
Control Structures

Alex Mifsud

Doctor of Philosophy

University of Edinburgh

1996

Abstract

Action structures have been proposed as an algebraic framework for models of con-

current behaviour. In this thesis, refinements of action structures are developed,

providing an abstract treatment of the structural aspect of processes, as well as a

setting in which to study their dynamics.

Concrete models of concurrent computation such as Petri nets and the 'r-

calculus have been cast as action structures in a uniform manner, giving rise to

a concrete class of action structures, called action calculi. As a result, action

calculi are here adopted as the point of departure towards an abstract algebraic

treatment of process construction and concurrent computation. The refinement

of action structures to control structures gives a semantic space for action calculi;

and includes a semantic account of names, based around a semantic counterpart

to the syntactic notion of free names called surface.

Two variants of action calculi are explored in analogous fashion. Present in

these variants are some intuitively appealing aspects, such as greater expressivity

of dataflow; a semantic treatment of name hiding or restriction; and, in one of the

variants, garbage collection of restricted but unused names and a characterisation

of surface in terms of restriction.

While the treatment of process constructors reveals rich structural issues, the

algebraic framework given by control structures provides considerable support for

studying the dynamical aspects of processes. In particular, it allows a comparison

of diverse action calculi upon their dynamic properties; illustrated here is a method

of achieving this. The method involves an examination of action calculi dynamics

through the images of the calculi on a common static model called a classifier.

Finally, as a step towards establishing formal connections with mainstream

process algebra, an operational semantics for PlC, the ir-calculus cast in the frame-

work, is developed. Labelled transition relations on the terms of PlC' are defined,

1

11

leading to the formulation of operational models through the familiar technique

of bisimulation.

Acknowledgements

I would like to thank my supervisors: Stuart Anderson, for nurturing within me a

spirit of scientific inquisitiveness; Robin Milner, for providing both inspiration and

a sense of direction that stayed my meandering spirit from losing focus; and finally,

John Power, for his unrelenting insistence that inquisitiveness be accompanied

with a commensurate degree of rigour. All three have greatly contributed to my

understanding of computation and, in no small way, to my general intellectual

development throughout the time I spent in their company.

My studies have been funded by the University of Malta to which I am indebted

especially for its support during the year I spent in Malta writing this thesis. In

particular, I acknowledge the help and encouragement extended to me by Juanito

Camilleri, my head at the Department of Computer Science and Artificial Intelli-

gence, who by unburdening me from teaching duties, enabled me to dedicate that

year almost entirely to the composition of this thesis.

I am grateful for the support of my wife Stephanie and our parents for shielding

me, throughout the past three years, from the responsibilities of parenting a lively

child who started life just when I embarked on this work.

Declaration

I declare that this thesis was composed by myself, and that the work it presents

is my own with the exception of chapter 2, which contains joint work with Robin

Mimer and John Power; chapter 3, which presents work done with Masahito

Hasegawa; and where explicitly stated.

Alex Mifsud

Table of Contents

1. Introduction 	 1

1.1 	Objectives and Outline5

2. Control Structures 11

2.1 Action Structures 13

2.2 Action Calculi 16

2.2.1 	Molecular Forms 19

2.2.2 	The theory AC 20

2.3 Symmetric Action Structures 29

2.4 Control Structures 35

3. Reflexive Control Structures 	 48

3.1 Reflexive Action Calculi51

3.1.1 Example: recursion from reflexion58

3.1.2 Discarding redundant restrictions62

3.2 Reflexive Control Structures63

3.2.1 	Strict reflexive control structures80

4, Skeleta 	 83

	

4.1 	Pure Skeleta85

111

Table of Contents 	 lv

4.1.1 	Skeletal forms 85

4.1.2 	Terms 88

4.1.3 	Statics 91

4.1.4 	Dynamics 94

4.2 	Restriction Skeleta 99

4.2.1 	Skeletal forms 100

4.2.2 	Terms 102

4.2.3 	Effect structures 104

4.2.4 	Dynamics 108

5. The Reflexive ir-calculus 115

5.1 	Controls and Reaction 117

5.1.1 	Reaction and the operations of PIC ' 120

5.2 	Labelled Transition Sequents 123

5.2.1 	Labels 124

5.2.2 	Labelled transition sequents 127

5.2.3 	Labelled transition rules 132

5.3 	Labelled Transition Relations 140

6. Bisimilarities 	 147

	

6.1 	Strong Bisimilarity150

	

6.2 	Parameterising Bisimilarity151

6.3 Discarding Redundant Bindings153

	

6.4 	Other models159

6.5 The Asynchroiious ir-calculus161

6.5.1 	The Asynchronous ir-calculus164

Table of Contents 	 v

7. Conclusions and Further Work 	 168

7.1 Current Research in Control Structures168

7.2 	Further Work169

7.2.1 	Embeddings170

7.3 Summary and Conclusions172

A. Proofs 	 178

A.1 Auxiliary Results178

A.2 Structural Lemma183

A.3 Labelled Transitions210

Chapter 1

Introduction

In the study of concurrency one encounters two distinct but complementary no-

tions: independence and interaction. Independent entities, which we shall refer to

as processes may interact and moreover, interaction may result in dependencies—or

links—being established between such processes. Processes which are independ-

ent and yet cannot influence one anothers' behaviour are hardly interesting: it is

debatable whether such silent or non-interacting processes are even observable.

One of the aims of developing a theory of concurrency is to support engineering

reasoning for the construction and analysis of systems composed of concurrent

parts. This imposes two broad concerns on our enquiry: one to do with structure,

specifically relating to how entities may be put together; and the other to do

with behaviour, which allows us to tell when two such entities may be considered

equivalent or interchangeable without effect on the system they might form part

of In this setting, the abovementioned concerns with linkage (dependency) and

interaction are manifest as the interplay between structure (statics) and behaviour

(dynamics).

Many existing models for concurrency address both these concerns ,in either

of two ways. Process-algebraic models start by identifying process constructors

(structure) and then go on to assign behaviours to the processes built from them.

An alternative, sometimes called denotational, approach starts by proposing struc-

tures for modelling behaviour and then provides constructions on these structures

which correspond to the process-algebraic constructs.

1

Chapter 1. Introduction 	 2

Behavioural models are often based on an abstract notion of interaction or its

observation: in such models these notions are assumed as given a priori. Moreover,

most models of this kind capture a specific type of relationship between distinct

events, as we shall refer to both interaction and its observation; the relationship

is usually expressed in terms of mathematical structure imposed on the events.

Examples of such structures are traces and synchronisation trees which respectively

reflect the linear and branching ordering of (potential) events. Some structures

such as asynchronous transition systems and event structures account also for the

causal relationships between events. The notion of independence, concurrency

or parallelism is typically presented as a property of the structures employed to

describe such causal links between events.

Taking the behavioural approach, Nielsen, Winskel and others [32,33] have clas-

sified some of the existing models by casting them in a category theoretic setting

where the relationships between the models are expressed in terms of reflections

and coreflections: adjunctions which represent the embeddings between models.

Their classification is motivated by three independent parameters: abstraction

from the causal independence of events by a nondeterministic interleaving; abstrac-

tion from the looping structure by unfolding; and abstraction from the branching

structure by regarding a process as a collection of event sequences corresponding

to paths in the computation tree (traces). Their work also addresses the issue

of process constructs through categorical constructions on the behavioural struc-

tures. Indeed, an important part of their work is in establishing connection with

process algebra, not only by recovering the constructions, but also in giving an

account of the ubiquitous operational-semantic device of bisimulation [13].

Even within a narrow behavioural view, the degree of choice (of process model)

is large. In [7] van Glabbeek provides an extensive comparison between the vari-

ous equivalences which abound in what he calls the linear time-branching time

spectrum bounded by bisimulation on transition systems at one end and trace

equivalence at the other. The models considered differ in their choice of what

should be taken as an observable interaction, in the structures built from the ob-

Chapter 1. Introduction 	 3

servations and finally in the equivalences on the structures used to obtain more

abstract models.

The traditional approach employed in process-algebraic models has been to

describe (a fixed set of) process constructors as a term algebra. The behaviour of

a process would then be obtained by defining labelled transition relations between

terms which reflect the ability for interaction of the process described by the term.

The labelled transition relations are then employed to generate, depending on the

behavioural structure favoured, transition systems; transition trees; or transition

paths for each term. These structures would then be factored by equivalences

based on the labelled transitions which constitute them, giving a behavioural jus-

tification to the semantics. Some of the equivalences will be congruences and the

identifications made induce equations on the terms giving a term algebra. One pos-

sible advantage of this approach over the behavioural one is that no commitment

to a particular notion of behaviour (or its observation) is made a priori. Indeed,

by considering different equivalences, the interpretation of process terms can be

effectively varied; even the notion of interaction can be modified by changing the

labelled transition relations for a given set of process constructors. Examples of

the algebraic approach includes process algebras such as CCS [31], CSP [9], the

box calculus [4] for Petri Nets [34] and the ir-calculus [30,22].

Process calculi take process constructions as their starting point and include

explicit accounts of the dynamic interactions of processes. However, the variety

of process algebras indicate the absence of a canonical algebraic structure for

concurrency. One interesting approach to dealing with this diversity is provided

by Berry and Boudol's Chemical Abstract Machine (CHAM) for "implementing"

process calculi [3]. Based on multisets—following the ideas of Banâtre and Metayer

[2]—the CHAM suggests common underpinnings for the various process calculi

representable as CHAMs and also provides a basis for comparison. Indeed, the

CHAM was to prove an important source of inspiration for the concrete structures

in which existing process calculi are cast in this thesis [21,24].

Action structures have been proposed by Mimer [21] as a general framework

in which concrete models of concurrency and interaction may be studied. These

Chapter I. IntroductiOn

structures are essentially strict monoidal categorieS' [161 with added structure in-

cluding reaction,
a local preorder on the arrows. The arrows of an action structure

are called actions
and represent processes, while reaction represents their dynam-

ics. This algebraic framework does not make any commitment to a specific level of

abstraction and simply provides a setting in which to cast and study combinatorS

which express process constructions: the axioms of an action structure constrain

but do not determine the interpretation of the operations. Furthermore, a class of

syntactic action structures has been developed [24], called
action calculi; provid-

ing machinery fordealing—syntactically—with name binding and substitution.

In addition to these operations, an action calculus is obtained by the inclusion

of a set of combinators, called controls, and an associated set of rules describing

their dynamic behaviour. These combinators are sufficiently powerful to enable

processes to be represented as complex actions. Mimer has shown that existing

models such as Petri Nets and the ir-calculus fit readily in this framework [2411

indicating that the expressiveness provided by existing models is not limited by

this reduction of entities.

To return to our initial remark, we shall now cast the notions of independence

and interaction in terms of action structures. Processes (here called
actions) are

represented by the arrows of an action structure: tensor product embodies the

operation of parallel composition or, in behavioural terms, independence. Com-

position signifies a form of data dependency: a . b indicates that the information

produced by a, say, as a result of computation, is fed into b. The idea of datafiow

may be hard to intuit in the context of process algebra. In most process algebras,

processes exchange data through synchronisation and not through static links of

input and output as in functional paradigms. Such processes can be thought to be

special cases where such input and output "datafiow channels" are absent. The

presence of datafiow channels provides an interesting form of dependency; in a b

use of monoidal categories to model concurrency has at least one precursor in

Meseguer and Montanan's modelling of Petri Nets as a monoidal category [191.

Chapter 1. Introduction 	 5

the process b "depends" on a in the sense that information passed by a to b may

influence the behaviour of b.

Interaction, or computation (we shall not distinguish the two), is represented

by the reaction preorder \A with a \ b meaning that a can get to b as a result

of computation. The correspondence between independence and interaction may

now be phrased as follows: computation may produce changes in the dataflow

topology of a process; and, in turn, the presence of dataflow channels between

processes may, by the information flowing through them, affect the computational

behaviour.

Other approaches towards establishing a general framework for concurrency in-

dude Meseguer's conditional rewriting logic [18], whose models he calls R.-systems.

In an 1Z-system algebra, the carrier consists of the computations of an individual

process, whereas in action structures, the processes (actions) themselves constitute

the carrier. An alternative approach with similar motivation as for action struc-

tures is Abramsky's interaction categories [1] which provide an expressive type

structure that controls the construction or linking-together of processes. One dif-

ference between interaction categories and action structures is that in the former

the use of names to express such linkage (as employed inaction calculi) is eschewed.

Another is that the treatment of dynamics in action calculi is more explicit through

the employment of controls and reaction rules. The differences apparent among

the various models are indeed striking; yet, if a canonical abstract semantic model

for concurrency is to be found, the common elements underlying the structure of

processes and their dynamic behaviour must be identified. It is their aspect, not

the elements, that is distinct in each of the models mentioned.

1.1 Objectives and Outline

The task of eliciting common abstract structure in process-algebraic models for

concurrency is assisted by the ability to cast various existing models within a

common framework. This is just what the notion of an action structure provides;

Chapter 1. Introduction

indeed, as mentioned above, a concrete kind of action
structure_actbont calculi-

exists which allows such models to be represented. The availability of a common,

albeit concrete, structural basis leads to a natural strategy for
extracting the

underlying abstract structure; the strategy is to look for the additional
abstract

structure present in (all instances of) action calculi which is not provided for by

action structures. Technically, this is achieved in this thesis by a refinement of

action structures, which we call
control structures, amongst which action calculi

occupy a special place as the initial such. Two remarks are in order at this

point; the first concerns the qualification of action calculi as the right kind of

structure in which to cast concrete models of
concurreflcy can one do with less

structure, or, indeed, does one need even more? That
commonly used models fit

the mould is evidence only of being on the right track. The second remark concerns

the refinement of action structures which will provide an abstract semantic space

of interpretation for action calculi: there may be many such refinements which

give the required result, namely the initiality of action calculi. The choice must

therefore be justified by additional factors.

The starting point of this thesis—that which is justified solely by example and

intuitiOnis a syntactic form for representing concrete models of concurrent com-

putation: the molecular form presentation of action calculi. Mimer claims that

Berry and Boudol's CHAM provided an inspiration for the molecular forms; and

that the resulting action calculi provide a kind of algebraic version of it. A con-

templation of their similarity highlights also their differences, and also suggests

possible variations. To simplif3'
considerably, the molecular form provides an en-

hanced kind of CHAM with datafiow between molecules. We shall see that, in the

first kind of molecular form presented in this thesis, this datafiow is constrained

in a particular fashion. This will lead us to present a variation of the molecular

forms where the constraint is eased. Such consideration of alternatives is partly in

response to our concern with the qualification of the molecular forms as the right

concrete common basis for representing processes.

As suggested by the above, the main result obtained about action calculi con-

sists in providing an appropriate refinement of action structures, of which action

Chapter 1. Introduction 	 7

calculi are the initial instances. In the search for the right abstract structure,

the problem of giving a semantic account of names, and their attendant syntactic

notions such as freeness, binding and substitution, turned out to be one of the

most challenging aspects. In many process calculi, names have a crucial role in

specifying interaction and have a greater role than that of simple "place-holders"

as do variables in, say, the A-calculus. Thus, names—or as John Power insists [8],

naming—have a semantic presence beyond that of simple indeterminates. While

in many process calculi, the names of channels are kept distinct from the names

employed as place-holders or variables, this is not universally the case: in the

ir-calculus, names assume both roles, giving the calculus the means to express

mobility of channels. Therefore, it should not be surprising that in developing our

model we were compelled to deal with the issue of naming.

Our abstract semantic treatment of action calculi focuses predominantly on

their static structure. We recall that action calculi are determined by the controls

and their reaction rules; the controls are responsible for providing additional static

constructions. The computational behaviour of an action calculus is specified

syntactically by a set of reaction rules which, by some closure conditions, determine

the reaction relation. In the definition of action calculi, only lax constraints have

been imposed on the forms that such rules can assume (for instance, that both

sides of a reaction must have the same antics). Therefore, one way to explore

the dynamics is by means of a classification of reaction relations based on some

syntactic criteria on the reaction rules which induce such relations.

An alternative means for exploring dynamics is provided by a device we shall

call a classifier. A classifier is a (concretely or abstractly specified) model of static

action calculi—that is, one which does not necessarily preserve the dynamics-

which arises uniformly from any set of controls. This allows a comparison of

action calculi to be made by considering their image onto a common model. For a

comparison of the dynamics, we shall consider (homomorphic) maps from action

calculi to their models which preserve the reaction relation; accordingly, associated

with the classifier will be a (fixed) reaction relation, which somehow embodies the

property of dynamics in question. Thus, since static structure alone ensures the

Chapter 1. Introduction 	 8

existence of a map to the classifier, the existence of a map which preserves the

reaction relation will depend on the reaction relation of the action calculus. In

this way the classifier distinguishes between those action calculi which have such

a map to those which do not. This approach is useful when the existence of

such a map can be related to some interesting property of the dynamics, such as

mobility. In the second part of this thesis, we will explore two related examples of

such classifiers.

One of the results obtained for control structures, and their reflexive variants,

is closure under quotient by congruence. This allows us to obtain computationally

meaningful models (control structures) through an operational semantics. For

process algebras such models have traditionally been obtained through bisimilarity

on labelled transition relations between process terms. This technique will be

applied to a leading example: the ir-calculus cast in our framework.

In summary, this thesis will include a general treatment of the static, or data-

flow, aspect of processes and a foray, largely by way of concrete example, into the

issues concerning dynamics. It is loosely organised in three parts. The first ex-

plores mainly the static structure of processes, with special emphasis on the nature

of static dependencies and their expression through naming. The rest of the thesis

will be concerned with providing examples and applications of the semantic frame-

work established. In particular, we illustrate the potential of the framework for

providing a means of comparing diverse action calculi upon their dynamic proper-

ties. Another example deals with an operational semantics of the ir-calculus cast

in our framework. The notion of a labelled transition is developed for this example

with the purpose of eliciting the underlying semantic ideas embodied by labelled

transition relations. The presence of labelled transitions permits comparison with

the traditional presentation of the ir-calculus and provide a basis for obtaining

operational models through bisimulation.

Outline by chapter

Below is a brief outline of each chapter.

Chapter 1. Introduction 	
0 	 9

Chapter 2: Control structures Action structures are reviewed as an algebraic

variety underlying models of concurrency. Action calculi, a syntactic class

of action structures parameterised over a set of control constructions, are

then introduced. Action calculi, each determined by sets of such controls,

are presented in two ways: through syntactic constructions called molecular

forms; and as a term algebra factored by a congruence arising from a set

of equations (the theory AC). Central to the semantic treatment of action

calculi is the notion of surface, which provides a semantic counterpart to

the syntactic concept of free names. Inspired by the definition of surface,

we formulate an elegant refinement of action structures which yields a class

(actually, a category) of models for action calculi. The category of control

structures is shown to be closed under quotient by congruence.

Chapter 3: Reflexive control structures The reflexion operation, which cor-

responds to a form of feedback in a dataflow interpretation, is introduced

by means of a set of equations (giving, together with AC, the theory AC")

constraining its interaction with the operations of a control structure. By

way of illustration, we show how reflexion—in the presence of higher order

controls—provides a form of recursion. The inclusion of reflexion leads to a

variation of action calculi which will be called reflexive action calculi. Sim-

ilarly reflexive control structures are defined as a corresponding refinement

of control structures in which reflexion is manifest as a trace on a strict

monoidal category. Analogously to chapter 2, the main result holds that

the reflexive action calculus determined by a given set of controls is initial

in the category of reflexive control structures over that set of controls. The

imposition of an additional equation governing reflexion is also considered,

resulting in a form of garbage collection in the resultant (reflexive) molecular

forms; it also allows an alternative characterisation of surface.

