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ABSTRACT 

Much of the difficulty of programming can be atcribute: ' to the 

clash between the goal of efficiency and other desirable goals, s! Lch 

as clarity, reliability and m3difiability. 'I"his thesis proposes 

program transfornat4. on as a suitable methodology for program 

development to circumvent this difficulty. 

Following this methodology, a program is developed by first 

writing a simple str. aightforws. rd solution to the problem, unhampered 

by efficiency considerations. Efficiency is then introduced in a 

separate step by transforming the simple solution. 

In order that this be a practical methodology, transformation of 

large programs must be possible to perform reliably and easi. l y. 1"(. 'is 

thesis presents an implemented machine-b::, sed transformation system 

which attempts to realise these needs. 

The system is based on a concise and powerful transformation 

method due to Burstail and Darlington. The emphasis of the system is 

on making it easy for the user to control the system through a 

transformation. Guidance is expressed in a command language, so that 

commands may be saved and re-run, modified, or viewed as 

documentation together with the initial program. 

The level at which guidance is given is higher that the 

low-level underlying manipulations. Techniques for organising the 

transformation of large programs at even higher levels are presented. 

Some non trivial programs and their transformation as achieved using 

the system illustrate these features. 

�ý 



CHAPTER I 

INTRODii(; TIOIl 

The use of computers is continur,. liy increasing, and a great deal 

of research is being done into tn. - hardware and sof twar` aspects of 

computing. Progress on the hardware side has led :o cheaper and more 

efficient machines, so the cost (in both time and money) of providing 

and maintaining software is becoming increasingly significant. Since 

the late 1960's the existence of the so called software crisis has 

been recognised - that is the difficulty of specifying, developing 

and maintaining large pieces of software. Consequently there is a 

great deal of interest in devising methods to ease the task of 

programming. 

My own research has concentrated on one of these potential 

methods - program transformation. This is a design methodology that 

suggests we produce a program in a two-stage process; firstly, write 

a simple program without regard for efficiency of execution (so 

freeing us to aim for clarity and correctness); the required 

efficiency is achieved in the second stage, in which we' transform the 

initial program. In making this separation we hope to benefit by 

ending up with an efficient program (as we would if we used some 

other design method), yet one which is much more reliable and bet-ter 

documented through being derived from a simple initial program. 
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Other reseý_. _-chers have already in-, ented ways of tr nsfo? -! ̂ i:, g 

programs. Rather than look for yet more such ways, or t. ý _xtend them 

to some new domain, my decision has been to take what appeared to be 

a promising approach, invented by Burstail and Darlington, and 

attempt to develop it further in the direction of practical 

applicability Ly trying it on larger and more complex examples. If 

transformation is to become a practical mcthodelogv, it must be both 

easy and reliable to perform. This implies the need for a 

machine-based transformation system to aid us in transforming 

programs. Such a. system would provide reliability, and give 

assistance by removing the drudgery of carrying out many small 

operations by hand. Darlington had already developed a 

semi-automatic system based on the transformation method he invented 

with Burstall. Although his system performed impressively on small 

examples, it did not seem to be practical for use on larger programs. 

A major part of my work has been to produce my own 

transformation system which is intended to be a suitable tool for use 

on larger programs. The system adopts the Burstall-Darlington 

transformation method as its underlying means of transforming 

programs, however the transformation steps which the system 

-implements are at a higher level than these underlying operations. 

Each system step can be justified in terms of many small steps, but 

the user is saved the need to think at the rather low level of the 

small steps. An important design decision behind my system has been 

to accept, in fact encou age, user guidance. As an investigation 

into the practicality of transformation, I consider it better to see 

how much can be- achieved with the aid of a machine-based system 
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rather than to see far a totally automatic a_pp((ci: 

pushed. 

To run my system, the user provides a series of c ýrýands 

c;. n 

-- =ý' 
ci 

specially designed control language. Such cor... ands r-ay be g-Zven at 

the terminal., or stored in a disc file and executed (or a mint e of 

both) . The commands form a readable account of the trausformütions 

carried out, and serve as documentation showing how the initial 

program is transformed to attain the final, efficient, program. 

With the aid of my system I have tackled the transformation of 

some non-tiivi. al programs. In doing so, the need to structure the 

transformation process itself has become apparent. To organise a 

large transformation, I have developed efficiency introducing 

"tactics", and an overall "strategy" for applying these tactics. In 

the same 'way that the transformation steps of my system are at a 

higher level than the underlying transformation steps upon which they 

are based, the tactics and strategy can be viewed as acting at a yet 

higher level in the transformation process. 

I have deliberately attempted transformations of programs 

considerably larger than the examples hitherto tackled. My belief is 

that an easily guided interactive system is the only way to deal. with 

programs of this scale -a totally automatic approach suffers from 

the combinatorial explosion of possibilities, and an entirely 

hand-performed transformation of programs of this size would be too 

tedious to perform correctly, if at all. 

The layout of the remaining chapters of this thes. I&. s is as 

follows : 
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Chapter 2- E--n expansion of my mctiz? a: fo: l for prora Li 

transformation, and for the design c±eci : dons bchi«d rl ý} st 

Chapter 3- An examination of other re:; earcýý into program 

tra-asformation. AE election of other people' illustrates 

different approaches to, and uses of, trans£orý: `ýoý;. 

Chapter 4- The instructions on how to make use of my trruisformation 

system. 

Chapter 5- The transformation of non-trivial programs. The tactics 

and strategy I have developed are described. Two non-trivial 

programs and their transformation as achieved with the aid of my 

system are presented. 

Chapter 6- The transformation of a text formatter. This program is 

considerably larger than the examples pr_ esente: d in chapter 5, and l 

discuss the difficulties which its transformation brought to l 4_ght. 

Chapter 7- Significant implementation details of my sy3tem. 

Chapter 8- Conclusions to be drawn from the work done, and possible 

avenues for further research. 



CHAPTER 2 

TIIE ART OF ßRý sr. ý1%R'r= 

This chapter, examines the task of pr. ogram. mfng to see why it is 

hard, then expounds the potential of program transformation as a 

programming method, and finally pres_TLts my own approach to 

investigating whether this potential can be realised. 

2.1 DIFFICULTIES OF PRt'ýGRAL'CMING 

Computer programming remains a difficult task requiring much 

effort and intelligence. Large software projects can require many 

man-years of work to complete, and with the continuing hardware 

developments, software costs are becoming the major expense. In 

order to determine the causes of the difficulty, we must examine the 

interactions between the goals we seek to satisfy w. ". erg programming. 

Typically when writing a program we have some or all of the following 

objectives in mind : 

Correctness - the program should perform correctly the task we 

intend it to do. 

Efficiency - despite the continual reduction in costs of 

hardware, and increases in performance, programs must sill be 
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reasonably efficient. Often it will not be necessary to 

achieve the ultimate efficiency ossJible, but there can still 

be a large gap between an arbitrary program and a tolerably 

efficient progian. 

Clarity - ideally programs should be easy to understand. When 

this is not so, supplementary documentation is required to 

further clarify the behaviour of a program. 

Modifiability - very often she program we first: produce will 

need to be modified to perform differently later on. Ideally, 

our initial program should be capable of relatively easy 

modification when the desired changes in the task are not too 

drastic. 

It is the attempt to simultaneously satisfy these goals that 

introduces much of the difficulty into programming. Efficiency in. 

particular seems to interact unfavourably with the other goals. In 

achieving efficiency we usually pay the price of decreased clarity, 

and risk losing correctness. To achieve efficiency involves 

combining what we originally conceive of as distinct activities so as 

-to benefit from doing them all at the same time, thus destroying the 

program's modularity. 

A widely-used approach to developing programs is to write them 

haphazardly, and then eliminate errors by testing. This can hardly 

be regarded as ideal. We are unlikely to be able to test all paths 

in the solution, and may well find that some errors remain 

undetected, only to emerge later when the program is in use and some 
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unforseen set of circumstances brie s' theme to light. What may seem a 

clear feature to the programmer at the time of writing may be hard 

for others, or even that same programmer some time later, to follow. 

2.1.1 Structured Programming 

Approaches to alleviate some of these difficulties have been 

developed under the name of "structured programming". Noted texts on 

this methodology include Dahl, Dijkstra and Hoare [1972], Dijkstra 

[19761. Structured programming has two aspects - one is the feature 

of a structured program: For example, we are encouraged to avoid the 

arbitrary use of goto's, and instead use while-expressions and the 

like. This does not tell us how to write structured programs, only 

what features tend to make programs unstructured. 

The other aspect is the orderly development of a program - i. e. 

structured programming. I consider stepwise refinement, and data 

abstraction. Stepwise refinement is the development of a program 

from a specification of the problem by a progression of stages, each 

going into more detail than its predecessor. Calls to procedures are 

written first, before their bodies - in doing so clarifying what the 

. procedures are to do. Whilst this is better than an entirely 

haphazard development, we are not guaranteed to avoid introduction of 

errors during the development. Also, we are expected to make 

appropriate choices at each level of refinement. As we descend into 

more detailed levels, the earlier decisions dictate constraints which 

cannot be changed without going all the way back to them and re-doing 

the development from there. A feature of stepwise refinement which 
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will be seen to contrast with transformation is the way in which the 

overall structure of the final algorithm is fixed freTa the very start 

of the development process. The process is, as its name suggests, a 

refinement, descending into more detail but not carrying out any 

major structural changes. Thus the approximate structure of the 

final efficient algorithm must be present during all stages of 

design. For purposes of clarity, modifiability and verification we 

would like to deal with program structures not encumbered by the 

additional complexities of efficiency. Stepwise refinement is of no 

assistance in making major structural changes that incorporating 

efficiency into a naive algorithm would require. 

Data abstraction is the development of a program by building the 

algorithm around the data structures appropriate to the problem, and 

the operations we require upon them. This provides a form of 

modularity. We make a distinction between the operations upon the 

abstract types, which we use throughout the program, and the actual 

representation of the types and implementation of the operations in 

terms of features actually available in the language. This 

implementation is hidden from the rest of the program. It gives us 

the security of knowing that the objects we build up are well formed. 

The modularity allows us to change the representation by only having 

to consider the part devoted to representation, the calls to abstract 

operations throughout the remainder of the program remaining 

unchanged. 

Unfortunately efficiency may force us to abandon our good ideals 

once again. We are tempted to relax the barriers hiding 

representations so as to be able to make computational short cuts 
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based upon our knowledge of the representation in use. For ý, ýcample, 

we may be manipulating sets of objects. our representation for sets 

may be such that for. a given set, selecLing elements from it ai 3ys 

produces them in the same order. We might take advantage of this 

property in the main body of the program, which could lead to trouble 

if we were to change the representation later so that the property no 

longer held. 

2.1.2 Verification 

If one of our Fundamental goals is correctness, we may be 

prepared to put a lot of effort into developing a program and then 

proving it correct with respect to some specification. Although this 

does not aid modifiability or clarity, there may be occasions crhen 

these are not regarded as essential - typically when we wish to 

generate a "service" program which is to be used often, and must 

perform faultlessly. 

Program proving has developed from the early work of McCarthy 

[1963], Floyd [19671, Manna [19691, Hoare [1969] and Burstall [1969]. 

The most intricate verifications have been performed by hand, 

requiring considerable insights into the problems. To combine the 

reliabilty of a machine based system with the intuition of a human, 

work has been done to develop interactive verification systems (e. g. 

Good (1970], Topor [1975]). Fully automatic verification systems have 

had their greatest success on rather limited domains of programs. 

Functional languages are seemingly easier to prove properties about 

than conventional imperative languages. Work done by Boyer and Moore 

[1975], and Aubin [19761 demonstrates this. Despite the considerable 
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attention this area has received, there have no great 

breakthroughs -- the main result to emerge has been the raalisntiorº 

that program verification is hard. 

Sometimes verification has the 11-eneicial side effect of 

providing ins:. ghts into the behaviour of a program. For example, 

assertional methods of verification can give rise to invariants which 

are instructive about performance. To follow the whole of a 

verification in order to understand the program may itself be rather 

tedious. Indeed, for non-trivial programs, the entire verification 

may be so lengthy that to follow through all of it would be of no 

value in convincing us of its validity. This is one of the 

considerations behind the implementation of LCF (Milner [1972], and 

Gordon, Milner and Wadsworth [19761), which is designed to allow us 

to make proof generators, taking us away from the detailed level of 

the proof itself, and making the overall proof generation and 

comprehension much easier (Cohn [1979]). 

Despite this sort of advance, as a method of understanding 

programs verification is not ideal. The intertwining of algorithmic 

details with efficiency details means we must try to comprehend 

details relating to both at once, instead of being able to break the 

problem down. 

Verification presupposes that we can produce an acceptable 

specification. not always a trivial operation. Programs whose 

description are given loosely in English, but for which no simple 

formal specification are apparent are particularly hard to specify. 

(How, for example, does one concisely specify a text formatting 

program 7) . In writing the program we. must resolve ambiguities which 

may be present in the informal presentation. The danger is that from 
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the final program alone it might not be clear how the , mbiguit Les 

have been resolved - worse still, we t., ay never have noticed the 

existence of some of them, and unwittingly :, "dc choices whicj turf'. 

out not to be the best. An illustration of this is h_ Telegran: 

Problem, criginal ly presented by Iiendcr on and Sno; idon j19723 as an 

example of structured programming not preventing the int. roductiotn of 

errors. The spec: _:. cfication of this problem is given in English, and 

as such is inc_ompJ : ate. This is one of my examples in Chapter 5, co I 

reserve further discussion of this until then. 

2.1.3 Program Maintenance And Modifiability 

In practice a considerable amount of effort is devoted to 

program maintenance and modification. Once a program has been 

written it may nerd modifying because its behaviour is not as 

expected, or the desired biaviour -- i. e. the specification - 

changes. Indeed, for many applications we may expect our 

specification will change in the future, but at the time of initial 

design cannot predict what these changes are to be. Making changes 

in programs designed for efficiency is extremely hard to do 

correctly. An adjustment to make one change may introduce other 

undesirable changes in the process. Certainly the clearer and better 

modularised a program is, the easier it will be to see how and where 

to make a required change. Unfortunately even if our efficient 

program is clear and well modularised, incorporating a succession of 

ad hoc changes will break down modularisation, making further changes 

increasingly hard to perform. This is observable in practice In the 

development and maintenance of large programs, when after a certain 
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point it becomes worthwhile to re-write the ''retire program co, api et: Iy 

rather than continue attempting to mat: - changes to what has 

degenerated into ait unstructured mess. Structured prof ramming 

techniques do not help us make changes in programs whilst preserving 

structur. edness. 

2.1.4 Sidestepping The Problem 

We see that we face the task of attaining several incompatible 

goals. Fundamental to their incompatibility is the clash between 

good structure and efficiency, both of which we desire. Because of 

this, any approach to programming intended to produce just a single 

program satisfying all our goals seems doomed to failure. 

I now consider methodologies designed to get around this 

problem: 

An interesting approach that has received only a small amount of 

attention is to describe a program in two parts. One part is a set 

of recursion equations, predicate logic, or some similar presentation 

of the basic description of the program. The other part is a set of 

annotations which further indicate how the equations, logic, or 

tahatever, are to be used to calculate the results. 

We imagine the existence of a compiler which accepts both of 

these parts, and runs the program in the indicated fashion. The 

advantages of this apprcach stem from the additional modularity iae 

get from the separation of the basic description (the "what" part) 

from the operational aspects given in the annotations (the "how" 

part). This modularity helps Improve the simplicity and clarity of 
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the whole, thus making it poLenti1_iy easier to understand, verify 

and modify, yet combined with the compiler the running progra! r. ne-: d 

be hardly less efficient than c program we would have developed 

conventionally. Work of this nature has been done by Hayes [1973], 

Kowalski [1977], Schwarz [1977] and Warren [1977]. 

This approach may be unable to achieve quite the efficiency that 

code compiled specially for the problem can. Also, it is not clear 

how large a set of annotations, or whatever are used to specify the 

"how" part, will suffice for most of the behaviours we are likely to 

want. There is scope for further investigation in this area, but 

this is not the direction L have chosen to investigate. 

The approach I would like to consider in some detail is program 

transformation. 

2.2 THE POTENTIAL OF PROGRAM TRANSFORMATION 

The "transformational" approach to programming suggests that we 

develop programs by first ignoring efficiency aspects, writing the 

clearest, most straightforward program possible to perform the task. 

Then, as a separate process, transform this into a sufficiently 

efficient version. 

In the real world of commercial programming, M. Jackson [19751 

has done much to highlight the fundamental difficulties in program 

design, and his techniques for construction of programs are related 

to the fundamental issues behind the transformational methodology. 

By adopting this approach we do not have a single program which 

we examine for each of our criteria, instead we have two programs -- 
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the first simple program, which I caý_1 rIIO 0PROGRAi, will serve s 

our precise specification. Because its design is unhampered by 

efficiency considerations, it will reflect only :: fiat we want done, 

without confusing us with the precise details of hoý'" it should be 

done. This gives us the scope. to use any techniques we wish to 

produce a clear program. We are now free to make use of functional 

languages, based on expressions and recursion. Assignment can be 

disallowed, since it is a major source of error introduced on 

efficiency grounds. We can tailor data. types to our requirements 

rather than to the implementation. High-level constructions related 

to our data types can be permitted - for example, if we were dealing 

with sets, we would want to converse in set expressions of the form 

{ f(x) :x in S and p(x) } instead of having to explicitly construct 

looping or recursion over set S. Modularity and data abstraction can 

be used to divide large programs into self-contained pieces. 

If we wish to prove correctness properties, it will be easier to 

do so on the protoprogram than when efficiency has been incorporated. 

Ambiguities in the informal specification will be resolved in the 

design of the protoprogram - which we are much more likely to write 

to perform as we desire -- and the choices made will be readily 

determinable from this later. 

Almost always our protoprogram will be unsuitable for practical 

use. The transformation process aims to convert the protoprograrn 

into an equivalent, but much more efficient, version. Provided the 

transformations preserve correctness, the final program will be as 

correct as the initial. one. The documentation for the final program 

is the protoprogram together with a description of the transformation 
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steps applied to i. Further, ear-', fain ction of the cin_ i program has 

its effect expressed in terms of the functions in the ^rotoprcfira7i. 

Modification car now take two different forms. Thn first is 

when the protoprogramm remains unchanged, but we need to adjust the 

transformations in order to direct them towards changed efficiency 

criteria. Sorting problems illustrate this feature - for example, if 

for some domain comparisons are "cheap", our efficient algorithm 

might perform many of them, reducing the number of exchanges between 

items. If, however, we wish to sort in a different domain where 

comparisons are expensive, we would want to change the 

transformations to head towards an efficient program which minimises 

comparisons rather than exchanges. 

The alternative form of modification concerns changes to the 

protoprogram, i. e changes in specification. The simplicity of the 

protoprogram should permit changes to be incorporated easily and 

correctly. This contrasts with the difficulty inherent in altering 

efficient code - becwse this tends to be very intertwined, even 

small changes may have far reaching and hard to determine 

repercussions. Our crucial step is how the transformation of the 

modified protoprogram goes through. Our hope is that the original 

. transformation will not require much adjustment, and that detecting 

where changes might be necessary will be easy. If this is the case, 

we have avoided the need to re-do all the transformation work, and 

reliable modification will not imply excessive amounts of effort. Of 

course, for some changes the transformation will require very 

significant adjustment, leading to a very different final program. 

In such cases it would almost certainly have been impractical t",; 
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modify the first efficient program, althº:, ugh perhaps this would not 

be obvious until we had expended sonaz, futile effort tryr to do so. 

Programming purely for clarity, discarding all thoughts of 

efficiency, can be suprisingly hard for someone familiar with 

conventional styles of programming. We tend to perform mental 

optimisations when writing programs. The danger is that what may 

seem at the time a simple optimisation can later seem rather hard, 

and we then regret having attempted to take this short cut on 

efficiency grounds. This is a habit which must be overcome if we are 

to make the most of this approach to programming. 

Compilers can be viewed as very straightforward, totally 

automatic, transformers, converting from a source language in which 

we can write and think more easily about programs, to machine code 

for executing them. We sacrifice some efficiency in exchange for the 

high level language. Novice however that the source code we write 

closely influences the behaviour of the machine. Even in optimising 

compilers the algorithmic changes are very low level (such as removal 

of redundant calculations from loops). The improvements I am 

concerned with here are of a much more sweeping nature, involving 

overall modification of the algorithms used. 

Thus program transformation has the potential to be an extremely 

appropriate method of developing programs. Whether this potential 

can be realised depends upon how easy or otherwise it will be to 

carry out the transformation itself. If this turns out to be a long 

and difficult activity, we lose the advantages we hoped for. A long, 

hard to follow set of transformations does not serve as 

documentation, would be hard to modify, and could well contain 
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errors. From the state of the art survey (Chapter 3) we see that 

most of the work done so -'-,. r has been on only very sm -, 11 problems, 

for which it has been a trivial operation to write tha final program 

straight off, so these alone must not be regarded as a guarantee that 

the method is appropriate for "real life" problems. We need to 

assertain how the difficulty and length of the transfoT rlati', n 

increases with the difficulty and length of the initial prograýi. 

Intuitively we see there are some problems which are intrinsically 

complicated without being particularly large (e. g. Dijkstra's 

on-the-fly garbage collector, Dijkstra [1976aj) and at the other 

extreme, large but simple problems (e. g. a payroll program). ; Worst of 

all are those which are both complicated and large (e. g. eper_etir_g 

systems). Schematically, the distribution probably looks like: 

complexity 
I 
I. 
I'. 
I 

0a0 

06 
"" 

" 

"S 

"" 

S 

"S 

S 

0 

0 

9 

3 

0 

f------------> --"---9--. ---------- . -... _--- 
Size 

1- trivial problems 
2- complex but small 
3- large but simple 
4- large and complex 

Region 1 is as far as earlier machine--based transformation systems 

have progressed. This thesis is an attempt to push into region 3. 

Transformation work must be extended further into 

problems to give 

.4 
0000 

2 

non-trivial 

us an indication of how it will behave. As the 

problems become larger but no more complicated we would hope that the 
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difficulty of the transformation t-?; 7u_, j_d _. C ý increase excess. '".. -. "ely - 

only its length. We might expect a si tuaLion analagouc to that in 

program verification, where the cemp7_ete proof, ; hilst not having 

much intellectual corteit, is so lengthy as to be practic:. 1i1} 

unintelligible by humans. 

This and other considerations lead us to suggest a machine based 

transformation system. The advantages of this would include I 

Reliability - the system would not make mistakes in performing 

transformations. Provided our underlying method of 

transformation was valid, we would be assured of maintaining 

correctness. 

Book-keeping - the relatively boring and repetitive tasks in 

the transformation could be left to the system, thus greatly 

easing the burden on us. 

Discovery - the system might be able to assist in the 

transformation process, suggesting alternatives to the user 

running it, and/or filling in details when following a 

user-provided suggestion. 

Control - we might be able to issue commands to the system at a 

" level above that of the basic transformation steps, thus 

overcoming the difficulties associated with the sheer length of 

the solution. 

Making the assumption that a machine-based system is desirable, 

we still have choices to make. Firstly, we must decide what the 

basic steps of the transformation are to be. Since the correctness 

of the entire transformation will depend' upon the correctness of the 
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individual steps, it u! nt be convc,; ient .. f -here wer:, only a limited 

number of them, rather than allowing addit_ioiml ones to 

introduced, each requiring verification. At the same tirtE we hiuSt 

decide what language we will write tip i. ýiti: 0. pr(,,, -, ram i_n, And 

between what languages the transformations act. 

Secondly, we have to determine to what extent tLbe system will 

behave. automatically. There is a trade-off between the need to 

interrogate the user for guidance and the waste involved if the 

system futilely goes down blind alleys rather than seek such advice. 

At present it would be rash to claim that some particular 

approach is the best - we must try those that appear plausible, and 

see whether they confirm that program transformation co-, -, Id achieve 

its potential as a good approach to developing programs. 

2.3 MY OWN APPROACH TOWARDS A TRANSFORMATION SYSTEM 

My two main objectives have been to: 

explore further into the region of non-trivial problems; 

develop a system capable of use by people not familiar with its 

implementation. 

With these in mind, the choices I made ware as follows: 

2.3.1 Underlying Method Of Transforming 

I chose the fold/unfold method developed by Burstall and 

Darlington to be the backbone of wy system. This was partly beca: 2se, 

at the time, both Burstall and Darlington were here at Edinburgh, and 
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their programs were available on the ccriputer., so r. t J:? ttoi l 2vel of 

a system was alre: icy imple ented. R'. rst; a i had impIý---ranL2c an 

interpreter for a simple functional erilbodvi,: -.; features 

encouraging clear progr-: -: amin style. 1so Darl; L'-: (-, tcn's system-. 

performed conv 2_rcirg1. y ors small examples, and done-by-hand 

investigations indicated the basic approach prop ised. to extend to 

somewhat larger examples. For a des. ripticn of their works see 

Chapter 3. 

It is important to note that the fold unfold steps work on a 

simple recursive language, so any final program we get from their use 

will remain in this language. In particular, the language is purely 

applicative, having no form of side effects. Consequently there will. 

be an unavoidable overhead if we remain in stich a language when we 

need to modify part of a large data structure, since it will require 

the complete reconstruction of that structure. To convert to a more 

conventional iterative language as the last stage in a transfonnation 

is outside the scope of these rules. This conversion will riot change 

the program structure, and it is the ability to make very major 

structural changes from protoprogram to efficient program that we 

benefit from. The question of converting applicative style programs 

to make use of destructive operations is a field I have chosen not to 

enter, but one in which work is required. Research has been done by 

Pettorossi [1978] on how to introduce destructive operations so as to 

improve memory utilization whilst preserving correctness, and by 

Schwarz [1978] on means of verifying that uses of destructive 

operations within a program still nreserve correctness. 
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2.3.2 Level Of si ansfo rmation 

Darlington's system operates at the level of the fold /ur fold 

operations. pq The user's res onsi. bi. ]_ities arc consequently a Sc, C it 

this level - he sets switches to control folding, and accepts or 

rejects individual folds. 

The effects of working at this level are to make tackling small 

examples easy, the user provides guidance by a small amount of switch 

setting and answering yes/no questions asked by the system. Provided 

the system need not do many folds (and does not have a large choice 

of folds), such guidance will be easy to give. 

Large examples are much harder, however. The unfold/fold steps 

become noticably too small, there being many possible folds involved 

in each transformation. The user is rapidly overwhelmed by the many 

questions the system asks - particularly when the switches have been 

set to cause the system to act in its most powerful manner. 

Since one of my aims is to attempt larger examples, my system 

must operate at a higher level than individual fold/unfold steps. I 

achieve this by defining a context in which transformations are 

carried out, and by introducing a new way of guiding transformation, 

which I call pattern directed transformation. 

2.3.2.1 Transformation Context - When tackling large problems, any 

particular transformation will typically involve only a small part of 

the entire program. Defining a context for a transformation limits 

attention to only the parts which will be required. 

Within a context the following will be indicated: 
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equations to be used for folding «nd unfolding 

lemmas to be used during unfolding 

functions which may occur Within the answer sought: 

2.3.2.2 Pattern Directed Transformation - This is the means by 

which an individual transformation is indicated. The user gives the 

approximate fors; of the answer he expects in the form of a ap ttern 

(so called because it contains variables which will be used in 

matching). The transformation process becomes: 

expanding the expression to be evaluated (unfolding using 

equations, applying reductions whenever possible); 

expanding the pattern; 

matching the expanded expression and pattern, and if successful, 

using the bindings formed by the match to instantiate variables 

within the original pattern to give the answer. 

Pictorially 

L. H. S. 

V unfold 

expanded 
L. H. S. 

R. H. S. (pattern) 

.I information .I 
from V unfold 
match I 

.I MATCH expanded 
R. H. S. 

The advantage of this approach is that the single step of giving 

a pattern may cause a transformation which is based on very many 

fold/unfold steps. Pattern directed transformation forms the higher 

level at which transformations are carried out within my system. 

The price paid for moving to this higher level is the need to 
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give a pattern representing the approximate shape of the answer 

sought. This turns out to be only a email price, however. For 

simple transformations only very simple patterns will be required, 

and my implementation is able to generate such simple patterns itself 

if so requested. For more complex transformations the powe of this 

approach rests in the ability to express only an approximation of the 

answer sought - the details of how to do this I leave until the 

description of how to use my system, Chapter 4. 

2.3.3 Control Of The system 

I intend that the system should provide an overall service to 

the user - that is, not only permit transformations to be carried 

out, but also ease the users task of introducing, testing or saving 

initial, intermediate or final versions of programs. This becomes of 

use on. larger examples, when the transformation is no longer the 

simple matter of making a single conversion from initial to final 

version, but is split into several stages. 

To control the operation of all aspects of the system I have 

developed a control language and documented this (Chapter 4). I had 

in mind users not familiar with the intricacies of the implementation 

who would want to make use of the system (not the case with 

Darlington's system which is primarily a research tool). The control 

statements serve as a readily comprehensible record of the 

transformations carried out when tackling a problem. 
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2.3.4 The Use Of Defaults 

The application of the system to perform simple transformarions 

is eased by incorporating defaults which the user may direct the 

system to apply. In the earlier section on pattern directed 

transformation it was mentioned that the system is able to generate 

simple patterns itself. This is one form of default. The other form 

is concerned with making use of the data types of programs written in 

NPL to generate simple "type information". Type information is used 

to split the transformnation of a function into several. cases (by 

considering cases of the argumment(s) of that function), and is used 

in the generation of default patterns. 

The approach of providing defaults for the user to apply when he 

thinks appropriate contrasts with the heuristic strategies built in 

to Darlington's system. The latter involve the user in making a few 

initial decisions, after which the system goes ahead applying the 

heuristics to perform the entire transformation. Again it seems that 

Darlington's approach works well on small problems, but not on larger 

ones. With larger problems the degree of difficulty of individual 

transformations may vary enormously, and a heuristic powerful enough 

to cope with the harder transformations (if such a heuristic exists), 

will be unnecessarily powerful for the simpler ones. If the user is 

in control, however, he can use defaults for the simpler 

transformations, and guide the system through the harder ones 

himself. 



CHAPTER 3 

REVIEW OF THE STATE OF THE ART 

In this chapter I review and contrast other peoples' work in the 

field of program synthesis and t. ransfor3mation. 

3.1 OVERVIEW 

The underlying features characterising the different approaches to 

program transformation and synthesis are as follows: 

The rules for manipu' ating programs - at one extreme any change ter... u 

in a program which can be verified might serve as a valid 

transformation step. At the other extreme there may be a fixed set 

of small manipulations which can be repeatedly applied to achieve 

large transformations. 

Degree of automation - at one extreme transformations may be 

performed by hand. At the other a machine based system attempts 

transformations entirely automatically. Between these extremes lies 

the approach of using a machine based system, but relying to some 

extent on human guidance. Clearly the degree of automation will 

influence the complexity of transformations which can be attempted. 

A system making use of human guidance would be able to achieve much 

more than a fully automatic system. Likewise, hand-performed 

transformations might be hard co carry out ever. on user-assisted 
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systems. However, we may have more coniid nce in the transformations 

performed on a machine based system, 3n_d long but not particularly 

complex transformations ray be too unwieldy to do en_tir? iy by hand. 

Domain of transformations - this concerns the start and end 

points of the transformation or syn t'; e& . _. S . The distinction between 

transformation and synthesis is that the former begins with some 

executable (but perhaps intolerably inefficient) program and aims to 

improve efficiency, whereas the latter starts with some 

non-executable specification, and derives an executable program from 

it. The rules for manipulating programs will restrict the domain of 

the transformation. Some rules are unable to deal with programs 

involving assignment or side effects, hence the end point of a 

transformation using these will require conversion into a 

conventional form to take advantage of such effects. 

In the following sections I illustrate different approaches to 

transformation and synthesis by presenting work of other researchers 

in this area. 

3.2 Martelli 

3.3 Bauer et al 

3.4 Manna and Waldinger 

3.5 Darlington and Burstall 

3.6 Burstall and Darlington 

Briefly, the nature of their work in light of the 

characteristics of transformation is as follows: 

3.2 Martelli -a hand performed transformation of a complex 

algorithm 

3.3 Bauer et ai -a proposed ui"chine based system relying 
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Entirely on user guidance for dove" oping prc'--, ams 

3.4 Manna and Waldinger -- a totally automatic program synthesis 

system 

3.5 Darlington and Burstall -a semi-automatic transformation 

system, applying schemata to perform certain classes of improvements 

in programs 

3.6 
, 
Burstall and Darlington -a semi-automatic system applying a 

small set of rules to perform synthesis and transformation on 

recursion equations 

3.2 MARTELLI 

References: Martelli [1978) 

In this paper Martelli applies done-by-hand transformations to a 

non-trivial algorithm. The problem he considers is to copy cyclic 

data structures. The initial program is a simple recursive solution 

to the problem, and the derived final program is a realistic 

algorithm requiring only bounded workspace and linear time. 

His objectives are to demonstrate the correctness of the final 

program by proving that the transformations preserve equivalence, and 

also to obtain a better understanding of the efficient version by 

seeing how it can be derived. 

All versions of the program are written in PASCAL. The 

transformations between them are quite complex, requiring a good deal 

of ingenuity, as do the proofs that they retain equivalence. The 

transformation steps are motivated to deal with one aspect of the 

problem at a time, and it is this which permits a clear understanding 

of the whole process. 
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'. M. is work it ]ustrat, ý:; huu an entirely Iia_id-p rfori d 

trans£orniation can change ü simple program into a h: hly efficient 

one. The steps of the transfor: ra ion are not sysLtimatised, hence 

they can be as pouc-iful as necn. ssary, but. requires verification. To 

perform a transformation on a similar algorithm would require as much 

effort again, and it would be very hard to carry out such a 

transformation on any existing machine-based system. 

Such hand performed transformations serve as aids to 

understanding and verifying complex programs. Particularly 

interesting is the investigation of classes of algorithms resulting 

from the alternate ways of transforming a single initial 

specification. Work of this nature includes Darlington (1976a], In 

the area of sorting algorithms, Schmitz [1978], in the area of 

transitive closure algorithms, and Gerhart, Lee and deRoever (1979], 

in the area of list copying algorithms. 

3.3 BAUER ET AL 

References : Bauer, Broy, Partsch, Pepper and Wossner [1978]. Bauer, 

Partsch, Pepper and Wossner [1977]. Broy [1977], [1978]. Gnatz 

[1977]. Gnatz and Pepper [1977]. Kreig-Bruckner [1978]. Partsch and 

Pepper [1976], [1977]. 

The objective of this group is to develop what they call a 

system for "computer aided, intuition guided programming". By 

"computer aided" they mean the system is designed to take from the 

programmer the burden of clerical work. This includes production of 

new program versions from old ones by application of formal rules, 
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preservation of all versions, and dccumenLation of the development 

history. By "intuition guided" they mean ;t ý' l1 be up to the user 

to direct the whole development process. They do not seek to 

introduce heuristics to control autom3ti_r_- program development. 

Their system has not yet been implemented, but they have already 

investigated, by hand, examples to help decide what features are 

required. The kernel of the system is to be an extendable catalogue 

of transformations (presumably all proved correct), much -. k., -. n to the 

early scheme work of Darlington rnd. Burstall. Essentially a 

transformation consists of two program schemata, the "input 

template", and the "output template" together with preconditions to 

be satisfied before the transformation will be applied. Sometimesd 

it is also necessary to specify the location, within an actual 

program, where a transformation is to be applied. 

The transformations are intended to cover the following areas: 

introduction of user-provided definitions 

manipulation of functional procedures 

defining language extensions 

manipulating iterative programs 

changing between recursive and iterative versions 

The user may use the system to introduce his own transformations 

- in which case he has the responsibility of ensuring their 

correctness. 

Control of the system is carried out by the user. who selects an 

aparopriate transformation to be attempted at each step, perhaps 

backtracking if a blind alley has been entered, until a suitable 

version of the program has been reached. There is deliberately no 
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incorporation of strategy into the systeru, which acts as "slave" to 

release the -user from clerical work and risk of careless error. 

Attention has been paid to the book-keeping side of the system, 

which must fulfill certain tasks in a reasonably economical manner. 

Typical tasks are: 

go back to an earlier version (backtracking) 

continue with an earlier version (independent development of 

individual parts) 

go back or continue with an earlier version which fulfills some 

specific condition 

record some transformation 

show the current stage of development (of the whole program or 

of parts of it) 

Since they started some time after the earliest work in this 

field, they have been able to incorporate many of the discoveries 

into their. plans. Their domain is wide ransine - all the way from 

high-level specifications down to assembler code. 

Examples they present in the referenced papers are: 

Tower of Hanoi (recursive to iterative) 

Fibonacci numbers (recursive to iterative) 

fuse -a numeric function akin to Fibonacci (recursive to 

iterative) 

Chinese Rings problem (recursive to iterative) 

Gray-Code generation (iterative to efficient assembler) 
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Their proposed system relies u: -, or. a large and extcasibie set of 

rules to modify programs. This gixes their s- tc: n the scope to 

tacklE: a very NA ie range o, problems. Two im-Port-apt points remain to 

be made. 

Firstly, their system is not yet iraplpnerant_ed. The prcposa±_s 

seem well thought out, but it remains to be seen if they can be 

sucessfully implemented, and how well their system will perfora, in 

practice. 

Secondly, their decision has been to rest the burden cf guidance 

of the system entirely on the user. This may prove to be an 

excessive burden when attempting large transformations involving many 

steps. Again, this can only be finally determined when the system 

has been implemented. 

3.4 MANNA AND WALDINGER 

References: Manna and Waldinger [1975), [19771, [1977a], Waldinger 

[1977] 

The authors are involved in investigating and implementing 

techniques for deriving programs systematically from given 

specifications. Their approach is to transform specifications by 

repeated application of rules until a satisfactory program is 

produced. Specifications are presented in predicate logic. The 

target-language is LISP-like. 

They represent knowledge in the form of many rules within the 

system. The knowledge is about the subject domain, numbers, lists, 

sets, etc., meaning of constructs in the specification and target 

N 
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languages; basic programming principle:,. 

The synthesis process is driver: by att. mpts to ac h eve goals. 

The rules encoding programming prif: cipies attempt to satisfy these 

goals, so deriving an executable program. Rules of this nature 

include: 

Conditional formation rule: when attempting to prove or 

disprove some subgoal of the form prove T=, introduce a case analysis 

and consider separately the cases in which P is true and P is false. 

This causes the introduction of a conditional expression into the 

program being synthesised. 

Recursion-formation rule: if, in attempting to achieve some 

goal we need to achieve a subgoal which is a precise instance of that 

original goal, try to achieve this by expressing the subgoal as a 

recursive case of the outer goal. This leads us to introduce 

recursive calls within our programs -- but it is necessary to ensure 

termination when introducing such calls. This rule is equivalent to 

the "fold" rule of Burstall and Darlington (see last section of this 

chapter), and the two groups discovered their rule independently at 

about the same time. 

Procedure-generalization principle: this principle suggests 

that if, when tackling some goal, we are led to achieve a subgoal 

which is not precisely an instance of the original. goal, then 

generalise to get a goal for which both are instances. This causes 

an attempt to synthesise a more general program. The authors relate 

this to theorem-proving work, where it is often necessary, in proving 

a theorem by mathematical induction, to prove a more general theorem, 

so that the inductive hypothesis will be strong enough to allow the 

proof of the inditctive step to succeed. The recursion-formation rule 
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turns out to be a degenerate case of this ä. iul c. 

In addition to the the usual syntbesi, from specification to 

recursive program, they have also ue; ýd Ci-ir' techniques to produce 

straight-line structure-changing (i. e. x7ith side effects) programs. 

This latter feature has been implemented in systere of its own (see 

Waldinger (1977]). Most of the synthesis work has been implemented in 

their DEDALUS system, designed to be fully automatic in its 

operation. The only controls they provide over selection of an 

appropriate rule from several. possible candidates are to (possibly) 

attach some extra condition. to rules to limit their application 

(which could be. used, for example, to prevent a rule from being 

repeatedly applied to the subexpressions it produces), and to have a 

preference ordering between rules. 

The implementation incorporates the principles of conditional 

formation, recursion formation, and the special case of procedure 

generalization in which a new procedure may be formed but no 

generalization is required. DEDALUS is able to produce termination 

proofs for recursive programs which do not involve mutual recursion. 

Representative programs constructed by DEDALUS are: 

The subtractive, Euclidian and binary greatest common divisor 

algorithms. 

The remainder from dividing two integers. 

Finding the maximum element of a list. 

Testing if a list is ordered. 

Testing if a number is less than every element of a list of 

numbers. 

Testing if every element of one list of numbers is less than every 

element of, another. 
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Union, intersection, we-r. L-Y. snAp, subset ar, ' cartesian product: of 

sets. 

The methods the, : lave derived for syn 4 lesi: i seer poe _rf u? , 

however their implem-a ntatior, "f these iato an c-Uton)atýc 3yS; r' 1?, s 

behind somewhat. If the full power of the generalization technique 

is to be included, controls over it will need to be created. 

Certainly better strategies for selection of appropriate rules will 

be required. If they wish to continue providing termination proofs, 

it would be nice to see their automatic provision of these extended 

to handle mutual recursion. The characterising feature of their work 

is the intention that their system be totally automatic. This 

severely limits the size of problems they are able to tackle, and the 

indication is that as they attempt larger problems, the combinatorial 

explosion of possibilities will force their system into excessive 

searching. 

Synthesis work has also been done by Green et al, [19751, [1976] 

and [1977]. Wegbreit [1976] considers how analysis of program 

performance can highlight areas for improvement, and help guide the 

transformations to achieve this improvement. 

3.5 DARLINGTON AND BURSTALL 

References: Darlington [1972], Darlington and Burstall [1975] 

The earlier work of Darlington and Burstall was a mainly schema 

driven method of converting programs written in a non-imperative 

language of recursive definitions into an imperative language. The 

transformations were carried out (largely automatically) by a maci*in( 
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based system, which could b ;- ided to cry one of four_ typ- o* 

improvement: 

Recursion reneval 

Elimi. nstirLg redundant computation by merging common. 

subexpressions and combining "Loops 

Replacing procedure calls by their bodies 

Causing the pro,,, am to re--use data cells which are no longer 

needed 

Their objectives were to develop transformations to improve the 

efficiency of programs and implement these in a system which would 

act as an assistant to the programmer, allowing him to program in. a 

lucid style and use the system to help derive an efficient final 

program. 

Transformations were carried out using built-in rules consisting 

of a recursive schema, an iterative schema, and conditions to be 

satisfied to ensure the iterative schema was equivalent to the 

recursive one. With a small amount of user control, the system was 

able to perform conversions by matching the initial solution to the 

schema and conditions of the indicated transformation, instantiating 

the iterative schema to get the final. result if there was a 

successful match. 

This method could tackle relatively complex examples provided 

they fitted one of the provided transformations. The transformation3 

were not complete, and there was no provision for the user to extend 

them. 

