be necessary to analyse an efficient

program to determine what choices have been made.

5.3.1 English Specification

"A program is required to process a stream of telegrams. This

stream is available as a sequence of letters, digits and blanks on

some device and can be transferred in sections of predetermined size

into a buffer area where it is to be processed. The words in the

telegrams are separated by sequences of blanks and each telegram is

delimited by the word "ZZZZ". The stream is terminated by the

occurrence of the empty telegram, that is a telegram with no words.

Each telegram is to be processed to determine the number of

chargeable words. The words "ZZZZ" and "STOP" are not chargeable and

words of more than twelve letters are considered overlength. The

result of the processing is to be a neat listing of the telegrams,

each accompanied by the word count and a message indicating the

occurrence of an overlength word. "

TRANSFORMING LARGE EXAMPLES Page 5-7

Since then it has been considered by Ledgard [19741, Zahn

[1976), McKeeman [1976), Jones [1976), Jackson

[1977).

e. g.

input

(available in sections of length IS) :

.7
KLINGON SHIP

S APPROACHING S
TOP SEND REINF
ORCEMENTS STOP
ZZZZ TOO LATE

zzzz zzzz

"1977] and Schwarz

output

telegram: 7 KLINGON SHIPS APPROACHING STOP SEND

REINFORCEMENTS STOP

overlength word present **

count of chargeable words: 6

telegram: TOO LATE

count of chargeable words: 2

For consideration here I do not take the entire telegram

problem, but go only as far as producing a list of telegrams with

their corresponding statistics, omitting the final step of neatly

listing these. I feel that this last step does not introduce any new

difficulties, and only enlarges the problem.

TRANSFOR4ING LARGE EXAMPLrS Page 5-8

The transformational approach suggests that first we design a

very simple solution to the problem - the protoprogram - and then

transform this to achieve efficiency. The protoprogram serves as the

precise specification of our solution resolving the ambiguities in

the English specification; its behaviour will be easy to determine,

and to modify if desired.

5.3.2 Design Of Protoprogram

A. Firstly a definition. othe data types to represent input and output. -

data alphanumeric <= cha ++ chb ++ ... ++ chz ++ chO ++ ... ++ ch9

data char <- ap(alphanumeric) ++ sp

data instream <= in(list list char)

data message <= me(telegram, statistics)

Four types have been defined:

alphanumeric represents non-blank characters in the input

char represents all characters, including spaces (sp)

instream represents the input, stated to be made available through

a buffer area. Thus in(nil) is end-of-input, in(nil:: CLL) is an

empty buffer and remaining stream CLL, and in((C:: CL):: CLL) is a

buffer containing first character C, remaining characters CL, and

remaining stream CLL.

list message is to be our output. Each message contains a telegram

and its statistics (data types which we will define later).

TRANSFORMING LARGE EXAMPLES Page 5-9

The overall task will be performed by function getmessages:

pictorially,

------------ getmessages -- ------ -----------
I instream I ------------ >------------ ! list message I

+++ getmessages(instream) <= list message

Now we break this down into smaller stages. We need to convert

the instream into a list of telegrams, and from this list compute the

list of messages.

------------ gettels ----------------- messagesof -_-____. __-_-_---
I instream list telegram I----->------I list message I

----------- ----------------- -----------------

1-F+ gettels(instream) <= list telegram

+++ messagesof(list telegram) <= list message

Since a message can be produced from its telegram independent of the

other messages, let this be done by a smaller function, messof:

------------ messof -----------
(telegram --->---- (message (
------------ -----------

III messof(telegram) <= message

gettels needs further decomposition. A telegram is a list of

words, where words are sequences of non-blanks to be found in the

input separated by blank(s).

data telegram <= te(list word)

data word <= wo(list alphanumeric)

TRANSFORMING LARGE EXAMPLES Page 5-1 0

Since the buffer boundaries have no significance, we might as

well "flatten" the input into a sitcpýe list of characters before

breaking this into a list of words, and these into a

telegrams.

.
IL

1 ý'J. of

----------flatten"----... --- --_: yordsof-------_---telsof---. _-_--_--__--
I instream j ---->---- ! list char i ----->--- j list word l ---->-- I list telegram l

-1++ flatten (i. n sr. ream) <= list char

-t+-i- wordsof(list char) <= list word

+++ telsof(list word) <= list telegram

flatten we expect to have no difficulty with.

wordsof must compute a list of words from a list of characters.

This would be easy if we had a smaller function (firstword) to

produce just the first word, for then we could use this to get the

first word, and compute the remaining list of characters by simply

subtracting the characters of that first word.

------------- firstword -------- -------- wtocl -------------
list char ----->-----ý word II word j--->---1 list char I

------------- -------------

+++ firstword(iist char) <= word +4+ wtocl(word) <= list char

telsof must compute a list of telegrams from a list of words.

This is similar to wordsof, and we will find it useful to have a

function (firsttel) to compute just the first telegram from a list of

words.

firsttel ------------ ttowl -------------
list word ---->------ i telegram (I telegram I--->-- I list word I

------------ ------------

TRANSFORMING LARGE EXAMPLES Page 5°11

+++ firsttel(list word) <= telegram

-H-- ttowl(telegram) <= list word

messof is the function that given a telegram, produces a

message. In addition to the telegram itself, the message contains

statistics, which for this problem are a count of chargeable words,

and a boolean which will be true if and only if the telegram contains

no overlength words. We introduce a function statsof to compute

statistics:

data statistics <= st(num, trlaval)

------------- statsof ---------------

telegram ----">---- (statistics i
------------ --------------

+++ statsof(telegram) <= statistics

This will use two smaller functions:

charge to count chargeable words

------------- charge -------
list word ---->--- l num I ; -f-+ charge(telegram) <= num

and okwl to check that no words are overlength

-------------- okwl ----------
I list word j--->--j truval I +! -+ okwl(list word) <= truval
------------- ----------

which itself uses a function to check a single word

-------- okw -----------
I word 1-->--l truval (+++ okw(word) <3 truval
-------- ----------

TRANSFORMING LARGE EXAMPLES Pý! gt 5-1: -'

The overall structure of the protoprograsi hus been desgr. : -' .

The following diagram shows pictorially the structure of the

protoprogram (in these structure diagrams a line joining two

functions indicates that the higher function calls the lower one).

getmessages
/

1
/

/
gettels

/Iý
/

telsof
/I

/I
/I

/I
firsttel

ý

messagesof

messof wordsof flatten

iý
- firstword

1

1
I
I

statsof
/I

/I
/I

/I
charge okwl

i
i

okw

length

Now the details remain o be filled in -a reie. tiveiy straightforward

task. It is here that the precise behaviour of the solution will be

determined.

TRANSFORMING LARGE E*X&ui. PLr. S

5.3.3 NPL Pru: -oprogzsm

DEF

Page 5-13

DATA alphanumeric <= cha ++ chb ++ chc ++ chd ++ the ++ clef ++ chg ++
chh ++ chi ++ chj ++ chk +-+- chl ++ chri ++ chn ++
cho -f-+ chp ++ chq ++ chr ++ chs ++ cht ++ chu ;
chv ++ chw ++ chx 4+ chy ++ chz ++ chO +-- ch l -++
ch2 -++ ch3 -H- ch4 -H- ch5 -H- ch6 ++ ch7 ++ ch8 ++
ch9

DATA char <= ap(alphanumeric) ++ sp
DATA instream <= in(list list char)
DATA word <= wo (list alphanumeric)
DATA telegram <= , te(list word)
DATA statistics <= st(num, truval)
DATA message <= me(telegram, statistics)

+f+ getmessages(instream) <= list message
+++ gettels(instream) <= list telegram
+1+ messagesof(list telegram) <= list message
+H+ messof(telegram) <= message
+++ flatten(instream) <= list char
+++ wordsof(list char) <= list word
+i-+ telsof(list word) <= list telegram
-H-1- firstword(list char) <= word
+++ wtocl(word) <= list char
++F wtoal(word) <= list alphanumeric
+H+ firsttel(list word) <= telegram
+-+ ttowl(telegram) <= list word
+h+ statsof(telegram) <= statistics
++-I- charge (list word) <= num
+++ okwl(list word) <= truval
+++ okw(word) <= truval
+++ l. ength(list alfa) <= num
inf 4 =< +-++ num =< num <= truval
inf 4- +++ list alfa - list alfa <= list alfa
+++ zzzz <= word
-F++ wstop <= word
+++ maxlen <= num

VAR INS : instream
VAR T: telegram VAR TL : list telegram
VAR C: char VAR CL : list char VAR CLL : list list char
VAR W: word VAR WL : list word
VAR A: alphanumeric VAR AL : list alphanumeric
VAR N, N1 : num
VAR ALF : alfa VAR ALFL, ALFL1 : list al. fa

- getmessages(INS) <= messagesof(getteis(INS))

messagesof (nil) <- nil
--- messagesof(T:: TL) <= messof(T):: messagesof(TL)

--- messof (T) <= mE-, (T, statsof (T))

TRANS FORMING LARGE EXAMPLES Page 5-14

- getteis(. T.: v;:) <= telsof (wordsof (flatten(ZNS)))

- flatten(in(nil:: CLL)) <= flatten(in(CLL))
-f latten(in((C:: CL):: CLL)) <= C:: flatten(in(CL:: CLL))

- wordsof(sp:: CL) <= wordsof(CL)
- wordsof(ap(A):: CL) <= firstwordýap(A):: CL)

:: wordsof (ap('1): : CL - wtocl(firstword(ap(A): : CL)))

- firstvrord(sp:: CL) <= wo(nil)
- firstword(ap(A):: CL) <= wo(A:: wtoal(firstword(CL)))

--- wtocl(wo(nil)) <= nil
- wtocl(wo(A:: AL)) <= ap(A):: wtocl(wo(AL))

- wtoal(wo(AL)) t= AL

- telsof(W:: WL) <= nil if firsttel(W:: WL) = te(nil)
<= firsttel(W:: WL) ::

telsof((W:: W?, - ttowl(firsttel(W:: WL)))
- (zzzz]) ifnot

- firsttel(W:: WL) <= te(nil) if W= zzzz
<= te(W:: ttowl(firsttel(WL))) ifnot

- ttak+l(te(WL)) <= WL

- statsof(T) <_ st(charge(ttowl(T)), okwl(ttowl(T)"))

-- charge(nil.) <= 0
- charge(W:: WL) <= charge(WL) if W- wstop

<= succ charge(WL) ifnot

- okwl(nil) <= true
- okwl(W:: WL) <= okw(W) and okwl(WL)

- okw(W) <= length(wtoal(W)) -< maxlen

- length(ALF::. 4LFL) <= succ length(ALFL)
--- length(nil) <= 0

-0 =< NIL <= true
- succ N =< 0 <= false
- succ N =< succ NI <= N =< NI

- nil - ALFL1 <= nil
- ALFL - nil <= ALFL

- ALF :: ALFL - ALF :: ALFL 1 <= ALFL - ALFL 1

-- zzzz <= wo([chz, chz, chz, chz])

- wstop <= wo([chs, cht, cho, chp])

- maxlen <= 12

d

TRANSFORMING LARGE EXAMPLES Page 5 -15

END

Mis protoprogram is straightforward but not at all efficient "

The input goes through four distinct passes (instream -> list char ->

list word -> list telegram -> list message) and the passes are

themselves very inefficient. We will aim to transform this into an

efficient single-pass solution.

5.3.4 Transforming To Efficient Version

Adopting the simple strategy outlined in section 5.2 suggests we

tackle the transformation of the above protoprogram in the following

stages:

Tk. A:: ''r(1YZt�ý: J: G LAEtGE : `! yMP L"S Page 5-16

(i.) Improve wor&*f(ap(A):: CL) by

(a) Combiring c1reriainir. g(CL) <= CL -- wtocl(firstword(CL))

(b) Tupling w"ordandrem(CL) <_ <firstword(CL), clreir-aining(CL)>

This changes the program structure to the following:

getmessages

/1
/

/
telsof
/I

/I
/I

/I
f irsttel

/
gettels

wordsof flatten

wordandrem

ý

messagesof

messof

statsof

/1
/f

/I
charge okwl

okw

length

TRANSFORMING LARGE EXAMPLES Page 5-17

(ii) Improve telsof(W:: WL) by

(a) Combining wlremaining(%IL) <_ (WL - ttowl(firsttei(WL)))

- ZZZz

(b) Tupling telandrem(t"WL) <= <firstte1(WL), wlremaining(WL)>

getmessages

/ý
/

/
telsof
/

/
/

/
telandrem

gettels

/I0

wordsof flatten

wo rdand rem

messagesof

messof

statsof
/I

/I
/I

/I
charge okwl

okw

length

TRANSFORMING LARGE EXAMPLES Page 5-18

(i. ii) Improve gettels by

(a) Combining getwords(INS) <= wordsof (fl. atten(INS))

(b) Combining gettels(INS) <= telsof(getwords(INS))

getmessages
/

/
/

/
gettels

"/I /ý

/

/I
/I

telsof getwords
/I

/I
/I

telandrem getaword

messagesof

messo. ̀

statsof

/I
/I

/I
charge okwl

okw

length

R'.,;;, rU tI:; G 1I ,. 1. '. GF. ::: ':. L: 'FLES Page 5-19

gEtateSs2g'? S
i i

/
/

gettel"s

getatel

getaword

\

messagesof

\
ý

messof

statsof
/I

/I

/ý
charge okwl

okw

length
(iv) Improve statsof by

Combining statsof(T) <= st(charge(ttowl(T)), okwl(ttowl(T)))

getmessages
ý

ý

ý
ý

gettels

getatel

getaword

messagesof

\

messof
i
i
i

statsof

i

okw

length

TRANSFORMING' LARGE EY. AMPLLS
I

Page 5-20

(v) Simplify messagesof (T:: TL) by expanding out definition of

messof (T)

(note that this is neither a combination nor a tuple; the

effect of this step is merely to cause a small simplification

in the program structure.)

gets essages
ý

ý
ý

ý

gettels

getatel

getaword

messagesof

statsof

, okw

1 ength

(vi) Improve getmessages by

Combining getmessages(INS) <= messagesof(gettels(INS))

getmessages

I
getamess

getlword

(vii) Convert to an iterative form suitable for conversion

into an imperative language.

TRANSFORMING LARGE EXAMPLES Page 5-21

Now I present the commands for each stage as given to the ZAP

system to carry out the transformations.

(i) Improve wordsof

Since steps (a) and (b) are both small, we do both at once;

INTRODUCE VAR CLREM : list char END
CONTEXT /// 'improve wordsof @

UNFOLD wordscf
USING wtocl wordsof

RESTRICTED firstword -
TRANSFORM

GOAL wordsof (ap(A):: CL) <= W:: wordsof (CLREM)
where <W, CLREM> == &&wordandr. ern(ap(A):: CL)

END
END

CONTEXT /// 'redefine wordandrem recursively @
UNFOLDALL wordandrem
USING wtoal wtoal wordandrem
LEMMAS --- wo(wtoal(W)) <= W
TRANSFORM

GOAL wordandrem(sp:: CL)
GOAL wordandrem(ap(A):: CL) <= $$(A, wordandrem(CL))

END
DELETE wordandrem(CL)

END

(ii) Improve TELSOF

Since steps (a) and (b) are both small, again we do both at once;

INTRODUCE VAR WLREM : list word END
CONTEXT /// 'improve telsof @

UNFOLD telsof
" USING ttowl telsof

RESTRICTED f irsttel -
TRANSFORM

GOAL telsof(W:: WL) <= $$(T, telsof(WLREM))
where <T, WLREM> == &&telandrem(W:: WL)

END
END

CONTEXT /// 'redefine telandrem recursively @
UNFOLDALL telandrem
USING ttowl telandrem
TRANSFORM

COAL telandrem(W:: WL) <_ $$(W, WL, telandrem(WL))
END
DELETE telandrem(WL)

7'. ', ", S U} 1Th L: y_PC_. '. E AVý"IPu,!, S Page 5-L2

END

(iii) Improve gettels

This is the first transformation to involve the d; to type insrre ýr,

which represents a buffered stream of input. For this data type we

anticipate transformations involving cases

in (rail :: CLL)

in((sp: ": CL):: CLL)

in((ap(A):: CL):: CLL)

The first of these represents reaching the end of the current input

buffer, so we would expect to continue processing the remainder of

the stream, i. e. in(CLL).

The last two cases represent encountering a space or alphanumeric

within the current input buffer. Since we expect our transformed

algorithm to work character by character, we anticipate processing

would continue with the remainder of the current buffer and stream,

i. e. in(CL:: CLL)

The TYPEINFO command allows us to present such intuition as

information about the data type instream:

TYPE IIýTO
INS <= ir. (ni1:: l: LL), in(CLL)

<= in((sp:: CL):: CLL), in(CL:: CLL)
<= in((ap(A):: CL):: CLL), in(CL:: CLL)

(a) Combining getwords(INS) <= wordsof(flatten(INS))

CONTEXT /// 'improve gettels by combining wordsof & flatten
UNFOLD gettels
USING telsof RESTRICTED gettels wordsof flatten
TRANSFORM

GOAL gettelo(INS) <= telsof(&&getwords(INS))
END

Er; D

0

INTRODUCE VAR REMINS : instream END
CONTEXT /// 'redefine. getwords recursively ýa

TRANSFOItNING LARGL EXAMPLES Page 5-23

UNFOLDALL getwords
USING wtoal RESTRICTED getwords wordsof flatten wordandrem
TRANSFORM

GOAL getwords(in(nil:: CLL)) <= auto
GOAL getwords(in((sp:: CL):: CLL)) <= auto
GOAL getwords(in((ap(A):: CL):: CLI,)) <=

$$(A, W) :: getwords(REMINS)
where <W, REMINS> == &ägetawaord(in(CL:: CLL))

ENT)
DELETE getwords(? NJS)

END

CONTEXT /// 'simplify by folding up @
USING wtoal RESTRICTED getwords getaword
UNFOLDALL getwords
TRANSFORM

GOAL getwords(in((ap(A):: CL):: CLL)) <_ $$(W, getwords(REMINS))
where <W, REMINS> == getaword(in((ap(A):: CL):: CLL))

END
END

CONTE " /// 'redefine getaword recursively @
UNFOLDALL getaword
USING wtoal getaword
LEMMAS --- iflatten(flatten(INS)) <= INS

---- iflatten(sp:: flatten(in(CL:: CLL))) <_- in((sp:: CL):: CLL)
TRANSFORM

GOAL getaword(CASESOF INS) <= auto
END
DELETE getaword(INS)

END

Notice that we have used the lemmas

iflatten(flatten(INS)) <= INS

iflatten(sp:: flatten(in(CL:: CLL))) <= in((sp:: CL):: CI. L)

iflatten is the inverse of flatten, introduced by the system

during the definition of getaword. The first lemma simply states the

inverse relationship. The second is required because the unfolding

mechanism would otherwise reduce

iflatten(f latten(in((sp:: CL):: CLL)) to

iflatten(sp:: f latten(in(CL:: CLL)))

at which point it would be stuck (instead of attaining,

in((sp:: CL):: CI. L)).

TRAA? SFOi, ' PJ 1, _ýe- "I

(b) Combining gettels (I ?; S) <= telsof (get. ýc rds (i'_))

INTRODUCE VAR RE'1-+_'r'S 1: instream
VAR T, T1 : telegram

END
CONTEX /// 'redefine gettels recursively @

UNFOLDALL gettels
USING RESTRICTED gettels
TRANSFORM

GOAL gettels(in(nil:: CLL)) <= auto
GOAL gettels(in((sp:: CL):: CLL)) <= auto

END
END

CONTEXT /// 'now for the in((ap(A):: CL):: CTL) case @
UNFOLD gettels getwords telsof telandrem
USING ttowl wtoal RESTRICTED gettels getwords telandrem getaword

telsof
LEMMAS --- te(W:: WL) = te(NIL) <= false
TRANSFORM

GOAL gettels(in((ap(A):: CL):: CLL)) <=
cond($$(W), NIL, T:: gettels(REMINS))

where <T> == <te(W:: ttowl(T1))>
where <T1, REMINS> == &&getatel(REMINS1)

where <W, REMINS1> == getaword(in((ap(A):: CL):: CLL))
END
DELETE gettels(INS)

END

CONTEXT /// 'simplify by folding up @
USING ttowl RESTRICTED gettels getatel
UNFOLDALL gettels
LEMMAS --- te(W:: WL) = te(NIL) <= false
TRANSFORM

GOAL getTtels(in((ap(A):: CL):: CLL)) <=
cond (T=te(NIL) , NIL, T:: gettels (REMI:; S))

where <T, REMINS> == getatel(in((ap(A):: CL):: CLL))
END

END

INTRODUCE VAR RE1,11INS1, REMINS2 : instrearn END
CONTEXT /// 'redefine gellatel recurs'

UNFOLDALL getat: o 1 ZZZZ
USING ttowl getatel RESTRICTED getaword
LEMMAS --- igetwords(getwords(INS)) <= INS
TRANSFORM

GOAL getatel(in(NIL:: CLL)) <= auto
GOAL getatel(in((sp:: CL):: CLL)) <= auto
GOAL getatel(in((ap(A):: CL):: CLL)) <=

$S(Z7_LZ, REMINS1 E2,2, T)

where <T, REMINS 2> == getatel (RP7-1INS 1)

where <W, RE. 1INS1> getaword(in((ap(A):: CL):: C: _L))
END

END

TRANSFORMING LARGE EXAMPLES Page 5-23

Having completed this stage, the overall structure of our

efficient solution has been formed. In this structure the outermost

function builds up the entire result using another function to build

single telegrams at once, and this in turr_ uses a smaller function to

build up individual words. Combining the statistics production with

this will merely cause the functions to return additional arguments

without altering this structure.

(iv) Combining statsof(T) <= st(charge(ttowl. (T)), ok-; º71(ttowl(T)))

INTRODUCE VLR OK : truval
+++ ston(statistics) <= nu-n ---- ston(st(N, OK)) <= N
++-F- stook(statistics) <= truval --- stook(st(N, OK)) <= OK

END

CONTEXT
USING statsof okw and ston stook
UNFOLD statsof charge okwl
TRANSFORM

GOAL statsof(te(nil))
GOAL statsof(te(W:: WL)) <= st($$(W, CH), $$(W, OK))

where <N, OK> == <ston(S), stook(S)>
where <S> == <statsof(te(WL))>

END
DELETE statsof(T)

END

(v) Simplifying messagesof(T:: TL)

CONTEXT
USING messagesof statsof
UNFOLD messagesof messof
TRANSFORM

GOAL messagesof(T:: TL) <= $$(T, statsof(T), messagesof(TL))
END

END

(vi) Combining getmessages(INS) <= messagesof(gettels(INS))

INTRODUCE VAR S: statistics
END

CONTEXT /// 'redefine getmessages recursively @
UNFOLDALL getmessages
USING RESTRICTED getmessages
TRANSFORM

0

TRANSFORMING LARGE E%A. MPLES Page 5-26

GOAL getmessages(in(rd1:: CLL)) <= auto
GOAL' getmessages(in((sp:: CL):: CLL)) <= auto

ENS
END

INTRODUCE VAR WLEN : num
CONTEXT /// 'now for the ap(A) case @

UNFOLD getmessages messagesof gettels
USING RESTRICTED getmessages getatel statsof
TRANSFORM

GOAL getmessages(in((ap(A):: CL):: CLL)) <=
" cond($$(T), NIL, me(T, S):: getmessages(REMINS))

where <T, S, REMINS> == &&getamess(in((ap(A):: CL):: CLL))
END
DELETE getmessages(INS)

END

CONTEXT /// 'redefine getamess recursively@
UNFOLDALL getamess
USING RESTRICTED getamess
TRANSFORM

GOAL getamess(in(NIL:: CLL)) <= auto
GOAL getamess(in((sp:: CL):: CLL)) <= auto

END
END

CONTEXT /// 'now for the ap(A) case @
UNFOLD getamess ston stook getatel statsof ttowl charge okwl okw
USING ston stook =< ttowl length wtoal and

RESTRICTED getamess getaword
TRANSFORM

GOAL getamess(in((ap(A):: CL):: CLL)) <=
$$(WLEN, W, REMINS1, REMINS, ston(S), stook(S), T)

where <T, S, RF4INS> == getamess(REMINSI)
where <W, REMINS1, WLEN> ==

&&getlword(in((ap(A):: CL):: CLL))
END
DELETE getamess(INS)

END

CONTEXT /// 'now transform getlword @
UNFOLDALL getlword
USING getlword
TRANSFORM

GOAL getlword(CASESOF INS) <= AUTO
END
DELETE getlword(INS)

END

(vii) Convert to iterative fora

TRANSFORMING LARGE EXAMPLES Page 5-2-1

INTRODUCE
+++ agetmessages(instream, li-st message) <= list message
}+i- agetamPss(instrEam, list worci, num, truval) <=

tuple2(messa; e, instream)
++f- agetamess(instream, list char, num) <_

tuple3(word, instream, aum)

- agetmessages(INS, YLL) <_ ML <> ge-4-messages(INS)

- agetamess(INS, WL, N, OK) <=
<me(te(WWL<>ttosl (mtot (M)))

,
st(N+ston(mtos(M)), OK and stook(mtos(M)))),

REM INS >
where <M, REMINNS> _- getamess(INS)

- agetlword(INS, CL, N) <=
<wo (CL<>wtocl (W)), REriIi1S, N-h'1' 1>

where <W, P. Er1INS, N1> == getaword(iNS)
END

CONTEXT
UNFOLD getmessages agetmessages <>
USING RESTRICTED agetmessages
TRANSFORM

GOAL getmessages(INS) <= agetmessages(INS, nil)
END

END

CONTEXT /// 'redefine agetmessages in terms of
itself and agetamess @

UNFOLD agetmessages getmessages <> + and agetamess
USING mtot <>

RESTRICTED agetmessages agetamess
TRANSFORM

GOAL agetmessages(in(nil:: CLL)) <= auto
GOAL agetmessages(in((sp:: CL):: CLL)) <= auto
GOAL agetmessages(in((ap(A):: CL):: CLL) <=

$$(M, ML, agetmessages(REMINS, ML<> [M]))

where <M, REA1INS > ==
agetamess(in((ap(A):: CL):: CLL, nil, C, true)

END
END

CONTEXT /// 'redefine agetamess in terms of
itself and agetlword @

UNFOLD agetamess getamess agetlword <> + and =<
USING + and <> =< ttowl ston wtoal stook

RESTRICTED agetamess agetlword
TRANSFORM

GOAL agetamess(in(nil:: CLL), WL, N, OK) <= auto
GOAL agetamess(in((sp:: CL):: CLL), WL, N, OK) <= auto
GOAL agetamess(in((ap(A):: CL):: CLL), 14-L, N, OK) <=

$$(W, REMINS, WLEN, WI., N, OK,
agetamess(REMINS, WL<>[W], $$(W, N), $$(WLEN, MAXLEN, OK)))
where <W, REMINS, WLEN>

0

TRANSFORMING LARGE EXAMPLES

agetiword(in((sp(A) : : CL): : CLI.) ,; ii_1, C)
END

END

CONTEXT /// 'redefine agetlword recursively @
UITFOLDALL agetlword
USING <> and + _<

RESTRICTED agetlword
TRANSFORM

GOAL agetlword(in(nil:: CLL), CL1, w) <= auto
GOAL agetlword(in((sp:: CL):: CLL), CL1, N) <= auto
GOAL agetlword(in((ap(A):: CL):: CLL), CLI, N) <=

agetlwo"rd(in(CL:: CLL), CL1<>[ap(A)), succ v)
E23ß

END

DELETE agetmessages(INS, ML),
agetamess(INS, WL, N, Ok),
agetlword (INS, CL, N)

5.3.5 Final Program

PS. ge
5-28

The final program works by building up individual words (using

agetlword) and individual messages (using agetamess) in a single

pass, as it works its way through the input. The length of a Word is

counted as the word is extracted, and the statistics for each

telegram are amassed as each telegram is extracted.

This is far more efficient than the original program, which

consisted of four major passes through the input, going from instream

to list char to list word to list telegram to list message. Some of

these passes were themselves very inefficient.