Chapter 4: Skeleta Two kinds of reflexive control structures are explored in

terms of both their static and dynamic properties. Skeleta are syntactic

reflexive control structures in which some of the structure of the controls

is forgotten. This allows them to be uniformly defined for arbitrary sets

Chapter 1. Introduction 	 10

of controls and this fact makes them useful in comparing and classifying

reaction rules, and thereby, action calculi. For each of the skeleta under

consideration, we shall define a natural notion of dynamics. This will be used

to determine certain dynamic properties of those action calculi for which a

structure-preserving map (homomorphism) to the skeleta exists.

Chapter 5: The reflexive ir-calculus In this chapter we establish the setting

for an exploration of the dynamics of an important example of reflexive con-

trol structures: the reflexive ir-calculus PlC'. Derivation rules for labelled

transitions on the terms of PlC are presented and shown to derive identical

transitions from equal terms. This allows us to establish a meaningful corres-

pondence between transitions on terms and computations on the molecular

forms, thereby justifying our use of the labelled transition relations as a basis

for an operational semantics.

Chapter 6: Bisimilarities Strong bisimilarity is defined in the expected way

on the labelled transitions. This bisimilarity is shown to be too strong as

it does not identify enough actions which are deemed behaviourally indis-

tinguishable. A technique for obtaining weaker forms of bisimilarity is then

presented. This technique consists essentially of specifying the set of labelled

transitions upon which the bisimilarity will be based. Sufficient conditions

are given for the congruentiality of the bisimilarities obtained in this way. A

limitation of the technique is also identified and a rectification is proposed

through the introduction of a further rule for obtaining labelled transitions.

Chapter 2

Control Structures

Concrete models of concurrency such as Petri Nets and the ir-calculus, may be cast

as action structures in a uniform way, as instances of a syntactic class of action

structures called action calculi. Two presentations of action calculi exist [24]:

a direct construction of the syntactic objects called molecular forms, and the

quotient of a term algebra whose constructors include the operations of action

structures. These two presentations have been shown isomorphic in [23].

Each action calculus AC(AC) is determined essentially by a set AC of control

operations called a signature; for example, an action calculus for an interesting

fragment of the ir-calculus is obtained by the controls ii, out and box (restriction,

output and input guarding respectively). AC(K) may also be equipped with a

set of reaction rules R.—in which case we write AC(AC, R.)—which determine its

reaction relation; these rules provide the meaning of the controls in AC.

Our aim in this chapter is to find a natural category of action structures in

which AC(AC) is initial. In effect, this entails selecting a space of semantic interpret-

ations for AC(AC), which we shall call control structures over AC. These structures

together with the expected notion of homomorphism form a category CS(AC) with

AC(AC) initial.

A significant difficulty to be overcome in defining control structures is the

treatment of names. The difficulty arises as the axioms of an action calculus

are not purely algebraic; they are axiom schemata rather than axioms since they

11

Chapter 2. Control Structures 	 12

contain side conditions which make reference to the free names of action terms. A

finite set of pure algebraic axioms which are equipotent (in the term algebra) with

the action calculus axioms would guarantee initiality for AC(AC) in the category

of structures arising from such axioms. Such a set is not uniquely determined

but we have found a set which we believe is satisfying both mathematically and

intuitively. This has been achieved by introducing a semantic counterpart to the

notion of the free names of an action.

Each action a of AC(K), for certain cases of K (for instance, that which gives the

ir-calculus), represents a process with an external surface through which other pro-

cesses may communicate with it. This surface is therefore semantically significant,

since the potential for communication is expected to be at least partly determined

by it; for instance, in the ir-calculus, those independent processes (those not con-

nected through datafiow channels) which do not have any free names in common

in their respective surfaces will not be able to communicate.

An important property of the category CS(K) is closure under quotient by an

arbitrary congruence. In particular, it will contain any model derived by factoring

the action calculus AC(AC) by a congruence; when the congruence has operational

significance, as in the case of bisimulation congruence, this accords with the es-

tablished practice of giving operational semantics to such calculi. Moreover, the

surface of each action in the model (an equivalence class) is given exactly by the

intersection of the surfaces of all the actions in the equivalence class: thus, those

names which are semantically insignificant are discarded in the model.

Outline In Section 2.1 action structures are reviewed followed, in Section 2.2,

by a presentation of action calculi in terms of syntactic constructions known as

molecular forms as well as a quotient of a term algebra by a theory AC. The section

ends with a discussion on the axioms of AC. This leads the way to the formulation

of control structures via the intermediate step of symmetric action structures which

are defined in Section 2.3. In this section we shall also introduce the notion of

surface and derive some relevant properties in the context of symmetric action

structures. Control structures are defined in Section 2.4; the main results are that

13
Chapter 2. Control Structures

AC (K) is initial in the category of control structures and that this category is

closed under quotient by arbitrary congruence.

2.1 Action Structures

An action structure is a strict monoidal category with additional structure. The

arrows of the category are called actions and the objects are called arities: these

objects may be interpreted as types for the input and output of each action.

The additional structure is given by endofunctors called abstractOrs indexed by

a set of names. Dynamic action structures are also equipped with a preorder on

actions called reaction
which embodies the computational behaviour or dynamics

of the actions. The following definitions give an algebraic description of an action

structure.

DefinitiOn 2.1 (Static action structure) Let X be a set of names (ranged over

by x, y, z) and (M, (&, e) be a 'monoid of antics with an assignment of an arity

m E M to each x E X. Let A be a set of actions partitioned by pairs of arities

m,n where for each partition Am,n, if a E Am,n we say that a has arity m—n and

write a : m-+n. Let A be equipped with

. an identity operation 1dm : m-+m for each arity m;

composition . and tensor 0 operations subject to the rules of arity

a1 : m1 -4 n1 a2 : m2 -4Th2
a1 : k - in a2 : Tn -4Th

a1 a : k-+n 	 a1 0 a2 : mi 0 in2 4 fli ® n2

• and for each name x, an abstraction operation ab x subject to the arity rule

a:
ab

aba: k®m-4k®fl

Then (M, X, A) is a static action structure
over X if the following axioms hold in

A:

Chapter 2. Control Structures 	 14

Cl : aid=a=ida
	

C2 : a (b.c)=(a.b)c

P 1 : a®id€ =a=id€ Øa
	

P2 : a®(bøc)=(a(&b)Øc

PF 1 : idøid=id
	

PF2 : (a. b) 0 (c. d) = (a 0 c) (b (& d)

AF 1 : abid = id
	

AF2 : ab(a• b) = (aba) . (abb)

where, in the above equations, arities may be assigned in any way that obeys the

rules of arity.

The definition of homomorphism is standard.

Definition 2.2 Let A and B be two static action structures. Then a homomorph-

ism of static action structures cJ : A -+ B consists of

• a monoid homomorphism : MA -+ MB,

. a map : XA -+ XB such that x : m implies 4Dx :

• a map '1 : A -+ B such that

- a: m -3 n implies 4M : c1m -* cIn;

- preserves id, , 0 and abs ;

If, in addition, ob is injective, then A is called a static sub-actionstructure of B.

We can motivate the operations by an informal interpretation in terms of data-

flow. We think of an action a : in -+ n as a black box with input (dataflow)

channels of aggregate width m and output channels of width n. Identity is just

a simple dataflow channel through which information may pass unobstructed and

unchanged [24]. The tensor operation may be interpreted as parallel composition:

it is a construction which does not create dataflow dependencies and simply places

two actions side by side, thus aggregating both input and output arities. The com-

position operation on the other hand connects two actions by tying the outputs of

15
Chapter 2. Control Structures

one to the inputs of the other; hence the arity rule requiring the output arity of

a1 to match the input arity of a2 for the composite ai a2 to be well formed.

The inclusion of names in action structures is hard to motivate since there is

no jn
terestiflg role for them given within the abstract structure itself. Informally

we have suggested that the abstraction operation ab captures parametrisatiofl

by the name z; hence, it may be expected that every "free" occurrence of the

name x in a would be "bound" in aba. In dataflow terms this allows the creation

of a new datafioW channel connected to each point where x occurs "free". But

freeness and binding are concrete notion which assume a concrete or syntactic

structure for objects. There is, however, an indirect way to capture the semantic

notion of freeness for names by analysing the effect of applying abstraction of a

given name upon an action. Although some insights can be derived even at this

stage, treatment of this will be deferred until further structure has been introduced,

par
ticularly that which allows more to be said about the interaction of abstraction

with the tensor operation.

Note on names and arities
For this thesis we shall assume that M is freely

generated by a set P of prime arities (ranged over by p, q,...), that the arity of

every name is prime and moreover, that there are infinitely many names associated

with every prime arity.

DefinitiOn 2.3 ((DynamiC) action structure)
Let (M, X, A) be a static ac-

tion structure and let " be a preorder on each Am,n called
reaction which is pre-

served by composition, tensor and abstraction. Also each id is minimal for
N,

i.e. if id N a then Id = a. Then (M, X, A, N) is a (dynamic) action structure.

DefinitiOn 2.4
Let A and B be two action structures. Then a homomorphism of

action structures 4!: A -+ B is a homomorPhism of static action structures which

preserves the reaction relation i.e. whenever a N Aa then 4!a N 54!a.

If, in addition, 4! is injective, and 4!a N B4!a implies a N Aa' then A is called a

subactio structuTe of B.

Chapter 2. Control Structures 	 16

Discussion For the definition of homomorphism of action structures we might

have chosen a stronger condition than the preservation of the reaction relation.

For instance we might have required that 4 exactly preserves the relation i.e

a N Aa if a N aa. This, of course, depends on our intended role for homo-

morpisms of action structures. We expect that the semantics of concrete models

can be expressed as homomorphisms of action structures: it may be that some

models collapse computational steps. The double implication form can accomod-

ate such models since every step in the model will have at least a counterpart

concrete computational step. However, we also intend homomorphisms to repres-

ent encodings of one concrete model into another: in this case one computational

step in the source model may be "implemented" through a greater number of steps

in the target model (such as in the compilation of a high level language into low

level assembly). It is possible in this case, that in the target model there will be

intermediate states which have no counterpart in the source and hence the trans-

lation or encoding would not fit the double implication form of homomorphism.

At this point, therefore, we shall keep the condition fairly weak but we expect that

certain applications will suggest stronger conditions.

2.2 Action Calculi

We shall address the problem of providing notions of free name, binding and

substitution first in a rather concrete setting given by a syntactic class of action

structures called action calculi. These concrete action structures will in turn lead

us to a refinement of action structures that deals semantically with names in a

more satisfactory manner. Before presenting the technical details, we illustrate

the ideas by an example derived from the ir-calculus. Consider the term

P = (vu)(iy I u(z).Q)

where the subterm iZy represents a message y to be transferred along the channel

u, causing any (free) occurrence of z in Q to be replaced by y. (The restriction

Chapter 2. Control Structures 	 17

(vu) ensures that the message can be received nowhere else.) Formally, this is

represented by the reduction:

P -+ P' = (vu)({Y/z}Q)

In the molecular form presentation of action calculi, actions are built from mo-

lecules, each of which arises from some control in K. This form is in the spirit of

the Chemical Abstract Machine (CHAM) of Berry and Boudol [3]. For P above,

the molecular form of the corresponding action P contains three molecules and is

written

P = [v(u), (uy)out, (u)box((z)Q)]

where Q is the molecular form for Q. The difference from the CHAM is that

molecules may bind one another; in this case, the molecule v(u) binds the other

two molecules through the name u. Note that the box control encapsulates an

inner molecular form. In the dynamics of molecular forms, redexes consist of

certain patterns of molecules; in this case the last two molecules form a redex, and

the following reduction occurs (releasing):

P"L = [v(u),{Y/z}Q]

In the term algebra presentation of the action calculus, writing P as the term

arising from P, we can recast the above example as follows:

= V
. (u)((uy) . out ® (u) . box((z)Q))

N
P7, =v.(u)((y)(z)Q)

Note that the tensor product ® of action calculi represents parallel composition;

also that composition and abstraction (u)—a derived form of abe—represent

both kinds of binding (restriction and input) in the ir-calculus.

Molecular forms can be seen as normal forms for the term algebra. But with

molecules as binding operators we obtain a view of the structure of actions which

differs strikingly from that offered by conventional term structure. This section is

18
Chapter 2. Control Structures

a review of t231 whose main objective was to prove the isomorphism of these two

presentations.

Notation Throughout, we shall adopt the convention that all names
appearing in

a vector within round brackets are distinct. Moreover, it will also be assumed that

all terms and expressions used are well formed, and when they occur in definitions

or equations, those occurring on each side have identical arities.

An action calculus is determined by a set C of control operators, called a signature,

together with a set 1?. of reaction rules
whose form we shall define later. We let K

range over controls.

Definitiofl 2.5 (Controls (statics)) A control K is an operator which allows

the construction of
an action K() from a sequence of actions, subject to a rule

of arity having the following form:

ai : m -+ fli ... a : mr +
flr (x)

K(aj,.. .,a) :

where the sideconditi0n x may constrain the value of the integer r and the arities

rn1 ,n,m,fl.

An example of a signature for the fragment of the ir-calculUS mentioned in the

introduction is given by the set of controls {v, out, box) with rules of arity as

follows:
a: m-+n

out:p®m 	 - boxa:p-4fl

Another example is given by the signature K
= { ', ap} which gives a repres-

entation of the simplY typed) ¼-calculus as an action calculi. To obtain the arrow

types in the Acalculu5, we assume that M supports expOflefltiation m n of

arities (with m = n prime). The arity rules are then:

a : m -*Th 	 ap: (m = n) 07Th -4 fl

-+(m=ri)

Chapter 2. Control Structures 	 19

By combining signatures, any action calculus can be lifted to higher order; for

instance, the higher order ir-calculus is obtained by the signature containing the

controls { ', ap, ii, out, box} together with their rules of arity. To indicate the

union of the signature {' , ap} with some signature K; we shall write V.

2.2.1 Molecular Forms

We shall now define the following syntactic forms which will turn out to be normal

forms for the actions of an action calculus.

Definition 2.6 (Molecular forms) Let K; be a set of controls. The molecular

forms over K;, denoted M(K;), are syntactic objects; they consist of the actions a

and the molecules p defined as follows:

a ::= () P1 	Pr (ii) 	(: m,iZ: n, a: m— n)

p ::= (vi)KQ 	 (ii: k,17: l,Kg: k—+l)

We let), it range over molecules. In both actions and molecules, whenever a vector

occurs in round brackets, its names (which by our convention must be distinct)

are binding occurrences with scope extending to the right to the end of the smal-

lest enclosing action, capturing occurrences of the names XF even within molecule

constructions. Names which are not thus bound are free and alpha conversion of

bound names is allowed. We assume that no name has more than one binding

occurrence in any molecule or action.

In the action a of the above definition, are called the imported names and

i, the exported ones. The construct P1 • Pr, called the body of a, is a possibly

empty partial sequence of molecules, where the commutation of any two molecules

is allowed provided neither binds a name occurring free in the other.

We shall now define the operations of an action structure, the control operations

as well as two additional ones, datum (x) and discard c, which represent provision

of (exported) and discarding of (imported) names respectively.

1dm
def = ()()

a•b de
=l (ii)Li11(cU)

a®b de
=

f
 (iZ)Xji(ii)

aba def = (xu'i),\(xvi)

(x) d ef = ()(x)
def = (x)()

K(a;.-. = def
 (x)()Kd(l7)() (,il not free in o)

(II=m)
(a={})

Chapter 2. Control Structures 	 20

Definition 2.7 Assume a = (ii) A (Y) and b = () i () where no name which is

bound in one occurs in the other.

where {
161} is simultaneous substitution of i for I.

Fact 2.8 x is free in a if and only if aba id (9 a.

Proposition 2.9 (M(K), id, •, (9, ab) is a static action structure.

2.2.2 The theory AC

We are now ready to define an action calculus as a quotient of a term algebra. An

action calculus AC(AC) possesses a set K of controls, each equipped with an arity

rule. Each AC(K) is determined by its controls ?C together with a set of reaction

rules which defines its dynamics.

Definition 2.10 (Terms) The terms over K, denoted by T(K), are generated as

follows (we let t range over terms):

t 	Id I (x) I w I K I 	t 2 I t 1 0 t 2 I abt

where (x) : c —3p (x:p) andw : p — € (for eachp), and the other constructions have

arities dictated by the arity rules of the constructors. The notions of free name

and bound name are standard; ab binds x and (x) represents a free occurrence

of x. The set of names free in t is denoted by fn(t).

Chapter 2. Control Structures
	

21

Definition 2.11 (Derived operations) We define an alternative form (x)t of

abstraction, and the permutors Pm,n, as follows (together with some abbreviations):

def (x)t = abt• (w 0 id)
d ()t ef = (x1) ... (Xr)t (x = Xi 	X,., all distinct, r > 0)

-. 	def
(X1 = (Xi)O"®(Xr) (=Xi ... X, r>_O)

def
Pm,n =(D(0) 	(: m, : n)

U

Note that Pm,n is defined using a particular vector YY of distinct names; with

of-conversion, we shall be justified in choosing these names at will.

Although unsurprising, we define substitution upon terms in detail as we shall

need a careful analysis of it later.

Definition 2.12 (Substitution) Substitution {Y/x} upon terms is defined as fol-

lows:

{Y/x}id Id

{Y/x}& def
 =

{Y/x}(z) def
 = (z) (z x)

{Y/x}(x) def
 = (y)

def {Y/x}(ti®t2) = {Y/x}t i O{Y/x}t 2
def {Y/x}(ti . t 2) = { Y/z}ti . {Y/x}t 2

{Y/x}K(t) T K({Y/x}t,...)

{Y/x}abt ab{Y/x}t

{Z/x}abt ! ab w {Z/x}{W/z}t

{Y/z}abt def
= abet

(z V {X,y})

(zX, wfn(t)U{x,z})

U

Note that, in the penultimate equation, some particular w is chosen. We are not

assuming of-convertibility at this stage, but it is a consequence of the axioms of

action calculi given below.

Lemma 2.13 {Z/x}t = t.

22

Chapter 2. Control Structures

Proof Induction on the structure of terms.

DefInitiOU 2.14 (The theory AC) The equational theory AC is the set of equa-

tions upOn terms generated by the action structure axwms together with the
fol-

lowing:

(x fn(t))
-y: (x)t=W®t

5: (x)((X) 01dm) = Idp®m 	(x : p)

: Pk,m (t2 ® t 1) = (t1 ® t2) . 	(t 1 : k& t 2 : mn)

o: ((y) 01dm) (x)t = {Y/x}t 	(t : m-4n) U

With some abuse of terminol0)' we shall consider AC to stand for either the

above set of four axioms, or the set of equations inferred from them (a congruence

relation). It will be clear from the context which we mean.

It is natural to ask why the axioms AC have been expressed using the derived

form (X)t of
 abstraction rather than directly using abt. This is mostly for con-

venience; note especially that the permutations are more directly definable using

t 	
equivalent formulation of y using ab:

he derived form. However, there is an

proposition 2.15
The theory AC is unchanged when the axiom -y is replaced by

the following axiom:

-y': abt = Id 0 t 	(x V fn t)

proof Let AC' be the theory given by replacing the axiom -y by 	Then it may

be shown that y is derivable in AC'.

(x)t =
-yl

= (Id(9t):(WOid)

wot

It may also be shown that ' is derivable in the theory AC.

Chapter 2. Control Structures 	 23

	

abt = abt°(x)((x)(9id) 	 05

= abt ab((x) (9 id) (w 0 Id)

= ab(t ((x) (9 id)) (w (9 Id)

= ab((x) 0 Id) ab(id 0 t) (w ® Id)

= ab((x) (9ld) (x) (id 0 t)

= ab((x)0id).(w®id(9 t)

= ab((x) 0 Id). (w 0 Id). (id ® t) 	 45

= idOt
U

We shall now derive several equations in the theory AC. These demonstrate the

consequence of the theory and will also serve us in later proofs. In particular note

that a-conversion is obtained.