Darlington's work typifies the use of sets of complex 

transformations to manipulate programs. This approach has received 

attention of others since then, including Standish et al, (1976) and 
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i1 97 6s. ) , and Loveman (179773, 

Kib"lEi as p: 7. rt of his r.. heslF won-- IKiit 
ý_ýý ýý }ý ýjý'ý Pý ýc 

ý CD; 'ýf' 7 Cry' r' rý, r rr ý; -, syste.,, cs. ý_ý Cl ..., ý. vlý.. a_ý.. _ýed type of 

aptir, isation on programs in ei? basis of his 

system is a set of. 50 trarsfornatio c, in fact small schemata, which 

are applied by the system with a minimal ai^our_t of user c uidance. 

His system accepts a program together with a constraint on its input. 

data structure, and simplifies the program i. c take advantage of th:. t 

constraint, but makes no attempt to modify the algorithms invoi. ved. 

3.6 BURSTALL AND DARLINGTON 

References : Burstall, R. and Darlington, J. [19771, Clark, K. and 

Darlington, J. [1977], Darlington, J. [19753, [19761, [1976a], [1977] 

and [1978). 

With the experience they had gained from their earlier work, 

Burstall and Darlington were led to further consider improvements to 

be made to programs in recursion equation form. Influenced by Boyer 

and Moore's [1975] program for proving facts about LISP programs, 

they adopted the view that as much manipulation as possible should be 

performed before removing recursion. They developed a set of six 

transformation rules on recursive equations which formed an elegant 

yet powerful method to manipulate such programs. Darlington was 

responsible for the development of a machine based system to carry 

out transformation and synthesis using these rules. Burstall 

developed a simple recursion equation language - NPL - for which he 

wrote a type checker, parser and interpreter. This language was 
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inspired by the transformation work, and was designed to provide a 

vehicle for encouraging s clear, lucid p ograncning e. Darlir. ton 

adopted a slightly restricted subset of NN.? L as the input to his 

system. 

This small set of rules proved to be both flexible and powerful. 

The areas Darlington has applied it to are: 

Synthesis - by providing reduction rules for new constructs, 

definitions using them can be converted into orthodox recursion 

equations. He synthesised conventional sorting algorithms by hand 

from a single very straightforward specification (defining sorting as 

selecting the ordered permutati. cn from all the permutations of the 

input), which provided insights into what classes of sorting 

algorithms there are in addition to showing the utility of the 

approach. 

Automatic transformation - one of his objectives has been to push 

automatic transformation as far as possible. In all but the very 

simplest examples, transformation involves the introduction of 

subsidiary functions. Darlington discovered that, when seeking to 

make a recursive definition which was not immediately possible, the 

partial success could in many cases be used to indicate precisely the 

subsidiary function required. This means-ends type reasoning he 

terms "forced folding", and having implemented it, is able to tackle 

a much wider range of problems near-automatically. 

Unfree data types - his latest work is to investigate extending (at 

present by hand) the techniques to achieve transitions between unfree 

data types i. e. those data types whose operations obey certain laws. 
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Since Vila ; a'rho1e approach fords the bas-i-:; of my work, 1 shall 

describe it in more detail: 

Burstall and Darlington's set of rules rianipula%e recursion 

equations. Burstall has developed and implemented a language based 

around these, which he calls NPL. See the appendix for an informal 

introduction to NPL. 

Transformation Rules: these act upon the recursion equations, 

to produce new equations. They are: 

Definition: - Introduce a new recursion equation whose left hand 

expression is not an instance of the left hand expression of any 

previous equation. 

Instantiation: - Introduce a substitution instance of an existing 

equation. 

Unfolding: - If E <= E' and F <= F' are equations and there is 

some occurrence in F' of an instance of E, replace it by the 

corresponding instance of E' obtaining F"; then add the equation F' 

<= F 

Folding: - If E <= E' and F <= F' are equations and there is some 

occurrence in F' of an instance of E', replace it by the 

corresponding instance of E obtaining F"; then add the equation F <= 

F". (This rule is the equivalent of Marina and Waldinger's Recursion 

Introduction Rule - see their section in this chapter) 
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Abstraction: - We may introduce a ;. rihere clause, by deriving from 

, ticr. E <= a previous equaticn E <= E' ane"a eg", 1- 

where <ul., .. , un>==<Fl, ..., Fn>. 

Laws :- We may transform an equation by using on its right hand 

expression any laws we have about the primitives (associativity, 

commutativity, etc. ) obtaining a new equation. 

The referenced papers contain : any examples of the use of these 

rules to perform transformation. Within the documentation to my own 

system I present some of these examples (see ZAP Transformation 

System Primer, Chapter 4). Application of these rules preserves 

partial correctness of programs. Termination may be lost. if folding 

is used without care - in practice this pitfall is easily avoided. 

Kott [1978] has investigated how we can restrict the use of folding 
1, 

so as to guarantee preserving termination. 

Darlington has implemented the fold/unfold work into a system 

written in POP-2 on the Dec-10 at Edinburgh University. His system 

is designed as a research tool rather than a prototype programmer's 

assistant, and as such, some knowledge of the internal workings of 

the system is required to control it. Darlington (1977] provides an 

'excellent account of this work. 

Darlington's system uses the fold/unfold steps as the operations 

to manipulate definitions. The responsibilities of the user are 

concerned with guiding the application of these operations, as are 

the inbuilt heuristics of the system. 

Notation: E' [ul /F1, ..., un/Fn] means E' with occurrences of F1 ,..., 
replaced by u1 ,..., un respectively. 



REVIEW OF THE STATE OF TM ART Page 3-16 

The user's res2_r. '.: ibiii. ties fall into several classes: 

(1) He must provide an appropriate set of instantiations for the 

functions he wants to improve. Some of these he presents as base 

cases - these are unfolded completely, or until. some pre-set effort 

bound is exceeded. The pre-set effort bound can be adjusted by the 

user should he expect the default setting to be inappropriate. For 

nor base cases, the stratgey the system implements is one of carrying 

out a sequence of"unf_oldings, abstractions and applications of laws, 

followed by foldings. 

(2) The user indicates to the system on occasions when a fold 

has been found whether the result is acceptable - he can veto it, 

accept it and stop, or accept it but request the system to search for 

more folds. The system itself rejects obviously undesirable folds 

(e. g. ones that lead to recursions which definitely do not 

terminate). 

(3) The user supplies in advance laws which will be required for 

the transformation. These are in the form of equations which will be 

applied whenever possible during each unfolding. In Darlington's 

current system it is not possible to indicate associativity or 

commutativity of functions; instead explicit reduction rules 

tailored for the transformation being attempted must be given. 

(4) The user pre-sets switches to control the search for folds. 

There are two such switches - ONLYTOPFOLDS and DOCLEVERFOLDS. 

ONLYTOPFOLDS, if set to true, will restrict the system to 

seeking a fold only with the function being transformed. This is 

appropriate if the user is looking for a recursion involving the 

function in question, and does not anticipate any other folds will be 

required to achieve this. 
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DOCL"EV'YFOLr S, if set to true, indicates that the systei 

when attempting a fold, introduce a new function in order to achieve 

the fold. l'he basis of this is a technique Darlington terms 'forced 

folding'. This technique, developed and implemented by Darlington, 

makes use of the failure to fold to indicate how to rearrange the 

expression being transformed to permit the fold. 

e. g. 

+++ nutn * num <= nwn 
-i-H- -num + ni. un <= num 
---- 0+M <= M[1ý 

--- (succ N) +M <= succ (N + M) [2 J 

+-F-f- twon(num) <= num /// twon(N) computes 2 to the power N 
+4-f- sum(num) <= num sum(N) computes 0+1+... +N 

---- twon(O) <= 1 [3] 

--- twon(succ N) <- 2* twon(N) [4] 

--- sum(O) <= 0 [51 

--- sum(succ N) <= (succ N) + sum(N) [6] 

+f+ g(num) <= num 
--- g(N) <= twon(sum(N)) [7] 

g is the function to be transformed. Consider cases 0 and succ N 
for its argument: 

g(O) <= twon(sum(O)) by 7 
<= twon(O) unfolding 5 
<= 1 unfolding 3 [81 

g(succ N) <= twon(sum(succ N)) by 7 
<= twon((succ N) + sum(N)) unfolding 6 
<= twon(succ (N + sum(N)) unfolding 2 
<= 2* twon(N + sum(N)) unfolding 4 

Now we are stuck - folding with the definition of g fails. 
Suppose we have a new function h which satisfies 

twon(N f Y) = h(N, twon(Y )) [91 

then we would have 

g(succ N) <= 2* twon(N + sum(N)) 
<= 2* h(N, twon(sum(N))) by 9 
<= 2* h(N, g(N)) folding with 7 [10] 

Thus h is just the function we require to allow a fold with g. 
Transforming the specification of h to get a recursive definition is 

relatively straightforward, we find 
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--- h(O, M) <= M 
--"- h(succ N, M) <= 2* h(N, M) 

The key to discovering h is the failure of the attempt to fold the 

expression 2* twon(N + sum(N)) with the definition of g, 

g(N) <= twon(sum(N)). 

We see that all the portions of g's definition are present within the 

expression - unfortunately so is the unwanted portion "N +*". h is 

defined to move this unwanted portion outside of twon(... ) so that a 

fold with g will become possible: 

twon(N + Y) _,. h (N, twon(Y )) 

so that 2* twon(N -F sum(N) )=2* h(N, twon(sum(N) )) 

The use of this technique allows the system to do some examples 

requiring the introduction of new functions. When the system is able 

to force a fold by the introduction of such a new function, the user 

is asked if this is acceptable, and if it is, the system is invoked 

recursively to transform the new function. 

The technique can cause the rearrangement of expressions to 

permit a fold without necessarily introducing a new function. 

e. g. 
--- g(N) <= < fib(succ N) , fib(N) > [1] 
--- fib(succ succ N) <= fib(succ N) + fib(N) [2] 

. 

(fib is the fibonnaci function) 

transforming, 

g(succ N) <= < fib(succ succ N) , fib(succ N) > 
<= < fib(succ N) + fib(N) , fib(succ N) > unfolding 2 

attempting to fold with I fails, but forced folding suggests the 
rearrangement 

<=<ui+u2, ul> 
> b( succ N) , fib(N) where < ul , u2 ><f.!. 
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to allow a fold with 1: 

<-<ul+u2, ul >where <iil : u2>==g(N) 

(5) The user sets a switch to inhibit or allow generalisation of 

expressions during the unfold /apply laws /fcid process; if switched 

on, when encountering an expression contaiiiing multiple occurrences 

of the same variable, the generalisation is to rename these to 

distinct variables, and a new function, with the generalised 

expression as the right hand side of its defining equation, is 

created. 

e. g. we might have 

Cart(consset(c, X), Y) <= <: <c, b> :b in Y :>+ 

<: <a, b> :a in X, b in Y :> 

The multiple occurrences of Y would be renamed, to give the 

following new function 

newf l (c, Y1, X, Y2) <= <: <c, b> :b in Yl :>+ 

<: <a, b> :a in X, b in Y2 :> 

so that 

Cart(consset(c, X), Y) <= newfl(c, Y, X, Y) 

Again the user is asked to accept or reject the introduction of 

this new function, and if he accepts, the system is invoked 

recursively to transform it. 

Most of the code to provide this generalisation facility was 

written by myself, and it now resides as part of Darlington's system. 

Synthesis can be achieved by writing programs making use of set 

constructs etc., and transforming them to conventional recursive 

programs not making use of such constructs. Darlington has 
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incorporated a set of laws for these constructs which are commonly 

needed in transformations of this type. 

The system is also able to synthesise functions defined by 

implicit equations - that is equations whose left ua? lr sides are 

general expressions containing recursive functions among the 

arguments (recall that NFL expects only variables and constructors to 

occur there, so such definitions are unexecutable) For a.. ample, 

defining the inverse of REVERSE by 

REVINVERSE (REVERSE (L)) <= L 

the system can, from this, synthesise the definition of REVINVERSE, 

which turns out to be REVERSE, of course. 

Typical programs whose transformation has been done using the 

system are: 

cartesian product 

fibonnacci 

diagonal search 

matching as inverse of substitution 

a version of treesort 



CHAPTER 4 

USER VIEW OF SYSTEM 

This chapter presents the documentation for my ZAP program 

transformation system. This is in two parts: 

Pr imer 

Users' Manual 

The primer introduces the user to the underlying transformation 

method in addition to the use of the system. 

The users' manual details the commands available and serves as 

the definitive explanation of the system. 
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ZAP PROGRAM T%ANSi OR4J\TIO SYSTEM PRIMER 

This document serves as an introduction to using the ZAP 

transformation system. A definitive expl_ r, c. tion of its facilities is 

given in the ZAP Program Tra. nsfoira : lion System Users' Manual. ZAP is 

implemented in POP2 on a DEC-10. 

The presentation here is in the form of three example 

transformations, each done first by hand, and then again as they 

could be tackled using the system. 

The examples are 

1. Scalar Product 

2. Testing trees for equality of tips 

3. Parsing example 

The system transforms definitions written in NPL. The user is 

assumed to be familiar with NPL - see appendix for an informal 

introduction to NPL. There is no distinction between upper and lower 

case, but for readability I adopt the convention of using lower case 

for constants, constructors and functions, and upper case for 

variables and commands to the transformation system. 

The underlying method of transformation is due to Darlington and 

Burstall. See Darlington [1975], [1976] and Burstall and Darlington 

(1977] for detailed expositions of this method, together with many 

examples. For an overview see Burstall and Feather (1978]. I have 

done the transformation of the Telegram Problem (presented in Feather 

[1978]) using this system. 
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Introduction 

The ZAP transformation system is designed to aid the 

transformation of non-trivial programs. The system is based around 

the following three concepts for transformation: 

A CONTEXT mechanism restricts attention o: L the sys ter. and the 

user to the relevant details for the current transformation. 

The fundamental transformation step of the system involves 

seeking guidance from the user in the form of a GOAL consisting of a 

left hand side, the expression to be transformed, and a right hand 

side, called a PATTERN, which expresses the shape of the answer the 

user desires. The justification of this step is that it can be 

considered as the application of many steps of Burstall and 

Darlington's transformation method. The advantage is that it 

replaces many of their steps by the single step. 

The system generates DEFAULT information to aid in suggesting 

simple goals for transformations. The user is thus able to let the 

system try these defaults on what he anticipates will be easy 

transformations, and use his insight to guide the system through more 

complex transformations. 

Overall control of the system is achieved by giving a sequence 

of transformation commands. These may be typed in interactively as 

the transformation takes place, or stored in a disc file and called 

in to be used when required. In practice a convenient way to develop 

a transformations is to regard the sequence of commands as a program 

to be interactively debugged. When this "meta program" has beer, 

perfected, it, together with the initial program, serves as 

documentation of the final transformed program. 
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SCALAR PRODUCT 

( This example is tc: ken from Bu; -stall and Darli_n con i9i) 

Given a function scalar product, writter. ". ", on vectors, 

defined by 

xýýý ýýX. Y. 
4-1 ., d 

we might wish to compute a. b + c. d 

Rewriting this in NFL, we have 

--- dot(X, Y, O) <= 0 [1] 

dot(X, Y, succ N) <= dot(X, Y, N) -+(. ', ' sub succ N)*(Y sub succ N) 

[2) 

(using an infix "sub" to access components of vectors) 

and we want 

--- f(A, B, C, D, N) <= dot(A, B, N) + dot(C, D, N) [31 

This is a clear definition of f, but we do not really need two 

separate recursive calculations (i. e. two independent loops). 

The hand transformation of f goes as follows: 

Consider cases 0 and succ N for f's last argument, thus 

f(A, B, C, D, O) <= dot(C, D, O) + dot(C, D, O) by 3 

<= 0+0 unfolding 1 

<= 0 property of 0 and + 
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f (A, B, C, D, succ N) <= dot(A, B, succ N) + dot(C, D, ucc N) by 3 

<= dot(A, B, N) + (A sub -ucc N)*(B sub succ N) 

dot(C, D, ") + (C sub suce N)*(D sub succ N) 

unfolding 2 

<= dot(A, B, N) + dot(C, D, N) + 

(A sub succ N)*(B sub succ N) + 

(C sub succ N)*(D sub succ N) 

re-arranging using associativity and commutativity of + 

<= f(A, B; C, D, N) + (A : pub succ N)*(B sub succ U) 

+ (C sub succ N)*(D sub succ N) 

folding with 3 

This completes the redefinition of f, without using dot. 

The whole process has gone through the following stages: 

Definitions -- of f and dot. 

Transforming f by considering cases - f(A, B, C, D, O) and 

f (A, B, C, D, succ N). 

The transformation involved - 

unfolding using equations for f and dot 

rearranging using properties of + 

folding to get final. definitions involving 

f, +, *, sub, but not dot. 

The transformation system commands to achieve the same process are as 

follows (comments for the purpose of this primer are in square 

parentheses): 

START [enters system] 

DEF I give-here NPL definitions of f and dot... ] 
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END 

CONTE'Tr [prepare to do tr -nsformation - first create the 

context in which this is to be done: ] 

UNFOLD f dot [declare that equations for f and dot are to be 

used in unfoldin process] 

USING f [state which of the functions declared for uufolding 

we are prepared to allow in the transformed equations; 

LEMMAS ASSOCIATIVE + [declare to be associative) 

COMMUTATIVE + [declare + to be commutative] 

IDENTITY +0 [declare 0 to be identity for +. This 

serves to reduce O+N or N+O to N when 

unfolding al 

TRANSFORM [having created context, now totally redefine f] 

GOAL f (A, B, C. D. 0) [expressions following keyword COAT, 

will be the left hand sides of new 

GOAL f(A, B, C, D, succ N) equations for f] 

END [At this point the system goes ahead trying to transform the 

I left hand sides it has been given. f(A, B, C, D, O) expands (by 

unfolding and applying reductions) to 0, which, since it is 

a constant, is an acceptable answer. Provided expanding 

leads to an expression all of whose functions (if any) are 

constructors, constants (i. e. functions not being used for. 

unfolding in the current context), or declared as usable (by 

means of the USING command), that expanded expression will 

be accepted as the answer. This we term a base case, since 

typically base-cases of recursions fall into this class. 

Thus the equation f (A, B, C, D, C) <= 0 has been found. 

f(A, B, C, D, suce N) unfolds to 



ZAP Program. ýfransformtiou Systems Primer Page 4--7 

dot(A, B, N) + (A sub succ N)*(B sub succ N) + do-, (C, D, N) 

(C sub succ N)*(D sub succ N) 

Since this contains function dot, it is not ? cceptab-le as 

the answer, so the system asks the user for a "pattern". Tr 

its crudest form, a pattern is simply the right hand side 4: e 

expect as the answer, which in this case would be 

f (A, B, C, D, N) + (A sub succ N)*(ß sub suce N) 

+ (C sub succ N)*(D sub succ N) 

Having typed this in 9 the system checks that this 

expression, unfolded, is equal (up to associativity and 

commutativity) to the unfolded left hand side. Since it is, 

the new equation formed by this as right hand side is 

added. ] 

DELETE f (A, B, C, D, N) [delete old definition of f] 

END [to end the transform block] 

STOP [to exit from the system] 

This completes the commands to the system. During the 

transformation the system had to request the user to supply a 

"pattern". If the user has in mind the answer he expects /desires, he 

can specify this in the GOAL command by putting after the left hard 

side the symbol <= followed by the pattern. 

From this simple example the method of transforming using the 

system can be seen. Instead of trying undirected unfolds, rewrites 

and folds, the user provides the answer he is looking for, and the 

system verifies this. Used in this basic way, the system is merely 

verifying user provided definitions. The power of the system comes 

into play by allowing the user to specify approximately the answer he 
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requires. The system will (if possible) fill in details to get the 

precise answer. Thus the user is able to manually guide the systen 

with his intelligence and knowledge, without having to be tediously 

explicit. 

The first way in which this is achieved is to include in a 

"pattern" the special function symbol. $$, which the system will match 

to portions of the expression. It is able to match to tuple and 

where constructions, and functions which would be permitted in a base 

case - namely, constants, constructors and declared usable functions. 

Thus in the example we could have given as a pattern for 

f(A, B, C, D, succ N) $$(A, B, C, D, N, f(A, B, C, D, N)) 

indicating that we expect an answer containing a call to f(A, B, C, DN) 

and expressions possibly involving A, B, C, D and N, formed with usable 

functions constructors (e. g. succ) and constants (e. g. 0). 

Using this, the transformation commands for the exampla are: 

START 
DEF 

[give here NPL definitions for f and dotl 
END 
CONTEXT 

UNFOLD f dot 

" USING f 
LEMMAS ASSOCIATIVE + 

COMMUTATIVE + 
IDENTITY +0 

TRANSFORM 
GOAL f (A, B, C, D, 0) 
GOAL f (A, B, C, D, succ N) <= $$ (A, B, C, D, N, f (A, B, C, D, N) ) 

END 
DELETE f (A, B, C, D, N) 

END 
STOP 
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This transformation essentially converts i to recurse on its 

last argument, which is of type nu: m (natural number). Default 

mechanisms within the system are able to suggest straightforward 

recursions of this nature. and we can make use of them to both 

generate cases to consider, and simple patterns to try. 

To indicate in the left of a goal that we are to consider cases 

of some argument of a function, we prefix that argument by CASESOF. 

The cases are derived from the right hand sides of NPL data 

definitions (e. g. since natural numbers are defined in NPL by 

DATA num <= 0 -H- succ num, for there try cases 0 and succ N). 

To cause simple recursive patterns to be generated, involving 

recursive calls of the left side of the goal, formed by replacing 

some argument by its recursive case, we prefix such arguments by 

RECURSE. (for natural numbers, the recursive case of succ N is N). 

Goals containing RECURSE create simple recursive patterns consisting 

of $$ around all the free variables of the goal's left hand side, and 

that left hand side with recursive cases substituted in. 

e. g. GOAL f(A, B, C, D, REC URSE succ N) produces pattern 

$$ (A, B, C, D, N, f (A, B, C, D, N) ) 

Using these features in this example, we can simplify the two 

goals to the following one: 

GOAL f (A, B, C, D, RECURSE CASESOF N) 

2 Testing trees for equality of tips 

( This example is taken from Burstall and Darlington [19751 ) 
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This probici is to test whether two given binary trees have the 

same sequence of tips. 

tree 1 

I' 
I' 

/\ 
/\ /\ 

AB /\ 
/\ 

/\ /\ 
CDEF 

e. g. 

tree ?, 

/\ 
/\ /\ 

/cn\ 

/\ /\ 
A3EF 

tree 3 

/\ /\ 
/cn\ 

/\ /\ 
ZBEr 

Trees 1 and 2 do have equal sequences of tips, but trees I and 3 do 

not. A straightforward solution woutcý be to write a function to 

"flatten" a tree into a list of its tips, and write another function 

to test for equality of lists. Thus flattening trees 1 and 2 would 

give lists [A BCDE F] and [A BCDE F], which are equal. But 

this method applied to trees 1 and 3 foolishly computes the whole of 

the lists [A BCDE F] and (Z BCDE F] before noticing that they 

disagree in the very first element. We will try to obtain an 

improvement which avoids this. 

The NPL definitions are as follows: 

DEF 
DATA trees(alfa) <= tip(alfa) ++ tree(trees(aifa), trees(alfa)) 

VAR A, B : alfa VAR L1, L2 : list alfa 
VAR S, T, S 1, S2, T1, T2 : trees (alf a) 

INF 6 <> /// we write <> as infix append for lists 
+++ list alfa <> list alfa <= list alfa 

(1 ] --- nil <> L2 <= L2 
--"- A:: L1 <> L2 <= A:: (L1 <> L2) [2] 

+f-1- eqlist(list alfa, list alfa) <= list alfa 
list equality 

---- eglist (nil, nil) <= true [31 
eglist(nil,: %:: L2) <= false [4] 

- eglist(A:: L1, nil) <= false [5] 

-- eglist(A:: L1, B:: L2) <= A=B and eglist(I. I, L2) [G] 
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+++ flatten(t-rees(alfa)) <= list alfa 
/// list of tips of tree 

- flatten(tip(A)) <= A: mil [7) 
[8j - flatter. (tr. ee(T1, T2)) := flatten(T1) <> flatten(T2) 

±++ egtips(trees(alfa), trees(alfa)) <= truval 
/// equality of tip sequences 

- eqtips(S, T) :- egl: i. st(flatten(S), flatten(T)) [ L91 

END 

The improvement we seek is to compare the leftmost tip of each 

tree before doing unnecessary work on the remainder of the trees. 

One way of achieving this improvement is to restructure each tree in 

order to bring the leftmost tip to the top of the left branch. e. g. 

I' 
I' 

/\ 
/\ /\ 

AB/\ 
/\ 

/\ /\ 
CDEF 

_ý 

/\ 
A\ 

\ 
/\ 

B\ 
\ 
/\ 

I' 
/\ 

/\ /\ 
CDEF 

e 

/\ /\ /\ 
/\ _> 

/\/\\ 
/\ /\ /\ /\ /\ 

/CD\ZBc\B\ 

/\\\ 
/\ /\ /\ /\ 

ZBEFD\C\ 
ý 

I' 
EF 

\ 
/\ 

D\ 
\ 
I' 

EF 

Having performed this restructuring, the leftmost tips can be 

compared, and only if they are equal need the right branches be 

compared. 

This neat form of restructuring is due to McCarthy. Burstal]. 
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and Darlington [1975; present an alternative xiay of i*. uprcv ng; the 

initial solution. Their improvement is similar in spirit, but uses a 

more general function to compare the tips of two lists of trees. 

The hand transformation of eqtips to do the tree restructuring 

is as follows: 

consider for each argument of egtips the cases 
tip(A) 
tree (tip(A), T. ) 
tree(tree(T1, T2), T) 

eqtips(tip(A), tip(B)) <= eqlist(flatten(tip(A)), tip(B))) by 9 
<= eglist(A:: nil, B:: nil) unfolding 7 
<= A=B and eqlist(nil, nil) unfolding 6 
<= A=B and true unfolding 3 
<= A=B by property of and [101 

egtips(tip(A), tree(tip(B), T)) 
<= eqlist(flatten(tip(A)), flatten(tree(tip(B), T))) by 9 
<= eglist(A:: ril, B:: flatten(T)) unfolding 7,8,2,1 
<= A=B and eqlist(nil, flatten(T)) unfolding 6 
<= A-B and false since we know that flatten of a tree 

contains at least one tip, so 
egli. st (ni. l, f latten(T)) = false 

<=-false by property of and (ii] 

egtips(tip(A), tree(tree(T1, T2), T)) <= false [12] 
similarly to derivation of 11 

egtips(tree(tip(A), S), tree(tip(B), T)) 
<= eqlist(flatten. (tree(tip(A), S)), flatten(tree(tip(B), T))) 
<a A=B and eglist(tlatten(S), flatten(T)) 

unfolding 8,7,2,1,6 
<= A=B and eqtips(S, T) folding with 9 1133 

egtips(tree(tip(A), S), tree(tree(T1, T2), T)) 
<= eqlist(flatten(tree(tip(A), S)) 

, flatten(tree(tjree(T1, T2), T))) by 9 
<= eglist(flatten(tree(tip(A), S)), 

(flatten(T1)<>flatten(T2))<>flat. ten(T) ) 

unfolding 8 
<= eqlist(flatten(tree(tip(A), S)), 

flatten(T1)<>(flatten(T2)<>flatten(T)) ) 
by associativity of <> 

<= eqlist(flatten(tree(tip(A), S)), 
flatten(tree(T1, trce(T2, T))) ) 

folding with 8 
<- egtips(tree(tip(A), S), tree(T1, tree(T2, T))) (14] 

folding with 9 
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similarly, we find 

egtips(tree(tip(A), S), tip(B)) <= false (15; 

egtips(tree(tree(S1, S2), S), tip(B)) <= false [16) 

egtips(tree(tree(Sl, S2), S), tree(tip(B), T)) 
<= egtips(tree(Sl, tree(S2,5))lr. cee(tip(B), T)) [17j 

egtips(tree(tree(S1, S2), S), tr. ec(tree(Tj, T2). T)) 
<= egtiPs(tree(S1, tree(S2, S)), tree(Tý, tree(T2, l))) [181 

Equations 10 - 18 form the new dafintion of eqtips. In order to 

perform the same transformations using the system, we would give the 

following commands 

CONTEXT 
USING eqtips and 
UNFOLDALL egtips 
LEMMAS ASSOCIATIVE <> 

COMMUTATIVE egiist 
--- eqlist(nil, flatten(T)) <= false 
--- eglist(A:: nil, L1<>L2) 

<= (eglist(A:: n il, Ll) and eqlist(nil, L2)) or 

ý., 
(eqlist(A:: nil, L2) and eglist(nii, Ll)) 

--- eglist(nil, Li<>I, 2) <= eglist(nil, Ll) and eglist(nil, L2) 
TRANSFORM 

GOAL eqtips(tip(A), tip(B)) 
GOAL eqtips(tip(A), tree(tip(B), T)) 
GOAL egtips(tip(A), tree(tree(T1, T2), T)) 
GOAL eqtips(tree(tip(A), S), tip(B)) 
GOAL egtips(tree(tip(A), S), tree(tip(B), T)) 

<= $$(A, B, eqtips(S, T)) 
GOAL egtips(tree(tip(A), S), tree(tree(T1, T2), T)) 

<= $$(egtips(tree(tip(A), S), tree(T1, tree(T2, T))) 
GOAL egtips(tree(tree(S1, S2), S), tip(B)) 
GOAL egtips(tree(tree(S1, S2), S), tree(tip(B), T)) 

<= $$(egtips(tree(Sl, tree(S2, S)), tree(tip(B), T))) 
GOAL egtips(tree(tree(S1, S2), S), tree(tree(T1, T2), T)) 

<= $$(egtips(tree(S1, tree(S2, S)), tree(T1, tree(T2, T))) 
END 
DELETE eqtips(S, T) 

END 

The goal mechanism has saved us the many small steps of 

unfolding, applying properties of functions, and folding. Even so, 

it is still tedious to have to give nine goals corresponding to each 

combination of the cases the two arguments of eqtips can take. 
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Equally tedious is the need to specify rather simple patterns fcr 

several of these goals. 

The key to our solution is to consier cases 

tip(A), tree(ti. p(A), T), tree(tr. ee(T1, T2), T) 

for arguments of type trees(aifa) . 

When transforming a call involving the case tree(ti. p(A), T) 'Look for a 

recursion involving a call on T. Similarly, when a call involves the 

case tree(tree(T1, T2), T) look for a recursion involving a call to 

tree(T1, tree(T2, T)). 

The system can do much of the work for us if we first give type 

information about type trees (alfa) . The form this takes is 

TYPEINFO T <= tip(A) 
<= tree(tip(A), T) ,T 
<= tree(tree(T1, T2), T) , tree(T1, tree(T2, T)) 

T is a variable of type trees(alfa), and following each "<=" is one 

of the cases we want to split this type into, each such case followed 

by its recursive case(s) if any. 

Once this type information has been given, the single goal 

GOAL eqtips(RECURSE CASESOF S, RECURSE CASESOF T) 

will be expanded into the nine goals, with simple recursive patterns 

generated for each one. Thus the transformation commands to make the 

, improvement need only be: 

CONTEXT 
TYPEINFO T <= tip(A) 

<= tree(tip(A), T) ,T 
<= tree(tree(T1, T2), T) , tree(T1, tree(T2, T)) 

USING eqtips and 
UNFOLDALL eqtips 
LEMMAS ASSOCIATIVE <> 

COMMUTATIVE eglist 
--- eqlist(nil, flatten(T)) <= false 

--- eglist(A:: n il, Ll<>L 2) 
<- (eglist(A:: nil, L1) and eglist(ni. 1, L2)) or 

(eglist(A:: n il, L2) and egii_st(nil, L1)) 

--- eglist(nil, L1<>L2) <= eglist(nil L1) and eglist(nil, L2) 
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END 

The systfrt has a default mechanism to Ie_, ýýrate se 

: ýnformation if we do n(-, t pro-v: de -Y. " , 
i13;, e, ýer 10. t't, e tvr-o 

trc. esfalfa) it would gE'Tlc! Z, +tE: the equivai en* cf 

TYPEINFO T <= tip(A) 
<= tree(, ',, T ) ; S, `ý 

hence for the solution ve are a4ming for h. cre, r-ust supply our oiý; 7 

more sophisticated type info_ixi. a _. ioas 

3 Parsing Example 

( This example is taken from DarlingLon [1976] ) 

So far. the transformations have Liv' 1ved restructuring chc 

definitions in terms of already defined functions. This ex ip1e 7lll 

illustrate ho the system Cd. n assist in deriving auxiliary functions 

when these are required to permit the desireed restructuring. 

The problem is to take input it the form of a stream of tý. xt 

(letters and spaces) on fixed length rcoords=:. d convert this dream 

into a stream of words, one word per record. 

For example, the sentence THE CAT SAT would be recorded, 

records of length 3 as 

{ [TIDE ][ CA] [T S' [AT ]] 

and the reqvired output is 
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7, AP º'r;; ( ýY., rrý L=. _i -c: C; -sýn: a , 7, - - Yri 

L 
tT iirý J FL G , ýýT 

JI 
, (3) t1 1,1 

rucL re. The naive progrdt-h works by f irsl- ? 
_atten ,: g the input s_ 

Ttºus 1-111)(--- at)ove input . ouii b(---- convey ter! into 

[THE, Ci'AT SAT] 

This s then, rest. r.: r" tur ed into the desired output. can eptimi. 

this two pass program into a one paýýs one. Lists ý-re :_ scd to 

represent the records and words. 

The NPL definitions are as follows: 

DEF 
DATA character <- ap ++ sp 
/// ap's are letters and Fp is the space 

+++ translate(list list character) <= list character 

---- translat. e(CLL) <- parEe(: ýi. atten(CLI, )) [1] 

-H-I- fiatten(list list clhhar2. cter) <= list character 

--- flat ten(nii; ) <=- nil (2) 

---- flatten((C:: CT., ):: CLL) <= C:: flatten(CL:: CLL) (31 

--- flatten(nil:: CLI. ) <= f_latten(CLL) [4] 

+++ parse ( list character) <= list list charactin-r 

--- parse(CL) <= firstw(CL) :: pür5e(restw(CL)) (5) 

-+++ firstw(list character) <= list 
character 

selects the firs word off a flat 11 t 
--- firstw(nil) nil [6] 

--- firstw(ap:: CL) <= ap::? ir5tw(CL) [7] 

--- firstw(sp:: CL) <= nil [8] 

+-i-+ restw(li,, t character) <= lisL character 
/// removes the first: word and following spaces 

--- restw(nil) <= nl [91 

--- r. estw(ap:: CL) <= restw. 7(CL) [10) 

--- restw(sp:: CL) <== skipsp(CL) [1 ]J 

+++ skip: -p( I Lst char, -cter) <= 1iL charac ter 

removes all spaces up to 

---- skipsl)(nil) <= nil [12] 

rýsp(CL) (13] 
--- :; kipsp(sn:: CL) <_ sk4 

. 
--- rkipsp(^p:: CL) <= ? p:: CL (141 



LAP 7. -ýT. ýsfcrý: lt. c::: , -, - I ö&t' ý 

T :.: 1L ý'. _r! I tr, _, _s -_acion of s gc: 'F: as fo, 1oc. 

First, define a new function, pr, rsel 

+++ p; rse l (list list character) <- tu,. ie2(l1st character, 
14-st list chaLE; c'. -er) 

Parsel is to take the origL a]_ structured list and return a pair 

consisting of the first w, _or- of the li ct, and the parse of the re t 

of the moist, thus: 

---- Pa-rsel(i, I, ) <= <firstT. ý(flartei: ("L)), parse{restw(ilattc: ý(ýI. [. ))> 

Now transform this definition of parsel by consideri_n; cases nil, 
nil:: CLL, (ap:: CL):: CLL and (sr;:: CL):: CLL for is ar-ument: 

parsel(nil) <- <firstw(flatten(ril. )), parse(restw(flatter(n .?. 
) )> 

parse. l (nil: : CLL) <= <firstw(flottea(CLL) ), pacse(ies. s'; (ilatter. (C`, L) )> 

untolcding 
<= parsel(CLL) folding 

parse] ((ap:: CL):: CLL) <= <ap:: fi_stw(flatten(CL:: CLL)), 
parse(restw(flatten(CL:: CLL))> 

unfolding 
<= <ap:: W, WL> where <W, W L> 

<firstw(flatten(CL:: CLL) ), 

parse(restw(flatten(CL:: CLL))) 
abstracting 

<= <ap:: [1, WL> where <11, ;, ýL> parse I (CL:: CLL) 
folding 

parsel((sp:: CL):: CLL) <= <nil, pai-se(skipsp(fiatten(CL:: CLL)))> 

unfolding 

We now come to a non trivial part of the transformatior:: We 

would like to define parseý((sp:: CL):: CLL) recursively, but the 

unfolded expression is not quite of the appropriate form to allow us 

to do this. If we introduce an auxiliary function skipspz such that 

skipsp(flatten(CLL)) = flatten(skipspz(CLL)) then we can get ;i 

recurs t. ve definition. skipspz does on the structured moist what 

skipsp does on the flattened list. Darlington has developed a +_thod 

of deriving tL definition of auxilia: 'y functions when se? ':: r: ̀  to 
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force a f_ol;: soi; je fu; ictior. cs-ýe [197~ý] for details of 

this) . For the 
present, let u fissure t't skipsp 2 hzs bean 

introduced, and proceed from there: 

<= <nil, parse (s1-, *Fs-) (fi.: at-terl(CL: : CLL) ) )> 
ý ,. k1 epeat. i; ýg p_-<_-Aous line) 

<= <nil, parse(f_1. ut. i. tr: (s'r. 
-ipspz(CL: : CLL) ) )> 

using skipsp7 
<= <r_il, firstv, (fl. attenk;. s, ipspz(CL: : CLL) )): : 

parse (res', -(f? a~tc: k'skipspz(Ci:: : CLL) )) 1> 
unfo. i. di: -) II 

<-: <nil, W: : WL> , t-ere 
<firstw(f=i-: ttecL(sicip. ý7pz! CL: : CL?. ) ) ), 

parse(r. estý.:; f, aLten(skips; ý-7(CL: : CLL))) j> 
abstracting, 

<= <nil, W: : WL> where <L-', Tw'L> 
rýaisel(skipspz(CL: : ýLý. ) ) 

folding 

Now define translate using parse l: 

translate(CLL) <== f. irstw(flarten_(CLL) ): : parse(restw(fiatten(CL: -) )) 

unfolding 
W: : WL where <W, WTL> == 

<firstw(flatten(CLL)), parse(restw(flatten((1LL)))> 
abstracting 

<= W:: WL where <W, WL> == parsel(CLL) 

Finally we have to synthesise skipspz. Recall that skipspz must 
satisfy 

flatten(skipspz(CLL)) = skipsp(iial_ten(CLL)) 

Thus we need 
flatten (skipsp:, (ni1)) = skipsp (f latten(nil) ) 

= nil 
= flatten(nil) folding with [2] 

for which we need: 
skipspz(nil) <= nil 

flatt. eu(skipspz(ni1:: CLL)) = skipsp(flatten(: 'il:: CLL)) 

= ski_psp(flatten(CLL)) 
flatten(skipspz(CLj )) 

using our defining equation for skipspz 
for which we need 
skipspz(nil:: CLLL) <= skipspz(CLL) 

flatten(sk--, 
-psPz 

((ap:: CL):: CLL) = skipý. p(fl2tte; º( : CL:: CLL) ) 

skipsp(ap: :f .l r-- tten(CL: : '. LL) ) 
=- ap: :fl. attý,:, (CI.: : CLL) 

= f]. atten((at.:: CL):: CLL) folc: ng [;; 
for which we need 
s}_i. pspz((.; p: ; CL):: CLL) <_ (ap:: CL):: CLL 
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f1aCr_eci(sý pcp ((ý. 
. ). T))_s:. '.! ý(`lzttn: ; (s I; . (: tL) : : CI ?ýý` ýý. ýsCL. Ci., ý s 

= s; :, f ,o (ýtý: lat teP: CLý)) 

skf»ý1ý(f! _cýrtý"., 
r'I,:: C'_L) 

- f. 1 ae n(s'r, (GT L: LL) 

us-i_n( our def. ýu; 
_ng 

ecliaL'"on for 
fo -C :i ch we need 
skipý. pz( ( , rý: : CL): : Ci, L) : -- skipspz(CT : CLL) 

This cer, =pi etes th<< hand transfoi, aa tiei . 

in the hand transformation, fun tion p r_ 1 was tailored 

specifically for translate. Hence it would be appropriate to cc"; nbiie 

its introduction with the redefinition of tr. an. )'_ate. This would hnvc 

the advantage o` ensuring that the ? vr_ ýp iar_e de. inition. of a new 

function for use by translate (as well as its type ration) would 

be created as we transformed translate. 

Essentially we VLsh to express translaL (CLL) as 

W:: WL where. <W, WL> == pcrsel (CLL) 

parsel being the new function. 

The way we would do this in the system is to prefix the na-me of 

the new function by the special symbol && within our goal, thus: 

GOAL translate(CLL) <= W:: WL where <W,. i. > &&parsei(CLL) 

The process works by making the new function act as a function 

variable to match a portion of the expression, iýý much tie same way 

, that $$ does, but in this case the instantiation becomes he 

definition of the new function rather than a portion of the right 

hand side of the transformed equation. 

It is here that we see a need for another class of lu Is ab ie 

f unctions . We intend introducing a TI T' unction drf in t-Lc n 

i. nvoiN-es functions parse, flatten, restw and firsts-. Ii we siR, n 

declare a1] these functions to be usabla, Lee: ý. -, ansion 
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transl ate(CI, L) will turn omt to be a brise cý. . We r- c: ui re ", class 

of functions which may occur in our answer, but C: ay nct occur 

in a base case. Because T intend this new class o u_ ? b). 3fu ictior. s 

to be more restricted in their application, -e term them us: " ý1 , iut 

RESTRICTED. 

They ire declared in the USIN': cc:; r, c; ariI, after an extra . _i-y",: ore.. - 

RESTRICTED. 

e. g. USING i'_ESTRICTED flatten firstvord 

Such usable restricted functions may ocr ur in the right hi, nd 

side of a transformed equation only if we explicitly give them _n the 

pattern, and/or match them to new function-,: y ý: ea! is of the && 

facility). They inhibit acceptance of Lhe expression as a base case, 

and are NOT matched by $$. Intuitively, this is the cla:, s of 

functions that we expect to occur in the answer, but who's use we 

wish to exert some control over. The example done with the aid of 

this feature will illustrate these points. The commands given to the 

system are as follows: 

START 
DEF 

(give here NPL definitions of translat fl tters, parse, f irstw; 

restw and skipsp] 
END 

CONTEXT 
UNFOLD translate parse 
USING REST.: ICTED flatten f-i_r_stt..: xestw parse [theF"e are usable, 

but restrictell] 
TRANSFORM 

GOAL translate(C1, L) <= W:: WL where &&parsel(CLL) 

END 
END 
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The }stc c-. r"i; -. ds a& def±_- ; 
-t -o., of pa', el. 

parseI(CLL) <= :f 'Li-stw(flattý^(Ct4L)): karse res -(fi c 1- (CLL); )= 

which it aids to he NP-, cquat o:, s, haw:; itZde the type, defiritI cu 

for Pa r, el. thus we have redefined tr_ar. sý. atc ür. _' introduced parcel 

all in ä sing 

c step. Now redefine- pr. _r3el . 