--- getmessages(INS) <= agetmessages(INS, nil)

- agetmessages(in(ni1:: CLL), ML) <=
agetmessages(in(CLL), ML)

- aget©essages(in((sp:: CL):: CLL), ML) <=
agetmessages(in(CL:: CLL), ML)

- agetmessages(in((ap(A):: CL):: CLL,! KL)

. _cond(mtot(M)
= te(nil),

ML,

TRANSFORMING LARGE EXAMPLES Page 5-29

agetmessa ges (RE MINS, ML<> [M]))

where <M, REMINS> __
agetamess(in((ap(A):: CL):: CLL), nil, O, true)

-- agetamess(in(ni1:: CLL), TrdL, N, OK) <= agetaness(in(CLL), [ti!, N, OK)

- agetamess(in((sp: : CL): : CLL), WL,? d, OK) <=
agetamess (iT: (CL: : CLL), WL, N, OK)

- agetamess(in((ap(A):: CL):: CLL), WL, N, OK) <=
cond (W=ZZZ'I.,

<ne(te(WL), st(N, OK)), REMINS>,
agetamess(REMINS, WL<> rW] ,

cond (W=WSTOP, N, succ N)
(WLEN =< MAUEN) and OK))

where <W, REMINS, WLEN> _=
agetlword(in((ap(A):: CL):: CLI.), ni1,0)

- agetlword(in(ni1:: CLL), CL1, N) <= agetlword(in(CLL), CL1, N)

- agetlword(in((sp:: CL):: CLL), CL1, N) <=
<wo(CL1), in((sp:: CL):: CLL), N>

-- agetlword(in((ap(A):: CL):: CLL), CL1, N) <_
agetlword(in(CL: : CLL), CL1<> [ap(A)] , succ N)

The structure of this final program is simple:

agetmessages

agetamess

i I
agetlword

However, these functions are performing several operations at once in

order that the final program be a one-pass solution. The diagrams of

the input and output types for these functions illustrate the

complexity:

TRANSFORMING LARGE EXAMPLES

->-I instream I

agetmessages ý ------------
I instre-am (----------y---------I

-. --------------- ->-I list message I

I instream I -->--

I list word I->--

ý ---- ý-- ---- I num

I truval I --
------ ----

->-j message I
ý agetamess (------------ ý ------>------ ý

ý ->- I instream I

I instream I->-- -->-- word I

II
II
I $getl. Wora I

I list char 1->-I ------- > ------- 1-->--l instream I

i

Ii
ii If

num ý---->---- -->--I num I

Page 5-30

The final. NPL program requires converting into an imperative

language. As an illustration of this, the innermost function,

agetlword, might convert to the following program in some ALGOL-Like

language:

->---

TRANSFORMING LARGE EXAMPLES Page 5-31

PROCEDURE agetlword(INSTREAN VALUE RESULT ins,
INTEGER VALUE RESULT wlen,
LIST(CHARACTER) VALUE acl,
WORD RESULT W) ;

BEGIN
WHILE (WHILE hd(ins) = nil

DO ins := tl(ins) OD;
hd(hd(ins)) /= space)

DO acl := acl <> [hd(hd(ins))
wl en 1+ wlen;
ins :- td(hd(ins)) :: tl(ins)

OD;
w := wo(acl)

END;

Some improvements at this level are still possible. For

example, acl is passed to the procedure agetlword, and within a while

loop a character is appended to its end. This could be more

efficiently done by maintaining a pointer to the end of acl, and

destructively appending to the end of the list.

Such improvements do not alter the structure of the solution,

and I have not investigated them. My main concern has been with the

change from the naive solution to the very different structure of an

efficient solution.

5.3.6 Modification Of Telegram Problem

One of the hoped for virtues of the transformational approach to

-programming is that program modification may be carried out easily

and reliably. To investigate this, I make a small change in the

original specification of the telegram problem, and then see how the

transformation process must be adjusted to accomodate this change.

The alteration I make is to charge double for overlength words.

Modification of the initial program is easy; function charge is

designed to charge one unit for each word other than "STOP".

TRAtiSFORMI! G URGE EXAMPLES Page 5-32

--- charge(W:: WL) <= charge(IW!::) if W=WSTOP

<= succ charge(WL) ifnot

This must be modified to

---- charge(W:: WL) <= charge(WL) if W=WSTOP

<= succ charge(WL) if okw(W)

<= succ succ charge(WL) ifnot

making use of function okw to check words for admissible length.

Thus the change in program structure is to cause charge to now

make use of okw:

0
0

statsof
/I

/I
/I

/I
charge okw?.

okw

length

Now to consider how the transformation process is effected:

Stages (i), (ii) and (iii) remain unchanged,

concern the altered portion of program structure.

since they do not

Stage (iv), combining statsof(T) <=

st(charge(ttowl(T)), okwl(ttowl(T)))

is the first to concern the altered portion. The transformation

commands suffice as they are, however the recursive definition of

statsof they give rise to is slightly different.

TRANSFORMING LARGE EXAMPLES Page 5-33

Stage (v) is unaffected since statsof is not unfolded during it.

Stage (vi) is the next to make use of the definition of statsof - in

redefining the ap(A) case of getamess. Once again, the existing

transformation commands suffice unchanged, the modified statsof

inducing a modification to getamess.

Stage (vii) is the conversion to iterative form. Here the

redefinition of agetamess, because it is defined in terms of the now

modified getamess, potentially needs altering. In fact a small

change in the transformation commands is required here:

We have

COAL agetamess(in((ap(A):: CL):: CLL), WL, N, OK) <=
$$(W, REMINS, WLEN, WL, N, OK,

agetamess(REMINS, WL<>[W], $$(W, N), $$(WLEN, MAXLEN, OK)))
where <W, REMINS, WLEN> ==

agetlword(in((ap(A):: CL):: CLL), nil, 0)

The third argument of the call to agetamess, i. e. $$(W, N), is the

accumulating charge for the current telegram. Our modified charging

algorithm now takes account of the length of words, so this argument

must be expanded to $$(W, N, WLEN). WLEN is the length of the current

word, returned from a call to agetlword.

The effect on the final NPL program is to change one of the

equations of agetamess to:

--- agetamess(in((ap(A):: CL):: CLL), WJL, N, OK) <=
cond(W=ZZZZ,

<me(te(WL), st(N, OK)), REMINS>,
age tamess(REMINS, WL<> [W]

,
cond (W=W STOP, N,

**change---> cond(WLEN =< MAXLEN, succ N. succ succ N)),
(WLEN =< MAXLEN) and OK))

where <W, REMINS, WLEN> ==
agetlword(in((ap(A):: CL):: CLL), nil, 0)

TRANSFORMING LARGE EXAMPLES Page 5-34

Thus for this particular modification the change in the final,

efficient program is relatively small, and a competent programmer

could no doubt have made the appropriate change in the efficient

program directly. To do so would require pinpointing the location

within the efficient program where the change must be made, hence the

programmer would have to understand how the efficient code

functioned, a requirement we would like to avoid. It is encouraging

to see that the propogation of the modification through the

transformation has been easy. The well-structured transformation

pinpoints the areas potentially effected, and the transformation

patterns are sufficiently powerful as to accomodate the modification

without the need for adjustment until the very last stage.

TPJ: c-SEORlIINNC I_ARGE EXAMPLES Page 5-35

5.4 SDIPLE CC14PILER

This example consists of the second phase of a simple compiler

taking abstract syntax trees to machine code. The source statements

consist of assignments, while statements, if-then-elses and blocks.

Expressions within the source statements consist of ether a

variable, or an operator applied to a list of expressions. The NPL

representation of these is the following:

DATA variable <= varible

DATA opr <= ops

DATA sstatement <= assc(variable, expression)

-I-F whst(expression, sstatement)

-H- i. fthenelse(expressi_on, sstatement, sstateinent)

++ bl(list variable, sstatement)

++ sstatement $ sstatement;

expression <= expr(variable) ++ apply(opr, list expression)

The target machine code assumes a stack machine with

instructions to load a value from an address onto the stack, store

the value on the top of the stack in some address, jump to an

address, conditionally jump to an address dependent upon the value on

the top of the stack, apply an operator (which is assumed to take off

the appropriate number of values from the stack, returning the answer

onto the top of the stack), and finally a nonop instruction (to do

nothing). A machine code program is a list of these instructions.

The NPL data definitions to represent these are

DATA minstruction <= mload(address) ++ mstr(address)

++ mcondjump(address) ++ mjump(address)

++ mapp(opp) ++ mnonop

TRANSFORMING LARGE EXAMPLES Page 5-36

DATA mcode <= mpr(list minstruction),

Addresses in the machine are represented by

DATA address <= ad(rum)

with its own function (incadd) to increment an address to get the

next in store.

e. g.

The program written conventionally as

BEGIN
VARS 1(0 K1 K2;
K2 := OP4(K1);
BEGIN

VARS K3, K0;
WHILE KO DO

KO := 0P 2 (K0, K2, K3)
OD;

END;
IF 0P3(K1)
THEN Kl: = KO
ELSE KO :=Kl
FI

END

would be represented by

bl([KO, K1, K2] ,
asst(K2, apply(0P4, [expr(K1)]))
$
bl([K3, K0] ,

whst(expr(KO),
asst (KO, apply (OP2,

[expr(KO), expr(K2), expr(K3)]))))
S
ifthenelse(apply(OP3, (expr(K1)]),

asst(K1, expr(KO)),
asst(KO, expr(K1)))

allocating space for code from address 0, and space for

variables from address 25, compiling the above gives (I omit to put

ad(around the number of each address below, for clarity):

TRANSFORMING LARGE EXAMPLES

address
0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22

instruction
mload 26
mapp OP4
mstr 27
mnonop
mload 29
mcond j ump 12
mload 29
mload 27
mload 28
mapp OP2
mstr 29
mjump 3
mnonop
mload 26
mapp OP3
mcondjump 19
mload 26
mstr 25
mjump 22
mnonop
mload 25
mstr 26
mnonop

5.4.1 Design Of Protoprogram

Page 5-37

The NPL protoprogram I produce serves as my exact problem

specification.

The overall process is one of converting the source statement

input into machine code, allocating space for the code from some

given adddress, and allocating space for variables from another

address.

I sstatement, I process
I address, I ------>-----I mcode I
I address I

This splits into two tasks - the first is to convert the source

statements into an assembler language, which is similar to machine

code, except for the use of explicit labels rather than addresses as

'! 'kANSfiORMING LARGE EXAMPLES

destinations for jumps.

--------------- compil --------
s statement, f----->----ý acode I

ý address (---------

------------ mcodetop ---------
acode, ! ------>------- (encode
address I ---------

Page 5-33

The source statement to assembler phase itself splits into two

distinct phases. Firstly allocate space for the variables declared

at the head of blocks and replace all mention of them by their

corresponding address. This is done by pstmttop, producing

psstatements. Psstatements are identical to sstatements except for

the use of addresses in place of variables and the omission of blocks

(since blocks served only to declare variables).

--------------- pstmttop ---------------
sstatement, ------->------I psstatement I
address (---------------

Secondly, convert the psstatements into assembler. This is done by

introducing the appropriate assembler instructions, together with

labels and jumps where required, for each construct of the

sstatements

--------------- acodetop ---------
I ý------>---___ý acode j

Converting assembler code to machine code is simply a matter of

determining locations for instructions, and replacing jumps to labels

by jumps to the appropriate location.

This conversion is achieved by first constructing a map from

labels to addresses. Once such a map has been constructed, a simple

pass through will replace all occurrences of labels by their

TRANSFORMING LARGE EXAMPLES Page 5-39

corresponding address - this pass is done by function mcodeal.

----------------------- mcodeal -----------------
list ainstruction, ý >------ list
label -> address I minstruction

----------------------- ----------

To construct the map, we first place consecutive assembler

instructions into "slots", where a slot is a data structure

consisting of an address and an assembler instruction.

DATA slot <= sl(address, ainstruction)

From these a pass through the slots builds a map from the labels on

instructions to their corresponding addresses.

---------------------- slots -------------
I list ainstruction, I------_list slot I
I address

/

------------- slotstomap --------------------
I slot I ------ > ------- I label -> address I

/

The structure of the protoprogram is as follows (in the diagram

"="'s between two functions indicates they are mutually recursive):

process

/
mcodetop

/Iý
/I

/I
/I

I mcodeal
II
I slotstomap
I

mcodea

I

compil
I\

\i\
\I\
\I\

slots I\
acodetop pstmttop

II
iI

acodes pstmts
II
II

acodeel======acodee pstmte====ps*_mtel

TRANSFORMING LARGE EXAMPLES Page 5-40

5.4.2 NPL Protoprogram.

COMNE! Tr ' length defined for lists @;
DEF
VAR A: atom VAR L: list atom
+++- length(list atom) <= num
--- length(nil) <= 0
--- length(A:: L) <= succ length(L)
END

COMMENT ' equality for lists @;
DEF
VAR A, A1 : atom VAR L, L1_ : list atom
+++ list atom = list atom <= truval
--- nil=nil <= true
--- nil=A1:: L1 <= false
--- A:: L=nii <= false
--- A:: L=A1:: L1 <= cond(A =A1, L=L1, false)
END

Is
COMMENT ' maps and associated operations.

nilfm is empty map. mplus to update /add to a map.
of to lookup. @;

DEF
INF 4 -> INF 4 mplus INF 4 of
DATA ALFA->BETA <= l. nto (list (tuple2 (ALFA, BETA)))

VAR AF1, AF2 : ALFA VAR BE1, BE2 : BETA VAR AFBEL : list
(tuple2(ALFA, BETA))

-I I-I nil. fm <= GENERAL->GENERAL

--- nilfm <= into(nil)

+++ (tuple2(ALFA, BETA)) mplus (ALFA -> BETA) <= (ALFA -> BETA)
--- <AF1, BE1> mplus into(AFBEL) <= into(<AF1, BE1> :: AFBEL)

+++ (ALFA -> BETA) of ALFA <= BETA
- into(<AF1, BE1> :: AFBEL) of AF2 <= cond(AF1=AF2,

BE1,
into(AFBEL) of AF2)

END

COMMENT ' addresses, with incadd to generate next address @;
DEF VAR N: num
DATA address <= ad(num)
VAR ADR, ADR 1, CODEADR, VARADR : address
+++ incadd(address) <= address

- incadd(ad(;:)) <= ad(succ N)
END

TRANSFORMING LARGE EXAMPLES

DEF
DATA variable <= varible
VAR V, V1 : variable
VAR VL, VL1 : list variable
END

'Page 5-41

COMMENT ' environment and associated operations.
An environment is a map from variables to addresses,
together with the next free address.
lookup for looking up the address of a variable.
addtoenv for updating and environment when have a list
of variables to allocate space for.
nilenv is empty environment. @;

DEF VAR VAMAP : variable -> address
DATA environment <= en(variable->address, address)
VAR ENV, ENV1 : environment
+++ nilenv(address) <= environment
--- nilenv(ADR) <= en(nilfm, ADR)
+++ addtoenv(list variable, environment) <= environment
+++ lookup(variable, er_-vi. ronment) <= address
--- addtoenv(nil, ENV) <= ENV

- addtoenv(V:: VL, en(VAMAP, ADR)) <= addtoenv(VL,
en(<V, ADR> mplus VAMAP,

incadd(ADR)))

--- lookup(V, en(VAMAP, ADR)) <= VAMAP of V
END

COMMENT ' sstatement (source statement) and psstatement - which is
an sstatement modified by replacing variables with
addresses @;

DEF
DATA opr <= ops
VAR OP, OP1 : opr

INF 3$
DATA sstatement <= asst(variable, expression)

++ whst(expression, sstatement)
+H- ifthenelse(expression, sstatement, sstatement)
++- bl(list variable, sstatement)
++ sstatement $ sstatement ;

expression <= expr(variable) ++ apply(opr, list expression)
VAR S, S 1, S2 : sstatement
VAR E, E1 : expression
VAR EL, EL1 : list expression

DATA psstatement <= passt(address, pexpression)
++ pwhst(pexpression, psstatenent)
++- pifthenelse(pexpression, psstatement, psstatement)
++ psstatement $ psstatement ;

pexpression <= pexpr(address) ++ papply(opr, list pexpression)
VAR PS, PS1, PS2 : psstatement
VAR PE, PEI : pexpression
VAR PEL, PEL1 : list pexpression
END

TRANSFORMING LARGE EXAMPLES Page 5-42

COMMENT ' pstmtrop replaces variables by addresses, allocating
space for variables from and including given address. @;

DEF
-t-++ pstmttop(sstatement, address) < psstatement

+++ pstmts(sstatement, environment) <= psstatement

+++ pstmte(exprPssion, environment) <= pexpression

+++ pstmrel(list expression, environment) <= list pexpression

- pstmttop(S, ADR) <- pstmts(S, nilen"z(ADR))

--- pstmts(bl(VL, S), ENV) <= pstmts(S, addtoenv(VL, ENV))

--- pstmts(Sl. $S2, ENV) <= pstmts(S1, ENV) $ pstmts(S2, ENV)

--- pstmt: s(asst(V, E), ENV) <= passt(lookup(V, ENV), pstmte(E, ENV))

--- pstmts(whst(E, S), ENV) <= pwhst(pstmte(E, ENV), pstmts(S, ENV))

---- pstmts(ifthenelse(E, S1, S2), ENV) <= pifchenelse(pstmte(E, ENV),

pstmts(S1, ENV) , pstmts(S2, ENV))

- pstmte(expr(V), ENV) <= pexpr(lookup(V, ENV))
- pstmte(apply(OP, EL), ENV) <= papply(OP, pstmtel(EL, ENV))

--- pstmtel(nil, ENV) <= nil
--- pstmtel(E:: EL, ENV) <= pstmte(E, ENV):: pstmtel(EL, ENV)
END

COMMENT ' generating unique labels @;
DEF VAR NL : list num
DATA label <= lbl(list num)
VAR L1, L2, L3, L4, LAB : label

+++ nillab <= label

--- nillab <= lbl(nil)

+++ newlab2(label) <= TUPLE2(label, label)

--- newlab2(lbl(NL)) <= < lbl(O:: NL), lbl(1:: NTL) >

+++ newlab3(label) <= TUPLE 3(label, label, label)

--- newlab3(lbl(NL)) <= < lbl(O:: NL), lbl(1:: NL), lbl(2:: NL) >

-F-ý+ newlab4(label) <= TUPLE4(label, label, label, label)

- newlab4(lbl(NL)) <= < lbl(O:: NL), lbl(1:: NL),
lbl(2:: NL), lbt(3:: NL) >

END

COMMENT ' assembler code @;
DEF
DATA ainstruction <= load(address) ++ str(address) ++ condjump(label)

+: - jump(label) ++ app(opr) ++ nonop
-}+ labirs(label, ainstruction)

VAR AI, AI1 : ainstruction

TRANSFORMING LARGE EXAMPLES

VAR AIL, AILi : list ainstruction
DATA acode <= apr(list ainstruction)
VAP. ACO : acode
E",

COMMExr "

Page 5-43

acodetop converts source code with addresses into
assembler putting in labels where needed @;

DEF
i-+-+- aco3etop(psstater±ent) <= acode

-f-++ acodes(psstatement, label) <= list ainstruction

+ acodee(pexpression) <= list ainstruction

-t+++ acodeel(list pexpression) <= list ainstruction

++- insertlabel(label, list ainstruction) <= list ainstruction

I

Yý

- acodetop(PS) <= apr(acodes(PS, nillab))

- acodes(PS1$PS2, LAB) <= acodes(PS1. L:) <> acodes(PS2, L2)
where <L1, L2> == newlab2(LAB)

- acodes(passt(ADR, PE), LAB) <= acodee(PE)<>[str(ADP.)]

- acodes(pwhst(PE, PS), LAB) <= insertlabel(L1, acodee(PE))
<> [coed j ump (L 2)]
<>acodes(PS, L3)
<>[jump(L1)]
<>inser tlabel (L2, nil)

where <L1, L2, L3> == newlab3(LAB)

- acodes(pifthenelse(PE, PS1, PS2), LAB) <= acodee(PE)
<>[condjump(L1)]
<>acodes(PS2, L3)
<> [jumP(L2)]

<>ins2rtlabel(L1, acodes(PS1, L4))
<>insertlabel (L 2, nil)

where <L 1, L2, L3, L4> == newlab4(LAB)

- acodee(pexpr(ADR)) <= [load(ADR)J

- acodee(papply(OP, PEL)) <= acodeel(PEL)<>[app(OP)]

- acodeel(nil) <= nil
acodeel(PE:: PEL) <= acodee(PE) <> acodeel(PEL)

- insertlabel(LAB, AIL) <= labins(LAB, nonop):: AIL
END

COMMENT ' compil converts source code to assembler, allocating
space for variables starting from given address. @;

DEF

x ý" r"" ". ýý aý-" ýr"
. ý4. iýF�szý. ". ý4: LLARGE, rý: 4P Lrý r"Cge ., -

iý

-i-4-+ coýrpil. (sý, t4terýn_ýt, address) <= acode
". _" compill, SsVAakD'f,) <= acodetop(pstmttop(S, VAR. 4DR))
END

COr4ME TT ' slots are pairs of address-assembler instruction
DEF
DATA slot <= sl(address, ainstruction)
VAR SLTL : list slot
END

COMMENT slots makes a list of slots from assembler code,
putting code in slots with successive addresses,
starting at given address.
slotstomap builds a map from labels to addresses. a;

DEF

-1++-+ slots (list ainstruc tion, address; <= list slot
4-I-f slotstomap(list slot) <= label -> address

-w- slots(nil, ADR) <= ni3.
--- slots(AI:: AII,, ADR) <= sl(ADR, AI) ::

slots(AIL, incadd(ADR))

--- fsl. otst: omap(nil) <= nilf_m
--- slotstomap(sl(ADR, load(ADP'tiI)):: SLTL) <=

slotstomap(SLTL)
---- slotstomap(sl(ADR, str(ADR1)):: SLTL) <= slotstodnap(SLTL)
--- slotstomap(sl(. ADR, oondjump(LAB)):: SLTL) <=

slot , tonap(SLTL.)

--- slotstomap(sl(ADF., app(OP)):: SLTL) <= slotstomap(SI. TL)

--- slotstomap(sl(ADR, jump(LAB)):: SLTL) <= slotstowap(SLTL)
--- slotstomap(sl(ADR, nonop):: SLTL) <= slotstomap(SLTL)
--- slotstomap(sl(ADR, labins(LAB, AT)):: SLTL) <=

<LAB, ADR> mplus slotstomap(SLTL)
END

COMMENT ' machine code @;
DEF
DATA minstruction <= nüoad(address) ++ mstr(address)

++ mcondjump(address) ++ mjump(address)
++ mapp(opr) ++ mnonop

DATA encode <= mpr(list minstruc tion)
END

COMMENT mcodetop converts assembler to machine code @;
DEF
VAR labaddmap : label->address

+++ mcodetop(acode address) <= mcode
+++ mcodeal(list ainstruction, labFl->add. ess) <= list minstrLction
+4-1- mcodea(ainstruction, l. abel->address) <= mins[ruction

TRANSFORMING LARGE EXAMPLES Pace 5-45

- mcodetop(apr(AIL), CODEADR) <_
mpr(incodeal(AIL, slotstomap(slots(AIL, CODEADR))))

---- mcodeal(nil, labaddmap) <= nil
--- mcodeal (AI: : AIL, labaddmap) <= scodea(AI, labäddmap)

: : mcodeal (ATL, labaddmap)
--- mcodea(labins(LP. B, AI), l abaddmap) <= mcodaa(AI, I. abaddmap)
--- mcodea(l:, ad(AUR), labaddmap) <= mload(ADR)
--- mcodea(str(ADR), labaddmap) <= mstr(ADR)

mcodea(condjump(LAB), labaddmap) <= mcondjump(labaddmap of LAB)
--- mcodea(jump(LAB) , labaddmap) <= mjump(labaddmap of LAB)

mcodea(app(OP), labaddmap) <= mapp(OP)
mcodea (nonop, labaddmap) <= mnonop

END

COMMENT ' process converts source code to machine code, allocating
variable space from and including VARADR, allocating code
space from and including CODEADR. @;

DEF
+++ process(sstatement, address, address) <= mcode
--- process(S, CODEADR, VARADR) <= mcodetop(compii(S, VARADR), CODEADR)
END

TRANSFORMING LARGE EXAMPLES

5.4.3 Transforming To Efficient Version

Page 5-46

Adopting the simple strategy outlined in section 5.2 suggests we

tackle the transformation of the above protoprogram in the following

stages:

(i) Improve compil by

Combining acodels(S, ENV, LAB) <= acodes(pstmts(S, ENV), LAB)

process

/
/

/
mcodetop

mcodeal ý slots

ý slotstomap

mcodea

(ii) Improve mcodetop by

compil

acodels

i I
acodele===acodelel

Combining map(AIL, ADR) <=

process

/i

mcodetop
/I

/I
/I

/I
mcodeal map

mcodea

slotstomap(slots(AIL, ADR))

compil

acodels

acodele===acodelel

TRANSFORMING LARGE EXAMPLES

(iii) Improve process by

Combining maps(S, ENV, LAB, ADR) <_
map(acodels(S, ENV, LAB), ADR)

process----
/I\

/I\
/ acodels

/! \
mcodeal

I acodele===acodelel \
I. maps
{ /{\ {/{\

mcodea /{\
nxtads { mapse===mapsel

\(
nxtade===nxtadQi

(iv) Improve process by

Tupling maps and acodels together

process
/I

/I

mcodeal codmap
!!
!!
!!
! codmape===codmapel

mcodea

Page 5-47

Now I present the commands for each stage as given to the ZAP

system to carry out the transformations:

(i) Combining acodes and pstmts

CONTEXT
UNFOLDALL compil
USING nilcnv nillab

RESTRICTED acodes pstmts
TRANSF ORN

TRANSFORMING LARGE LY MPLES Page 5-48

GOAL conpil(S, ADR) <= $$(&&accdels(S, ni. leiv(ADR), nilla'--))
END

END

CONTEXT
UNFOLD acodels acodes acodee accdeel pstmts pstmte pstmtel

nilenv addtoenv insertlabel
USING <> addtoenv lookup newlab2 newlab3 newlab'+

RESTRICTED acodels acodes pstmts
acodee acodeel pstmte pstmtel

TRANSFORM
GOAL acodels(asst(V, E), ENV, LAB) <= $$(&&acodele(ENV, E), V, ENV)
GOAL acodels(whst(E, S), ENV, LAB) <=

$$(acodele(ENV, E), acodels(S, ENV, $$(LAB)), ENV, LAB)
GOAL acodels(ifthenelse(E, S1, S2), ENV, LAB) <=

$$(acodele(ENV, E),
acodeIs(S1, ENV, $$(LAB)),

acodels(S2, ENV, $$(LAB)),
ENV, LAB)

GOAL acodels(bl(VL, S), ENV, LAB) <= acodeis(S, $$(VL, ENV), LAB)
GOAL acodels(S1$S2, ENV, LAB) <= $$(acodels(S1, ENV, $$(LAB)),

acodels(S2, ENV, $$(LAB)))
GOAL acodele(ENV, expr(V))
GOAL acodele(ENV, apply(OP, EL)) <= $$(&&acodelel(ENV, EL), OP)
GOAL acodelel(ENV, nil)
GOAL acodelel(ENV, E:: EL) <_ $$(acodele(ENV, E), acodelel(ENV, EL))

END

DELETE acodels(S, ENV, LAB),
acodele(ENV, E),
acodelel(ENV, EL)

END

Note that acodels is extended to acodele and acodelel in order

to handle expressions and lists of expressions respectively; this

mirrors the original structure of pstmts/pstmte/pstmtel.