Lemma 2.16 The following are provable in AC whenever x V fri (t2):

(x)(t 1 . t2) = (x)t i t2 ;

(x)(t 1 (9 t2) = (x)t i 0 t2 ;

(x)(t2 0 t 1) = t2 0 (x)ti , if t2 :

a: (y)t = (x){X/y}t, if x iV fn (t);

ab 1 t = (x)((x) 0 t);

()((f)®id)=id;

abut = abz {X/y}t.

Proof

(1) 	(x)(ti t2) = abti (x)t2

	

= abt1•(w®t2) 	 if

= abti •((9id).t2

= (x)t 1 . t2

Chapter 2. Control Structures 	 24

(*) (x)(t i (g id) = (x)(((x) 0 id) (x)t i 0 id)

= (x)((x) ® id (D id) ((x)t i (D id)

(x)t 1 Oid

(x)(ti (g t2) = (x)((t i (& id) (id 0 t2))

= (x)(t i ® id) (id®t2)

= ((x)t1 0 id) (id (9 t2)

= (x)t1®t2

(x)(t2 ® t 1) = (x)(t i • (t2 (9 Id))

= (x)t 1 (t2 0 id)

= t2 0(x)t i

(a) 	(x){X/y}t = (x)(((x) (9 id) (y)t)

= (x)((x) 0 id) (y)t

= (y)t

2.13, o

(1)

(5

(1)

(*)

(1)

0

(1)

(5

abt = abt•(x)((x)(9 id)

(x)(t.((x)(& id))

= (x)((x)®t)

Induction on length of Y. Basis true by definition. For the inductive step:

(x((xü) 0 id) = (x)(((() (9 id). ((x) (9 id))

= (x)((')(() (& id) ((x) 0 id)) 	 (1)*

= (x)((x) 0 id) 	 induction

=id 	 (5

If x = y then result follows by lemma 2.13. Assume x

abx {X/y}t = (x)((x) 0 {X/y} t) 	 (4)

= (x){X/y }((y) Ot)

= (y)((y)®t) 	 a

= abut 	 (4)
U

We are now ready to define action calculus.

Chapter 2. Control Structures 	 25

Definition 2.17 (Action calculus: statics) The static action calculus AC 8 (K)

is defined to be the quotient T(K)/AC.

Fact 2.18 AC8 (1C)is a static action structure.

The following theorem [23] shows that the molecular forms M (K) provide an

explicit representation of AC 8 (K).

Theorem 2.19 For any signature K, the static action structure M(K) of mo-

	

lecular forms is isomorphic to AC 3 (K). 	 .

We shall now introduce the reaction rules which assign computational significance

to the control operations.

Definition 2.20 (Controls (dynamics)) A reaction rule over a signature K

takes the form:

t[a]Nt'[a]

where t, t' are terms of T(K) which may contain metavariables al over actions. •

An example of a reaction rule over the signature {zi, out, box} presented earlier

is

(((2;) (9 id).out) (9 ((x).boxa) Na

The reaction rules for the controls { ', ap} are

	

('t'®id) . (x)t'N{t/x}t' 	 N: (ra l®id) 'ap\a

where {t/x}t' signifies the substitution of f1 for each free occurrence (x) of x in

t'. N is actually a rule schema; giving a rule for each pair of terms t, t'. The

second rule corresponds to /3-reduction. The dynamics of AC(, ap) is studied

in more detail in [28].

Chapter 2. Control Structures

It is important to note that a reaction relation need not be preserved by con-

trols; thus from a N a' it does not follow that boxa N boxa'. Indeed, the role of

box on the ir-calculus is to prevent such reaction from occurring thereby providing

a form of sequential control over reactions.

Definition 2.21 (Action calculus: dynamics) Let 1?. be a set of reaction rules

over a signature K. Then the (dynamic) action calculus AC(K, R) is the static

action structure AC'(K) equipped with the smallest reaction relation N which

satisfies the rules 1Z (for all replacements of metavariables d by actions). •

We shall henceforth use AC 8 (K) and AC(K, 0) interchangeably to denote the static

action calculus over K.

As an example of an action calculus we shall now bring together a signature and

a set of reaction rules which together completely define the calculus PlC . In the

light of the informal explanation given in Section 2.2, we note the correspondence

between PlC and a fragment of the ir-calculus. A similar correspondence with a

variant of PlC is stated more formally at the end of chapter 6.

PlC is defined as the action calculus over the controls {out, box} together with

the following arity rules

a : m-+n

out:p®m-+e 	 boxa:p-+n

and the reaction rule outs ® boxa N a where

def 	j out = (tx) (9 id) . out
def boxa = (x) boxa

Throughout this thesis we shall draw examples from the actions, signature and

reaction rule of the above calculus.

Discussion The axiomatization of AC, though succinct, is impure in two ways;

the axiom 'y has a syntactic condition upon terms, and the axiom a is expressed

Chapter 2. Control Structures 	 27

in terms of substitution of names into terms. Thus each of these axioms is more

exactly an axiom schema: a finite presentation of an infinite set of axioms. We

could define a control structure to be an enriched action structure which satisfies

this infinite set of axioms, and then by an entirely standard argument we would

find AC(K) to be initial in this subcategory of action structures.

One shortcoming of this approach is that it does not provide a semantic account

of what it means for a name to belong to the "surface" of an action, generalising

the syntactic notion of free occurrence of a name in a term. Another is that

instances of y or o, interpreted in an arbitrary action structure A, constrain only

those actions which lie in the image of AC(K) under a homomorphism; they impose

no constraint upon actions of A in general, and thus contribute no understanding

of A as an algebraic structure. Finally, a finite set of axioms is more satisfactory

than an infinite set.

Bearing these arguments in mind, in the spirit of universal algebra we seek to

characterise control structures by a finite set of pure axioms, such that AC 8 (K)

is the initial control structure over K. Apart from the greater elegance of this

approach and greater mathematical insight it provides, it has the advantage that

properties such as initiality then follow by standard arguments.

Initiality will be ensured if the axioms we propose generate exactly the theory

AC, i.e. they are equipotent with 'y, 6, C and o over the term algebra. This con-

dition does not fully determine the notion of control structure; therefore we must

justify our choice. Our axiomatisation has other qualities; it is simple, it is a nat-

ural extension of a known categorical structure (symmetric monoidal categories)

and it gives a convincing account of the notion of surface.

Before presenting the axioms, let us further analyse the central problem. The

greatest difficulty is to replace the axiom schema

abt = id ® t 	(x fn (t))

(which by Proposition 2.15 is equipotent with '7) by a finite set of purely algebraic

axioms. A less satisfactory solution is to give up the purely algebraic approach,

Chapter 2. Control Structures 	 28

and to postulate that every control structure is equipped with a map surf which

assigns to each action a a set surf (a) ç X; then one adopts the single axiom

aba=idØa 	(x V surf(a))

One also imposes upon surf the reasonable condition that, roughly, the surface

of each algebraic construction is no greater than the union of the surfaces of its

arguments. More precisely, one imposes the following surface axioms:

surf(id) = 0

surf (a (9 b) surf (a) U surf(b)

surf (a . b) C 	surf (a) U surf(b)

surf (aba) C 	surf (a) - {x}

surf((x)) C 	{x}

surf(w) = 0
surf (Kd) C 	U1 surf (a1) 	

(
= a1 ... a,.)

One then obtains a finite (but not purely algebraic) set of axioms for control

structures which ensures that AC(K) is initial.

This was indeed our first approach. We were then surprised to find that from

these axioms one can derive the double implication

aba=id®a 	xØsurf(a)

To see this, note that one direction (=) is already given by dy" . For the other (),

suppose that aba = id ® a. For any y we have

a = ((y) 0 id) . (id 0 a) . 	(9 id)

using (y) 	= id(which is ensured by the other control structure axioms. It

follows that

surf (a) 	{y} U surf (id (9 a) 	by the surface axioms

	

= {y} U surf (aba) 	by assumption

= {y} U (surf (a) - {x}) by surface axiom

Chapter 2. Control Structures 	 29

and by choosing y x we deduce x surf (a). In other words, the surface axioms

have constrained surf (a) to be exactly the set {x I aba 54 Id ® a}. We therefore

have the same effect if we remove "y" and define surface by

surf (a)
d
=ef {x I aba 0 Id ® a)

The axioms are still not purely algebraic, since the surface axioms remain; each

of these has now become an implication between equations. Our second discovery

was that these implications can be replaced (with equivalent power) by a small

number of purely equational axioms.

It is convenient to introduce the axioms in two steps. The first step is to define

symmetric action structures, an enrichment of symmetric monoidal categories.

2.3 Symmetric Action Structures

We begin by recalling the standard notion of a symmetric monoidal category.

Definition 2.22 (Symmetry) A symmetry on a strict monoidal category is a

family of arrows c with components Cm,n : m 0 n -+ n 0 m such that

Cm,n (b 0 a) = (a 0 b) . Cm',nI

Cm,n Cn,m = Id

(Cm,n 0 Idk). (ida 0 Cmk) = Cm,n®k

where a: m—m', b: n-+n'.

Remark The axiom S 1 states that the symmetry is a natural transformation as

can be seen by expressing S 1 by the following commutative diagram:

m On aOb

Cm,n 	 I Cm'fll

nØmbOa 	n'Om'

30

Chapter 2. Control Structures

Definition 2.23 (Symmetric action structure)
A symmetric action structure

is an action structure with a symmetrY c on it for which

abc=id®c

ab(aba) = id ® aba

ab(a (9 id) = aba ® id

(ck,t®id).aby 	
(c,i(g) (x: k,y :,xy)

Remark
It may be helpful to express the axiom S7 by means of the following

commuting diagrafll

abab y a
k ® £ 0 m

Ck,f ® 1dm 	
Ck,1 ® 1dm'

tOkOrn abab xa

Lemma 2.24 Let a : m -+fl,
b : k —pt, x : k andy: £, where x,y are distinct

names. The following equations are valid in symmetme action structures:

a® b = Cm,k (b (& a) .

abab y a = (ck,L ® id) ababa (CL,k (9 Id);

(Idk 0 cm,n) (ck,n (g 1dm) = ckøm,n

c.,e = 1dm = C,m.

Proof
S2

a 0 b = (a(9 b) . c,i c

Cm,k (b (9 a)

ababya = ababa (ck,l 0 id) (cl,k ® Id) 	
S2

	

= (ckj 0 id) . ababa (C1,k 0 Id) 	 S7

Chapter 2. Control Structures 	 31

Ck®m,n = CkØm,n (cfl ,k 0 jdm) (ck, fl 0 1dm) 	 S2

= Ck®m,n (cfl ,k 0 1dm) (Idk 0 Cn,m)

(idk 0 Cm,n) (C,n 0 1dm) 	 S2

= CkØm,n Cn,kØm (idk 0 Cm,n) (ck, fl (9 1dm) 	S3

= (idk (9 Cm,n) (C,n (9 1dm) 	 S2

We show that for every n, id 0 Cm,E = id 0 idm : then n = E gives result.

idn 0 idm = Cn,m Cm ,n 	 S2

= Cn,m (Cm ,n (9 Id6) (ida (9 Cm,6) 	 S3

= idn 0 Cm,6 	 S2

Now, prompted by Fact 2.8, we define a semantic notion of surface. Intuitively,

the surface of an action a contains just those names x for which the abstractor

ab acts non-trivially upon a.

Definition 2.25 (Surface) Call the set

{XEX I abaid®a}

the surface of a, written surf (a).

Remark By Fact 2.8, when a is a molecular form its surface is exactly its set of

free names.

Another way to express our semantic understanding is that an action "depends

upon" a name x just in the case when x is in its surface. Whatever "depends upon"

means, it should surely be the case that a compound action depends upon no more

names than do its components (taken together). The notion of symmetric action

structure is significant, compared to that of action structure, because it entails a

proposition which expresses this property:

Proposition 2.26

1. surf(id) = 0;

Chapter 2. Control Structures 	 32

surf(c) = 0;

surf(a b) c surf a U surf b;

surf(a (9 b) C surf a U surf b;

surf(aba) C surf a - {x}.

Proof (1) and (2) follow trivially from the axioms abid = id and (S4) respect-

ively. For (3) and (4) it suffices to show that if aba = Id 0 a and abb = Id 0 b

then ab(a• b) = id 0 (a . b) and ab(a (9 b) = Id 0 a 0 b. For (5), by (S 5) we

have x V surf(aba). So, let y V surf (a) with y 0 x. Assume y : £, x : k and

a : m—n.

ab(ab)

= aba . abb

= (id(&a).(id(&b)

= idO(a.b)

ab(a(9 b)

= ab((a (9 id). (id 0 b))

= ab(a 0 id) . ab(id 0 b)

= (aba 0 Id) . ab(id 0 b) 	 S6

= (aba 0 Id) ab(c. (b(9 ld) . c) 	 2.24(1)

= (aba0id) (idOc) (abb0id) . (id(&c) 	 s4) S6

= (id 0 a 0 id) (id (9 c) . (id ® b ® id) . (id (& c)

= (id®aOid).(id®idOb) 	 2.24(1)

Chapter 2. Control Structures
33

(5) ababxa

(c1,k ® Id) . ababya (ck,t ® Id)

(Cj,k (9 Id) abx (idt (9 a) . (Ck,e (9 Id)

(C1,k (9 Id) abz(C,m
(a 0 Id) . c,t) . (c,t 0 id)

(cj,k (9 Id) . (Id (9 Ct,m) . ab(a 0 Id)

.(id 0 	(ck,1 0 Id)

= C1,kOm (aba (9 Id) . CkØn,t

= IdOab1a

2.24(2)

2.24(1)

S6

S3, 2.24(3)

2.24(1)
U

Remarks In proposition 2.26, clauses (3)-(5)
are inclusions rather than equations.

In the more refined class of models for action calculi given by control structures

(see the following section) we prove a stronger version of
(5) with inclusion being

replaced by equality.

However, equality does not hold for (3) or (4). A countereXamP for (3) given

by (x) = ide , which holds in any action calculus. For
(4), a counterexample

is provided by the action structure whose typical element is of the form
()g(),

where g
is an element of the free abelian group generated by the names X; thus

g takes the form x' x where h,,.. . , h,. are integers 1 . The tensor product of

and b = ()g()Z)f(ii) 	
is (ii)f x g(vTff), where f x g is the group product. If

a = (

a = Xy 1 and b = yz 2 are two actions of arity € — f , then y lies in the surface of a

2
and of b but not in the surface of a(9 b = xz.

PropoSition 2.27 The action calculus AC(1, R.) is a symmetric action structure.

Proof We take the permutations Prn,n
as the symmetrY on AC(K, 1Z). NaturalitY

(S,) is immediate by C
. We shall now show that axioms S 2-S7 are provable in AC.

In the proofs that follow assume that :
m, : m, : n, : n and : k and that

names i, , i5, , are al
pear in the right-hand l distinct. Reasons for each step ap

cates repeated use of an equation. column; an asterisk indi

'This example arises as a quotient of the action structure for Synchronous CCS
1211.

34

Chapter 2. Control Structures

(S2) p,,n Pn,m

= (fW) . (W)(iiui)
2 . 16(1)*

= () (Wi) . (iW) (iiiZ))

= (f?J)
2.16(5)

=id

(S3) (Pm,n (9 idk) . (ida (9 Pm,k)

= (()(il)(9 idk) (ida ® (iiii)(tYi))

= (y1() ® id (ida ® 	
2.16(2)

W

= ()(() 0 idk) . (ida 0 (ii)(tii))) 	
2.16(1)

W
id,) 0 (((i) ® Idk)' (ii)()))

= (D(W)® ()(t)) 	
tT*

2.16(3)

= Pm,n®k

(S4) abp 	
2.16(4)

= (x)((X)(9 P)
2.16(2)

= (x)(x)®P o
= id®p

(S5) ab(abxt) 	
2.16(4)

= (x)((X) ® abt)
2.16(2)

= (x)(x) ® abt
a

= 1d®abt

(S6) ab(t ® Id)
2.16(4)

= (x)((x)®t®id)
2.16(2)

= (x)((x)®t)®id
2.16(4)

= abxtOid

Chapter 2. 	Control Structures 35

(S7) ababt• (pp,q 0 Id)

= 	ababt• ((xy)(yx) Old)

ababt.(xy)((yx)0id) 2.16(2)

= 	ababt abxabv ((yx) Old) 	(x)(w Old)

= 	ab1ab((yx) 0 t) 	(x)(w 0 Id)

= 	(xy)((yx)(9t)

= 	(xy)(((x) (9 Id) . (x)((yx) (9 t)) 2.13,o

= 	(xy)(((x) 0 id) 	((y) 0 id) 	(yx)((yx) (9 t)) 2.13,o

= 	(xy)(((yx) (9 Id) 	(yx)((yx) (9 t))

= 	(xy)(((yx) 0 Id) . (y)((y) (9 (x)((x) (9 t))) 2.16(3)

= 	(xy)(((yx) 0 id) . (y)((y) (9 abt)) 2.16(4)

= 	(xy)(((yx) (9 id) 	ababt) 2.16(4)

= 	(xy)((yx)0id).ababt 2 . 16(1)8

= 	(Pp,q 0 id) ababt 2 . 16(2)8

2.4 Control Structures

We have prepared the way for the central definition and result of the chapter,

namely the definition of control structures over)C and the proof that AC 8 (AC) is the

initial control structure. Our strategy has been to find a finitary axiomatization

of the equational theory AC (see [24]); once this is found, the step to a suitable

category of models for the molecular forms is much better defined.

Definition 2.28 (control structure) Let A be a symmetric action structure (over

X). Let K be a set of controls, equipped with reaction rules. Then A together with

- datum (x)A : €-+p for each x : p E X;

- a discard operation w : p —+ e, for each prime arity p;

- a control operation KA for each K E K, obeying the arity rules for K;

Chapter 2. Control Structures 	 36

is a control structure over K if

where

Surface

72:

Datum

Substitution o 1

03

ab(y)=id®(y) 	 ifyOz

ab =id®w

(x)(x) = id

[X/x]a = a

[Y/x]((x) (9 (x)) = (y) 0 (y)

[Y/x]K(a i ,. . . , a,) = K([Y/x]a i ,. •, [Y/x]a)

def (x)a = (aba)(w(9id)

[Y/x]a =
def

 ((y) ® id) (x)a 	(arity(x) = arity(y))
U

Remarks The operation [Y/x] is called semantic substitution. Notice that the ax-

iom u simply asserts that, in AC 8 (K), semantic substitution agrees with syntactic

substitution.

The axioms 1i and 72 are counterparts to in AC; € is an instance of 5

and 0'1-03, in the presence of the other axioms correspond to the substitution

equations together with o.

Note that the employment of symmetry in our formulation has allowed us to

avoid the use of vectors of names and also to isolate the treatment of datum,

discard and the controls. We shall discuss alternative axiomatisation after pro-

position 2.36.

The following proposition expresses the interaction between data and discard.

Proposition 2.29 (Absorption) (x) . = idE .

Proof

WE = [x/z]jdE 	 01

= () . abid€ .

= (x).id.,

=

Chapter 2. Control Structures 	 37

U

Proposition 2.30 For any a and x, the following are equivalent

1. aba=id®a;

. (x)a=&'®a;

3. [Y/x]a = a, for all y.

Proof By definition (1) implies (2) and, by proposition 2.29 and the definition of

[Y/x], (2) implies (3). To show that (3) implies (1) choose y 0 x.

aba = ab([Y/x]a)

= ab(((y) ® Id) (x) a)

= ab((y) (9 Id) ab(x)a

= (Id 0 (y) 0 id). (id (9 (x)a) 	 S6 ,1y 11 S51 y2

= Id® (((y)®id) (x) a)

= id®[Y/x]a

= idOa
U

Remark The above proposition can be regarded as the semantic equivalent of

y. If x V surf (a), then by the definition of surface, aba = id 0 a. By proposi-

tion 2.30, (x)a = w 0 a.