CONTEXT 
UNFOLD parse lf irs `w ý"1att. eu r)arse restw 
US'LNG parsel ý FSTRZC'I. ̀I: D :; icipsp flatten 
TRANS F ORM 

GOAL parsei(nil) [we expect this to he a bese case! 
GOAL parse l(nil i: CLL) <= ý(rparse1(CLL)) 
GOAL parse I((ap:: CL)):: CLL) <-- $$(ap, oars`I! CL:: CLL)) 
GOAL par. se1. ((sp:: CL):: (LL) <=- $$(parse ?U "skipsp--(CL:: CLL))) 

END 
DELETE parsel(CLL) 

END 

parsel (nil. ) expands to simply <nii, nil> i. e. a base case 

parsel(nil:: CLL) (i. e. at end of current section of and 

parsel((ap:: CL):: CLL) (i. e. found alphanumeric .£ current word) 

recurse simply, to give: 

parsel(nil:: CLL` parsel(CLL) 

parsel((ap:: CL):: CLL) <= <ap:: I!, WL> 

where <W, WL> _= parsel(CL:: CLL) 

parsel((sp:: CL):: CLL) has no immediate recursion with 

parse1(CL:: CLL). It corresponds to reaching a space in the input, 

terminating the word we were building up. We expect, therefore, that 

we should skip spaces In the input until an alpnanummeric (or end of 

input) is reached, and continue with parsel from that point. 

However, skipsp acts on the flattened input, list character, u} ereas 

parse works on list ]ist character, so we need a new skipspz whi__r, 

will be analogo. is to ski-psp. The way w` introduce this Js by ; ring 



ZAP Program Transformation System Primer Page 4-22 

the && facility in the pattern. The system 'finds 

parse]. ((sp:: CL) :: CI. L) <= <nil, W:: WL> 

where <W, WL> -_- parsel(skipspz(CL:: CLL)) 

and as a definition of skipspz, 

flatten(skipspz(CLL)) <= skipsp(flatten(CLL)) 

Darlington terms such a definition an "implicit" definition, 

since it is not in the usual form of having the defined function on 

the outside of the left hand side. The system always attempts to 

rearrange such a definition to bring the function being defined to 

the outside of the left hand side. To do this it will introduce 

inverses, thus: 

skipspz(CLL) <= iflatten(skipsp(flatten(CLL))) 

iflatten(flatten(CLL)) <= CLL 

iflatten is the inverse of flatten. 

In general, inverses will not be uniquely defined, if they exist at 

all. The intention is to transform a definition making use of 

inverses into one without any such uses, applying only inverse 

properties of the introduced inverse functions. 

In this manner we use the system to transform skipspz: 

'CONTEXT 
UNFOLD skipsp flatten skipspz iflatten 
USING skipspz 
LEMMAS --- iflatten(C:: flatten(CL:: CLL)) <= (C:: CL):: CLL 
TRANSFORM 

GOAL skipspz(nil) 
GOAL skipspz(nil:: CLL) <= $$(skipspz(CLL)) 
GOAL skipspz((ap:: CL):: CLL) 
GOAL skipspz((sp:: CL):: CLL) <= $$(skipspz(CL:: CI. L)) 

END 
DELETE skipspz(CLL) 

END 
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This is another opportunity to make use of type information to 

simplify our goals: 

Firstly, introduce our own information for type list list char 

TYPEINFO CLL <= nil 
<= nil:: CLL , CLL 
<= (ap:: CL):: CLL , CL:: CLL 
<= (sp:: CL):: CLL , CL:: CX. L 

once this has been given, our 4 goals can be encapsulated in one by: 

GOAL skipspz(RECURSE CASESOF CLL) 

The system finds 

skipspz(niP. ) <= nil 

skipspz(nil:: CLL) <= skipspz(CLL) 

skipspz((ap:: CL):: CLL) <= (ap:: CL):: CLL 

skipspz((sp:: CL):: CLL) <= skipspz(CL:: CLL) 
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ZAP PROGRAM: TRANSFORMATION SYSTEM USERS' MANUAL 

INTRODUCTION 

This manual describes an interactive system to allow a user to 

transform NPL programs into NPL programs. NPL is a first-order 

recursion equation language. See the appendix for an informal 

introduction to NPL. The underlying method of transforming is due to 

Darlington and Burstall, see Darlington [1975], [1976] and Burstall 

and Darlington (1.9771 for detailed expositions of this method, with 

many examples. For introductory examples to informally demonstrate 

the use of the system, see the ZAP Program Transformation System 

Primer (previous section). The NPL interpreter and parser were 

written by Rod Burstall, and my system makes use of code written by 

John Darlington which links with NPL. 

The syntax of the control language of the system is given in 

B. N. F. Underlined words, called "reserved words", are represented by 

the same words without underlining in an actual program. There is no 

distinction between upper and lower case. For readability I adopt 

the convention of lower case for constants, constructors and 

functions, and upper case for reserved words and variables. 

Description of the system is in the following stages: 

1. Control of system 

2. Transformation features 

3. Syntax of control language 
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1. CONTROL OF SYSTEM 

To run the system, at monitor level type the MIC command 

/ZAP [450,463] 

When initialisation is complete, 'READY' will be printed. The user 

is then inside POP-2, with the transformation system compiled. The 

system transforms from and to NPL. This manual assumes the user is 

familiar with NPL. The NPL interpreter is available and may be used 

to test initial and final programs. Any NPL definitions (subject to 

restriction detailed in [1.2]) made outside the transformation 

system are passed in upon entry to the system. 

1.1 Overall Control 

The syntax of the overall control of the system is as follows: 

<control> :: = START <control contents> STOP 

<control contents> :: = <empty> I 
<control command> <control contents> 

<control command> :: = <def block> I <introduce block> I 
<context block> I <infile command> 
<typeinfo command> I <val block> 
<state command> j </// command> ý 
<delete comand> I <write block> 
<showspecs block> 

Thus to enter the system, type START. After this the system is 

then waiting for one of the following: 

DEF block - to provide the initial NPL program to be 

transformed [1.2] 

INTRODUCE block - to introduce auxiliary definitions (1.3] 

CONTEXT block - to transform definitions [1.4] 
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INFILE command - to cause commands to be taker from a 

disc file [1-5j 

TYPEINFO command - to provide information about data types [1.6] 

VAL block - to evaluate an expression [1.7] 

STATE command - to Save current state of definitions or 

restore a previously saved state [1.8; 

command - to include comments. Reads up to next reserved 

word, ignoring all intermediate POP2 items (1.9] 

DELETE command - to delete equations [1.10] 

WRITE block - to write definitions out to a disc file [1.11] 

SHOWSPECS block - to display she definition of a function in terms 

of the original functions [1.12] 

STOP - to exit from the system 

These are now described in detail. 

1.2 The DEF block 

Syntax : <def block> :: = DEF <NPL> END 

<NPL> is any sequence of NPL definitions that may appear in a 

"DEF... END" block of normal NPL, with the following restrictions: 

The type overloading of functions (i. e. using the same function 

symbol to indicate different operations depending upon the types of 

its arguments) is not permitted. 

The reserved words of the transformation system may not be used 

- these are ASSOCIATIVE COMMUTATIVE CONTEXT DELETE DISPLAY GOAL 

IDENTITY INFILE INTRODUCE LEMMAS RESTORE RESTRICTED SAVE START STOP 
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TRAS"lSFOR21 TYP. E INFO UNFOLD UNFOLDALL USING WRITE WRITEALL. 

In addition, the following symbols have special meaning to the 

system: $$ && AUTO CASESOF RECURSE 

NPL if /ifnot clauses may be used in the DEF and INTRODUCE 

blocks, but will be converted to make use of the conditional 

function, COND. Where the syntax demands an NPLEM, if /i fnot 

clauses may not be used. 

The purpose of this command is to present the initial program, 

which serves as the specification. 

1.3 The INTRODUCE block 

Syntax : <introduce block> :: = INTRODUCE <NPL> END 

This acts precisely as the DEF block. Its purpose is to 

introduce auxiliary definitions which are not to be regarded as part 

of the specification. 

1.4 The CONTEXT block. 

The purpose of this block is to set up a context in which 

transformations take place. Amongst the features declared within a 

context are equations to be used for unfolding, and lemmas to aid in 

unfolding and matching. 

To understand the uses of all the features, we must first 

understand the way in which transformation is performed. 

Transformations change the right hand sides of equations and may 
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introduce new functions and their definitions. The fundamental way 

in which a transformation is carried out is as follows: 

A function with instantiated arguments is supplied. This, if the 

transformation succeeds, will be the left hand side (henceforth 

referred to as L. H. S. ) of a new equation. Also supplied is an 

expression which is to be the right hand side (henceforth referred to 

as R. H. S. ) of the new equation. It is valid to introduce such a new 

equation If we can show that the L. H. S., unfolded using existing 

equations and rewrite rules, is equal to the R. H. S., similarly 

unfolded. Schematically, 

L. H. S. 

V unfold 

expanded 
L. H. S. 

R. H. S. 

unfold V 

expanded 
R. H. S. 

If they are equal, we add the equation L. H. S. <= R. H. S. 

existing NPL definitions. 

to the 

The context in which a transformation occurs is set up by the 

commands of the CONTEXT block. These are now described, and further 

details of the transformation process are given in [1.4.5] 

Syntax : 
<context block> :: = CONTEXT <context contents> END 

<context contents> :: = <empty> I 
<context command> <context contents> 

<context command> :: _ <using command> ý <unfold command> I 

<lemmas command> ý <typeinfo comand> 
<introduce block> ý <infile command> 
<transform block> ý <delete command> 
<val block> I </// command> I 
<state command> I <context block> ý 
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<showspecs blcck> 

Briefly, these act as follows: 

UNFOLD command -- declares functions whose equations will be used to 

unfold L. H. S. and R. H. S. - 11.4-11 

USING command - declares which functions may occur in the R. H. S. of 

a transformed equation. [1.4.2] 

LEMMAS command - introduces rewrite rules for unfolding, and 

indicates functions to be associative and/or 

commutative. [1.4.3] 

TRANSFORM block - transform equations of a function [1.4.4] 

CONTEXT block - nested entry to CONTEXT' block. Within nested 

CONTEXT blocks, an inner block inherits the 

context set up by the surrounding block. 

The remaining commands perform the same functions as they did at the 

outer level of the system. 

1.4" 1 The UNFOLD Command 

Syntax : <unfold command> :: =- UNFOLD <namelist> I 
UNFOLDALL <namelist> 

This command names functions whose equations are to be used to 

unfold the L. H. S. and R. H. S. in transformations. Successive UNFOLD 

commands in the same CONTEXT block supplement the list of such 

functions. (on entry to the system, this list is empty). 
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The basic form of this command is to give the names of functions 

to be used after the reserved word TJNFO,, D. However. it is often 

convenient to use all the relevant NPL equations for unfolding, 

without having to name them explic. tly. By giving function names 

after the reserved word UPNFOLP)ALL, all the equations which are used 

directly or indirectly by those named functions will be included for 

unfolding. 

e. g. UNFOLD length + 

states that equations for length and + are to be used in 

unfolding. 

e. g. UNFOLDALL length 

states that all equations used directly or indirectly by length 

are to be used in unfolding. 

1.4.2 The USING command 

Syntax : <using comand> : := USING <using contents> 

<using contents> <namelist> 11 
<namelist> RESTRICTED <namelist> 

This command specifies functions additional to constants and 

constructors (constants are recognised by having no equations), which 

may occur in the R. H. S. of a transformation. There are two classes 

of such functions - restricted and unrestricted. Only functions 

named after the reserved word RESTRICTED are restricted. The use of 

the distinction between restricted and unrestri'ted is described 

later. See [1.4.5) and [2.1). 
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Successive USING commands in the same CONTEY7 bloc'.: suppleý_-ent 

each of these classes, the last mention oý a function name 

determining which class it is in. Initially only Core (conditional 

function) and = (equality function) are usable (both unrestricted). 

e. g. USING length succ 

declares length and succ to be usable, unrestricted. 

e. g. USING + RESTRICTED append length 

declares + to be usable, unrestricted, and append and length to 

be usable, restricted. 

1.4.3 The LEMMAS command 

Syntax : 
<lemmas command> :: = LEMMAS <lemmas contents> 

<lemmas contents> :: = <empty> I 
<npleqnlist> <lemmas contents> I 
ASSOCIATIVE <namelist> lemmas contents> 
COMMUTATIVE <namelist> <lemmas contents> j 
IDENTITY <NAME> <NPLEXPN> <lemmas contents> 

<npleqnlist> :: = <empty> I --- <npleqn> <nplegnlist> 

<npleqn> : := <NPLEXPN> <= <NPLEXPN> 

This command does one of four things: 

Firstly, re-write rules can be provided, vhich will be used in 

the unfolding of the L. H. S. and R. H. S. Since these rewrite rules will 

be applied whenever possible during the unfolding, no rule or set of 

rules should be capable of being repeatedly applied indefinitely. 

(e. g. including the rules A*(B4C) <= (A*B)+(A*C) and 
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(A*B)+(A*C) <- A*(B-+C) would lead to infinite looping.: 

Secondly, functions may be declared to be associative. she 

effect is to cause the equality test between expanded L. H. S. and 

expanded R. H. S. during transformation to take the associativity into 

account -- i. e. it will test for equality up to associativity of thesc 

functions. 

Thirdly, functions may be declared to be commutative, so that 

the equality test will take this into account. Further, such a 

declaration causes symmetric versions of equations and reductions for 

the commutative function to be added if not already present, so as to 

enhance the unfolding process. e. g. 

if we have equations for eglist, a function to test equality between 

two lists: 

- eglist(nil, A2:: L2) <= false 

- eglist(A1:: L1, A2:: L2) <= A14: 2 and eglist(L1, I, 2) 

and reduction 

- egiist(nil, L1<>L2) <= eglist(nil, L1) and egi. ist(nil, L2) 

Then declaring eqlist to be commutative will add the equation 

- eglist (A2:: L2, ni. 1) <= false 

and the reduction 

- eqlist (L1<>L2, nil) <= eglist(nil, L1) and eglist(nil, L2) 

to be used during unfolding. 

Lastly, the identity for a (binary) function can be declared. 

After reserved word IDENTITY, the function name is given, followed by 

the expression which is its identity. This will cause applications 

of that function to its identity to be reduced during the unfolding 
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of R. H. S. 's and L. H. S. 's. 

Since these are user-provided details, the validity of the 

transformation will depend upon the validity of these details. 

Successive LEMMAS commands in the same block supplement these 

details. 

e. g. LEMMAS --- N+ succ M <= sticc (N + M) 

ASSOCIATIVE +- 

COMMUTATIVE +-* 

IDENTITY +0 

These add rewrite rule N+ succ M <= succ (N + M), declare 

functions +, - and * to be both associative and con, mutative(adding 

symmetrical versions of all equations and reductions for these 

functions) and declare 0 to be the identity of +. 

1.4.4 The TRANSFORM Block 

Syntax : 

<transform block> :: = TRANSFORM <goal list> END 

<goal list> :: = <empty> j <goal> <goal list> 

<goal> :: = GOAL <left hand side> I 

GOAL <left hand side> <= <pattern> 

<left hand side> :: = NPLEXPN> 

<pattern> <NPLEXPN> 

These are the commands which cause transformations to be carried 

out. 
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After the initial reserved word, a list of goa. 1s is given. Each 

goal is an expression to become the left hand side of a new equation, 

optionally followed by "<=" and a pattern. A pattern is the u: eens by 

which the desired R. H. S. of the new equation is given. In its 

simplest form, this will be the exact expression the user expects is 

the R. H. S. 

Used in this fashion, the transformation system acts as a 

verifier, merely checking user-provided definitions. Patterns can 

also be used to aid in the discovery of new definitions - achieved by 

giving as a pattern only the approximate shape of the answer desired, 

letting the system fill in the details. This is explained fully in 

section 2. 

If a left hand side is mentioned more than once in the goals, 

then the corresponding patterns (if any) will be tried in the order 

in which they appeared. 

If all the patterns for a left hand side fail, the system will. 

enter into an interactive dialogue with the user to get another 

pattern, or be told to abandon the attempted transformation. 

Provided all the left hand sides are successfully transformed, 

the system will then take the following action: 

If any of the new equations have left hand sides identical to 

those of existing equations in NPL, the existing equations are 

removed from NPL and saved by adding them to the "specifications 

list". Saving them enables us to later look back and see how 

functions were originally defined. The SHOWSPECS command, [1.12), 

does this. 

All the new equations are added to NPL. 
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The context in which the transformation takes place will be that 

at the point where the TRANSFORM block occurs. 

e. g. Suppose we have funnyplus, so called because it behaves like 

plus but for the order of its arguments in its recursive call, 

defined as follows: 

+-I-+ funnyplus(nurs, num) <= num 
---- funnyplus(O, M) <= 0 
---- funnyplu. s(succ N, 1: ) <= succ funnyplus(M, N) 

Having created the appropriate context, we might say 

TRANSFORM 
GOAL f unnyplus (succ N, M) <= succ f unnyplus (N, M) 

END 

This will attempt to transform the second of the equations for 

funnyplus. If the goal given is successful, this will change to 

- funnyplus(succ N, M) <= succ fun ayplus(N, M) 

and save the old equation by adding it to the "specifications 

list". 

e. g. Suppose we have length, append and lap defined as follows: 

+++ length(list atom) <= num 
+++ append(list atom, list atom) <= list atom 

" +++ lap(list atom, list atom) <= num 
length(nil) <= 0 

- length(A:: AL) <= succ length(AL) 

--- append(ni1, AL1) <= AL1 

--- append(A:: AL, AL1) <= A:: append(AL, AL1) 

--- lap(AL, AL1) <= length(append(AL, AL1)) 

then, having created a suitable context, we could say 

TRANSF OKM 
GOAL lap(ni1, AL1) <= length(A. L1) 
GC1AI. lap(A: : AL, AL1) <= succ lap (AL, AL1) 

END 
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This will attempt to redefine lap, and if the goal is 
successful, will give 

--ý lap(ni1, AL1) <= length(AL: ) 
--- lap(A:: AL, AL1) <= succ lzp(AL, AL1) 

1.4.5 Further details about transformation 

Commands for preparing the context for a transformation have now 

been described. Two important details of the transformation process 

can now be mentioned: 

(i) There are three classes of functions; 

Unusable 

Usable, unrestricted 

Usable, restricted 

If all the functions within the expanded L. H. S. are either usable, 

unrestricted, or unusable but simply constructors or constants 

(within the current context), and the expanded L. H. S. contains no 

iterative expressions, this is termed a "basecase". The equation 

L. H. S. <= expanded L. H. S. 

is added to the equations, and no R. H. S. in the goal is required. 

Typically base cases of recursive functions fall into this class, 

hence the terminology "basecase". 

(ii) The only unusable functions that an R. H. S. of a goal may 

contain are constructors and constants (within the current context). 
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1.5 The INFILE command 

Syntax : <InfA. e commanC> : := Iirt'lL. E <i ILL;. k'iE> 

By defaults the input of commands to the system is taken from 

the user's terminal. Commands stored in a disc file may be used 

instead. To cause command input to come from such a file, use the 

I NF I IMF command. 

e. g. INFILE (F1LEI. EXT] 

Would cause command input to come from file FILE 1. FXT 

Upon end-of-file being reached, input reverts to the user's 

terminal. 

1.6 The TYPEINFO command 

Syntax : <typeinfo command> :: = TYPEINFO <nplexpn> <typeinfo cases> 

<typeirfo cases> :: = <= <nplexpr. list> I 
<= <nplexpnlist> <typeinfo cases> 

This command is one of the features present to reduce the effort 

of using the system. The user can save himself some later effort by 

specifying some information about data types in advance. 

Type information will be used for two purposes - suggesting 

cases of an argument to consider, and aiding in the generation of 

simple patterns. 

Splitting transformation into cases is done by looking at the 

cases an argument can take. The type of the argument will influence 

the cases we would consider. 
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e. g. For an argument of type num (natural number), we might consider 

the cases 

0 and succ N 

alternatively, we might consider 

0,1 and succ succ N 

e. g. For an argument of type trees(alfa) (binary trees of alfa's), 

we might consider the cases 

tip(A) and tree(T1, T2) 

alternatively, we might consider 

tip(A) , tree(tip(A), T) and tree(tree(T1, T2), T) 

Generating a simple pattern will involve forming simple recursive 

calls to the function being transformed. The type of the function's 

arguments determine the recursive calls which could be made. 

e. g. When transforming a call to a function with argument of type 

num, in the form succ N; f(succ N,... ), we might generate a 

pattern including the recursive call with argument N; f (N, ... ) 

for call f(succ succ N,... ) the pattern might include calls 

f (N, ... ) and/or f(succ N,... ) 

e. g. When transforming a call to a function with argument of type 

trees(alfa), in the fora tree(T1, T2); g(tree(T1, T2),... ) we 

might generate a pattern including the recursive calls with 

arguments T1 and T2; g(T1, ... ) and g(T2,... ) 

The essence of the above is that for each data type there may be some 

way (or ways) of splitting the type into cases, and for some of these 

cases there may be "recursive" cases which can be used to form 
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recursive calls in patterns. 

e. g. type case recursive cases (if any) 

num 0 
succ NN 

trees(alfa) tip(A) 
tree(T1., T2) Ti 9 T2 

trees(alfa) tip(A) 
tree(tip(A), T) T 

, tree(tree(TI, T2), T) tree(T1, tree(T2, T)) 

The TYPEINFO command is a means of specifying such information. The 

syntax for presenting the information is very similar to the above 

layout. Instead of naming the type, any expression of that type 

suffices. Each cases is preceeded by the symbol "<=", and followed 

by its recursive cases (if any), separated by commas. 

e. g. 
TYPE INFO N <= 0 

<= succ N, N 

TYPEINFO T <= tip(A) 
<= tree(T1, T2) , Ti , T2 

TYPE INFO T <= tip(A) 
<= tree(tip(A), T) ,T 
<= tree(tree(T1, T2), T) , tree(T1, tree(T2, T)) 

If the user has not provided type information about a type, the 

system applies a default mechanism to generate such information if it 

is required. This works by looking at the NPL DATA declaration for 

the type in question; each of the cases in the DATA declaration 

becomes a case in the type information. Recursive cases are formed 

by spotting occurrences of the type within the cases of the DATA 

declaration. 

e. g. DATA num <= 0 4+ succ num 
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TYPTT1__ ;N0 
<= succ N, N 

e. g. DATA list(alfa) <= nil ++ alfa :: list(alfa) 

generates 

TYPE INFO Li <= nil 
<= A:: L ,L 

/ 
J 

For straightforward problems, the default type information will often 

suffice. The user can override this by providing his own type 

information when the default is not appropriate (as in the egtips 

example presented in the Primer). 

Using one information 

In order to cause a transformation goal to be expanded into 

several goals by considering cases of some argument, prefix the 

argument by CASESOF. The current type information will be used to 

suggest the cases. 

e. g. GOAL f unnyplus (CASESOF N, M) 

expands to (using default type information for type num) 

GOAL f. unnyplus (0 , M) 

GOAL funnyplus(succ N, M) 

Prefixing several. arguments by CASESOF will create all combinations 

of cases 

e. g. GOAL funnyplus(CASESOF N, CASESOF M) 

expands to 

GOAL f unnyplus (O , 0) 

GOAL funnyplus(0 , succ M) 
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GOAL f unnypl-is (succ N, 0) 

GOAL funnyplus(succ N, succ M) 

The details of how to generate simple recursive patterns are left 

until section (2-21 

1.7 The VAL block 

Syntax : <val block> :: = VAL <NPLEXPN> END 

The NPL expression is evaluated using the current NPL equations. 

Hence this can be used to test and compare functions. 

1.8 The STATE command 

Syntax : <state command> :: = SAVE I RESTORE <NUMBER> 

The current state of NPL definitions and the specification list 

may be saved by giving the command SAVE. The system responds with 

the number of the state where they have been saved, which may be 

restored later by giving command RESTORE, followed by the appropriate 

number. Successive SAVE commands cause the state to be saved in 

successively numbered locations. 

1.9 The /// command 

Syntax : </// command> : := /// <pop2 itern;. ist> 
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<pop2 itemlist> : := <empty> I <i'0P2 ITE*i> <pop2 ;` eý lisr> 

This provides a comment facility. After ///, pop2 items are 

read and discarded until a reserved word is encountered. The 

reserved words are ASSOCIATIVE COMMUTATIVE CONTEXT DELETE DISPLAY 

GOAL IDENTITY INFILE INTRODUCE LEMMAS RESTORE RESTRICTED SAVE START 

STOP TRANSFORM TYPEINFO UNFOLD UNFOLDALL USING WRITE. Since a pop2 

string is a single pop2 item, reserved words may occur within such 

comments provided they are within string quotes. 

e. g. 

this is a comment 

e. g. 

/// 'this is a comment within string quotes@ 

1.10 The DELETE command 

Syntax : <delete command> :: = DELETE <nplexpnlist> 

This command removes equations from NPL. After the reserved 

word DELETE, give the left hand sides of the equations to be removed. 

Equations deleted from NPL are saved on the "specifications list", 

which may be accessed later to determine how functions were 

originally defined. The SHOWSPECS command does this accessing, see 

(1.12) for details of this. 
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1.11 The WL T rE ý-1ock 

Syntax <wri_te block> :: - WRITE <FILTý,; -_?: E> <r. anelist> EDi 'J, -, . IF, % LL 

<FILENAME> <na: nc]_irt> END 

This command allows current NPL c efinitions to be written ro a 

disc file. 

If. the reserved word WRITE is given, only the equations of 

named functions will. be written to file. 

If the reserved word WýT'Zi ITEALL is used, all equations of both the 

named functions and any function used di. ractly or indirectly by them 

will be written to file. 

The destination file is specified after the appropriate reserved 

word, and followed by the function names. 

Output is an NPL DEF... END block, including the type 

declarations for all the functions whose equations are to be listed, 

variable declarations for all variables used, and finally the 

equations themselves. After this, the specifications of all used 

functions (in terms of the original functions) are printed. 

e. g. 

WRITE [LEN. NPL ] alength 

might write the following: 

DEF 

-H-+ alength(list atom, num) <= num 
VAR N: num 
VAR A: atom 
VAR AL : list atom 
--- alength(nil, N) <= N 

--- nlength(A:: AI,. N) <= alength(AL, succ N) 
END 
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SPECIFICATIONS 
alength(AL, N) <= N+ length(AL) 

1.12 The SHOWSPECS block 

Syntax : <showspecs block> :: = SHOWSPECS <namelist> END 

This command displays the definitions of the named functions in 

terms of the original functions. 

e. g. if function alength had originally been defined by 

alerigth(AL, N) <= N+ length(AL) 

and later transformed to get a recursive definition, 

SHOWSPECS alength END 

would cause the original definition to be displayed. 

2. TRANSFORMATION FEATURES f 

The basic transformation system has now been presented. Some 

features have been mentioned but not fully explained. It is 

certainly possible to use the system as described, but the following 

facilities will ease the use of the system. 

2.1 Patterns for transformations 

As stated earlier, the approach to transformation is to supply 

an L. H. S. and R. H. S. which are expanded and compared. There are 

often occasions when the user has an idea of the form of R. H. S. he 

desires, and he may wish to specify that fora without having to give 

every detail. 
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of which MATCH to functions 

The key to making this possible is the inclusion in the R. H. S. 

function. variables 

Pýýe 4--4 5 

- hence the 

terminology "pattern" for the 

process then becomes: 

L. H. S. 

V unfold 

expanded 
L. H. S. 

supplied F. H. S. The transformation 

R. H. S. (pattzrn) 

0i information I 

from V unfold 
match 

MATCH expanded 
R. H. S. 

Bindings formed in the match between expanded L. H. S. 

expanded R. H. S. 

answer. 

are 

and 

used to instantiate the R. H. S. to form the 

There are two types of function variables, used for different 

purposes. 

The simpler use of them is to match to portions of the 

expression and thus save the user the need to specify those portions 

precisely in his pattern. Function variables to do this form of 

matching are represented by the symbol $$. 

The other use of them is to match to portions of the expression 

which are to be taken as the definition of a new function, the 

portions within the expression being replaced by calls to the new 

function. Function variables to do this form of matching are 

represented by the symbol &&, followed by a (new) name to serve as 

the new function's name. 
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The symbol $$ within a pattern is used for af unc do i qttern is 

to match to portions of the expression. $$ will match to 

constructors (including where and 
<. 

�C> constructs) , 

usable-unrestricted f_uncti. ons, and functions which are constants 

within the current context (i. e. have no equations declared for use 

in unfolding), provided they have not been declared restricted. 

Note, therefore, that $$ will NOT match to iterative 

expressions, any restricted functions, or unusable functions with 

equations in the current context. 

e. g. with the following definitions 

+f-+- sum(list num) <= num 
+++ squares ( lis t num) <= list num 
--- sum(nil) <= 0 

--- sum(N:: L) <= N+ sun(L) 
--- squares(nil) <= nil 
--- squares(N:: L) <= (N*N) :: squares(L) 
+++ sumsquares(list num) <= num 

--- sumsquares(L) <= sum(squares(L)) 

we might perform the following transformation 

CONTEXT 
UNFOLD sumsquares sum squares 
USING sumsquares 
TRANSFORM 

GOAL sumsquares(nil. ) 
GOAL sumsquares(N:: L) <= $$(N, sumsquares(L)) 

END 
END 

The first GOAL has only the L. H. S. sumsquares(nil). This unfolds to 

0, which, being a constructor, is a basecase, so the equation 

sumsquares(nil) <= 0 

is added. 

The second GOAL has L. R. S. sumsquares(N:: L). This unfolds to 
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(N*N) + sum(squares(L)), not a basecase since functions sum and 

squares occur within it, neither of which have been declared as 

usable. The R. H. S. is the pattern $$(N, surosquares(L)), which unfolds 

to $$(N, sum(squares(L))). Matching the expanded pattern and expanded 

L. H. S. succeeds, binding $$ to 

lambda xy. x*x +y 

(note that although neither * nor + have been declared usable, they 

do not have equations within this context, hence may occur within the 

binding of $$). The $$ in. the unexpanded R. H. S. is instantiated to 

give the answer 

sumsquares(N:: L) <= N*N + sumsquares(L) 

Clearly the above example was so simple that we could have 

easily anticipated the precise form of the answer and typed it as the 

goal without recourse to using $$. However, the advantages of 

matching become apparent both in tackling less trivial examples, and 

in using patterns generated by the system itself - section [2.2]. 

If the pattern contains several occurrences of the symbol $$, 

these need not bind to the same expression, so the single symbol $$ 

suffices for multiple occurrences of function variables in patterns. 

"2.1.2 ä& Matching 

The purpose of including the $$ function variable within a 

pattern was to save having to specify detailed portions of answers. 

An alternate way in which matching can be of help is to introduce new 

functions whose definitions arise from extracting portions of 

expressions being transformed. 

Function variables for this purpose are represented by the 



ZAP Program Trar. sLormaiion System Users' Manual Page -p J 

special symbol && followed by a new name which, if the match is 

successful, will be taken as the name of the newly defined function. 

Function variables of this nature riay match to any constructors, 

usable functions (both restricted and unrestricted), and functions 

which are constants within the current context (i. e. have no 

equations defined for unfolding). Thus they fail to match only with 

unusable functions with equations for unfolding in the current 

context. 

Ambiguity is avoided by not permitting any function variable (of 

either type) to occur within an argument of a function variable of 

the && type. 

e. g. with the following definitions 

-F++ wordsof(list char) <= list word 
--- wordsof(ap(A):: CL) <= firstword(ap(A):: CL) :: 

wordsof(ap(A):: CL - firstword(ap(A):: CL)) 

we might perform the following transformation 

CONTEXT 
UNFOLD wordsof firstword 
USING wordsof RESTRICTED firstword - 
TRANSFORM 

GOAL wordsof (ap(A):: CL) <= W:: wordsof (REI1CL) 

where <W, REMCL> _= &&wordandrem(ap(A):: CL) 

END 
END 

For this single goal, the L. H. S. is wordsof(ap(A):: CL). This unfolds 

to 

f irstword(ap(A):: CL) :: wordsof(ap(A):: CL - firstword(ap(A):: CL)) 

which is not a base case, because it contains resticted functions - 

and firstword. 

The R. H. S. is W:: wordsof (REMCL) 

.. where <W, RE11CL> __ &&wordandrem(ap (A) :: CL) 
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this does not unfold any further. 

Matching the expanded L. H. S. and expanded R. H. S. binds 

&&wordandrem to 

lambda x. <f irstword (x) ,x-f irstword (x) > 

Instead of using this to instantiate the variable in the answer, this 

becomes the definition of new function wordandrem: 

----- wordandrem(x) <= <firstword(x) ,x- firstword(x)> 

The transformed answer includes a call to this new function: 

---- wordsof(ap(A):: CL) <= W :: wordsof (REMCL) 

where <W, REMCL> == wordandrem(ap(A):: CL) 

The system generates the type declaration for the new function, and 

within the context declares the function to be usable, restricted, so 

that further goals in the same context (if any) may make use of it. 

From the above example the usefulness of the restricted class of 

usable functions can be seen - by declaring functions to be 

restricted, the only way they may occur in the answer is to be 

explicitly mentioned in the pattern, or to be incorporated as part of 

the definition of a new function. We therefore have stricter control 

over occurrences of such functions in the answer. 

2.2 Supplementing and generating patterns 

In section [1.6] the Typeinfo command was described. The means 

by which the user, or the system itself, could specify information 

about a data type were explained. This information included a list 

of 'recursive cases' for each case we split the data type into. This 

information can be of use when seeking a suitable R. H. S. during a 
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transformation. Very often we expect the transformed equation for 

some function to involve recursive calls to that function. 

e. g. when transforming function lap, 

-H-f lap(list atom, list atom) <= num 

we may expect the equation for lap(A:: AL, AL1) to involve 

the recursive call lap(AL, AL1) 

i. e. lap is recur sing on its first argument 

The recursive calls arise by replacing argument(s) in the L. H. S. 

by their recursive cases. Some data types may have more than one 

recursive case (e. g. a binary tree would have its right and left 

branches) which would give rise to more than one recursive call. In 

order to make the specification of such patterns easier, the 

following facilities have been provided: 

When giving a goal, to indicate we wish a pattern to recurse 

upon an argument of the left hand side, prefix that argument by the 

symbol RECURSE. 

e. g. GOAL lap(RECURSE A:: AL , AL1) <= .... 

causes the pattern 

$$(A, AL, AL1, lap(AL, AL1)) 

to be generated 

The generated pattern consists of $$ with argumments all free 

variables of the L. H. S., plus recursive calls formed by substituting 

recursive cases for the indicated arguments within the L. H. S. 

Occurrences of the special constant AUTO within the pattern specified 

at the right hand side of the goal will then be replaced by this 

derived pattern. 

e. g. 
GOAL lap(RECURSE A:: AL, AL1) <= AUTO 

is equivalent to 
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COAL lap(A:: AL, ALZ) <= $$(A, AL, ALI, lap(AL, ALI)) 

e. g. 
GOAL f unnyplus (REGURSE succ N, M) <= AUTO + AUTO 

is equivalent to 
6OAL f unnyplus (suc c N, M) <= $$ (N, M, f unnyplus (N, 14)) + 

$$ (N, M, f unnyplus (N, M) ) 

If several arguments are prefixed by RECURSE, this causes 

several recursive calls to be included. 

e. g. 
GOAL f unnyplus (RECURSE succ N, RECURSE succ M) 

is equivalent to 
GOAL f unnyplus(succ N, succ M) <= 

$$ (N, M, funnyplus(N, succ yI), funnyplus(succ N, M), 
funnyplus(N, M)) 

Prefixing an argument which does not have a recursive case (e. g. 

a variable) by RECURSE will not cause any extra recursive call within 

the derived pattern. 

There are some defaults to simplify further: 

If the L. H. S. of a goal contains occurrences of RECURSE, and no 

"<_" followed by a pattern has been provided, AUTO is assumed as tie 

pattern. If the pattern provided contains occurrences of AUTO, but 

there are no occurrences of RECURSE within the L. H. S., each argument 

of the L. H. S. is prefixed by RECURSE. 

e. g. 
GOAL lap(RECURSE A:: AL, AL1) 

is equivalent to 
GOAL lap(RECURSE A:: AL, AL1) <= AUTO 

e. g. 
GOAL lap(A:: AL, All) <= AUTO 

is equivalent to 
GOAL lap(RECURSE A:: AL, RECURSE AL1) <= AUTO 
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Goals making use of both this facility and CASESOF have the 

CASESOF arguments expanded before RECURSE is applied. 

e. g. 
GOAL lap(RECURSE CASESOF AL, AL1) 

expands to 
GOAL lap(nll, AL1) <_ $$ (AI. 1) 
GOAL lap(A:: AL, AL1) <= $$(A, AL, ALl, lap(AL, ALI)) 

3. SYNTAX OF CONTROL LANGUAGE 

<control> :: = START <control contents> STOP 

<control contents> :: = <empty> I <control command> <control contents> 

<control command> :: = <def block> I <introduce block> I 
<context block> I <infile command> 
<typeinfo command> I <val block> ý 
<state command> I </// command> ý 
<delete command> j <write block> ý 
<showspecs block> 

<def block> := DEF <NPL> END 

<introduce block> :: = INTRODUCE <NPL> END 

<context block> :: = CONTEXT <context contents> END 

<context contents> :: = <empty> I 
<context command> <context contents> 

<context command> :: = <using command> I <unfold command> I 
<lemmas command> ý <typeinfo command> 
<transform block> ý <delete command> 
<introduce block> ý <infil. e command> ( 

<val block> I< /// command> i 

<state command> I <context block> ý 

<showspecs block> 

<infile command> :: = INFILE <FILENtXE> 

<val block> :: = VAL <NPLEXPN> END 

< command> <pop2 itemlist> 

<state command> :: = SAVE I RESTORE <N'JMBEF. > 

<delete command> :: = DELETE <nplexpnlist> 
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<write block> WRITE <FILELAME> <namelist> END 
WRITEALL <FILENAME> <namelist> END 

<showspecs block> :: = SHOWSPECS <namelist> END 

<using command> :: = USING <using contents> 

<using contents> :: = <namelist> I 
<namelist> RESTRICTED <namelist> 

<unfold command> :. -= UNFOLD <namelisz> I UNF OLL'ALL <namelist> 

<lemmas cominnand> :: = LEAS <lemmas contents> 

<lemmas contents> :: = <empty> I 
<nplegnlist> <lemmas contents> 
ASSOCIATIVE <namelist> <lemmas contents> ý 
COMMUTATIVE <namelist> <lemmas contents> 
IDENTITY <NAME> <NPLEXPN> <lemmas contents> 

<typeinfo command> :: = TYPEINFO <nplexpn> <typeinfo cases> 

<typeinfo cases> :: = <= <nplexpnlist> 
<_ <nplexpnlist> <typeinfo cases> 

<transform block> :: = TRANSFORM <goal list> END 

<goal list> :: = <empty> I <goal> <goal list> 

<goal> :: = GOAL <left hand side> I 
GOAL <left hand side> <= <Pattern> 

<pattern> :: = <NPLEXPN> 

<left hand side> :: = <NPLEXPN> 

<namelist> :: = <empty> I 
<NAI4E> <namelist> 

<nplexpnlist> :: 2- -aNPLEXPN> I <NPLEXPN> , <nplexpnlist> 

-<nplegnlist> :: = <empty> I --- <npleqn> <nplegnlist> 

<npleqn> :: = <NPLEXPN> <= <NPLEXPN> 

<pop2 itemlist> :: = <empty> I <P0P2 ITEM> <pop2 itemlist> 

The following are assumed: 

<NUMBER> is any unsigned integer 

<NAME> is any identifier suitable for use as the name of an 
NPL function 

<NPL> is any sequence of NPI, definitions which ýº-ou1d be permitted 

within an NPL DEF... END block, subject to the restrictions 
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outlined in (1.2] 

<NPLEXPN> is any expression not using if/ifnot constructs. 

Note: the following reserved words may not occur in NPL definitions 
or expressions to be used by the system: 
ASSOCIATIVE COMMUTATIVE CONTEXT DELETE DISPLAY GOAL IDENTITY 
INFILE INTRODUCE LEMMAS RESTORE RESTRICTED SAVE START STOP 
TRANSFORM TYPEINFO UNFOLD UNFOLDALL USING WRITE WRIT LL 

In addition, the following symbols have special meanings to the 
system: $$ && AUTO CASESOF RECURSE 

<FILENAME> is any file specification suitable for pop2 
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Index to main syntactic elements in User's Manual 

<context block> [1.4] 
<control> [1.11 
<def block> [1.2] 
<delete command> [1.10] 
<goal> L'1-4.41 
<introduce block> [1.3] 
<infile command> (1-51 
<left hand side> [1-4-41 
<1 emma sc ommand > (1-4.31 

<pattern> [1.4-4] and (2-11 
<showspecs block> [1.12] 
<state command> (1-81 
<transform block> [1.4.4] 
<typeinfo command> (1.6] 
<unf o ld command> [1-4-1] 
<using command> [1-4-21 
<va-, block> [1.7] 
<write block> [1.11] 
</// command> [1-91 



CHAPTER 5 

TRANSFORMING LARGE EXAMPLES 

In this chapter i consider the trans for, n, ition of large prcrrt. iis 

using my system. Firstly, I discuss commonly used tactics to 

introduce beneficial changes into the structure of a program, and the 

need for a strategy to guide the use of these on non-trivial 

problems. Then I present two large examples which I have transformed 

using my system. 

S. 1 TRANSFORMATION, TACTICS 

The lowest level operations underlying the transformations my 

system performs are the rules of unfolding and folding . The system 

raises the user above this bottom level. - for individual 

transformations he provides patterns which express the structure of 

the answer required, and the system tries to fill in the details, 

maintaining equivalence with the existing definition by linking with 

a series of small unfold/fold etc. steps. 

The structure of the initial program will typically not be at 

all geared towards efficiency. Each transformation causes some 

change in structure, and the intention is to improve the eftic=encv 

of the initial program dramatically by a series of changes. The 

efficiency irmpi ovements come about from one of several classes of 
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manipui<_otions: My in-, cstigat1c have been in the domain of 

transformations between recursion equal ion programs, were major 

changes in structure are carried out. As a final stage to my 

trans: _ormati_ons, I introduce extra arguments to functions. 'T'hese 

arguments act as accumulators for results being bu1.1t up, so as to 

get the recursion equations : into a form suitable for straightforward 

conversion into an i. pp-rative language. she term ; 'accumulators" 

originates from thc of. 1M11'oore [19741. 