(ii) Combining slotstomap and slots

CONTEXT
UNFOLDALL mcodetop
USING mcodeal

RESTRICTED s lotstomap]. ots
TRANSFORM

GOAL mcodetop(apr(AIL), CODEADR) <- $$(AIL, &&map(AIL, CODEADR))
END

END

CONTEXT
UNFOLDALL map

TRANSFORMING LARGE EYAý"PLES Page ý--49

USING incadd mplus nilfm
RESTRICTED map

TRANSFORM
GOAL map(nil, ADR) <= nilfm
GOAL map((CASESOF AI):: AIL, ADR) <= map(AIL, $$(ADR))
GOAL map(labins(LAB, AI):: AIL, ADR) <_

$$(LAB, ADR, map(AIL, $$(ADR)))
END

END

Note that stages (i) and (ii) are completely independant, and

may be performed in either order.

(iii) Combining map and acodels

This stage requires some insight into the processes involved.

Attempting the transformations of the combination, maps, leads to

considering ga applied to lists of airtstructions appended together,

e. g. map(AIL1<>AIL2, ADR). Because map is defined in terms of cases of

the head of a list of ainstructions (if non-null), nothing can be

done with such an expression.

We know, however, that map is simply constructing a

label->address map for the ainstructions placed in successive

addresses commencing at ADR. Sc, for an appended pair of lists

AIL1<>AIL2, the result will be map(AIL1, ADR) with map(AIL2, ADR')

added on, where ADR' is the next free address after instructions of

AIL1 have been allocated space. Hence we are motivated to introduce

a function to compute this next free address, nxtad, and then we have

map(AIL1<>AIL2, ADR) <= map(AIL2, nxtad(ADR, AIL1)) addmaps

map(AIL1, ADR)

nxtad has an easy definition, and also satisfies

nxtad(incadd(ADR), AIL) <= incadd(nxtad(ADR, AIL))

nxtad(ADR, AILI<>AIL2) <- nxtad(nxtad(ADR, AILI), AIL2)

TRANSFORMING LARGE EXAMPLES Page 5-50

The transformation commands are:

CONTEXT
UNFOLD process mcodetop nillab compil nilenv
USING mcodeal nilenv nillab

RESTRICTED acodels map
TRANSFORM

GOAL process(S, CODEADR, VARADR) <=
mpr(mco`eai(acodels(S, nilenv(VARADR), nillab),
&&maps(S, rti. leriv(VARADR), nillab, CODEADR)))

END
END

INTRODUCE
VAR ADR2 : address VAR AIL2 : list ainstruction
VAR AFBELI : list tuple2(ALFA, BETA)
INF 4 addmaps
+++ (ALFA->BETA) addmaps (ALFA->BETA) <= (ALFA->BETA)

--- into(NIL) addmaps into(AFBELI) <= into(AFBLLI)

--- into(<AF1, BE1> :: AFBEL) addmaps into(AFBELI) <=
<AF1, BE1> mplus (into(AFBEL) addmaps into(AFBEL1))

+++ nxtad(ADDRESS, LIST AINSTRUCTION) <= ADDRESS

--- nxtad(ADR, NIL) <= AAR

--- nxtad(ADR, AI:: AIL) <= incadd(nxtad(ADR, AIL))
END

CONTEXT
USING addtoenv newlab2 newlab3 newlab4 <> lookup incadd addmaps

mplus nilfm
RESTRICTED maps map acodele acodelel nxtad acodels

UNFOLD maps acodels map nxtad addmaps acodele acodelel
LEMMAS IDENTITY addmaps nilfm
LEMMAS --- nxtad(incadd(ADR), AIL) <= incadd(nxtad(ADR, AIL))

--- nxtad(ADR, AIL1<>AIL2) <= nxtad(nxtad(ADR, AIL1), AIL2)

--- map(AIL1<>AIL2, ADR) <= map(AIL2, nxtad(ADR, AIL1))

addmaps map(AIL1, ADR)

TRANSFORM

GOAL maps(asst(V, E), ENV, LAB, ADR) <= &&mapse(E, ENV, ADR)

GOAL maps(bl(VL, S), ENV, L_4B, ADR) <= maps(S, $$(VL, ENV), LAB, ADR)

GOAL maps(S1 $ S2, ENV, LAB, ADR) <=
$$ (maps (S 1, ENV, $$ (LAB) , ADR) ,

maps(S2, ENV, $$(LAB), &&nxtads(ADR, S1, ENV, L1)))
where <L1, L2> _= newiab2 (LAB)

GOAL maps(whst(E, S), ENV, LAB, ADR) <=
$$(LAB, ADR, nxtads(ADRI, S, ENV, $$(LAB)),

maps (S , ENV, $$ (I. AB) ,$$ (ADR 1)) ,
mapse(E, ENV, $$(AT)R)))

where <ADR1> _= < &&nxtade(ADR, E, ENV) >

TRANSFORMING LARGE EXAMPLES Page 5-51

GOAL naps(iftherelse(E, S1, S2), ENV, IAB, ADR) <_
$$(LAB, nxtads(ADR1, SI, EN,, $(LAB)), ADR1,

maps(S1, ENV, $$(LAB), $$(ADR1)),

maps(S2, ENV, $$(LAB), $$(ADR2)),

mapse(E, ENV, ADR))
where <ADR1> <nxtads(ADR2, S2, ENV, $$(LAB))>
where <ADR2> <nxtade(ADR, E, ENV)>

GOAL mapse (expr (V) , ENV, ADR)

GOAL mapse(apply(OP. ELL), ENV, ADR) <= &&mapsel(EL, ENV, ADR)

GOAL mapsel(nil, ENV, ADR)

GOAL mapsel (E :: EL, ENV, ADR) <=
$$(inapsel(EL, ENV, nxtade(ADR, E, ENV)), mapse(E, ENV, ADR))

GOAL nxtads(ADR, S1 $ S2, ENV, LAB) <=
nxtads(nxtads(ADR, SI, ENV, $$(LAB)), S2, ENV, $$(LAB))

GOAL nxtads(ADR, bl(VL, S), ENV, L. AB) <=
nxtads(ADR, S, $$(VL, ENV), LAB)

GOAL nxtads(ADR, asst(V, E), ENV, LAB) <= $$(nxtade(ADR, E, ENV))

GOAL nxtads(ADR, whst(E, S), ENV, LAB) <=
$$(nxtads(nxtade(ADR, E, ENV), S, ENV, $$(LAB)))

GOAL nxtads(ADR, ifthenelse(E, S1, S2), ENV, LzkB) <=
$$(nxtads(nxtads(nxtade(ADR, E, ENV),

S2 , ENV, $$ (LAB)) ,S1, ENV, $$ (LAB)))

GOAL nxtade(ADR, expr(V), ENV)

GOAL nxtade(ADR, apply(OP, EL), ENV) <= $$(&&nxtadel(ADR, EL, ENV))

GOAL nxtadel(ADR, nil, ENV)

GOAL nxtadel(ADR, E:: EL, ENV) <=
nxtadel(nxtade(ADR, E, ENV), EL, EN6')

END

END

DELETE
maps(S, ENV, LAB, ADR),
mapse(E, ENV, ADR),
maps el (EL, ENV, ADR) ,
nxtads(ADR, S, ENV, LAB),
nxtade(ADR, E, ENV),

/

TRANSFORMING LARGE EXAMPLES Page 5-52

nxtadel (AAR, EL, ENV)

Note that nxtads is essentially the combination_ of nxtad urith

acodels. Again, as in stage (I), the new functions extend to cover

expressions and lists of expressions.

(iv) Tuple codmap(S, ENV, LAB, ADR) <=

<a codels(S, ENV, LAB), maps(S, ENV, LAB, ADR), nxtads(ADR, S, ENV, LAB) >

Our original. plan was to tt. ple together acodelsand maps, but by

this stage we have introduced nxtads, which can also profitably be

computed at the same time.

Once again we introduce functions codmape and codmapel to handle

expressions and lists of expressions.

'introduce functions to tuple together h, gah and nh @
INTRODUCE

VAR T1, T2, T3, T1A, T2A, T3A, T1B, T2B, T3B : general

++1- codmap(sstatement, environment, label, address) <-
tuple3(list ainstruction, label -> address, address)

--- codmap(S, ENV, LAB, ADR) <= <acodels(S, ENV, LAB),
maps(S, ENV, LAB, ADR), nxtads(ADR, S, ENV, LAB)>

+++ codmape(expression, environment, address) <_
tuple3(list ainstruction, label -> address, address)

--- codmape(E, ENV, ADR) <== <acodele(ENV, E),
mapse(E, ENV, ADP.), nxtade(ADR, E, ENV)>

+++ codmapel(list expression, environment, address) <=
tuple3(list ainstruction, label -> address, address)

--- codmapel(EL, ENV, ADR) <= <acodelel(ENV, EL),
mapsel(EL, ENV, ADR), nxtadel(ADR, EL, ENV)>

END

CONTEXT
USING mcodeal nilenv codmap
UNFOLD process codmap
TRANSFORM

GOAL process(S, CODEADR, VARADR) <=
$$(codmap(S, nilenv(VARADR), nillab, CODEADR))

END
END

TRANSFORMING LARGE EXAMPLES Page 5-53

CONTEXT
USING codmap codmape codmapel incadd <> mplus addmaps

newl. ab2 newlab3 newlab4 addtoenv lookup
UNFOLD codmap codmape codmapel acodels maps nxtads
LMiMAS --- nxtads (3_r. cadd(ADR) , S, ENV, LAB) <=

incadd(n?: tads(ADR, S, ENV, L. AB))

--- nxtade(incadd(ADR), E, ENV) <=
incadd(nxtade(ADk, E, ENV))

--- nxtadel(incadd(ADR), EL, ENV) <=
incadd(nxtadel(ADR, EL, ENV))

TRANSFORM
GOAL codmap(S1 $ S2, ENV, LAB, ADR) <= $$(TI, T2, T3, TIA, T2A, T3A)

where <T1A, T2A, T3A> codmap(S2, ENV, $$(LAB), $$(TI, T2, T3))
where <T1, T2, T3> _= codmap(S1, ENV, $$(LAB),. DR)

GOAL c odmap (b 3. (VL, S) , ENV, LAB , ADR) <=
c odmap (S

,$$ (ENV, VL) , LAB, ADR)

GOAL codmap(asst(V, E), ENV, LAB, ADR) <=
$$(codmape(E, ENV, ADR), V, ENV, LAB)

GOAL codmap(whst(E, S), ENV, LAB, ADR) <=
$$(LAB, ENVY, ADR, T1, T2, T3, T1A, T2A, T3A)
where <T1A, T2A, T3A> codmap(S, ENV, $$(LAB), incadd(T3))

where <T1, T2, T3> _= codmape(E, ENV, incadd(ADR))

GOAL codmap(ifthenelse(E, S1, S2), ENV, LAB, ADR) <=
$$(ENV, LAB, ADR, T1, T2, T1A, T2A, T3A, T1B, T2B, T3B)

where <T1B, T2B, T3B> ==
codmap (S 1, ENV, $$ (LAB)

, incadd (incadd (T 3A)))

where <T1A, T2A, T3A> codmap(S2, ENV, $$(LAB) , incadd(T3))

where <T1, T2, T3> _= codmape(E, ENV, ADR)
END

CONTEXT
UNFOLD acodele maple nxtade acodelel mapsel nxtadel
TRANSFORM

GOAL codmape(expr(V), ENV, ADR)

GOAL codmape(apply(OP, EL), ENV, ADR) <_
$$(OP, codmapel(EL, ENV, ADR))

GOAL codmapel(nil, ENV, ADR)

GOAL codmapel(E:: EL, ENV, ADR) <= $$(T1, T2, T3, T1A, T2A, T3A)
where <T 1A, T2A, T3A> == codmapel (EL, ENV, $$ (T 1, T2, T3))
where <T1, T2, T3> == codmape(E, ENV, ADR)

END
END

DELETE

. codmap(S, ENV, LAB, ADR), codmape(E, ENV, ADR), codmapel(EL, ENV, ADR)

TRANSFORMING LARGE MAT' ES Page 5-54

END

5.4.4 Final Program

The final program is a two pass compiler, the first pass being

used to create assembler code with labels, and a map from labels to

addresses. The second pass takes these and replaces each label in

the code by its corresponding address (looked up in the map) to get

the final machine code.

The change from the protoprogram -a very naive solution, with

many passes through the input - has again been very major. The

functions achieve the efficiency by intertwining several actions at

once, returning several results.

- codmapel(E :: EL, ENV, ADR) <= <U500 <> U 503, U502 addmaps
U499, U501>

where <U503, U502, U501> codmapel(EL, ENV, U498)
where <U500, U499, U498> _= codmape(E, ENV, ADR)

- codmapel(ni1, ENV, ADR) <= <nil, nilfm, ADR>

- codmape(apply(OP, EL), ENV, ADR) <=
<U464 <> app(OP) :: nil, U463, incadd(U462)>

where <U464, U463, U462> == codmapel(EL, ENV, ADR)

--- codmape(expr(V), ENV, ADP.) <=
<load(lookup(V, ENV)) :: nil, nilfm, incadd(ADR)>

- codmap (S I$S2 , ENV, LAB, ABR) <= <U110 <> U113,
U112 addmaps U109, U111>

where <U113, U112, U111> == codmap(S2, ENV, U106, U108)
where <UIlO, U109, U108> == codmap(SI, ENV, U107, ABR)

where <Ul07, U106> == newlab2(LAB)

--- ccdmap(bl(VL, S), ENV, LAB, ADR) <_
codmap(S, addtoenv(VL, ENV), LAA, ADR)

- codmap(asst(V, E), ENV, LAB, ADR) <-
Q181 <> STR(lookup(V, ENT)) :: ni1, U180, incadd(U179)>

where <U181, U180, U179> == codmape(E, ENV, ADR)

codmap(whst(E, S), ENV, LAB, ADR) <=
<(((labins(U366, nonop) :: U369

<> condjump(U365) :: nil) <> U372)

TRANSFORMING LARGE EXAMPLES Page 5-55

<> jump(U366) :: nil)
<> labins(U365, rionop) :: nil ,

(<U365, incadd(U370)> mplus nilfm)
addmaps(U 371 addmaps(<U366, ADR> mplus U368)),

incadd(incadd(U370))>
where <U372, U371, U370> codmap(SENV, U364, incadd(U367))

where <U366, U365, U364> newlab3(LAB)
where <U369, U368, U367> _= codmape(E, ENV, incadd(ADR))

- codmap(ifthPnelse(E, S1, S2), ENV, LAB, ApiR) <=
<((((U400 <> condjusnp(U394) :: nil)

<> U397) <> jump-U393) :: nil)
<>labins(U394, nonop) :: U390)
<>labins(U393, nonop) :: nil

(<U393, U388> mplus ni]_fm)
addmaps ((<U394, incadd(U395)> mplus U389)
addmaps(U396 nddmaps U399)) ,

incadd(U388) >
where <U390, U389, U388> codmap(S1, ENV, U391, incadd(incadd(U395)))

where <U397, U396, U395> codmap(S2, ENV, U392, incadd(U398))
where <U400, U399, U398> codmape (E1, ENV, ADR)

where <U394, U393, U392, U391 > == newlab4 (LAB)

--- process(S, CODEADR, VARA. DR) <= mpr(mcodeal(U6, U5))

where <U6, U5, U4> == codmap(S, nilenv(VARADR), nillab, CODEADR)

(definitions of newlab and mcodeal remain unchanged)

TRANSFORMING LARGE EXAMPLES Page 5-56

5.5 REMARKS ON TRANSFOR" IATION EXAMPLES

Transformation of the telegram problem took place in parallel

with, and influenced, my development of the transformation system.

Hence it is impossible to give any meaningful estimate of the amount

of effort it took to perform. At the time it seemed a hard

transformation, although looking back on it in the light of fur then

experience of transforming, I now consider it would be a reasonably

straightforward problem to tackle. The compiler example served as a

test of the system to ensure it was capable of transforming more than

just the telegram problem. The system required no major

modification; some aspects of its operation needed imprcvement and

the command language was somewhat rationalised, but on the whole the

system, and the transformation strategy, sufficed to complete the

example. Some effort was required to design the simple protoprogram,

notably in the need to make a concious decision to aim for clarity

rather than efficiency (the habit of considering efficiency is hard

to dispel). The transformation took place over several weeks, and

again I feel I could do the transformation much more easily now

having had more experience.

Both the programs are non-trivial when compared to the examples

previous machine-based transformation work has been applied to. In

comparison with "real" software, they are still quite small. Even

so, an interesting feature is becoming apparent - the textual size of

the protoprogram may be larger than the textual size of the

transformed, efficient, program. For similarly sized examples we are

able to keep in mind the entire program at once, so the advantages of

modularity and clarity of the protoprograrms are not very significant.

TRANSFORMING LARGE EXAMPLES Page 5-57

When moving to larger programs, for which we are unable to keep in

mind all the details at once, modularity of the protoprogram becomes

much more significant.

The next chapter presents the transformation of an example which

is an order of magnitude larger than the examples here, where these

issues become apparent.

CHAPTER 6

TRANSFORMATION OF A TEXT FORMATTER

In this chapter I present the transformation of a text formatter

a program for neatly formatting a document on a suitable printer.

This example is considerably larger than those presented in the

preceeding chapter, and its scale brings to light new problems during

transformation. I discuss these problems and their implication for

the practical development of programs by transformation..

Briefly, the difficulties which arise revolve around the

difficulty of using the present tools and techniques to concisely

capture simple changes taking place within large programs.

6.1 INFORMAL SPECIFICATION OF THE TEXT FORMATTER

The text formatter I construct and transform is based upon the

formatter presented by Kernighan and Plauger in Chapter 7 of their

book Software Tools (Kernighan and Plauger (19761). In this book they

present several pieces of software written in Ratfor, FORTRAN with

extra syntax added. For each piece of software they show ho", it can

be constructed in an organised fashion, but, as is common, their

development goes straight from an informal specification to a final

efficient program. I adopt their informal specification of a text

formatter as the starting point for my development, and aim to end up

TP. ANSFORrViTLON OF Ai I-EXT I-'ORi': %'±'TER Page 6-2

with a program of comparable efficiency to their hand-developed

version, albeit in recursive form.

I repeat the informal specification given in Software Tools:

The format program described here is quite conventional. It

accepts text to be formatted, interspersed with formatting commands

telling the program what the output is to look like. A command

consists of a period, a two-letter name, and perhaps some optional

information. Each command must appear at the beginning of a line,

with nothing on the line but the command and its arguments. For

instance,

. ce

centres the next line of output, and

. sp 3

generates three blank lines.

Most of the time, however, the user should have to know little

about commands and arguments - most formatting happens automatically.

This is merely good human engineering. Ideally a document containing

no commands should be printed sensibly. Default parameter settings

and formatting actions are intended to be reasonable and free of

suprises. For instance, words fill up output lines as much as

possible, regardless of the length of input lines. Blank lines cause

fresh paragraphs. Input is correctly spaced across page boundaries,

with top and bottom margins.

At the same time the design has to be sufficiently flexible that

it can be augmented with more advanced features for sophisticated

use. Knowledgeable users should of course be able to change

TRANSFORMATION OF A TEXT FORMATTER Page 6-3

parameter settings as desired. Ultimately it should be possible for

users to define new formatting operations in terms of those already

provided.

Commands

As we said, all commands are introduced by a period at the

beginning of a line, which is an unlikely combination in text, and

have two-letter names. It has been our experience that users prefer

concise commands in most languages, so this seems a reasonable

compromise between brevity and mnemonic value.

By default the program fills output lines, by packing as many

input words as possible onto an output line before printing it. The

lines are also justified (right margins made even) by inserting extra

spaces into the filled line before output. People normally want

filled text, which is why we choose it as the default behaviour. It

can be turned off, however, by the no-fill command.

. nf

and thereafter lines will be copied from input to output without any

rearrangement. Filling can be turned back on with the fill command

. fi

When an nf is encountered, there may be a partial line

collected but not yet output. The nf will force this line out

before anything else happens. The action of forcing out a partially

collected line is called a break. The break concept pervades format;

many commands implicitly cause a break. To force a break explicitly,

for example to separate two paragraphs, use

. br

TRANSFORMATION OF A TEXT FOR'- TTER Page 6"-4

Of course you may want to add an extra blank lire between

paragraphs. The space command

. sp

causes a break, then produces a blank line. To get n blank lines,

use

. sp n

(A space is always required between a command and its argument). If

the bottom of a page is reached before all of the blank lines have

been printed, the excess ones are thrown away, so that all pages will

normally start at the same first line.

By default output will be single spaced, but line spacing can be

changed at any time:

. Is n

sets the line spacing to n. (n=2 is double spacing) The . ls command

does not cause a break.
ý

The begin page command . bp causes a skip to the top of a new

page and also causes a break. If you use

. bp n

the next output page will be numbered n. A . bp that occurs at the

bottom of a page has no effect except perhaps to set the page number;

no blank page is generated. The current page length can be changed

(without a break) with

. pl n

To center the next line of output,

. ce
line to be centred

The ce command causes a break. You can center n lines with

. ce n

TP. At; : 'FOR: 'ATIc)N OF A TEYf FORMATTf. n Page 6-5

and, if you don't like to count lines (or can't count correctly), say

. ce 1000
lots of lines
to be centred
. ce 0

The lines between the ce commands will be centred. No filling is

done on centred lines.

Underlining is much the same as centering:

ul n

causes the text on the next n lines to be underlined upon output.

But ul does not cause a break, so words in filled text mny be

underlined by

words and words and
. ul
lots more
words.

to get

words and words and lots more words.

Centering and underlining may be intermixed in any order:

. ce

. ul
Title

gives a centred and underlined title.

The indent command controls the left margin:

. in n

causes all subsequent output lines to be indented n positions.

(Normally they are indented by 0.) The command

r: n n

sets the right margin to n. The line length of filled lines is the

difference between right margin and indent values. . in and rm do

not cause a break.

The traditional paragraph indent is produced with temporary

TRA:. SFO%MATI0N OF A TEXT FO '"! ATTrR Page 6""6

indent command:

. ti n

breaks and sets the indent relative to position n for one output line

only. If n is less than the current indent, the indent is backwards

(a "hanging indent").

To put running header and footer titles on every page, use . he

and .fo:

he this becomes the top-of-page (header) title
. fo this becomes the bottom-of-page (footer) title

The title begins with the first non-blank after the command, but a

leading. quote will be discarded if present, so you can produce titles

that begin with blanks. If a title contains the character II, it will

be replaced by the current page number each time the title is

actually printed. he and fo do not cause a break.

Since absolute numbers are often awkward, the program allows

relative values as command arguments. All commands that allow a

numeric argument n also allow +n or -n instead, to signify a change

in the current value. For instance,

:
in

-10
. in +10

shrinks the right margin by 10 from its current value, and moves the

indent 10 places further to the right. Thus

. rm 10

and

. rin +10

are quite different.

Relative values are particularly useful with . ti, to temporarily

indent relative to the current indent:

. in +5

. ti +5

i: ' I. 1'ýSFOi <<t11 ION OF ý TEXT r Cýýý .: ýTT. E: Page 6-i

produces a left margin indented by 5, with the first line indented by

a further 5.

And

. in +5

. ti -5

produces a hanging indent, as in a numbered paragraph:

1. Now is the time for all good people
to come to the party.

A line that begins with blanks is a special case. If there iý:

no text at all, the line causes a break and produces a number of

blank lines equal. to the current line spacing. These lines are never

discarded regardless of where they appear, so they provide a way to

get blank lines to the top of a page. If a line begins with n blanks

followed by text, it causes a break and a temporary indent of +n.

These special actions help ensure that a document that contains no

formatting commands will still be reasonably formatted.

In summary, then, we have the following commands. If a numeric

argument is preceeded by a+ or a -, the previous value is changed by

this amount; otherwise the argument represents the new value. If no

argument is given, the default value is used.

I

OF A TEXT FOk1? 1'i"i'ý: t Page 6-8

command break ? def
. ult f unct ca

. bp r. yfes n =+;. begin page numbered n

. br yes cause break

. ce r. yes n=1 center next n lines

. fi yes start pilling

. fo no empty footer title

. he no empty header title

. in n no n==0 indent n spaces

.lsn no n=1 line spacing is n

. nf yes stop filling

. p1_ n no n= 66 set page length to n

. rm n no n==60 set right margin to n

. sp r. Yes r. =1 space down n lines

. ti n yL s r1=0 temporary indent of _i

. ul n no n=1 underline words from next n
lines

6.2 DESIGN OF PROiOPROGRAM

A major difficulty in describing text formatting is that it

admits to no concise yet precise specification. In practice this

leads to user manuals -Which are verbose yet unable to answer all the

questions the user wants to ask. Users typically resort to a "try it

and see" approach in order to determine the behaviour of their

formatter, gradually accumulating a set of tricks to enable them to

achieve the effects they desire.

In contrast I have attempted to discard the mantle of

efficiency, and design as clear a program as possible. I split the

task of formatting into several stages which are as independent as

possible, and reflect what I consider to be the conceptual stages

themselves of the process.

These are:

(1) Decoding commands from text

(2) processing command-- which can be used immediately

tc associate in orriat.. ion with input text lines.

TRANSFORMATION OF A TEXT FORMATTER Page 6-9

(3) Preliminary processing of text lines.

(4) Formation of lines for output.

(5) Formation of pages for output.

A detailed description of each stage follows:

Std 1: - Decoding commands from text

In this stage the input lines which are commands are

distinguished from those which are text lines, and interpreted. Some

commands have an argument, which may be a string (as for HE and FO

commands), or a number, either signed or unsigned. An illegal

argument (e. g. a non-digit encountered when reading in a number) has

the same effect as if no argument had been supplied.

Output of this stage is list tore (mnemonic for text or

command), where tore has been defined by

DATA torc <= text(list char) -H- command $ carg

i. e. a text line, or command and its argument.

Stage 2: - Processing commands which associate information with text

lines.

Many of the commands of a text formatter are involved with the

setting of some value, which will have an effect of the output of the

following text lines. For example, after a rm 54 command, output

lines will be fit within a right margin size of 54.

Suppose we consider each text line as consisting not only of a

list of characters to be processed for output, but in addition

associate with it information - such as the right margin size. Then

we could regard many of the formatter commands as merely setting

^r)" ý-/ m OF -, r-.. i. ým. p. ý. Pcýýe 5-10 ', '! ON ýI _i __. ý',
_ýý-i. tl 1ý 1

certain values, in information in the following text Tines, end

how the information is used is left to later stages.

This is the approach I use in my program. The pieces of

information set by the commands are stored in a data structure 1 call

an infomap. Functions to add to and .
look up values in infomaps are

simply defined. Each text line is modifted to have an infomap

associated with it.

The different types of values stored in the infomaps are:

PLVAL - page length
CEVAL - whether or not to centre this line
ULVAL - whether or not to underline this line
FIVAL - whether or not to fill this line
LSVAL - line spacing
HEVAL - page header title
FOVAL - page footer title
RMVAL - right margin
TIVAL - temporary indentation,

applies to first output line generated
from this input taxt line

INVAL - indentation, applies to later output lines

The TIVAL and INVAL values are a little less obvious than the

rest: INVAL is the normal indentation, set by the in command.

However, the effect of a . ti n command is to cause a break arid start

the next line with a temporary indentation of n. The need for both

the temporary and normal values to be remembered arises from the use

of "fill" mode of input. When in this mode, a single input text line

may give rise to more than one output line, and in such a case, after

a . ti n command, we want_ the first output line to have the temporary

indent of n, but follntng lines to revert to the normal indentation.

Hence the ne ad to keep both values. Thus the first text line after

each ti command wil have the TIVAL indicating the temporary indent

set by that command, other taxt lines will have their TI L. L's set to

TA. ANSFOk2ý, ýTZJ:;)F A 'Tý: -'. Ä FOR`1, ''rTEit Page 6-1 1

whatever the normal indentation is, i. e. the same as their INVAL's.

With one exception, for each type of command there is a separate

pass through the input to set its associated value (if any) in tre

infomaps. Due to the interdependence of the ti and in commands (a

. ti +n is a temporary indent with respect to the current -indent.

value), these are dealt with in a single pass. The order in which

each setting pass is done is irrelevent.

During these. passes, those commands which are specified to

implicitly cause a break cause the insertion of a br command.

Most of the commands have served their purpose once they have

set some value and perhaps inserted br commands, and so can be

discarded.