Proposition 2.31 (surface)

surf((x)) ç {x};

surf(.) = 0;

surf(aba) = surf (a) - {x};

surf (K(a i ,. . . , an)) c U1<< surf a.

M.
Chapter 2. Control Structures

Proof (1) and (2) follow trivially from lfi and Y2 respectively.

For (3) we need only show that surf (aba) 	surf (a) - {x} since proposi-

tion 2.26(5) gives the other inclusion. By
i, a = ((x)®id).abx (w(gid). Hence,

by (1), (2) and proposition 2.26 (3) and (4) we get surf (a) 9 {x} U surf (aba)

and the result follows immediately.

To show (4), assume x V surf(a), for all aii in K. Now by , [
Y/x]K = K[Y/xId.

By assumption, for each i, ab,,ai = Id 0 a, so by propoSition 2.30, tY/xIai = a 1 .

Hence [7J/x1K = Ka and by propoSitiofl 2.30, the result follows.

Remark We do not have surf ((z)) = {x}
in general, since in the trivial control

structure where all terms of the same arity are identified (the terminal control

structure) the surface of each term is necessarily empty. Note also that we have

refined proposition 2.26(5)
by equality rather than inclusion.

PropOSitiOIl 2.32 (6) (x)((X) ® Id) = Id.

Proof

(X)((X) (9 id) 	abz((X) (9 Id). ((9 Id)
S6

= (abx(x) (9 Id) ((9 Id)

= (ab1(x) .(w(9 Id))01d

= (x)(x)®id
€

=id a

Proposition 2.33
The following equations hold in a control structure whenever

x V surf(b):

(x)(ab) = (x)ab;

(z)(a (9 b) = (x)a 0 b;

(x)(b(9a)(Cp,?n(9id) 	Ø(x)a), ifb:m-*n.

39
Chapter 2. Control Structures

a: (y)b = (x)[X/ylb;

()(() ® Id) = id;

(x)(y)a = (cp,q (9 Id) (y)(s)a, where x : p, y: q.

Proof

(1) 	(x)(ab) = aba(X)b 	
2.30

= aba(,J®b)

=
= (x)ab

(*) (x)(a®id) = (x)([x/xIa®id) 	
all

= (x)(((X) ®id) . (x)a(9 id)

= (X)((X)®1d®1((x)a(&) 	
(1)

2.32
= (x)a®id

(2) 	(x)(a(9b) 	(x)((a(9id)(k1(&b))
(1),2.26(1, 4)

= (x)(a(9id).(id®b)

= ((x)a (9 id) (id (9 b) 	 (*)

= (x)a®b

(f) ()(idm ® a) = (x)(Idm 0 a) (b (& Id) 	 (1)

(X)(Cm,k (a(9 1dm) . Ci,yn) 	
2.24(1),a: k-+1

= abxCm,k (x)(a 0 1dm) Cn 	
(1)

= (id (9 Cm,k) (x)(a 0 1dm) CZ,m 	 S4

= (id 0 Cm,k) ((x)a (9 1dm) Cl,m 	 (2)

= (Id,, 0 Cm,k) CpØk,m (1dm 0 (x)a) . Cmj Cl,m 2.24(1)

(Id,, (9 Cm,k) Cp®k,m (1dm (9 (x)a) 	 S2

= (id (9 Cm,k) (idp (9 Ck,m)

(9 id) (1dm (9 (x)a) 	2.24(3)

= (cp,m(9)(m®() 	
S2

Chapter 2. Control Structures 	 40

(x)(b(9a) = (x)((idm ®a) (b®id))

= (X)(ldm ® a) (b (9 id) 	 (1)

= (Cp,m ® id) (idm ® (x)a) (b ® id) 	 (f)
= (cp ,m øid) .(b®(x)a)

(cr) 	(x)[X/y]b = (x)(((x) (& id) (y)b)

= (x)((x)(Did).(y)b 	 (1)

= (y)b 	 2.32

aba = aba• (x)((x) (& id) 	 2.32

= (x)(a.((x)(9id))

= (x)((x)®a)

Induction on length of Y. Basis true by definition. Step:

(xi7)((x) (9 id) = (x)(((() (9 id) . ((x) 0 id))

(x)(()((ü) 0 id)) • ((x) ® id) 	 (1)*

= (x)((x) (9 id) 	 induction

= id 	 2.32

(x)(y)a = ab(aba (®id)) . (w (9 id)

= ababa . ab(w (9 id) . (w 0 id)

= ababa• (id (9 w 0 id) . (w 0 id) 	 S6, V2

= (Cp,q 0 id) ababa (c q ,p (9 id)

.(id 0 w (9 id). (e (9 id) 	2.24(2)

= (cp,q (9 id) . ababa• (w 0 id) (w 0 id) 	S1,2.24(4)

= (cp,q 0 id) . (y)aba (& 0 Id)

= (cp,q 0 id) . (y)(aba• ((9 id)) 	 2.33(1)

=(Cp,q (9 id) (y)(x)a
.

Remark When x V surf (b), abb = ab x [X/y]b follows from c, (4) and proposi-

tion 2.36(5).

Chapter 2. Control Structures
	

41

Proposition 2.34 Define Pm,n as (f(), where : m and: n. Then Pm,n =

Cm,n.

Proof

(:)(U) = ()((()(9()) 	 2.33(2)*

= ()(id(9()) 	 2.33(5)

= ()((()®id)Cm ,n) 	 Si

= (E)(() (9 id) . Cm,n 	 2.26(2),2.33(1)*

= Cm,n 	 2.33(5)
.

Corollary2.35 () Assumea m -+n andb: k-3L Then pk m (a(9b)

(b®a) Pt,•

Proof Immediate by proposition 2.34 and naturality of symmetries (S 1).

The following proposition asserts that the semantic substitution [Y/x] behaves equa-

tionally like the syntactic substitution {Y/x} as given in definition 2.12.

Proposition 2.36 The following properties of semantic substitution hold in any

control structure:

[Y/x]id=id
	

5. [Y/x](a (g b) = [Y/x]a ® [Y/x]b

[Y/z]w =
	

6. [Y/x](a . b) = [Y/x]a. [Y/xJb

[Y/x](z) = (z) (z 0 x)
	

7. [Y/x]K(a)=K([Y/x]a,...)

[Y/xJ(x) = (y)

[Y/x]aba=ab[Y/x]a 	(z{x,y})

[Z/x]aba = ab w [z/x][W/zja (z x, w 0 surf (a) U {x, z})

[Y/z]aba = aba.

Proof (1), (2), (3) and (10) follow directly from proposition 2.30(3), and (4)

follows directly from E. (7) is exactly 03. For the remaining cases, assume x, y, z:

KO

Chapter 2. Control Structures 	 42

[Y/xJ(a(&b)

= [Y/x]([X/xja®[X/xjb) 	 47 1

= [Y/x]((((x) 0 id) (x)a) 0 (((x) (9 jd) (x)b))

= [Y/x](((xx) 0 1d (gm) (idp 0 Cp,k 0 1dm) ((x)a (9 (x)b)) 	S 1

= ((y) (9 jdj ®m) ((x)(xx) 0 1d ®m)

(id 0 Cp,k (9 idm) ((x)a 0 (x)b) 	2.33(1,2)

= ((yy) 0 d 0m) . (idp (9 Cpk 0 1dm) ((x)a (9 (x)b) 	0"2

= ((y)(9idk) (x)aO((y)(9id m) (x)b) 	 S 1

= [Y/x]a 0 [Y/x]b.

[Y/x](a.b)

= ((y) 0 Id) . (x)(a b)

= ((y) 0 id) (x)((x) ® a) . (x) b 	 2.33(4)

= [Y/xJ((x). (9 a) . (x) b

= ((y) 0 [Y/x]a) (x)b 	 (4),(5)

= [Y/x]a. ((y) 0 id) (x)b

= [Y/x]a. [Y/x]b.

(9) [Z/x]aba

= ((z) Old) abab2 a• (c#.., 0 id)

= ((z) 0 id) . (c ® id) abab1a• (c ® id) (w 0 id) 	2.24(2)

= (idO(z)Oid)•ababa.(id0w(&id) 	 S 1
= (Id 0 (z) (9 id) . (z)((z) 0 aba) . (Id Ow 0 id) 	2.33(4)

= (Id 0 (z) 0 Id) . (W)([W/Z]((Z) (9 aba)) (id 0 w (9 id) 	a

= (id 0 (z) (9 Id) (w) ((w) 0 abx [W/z]a). (id 0w (9 Id) 	(5),(4),(8)

= (Id 0 (z) (9 id) abw abr [W/zja. (id 0 w (9 id) 	 2.33(4)

= ab((z) (9 id) . abab[W/z}a. ab(w (9 id) 	 711 7
= abw [z/x][W/z]a.

Chapter 2. Control Structures 	 43

(8) [Y/x1aba

- ((y) (9 id) ababa (w 0 id)

= ((y) 0 id) (c ® id) ababa. (c (9 id). (w (9 id) 	2.24(2)

= (id 0 (y) 0 id) ababa (id 0 w (9 id) 	 S 1

= ab((y) 0 id) ababa 	(9 id)

= ab[Y/x]a.
U

Discussion There are alternative sets of axioms to the ones given above and

which is the most elegant or natural set is arguable. For instance, we can replace

02 by o : ab(x) = ab(y). This equation is provable by proposition 2.33(4) and

a-conversion, while 0'2 is provable (from the alternative set of axioms) as follows:

[Y/x]((x) 0 (x)) = ((y) 0 id) (x)((x) (9 (x))

= ((y) 0 id) . (y)((y) 0 (y)) 	 c,2.33(4)

= [Y/y]((y) (9 (y))

= (y)®(y) 	 471

U

Note that ab(x) = ab(y) would be the only explicit instance of a-conversion in

the axioms which is required to derive a-conversion for arbitrary terms. Finally,

the axiom can also be replaced by [Y/x]((x) 0 (x)) = [Y/x](x) 0 [Y/x](x), in the

presence of c.

Definition 2.37 (The category of control structures) The category CS 3 ()C)

of control structures over a signature K1 has as objects control structures, and as

morphisms action structure homomorphisms which act as identity upon X and M

and also preserve the data, discard and control operations.

It is immediate that every morphism in CS 3 (K) reduces surface:

Proposition 2.38 (Surface reduction) Let : A -* B be any morphism of

control structures. Then surf(a) 9 surf (a) for all a e A.

Chapter 2. Control Structures 	 44

Since CS 3 (K;) is characterized equationally, it is easy to see that it is closed un-

der factoring by a congruence. Moreover we can state precisely what effect the

morphism has upon surface.

Proposition 2.39 (Congruence) Let 	be a con grtience over each action-set

A(m, n) in a control structure A, i.e. an equivalence which is preserved by the

action structure operations, by the control constructions K; and by reaction. Then,

the quotient A/ is a control structure, with C1 : a -+ [a] as the induced morphism

from A to A/ , where [a] is the congruence class of a. Moreover,

surf ([a]) = fl{surf(a') I a' E [a]}

Proof The proof is mostly of a kind which is standard in universal algebra. For

the last part, we prove each inclusion as follows.

(ç) It is enough to show that surf ([a]) 9 surf (a) for each a; but this follows

from Proposition 2.38.

(2) Assuming x 0 surf ([a]), it is enough to find a' 	a such that aba' =

id 0 a'. Pick a' = [Y/x]a, where y x; then a' a follows from aba id 0 a and

the rest follows much as in Proposition 2.30.

ab[Y/x]a = ab(((y)®id)•(x)a)

= ab((y) Old) ab(x)a

= (id 0 (y) 0 Id). (id (9 (x)a) 	 S61 1 1 ,S5172

= id® (((y)oid) .(x)a)

= idO[Y/x]a

We now proceed to consider initiality among control structures. The following has

a standard proof, since the axioms are purely algebraic:

Proposition 2.40 The category CS 8 (AC) has an initial object.

Chapter 2. Control Structures 	 45

Our next task is to establish the status of action calculi among control struc-

tures. The following result depends upon the fact that semantic and syntactic

substitution coincide in the theory AC due to u.

Proposition 2.41 AC(AC) is a control structure over K with the permutations

Pm,n as the symmetry.

Proof By proposition 2.27, we already have that AC 3 (K) is a symmetric action

structure. Moreover € is a special case of 5. By o, {Y/x} agrees with the derived

operation [Y/x] and 0'2 and 03 follow from the equations for {Y/x}. By lemma 2.13

we have The following proofs give y1 and 72

ab(y) = (x)((x)®(y)) 	 2.16(4)

(x)((x)(9id).(id(9 (y)) 	 2.16(1)

= id®(y) 	 S

72 	abxw = (x)((x)®w) 	 2.16(4)

= (x)((x)(9id)•(id®w) 	 2.16(1)

=id®w 	 S
.

Finally we establish our main result. It depends upon the fact that, in any control

structure, semantic substitution [Y/x} provably satisfies the equations which define

syntactic substitution {Y/x}.

Theorem 2.42 (Initiality) AC 8 (1C) is initial in CS 8 (AC).

Proof Since we have shown that the action calculus is a control structure, there

is a unique map to it from the initial control structure. That map is obviously

onto, so it remains to show that it is one to one. To do that, we must show that

whenever the images of two terms are provably equal in AC, then they are equal in

the initial control structure. It suffices to show that in the initial control structure,

the axioms of AC are valid. By propositions 2.32 and 2.36, and corollary 2.35 we

get 5, a and C respectively. It remains to derive 'y.

Chapter 2. Control Structures 	 46

By proposition 2.30, it suffices to show that whenever x fn (t) (where fn

is defined as previously), x surf(t). This involves an easy induction on the

structure of terms (of the initial control structure): for instance, in the case of

t K', x V fn (t) if and only if x V fn (t'), for each t' E t1 . By proposition 2.31(4)

the result follows immediately. •

Remark Note that proposition 2.36(9) holds for any w 0 surf(a). In general,

there may not be any such w; however, in action calculi, there will always be such

a w as the surface of any action is finite, by Fact 2.8.

We note that CS 8 (K) contains any control structure over the signature K, with

any reaction relation. We often wish to confine attention to those which satisfy a

set of rules, hence we define:

Definition 2.43 If 1Z is a set of reaction rules over K, then CS(K, 1Z) is the

full subcategory of CS8 (K) containing just those control structures whose reaction

relation satisfies R.

The following is immediate:

Corollary 2.44 AC(K,R.) is initial in CS(K,R).

When 1Z. is understood, we often write CS(K) to mean CS(K,1Z).

Discussion The initiality of AC 3 (K) is significant largely because it has a dir-

ect presentation (up to isomorphism) as the action structure of molecular forms

M (K). The appeal of action calculi as concrete models of concurrent computa-

tion depends on the adequacy of the molecular forms as concrete representations

of concurrent reactive systems. Evidence in favour is the fact that known concrete

models fit readily into the framework. However, this does not necessarily justify

every choice made in the formulation of the molecular forms: in other words,

there may be variations on molecular forms and consequently in the formulation

of action calculi and control structures which would still do the job.

Chapter 2. Control Structures 	 47

It is still too early to decide which is the best notion of molecular form (indeed,

we must first generate competing variations) and in the meantime we can only

appeal to the elegance and simplicity of the molecular forms we have presented. In

the following chapter we shall explore a natural variation which allows a tractable

labelled transition semantics to be developed for a descendant of the it-calculus.

It is worth reflecting on the kind of applications our formulation of control

structures can support. We have already noted that the category of control struc-

tures is closed under congruences and therefore any model of an action calculus

obtained by quotient with a congruence gives a control structure. The homo-

morphism from the action calculus to such models will be onto; there are inter-

esting control structures to which the initial morphism may not be onto. One

such kind of morphism represents the notion of encoding or implementation. For

instance, the actions of an action calculus AC(K) may be encodable as actions of

another AC(ftC'). If the encoding is compositional, then it may be represented as

a morphism in the category of control structures over X; indeed AC(K') itself can

be shown to be an object in the category CS(K).

Another useful application of control structures concerns the classification of

dynamics. Since morphisms of control structures preserve reaction, the existence

of a morphism from an action calculus AC(K) to some control structure indicates

some constraints on the reaction relation of AC(K). One way of classifying reaction

rules is through such control structures; each such classifier C determines for which

sets of reaction rules 1Z a morphism from AC(frC, R.) to C exists. In chapter 4 we

shall see two examples of such classifiers.

Chapter 3

Reflexive Control Structures

In the previous chapter, a refinement of action structures was developed to give a

space of models for a concrete representation of a class of action structures given

by the molecular forms. These molecular forms are essentially linear syntactic de-

scriptions of directed acyclic graphs whose nodes consist of syntactic constructions

called controls, together with a facility for handling names through binding and

substitution.

An illustration of this will suffice for our purposes. The construction shown

below, is a molecular form of the term z.'. (x)(xx) (id,, ® boxt) out in PlC, whose

signature was encountered in Chapter 2:

[v(x), (x)boxa(y), (xy)out()}

where a : q —* q is the molecular form of t.

In a directed graph representation, binding occurrences stand for sources of

edges, whose destinations are identified by the bound occurrences, as shown below

by the diagrammatic representation of the above molecular form:

— 	 '-
'UIaW —

48

Chapter 3. Reflexive Control Structures 	 49

In thinking of molecular forms as graphs, it is helpful to consider the directed edges

as channels through which names "flow". A little reflection reveals that the binding

structure of the molecular forms of action calculi imposes certain constraints on

which kind of directed graphs (and hence, dataflow configurations) are expressible:

for instance, while a channel can be "split" through copying (as in the case of

the channel identified by x in the above example), it is not possible to 'loin" or

"merge" two dataflow channels into a single channel. Also, all dataflow proceeds in

one direction; as illustrated by action graphs, a graphical representation of actions

as an enhanced form of directed acyclic graphs [29]. The molecular forms which

gave rise to control structures, convincing as they are by virtue of their elegant

accomodation of existing concrete computational models, should not be taken as

the sole form that can provide such accomodation. A natural variation, suggested

by the constraint on dataflow in the molecular forms encountered hitherto, is to

remove such; in other words, to move from acyclic graphs to cyclic ones.

Such cyclicity can be achieved by a suitable variation in the directionality of

binding in the molecular forms. As they stand, binding in the molecular forms

is to the right and hence a molecule /2 which is bound by some molecule .A to its

left, cannot itself bind A. Moreover, there is no way in which the exported names

of an action can be fed into an action which is precomposed to it. This form of

backward dataflow is generally recognised under the term feedback. In this chapter

we shall study such an operation, here called reflexion, introduced by Mimer and

Jensen in [25] giving a refinement of action calculi called reflexive action calculi.

The feedback operator that we shall study was discovered independently by

several researchers working in quite dissimilar contexts. Stefnescu studied the

feedback operator in the context of flow charts [39]; Bloom and Esik treat feedback

in the context of iteration theories [5]; Milner first discovered reflexion (feedback)

in the context of an action structure for the ir-calculus [26] and then studied it in

the context of action calculi in [25]; while Joyal, Street and Verity treat feedback

(which they call trace) in the setting of (a mild generalisation of) strict symmetric

monoidal categories [14].