The bulk of iy attention has been on the transformations between 

recursive programs. Iliese transformations are used to make 

improvements in two classes, each of which sugests a 'tactic' to be 

used in transformation to improve efficiency. The tactics are: 

5.1.1 Combining Tactic 

This tactic is intended to overcome the inefficiencies resulting 

from the embedding of two or more functions. When we have an 

expression of the form f(g(x)) we seek to improve this by defining a 

new function --- fg(x) <= f(g(x)) and seeking a recursive definition 

of fg which will compute the result in one pass rather than two. 

e. g. suppose we have function squares, which given a list of numbers, 

returns the list of those numbers squared: 

--- squares(nil) <= nil 

--- squares(N:: L) <= N*N :: squares(L) 

and function sum to suhl the numbers of a list 

--- sum(nil) <= C 

--- sum(N:: L) <_ N+sum(L) 

then we can ccaipute the sum of t. he- squares of a list of numbers 
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oy 
sum(squares(L)) 

This is obviously inefficient, as ati intprrcediate structure, the 

list Of squared numbers. is produced completely and then 

consumed. The combining tactic suggests es is we define 

---- sgsur(L) <= sum(s quares(L) ) 

and find a recursive definition, which turns out to be 

---- sgsurn(nil) <= 0 

--- sgsum(N:: L) <= N--N + sqsum(L) 

In simple cases, the improvement from applying this tactic can 

also be achieved by evaluating the equations using lazy evaluation 

(call by need) which causes evaluation to be deli ec until absolutely 

necessary. In more complex problems, the attempt to produce a 

recursive definition of the newly introduced function may not be 

straightforward, and lazy evaluation not sufficient to achieve the 

improvements that transformations can provide. 

5.1.2 Tupling Tactic 

This tactic is intended to overcome the inefficiencies resulting 

-from there being two or more separate calls to differing functions 

with the same argument. When an expression is of the form 

... f (x) ... g(x) .. we seek to improve this by defining a new f unction: 

fandg(x) <_ <f (x) ,g 
(x) > which computes the pair of results 

simultaneously. 

e. g. suppose we wish to compute the standard deviation of a list of 

number:, ; we will require both the sULI of those nur.: bers, ard tho 
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sum of their squares. These can be profitably computed together 

by defining 

--- sumandsqsum(L) <= < surL(L), sgsiim(L) > 

and transforming this to get 

---- sumandsgsum(nil) <_ <0,0> 

--- sumandsgsum(N:: L) <= < N+N1 , N*N+N2 > 

where <N 1, N2> :.: = sumandsqsum (L ) 

This will save us the computation involved in traversing each 

argument separately. Work by Pettorossi [1977] has demonstrated that 

this may also allow improvements in memory utilization. In 

non-trivial tuplings, some of the common calculations of each 

previously separate function need not be done more than once. 

5.2 TRANSFORMATION STRATEGIES 

On sizeable problems, there will be many ways of applying the 

transformation tactics to achieve improvements. It might be the case 

that order of application of tactics is not crucial, and whichever we 

choose, we will end up with a suitably efficient program. If, 

however, we do not follow any systematic approach, we increase the 

risk. of getting lost in a morass of detail during the transformation. 

In particular, we would find it hard to draw parallels from already 

completed transformations. If we modify the protoprogram and need to 

adjust the transformation to accomodate the modification, a strategy 

behind the transformation would help us pinpoint the portions 

potentially needing change. 

A strategy is required to guide the application of the tactics. 

In the examples that follow, 1 use a straighforward strategy which 
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appears at least to satisfy our requirements of standardising the 

approach, and leading to a suitable final program. 

The strategy I adopt is the very basic one of always seeking 

improvements from the 'inside out' By this I mean that if some 

function f uses another function g, first improve g before tackling 

f. When there are several embedded functions to combine, unless we 

feel confident enough to try them all at once, combine them from the 

inner outwards e. g. f(g(h(X))) - first combine gh(X) <= g(h(x)), then 

combine fgh(X) <= f(gh(X)). 

I do not claim that this basic strategy is the "best" in any 

sense. There may be a more appropriate strategy, or there may even 

be no general strategy which guides us through the transformations by 

the easiest path. I argue only that this is systematic, and works in 

practice. 
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5.3 THE TELEGRAM PROLLEM 

This example originates from Henderson and Snowdon [1972). They 

used it as a programming exercise, developed a solution, and then 

discovered that their solution behaved unsatisfactorily at the less 

explicitly specified boundary of the problem. I am not suggesting 

some program as the definitive solution to the telegram problem. 

Since the specification in English is somewhat ambiguous, I would 

argue that some degree of choice is left to the programmer. My 

concern is that it should not be necessary to analyse an efficient 

program to determine what choices have been made. 

5.3.1 English Specification 

"A program is required to process a stream of telegrams. This 

stream is available as a sequence of letters, digits and blanks on 

some device and can be transferred in sections of predetermined size 

into a buffer area where it is to be processed. The words in the 

telegrams are separated by sequences of blanks and each telegram is 

delimited by the word "ZZZZ". The stream is terminated by the 

occurrence of the empty telegram, that is a telegram with no words. 

Each telegram is to be processed to determine the number of 

chargeable words. The words "ZZZZ" and "STOP" are not chargeable and 

words of more than twelve letters are considered overlength. The 

result of the processing is to be a neat listing of the telegrams, 

each accompanied by the word count and a message indicating the 

occurrence of an overlength word. " 
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Since then it has been considered by Ledgard [19741, Zahn 

[1976), McKeeman [1976), Jones [1976), Jackson 

[1977). 

e. g. 

input 

(available in sections of length IS) : 

.7 
KLINGON SHIP 

S APPROACHING S 
TOP SEND REINF 
ORCEMENTS STOP 
ZZZZ TOO LATE 

zzzz zzzz 

"1977] and Schwarz 

output 

telegram: 7 KLINGON SHIPS APPROACHING STOP SEND 

REINFORCEMENTS STOP 

overlength word present ** 

count of chargeable words: 6 

telegram: TOO LATE 

count of chargeable words: 2 

For consideration here I do not take the entire telegram 

problem, but go only as far as producing a list of telegrams with 

their corresponding statistics, omitting the final step of neatly 

listing these. I feel that this last step does not introduce any new 

difficulties, and only enlarges the problem. 
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The transformational approach suggests that first we design a 

very simple solution to the problem - the protoprogram - and then 

transform this to achieve efficiency. The protoprogram serves as the 

precise specification of our solution resolving the ambiguities in 

the English specification; its behaviour will be easy to determine, 

and to modify if desired. 

5.3.2 Design Of Protoprogram 

A. Firstly a definition. othe data types to represent input and output. - 

data alphanumeric <= cha ++ chb ++ ... ++ chz ++ chO ++ ... ++ ch9 

data char <- ap(alphanumeric) ++ sp 

data instream <= in(list list char) 

data message <= me(telegram, statistics) 

Four types have been defined: 

alphanumeric represents non-blank characters in the input 

char represents all characters, including spaces (sp) 

instream represents the input, stated to be made available through 

a buffer area. Thus in(nil) is end-of-input, in(nil:: CLL) is an 

empty buffer and remaining stream CLL, and in((C:: CL):: CLL) is a 

buffer containing first character C, remaining characters CL, and 

remaining stream CLL. 

list message is to be our output. Each message contains a telegram 

and its statistics (data types which we will define later). 
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The overall task will be performed by function getmessages: 

pictorially, 

------------ getmessages -- ------ ----------- 
I instream I ------------ >------------ ! list message I 
------------ 

+++ getmessages(instream) <= list message 

Now we break this down into smaller stages. We need to convert 

the instream into a list of telegrams, and from this list compute the 

list of messages. 

---------------- 

------------ gettels ----------------- messagesof -_-____. __-_-_--- 
I instream list telegram I----->------I list message I 

----------- ----------------- ----------------- 

1-F+ gettels(instream) <= list telegram 

+++ messagesof(list telegram) <= list message 

Since a message can be produced from its telegram independent of the 

other messages, let this be done by a smaller function, messof: 

------------ messof ----------- 
( telegram --->---- ( message ( 
------------ ----------- 

III messof(telegram) <= message 

gettels needs further decomposition. A telegram is a list of 

words, where words are sequences of non-blanks to be found in the 

input separated by blank(s). 

data telegram <= te(list word) 

data word <= wo(list alphanumeric) 
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Since the buffer boundaries have no significance, we might as 

well "flatten" the input into a sitcpýe list of characters before 

breaking this into a list of words, and these into a 

telegrams. 

. 
IL 

1 ý'J. of 

----------flatten"----... --- --_: yordsof-------_---telsof---. _-_--_--__-- 
I instream j ---->---- ! list char i ----->--- j list word l ---->-- I list telegram l 

----------- 

-1++ flatten (i. n sr. ream) <= list char 

-t+-i- wordsof(list char) <= list word 

+++ telsof(list word) <= list telegram 

flatten we expect to have no difficulty with. 

--------------- 

wordsof must compute a list of words from a list of characters. 

This would be easy if we had a smaller function (firstword) to 

produce just the first word, for then we could use this to get the 

first word, and compute the remaining list of characters by simply 

subtracting the characters of that first word. 

------------- firstword -------- -------- wtocl ------------- 
list char ----->-----ý word II word j--->---1 list char I 

------------- ------------- 

+++ firstword(iist char) <= word +4+ wtocl(word) <= list char 

telsof must compute a list of telegrams from a list of words. 

This is similar to wordsof, and we will find it useful to have a 

function (firsttel) to compute just the first telegram from a list of 

words. 

firsttel ------------ ttowl ------------- 
list word ---->------ i telegram (I telegram I--->-- I list word I 

------------ ------------ 
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+++ firsttel(list word) <= telegram 

-H-- ttowl(telegram) <= list word 

messof is the function that given a telegram, produces a 

message. In addition to the telegram itself, the message contains 

statistics, which for this problem are a count of chargeable words, 

and a boolean which will be true if and only if the telegram contains 

no overlength words. We introduce a function statsof to compute 

statistics: 

data statistics <= st(num, trlaval) 

------------- statsof --------------- 

telegram ----">---- ( statistics i 
------------ -------------- 

+++ statsof(telegram) <= statistics 

This will use two smaller functions: 

charge to count chargeable words 

------------- charge ------- 
list word ---->--- l num I ; -f-+ charge(telegram) <= num 

------------- 

and okwl to check that no words are overlength 

-------------- okwl ---------- 
I list word j--->--j truval I +! -+ okwl(list word) <= truval 
------------- ---------- 

which itself uses a function to check a single word 

-------- okw ----------- 
I word 1-->--l truval ( +++ okw(word) <3 truval 
-------- ---------- 
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The overall structure of the protoprograsi hus been desgr. : -' . 

The following diagram shows pictorially the structure of the 

protoprogram (in these structure diagrams a line joining two 

functions indicates that the higher function calls the lower one). 

getmessages 
/ 

1 
/ 

/ 
gettels 

/Iý 
/ 

telsof 
/I 

/I 
/I 

/I 
firsttel 

ý 

messagesof 

messof wordsof flatten 

iý 
- firstword 

1 

1 
I 
I 

statsof 
/I 

/I 
/I 

/I 
charge okwl 

i 
i 

okw 

length 

Now the details remain o be filled in -a reie. tiveiy straightforward 

task. It is here that the precise behaviour of the solution will be 

determined. 
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5.3.3 NPL Pru: -oprogzsm 

DEF 
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DATA alphanumeric <= cha ++ chb ++ chc ++ chd ++ the ++ clef ++ chg ++ 
chh ++ chi ++ chj ++ chk +-+- chl ++ chri ++ chn ++ 
cho -f-+ chp ++ chq ++ chr ++ chs ++ cht ++ chu ; 
chv ++ chw ++ chx 4+ chy ++ chz ++ chO +-- ch l -++ 
ch2 -++ ch3 -H- ch4 -H- ch5 -H- ch6 ++ ch7 ++ ch8 ++ 
ch9 

DATA char <= ap(alphanumeric) ++ sp 
DATA instream <= in(list list char) 
DATA word <= wo (list alphanumeric) 
DATA telegram <= , te(list word) 
DATA statistics <= st(num, truval) 
DATA message <= me(telegram, statistics) 

+f+ getmessages(instream) <= list message 
+++ gettels(instream) <= list telegram 
+1+ messagesof(list telegram) <= list message 
+H+ messof(telegram) <= message 
+++ flatten(instream) <= list char 
+++ wordsof(list char) <= list word 
+i-+ telsof(list word) <= list telegram 
-H-1- firstword(list char) <= word 
+++ wtocl(word) <= list char 
++F wtoal(word) <= list alphanumeric 
+H+ firsttel(list word) <= telegram 
+-+ ttowl(telegram) <= list word 
+h+ statsof(telegram) <= statistics 
++-I- charge (list word) <= num 
+++ okwl(list word) <= truval 
+++ okw(word) <= truval 
+++ l. ength(list alfa) <= num 
inf 4 =< +-++ num =< num <= truval 
inf 4- +++ list alfa - list alfa <= list alfa 
+++ zzzz <= word 
-F++ wstop <= word 
+++ maxlen <= num 

VAR INS : instream 
VAR T: telegram VAR TL : list telegram 
VAR C: char VAR CL : list char VAR CLL : list list char 
VAR W: word VAR WL : list word 
VAR A: alphanumeric VAR AL : list alphanumeric 
VAR N, N1 : num 
VAR ALF : alfa VAR ALFL, ALFL1 : list al. fa 

- getmessages(INS) <= messagesof(getteis(INS)) 

messagesof (nil) <- nil 
--- messagesof(T:: TL) <= messof(T):: messagesof(TL) 

--- messof (T ) <= mE-, (T, statsof (T )) 
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- getteis(. T.: v;: ) <= telsof (wordsof (flatten(ZNS) )) 

- flatten(in(nil:: CLL)) <= flatten(in(CLL)) 
-f latten(in((C:: CL):: CLL)) <= C:: flatten(in(CL:: CLL)) 

- wordsof(sp:: CL) <= wordsof(CL) 
- wordsof(ap(A):: CL) <= firstwordýap(A):: CL) 

:: wordsof (ap('1): : CL - wtocl(firstword(ap(A): : CL) )) 

- firstvrord(sp:: CL) <= wo(nil) 
- firstword(ap(A):: CL) <= wo(A:: wtoal(firstword(CL))) 

--- wtocl(wo(nil)) <= nil 
- wtocl(wo(A:: AL)) <= ap(A):: wtocl(wo(AL)) 

- wtoal(wo(AL)) t= AL 

- telsof(W:: WL) <= nil if firsttel(W:: WL) = te(nil) 
<= firsttel(W:: WL) :: 

telsof((W:: W?, - ttowl(firsttel(W:: WL))) 
- (zzzz]) ifnot 

- firsttel(W:: WL) <= te(nil) if W= zzzz 
<= te(W:: ttowl(firsttel(WL))) ifnot 

- ttak+l(te(WL)) <= WL 

- statsof(T) <_ st(charge(ttowl(T)), okwl(ttowl(T)")) 

-- charge(nil. ) <= 0 
- charge(W:: WL) <= charge(WL) if W- wstop 

<= succ charge(WL) ifnot 

- okwl(nil) <= true 
- okwl(W:: WL) <= okw(W) and okwl(WL) 

- okw(W) <= length(wtoal(W)) -< maxlen 

- length(ALF::. 4LFL) <= succ length(ALFL) 
--- length(nil) <= 0 

-0 =< NIL <= true 
- succ N =< 0 <= false 
- succ N =< succ NI <= N =< NI 

- nil - ALFL1 <= nil 
- ALFL - nil <= ALFL 

- ALF :: ALFL - ALF :: ALFL 1 <= ALFL - ALFL 1 

-- zzzz <= wo( [chz, chz, chz, chz] ) 

- wstop <= wo( [chs, cht, cho, chp] ) 

- maxlen <= 12 

d 
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END 

Mis protoprogram is straightforward but not at all efficient " 

The input goes through four distinct passes (instream -> list char -> 

list word -> list telegram -> list message) and the passes are 

themselves very inefficient. We will aim to transform this into an 

efficient single-pass solution. 

5.3.4 Transforming To Efficient Version 

Adopting the simple strategy outlined in section 5.2 suggests we 

tackle the transformation of the above protoprogram in the following 

stages: 
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(i. ) Improve wor&*f(ap(A):: CL) by 

(a) Combiring c1reriainir. g(CL) <= CL -- wtocl(firstword(CL)) 

(b) Tupling w"ordandrem(CL) <_ <firstword(CL), clreir-aining(CL)> 

This changes the program structure to the following: 

getmessages 

/1 
/ 

/ 
telsof 
/I 

/I 
/I 

/I 
f irsttel 

/ 
gettels 

wordsof flatten 

wordandrem 

ý 

messagesof 

messof 

statsof 

/1 
/f 

/I 
charge okwl 

okw 

length 
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(ii) Improve telsof(W:: WL) by 

(a) Combining wlremaining(%IL) <_ (WL - ttowl(firsttei(WL))) 

- ZZZz 

(b) Tupling telandrem(t"WL) <= <firstte1(WL), wlremaining(WL)> 

getmessages 

/ý 
/ 

/ 
telsof 
/ 

/ 
/ 

/ 
telandrem 

gettels 

/I0 

wordsof flatten 

wo rdand rem 

messagesof 

messof 

statsof 
/I 

/I 
/I 

/I 
charge okwl 

okw 

length 
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(i. ii) Improve gettels by 

(a) Combining getwords(INS) <= wordsof (fl. atten(INS) ) 

(b) Combining gettels(INS) <= telsof(getwords(INS)) 

getmessages 
/ 

/ 
/ 

/ 
gettels 

"/I /ý 

/ 

/I 
/I 

telsof getwords 
/I 

/I 
/I 

telandrem getaword 

messagesof 

messo. ̀ 

statsof 

/I 
/I 

/I 
charge okwl 

okw 

length 
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gEtateSs2g'? S 
i i 

/ 
/ 

gettel"s 

getatel 

getaword 

\ 

messagesof 

\ 
ý 

messof 

statsof 
/I 

/I 

/ý 
charge okwl 

okw 

length 
(iv) Improve statsof by 

Combining statsof(T) <= st(charge(ttowl(T)), okwl(ttowl(T))) 

getmessages 
ý 

ý 

ý 
ý 

gettels 

getatel 

getaword 

messagesof 

\ 

messof 
i 
i 
i 

statsof 

i 

okw 

length 
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(v) Simplify messagesof (T:: TL) by expanding out definition of 

messof (T ) 

(note that this is neither a combination nor a tuple; the 

effect of this step is merely to cause a small simplification 

in the program structure. ) 

gets essages 
ý 

ý 
ý 

ý 

gettels 

getatel 

getaword 

messagesof 

statsof 

, okw 

1 ength 

(vi) Improve getmessages by 

Combining getmessages(INS) <= messagesof(gettels(INS)) 

getmessages 

I 
getamess 

getlword 

(vii) Convert to an iterative form suitable for conversion 

into an imperative language. 
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Now I present the commands for each stage as given to the ZAP 

system to carry out the transformations. 

(i) Improve wordsof 

Since steps (a) and (b) are both small, we do both at once; 

INTRODUCE VAR CLREM : list char END 
CONTEXT /// 'improve wordsof @ 

UNFOLD wordscf 
USING wtocl wordsof 

RESTRICTED firstword - 
TRANSFORM 

GOAL wordsof (ap(A):: CL) <= W:: wordsof (CLREM) 
where <W, CLREM> == &&wordandr. ern(ap(A):: CL) 

END 
END 

CONTEXT /// 'redefine wordandrem recursively @ 
UNFOLDALL wordandrem 
USING wtoal wtoal wordandrem 
LEMMAS --- wo(wtoal(W)) <= W 
TRANSFORM 

GOAL wordandrem(sp:: CL) 
GOAL wordandrem(ap(A):: CL) <= $$(A, wordandrem(CL)) 

END 
DELETE wordandrem(CL) 

END 

(ii) Improve TELSOF 

Since steps (a) and (b) are both small, again we do both at once; 

INTRODUCE VAR WLREM : list word END 
CONTEXT /// 'improve telsof @ 

UNFOLD telsof 
" USING ttowl telsof 

RESTRICTED f irsttel - 
TRANSFORM 

GOAL telsof(W:: WL) <= $$(T, telsof(WLREM)) 
where <T, WLREM> == &&telandrem(W:: WL) 

END 
END 

CONTEXT /// 'redefine telandrem recursively @ 
UNFOLDALL telandrem 
USING ttowl telandrem 
TRANSFORM 

COAL telandrem(W:: WL) <_ $$(W, WL, telandrem(WL)) 
END 
DELETE telandrem(WL) 
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END 

(iii) Improve gettels 

This is the first transformation to involve the d; to type insrre ýr, 

which represents a buffered stream of input. For this data type we 

anticipate transformations involving cases 

in (rail :: CLL ) 

in((sp: ": CL):: CLL) 

in((ap(A):: CL):: CLL) 

The first of these represents reaching the end of the current input 

buffer, so we would expect to continue processing the remainder of 

the stream, i. e. in(CLL). 

The last two cases represent encountering a space or alphanumeric 

within the current input buffer. Since we expect our transformed 

algorithm to work character by character, we anticipate processing 

would continue with the remainder of the current buffer and stream, 

i. e. in(CL:: CLL) 

The TYPEINFO command allows us to present such intuition as 

information about the data type instream: 

TYPE IIýTO 
INS <= ir. (ni1:: l: LL), in(CLL) 

<= in((sp:: CL):: CLL), in(CL:: CLL) 
<= in((ap(A):: CL):: CLL), in(CL:: CLL) 

(a) Combining getwords(INS) <= wordsof(flatten(INS)) 

CONTEXT /// 'improve gettels by combining wordsof & flatten 
UNFOLD gettels 
USING telsof RESTRICTED gettels wordsof flatten 
TRANSFORM 

GOAL gettelo(INS) <= telsof(&&getwords(INS)) 
END 

Er; D 

0 

INTRODUCE VAR REMINS : instream END 
CONTEXT /// 'redefine. getwords recursively ýa 
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UNFOLDALL getwords 
USING wtoal RESTRICTED getwords wordsof flatten wordandrem 
TRANSFORM 

GOAL getwords(in(nil:: CLL)) <= auto 
GOAL getwords(in((sp:: CL):: CLL)) <= auto 
GOAL getwords(in((ap(A):: CL):: CLI, )) <= 

$$(A, W) :: getwords(REMINS) 
where <W, REMINS> == &ägetawaord(in(CL:: CLL)) 

ENT) 
DELETE getwords(? NJS) 

END 

CONTEXT /// 'simplify by folding up @ 
USING wtoal RESTRICTED getwords getaword 
UNFOLDALL getwords 
TRANSFORM 

GOAL getwords(in((ap(A):: CL):: CLL)) <_ $$(W, getwords(REMINS)) 
where <W, REMINS> == getaword(in((ap(A):: CL):: CLL)) 

END 
END 

CONTE " /// 'redefine getaword recursively @ 
UNFOLDALL getaword 
USING wtoal getaword 
LEMMAS --- iflatten(flatten(INS)) <= INS 

---- iflatten(sp:: flatten(in(CL:: CLL))) <_- in((sp:: CL):: CLL) 
TRANSFORM 

GOAL getaword(CASESOF INS) <= auto 
END 
DELETE getaword(INS) 

END 

Notice that we have used the lemmas 

iflatten(flatten(INS)) <= INS 

iflatten(sp:: flatten(in(CL:: CLL))) <= in((sp:: CL):: CI. L) 

iflatten is the inverse of flatten, introduced by the system 

during the definition of getaword. The first lemma simply states the 

inverse relationship. The second is required because the unfolding 

mechanism would otherwise reduce 

iflatten(f latten(in((sp:: CL):: CLL)) to 

iflatten(sp:: f latten(in(CL:: CLL))) 

at which point it would be stuck (instead of attaining, 

in((sp:: CL):: CI. L) ). 
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(b) Combining gettels (I ?; S) <= telsof (get. ýc rds (i'_) ) 

INTRODUCE VAR RE'1-+_'r'S 1: instream 
VAR T, T1 : telegram 

END 
CONTEX /// 'redefine gettels recursively @ 

UNFOLDALL gettels 
USING RESTRICTED gettels 
TRANSFORM 

GOAL gettels(in(nil:: CLL)) <= auto 
GOAL gettels(in((sp:: CL):: CLL)) <= auto 

END 
END 

CONTEXT /// 'now for the in((ap(A):: CL):: CTL) case @ 
UNFOLD gettels getwords telsof telandrem 
USING ttowl wtoal RESTRICTED gettels getwords telandrem getaword 

telsof 
LEMMAS --- te(W:: WL) = te(NIL) <= false 
TRANSFORM 

GOAL gettels(in((ap(A):: CL):: CLL)) <= 
cond($$(W), NIL, T:: gettels(REMINS)) 

where <T> == <te(W:: ttowl(T1))> 
where <T1, REMINS> == &&getatel(REMINS1) 

where <W, REMINS1> == getaword(in((ap(A):: CL):: CLL)) 
END 
DELETE gettels(INS) 

END 

CONTEXT /// 'simplify by folding up @ 
USING ttowl RESTRICTED gettels getatel 
UNFOLDALL gettels 
LEMMAS --- te(W:: WL) = te(NIL) <= false 
TRANSFORM 

GOAL getTtels(in((ap(A):: CL):: CLL)) <= 
cond (T=te(NIL) , NIL, T:: gettels (REMI:; S) ) 

where <T, REMINS> == getatel(in((ap(A):: CL):: CLL)) 
END 

END 

INTRODUCE VAR RE1,11INS1, REMINS2 : instrearn END 
CONTEXT /// 'redefine gellatel recurs' 

UNFOLDALL getat: o 1 ZZZZ 
USING ttowl getatel RESTRICTED getaword 
LEMMAS --- igetwords(getwords(INS)) <= INS 
TRANSFORM 

GOAL getatel(in(NIL:: CLL)) <= auto 
GOAL getatel(in((sp:: CL):: CLL)) <= auto 
GOAL getatel(in((ap(A):: CL):: CLL)) <= 

$S(Z7_LZ, REMINS1 E2,2, T) 

where <T, REMINS 2> == getatel (RP7-1INS 1) 

where <W, RE. 1INS1> getaword(in((ap(A):: CL):: C: _L)) 
END 

END 
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Having completed this stage, the overall structure of our 

efficient solution has been formed. In this structure the outermost 

function builds up the entire result using another function to build 

single telegrams at once, and this in turr_ uses a smaller function to 

build up individual words. Combining the statistics production with 

this will merely cause the functions to return additional arguments 

without altering this structure. 

(iv) Combining statsof(T) <= st(charge(ttowl. (T)), ok-; º71(ttowl(T))) 

INTRODUCE VLR OK : truval 
+++ ston(statistics) <= nu-n ---- ston(st(N, OK)) <= N 
++-F- stook(statistics) <= truval --- stook(st(N, OK)) <= OK 

END 

CONTEXT 
USING statsof okw and ston stook 
UNFOLD statsof charge okwl 
TRANSFORM 

GOAL statsof(te(nil) ) 
GOAL statsof(te(W:: WL)) <= st($$(W, CH), $$(W, OK)) 

where <N, OK> == <ston(S), stook(S)> 
where <S> == <statsof(te(WL))> 

END 
DELETE statsof(T) 

END 

(v) Simplifying messagesof(T:: TL) 

CONTEXT 
USING messagesof statsof 
UNFOLD messagesof messof 
TRANSFORM 

GOAL messagesof(T:: TL) <= $$(T, statsof(T), messagesof(TL)) 
END 

END 

(vi) Combining getmessages(INS) <= messagesof(gettels(INS)) 

INTRODUCE VAR S: statistics 
END 

CONTEXT /// 'redefine getmessages recursively @ 
UNFOLDALL getmessages 
USING RESTRICTED getmessages 
TRANSFORM 

0 



TRANSFORMING LARGE E%A. MPLES Page 5-26 

GOAL getmessages(in(rd1:: CLL)) <= auto 
GOAL' getmessages(in((sp:: CL):: CLL)) <= auto 

ENS 
END 

INTRODUCE VAR WLEN : num 
CONTEXT /// 'now for the ap(A) case @ 

UNFOLD getmessages messagesof gettels 
USING RESTRICTED getmessages getatel statsof 
TRANSFORM 

GOAL getmessages(in((ap(A):: CL):: CLL)) <= 
" cond($$(T), NIL, me(T, S):: getmessages(REMINS)) 

where <T, S, REMINS> == &&getamess(in((ap(A):: CL):: CLL)) 
END 
DELETE getmessages(INS) 

END 

CONTEXT /// 'redefine getamess recursively@ 
UNFOLDALL getamess 
USING RESTRICTED getamess 
TRANSFORM 

GOAL getamess(in(NIL:: CLL)) <= auto 
GOAL getamess(in((sp:: CL):: CLL)) <= auto 

END 
END 

CONTEXT /// 'now for the ap(A) case @ 
UNFOLD getamess ston stook getatel statsof ttowl charge okwl okw 
USING ston stook =< ttowl length wtoal and 

RESTRICTED getamess getaword 
TRANSFORM 

GOAL getamess(in((ap(A):: CL):: CLL)) <= 
$$(WLEN, W, REMINS1, REMINS, ston(S), stook(S), T) 

where <T, S, RF4INS> == getamess(REMINSI) 
where <W, REMINS1, WLEN> == 

&&getlword(in((ap(A):: CL):: CLL)) 
END 
DELETE getamess(INS) 

END 

CONTEXT /// 'now transform getlword @ 
UNFOLDALL getlword 
USING getlword 
TRANSFORM 

GOAL getlword(CASESOF INS) <= AUTO 
END 
DELETE getlword(INS) 

END 

(vii) Convert to iterative fora 
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INTRODUCE 
+++ agetmessages(instream, li-st message) <= list message 
}+i- agetamPss(instrEam, list worci, num, truval) <= 

tuple2(messa; e, instream) 
++f- agetamess(instream, list char, num) <_ 

tuple3(word, instream, aum) 

- agetmessages(INS, YLL) <_ ML <> ge-4-messages(INS) 

- agetamess(INS, WL, N, OK) <= 
<me(te(WWL<>ttosl (mtot (M))) 

, 
st(N+ston(mtos(M)), OK and stook(mtos(M)))), 

REM INS > 
where <M, REMINNS> _- getamess(INS) 

- agetlword(INS, CL, N) <= 
<wo ( CL<>wtocl ( W) ), REriIi1S, N-h'1' 1> 

where <W, P. Er1INS, N1> == getaword(iNS) 
END 

CONTEXT 
UNFOLD getmessages agetmessages <> 
USING RESTRICTED agetmessages 
TRANSFORM 

GOAL getmessages(INS) <= agetmessages(INS, nil) 
END 

END 

CONTEXT /// 'redefine agetmessages in terms of 
itself and agetamess @ 

UNFOLD agetmessages getmessages <> + and agetamess 
USING mtot <> 

RESTRICTED agetmessages agetamess 
TRANSFORM 

GOAL agetmessages(in(nil:: CLL)) <= auto 
GOAL agetmessages(in((sp:: CL):: CLL)) <= auto 
GOAL agetmessages(in((ap(A):: CL):: CLL) <= 

$$(M, ML, agetmessages(REMINS, ML<> [M] )) 

where <M, REA1INS > == 
agetamess(in((ap(A):: CL):: CLL, nil, C, true) 

END 
END 

CONTEXT /// 'redefine agetamess in terms of 
itself and agetlword @ 

UNFOLD agetamess getamess agetlword <> + and =< 
USING + and <> =< ttowl ston wtoal stook 

RESTRICTED agetamess agetlword 
TRANSFORM 

GOAL agetamess(in(nil:: CLL), WL, N, OK) <= auto 
GOAL agetamess(in((sp:: CL):: CLL), WL, N, OK) <= auto 
GOAL agetamess(in((ap(A):: CL):: CLL), 14-L, N, OK) <= 

$$(W, REMINS, WLEN, WI., N, OK, 
agetamess(REMINS, WL<>[W], $$(W, N), $$(WLEN, MAXLEN, OK))) 
where <W, REMINS, WLEN> 

0 
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agetiword(in( (sp(A) : : CL): : CLI. ) ,; ii_1, C) 
END 

END 

CONTEXT /// 'redefine agetlword recursively @ 
UITFOLDALL agetlword 
USING <> and + _< 

RESTRICTED agetlword 
TRANSFORM 

GOAL agetlword(in(nil:: CLL), CL1, w) <= auto 
GOAL agetlword(in((sp:: CL):: CLL), CL1, N) <= auto 
GOAL agetlword(in((ap(A):: CL):: CLL), CLI, N) <= 

agetlwo"rd(in(CL:: CLL), CL1<>[ap(A)), succ v) 
E23ß 

END 

DELETE agetmessages(INS, ML), 
agetamess(INS, WL, N, Ok), 
agetlword (INS, CL, N) 

5.3.5 Final Program 

PS. ge 
5-28 

The final program works by building up individual words (using 

agetlword) and individual messages (using agetamess) in a single 

pass, as it works its way through the input. The length of a Word is 

counted as the word is extracted, and the statistics for each 

telegram are amassed as each telegram is extracted. 

This is far more efficient than the original program, which 

consisted of four major passes through the input, going from instream 

to list char to list word to list telegram to list message. Some of 

these passes were themselves very inefficient. 

--- getmessages(INS) <= agetmessages(INS, nil) 

- agetmessages(in(ni1:: CLL), ML) <= 
agetmessages(in(CLL), ML) 

- aget©essages(in((sp:: CL):: CLL), ML) <= 
agetmessages(in(CL:: CLL), ML) 

- agetmessages(in((ap(A):: CL):: CLL,! KL) 

. _cond(mtot(M) 
= te(nil), 

ML, 
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agetmessa ges (RE MINS, ML<> [M ]) ) 

where <M, REMINS> __ 
agetamess(in((ap(A):: CL):: CLL), nil, O, true) 

-- agetamess(in(ni1:: CLL), TrdL, N, OK) <= agetaness(in(CLL), [ti!, N, OK) 

- agetamess(in( (sp: : CL): : CLL), WL,? d, OK) <= 
agetamess ( iT: ( CL: : CLL ), WL, N, OK) 

- agetamess(in((ap(A):: CL):: CLL), WL, N, OK) <= 
cond (W=ZZZ'I., 

<ne(te(WL), st(N, OK)), REMINS>, 
agetamess(REMINS, WL<> rW] , 

cond (W=WSTOP, N, succ N) 
(WLEN =< MAUEN) and OK)) 

where <W, REMINS, WLEN> _= 
agetlword(in((ap(A):: CL):: CLI. ), ni1,0) 

- agetlword(in(ni1:: CLL), CL1, N) <= agetlword(in(CLL), CL1, N) 

- agetlword(in((sp:: CL):: CLL), CL1, N) <= 
<wo(CL1), in((sp:: CL):: CLL), N> 

-- agetlword(in((ap(A):: CL):: CLL), CL1, N) <_ 
agetlword(in(CL: : CLL), CL1<> [ap(A)] , succ N) 

The structure of this final program is simple: 

agetmessages 

agetamess 

i I 
agetlword 

However, these functions are performing several operations at once in 

order that the final program be a one-pass solution. The diagrams of 

the input and output types for these functions illustrate the 

complexity: 
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----------- 

------------ 
->-I instream I 

agetmessages ý ------------ 
I instre-am (----------y---------I 

-. --------------- ->-I list message I 
---------------- 

------------- 
I instream I -->-- 
------------ 

------------- 
I list word I->-- 
------------- 

------- 

ý ---- ý-- ---- I num 

I truval I -- 
------ ---- 

----------- 

----------- 

->-j message I 
ý agetamess ( ------------ ý ------>------ ý 

------------ 
ý ->- I instream I 

I instream I->-- -->-- word I 
------------ 

------------- 

II 
II 
I $getl. Wora I 

I list char 1->-I ------- > ------- 1-->--l instream I 
------------- 

i 

Ii 
ii If 

------------- 

------------ 

num ý---->---- -->--I num I 
-------- 

Page 5-30 

The final. NPL program requires converting into an imperative 

language. As an illustration of this, the innermost function, 

agetlword, might convert to the following program in some ALGOL-Like 

language: 

->--- 
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PROCEDURE agetlword( INSTREAN VALUE RESULT ins, 
INTEGER VALUE RESULT wlen, 
LIST(CHARACTER) VALUE acl, 
WORD RESULT W) ; 

BEGIN 
WHILE ( WHILE hd(ins) = nil 

DO ins := tl(ins) OD; 
hd(hd(ins)) /= space ) 

DO acl := acl <> [ hd(hd(ins)) 
wl en 1+ wlen; 
ins :- td(hd(ins)) :: tl(ins) 

OD; 
w := wo(acl) 

END; 

Some improvements at this level are still possible. For 

example, acl is passed to the procedure agetlword, and within a while 

loop a character is appended to its end. This could be more 

efficiently done by maintaining a pointer to the end of acl, and 

destructively appending to the end of the list. 

Such improvements do not alter the structure of the solution, 

and I have not investigated them. My main concern has been with the 

change from the naive solution to the very different structure of an 

efficient solution. 

5.3.6 Modification Of Telegram Problem 

One of the hoped for virtues of the transformational approach to 

-programming is that program modification may be carried out easily 

and reliably. To investigate this, I make a small change in the 

original specification of the telegram problem, and then see how the 

transformation process must be adjusted to accomodate this change. 

The alteration I make is to charge double for overlength words. 

Modification of the initial program is easy; function charge is 

designed to charge one unit for each word other than "STOP". 
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--- charge(W:: WL) <= charge(IW!:: ) if W=WSTOP 

<= succ charge(WL) ifnot 

This must be modified to 

---- charge(W:: WL) <= charge(WL) if W=WSTOP 

<= succ charge(WL) if okw(W) 

<= succ succ charge(WL) ifnot 

making use of function okw to check words for admissible length. 

Thus the change in program structure is to cause charge to now 

make use of okw: 

0 
0 

statsof 
/I 

/I 
/I 

/I 
charge okw?. 

okw 

length 

Now to consider how the transformation process is effected: 

Stages (i), (ii) and (iii) remain unchanged, 

concern the altered portion of program structure. 

since they do not 

Stage (iv), combining statsof(T) <= 

st(charge(ttowl(T)), okwl(ttowl(T))) 

is the first to concern the altered portion. The transformation 

commands suffice as they are, however the recursive definition of 

statsof they give rise to is slightly different. 
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Stage (v) is unaffected since statsof is not unfolded during it. 

Stage (vi) is the next to make use of the definition of statsof - in 

redefining the ap(A) case of getamess. Once again, the existing 

transformation commands suffice unchanged, the modified statsof 

inducing a modification to getamess. 

Stage (vii) is the conversion to iterative form. Here the 

redefinition of agetamess, because it is defined in terms of the now 

modified getamess, potentially needs altering. In fact a small 

change in the transformation commands is required here: 

We have 

COAL agetamess(in((ap(A):: CL):: CLL), WL, N, OK) <= 
$$(W, REMINS, WLEN, WL, N, OK, 

agetamess(REMINS, WL<>[W], $$(W, N), $$(WLEN, MAXLEN, OK))) 
where <W, REMINS, WLEN> == 

agetlword(in((ap(A):: CL):: CLL), nil, 0) 

The third argument of the call to agetamess, i. e. $$(W, N), is the 

accumulating charge for the current telegram. Our modified charging 

algorithm now takes account of the length of words, so this argument 

must be expanded to $$(W, N, WLEN). WLEN is the length of the current 

word, returned from a call to agetlword. 

The effect on the final NPL program is to change one of the 

equations of agetamess to: 

--- agetamess(in((ap(A):: CL):: CLL), WJL, N, OK) <= 
cond(W=ZZZZ, 

<me(te(WL), st(N, OK)), REMINS>, 
age tamess(REMINS, WL<> [W] 

, 
cond (W=W STOP, N, 

**change---> cond(WLEN =< MAXLEN, succ N. succ succ N)), 
(WLEN =< MAXLEN) and OK)) 

where <W, REMINS, WLEN> == 
agetlword(in((ap(A):: CL):: CLL), nil, 0) 
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Thus for this particular modification the change in the final, 

efficient program is relatively small, and a competent programmer 

could no doubt have made the appropriate change in the efficient 

program directly. To do so would require pinpointing the location 

within the efficient program where the change must be made, hence the 

programmer would have to understand how the efficient code 

functioned, a requirement we would like to avoid. It is encouraging 

to see that the propogation of the modification through the 

transformation has been easy. The well-structured transformation 

pinpoints the areas potentially effected, and the transformation 

patterns are sufficiently powerful as to accomodate the modification 

without the need for adjustment until the very last stage. 
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5.4 SDIPLE CC14PILER 

This example consists of the second phase of a simple compiler 

taking abstract syntax trees to machine code. The source statements 

consist of assignments, while statements, if-then-elses and blocks. 

Expressions within the source statements consist of ether a 

variable, or an operator applied to a list of expressions. The NPL 

representation of these is the following: 

DATA variable <= varible 

DATA opr <= ops 

DATA sstatement <= assc(variable, expression) 

-I-F whst(expression, sstatement) 

-H- i. fthenelse(expressi_on, sstatement, sstateinent) 

++ bl(list variable, sstatement) 

++ sstatement $ sstatement; 

expression <= expr(variable) ++ apply(opr, list expression) 

The target machine code assumes a stack machine with 

instructions to load a value from an address onto the stack, store 

the value on the top of the stack in some address, jump to an 

address, conditionally jump to an address dependent upon the value on 

the top of the stack, apply an operator (which is assumed to take off 

the appropriate number of values from the stack, returning the answer 

onto the top of the stack), and finally a nonop instruction (to do 

nothing). A machine code program is a list of these instructions. 

The NPL data definitions to represent these are 

DATA minstruction <= mload(address) ++ mstr(address) 

++ mcondjump(address) ++ mjump(address) 

++ mapp(opp) ++ mnonop 
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DATA mcode <= mpr(list minstruction), 

Addresses in the machine are represented by 

DATA address <= ad(rum) 

with its own function (incadd) to increment an address to get the 

next in store. 

e. g. 

The program written conventionally as 

BEGIN 
VARS 1(0 K1 K2; 
K2 := OP4(K1); 
BEGIN 

VARS K3, K0; 
WHILE KO DO 

KO := 0P 2 (K0, K2, K3 ) 
OD; 

END; 
IF 0P3(K1) 
THEN Kl: = KO 
ELSE KO :=Kl 
FI 

END 

would be represented by 

bl( [KO, K1, K2] , 
asst(K2, apply(0P4, [expr(K1)])) 
$ 
bl( [K3, K0] , 

whst(expr(KO), 
asst (KO, apply (OP2, 

[expr(KO), expr(K2), expr(K3)])))) 
S 
ifthenelse(apply(OP3, (expr(K1)]), 

asst(K1, expr(KO)), 
asst(KO, expr(K1))) 

allocating space for code from address 0, and space for 

variables from address 25, compiling the above gives (I omit to put 

ad( around the number of each address below, for clarity): 
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address 
0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 

instruction 
mload 26 
mapp OP4 
mstr 27 
mnonop 
mload 29 
mcond j ump 12 
mload 29 
mload 27 
mload 28 
mapp OP2 
mstr 29 
mjump 3 
mnonop 
mload 26 
mapp OP3 
mcondjump 19 
mload 26 
mstr 25 
mjump 22 
mnonop 
mload 25 
mstr 26 
mnonop 

5.4.1 Design Of Protoprogram 
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The NPL protoprogram I produce serves as my exact problem 

specification. 