Output from this stage is list pore, where pore is defined as:

DATA pore <= ptext(infomap, list char) ++ command. carg

which differs from tore by the extension of text to ptext by the

addition of an infomap to store values. The commands remaining are

BP-age. and BR, all the others having been removed in this s

Stage 3: - Preliminary processing of text lines

At this point we can begin to carry out some actions upon the

text lines. We do all that is independent of the formation of output

lines or pages. For our present set of commands, this means

underlining, and processing empty text lines and text lines which

commence with a blank.

UNDERLINE is the procedure to handle underlining: Lines

signalled to be underlined (i. e. lines i. -ith ULVAL set to true in

their infom ps) have their characters (other than blanks, h ackspac. -s

OF A TEK. "i r0? `. ̀r ITER Page 6-12

and existing underlines) underlined by expanding them to

character BACKSPACE UNDERLINE

BLANKS is the procedure to deal with empty lines or lines

starting with a blank: Lines containing nothing but blanl,; are

replaced by a BR command and an empty line with the FIVAL of ; ts

infomap set to false (so that this empty line will be output).

Lines commencing with a blank but which do have non-blanks cause

the insertion o. f a BR command, are modified by the removal. of all

leading blanks, and have their TIVAL set to their INVAL+number of

blanks removed.

Stage 4: - Formation of lines for output

This stage produces lines ready for packing into pages. The

operations which must be done are centering, filling and right

justifying, together with dealing appropriately with those lines

which do not fit in the indicated margins.

LINES is the top-level procedure to control this. It

goes through the list of text and commands doing the following:

If it is a command:

then if it is a br command, discard it

otherwise simply pass it through.

If it is a text line:

There are three possibilities: either it needs centering, or it

needs putting out as it is, or it is the first of possibly several

more lines to be put out in the "fill" mode. These cases can be

determined by examining the CEVAL and FIVAL of the info :: ap,

7P. i:. NSFORt'1ATI0:? OF A TEXT FO--TZ! IATTER Page 6-13

remembering that lines to be centred are rot filled, i, hether in fi_li

mode or not.

PUT is the procedure used to put out text lines, taking irto

account margins. Provided the line will fit into the margins, it can

be set ready for output by inserting as many blanks as the TIVAL of

the infomap of that line. If it won't fit, then as much of it as

will fit in the margins is put out in the first line, and the

remaining characters are handed to DEFAULTPUT to deal with.

DEFAULT PUT merely puts out PAGEWIDTH-wide lines until it has

exhausted its input.

LINECENTRE is used on those lines requiring centering. This

increments the TIVAL of the infomap by half the extra space, the

extra being the RMVAL - (TIVAL + width of line), and gives the output

to put. If the line is too wide to fit in the margin, this increment

will be zero.
I

The "fill" mode is more tricky, as the input text lines are

being used to provide words, which in turn are put into full output

lines, right justified. When a line is encountered to be "filled"

the following actions take place: GETLINESTOFILL is called on the

input. This returns the input line(s) which are to provide the

words, and the remainder of the input for LINES to continue working

on. GETWDSTOFILL is used to convert the list of lines to a list of

words, and finally PUTPARAGRAPH takes this and produces a list of

output lines.

GETLINESTOFILL continues ammassing input text lines until either

TR. ANSFORMA't'iC'v OF A 1P. XT ý'OPNL41"! 'ýý Page 6 -! 4

end-of-input is reached, or a BR commands encountered, which is the

signal to break the filling process. No other commands are expected,

since only br, sp and bp commands will have survived to this stage,

and the sp and bp commands will have had a br command inserted

immediately before them.

GETWDSTOFILL, given a list of text lines, produces a list of

words. The words are formed from contiguous sequences of non-blank

characters in the- text lines, blanks and end-of-line considered as

separating the words. The infomap associated with a text line is

given to each word formed from that line - but the second and beyond

words have the TIVAL of the infomap reset to the INVAL. This is to

ensure that the (temporary) TIVAL is not propogated into the

following words which might appear in different output lines.

PUTPARAGRAPH takes a list of words (each with an infomap) and

produces output lines, filling them with the words, and spreading the

words out to right-justify them. Because several words, perhaps with

differing infomaps, are likely to be included in a single output

line, a decision needs to be made on how the parameters of the line

(left margin & right margin) are to be determined. The

straightforward, and it turns out only logical, convention is to say

that the infomap of the first word determines the characteristics for

the entire line. An example will illustrate this point:

Suppose we have the following sequence of input:

. fi

. rm 20

. in 0
USS Enterprise has sustained
damage to front shields

. rm 12
but enemy losses are high.

. nf

TP, /, NSFOIU"ATZOt, OF A TEXT FC' J-'A TTER Page 6-15

Under my convention, this is turned into:

USS Enterprise has
sustained damage to
front shields but
enemy losses

are high.

Note that the right margin has changed neatly from 20 to 12

between the lines "front shields but" and "enemy losses". However,

if, say, the convention that the latest infomap is used to determine

characteristics, we might perhaps get:

USS Enterprise has
sustained damage to
front shields but
enemy losses

are high.

due to the change in right margin between the words "shields"

and "but", the right margin of the line starting "front" is changed

midstream to less than the width of the words already in it,

resulting in a right margin of width neither 20 nor 12.

If a single word is too wide to fit between the margins, it is given

to PUT to deal with, otherwise it and following words are amassed

until no more will fit into the available space, and SPREAD is called

on these to put them out as a justified line. The remaining few

words left when filling comes to an end which do not fill an entire

line are put out with single spaces between them, as is the end of

this paragraph.

SPREAD takes a list of words, and padds them out with blanks to

make them right justified. Of course, if there is only one word, no

spreading can be done, but otherwise it calculates the total number

of blanks to be added (which will be space available, i. e. RMVAL -

TIVAL of first word's infoinap, - sum of widths of words), and gives

T. Alv'SFOR; -tATIv. d OF A TEY_ E "R

this value along with the list of words to SUBSPR .Dt par;: it _ eu*_

the blanks.

SUBSPRFAD does the "dealing-out" of the bla-As to the gap=

between the words. While there are more blanks to be added thar

gaps, it simply extends each gap by one. For the rEEýin! ng odd few

blanks, ADDEXTRASTOGAPS is used to put them in.

ADDEXTRASTOGAPS is called with a truthvalue indicating whether

the extra blanks are to be allocated from left-to-right or from

right-to-left among the gaps. By alternating the value of this in

successive calls, we get the extra blanks distributed at each. side of

the page. /'

Output from this stage is a list of port, where the ptext's are

lines ready to be amassed into pages, intersperced with sp and bp

commands.

Stage ,e5: - Formation of pages

In this stage the text lines, intersperced with bp and sp

commands, are bunched into pages, complete with header and footer

titles.

The outermost procedure, PAGES, initialises the current

page number to zero, and calls SUBVAGES to do the work. The action

of SUBVAGES is to form a whole page for output, and, if there is more

input to be dealt with, calls itself recursively on that.

In a similar manner to the formation of full lines (PUTPARAGRAPH in

the preceeding stage) I adopt the convention that the infotnap of the

'ý : "A; ý. ý ý ü? Z: iAT_OtJ OF A T''Y'T' ! -G"tü'i:: TTER F=c`, e VEX T.

first line to be put in the page deter, ones Lhe characteristics of

the entire page. For pages, these are header title and foo--er ritlý.

PUTHDR and PUTFI' are used to produce the header and footer titles

respectively.

if SUBPAGES finds a bp command at the start of its input, then it

merely resets the page number, and does not produce an entirely blanll:

page. Similarly an sp command at the start is discarded, so that

unneccessary blank lines don't start the page.

FILLPAGE builds up the lines to be put in a page, the remainder

of the input for SUBPAGES to continue on, and the next page number.

It is given the amount of space remaining for the current page, the

input, the current line spacing (it will need to know this in order

to deal with sp commands), the current page number, and the expected

next page number, and acts in the following manner:

If there is no space left, then exactly enough lines to fill the

page have already been found, so return.

If end-of-input or a bp command is encountered, BLANKLINES is

called with the remaining space value, and generates exactly that

many blank lines to fill out to the end of the current page. A bp

command is used to set the next page number. Then return.

If an sp command is encountered, SKIP is called to space down the

appropriate number of lines. The space remaining is decremented

by the number of blank lines SKIP produces, and FILLPAGE is called

recursively.

SKIP is told the size of the remaining space, the nuraber of

lines to be shipped, and the current line-spacing. It generates the

mini. . iuT, of (space remainirig, number of lines to be skipped line

TRANSFORMATION OF A TEXT FORMATTER Page 6-18

spacing) blank lines.

If a text line is encountered it is passed without modification and

the minimum of (space remaining after text line, current line spacing

-- 1) blank lines are generated after it. FILLPAGE is called

recursively with the remaining space and input, and the latest text

line's LSVAL.

T?: ýii: SFýý7ýil: i"ýrJ: i 'Jr I. TEXT TORMATTER Page ý-19

6.3 I,: 'L ??, GTOPROGRt, ii

DEF
DATA TYPES

AND
UTILITIES

TRUTHVAL"UES -- assume =, /=, not, and, or
already defined.

VAR FTAAG, LTOR : truval

/// LISTS - length for ! is. -s:

-H-+-]. ength(list atom) <= num
VAR ATM : atom VAR ATML : list atom
--- lergth(NIL) <= 0

--"- length(ATM:: ATML) <= succ length(ATML)

iii NUMBERS & operations on them

- assume + already defined.

VAR N, M, MAXW, CURW, OLDN, DEFAULT, MINN, MAXi, NýaN, VAAL, VALIN, E'ALTI,
COUNT, BLANI: COUNT, TOTyLWIDTH, BCOUNT, GCOUNT, PGNUM, "iXTPGNLTMi,
CURPGNUM, SRIPCOUNT, VALLS : num

inf 9*
+++ num * num <= num
--- 0*M <= 0

--- (succ N) *M <= M+ (N * M)

inf_ 8-
+++ num - nun <= num
--- 0-M <= 0

--- N-0 <= N

--- (succ N) - (succ M) <= N-M

-I-H- half (num) < num
half (0) <= 0

--- half(succ 0) <= 0

--- half(succ succ N) <= succ(haif(N))

inf 4»
+++ num » num <= truval
---- 0»M <= false

--- (succ N) »0 <= true
--- (succ N) ?> (succ M) <= N»M

-ý-1-+ r. iin(nwü, num) <= num

--- rlin (N, M) <= N -if M» N
<= M ifnot

+++ max(nu: n, nuza) <= num

--- max (N, '. i)<= M if M» N

Tt'1, i5'SFor:. 'A. TI0: 1 OF A TEXTE FORM', : 'ýý ? 'age 6-20
NPL prot. oprogram

<= N ifnot

inf 9 //
+++ num // num <= num
--- N0 <= UNDEF
---- N // (succ m) <= 0 if (succ M) » Iv

<= succ((N - (succ M)) // (succ M)) ifnot

lnf 9 rem
+++ num r ern num <= rum
--- N rem 0 <= UNDEF

--- N rem (succ M) <= N- ((N // (succ M)) * (succ M))

+f- - HUGE <= num --- HUGE <= 25

END

DEF

/// ***************** CHARACTERS etc. *****************x:; **

DATA char <= CHO ++ CHI ++ CH2 ++ CH3 ++ CH4 ++ CH5 ++ CH6 ++" CH7 ++
CH 8++ CH9 ++ C HA ++ C HB ++ CHC ++ C HD ++ C HE ++ CHF -"r. -+
CHG ++ CHH ++ CHI ++- CHJ ++ CP. K ++ CHL ++ CIiM ++ CHN ++
C HO ++ CHP -+-++- C HQ +-+- C HR ++ CHS ++- C HT ++- G iýU -: -1 C HV ++
C HW ++ CHX ++ C HY ++ C HZ ++
CHUNDERLINE ++ CHBACKSPACE ++
CHAPOSTROPHE ++ CHDOT +++ CHPLUS ++ CHMINUS ++ I; HBLA?, TK
CHHASH

VAR C, C1, C2 : char
VAR CL, CLI, REMCL, FIRSTCL, CLSOFAR, TITLE : list char

DATA line <= lin(list char)

VAR BLINES, PAGELINES, MORELINES, LINL : list line

/// Digits from/to characters

+++ digitval(char) <= num
--- digitval(C) <= 0 if C=CHO

<= 1 if C=CH1
<= 2 if C=CH2
<= 3 if C=CH3
<= 4 if C=CH4
<= 5 if C=CH5
<= 6 if C=CH6
<= 7 if C=CH7
<= 8 if CýHB
<= 9 if C=CH9
<= UNDEF ifnot

-f++ digit(num) <= char
--- digit(O) <= CHO

t)F A TEXT Page 6-21
NPL protoprogr_am

--- digit(1) <= CHI
--- digit(2) <= CH2
--- digit(3) <= CH3
--- digit(4) <= CH4

,
---- digit(5) <= CH5
--- digit(6) <= CH6
--- digit(7) <= CH7

--- digit(8) <= CH8
--- digit(9) <= CH9
--- di-. git(succ succ succ succ succ succ succ succ succ succ N)

UNDEF

/// Conversion between character lists and numbers

+++ cltonum(list char) <= num
-1-f-+ subcltonum(list char, num) <- num
--- cltonum(nil) <= UNDEF

--- cltonum(C:: CL) <= subcltonum(C: : CL, 0) if digitval(C) /=UNDEF

<= UNDEF ifnot

--- subcitonum(ni1, N) <= N

---- subcltonum(C:: CL, N) <= N if C=CHBLANK
<= UNDEF if digitval(C)=UNDEF

<= subcltonum(CL, (N*10)+cligitval(C)) ifnot

IH numtocl(num) <= list char
--- numtocl(N) <= [digit(N rem 10)' if N // 10 =0

<= numtocl(N//10) <> [digit(N rem 10)) ifnot

/// Skipping blanks and non-blanks

+++ skipblanks(list char) <= list char
--- skipblanks(nil) <= nil
--- skipblanks(C:: CL) <= skipblanks(CL) if C=CHBLANK

<= C:: CL ifnot

ý++ skipalphas(list char) <= list char
--- skipalphas(nil) <= nil
--- skipalphas(C:: CL) <= C:: CL if C=CHBLANK

<- skipalphas(CL) ifnot

/// Width of character lists - handling backspace

+i-+ widtli(]. ist char) <= num
+++ subwidth(list char, num, num) <= num

--- width(CL) <= subwidth(CL, 0,0)

--- subwidth(nil., rAXT4, CUR4;) <= MA. XW

--- s ubwid th (C:: CL, `. W , CURW)
<= subwidth(CL, oLkýýJ, CU?,. ý-1) if C-CY. BACK'S1'A'E

<= subwidth(CL, ma:: (MAXW, CURi", ý-1), CUF. W+i.) ifnot

TRANSFORMATION OF A. TEXT OR`i_a. TTER Page
ML protoprogram

END

DEF

/// ***************** COMMANDS and their arguments *******

/// carg - possible arguments of commands

DATA carg <= nullarg ++ strin(list char) +-4- 0
signed (char

, nurn) ++ unsigned (nutn)

VAR CAR : carg

+++ stringof(carg) <= list char
--- stringof (strir1g(CL)) <= CL

/// Commands

DATA command <= BR +-t- BP ++ CE ++ FI ++ I FO ++ HE ++ TN ++
LS ++ NF ++ PL ++ RM ++ SP ++ TI ++ UL ++
UNKNOWN

VAR CMD : command

/// INFOMAPS
Values "Which may occur in them:

DATA ival <= ivc(list char) ++ ivn(num) ±+ ivt(truval)

VAR IV : ival

+++ clof(ival) <= list char
--- clof(ivc(CL)) <= CL
+++ numof (ival) <= num
--- numof (ivn(N)) <= N

-H-+ tof(ival) <= truval
--- tof(ivt(FLAG)) <= FLAG

/// Infomap types of values

DATA itype <= PLVAL ++ INVAL ++ TIVAL ++ CEVAL ++ FIVAL ++
ULVAL ++ LSVAL ++ HEVAL ++ FOVAL ++ RMVAL

VAR IT, IT 1: i type

Infomaps

DATA infomap <= im(list(tuple2(itype, ival)))

VAR IIL : list tuple2(itype, ival)
VAR IMAP, NEWIMAP : infomap

iER ý PaGt= 6-, 3 TL: E I"
_,

'r'(}?: ir. TIO ý Or A TEXT
NPL, prat,, prcgr_, 3m

+4-+ NULLMAP <= i. rtforaap
--- NULLMAP <- ia(NJL)

+++ addtomap(inf. omap, itype, nus) <- infomap
+++ addctomap(infomap, itype, list char) <= infomap
a++ addtt. ouap(infomap, i. type, trtrval) <= infomap

--- add, omap(i-m(IIL), IT, I`) <= IM(<IT, ivn(N)> :: III�)

--- addcr_omap(im(IIL), IT, CL) <= iri(<IT, ivc(CL)> :: IIL)

--- addttomap(im(, IIL), IT, FLAG) <= im(<IT, iýýt(rLAG)> :: IIL)

inf 10 zz ir. f. 10 zzc inf 10 zzt
+++ infomap zz itype <= nu. m
+++ infomap Zzc itype <= list char
+++ infomap zzt itype <= truval

--- iu(NIL) zz IT <= UNDEF

--- im(NIL) zzc IT <= UNDEF

--- im(NIL) zzt IT <= UNDEF

--- im(<IT1, IV> :: IIL) zz IT <= numof (IV) if IT=IT1
<= im(IIL) zz IT ifr. ct

--- im(<IT1, IV> :: IIL) zzc IT <= cl. of (IV) if II =I ý1
<= im(IIL) zzc IT ifno*_

--- im(<IT1, IV> :: ITAL) zzt IT <= tof(IV) if IT=1i1
<= im(IIL) zzt IT ifnot

/// text or command

inf 7$
DATA tore <= text(list char) ++ command $ care

VAR TCL : list torc

text with infomap or command

inf 7.

DATA porc <= ptext(infomap, list char) ++ command. carg

VAR PCL, PCLREM : list porc

word with infomap

DATA p word <= wd(infomap, list char)

VAR W, W1 : pword
VAR PWL, REMPWL, ITLSOF AR : list pword

END

DEF

ýý; ****ý*X*x; ýl****': /// ý****t*ý*****:: *** PRESETTING CONSTANTS

TRANSFORMATION OF A TEXT FORMATTER Page 6-24
NPL protoprogram

+++ PAGE UEN <= num --- PAGELEN <= 10
+++ PAGEWIDTH <= num --- PAGEWIDTH <= 2*10
+++ PGNUriCHAR <= char --- PGNUMCHAR <= CHHASH
+++ CHCOMMAND <= char --- CHCOMMAND <= CHDOT
+f-f- HDR 1 <= num --- HDR1 <= 1
+-H- HDR2 <= num --- HDR2 <= 2
+++ F TR 1 <= num --- FTR 1 <= 1
+++ FTR2 <= num --- FTR2 <= 2
+++ HDRLENGTH. <= num --- HDRLENGTH <= HDh1-+HDR2
+F+ FTRLENGTH <= num --- FTRLENGTH <= FTRI+FTR2

END

DEF

/// ****************** ********************
/// ******:. *********** COMMAND DECODING ********************

/// ****************** ********************

+++ gettitle(list char) <= carg
+++ subgettitle(list char) <= list char
--- gettitle(CL) <= string(subgettitle(skipblanks(skipalphas(CL))))

--- subgettitle(nil) <- ni. 1
--- subgettitie(C:: CL) <= CL if C=CHAPOSTROPHE

<= C:: CL ifnot

+++ getnum(list char) <= carg
+++ subgetnum(list char) <= carg
--- getnum(CL) <= subgetnum(skipblanks(skipalphas(CL)))

- subgetnum(nil) <= NULLARG

- subgetnum(C:: CL)
<= NULLARG if (C=CHPLUS or C-=CHMINUS) and cltonum(CL)=UNDEF
<= signed(C, cltonum(CL)) if (C=CHPLUS or C=CFMINUS)

<= NULLARG if cltonum(C:: CL)=UNDEF
<= unsigned(cltonum(C:: CL)) ifnot

+H- cdecode(list char) <= tuple2(command, carg)

--- cdecode(nil) <_ <UNKNOWN, NULLARG>

--- cdecode(C1:: nil) <= <UNK iOWN, NULLARG>

---- cdecode(C1:: (C2:: CL))
<= <BR, NULLARG> if C1 CHB and C2=CHR
<= <BP, getnum(CL)> if C1=CHB and C2=CHP
<_ <CE, getnum(CL)> if C1CHC and C2=CHE
<_ <F I, NULLARG> if CI CHF and C2=CHI
<= <FO, gettitle(CL)> if C1=CHF and C2=CHO
<= <HE, gettitle(CL)> if CI CHH and C2=CHE
<= <IN, getnun(CL)> if C1=CHI and C2=: HN
<- LS, getnunm(CL)> if CI=CHL and C2=CHS

TI: E: tdSI, C, P:, IýiTION ;)', A Ti: X"1' FOR-'Sý'TER Page 6-25
r; YL protoprogram

<= <NF, Ný1L", nG> if C1=CIIN and C2=CHF
<= <PL, getnum(CL)> if C1=CHP and C2=-, HL
<_ <RM, getnum(CL)> if C1=CHR and C2==CHri
<= <SP, getnum(CL)> if C1=CHS and C2=CHP
<= <TI, getnum(CL)> if CI =CHT and C2=CHI
<= <UL, ger_num(CL)> if C1=CHU and C2==CHL
<= <UNKNOWN, NULLARG> ifnot

+++ decode(list line) <= list torc

END

DEF

decode(ni. 1) <= nil
decode(lin(nil):: LINL) <= text(nil):: decode(LINL)
decode(lin(C:.: CL):: LINTL) <: =

cord (C=CHCOMMAND

cond (CND=UNKNOWN,
decode(LINL),
(CMD$CAR) :: decoäe(L, ZN'I.))

where <CMD, CAR> _= cdecode(CL)
text(C:: CL):: decode(LINL))

/// ********************* INITIALISING INFOMAPS

ý

+++ initmap(list torc) <= list port
--- initmap(nil) <= nil
--- initmap(text(CL):: TCL) <= ptext(NULLMAP, CL):: initmap(TCL)
--- initmap(CMD$CAR:: TCL) <= CMD. CAR:: initmap(TCL)

END

DEF

///

Set - to set numeric values from existing value,
argument of command, default and limits.

DEALING WITH COMMANDS *****************

-F-H- sse t(num ,c arg ,n um, n um , num) <= n um

sset (OLDN, NULLARG. DEFAULT, MINN, MA. XN) <= DEFAULT
sset(OLDN, unsigned(NEWN), DEFAULT, MINN, MAXN) <=

min(MAXN, nax(MINN, NEWN))

sset(OLDN, signed(CHPLUS, NEWN), DEFAULT, MINN, MA X, ýT,) <=
min(MýAXN, max(MINEN, OLDN+NFi", N))

sset(OLDN, signed (CHMINUS, NEWN), DEFAULT, MINN, MiUN) <=
min(MAXN, max(MINN, OLDN--ý. LW"WN))

/// PAGE LENGTH

OF A TEXT FORMATIT, ýt -Page
h? '?, prot:, prc;, ram

+++- d. opl (list porc) <= iist porc
+++ subdopl(num, list porc) <= list porc
+++ INITPL <= num --- I? ýITPL <= PAGELEN

--- dopl(PCL) <= subdopl(INI1'PL, PCL)

--- subdopl(VAAL, ni1) <= nil
---- subdopi(VAAL, ptext(IMA-P, CT,):: PCL) <=

ptext (addtomap(IMAP, PLVAL, VA: '1:,) , CL) : : subdopl (VAA'-, PCL)

---- subdopl (VAAL, CMD. CAR: : PCL)
<= subdopl(sset(VAAL, CAR, PAGELEN,

1+HnRLENGTH+FTRLEPIGTH, PAGELEN) , PCL)
if CM-D=P L

<= CMD. CAR:: subdopl(VAAL, PCL) ifnot

/// SPACE DOWN and BEGIN PAGE

+4-4- dosp(l. ist porc) <= list porc
--- dosp(nil) <= nil
---- dosp(ptext(1MAP, CL):: PCL) <= ptext(IMAP, CL):: dosp(PCL)

---- dosp(CMD. CAP.:: PCL)
<= BR. NULLARG: : (SP. unsigned(sset(O, CAR, 1,0, HUGE)): : dosp(PCL))

if CMD=SP
<= CMD. CAR:: dosp(PCL) ifnot

+H- dobp(list pore) <= list pore
--- dobp(nil) <= nil
--- dobp(ptext(IMAP, CL):: PCL) <= ptext(IMAP, CL):: dobp(PCL)

--- dobp(CM. D. CAR:: PCL) <= BR. NULLARG:: (CMD. CAR:: dobp(PCL)) if CMD=BP
<= CMD. CAR:: dobp (PCL) ifnot

/// INDENT and TEMPORARY INDENT

+++ doinandti(list porc) <= list porc
+4-4- subdoinandti(num, num, list porc) <= list porc
+++ INITIN <= num --- INITIN <= 0

-F++ INITTI <= num --- INITTI <= 0

--- doinandt;. (PCL) <= subdoinandti(INITIN, INTTTI, PCL)

--- subdoinandti(VALIN, VALTI, nil) <= nil

--- subdoinandti(VAI, IN, VtLTI, ptext(IIIAP, CL):: PCL) <=

ptexL(addtomap(addto, iiap(IMAP, INVAL, VALIN), TIVAL, VALTI), CL)

: : subdoin3ndti(VAI. IN, '1ALIPI, PCL)

--- subdoinandti(VALIN, VALTI, CMD. CAR: : PC:,)

<= subdoinanci ti(VAAL, VAAL, PCL)

where <VAAL> _= <sset(VALIN, CAR; 0,0, LAG, -7UIDTH)> if CMD=_N

<= BR. NULLARG: : subdoinand ti. (VALIý.,

sset (VALIN, CAR, O, O, PAGEWIDT4) , i'('L) if CMD=TI

<= CMD. C. 4R:: subdoinandti(VALIN, VALTI, PCL) ifnot

'IFýA1P':, FOP, "!
_'ti 7,0 ?' OF Aý'Eý' i vý''/'. Ii ELI Page 6--27

NFL protcprcgrýni

/// ýr; PRE

+++ do: e(iist pore) <= list pore
+++ subdoce(num, list pore) <= list pore
"h++ INITCr <= num --"- INITCE <= 0

--- doce(PCL) <= su'"bdoce(IN1TCE, PCL)

subdoce(COUNT, nil) <= nil

I

--"- subdoce(O, ptPxt(IýMAP, CL)::? CL) <=
pt. ext(aüclttomap(I. ýAýý, ̂ rýiýL, TtiLSE), CL) subdoce(Q,? 'CL)

---- subdor_e(SUCC CUU'ý]T, ptext(Iýitü', CL):: PCL) <=
Fitext (addtto-Tap(I2iAP, Ci- ý7AL, TRUE) , CL) :: c ubdoce(COUNT, PCL)

--- subdo_e(COUNT, Cý, D. CAR: :: 'CL)
<- EI?. NULLAP. G: : subdocP(sset(COLfiIT, C9R, 1,0, HUGE), PCL) if C. `ID=CE
<- CNID. CAR: : subdoce(COUNT, PCL) ifnot

/// UNDERLINE

++-+ doul(1 ist pore) <= list pore
+H- subdoul(num, list pore) <= list pore
+++ INITUL <= num --- INITUL <= 0

--- doul(PCL) <= subdoul(INITUL, PCL)

--- subdoul(COUNT, nii) <= nil
--- subdoul(O, ptext(IMAP, CL):: PCL) <_

ptext(, iddrtomap(IM_4P, (. TLZ7AL, FALSP,) , CL) : : subdoul(0, PCL)

--- subdoul(SUCC COUNT, ptext(IMAP, CL):: PCL) <=
ptext (addt tomap (IMt'1P, ULL'SL, TRUE), CL) :: subdoul (COUNT, PCL)

