A SYSTEM FOR DEVELOPING PROGRAMS BY TRANSFORMATION

by

‘Martin Stephen Feather

Ph D

~University of Edinburgh

1979 \

I
[4. 220N 5 L8

ACKNOWLEDCEMENTS

ABSTRACT

Chapter

le Introduction
2. The art of programming
l. Difficulties of Progyranniing
le Structured programming

2. Verification

3. Program maintenance and modifiabtility
4. Sidestepping the problem
2. The potential of program transformation
3. My own approach towards a transfoimation system
l. Underlying method of transforming
2. Level of transformation
le Traunsformation context
2. Pattern directed transformation

3. Control of the system

4. The use of defaults
3. Review of state cf the art
1. Overview
2. Martelli
3. Pepper et al

4. Manna and Waldinger

5. Darlington and Burstall

6. Burstall &1 Darlington
4 User view of system
l. ZAP program transformation system primcr
2. ZAP program transformstion system users’” manual
5. Transforming large examples
l. Transformation tactics
l. Combining tactic
2. Tupling tactic

2. Transformation strategies

3. The telegram problem
l. English specificaticn
2. Design of protoprogram
3. NPL protoprogram
4o Transforming to efficient versicn _
5. Final program
6. Modification of telegram problem
e Simple compiler
l. Design of protoprogram
2. NPL protoprogram
3. Transforming to efficient version
4. TFinal program
5« Remarks on transformation examples

6. Transformation of a text formatter

l. Informal specification of the text formatter
2. Design of protoprogram

3. NPL protoprogramn

4. Evaluation of text formattiug programs

7

l. Satisfying informal zpecificaticu

2. Resolving ambiguities in the informal specification

3. Changing/extending the program
5 Transformation to efficient version
6. Final program

Implementation

l. General details

2. NPL level

3., Transformation level

l. Utility section

2. Control section

3. Transformation step section
l. Expansion of expression and pattern

le Normalisation of iterative constructs

2 Normalisation of conditionals

3. Normalisation of where constructs
2. Matching of expression and pattern
3. Instantiating pattern to fcrm answer
4. Default section

l. Type information default

2. Cases default

3. Pattern default
Conclusions

l. Summary

l. Adequacy of techniques and system
2. Range of applicability

2. Extensions

l. System improvements

2. Extending transformation methods

3. Cowparison with other work

BIBLIOGRAPHY

APPENDIX -~ NPL

ACKNOWLLO el T

I would like to express my deepect gratiitude tc the following
people and organisations:

To my supnervisor, Rod Burstall, for his constant encouragement
and assistance throughout;

To John Parlington who, with Rod Burstall, first aroused my
interest 1in program transformation and prcvided the underlying work
which served as my starting point, and has been helpful throughout;

To Dave MacQueen, Alberto Pettorossi, Gordon Plotkin, Robin

Popplestone and Jerry Schwarz for useful discussions cf

transformation and related topics;

To mnmy past and present colleagues of the Department of

Artificial Intelligence for making my stay in Edinburgh so enjoyable;

To the Science Research Council for providing financial support

and computing facilities.

ABSTRACT

Much of the difficulty of programming can be atcributed to the
clash between the goal of efficiency and other desirable goals, such
as clarity, reliability and mcocdifiabiiity. This thesis proposes
program transformation as a suitable methodoleogy fcr program
development to circumver.t this difficulty.

Following this methodology, a =zrogram is developed by first
writing a simple straightforward solution to the problem, urhamperec
by efficiency considerztions. Efficiency is then iatroduced 1in a

separate step by transforming the simple solution.

In order that this be 2 practical methodology, transformation of
large programs must be possible to perform reliably and easily. 1ris
thesis presents an implemented macnhine-bssed transformation system
which attempts to realise these neceds.

The system is based on a concise and powerful transformation
method due to Burstall and Darlington. The emphasis of the systenm is
on making it easy for the user to control the system through a
transformation. Guildance is expressed in a comnmand language, so that
commands may be saved and re-run, modified, or viewed as
documentation together with the initial program.

The level at which guidance i1is given 1s higher that the
low—-level wunderlying manipuiations. Techniques for organising the
transformation of large programs at even higher levels are presented.

Some non trivial progrems and tuheir transformation as achieved using

the system illustrate these features.

CHAPTER 1

INTRODUCTION

The use of computers is continuslly increasing, and a great deal

of research 1s being done into tnhz hardware and softwarc azpects of
computing. Progress on the hardware side nas led <o cheaper and nmore
efficient machines, so the cost (in both time and money) of providing
and maintaining software is becoming increasingly significaant. Since
the 1late 1960°s the existernce of the s0 called software crisis has
been recognised - that is the difficulty of specifying, developing
and mnmaintaining large pieces of software. Consequently there is a
great deal of interest in devising methods to ease thce task of

programming.

My own research has concentrated on one of these potential
methods - program transiormation. This is a design methodclogy that
suggestes we produce a program in a two-stage process; firstly, write
a simple pregram without regard for efficiency of execution (so
freeing us to aim for «clarity and correctness); the required

efficiency is achieved in the second stage, in which we transform the

initial program. In waking this separation we hope to benefit by

ending up with arn efficient program (as we would if we used sore

other design method), yet one which is much more reliable and better

documented througn beling derived from a simple initial program.'

INTRODUCTION Page -2

Other rese:irchers have already iavented ways of tirans
programs. Rather than look for yet more such wavs, or to oxfend taen
to some new domain, my decision has been to take what appeared to be
a promising approach, invented by Burstall and Darlington, and
attempt to develop it further in the direction of practical
applicability ty trying it on larger and more complex examples. If
transformation is to become a practical methodclogv, it must be both
easy and reliable to perform. This dimplies the need 1or a
machine-based trancsformation system to aid wus in transforming
programse. Such a system would provide reliability, and give
assistance by removing the drudgery of carrying out mnany small
operations by hand. Darlington had already developed a
semi-automatic system based on the transformation method he invented

with Burstall. Al though his system performed impressively on small

examples, it did not seem to be practical for use on larger programs.