The overall process is one of converting the source statement 

input into machine code, allocating space for the code from some 

given adddress, and allocating space for variables from another 

address. 

--------------- 

I sstatement, I process 
I address, I ------>-----I mcode I 
I address I 
--------------- 

This splits into two tasks - the first is to convert the source 

statements into an assembler language, which is similar to machine 

code, except for the use of explicit labels rather than addresses as 
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destinations for jumps. 

--------------- compil -------- 
s statement, f----->----ý acode I 

ý address ( --------- 
--------------- 

------------ mcodetop --------- 
acode, ! ------>------- ( encode 
address I --------- 

----------- 
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The source statement to assembler phase itself splits into two 

distinct phases. Firstly allocate space for the variables declared 

at the head of blocks and replace all mention of them by their 

corresponding address. This is done by pstmttop, producing 

psstatements. Psstatements are identical to sstatements except for 

the use of addresses in place of variables and the omission of blocks 

(since blocks served only to declare variables). 

--------------- pstmttop --------------- 
sstatement, ------->------I psstatement I 
address ( --------------- 

--------------- 

Secondly, convert the psstatements into assembler. This is done by 

introducing the appropriate assembler instructions, together with 

labels and jumps where required, for each construct of the 

sstatements 

--------------- acodetop --------- 
I ý------>---___ý acode j 
--------------- 

Converting assembler code to machine code is simply a matter of 

determining locations for instructions, and replacing jumps to labels 

by jumps to the appropriate location. 

This conversion is achieved by first constructing a map from 

labels to addresses. Once such a map has been constructed, a simple 

pass through will replace all occurrences of labels by their 
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corresponding address - this pass is done by function mcodeal. 

----------------------- mcodeal ----------------- 
list ainstruction, ý >------ list 
label -> address I minstruction 

----------------------- ---------- 

To construct the map, we first place consecutive assembler 

instructions into "slots", where a slot is a data structure 

consisting of an address and an assembler instruction. 

DATA slot <= sl(address, ainstruction) 

From these a pass through the slots builds a map from the labels on 

instructions to their corresponding addresses. 

---------------------- slots ------------- 
I list ainstruction, I------_list slot I 
I address 

/ 

---------------------- 

------------- 

------------- slotstomap -------------------- 
I slot I ------ > ------- I label -> address I 
------------- 

/ 

The structure of the protoprogram is as follows (in the diagram 

"="'s between two functions indicates they are mutually recursive): 

process 

/ 
mcodetop 

/Iý 
/I 

/I 
/I 

I mcodeal 
II 
I slotstomap 
I 

mcodea 

I 

-------------------- 

compil 
I\ 

\i\ 
\I\ 
\I\ 

slots I\ 
acodetop pstmttop 

II 
iI 

acodes pstmts 
II 
II 

acodeel======acodee pstmte====ps*_mtel 
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5.4.2 NPL Protoprogram. 

COMNE! Tr ' length defined for lists @; 
DEF 
VAR A: atom VAR L: list atom 
+++- length(list atom) <= num 
--- length(nil) <= 0 
--- length(A:: L) <= succ length(L) 
END 

COMMENT ' equality for lists @; 
DEF 
VAR A, A1 : atom VAR L, L1_ : list atom 
+++ list atom = list atom <= truval 
--- nil=nil <= true 
--- nil=A1:: L1 <= false 
--- A:: L=nii <= false 
--- A:: L=A1:: L1 <= cond(A =A1, L=L1, false) 
END 

Is 
COMMENT ' maps and associated operations. 

nilfm is empty map. mplus to update /add to a map. 
of to lookup. @; 

DEF 
INF 4 -> INF 4 mplus INF 4 of 
DATA ALFA->BETA <= l. nto (list (tuple2 (ALFA, BETA)) ) 

VAR AF1, AF2 : ALFA VAR BE1, BE2 : BETA VAR AFBEL : list 
(tuple2(ALFA, BETA)) 

-I I-I nil. fm <= GENERAL->GENERAL 

--- nilfm <= into(nil) 

+++ (tuple2(ALFA, BETA)) mplus (ALFA -> BETA) <= (ALFA -> BETA) 
--- <AF1, BE1> mplus into(AFBEL) <= into(<AF1, BE1> :: AFBEL) 

+++ (ALFA -> BETA) of ALFA <= BETA 
- into(<AF1, BE1> :: AFBEL) of AF2 <= cond(AF1=AF2, 

BE1, 
into(AFBEL) of AF2) 

END 

COMMENT ' addresses, with incadd to generate next address @; 
DEF VAR N: num 
DATA address <= ad(num) 
VAR ADR, ADR 1, CODEADR, VARADR : address 
+++ incadd(address) <= address 

- incadd(ad(;: )) <= ad(succ N) 
END 
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DEF 
DATA variable <= varible 
VAR V, V1 : variable 
VAR VL, VL1 : list variable 
END 
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COMMENT ' environment and associated operations. 
An environment is a map from variables to addresses, 
together with the next free address. 
lookup for looking up the address of a variable. 
addtoenv for updating and environment when have a list 
of variables to allocate space for. 
nilenv is empty environment. @; 

DEF VAR VAMAP : variable -> address 
DATA environment <= en(variable->address, address) 
VAR ENV, ENV1 : environment 
+++ nilenv(address) <= environment 
--- nilenv(ADR) <= en(nilfm, ADR) 
+++ addtoenv(list variable, environment) <= environment 
+++ lookup(variable, er_-vi. ronment) <= address 
--- addtoenv(nil, ENV) <= ENV 

- addtoenv(V:: VL, en(VAMAP, ADR)) <= addtoenv(VL, 
en(<V, ADR> mplus VAMAP, 

incadd(ADR) )) 

--- lookup(V, en(VAMAP, ADR)) <= VAMAP of V 
END 

COMMENT ' sstatement (source statement) and psstatement - which is 
an sstatement modified by replacing variables with 
addresses @; 

DEF 
DATA opr <= ops 
VAR OP, OP1 : opr 

INF 3$ 
DATA sstatement <= asst(variable, expression) 

++ whst(expression, sstatement) 
+H- ifthenelse(expression, sstatement, sstatement) 
++- bl(list variable, sstatement) 
++ sstatement $ sstatement ; 

expression <= expr(variable) ++ apply(opr, list expression) 
VAR S, S 1, S2 : sstatement 
VAR E, E1 : expression 
VAR EL, EL1 : list expression 

DATA psstatement <= passt(address, pexpression) 
++ pwhst(pexpression, psstatenent) 
++- pifthenelse(pexpression, psstatement, psstatement) 
++ psstatement $ psstatement ; 

pexpression <= pexpr(address) ++ papply(opr, list pexpression) 
VAR PS, PS1, PS2 : psstatement 
VAR PE, PEI : pexpression 
VAR PEL, PEL1 : list pexpression 
END 
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COMMENT ' pstmtrop replaces variables by addresses, allocating 
space for variables from and including given address. @; 

DEF 
-t-++ pstmttop(sstatement, address) < psstatement 

+++ pstmts(sstatement, environment) <= psstatement 

+++ pstmte(exprPssion, environment) <= pexpression 

+++ pstmrel(list expression, environment) <= list pexpression 

- pstmttop(S, ADR) <- pstmts(S, nilen"z(ADR)) 

--- pstmts(bl(VL, S), ENV) <= pstmts(S, addtoenv(VL, ENV)) 

--- pstmts(Sl. $S2, ENV) <= pstmts(S1, ENV) $ pstmts(S2, ENV) 

--- pstmt: s(asst(V, E), ENV) <= passt(lookup(V, ENV), pstmte(E, ENV)) 

--- pstmts(whst(E, S), ENV) <= pwhst(pstmte(E, ENV), pstmts(S, ENV)) 

---- pstmts(ifthenelse(E, S1, S2), ENV) <= pifchenelse(pstmte(E, ENV), 

pstmts(S1, ENV) , pstmts(S2, ENV) ) 

- pstmte(expr(V), ENV) <= pexpr(lookup(V, ENV)) 
- pstmte(apply(OP, EL), ENV) <= papply(OP, pstmtel(EL, ENV)) 

--- pstmtel(nil, ENV) <= nil 
--- pstmtel(E:: EL, ENV) <= pstmte(E, ENV):: pstmtel(EL, ENV) 
END 

COMMENT ' generating unique labels @; 
DEF VAR NL : list num 
DATA label <= lbl(list num) 
VAR L1, L2, L3, L4, LAB : label 

+++ nillab <= label 

--- nillab <= lbl(nil) 

+++ newlab2(label) <= TUPLE2(label, label) 

--- newlab2(lbl(NL)) <= < lbl(O:: NL), lbl(1:: NTL) > 

+++ newlab3(label) <= TUPLE 3(label, label, label) 

--- newlab3(lbl(NL)) <= < lbl(O:: NL), lbl(1:: NL), lbl(2:: NL) > 

-F-ý+ newlab4(label) <= TUPLE4(label, label, label, label) 

- newlab4(lbl(NL)) <= < lbl(O:: NL), lbl(1:: NL), 
lbl(2:: NL), lbt(3:: NL) > 

END 

COMMENT ' assembler code @; 
DEF 
DATA ainstruction <= load(address) ++ str(address) ++ condjump(label) 

+: - jump(label) ++ app(opr) ++ nonop 
-}+ labirs(label, ainstruction) 

VAR AI, AI1 : ainstruction 
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VAR AIL, AILi : list ainstruction 
DATA acode <= apr(list ainstruction) 
VAP. ACO : acode 
E", 

COMMExr " 
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acodetop converts source code with addresses into 
assembler putting in labels where needed @; 

DEF 
i-+-+- aco3etop(psstater±ent) <= acode 

-f-++ acodes(psstatement, label) <= list ainstruction 

+ acodee(pexpression) <= list ainstruction 

-t+++ acodeel(list pexpression) <= list ainstruction 

++- insertlabel(label, list ainstruction) <= list ainstruction 

I 

Yý 

- acodetop(PS) <= apr(acodes(PS, nillab)) 

- acodes(PS1$PS2, LAB) <= acodes(PS1. L: ) <> acodes(PS2, L2) 
where <L1, L2> == newlab2(LAB) 

- acodes(passt(ADR, PE), LAB) <= acodee(PE)<>[str(ADP. )] 

- acodes(pwhst(PE, PS), LAB) <= insertlabel(L1, acodee(PE)) 
<> [ coed j ump (L 2) ] 
<>acodes(PS, L3) 
<>[jump(L1)] 
<>inser tlabel (L2, nil) 

where <L1, L2, L3> == newlab3(LAB) 

- acodes(pifthenelse(PE, PS1, PS2), LAB) <= acodee(PE) 
<>[condjump(L1)] 
<>acodes(PS2, L3) 
<> [jumP(L2) ] 

<>ins2rtlabel(L1, acodes(PS1, L4)) 
<>insertlabel (L 2, nil) 

where <L 1, L2, L3, L4> == newlab4(LAB) 

- acodee(pexpr(ADR)) <= [load(ADR)J 

- acodee(papply(OP, PEL)) <= acodeel(PEL)<>[app(OP)] 

- acodeel(nil) <= nil 
acodeel(PE:: PEL) <= acodee(PE) <> acodeel(PEL) 

- insertlabel(LAB, AIL) <= labins(LAB, nonop):: AIL 
END 

COMMENT ' compil converts source code to assembler, allocating 
space for variables starting from given address. @; 

DEF 
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-i-4-+ coýrpil. (sý, t4terýn_ýt, address) <= acode 
_"_. _" compill, SsVAakD'f, ) <= acodetop(pstmttop(S, VAR. 4DR)) 
END 

COr4ME TT ' slots are pairs of address-assembler instruction 
DEF 
DATA slot <= sl(address, ainstruction) 
VAR SLTL : list slot 
END 

COMMENT slots makes a list of slots from assembler code, 
putting code in slots with successive addresses, 
starting at given address. 
slotstomap builds a map from labels to addresses. a; 

DEF 

-1++-+ slots (list ainstruc tion, address; <= list slot 
4-I-f slotstomap(list slot) <= label -> address 

-w- slots(nil, ADR) <= ni3. 
--- slots(AI:: AII,, ADR) <= sl(ADR, AI) :: 

slots(AIL, incadd(ADR)) 

--- fsl. otst: omap(nil) <= nilf_m 
--- slotstomap(sl(ADR, load(ADP'tiI)):: SLTL) <= 

slotstomap(SLTL) 
---- slotstomap(sl(ADR, str(ADR1)):: SLTL) <= slotstodnap(SLTL) 
--- slotstomap(sl(. ADR, oondjump(LAB)):: SLTL) <= 

slot , tonap(SLTL. ) 

--- slotstomap(sl(ADF., app(OP)):: SLTL) <= slotstomap(SI. TL) 

--- slotstomap(sl(ADR, jump(LAB)):: SLTL) <= slotstowap(SLTL) 
--- slotstomap(sl(ADR, nonop):: SLTL) <= slotstomap(SLTL) 
--- slotstomap(sl(ADR, labins(LAB, AT)):: SLTL) <= 

<LAB, ADR> mplus slotstomap(SLTL) 
END 

COMMENT ' machine code @; 
DEF 
DATA minstruction <= nüoad(address) ++ mstr(address) 

++ mcondjump(address) ++ mjump(address) 
++ mapp(opr) ++ mnonop 

DATA encode <= mpr(list minstruc tion) 
END 

COMMENT mcodetop converts assembler to machine code @; 
DEF 
VAR labaddmap : label->address 

+++ mcodetop(acode address) <= mcode 
+++ mcodeal(list ainstruction, labFl->add. ess) <= list minstrLction 
+4-1- mcodea(ainstruction, l. abel->address) <= mins[ruction 
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- mcodetop(apr(AIL), CODEADR) <_ 
mpr(incodeal(AIL, slotstomap(slots(AIL, CODEADR)))) 

---- mcodeal(nil, labaddmap) <= nil 
--- mcodeal (AI: : AIL, labaddmap) <= scodea(AI, labäddmap) 

: : mcodeal (ATL, labaddmap) 
--- mcodea(labins(LP. B, AI), l abaddmap) <= mcodaa(AI, I. abaddmap) 
--- mcodea(l:, ad(AUR), labaddmap) <= mload(ADR) 
--- mcodea(str(ADR), labaddmap) <= mstr(ADR) 

mcodea(condjump(LAB), labaddmap) <= mcondjump(labaddmap of LAB) 
--- mcodea( jump(LAB) , labaddmap) <= mjump(labaddmap of LAB) 

mcodea(app(OP), labaddmap) <= mapp(OP) 
mcodea (nonop, labaddmap) <= mnonop 

END 

COMMENT ' process converts source code to machine code, allocating 
variable space from and including VARADR, allocating code 
space from and including CODEADR. @; 

DEF 
+++ process(sstatement, address, address) <= mcode 
--- process(S, CODEADR, VARADR) <= mcodetop(compii(S, VARADR), CODEADR) 
END 
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5.4.3 Transforming To Efficient Version 
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Adopting the simple strategy outlined in section 5.2 suggests we 

tackle the transformation of the above protoprogram in the following 

stages: 

(i) Improve compil by 

Combining acodels(S, ENV, LAB) <= acodes(pstmts(S, ENV), LAB) 

process 

/ 
/ 

/ 
mcodetop 

mcodeal ý slots 

ý slotstomap 

mcodea 

(ii) Improve mcodetop by 

compil 

acodels 

i I 
acodele===acodelel 

Combining map(AIL, ADR) <= 

process 

/i 

mcodetop 
/I 

/I 
/I 

/I 
mcodeal map 

mcodea 

slotstomap(slots(AIL, ADR)) 

compil 

acodels 

acodele===acodelel 
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(iii) Improve process by 

Combining maps(S, ENV, LAB, ADR) <_ 
map(acodels(S, ENV, LAB), ADR) 

process---- 
/I\ 

/I\ 
/ acodels 

/! \ 
mcodeal 

I acodele===acodelel \ 
I. maps 
{ /{\ {/{\ 

mcodea /{\ 
nxtads { mapse===mapsel 

\( 
nxtade===nxtadQi 

(iv) Improve process by 

Tupling maps and acodels together 

process 
/I 

/I 

mcodeal codmap 
!! 
!! 
!! 
! codmape===codmapel 

mcodea 
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Now I present the commands for each stage as given to the ZAP 

system to carry out the transformations: 

(i) Combining acodes and pstmts 

CONTEXT 
UNFOLDALL compil 
USING nilcnv nillab 

RESTRICTED acodes pstmts 
TRANSF ORN 
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GOAL conpil(S, ADR) <= $$(&&accdels(S, ni. leiv(ADR), nilla'--)) 
END 

END 

CONTEXT 
UNFOLD acodels acodes acodee accdeel pstmts pstmte pstmtel 

nilenv addtoenv insertlabel 
USING <> addtoenv lookup newlab2 newlab3 newlab'+ 

RESTRICTED acodels acodes pstmts 
acodee acodeel pstmte pstmtel 

TRANSFORM 
GOAL acodels(asst(V, E), ENV, LAB) <= $$(&&acodele(ENV, E), V, ENV) 
GOAL acodels(whst(E, S), ENV, LAB) <= 

$$(acodele(ENV, E), acodels(S, ENV, $$(LAB)), ENV, LAB) 
GOAL acodels(ifthenelse(E, S1, S2), ENV, LAB) <= 

$$(acodele(ENV, E), 
acodeIs(S1, ENV, $$(LAB)), 

acodels(S2, ENV, $$(LAB) ), 
ENV, LAB) 

GOAL acodels(bl(VL, S), ENV, LAB) <= acodeis(S, $$(VL, ENV), LAB) 
GOAL acodels(S1$S2, ENV, LAB) <= $$(acodels(S1, ENV, $$(LAB)), 

acodels(S2, ENV, $$(LAB)) ) 
GOAL acodele(ENV, expr(V) ) 
GOAL acodele(ENV, apply(OP, EL)) <= $$(&&acodelel(ENV, EL), OP) 
GOAL acodelel(ENV, nil) 
GOAL acodelel(ENV, E:: EL) <_ $$(acodele(ENV, E), acodelel(ENV, EL)) 

END 

DELETE acodels(S, ENV, LAB), 
acodele(ENV, E), 
acodelel(ENV, EL) 

END 

Note that acodels is extended to acodele and acodelel in order 

to handle expressions and lists of expressions respectively; this 

mirrors the original structure of pstmts/pstmte/pstmtel. 

(ii) Combining slotstomap and slots 

CONTEXT 
UNFOLDALL mcodetop 
USING mcodeal 

RESTRICTED s lotstomap]. ots 
TRANSFORM 

GOAL mcodetop(apr(AIL), CODEADR) <- $$(AIL, &&map(AIL, CODEADR)) 
END 

END 

CONTEXT 
UNFOLDALL map 
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USING incadd mplus nilfm 
RESTRICTED map 

TRANSFORM 
GOAL map(nil, ADR) <= nilfm 
GOAL map((CASESOF AI):: AIL, ADR) <= map(AIL, $$(ADR)) 
GOAL map(labins(LAB, AI):: AIL, ADR) <_ 

$$(LAB, ADR, map(AIL, $$(ADR)) ) 
END 

END 

Note that stages (i) and (ii) are completely independant, and 

may be performed in either order. 

(iii) Combining map and acodels 

This stage requires some insight into the processes involved. 

Attempting the transformations of the combination, maps, leads to 

considering ga applied to lists of airtstructions appended together, 

e. g. map(AIL1<>AIL2, ADR). Because map is defined in terms of cases of 

the head of a list of ainstructions (if non-null), nothing can be 

done with such an expression. 

We know, however, that map is simply constructing a 

label->address map for the ainstructions placed in successive 

addresses commencing at ADR. Sc, for an appended pair of lists 

AIL1<>AIL2, the result will be map(AIL1, ADR) with map(AIL2, ADR') 

added on, where ADR' is the next free address after instructions of 

AIL1 have been allocated space. Hence we are motivated to introduce 

a function to compute this next free address, nxtad, and then we have 

map(AIL1<>AIL2, ADR) <= map(AIL2, nxtad(ADR, AIL1)) addmaps 

map(AIL1, ADR) 

nxtad has an easy definition, and also satisfies 

nxtad(incadd(ADR), AIL) <= incadd(nxtad(ADR, AIL)) 

nxtad(ADR, AILI<>AIL2) <- nxtad(nxtad(ADR, AILI), AIL2) 



TRANSFORMING LARGE EXAMPLES Page 5-50 

The transformation commands are: 

CONTEXT 
UNFOLD process mcodetop nillab compil nilenv 
USING mcodeal nilenv nillab 

RESTRICTED acodels map 
TRANSFORM 

GOAL process(S, CODEADR, VARADR) <= 
mpr(mco`eai(acodels(S, nilenv(VARADR), nillab), 
&&maps(S, rti. leriv(VARADR), nillab, CODEADR)) ) 

END 
END 

INTRODUCE 
VAR ADR2 : address VAR AIL2 : list ainstruction 
VAR AFBELI : list tuple2(ALFA, BETA) 
INF 4 addmaps 
+++ (ALFA->BETA) addmaps (ALFA->BETA) <= (ALFA->BETA) 

--- into(NIL) addmaps into(AFBELI) <= into(AFBLLI) 

--- into(<AF1, BE1> :: AFBEL) addmaps into(AFBELI) <= 
<AF1, BE1> mplus (into(AFBEL) addmaps into(AFBEL1)) 

+++ nxtad(ADDRESS, LIST AINSTRUCTION) <= ADDRESS 

--- nxtad(ADR, NIL) <= AAR 

--- nxtad(ADR, AI:: AIL) <= incadd(nxtad(ADR, AIL)) 
END 

CONTEXT 
USING addtoenv newlab2 newlab3 newlab4 <> lookup incadd addmaps 

mplus nilfm 
RESTRICTED maps map acodele acodelel nxtad acodels 

UNFOLD maps acodels map nxtad addmaps acodele acodelel 
LEMMAS IDENTITY addmaps nilfm 
LEMMAS --- nxtad(incadd(ADR), AIL) <= incadd(nxtad(ADR, AIL)) 

--- nxtad(ADR, AIL1<>AIL2) <= nxtad(nxtad(ADR, AIL1), AIL2) 

--- map(AIL1<>AIL2, ADR) <= map(AIL2, nxtad(ADR, AIL1)) 

addmaps map(AIL1, ADR) 

TRANSFORM 

GOAL maps(asst(V, E), ENV, LAB, ADR) <= &&mapse(E, ENV, ADR) 

GOAL maps(bl(VL, S), ENV, L_4B, ADR) <= maps(S, $$(VL, ENV), LAB, ADR) 

GOAL maps(S1 $ S2, ENV, LAB, ADR) <= 
$$ (maps (S 1, ENV, $$ (LAB) , ADR) , 

maps(S2, ENV, $$(LAB), &&nxtads(ADR, S1, ENV, L1))) 
where <L1, L2> _= newiab2 (LAB) 

GOAL maps(whst(E, S), ENV, LAB, ADR) <= 
$$(LAB, ADR, nxtads(ADRI, S, ENV, $$(LAB)), 

maps (S , ENV, $$ (I. AB) ,$$ (ADR 1)) , 
mapse(E, ENV, $$(AT)R))) 

where <ADR1> _= < &&nxtade(ADR, E, ENV) > 
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GOAL naps(iftherelse(E, S1, S2), ENV, IAB, ADR) <_ 
$$(LAB, nxtads(ADR1, SI, EN,, $(LAB)), ADR1, 

maps(S1, ENV, $$(LAB), $$(ADR1)), 

maps(S2, ENV, $$(LAB), $$(ADR2)), 

mapse(E, ENV, ADR)) 
where <ADR1> <nxtads(ADR2, S2, ENV, $$(LAB))> 
where <ADR2> <nxtade(ADR, E, ENV)> 

GOAL mapse (expr (V) , ENV, ADR ) 

GOAL mapse(apply(OP. ELL), ENV, ADR) <= &&mapsel(EL, ENV, ADR) 

GOAL mapsel(nil, ENV, ADR) 

GOAL mapsel (E :: EL, ENV, ADR) <= 
$$(inapsel(EL, ENV, nxtade(ADR, E, ENV)), mapse(E, ENV, ADR) ) 

GOAL nxtads(ADR, S1 $ S2, ENV, LAB) <= 
nxtads(nxtads(ADR, SI, ENV, $$(LAB)), S2, ENV, $$(LAB)) 

GOAL nxtads(ADR, bl(VL, S), ENV, L. AB) <= 
nxtads(ADR, S, $$(VL, ENV), LAB) 

GOAL nxtads(ADR, asst(V, E), ENV, LAB) <= $$(nxtade(ADR, E, ENV)) 

GOAL nxtads(ADR, whst(E, S), ENV, LAB) <= 
$$(nxtads(nxtade(ADR, E, ENV), S, ENV, $$(LAB))) 

GOAL nxtads(ADR, ifthenelse(E, S1, S2), ENV, LzkB) <= 
$$(nxtads(nxtads(nxtade(ADR, E, ENV), 

S2 , ENV, $$ (LAB)) ,S1, ENV, $$ (LAB)) ) 

GOAL nxtade(ADR, expr(V), ENV) 

GOAL nxtade(ADR, apply(OP, EL), ENV) <= $$(&&nxtadel(ADR, EL, ENV)) 

GOAL nxtadel(ADR, nil, ENV) 

GOAL nxtadel(ADR, E:: EL, ENV) <= 
nxtadel(nxtade(ADR, E, ENV), EL, EN6') 

END 

END 

DELETE 
maps(S, ENV, LAB, ADR), 
mapse(E, ENV, ADR), 
maps el (EL, ENV, ADR) , 
nxtads(ADR, S, ENV, LAB), 
nxtade(ADR, E, ENV), 

/ 
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nxtadel (AAR, EL, ENV) 

Note that nxtads is essentially the combination_ of nxtad urith 

acodels. Again, as in stage (I), the new functions extend to cover 

expressions and lists of expressions. 

(iv) Tuple codmap(S, ENV, LAB, ADR) <= 

<a codels(S, ENV, LAB), maps(S, ENV, LAB, ADR), nxtads(ADR, S, ENV, LAB) > 

Our original. plan was to tt. ple together acodelsand maps, but by 

this stage we have introduced nxtads, which can also profitably be 

computed at the same time. 

Once again we introduce functions codmape and codmapel to handle 

expressions and lists of expressions. 

'introduce functions to tuple together h, gah and nh @ 
INTRODUCE 

VAR T1, T2, T3, T1A, T2A, T3A, T1B, T2B, T3B : general 

++1- codmap(sstatement, environment, label, address) <- 
tuple3(list ainstruction, label -> address, address) 

--- codmap(S, ENV, LAB, ADR) <= <acodels(S, ENV, LAB), 
maps(S, ENV, LAB, ADR), nxtads(ADR, S, ENV, LAB)> 

+++ codmape(expression, environment, address) <_ 
tuple3(list ainstruction, label -> address, address) 

--- codmape(E, ENV, ADR) <== <acodele(ENV, E), 
mapse(E, ENV, ADP. ), nxtade(ADR, E, ENV)> 

+++ codmapel(list expression, environment, address) <= 
tuple3(list ainstruction, label -> address, address) 

--- codmapel(EL, ENV, ADR) <= <acodelel(ENV, EL), 
mapsel(EL, ENV, ADR), nxtadel(ADR, EL, ENV)> 

END 

CONTEXT 
USING mcodeal nilenv codmap 
UNFOLD process codmap 
TRANSFORM 

GOAL process(S, CODEADR, VARADR) <= 
$$(codmap(S, nilenv(VARADR), nillab, CODEADR)) 

END 
END 
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CONTEXT 
USING codmap codmape codmapel incadd <> mplus addmaps 

newl. ab2 newlab3 newlab4 addtoenv lookup 
UNFOLD codmap codmape codmapel acodels maps nxtads 
LMiMAS --- nxtads (3_r. cadd(ADR) , S, ENV, LAB) <= 

incadd(n?: tads(ADR, S, ENV, L. AB) ) 

--- nxtade(incadd(ADR), E, ENV) <= 
incadd(nxtade(ADk, E, ENV)) 

--- nxtadel(incadd(ADR), EL, ENV) <= 
incadd(nxtadel(ADR, EL, ENV)) 

TRANSFORM 
GOAL codmap(S1 $ S2, ENV, LAB, ADR) <= $$(TI, T2, T3, TIA, T2A, T3A) 

where <T1A, T2A, T3A> codmap(S2, ENV, $$(LAB), $$(TI, T2, T3)) 
where <T1, T2, T3> _= codmap(S1, ENV, $$(LAB),. DR) 

GOAL c odmap (b 3. (VL, S) , ENV, LAB , ADR) <= 
c odmap (S 

,$$ (ENV, VL) , LAB, ADR) 

GOAL codmap(asst(V, E), ENV, LAB, ADR) <= 
$$(codmape(E, ENV, ADR), V, ENV, LAB) 

GOAL codmap(whst(E, S), ENV, LAB, ADR) <= 
$$(LAB, ENVY, ADR, T1, T2, T3, T1A, T2A, T3A) 
where <T1A, T2A, T3A> codmap(S, ENV, $$(LAB), incadd(T3)) 

where <T1, T2, T3> _= codmape(E, ENV, incadd(ADR)) 

GOAL codmap(ifthenelse(E, S1, S2), ENV, LAB, ADR) <= 
$$(ENV, LAB, ADR, T1, T2, T1A, T2A, T3A, T1B, T2B, T3B) 

where <T1B, T2B, T3B> == 
codmap (S 1, ENV, $$ (LAB) 

, incadd (incadd (T 3A)) ) 

where <T1A, T2A, T3A> codmap(S2, ENV, $$(LAB) , incadd(T3) ) 

where <T1, T2, T3> _= codmape(E, ENV, ADR) 
END 

CONTEXT 
UNFOLD acodele maple nxtade acodelel mapsel nxtadel 
TRANSFORM 

GOAL codmape(expr(V), ENV, ADR) 

GOAL codmape(apply(OP, EL), ENV, ADR) <_ 
$$(OP, codmapel(EL, ENV, ADR)) 

GOAL codmapel(nil, ENV, ADR) 

GOAL codmapel(E:: EL, ENV, ADR) <= $$(T1, T2, T3, T1A, T2A, T3A) 
where <T 1A, T2A, T3A> == codmapel (EL, ENV, $$ (T 1, T2, T3) ) 
where <T1, T2, T3> == codmape(E, ENV, ADR) 

END 
END 

DELETE 

. codmap(S, ENV, LAB, ADR), codmape(E, ENV, ADR), codmapel(EL, ENV, ADR) 
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END 

5.4.4 Final Program 

The final program is a two pass compiler, the first pass being 

used to create assembler code with labels, and a map from labels to 

addresses. The second pass takes these and replaces each label in 

the code by its corresponding address (looked up in the map) to get 

the final machine code. 

The change from the protoprogram -a very naive solution, with 

many passes through the input - has again been very major. The 

functions achieve the efficiency by intertwining several actions at 

once, returning several results. 

- codmapel(E :: EL, ENV, ADR) <= <U500 <> U 503, U502 addmaps 
U499, U501> 

where <U503, U502, U501> codmapel(EL, ENV, U498) 
where <U500, U499, U498> _= codmape(E, ENV, ADR) 

- codmapel(ni1, ENV, ADR) <= <nil, nilfm, ADR> 

- codmape(apply(OP, EL), ENV, ADR) <= 
<U464 <> app(OP) :: nil, U463, incadd(U462)> 

where <U464, U463, U462> == codmapel(EL, ENV, ADR) 

--- codmape(expr(V), ENV, ADP. ) <= 
<load(lookup(V, ENV)) :: nil, nilfm, incadd(ADR)> 

- codmap (S I$S2 , ENV, LAB, ABR) <= <U110 <> U113, 
U112 addmaps U109, U111> 

where <U113, U112, U111> == codmap(S2, ENV, U106, U108) 
where <UIlO, U109, U108> == codmap(SI, ENV, U107, ABR) 

where <Ul07, U106> == newlab2(LAB) 

--- ccdmap(bl(VL, S), ENV, LAB, ADR) <_ 
codmap(S, addtoenv(VL, ENV), LAA, ADR) 

- codmap(asst(V, E), ENV, LAB, ADR) <- 
Q181 <> STR(lookup(V, ENT) ) :: ni1, U180, incadd(U179)> 

where <U181, U180, U179> == codmape(E, ENV, ADR) 

codmap(whst(E, S), ENV, LAB, ADR) <= 
<(((labins(U366, nonop) :: U369 

<> condjump(U365) :: nil) <> U372) 
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<> jump(U366) :: nil) 
<> labins(U365, rionop) :: nil , 

(<U365, incadd(U370)> mplus nilfm) 
addmaps(U 371 addmaps(<U366, ADR> mplus U368)), 

incadd(incadd(U370))> 
where <U372, U371, U370> codmap(SENV, U364, incadd(U367)) 

where <U366, U365, U364> newlab3(LAB) 
where <U369, U368, U367> _= codmape(E, ENV, incadd(ADR)) 

- codmap(ifthPnelse(E, S1, S2), ENV, LAB, ApiR) <= 
<((((U400 <> condjusnp(U394) :: nil) 

<> U397) <> jump-U393) :: nil) 
<>labins(U394, nonop) :: U390) 
<>labins(U393, nonop) :: nil 

(<U393, U388> mplus ni]_fm) 
addmaps ((<U394, incadd(U395)> mplus U389) 
addmaps(U396 nddmaps U399)) , 

incadd(U388) > 
where <U390, U389, U388> codmap(S1, ENV, U391, incadd(incadd(U395))) 

where <U397, U396, U395> codmap(S2, ENV, U392, incadd(U398)) 
where <U400, U399, U398> codmape (E1, ENV, ADR) 

where <U394, U393, U392, U391 > == newlab4 (LAB ) 

--- process(S, CODEADR, VARA. DR) <= mpr(mcodeal(U6, U5)) 

where <U6, U5, U4> == codmap(S, nilenv(VARADR), nillab, CODEADR) 

(definitions of newlab and mcodeal remain unchanged) 
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5.5 REMARKS ON TRANSFOR" IATION EXAMPLES 

Transformation of the telegram problem took place in parallel 

with, and influenced, my development of the transformation system. 

Hence it is impossible to give any meaningful estimate of the amount 

of effort it took to perform. At the time it seemed a hard 

transformation, although looking back on it in the light of fur then 

experience of transforming, I now consider it would be a reasonably 

straightforward problem to tackle. The compiler example served as a 

test of the system to ensure it was capable of transforming more than 

just the telegram problem. The system required no major 

modification; some aspects of its operation needed imprcvement and 

the command language was somewhat rationalised, but on the whole the 

system, and the transformation strategy, sufficed to complete the 

example. Some effort was required to design the simple protoprogram, 

notably in the need to make a concious decision to aim for clarity 

rather than efficiency (the habit of considering efficiency is hard 

to dispel). The transformation took place over several weeks, and 

again I feel I could do the transformation much more easily now 

having had more experience. 

Both the programs are non-trivial when compared to the examples 

previous machine-based transformation work has been applied to. In 

comparison with "real" software, they are still quite small. Even 

so, an interesting feature is becoming apparent - the textual size of 

the protoprogram may be larger than the textual size of the 

transformed, efficient, program. For similarly sized examples we are 

able to keep in mind the entire program at once, so the advantages of 

modularity and clarity of the protoprograrms are not very significant. 
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When moving to larger programs, for which we are unable to keep in 

mind all the details at once, modularity of the protoprogram becomes 

much more significant. 

The next chapter presents the transformation of an example which 

is an order of magnitude larger than the examples here, where these 

issues become apparent. 



CHAPTER 6 

TRANSFORMATION OF A TEXT FORMATTER 

In this chapter I present the transformation of a text formatter 

a program for neatly formatting a document on a suitable printer. 

This example is considerably larger than those presented in the 

preceeding chapter, and its scale brings to light new problems during 

transformation. I discuss these problems and their implication for 

the practical development of programs by transformation.. 

Briefly, the difficulties which arise revolve around the 

difficulty of using the present tools and techniques to concisely 

capture simple changes taking place within large programs. 

6.1 INFORMAL SPECIFICATION OF THE TEXT FORMATTER 

The text formatter I construct and transform is based upon the 

formatter presented by Kernighan and Plauger in Chapter 7 of their 

book Software Tools (Kernighan and Plauger (19761). In this book they 

present several pieces of software written in Ratfor, FORTRAN with 

extra syntax added. For each piece of software they show ho", it can 

be constructed in an organised fashion, but, as is common, their 

development goes straight from an informal specification to a final 

efficient program. I adopt their informal specification of a text 

formatter as the starting point for my development, and aim to end up 
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with a program of comparable efficiency to their hand-developed 

version, albeit in recursive form. 

I repeat the informal specification given in Software Tools: 

The format program described here is quite conventional. It 

accepts text to be formatted, interspersed with formatting commands 

telling the program what the output is to look like. A command 

consists of a period, a two-letter name, and perhaps some optional 

information. Each command must appear at the beginning of a line, 

with nothing on the line but the command and its arguments. For 

instance, 

. ce 

centres the next line of output, and 

. sp 3 

generates three blank lines. 

Most of the time, however, the user should have to know little 

about commands and arguments - most formatting happens automatically. 

This is merely good human engineering. Ideally a document containing 

no commands should be printed sensibly. Default parameter settings 

and formatting actions are intended to be reasonable and free of 

suprises. For instance, words fill up output lines as much as 

possible, regardless of the length of input lines. Blank lines cause 

fresh paragraphs. Input is correctly spaced across page boundaries, 

with top and bottom margins. 

At the same time the design has to be sufficiently flexible that 

it can be augmented with more advanced features for sophisticated 

use. Knowledgeable users should of course be able to change 
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parameter settings as desired. Ultimately it should be possible for 

users to define new formatting operations in terms of those already 

provided. 

Commands 

As we said, all commands are introduced by a period at the 

beginning of a line, which is an unlikely combination in text, and 

have two-letter names. It has been our experience that users prefer 

concise commands in most languages, so this seems a reasonable 

compromise between brevity and mnemonic value. 

By default the program fills output lines, by packing as many 

input words as possible onto an output line before printing it. The 

lines are also justified (right margins made even) by inserting extra 

spaces into the filled line before output. People normally want 

filled text, which is why we choose it as the default behaviour. It 

can be turned off, however, by the no-fill command. 

. nf 

and thereafter lines will be copied from input to output without any 

rearrangement. Filling can be turned back on with the fill command 

. fi 

When an nf is encountered, there may be a partial line 

collected but not yet output. The nf will force this line out 

before anything else happens. The action of forcing out a partially 

collected line is called a break. The break concept pervades format; 

many commands implicitly cause a break. To force a break explicitly, 

for example to separate two paragraphs, use 

. br 
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Of course you may want to add an extra blank lire between 

paragraphs. The space command 

. sp 

causes a break, then produces a blank line. To get n blank lines, 

use 

. sp n 

(A space is always required between a command and its argument). If 

the bottom of a page is reached before all of the blank lines have 

been printed, the excess ones are thrown away, so that all pages will 

normally start at the same first line. 

By default output will be single spaced, but line spacing can be 

changed at any time: 

. Is n 

sets the line spacing to n. (n=2 is double spacing) The . ls command 

does not cause a break. 
ý 

The begin page command . bp causes a skip to the top of a new 

page and also causes a break. If you use 

. bp n 

the next output page will be numbered n. A . bp that occurs at the 

bottom of a page has no effect except perhaps to set the page number; 

no blank page is generated. The current page length can be changed 

(without a break) with 

. pl n 

To center the next line of output, 

. ce 
line to be centred 

The ce command causes a break. You can center n lines with 

. ce n 
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and, if you don't like to count lines (or can't count correctly), say 

. ce 1000 
lots of lines 
to be centred 
. ce 0 

The lines between the ce commands will be centred. No filling is 

done on centred lines. 

Underlining is much the same as centering: 

ul n 

causes the text on the next n lines to be underlined upon output. 

But ul does not cause a break, so words in filled text mny be 

underlined by 

words and words and 
. ul 
lots more 
words. 

to get 

words and words and lots more words. 

Centering and underlining may be intermixed in any order: 

. ce 

. ul 
Title 

gives a centred and underlined title. 

The indent command controls the left margin: 

. in n 

causes all subsequent output lines to be indented n positions. 

(Normally they are indented by 0. ) The command 

r: n n 

sets the right margin to n. The line length of filled lines is the 

difference between right margin and indent values. . in and rm do 

not cause a break. 

The traditional paragraph indent is produced with temporary 
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indent command: 

. ti n 

breaks and sets the indent relative to position n for one output line 

only. If n is less than the current indent, the indent is backwards 

(a "hanging indent"). 

To put running header and footer titles on every page, use . he 

and .fo: 

he this becomes the top-of-page (header) title 
. fo this becomes the bottom-of-page (footer) title 

The title begins with the first non-blank after the command, but a 

leading. quote will be discarded if present, so you can produce titles 

that begin with blanks. If a title contains the character II, it will 

be replaced by the current page number each time the title is 

actually printed. he and fo do not cause a break. 

Since absolute numbers are often awkward, the program allows 

relative values as command arguments. All commands that allow a 

numeric argument n also allow +n or -n instead, to signify a change 

in the current value. For instance, 

: 
in 

-10 
. in +10 

shrinks the right margin by 10 from its current value, and moves the 

indent 10 places further to the right. Thus 

. rm 10 

and 

. rin +10 

are quite different. 

Relative values are particularly useful with . ti, to temporarily 

indent relative to the current indent: 

. in +5 

. ti +5 
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produces a left margin indented by 5, with the first line indented by 

a further 5. 

And 

. in +5 

. ti -5 

produces a hanging indent, as in a numbered paragraph: 

1. Now is the time for all good people 
to come to the party. 

A line that begins with blanks is a special case. If there iý: 

no text at all, the line causes a break and produces a number of 

blank lines equal. to the current line spacing. These lines are never 

discarded regardless of where they appear, so they provide a way to 

get blank lines to the top of a page. If a line begins with n blanks 

followed by text, it causes a break and a temporary indent of +n. 

These special actions help ensure that a document that contains no 

formatting commands will still be reasonably formatted. 

In summary, then, we have the following commands. If a numeric 

argument is preceeded by a+ or a -, the previous value is changed by 

this amount; otherwise the argument represents the new value. If no 

argument is given, the default value is used. 