--- subdoul_ (COUNT, CP. ID. CAR: : PCL)
<= subdoul(sset_(COIINT, CAR, 1,0, HL'GE), PCL) if CMD-UL
<= CMD. CAk: :s ubdoul (COUNT, PCL) ifnot

/// LINE SPACING

-++ dols(iist porc) <= list Dorc
+++ subdols(nu'n, list porc) <= list pore
+++ INITLS <= num --- INITLS <= 1

- dols(PCL) <= subdols(INITLS, PCL)

---- subdols(VAAL, nil) <= nil
----- subdols(VAAL, pte,. t(ItiAP, CL):: PCL) <=

ptext (addtom _lp (IMAP, LS`LAL, V. ýL), CL) :: subdols (VAAL, PCL)

--- subdols (VAAL, (7-iD. CAR: : PCL)
<= subdols(sset(VAAL, CAR, 1, _, HUGE), PCL) if CMD=LS
<= C%ID. CAR:: subdols(VAAL., PCL) ifnot

/// FILL and NO FILL

TK ý! ýlýFi, iA 'ýý'
ýr

-"r"ý Li; Page : ýýTIC, _1 OF ýý 1F':
11PL protopYc, ý--raTi

I

+4-i- dof_i(]. isý norc) <= list porc
+++ subdofi(tzuv; 31, list porc) <- list porc
+H- INITFI <= truval ---- INITFI <= TRUE

--- dofi(PCI,) <= subdofi(INITFI, PCL)

--- subdofi(FLAG, nil) <= nil
--- subdofi(FLAG, ptext(IýIAP, CL):: PCL) <=

ptext(add ttomap(It1AP, FIVAL, FI. AG), CL): : subdofi(Fij': G, PCL)

--- subdofi(FLAG, CMD. CAR:: PCL)
<= BR. NULLARG: : subdofi(TRUE; PCL) if CMD=F I
<= BR. NULLARG:: subdofi(FALSE, PCL) if Cý, iL`=? 1F
<= CNID. CAR: : subdofi(FLAG , PCL) ifnot

/// HEADER

+++ dohe(list porc) <= list porc
+++ subdohe(list char, list port) <= list pore
+++ INITHE <= list char --- INITHE <= nil

--- dohe(PCL) <= subdahe(INITHE, PCL)

subdohe(TITLE, nil) <= ni --- l

---- subdohe(TI'rLE, ptext(IMAP, CL):: PCL) <=
ptext(addctonap(IMAP, IEVAL, TITLE), CL):: suibdohe(TITLE, FCL)

--- subdohe(TITLE, CMD. CAR:: PCL)
<= subdohe(stringof(CAR), PCL) if C?! D=HE
<= CMD. CATt:: subdohe(TITLE, PC?,) ifnot

/// FOOTER

+++ dofo(list pore) <= list porc
subdofo(list char, list pore) <= list pore

+++ INITFO <= list char --- INITFO <= nil

--- dofo(PCL) <= subdofo (TNITFO, PCL)

---- subdofo(TITLE, nil) <= nil

--- subdofo(TITLE, ptext(IMAP, CL):: PCL) <=

pteYt(addctomap(IMAP, FOVAL, TITLE), CL):: subdofo(TITLE, PCL)

--- subdofo(TITLE, CMD. CAR:: PCL)
<= subdofo (str-ingot (CAR) , PCL) if C19)=FO

<= CMID. CAR: : subdofo (TITLE, PCL) ifnot

/// RIGHT MARGIN

++-; " dorm(list porc) <= list porc
+++ sub: iorm(num, l.;. st porc) <= list porc
+++ INTT RM <= num --- INITRM <= PAGEWIDTci

--- dorm(PCL) <= subdorm(INITRM, PCL)

1'P. ANSFC: '{, 1T'C, 'd OF A TEXT ý'0RMATTER Page 6-29
NPL protoprograr2

--- suDdorm(V_ýA',, nil) <= nil
--- subdor: n(VAAL, ptext(IMAa', CL):: PCL) <_

ptert(addtomap(IMAP, RýiVAL, VAAL) , CL): : subdorm('; AAL, PCL)
--- subdorw(VAA1,, CMD. CAR: : PCL)

<= subdorm(sset(VAAL, CAR, FAGEWIDTK, 1, PAGEWIDTH) , PCL) if C: 1D=RM
<= CMD. CAR.: : subdorm(VAAL, PCL) ifnot

/// DOC OMIRAND S

+++ docommands(list porc) <= list pore

---- docommands(PCL) <=
dopl(dos. p(dobp(doinandti(doce(
doul(dols(dofi(dohe(dofo(dorm(PCL)))))))))))

END

DEF
/// **************ý*** ***ýº*ý: ***ý********x
/// *****************ý: INTERMEDIATE ***********r>ý, tý: **: t*
/// **********ý: ******* ***************:; ***

'Processing of text lines which are null or start
with blanks, and performing underlining
where necessary. @

/// *******t****** BLANKS **************

+++ blanks(iist porc) <= list porc
+++ subblanks(porc) <= porc
+++ delleadblanks(list char) <= tuple2(num, list char)

--- blanks(nil) <= nil
--- blanks(CMD. CAR:: PCL) <= CMD. CAR:: blanks(PCT)

--- blanks(ptext(IMAP, nil):: PCL) <= BR. NULLARG::
(subblanks(ptext(IMAP, nil)):: blanks(PCL))

--- blanks(ptext(IMAP, C:: CL):: PCL)
<= B R. NULLARG:: (subblanks(ptext(IMAP, C:: CL))::

blanks (PCL)) if C=CRBLANK
<= ptext(IMAP, C:: CL):: bianks(PCL) ifnot

--- subblanks(ptext(IMAP, CL))
<= ptext(addttomap(IMAP, FIVAT., FALSE) , nil)

if REMCL=nil

where <BLANKCOU'NT, REr1CL> == delleadblanks (CL)
<r ptext (addtomapkIMAP, TIVAL, : "t: ý1(PAGEWIDTH,

(IMAP zz IidVAL)+BLANKCOUNT)), R, c iCL)

where <BLANKCOUI`iT, RDiCL> == deileadblanks(CL) ifnot

TIt ANS1I0i? HATIO`: OF A T:: XT F0P.: LAi'TER Page 6-30
NPI4 proLoprogram

--- d611eadblanksfr. ii) <_ <O, nil>
---- delleadblank_s(C:: CL)

<_ <SUCC BLAýI; COUi3T, Rrý4CL> where <BL., NI:: O"JNT, REP"iC L>
delleadbl-ýnks(CL) if C=CHBI': NK

<= <O, C:: CL> ifn^t

/// ****txx*** UNDERLINE **********x***

+++ underline(list pore) <= list pore
+++ ulchars(list char) <= list char

--- underline(nil) <= nil
--- underline(CMD. CAR:: PCL) <= CMD. CAR:: underizne(PCL)
--- underline(ptext(I14AP, CL):: PCL)

<= ptext(IMAP, ulchars(CL)):: underline(PCL) if IMAP zzt ULVAL
<= ptext(IMAP, CL):: underline(PCL) ifnot

--- ulchars(nil) <= nil
--- ulchars(C:: CL)

<= C:: ulchars(CL) if C=CHBLANK or C=CHBACKSPACE
or C=CHUNDERLINE

<= C: : (CHBACKSPACE:: (CHUNDERLIivE:: ulchars(CL))) ifno-L

/// INTERMEDIATE

+H- intermediate(list porc) <= list porc

--- intermediate(PCL) <= underline(blanks(PCL))

END

DEF

/// **************************************
/// ******************** LINES **************************
/// ******************** **************************

DATA gorw <= gwd(pword) ++ gap(num)

VAR GWL : list gorw

/// Minor functions :

-F++ wltocl(list pword) <= list char
wltocl converts list of words to list of characters, inserting

a blank between each pair of words.
--- wltocl(nil) <= nil
--- wltoc]_(wd(IMAP, CL):: nil) <= CL
--- c-7i tocl (% d (? ": r. I', CL) :: (W:: PWL)) <- CL<> (CHBLAlvx:: wl tocl (W:: PWL))

OF A lýy:
-r : ';:: Pa. gý 6---l

NPL protoprogram

-++F mkblanks(num) <= list char
nw_h? anks(I1) <= list c` N blanks

--- m': b lank. s (0) <= nil
----- mkbla. nks(succ N) <= CHELAi': K_:: mkblanks(id)

+f+ gapcount(list gorw) <= num
gapcount(r<= number of gaps in GWL

--- gapcount(nil) <_= 0
--- gapcount(gwd(W):: JWL) <= gapccunt(GWL)
--- gapcount(gap(N): <= succ gapcount(GWL)

-H-ý- sumofwidtiýis (Iý_st pword) <= num
sumotwidths(PWL) <= sum of widths of words of PWL

--- sumof_widths (nil) <= 0

---- sumof widths (wd (IMAP
, CL):: Pw'L) <= width(CL)-F-sumofTýridths(PWL)

-f++ convtocl(list gorw) <= list char
/// convtocl(GWI,) converts gaps and wcrds to list of characters
--- convtocl(nil) <= nil
--- convtocl(gwd(wd(IMAP, CL)):: GWI.) <= CL<>convtocl(GWL)

--- convtocl(gap(N):: GWL) <= mkbla. nks(N)<>convtocl(GTJL)

+++ initgaps(list pword) <= list gorw
initgaps(PWL) puts empty gaps between words

--- initgaps(nil) <= nil
--- initgaps(W:: nil) <= [gwd(W)]
--- initgaps(W:: (W1:: PWL)) <= gwd(W):: (gap(O):: initgaps(W;.::? WL))

+-H- addtogaps(list gorw) <= list gorw
/// addtogaps(GWL) increases length of each gap by one
--- addtogaps(nil) <= nil
--- addtogaps(gwd(W):: GWL) <= gwd(W):: addtogaps(GWL)
--- addtogaps(gap(N):: GWL) <= gap(succ N):: addtogaps(GWL)

+++ addextrastogaps(truval, num, list gorw) <= list gorw
-III subaddextras(num, list gorw) <= list gorw

addextrastogaps (LT'OR, N, GWL) adds one to length of first

gaps (if less than N gaps, then to each gap) from left to right
if LTOR true, otherwise from right to left

---- addextrastogaps ('"P. tE, N, GWL) <= subaddextras (N, GWL)

--- addextrastogaps(FALSE, N, Gi"7L) <= rev(subaddextras(r:, rnv(CwL)))

--- subaddextra^(O, GWL) <= G', JL

---- subaddex.. tr, -.! -, (succ N, ni].) <= nil
--- subaddextr. as(ýýucc N, gwd(14):: G61L) <= gýad(W):: subaddextras(succ

N, GWI.)

--- subaddextros(succ N, gap(M) : : GWL) <= gap(succ

TP.; vSi, C11;;: 4'TIOiv OF A iilii' FO. " 'T`'" P2ý: ýý_ , ýý
NPL prctopr. ogre

M'): : subaddeYtýas(N, G[v'L)

/// ý: ******ýt****ýý**** SPREAD *****ýx: ***x*ý***: t:: ýý

+++ spr_ead(truval, num,? ist pword) <= list char
-I-I+ subspread(truval, num, list gorw) <= list gorw

spread(LTCR; TOTAfWlDTH, PWL) converts list of words to iist of
characters. TOTALWIDTH is assumed to be at least as large
as the sum of widths of the words, plus the number of ;. cords -1.
sub spread(LTOR, BCOUNT, GWL) -- GWL is list of words with gaps
between them. BCOUNT is number of blanks to be inserted.
If there are more gaps than blanks, call addextras to put these
extra ones in, otherwise use ADDGAPS to increase all gaps by one,
decrement BCO(TNT by the number of gaps, and cal' again.

---- spr_ eo. d (LTOR, TOTALWIDTH, PWL)
<= cortvtocl (sub spread (LTOR, TOTALWIDTH--sumof,, ridths (P"/IL)

initgaps(PWL))) if length(PWL) »1
<L wltocl(PWL) ifnot

--- subspread (LTOR, Bý OUNT, GWL)
<= addextr. astogaps(LTOR, BCOUNT, GWL) if gapcount(GWL) » BCOUNT
<= subsprcad(LTOR, BCOUNT-gapcount(GWL), addtogaps(GWL)) iinot

/// *****ý*ý: xýt***: ýý***** PUT, DEFAULTPUT.

/// Minor functions:

ýxýKý***ý****ý**ýxý

+++ splitncl(num, list char) <= tuple2(list char, list char)
+++ subsplit(num, list char, list char) <= tuple2(list char, list char)
/// splitncl(N, CL) <= <first N characters of CL, remaining ones>

--- splitncl(N, CL) <= subsplit(N, n_i1, CL)

--- subsplj. t(N, CLSOF. A. R, nil) <= <CLSOFAR, nil>
--- subsplit(N, CLSOFAR, C:: CL)

<-- <CLSOFAR, C:: CL> if width(CLSOFAR<> [C])»N
<- subsplit(N, CLSOFAR<>[C], CL) ifnot

+++ defaultput (infonap, list char) <= list porc
/// defaultput(IMAP, CL) used to put out PAGEwidth-wide lines

--- defaultput(IMAP, n-il) <= nil
--- def_aul tput (IMAP, C:: CL)

<= ptext(IMAP, FIRSTCL) : : defaulr_put (IMAP, UF*1CL)

where <FIRSTCL, R'rYICL> _= splitncl(PAGF. w; _dth,
C:: CL)

if width(C:: C?:) » FAGEwidth
<= [ptext(IMAP, C:: CL)] ifnot

TR?. WSFGr<: ATTO: t OF A TEXT FORMATTER
NPL protoprogram

Page 6--J3

-+++ put(infomap, lisc char) <= list pore
put(IMAP, CL) - if CL will not fit into available space,
i. e. width(CL) + left margin is greater than right margin,
then put out as many characters as possible in a normal lire,
and use defaultput on the remainder.

--- put(IMAP, CL)
<= ptext(IMAP, mkblanks(IMAP zz TIVAL)<>FIRSTCL)

: : defaultput (IMAP, I? F2ICL) where <FIRSTCL, i: rý1CL>
splitricl((IMAP zz RMVAL) - (IMAP zz TIVAL), CL)
if width(CL)+(IIfAP zz TIVAL) »(IMA. ° zz RMVAL)

<= [ptext(IMAP, mkbianks(II"iAP zz TIVAI.)<>CL)J ifnot

/// ***************:; x* GETWDSTOFILL

DATA ptxt <= ptx(infoma. p, list char)

VAR PTL, LINESTOFILL : list ptxt

*************`*****

+++ getwdstofill(list ptxt) <= list pword
4++ subgetwd. s (infomap, l ist char) <= list pword
+++ sublgetwds(infomap, list char) <= list pword
+++ getwd(list char) <= list char

getwdstofill(PCL) <= <list of words to be put into full lines>
subgetwds(IMAP, CL) <= list of words formed by characters in CL.
Words are sequences of non-blank(s). First word has IMAP tied
to it, remaining words have IMAP modified by resetting TIVAL
by INVAL tied to them

--- getwdstofill(nil) <= nil
--- getwdstofill(ptx(IMAP, CL):: PTL) <=

subgetwds(IMAP, skipblanks(CL))<>getwdstofill (PTL)

--- subgetwds(IMAP, nil) <= nil
--- subgetwds(IMAP, C:: CL)

<= wd(IMAP, getwd(C:: CL))
:: sublgetwds(addtomap(IMAP, TIVAL, IMAP zz INVAL),

skipblanks(skipalphas(C:: CL)))

--- sublgetwds(IMAP, nil) <= nil
--- sublgetwds(IMAP, C:: CL)

<= wd(IMAP, getwd(C:: CL))

:: sublgctwds(IMA. P, skipblanks(skipa'phas(C:: CL)))

--- getwd(nil) <= nil
- getwd(C:: CL) <= nil if C=C1IßLANK

<= C: : getwd(i L) ifnot

/// **ý*****Xýý**xhýý*ý** G, TLITLSTOFILL x**r*ý*k*ý*ýtýý*ý*rýYýý*

FORMATTER Page 6-34
; ITL protoprogram,

44+ getlinestofill. (li_st pore) <= tuple2(iMz ptxt, - ist pore)

--- getlinestoiill(nil) <= <nil., ni. l>

--"- getlinestofill-(C. iD. CAR:: PCL)
<= <ni1, FCL> if CMD=BR
<= getlinestoiill(PCL) ifnot

--- getlinestofill(ptext(IMAP, CL):: PCL) <= <ptr_(IM?.. P, CL):: FTL, PCLRIIM. >
where <PTL, PCLRRi> == getlinestof ill (PCL)

/// *****ý*ýýýýý**ýx*****ý PUTPARAGRAPH

-f++ fullline(truval, ntim, list pword) <= tuple2(list char, list pword)
+++ subfullline(truval, num, list pword, list pword) <=

tuple2(list char, list pword)
'fullline(LTOP,, TOTALWIDTH, PWL) <= <list of characters to fill
TOTALWIDTH, formed by taking as many words as possible from PWL
which will fit in and padding them out using spread if there are
some more, remaining words of PWL> @

--- fullline(LTOP., TOTALWIDTH, PWL) <=
subfullline(LTUR, TGTALWýDTIi, nil, PWL)

--- subfullline(LTOR, TOTALWIDTII, WLSOFAR, ni_1) <= <wltocl(WLSOFM), nil>
--- subf ulll ine (LTOi:, TOTALWIDTH, ti1LSOFAR, ý-: :: PWL)

<= <spread (LTOR, TOTALWIDTH, WLSOFAýp.), W: : PWL>
if width(wltocl(WLSOFAR<> (W]))» TOTALJ'IDT_ii

<= suhfullline(LTOR, TO'rALWID'TH, : 4LSOFAR<> [W] , PWL) ifnot

+++ putparagraph(list pword) <== list porc
+++ subputparagraph(truval, iist pword) <= List pore

putparagraph(PWL) <= paragraph, i. e. list of lines formed bz
filling lines with words of PWL. If a word is w=ider than space
allowed for it (right margin - left margin) then use put on that

word

--- put: paragraph(PWL) <= subputparagraph(TRUR, PWL)

--- subputparagraph(LTOR, nil) <= nil
--- subputparagraph(LTOR, wd(IMAP, CL):: PI1L)

<= put(IMAP, CL)<>subputparagraph(not(LTOR), PWL)
if width(CL)+(IMAP zz TIVAL) » (Lt1AP zz RMVAL)

<= ptext(It4.4P, mkblanks(IMAP zz TIVAL)<>CL].)

:: subputparagraph(uot(LTOR), Ra'IPWL)

where <CL1, RIIMPWL> ==
fullline(LTOR, (IMAP zz RMVAL)-(! Mk? zz TIVAL),

wd(IMAP, CL):: PWL) ifnot

/// ***ý**ý*ýý*********ý**** LINECENTRE ****ýý****ýý*ý**x*****ý

-1±1- linecentre(inroinap, list char) <= list pore
linecentre(IMA1 , GL) increments , ItAL oý infomap by half the
extra space, the extra space being

TRANSFORMATION OF E. TEXT FORMATTER Page 6-35
NPL protoprogram

(right margin -- (left margin + width of line))
and gives it to put. If the line is too wide for the iasrgins,
the increment will be zero.

- linecentre (IMAP, CL) <= put(
addtomap(IMAP, TIVAL, (IMAP zz TIVAL) +

half((IMAP zz RMVAL)-((IMAP zz TIVAL)+width(CL)))), CL)

****ýý*ý****ý**ý*ýý /// ****ýýý*t*ý*ý**ý****ý***** LINES

++. + lines (list pore) <= list pore
'lines(PCL) for each text line, if centre indicated,
use linecentre, otherwise if fill not indicated, use put,
otherwise use putparagraph on words got by
getwdstofi? l(LINESTOFILL).

Carry on using lines on remainder of PCL. @

--- lines(nil) <= nil
--- lines(CMD. CAR:: PCL) <= lines(PCL) if CMD=BR

<= CMD. CAR:: lines(PCL) ifnot

- lines (ptext(IMAP, CL):: PCL)
<- linecentre(IMAP, CL)<>lines(PCL) if IMsP zzt CEVAL

<- put(IMAP, CL)<>lines(PCL) if not(IMAP zzt FIVAL)

<= putparagraph(getwdstofill(LINESTOFII. L))<>linA3(pCLREM)

where <LINESTOFILL, PCLREM> ==
getlinestof ill(pteYt(IMAP, CL):: PCL)

ifnot

END

DEF

/// *********************** *********ý****ý************
/// *********************** PAGES ***************************
/// *********************** ***************************

/// Minor functions:

+++ blanklines(num) <= list line
/// blanklines(N) <= creates N blank lines

--- blanklines(O) <= nil
--- blanklines(succ N) <= lin(nil) :: blanklines(N)

+++ skip(uurn, carg, num) <= list line

skip(N, unsigned(M), VALLS) produces min(N, M*VALLS) blank lines -
VALLS is line spacing, N is length remaining of current page,
M is no of lines to be skipped

--- ckip(N, unsigned(SKIPCOUNT), VALLS) <=
blankl Ines (min (N, VALLS *SKIPCOUNT))

TRA'. 'JSi UF'.. ': t: TiOýý Or A': 'Eý'T FOFt? -Ly? 'TER rage 6-36
NPL prot-oprogram

I/I **************X**x***** FILLPAGE *****i: ***************

+++ fillpage(num, list porc, num, nun, num) <=
tuple3(list line, list porc, r: ur.)

fillpage(N, PCL, VALLS, CURPGNUM, NXTPGNUM) <=
<N lines, remaincter of PCL, next page number>

When a EP command is encountered, b lankl ires fill remairing
space.

When a SP command is encountered, skip produces appropriate
number

of blank lines.
If a text line, put it out followed by (VALLS-1) blank lines.

--- f illpage (O
, PCL, VALLS , CURPGNUIri, NXTPGidUM) <= <nil, PCL, NXTPGNL'M>

---ý fillpage(succ N, ni1, VALLS, CURPGNUM, NTCPGNUM)
<= <blank-lines (succ N) , nit, NX'I'YGNUM>

--- fillpage(succ N, CMD. CAR: : PCL, VALLS, CURPGNUM, NXTPGNUM)
<= <blanklines(succ N), PCL,

s se t(CliRPGNUM, CAR, 1+CURPGhLTMi, U, HUGE)> if CtfD-BP
<= <BLINES<>PAGELINES, PCLRLM, NEWN>

where <PAGELINES, PCLREti, NEWN>
f illpage((succ N)-length (BLINES) , t'CL, VALLS, CURPGNUM, NXTPG: IL'M)

where <BLINES> == <skip(succ N, CAR, VALLS)> if ýýi`ý=SP
<= f illpaoe (succ N, PCL, VALLS, CURPGNUM, NXTPGNUM) ifnot

--- fillpage(succ N, ptext(IMAP, CL):: PCL, VALLS, CURPGNUM, NYTPGNi!? 'i) <=
<lin(CL) : : BLINES<>I, ORELINE, S, PCLREM, NE1JN>

where <MORELINES, PCLREM, NEWN> -_
fillpage(N-length(BLINES), PCL, IMAP zz LSVA'I,, CURPGNUM, NXTPCNUM)

where <BLINES> == <blanklines(min(N, (IMAP zz LSVAL)-l))>

/// ******************* Footers and Headers ******************

+++ subst(; i. st char, char, list char) <= list char
/// subst(CL, C1, CLI) substitutes CL1 for Cl in CL

--- suhst(ni1, C1, CL1) <= nil
--- subst(C:: CL, CI, CL1) <= CL1<>subst(CL, CI, CL1) if C =CI

<= C:: subst(CL, CI, CL1) ifnot

+++ puttitle(list char, num) <= line
puttitle(CL, PGNUM) replaces occurrences of PGNUMCHAR in CL by

character string for PGNUM, and if length of all this is longer

than PAGEWIDTH, discards extra.
--- puttitle(TITLE, PGNUM) <= lin(FIRSTCL)

where <FIRSTCL, REMCL> == splitncl (PAGEWTDTII, subst (TITLE,
PGNUMCHAR, NUMTOCL (PGNUM)))

-+++ puthcir(l. ist char, num) <= list line

---- puthd r(T1TLE, PGNJM)

TKt: NSFC, PýM, Vr'TO? 0 , "ýý":.

l
T ý0...

ý
pýti'ýC Pa se A 1. ý : 'ýZ .. e 6--7

týIL protoprogram

<= blar, 11, l ines (NDR. I) if HDR2=0
<= blankl i_n; L! s (HDR1)

<> (puttit'_e(T ITLE, PG NI NIL)
: : blanklines (HDR2--1)) ifnot

+++ putftr(list char, num) <= list line

--- putftr. (TITLE, PGNBIA)
<= blankl ines(FTRI) if FmR-)=Q
<= blanklines(FTRI)

<>(puttitle(TITLE, PGNUZM)
:: blanklines(FTR2-1)) ifnot

/// PAGES

data page <= pag(list line)

VAR PGL : list page

+++ pages(list porc) <= list page
+++ subpages(num, list porc) <= list page

'pages builds up complete pages of output
subpages(PGNUM, PCL)
if BP command encountered at top, recompute PGNUM
if any other command encountered at top, discard it
A page consists of

header
lines of page
footer

State at start of first line of page determines page number,
header and footer titles. @

--- pages(PCL) <= subpages(09PCL)

--- subpages (PGNUM, nil) <= nil
--- subpages(PGNUM, CMD. CAR:: PCL)

<= subpages(sset(PGNIM, CAR, PGNUM+1, O, HUGE), PCL) if C"LAD=BP
<= subpages(PGNUM, PCL) ifnot

--- subpages(PGNUM, ptext(IMAP, CL):: PCL) <= pag(
puthdr(IMAP zzc HEVAL, PGNIM) <>
PAGELINES <>
putftr(IMAP zzc FOVAL, PGNUM)) ::

subpages(NXTPGNUM, PCLRE, i i

where <PAGELINES, PC?, RE'-i, :, XTPGNUM>
f illpa. ge((IMAP z:: PLý"'AL)-HDRLE! ý1GTI? -FTRLENGTii,

ptext (IMAP, CL): : PCL, (I1"i_AP zz LSVAL), PG'Iýýi, 1+I'ý-; 'ýUM)

END

DEF

TRANSFORl1ATI0N OF A TEXT FORMATTER Page 6-38
NPL protoprogram

/// ************************ *************** * :- **
/// ************************ OUTPUT **** **************** **
/// ************************ ************************

+++ output(list page) <= list line

- output(nil) <= nil
--- output(pag(LINL):: PGL) <= LINL <> output(PGL)

END

DEF

/// **************** **************
/// **************** Top level procedure FORMAT **************
/// **************** **************

+++ format(list line) <= list line

--- format(LINL) <= output(pages(lines(
intermediate(docommands(initmap(decode(LINL)))))))

END

TR! -. i'ýSi'OR"iAT ON Ci: A T:
_: 'ý' 1M TTL _

Page 6--3 J

6.4 E J. ALUATIO? OF TEXT FORMATTING PROGRAMS

Some questions we may ask of a text foLtiattirng program are:

i

Does the program satisfy the informal specification?

Where the informal specification is ambiguous, how easy is it to

determine from the program how it will behave?

Can the program be readily modified should we change/extend our

text formatting operations ?"

The answers to these should reveal just how well designed a

program we have. Admittedly, it is a little unfair to expect

Kernighan & Plauger's program to be as transparent and flexible as a

program written without efficiency considerations in mind, but this

is the benefit to be gained from the transformational approach to

program development.

6.4.1 Satisfying Informal Specification

I believe that my program does satisfy the informal

specification, and furthermore, claim that its overall simplicity of

design makes it easier to convince ourselves that this is true.

Kernighan & Plauger's program (which from now on I shall refer

to as FORMAT - their name for it), in the main satisfies the informal

specification, but not absolutely. Minor differences include:

The peculiarities which may ocur when decreasing right margin size

when in "fill" mode (as mentioned in the preceeding section, Stage

4). FORMAT risks the possibility of a line being put out with a

margin somewhere between the old value and new, smaller, value.