A major part of my work has been to produce my own
transformation system which is intended to be a suitable tool for use
on larger programse. The system adopts the Burstall-Darlington

transformation method as 1its wunderliying means of transforming

programs, however the transformation steps which the system

-Implements are at a higher level than these underlying operations.

Each system step can be justified in terms of many small steps, but
the wuser 1is saved the need to think at the rather low level of the
small steps. An important design decision behind my system has been
to accept, 1in fact encourage, user guidance. As an investigation
into the practicality of transformation, I consider it better to see

how much can be achieved with the aid of a machine-tased system

TTRODUCTION Prpe 1-3

rather than to see hsw far a totally automatic approach ecan be
pushed.

To run my system, the user provides a series of couwmands ‘o 4
specially designed control language. Such commands ray be given at
the terminal, or stored in a disc file and executed (or a mixfture of
both). The commands form a readable account of the traunsiormations
carried out, and serve as documentation showing how the initial

program is transformed to attain the final, efficient, prograu.

With the aid of my system I have tackled the transformation ot
some non-tiivial programs. In doing so, the need to structure the
transformation process itself has become apparent. To organise a
large transformation, I have developed efficiency introducing
"tactics", and an overall "strategy'" for applying these tactics. In
the same way that the transformation steps of my system are at a
higher level than the underlying transformation steps uvupon which thev

are based, the tactics and strategy can be viewed as acting at a yet

higher level in the transformation process.

I have deliberately attempted transformations of programs
considerably larger than the examples hitherto tackled. My belief is
that an easily guided interactive system is the only way to deal with
programs of this scale - a totally automatic approach suffers from
the combinatorial explosion of possibilities, and anm entirely
hand-performed transformation of programs of this size would bc¢ oo

tedious to perform correctly, if at all.

The layout of the remaining chapters of this thesis 1is as

J

follows:

INTRODUCTION Cogr =4

Chapter 2 - Ain expansion of my motivaiion for couzidaring progrét

transformation, and for the design cdecisions behind by «¢ystem.

Chapter 3 - An examination ot cother Yesearci into prograc

traasformation. A cselection of other peoples” wverk illustrates

different approaches to, and uses or, transforwation.

Chapter 4 -~ The instructions on hcw to make use of my transformation

system.

Chapter 5 - The transformation of non-trivial programs. The tactics
and strategy I have developed =zre described. Two non-trivial
programs and their transformation as achieved with the aid of ay

gsystem are presented.

-
3
1

Chapter 6 - The transformation of a text formatter. This program is

considerably larger than the examples presented in chapter 5, and T

discuss the difficulties which its transformation brought to light.

Chapter 7 - Significant implementation detsils of my system.

Chapter 8 - Conclusions to be drawn from the work done, and possitle

avenues for further researche.

CHAPTER 2

THE ART OF PROGRAMMING

This chapter examines th2 task of progromming to see why 1it 1is
hard, then expounds the potenticl o prograwm transfcrimation as a
programming method, and fipally presznts my own approach to

investigating whether this potential can be rcalised.

2.1 DIFFICULTIES OF PROGRAMMIKG

Computer programming remains a diificult task requiring wmuch
effort and intelligence. Large software projects can require many
man-years of work to complete, and witn the continuing hardware
developments, software costs are becoming the major expense. In
order to determine the causes ci the difficulty, we nust examine the
interactions between the goals we seek to satisiy when programming.
Typically when writing a program we have scme or all of the following

objectives in mind:

Correctness - the program should perform correctly the task we

intend it to do.

Efficiency - despite the coatinual reduction in costs of

hardware, and increases in performance, preograms nust s<ill pe

THE ART OF PRCGRAMMING

)
0
e,
s

o
4

NY

reasonably efficient. Often it will not be necessary 0
achieve the wultimate efficiency possible, but there can stiil

be a large gap between an arbitrary program and a tolervably

efficient program.

Clarity - ideally programs should be easy to understand. When
this 1is mnot so, supplementary documentation is required to

further clarify the bebaviour ol a program.

Modifiav.ility - very often the program we {irst produce wilil
need to be modified to perform differently later cn. Ideally,
our initial program shculd be capable o0f relatively easy

modification when the desired changes in the task are not too

drastic.

It is the attempt to simultaneously satisfy these goals that
introduces much of the difficulty iatoc programming. Eifficiency irm
particular seems to interact unfavourably with the other goals. In
achieving efficiency we usually pay the price of decreased clarity,

and risk 1losing correctness. To achieve efficiency involves

combining what we originally conceive of as distinct activities so as

to benefit from cdoing them all at the same time, thus destroying the

program’s modularity.

A widely~used approach tc developing programs is to write them
haphazardly, and then eliminate errors by testing. This can hardly
be regarded as ideal. We are unlikely to be able to test all paths
in the solution, and may well find that some errors remain

undetcctec, only to emerge later when the program is in use znd some

THE ART OF PROGRAMI{ING Page 2-3

unforseen set of circumstances brinsz them vo i1ight. What may seem a
ciear feature to the programmer at the time of writing may be hard

for others, or even that same programmer some time later, to follow.

2.1¢1 Structured Programming

Approaches to alleviate some of these difficulties have been

developed under the name of "'structured programming'. Noted texts on

this methodology include Dahl, Dijkstra and Hoere [1972], Dijkstra
[L976]. St.ructured programming has two aspects - one is the feature
of a structured program: For example, we are encouraged to avoid the
arbitrary use of 7goto’s, and instead use while-expressions and the
like. This does not tell us how to write structured programs, only

what features tend to make programs unstructurede.