I 
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command break ? def 
. ult f unct ca 

. bp r. yfes n =+;. begin page numbered n 

. br yes cause break 

. ce r. yes n=1 center next n lines 

. fi yes start pilling 

. fo no empty footer title 

. he no empty header title 

. in n no n==0 indent n spaces 

.lsn no n=1 line spacing is n 

. nf yes stop filling 

. p1_ n no n= 66 set page length to n 

. rm n no n==60 set right margin to n 

. sp r. Yes r. =1 space down n lines 

. ti n yL s r1=0 temporary indent of _i 

. ul n no n=1 underline words from next n 
lines 

6.2 DESIGN OF PROiOPROGRAM 

A major difficulty in describing text formatting is that it 

admits to no concise yet precise specification. In practice this 

leads to user manuals -Which are verbose yet unable to answer all the 

questions the user wants to ask. Users typically resort to a "try it 

and see" approach in order to determine the behaviour of their 

formatter, gradually accumulating a set of tricks to enable them to 

achieve the effects they desire. 

In contrast I have attempted to discard the mantle of 

efficiency, and design as clear a program as possible. I split the 

task of formatting into several stages which are as independent as 

possible, and reflect what I consider to be the conceptual stages 

themselves of the process. 

These are: 

(1) Decoding commands from text 

(2) processing command-- which can be used immediately 

tc associate in orriat.. ion with input text lines. 
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(3) Preliminary processing of text lines. 

(4) Formation of lines for output. 

(5) Formation of pages for output. 

A detailed description of each stage follows: 

Std 1: - Decoding commands from text 

In this stage the input lines which are commands are 

distinguished from those which are text lines, and interpreted. Some 

commands have an argument, which may be a string (as for HE and FO 

commands), or a number, either signed or unsigned. An illegal 

argument (e. g. a non-digit encountered when reading in a number) has 

the same effect as if no argument had been supplied. 

Output of this stage is list tore (mnemonic for text or 

command), where tore has been defined by 

DATA torc <= text(list char) -H- command $ carg 

i. e. a text line, or command and its argument. 

Stage 2: - Processing commands which associate information with text 

lines. 

Many of the commands of a text formatter are involved with the 

setting of some value, which will have an effect of the output of the 

following text lines. For example, after a rm 54 command, output 

lines will be fit within a right margin size of 54. 

Suppose we consider each text line as consisting not only of a 

list of characters to be processed for output, but in addition 

associate with it information - such as the right margin size. Then 

we could regard many of the formatter commands as merely setting 



^r)" ý-/ m OF -, r-.. i. ým. p. ý. Pcýýe 5-10 ', '! ON ýI _i __. ý', 
_ýý-i. tl 1ý 1 

certain values, in information in the following text Tines, end 

how the information is used is left to later stages. 

This is the approach I use in my program. The pieces of 

information set by the commands are stored in a data structure 1 call 

an infomap. Functions to add to and . 
look up values in infomaps are 

simply defined. Each text line is modifted to have an infomap 

associated with it. 

The different types of values stored in the infomaps are: 

PLVAL - page length 
CEVAL - whether or not to centre this line 
ULVAL - whether or not to underline this line 
FIVAL - whether or not to fill this line 
LSVAL - line spacing 
HEVAL - page header title 
FOVAL - page footer title 
RMVAL - right margin 
TIVAL - temporary indentation, 

applies to first output line generated 
from this input taxt line 

INVAL - indentation, applies to later output lines 

The TIVAL and INVAL values are a little less obvious than the 

rest: INVAL is the normal indentation, set by the in command. 

However, the effect of a . ti n command is to cause a break arid start 

the next line with a temporary indentation of n. The need for both 

the temporary and normal values to be remembered arises from the use 

of "fill" mode of input. When in this mode, a single input text line 

may give rise to more than one output line, and in such a case, after 

a . ti n command, we want_ the first output line to have the temporary 

indent of n, but follntng lines to revert to the normal indentation. 

Hence the ne ad to keep both values. Thus the first text line after 

each ti command wil have the TIVAL indicating the temporary indent 

set by that command, other taxt lines will have their TI L. L's set to 
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whatever the normal indentation is, i. e. the same as their INVAL's. 

With one exception, for each type of command there is a separate 

pass through the input to set its associated value (if any) in tre 

infomaps. Due to the interdependence of the ti and in commands (a 

. ti +n is a temporary indent with respect to the current -indent. 

value), these are dealt with in a single pass. The order in which 

each setting pass is done is irrelevent. 

During these. passes, those commands which are specified to 

implicitly cause a break cause the insertion of a br command. 

Most of the commands have served their purpose once they have 

set some value and perhaps inserted br commands, and so can be 

discarded. 

Output from this stage is list pore, where pore is defined as: 

DATA pore <= ptext(infomap, list char) ++ command. carg 

which differs from tore by the extension of text to ptext by the 

addition of an infomap to store values. The commands remaining are 

BP-age. and BR, all the others having been removed in this s 

Stage 3: - Preliminary processing of text lines 

At this point we can begin to carry out some actions upon the 

text lines. We do all that is independent of the formation of output 

lines or pages. For our present set of commands, this means 

underlining, and processing empty text lines and text lines which 

commence with a blank. 

UNDERLINE is the procedure to handle underlining: Lines 

signalled to be underlined (i. e. lines i. -ith ULVAL set to true in 

their infom ps ) have their characters ( other than blanks, h ackspac. -s 
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and existing underlines) underlined by expanding them to 

character BACKSPACE UNDERLINE 

BLANKS is the procedure to deal with empty lines or lines 

starting with a blank: Lines containing nothing but blanl,; are 

replaced by a BR command and an empty line with the FIVAL of ; ts 

infomap set to false (so that this empty line will be output). 

Lines commencing with a blank but which do have non-blanks cause 

the insertion o. f a BR command, are modified by the removal. of all 

leading blanks, and have their TIVAL set to their INVAL+number of 

blanks removed. 

Stage 4: - Formation of lines for output 

This stage produces lines ready for packing into pages. The 

operations which must be done are centering, filling and right 

justifying, together with dealing appropriately with those lines 

which do not fit in the indicated margins. 

LINES is the top-level procedure to control this. It 

goes through the list of text and commands doing the following: 

If it is a command: 

then if it is a br command, discard it 

otherwise simply pass it through. 

If it is a text line: 

There are three possibilities: either it needs centering, or it 

needs putting out as it is, or it is the first of possibly several 

more lines to be put out in the "fill" mode. These cases can be 

determined by examining the CEVAL and FIVAL of the info :: ap, 
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remembering that lines to be centred are rot filled, i, hether in fi_li 

mode or not. 

PUT is the procedure used to put out text lines, taking irto 

account margins. Provided the line will fit into the margins, it can 

be set ready for output by inserting as many blanks as the TIVAL of 

the infomap of that line. If it won't fit, then as much of it as 

will fit in the margins is put out in the first line, and the 

remaining characters are handed to DEFAULTPUT to deal with. 

DEFAULT PUT merely puts out PAGEWIDTH-wide lines until it has 

exhausted its input. 

LINECENTRE is used on those lines requiring centering. This 

increments the TIVAL of the infomap by half the extra space, the 

extra being the RMVAL - (TIVAL + width of line), and gives the output 

to put. If the line is too wide to fit in the margin, this increment 

will be zero. 
I 

The "fill" mode is more tricky, as the input text lines are 

being used to provide words, which in turn are put into full output 

lines, right justified. When a line is encountered to be "filled" 

the following actions take place: GETLINESTOFILL is called on the 

input. This returns the input line(s) which are to provide the 

words, and the remainder of the input for LINES to continue working 

on. GETWDSTOFILL is used to convert the list of lines to a list of 

words, and finally PUTPARAGRAPH takes this and produces a list of 

output lines. 

GETLINESTOFILL continues ammassing input text lines until either 
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end-of-input is reached, or a BR commands encountered, which is the 

signal to break the filling process. No other commands are expected, 

since only br, sp and bp commands will have survived to this stage, 

and the sp and bp commands will have had a br command inserted 

immediately before them. 

GETWDSTOFILL, given a list of text lines, produces a list of 

words. The words are formed from contiguous sequences of non-blank 

characters in the- text lines, blanks and end-of-line considered as 

separating the words. The infomap associated with a text line is 

given to each word formed from that line - but the second and beyond 

words have the TIVAL of the infomap reset to the INVAL. This is to 

ensure that the (temporary) TIVAL is not propogated into the 

following words which might appear in different output lines. 

PUTPARAGRAPH takes a list of words (each with an infomap) and 

produces output lines, filling them with the words, and spreading the 

words out to right-justify them. Because several words, perhaps with 

differing infomaps, are likely to be included in a single output 

line, a decision needs to be made on how the parameters of the line 

(left margin & right margin) are to be determined. The 

straightforward, and it turns out only logical, convention is to say 

that the infomap of the first word determines the characteristics for 

the entire line. An example will illustrate this point: 

Suppose we have the following sequence of input: 

. fi 

. rm 20 

. in 0 
USS Enterprise has sustained 
damage to front shields 

. rm 12 
but enemy losses are high. 

. nf 
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Under my convention, this is turned into: 

USS Enterprise has 
sustained damage to 
front shields but 
enemy losses 

are high. 

Note that the right margin has changed neatly from 20 to 12 

between the lines "front shields but" and "enemy losses". However, 

if, say, the convention that the latest infomap is used to determine 

characteristics, we might perhaps get: 

USS Enterprise has 
sustained damage to 
front shields but 
enemy losses 

are high. 

due to the change in right margin between the words "shields" 

and "but", the right margin of the line starting "front" is changed 

midstream to less than the width of the words already in it, 

resulting in a right margin of width neither 20 nor 12. 

If a single word is too wide to fit between the margins, it is given 

to PUT to deal with, otherwise it and following words are amassed 

until no more will fit into the available space, and SPREAD is called 

on these to put them out as a justified line. The remaining few 

words left when filling comes to an end which do not fill an entire 

line are put out with single spaces between them, as is the end of 

this paragraph. 

SPREAD takes a list of words, and padds them out with blanks to 

make them right justified. Of course, if there is only one word, no 

spreading can be done, but otherwise it calculates the total number 

of blanks to be added (which will be space available, i. e. RMVAL - 

TIVAL of first word's infoinap, - sum of widths of words), and gives 
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this value along with the list of words to SUBSPR .Dt par;: it _ eu*_ 

the blanks. 

SUBSPRFAD does the "dealing-out" of the bla-As to the gap= 

between the words. While there are more blanks to be added thar 

gaps, it simply extends each gap by one. For the rEEýin! ng odd few 

blanks, ADDEXTRASTOGAPS is used to put them in. 

ADDEXTRASTOGAPS is called with a truthvalue indicating whether 

the extra blanks are to be allocated from left-to-right or from 

right-to-left among the gaps. By alternating the value of this in 

successive calls, we get the extra blanks distributed at each. side of 

the page. /' 

Output from this stage is a list of port, where the ptext's are 

lines ready to be amassed into pages, intersperced with sp and bp 

commands. 

Stage ,e5: - Formation of pages 

In this stage the text lines, intersperced with bp and sp 

commands, are bunched into pages, complete with header and footer 

titles. 

The outermost procedure, PAGES, initialises the current 

page number to zero, and calls SUBVAGES to do the work. The action 

of SUBVAGES is to form a whole page for output, and, if there is more 

input to be dealt with, calls itself recursively on that. 

In a similar manner to the formation of full lines (PUTPARAGRAPH in 

the preceeding stage) I adopt the convention that the infotnap of the 
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first line to be put in the page deter, ones Lhe characteristics of 

the entire page. For pages, these are header title and foo--er ritlý. 

PUTHDR and PUTFI' are used to produce the header and footer titles 

respectively. 

if SUBPAGES finds a bp command at the start of its input, then it 

merely resets the page number, and does not produce an entirely blanll: 

page. Similarly an sp command at the start is discarded, so that 

unneccessary blank lines don't start the page. 

FILLPAGE builds up the lines to be put in a page, the remainder 

of the input for SUBPAGES to continue on, and the next page number. 

It is given the amount of space remaining for the current page, the 

input, the current line spacing (it will need to know this in order 

to deal with sp commands), the current page number, and the expected 

next page number, and acts in the following manner: 

If there is no space left, then exactly enough lines to fill the 

page have already been found, so return. 

If end-of-input or a bp command is encountered, BLANKLINES is 

called with the remaining space value, and generates exactly that 

many blank lines to fill out to the end of the current page. A bp 

command is used to set the next page number. Then return. 

If an sp command is encountered, SKIP is called to space down the 

appropriate number of lines. The space remaining is decremented 

by the number of blank lines SKIP produces, and FILLPAGE is called 

recursively. 

SKIP is told the size of the remaining space, the nuraber of 

lines to be shipped, and the current line-spacing. It generates the 

mini. . iuT, of (space remainirig, number of lines to be skipped line 
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spacing) blank lines. 

If a text line is encountered it is passed without modification and 

the minimum of (space remaining after text line, current line spacing 

-- 1) blank lines are generated after it. FILLPAGE is called 

recursively with the remaining space and input, and the latest text 

line's LSVAL. 
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6.3 I,: 'L ??, GTOPROGRt, ii 

DEF 
DATA TYPES 

AND 
UTILITIES 

TRUTHVAL"UES -- assume =, /=, not, and, or 
already defined. 

VAR FTAAG, LTOR : truval 

/// LISTS - length for ! is. -s: 

-H-+- ]. ength(list atom) <= num 
VAR ATM : atom VAR ATML : list atom 
--- lergth(NIL) <= 0 

--"- length(ATM:: ATML) <= succ length(ATML) 

iii NUMBERS & operations on them 

- assume + already defined. 

VAR N, M, MAXW, CURW, OLDN, DEFAULT, MINN, MAXi, NýaN, VAAL, VALIN, E'ALTI, 
COUNT, BLANI: COUNT, TOTyLWIDTH, BCOUNT, GCOUNT, PGNUM, "iXTPGNLTMi, 
CURPGNUM, SRIPCOUNT, VALLS : num 

inf 9* 
+++ num * num <= num 
--- 0*M <= 0 

--- (succ N) *M <= M+ (N * M) 

inf_ 8- 
+++ num - nun <= num 
--- 0-M <= 0 

--- N-0 <= N 

--- (succ N) - (succ M) <= N-M 

-I-H- half (num) < num 
half (0) <= 0 

--- half(succ 0) <= 0 

--- half(succ succ N) <= succ(haif(N)) 

inf 4» 
+++ num » num <= truval 
---- 0»M <= false 

--- (succ N) »0 <= true 
--- (succ N) ?> (succ M) <= N»M 

-ý-1-+ r. iin(nwü, num) <= num 

--- rlin (N, M) <= N -if M» N 
<= M ifnot 

+++ max(nu: n, nuza) <= num 

--- max ( N, '. i )<= M if M» N 
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<= N ifnot 

inf 9 // 
+++ num // num <= num 
--- N0 <= UNDEF 
---- N // (succ m) <= 0 if (succ M) » Iv 

<= succ((N - (succ M)) // (succ M)) ifnot 

lnf 9 rem 
+++ num r ern num <= rum 
--- N rem 0 <= UNDEF 

--- N rem (succ M) <= N- ((N // (succ M)) * (succ M)) 

+f- - HUGE <= num --- HUGE <= 25 

END 

DEF 

/// ***************** CHARACTERS etc. *****************x:; ** 

DATA char <= CHO ++ CHI ++ CH2 ++ CH3 ++ CH4 ++ CH5 ++ CH6 ++" CH7 ++ 
CH 8++ CH9 ++ C HA ++ C HB ++ CHC ++ C HD ++ C HE ++ CHF -"r. -+ 
CHG ++ CHH ++ CHI ++- CHJ ++ CP. K ++ CHL ++ CIiM ++ CHN ++ 
C HO ++ CHP -+-++- C HQ +-+- C HR ++ CHS ++- C HT ++- G iýU -: -1 C HV ++ 
C HW ++ CHX ++ C HY ++ C HZ ++ 
CHUNDERLINE ++ CHBACKSPACE ++ 
CHAPOSTROPHE ++ CHDOT +++ CHPLUS ++ CHMINUS ++ I; HBLA?, TK 
CHHASH 

VAR C, C1, C2 : char 
VAR CL, CLI, REMCL, FIRSTCL, CLSOFAR, TITLE : list char 

DATA line <= lin(list char) 

VAR BLINES, PAGELINES, MORELINES, LINL : list line 

/// Digits from/to characters 

+++ digitval(char) <= num 
--- digitval(C) <= 0 if C=CHO 

<= 1 if C=CH1 
<= 2 if C=CH2 
<= 3 if C=CH3 
<= 4 if C=CH4 
<= 5 if C=CH5 
<= 6 if C=CH6 
<= 7 if C=CH7 
<= 8 if CýHB 
<= 9 if C=CH9 
<= UNDEF ifnot 

-f++ digit(num) <= char 
--- digit(O) <= CHO 
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--- digit(1) <= CHI 
--- digit(2) <= CH2 
--- digit(3) <= CH3 
--- digit(4) <= CH4 

, 
---- digit(5) <= CH5 
--- digit(6) <= CH6 
--- digit(7) <= CH7 

--- digit(8) <= CH8 
--- digit(9) <= CH9 
--- di-. git(succ succ succ succ succ succ succ succ succ succ N) 

UNDEF 

/// Conversion between character lists and numbers 

+++ cltonum(list char) <= num 
-1-f-+ subcltonum(list char, num) <- num 
--- cltonum(nil) <= UNDEF 

--- cltonum(C:: CL) <= subcltonum(C: : CL, 0) if digitval(C) /=UNDEF 

<= UNDEF ifnot 

--- subcitonum(ni1, N) <= N 

---- subcltonum(C:: CL, N) <= N if C=CHBLANK 
<= UNDEF if digitval(C)=UNDEF 

<= subcltonum(CL, (N*10)+cligitval(C) ) ifnot 

IH numtocl(num) <= list char 
--- numtocl(N) <= [digit(N rem 10)' if N // 10 =0 

<= numtocl(N//10) <> [digit(N rem 10)) ifnot 

/// Skipping blanks and non-blanks 

+++ skipblanks(list char) <= list char 
--- skipblanks(nil) <= nil 
--- skipblanks(C:: CL) <= skipblanks(CL) if C=CHBLANK 

<= C:: CL ifnot 

ý++ skipalphas(list char) <= list char 
--- skipalphas(nil) <= nil 
--- skipalphas(C:: CL) <= C:: CL if C=CHBLANK 

<- skipalphas(CL) ifnot 

/// Width of character lists - handling backspace 

+i-+ widtli( ]. ist char) <= num 
+++ subwidth(list char, num, num) <= num 

--- width(CL) <= subwidth(CL, 0,0) 

--- subwidth(nil., rAXT4, CUR4; ) <= MA. XW 

--- s ubwid th (C:: CL, `. W , CURW ) 
<= subwidth(CL, oLkýýJ, CU?,. ý-1) if C-CY. BACK'S1'A'E 

<= subwidth(CL, ma:: (MAXW, CURi", ý-1 ), CUF. W+i. ) ifnot 
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END 

DEF 

/// ***************** COMMANDS and their arguments ******* 

/// carg - possible arguments of commands 

DATA carg <= nullarg ++ strin(list char) +-4- 0 
signed (char 

, nurn) ++ unsigned (nutn) 

VAR CAR : carg 

+++ stringof(carg) <= list char 
--- stringof (strir1g(CL)) <= CL 

/// Commands 

DATA command <= BR +-t- BP ++ CE ++ FI ++ I FO ++ HE ++ TN ++ 
LS ++ NF ++ PL ++ RM ++ SP ++ TI ++ UL ++ 
UNKNOWN 

VAR CMD : command 

/// INFOMAPS 
Values "Which may occur in them: 

DATA ival <= ivc(list char) ++ ivn(num) ±+ ivt(truval) 

VAR IV : ival 

+++ clof(ival) <= list char 
--- clof(ivc(CL)) <= CL 
+++ numof (ival) <= num 
--- numof (ivn(N)) <= N 

-H-+ tof(ival) <= truval 
--- tof(ivt(FLAG)) <= FLAG 

/// Infomap types of values 

DATA itype <= PLVAL ++ INVAL ++ TIVAL ++ CEVAL ++ FIVAL ++ 
ULVAL ++ LSVAL ++ HEVAL ++ FOVAL ++ RMVAL 

VAR IT, IT 1: i type 

Infomaps 

DATA infomap <= im(list(tuple2(itype, ival))) 

VAR IIL : list tuple2(itype, ival) 
VAR IMAP, NEWIMAP : infomap 
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+4-+ NULLMAP <= i. rtforaap 
--- NULLMAP <- ia(NJL) 

+++ addtomap(inf. omap, itype, nus) <- infomap 
+++ addctomap(infomap, itype, list char) <= infomap 
a++ addtt. ouap(infomap, i. type, trtrval) <= infomap 

--- add, omap(i-m(IIL), IT, I`) <= IM(<IT, ivn(N)> :: III�) 

--- addcr_omap(im(IIL), IT, CL) <= iri(<IT, ivc(CL)> :: IIL) 

--- addttomap(im(, IIL), IT, FLAG) <= im(<IT, iýýt(rLAG)> :: IIL) 

inf 10 zz ir. f. 10 zzc inf 10 zzt 
+++ infomap zz itype <= nu. m 
+++ infomap Zzc itype <= list char 
+++ infomap zzt itype <= truval 

--- iu(NIL) zz IT <= UNDEF 

--- im(NIL) zzc IT <= UNDEF 

--- im(NIL) zzt IT <= UNDEF 

--- im(<IT1, IV> :: IIL) zz IT <= numof (IV) if IT=IT1 
<= im(IIL) zz IT ifr. ct 

--- im(<IT1, IV> :: IIL) zzc IT <= cl. of (IV) if II =I ý1 
<= im(IIL) zzc IT ifno*_ 

--- im(<IT1, IV> :: ITAL) zzt IT <= tof(IV) if IT=1i1 
<= im(IIL) zzt IT ifnot 

/// text or command 

inf 7$ 
DATA tore <= text(list char) ++ command $ care 

VAR TCL : list torc 

text with infomap or command 

inf 7. 

DATA porc <= ptext(infomap, list char) ++ command. carg 

VAR PCL, PCLREM : list porc 

word with infomap 

DATA p word <= wd(infomap, list char) 

VAR W, W1 : pword 
VAR PWL, REMPWL, ITLSOF AR : list pword 

END 

DEF 

ýý; ****ý*X*x; ýl****': /// ý****t*ý*****:: *** PRESETTING CONSTANTS 
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+++ PAGE UEN <= num --- PAGELEN <= 10 
+++ PAGEWIDTH <= num --- PAGEWIDTH <= 2*10 
+++ PGNUriCHAR <= char --- PGNUMCHAR <= CHHASH 
+++ CHCOMMAND <= char --- CHCOMMAND <= CHDOT 
+f-f- HDR 1 <= num --- HDR1 <= 1 
+-H- HDR2 <= num --- HDR2 <= 2 
+++ F TR 1 <= num --- FTR 1 <= 1 
+++ FTR2 <= num --- FTR2 <= 2 
+++ HDRLENGTH. <= num --- HDRLENGTH <= HDh1-+HDR2 
+F+ FTRLENGTH <= num --- FTRLENGTH <= FTRI+FTR2 

END 

DEF 

/// ****************** ******************** 
/// ******:. *********** COMMAND DECODING ******************** 

/// ****************** ******************** 

+++ gettitle(list char) <= carg 
+++ subgettitle(list char) <= list char 
--- gettitle(CL) <= string(subgettitle(skipblanks(skipalphas(CL)))) 

--- subgettitle(nil) <- ni. 1 
--- subgettitie(C:: CL) <= CL if C=CHAPOSTROPHE 

<= C:: CL ifnot 

+++ getnum(list char) <= carg 
+++ subgetnum(list char) <= carg 
--- getnum(CL) <= subgetnum(skipblanks(skipalphas(CL))) 

- subgetnum(nil) <= NULLARG 

- subgetnum(C:: CL) 
<= NULLARG if (C=CHPLUS or C-=CHMINUS) and cltonum(CL)=UNDEF 
<= signed(C, cltonum(CL)) if (C=CHPLUS or C=CFMINUS) 

<= NULLARG if cltonum(C:: CL)=UNDEF 
<= unsigned(cltonum(C:: CL)) ifnot 

+H- cdecode(list char) <= tuple2(command, carg) 

--- cdecode(nil) <_ <UNKNOWN, NULLARG> 

--- cdecode(C1:: nil) <= <UNK iOWN, NULLARG> 

---- cdecode(C1:: (C2:: CL) ) 
<= <BR, NULLARG> if C1 CHB and C2=CHR 
<= <BP, getnum(CL)> if C1=CHB and C2=CHP 
<_ <CE, getnum(CL)> if C1CHC and C2=CHE 
<_ <F I, NULLARG> if CI CHF and C2=CHI 
<= <FO, gettitle(CL)> if C1=CHF and C2=CHO 
<= <HE, gettitle(CL)> if CI CHH and C2=CHE 
<= <IN, getnun(CL)> if C1=CHI and C2=: HN 
<- LS, getnunm(CL)> if CI=CHL and C2=CHS 
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<= <NF, Ný1L", nG> if C1=CIIN and C2=CHF 
<= <PL, getnum(CL)> if C1=CHP and C2=-, HL 
<_ <RM, getnum(CL)> if C1=CHR and C2==CHri 
<= <SP, getnum(CL)> if C1=CHS and C2=CHP 
<= <TI, getnum(CL)> if CI =CHT and C2=CHI 
<= <UL, ger_num(CL)> if C1=CHU and C2==CHL 
<= <UNKNOWN, NULLARG> ifnot 

+++ decode(list line) <= list torc 

END 

DEF 

decode(ni. 1) <= nil 
decode(lin(nil):: LINL) <= text(nil):: decode(LINL) 
decode(lin(C:.: CL):: LINTL) <: = 

cord (C=CHCOMMAND 

cond (CND=UNKNOWN, 
decode(LINL), 
(CMD$CAR) :: decoäe(L, ZN'I. ) ) 

where <CMD, CAR> _= cdecode(CL) 
text(C:: CL):: decode(LINL)) 

/// ********************* INITIALISING INFOMAPS 

ý 

************ 

+++ initmap(list torc) <= list port 
--- initmap(nil) <= nil 
--- initmap(text(CL):: TCL) <= ptext(NULLMAP, CL):: initmap(TCL) 
--- initmap(CMD$CAR:: TCL) <= CMD. CAR:: initmap(TCL) 

END 

DEF 

/// 

****************** 
****************** 

Set - to set numeric values from existing value, 
argument of command, default and limits. 

DEALING WITH COMMANDS ***************** 
***************** 

-F-H- sse t( num ,c arg ,n um, n um , num ) <= n um 

sset (OLDN, NULLARG. DEFAULT, MINN, MA. XN) <= DEFAULT 
sset(OLDN, unsigned(NEWN), DEFAULT, MINN, MAXN) <= 

min(MAXN, nax(MINN, NEWN) ) 

sset(OLDN, signed(CHPLUS, NEWN), DEFAULT, MINN, MA X, ýT, ) <= 
min(MýAXN, max(MINEN, OLDN+NFi", N) ) 

sset(OLDN, signed (CHMINUS, NEWN), DEFAULT, MINN, MiUN) <= 
min(MAXN, max(MINN, OLDN--ý. LW"WN) ) 

/// PAGE LENGTH 
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+++- d. opl ( list porc) <= iist porc 
+++ subdopl(num, list porc) <= list porc 
+++ INITPL <= num --- I? ýITPL <= PAGELEN 

--- dopl(PCL) <= subdopl(INI1'PL, PCL) 

--- subdopl(VAAL, ni1) <= nil 
---- subdopi(VAAL, ptext(IMA-P, CT, ):: PCL) <= 

ptext (addtomap(IMAP, PLVAL, VA: '1:, ) , CL) : : subdopl (VAA'-, PCL) 

---- subdopl (VAAL, CMD. CAR: : PCL) 
<= subdopl(sset(VAAL, CAR, PAGELEN, 

1+HnRLENGTH+FTRLEPIGTH, PAGELEN) , PCL) 
if CM-D=P L 

<= CMD. CAR:: subdopl(VAAL, PCL) ifnot 

/// SPACE DOWN and BEGIN PAGE 

+4-4- dosp(l. ist porc) <= list porc 
--- dosp(nil) <= nil 
---- dosp(ptext(1MAP, CL):: PCL) <= ptext(IMAP, CL):: dosp(PCL) 

---- dosp(CMD. CAP.:: PCL) 
<= BR. NULLARG: : (SP. unsigned(sset(O, CAR, 1,0, HUGE)): : dosp(PCL)) 

if CMD=SP 
<= CMD. CAR:: dosp(PCL) ifnot 

+H- dobp(list pore) <= list pore 
--- dobp(nil) <= nil 
--- dobp(ptext(IMAP, CL):: PCL) <= ptext(IMAP, CL):: dobp(PCL) 

--- dobp(CM. D. CAR:: PCL) <= BR. NULLARG:: (CMD. CAR:: dobp(PCL)) if CMD=BP 
<= CMD. CAR:: dobp (PCL) ifnot 

/// INDENT and TEMPORARY INDENT 

+++ doinandti(list porc) <= list porc 
+4-4- subdoinandti(num, num, list porc) <= list porc 
+++ INITIN <= num --- INITIN <= 0 

-F++ INITTI <= num --- INITTI <= 0 

--- doinandt;. (PCL) <= subdoinandti(INITIN, INTTTI, PCL) 

--- subdoinandti(VALIN, VALTI, nil) <= nil 

--- subdoinandti(VAI, IN, VtLTI, ptext(IIIAP, CL):: PCL) <= 

ptexL(addtomap(addto, iiap(IMAP, INVAL, VALIN), TIVAL, VALTI), CL) 

: : subdoin3ndti(VAI. IN, '1ALIPI, PCL) 

--- subdoinandti(VALIN, VALTI, CMD. CAR: : PC:, ) 

<= subdoinanci ti( VAAL, VAAL, PCL) 

where <VAAL> _= <sset(VALIN, CAR; 0,0, LAG, -7UIDTH)> if CMD=_N 

<= BR. NULLARG: : subdoinand ti. ( VALIý., 

sset (VALIN, CAR, O, O, PAGEWIDT4) , i'('L) if CMD=TI 

<= CMD. C. 4R:: subdoinandti(VALIN, VALTI, PCL) ifnot 
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/// ýr; PRE 

+++ do: e(iist pore) <= list pore 
+++ subdoce(num, list pore) <= list pore 
"h++ INITCr <= num --"- INITCE <= 0 

--- doce(PCL) <= su'"bdoce(IN1TCE, PCL) 

subdoce(COUNT, nil) <= nil 

I 

--"- subdoce(O, ptPxt(IýMAP, CL)::? CL) <= 
pt. ext(aüclttomap(I. ýAýý, ̂ rýiýL, TtiLSE), CL) subdoce(Q,? 'CL) 

---- subdor_e(SUCC CUU'ý]T, ptext(Iýitü', CL):: PCL) <= 
Fitext (addtto-Tap( I2iAP, Ci- ý7AL, TRUE) , CL) :: c ubdoce(COUNT, PCL) 

--- subdo_e(COUNT, Cý, D. CAR: :: 'CL) 
<- EI?. NULLAP. G: : subdocP(sset(COLfiIT, C9R, 1,0, HUGE), PCL) if C. `ID=CE 
<- CNID. CAR: : subdoce(COUNT, PCL) ifnot 

/// UNDERLINE 

++-+ doul(1 ist pore) <= list pore 
+H- subdoul(num, list pore) <= list pore 
+++ INITUL <= num --- INITUL <= 0 

--- doul(PCL) <= subdoul(INITUL, PCL) 

--- subdoul(COUNT, nii) <= nil 
--- subdoul(O, ptext(IMAP, CL):: PCL) <_ 

ptext(, iddrtomap(IM_4P, (. TLZ7AL, FALSP, ) , CL) : : subdoul(0, PCL) 

--- subdoul(SUCC COUNT, ptext(IMAP, CL):: PCL) <= 
ptext (addt tomap ( IMt'1P, ULL'SL, TRUE ), CL) :: subdoul (COUNT, PCL) 

--- subdoul_ ( COUNT, CP. ID. CAR: : PCL) 
<= subdoul(sset_(COIINT, CAR, 1,0, HL'GE), PCL) if CMD-UL 
<= CMD. CAk: :s ubdoul ( COUNT, PCL ) ifnot 

/// LINE SPACING 

-++ dols(iist porc) <= list Dorc 
+++ subdols(nu'n, list porc) <= list pore 
+++ INITLS <= num --- INITLS <= 1 

- dols(PCL) <= subdols(INITLS, PCL) 

---- subdols(VAAL, nil) <= nil 
----- subdols(VAAL, pte,. t(ItiAP, CL):: PCL) <= 

ptext (addtom _lp (IMAP, LS`LAL, V. ýL ), CL) :: subdols (VAAL, PCL ) 

--- subdols (VAAL, (7-iD. CAR: : PCL) 
<= subdols(sset(VAAL, CAR, 1, _, HUGE), PCL) if CMD=LS 
<= C%ID. CAR:: subdols(VAAL., PCL) ifnot 

/// FILL and NO FILL 
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+4-i- dof_i(]. isý norc) <= list porc 
+++ subdofi(tzuv; 31, list porc) <- list porc 
+H- INITFI <= truval ---- INITFI <= TRUE 

--- dofi(PCI, ) <= subdofi(INITFI, PCL) 

--- subdofi(FLAG, nil) <= nil 
--- subdofi(FLAG, ptext(IýIAP, CL):: PCL) <= 

ptext(add ttomap(It1AP, FIVAL, FI. AG), CL): : subdofi(Fij': G, PCL) 

--- subdofi(FLAG, CMD. CAR:: PCL) 
<= BR. NULLARG: : subdofi(TRUE; PCL) if CMD=F I 
<= BR. NULLARG:: subdofi(FALSE, PCL) if Cý, iL`=? 1F 
<= CNID. CAR: : subdofi(FLAG , PCL) ifnot 

/// HEADER 

+++ dohe(list porc) <= list porc 
+++ subdohe(list char, list port) <= list pore 
+++ INITHE <= list char --- INITHE <= nil 

--- dohe(PCL) <= subdahe(INITHE, PCL) 

subdohe(TITLE, nil) <= ni --- l 

---- subdohe(TI'rLE, ptext(IMAP, CL):: PCL) <= 
ptext(addctonap(IMAP, IEVAL, TITLE), CL):: suibdohe(TITLE, FCL) 

--- subdohe(TITLE, CMD. CAR:: PCL) 
<= subdohe(stringof(CAR), PCL) if C?! D=HE 
<= CMD. CATt:: subdohe(TITLE, PC?, ) ifnot 

/// FOOTER 

+++ dofo(list pore) <= list porc 
subdofo(list char, list pore) <= list pore 

+++ INITFO <= list char --- INITFO <= nil 

--- dofo(PCL) <= subdofo (TNITFO, PCL) 

---- subdofo(TITLE, nil) <= nil 

--- subdofo(TITLE, ptext(IMAP, CL):: PCL) <= 

pteYt(addctomap(IMAP, FOVAL, TITLE), CL):: subdofo(TITLE, PCL) 

--- subdofo(TITLE, CMD. CAR:: PCL) 
<= subdofo (str-ingot (CAR) , PCL) if C19)=FO 

<= CMID. CAR: : subdofo (TITLE, PCL) ifnot 

/// RIGHT MARGIN 

++-; " dorm(list porc) <= list porc 
+++ sub: iorm(num, l.;. st porc) <= list porc 
+++ INTT RM <= num --- INITRM <= PAGEWIDTci 

--- dorm(PCL) <= subdorm(INITRM, PCL) 
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--- suDdorm(V_ýA',, nil) <= nil 
--- subdor: n(VAAL, ptext(IMAa', CL):: PCL) <_ 

ptert(addtomap(IMAP, RýiVAL, VAAL) , CL): : subdorm('; AAL, PCL) 
--- subdorw(VAA1,, CMD. CAR: : PCL) 

<= subdorm( sset(VAAL, CAR, FAGEWIDTK, 1, PAGEWIDTH) , PCL) if C: 1D=RM 
<= CMD. CAR.: : subdorm(VAAL, PCL) ifnot 

/// DOC OMIRAND S 

+++ docommands(list porc) <= list pore 

---- docommands(PCL) <= 
dopl(dos. p(dobp(doinandti(doce( 
doul(dols(dofi(dohe(dofo(dorm(PCL)))))) ))))) 

END 

DEF 
/// **************ý*** ***ýº*ý: ***ý********x 
/// *****************ý: INTERMEDIATE ***********r>ý, tý: **: t* 
/// **********ý: ******* ***************:; *** 

'Processing of text lines which are null or start 
with blanks, and performing underlining 
where necessary. @ 

/// *******t****** BLANKS ************** 

+++ blanks(iist porc) <= list porc 
+++ subblanks(porc) <= porc 
+++ delleadblanks(list char) <= tuple2(num, list char) 

--- blanks(nil) <= nil 
--- blanks(CMD. CAR:: PCL) <= CMD. CAR:: blanks(PCT ) 

--- blanks(ptext(IMAP, nil):: PCL) <= BR. NULLARG:: 
(subblanks(ptext(IMAP, nil)):: blanks(PCL)) 

--- blanks(ptext(IMAP, C:: CL):: PCL) 
<= B R. NULLARG:: (subblanks(ptext(IMAP, C:: CL)):: 

blanks (PCL) ) if C=CRBLANK 
<= ptext(IMAP, C:: CL):: bianks(PCL) ifnot 

--- subblanks(ptext(IMAP, CL)) 
<= ptext(addttomap(IMAP, FIVAT., FALSE) , nil) 

if REMCL=nil 

where <BLANKCOU'NT, REr1CL> == delleadblanks ( CL) 
<r ptext (addtomapkIMAP, TIVAL, : "t: ý1(PAGEWIDTH, 

(IMAP zz IidVAL)+BLANKCOUNT) ), R, c iCL) 

where <BLANKCOUI`iT, RDiCL> == deileadblanks(CL) ifnot 
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--- d611eadblanksfr. ii) <_ <O, nil> 
---- delleadblank_s(C:: CL) 

<_ <SUCC BLAýI; COUi3T, Rrý4CL> where <BL., NI:: O"JNT, REP"iC L> 
delleadbl-ýnks(CL) if C=CHBI': NK 

<= <O, C:: CL> ifn^t 

/// ****txx*** UNDERLINE **********x*** 

+++ underline(list pore) <= list pore 
+++ ulchars(list char) <= list char 

--- underline(nil) <= nil 
--- underline(CMD. CAR:: PCL) <= CMD. CAR:: underizne(PCL) 
--- underline(ptext(I14AP, CL):: PCL) 

<= ptext(IMAP, ulchars(CL)):: underline(PCL) if IMAP zzt ULVAL 
<= ptext(IMAP, CL):: underline(PCL) ifnot 

--- ulchars(nil) <= nil 
--- ulchars(C:: CL) 

<= C:: ulchars(CL) if C=CHBLANK or C=CHBACKSPACE 
or C=CHUNDERLINE 

<= C: : (CHBACKSPACE:: (CHUNDERLIivE:: ulchars(CL))) ifno-L 

/// INTERMEDIATE 

+H- intermediate(list porc) <= list porc 

--- intermediate(PCL) <= underline(blanks(PCL)) 

END 

DEF 

/// ************************************** 
/// ******************** LINES ************************** 
/// ******************** ************************** 

DATA gorw <= gwd(pword) ++ gap(num) 

VAR GWL : list gorw 

/// Minor functions : 

-F++ wltocl(list pword) <= list char 
wltocl converts list of words to list of characters, inserting 

a blank between each pair of words. 
--- wltocl(nil) <= nil 
--- wltoc]_(wd(IMAP, CL):: nil) <= CL 
--- c-7i tocl (% d (? ": r. I', CL) :: (W:: PWL) ) <- CL<> (CHBLAlvx:: wl tocl (W:: PWL) ) 
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-++F mkblanks(num) <= list char 
nw_h? anks(I1) <= list c` N blanks 

--- m': b lank. s ( 0) <= nil 
----- mkbla. nks(succ N) <= CHELAi': K_:: mkblanks(id) 

+f+ gapcount(list gorw) <= num 
gapcount(r<= number of gaps in GWL 

--- gapcount(nil) <_= 0 
--- gapcount(gwd(W):: JWL) <= gapccunt(GWL) 
--- gapcount(gap(N): <= succ gapcount(GWL) 

-H-ý- sumofwidtiýis ( Iý_st pword) <= num 
sumotwidths(PWL) <= sum of widths of words of PWL 

--- sumof_widths (nil) <= 0 

---- sumof widths (wd (IMAP 
, CL):: Pw'L) <= width(CL)-F-sumofTýridths(PWL) 

-f++ convtocl(list gorw) <= list char 
/// convtocl(GWI, ) converts gaps and wcrds to list of characters 
--- convtocl(nil) <= nil 
--- convtocl(gwd(wd(IMAP, CL)):: GWI. ) <= CL<>convtocl(GWL) 

--- convtocl(gap(N):: GWL) <= mkbla. nks(N)<>convtocl(GTJL) 

+++ initgaps(list pword) <= list gorw 
initgaps(PWL) puts empty gaps between words 

--- initgaps(nil) <= nil 
--- initgaps(W:: nil) <= [gwd(W)] 
--- initgaps(W:: (W1:: PWL)) <= gwd(W):: (gap(O):: initgaps(W;.::? WL)) 

+-H- addtogaps(list gorw) <= list gorw 
/// addtogaps(GWL) increases length of each gap by one 
--- addtogaps(nil) <= nil 
--- addtogaps(gwd(W):: GWL) <= gwd(W):: addtogaps(GWL) 
--- addtogaps(gap(N):: GWL) <= gap(succ N):: addtogaps(GWL) 

+++ addextrastogaps(truval, num, list gorw) <= list gorw 
-III subaddextras(num, list gorw) <= list gorw 

addextrastogaps (LT'OR, N, GWL) adds one to length of first 

gaps (if less than N gaps, then to each gap) from left to right 
if LTOR true, otherwise from right to left 

---- addextrastogaps ('"P. tE, N, GWL) <= subaddextras (N, GWL) 

--- addextrastogaps(FALSE, N, Gi"7L) <= rev(subaddextras(r:, rnv(CwL))) 

--- subaddextra^(O, GWL) <= G', JL 

---- subaddex.. tr, -.! -, (succ N, ni]. ) <= nil 
--- subaddextr. as(ýýucc N, gwd(14):: G61L) <= gýad(W):: subaddextras(succ 

N, GWI. ) 

--- subaddextros(succ N, gap(M) : : GWL) <= gap(succ 
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M'): : subaddeYtýas(N, G[v'L) 

/// ý: ******ýt****ýý**** SPREAD *****ýx: ***x*ý***: t:: ýý 

+++ spr_ead(truval, num,? ist pword) <= list char 
-I-I+ subspread(truval, num, list gorw) <= list gorw 

spread(LTCR; TOTAfWlDTH, PWL) converts list of words to iist of 
characters. TOTALWIDTH is assumed to be at least as large 
as the sum of widths of the words, plus the number of ;. cords -1. 
sub spread(LTOR, BCOUNT, GWL) -- GWL is list of words with gaps 
between them. BCOUNT is number of blanks to be inserted. 
If there are more gaps than blanks, call addextras to put these 
extra ones in, otherwise use ADDGAPS to increase all gaps by one, 
decrement BCO(TNT by the number of gaps, and cal' again. 