There are several reasons which make the introduction of reflexion as a struc-

Chapter 3. Reflexive Control Structures 	 50

tural operation interesting in the context of action calculi. First, as argued above,

the restriction on dataflow between actions to just the forward direction is effect-

ively removed. The bodies in the molecular forms for reflexive action calculi are

representable, as a result of reflexion, by multisets of molecules, rather than partial

sequences. This is a manifestation of the freedom to express dataflow in any dir-

ection. Also, it makes the resulting molecular forms closer to Berry and Boudol's

Chemical Abstract Machine (CHAM) [3]: the solution of a CHAM consists of a

multiset of molecules. As an additional benefit, the restriction operation ii, present

as a control operation in the action calculi for both Petri nets and the ir-calculus,

is derivable in terms of reflexion and copying ((x) (xx)). Moreover, reflexion can

also be used, in the presence of higher order controls {' ', ap}, to deriye a form

of recursion. Finally, as will be discussed in greater depth in chapter 5, the pres-

ence of reflexion will be crucial to obtaining an elegant operational semantics of

(a reflexive variant of) the ir-calculus based upon labelled transition relations.

Outline The presentation of reflexive action calculi in Section 3.1 is essentially

a summary of [25]. In this section we review reflexive molecular forms and define

the operations of control structures upon them. The reflexion operation is then

defined, through the auxiliary notion of reflexive substitution on these molecular

forms. As for action calculi, a term algebra presentation is given and shown to

be isomorphic to the reflexive molecular forms. This term algebra is essentially

that for action calculi with the inclusion of the reflexion operation together with

equations which effectively constrain its interaction with the other operations.

Further to this summary of [25], we develop an example of the use of reflexion to

derive recursion in the presence of higher order controls. A further variation of

the reflexive molecular forms—giving strict reflexive action calculi—is then briefly

described.

In the following section we present a refinement of control structures which

gives a category of models for reflexive action calculi. This is done through the

intermediate notion of a trace on a strict monoidal category, introduced by Joyal,

Street and Verity in [14]. The abstract treatment of reflexion allows us to deal

semantically with the derived restriction operation ii. In particular, we explore the

Chapter 3. Reflexive Control Structures 	 51

effect of restriction on the surface of an action. Extending the abstract treatment

to the strict variant also leads to a characterisation of surface which captures the

intuition that the surface of an action consists of those names that, when "hidden"

by restriction, affect the behaviour—hence, the semantic interpretation—of that

action.

3.1 Reflexive Action Calculi

We shall begin by presenting the reflexive variant of the molecular forms mentioned

above:

Definition 3.1 (Reflexive Molecular Forms) Let K; be a signature and, for

every prime arity p let v : i —+ p be a control not in K;. The reflexive molecular

forms over K2, denoted Mr(K;), consist of the actions, given by

a ::= (M) Pi 	p,. (ii) 	(: m, iZ: n, a: m—n)

p ::= (ii)K((il:k,:l,K:k—l)

where p ranges over molecules and K ranges over K; U {zi,, I p E P}. The body

of a is a multiset of molecules where any two molecules can commute. For each

molecule (ii) K(y) the binding occurrences have scope throughout the action a.

In the action a the binding occurrences in each molecule and the names in I must

all be distinct. Actions which differ only by a change of bound names are not

distinguished.

We shall now define reflexive substitution, which ensures that channels which loop

upon themselves are detected and duely give rise to a restriction particle in the

molecular form.

Definition 3.2 (Reflexive substitution) Let x be a name not bound in a. Then

reflexive substitution {Y/x} on actions is defined as follows:

deI !1

l
/Xa 	(xy)

1Y/x}a 	
(vx)a (x = y)

A.

<
-

Chapter 3. Reflexive Control Structures 	 52

where YtXa denotes the literal replacement of y for x in the syntactic form of a and

(vx)a denotes the introduction of the molecule Øv(x) in a.

Reflexive substitution now allows us to define our feedback operator:

Definition 3.3 Let a = (xu)Z(yii) with x, y : p. The operation of reflexion on

reflexive molecular forms is defined as follows

tTM a 	 U

We shall often use a derived form of reflexion which operates on channels of ar-

bitrary (rather than prime) arity. As reflexion on a link of prime arity is defined

in terms of reflexive substitution of a single name, we will also wish to relate the

derived form with an appropriate version of reflexive substitution:

Definition 3.4 The iterated reflexion operator t, for m = Pi ® 	® Pr, is

given by

M (ef M

	

I(m)a 	Ipr Ipi a

Note that, if r = 0 then m = € and t(m)a = a.

The simultaneous reflexive substitution t{il/} is given recursively in terms of the

single form by

	

* 	def {}a = a
c

U

Proposition 3.5

The reflexive substitution *{9/.} is unaffected (up to alphaconversion and

permutation of molecules) by permutation of the substitution elements Yi/;;

If y,i: m and a = ()ji(iZ) then t)a =

Chapter 3. Reflexive Control Structures 	 53

Proof See [25].

There is also a presentation of reflexive action calculi as term algebras over a set

of controls: the main result will be that the two presentations are isomorphic.

Definition 3.6 (Terms) The terms over signature K, denoted by T(/C), are gen-

erated as follows (where t ranges over terms):

t::= id 1(x) I'' I KIt1•t2 I t 1 ®t2 IabtItt

where each construction has arities dictated by the arity rules of the constructors

including the following for t:

t:p®m—)p®n

m-+n

The notions of free name, bound name and substitution are as before, with {Y/x}tt =

t{Y/x}t.

It is helpful to view the graphical representation of reflexion. Let t denote the

action graph (or molecular form) a : p 0 m —+ p 0 n. Then tt denotes the

following action graph:

p 	 p

a
m 	 n

Such graphic representation may greatly clarify the constructions and manipula-

tions on reflexive terms. Note that the inclusion of action graphs here is informal

and is used only to assist intuition. Nevertheless, the reader is encouraged to relate

results and manipulations involving complex terms with their graphical represent-

ations.

Chapter 3. Reflexive Control Structures 	 54

Definition 3.7 (The theory AC) The equational theory AC is the set of equa-

tions upon terms generated by the equations of AC together with the following:

Pi : Id,, =

p2: t,,t®id=t,,(t(9id)

p3 : t,ti t2 = fp(t l• (id,, ® t2))

p4 : t 1 =t((id®t1) .t 2)

P6 : tqtpt = 1ptq ((Pq,p (9 id) . t (Pp, q ® Id))

As for AC, we shall consider AC' to be either the above set of axioms, or the set

of equations inferred from them (a congruence relation). It will be clear from the

context which we mean.

Remark The attentive reader will notice the absence of any axiom labelled p5 .

In Mimer's formulation of reflexive action calculi, there was such an axiom

(x)tt = tp((Pp,q ® id) . (x)t)

where x : q. This axiom was subsequently found to be redundant by Masahito

Hasegawa. His proof is reproduced below.

Proposition 3.8 In AC', (x)1,,t = tp((pp,q (9 id) (x)t) where x: q.

Proof

(x)1',,t = (x)(1,,(((x) ® id) . (x)t))

= (x)(t,,((id,, 0 (x) 0 id) . (Pp q ® Id) . (x)t)) 	C
= (x)(((x) 0 Id) . 1p((Pp,q (9 id) (x) t)) 	P4

= (x)((x) 0 id) . tp((Pp, q 0 id). (x)t) 	 2.16(1)

= tp ((Pp ,q OId)(2)t)
.

The following equations, which are counterparts to the axioms for reflexion, are

provable in AC' (AC) for the derived form of reflexion already encountered in the

molecular form setting:

Chapter 3. Reflexive Control Structures 	 55

Lemma 3.9 Let t(m)t tpr t 1 t form = Pi 0 ®Pr, with 	=

t(m)Pm,m = idm ;

t(m)tl 0 t2 = t(m)(tl (9 ta);

tl Oj()t 	t(m)((m (9 tl) .t2)

4 t(m)l t2 = t(m)(tl (idm 0 t);

t1 • 	= t(m)((1(1rn 0 ti) t2),

= t(m)t(n)((Pn,m (9 id) t. (Pm,n 0 id))

Proof See [25]. 	 •

The following lemma shows how, in the presence of reflexion, the composition of

two actions can be expressed in terms of their tensor product, composition by

permutors and reflexion.

Lemma 3.10

t 1 t2 = t(m)(Pmk (t1 (9 t2)), if t 1 : k—*m,t 2 : m—+n;

(t 1 (9 idk) t2 = t(m)(tI 0t2), if t 1 : €—+rn,t2 : m(9 k — n;

t 1 N 0 ida) = 1(m)(tl (9 t2), if t 1 : k—+m On, t 2 : m—+.

Proof See [25].

Lemma 3.10(1) states the equality of the action graphs shown below, where the

terms t 1 and t2 denote graphs a and b respectively.

	

Chapter 3. Reflexive Control Structures 	 56

Example By the above lemma, any composition of terms can be rewritten with

reference to their tensor product. This has an interesting consequence in Pl', the

reflexive counterpart of PlC, given as the reflexive action calculus over the same

signature (less ii, which is derivable) and reaction rules as PlC. In PlC, unlike in

PlC, the following reaction is derivable:

box1a outs = t(m)(boxxa (9 out s,) 	3.10(2)

N 1(m)a

A graphical representation of the reaction is included below:

Refiexion can express cyclic dataflow with an action a feeding b while b feeds a. As

the following lemma states, this may be written with either the term representing

a precomposed to b or vice versa (for an illustration see figure 3-1 on page 66):

Lemma 3.11 (Sliding) Let t 1 : m-+n. Then

t(m)((tl (9 id) t 2) = 	. (t 1 (9 id))

Proof

t()(t2 (t 1 (9 Id))

= t()(t2 ((t(m)Pmm t1) (9 id)) 	 Pi

= 	() (t2 (t(m)(Pmm (idm (9 t 1)) 0 id))

= 	() (t2 t(m)((Pn,m (1dm (9 t 1)) 0 Id)) 	 P2

= t(n)t(m)((1dm (9 t2) ((Pm,m (1dm 0 ti)) (9 id)) 	P4

= t(n)t(n)((Idm (9 t2) ((t1 (9 1dm) pn,m) (9 Id)) 	2.27,S1

Chapter 3. Reflexive Control Structures

= t(n)t(m)((1dm ® t2) (t 1 ® id) 	(9 id))

(Pn,m 0 id) 	(Pm,n (9 Id)) P8

(D id) 	(t 1 0 t2)) 2.27,S2

= 	t(m)t(n)((Pn,m 0 id) 	(t 1 (9 id) 	(ida 0 t2))

= 	t(m)t(n)(((Pn,m . (ti (9 Id)) (9 id) 	(ide 0 t2))

= 	1(m)t(n)((((1dn ® t1) . 	0 id) 	(id0 (9 t2)) 2.27,S 1

= 	t(m)(t(n)(((1(mn (9 t1) 	pn,n) (9 d) 	t2) O3

= 	1(m)((t(n)((1dn 0 t 1) 	Pn,n) 0 id) 	t2) P2

= 	t(m)(((tl 	t(1)P) 0 Id) 	t2) P4

= 	t(m)((tl Old) 	t2) Pi

We shall now define reflexive action calculi in a straightforward manner:

Definition 3.12 (Reflexive action calculus: statics) The static reflexive ac-

tion calculus AC' 3 (K) is defined to be the quotient T(C)/AC'.

Theorem 3.13 For any signature JC, the reflexive action calculus AC'(K) is iso-

morphic to the molecular forms M'(K).

Proof See [25].

The isomorphism between ACC) and M'()C) is given by the map [-I : AC'(AC) —*

M'(K) with inverse (-) : M'(ftC) -+ ACt (C). Both maps were shown in [25] to

preserve the control structure operations together with reflexion. Thus, -JJ is

obtained by defining the map inductively on the structure of terms with each

term constructor mapped to the corresponding operation on the molecular forms:

to demonstrate that -J is well defined it was shown that whenever AC I- t 1 = t 2

then tiJ = 1t21. The definition of (-) is less obvious and we reproduce it below as

57

Chapter 3. Reflexive Control Structures 	 58

it gives some insight into relationship between reflexion and the scope of binding

(to both left and right) in the molecular forms. Let

a = (1)[(61)K1 1 (?7l),. . . ,

whereKEKU{l1}andki(1<i< 1) Then

a=tktkl (y1 . yr)((vi) K 1 ®®(r)Kr(9())

def with ii = t(x)(xx).

We note that AC' 8 (K) together with an arbitrary local preorder on its actions is a

control structure over K. Choosing the appropriate local preorder for the reaction

rules R. will give us the reflexive action calculus AC'(K, R.):

Definition 3.14 (Reflexive action calculus: dynamics) Let 'R. be a set of re-

action rules over a signature K. Then the (dynamic) reflexive action calculus

AC'(K,R.) is the control structure given by AC' 3 (K) equipped with the smallest re-

action relation N, which is preserved by reflexion and satisfies the rules 1Z. (for

all replacements of metavariables al by actions). .

As for action calculi, we will write AC'(K) for AC'(K,R) when R. is understood.

3.1.1 Example: recursion from refiexion

To provide an illustration of the use of reflexion we shall present an example of a

reflexive action calculus in which two forms of recursion can be defined using re-

flexion. We shall consider the reflexive action calculus over the signature { , ap}

which has already been encountered (by way of example) in chapter 2.

First we shall define the operator rec as a form of reflexion that allows the

feedback loop to be tapped.

Chapter 3. Reflexive Control Structures 	 59

Definition 3.15 (Recursion) Let t : p® m-+p ® n. Then

recp(t) def
= t(t (copy,, ® id))

where copy,, lef
(x) (xx) for x : p.

In the following section (Definition 3.27) we will derive restriction v as the refiexion

of copy. Thus, recursing the identity also gives restriction:

Proposition 3.16 rec(id) = ii.

Proof Immediate.

A more interesting application of rec, however, is obtained when reflexion is used

to feed a code back into itself:

Proposition 3.17 rec(x)'t' N (rec (x)rt) . ()rf1.

Proof

rec(x)'t' 	= tOxrt.copy)

= t(x)t'copy) 	 2.16(1)

N t(x)(rt®rt)

= .f(x)(rtl. (id ®

= t(ab't (x) (id ® f1))

t(abxrt (x)((rt 0 id) . Pnin:::83)

= t(abxrt 	((x)rt 0 id) . Prn:::n,7n:::4,) 	 2.16(1,2)

= t(abzrf P7 	(id 0 (x)rt))

= t(abxrtp,)(x)rt 	 p3

= t(x)(((x) 0 	 . (x)rt 	2.16(4,1)

Chapter 3. Reflexive Control Structures 	 60

= t(x)(rt(x)) . (x)m 	 C

= 	 (xVt) (& (x)) (x)rt

=

= t((x)(xx) ((x) r'f' (9 Id)) . (x)rt 	 2.16(1)

= tx)rt.(x)(xx)).(x)t 	 3.11

= (rec(x) r t') (x)'t' 	
U

Note that the rec operator recurses only codes. The following construction allows

recursion on arbitrary actions with identical input and output arity.

Definition 3.18 Let t : m-+m and x : m ==> m such that x V fn(t); then

iterj (t) 	(rec((x)'((x) 0 id) . ap f') (9 idk) ap

iterb(t) 	! ((rec(x)r((x) (9 t) . ap) (9 1dm) . ap 	
U

Remark In the above definition for iterj , the arity of x : k = m and that of

ap: (k=m) 0 k -*m; while in the definition of iterb, x : m=k and ap: (m=

k) 0 m -+ k. The arities of the above constructions then obey the following rules:

t : m-+m
	 t : m-+m

iter1(t) : k-+rn
	iterj (t) : m-*k

Note that k is unconstrained, and therefore, any choice of k will do in the above

definitions. This means that there are a family of iteration operators indexed

by arities. The semantic relationship between the iterators in each family is an

interesting question.

These operators provide left and right recursion as shown below:

Proposition 3.19

1. iterj (t) N, iterj (t) . t ;

Chapter 3. Reflexive Control Structures 	 61

2. iterb (t) N t - iterb (t).

Proof

iter1 (t)

(rec((x)r((x) ® Id) ap t') 0 id) ap

\ (rec((x)r((x)(9id).ap.t)Oid)

.((X)r((X) 0 id) ap . t0 id) ap 	3.17

= (rec((x)'((x) 0 Id) ap - t) (9 Id)

.(x)((r((x) ®id) .ap.t(9id) .ap) 	2.16(1,2)

N (rec((x)((x)Oid) .ap.t')(&id) (x)(((x)(9id) .ap.t) N3
= (rec((x)r((x) 0 id) ap t) 0 id) . (x)((x) Old). ap t 	2.16(1)

= (rec((x)'((x) (9 id) ap- t) 0 id) . ap t 	 6

= iter,(t) t

iterb (t)

= ((rec(x)r((x) 0 t) ap) 0 1dm) ap

N ((rec(x) I ((x) 0 t) . ap') (9 1dm)

.((x)r((x) (9 t) . ap' (9 1dm) ap 	3.17

= 	((rec(x)'((x) 0 t) . ap') (9 Id,,,)

.(x)((r((X) (& t) ap' (9 idm) . ap) 	2.16(1,2)

N ((rec(x)r((x)Ot) ap)®idm) . (z)(((x)Ot) .ap)

= ((rec(x)((x) (& t) . ap) 0 1dm) (id,,,,,. 0 t) ap 	2.16(1,2), 6

t. ((rec(x)'((x)Ot) ap)Oid m) ap

= t iter 6 (t)

Remark Note that when t: e —+€, then iter1t \ tO itert and iterb t N tO iterb t.

Hence, for ftC = {out, box} (our fragment of ir-calculus), we can encode a form of

replication in V as follows:

def rept = iter,(boxt)

Chapter 3. Reflexive Control Structures
	 62

Then outs ® repa NA a ® repa.

Discussion The encoding of recursion from refiexion, coding and application

poses some interesting problems. In an extension of the theory AC by the higher

order axioms introduced by Mimer in [281, instead of proposition 3.19 we can

derive fixed point equations as follows:

iterf(a) = iterj(a) a

iterb(a) = a iterb(a)

giving iter1 (a) and iterb(a) as left and right fixed points of a with respect to

composition. Are they distinguished as fixed points, for instance as the least such,

in some suitable ordering?

3.1.2 Discarding redundant restrictions

Inspection of the axioms introduced for refiexion reveals that the only structural

(non-control) operations whose interaction with refiexion is not constrained is the

identity. Refiexion of the identity corresponds, in terms of datafiow, to looping a

channel onto itself. This means that the channel will not be accessible any longer

(at least statically or structurally). We shall express this by considering such an

action to be equal to id as follows:

Po : tid = idE

We shall refer to the theory resulting from adding Po to AC' as AC.

Lemma 3.20 t(m)'rn = IdE .

Proof Let m = Pr ® ® p. Proof follows by induction on r. The case for r = 0

follows by definition. Assume r = s + 1, letting in' = p 0 	0 i'i. By induction

hypothesis, we have (*) : 	= idE.

Chapter 3. Reflexive Control Structures 	 63

t(m)rn =

= t(ml)(tps+i ldpa+j ®ldm') 	 P2

= t(m)1(1rn' 	 Po

id 	 (*)
D

One outcome of the axiom is to provide molecular forms with garbage collection:

restriction particles which do not bind any name are discarded. Hence we define

strict reflexive molecular forms over K as just those reflexive molecular forms (over

K) where, for every restriction particle v(x), there is at least one free occurrence

of the name x bound by it.

Theorem 3.21 For any signature K, the set of terms factored by AC', (K)/AC

is isomorphic to the set of strict reflexive molecular forms M(K).

Proof See [25]. 	 El

We define strict reflexive action calculi in a manner similar to reflexive action

calculi; when R. is understood we abbreviate AC()C, 7Z) to AC'(K).