The other aspect is the orderly development of a program - i.e.
structured programming. I consider stepwise refinement, and data
abstraction. Stepwise reifinement is the development of a program
from a specification of the problem by a progression of stages, each

going into more detail than its predecesscr. Calls to procedures are

written firsct, before their bodies - in doing so clarifying what the
procedures are to do. Hhilst thie 1is better than an entirely
haphazard development, we are not guaranteed to avoid introcduction of
errors during the development. Also, we are expected to make
appropriate choices at each level of refinement. As we descend into
more detailed levels, the earlier decisions dictate constraints which
cannot be changed without going all the way back to them and re~cdoing

the developuent from there. A feature of stepwise refinement which

THE ART OF PROGRAMMING Page -4

will be seen to contrast with transformation is the way in which the
overalllstructure of the final algorithm is fixed frem the very start
of the development process. The procezs is, as its name suggests, a
refinement, descending into more detail but nrot carrying out any

major structural changes. Thus the approxjimate structure cf the

1

final efficient algorithm must be present during all stages of

i

design. ror purposes of clarity, modifiability and verification we
would like to deal with program structures not encumbered by the

additional complexities of efficiency. Stepwise refinement is of no
assistance in making major structural cuanges that incorporating

efficiency into a naive algorithm would require.

Data abstraction is the development of a program by building the

algorithm around the data structures appropriate to the problem, and

the operations we require upon them. This provides a <form of

modularity. We make a distinction between the operations upon the

abstract types, which we use throughout the program, and the actual

representation of the types and implementation of the operations in

terms of features actually available in the language. This

implementation 1is hidden frcm the rest of the program. It gives us

the security of knowing that the objects we build up are well formed.

The modularity.allows us to change the representation by only having

to consider the part devoted to representation, the calls to abstract

operations throughout the remainder of the program remaining
unchanged.

Unfortunately efficiency may force us to abandon our good ideals

once &again. We are tempted to relax the barriers hiding

representations so as to be able to make computational short cuts

TRE ART OF PROGRAMMING Pape 2-=

based upon our knowledge of the reprecentation in use. For cxample,
we may be manipulating sets of objects. O(ur representation ior sets
may be such that for a given set, seleciing elewments from it alvays
produces them in the same order. We might take advantage of tbis
prope2riy in the main body of the program, which could lead to trouble

if we were to change the representation later so that the property no

longer held.

2¢e 1.2 Verification

If one of cur fundamental goals 1is correctness, we mwmay be
prepared to put a lot of effort into developing a program and then
proving it correct with respect to some specification. Although this

does not aid modifiability or <larity, there may be occasions vhen

these are not regarded as essential - typically when we wish ¢to
generate a ''service'" program which 1is to be used often, and must

perform faultlessly.

Program proving has developed from the early work of McCarthy
[1963]), Floyd [1967], Manna [1969], Hoare [1969] and Burstall [1969].
The most 1intricate verifications have been performed by hand,
requiring considerable insights into the problems. To combine the
reliabilty of a machine based system with th; intuition of a human,
work has been done to develop interactive verificatiorn systems (e.g.
Good [1970], Topor [1975]). Fully automatic verification systems have
had their greﬁtest success on rather limited domains of programs.
Functional languages are seemingly easier to prove properties about
than conventional 1imperative languages. Work done by Bover and Moora

[1975]), and Aubin [1976] demonstrates this. Despite the considerable

THE ART OF PROGRAMMIING Page 2-¢

attention this area has received, there have »zeir no greac
breakthroughs - the main result to emerge has been the realisation
that program verification is hard.

Sometimes verification has the teneficial side effect of
providing insights into the behaviour of a program. For example,
asgsertional methods of verification can give rise to invariants which
are 1instructive abcut performance. To follow th2 whole of a
verification in order to understand the program may itseif be rather
tedious. Indzed, for non-trivial programs, the entire verification
may be so lengthy that to follow through 211 of it would be of no
value 1in convincing us of dits wvalidity. This is one of the
considerations behind the implementation of LCF (Milner [1972], and
Gordon, Milner and Wadsworth [1976]), which is designed to allow us
‘to make proof generators, taking us away from the detsiled 1level of
the proof itself, and making the overall proof generation and
comprehension much easier (Cohn [197¢]).

Despite this sort of advance, as a method of understanding
programs verification i1s not ideal. The intertwining of algorithmic

details with efficiency details means we must try to comprehend

details relating to both at once, instead of being able to break the
problem down.

Verification presupposes that we can produce an acceptable
specification. not always a trivial operation. Programs whose
description are given loosely in English, but for which no simple
formal specification are apparent are particularly hard to specify.

(How, for example, does one concisely specify a text formatting

program? . In writing the program we must resolve ambiguities which

may be present in the informal presentation. The danger is that from

THE ART OF PROGRAMMING Page 2-/

the final program aloue 1t might not be clear how the ambiguities
have been recolved - worse still, we wmay never have nunoticed the
existence of some of them, and unwittiagly wadce choices wnich turn
out not to be the hest. An illustraticn of this is +ith« Telegram
Problem, c¢riginally presented by Henderzon and Saowdon {197Z2] as an

example of structured programming not preventing the introducticu of

EYICI S The specicfication of this problem is given in English, and
as such is inconplote. This is one of my examples in Chapter 5, <0 I

reserve further discussion of this until then.