---- spr_ eo. d (LTOR, TOTALWIDTH, PWL ) 
<= cortvtocl (sub spread (LTOR, TOTALWIDTH--sumof,, ridths (P"/IL) 

initgaps(PWL))) if length(PWL) »1 
<L wltocl(PWL) ifnot 

--- subspread (LTOR, Bý OUNT, GWL ) 
<= addextr. astogaps(LTOR, BCOUNT, GWL) if gapcount(GWL) » BCOUNT 
<= subsprcad(LTOR, BCOUNT-gapcount(GWL), addtogaps(GWL)) iinot 

/// *****ý*ý: xýt***: ýý***** PUT, DEFAULTPUT. 

/// Minor functions: 

ýxýKý***ý****ý**ýxý 

+++ splitncl(num, list char) <= tuple2(list char, list char) 
+++ subsplit(num, list char, list char) <= tuple2(list char, list char) 
/// splitncl(N, CL) <= <first N characters of CL, remaining ones> 

--- splitncl(N, CL) <= subsplit(N, n_i1, CL) 

--- subsplj. t(N, CLSOF. A. R, nil) <= <CLSOFAR, nil> 
--- subsplit(N, CLSOFAR, C:: CL) 

<-- <CLSOFAR, C:: CL> if width( CLSOFAR<> [C ])»N 
<- subsplit(N, CLSOFAR<>[C], CL) ifnot 

+++ defaultput (infonap, list char) <= list porc 
/// defaultput(IMAP, CL) used to put out PAGEwidth-wide lines 

--- defaultput(IMAP, n-il) <= nil 
--- def_aul tput ( IMAP, C:: CL) 

<= ptext(IMAP, FIRSTCL) : : defaulr_put (IMAP, UF*1CL) 

where <FIRSTCL, R'rYICL> _= splitncl(PAGF. w; _dth, 
C:: CL) 

if width(C:: C?: ) » FAGEwidth 
<= [ptext(IMAP, C:: CL)] ifnot 
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-+++ put(infomap, lisc char) <= list pore 
put(IMAP, CL) - if CL will not fit into available space, 
i. e. width(CL) + left margin is greater than right margin, 
then put out as many characters as possible in a normal lire, 
and use defaultput on the remainder. 

--- put(IMAP, CL) 
<= ptext(IMAP, mkblanks(IMAP zz TIVAL)<>FIRSTCL) 

: : defaultput (IMAP, I? F2ICL) where <FIRSTCL, i: rý1CL> 
splitricl( (IMAP zz RMVAL) - (IMAP zz TIVAL), CL) 
if width(CL)+(IIfAP zz TIVAL) »(IMA. ° zz RMVAL) 

<= [ptext(IMAP, mkbianks(II"iAP zz TIVAI. )<>CL)J ifnot 

/// ***************:; x* GETWDSTOFILL 

DATA ptxt <= ptx(infoma. p, list char) 

VAR PTL, LINESTOFILL : list ptxt 

*************`***** 

+++ getwdstofill(list ptxt) <= list pword 
4++ subgetwd. s (infomap, l ist char) <= list pword 
+++ sublgetwds(infomap, list char) <= list pword 
+++ getwd(list char) <= list char 

getwdstofill(PCL) <= <list of words to be put into full lines> 
subgetwds(IMAP, CL) <= list of words formed by characters in CL. 
Words are sequences of non-blank(s). First word has IMAP tied 
to it, remaining words have IMAP modified by resetting TIVAL 
by INVAL tied to them 

--- getwdstofill(nil) <= nil 
--- getwdstofill(ptx(IMAP, CL):: PTL) <= 

subgetwds(IMAP, skipblanks(CL))<>getwdstofill (PTL) 

--- subgetwds(IMAP, nil) <= nil 
--- subgetwds(IMAP, C:: CL) 

<= wd(IMAP, getwd(C:: CL)) 
:: sublgetwds(addtomap(IMAP, TIVAL, IMAP zz INVAL), 

skipblanks(skipalphas(C:: CL))) 

--- sublgetwds(IMAP, nil) <= nil 
--- sublgetwds(IMAP, C:: CL) 

<= wd(IMAP, getwd(C:: CL)) 

:: sublgctwds(IMA. P, skipblanks(skipa'phas(C:: CL))) 

--- getwd(nil) <= nil 
- getwd(C:: CL) <= nil if C=C1IßLANK 

<= C: : getwd(i L) ifnot 

/// **ý*****Xýý**xhýý*ý** G, TLITLSTOFILL x**r*ý*k*ý*ýtýý*ý*rýYýý* 
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44+ getlinestofill. (li_st pore) <= tuple2( iMz ptxt, - ist pore) 

--- getlinestoiill(nil) <= <nil., ni. l> 

--"- getlinestofill-(C. iD. CAR:: PCL) 
<= <ni1, FCL> if CMD=BR 
<= getlinestoiill(PCL) ifnot 

--- getlinestofill(ptext(IMAP, CL):: PCL) <= <ptr_(IM?.. P, CL):: FTL, PCLRIIM. > 
where <PTL, PCLRRi> == getlinestof ill (PCL) 

/// *****ý*ýýýýý**ýx*****ý PUTPARAGRAPH 

-f++ fullline(truval, ntim, list pword) <= tuple2(list char, list pword) 
+++ subfullline(truval, num, list pword, list pword) <= 

tuple2(list char, list pword) 
'fullline(LTOP,, TOTALWIDTH, PWL) <= <list of characters to fill 
TOTALWIDTH, formed by taking as many words as possible from PWL 
which will fit in and padding them out using spread if there are 
some more, remaining words of PWL> @ 

--- fullline(LTOP., TOTALWIDTH, PWL) <= 
subfullline(LTUR, TGTALWýDTIi, nil, PWL) 

--- subfullline(LTOR, TOTALWIDTII, WLSOFAR, ni_1) <= <wltocl(WLSOFM), nil> 
--- subf ulll ine (LTOi:, TOTALWIDTH, ti1LSOFAR, ý-: :: PWL ) 

<= <spread (LTOR, TOTALWIDTH, WLSOFAýp. ), W: : PWL> 
if width(wltocl(WLSOFAR<> (W] ))» TOTALJ'IDT_ii 

<= suhfullline(LTOR, TO'rALWID'TH, : 4LSOFAR<> [W] , PWL) ifnot 

+++ putparagraph(list pword) <== list porc 
+++ subputparagraph(truval, iist pword) <= List pore 

putparagraph(PWL) <= paragraph, i. e. list of lines formed bz 
filling lines with words of PWL. If a word is w=ider than space 
allowed for it (right margin - left margin) then use put on that 

word 

--- put: paragraph(PWL) <= subputparagraph(TRUR, PWL) 

--- subputparagraph(LTOR, nil) <= nil 
--- subputparagraph(LTOR, wd(IMAP, CL):: PI1L) 

<= put(IMAP, CL)<>subputparagraph(not(LTOR), PWL) 
if width(CL)+(IMAP zz TIVAL) » (Lt1AP zz RMVAL) 

<= ptext(It4.4P, mkblanks(IMAP zz TIVAL)<>CL]. ) 

:: subputparagraph(uot(LTOR), Ra'IPWL) 

where <CL1, RIIMPWL> == 
fullline(LTOR, (IMAP zz RMVAL)-(! Mk? zz TIVAL), 

wd(IMAP, CL):: PWL) ifnot 

/// ***ý**ý*ýý*********ý**** LINECENTRE ****ýý****ýý*ý**x*****ý 

-1±1- linecentre(inroinap, list char) <= list pore 
linecentre(IMA1 , GL) increments , ItAL oý infomap by half the 
extra space, the extra space being 
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(right margin -- (left margin + width of line) ) 
and gives it to put. If the line is too wide for the iasrgins, 
the increment will be zero. 

- linecentre (IMAP, CL) <= put( 
addtomap(IMAP, TIVAL, (IMAP zz TIVAL) + 

half((IMAP zz RMVAL)-((IMAP zz TIVAL)+width(CL))) ), CL) 

****ýý*ý****ý**ý*ýý /// ****ýýý*t*ý*ý**ý****ý***** LINES 

++. + lines (list pore) <= list pore 
'lines(PCL) for each text line, if centre indicated, 
use linecentre, otherwise if fill not indicated, use put, 
otherwise use putparagraph on words got by 
getwdstofi? l(LINESTOFILL). 

Carry on using lines on remainder of PCL. @ 

--- lines(nil) <= nil 
--- lines(CMD. CAR:: PCL) <= lines(PCL) if CMD=BR 

<= CMD. CAR:: lines(PCL) ifnot 

- lines (ptext(IMAP, CL):: PCL) 
<- linecentre(IMAP, CL)<>lines(PCL) if IMsP zzt CEVAL 

<- put(IMAP, CL)<>lines(PCL) if not(IMAP zzt FIVAL) 

<= putparagraph(getwdstofill(LINESTOFII. L))<>linA3(pCLREM) 

where <LINESTOFILL, PCLREM> == 
getlinestof ill(pteYt(IMAP, CL):: PCL) 

ifnot 

END 

DEF 

/// *********************** *********ý****ý************ 
/// *********************** PAGES *************************** 
/// *********************** *************************** 

/// Minor functions: 

+++ blanklines(num) <= list line 
/// blanklines(N) <= creates N blank lines 

--- blanklines(O) <= nil 
--- blanklines(succ N) <= lin(nil) :: blanklines(N) 

+++ skip(uurn, carg, num) <= list line 

skip(N, unsigned(M), VALLS) produces min(N, M*VALLS) blank lines - 
VALLS is line spacing, N is length remaining of current page, 
M is no of lines to be skipped 

--- ckip(N, unsigned(SKIPCOUNT), VALLS) <= 
blankl Ines (min (N, VALLS *SKIPCOUNT) ) 
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I/I **************X**x***** FILLPAGE *****i: *************** 

+++ fillpage(num, list porc, num, nun, num) <= 
tuple3(list line, list porc, r: ur. ) 

fillpage(N, PCL, VALLS, CURPGNUM, NXTPGNUM) <= 
<N lines, remaincter of PCL, next page number> 

When a EP command is encountered, b lankl ires fill remairing 
space. 

When a SP command is encountered, skip produces appropriate 
number 

of blank lines. 
If a text line, put it out followed by (VALLS-1) blank lines. 

--- f illpage (O 
, PCL, VALLS , CURPGNUIri, NXTPGidUM) <= <nil, PCL, NXTPGNL'M> 

---ý fillpage(succ N, ni1, VALLS, CURPGNUM, NTCPGNUM) 
<= <blank-lines (succ N) , nit, NX'I'YGNUM> 

--- fillpage(succ N, CMD. CAR: : PCL, VALLS, CURPGNUM, NXTPGNUM) 
<= <blanklines(succ N), PCL, 

s se t( CliRPGNUM, CAR, 1+CURPGhLTMi, U, HUGE )> if CtfD-BP 
<= <BLINES<>PAGELINES, PCLRLM, NEWN> 

where <PAGELINES, PCLREti, NEWN> 
f illpage( (succ N)-length (BLINES ) , t'CL, VALLS, CURPGNUM, NXTPG: IL'M) 

where <BLINES> == <skip(succ N, CAR, VALLS )> if ýýi`ý=SP 
<= f illpaoe (succ N, PCL, VALLS, CURPGNUM, NXTPGNUM) ifnot 

--- fillpage(succ N, ptext(IMAP, CL):: PCL, VALLS, CURPGNUM, NYTPGNi!? 'i) <= 
<lin(CL) : : BLINES<>I, ORELINE, S, PCLREM, NE1JN> 

where <MORELINES, PCLREM, NEWN> -_ 
fillpage(N-length(BLINES), PCL, IMAP zz LSVA'I,, CURPGNUM, NXTPCNUM) 

where <BLINES> == <blanklines(min(N, (IMAP zz LSVAL)-l))> 

/// ******************* Footers and Headers ****************** 

+++ subst(; i. st char, char, list char) <= list char 
/// subst(CL, C1, CLI) substitutes CL1 for Cl in CL 

--- suhst(ni1, C1, CL1) <= nil 
--- subst(C:: CL, CI, CL1) <= CL1<>subst(CL, CI, CL1) if C =CI 

<= C:: subst(CL, CI, CL1) ifnot 

+++ puttitle(list char, num) <= line 
puttitle(CL, PGNUM) replaces occurrences of PGNUMCHAR in CL by 

character string for PGNUM, and if length of all this is longer 

than PAGEWIDTH, discards extra. 
--- puttitle(TITLE, PGNUM) <= lin(FIRSTCL) 

where <FIRSTCL, REMCL> == splitncl (PAGEWTDTII, subst (TITLE, 
PGNUMCHAR, NUMTOCL (PGNUM)) ) 

-+++ puthcir(l. ist char, num) <= list line 

---- puthd r(T1TLE, PGNJM) 
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týIL protoprogram 

<= blar, 11, l ines ( NDR. I ) if HDR2=0 
<= blankl i_n; L! s (HDR1) 

<> (puttit'_e(T ITLE, PG NI NIL) 
: : blanklines (HDR2--1) ) ifnot 

+++ putftr(list char, num) <= list line 

--- putftr. (TITLE, PGNBIA) 
<= blankl ines(FTRI) if FmR-)=Q 
<= blanklines(FTRI) 

<>(puttitle(TITLE, PGNUZM) 
:: blanklines(FTR2-1)) ifnot 

/// PAGES 

data page <= pag(list line) 

VAR PGL : list page 

+++ pages(list porc) <= list page 
+++ subpages(num, list porc) <= list page 

'pages builds up complete pages of output 
subpages(PGNUM, PCL) 
if BP command encountered at top, recompute PGNUM 
if any other command encountered at top, discard it 
A page consists of 

header 
lines of page 
footer 

State at start of first line of page determines page number, 
header and footer titles. @ 

--- pages(PCL) <= subpages(09PCL) 

--- subpages (PGNUM, nil ) <= nil 
--- subpages(PGNUM, CMD. CAR:: PCL) 

<= subpages(sset(PGNIM, CAR, PGNUM+1, O, HUGE), PCL) if C"LAD=BP 
<= subpages(PGNUM, PCL) ifnot 

--- subpages(PGNUM, ptext(IMAP, CL):: PCL) <= pag( 
puthdr(IMAP zzc HEVAL, PGNIM) <> 
PAGELINES <> 
putftr(IMAP zzc FOVAL, PGNUM) ) :: 

subpages(NXTPGNUM, PCLRE, i i 

where <PAGELINES, PC?, RE'-i, :, XTPGNUM> 
f illpa. ge( (IMAP z:: PLý"'AL)-HDRLE! ý1GTI? -FTRLENGTii, 

ptext (IMAP, CL): : PCL, (I1"i_AP zz LSVAL), PG'Iýýi, 1+I'ý-; 'ýUM) 

END 

DEF 
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/// ************************ *************** * :- ** 
/// ************************ OUTPUT **** **************** ** 
/// ************************ ************************ 

+++ output(list page) <= list line 

- output(nil) <= nil 
--- output(pag(LINL):: PGL) <= LINL <> output(PGL) 

END 

DEF 

/// **************** ************** 
/// **************** Top level procedure FORMAT ************** 
/// **************** ************** 

+++ format(list line) <= list line 

--- format(LINL) <= output(pages(lines( 
intermediate(docommands(initmap(decode(LINL))))))) 

END 
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6.4 E J. ALUATIO? OF TEXT FORMATTING PROGRAMS 

Some questions we may ask of a text foLtiattirng program are: 

i 

Does the program satisfy the informal specification? 

Where the informal specification is ambiguous, how easy is it to 

determine from the program how it will behave? 

Can the program be readily modified should we change/extend our 

text formatting operations ?" 

The answers to these should reveal just how well designed a 

program we have. Admittedly, it is a little unfair to expect 

Kernighan & Plauger's program to be as transparent and flexible as a 

program written without efficiency considerations in mind, but this 

is the benefit to be gained from the transformational approach to 

program development. 

6.4.1 Satisfying Informal Specification 

I believe that my program does satisfy the informal 

specification, and furthermore, claim that its overall simplicity of 

design makes it easier to convince ourselves that this is true. 

Kernighan & Plauger's program (which from now on I shall refer 

to as FORMAT - their name for it), in the main satisfies the informal 

specification, but not absolutely. Minor differences include: 

The peculiarities which may ocur when decreasing right margin size 

when in "fill" mode (as mentioned in the preceeding section, Stage 

4). FORMAT risks the possibility of a line being put out with a 

margin somewhere between the old value and new, smaller, value. 

Temporary indent, caused by a . ti +n command, is specified to 
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temporarily indent relative to the current indent. Thus 

. in 5 

. ti +3 

. ti +4 

we would expect to cause the next line to be indented by 9 (5+4) 

spaces, the last ti command signifying the temporary indent. 

However, FORMAT would indent it by 12 (5+3±4) spaces, adding up both 

ti commands' relative values. 

These may seem trivial differences, and I may be wrong in 

claiming them as errors, but the main danger lies in their existence 

being so deeply buried in the complexities of the program. 

Spread is a good example of a portion which can be programmed 

simply, but if written immediately as a single pass, as in FORMAT, is 

hard to understand. The authors themselves say "Phis code is tricky 

(which is not a compliment), but it performs an elaborate function 

and performs it correctly. " 

6.4.2 Resolving Abiguities In The Informal Specification 

The informal specification is by no means precise, and many 

ambiguities exist which the programmer must resolve. Where some 

choice is clearly the expected one from the users point of view, that 

should be made. If the choice is purely arbitrary, then the easiest 

or most logical choice from the programmer's point of view should be 

made. In either case, it should be possible to determine by 

examining the program exactly how it will act in such circumstances. 

Setting of values is an example of how our programs differ: 

Since FORMAT is processing text and commands as it encounters thorn, 
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it takes advantage of this to check the setting of values s,, --h as 

right margin and left margin against each other. Thus the right 

margin is never set to less than the current left margin, e. g. 

If the right and left margins are cur. rently 60 and 40 

respectively, then: 

. rm 20 

. in 0 

would, in FORMAT, cause the right margin to be set to . 0, because 

this was the value of the left margin at the time the ". rm 20" 

command was received, whereas my program merely sets it to 20 without 

worry. Clearly the user should not have to worry about the order in 

which he changes margins. 

The advantage of splitting the task into the several stages is 

that any ambiguity can be resolved by concentrating only on the steige 

dealing with it. Indeed, each individual stage is constructed in a 

simple manner, liberally using many small functions to perform easily 

comprehended actions. FORMAT, although well-designed and structured, 

nevertheless is noticeably harder to comprehend in its detailed 

operation. In its design there is no mention of any convention 

corresponding to the-ones I adopt for filling lines Lnd pages. This 

is probably because the program has been designed only for the mode 

of operation of going once through the input and dealing with things 

as soon as they are encountered. Whilst this ensures a degree of 

efficiency, it does seem to restrict ones thinking. 
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6.4-3 Chang in /Extending The Program 

A major test of the. flexibility of a program is how easy is it 

to change or extend the operation of that program. 

Since my program is designed around the conceptual stages of 

text formatting, i claim that provided the changes do not 

fundamentally alter my underlying concepts, then they will be not too 

difficult to incorporate. FORMAT, by virtue of its commital to the 

efficient organisation, is bound to be more restrictive. 

Two example changes will illustrate this: 

Suppose we wish to modify the way the extra few blanks are 

partitioned through a filled line, (at present they are distributed 

alternately from left-to-right and right-to-left on successive 

lines), perhaps distributing them randomly. In my program, the only 

change is to procedure ADDEXTRASTOGAPS. In FORMAT this activity is 

mixed in with that of distributing all the blanks, so the 

contemplated change effects more than is necessary. 

One of Kernighan & Plauger's own suggestions is to enlarge the 

program to provide multi-column output. 

My program should extend to this in a straightforward manner: 

most of the changes will be confined to the page formation stage, 

with minor changes to the decoding commands and setting extra values 

in i. nfomap(s) to handle new commands. Perhaps some of the line 

formation functions will need modificaticn (e. g. DEFAULTPUT to put 

out sub-multiples of PAGEWIDTH wide lines when a line for 

multi-column output is expected from it), but in all these cases, the 

changes, and the reasons for them, are easy to see. 
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In FORMAT, because the different operations are more intermixed 

(e. g. the routines to put out page headers and footers get called 

from within both a routine for putting out a text line and a routine 

for spacing down lines), the required adjustments will be much harder 

to determine and carry out correctly. 
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6.5 77cA:,: FORMATION TO EFFICI, i'T ',. '!:!! SION 

Transforming the NPL text formatter brings to light new problems 

due to the large size of the protoprogram. Firstly the equations 

take up a lot of space if all are to be held in core at once. For 

the smaller transformations this had never been a serious problem, 

but here the equations (some 500 of them) consume a prohibitive 

amount of space. Me system had to be adjusted to store the 

equations in a disc file, and only bring into core such equations as 

are required for unfolding, when so indicated by the UNFOLD command 

within a context block. This adjustment fits in well with the 

concept of context blocks, and makes transformation of the text 

formatter a practical possibility. The adjustment involved 

augmenting the system with a package providing functions to write cut 

non-circular structures to disc in character form, and read them back 

in. Using this, the NPL interpreter deposits equations onto disc as 

it encounters them, and equation-finding routines now search the disc 

file rather than an in-core list. 

Secondly, the complexity of the whole program is such that it is 

not possible to see in advance how the transformation will turn out. 

The gap between protoprogram and anything like Kernighan and 

Plauger's efficient program is too wide to see across in advance - 

hence this problem serves as a crucial and unavoidable test of the 

transformational techniques. 

Following the approach to transforming large programs already 

established, the first step is to construct a diagram of the calling 

structure of functions within the protoprogram, and from this 

determine the overcall strategy for improvement to be followed. 
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The strategy suggests improving each branch of FORMAT, 

combining improved versions incrementally. 

6.5.1 Improving Branches Of FORMAT 

The branches which need 

INTERMEDIATE, PAGES and LINES. 

Page 6-46 

and then 

improvement are DOCOMMANDS, 

6.5.1.1 Improving DOCOMMANDS - Looking at the calling structure of 

DOCOMMANDS, the strategy suggests incrementally combining functions 

from inside out (corresponding to left-to-right on the diagram), to 

arrive at a single function to process all commands. 

II docommands => docommands 

"Iý"I dofo dorm . docoml 

subdofo subdorm 

0 . a>.. 

II docommands => docommands 
/II 

/II 
dopl docom8 docom9 

subdopl 

In performing these transformations some disturbing effects become 

apparent. One is that although the form of the final function is 

really that of a large (12 branched) cases statement, it has to be 

modelled in NPL as a deeply nested conditional statement. This is a 

most unwieldy construct, not easily dealt with by the system. 

Another difficulty is the abundance of values the final function has 
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to deal with - these are the values of current right ma-gin, rege 

size and so on. The alternatives are to either maintain these as 

distinct var{ables, which consequently have to be parsed into each 

function call (since NPL has no globals), or packaged up into a 

single information structure with components for each value 

(analogous to the named common blocks used by Kernighan and rlaugc: r). 

Although the latter would be the preferable option, J_t unfortunately 

clashes with the already unwieldy conditional modelling of the cases 

statement. The clash is due to the need to make inferences that 

assigning to one component of the information structure does not 

upset the value of another component. This obvious property, which 

would normally fall out automatically by applying the equations for 

assignment to, and accessing of, the information structures, in this 

particular context of a deeply nested conditional leads to an 

explosion in the size of expressions being manipulated. i choose to 

pass into functions the values in separate variables, tedious in 

terms of the size of patterns to be specified, but applicable (and in 

practice once one pattern has been put into a disc file, similar ones 

can be got by minor edits of that file). The problems exposed here, 

namely the clumsy modelling of where constructs, and reasoning about 

assignments to data structures holding several values, are ones which 

must be tackled and overcome in any future development of the system. 

A possible solution to these problems lies in the use of 

schemata. Currently my patterns provide a tom of these suitable for 

introduction of new functions, and specifying approximately portions 

of expressions. However in the transformations taking place here 

there are minor details not crucial to ti-, e individual transformations 

which cannot be expressed within my patterns, and yet ý-: re numerous 



TRANSFORMATION OF A TEXT 'r'Ci<". AT' TFFc 

enough to be troublesome. The 

should permit these details to be abstracted away. The system could 

be augmented to transform schemata mak_ng use of the existing 

techniques, i. e. using schemata only to capture the relevant details, 

without the need to individually verify schematic transformations. 

6.5.1.2 Improving INTERMEDIATE - This transformation, a combination 

J-4G 
"6- 

use of more conventional s,, ', e2ar- 

of the two branches, goes through without difficulty. 

format 
/I 

_> format 

/Iý 
0 

intermediate 

underline blanks 
II 
II 

ulchars subblanks 

delleadblanks 

.i .i i 
9 

0 

intermediate 
/I 

ulchars ý 
intertnl 

ulchars delleadblanks 

6.5.1.3 Improving PAGES - Here the improvement is to cause skip and 

blanklines to decrement the count of lines left in the current page 

as they output blank lines. 

I fillpage 
/I\ 

/I 
skip ý 

b1 ankl ine s 

=> { 
f illpage 

cskip 

cblanklines 
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6.5.1.4 Improving LINES - The transformation of LI:. TS itself splits 

into several stages. 

Firstly GETWDSTOFILL and GETLINESTOFILL are combined; 

I ý> I 
lines lines 

/I\/1 
.ý\. ý 

"ý\"i 
ý getlinestof ill ý 

getwdstofill linesl 

II 
0 0 

Secondly, prior to combining PUTPARAGRAPH with the result of the 

above step, it is itself improved. At the bottom the function SPREAD 

requires transformation - however the surrounding structure is such 

that the internal structure of SPREAD would not be crucial to the 

transformations to follow. Thus the transformation of SPREAD could 

be left until later, and done independantly of the rest of the work. 

What must be considered next is the relationship between 

SUB PUT PARAGRAPH, FULLLINE and SUBFULLLINE. Currently SUBPUTPARAGRAPH 

calls FULLLINE as a subroutine to put out a full line of text, and 

return the remainder of input. In transforming these functions I 

change the control structure to cause SUBPUTPARAGRAPH to pass control 

over to a new function, combining FULLLINE and SUBFULLLINE, in the 

manner of a co-routine rather than a subroutine. 
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I 
putp4rüsraph 

subputparagraph 

f ui ll ine 

subfuliline 
( 
0 

ýý I 
putparagraph 

subputparagraph===Y aralines 

spread 

0 

0 

Pase 6--50 

This change towards a different calling structure is not suggested by 

any tactic, and is a clear point in the transformation where I have a 

choice of what shape of efficient solution to head for. At this 

point, and at similar points later in the transformation, it is clear 

that there must be some crucial aspect of the transformation that my 

patterns, tactics and strategy are failing to capture. The omission 

seems to lie between the tactics expressing the top level combination 

of functions, and their realisation in terms of patterns. What 

neither provide for is the manner in which the calling structures of 

each half of a combination are merged to form the calling structure 

of the new function. It is not necessarily the case that this did 

not arise in transforming the telegram problem or the compiler, 

rather that they were sufficiently small to be comprehensible all the 

way through, and any choices made were done unconciously to move 

towards the efficient solution in mind. Here, however, the inability 

at this point to see the way through to the final program makes the 

recognition of such choices unavoidable. 

The use of diagrams to show calling structures is more than just 

a means of illustrating the transformation after the event; in fact 

these diagrams are of help in observing some of the elusive features 

of complex combinations, and I make use of them throughout the 
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transformation process. 
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The combination of the improved PUTPARAGRAPH and LANES 1 follows 

the coroutine structure established within PUTPARAGRAPH: 

i lines 
/I 

.iý .iý 

ý linesl 

putparagraph 

i i 
0 

subputparagraph===paralines 
I 

I 

lines 

.( 

"i 

lines2a===lines2b 
II 

Functions LINES2A and LINES2B are similar in nature, except one 

is used when in "fill" mode, the other when not. Hence they could be 

subsumed by a more general function to carry out the activity of 

either as indicated by a truthvalue flag to show whether or not in 

"f ill" mode. 

I lines 
/I 

. 

lines2a===lines2b 
/Iýý 

zý 

put subgetwds spread 

skipb lanks 

I lines 
/I 

lines2c---- 
/I 

put I spread 

subgetu, ds skipblanks 

6.5.2 Combining The Improved Branches Of FORMAT 

Having completed the improvement of each branch of FORMAT, the 

strategy suggests combining them in an inside out manner, which in 

the diagram corresponds to left-to-right: 

ýý 
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format 
i 

----------------------------------------------------------- 

IIIIIII 
output pages lines intermediate docommands initmap decode 

6.5.2.1 Combining INITMAP And DECODE - This small combination is 

straightforward. 

format => format 
/I\/I 

"1\I 
"I\I initmap decode formatl 

II 
II 

cdecode cdecode 

6.5.2.2 Combining FOj2NAT1 And DOCOMMANDS - This 

tedious because of the 

nevertheless straightforward. 

format 
/1 

.1 
.I formatl 
docommands i 

I cdecode 
docom9 

combination is 

unwieldy nature of DOCOININDS, but 

_ý 

I 
cdecode 

6.5.2.3 Combining FORMAT2 And INTERMEDIATE - another tedious but 

straightforward combination. The transformation commands to do this 

are very similar to those required for the earlier combination of 

FORMATI with DOCOMMANDS, and the combinations during the improvement 

of DOCOMMANDS itself. The easiest way o- creating the file of 

format 

.j 

f ormat2a====forL, at2====format2b 

commands is to edit the file of earlier commands. The patterns 
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have developed to guide the system do not capture the relevant 

details only, which suggests that perhaps the use of some sort of 

schematic transformations would indeed be a more convenient way of 

specifying the changes being made. 

format 

.ý ----------------- 

"iý 
intermediate format2a==format2==format2b 
III 
I interml cdecode 

ulchars delleadblanks 

format 
/I 

. 

. 

f ormat3a==format3==format3b 

cdecode ulchars delleadblanks 

At this point the next step suggested by the strategy would be 

the combination of FORMAT3 with LINES: 

format----- 
/1\ 

/I 
/i 

output pages lines format3 

III 
00 

It is apparent, however, that this combination would be hard to 

perform, because of the unwieldy nature of FORMAT3 and the complex 

calling structure of LINES. Furthermore, if it were carried out, 

there would still be the two stages of ccmbining with PAGES and with 

OUTPUT left to do. These last combinations would be much harder if 

encumbered by the burden of FORMATS, so at this point I choose to 

deviate from the strategy and instead combine LINES with PAGES, then 
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with OUTPUT, and finally with FORMAT3. Note that the essence of the 

strategy, that is if one function G uses another function h, improve 

H before improving G, is not being violated. In this case FORMAT is 

calling four functions each of which has already been improved, 

passing the output of one to the input of the next. It is the order 

in which they are to be combined that I am changing. Viewing the 

simple strategy as a default to provide a sequence of applications of 

tactics, we see that in this example the overall transformation 

follows the strategy most of the time, except here where intuition of 

the user suggests a better alternative. This illustrates the 

advantage of defaults over inbuilt techniques - the user can chose to 

follow a default in the main, overriding it occasionally, wheras an 

inbuilt technique must either succeed entirely or fail. 

6.5.2.4 Combination Of OUTPUT And PAGES - OUTPUT merely strips the 

stream of pages down to their constituent lines to form the output of 

the whole process, hence its combination with PAGES is simple. 

format format 
/I\/\ 

/I. /" 
/I"/" 

output pages outpages 
II/I\ 

<> I/I\ 
subpages puthdr putftr fillpages 

/I\ 
/I\ 

puthdr putftr fillpages 

Here another change in structure seems appropriate. FýLLPAGE is 

being used to return the interior lines of a page for OUTPAGES to 

surround with the header and footer titles (if any), and the 

remainder of the input to continue with. Again, a coroutine like 
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system is introduced so that OI`TPhGre 
-: tarts a new pag., _ 

header, 

there. 

outpages 

puthdr putftr fillpages 

Page 6-55 

ýe i th the 

and then hands control over to FILLPACF to carry on from 

f ormat 

fý 
lb 

=> format 

S 

I 
outpages===filllpage 

II 
II 

puthdr putf -Lr 

6.5.2.5 Combining OUTPAGES And LINES - The combination of these 

encapsulates much of the complexity of the formatting process. 

OUTPAGES is concerned with completing pages, whilst LINES builds up 

the individual lines, handling all the cases of lines to be centred, 

lines too long to fit in the margins, and fill mode when words are to 

be squeezed into lines. The result of this combination consists of 

two main routines, PAGES1 and INPAGES, analogous to OUTPAGES and 

FILL1PAGE. PAGES1 starts new pages off, and INPAGES carries on once 

within a page. These use three subroutines, CEINPAGE to centre a 

line, PUTINPAGE to put out a line and DPUTINPAGEt_o put out an 

overlength line. 
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format 

/I" 
/ý. 

f illlpage==outpages ý 

i lines 
/I\ 

linecentre i lines2c 

put 

defaultput 
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roi: na 

i 
0 

pagesl=-==inpages 

=> 

II vv 

1-ceinpage--i 

putinpage 

dput inpage-->- 

6.5.2.6 Combining PAGES 1 And FORMAT3 - The program is currently 

split into two major passes. The first, FORMAT3, does the decoding 

of incoming commands, setting values in blocks of information to be 

associated with each input text line, and preliminary processing to 

handle underlining and blank lines. The second pass, PAGESI, does 

all the line and page formation processing. 

A complete combination of these passes would remove the 

redundancy associated with creating the intermediate data structure 

(consisting of lines with associated information, intersperced by 

commands). However all the difficulties which arose during the 

earlier transformations would manifest themselves again here, 

especially those associated with the unwieldy nature of the 

equations. Hence my last step is to simply model a call-by-need 

evaluation, defining a new function which would act as FORN: AT3 on the 

input until some intermediate result is obtained, at which point it 

would behave as PAGES1 applied to this intermediate result. Much, if 

not all, of the redundancy is removed by this design. The major 

saving is through not having to process the entire input in a 
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complete pass and store the entire intermediate structure. Instead 

the improved version consumes input only as required to produce 

output, so the storage space will not depend upon the length of the 

input. The remaining redundancies are small in nature, associated 

with slight inefficiencies in storing information with each text line 

and shortly afterwards retrieving it again. Unfortunately the very 

messy nature of the equations at this point make further 

improvements, even minor ones, tedious to perform. 

format 
/ý 

I 
pagesl===inpages 

II VV 

II 1-ceinpage--l 
Iý 

putinpage 

dputinpage-->- 

------>---- 

i f ormat3a==f o rmat3==f orma t3b 

format 

i i -----<-. ----- 
I-pgafmt----pgfmt===inpgfmt---- inpgafmt- I 

I /I I 1\ I 
-pgbfmt--- I i VV 

1--cefmt---l 

putfmt 

dput f mt--->- 

-inpgbfmt- 

A further difficulty which arises during this transformation is 

that once a function has been defined by cases on one of its 

arguments, the transformations are unable to generalize that function 

to a single equation with variable in the argument position. 

A trivial example will illustrate this: 

-------------------- 
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+++ f (truval) <= truval 
- f(true) <= true 

--- f(false) <= false 

Clearly f (T) <= T, but the transformations do not allow us to deduce 

this. The formatter transformations suffer from this phenomenon, 

leading to duplication of equations identical except for true /false 

in a single argument position. Burstall and Darlington mention this 

limitation in their [1975] paper. 
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6.6 FINAL PROGRAM 

The final program produced as a result of transformation is exi_recuely 

messy. As shown in the previous diagram, the calling structure ; 
-s 

intricate. The functions tend to have a large number of ar¬umýnts, 

which serve to further cloud comprehension. Rather than give the 

entire final program, I present some sample equations, and explain 

their actions. 

--- cefmt (false, LLEFT, IMAP, CL, TL, T5, PCL, LINL, T10) <_ 

putfmt(fa1se, LLEFT, addtoýnap(IMAP, TIVAL, IMAP zz TIVAL + 
half(IMAP zz RMVAL) - (IMAP zz TIVAL -+- width(CL) ) ), 

CL, T4, TS, PCL, LTNL, T10) 

CEFMT is used to centre a line of characters, CL. To do this, it 

calls PUTFMT with the temporary indent value in the information 

(IM, P_P) reset by the appropriate amount. LLEFT is the ccunt of lines 

remaining on the current page. T4, T5, PCL and T10 hold current 

values of various parameters, e. g. margins, header and footer titles. 

LINL is the list of remaining lines of input to continue processing. 

The first argument of CEFMT and PUTFMT is a truthvalue to indicate 

whether or not in fill mode - CEFMT is one of the functions that 

suffers from not being able to generalise distinct true/false cases 

'to a single equation with a variable. 

--- putfmt (f a1se, 0, P-IAP, CL, <VALLS, CURPGNUM, NXTPGNUiM, VALFO>, 
TS, PCL, LINL, T? 0) <= 

putf tr. (VAI, FO, CURPG; ITJM) <> 
puthdr(IMAP zzc hEVAÜ, riX`I'PGNUM) <> 

putfm*_(false, (IM"AP z-- FLVAL - HDRLENGTH) -- F'I'FLENGTii, 11,111, P, CL, 
<IMAP zz LSVAIr�+7PGNUi1,1ýNX1'FGNUM, IMAP zzc FOVAL>. 
TS, FCL, LINL, T10) 

Here PUTFMT lias zero in its second argument position, t lle count of 
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lines remaining on the current page. Thus there is no space left, so 

the footer title is put out. followed by the header of the next page, 

and PUTFMT is called again at the top of the new page. Note that 

some of the values are re-set for this new page - the page number 

becomes the old N XTPGNUM; the line spacing and footer values are got 

from the IMAP (which is information associated with the line to be 

put out next); the count of lines remaining becomes the page size, 

less the header and footer lengths. 

--- pgfmt(false, PGNUM, T5, ptext(IMA°, CL):: PCL, LINL, TIO} <= 

cond(III?. P zzt CEVAL, 
puthdr(IMAP zzc HEVAL, PGNUM) <> 
ceFmt(false, (IMAP zz TLVAL - HDRLENGTH) - FTRLENGTIi, Iýt. A.: , 

CL, <IMAP zz LSVAL, PGNUM, 1-ýPGNUM, IMAP zzc FOVAL>, 
T5, PCL, LINL, T10), 

cond(not(IMAP zzt FIVAL), 
puthdr(IMAP zzc HEVAL, PGNUM) <> 
putfmt(false, (IMA. Q zz PLVAL - HDRLF. NGTIi) - FTR%ENGTH, 

<IMAP zz LSVAL, PGNUM, 1TI'GNUTMI, 1MAP zzc FOVAL>, 
T5, PCL, LINL, T10), 

pgfmt ( true, FGNUM, <subgetwds ( IMAP, skipb lan? "-. s ( CL) ), true, 0, 
nullmap, []>, PCL, LINL, T10 ) 

)) 

Here PGFMT, the function for starting off a new page, is in no-fill 

mode (indicated by false as its first argument) and has some 

intermediate result, ptext(IMAP, CL):: PCL to work on before needing to 
r 

consider more of the input, LINL. The action it takes is to first 

see if the line needs centering - if so, the header is put out, and 

CEFMT will do the rest. If not, and the line is not the start of a 

paragraph to be filled, then put out the header and call PUTFMT to 

put out this line. Otherwise, recall PGFMT in fill mode (i. e. with 

its first argument set to true). The words of the current line are 

extracted by SUBGETWDS, and together with some other initial values, 

passed within the 5-tuple so that PGFMT (and other functions) will 

have the appropriate in'tor iation needed to fill and justify lines. 
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lfben w. ww are at the start of a page, or in the middle of one, and 

we do not have any intermediate result to work on, PGFMT or I`, PGF'NNT 

must process more of the input. 

-"-- pgf_mt(FIFLAG, PGNU :, T5, [j, lin(C:: CL):: LIN'L,, <rLNL"M, I. ±'NNu , 
TINUM, CENUM, ULNUM, LSNUM, FIFLAG, U ETITLE, FOTITLE, RMIv JN>) <= 

cond (C=CHCOMMAND, 
pgafmt (FIFLAG, PGNUM, T5, [], U0, U1, LTNL, <PLNUM, INNUM, TItiU::, 

CEIUML, UINUM, LS, M, FIFLAG, HETIILE, FOTIT.. E, RMNL»1) 
where <UO, U1> == cdecode(CL) , 

pgbfmt (FIFI. AG, PGNU'`i, T5, [I , r: ullmap, [] LINL, 
<P LNUýM ,I NNUM ,TI NLr4, C ENL`Ni , UL hTal, L SNUAi ,F IFLAG , 

HETITTLE, FOTITLE, RMNTJM>) ) 

If the next line of input turns out to be a text line, it will be 

passed through together with an IMAP containing current values of the 

parameters, and already underlined if necessary. If the input is a 

command this usually causes a change in one of the parameters, and 

sometimes produces a command as intermediate result. 

--- pgafmt (FIFLAG, PGNUM, T5, [I , CMD, CAR, LINL, <PLNUM, INNUM, TINUM, 
CENUM, ULNUM, LSNUM, FIFLAG, HETITLE, FOTITLE, RMNUM>) <= 

cond (CMD=UNKNOWN, 

pgfmt(FIFLAG, PGNUM, TS, [] , LINL, <PLNUM,..., RNNUM>), 

cond(CMD=RM, 
pgfmt (FIFLAG, PGNUM, TS, [], LIN-I., <PLNL'M, ..., FOTITLE, 

sset(RMNUM, CAR, PAGEWIDTH, 1+Pý GEWIDTH)>), 

0 
0 

cond (CMD=PL, 

pgfmt(FIFLAG, PGNUM, TS, ni. 1, LThný, <sset(PLNLM, CAR, PAGELEN, 
1+HDRLENGTH+FTF: LENGTH, FAGELEN), INNLT4, ., RriNt? %>) . 

pgfmt (FIFLAG, PGNUM, TS, [CN1D. CAR) , LINL, <PLNUM, ..., P-MNUM> ) 

)... )) 

The above equation is one of the cases statements represented as a 

deeply nested conditional. 

These equations illustrate the nature of the final program. My 

confidence in its correctness comes from the knowledge that it is 

obtained by transformation from the protoprogram. Although the 



Ti-R1". NSFO"? ±IATION OF A TEXT r ORMATTER Page 6-62 

transformation has been hard to carry out and serious difficulties 

have arisen, it has succeeded in converting the very naive 

protoprogran into a version approaching the efficiency of a 

conventional formatter. There remains the stage of converting into 

an imperative language, but even before this conversion the behaviour 

of my final NPL program is similar to that of Kernighan and Plauger's 

FORMAT program. Each processes successive lines of input only when 

they are needed, and output lines are formed as soon as possible. 