Temporary indent, caused by a . ti +n command, is specified to

TRElI1SFORMAý ý: 0: r OF A TEXT FCrý? ý. T. R Pa, e 6-40

temporarily indent relative to the current indent. Thus

. in 5

. ti +3

. ti +4

we would expect to cause the next line to be indented by 9 (5+4)

spaces, the last ti command signifying the temporary indent.

However, FORMAT would indent it by 12 (5+3±4) spaces, adding up both

ti commands' relative values.

These may seem trivial differences, and I may be wrong in

claiming them as errors, but the main danger lies in their existence

being so deeply buried in the complexities of the program.

Spread is a good example of a portion which can be programmed

simply, but if written immediately as a single pass, as in FORMAT, is

hard to understand. The authors themselves say "Phis code is tricky

(which is not a compliment), but it performs an elaborate function

and performs it correctly. "

6.4.2 Resolving Abiguities In The Informal Specification

The informal specification is by no means precise, and many

ambiguities exist which the programmer must resolve. Where some

choice is clearly the expected one from the users point of view, that

should be made. If the choice is purely arbitrary, then the easiest

or most logical choice from the programmer's point of view should be

made. In either case, it should be possible to determine by

examining the program exactly how it will act in such circumstances.

Setting of values is an example of how our programs differ:

Since FORMAT is processing text and commands as it encounters thorn,

TRANSFORMATION OF A TER'i' FCR`1r`_1'' -EP Page 6-t l

it takes advantage of this to check the setting of values s,, --h as

right margin and left margin against each other. Thus the right

margin is never set to less than the current left margin, e. g.

If the right and left margins are cur. rently 60 and 40

respectively, then:

. rm 20

. in 0

would, in FORMAT, cause the right margin to be set to . 0, because

this was the value of the left margin at the time the ". rm 20"

command was received, whereas my program merely sets it to 20 without

worry. Clearly the user should not have to worry about the order in

which he changes margins.

The advantage of splitting the task into the several stages is

that any ambiguity can be resolved by concentrating only on the steige

dealing with it. Indeed, each individual stage is constructed in a

simple manner, liberally using many small functions to perform easily

comprehended actions. FORMAT, although well-designed and structured,

nevertheless is noticeably harder to comprehend in its detailed

operation. In its design there is no mention of any convention

corresponding to the-ones I adopt for filling lines Lnd pages. This

is probably because the program has been designed only for the mode

of operation of going once through the input and dealing with things

as soon as they are encountered. Whilst this ensures a degree of

efficiency, it does seem to restrict ones thinking.

IT ý': 7; r5PM, ': TZ(;? ý OF A TEXT i07 ! ATTER Page b--&:?

6.4-3 Chang in /Extending The Program

A major test of the. flexibility of a program is how easy is it

to change or extend the operation of that program.

Since my program is designed around the conceptual stages of

text formatting, i claim that provided the changes do not

fundamentally alter my underlying concepts, then they will be not too

difficult to incorporate. FORMAT, by virtue of its commital to the

efficient organisation, is bound to be more restrictive.

Two example changes will illustrate this:

Suppose we wish to modify the way the extra few blanks are

partitioned through a filled line, (at present they are distributed

alternately from left-to-right and right-to-left on successive

lines), perhaps distributing them randomly. In my program, the only

change is to procedure ADDEXTRASTOGAPS. In FORMAT this activity is

mixed in with that of distributing all the blanks, so the

contemplated change effects more than is necessary.

One of Kernighan & Plauger's own suggestions is to enlarge the

program to provide multi-column output.

My program should extend to this in a straightforward manner:

most of the changes will be confined to the page formation stage,

with minor changes to the decoding commands and setting extra values

in i. nfomap(s) to handle new commands. Perhaps some of the line

formation functions will need modificaticn (e. g. DEFAULTPUT to put

out sub-multiples of PAGEWIDTH wide lines when a line for

multi-column output is expected from it), but in all these cases, the

changes, and the reasons for them, are easy to see.

TRANSFOR'"IAT ION OF A TEXT FORNATTFR Page 6-43

In FORMAT, because the different operations are more intermixed

(e. g. the routines to put out page headers and footers get called

from within both a routine for putting out a text line and a routine

for spacing down lines), the required adjustments will be much harder

to determine and carry out correctly.

OFF A "i EXT FOIU 'i: TER Page 6-z: -,

6.5 77cA:,: FORMATION TO EFFICI, i'T ',. '!:!! SION

Transforming the NPL text formatter brings to light new problems

due to the large size of the protoprogram. Firstly the equations

take up a lot of space if all are to be held in core at once. For

the smaller transformations this had never been a serious problem,

but here the equations (some 500 of them) consume a prohibitive

amount of space. Me system had to be adjusted to store the

equations in a disc file, and only bring into core such equations as

are required for unfolding, when so indicated by the UNFOLD command

within a context block. This adjustment fits in well with the

concept of context blocks, and makes transformation of the text

formatter a practical possibility. The adjustment involved

augmenting the system with a package providing functions to write cut

non-circular structures to disc in character form, and read them back

in. Using this, the NPL interpreter deposits equations onto disc as

it encounters them, and equation-finding routines now search the disc

file rather than an in-core list.

Secondly, the complexity of the whole program is such that it is

not possible to see in advance how the transformation will turn out.

The gap between protoprogram and anything like Kernighan and

Plauger's efficient program is too wide to see across in advance -

hence this problem serves as a crucial and unavoidable test of the

transformational techniques.

Following the approach to transforming large programs already

established, the first step is to construct a diagram of the calling

structure of functions within the protoprogram, and from this

determine the overcall strategy for improvement to be followed.

TRANSFORMATION OF A TEXT FORMATTER

m
af 'd

'd O
OU

___.
Ü 0
CD Frd

a, ä
Co 0

- -p A

.äm
rl 9

r-i a Pa U!
G! 00
"d "d rd I

. HI
0 0
0 b

M
rý

ý

ýr7

r'1

m Co -" A -_ 10 4-3 1/ ^
d

b
f1

0 r1

ý w2` m 1

\

r^r..
M

Wý

'd U
ýý

-ri
43

Co
. ý.. ý
0 rd
'ý C) ý

.N
cý ýw2

4) 0000 OO0

"ri 02 01 01 02 m Cl) m

t[S
ý

"r
ýi0ý

r-i 4-4
. s'., ff-4

Id Id rd b00
"d 'd

00

L__1- Li I LL

02

ý
OQ N

r-i

ýýrl
ýý

. fl

mý
N 01

ýý
\ýý

I

G)
0

G) "rt
i: r-1 'd

"rl r-i d

14 ýýý
ýý5 P4

cc
. 9.4 A,
W Co

ý- ý
as a A, 10

ý

a
ý__ý-

Iý

lQaýý
äi

eýi ri
en - bf) - . --1 ri

94 r-1

p 4-ýi \ Rs "A
ý, "rl rl

w
4-2

ää ö

A .0
CQ

43

a)
N
4.)
d
C)
C)
C)

. 1-I
�-4

P4
ä
ý

Co ý

Page 6-45

0

m
ý

ý
V
ý

4)
cn

2
"rl
r"t r-t
44

U

TRANSFORMATION OF A TEXT FORMATTER

The strategy suggests improving each branch of FORMAT,

combining improved versions incrementally.

6.5.1 Improving Branches Of FORMAT

The branches which need

INTERMEDIATE, PAGES and LINES.

Page 6-46

and then

improvement are DOCOMMANDS,

6.5.1.1 Improving DOCOMMANDS - Looking at the calling structure of

DOCOMMANDS, the strategy suggests incrementally combining functions

from inside out (corresponding to left-to-right on the diagram), to

arrive at a single function to process all commands.

II docommands => docommands

"Iý"I dofo dorm . docoml

subdofo subdorm

0 . a>..

II docommands => docommands
/II

/II
dopl docom8 docom9

subdopl

In performing these transformations some disturbing effects become

apparent. One is that although the form of the final function is

really that of a large (12 branched) cases statement, it has to be

modelled in NPL as a deeply nested conditional statement. This is a

most unwieldy construct, not easily dealt with by the system.

Another difficulty is the abundance of values the final function has

T1-'Y'I 1~'OR"_ATTE: t P_ge F-'ý7

to deal with - these are the values of current right ma-gin, rege

size and so on. The alternatives are to either maintain these as

distinct var{ables, which consequently have to be parsed into each

function call (since NPL has no globals), or packaged up into a

single information structure with components for each value

(analogous to the named common blocks used by Kernighan and rlaugc: r).

Although the latter would be the preferable option, J_t unfortunately

clashes with the already unwieldy conditional modelling of the cases

statement. The clash is due to the need to make inferences that

assigning to one component of the information structure does not

upset the value of another component. This obvious property, which

would normally fall out automatically by applying the equations for

assignment to, and accessing of, the information structures, in this

particular context of a deeply nested conditional leads to an

explosion in the size of expressions being manipulated. i choose to

pass into functions the values in separate variables, tedious in

terms of the size of patterns to be specified, but applicable (and in

practice once one pattern has been put into a disc file, similar ones

can be got by minor edits of that file). The problems exposed here,

namely the clumsy modelling of where constructs, and reasoning about

assignments to data structures holding several values, are ones which

must be tackled and overcome in any future development of the system.

A possible solution to these problems lies in the use of

schemata. Currently my patterns provide a tom of these suitable for

introduction of new functions, and specifying approximately portions

of expressions. However in the transformations taking place here

there are minor details not crucial to ti-, e individual transformations

which cannot be expressed within my patterns, and yet ý-: re numerous

TRANSFORMATION OF A TEXT 'r'Ci<". AT' TFFc

enough to be troublesome. The

should permit these details to be abstracted away. The system could

be augmented to transform schemata mak_ng use of the existing

techniques, i. e. using schemata only to capture the relevant details,

without the need to individually verify schematic transformations.

6.5.1.2 Improving INTERMEDIATE - This transformation, a combination

J-4G
"6-

use of more conventional s,, ', e2ar-

of the two branches, goes through without difficulty.

format
/I

_> format

/Iý
0

intermediate

underline blanks
II
II

ulchars subblanks

delleadblanks

.i .i i
9

0

intermediate
/I

ulchars ý
intertnl

ulchars delleadblanks

6.5.1.3 Improving PAGES - Here the improvement is to cause skip and

blanklines to decrement the count of lines left in the current page

as they output blank lines.

I fillpage
/I\

/I
skip ý

b1 ankl ine s

=> {
f illpage

cskip

cblanklines

TRANSFORMATION OF A TEXT FORMATTER Page 6-49

6.5.1.4 Improving LINES - The transformation of LI:. TS itself splits

into several stages.

Firstly GETWDSTOFILL and GETLINESTOFILL are combined;

I ý> I
lines lines

/I\/1
.ý\. ý

"ý\"i
ý getlinestof ill ý

getwdstofill linesl

II
0 0

Secondly, prior to combining PUTPARAGRAPH with the result of the

above step, it is itself improved. At the bottom the function SPREAD

requires transformation - however the surrounding structure is such

that the internal structure of SPREAD would not be crucial to the

transformations to follow. Thus the transformation of SPREAD could

be left until later, and done independantly of the rest of the work.

What must be considered next is the relationship between

SUB PUT PARAGRAPH, FULLLINE and SUBFULLLINE. Currently SUBPUTPARAGRAPH

calls FULLLINE as a subroutine to put out a full line of text, and

return the remainder of input. In transforming these functions I

change the control structure to cause SUBPUTPARAGRAPH to pass control

over to a new function, combining FULLLINE and SUBFULLLINE, in the

manner of a co-routine rather than a subroutine.

TR11I; S- OPMATIO' OF A Tý<<_T FOR? -LAT'T :R

I
putp4rüsraph

subputparagraph

f ui ll ine

subfuliline
(
0

ýý I
putparagraph

subputparagraph===Y aralines

spread

0

0

Pase 6--50

This change towards a different calling structure is not suggested by

any tactic, and is a clear point in the transformation where I have a

choice of what shape of efficient solution to head for. At this

point, and at similar points later in the transformation, it is clear

that there must be some crucial aspect of the transformation that my

patterns, tactics and strategy are failing to capture. The omission

seems to lie between the tactics expressing the top level combination

of functions, and their realisation in terms of patterns. What

neither provide for is the manner in which the calling structures of

each half of a combination are merged to form the calling structure

of the new function. It is not necessarily the case that this did

not arise in transforming the telegram problem or the compiler,

rather that they were sufficiently small to be comprehensible all the

way through, and any choices made were done unconciously to move

towards the efficient solution in mind. Here, however, the inability

at this point to see the way through to the final program makes the

recognition of such choices unavoidable.

The use of diagrams to show calling structures is more than just

a means of illustrating the transformation after the event; in fact

these diagrams are of help in observing some of the elusive features

of complex combinations, and I make use of them throughout the

TRANSFORMATION OF A TEXT FORMATTER

transformation process.

Page 6-51

The combination of the improved PUTPARAGRAPH and LANES 1 follows

the coroutine structure established within PUTPARAGRAPH:

i lines
/I

.iý .iý

ý linesl

putparagraph

i i
0

subputparagraph===paralines
I

I

lines

.(

"i

lines2a===lines2b
II

Functions LINES2A and LINES2B are similar in nature, except one

is used when in "fill" mode, the other when not. Hence they could be

subsumed by a more general function to carry out the activity of

either as indicated by a truthvalue flag to show whether or not in

"f ill" mode.

I lines
/I

.

lines2a===lines2b
/Iýý

zý

put subgetwds spread

skipb lanks

I lines
/I

lines2c----
/I

put I spread

subgetu, ds skipblanks

6.5.2 Combining The Improved Branches Of FORMAT

Having completed the improvement of each branch of FORMAT, the

strategy suggests combining them in an inside out manner, which in

the diagram corresponds to left-to-right:

ýý

TRANS FORMATIOr; OF .ýiý: ý''_' ý't, 3ýt. ýTTLR Pa e 6-52

format
i

IIIIIII
output pages lines intermediate docommands initmap decode

6.5.2.1 Combining INITMAP And DECODE - This small combination is

straightforward.

format => format
/I\/I

"1\I
"I\I initmap decode formatl

II
II

cdecode cdecode

6.5.2.2 Combining FOj2NAT1 And DOCOMMANDS - This

tedious because of the

nevertheless straightforward.

format
/1

.1
.I formatl
docommands i

I cdecode
docom9

combination is

unwieldy nature of DOCOININDS, but

_ý

I
cdecode

6.5.2.3 Combining FORMAT2 And INTERMEDIATE - another tedious but

straightforward combination. The transformation commands to do this

are very similar to those required for the earlier combination of

FORMATI with DOCOMMANDS, and the combinations during the improvement

of DOCOMMANDS itself. The easiest way o- creating the file of

format

.j

f ormat2a====forL, at2====format2b

commands is to edit the file of earlier commands. The patterns

TRANSFORIATION OF A TEXT FORMATTER Page 6-53

have developed to guide the system do not capture the relevant

details only, which suggests that perhaps the use of some sort of

schematic transformations would indeed be a more convenient way of

specifying the changes being made.

format

.ý -----------------

"iý
intermediate format2a==format2==format2b
III
I interml cdecode

ulchars delleadblanks

format
/I

.

.

f ormat3a==format3==format3b

cdecode ulchars delleadblanks

At this point the next step suggested by the strategy would be

the combination of FORMAT3 with LINES:

format-----
/1\

/I
/i

output pages lines format3

III
00

It is apparent, however, that this combination would be hard to

perform, because of the unwieldy nature of FORMAT3 and the complex

calling structure of LINES. Furthermore, if it were carried out,

there would still be the two stages of ccmbining with PAGES and with

OUTPUT left to do. These last combinations would be much harder if

encumbered by the burden of FORMATS, so at this point I choose to

deviate from the strategy and instead combine LINES with PAGES, then

TRANSFORMATION OF A TEXT FORMATTER Page 6-54

with OUTPUT, and finally with FORMAT3. Note that the essence of the

strategy, that is if one function G uses another function h, improve

H before improving G, is not being violated. In this case FORMAT is

calling four functions each of which has already been improved,

passing the output of one to the input of the next. It is the order

in which they are to be combined that I am changing. Viewing the

simple strategy as a default to provide a sequence of applications of

tactics, we see that in this example the overall transformation

follows the strategy most of the time, except here where intuition of

the user suggests a better alternative. This illustrates the

advantage of defaults over inbuilt techniques - the user can chose to

follow a default in the main, overriding it occasionally, wheras an

inbuilt technique must either succeed entirely or fail.

6.5.2.4 Combination Of OUTPUT And PAGES - OUTPUT merely strips the

stream of pages down to their constituent lines to form the output of

the whole process, hence its combination with PAGES is simple.

format format
/I\/\

/I. /"
/I"/"

output pages outpages
II/I\

<> I/I\
subpages puthdr putftr fillpages

/I\
/I\

puthdr putftr fillpages

Here another change in structure seems appropriate. FýLLPAGE is

being used to return the interior lines of a page for OUTPAGES to

surround with the header and footer titles (if any), and the

remainder of the input to continue with. Again, a coroutine like

TRANS FORMATION OF A TEXT FOKAIAI'T?,: t

system is introduced so that OI`TPhGre
-: tarts a new pag., _

header,

there.

outpages

puthdr putftr fillpages

Page 6-55

ýe i th the

and then hands control over to FILLPACF to carry on from

f ormat

fý
lb

=> format

S

I
outpages===filllpage

II
II

puthdr putf -Lr

6.5.2.5 Combining OUTPAGES And LINES - The combination of these

encapsulates much of the complexity of the formatting process.

OUTPAGES is concerned with completing pages, whilst LINES builds up

the individual lines, handling all the cases of lines to be centred,

lines too long to fit in the margins, and fill mode when words are to

be squeezed into lines. The result of this combination consists of

two main routines, PAGES1 and INPAGES, analogous to OUTPAGES and

FILL1PAGE. PAGES1 starts new pages off, and INPAGES carries on once

within a page. These use three subroutines, CEINPAGE to centre a

line, PUTINPAGE to put out a line and DPUTINPAGEt_o put out an

overlength line.

T. Rý! !: FORM;. T1GN Or t:. TEXT FOLM TTER

format

/I"
/ý.

f illlpage==outpages ý

i lines
/I\

linecentre i lines2c

put

defaultput

Page 6-56

roi: na

i
0

pagesl=-==inpages

=>

II vv

1-ceinpage--i

putinpage

dput inpage-->-

6.5.2.6 Combining PAGES 1 And FORMAT3 - The program is currently

split into two major passes. The first, FORMAT3, does the decoding

of incoming commands, setting values in blocks of information to be

associated with each input text line, and preliminary processing to

handle underlining and blank lines. The second pass, PAGESI, does

all the line and page formation processing.

A complete combination of these passes would remove the

redundancy associated with creating the intermediate data structure

(consisting of lines with associated information, intersperced by

commands). However all the difficulties which arose during the

earlier transformations would manifest themselves again here,

especially those associated with the unwieldy nature of the

equations. Hence my last step is to simply model a call-by-need

evaluation, defining a new function which would act as FORN: AT3 on the

input until some intermediate result is obtained, at which point it

would behave as PAGES1 applied to this intermediate result. Much, if

not all, of the redundancy is removed by this design. The major

saving is through not having to process the entire input in a

TRANSFORMATION OF A TEXT FORMATTER Page 6-57

complete pass and store the entire intermediate structure. Instead

the improved version consumes input only as required to produce

output, so the storage space will not depend upon the length of the

input. The remaining redundancies are small in nature, associated

with slight inefficiencies in storing information with each text line

and shortly afterwards retrieving it again. Unfortunately the very

messy nature of the equations at this point make further

improvements, even minor ones, tedious to perform.

format
/ý

I
pagesl===inpages

II VV

II 1-ceinpage--l
Iý

putinpage

dputinpage-->-

------>----

i f ormat3a==f o rmat3==f orma t3b

format

i i -----<-. -----
I-pgafmt----pgfmt===inpgfmt---- inpgafmt- I

I /I I 1\ I
-pgbfmt--- I i VV

1--cefmt---l

putfmt

dput f mt--->-

-inpgbfmt-

A further difficulty which arises during this transformation is

that once a function has been defined by cases on one of its

arguments, the transformations are unable to generalize that function

to a single equation with variable in the argument position.

A trivial example will illustrate this:

TRANSFORMATION OF A TEXT FORMATTER Page 6-58

+++ f (truval) <= truval
- f(true) <= true

--- f(false) <= false

Clearly f (T) <= T, but the transformations do not allow us to deduce

this. The formatter transformations suffer from this phenomenon,

leading to duplication of equations identical except for true /false

in a single argument position. Burstall and Darlington mention this

limitation in their [1975] paper.

TP, SFOR A'ýIOrs' OF A TEXT r: _"LATTER Page 6-59

6.6 FINAL PROGRAM

The final program produced as a result of transformation is exi_recuely

messy. As shown in the previous diagram, the calling structure ;
-s

intricate. The functions tend to have a large number of ar¬umýnts,

which serve to further cloud comprehension. Rather than give the

entire final program, I present some sample equations, and explain

their actions.

--- cefmt (false, LLEFT, IMAP, CL, TL, T5, PCL, LINL, T10) <_

putfmt(fa1se, LLEFT, addtoýnap(IMAP, TIVAL, IMAP zz TIVAL +
half(IMAP zz RMVAL) - (IMAP zz TIVAL -+- width(CL))),

CL, T4, TS, PCL, LTNL, T10)

CEFMT is used to centre a line of characters, CL. To do this, it

calls PUTFMT with the temporary indent value in the information

(IM, P_P) reset by the appropriate amount. LLEFT is the ccunt of lines

remaining on the current page. T4, T5, PCL and T10 hold current

values of various parameters, e. g. margins, header and footer titles.

LINL is the list of remaining lines of input to continue processing.

The first argument of CEFMT and PUTFMT is a truthvalue to indicate

whether or not in fill mode - CEFMT is one of the functions that

suffers from not being able to generalise distinct true/false cases

'to a single equation with a variable.

--- putfmt (f a1se, 0, P-IAP, CL, <VALLS, CURPGNUM, NXTPGNUiM, VALFO>,
TS, PCL, LINL, T? 0) <=

putf tr. (VAI, FO, CURPG; ITJM) <>
puthdr(IMAP zzc hEVAÜ, riX`I'PGNUM) <>

putfm*_(false, (IM"AP z-- FLVAL - HDRLENGTH) -- F'I'FLENGTii, 11,111, P, CL,
<IMAP zz LSVAIr�+7PGNUi1,1ýNX1'FGNUM, IMAP zzc FOVAL>.
TS, FCL, LINL, T10)

Here PUTFMT lias zero in its second argument position, t lle count of

1E; ý'ZOi, OF !. TEXT FORNA'TTER Page 6-6_, n

lines remaining on the current page. Thus there is no space left, so

the footer title is put out. followed by the header of the next page,

and PUTFMT is called again at the top of the new page. Note that

some of the values are re-set for this new page - the page number

becomes the old N XTPGNUM; the line spacing and footer values are got

from the IMAP (which is information associated with the line to be

put out next); the count of lines remaining becomes the page size,

less the header and footer lengths.

--- pgfmt(false, PGNUM, T5, ptext(IMA°, CL):: PCL, LINL, TIO} <=

cond(III?. P zzt CEVAL,
puthdr(IMAP zzc HEVAL, PGNUM) <>
ceFmt(false, (IMAP zz TLVAL - HDRLENGTH) - FTRLENGTIi, Iýt. A.: ,

CL, <IMAP zz LSVAL, PGNUM, 1-ýPGNUM, IMAP zzc FOVAL>,
T5, PCL, LINL, T10),

cond(not(IMAP zzt FIVAL),
puthdr(IMAP zzc HEVAL, PGNUM) <>
putfmt(false, (IMA. Q zz PLVAL - HDRLF. NGTIi) - FTR%ENGTH,

<IMAP zz LSVAL, PGNUM, 1TI'GNUTMI, 1MAP zzc FOVAL>,
T5, PCL, LINL, T10),

pgfmt (true, FGNUM, <subgetwds (IMAP, skipb lan? "-. s (CL)), true, 0,
nullmap, []>, PCL, LINL, T10)

))

Here PGFMT, the function for starting off a new page, is in no-fill

mode (indicated by false as its first argument) and has some

intermediate result, ptext(IMAP, CL):: PCL to work on before needing to
r

consider more of the input, LINL. The action it takes is to first

see if the line needs centering - if so, the header is put out, and

CEFMT will do the rest. If not, and the line is not the start of a

paragraph to be filled, then put out the header and call PUTFMT to

put out this line. Otherwise, recall PGFMT in fill mode (i. e. with

its first argument set to true). The words of the current line are

extracted by SUBGETWDS, and together with some other initial values,

passed within the 5-tuple so that PGFMT (and other functions) will

have the appropriate in'tor iation needed to fill and justify lines.

iG'7 OF A TEXT

lfben w. ww are at the start of a page, or in the middle of one, and

we do not have any intermediate result to work on, PGFMT or I`, PGF'NNT

must process more of the input.

-"-- pgf_mt(FIFLAG, PGNU :, T5, [j, lin(C:: CL):: LIN'L,, <rLNL"M, I. ±'NNu ,
TINUM, CENUM, ULNUM, LSNUM, FIFLAG, U ETITLE, FOTITLE, RMIv JN>) <=

cond (C=CHCOMMAND,
pgafmt (FIFLAG, PGNUM, T5, [], U0, U1, LTNL, <PLNUM, INNUM, TItiU::,

CEIUML, UINUM, LS, M, FIFLAG, HETIILE, FOTIT.. E, RMNL»1)
where <UO, U1> == cdecode(CL) ,

pgbfmt (FIFI. AG, PGNU'`i, T5, [I , r: ullmap, [] LINL,
<P LNUýM ,I NNUM ,TI NLr4, C ENL`Ni , UL hTal, L SNUAi ,F IFLAG ,

HETITTLE, FOTITLE, RMNTJM>))

If the next line of input turns out to be a text line, it will be

passed through together with an IMAP containing current values of the

parameters, and already underlined if necessary. If the input is a

command this usually causes a change in one of the parameters, and

sometimes produces a command as intermediate result.

--- pgafmt (FIFLAG, PGNUM, T5, [I , CMD, CAR, LINL, <PLNUM, INNUM, TINUM,
CENUM, ULNUM, LSNUM, FIFLAG, HETITLE, FOTITLE, RMNUM>) <=

cond (CMD=UNKNOWN,

pgfmt(FIFLAG, PGNUM, TS, [] , LINL, <PLNUM,..., RNNUM>),

cond(CMD=RM,
pgfmt (FIFLAG, PGNUM, TS, [], LIN-I., <PLNL'M, ..., FOTITLE,

sset(RMNUM, CAR, PAGEWIDTH, 1+Pý GEWIDTH)>),

0
0

cond (CMD=PL,

pgfmt(FIFLAG, PGNUM, TS, ni. 1, LThný, <sset(PLNLM, CAR, PAGELEN,
1+HDRLENGTH+FTF: LENGTH, FAGELEN), INNLT4, ., RriNt? %>) .

pgfmt (FIFLAG, PGNUM, TS, [CN1D. CAR) , LINL, <PLNUM, ..., P-MNUM>)

)...))

The above equation is one of the cases statements represented as a

deeply nested conditional.

These equations illustrate the nature of the final program. My

confidence in its correctness comes from the knowledge that it is

obtained by transformation from the protoprogram. Although the

Ti-R1". NSFO"? ±IATION OF A TEXT r ORMATTER Page 6-62

transformation has been hard to carry out and serious difficulties

have arisen, it has succeeded in converting the very naive

protoprogran into a version approaching the efficiency of a

conventional formatter. There remains the stage of converting into

an imperative language, but even before this conversion the behaviour

of my final NPL program is similar to that of Kernighan and Plauger's

FORMAT program. Each processes successive lines of input only when

they are needed, and output lines are formed as soon as possible.

The manner of operation of each program is therefore a single pass

through the input, producing output as it proceeds. The NPL program

contains some minor inefficiencies through occasionally setting

values of parameters which are immediately interrogated to cause some

effect, rather than simply triggering that effect immediately, but

these do not significantly degrade the program's performance.