213 Program Maintenance And Modifiability

In practice a considerable amount of effort 1s devoted to

program maintenance and modification. Once a program has been
written it may necd modifying because 1is behaviour is not as
expected, or the desired b@haviour -~ i.e. the specification -
changes. Indeed, for many applications we may expect our
specification will change in the future, but at the time of initial
design cannct predict what these changes are to be. Making changes
in programs designed for efficiency 1is extremely hard to do
correctly. An adjustment to make one change may 1intrcduce other
undesirable changes in the process. Certainly the clearer a?d better
modularised a program is, the easier it will be to see howv and where
to make a required change. Uniortunately even if our efiicient
program is clear and well modularised, incorporating a succession of
ad hoc changes will break down modularisation, making further changes
increasingly hard tn perform. This is observabkle in practize in the

development and maintenance of large programs, when after a certain

THE ART OF PROGCRAMMING Page 2-8

point it becomes worthwhile to re-write the =2ntire progrem completely
rather than continue attempting to maxke changes to what has
degenerated into an unstructured mess. Structured progranming
techniques do not help us make changes in programs whilst prescrving

Structurednesse.

2.1.4 Sidestepping The Problem

We see that we face the task of attaining several incompatible

goals. Fundamental to their incompatibility is the clash between
good structure and efficiency, both of which we desire. Because of
this, any approach to programming intended to produce just a single
program satisfying all our goals seems doomed to failure.

I now consider methodologies designed to get around this

problem:

An interesting approach that has received only a small amount of
attention 1s to describe a program in two parts. One part is a set
of recursion equations, predicate logic, or some similar presentation

of the basic description of the program. The other part is a set of

annotations which further indicate how the equations, logic, or
whatever, are to be used to calculate the results.

We imagine the existence of a compiler which accepts both of

these parts, and runs the program in the indicated fashioun. The

advantages of this apprcach stem from the additional modularity we

get from the separation of the basic description (the "what" part)

from the operational aspects given in the annotations (the "how"

part). This wmodularity helps improve the simplicity and clarity of

THE ART OF PROGRAMMING Page 2-9

the whole, thus making it potentizily easier to understand, veriry
and modify, vyet combined with the compiler the running pregrawn necd
be hardly less efficient than 2 program we would have developed

conventionally. Work of this nature has been done by Hayes [1573],
Kowalski [1977]), Schwarz [1977] and Warren [1977].

This approach may be unable to achieve quite the efficiency that
code compiled specially for the problem can. Also, it is not clear

how large a set of annotations, or whatever are used to specify the

"how'" part, will suffice for most of the behaviours we are likely to

want. There is scope for further investigation in this area, but

this is not the direction I have chosen to investigate.

The approach I would like to consider in some detail is program

transformation.

2.2 THE POTENTIAL OF PROGRAM TRANSFORMATION

The "transformaticnal' approeoach to programming suggests that we

develop programs by first ignoring efficiency aspects, writing the

clearest, most straightforward program possible to perform the task.

Then, as a separate process, transform this into a sufficiently

efficient version.

In the real world of commercial programming, M. Jackson [1975]

has done much to highlight the fundamental difficulties in program
design, and his techniques for construction of programs are related

to the fundamental issues behind the transformational methodology.

By adopting this approach we do not have a single program which

we examine for each of our criteria, instead we have two programs -

TRE ART OF 7P 4LLAMMING Page Z-10

the first simple program, which I ca*l & TROIOPROGRAM, will serve &S
our precise sgpecification. Because its design 1is unhampered by
efficiency considerations, it will reflect only what we want done,
without confusing us with the precise details of how it should be
decne. This gives us the scope to muse any techniques we wish tc
produce a clear program. We are now free to make use of functional
Janguages, based on expressions and recursion. Assignment can be
disallowed, since 1t 1is a major source of error introduced on

efficiency grounds. Ve can tailor data types to our requirements

rather than to the implementation. High-level constructions related
to our data types can be permitted ~ for example, if we were dealing
with sets, we would want to converse in set expressicns of the form

{ £(x) : x in S and p(x) } instead of having to explicitly construct

looping or recursion over set S. Modularity and data abstraction can
be used to divide large prograwms into self-contained pieces.

If we wish to prove correctness properties, it will be easier to
do so on the protoprogram than when efficiency has been incorporated.
Ambiguities in the informal specification will be resolved 1in the
design of the protoprogram - which we are much more likely to write

to perform as we desire - and the choices made will be readily

determinable from this later.

Almost always our protoprogram will be unsuitable for practicsal
use. The transformation process aims to convert the protoprogram
into an equivalent, but nuch more efficient, version. Proviced the
transformations preserve correctness, the final program will be as

correct as the initial one. The documentation for the final program

is the protoprogram together with a descriptiorn of the transformation

THE ART OF PROGRAMMIAG Page 7-11

steps applied to iv. Further, each funztion of the iinzl program has

its effect expressed irn terms of the funciions in the =rotoprcgrame.

Modification canr now take two differeznt forms. The 1irst 1is
when the protoprogram remains unchanged, but we nead to adiust the
transformations in order to direct them towards changed efficiency
criteria. OScrting problems illustrate this feature ~ for example, if
for some domain comparisons are ‘''cheap'", our efficient algorithm
might perform wany of them, reducing the number of exchanges between
items. If, however, we wish to sort in a differeunt domain where
comparisons are expensive, we would want to change the
transformations toc head towards an efficient program which minimises

compariscns rather than exchanges.

The alterpative form of modification concerns changes to the
protoprogram, i.e changes 1in specification. The simplicity of the
protoprogram should permit changes to be incorporated =asily and
correctly. This contrasts with the difficulty inherent in altering
efficient code - bectase this tends to be very intertwined, even

small changes mav have far reaching and hard to determine

repercussions. Our crucial step is how the transformation of the

modified protcorogram goes through. Our hope is that the original

.transformation will not require much adjustment, and that detecting

where changes might be necessary will be easy. If this is the case,

we have avoided the need to re-do all the transformation work, and
reliable modification will not imply excessive amounts of effort. Of

course, for some changes the transformation will require very

significant adjustment, leading to a very different final program.