The manner of operation of each program is therefore a single pass 

through the input, producing output as it proceeds. The NPL program 

contains some minor inefficiencies through occasionally setting 

values of parameters which are immediately interrogated to cause some 

effect, rather than simply triggering that effect immediately, but 

these do not significantly degrade the program's performance. 



CHAPTER 7 

IMPLFMENTATICN 

In this chapter I describe the implementation of the ZAP 

transformation system, detailing what my additions to the underlying 

programs of Burstall and Darlington have been to achieve this 

implementation. I also describe the purposes of the non-trivial 

algorithms within my implementation. 

7.1 GENERAL DETAILS 

The programs I use are implemented in POP2 (Burstall, Collins 

and Popplestone [1977]; on a Dec10 machine. They are all 

experimental in nature - i. e. have been developed over a period of 

time during research, and are not intended to be, nor are they, the 

most efficient rendering of the algorithms in use. 

The overall system divides into two levels; The lower level is 

the NPL parser and interpreter. The upper level is the 

transformation portion. 
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7.2 NPL LE vEL 

The code in this level has : -, e. en ', ritten by Rod Bur&talJ . It can 

function on its own, used to execute: NPL programs. Its size is 11K 

(and the POP2 compiler below this is a further 19K). This level 

provides the data structures for expressions the transformation 

level manipulates. 

NPL equations are kept in core, which for large programs can be 

expensive in consumption of space. In order to tackle transformation 

of large programs z have modified Burstall's code to cause it to 

. store the equations in a disc file. Then when a context is created 

in my system, only the equations appropriate to that context are 

brought into core, and when new equations are formed, these are 

written out onto the disc file. The tradeoff is between the small 

amount of extra cpu time required to do the disc transfers, and the 

large amount of space saved by keeping the equations out of core. 

Historically, NPL began as a language to conveniently express 

programs in a form suitable for applying the unfold/fold techniques 

to, but from that beginning, Burstall developed it into a language to 

demonstrate how clear, well constructed programs could not on! y be 

transformed, but also be more readily comprehended and verified. 

7.3T RANS F OMkT IO I1 LE VE L 

The upper level is the transformation portion, its size is 36K. 

This can be considered to consist of the following sections: 

Utility section -- generally useful functions used throughout the 

transformation level. Includes functions t^ raisn; pulate expressions, 
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provide basic /L, between files, terminal and s TL, tee,, ,, tc . Some of 

these functions are inherited from Tarlin ton's sy_, tem. in gcirrai, 

however, the bulk of Darlington's system has not. been retained. Hls 

overall control structure for transformation and his function:; for 

guiding it are entirely omitted. 

Control section - interprets the ZAP control : language described 

in Chapter 4. The details of my particular implementat on are not 

significant. From the Users' Guide and Manual it would be possible 

to construct an interpreter with the appropriate behaviour. 

Transformation step section - performs the actual step of 

transformation, involving expanding the pattern and expression, 

matching and building up the answer. 

Default section - provides default patterns and type 

information. 

I consider these last two sections in more detail: 

7.3.1 Transformation Step Section 

As explained in earlier chapters, the fundamental transformation 

step within my system involves supplying a pattern which indicates 

the approximate form of the desired answer. The expression to he 

transformed, and the provided pattern are each expanded, and matched. 

Bindings from the match (if it has been successful) are used to 

instantiate variables in the original unexpanded pattern to give the 

answer. Thus the process can be considered in three stages: 

1. Expansion of expression and pattern 
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2. Matching of expression and pattern 

3 Instantiating pattern to form answer 

7.3.1.1 Expansion Of Expression And Pattern - 

Pa` P_ 7-4 

Expansion takes place within a given context of equations and 

lemmas. Expansion ii. zvolves unfolding as much as possible by applying 

equations and lemmas which are rewrite rules. Some forms of 

identity . +. nd coiniiu. tat ive declarations -- will have caused additions to 

the equations and rewrl to rules of the context. Basic reductions in 

. 
the form of rewrite rules are always provided by the system for COND 

(the conditional function), AND and OR (logical funct. ioiib) . In 

addition to expansion by unfolding, expressions are normalised by 

applying special purpose reductions to deal with ii_er: ttive 

constructs, conditionals and where constructs. 

In practice a major portion of cpu time used by my system is 

consumed by unfolding and norma-ising expressions. This is : '. espite 

the context mechanism limiting attention to only the relevant 

equations. With my approach to transformation this expenditure of 

time seems unavoidable. 

7.3.1.1.1 Normalisation Of Iterative Constructs - 

Iterative constructs are ones using 

set constructors, e. g. <: f (x) :x in S& p(x) :> 

"all", e. g. ALL x in S: p(x) 

or "exists", e. g. EXISTS x in S: p(x) 

Darlington developed and implemented a usefi., 1 set of r euc: ic. ls 

to apply to these constructs. I have incorporated h5_., - coding of 
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these within my system. For a full description see Darlington 

[1977). A few examples will illustrate sone actions of his 

reductions: 

e. g. in the preceeding examples, suppose S is the nilset, i. e. the 

empty set. Then 

<: f(x) :x in nilset & p(x) :> reduces to nilset 

ALL x in nilset :p (x) reduces to true 

EXISTS x in nilset : p(x) reduces to false 

e. g. if S is the union of two sets, Si union S2, 

<: f (x) :x in S1 union S2 & p(x) :> reduces to 

<: f (x) :x in SI & p(x) :> union <: f (x) :x in S2 & p(x) :> 

ALL x in Si union S2: p (x) reduces to 

(ALL x in S1 :p (x)) and (ALL x in S2 :p (x) ) 

EXISTS x in Si union S2 : p(x) reduces to 

(EXISTS x in S1 : p(x)) or (EXISTS x in S2 : p(x)) 

7.3.1.1.2 Normalisation Of Conditionals - 

Within NPL conditionals may be introduced either through the use of 

the cond function, or through the if/ifnot clauses. My system 

converts if/ifnot clauses to applications of cond, so that the 

following normalistations always apply. 

Firstly, whenever possible, the cond function is moved outside 

of all other functions. 

e. g. 2+ square(cond(T, 1,3)) becomes 

cond (T, 2-F-square (1) , 2+square(3) ) 

e. g. cond(T, 1,3) + cond(T1,2,4) becomes 

cond(T, cond(T1,1+2,1+4), cond(T1,3+2,3+4) ) 
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Secondly, if nested conditionals depend on identical ccnv'Ltiens, the 

inner such conditionals are simplified accordingly. 

e. g. cond(T, cond(T, 1+2,1+4), cond(T, 3+2,3+4)) simplifies to 

cond (T, 1+2,3+4 ) 

Thirdly, conditionals whose conditions are of the form 

variable = expression 

are simplified by replacing all occurrences of the variable within 

the true branch of the conditional by the expression. 

e. g. eond(N=1 , N+2 , N+4) becomes cond(N=1 , 1+2 , N+4) 

7.3.1.1.3 Normalisation Of Where Constructs - 

Where constructs are of the form 

expression) where <variablel,..., variableN> 

_= expression2 

variablel,..., variableN are the bound variables of the construct* 

expression2 must have the same type as <variablel,... variableN>, i. e. 

be an N-tuple whose components have types the same as those of 

variablel, ..., variableN. 

Firstly, where expressions are pushed inside other constructs 

until their left hand sides are variables or other where constructso 

e. g. (1+square(N)) where <N> == <2> becomes 

1+square(N where <N> __ <2>) 

In doing so, redundant where constructs are removed 

e. g. (N + M) where <N> __ <2> becomes 

(N where <N> __ <2>) +M 

Secondly, if the expression to the right of the "__" is in the form 

of a tuple, the where clause may be simplified by substituting the 
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corresponding expressions is place of the bound variables. 

e. g. N where <N> <2> simplifies to 2 

e. g. M where <M> (<N> where <LN, P> _= f(X)) simplifies to 

N where <N, P> _= f(X) 

7.3.1.2 Matching Of Expression And Patterr. - 

The basis of my transformation step is a match between expanded 

pattern and expression. The match is 2nd order, since varigb' 

within the pattern are to match to functions and constructs. For an 

excellent account of 2nd order matching, see Huet and Larg [1977). My 

matcher differs from a conventional 2nd order matcher by being 

somewhat restricted in some respects, and extended in others. 

The restrictions are straightforward - function variables; e 

not permitted to match to certain of the functions and constricts 

within the expression. Those function variables arising from $$'s 

within the original pattern are inhibited from matching to iterative 

constructs, and functions which are either restricted or have 

equations within the current context but not declared usable. Those 

function variables arising from &&'s within the original pattern are 

inhibited from matching to functions with equations in the current 

context but not declared usable. 

The first extension to conventional matching concerns function 

variables arising froiu &&'s within the original pattern. Such 

variables are intended to create definitions of new functions, the 

bindings formed during the match providing these definitions. 

conventions' binding would be of the form 

lambda xy... z. <e:. pressi on> 

.i 
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corresponding to an equation for the new function, necf say, 

newf(x, y,..., z) <= <expression> 

Note in particular that function newf is the only function occurring 

in the left hand side of its defining equation. The left hand s]-3h 

could be more complex however: The arguments of newf may contain 

calls to other functions, e. g. 

new£(g(x), y, ..., z) <= <expression> 

or newwf itself may be within the argument of some function, e. g. 

g(nekf(x, y,..., z)) <= <expression> 

In the latter case my system will postulate inverses to adjust the 

definition of newf to bring newf to the outside of the left hand 

side, e. g. 

newf(x, y,..., z) <= ginv(<expression>) 

where ginv is the inverse of g. This restructuring is only going to 

be possible if the surrounding functions are unary. 

My extension of 2nd order matching is to permit matches of this 

form, giving rise to the more complex forms of definitions for the 

new function. Note that in general such definitions are not 

executable within NPL. Darlington terms such equational definitions 

"implicit equations". The intention is to later use the system to 

transform such implicit definitions into conventional recursive 

equations. 

The second extension to conventional matching is to match up to 

associativi ty and/or commuativity when some of the functions within 

the expression or pattern are declared to have these properties. In 

this respect I follow Topor [1975;. 
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7.3.1.3 Instantiating Pattern To Form Answer - 

Following a successful match between expanded pattern and expression, 

the system uses the bindings formed to construct the answer from the 

original pattern. At this stage a certain amount of further tidying 

up is also performed. 

Bindings of $$ function variables are used to instantiate the 

original pattern, eliminating all $$'s therein. 

e. g. pattern :" $$(N, M) 

binding for $$ : lambda XY. (X + Y) +Y 

answer : (N + M) +M 

Bindings for && function variables are used to create 

definitions of new functions. Within the original pattern, the &&'s 

become calls to these new functions. 

e. g. pattern : &&f(succ N) 

binding for f: f (X) <= X+X 

answer : f(succ N) with equation 

f(X) <=X+X 

If the same new function was mentioned several times in the original 

pattern, it is possible for these separate occurrences to have led to 

different bindings. After the match these are put together to form a 

single function returning a tuple of results. 

e. g. pattern : &&f(N) + f(N) 

binding for f: first occurrence, f (X) <= g(X) 

second occurrence, f(X) <= h(X) 

answer :P+Q where <P, Q> == f(N) with equation 

f(X) <= <g(X), h(X)> 
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Redundant arguments of new functions are a'Ztomatically discarded 

e. g. pattern &&f(N, M) 

binding for f: f(X, Y) <= X +X 

answer before simplification : f(N, M) with equation 

f (X , Y) <= X+X 

simplified answer : f(1; 
0) with equation 

f(X) <= X+X 

Some of the distributing of where expressions down branches of 

expressions prior to matching may need reversing in the answer and 

new function definitions. When the same where clause occurs in 

multiple branches of an expression, these occurrences are removed and 

a single where expression inserted at the join of these branches 

e. g. f((X where <X, Y> == g(Z)) + (Y where <X, Y> == g(Z)) 

becomes 

f(X+Y where <X, Y> == g(Z) ) 

Although these tidying-up operations are individually trivial, 

the combined effect of them is to greatly ease the use of the 

transformation step, freeing the user from the need to perform many 

such trivial tasks himself. 

7.3.2 Default Section 

There are three default mechanisms within the system, used to 

generate type information, cases and patterns. I explain these, and 

consider how they might be extended to provide more assistance to the 

user. 
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7.3.2.1 Type Information Default -- 

When type information for some type is required, he de1=ý: ult 

mechanism looks at the NPL DATA declaration for that type. Each of 

the cases on the right hand side of the declarnt i . on will form a case 

in the type information. If the case is in the form of a constructor 

with arguments, the arguments are generalized to "Yar{ables, and if 

they are the type being defined, the generated v^riable is aduc<< as a 

"recursive case" of that case. 

e. g. DATA truval <= true ++ false 

is converted into 

TYPE INFO T <= true 

<= false 

e. g. DATA num <= 0 ++ succ(nuin) 

gives cases 0 and succ(num). The latter has argument nun, so 

this is generalized to a variable forming case succ(N). Since 

num is the type being declared, the variable is added as a 

recursive case, giving 

TYPEINFO N <= 0 

<= succ(N) ,N 

e. g. DATA set(alfa) <= nilset ++ conssset(alfa, set(alfa) ) 

is converted into 

TYPEINFO S <= nilset. 

<= consset(A, S) ,S 

When the. straightforward type information that this default 

machanism generates is inappropriate, the user may provide his o'ýni. 

Typical occasions when this is necessary are when the user seeks a 
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recursion which retructures the data rather than simply rezurs-J-ng nn 

sub-components of it. Two examples of this have appeared before in 

this thesis: 

During transformation of the telegram problem the data ty 

instr.. earn, instream <= in(list list char) is used. We required type 

information 

TYPEINFO INS <= in(nil.:: CLL) 

<= in((sp:: CL):: CLL) , ýn(CL:: CLL) 

<= in((ap(A):: CL):: CLL) , 4,. n(CL:: CLL) 

The transformation of eqtips (second example of the transformation 

system primer) was based on restructuring binary trees, the data type 

DATA trecs(alfa) <= tip(alfa) ++ tree(trees(alfa), trees(alfa)) 

by using type information 

TYPEINFO T <= tip(A) 

<= tree(tip(A), T) ,T 

<= tree(tree(T]., T2), T) ; tree(T1, tree(T2, T)) 

The former example could perhaps be generated by a slightly more 

sophisticated default mechanism, and such a mechanism might be a 

useful addition to the system. The latter example is more tricky, 

because the last case does not decompose at all, only restructures. 

It has been my policy to leave such trickery to the user, who has the 

insight to see what form is required and when. 

7.3.2.2 Cases Default - 

When the user prefixes an argument within the left hand side of a 

goal with CASESOr, this calls in the cases default mechanism to split 

the goal by cor: si. dering the different ccrees that argument may tal"C . 



IMPLEMENTATION Page 7-13 

To do this, the mechanism examines the current type information 

corresponding to the type of the argument in question. The cases in 

the type information are taken as the cases for the argument. 

e. g. COAL funnyplus(CASESOF N, M) 

with type information 

TYPE INFO N <= 0 -H- succ N 

produces 

GOAL f unnyplus (0, M) 

GOAL funnyplus(succ N, M) 

For parameterised types (e. g. set(alfa)) the particular instance of 

the type of the argument is matched to the parameterised type, and 

the bindings so formed used in generating variables of the 

appropriate types for the cases. 

e. g. GOAL union(CASESOF NS, MS) 

where NS has type set(num), and with type information for 

set(alfa) 

TYPEINFO S <= nilset ++ consset(A, S) 

set(alfa) is matched to set(num), binding alfa to num, and this 

is then used to generate from consset(A, S) consset(N, NS) where N 

is of type num, and NS of type set(num). Thus the goals 

generated are 

GOAL union(nilset, MS) 

GOAL union(consset(N, NS), MS) 
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7.3.2.3 Pattern Default - 

This default generates simple patterns for use in right hand sides of 

goals. When an argument of the left hand side of a goal is pr_ t-Iixet 

by REC:. RSE, the default mechanism is called to generate simple 

pattern. 

The pattern forined consists of the function variable $$, around 

the following arguments: 

all the free variables of the left hand side 

recursive calls of the left hand side - recursing on the 

prefixed arguments. 

To form the recursive calls, the prefixed arguiiient is matched to the 

cases of the corresponding type information. If a match is found, 

and the matched case has recursive cases, these are instantiated to 

form the arguments for the recursive calls 

e. g. GOAL funnyplus(RECURSE succ succ P, Q) 

together with TYPEINFO N <= 0 

<= succ N, N 

succ succ P is matched by succ N, binding N to succ P. 

Instantiating the recursive case, N, gives succ P, so the 

generated pattern is 

$$(P, Q, funnyplus(succ P, Q)) 

e. g. GOAL treefunction(RECURSE tree(TR1, TR2)) 

together with TYPEINFO T <= tip(A) 

<= tree(T1, T2) , Ti , T2 

generates pattern 

$$(TR1, TR2, treefunction(TR1) , treefufction(TR2) ) 
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As a means of generating simple patterns, this default is effective. 

The most obvious occasions when the patterns fail are when functions 

include arguments which accumulate an answer being built up. 

e. g. -1-H- aplus(nu:; ), num) <= norm 

--- aplus(O, M) <= M 

- aplus (succ N, M) <- aplus (l-, 
y succ M) 

Clearly aplus (N; M) N+ N, but aplus is not a primitive recursive 

function because its second argument is .n accumulator for the 

answer. 

When making recursive calls to such functions, t' he £. rgitment(s) c-hich 

are accumulators will not usually remain the same in the recursive 

call, so the default pattern (which would leave such an argument 

unchanged) would fail. This is reminiscent of the difficulty Boyer 

and Moore's original LISP theorem prover had with such functions. 

A means of adjusting the default mechanism to cope with this 

problem might be to put $$ around all free variables of the left hand 

side in all positions within recursive calls which were not being 

recursed upon (just in case they were accumulators). 

e. g. for the earlier example of funnyplus, generate pattern 

$$(P, Q, funnyplus(succ P, $$<, P, Q))) 

Such liberal use of $$'s in argument positions will tend to slow down 

matching. With a small amount of analysis, accumulators could be 

detected so that only their argument positions need specie: 

treatment. 



CHAPTER 8 

COi3CLUS IONS 

In this chapter I summarise the work I have done, reflect o. C; e 

possible continuations I see for it, and contrast the overall 

approach with that of other researchers. 

8.1 SUMMARY 

The motivation for my research has been the need for bette, - 

method: of developing software. The method I have concentrated on is 

transformation, and I have taken a particular transformation 

technique invented by Darlington and Burstall, and investigated its 

application to larger examples. If transformation is ever to be a 

practical method, a transformation system to help us is essential, 

and a large portion of my effort has been devoted to developing such 

a system. 

The system and techniques are arranged in a hierarchical 

structure. The very lowest level of this consists of the small 

manipulations, folding, unfolding etc., which act as the foundation 

of the whole structure. The repeated application of these small 

manipulation:. would suffice to carry out our transformations, but on 

all except the <<<osr_ trivial programs they are too small scale to be 

practical. 
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Each successive level of the hierärchy 7erves to provide a 

higher-level view of transformations, whose justification lies in 

expansion to the next level down. 

The level. above fold /unfold is that of patterns -- these are the 

primary means of guidance for individual transformation steps within 

my system. The user need hardly ever consider the details of the 

lower level folding and unfolding, and patterns are the l. okest level 

of guidance he gives. Surrounding the use of patterns is the 

system's control language for setting up the context in which 

transformations take piece. The basic commands cri ýe viewed as the 

operations within this level of the hierarchy. The . system provided 

defaults can now be seen to act as means of simplifying the 

generation of sequences of these operations. 

Moving to the next level of the hierarchy, we find the tactics 

for making efficiency improvements to programs. At present these 

serve as entirely hand-applied aids to transformations. The 

application of a tactic will require the user to provide a sequence 

of system, commands to implement that tactic. 

Finally the highest level of the hierarchy is the overall 

strategy the user follows in performing the transformation. A 

strategy will expand into a sequence of applications of tactics - 

again this is entirely hand performed at present. Nevertheless, the 

user benefits be being able to see the overall organisation of the 

transformation if he adopts such a strategy. 

The questions that now need to be asked are 

Have my techniques and system been adequate for the problems 

considered ? 
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What is the range of applicabilty of this approach? 

8.1.1 Adequacy Of Techniques And System 

The transformations of the telegram problem and the simple 

compiler have been achieved using the system and techniques 

developed. The final NPL programs produced are as near as we can Set 

in NPL to the. efficient iterative solution, and the changes in 

structure and efficiency between start and end are very major. 

The last stage of converting from NPL to some imperative 

. Language is obviously crucial to the success of this approach. Since 

NPL has no destructive operations, there is an inherent inefficiency 

in NPL programs. I recognise that conversion to an imperative 

language is a non-trivial step, and certainly an area for further 

investigation. My concern has been in the transformations before 

this last step. 

In tackling the text formatter the system was barely adequate, 

and it became clear that there are some aspects of the large 

transformation that are not being adequately captured in any level of 

the hierarchical organisation. At the tactics level the combination 

of two complex functions may give rise to a choice between 

alternative calling structures of the combination, and what appears 

to be missing is the ability to express that choice in anything but 

the specific system commands of the next level down. 

The need to diverge at one point from the overall improvement 

strategy should not be regarded as a failure, indeed it is 

encouraging that so much of the transformation was achieved following 

the simple strategy, and by considering the hierarchy we see that the 
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simple strategy is hphaving as a default to suggest a sequenc_ of 

tactics to be applied, from which we diverge only if our intuition 

tells us it is necessary to do so. 

Problems have been brought to light by the text formatter 

transformation. This exercise has not had purely negative rest-Its - 

possible means to overcome the new problems have became apparent. 

One such improvement has been the incorporation of code to cause 

equations to be stored in a disc file, and only brought into core 

when required within the context of a transformation. This enabled 

the text formatter to be attempted within the available computing 

resources. 

Above all, this work has reinforced the need to always try 

larger examples rather than simply assume that current techniques 

will suffice and that no new difficulties will arise. 

Program maintenance is an area I have not had time to explore in 

depth, but certainly one of great practical importance. From the 

small experiments I have tried, the results are encouraging. The 

structured transformations do help when it comes to modification. 

Again there is a need for more investigation by trying larger 

examples to see what difficulties occur. 

8.1.2 Range Of Applicabilty 

A serious question is what is the range of programs that this 

approach can be applied to. In terms of sheer size of the problems, 

it is clear that this approach will need further development in orc'er 

to tackle transformations any larger than that of the text forýº te. 
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The fact that it has been used upon a pro cam of that size, 

larger than the trivia]. examples upon which the : *, cthods %. %2re 

originülly developed, suggests that the approach is not witioý-. it 

merit. As for the width of the range, it is clear that tlx: 

declarative nature of ; JPL is unsuitable for reprE. sedting, progp; i7,,:, 

which re.; upon sophisticated side effects, for example list co, yin;; 

al i-tlhrr. that achieve their time and space efficiency by cu; ining 

manipulation of pointers within data structures, A good deal of th; L 

c ffor. t of programming is not concerned with such problems, rather 

with the overall organisation of large programs. Cer+.. ainly there 

will always be the need to make some portion as efficient as 

possible, and if necessary such portions wi: '_1 have to be individually 

optimised (I do not preclude the use of other transforr_st. ion 

techniques to achieve this). I argue that the program organ.!. sauna 

can usually be tackled by the transformational approach. 

8.2 EXTENSIONS 

8.2.1 System Improvements 

The first class of extensions are those which can be seen as 

obvious improvements of the existing system. 

The simplest improvements would be upgrades rather than 

extensions - improving efficiency of the system, and interaction with 

the user. Such improvements tend to be never ending, as continued 

use of the system highlights the areas most needing attention. 

Within chapter 7, Implementation, I suggested how the default 

mechanisi: iý could be enhanced to uo more for us. I have beer. ward of 
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incorporating too many defaults into the systerd, preter; -_r' g to let 

the user guide the system through non-trivi&_1 transforr, aticns, and 

introducing a default only when I perceive it to be generally useful. 

Investigation of more examples is required to see which of the 

possible extensions to defaults are truly useful. 

At present the transformation strategy and tactics are 

human-generated, and serve to help the user guide the sys tem, rather 

than guide the system directly. The "comb Lne" and "tuple" tactics 

could be incorporated as commands to the system, which would be 

expanded into sequences of conventional transformation commands 

(CONTExt USING ... ). In the same fashion as the provision of defaults 

for patterns etc., I envisage a default being used to expand tactics 

into commands for simple examples, with the user stepping in only for 

more complex problems. From the hierarchical viewpoint we see that 

such an extension would essentially be the automation of the tactics 

level. In a similar manner the strategy level could be included 

within the system, and here the simple strategy I have been following 

would be provided as a default at this level. 

8.2.2 Extending Transformation Methods 

As I have already discussed in the summary, the transformations 

I deal with lead to programs within NPL, and conversion to an 

imperative language is still required. This suggests that the 

transformation system may form only part of a larger program 

development system, where a final NPL program is input to some 

further staý. o to do the conversion. This is more a matter of 

piugging in Cie system into a larger machine than extend in;, it. More 
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interesting are the possibilities for extend] i-g, the t ransforrý+tion 

methods themselves: 

One such extension arises from taking heed of scher_, ata--driven 

program transformation. (Darlington and Burstall ['976]) 

Transformations within my system very often do not rely upon the 

detailed behaviour of all the functions involved, for some of the 

functions perhaps only a few of their properties are sign ifi_cirt. 

Thus when faced with the transformation of similar programs, :: 'Lose 

functions are identical with respect to these properties, essentially 

the same transformation will suffice. This suggests that the first 

transformation could be generalized to form a transformation schema, 

the input being the generalized initial program, the output the 

generalized transformed program. Then when given what looks like a 

similar problem, it could be matched against the schema input and if 

successful, the schema output would be instantiated to give the 

answer. This would require the introduction of a schema matcher and 

some procedure for generalizing from a specific transformation to a 

schema. An alternative approach would be to transform schematic 

programs directly. This can be viewed as verifying schemata in terms 

of the unfold/fold operations, thus having the advantage of providing 

an easily extendible and verifiable set of schemata. Interestingly, 

whilst the possibility of incorporating schemata was apparent before 

the transformation of the text formatter, it was only during this 

that new difficulties arose to suggest that schemata might be 

necessary. I see their incorporation as the logical next step in the 

development of the system. 

Another direction to consider is based on changing NPL in some 

manner. Two deficiencies of NPL are the lack of any suitable form of 
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data abstraction, and of higher order functions. Tneir inclusion 

would add to our tools for writing well modular: sed easy to 

comprehend programs. At Edinburgh Eurstal l and MacQueen .; re wo _kin±_; 

on a new language, HOPE, which is essentially NPL with these features 

included. The transformation methods will require extension to cope 

with them. Hopefully such an extension would be fairly natural. 

Much more radical a change would be to introduce some form of 

destructive operator into NPL. The extension of the transfort atio 

techniques to cope with this would be much harder, however the 

potential benefits - the ability to transform to imperative programs 

and investigate algorithms relying upon destructive ogeratLons -- : wake 

this an-enticing area for study. 

8.3 COMPARISON WITH OTHER WORK 

Finally I contrast this approach to transformation with the wor; ý: 

of other researchers. 

One of the key decisions underlying my approach is the 

acceptance of user guidance. This means that my system does not 

attempt to transform programs totally automatically as does Manna and 

Waldinger's DEDALUS system. As a consequence of this I am able to 

tackle very much larger transformations which would be beyond the 

capabilities of DEDALUS like systems. The problems that automatic 

systems can handle (which might occur within larger transformations) 

require a small amount of user guidance within my system, and my 

approach has been to incorporate a few default º echanisms t: i ich the 

user can call into action when he perceives a transformation to be 

straightforward. 
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interactive systems which accept a sm21 {T^:: r of "ZI fr,? - 

the user, e. g. Darlington's system based upon: folding. /unfolding; are 

able to achieve more than the entirely automatic systems, but are 

themselves incapable of tackling the large transformations 1 have 

bean considering. The semi-automatic s, . stems commonly incorpozate 

several "strategies" for performing entire transformations which the 

user switches on or off. Within my approach such "strategies" are 

replaced by defaults within the hie: archicai levels of apt. - stem. 

Instead of being limited to only switching them on or of. f, the user 

can apply there; and override them at the points where his in ition 

tells him to do so. If automatic or semi-automatic systems are to be 

developed to be applicable to larger programs, I feel that soon form 

of structuring of the transformation process akin to my hierarchical 

arrangement is essential. 

The scope of my system is limited to manipulations %iýthin 

recursion equations, hence I am unable to tackle. problems such as 

recursion removal and conversion to imperative languages, which 

systems such as Darlington and Burstall's schema lased work was 

developed for. Bauer's proposed system would be very wide-ranging, 

encompassing the whole spectrum from high-level synthesis to 

manipulation of machine code. S-1gnIficantly this system Js planned 

to rely entirely upon user guidance to direct its application i-1h ough 

a transformation. 

Lastly there is the hand-performed transformation work, ,: cich 

has been applied to relatively complex algorithms, sometimes as a 

means of verification rather than software construction, as 

epitomised by iiartelli's transformation of an algorithr. to copy 

cyclic list structures. The final programs produced can be : '`ry 
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complex in operation, making use of side--effects, structure sharing, 

etc. This requires sophisticated reasoning during the 

transformation, well beyond the capabilities of any existing 

machine-based system. The size of the programs transformed by hand 

is not as great as that of the text formatter however, which suggests 

that although hand-transformation may be suitable for complex but 

compact algorithms, to transform a straightforward but long program 

is best done with machine aid. 
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APPENDIX A 

NPL 

NPL is a first order recursion-equation language designed and 

implemented by Rod Burstall at Edinburgh based on work l i..! in af--d Jr 

Darlington. Burstali [1977,1 provides a brief descirptlon of '17L, 

motivations behind its design, and desirable exte ions to it . In 

this appendix I informally describe the version of the language ; -sed 

in the ZAP transformation system. 

An NPL program consists of 

Infix and prefix declarations - these declare symbols to be 

infixes or prefixes 

data definitions - by which the programmer introduces his own data 

types 

type declarations for functions and variables 

recursion equations for functions 

A program is surrounded by DEF... ENID& Once the appropriate 

definitions have been made, the user evaluates expressions by 

enclosing them within VAL... END. The answer is printed on the 

terminal. NPL at present makes no distinction between upper and 

lower case, but for clarity I adopt the conventi_r. n of upper case. for 
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NPL keywords and variables, lower case for ev-ry-Lh i! g, : e'se. 

A. 1 INFIX AND PREFIX DECLARATIONS 

Page A-2 

Symbols to be used as infixes or prefixes must first be declared 

as such. 

e. g. INF 4- declares + and - to be i. nf xes with precedence 4 

(to indicate how tightly to bind to it6 argume t when expressions 

are not fully parenthesised). 

e. g. PRE 20 succ declares succ to be a prefix with precedence 20 

thus succ N+M parses as succ(N) +M rather than succ(N + M) 

A. 2 DATA DEFINITIONS 

The user may define his own data types by means of data 

definitions. 

e. g. DATA weekday <= mon ++ tue ++ wed ++ thu ++ fri 

DATA is a keyword to the NPL interpreter, announcing a data 

definition. "<=" and "+-¬-" are special symbols too; to the left of 

the "<=" is the name of the data type being defined; to the right, 

separated by "-F+"'s, are the cases of the defined type. 

Thus the example is defining a new type, weekday, which has 5 

different cases, mon tue wed thu fri. 

Similarly we might say 

DATA truval <= true ++ false (i. e. truthvaluesj 

DATA weekend <= sat ++ sun 

Previously defined data types may occur in defi ý tions of new 

t ypes 



NPL Page A-3 

e. g. DATA day <= dy(weekday) ++ dy(weekend) 

The "dy" is a constructor for days, converting a weekd=ay or weekend 

into a day. This is necessary; 

DATA day <= weekday ++ weekend 

would not suffice, since then "mon" could be either a weekday or a 

day. 

More interesting data types are built up recursively 

e. g. PRE 20 succ 

DATA num <= 0 -H- succ num 

defines a type num, either 0 or succ num. Thus expressions of this 
1 

type are 0, suet 0, succ succ 0, etc. This type represents natural 

numbers, either 0 or the application of succ (short for successor) to 

a number. Thus 5 would be written succ succ succ succ succ 0. 

Data types may be parameterised. 

e. g. INF 4 :: 

DATA list(alfa) <= nil ++ alfa:: list(alfa) 

defines a parameterised type list, of alfa"'s. ":: " is an infix 

constructor for lists, i. e. the infix form of cons in the LISP 

notation. The parameterisation allows us to build lists of any type 

we like (e. g. list(num), list(day), li. st(list(num)) etc). 

alfa acts as a type variable and is predefined by the NPL system 

(other predefined type variables are beta, gamma, delta, epsilon). 

Data types may be mutually recursive 

e. g. DATA globl <= nill ++ gl(glob2); 

glob2 <= ni12 +H- g2(globl) 

the "; " separates the data definitions to the right of the single 

"DATA", allowing the reference to gl. ob2 prior to its definition. 
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Some d-ºta types are alreAd declared by he NP), -)'; st. ': -Ir. These 

are truval, num, list(alfa) and set(alfa` . (This las:. Or. e, i b 

DATA set(alfa) <= nil-set +± conssLt(alfa; set alfa) ) 

Numbers may he typed in as decimals rather than many s'1cc' s.: "e 

irLterprcter converts them to the succ form for evaluation, and print 

them out as decimal: afterwards. 

Lists may be input Without needing to use many ":: "'s by pu: ting 

the elements to go into a lisr within squa-cc: brackets, separutcd by 

commas . 

e. g. [ 1,2, i 1 is equivalent to 1:: (2: (3:: ni1)) 

The interpreter reads in lists in either form, and prints them out 

using square brackets. 

A. 3 TYPE DECLARATIONS FOR FUNCTIONS AND VARIABLES 

All symbols to be used as functions or v:; riables must have their 

type declarations made in advance. 

Variable type declarations take the form 

VAR variable names separated by commas : type 

VAR is a special symbol to the interpreter, announcing the start of a 

type declaration. 

e. g. VAR N, M : num declares N and M to be variables of type num 

e. g. VAR NL : list(num) declares NL to be of type list(num) 

e. g. VAR A, Al : alfa declares A and Al to be of type alfa 

e. g. VAR omega : type declares omega to be a type variable 
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Function declarations take the form of an equation, the -Le`; 

hand side being the function symbol applied to argument(') which 

are its input type(s), the right hand side the result type. 

e. g. +i-+ square(num) <= num 

no is another special symbol to the interpreter, ind.. cý, r. ing the 

following equation is a function declaration. 11hus in the example 

square is declared to be a unary function accepting an argument of 

type num, and producing a. result of type num. 

e. g. INF 6+ 

+++ num + nt. m <= num 

declares + to be an infix binary function, taking numxrur, to num. 

e. g. +4+ length(iist(alfa)) <= num 

makes type declaration for length. Note the use of ri. 

parameterised type. 

A. 4 RECURSION EQUATIONS FOR FUNCTIONS 

These take the form 

left hand expression <= right hand expression 

it if is yet another special symbol to the interpreter. The left 

hand expression is of the form f(el,..., en), n >= 0, where f is 

the function being defined, and el,... en are expressions including 

only variables and constructor symbols. The right hand side is 

any expression, provided that all its free variables occur in the 

left hand expression. Before giving all the forms an expression 

may take, here are some simple examples: 

lengtli(nil) <= 0 

--- length(A:: AL) <= succ length(L) 
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--- square (N) N*N 

Evaluation of expressions makes use of these equations. Gig. c an 

expression to evaluate, the interpreter attempts to matcL. it (or 

portions of it) to left hand sides of equations. If a succes^ful 

match is found, the bindings of the Y ̂ riables . 1r. th, left hand 

expression are used to instantiate the variables of the right hand 

expression to give the answer. 

e. g. with the above equations, evaluating ertgt. (nß_l) gives 0. 

Evaluating length(l:: iL=1) gives succ length(r_ 1) . which in turn 

gives succ 0. 

Thus the equations can be thought of as rewrite rules, 

applied from left to right. Evaluation 1s call-by-value, i. e. 

leftmost innermost portions of expressions are evaluated first. 

Evaluation continues as long as possible, until no further 

evaluation is possible. 

In addition to variables and applications of funct-Ions, 

expressions may take the following forms: 

A. 4.1 N-tuples 

These are written as <e1, ..., en>, n >= 1. 

The type of such - expressions must be written as 

tuplen(type 1, .. -, typen) . 

e. g. ++-&- pairnum(num) <= tuple2(num, num) 

-- pairnur, (N ) <= <N9 N+1 ý 

In fact n-i: uples act as constructors, and may occur Within left 

hand sides of recursion equations. 
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A. 4.2 Where Constructs 

These take the form 

expression) where <V 1, ... Vn> == expression2, n >= 1. 

Expression2 must have the same type as <V1,..., Vn>, i. e. an 

rL-tuple. V1,... Vn are variables which within the scope of 

expressions become bound to the corresponding components of 

expr. ession2t if it can be evaluated to an n-tuple. 

e. g. N+N where <N> -_ <1> 

e. g. NI-N where <N, M> == (<P, 2> where <P> == <3>) 

A. 4.3 Conditionals 

A special three argument function, cond, is provided by the 

system. Its type declaration is 

+f+ cond(truval, alfa, alfa) <= alfa 

The interpreter first evaluates the first argument, and if this 

evaluates to true, only then evaluates the second argument to give 

the answer, else if to false, the third argument. 

e. g. cond(N=0 ,0, M/N) will evaluate MIN only if N=0 evaluates 

to false. 

For certain uses cond is somewhat clumsy to write. 

e. g. cord(p0(N), f0(N), cond(pl(N), fl(N), f2(N))) 

this can be written more easily as 

--- g(N) <= f0(N) if p0(N) 

<= fl(N) if p1(N) 

<= f2(N) ifnot 

(Omitting the all encompassing final ifnot clause is possible but 
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not recommended! ) . 

A. 4.4 Set Expressions 

These approximate traditional mathematical notation for sets. 

e. g. <: 1,2,3 :> 

"<: " and ": >" are set brackets. The expression builds the set of 

elements 1,2,3 . Thus the set brackets are analogous to list 

brackets, except they do extra work to remove duplicate elements. 

e. g. <: f (N) :N in es & p(t1) :> 
I 

es is any expression evaluating to a set. 

p(N) is an optional predicate (i. e. evaluates to a truval) 

possibly including occurrences of variable N. 

f (N) is an expression, possibly including occurrences of 

variable N. 

The result is the set of f (N)`s for all N in es such that 

p(N) is true. Omitting the predicate is equivalent to putting 

true in its place. 

e. g. <: N: N in <: 1,2,3 :1-, :> 

evaluates to <: 1,2,3 :> 

e. g. <: N+N :N in <: 1,2,3 :>&N%1 :> 

evaluates to <: 4,6 :> 

Several bound variables may range through sets 

e. g. <: f (N, M) :N in es & p(N, M) , 

M in es l& p1(M) :> 

so, e. g. <: N+M :N in <: 1,2 :>, M in <: 3,4 :>: > 

evaluates to <: 4,5,6 :> 
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A.! ý. 5 "all" And ",;:: tý: " Expressions 

In a sis filar manner to sec expressions, these are modelled 

upon traditional inathenati_cal flotation. 

e. g. ALL N in es : p(N) 

e. g. EXISTS N _n es : p(N) with obvious meanings. 

e. g. ALL N in <: 1,2,3 :>: N f= 0 evaluates to true 

A. 5 EXAMPLE PR OGRAM 

Comments mad- be included in NPL programs by prefixing them 

with "///". They are terminated by the next NPL special symbol 

(i. e. one of +++ ---- END INF PRE DATA). The following is an 

example NPL program: 

DEF 
/// define numbers, addition, mutiplication and factorial 

I 

INF 20 succ 
DATA num <= 0 +4- sVCc uum 

VAR N, M: num 

+++ nurs + nu; n <= num 
--- 0+ Iv <= N 

--- succ M+N <= succ(M + N) 

INF 6* 
+++ num * nun <= immi 
--- 0*N <= 0 
--- succ If *N <= N+ M*N 

+++ factorial(num) <= num 
---- factorial(O) <= 1 

--- factor; al(succ : y) <= succ N* factorial(N) 

END 

After this we could say 

VAL factorial(3) END which evaluates to 6. 
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A-6 NPL SYNTAX 

I adopt the following syntax conventions: 
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Lower cases indicates a non-terminal. 
"... " indicates (optional) repititior., the separator being 
the item to each side of the "... ". 

NPL program :: = DEF stp. tement. ". statement END 

statement :: = INF precedencedec 
PRE precedencedec 
DATA datadef ; ... ; datadef ( VAP. vardec 
-i-I-l- jlndec I --- receqn 

preceder. cedec :: = num syrabol , ... , synhol 

'datadpf :: = type`xpn = typeexpr_ ++ ... ++ typeexpr. 

typeexpn :: = symbol I 
symbol ( typeexpn , ... , typeexpn )( 
pres}nnbol typeexpn ý 
typeexpn. infsymbol typeexpn 

vardec :: = symbol , ... , symbol : typeexpn 

fndec :: = fndeclhs <= typeexpn 

fndeclhs :: = symbol ( 
symbol ( typeexpii , ... , typeexpn 
presymbol typeexpn ý 
typeexpn infsymbol typeexpn 

receqn :: = pattern expn i 

pattern <= expn IF expn i. fclauses 

ifclauses :: = empty { <= expn IF expn ifclauses ( <= expn ifnot 

, pattern :: = symbol I 
symbol ( patexpnlist )I 
presymbol patexpn I 

patexpn infsymbol patexpn 

patexpn :: = symbol. I< patexpnlist >I[ patexpnlist ] 
symbol ( patexpnlist )I presymbol patexpn 
patexpn inf symbol. patexpn 

patexpnlist empty I patexpn , , patexpn 0a0 

expn :: = symbol { symbol ( expniist 
presy: iirt, o?. expn expr, irnfsy: nbol expn ý 
[ expnlist l(< cxxpnlis: _ *, I whereexpn ý 
setevpn I allexPn I existsexpn 
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expnl-i st :,. = empty I expr. , ... , expn 

empty - 

whereexpn :: = expn WHERE tuple == expn 

setexpn :: = <: expnllst :>I 
<: expn : generator , ... s generator :> 

generator :: = symbol IN expn symbol IN expn & expn 

allexpn :: = ALL generator : expr. 

existsexpn EXISTS generator : expn 

infsymbol :: = symbol ** But must have been 
declared as an infix 

presymbol symbol k* But must have beea 
declared as a prefix 

symbol :: = alphabetic I alphabetic alphanumeric. --alphanumeric 
sign... sign 

alphabetic :: = AIBj.... IZ 

alphanumeric :: = alphabetic I numeral 

numeral :: = 01j.... j9 

sign :: =+ I<I>I: I@ 