CHAPTER 7

IMPLFMENTATICN

In this chapter I describe the implementation of the ZAP

transformation system, detailing what my additions to the underlying

programs of Burstall and Darlington have been to achieve this

implementation. I also describe the purposes of the non-trivial

algorithms within my implementation.

7.1 GENERAL DETAILS

The programs I use are implemented in POP2 (Burstall, Collins

and Popplestone [1977]; on a Dec10 machine. They are all

experimental in nature - i. e. have been developed over a period of

time during research, and are not intended to be, nor are they, the

most efficient rendering of the algorithms in use.

The overall system divides into two levels; The lower level is

the NPL parser and interpreter. The upper level is the

transformation portion.

IHI'LEMENTATION Page 7-2

7.2 NPL LE vEL

The code in this level has : -, e. en ', ritten by Rod Bur&talJ . It can

function on its own, used to execute: NPL programs. Its size is 11K

(and the POP2 compiler below this is a further 19K). This level

provides the data structures for expressions the transformation

level manipulates.

NPL equations are kept in core, which for large programs can be

expensive in consumption of space. In order to tackle transformation

of large programs z have modified Burstall's code to cause it to

. store the equations in a disc file. Then when a context is created

in my system, only the equations appropriate to that context are

brought into core, and when new equations are formed, these are

written out onto the disc file. The tradeoff is between the small

amount of extra cpu time required to do the disc transfers, and the

large amount of space saved by keeping the equations out of core.

Historically, NPL began as a language to conveniently express

programs in a form suitable for applying the unfold/fold techniques

to, but from that beginning, Burstall developed it into a language to

demonstrate how clear, well constructed programs could not on! y be

transformed, but also be more readily comprehended and verified.

7.3T RANS F OMkT IO I1 LE VE L

The upper level is the transformation portion, its size is 36K.

This can be considered to consist of the following sections:

Utility section -- generally useful functions used throughout the

transformation level. Includes functions t^ raisn; pulate expressions,

IMPLLMP:! TATION - PaQe '1'-3

provide basic /L, between files, terminal and s TL, tee,, ,, tc . Some of

these functions are inherited from Tarlin ton's sy_, tem. in gcirrai,

however, the bulk of Darlington's system has not. been retained. Hls

overall control structure for transformation and his function:; for

guiding it are entirely omitted.

Control section - interprets the ZAP control : language described

in Chapter 4. The details of my particular implementat on are not

significant. From the Users' Guide and Manual it would be possible

to construct an interpreter with the appropriate behaviour.

Transformation step section - performs the actual step of

transformation, involving expanding the pattern and expression,

matching and building up the answer.

Default section - provides default patterns and type

information.

I consider these last two sections in more detail:

7.3.1 Transformation Step Section

As explained in earlier chapters, the fundamental transformation

step within my system involves supplying a pattern which indicates

the approximate form of the desired answer. The expression to he

transformed, and the provided pattern are each expanded, and matched.

Bindings from the match (if it has been successful) are used to

instantiate variables in the original unexpanded pattern to give the

answer. Thus the process can be considered in three stages:

1. Expansion of expression and pattern

IüY?, Et; LNTATION

2. Matching of expression and pattern

3 Instantiating pattern to form answer

7.3.1.1 Expansion Of Expression And Pattern -

Pa` P_ 7-4

Expansion takes place within a given context of equations and

lemmas. Expansion ii. zvolves unfolding as much as possible by applying

equations and lemmas which are rewrite rules. Some forms of

identity . +. nd coiniiu. tat ive declarations -- will have caused additions to

the equations and rewrl to rules of the context. Basic reductions in

.
the form of rewrite rules are always provided by the system for COND

(the conditional function), AND and OR (logical funct. ioiib) . In

addition to expansion by unfolding, expressions are normalised by

applying special purpose reductions to deal with ii_er: ttive

constructs, conditionals and where constructs.

In practice a major portion of cpu time used by my system is

consumed by unfolding and norma-ising expressions. This is : '. espite

the context mechanism limiting attention to only the relevant

equations. With my approach to transformation this expenditure of

time seems unavoidable.

7.3.1.1.1 Normalisation Of Iterative Constructs -

Iterative constructs are ones using

set constructors, e. g. <: f (x) :x in S& p(x) :>

"all", e. g. ALL x in S: p(x)

or "exists", e. g. EXISTS x in S: p(x)

Darlington developed and implemented a usefi., 1 set of r euc: ic. ls

to apply to these constructs. I have incorporated h5_., - coding of

IMPLEMENTATION : age 7--5

these within my system. For a full description see Darlington

[1977). A few examples will illustrate sone actions of his

reductions:

e. g. in the preceeding examples, suppose S is the nilset, i. e. the

empty set. Then

<: f(x) :x in nilset & p(x) :> reduces to nilset

ALL x in nilset :p (x) reduces to true

EXISTS x in nilset : p(x) reduces to false

e. g. if S is the union of two sets, Si union S2,

<: f (x) :x in S1 union S2 & p(x) :> reduces to

<: f (x) :x in SI & p(x) :> union <: f (x) :x in S2 & p(x) :>

ALL x in Si union S2: p (x) reduces to

(ALL x in S1 :p (x)) and (ALL x in S2 :p (x))

EXISTS x in Si union S2 : p(x) reduces to

(EXISTS x in S1 : p(x)) or (EXISTS x in S2 : p(x))

7.3.1.1.2 Normalisation Of Conditionals -

Within NPL conditionals may be introduced either through the use of

the cond function, or through the if/ifnot clauses. My system

converts if/ifnot clauses to applications of cond, so that the

following normalistations always apply.

Firstly, whenever possible, the cond function is moved outside

of all other functions.

e. g. 2+ square(cond(T, 1,3)) becomes

cond (T, 2-F-square (1) , 2+square(3))

e. g. cond(T, 1,3) + cond(T1,2,4) becomes

cond(T, cond(T1,1+2,1+4), cond(T1,3+2,3+4))

IMPLFtZEPýTATION Pa;; e 7-6

Secondly, if nested conditionals depend on identical ccnv'Ltiens, the

inner such conditionals are simplified accordingly.

e. g. cond(T, cond(T, 1+2,1+4), cond(T, 3+2,3+4)) simplifies to

cond (T, 1+2,3+4)

Thirdly, conditionals whose conditions are of the form

variable = expression

are simplified by replacing all occurrences of the variable within

the true branch of the conditional by the expression.

e. g. eond(N=1 , N+2 , N+4) becomes cond(N=1 , 1+2 , N+4)

7.3.1.1.3 Normalisation Of Where Constructs -

Where constructs are of the form

expression) where <variablel,..., variableN>

_= expression2

variablel,..., variableN are the bound variables of the construct*

expression2 must have the same type as <variablel,... variableN>, i. e.

be an N-tuple whose components have types the same as those of

variablel, ..., variableN.

Firstly, where expressions are pushed inside other constructs

until their left hand sides are variables or other where constructso

e. g. (1+square(N)) where <N> == <2> becomes

1+square(N where <N> __ <2>)

In doing so, redundant where constructs are removed

e. g. (N + M) where <N> __ <2> becomes

(N where <N> __ <2>) +M

Secondly, if the expression to the right of the "__" is in the form

of a tuple, the where clause may be simplified by substituting the

IMPLEMENTATION Page 7-7

corresponding expressions is place of the bound variables.

e. g. N where <N> <2> simplifies to 2

e. g. M where <M> (<N> where <LN, P> _= f(X)) simplifies to

N where <N, P> _= f(X)

7.3.1.2 Matching Of Expression And Patterr. -

The basis of my transformation step is a match between expanded

pattern and expression. The match is 2nd order, since varigb'

within the pattern are to match to functions and constructs. For an

excellent account of 2nd order matching, see Huet and Larg [1977). My

matcher differs from a conventional 2nd order matcher by being

somewhat restricted in some respects, and extended in others.

The restrictions are straightforward - function variables; e

not permitted to match to certain of the functions and constricts

within the expression. Those function variables arising from $$'s

within the original pattern are inhibited from matching to iterative

constructs, and functions which are either restricted or have

equations within the current context but not declared usable. Those

function variables arising from &&'s within the original pattern are

inhibited from matching to functions with equations in the current

context but not declared usable.

The first extension to conventional matching concerns function

variables arising froiu &&'s within the original pattern. Such

variables are intended to create definitions of new functions, the

bindings formed during the match providing these definitions.

conventions' binding would be of the form

lambda xy... z. <e:. pressi on>

.i

IMPLEMENTATION
-age

7--5

corresponding to an equation for the new function, necf say,

newf(x, y,..., z) <= <expression>

Note in particular that function newf is the only function occurring

in the left hand side of its defining equation. The left hand s]-3h

could be more complex however: The arguments of newf may contain

calls to other functions, e. g.

new£(g(x), y, ..., z) <= <expression>

or newwf itself may be within the argument of some function, e. g.

g(nekf(x, y,..., z)) <= <expression>

In the latter case my system will postulate inverses to adjust the

definition of newf to bring newf to the outside of the left hand

side, e. g.

newf(x, y,..., z) <= ginv(<expression>)

where ginv is the inverse of g. This restructuring is only going to

be possible if the surrounding functions are unary.

My extension of 2nd order matching is to permit matches of this

form, giving rise to the more complex forms of definitions for the

new function. Note that in general such definitions are not

executable within NPL. Darlington terms such equational definitions

"implicit equations". The intention is to later use the system to

transform such implicit definitions into conventional recursive

equations.

The second extension to conventional matching is to match up to

associativi ty and/or commuativity when some of the functions within

the expression or pattern are declared to have these properties. In

this respect I follow Topor [1975;.

IMPLEMENTATION Page 7-9

7.3.1.3 Instantiating Pattern To Form Answer -

Following a successful match between expanded pattern and expression,

the system uses the bindings formed to construct the answer from the

original pattern. At this stage a certain amount of further tidying

up is also performed.

Bindings of $$ function variables are used to instantiate the

original pattern, eliminating all $$'s therein.

e. g. pattern :" $$(N, M)

binding for $$: lambda XY. (X + Y) +Y

answer : (N + M) +M

Bindings for && function variables are used to create

definitions of new functions. Within the original pattern, the &&'s

become calls to these new functions.

e. g. pattern : &&f(succ N)

binding for f: f (X) <= X+X

answer : f(succ N) with equation

f(X) <=X+X

If the same new function was mentioned several times in the original

pattern, it is possible for these separate occurrences to have led to

different bindings. After the match these are put together to form a

single function returning a tuple of results.

e. g. pattern : &&f(N) + f(N)

binding for f: first occurrence, f (X) <= g(X)

second occurrence, f(X) <= h(X)

answer :P+Q where <P, Q> == f(N) with equation

f(X) <= <g(X), h(X)>

IMPLEMENTATION Page 7-10

Redundant arguments of new functions are a'Ztomatically discarded

e. g. pattern &&f(N, M)

binding for f: f(X, Y) <= X +X

answer before simplification : f(N, M) with equation

f (X , Y) <= X+X

simplified answer : f(1;
0) with equation

f(X) <= X+X

Some of the distributing of where expressions down branches of

expressions prior to matching may need reversing in the answer and

new function definitions. When the same where clause occurs in

multiple branches of an expression, these occurrences are removed and

a single where expression inserted at the join of these branches

e. g. f((X where <X, Y> == g(Z)) + (Y where <X, Y> == g(Z))

becomes

f(X+Y where <X, Y> == g(Z))

Although these tidying-up operations are individually trivial,

the combined effect of them is to greatly ease the use of the

transformation step, freeing the user from the need to perform many

such trivial tasks himself.

7.3.2 Default Section

There are three default mechanisms within the system, used to

generate type information, cases and patterns. I explain these, and

consider how they might be extended to provide more assistance to the

user.

t'ý. ýr' 7--! 1 IMPLEMENTATION

7.3.2.1 Type Information Default --

When type information for some type is required, he de1=ý: ult

mechanism looks at the NPL DATA declaration for that type. Each of

the cases on the right hand side of the declarnt i . on will form a case

in the type information. If the case is in the form of a constructor

with arguments, the arguments are generalized to "Yar{ables, and if

they are the type being defined, the generated v^riable is aduc<< as a

"recursive case" of that case.

e. g. DATA truval <= true ++ false

is converted into

TYPE INFO T <= true

<= false

e. g. DATA num <= 0 ++ succ(nuin)

gives cases 0 and succ(num). The latter has argument nun, so

this is generalized to a variable forming case succ(N). Since

num is the type being declared, the variable is added as a

recursive case, giving

TYPEINFO N <= 0

<= succ(N) ,N

e. g. DATA set(alfa) <= nilset ++ conssset(alfa, set(alfa))

is converted into

TYPEINFO S <= nilset.

<= consset(A, S) ,S

When the. straightforward type information that this default

machanism generates is inappropriate, the user may provide his o'ýni.

Typical occasions when this is necessary are when the user seeks a

L'1PLEi4ENTATION Page 7-n

recursion which retructures the data rather than simply rezurs-J-ng nn

sub-components of it. Two examples of this have appeared before in

this thesis:

During transformation of the telegram problem the data ty

instr.. earn, instream <= in(list list char) is used. We required type

information

TYPEINFO INS <= in(nil.:: CLL)

<= in((sp:: CL):: CLL) , ýn(CL:: CLL)

<= in((ap(A):: CL):: CLL) , 4,. n(CL:: CLL)

The transformation of eqtips (second example of the transformation

system primer) was based on restructuring binary trees, the data type

DATA trecs(alfa) <= tip(alfa) ++ tree(trees(alfa), trees(alfa))

by using type information

TYPEINFO T <= tip(A)

<= tree(tip(A), T) ,T

<= tree(tree(T]., T2), T) ; tree(T1, tree(T2, T))

The former example could perhaps be generated by a slightly more

sophisticated default mechanism, and such a mechanism might be a

useful addition to the system. The latter example is more tricky,

because the last case does not decompose at all, only restructures.

It has been my policy to leave such trickery to the user, who has the

insight to see what form is required and when.

7.3.2.2 Cases Default -

When the user prefixes an argument within the left hand side of a

goal with CASESOr, this calls in the cases default mechanism to split

the goal by cor: si. dering the different ccrees that argument may tal"C .

IMPLEMENTATION Page 7-13

To do this, the mechanism examines the current type information

corresponding to the type of the argument in question. The cases in

the type information are taken as the cases for the argument.

e. g. COAL funnyplus(CASESOF N, M)

with type information

TYPE INFO N <= 0 -H- succ N

produces

GOAL f unnyplus (0, M)

GOAL funnyplus(succ N, M)

For parameterised types (e. g. set(alfa)) the particular instance of

the type of the argument is matched to the parameterised type, and

the bindings so formed used in generating variables of the

appropriate types for the cases.

e. g. GOAL union(CASESOF NS, MS)

where NS has type set(num), and with type information for

set(alfa)

TYPEINFO S <= nilset ++ consset(A, S)

set(alfa) is matched to set(num), binding alfa to num, and this

is then used to generate from consset(A, S) consset(N, NS) where N

is of type num, and NS of type set(num). Thus the goals

generated are

GOAL union(nilset, MS)

GOAL union(consset(N, NS), MS)

Page ;e ? -l_ :

7.3.2.3 Pattern Default -

This default generates simple patterns for use in right hand sides of

goals. When an argument of the left hand side of a goal is pr_ t-Iixet

by REC:. RSE, the default mechanism is called to generate simple

pattern.

The pattern forined consists of the function variable $$, around

the following arguments:

all the free variables of the left hand side

recursive calls of the left hand side - recursing on the

prefixed arguments.

To form the recursive calls, the prefixed arguiiient is matched to the

cases of the corresponding type information. If a match is found,

and the matched case has recursive cases, these are instantiated to

form the arguments for the recursive calls

e. g. GOAL funnyplus(RECURSE succ succ P, Q)

together with TYPEINFO N <= 0

<= succ N, N

succ succ P is matched by succ N, binding N to succ P.

Instantiating the recursive case, N, gives succ P, so the

generated pattern is

$$(P, Q, funnyplus(succ P, Q))

e. g. GOAL treefunction(RECURSE tree(TR1, TR2))

together with TYPEINFO T <= tip(A)

<= tree(T1, T2) , Ti , T2

generates pattern

$$(TR1, TR2, treefunction(TR1) , treefufction(TR2))

IA4PIýEi1ENT'týT'T_QN pýýc ; -i>

As a means of generating simple patterns, this default is effective.

The most obvious occasions when the patterns fail are when functions

include arguments which accumulate an answer being built up.

e. g. -1-H- aplus(nu:;), num) <= norm

--- aplus(O, M) <= M

- aplus (succ N, M) <- aplus (l-,
y succ M)

Clearly aplus (N; M) N+ N, but aplus is not a primitive recursive

function because its second argument is .n accumulator for the

answer.

When making recursive calls to such functions, t' he £. rgitment(s) c-hich

are accumulators will not usually remain the same in the recursive

call, so the default pattern (which would leave such an argument

unchanged) would fail. This is reminiscent of the difficulty Boyer

and Moore's original LISP theorem prover had with such functions.

A means of adjusting the default mechanism to cope with this

problem might be to put $$ around all free variables of the left hand

side in all positions within recursive calls which were not being

recursed upon (just in case they were accumulators).

e. g. for the earlier example of funnyplus, generate pattern

$$(P, Q, funnyplus(succ P, $$<, P, Q)))

Such liberal use of $$'s in argument positions will tend to slow down

matching. With a small amount of analysis, accumulators could be

detected so that only their argument positions need specie:

treatment.

CHAPTER 8

COi3CLUS IONS

In this chapter I summarise the work I have done, reflect o. C; e

possible continuations I see for it, and contrast the overall

approach with that of other researchers.

8.1 SUMMARY

The motivation for my research has been the need for bette, -

method: of developing software. The method I have concentrated on is

transformation, and I have taken a particular transformation

technique invented by Darlington and Burstall, and investigated its

application to larger examples. If transformation is ever to be a

practical method, a transformation system to help us is essential,

and a large portion of my effort has been devoted to developing such

a system.

The system and techniques are arranged in a hierarchical

structure. The very lowest level of this consists of the small

manipulations, folding, unfolding etc., which act as the foundation

of the whole structure. The repeated application of these small

manipulation:. would suffice to carry out our transformations, but on

all except the <<<osr_ trivial programs they are too small scale to be

practical.

GUNC, T "U:, IO! dS Pa; ýe 8-2

Each successive level of the hierärchy 7erves to provide a

higher-level view of transformations, whose justification lies in

expansion to the next level down.

The level. above fold /unfold is that of patterns -- these are the

primary means of guidance for individual transformation steps within

my system. The user need hardly ever consider the details of the

lower level folding and unfolding, and patterns are the l. okest level

of guidance he gives. Surrounding the use of patterns is the

system's control language for setting up the context in which

transformations take piece. The basic commands cri ýe viewed as the

operations within this level of the hierarchy. The . system provided

defaults can now be seen to act as means of simplifying the

generation of sequences of these operations.

Moving to the next level of the hierarchy, we find the tactics

for making efficiency improvements to programs. At present these

serve as entirely hand-applied aids to transformations. The

application of a tactic will require the user to provide a sequence

of system, commands to implement that tactic.

Finally the highest level of the hierarchy is the overall

strategy the user follows in performing the transformation. A

strategy will expand into a sequence of applications of tactics -

again this is entirely hand performed at present. Nevertheless, the

user benefits be being able to see the overall organisation of the

transformation if he adopts such a strategy.

The questions that now need to be asked are

Have my techniques and system been adequate for the problems

considered ?

CONCLUSIONS Page 8-3

What is the range of applicabilty of this approach?

8.1.1 Adequacy Of Techniques And System

The transformations of the telegram problem and the simple

compiler have been achieved using the system and techniques

developed. The final NPL programs produced are as near as we can Set

in NPL to the. efficient iterative solution, and the changes in

structure and efficiency between start and end are very major.

The last stage of converting from NPL to some imperative

. Language is obviously crucial to the success of this approach. Since

NPL has no destructive operations, there is an inherent inefficiency

in NPL programs. I recognise that conversion to an imperative

language is a non-trivial step, and certainly an area for further

investigation. My concern has been in the transformations before

this last step.

In tackling the text formatter the system was barely adequate,

and it became clear that there are some aspects of the large

transformation that are not being adequately captured in any level of

the hierarchical organisation. At the tactics level the combination

of two complex functions may give rise to a choice between

alternative calling structures of the combination, and what appears

to be missing is the ability to express that choice in anything but

the specific system commands of the next level down.

The need to diverge at one point from the overall improvement

strategy should not be regarded as a failure, indeed it is

encouraging that so much of the transformation was achieved following

the simple strategy, and by considering the hierarchy we see that the

CONCLUSIONS page ii-:,

simple strategy is hphaving as a default to suggest a sequenc_ of

tactics to be applied, from which we diverge only if our intuition

tells us it is necessary to do so.

Problems have been brought to light by the text formatter

transformation. This exercise has not had purely negative rest-Its -

possible means to overcome the new problems have became apparent.

One such improvement has been the incorporation of code to cause

equations to be stored in a disc file, and only brought into core

when required within the context of a transformation. This enabled

the text formatter to be attempted within the available computing

resources.

Above all, this work has reinforced the need to always try

larger examples rather than simply assume that current techniques

will suffice and that no new difficulties will arise.

Program maintenance is an area I have not had time to explore in

depth, but certainly one of great practical importance. From the

small experiments I have tried, the results are encouraging. The

structured transformations do help when it comes to modification.

Again there is a need for more investigation by trying larger

examples to see what difficulties occur.

8.1.2 Range Of Applicabilty

A serious question is what is the range of programs that this

approach can be applied to. In terms of sheer size of the problems,

it is clear that this approach will need further development in orc'er

to tackle transformations any larger than that of the text forýº te.

:: ONiLUS IG: JS

The fact that it has been used upon a pro cam of that size,

larger than the trivia]. examples upon which the : *, cthods %. %2re

originülly developed, suggests that the approach is not witioý-. it

merit. As for the width of the range, it is clear that tlx:

declarative nature of ; JPL is unsuitable for reprE. sedting, progp; i7,,:,

which re.; upon sophisticated side effects, for example list co, yin;;

al i-tlhrr. that achieve their time and space efficiency by cu; ining

manipulation of pointers within data structures, A good deal of th; L

c ffor. t of programming is not concerned with such problems, rather

with the overall organisation of large programs. Cer+.. ainly there

will always be the need to make some portion as efficient as

possible, and if necessary such portions wi: '_1 have to be individually

optimised (I do not preclude the use of other transforr_st. ion

techniques to achieve this). I argue that the program organ.!. sauna

can usually be tackled by the transformational approach.

8.2 EXTENSIONS

8.2.1 System Improvements

The first class of extensions are those which can be seen as

obvious improvements of the existing system.

The simplest improvements would be upgrades rather than

extensions - improving efficiency of the system, and interaction with

the user. Such improvements tend to be never ending, as continued

use of the system highlights the areas most needing attention.

Within chapter 7, Implementation, I suggested how the default

mechanisi: iý could be enhanced to uo more for us. I have beer. ward of

CONCLUSIONS Page 8-6

incorporating too many defaults into the systerd, preter; -_r' g to let

the user guide the system through non-trivi&_1 transforr, aticns, and

introducing a default only when I perceive it to be generally useful.

Investigation of more examples is required to see which of the

possible extensions to defaults are truly useful.

At present the transformation strategy and tactics are

human-generated, and serve to help the user guide the sys tem, rather

than guide the system directly. The "comb Lne" and "tuple" tactics

could be incorporated as commands to the system, which would be

expanded into sequences of conventional transformation commands

(CONTExt USING ...). In the same fashion as the provision of defaults

for patterns etc., I envisage a default being used to expand tactics

into commands for simple examples, with the user stepping in only for

more complex problems. From the hierarchical viewpoint we see that

such an extension would essentially be the automation of the tactics

level. In a similar manner the strategy level could be included

within the system, and here the simple strategy I have been following

would be provided as a default at this level.

8.2.2 Extending Transformation Methods

As I have already discussed in the summary, the transformations

I deal with lead to programs within NPL, and conversion to an

imperative language is still required. This suggests that the

transformation system may form only part of a larger program

development system, where a final NPL program is input to some

further staý. o to do the conversion. This is more a matter of

piugging in Cie system into a larger machine than extend in;, it. More

CONCLUSIONS Pa d2 8--7

interesting are the possibilities for extend] i-g, the t ransforrý+tion

methods themselves:

One such extension arises from taking heed of scher_, ata--driven

program transformation. (Darlington and Burstall ['976])

Transformations within my system very often do not rely upon the

detailed behaviour of all the functions involved, for some of the

functions perhaps only a few of their properties are sign ifi_cirt.

Thus when faced with the transformation of similar programs, :: 'Lose

functions are identical with respect to these properties, essentially

the same transformation will suffice. This suggests that the first

transformation could be generalized to form a transformation schema,

the input being the generalized initial program, the output the

generalized transformed program. Then when given what looks like a

similar problem, it could be matched against the schema input and if

successful, the schema output would be instantiated to give the

answer. This would require the introduction of a schema matcher and

some procedure for generalizing from a specific transformation to a

schema. An alternative approach would be to transform schematic

programs directly. This can be viewed as verifying schemata in terms

of the unfold/fold operations, thus having the advantage of providing

an easily extendible and verifiable set of schemata. Interestingly,

whilst the possibility of incorporating schemata was apparent before

the transformation of the text formatter, it was only during this

that new difficulties arose to suggest that schemata might be

necessary. I see their incorporation as the logical next step in the

development of the system.

Another direction to consider is based on changing NPL in some

manner. Two deficiencies of NPL are the lack of any suitable form of

CONCLUSIONS Page 8-S

data abstraction, and of higher order functions. Tneir inclusion

would add to our tools for writing well modular: sed easy to

comprehend programs. At Edinburgh Eurstal l and MacQueen .; re wo _kin±_;

on a new language, HOPE, which is essentially NPL with these features

included. The transformation methods will require extension to cope

with them. Hopefully such an extension would be fairly natural.

Much more radical a change would be to introduce some form of

destructive operator into NPL. The extension of the transfort atio

techniques to cope with this would be much harder, however the

potential benefits - the ability to transform to imperative programs

and investigate algorithms relying upon destructive ogeratLons -- : wake

this an-enticing area for study.

8.3 COMPARISON WITH OTHER WORK

Finally I contrast this approach to transformation with the wor; ý:

of other researchers.

One of the key decisions underlying my approach is the

acceptance of user guidance. This means that my system does not

attempt to transform programs totally automatically as does Manna and

Waldinger's DEDALUS system. As a consequence of this I am able to

tackle very much larger transformations which would be beyond the

capabilities of DEDALUS like systems. The problems that automatic

systems can handle (which might occur within larger transformations)

require a small amount of user guidance within my system, and my

approach has been to incorporate a few default º echanisms t: i ich the

user can call into action when he perceives a transformation to be

straightforward.

CONCLUSIONS : ̀ aý ý ý--9

interactive systems which accept a sm21 {T^:: r of "ZI fr,? -

the user, e. g. Darlington's system based upon: folding. /unfolding; are

able to achieve more than the entirely automatic systems, but are

themselves incapable of tackling the large transformations 1 have

bean considering. The semi-automatic s, . stems commonly incorpozate

several "strategies" for performing entire transformations which the

user switches on or off. Within my approach such "strategies" are

replaced by defaults within the hie: archicai levels of apt. - stem.

Instead of being limited to only switching them on or of. f, the user

can apply there; and override them at the points where his in ition

tells him to do so. If automatic or semi-automatic systems are to be

developed to be applicable to larger programs, I feel that soon form

of structuring of the transformation process akin to my hierarchical

arrangement is essential.

The scope of my system is limited to manipulations %iýthin

recursion equations, hence I am unable to tackle. problems such as

recursion removal and conversion to imperative languages, which

systems such as Darlington and Burstall's schema lased work was

developed for. Bauer's proposed system would be very wide-ranging,

encompassing the whole spectrum from high-level synthesis to

manipulation of machine code. S-1gnIficantly this system Js planned

to rely entirely upon user guidance to direct its application i-1h ough

a transformation.