In such cases it would almost certainly have been impractical <o

THE ART OF PROGRAMMING Page 2-12

modify the first efficient program, although perhiaps this would not

be obvious until we had expended some futile eifort tryirg te do so.

Programming purely £for clarityv, discarding all tkoughts of
efficiency, can be <cuprisingly hard for someone fawmiliar with
conventional styles of programming. We tend to perferm mental
optimisations when writing programs. The danger is that what may
seem at the time a simple optimisation can later seem rather hard,
and we then regret having attempted to take thic short cut on

efficiency grounds. This is a habit which must be overcome if we are

to make the most of this approach to programming.

Compilers can be viewed as very straightforward, totally
autonmatic, transformers, converting from a source language in which

we can write and think more easily about programs, to mwmachine code

for executing them. We sacrifice sonme efficiency in exchange for the

high level language. Notice however that the source code we write
closely 1influences the behaviour of the machine. Even in optimising
conmpilers the algorithmic changes are very low level (such as removal
of redundant calculations from 1loops). The dimprovements I am

concerned with here are of a much more sweeping nature, 1involving

overall modification of the algorithms used.

Thus program transformation has the potential to be an extremely
appropriate method of developing programs. Whether this potential

can be realised depends upon how easy or otherwise it will be to

carry out the transformation itself. 1If this turns out to be a long

and difficult activity, we lose the advantages we hoped for. A long,
hard to follow set of transiormations does not serve as

documentation, would te hard ¢to wmodify, and could well contair

THY ART OF PROCTRAMMING Page 7—~13

eYTO:L 8. Froim the state of the art survey (Chapter) we see tnat
most of the work done se Zzr has Leen on only very small problzams,
ror which it has been a trivial operatioir to write the final program
stralght off, so these alone must not be regarded as a guarantee that

B]

the method is appropriate for 'real 1lite" problems. Ve need to
assertain how the difficuity and length of the transforwaticn
increases with the difficulty and 1length of the initial program.

Intuitively we see there are some problems which are intrinsically

complicated without Dbeing particularly large (e.g. Dijkstra’s

on-the-fly garbage collector, Dijkstra [1976ajJ) and at the other
extreme, large but simple problems (e.g. a payroll prngram). Worst of
all are those which are both complicated ard large (c.ge. cpereting

systems). Schematically, the distribution probably locoks like:

- trivial problems
- complex but swmall
large but simple
- large and complex

£ WO
I

Region 1 is as far as earlier machine~based transformation systens
have progressed. This thesis is an attempt to push intc region 3.

Tranasformation work must be extended further into non=-trivial

problems to give wus an indication of how it will behave. As the

problems become larger but no more complicated we would hope that the

THE ART OF PROGRAMMING Page 2-14

difficulty of the transformation would uct increase excessively =
only its length. We might expect a situacion analagouc to that 1n
program verification, where the connicte proof, whilest not having

much intellectual content, is so 1lengthy as to be practicolly

unintelligible by humans.

This and other considerations tead us to suggest a machine based

transformation system. The advantages of this would include

Reliability - the system would not make mistakes in performing

transformations. Provided our underlying method of

transformation was valid, we would be assured of maintaining
correctnesse.

Book-keeping - the relatively boring and repetitive tasks in
the transformation could be left to the system, thus greatly
easing the burden on us.

Discovery - the system might be able to assist 1in the
transformation process, suggesting alternatives to the user
running it, and/or filling in details when following a
user-provided suggestion.

Control - we might be able to issue commands to the system at a
level above that of the basic transformation steps, thus
overcoming the difficulties associated with the sheer length of

the solutione.

Making the assumption that a machine-based system is desiratle,

we still have choices to make. Firstly, we must decide what the

basic steps cf the transformation are to be. Since the correctness

of the entire transformation will depenad upen the correctness of the

THE ART OF PROGRAMMING Page 2-13

individual steps, it nmignt be conveeient if there were only a limitec
number of them, rather than allowing additionsl ones to <&
introduced, each requiring verification. At the sams time we wust
decide what language we will write ¢thz initial) prepram in, and
between what languages the transformations act.

Secondly, we have to determine to what extent (ke system will

behave automatically. There 1s a&a trade—-off between the need to

interrogate the user for guidance and the waste iJnvolved 1if the

system futilely goes down blind alleys rather than seek such advice.

At present it would be 1rash to «claim that sowme particular
approach is the best -~ we must try those that appear plausible, and

see whether they confirm that program transformation could achieve

ey - Nl e

its potential as a good approach to developing programs.

2.3 MY OWN APPROACH TOWARDS A TRANSFORMATION SYSTEM

My two main objectives have been to:
explore further into the region of non-trivial problems;
develop a system capable of use by people not familiar with its

implementation.

With these in mind, the choices I made were as follows:

2.3.1 Underlying Method Of Transforming

I chose the fold/unfold method developed by Burstall and

Darlington to be the backbone of uy system« This was partly because,

at the time, both Burstall and Darlington were nere at Edinburgh, and

THE ARKT OF PROGRAMMING Page 2-16

their programs were available on the computer, so the bottow lavel of
a system was already i1mplemenceds Surstall had diiplormentec an
interpreter for a simple functional languazge. WPL, embodyin; features
encouraging clear progrzaming style. Also, Darlirsten’s systea
performed conv.incing Ly Q1 small examples, and done-by-hand
lnvestigations indicated the basic approach promised to extend to
somewhat larger examples. For a descripticn of their work, see
Chapter 3.