3.2 Reflexive Control Structures

An obvious way to proceed to a formulation of reflexive control structures is

through the refinement of control structures by introducing the reflexion oper-

ation constrained by the equations Pi - Pe• However, this will not give us enough

axioms to obtain the initiality result for reflexive action calculi. The proof of

proposition 3.8 gives an indication of what is lacking. The proof makes use of

the fact that x is not free in t((p, ® id) (x)t). To obtain this equation in the

abstract setting, we expect to rely on the corresponding property that x is not in

the surface of (cp ,q (9 id) . (x)a. To do this, however, we must show that reflexion

does not increase surface. In other words, from the fact that x is not in the stir-

face of (cp ,q (9 id) . (x)a we must be able to deduce that x is also absent from the

Chapter 3. Reflexive Control Structures 	 64

surface of tp ((cp,q 0 id) (x)a). It is unlikely that this property can be deduced

from the axioms mentioned so far since none of them deal with the interaction

between abstraction and reflexion. As will be explained, by taking the equation

(x)ta = tp ((cp,q (9 id) (x)a) (where x : q) as an axiom, it can be shown that

reflexion does not increase surface.

However, we recall that the problem of ensuring that operations do not increase

surface has already been encountered in the formulation of control structures.

There it was solved by introducing the axioms, one for each control operation K:

[Y/x]K(ã) = K([Y/x]ã)

It turns out that the addition of the axiom [Y/x]ta = t[Y/xla, suggested by

Hasegawa, provides a theory which is equipotent with that given by adding instead

the axiom (z)ta = tp(('p,q (9 id) . (x)a) (where x : q).

More directly, consider a possible proof that reflexive action calculi are initial

reflexive control structures: this may be done by showing that the theory AC and

the theory given by the axioms of reflexive control structures are equipotent over

the term algebra. To show that o is provable in the latter theory, the equation

[Y/x]ta = t[Y/x]a is necessary. We recall that o: [Y/x}a = {Y/x}a asserts the

identification of syntactic and semantic substitution. In the context of reflexive

action calculi, the definition of syntactic substitution was extended to include

{Y/x}tt = {Y/x}t. Therefore, in a most direct manner, the axiom [Y/x]ta = t[Y/x]a

allows us to obtain a in the theory defining reflexive control structures.

As mentioned previously, the notion of reflexion or feedback has found expression

in several independent research efforts. One particular formulation which is suit-

able for our purposes comes from Joyal, Street and Verity [14] who introduced

the notion—called a trace—in the context of symmetric monoidal categories. We

shall see that their axioms for the trace operation, together with the additional

axiom presented above concerning semantic substitution, suffice to give a category

of models in which reflexive action calculi are initial. The definition of a trace on

a strict symmetric monoidal category given below essentially follows [14].

Chapter 3. Reflexive Control Structures 	 65

Definition 3.22 (Trace) A trace on a strict symmetric monoidal category A is

a family of functions f 1 : A(m (g k, m ® 1) -4 A(k, 1) indexed by the objects m of

A such that the following axioms hold (in A):

Yanking 	T1

Superposing T2 :

Naturality 	T3 :

tmCm,m = ld m

al®tma2 =tm((cm,k®jd) . (a i (9a2) (Ci,m ®id))

(ai : k-41)

l m al a2 = tm (ai . (id (9 a2))

a1 tm a2 = tm ((j(lrn (9 ai) a2)

tm ((ai (9 id) . a2) = t(a2 . (ai 0 id))

(a1 : m-+n)

Vanishing 	T6 : t€a = a

T7 : l' m®na = tn(tma)
U

Remark In the setting of action graphs, the trace axioms may be illustrated by

the equalities shown in figure 3-1. The axioms T 3-T5 , which assert the naturality

of , are labelled Right Tightening, Left Tightening and Sliding respectively.

Notation We shall usually drop the superscripts k, I in 	since in any tm(1 they

are deducible from the arities of a. Moreover, we shall refer to the trace operation

in the context of reflexive control structures as reflexion.

Definition 3.23 (reflexive control structure) Let A be a control structure over

a signature ftC. Then A together with a trace t is a reflexive control structure over

ftC if f preserves the reaction relation and the following equation holds (in A):

cr t : [Y/x}ta = f[Y/x]a 	 U

We shall now show that reflexion does not increase surface.

Lemma 3.24 (Surface) surf(ta) C surf (a).

Chapter 3. Reflexive Control Structures

Vanishing
Superposing

=

_ 	 --

Yanking

-Lid--- - _____

Left Tightening 	
Right Tightening

Sliding

Figure 3-1: Trace axioms

Chapter 3. Reflexive Control Structures 	 67

Proof Assuming x V surf (a) we show that x V surf(ta), or in other words,

abta = id 0 ta. By x surf (a) we have aba = id ® a. Now, consider an

arbitrary y of the same arity as x. By proposition 2.30 [Y/x]a = a. Hence ta =

t[Y/x]a and hence, by o, fa = [Y/xjta. Then, by proposition 2.30, aba = id 0 a

and hence x V surf(ta). .

Remark A comparison between the theory AC' and that given by the axioms of a

reflexive control structure is assisted by considering the (independent) replacement

of axioms T2 and T5 by the axioms shown below:

T: tm a ® Id = tm ((1 0 id)

T'5 : tm®n (2 = tn®m ((Cn,m (9 id) a - (c 0 Id))

Proof Assume a: m ® k —+ m 0 1, a1 : k -+1 and a2 : m ® k' —pm 0 1'.

(T2) a1 0 tma2

= Ck,k' (tma2 (& ai) ci'j 	 2.24(1)

Ck,ICI . (tma2 0 id) . (idii 0 ai) cp,j

= CIC,IC' tm ((22 0 id) . (id1 (9 a1) . c1',1

= Ck,k' tm((°2 0 id) . (Idm®j' 0 ai)) Cj',l 	 T3

= Ck,k' tm (22 (9 a1) . c1',1

= tm((1'1rn 0 Ck,k') (a2 0 ai) . (1dm (9 c1i,1)) 	 T3 , T4

= tm ((jdm 0 Ck,k') CmØk',k . (a1 (9 a2)

(1dm 0 cp,j)) 	 2.24(1)

= tm ((jdm 0 Ck,k') (1dm 0 Ck',k) (Cm ,k 0 Id)

.(ai (9 a2) . C1,m®jl (1dm 0 c1:,1)) 	 2.24(3)

= tm ((Cm,k (9 Id) (ai (9 a2) C1,m®l1 (1dm 0 c1',1)) 	 S2

= tm ((Cm,k 0 id) - (a1 0 a2) . (Ci,m 0 id)

(idm 0 c1,1:) . (1dm 0 c 1:,1)) 	 S 3

= tm ((Cm,k 0 Id) - (ai 0 a2) . (Ci,m 0 id)) 	 S2

Chapter 3. Reflexive Control Structures 	 68

(T) tm a 0 id,

= Ck,n (Id,,, (9 tm a) c,,,1 	 2.24(1)

= Ck,n tm ((Cm,n (9 Id) (ida (9 a) (Cn ,m (9 Id)) 	 T2

= tm ((11rn 0 Ck,n) (Cm ,n (9 id) (ide (9 a)

(Cn ,m (9 id) (jdm (9 c,j)) 	 T3 , T4

= tm('rn(&i,n (ide 0 a) Cn,m®i) 	 S3 ,2.24(3)

= tm (a 0 id,,) 	 2.24(1)

(T5) 	f(a2• (ai 0 id))

= 	1(a2 	((tmCm,m 	a1) (9 Id)) T1

= 	t(a2 	(fm(Cm,m 	(id, 0 ai)) (9 Id)) T3

= 	tn(a2tm ((cm,m(m(&ai))(9))

= 	tilm((j1m(9a2) 	((Cm,m 	(1dm (9ai))(9 id)) T4

= 	lntm((hlrn 0 a2) 	((ai (& 1dm) . Cn,m) 0 Id)) S i

= 	tntm((rn 0 a2) 	(a1 0 Id) 	(Cnm (9 id))

= 	1ntm((ai 0 a2). (cn ,m 0 Id))

= 	tmln((Cm,m 0 Id) . (ai 0 a2)

(Cn ,m Old) 	(Cm,n 0 Id)) T'5

= 	tmtn((Cn,m 0 id) . (ai 0 a2)) S2

= 	tmtn((Cn,m Old) . (a1 0 Id) . (ida ® a2))

= 	tmtn(((Cn,m 	(ai (9 id)) 0 Id) 	(ide (9 a2))

= 	tmtn((((j(1n 0 a1) 	0 id) . (ida ® a2)) S i

= 	tm(tn(((Mn (9 ai) . 	0 id) 	a) T3

= 	tm ((n ((n0a1)n,n)0Ya2)

= 	tm (((ai 	0 Id) 	a2) T4

= 	tm((a10)12) T1

(Ti) tmøna

= 1 m®n ((Cm,n 0 id). (Cn,m (9 id) a) 	 S2

= tm®n ((Cm,n (9 Id) a - (Cn ,m (9 Id)) 	 T5

Chapter 3. Reflexive Control Structures

While its similarity to 0.3 makes the axiom oJ appealing, sometimes we shall need

equations in a form that expresses the interaction between reflexion and (the two

kinds of) abstraction. Indeed, as we shall see below, the equations we shall take

are not only provable, but actually induce identical theories when either of them

replaces cr 1 .

Proposition 3.25 The theories obtained from adding any one of the equations

shown below to the axioms of control structures together with T 1 -T7 are identical.

Ut: [Y/xjtma =

T8 : (x)tma = tm ((Cm,p ® id) . (x)a) 	 (x : p)

7: abxtma = tm((Cm,p ® id) . aba• (Cm ,p (g id)) (x : p)

(0.t = T8) (x)tm a

= (X)(tm(((X) (9 id) (x)a))

= (X)(1m((id 0 (x) 0 id) (Cm ,p (9 id) (x)a))

= (x)(((x) 0 id) . tm ((Crn,p (9 Id) (x)a))

= (x)((x) 0 id) . tm ((Crn,p 0 Id) (x) a)

= tm(('rn,p (9ld) . (x)t)

U'

2.24(1,4)

T4

2.33(1) ,3. 24

2.33(5)

(T = cr1) [Y/x]ta

= ((y) (9id) . (x)tma

= ((y) 0 Id) abxtma• (, ® Id)

= ((y) ®ld) tm ((Cm,p 0 id) . aba (Cm ,p (9 id)) . (w 0 id)

= tm((rn (9 (y) 0 id) . (Cm ,p 0 id)

•aba - (Cm ,p 0 id)) . (Ci) 0 id)

= tm(((Y) 0 id) aba• (Cm ,p 0 id)) (w 0 id)

= tm(((Y) Old) aba '(Cm tp 0 jd) (1dm 0 w 0 id))

= 1m(((Y) 0 id) . aba• 	® id))

= tm(((Y)O) (x)a)

=

T18

T4

2.24(1,4)

T3

2.24(1,4)

Chapter 3. Reflexive Control Structures 	 70

(T 8 = T) abx1 m a

= (x)((x) (9 tm (2) 	 2.33(4)

= (X)tm((Cm,E (9 id) ((x) (9 a). (Cp,m ®id)) 	 T2

= (X)tm(((X) ® a). (Cp,m 0 id)) 	 2.24(4)

t((cm ,p ® id)(x)((x)(9 a)(cp,m ®id)) 	 T8

= t((Cm,p 0 id) aba (Cp,m (9 id)) 	 2.33(4)

Remark We do not have surf(ta) = surf (a) in general by the following counter-

example in AC'. Let a = (x) 0 u.'. By lemma 3.10(1), ta = (x) . w = ide . Hence

surf(ta) = 0 while surf (a) = {x}.

The equations given in proposition 3.25 express the interaction of reflexion with

abstraction when the link created by abstraction is distinct from that operated

upon by reflexion (the link which is fed-back). We shall now consider the case

when reflexion operates on an abstraction.

Lemma 3.26 Let x : p, y : q and x y. Then

1. (x)t q (y)a = tq (y)(x)a;

. abt(y)a = tq (y)(abz a (cq,p (9 id));

3. tp®q (2)(Y)e2 = tq®p(y)(x)(a (c p,q 0 id));

i tp(x)t q (Y)a = t q (y)tp(x)(a 	(9 id)).

Proof

(3) tp®q (2)(Y)(2

(9 id) . (y)(x)a) 	 2.33(6)

= t ® ((c, (9 id) . (y)(x)a•(c p ,q (9 id) (cq ,p 0 id)) 	S2

= tq®p (y)(x)(a. (c p,q 0 id)) 	 T

Chapter 3, Reflexive Control Structures 	 71

(1) tq (YX) 0'

= 	(x)((x)®id)tq(YX)a 2.33(5)

(x)(((x)(9id)tq(YX)a) 2.33(1)

= 	(x)tq((idq(9(x)®id)(YX)a) T4

(X)tq(aby((2) ® Id) 	(yx)a)

(9 id) 	(x)a) 2.33(3), 2.24(4)

= 	(x)1q(y)a 071

(2) abxtq (y)a

= 	(x)((x)(&t(Y)a) 	. 2.33(4)

= 	(x)((tq(y)00(2))(Cn,p0id)) Si

= 	(x)(tq ((y)a (9 (x)) 	(9 id)) T, T3

= 	(x)(tq(y)(a ® (x)) 	(9 Id)) 2.33(2)

(x)tq ((y)(a (9 (x)) 	(idq (& Cn,p (9 Id))

(x)tq(y)((a (9 (x)) 	(idq 0 Cn,p 0 Id)) 2.33(1)

(x)1 q (Y)(((2) 0 a) . (cp,q®n (9 id) . (idq (9 Cn ,p 0 Id)) S 1

(x)tq(Y)(((2) (9 a) 	(cp,q 0 Id)

(idq (& Cp,n 0 id) . (idq (9 c.,p (& Id)) S3

= 	(x)1q(Y)(((X) (9 a) 	(cp,q (9 id)) S2

= 	tq (Y)(X)(((X) 0 a) 	(9 id)) (1)

= 	fq (y)((X)((1) (9 a) 	(cp ,q (9 id)) 2.33(1)

= 	tq(y)(abx (1 	(cp ,q 0 id)) 2.33(4)

(4) tp(2)tq (Y)a

tptq(y)(2)a 	
(1)

T7

= TPgq(x)(y)(a.(Cq,p(D id)) 	 (3)

= tq tp(x)(y)((cq,p (9 Id)) 	 T7

= tq(y)tp(X)((cq ,p 0 Id)) 	 (1)
0

Chapter 3. Reflexive Control Structures 	 72

Restriction The reflexion operation allows us to derive restriction, an operation

which occurs in the action calculi for both Petri nets and the ir-calculus. Since

it can be derived from algebraically defined operations, the restriction (or hiding)

of names can be examined at a semantic level. Unsurprisingly, this involves the

consideration of refiexion on the surface of an action.

Definition 3.27 (Restriction) We define restriction on names as follows:

'! f(x)(xx)

(vx)a de =f (v(9id)(x)t
.

rA -

Notation When consists of distinct names x 1 Xk, we shall often write (v)a

to mean (vx 1) . . . (j)j

The equations proved below give a flavour of how the restriction operation is

expected to interact with the operations of a reflexive control structure.

Lemma 3.28 (Restriction)

(vx)a ® b = (vx)(a ® b) if x 0 surf(b);

a®(vz)b= (vx)(a(&b) ifx Osurf(a);

(vx)a . b = (vx)(a. b) if x 0 surf(b);

a (vx)b = (vx)(a. b) if x 0 surf (a);

(vx)aba = ab(vx)a if x

(vx)(y)a = (y)(zix)a if x

(vx)ta =

Chapter 3. Reflexive Control Structures 	 VAI

8. (vx)(vy)a = (vy)(vx)a.

Proof

(1) (vx)a®b

= ((v®id).(x)a)®b

= (v®id).((x)a(9b)

= (v®id).(x)(a(9 b)

(3) (vx)ab

= ((v(9id)•(x)a).b

= (v®id)((x)a•b)

= (v®id)•(x)(a•b)

(2) a®(vx)b

= aØ((v(9id).(x)b)

= (a®id).(idØvØid)•(id®(x)b)

= (a(9 v®id)•(id(9 (x)b)

= (1' ® a ® id) . 	® id). (ida 0 (x)b)

= (ii ® a (9 id) (x)(id ® b)

= (vOid)•(id®aOid)•(x)(idOb)

= (v®id)•(aba®id)•(x)(id(9b)

= (v 0 id) . ab(a Old) (x)(id 0 b)

= (ii (9 id) . (x)((a 0 id) (ida (9 b))

= (i (9 id) (x)(a (9 b)

(4) a(vx)b

= a.((v(9id).(x)b)

= (a. (v®id))•(x)b

= (v(9 a)(x)b

= (ii ® id) (id (& a) . (x)b

= (v(9id).aba)•(x)b

= (ii 0 id) (x)(a. b)

2.33(2)

2.33(1)

(a : m—*n)

2.24(1,4)

2.33(3), Si

2.33(2,4)

Chapter 3. Reflexive Control Structures
	 74

(5) (zix)aba

(v(9id).(x)aba

(ide (9 v 0 id) (cq ,p 0 Id): (x)aba

= (idq 01/(D id) (cq ,p 0 Id) ababa (w (9 ld)

(idq Ov(9id)• ababa (c q ,p OidY() (9I 1)

(idq Ov (9 id) ababa -ab y (w 0 Id)

(idq OV(9 1d)by(

= ab(z' (9 id) ab(x)a

0 Id) (x)a)

(vx)(y)a

= (vx) (aba (w (9 id))

(VX)abva.(W(91)

= ab(vX)a(W(9)

= (y)(vx)a

(zix)ta

= (v(9 id) (x)ta

= (i.'O Id) . t((c, (9ld) (x)a)

= t((1 0 1' (9 id) (cp,q (9 id) (x)a)

=

(x p,y : q)

S7

Si ,2.24(4)

S4

(3)

(5)

T8 ,x : q

T4

2.24(i,4)

(8) (vx)(vy)a

= (v0id) (x)(((9 ld) (y)a)

= (vOid) ab(ii Old) . (x)(y)a

= (zi 0 Id) .(id 0 z' (9ld) (x) (y)a

= (vOvOid).(x)(y)a.

= (ii 0 11 0 Id) . (cp,q 0 Id) (y)(x)a

(vOv(9id)..(y)(x)a

= (ii 0 id) (id q 0 v® Id) . (y)(x)a

= (LI (9 ld) ab(ii Old) (y)(x)a

= (v (D id) (y)1I (9 Id) . (x)a)

(z : p)

2.33(6),y: q

2.24(1,4)

0

Chapter 3. Reflexive Control Structures 	 75

Remark The above lemma holds in any control structure with control operation

v : i -+ p in its signature. Any such control has an empty surface (in the action

calculus, its surface is empty, homomorphisms reduce surface, and a homomorph-

ism exists from the action calculus to the control structure). Assuming this fact,

the above lemma is provable in AC.

The following lemma illustrates the intuition of reflexion as feedback. In particular,

(1) shows how a datum is fed back and (2) shows that a link looped onto itself

effectively removes input access to that link, producing a restriction.

Lemma 3.29 Let x : p. Then

f,(x)((y) (9a) = [Y/x]a if x

t(x)((x) (9 a) = (vx)a;

Proof

(1) t(x)((y)®a)

= 	t((y)(9(x)a) 2.33(3)

= 	t(((y)®id) . (id,,(9(x)a))

= 	fp ((y)Øid).(x)a T3

= 	t((id ® (y) 0 id) 	(9 id)) . (x)a 2.24(1,4)

= 	((y) Old) 	0 id) 	(x)a T4

= 	 (fpcpp

= 	((y)Oid).(x)a T1

= 	[Y/x]a

(2) 1(x)((x)®a)

= 1(x)(((x) (9 id) . (Id,, (9 a))

= t(x)(((x) 0 id) . (id,, 0 (((x) 0 id) (x)a))) 	 a. '

= t(x)(((x) 0 id) . (Id,, 0 (x) 0 id) (id,, 0 (x)a)))

Chapter 3. Reflexive Control Structures 	 Ml

= t(x)(((x) ® (x) (9 id) (id (9 (x)a))

= t(((x)(xx) (9 id) (id ® (x)a)) 	 2.33(1)

= t((x)(xx)(9id)(x)a 	 T3

= (v(9id)(x)a 	 T 12
U

Remarks

1. A generalised version of the above lemma is easily obtained as follows. Let

, : m and {} n {} = 0. Then, if []a 	[Y11x 1 J . . [Yn/x]a, for Y=

X1X n ,YY1"Y n :

tm()(() (& a) = [a;

tvn()(() ® a) = (v)a;

Proof Induction on li].