Lastly there is the hand-performed transformation work, ,: cich

has been applied to relatively complex algorithms, sometimes as a

means of verification rather than software construction, as

epitomised by iiartelli's transformation of an algorithr. to copy

cyclic list structures. The final programs produced can be : '`ry

CONCLUSIONS Page 8-10

complex in operation, making use of side--effects, structure sharing,

etc. This requires sophisticated reasoning during the

transformation, well beyond the capabilities of any existing

machine-based system. The size of the programs transformed by hand

is not as great as that of the text formatter however, which suggests

that although hand-transformation may be suitable for complex but

compact algorithms, to transform a straightforward but long program

is best done with machine aid.

BIBLIOGRAPHY

Atsac, J. [19771 La Construction to Programmes Structures. Dunod,
Paris. (especially Chapters IX and XII).

Aub in, R. (19751 Some generalisation heuristics in proofs by
induction. Proceedings of International Symposium on Proving
and Improving Programs, Arc-et-Senans, France, pp 197-208

Aubin, R. [1976] Mechanising structural Induction. Ph. D. thesis.
Dept. of Artificial Intelligence, University of Edinburgh

Bauer, F. L., Broy, M., Partsch, H., Pepper, P. and Wossner., H. (1979)
Systematics. of transformation rules. TUM--INT-B ER--77-12--0350
Institut fur Informatik, Technische Universitat Munchan.

Bauer, F. L., Partsch, H., Pepper, P. and Wossner, H. [1977] Notes on
the project CIP: outline of a transformation system.
TUM-INFO-7729 Institut fur Infprnatik, Technische Universitat
Munchen.

Broy, M. [1977) Program development : the Ackermann function as an
example. TM-INFO-7716 Institut fur Informatik, Technische
Universitat Munchen.

Broy, M. [1978) A case study in program development : sorting.
TIJM-INFO-7831 Institut fur Infcrmati. k, Technische Universitat
Munchen.

Boyer, R. S. and Moore, J S. [1973] Proving theorems about LISP
functions. Proceedings of the Third International Joint
Conference on Artificial Intelligence, Stanford, California, pp
486-493

Burstall, R. M. [1969; Proving properties of programs by structural
induction. Computer Journal vol 12 no. 1 pp 41-48

Burstall, R. M. [1977] Design considerations for a functional

programming language. Proc. of Infotech State of the Art
Conference, Copenhagen, pp 45-57

Burstall, R. M., Collins, J. S. and Popplestone, R. J. (19771
Programming in POP2. University Press, Edinburgh.

Burstall, R. M. and Darlington, J. [1975] Some transformations for
developing recursive programs. Proceedings of International
Conference on Reliable Software, Los Angeles, California, pp
465-472.

Burstall, R. M. and Darlington, J. [1977] A transformation system for
developing recursive programs. JACM vol 24 no. 1 pp 44-67
(revised and extended version of their Los Angeles paper, 1975).

Bibliography Yýb"_:

Burstall, R. M. and Feather, M. S. f19,, 7 81 r-'rog,, am d j. "ý 1 ae-ýr
transformation: an overview. Pro eeding- of Toulouse C'ST,
Course on Programming, Toulouse.

Chatelin, P. [ý 976] Manipulation de rrogranºrc : glue i rues
Transformations par duplication de bou_Ies. Fxpo-e aux ? our',: ees
Infornatiques de Nice, Universite de Nice.

Chatelin, P. [1977] Self-'redefinition as a program minipulati 'n
strategy. In Proceedin gs of Symposium on Artific:. a::.
Intelligence and Programming Languages, AN SIGiýLSN NOTICAFE'S an. i
SIGART NEWSLETTER Aug 7/7 pp 174-179

Clark, K. and Darlington, J. [19771 Algorithm, c1P. ̂ s- ficaItion thr2ugh
synthesis. Internal Report, Dept. of Cori putii', and Cc.:; t c' , Imperial College, Londcn. Tc appear in CoToyuter Jcurnal.

Cohn, A. [1979 High level proofs in LCF. in Proceedings of thEý Lth
International Works]-)op on Automated Deduction, Au3tin,, Te --s,
February 1979.

Cousineau, G. (1976] Un systeme complet pour. 1'equiw4lence des
schemas iteratifs, 2me Colloque international de 1'lnstitut de
Programmation.

Dahl, O. J., Dijkstra, E. W. and Hoare, C. A. R. [1972) Structured
Programming. Academic Press.

Darlington, J. [19721 A semantic approach to automatic program
improvement. Ph. D. thesis. Dept. of Machine Intelligence,
University of Edinburgh.

Darlington, J. (19751 Applications of program transformation to
program synthesis. Proceedings of International Symposium on
Proving and Improving Programs, Arc-et-Se. nans, France, pp
133-144

Darlington, J. (19761 Transforming specifications into efficient
Programs. Invited paper at IFIP Working Group 2.1 Conference on
Software Specifications, St. Pierre-de-Chatreuse, France. Also
published in New Directions in Algorithmic Languages.

Darlington, J. [1976a] A synthesis of several sorting algorith? i. s.
D. A. I. Research Report no. 23, Dept. of Artificial
Intelligence, University of Edinburgh. To appear in Acta
Informatica.

Darlington, J. [1977] Program transformation and synthesis: precent
capabilities. D. A. I. Research Report no. 48, Dept. of
Artificial Intelligence, University of Edinburgh. Also Research
Report no. 77/439 Dept. of Computing and Control, Imperial
College of Science and Technology, London.

ný gý 3 Bibliography

Darlington, J. [19781 Pragrat7 tr=º_isfor3at; on involving : 1t::: ^ý?
structures an eYtanded example. Lroceecings, 7-1 v

ý0 j 1t.

In_ernat: i(, nal sur la Programrcation, Paris.

Darlington, J. and Burstail, R. M. [1973) A s, -ster, which «:. to--, tic--Illy
improves programs. proceedings of Third Tnte-rnut-: Lcnai Joint
Coa fFrence on Arti ficial Intell.. gericc, Stanford, pp 479--%3 ý, 5

Darlington, J. and Burs tal 1, R. H. (1976) Ar y9 teal -, h ch utOnaH t1c 1y
improves programs. Acta tnforma `ica 6, pp 41--5O (First 2preared
as their [1973) paper)

Dijkstra, E. W. t1.9761 A iýzscýplýne of Prcs,; ýý,:: ir. ýý Pr:. ztice Hall.

Feather, N.. S. (i 978j Pr_ og_"am transfo+-a-, at_i:; ri c-pp1ied to the teleg r-ic;
problem. Proceedi. a; s, 3eme Colloque Z:. ternatiornal sur la
Pro(; rammat: ion, Paris,

Feather, MR S. [3.978a] "Zt#iP" program t-r. ýnsForria: ion s_; ý -em prig-ýer n1
users' manual. D. A. 1. Research Report no. 54, Dept. of
Artificial Intelligence, Universicy of Edinburgh.

Floyd, k. W. [1.967] Assigning meanings to progrmms. Proceeding!: o
Symposium in Applied Mathematics, American Mathematical. Soc !. ct. y,
vol 1.9 pp 19-32

Gerhar t-, S. L., Lee, S. and del: oever, WP. f1(-'79j The evolution of
list copying algor:;. thº. is. Proceedings, f, t? i F, GIi POPL Symposium,

Texas. pp 53-57

Gnatz, R. [1977) Zur konstruction von prograiuinen durch

transformation. TUM-INFO- 77= 1 Institut fur Innfor a_ý'K,
Technische Universitat Munchen.

Gnatz, R. and Pepper, P. [1977] fusc: An example in program
development. TUM-INFO-7711 Institut fur Informatik, Technische

Universitat Munchen.

Good, D. I. [1970) Toward a man-machine system for proving pro? ram
correctness. Ph. D. Thesis, University of Wisconsin.

'Green, C. [1916] The design of. the PSI program synthesis sys'-e: n.
Proc. of the Second International Conference on Softvare

Engineering, San Francisco, California, pp 4-18.

Green, C. and Barstow, D. [1975] Some rules for the automatic

synthesis of programs. Advance Papers of the Foy r th
International Joint conference on Artificial Intelligence.

Tbilisi, Georgia, USSR, pp 2-32-239.

Green, C. and Barstow, D. [1977] Program synthesis L owledgc fcr

efficient sorting. Dr ; ft report, A. I" Lqb, Ccr,,; :. ter Sc ie!. ce

.,:: t. anfcc"ci liniý --ý: sity, Ca_ _1- oroin. Dept

Bibliography Laý, e 4

Gordon, M.,, Milner, R. and L? sdsworth, C. [!
-,

76 i': 0 LCF maip sa .
Dept. of Computer Science, University of rdin_;, urgh,

Hayes, P. J. [19731 Computation and deduction. Proc. of 1973
Mathematical Foundations of Co. 7nuter Science, C&echoslov"-k an
Academy of Sciences.

llendersony P. and tlorr. <<on, J. [1976] A lazy evaluat_cr. 3rd Syvp.
on Principles of Programming Languiages, Atlanta. pp 95-103

Henderson, P. and Snowdon, R. (1972i An. experiment in struci: ured
programming, BIT 12 pp 3k'-53

Hoare, C. A. P,.. C19691 An axiomatic basis : o;. cctr. putec prob r.: L". c' inh .
CACM vol. 12 no. 10 pp `; b-583

Iluet, G. and Lang, R. '11377] Proving :: nd applying program
transformations expressed 4; i? ºý second-corder patterr. s. TRZA
Rapport dc Re%--. ºerche no. 226

Jackson, M. [19751 Principles of Program Desi_gn- Academic Press.

Jones, C. B. [19761 Program development using da-: a abstraction.
ESRI, La Hulpe, Belgium.

Kernighan, B. W. and Plauger, P. J. Lh 976] Software 1oc1',
Add!

-son-Wesley.

Kibler, D. F. [1978] Power, efficiency, and correctness of
transformation systems. Ph. D. ? Thesis, University of
California.

Kibler, D. F., Neighbors, J. N. and Standish, T. A. (1.977] Program
Manipulation via an efficient production system. In Proceed ing
of Symposium on Artificial Intelligence and Programriiiig
Languages. ACM SIGPLAN NOTICES and SI_GART NEWSLETTER Aug 77 pp
163-173

Kott, L. [19781 About transformation system :a theoretical study.
Proceedings, 3eme Colloque International sur la Programmation,
Paris.

Kowalski., R. [1977) Programming = logic + control. Imperial College
Report.

Kreig-Bruckner, B. [1978] Concrete and abstarct specification.
modularisation and program development by transformation.
TIRM-INFO-7805 Institut fur Informatik, Technisc e Universitat
Munchen.

Ledgard, H. [1974] The case for structured prc. gramming. BIT 14 pp
45-57

Bibliography Page 5

Lovemann, D. ; 19773 program improvement by source to source
transformation. JACM vol 12 -io. 1 pp 121 - 1_45

Manna, Z. [19691 The correctness of prcgrams. Journal of Computer
and System Sciences, vol 3 no. 2 pp 119-127

Manna, Z. and Waldinger, R. J. (1975) Knowledge and reasoning in
program synthesis. Artificial Intelligence vol. 6 no. 2 pp
175-208

Manna, Z. and Waldinger, R. J. '1977) Th(l automatic synthesi- of
recursive programs. Procecdinks of AGM SIGA: T--SIGPLAN Symposium
on Artificial Intelligence and Programming Languages pp 29-36

Manna, Z. and Waldinger, P. [1977a] Synthesis: Dreams => Programs.
Stanford Al Memo 302, Stanford University.

Martelli, A. (1978] Program development through successive
transformations: an application to list processing.
Proceedings, 3eme Colloque international sur la Programºmetion,
Paris.

McCarthy, J. [1963] A basis for a mathematical theory of computation.
Computer programming and formal systems pp 33-70, Edited by
P. Braffort and D. Hirshberg, North Holland, Amsterdam.

McKeeman, N. M. [1976] Respecifying the telegram problem. TR--77-2-001
Information Sciences, University of California, Santa Cruz.

Milner, R. [1.972] Logic for Computable Functions; Description of a
Machine Implementation. AI Memo no. AL4-169, Computer Science
Dept., Stanford

Moore, J S. [1.974] Introducing Iteration into the Pure LISP Theorem
Prover, CSL-74-3, Xerox Palo Alto Research Center, Palo Atto,
California.

Partsch, H. and Pepper, P. (1976] A family of rules for recursion
removal related to the "Towers of Hanoi" problem. Rep.
no. 7612 Institut fur Informatik, Technische Universitat
Munchen.

Partsch, H. and Pepper, P. [1977] Program transformations on
different levels of programming. TUM-INFO-7715 Institut fur
Informatik, Technische Universitat Munchen.

Pettorossi, A. [1977] Transformation of programs and use of "tupling

strategy". Proceedings of Informatica 77 Conference, Bled,
Yugoslavia.

Pettorossi, A. [1978] Improving memory utilization in transforming
programs.

Bibliography pa(ý
ý,.
n j:;

Schmitz, L. [19781 An exercise in program synthesis : ai lgc-. -i thin, --- for
computing the transitive c_F_ocure of a rý. iatior.. Be iC tt
no. 7801, Fachbereich Informatik, Hochschule d? r Bucde--'. -. --zhr
Munchen.

Schwarz, J. [19771 Using annotations to make recursion t LO! ̀',
behave. D. A. I. Research Report no. 43, Dept. of Artificial
Intelligence, University of Edinburgh. Also appeared in I1; 6L
transactions on Software Engineering.

Schwarz, J. [19e8] Verifying the safe use of destruct
. ve operat: iciis

in applicative programs. Proceedings, 3eme Co] Toque
International sur la Programmation, Paris.

Sickel, S. (1977) A logic--based programming methodology. Technical
Report: no. 77-8-001., Information Sciences, University of
California, Santa Cruz, California.

Sicket, S. [19781 Removing redundant recursion. Technical. Report
no. 78-8-003, Information. Sciences, University of Califor tiia,
Santa Cruz, California.

Standish, T., Harriman, D. C., Kibler, D. F. and Neighbors, J. M. [19761
The Irvine program transformation catalogue. Dept. O. L.
Information and Computer Science, Univ. of Cal. Irvi_i. e,
Irvine, Cal.

Standish, T., Harriman, D. C., Kibler, D. F. and Neighbors, J. M.
[1976a] Improving and refining programs by program m ! r_ipuiaLi; ýn.
Proc. ACM Annual Conference, pp 509-516

Topor, R. [1975] Interactive program verification using virtual
programs. Ph. D. thesis, University of Edinburgh.

Waldinger, R. J. [1977) Achieving several goals simultanenu, -ý;
iy.

Machine Intelligence 8: Machine Representations of Knowledge
(Eds: E. W. Elcock and D. Michie) Ellis Horwood Ltd., Chichester.,
England.

Warren, D. [1977) Implementing Prolog - compiling predicate logic

programs. U. A. I. Report no. 39,. Dept. of Artificial
Intelligence, University of Edinburgh.

Wegbreit, B. (19761 Goal-directed program transformation. IEEE
Transactions on Software Engineering, vol SE-2, no. 2 pp 69--80.

Wirth, N. (1971] Program development by stepwise refinement. CA_CM

vol 14 no. 4 pp 221-227

Wirth, W. [19731 Systematic Programming. Prentice Hall.

etns Zahn, CT. [1976) A brief analysis of the telegram prob.
Unpublished

APPENDIX A

NPL

NPL is a first order recursion-equation language designed and

implemented by Rod Burstall at Edinburgh based on work l i..! in af--d Jr

Darlington. Burstali [1977,1 provides a brief descirptlon of '17L,

motivations behind its design, and desirable exte ions to it . In

this appendix I informally describe the version of the language ; -sed

in the ZAP transformation system.

An NPL program consists of

Infix and prefix declarations - these declare symbols to be

infixes or prefixes

data definitions - by which the programmer introduces his own data

types

type declarations for functions and variables

recursion equations for functions

A program is surrounded by DEF... ENID& Once the appropriate

definitions have been made, the user evaluates expressions by

enclosing them within VAL... END. The answer is printed on the

terminal. NPL at present makes no distinction between upper and

lower case, but for clarity I adopt the conventi_r. n of upper case. for

NPi

NPL keywords and variables, lower case for ev-ry-Lh i! g, : e'se.

A. 1 INFIX AND PREFIX DECLARATIONS

Page A-2

Symbols to be used as infixes or prefixes must first be declared

as such.

e. g. INF 4- declares + and - to be i. nf xes with precedence 4

(to indicate how tightly to bind to it6 argume t when expressions

are not fully parenthesised).

e. g. PRE 20 succ declares succ to be a prefix with precedence 20

thus succ N+M parses as succ(N) +M rather than succ(N + M)

A. 2 DATA DEFINITIONS

The user may define his own data types by means of data

definitions.

e. g. DATA weekday <= mon ++ tue ++ wed ++ thu ++ fri

DATA is a keyword to the NPL interpreter, announcing a data

definition. "<=" and "+-¬-" are special symbols too; to the left of

the "<=" is the name of the data type being defined; to the right,

separated by "-F+"'s, are the cases of the defined type.

Thus the example is defining a new type, weekday, which has 5

different cases, mon tue wed thu fri.

Similarly we might say

DATA truval <= true ++ false (i. e. truthvaluesj

DATA weekend <= sat ++ sun

Previously defined data types may occur in defi ý tions of new

t ypes

NPL Page A-3

e. g. DATA day <= dy(weekday) ++ dy(weekend)

The "dy" is a constructor for days, converting a weekd=ay or weekend

into a day. This is necessary;

DATA day <= weekday ++ weekend

would not suffice, since then "mon" could be either a weekday or a

day.

More interesting data types are built up recursively

e. g. PRE 20 succ

DATA num <= 0 -H- succ num

defines a type num, either 0 or succ num. Thus expressions of this
1

type are 0, suet 0, succ succ 0, etc. This type represents natural

numbers, either 0 or the application of succ (short for successor) to

a number. Thus 5 would be written succ succ succ succ succ 0.

Data types may be parameterised.

e. g. INF 4 ::

DATA list(alfa) <= nil ++ alfa:: list(alfa)

defines a parameterised type list, of alfa"'s. ":: " is an infix

constructor for lists, i. e. the infix form of cons in the LISP

notation. The parameterisation allows us to build lists of any type

we like (e. g. list(num), list(day), li. st(list(num)) etc).

alfa acts as a type variable and is predefined by the NPL system

(other predefined type variables are beta, gamma, delta, epsilon).

Data types may be mutually recursive

e. g. DATA globl <= nill ++ gl(glob2);

glob2 <= ni12 +H- g2(globl)

the "; " separates the data definitions to the right of the single

"DATA", allowing the reference to gl. ob2 prior to its definition.

NPL

Some d-ºta types are alreAd declared by he NP), -)'; st. ': -Ir. These

are truval, num, list(alfa) and set(alfa` . (This las:. Or. e, i b

DATA set(alfa) <= nil-set +± conssLt(alfa; set alfa))

Numbers may he typed in as decimals rather than many s'1cc' s.: "e

irLterprcter converts them to the succ form for evaluation, and print

them out as decimal: afterwards.

Lists may be input Without needing to use many ":: "'s by pu: ting

the elements to go into a lisr within squa-cc: brackets, separutcd by

commas .

e. g. [1,2, i 1 is equivalent to 1:: (2: (3:: ni1))

The interpreter reads in lists in either form, and prints them out

using square brackets.

A. 3 TYPE DECLARATIONS FOR FUNCTIONS AND VARIABLES

All symbols to be used as functions or v:; riables must have their

type declarations made in advance.

Variable type declarations take the form

VAR variable names separated by commas : type

VAR is a special symbol to the interpreter, announcing the start of a

type declaration.

e. g. VAR N, M : num declares N and M to be variables of type num

e. g. VAR NL : list(num) declares NL to be of type list(num)

e. g. VAR A, Al : alfa declares A and Al to be of type alfa

e. g. VAR omega : type declares omega to be a type variable

NPL Page A-5

Function declarations take the form of an equation, the -Le`;

hand side being the function symbol applied to argument(') which

are its input type(s), the right hand side the result type.

e. g. +i-+ square(num) <= num

no is another special symbol to the interpreter, ind.. cý, r. ing the

following equation is a function declaration. 11hus in the example

square is declared to be a unary function accepting an argument of

type num, and producing a. result of type num.

e. g. INF 6+

+++ num + nt. m <= num

declares + to be an infix binary function, taking numxrur, to num.

e. g. +4+ length(iist(alfa)) <= num

makes type declaration for length. Note the use of ri.

parameterised type.

A. 4 RECURSION EQUATIONS FOR FUNCTIONS

These take the form

left hand expression <= right hand expression

it if is yet another special symbol to the interpreter. The left

hand expression is of the form f(el,..., en), n >= 0, where f is

the function being defined, and el,... en are expressions including

only variables and constructor symbols. The right hand side is

any expression, provided that all its free variables occur in the

left hand expression. Before giving all the forms an expression

may take, here are some simple examples:

lengtli(nil) <= 0

--- length(A:: AL) <= succ length(L)

NPL Page ` A-to

--- square (N) N*N

Evaluation of expressions makes use of these equations. Gig. c an

expression to evaluate, the interpreter attempts to matcL. it (or

portions of it) to left hand sides of equations. If a succes^ful

match is found, the bindings of the Y ̂ riables . 1r. th, left hand

expression are used to instantiate the variables of the right hand

expression to give the answer.

e. g. with the above equations, evaluating ertgt. (nß_l) gives 0.

Evaluating length(l:: iL=1) gives succ length(r_ 1) . which in turn

gives succ 0.

Thus the equations can be thought of as rewrite rules,

applied from left to right. Evaluation 1s call-by-value, i. e.

leftmost innermost portions of expressions are evaluated first.

Evaluation continues as long as possible, until no further

evaluation is possible.

In addition to variables and applications of funct-Ions,

expressions may take the following forms:

A. 4.1 N-tuples

These are written as <e1, ..., en>, n >= 1.

The type of such - expressions must be written as

tuplen(type 1, .. -, typen) .

e. g. ++-&- pairnum(num) <= tuple2(num, num)

-- pairnur, (N) <= <N9 N+1 ý

In fact n-i: uples act as constructors, and may occur Within left

hand sides of recursion equations.

NPL Fage a--t

A. 4.2 Where Constructs

These take the form

expression) where <V 1, ... Vn> == expression2, n >= 1.

Expression2 must have the same type as <V1,..., Vn>, i. e. an

rL-tuple. V1,... Vn are variables which within the scope of

expressions become bound to the corresponding components of

expr. ession2t if it can be evaluated to an n-tuple.

e. g. N+N where <N> -_ <1>

e. g. NI-N where <N, M> == (<P, 2> where <P> == <3>)

A. 4.3 Conditionals

A special three argument function, cond, is provided by the

system. Its type declaration is

+f+ cond(truval, alfa, alfa) <= alfa

The interpreter first evaluates the first argument, and if this

evaluates to true, only then evaluates the second argument to give

the answer, else if to false, the third argument.

e. g. cond(N=0 ,0, M/N) will evaluate MIN only if N=0 evaluates

to false.

For certain uses cond is somewhat clumsy to write.

e. g. cord(p0(N), f0(N), cond(pl(N), fl(N), f2(N)))

this can be written more easily as

--- g(N) <= f0(N) if p0(N)

<= fl(N) if p1(N)

<= f2(N) ifnot

(Omitting the all encompassing final ifnot clause is possible but

NPL Page A-8

not recommended!) .

A. 4.4 Set Expressions

These approximate traditional mathematical notation for sets.

e. g. <: 1,2,3 :>

"<: " and ": >" are set brackets. The expression builds the set of

elements 1,2,3 . Thus the set brackets are analogous to list

brackets, except they do extra work to remove duplicate elements.

e. g. <: f (N) :N in es & p(t1) :>
I

es is any expression evaluating to a set.

p(N) is an optional predicate (i. e. evaluates to a truval)

possibly including occurrences of variable N.

f (N) is an expression, possibly including occurrences of

variable N.

The result is the set of f (N)`s for all N in es such that

p(N) is true. Omitting the predicate is equivalent to putting

true in its place.

e. g. <: N: N in <: 1,2,3 :1-, :>

evaluates to <: 1,2,3 :>

e. g. <: N+N :N in <: 1,2,3 :>&N%1 :>

evaluates to <: 4,6 :>

Several bound variables may range through sets

e. g. <: f (N, M) :N in es & p(N, M) ,

M in es l& p1(M) :>

so, e. g. <: N+M :N in <: 1,2 :>, M in <: 3,4 :>: >

evaluates to <: 4,5,6 :>

NPL Page

A.! ý. 5 "all" And ",;:: tý: " Expressions

In a sis filar manner to sec expressions, these are modelled

upon traditional inathenati_cal flotation.

e. g. ALL N in es : p(N)

e. g. EXISTS N _n es : p(N) with obvious meanings.

e. g. ALL N in <: 1,2,3 :>: N f= 0 evaluates to true

A. 5 EXAMPLE PR OGRAM

Comments mad- be included in NPL programs by prefixing them

with "///". They are terminated by the next NPL special symbol

(i. e. one of +++ ---- END INF PRE DATA). The following is an

example NPL program:

DEF
/// define numbers, addition, mutiplication and factorial

I

INF 20 succ
DATA num <= 0 +4- sVCc uum

VAR N, M: num

+++ nurs + nu; n <= num
--- 0+ Iv <= N

--- succ M+N <= succ(M + N)

INF 6*
+++ num * nun <= immi
--- 0*N <= 0
--- succ If *N <= N+ M*N

+++ factorial(num) <= num
---- factorial(O) <= 1

--- factor; al(succ : y) <= succ N* factorial(N)

END

After this we could say

VAL factorial(3) END which evaluates to 6.

NPL

A-6 NPL SYNTAX

I adopt the following syntax conventions:

Page A-: O

Lower cases indicates a non-terminal.
"... " indicates (optional) repititior., the separator being
the item to each side of the "... ".

NPL program :: = DEF stp. tement. ". statement END

statement :: = INF precedencedec
PRE precedencedec
DATA datadef ; ... ; datadef (VAP. vardec
-i-I-l- jlndec I --- receqn

preceder. cedec :: = num syrabol , ... , synhol

'datadpf :: = type`xpn = typeexpr_ ++ ... ++ typeexpr.

typeexpn :: = symbol I
symbol (typeexpn , ... , typeexpn)(
pres}nnbol typeexpn ý
typeexpn. infsymbol typeexpn

vardec :: = symbol , ... , symbol : typeexpn

fndec :: = fndeclhs <= typeexpn

fndeclhs :: = symbol (
symbol (typeexpii , ... , typeexpn
presymbol typeexpn ý
typeexpn infsymbol typeexpn

receqn :: = pattern expn i

pattern <= expn IF expn i. fclauses

ifclauses :: = empty { <= expn IF expn ifclauses (<= expn ifnot

, pattern :: = symbol I
symbol (patexpnlist)I
presymbol patexpn I

patexpn infsymbol patexpn

patexpn :: = symbol. I< patexpnlist >I[patexpnlist]
symbol (patexpnlist)I presymbol patexpn
patexpn inf symbol. patexpn

patexpnlist empty I patexpn , , patexpn 0a0

expn :: = symbol { symbol (expniist
presy: iirt, o?. expn expr, irnfsy: nbol expn ý
[expnlist l(< cxxpnlis: _ *, I whereexpn ý
setevpn I allexPn I existsexpn

NPL Page A-11

expnl-i st :,. = empty I expr. , ... , expn

empty -

whereexpn :: = expn WHERE tuple == expn

setexpn :: = <: expnllst :>I
<: expn : generator , ... s generator :>

generator :: = symbol IN expn symbol IN expn & expn

allexpn :: = ALL generator : expr.

existsexpn EXISTS generator : expn

infsymbol :: = symbol ** But must have been
declared as an infix

presymbol symbol k* But must have beea
declared as a prefix

symbol :: = alphabetic I alphabetic alphanumeric. --alphanumeric
sign... sign

alphabetic :: = AIBj.... IZ

alphanumeric :: = alphabetic I numeral

numeral :: = 01j.... j9

sign :: =+ I<I>I: I@