It is important toc note that the fold /unfold steps work on a
simple recursive language, so any final prcgram we get from their use
will remain in this language.In particular, the language is wuurely
applicative, having no form of side effects. Consequenily there will
be an unavojdable overhead if we remain in such a launguege when we
need to modify part of a large data structure, since it will require
the complete reconstruction of that structure. To couvert to a more
conventional iterative language as the last stage in a transformation
1s outside the scope of these rules. This conversion will not change
the program structure, and 1t 1s the ability tc make very major
structural changes from protoprogram to efficient program that we
benefit frome. The question of converting applicative style programs
to make use of destructive operations is a fieid I have chosen not to
enter, but one in which work is required. Research has been done by
Pettorossi [1978) on how to introduce destructive operacions so as to
improve memory utilization whilst preserving correctness, and by
Schwarz [1978) on means of verifying that wuses o0f destructive

operations within a oprogram still oreserve correctnesse.

THE AR7T OF PROGRAMMING _ Prapge 2-17

20¢3.2 Level 0Of Transformation

Darlington’s system operates at the 1level of the fold/unfold
ocperations. The user’s responsibilities arc consequently aisce at
this level - he sets switciies to control fclding, and acceris or
rejects individual folds.

The effects of working at this level are to make tackling =mall

examples easy, the user provides guidance by a small amount of switch

setting and answering yes/no questions asked by the system. Provided
the system need nct do many folds (and does not have a large choice
of folds), such guidance will be easy to give.

Large examples are much harder, however. The unfold/fold steps

become noticably too small, there being many possible folds invclved

in each transformation. The user is rapidly overwhelmed by the many

questions the system asks -~ particularly when the switches have been

set to cause the system to act in its most powerful manner-

Since one of my aims is to attempt larger examples, my system

must operate at a higher level than individual fold/unfold steps. I

achieve this by defining a context in which transformations are

carried out, and by introducing a new way of guiding transformation,

which I call pattern directed transformation.

2.3.2.]1 Transformation Context - When tackling large problems, any
particular transformation will typically involve only a small part of

the entire program. Defining a context for a transformation limics

attention to only the parts which will be required.

Within a coutext the following will be indicated:

THE 4RT OF PROGRAMMING Page 2-18

equations to be used for folding and unfolding
lemmas to be used during unfolding

functions which may occur within the answer scught:

2¢3.2.2 Pattern Directed Transformation - This is the means by
which an individual transformation is indicated. The user gives the
approximate form of the answer he expects in the form of a patiern
(so called becaﬁse it conteins variabies which will be used in
matching). The transformation prccess becomnes:

expanding the expression to be evaluated (unfolding using

equations, applving reductions whenever possible);

expanding the pattern;

matching the expanded expression and patterm, and 1f successful,

using the bindings formed byhthe match to instantiate variabiles

within the original pattern to give the answer.

Pictorially

L.H.S. Re.He. S-(pattern)
| . |
| information . |
V unfold from . V unfold

| match . |

| . |
expanded MATCH expanded
L.H.S. R.HQS.

The advantage of this approach is that the single step of giving

a pattern may cause a transformation which is based on very many
fold /unfold steps. Pattern directed transiormation forms the higher
level at which transformations ave carried out within my system.

The price paid for moving to this higher lievel is the need to

e N e ¥ Ty ¥ T Sy o o

THE ART OF PROGRAMMING Page 7-19

give a pattern representing the approximate shape of the auswer
sought. This turns cut to be only a ¢emall price, however. For
simple transformations only very simple patterns will be required,
and my implementation is able to geuerate such simple patterns itself
1f 80 requested. For more complex transformations the power of this
approach rests in the ability tc express only an approximation of the

answer sought - the details of how to do this I leave until the

description of how to use my system, Chapter 4.

2.3.3 Control Of The System

I intend that the system should provide an overall service to

the wuser - that 1s, not only permit transformations to be carried

out, but also ease the uscers task of introducing, testing or saving

initial, intermediate or final versions of programs. This becomes of

use on larger examples, when the transformation 1s no longer the
simple matter of making a single counversicn from initial to final
version, but is split into several stages.

To control the operation of all aspects of the system I have
developed a control language and documented this (Chapter 4). I had
in mind users not familiar with the intricacies of the implementation
who would want to make use of the system (not the case with
Darlington’s system which is primarily a research tool). The control
statements serve as a readily comprehensible record of the

transformations carried out when tackling a problem.

THE ART OF PROGRAMMING Page 2--20

234 The Use Of Defzults

The application of the system to perform =zimpie transformacions
18 eased by incorporating defaults which the user wmayv direct the
gsystem to apply. In the earlier section on pactern dirvected
transformation 1t was mentioned that the svstem is able to generate
simple patterns itself. 7This is one form of default. The other form
1s concerned with making use of the data types of programs written in
NPL to generate simple "type infeormation'". Type information 1is used
to split the transformation of a function into several cases (by

considering cases of the argument(s) of that function), and 1is used

in the generation of default patterns.
The approach of providing defaults for the user to apply when he

thinks appropriate contrasts with the heuristic strategies built in

to Darlington’s system. The latter involve the user in making a few
initial decisions, aiter which the system goes ahead applying the
heuristics to perform the entire transformation. Again it seems that
Darlington’s approach works well on small problems, but not on larger
ones. With larger problems the degree of difficulty of individual
transformations may vary enormously, and a heuristic powerful enough
to cope with the harder transformations (if such a heuristic exists),
will be unnecessarily powerful for the simpler omes. If the user is
in control, however, he can use defaults for the simgler
transformations, and guide the system through the harder ones

himself.

CHAPTER 3

REVIEW OF THE STATE OF THE ART

In this chapter I review and contrast other peonles’ work in the

field of program synthesis and transformztion.