Base case 1A = 0 Trivial.

Inductive step 1A = i + 1 Assume u, v : p. First consider an arbitrary F.

tm®p(tL)((1t') (9 a)

tptm()(tt)((2) ® (v) (9 a)

= tptm()(()®(tL)((t') (9 t2)) 	 2.33(3)

Case {iv}fl{u}=O:

= t(u)[1/]((v) ® a) 	 induction

= t(u)((v)®[1/Ja) 	 2.33*,2.24(4)*

= [V/u1[V/u]a 	 3.29(1)

= ((v) 0 id) . (u)(((i) 0 id) . ()a)

= ((v) ® id) ab(() 0 id) (ux)a

= ((v) (9 id) (id (9 (z) 0 id). (uf')a 2.30

= ((v2) 0 id) (ux)a

= [iV/u]a

Chapter 3. Reflexive Control Structures 	 77

Cev=u:

= t(u)(vx)((v)(9a) induction

= 	 3 . 28(1)*

= (vu)a 	 3.29(2),3.28(8)

2, We could, in place of (2), have derived 1aba = (vx)a using practically

the same proof, since aba = (x)((x) ® a). This fact is used to prove the

following proposition which expresses the effect of restriction on the surface

of an action.

Proposition 3.30

surf(v) = 0;

surf((vx)a) C surf (a) - {x}.

Proof For (1), surf(v) = surf (t(x)(xx)). Therefore, by lemma 3.24, surf(v) C

surf((x)(xx)). But surf ((x)(xx)) = 0. For (2), by lemma 3.29, (vx)a = faba.

Hence surf ((iix)a) = surf (taba) C surf (aba) = surf (a) - {x}. 	.

We shall now express a sort of semantic counterpart to reflexive substitution. In

particular it is worth noting how (semantic) substitution may occur across bindings

without renaming, akin to the literal replacement of names employed in defining

reflexive substitution over the molecular forms.

Proposition 3.31

([Z/xIa (xz)

(y1)(vx)a (x=z)

Proof First, by sufficiently many applications of lemma 3.26(1), t, (xy) ((z) ® a) =

(y')t(x)((z) 0 a). By lemma 3.29 result follows immediately.

In the expected manner, we shall now define a category of reflexive control struc-

tures in which the reflexive action calculus ACrS(AC) is initial.

Chapter 3. Reflexive Control Structures 	 78

Proposition 3.32 ACrS(K) is a reflexive control structure over K.

Proof By proposition 2.41, we already know that, over the term algebra, the

axioms of a control structure are provable in AC, and therefore in AC'. This means

that AC'3 (K) is a control structure. Therefore, the result will follow if a trace is

defined in terms of the operations of AC' 8 (K) which satisfies the axioms T 1 —T7

and at. Let the trace tm 4ef t(m) Then, by definition, the axioms T 6 and T7 are

provable. Also, T 1 , T3 and T4 follow from lemma 3.9(1,3,4) respectively; T5 follows

from lemma 3.11. ot follows immediately by o and the definition of substitution.

The proof of T2 in AC is shown below:

(T2) t 1 tm2

= 	Pk,W 	(tmt2 0 t 1) 	Pi',i 2.27,2.24(1)

= 	Pk,k' 	(1mt2 (9 Id) . (id1i (9 t 1) 	Pv,i

= 	Pk,W 	tm (t2 (9 d) . (Idz' (9 t 1) 	Pu,:

= 	Pk,k' 	tm ((t2 (9 Id) . (1dm(& 1' 0 ti)) . P3

= 	Pk,k' 	tm (t2 (9 t1) . Pi',i

= 	tm ((hlm 0 	(t2 0 t1) . (1dm 0 P11,1)) P3, P4

= 	tn((rn (9 Pu') 	Pm®k',ic . (t 1 o t)

(dm 0 P11,1)) 2.27,2.24(1)

= 	tm(rn (& Pis) 	(1dm (9 Pk',k) 	(Pmj 0 d)

.(t 1 (9 t2) . Pi,m®i' 	(1dm (9 Pt',:)) 2.27,2.24(3)

= 	lm((Pm,k 0 id) . (t 1 0 t2) . Pi,m®i' 	(1dm 0 P:',z)) 2.27,S2

= 	tm((Pm,k 0 id) . (t 1 0 t2) . (P1 Tfl 0 id)

(idm 0 pjjs) 	(1dm (9 Pu,:)) 2.27,S3

= 	tm((Pm,ic 0 id) 	(t 1 0 t2) 	(Pi,m (9 id)) 2.27,S2

Definition 3.33 The category of reflexive control structures over K, CS' 8 (K), is

the subcategory of CS3 (K) whose objects are the reflexive control structures and

whose morphisrns are all those (morphisms between reflexive control structures)

which preserve reflexion.

Chapter 3. Reflexive Control Structures 	 79

Remark Since we have added only purely equational axioms to those of control

structures, the category of reflexive control structures is guaranteed an initial

object.

Theorem 3.34 AC"8 (K) is initial in the category CS"(K).

Proof Since AC' 8 (1Q is a reflexive control structure, there is a unique map to

it from the initial reflexive control structure. That map is onto, so it remains to

show that it is one to one. To do that, we must show that whenever the images

of two terms are provably equal in ACr, then they are equal in the initial reflexive

control structure. It suffices to show that in the initial reflexive control structure,

the axioms of AC" are valid. We have already shown that the pure axioms of

AC are valid (i.e. true in any control structure, hence in any reflexive control

structure); therefore, it remains to validate the axioms p1 —p5 together with the

axiom schemas o and -y. The validity of the axioms p1 —p5 follows from T1 , T,

T3 , T4 , T 5 respectively. By propositions 2.36 and ot we get o. It remains to show

-y.

For y, it suffices, by proposition 2.30, to show that whenever x V fn (t) then

x V surf (t). This involves an easy induction on the structure of terms (of the

initial reflexive control structure): the only new case is that for reflexion where for

t jt', we have x E fn (tt') if and only if x e fn (t'). Hence, assuming x V fn (t)

gives x it fu (t') and by induction hypothesis we get x V surf(t'). By lemma 3.24

the result follows immediately.

We shall now define a subcategory of models for reflexive action calculi which takes

the dynamics into account.

Definition 3.35 If 1Z. is a set of reaction rules over ?, then CS'(K,lZ) is the

full subcategory of cs"3 (K) containing just those reflexive control structures whose

reaction relation satisfies R.

Corollary 3.36 AC"(K,1Z) is initial in CS"(1C,7).

Chapter 3. Reflexive Control Structures 	 80

3.2.1 Strict reflexive control structures

We shall now define a category of reflexive control structures (a subcategory of

CS(AC)) in which the strict reflexive action calculus AC(AC) is initial. An inter-

esting property of the objects of this category is that their surface map can be

characterised in a very appealing manner. -

Definition 3.37 (strict reflexive control structure) Let A be a reflexive con-

trol structure over a set of controls AC (and over X). Then A is a strict reflexive

control structure if the equation tmldm = id(holds. 	 .

Proposition 3.38 AC(AC) is a strict reflexive control structure over K.

Proof Again choosing tm, by proposition 3.32 we have that the axioms of a re-

flexive control structure are provable in ACr, and therefore in AC. By lemma 3.20,

the axiom T0 is provable, hence result follows. 	 .

Theorem 3.39 Strict reflexive control structures over AC and homomorphisms of

reflexive control structures form a category in which AC (AC) is initial.

Proof We already have, by proposition 3.38 that AC(AC) is a strict reflexive

action calculus. By theorem 3.34, we also know that, over the term algebra, all

the axioms of AC' are provable from the axioms of reflexive control structures. By

a similar argument, it suffices to show that Po is derivable. This follows by the

fact that Po is a special instance of T0. .

We note that restrictions of names which are not in the surface of an action a should

not affect the behaviour of the action. Indeed, the strict reflexive molecular forms

illustrate this in a concrete manner, by discarding restriction particles which do

not effectively bind any name in the action. An analogous semantic notion of such

discarding of redundant restrictions is obtainable in the strict theory AC.

Lemma 3.40 (Garbage collection) If x V surf (a), then (vx)a = a.

Chapter 3. Reflexive Control Structures 	 81

Proof Assume x V surf (a). Then aba = id 0 a.

(vx)a = taba

= t(id®a)

= t((id0id) .(id(9a))

= t(id®id)a 	 T3
= (tid®id)a 	 T

= (id®id)•a 	 T0

U

Corollary 3.41 v w = id

Proof z' 	= 1/ (x)id = ide . 	 •

Example As an example of garbage collection following computation consider

the following reaction in PlC, assuming x 10 surf (a):

(vx) (out x 0 boxa) N (vx)a

= a 	 3.40

We shall now show that, in strict reflexive control structures, the surface of an

action a is exactly given by the set of names x, the restriction of which changes

the action, i.e. (x)a 0 a. This corresponds very satisfyingly with the notion that

the surface of an action consists of the names which "matter semantically" in that

action.

Proposition 3.42 (Surface) For any name z and action a, x E surf (a) if and

only if(vx)aa.

Proof (4==) By lemma 3.40 we have that if (vx)a a then x € surf (a).

(==) We now show that if x € surf (a), (vx)a j4 a. We shall prove the contra-

positive: assuming (vx)a = a we show that x V surf(a). Now by lemma 3.24,

Chapter 3. Reflexive Control Structures 	 82

surf (taba) C surf(aba). Hence by lemma 2.31(3) x V surf (aba) and hence

x V surf(taba). But, by lemma 3.29(2), (vx)a = t(x)((x) ® a) = taba. Since

a = (vx)a, we get a = taba and therefore x surf (a).

Discussion What are the relative merits of the two kinds of reflexive molecular

forms and the abstract structures they give rise to? Consider the molecular forms

as a kind of "programmer's notation", where the imported names serve as formal

parameters. Then, if programmers are to be allowed to declare extra (local) names

which they then do not use within the body of the program, then the strict form

is not suitable. Discarding redundant restrictions is, in a sense, a semantic or

behavioural notion rather than a syntactic one. This does not mean that models

in which the strictness axiom holds are uninteresting; indeed, we expect that, in

behaviourally motivated models of (non-strict) reflexive action calculi, the strict-

ness axiom will hold. This point, in modified form, will again appear when we

deal with the operational semantics of the reflexive ir-calculus, PlC, in chapters 5

and 6.

Chapter 4

Skeleta

So far, the main examples of control structures we have encountered are action

calculi and their reflexive variants. We shall now explore two instances of strict

reflexive control structures which are simple, universal, in the sense that they arise

from any set of controls K, and are models of static action calculi. Both examples

can be obtained by factoring the term algebra T(K) by the congruence induced by

the theory ACre together with simple equations. Alternatively, a characterisation

in terms of the term algebra Y(K) over any signature K may be obtained which

contains at least the restriction operation I,. We shall adopt the latter approach

since it allows the results to hold in the wider context of control structures (rather

than reflexive, or even strict reflexive, control structures).

We choose to call such structures skeleta since they do not contain any reference

to the specific controls making up the bodies of the action from which each skeleton

arises: only the free names and (some of) the binding structure are retained.

Of particular interest is their usefulness in classifying reaction rules for ac-

tion calculi. The idea of using certain control structures to classify dynamics first

appeared in [20], where a control structure I M was described together with its

property as a classifier of reaction rules according to whether or not they result

in a certain kind of mobility. In summary, for those action calculi (such as the

lambda calculus) in which the kind of immobility characterised by IM is express-

ible, there exists a morphism of control structures to I M, whereas for other action

calculi which exhibit a corresponding form of mobility, such as the action calcu-

Chapter 4. Skel eta 	 84

lus originating from the ir-calculus, no such morphism exists. We expect to find

many such classifiers, each characterising some property of the dynamics of control

structures. Both kinds of skeleta presented here may be employed as classifiers:

whether the properties they embody are useful in understanding the dynamics of

processes is another question.

Outline A simple kind of skeleta, called pure skeleta, is introduced in section 1;

it results from an analysis of the exported names in the molecular forms un-

der contexts built from the operations of reflexive control structures. They are

presented as skeletal forms, a form which emphasises their nature as abstractions

of molecular forms. An alternative presentation as a term algebra—essentially the

same algebra as for action calculi (with restriction) but with additional axioms—is

given. This further clarifies what structure in the actions of action calculi is being

forgotten in obtaining pure skeleta. Indeed, this consideration leads to an abstract

characterisation of (the control structure of) pure skeleta as a terminal object in

a suitable category of control structures. Section 1 ends with an exploration of

dynamical aspects of pure skeleta, in particular, of their use as a classifier of action

calculi upon a property of their dynamics.

In section 2, the notion of name export which motivated pure skeleta is regarded

as an instance of information flow. A slightly richer, but still concrete, notion of

information than exported names is proposed, leading to a corresponding kind of

skeletal form: restriction skeleta. As for pure skeleta, a term algebra presentation

of restriction skeleta is given with the relevant theory being obtained by revoking

one axiom from that which gives pure skeleta. Prior to dealing with the dynamic

aspects of restriction skeleta, Milner's effect structures [21]—an abstract treatment

of computationally-generated information—are reviewed. We show that the con-

crete notion of information adopted in the context of restriction skeleta gives an

effect structure for just those action calculi which have a homomorphism to (the

control structure of) restriction skeleta.

Chapter 4. Skel eta

4.1 Pure Skeleta

Pure skeleta arise from a consideration of the free names exported by an action.

Consider an action a in the reflexive action calculus over the controls {out, box}

in its molecular form:

a = (x) [(xu)out(), (y)boxb(w)] (wxz)

The action a exports the names w, x and z, of which only z is free. Although they

are both bound, there is a significant difference between the names w and x. If a

datum (v)—or indeed any action which exports the free name v—is precomposed

to a, then, in the composite action, x would be replaced by v and the action

will then be able to export the free name v. However, there is no operation in

the action calculus that, when applied to a, would allow the bound name w to

be replaced by a free name. Note that it doesn't matter to which molecule the

binding occurs, the names thus bound cannot be replaced by free names as a

result of applying any operation defined in terms of the action calculi operations.

Thus, we distinguish between three kinds of exported name: those which are free;

those which are bound by the names in the import vector; and finally, the control

bound names which can never be replaced by free ones (unless freed as a result of

reaction). It may be argued that, since it is only the exported free names that we

are concerned with and since control bound names can never be replaced by free

ones, any distinction between control bound names can be ignored. This is what

we shall do to obtain pure skeleta.

4.1.1 Skeletal forms

Definition 4.1 (Pure skeleta) The actions of pSKEL pure skeleta, ranged over

by s have the following form:

S ::= ()()

Chapter 4. Skel eta 	 86

where {} C X U {*} with * 	are distinct names and s : m—+n if x: m and

ii. Each name in binds any occurrence of that name in; names (in X) not

thus bound are free. Aiphaconversion of bound names is allowed. 	 •

We shall now show that pure skeleta give strict reflexive control structures. First,

we must define the operations of a reflexive control structure on pSKEL.

Definition 4.2 We define the following operations on pSKEL. Assume s = (ux)(vy),

s1 = (u1)(i) and 82 = ()() with the names in iZ distinct from those in Y.

def
1dm

d (x) ef
 =

def =

si.82
def
=

S1®82
def
=

absi def
=

de f
ts=

()

()(x)

(x)()

(iZ)(c)

(ilf)(ii)

(xii)(xil)

J ()({V/}y)

(f)({*/U}17)

if u V

if u = V

(: m)

({i1/})

U

Proposition 4.3 For any set of controls AC, pSKEL together with the operations

of definition 4.2, any reaction relation on pSKEL and, for each K E AC,

def K() = ()(*.. .*)

is a strict reflexive control structure over K;.

Proof Consider the molecular forms over the strict reflexive action calculus

AC(AC). We define the map pskel : AC(AC) —+ pSKEL as follows: for each
-. 	-. 	 def 	.. _. a E AC (AC) with molecular form (iZ)t(vi)(w), pskel(a) = (iZ')({ */v}w). Clearly,

pskel is onto. It therefore suffices to show that pskel preserves the operations of

a strict reflexive control structure.

Chapter 4. Skel eta 	 87

Remark It can easily be demonstrated that the mapping pskel : (i)iTZ(ii)(tii)

when defined on the molecular forms for both action calculi and re-

flexive action calculi, preserves the operations of a control structure, and in the

case of reflexive action calculi, preserves reflexion as well.

It will be noted that, for all the main results of this section bearing reference to

action calculi and control structures, corresponding ones replacing those references

respectively by ones to reflexive action calculi and reflexive control structures (and

even their strict variants) are easily obtained with almost identical proofs. The

reason behind this uniformity must come from the fact that pSKEL captures un-

derlying structure which is common to the molecular forms of all these variants.

The following proposition is a case in point; the propositions obtained by repla-

cing AC8 (K) and CS3 (K) by AC' 8 (AC) and CSrS(K) respectively, and also AC 8 (1C)

and CS 3 (1C) (the static counterparts of AC()C) and CS(K) respectively), are

demonstrable by practically identical proofs.

The pure skeleton arising from the action (x) [(xu)out(), (y)boxb(w)] (wxz) is

(x) (*xz). Thus, as the following proposition shows formally, the pure skeleton

of an action (in an action calculus) accounts for the free and import-bound names

exported in the molecular form of that action.

Proposition 4.4 Let pskel be the unique morphism (in CS 3 (K)) from AC8 ()C)

to pSKEL. Then, for all s e pSKEL and z *, pskel (a) = S (1dm ® (z) 0 id)

implies that, for some a', a = a' (1dm 0 (z) 0 Id) with pskel (a') = s.

Proof Consider the molecular form of a = (ii)ji(Y)(tiY). Then, pskel (a) =

(i)({/il}w). Then if pskel(a) = S (idm 0 (z) Old), we must have s = ()(2)

with tiJ = ti1 zii2 , = {/il}tii (i = 1,2), : m and z . Hence, a =

((ii)(üii zzii2) = (Th2(iJ)(tii1?ii2) (1dm 0(z) Old).

In pSKEL we do not expect to distinguish between different control actions having

the same arity. The following proposition allows us to derive this property:

Proposition 4.5 In pSKEL, for any K, K(i) = m 0 1/1.

Chapter 4. Skel eta 	 88

Proof Trivial.

Corollary 4.6 For any two control actions K1 (a) and K2 (b), if their arities are

identical, then K 1 (d) = K2 ().

Nor do we expect to distinguish between control bound names:

Proposition 4.7 ii (x)(xx) = ii (9 v.

Proof Trivial. 	 .

4.1.2 Terms

We shall now give a characterisation of pSKEL as a quotient of the terms T(K),

when K contains the restriction controls v : € -+ p, for each prime p. To denote

such signatures uniformly over arbitrary control sets, we shall write K,., for the

signature IC U 1VP I p E P).

Definition 4.8 (The theory ACPS) Let ACPS be the theory resulting from the ad-

dition of the following equation to the theory AC:

U

= id

v.(x)(xx) = p® ,'

K() = rn®,'n

.