3.1 OVERVIEW

The underlying features characterising tha different approaches to
program transformation and synthesis are as follows:

The rules for manipulating programs ~ at one extreme any change
in a program which c¢an be verified mwmight serve as a valid
transformation step. At the other extreme there may be a fixed set
of small manipulations which can be repeatedly applied to achieve
large transformationse.

Degree of automation - at one extreme (C(ransformations may be
performed by hand. At the other a machine based system attempts

transformations entirely automatically. Between these extremes lies
the approach of using a machine based system, but relying to some
extent on human guidance. Clearly the degree of automation will
influence the complexity of transformations which can be attempted.
A system making use of human guidance would be able to acihieve nuch
more than a fully automacic system. Likewise, hand-performed

transformations might be hard to carrv out even on user—assigted

!

REVIEW OF THE STATE COF T’ ART Pags 5.2

eystems. However, we may have more confidence in the traasformations
performed on a machine based system, cnd long but not particularl;
complex transformations mey be too unwieldy to do entiraly by hgnd.
Domain of transformations ~ this ceoncerncs the start and end
points of the transformation or synthesise. The distinction between
transformation and synthesis is that the former begins with sone
executable (but perhaps intolerably iuefficient) program aod aims to
improve efficiency, whereas the latter starts with some
non-executable specification, and derives an executable program from

it. The ru.es for manipulating programs will restrict the dowain of

the transformation. Some rules are unable to deal with programs
involving assignment or side effects, hence the end point of a

\

transformation usiug these wiil require <conversion into a

conventional form to take advantage of such effects.

In the following sections I illustrate different avpproaches to

transformation and synthesis by presenting work cf other researchers

in this area.
3.2 Martelli

3.3 Bauer et al

3.4 Manna and Waldinger
. 3.5 Darlington and Burstall

3.6 Burstall and DParlington

Briefly, the nature ot their work in light of the

characteristics of transformation is as follows:

3.2 Martelli - a hand performed transformation of a complex

algorithm

3.3 Bauer et 81 - a proposed wachine based system relying

REVIEW OF THE STATr OF THE ART Pao~ 3--3

entirely on user guidance for developing proyrams

3.4 Manna and Valdinger -- a totally automatic program synthesis
svystem

3.5 Darlington and Burstall - a semi-automatic transformation
system, applying schemata to perform certain classes of improvements
in programs

3.6 Burstall and Darlington - a semi-automatic system applying a

swal! set of rules to perform synthesis and transformation on

recursion equations

3.2 MARTELLI

References: Martelli [1978]

In this paper Martelll applies done-by-~hand transformations to a

non-trivial algorithn. The problem he considers is to copy cyclic

data structures. The initial program is a simple recursive solution

tc the problem, and the derived £final program 1is a realistic

algorithm requiring only bounded workspace and linear time.

His objectives are to demonstrate the correctness of the final
program by proving that the transformations preserve equivalence, and
also to obtain a better understanding of the efficient version by

seeing how it can be derived.

All versions of the program are written in PASCAL. The

transformations between them are quite complex, requiring a gocd deal
of ingenuity, as do the proois that they retain equivalence. The

transformation steps are motivated to deal with one aspect of the

problem at a time, and it is this which permits a clear understanding

of the whole process.

REVILEY COF THL 3TATE OF THE ART Fage =&

This work illustratec how an entirely haad-periormud
trarsformation cam change & simple prozram into a hijhly etiicient
one. The steps of the tramsiorrziicon are not systematisea, heuce
they can be as powerful 2s rnecassary, but reguire verification. To
perform a transformatlon on a similar algorithm would require as nuich
effort again, and it would be very hard to carryv out such a
transformation on any existing machine-based system.

.

Such hand performed transformations serve as alds to
understanding and verifving complex programs. Parcicularly
interesting is the investigation of classes of algoritbhms resulting
from the alternate ways of transforming a single initial
specification. Work of this nature includes Darlington ([1976a)], in
the area of sorting algorithms, Schmitz [1978], in the area of

transitive closure algorithms, and Gerhart, Lee and deRoever [1979],

in the area of list copying algorithms.

3.3 BAUER ET AL

References : Bauer, Broy, Partsch, Pepper and Wossner [1978]. Bauer,

Partsch, Pepper and Wossner ({1977]. Broy (1977), [1978)j. Gnatz
[1977]. Gnatz and Pepper [1977]). Kreig-Bruckner [1978)]. Partsch and

Pepper [1976], [1977].

The objective of this group is to develop what they call a

system for '"computer aided, intuition guided programming”. By

"compﬁter aided" they mean the system is designed to take from the

programmer the burden of clerical work. This includes production of

new program versions from old ones by application of formal rules,

REVIEW OF THE STATE OF THE ART Page 3-5

preservation of all versions, and decumentation of the development
history. By "intuition guided" they mean it will be up to the user

to airect the whole development process. They do not seek to

Introduce heuristics to control automztir program developrent.

Their system has not yet been implemented, but they havz already

investigated, by hand, examples to help decide what features are
required. The kernel of the system is to be z2n extendable catalogue

of transformations (presumably all proved correct), much zkin to the

early schema work of Darlington and Burstall. Essentially a

transformation consists of two program schemata, the "input
template”, and the "output template" together with preconditions to
be satisfied before the transformation will be applied. Sometimesd
it is also necessary to specify the 1location, within an actual
program, where a transformation is to be applied.

The transformations are intended to cover the following areas:

introduction of user-provided definitions
manipulation of functional procedures

defining language extensions
manipulating iterative programs

changing between recursive and iterative versions

The user may use the system to intrcduce his own transformations

-~ In which case he has the responsibility of ensuring their
correctnesse.

Control of the system is carried out by the user. who selects an
approoriate transformation to be attempted at each step. perhaps
backtracking if a blind alley has been entered, until a suitable

version of the program has been reached. There is deliberately no

REVIEW OF THE STATE OF THTE ART Page 3-6

incorporation of strategy jinto the system, which acts as & "slave' to

release the ugser from clerical work and risk of careless error.

Attention has been paid tc the book-keeping side of the system,

which must fulfill certain tasks in a reasonably economical manner.

Typical tasks are:
go back to an carlier version (backtracking)
continue with an earlier version (independent development of
individual parts)
g0 back or continue with an earlier version which fulfills some
specific condition
record some transformation
show the current stage of development (of the whole program or

of parts of it)

Since thev started scome time after the earliest work 1in this
field, they have been able to incorporate manv of the discoveries

into their onlans. Thelr domain is wide ranging - all the way £from

high-level specifications down to assembler code.

%

Examples they present in the referenced papers are:
Tower of Hanoi (recursive to iterative)
Fibonacci numbers (recursive to iterative)
fusc - a numeric function akin to Fibonacci (recursive to
iterative)
Chinese Rings problem (recursive to iterative)

Gray-Code generation (iterative to efficient assembler)

e
¢
~I

REVIEW OF THE STATE OF TilE ART

R

age

i

Their pronosed system relies upon a large znd extensibie set of
ruies to modify programs. This gives their cvstem the scope to
tackle a very wide range ol problems. Two important pcints remain to
be made.

Firstly, tiheir system i¢ not yet implemennted. The proposa’s
seem well thought out, but it remains to be seen if they can be
sucesefully implemented, and how well their system will éerform in
practice.

Secondly, their decision has been to rest the burden cf guidance
of the system entirely on the wuser. This may prove to be an
excessive burden when attempting large trancsformations involving many
steps. Again, this c¢an only be finally determined when the system

has been implemented.

3.4 MANNA AND WALDINGER

References: Manna and Waldinger (1975], [(1977], [1977a], Waldinger

[1977]

The authors are involved 1in investigating and implementing

techniques for deriving programs systematically from given
specifications. Their approach is to transform specifications by
repeated application of rules until a satisfactory program is
produced. Specifications are presented in predicate logic. The
target—-language is LISP-like.

They represent knowledge in the form of many rules within the

system. The knowledge is about the subject domain, numbers, lists,

sets, etc., meaning of constructs in the specification and target

REVIEW OF THE STATE OF TVHE AFRT Page 3-S5

languapges; basic programming princinles.

The synthesis process is driven by atieopts to acuaieve goals.
The rules encoding programming principies attempt to satisfv these
goals, s0 deriving an executable gprogramn. Rules of this nature
include:

Conditionai <{ormation rule: when attempting to prove oOr
disprove some subgoal of the form prove P, introduce a case anelysis
and concider separately the casaes in which P is true and P is false.
This causes the intrcduction of a conditicnal expression into the
program being svynthesised.

Recursion-formation rule: 1if, in attempting to achieve some
goal we need to achieve a subgoal which is a precise instance of that
original goal, try to achieve this by expressin the subgoal as a
recursive case or the outer goal. This leads wus to introduce
recursive calls within our programs -~ but it is necessary to ensure
termination when introducing such calls. This rule is equivaleunt to
the "fold" rule of Burstall and Darlingten (see last section of this
chapter), and the two groups discovered their rule independently at
about the same time. .

Procedure-generalization principle: this principle suggests
that i1if, when tackling some goal, we are led tc achieve a subgecal
which 1s not precisely an instance of the original goal, theun
generalise to get a goal for which both are instances. This causes
an attempt to synthesise a more general program. The authors relate
this to theorem-proving work, where it is often necessary, in proving
a theorem by mathematical induction, to prove a more general thezorem,
so that the inductive hypothesis will be strong enough to allow the

proof of the inductive step to succeed. The recursion-formation rule

%

REVIEW OF THE STATE OF THE ART P.ue 3-9

turns out to be a degenerate case of this rule.

In addition to the tne vsual syntbesis £from specification to
recursive program, they have alsc used thnitv techniques to produce
stralght-line structure-changing (i.e. wvith side effects) programs.
This latter feature has been implemented in a sysren of its own (sce
Waldinger [1977)). Most of the svathesis work has been implemented in
their DEDALUS system, designed to be fully automatic in its
operation. The only controls they provide over =selection cof an

appropriate rule from several possible candidates are to (possiblv)

attach some extra condition to rules ¢to 1limit their application
(which could be wused, for example, to prevent a rule from being
repeatedly applied to the subexpressions it produces}, and to have a
preference ordering between rules.

The implementation incorporates the principles o¢f zconditional

formation, recursion formation, and the special case of procedure

generalization in which a new procedure may be formed but no
generalization 1is required. DEDALUS is able to produce termination
proofs for recursive programs which do not involve mutual recursion.

Representative programs constructed by DEDALUS are:

The subtractive, Euclidian and binary greatest common divisor

algorithms.

The remainder from dividing two integers.

Finding the maximum element of a list.

Testing 1f a list is ordered.

Testing 1f a number is less than every element of a 1list of

nUm})er Se

Testing if every element of one list of numbers ls less than every

element of anothere.

REVIEW OF THE STATE OF Tt ART Page 3-1C

.

Unicn, intersection, wemb:znship, subset and carterian producc of

g8€CS.

The methods they liave derived for syncehesis seemc quite2 pow=rful,
however their implemzncation of thesge iatoc an sutematic systerm lags
behind somewhat. If the fuli power of the generalization technigue
is to be dncluded, controls over it will need to be created.
Certainly better stra<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>