Since pSKEL is a strict reflexive control structure, it might be expected that the

characterisation we seek would involve the reflexive terms T(AC). Indeed, this is

possible, and it is fairly easy to show that adding the equation K(t) = ,m ®

(with v as defined previously) to AC' would allow every term in T(ftC) to be

proven equal to a term in T(ftC,') in the resulting theory. Also, the equation

v 	= id is derivable in the theory AC' and therefore adding the other two

equations to this theory would also suffice. Our chosen approach is then justified

Chapter 4. Skeleta 	 89

by the fact that our results do not depend on the presence of reflexion but rather on

that of restriction, which while derivable in arbitrary reflexive control structures,

may nevertheless be present in control structures where the reflexion operation

is absent. The advantage of our approach will be apparent as we shall be able

to derive results concerning the classification of dynamics which are applicable to

both reflexive and (ordinary) action calculi.

Let us extend the notion of substitution of names to restriction particles: we

let {V/x }t denote the term obtained by replacing every occurrence of (x) by V in

t, provided the name x is free in that occurrence. Note that since ii is not itself a

name, name clashes with binding occurrences can never occur.

Lemma 4.9 For any term t, ACPS I- (v ® id) (x)t = {L'/x}t.

Proof Induction on the structure of terms. 	 U

The following definitions shall provide the isomorphism (and its inverse) between

pSKEL and the term algebra factored by the theory ACPS. First, the map from

pSKEL to the terms Y(AC,,).

Definition 4.10 (pSKEL to Terms) Define the translation (-) : pSKEL-+T(K)

as follows:

-f
() 	 ()

where 	V. 	 U

We would like to get a translation from pSKEL to equivalence classes of terms

T(Kv) induced by the theory ACPS. By an abuse of notation let (-) denote a

mapping from the skeleton s to the equivalence class [i].

Lemma 4.11 The translation (-) : pS K EL -* Y(CL,) /AC' is well-defined.

Proof It suffices to show that the translation (-) preserves alphaconvertibility.

This is trivial.

Chapter 4. Skel eta 	 90

The following lemma shows that the map (-) is a morphism of control structures.

Lemma 4.12 (-) preserves the operations of a control structure over any signa-

ture K,.

Proof Routine.

Definition 4.13 (Terms to pSKEL) Define the translation [—] : T(K 1.1) -* pSKEL

to map each term constructor to the corresponding control structure operation in

pSKEL. 	 .

The following proposition ensures the existence of a morphism of control structures

T(ACp)/ACPs_pSKEL.

Lemma 4.14 For any two terms t 1 ,t2 , whenever ACPS t1 = t 2 , we have Itil =

1Et2]I.

Proof Since the map is inductively defined on the operations of a reflexive control

structure and the skeletal forms in pSKEL satisfy the axioms of a control structure,

the result follows easily.

Proposition 4.15 The morphism (of control structures) (-) from pSKEL to the

quotient Y(C11)/AC is an isomorphism.

Proof We must show both J91 = s and [tlj = t for arbitrary pure skeleta s and

terms t. To show that N = s, consider s = ()(. Then 9 = ()(, where (*)

corresponds to ii. Since -JJ preserves the operations of a control structure and

Iv = (*), result follows. For 	= t, result follows by the fact that the [-Jl is

defined inductively on the operations. and (-) preserves all of them. 	•

Remark We note that in pSKEL, asin any action calculus, x E surf((x)); in other

words, the inequality ab(x) id 0 (x) holds. It is worth remarking that should

we add the equation ab(x) = id 0 (x) to the theory ACPS (making x V surf((z))

in the quotient of the terms by the resulting theory), all terms of equal arity would

be provably equal in the resulting theory.

Chapter 4. Skel eta
	

91

Lemma 4.16 The equation ab(x) = id ® (x) is not provable in the theory ACPS

Proof We show that if such an equation were provable in ACPS then all terms

would be provably equal. By proposition 4.15 we would get a contradiction, since

there clearly exist pure skeleta of equal arity which are not identical. First we will

show that, for any x, (x) = v.

(x) = (v.,)®(x)

= (v®(x)).(w®id)

= v.(id ® (x)) (w ® Id)

= v - (ab(x)) . (c (9 Id) 	 assumption

v•(x)(xx)•(c.'(9 id) 	 2.16(4)

= (v(9v).(w®id)

= ii

Then any two terms consisting of a tensor product (of arbitrary, but finite length)

of subterms ii and (x) for any x are provably equal. Then so are terms of the

form ()t and ()t' when t, t' are built from tensor product, restriction and datum,

by alphaconversion. Now consider two arbitrary terms t 1 , t2 of equal arity. Then,

by proposition 4.15 and the definition of (-), there are terms [t i] and which

have forms ()t and (y)t' respectively, with t, t' built as above. Result follows

immediately.

4.1.3 Statics

We shall now characterise pSKEL as a terminal object in a suitable subcategory of

CS8 (K). This characterisation hinges on the structure that pskel retains from the

molecular forms; essentially, enough to account for the exported free names and

enough to ensure that pskel is a homomorphism of control structures. Our result

will also highlight a further application of surface as the semantic counterpart of

free names.

Chapter 4. Skel eta 	 92

Notation Consider any control structure A over a signature IC,,. We define the

pure skeleton of A, pSKEL(A) as the quotient of the smallest congruence on its

actions induced by the equations:

= id

ii. - (x)(xx) = ii®ii

K(o) = rn®,n

We shall call the unique morphism which takes any action in A to its equivalence

class in pSKEL(A), pskelA.

Until otherwise stated, in what follows we shall assume that the reaction relation

for pSKEL is the universal relation on its arrows.

Lemma 4.17 For any control structure A over some K;,, in which x E surf((x))

and the following equations hold:

zi•c., = id
 WmoVn K(d) =

v.'(x)(xx) = V®L'

there is a unique morphism from pSKEL to A mapping each (*) in pSKEL to ii, in

A. This morphism is injective.

Proof We know that AC is equipotent to a purely equational theory on the term

algebra (over any signature, including K,,). Therefore, the theory ACPS is also

equipotent to a purely equational theory, and by a standard argument we obtain

that there is a unique morphism of control structures from pSKEL to any such

A. It remains to show that this morphism 'I' : pSKEL -+ A is injective. First we

shall show that in A, for any x, y: (1) (x) 54 z'; and (2) if x y then (z) 0 (y).

(1) follows since the surface of V is necessarily empty (it is empty in the action

calculus, there is a morphism from the action calculus to A and morphisms do

not increase surface). (2) follows immediately since the surfaces of (x) and (y)

are not equal. Consider arbitrary s 1 , s2 € pSKEL such that s 1 3k s2 . We show

Chapter 4. Skel eta 	 93

that '(s 1) 0 4(S2). It suffices to consider s1 , s2 of identical arity (otherwise the

proof is trivial). Assume that 1(si) = 1(S2). By alphaconversion we know, for

some S CX and 11,IIC X u{*} that s 1 = (iZ) and s2 = (ii). Assume ii and ii

differ in some position such that ii = w i yi1 and ii = :VW292 with : m, w 1 , w 2 : p

and w 1 w 2 . Now choose some distinct names F such that {} fl fn (s 1 , s2) = 0.
Clearly, {1:}w 1 {}w 2 . Now, for i = 1, 2:

(i) 	(s). (w m ® id,, (9 id) = ({ } w 1)

Then ({}w i) = ({}w 2). But by {}w i {}w 2 this is a contradiction. •

Lemma 4.18 For any control structure over K,,, A, such that x e surf((x)),

there exists a unique injective morphism from pSKEL to pSKEL(A) (in CS 8 (K)).

Proof By lemma 4.17, we need only show that whenever x E surf((x)) in A,

then x E surf((x)) in pSKEL(A). By lemma 4.16 the result follows.

Theorem 4.19 pSKEL is terminal in the full subcategory of CSs(Cj,) whose ob-

jects are just those control structures to which the unique morphism from AC(K)

is onto and in which x E surf ((x)).

Proof First we note that the following diagram commutes in the subcategory:

AC(K) 	
pskel 	

pSKEL

!'

A 	
pskelA 	

pSKEL(A)

To see this consider that there is a unique morphism from AC(AC) to pSKEL(A).

We shall now show that 1 : pSKEL —+ pSKEL(A) is onto. This will conclude the

proof, since by lemma 4.18, is injective. This would make pSKEL and pSKEL(A)

isomorphic and since there is a unique morphism from any A to pSKEL(A), the

result follows. To show that 4D is onto, we need

Vs e pSKEL(A).as E pSKEL. (s) = s

Chapter 4. Skel eta 	 94

Assume not; that is, there is some s E pSKEL(A) for which there is no s E pSKEL

such that <I(s) = s. Now, since pskel A and 'I' are onto, there is some a E A

such that pskel A(a) = s and some a E AC(K) such that W(a) = a. Hence s =

pskelA('I'(a)). Now let s = pskel(a). We get (pske1 (a)) = pskel A(W(a)) = s

which gives a contradiction. U

Remark We can prove an analogous result concerning the terminality of pSKEL

in the full subcategory of CS' 8 (1C) (and of CS' 68 (1C)) whose objects are just those

reflexive control structures to which the unique morphism from ACrS(AC) (and,

respectively, AC 3 (1C)) is onto and in which x E surf((x)).

4.1.4 Dynamics

We shall now consider pSKEL as a classifier of action calculi. Recall that pskel

AC(K) —+ pSKEL captures the potential of an action to export free names. But so

far we have onlyconsidered the statics of pSKEL, using the universal relation on

its actions as its reaction relation to ensure that any map to it from any control

structure trivially preserves the reaction relation. We shall now choose a smaller

reaction relation, which will give pSKEL its power as a classifier of dynamics.

The intuition behind what follows relies on the property that whenever an

action a reacts to, say, a', then a' should have at least as many exported free

names as a had. In other words, reaction can only add exported free names but

never retract them. Whether this condition on reaction is one we would wish or

expect computational calculi to have universally is not known; however, in all the

examples (available to date) of existing computational calculi cast in the action

calculi mould, this property does hold. This is not to say that stronger properties

do not; indeed, in the following section we will examine what is, in a sense, a

stronger form of this property.

There are three equivalent characterisations of the reaction relation on pSKEL

all of which provide an elegant way of defining it. We choose to define reaction on

the molecular forms.

Chapter 4. Skel eta
	

95

Definition 4.20 (Pure skeleta: dynamics) The relation N on pSKEL is the

transitive reflexive closure of the smallest relation such that, for any skeleton s =

()(th *y2) and name z:

()Wi *U2) N ()W1z2) 	 U

We must show that the relation we have defined is indeed a reaction relation.

Proposition 4.21 The relation N on pSKEL is preserved by the operations of

an action structure together with reflexion.

Proof Mostly routine; we shall show the most interesting case, that for reflexion.

Assume s = (ux)(vff). Then, if s N s', s' = (ux')(v'yP), where v'y' is obtained by

replacing in vy some number of occurrences of * by names.

Case 1: u = v Then, since u e X, v 0 * and, hence v = v'. We get ts =
()({*/u}) and ts' = ()({*/u}). Since u 0 *, any occurrence of u in ff

indicates a corresponding occurrence in 9. Hence any occurrences of * intro-

duced inby the substitution {*/u} are also introduced (in the corresponding

places) in V .

Case 2: u V

Case 2.1: v 54 * Then v = v' and ts = ()({ V/u}y) and ts' = (x)({V/ u }y').

By the same reasoning as for the previous case, any occurrences of v

introduced in ff by the substitution {V/u} are also introduced (in the

corresponding places) in 7.

Case 2.2: v = *, v' 0 u Then ts = ()({*/u}) and ts' = ()({ V '/u}y)

Thus, any * introduced in by the substitution {*/u} is replaced by V.

Case 2.3: v = *, v' = u Then fs = ()({*/u}) and ts' = ()({*/u} y ')

Thus, since the occurrences of u inare unchanged in , the result

follows. 	 .

Chapter 4. Skel eta 	 96

The following proposition captures the essence of reaction for pSKEL: (*) may

react to become a datum.

Proposition 4.22 The relation N is the smallest reaction relation on pSKEL

closed under the following rule:

Proof The reaction ii 	(x) is clearly derivable by the rule given in definition 4.20.

The reaction

(Xffi * ff) N ()WizU)

is derivable since ()(th*) = ()((Y-i) ® '® (92)). Since reaction is preserved by

tensor and abstraction

()(Wi)®v® (ff2))N()((ff1)® (z)Ø(ff2)) = (x)(fflzy2)

It is the following, logical form of characterisation that we shall use to demon-

strate the role of pSKEL as a classifier of dynamics. The proposition expresses our

intuition about the retention of any exported free name under reaction. The im-

ported names, which may be replaced by free names as a result of precomposition

by data, are also taken in account.

Proposition 4.23 For any two skeleta s 1 and 82 of identical arities, si N S2 if

and only if, for all z 0 *,f,m, s'1 ,

(Y) - si = S(idm ®(Z)®id) 	5.(X)S25(id m ®(Z)®id)

Proof (==) Assume s 1 N 82 and () s 1 = s'1 (idm 0 (z) (9 id). Then, (i).

siN(s) 2. Now, for some ff', Y 2 X u{*} with ffi m, () .s = (ff1 zff) =

(ff1ff2) (idm (9 (z) 0 id). Since z 0 *, it follows by the reaction rule on molecular

forms that (f) 82 = (z) where and are obtained by replacing some

occurrences of * by some names in ff and respectively. Hence () s2 = (z) =

(idm 0 (z) (9 id).

Chapter 4. Skel eta 	 97

(=) Consider an arbitrary s i = ()(il) where 9 ç X U {*}. By aiphaconversion

for any S2 of identical arity. s2 = () (Y) for some V. It suffices to show that

whenever s2 satisfies this condition, then it can be obtained from s1 by replacing

some number of occurrences of * in the skeletal form of si by some names. Assume

not. Then there is some name w (e X) such that iT = il1 wfZ 2 which is not equal

to the corresponding name in V. But this is easily shown to violate the property

of s2 regarding the identical provision of exported names under precomposition by

arbitrary data.

Lemma 4.24 Let A be a control structure with a morphism to pSKEL such that

for all a E A, whenever pskel (a) = s (1dm ® (z) id) then, for some a' E A,

a = a' (1dm (9 (z) ® Id).

For any a, a' € A such that a = a' (1dm (9 (z) ® id) and a N b, there exists some

b' such that b = b' (1dm ® (z) (9 id)

Proof By a = a'• (1dm ® (z) (D Id) and the fact the pskel preserves the operations

of a control structure we have, in pSKEL, pskel(a) = pskel (a') . (1dm ® (Z) (& id).

Choose which is distinct from any names in the surfaces of a and b (and therefore,

z). Now, () . pskel (a) = () . pskel (a') . (idm (9 (z) ® id). Since a \ b implies

pskel (a) \ pskel (b), by lemma 4.23 we get pskel ((x) . b) = () . pskel (b) =

8 (jdm ® (z) (9 id), for some s. By assumption, there is some b' such that () . b =

b' (1dm 0 (z) 0 Id). Then, abstracting by on either side of this equation gives

b = ()b' (1dm (9 (z) 0 id).

Remark In the above it is easily shown that a' N b' by applying the context

[] . (1dm 0 w ® Id) to both sides of a N b.

We are now in a position to state our main result concerning pSKEL as a classifier

of dynamics:

Theorem 4.25 For any signature K and reaction rules R., the action calculus

AC(4C, 7Z.) has a morphism of control structures to pSKEL if and only if for all

Chapter 4. Skel eta 	 98

a, a', b E AC(AC, R.) and name z *, whenever a = a' - (1dm ® (z) 0 id) and a

then, for some b', b = b'. (1dm ® (z) (9 Id) and a' '\b'.

Proof (=) By lemma 4.24, it suffices to show that the morphism pskel

AC'(AC, R) —+ pSKEL has the property

for all a E ACr()C, R.), whenever pskel (a) = s (1dm ® (z) ® id) then,

for some a', a = a' (1dm ® (z) ® Id).

By proposition 4.4 the result follows immediately.

(==) We know that there is a (unique) morphism pskel in CS3 (AC) from AC 8 (AC)

to pSKEL. It therefore suffices to show that pskel preserves the reaction relation.

Assume a \ b. Now by proposition 4.23, we need just show that, for any 1 and s,

whenever () . pskel (a) = s1 (1dm ® (z) 0 Id), then for some S2, () pskel (b) =

S2 (1dm ® (z) 0 Id). But, by proposition 4.4, () pskel (a) = Si (1dm 0 (Z) (9 id)

implies that, for some a', () 'a = a' (Id (9 (z) 0 id). By assumption, and since

() a \ () . b, there is some b' such that () b = b'. (1dm 0 (z) (9 id). This clearly

implies, () pskel (b) = pskel (b') . (idm 0 (z) (9 id); hence choosing pskel (b') as

s2 gives the result.

Remark As intimated previously, by replacing CS 8 (1C) and AC 8 (K) respectively

by CS 8 (1C) and AC" 8 (1C), and even by CS 8 (AC) and AC 8 (AC), in the statement

of the above theorem, we obtain valid theorems. There is however an interesting

difference in the morphism pskel in each case: for action calculi, there is no

guarantee that this morphism, if it exists, is onto (it will depend on the signature

AC), whereas for the reflexive variants this is always the case.

Discussion Since the existence of a morphism to pSKEL is constrained by the

reaction relation of an action calculus; and the same reaction relation depends on

the reaction rules R. of the action calculus, it is natural that one should ask which

Chapter 4. Skel eta 	 99

kinds of reaction rule permit and prohibit the existence of such a morphism. It is

clear that reaction rules having any of the following forms

a (Id (9 (x) ® Id) N K(

a.(idm®(x)®id)Nb.(id m ®(y)(9 jd) (xy)

will ensure that no morphism from the action calculus to pSKEL can exist. Con-

versely, in any action calculus which has a morphism to pSKEL, such rules—indeed,

such reactions—are absent. However, a morphism to pSKEL does permit an action

calculus to have rules, and reactions, such as the ones shown below:

K(?i). (id ® (x)(xx) (9 Id) N K'()

K(d) (idm ® (x)(xx) (g id) N1) (1dm (& (yz) ® Id) (y z)

In both of these examples the identity of the two control bound exported names is

lost as a result of reaction. In the first, the loss is to distinct control bound names;

whereas in the second, distinct free names take the position of the identical control

bound names. If we want to think of the controls as computational entities which

may, upon involvement in computational activity, supply names into the links they

command (through binding originating from the control), then such behaviour as

display by the above reactions is not acceptable.

4.2 Restriction Skeleta

The intuition behind composition as connection of dataflow channels poses an im-

portant question: what can be said to flow through such channels. One simple

answer is that it is the names which flow; this is indeed corroborated by the defin-

ition of composition for the molecular forms for action calculi. It is worth noting

that both free and bound names flow in this way, and therefore, the exclusive con-

sideration of the exported free names is flawed if we wish to account for the flow•

of names (free and bound) through dataflow channels in our semantic treatment

of action calculi.

Chapter 4. Skel eta 	 ioo

As an illustration of why an exclusive consideration of free (and import-bound)

exported names might not be enough, consider the actions v - (x)(xx) and ii ® V.

As we have seen, both of these actions have the same pure skeleton. We can show

that these actions, say in PlC, may cause different behaviour when precomposed to

certain actions. One such action which reveals this difference is (uv)(outØboxa).

Precomposing this action by v - (x) (xx) unifies the port names parameterised

by u and v causing a potential reaction to (vx)({XZ/uv}a). On the other hand,

precomposing the same action by ii 0 ii results in an action which is inert, that

is, cannot perform further computation.

4.2.1 Skeletal forms

We shall diverge just enough from pure skeleta in order to introduce a distinction

between v.(x)(xx) and v®v. This involves having some means of expressing those

bindings which originate from molecules; we do not want to distinguish between

the molecules themselves, but only between the bound names originating from

them. All that is required in order to achieve this, is some family of particles

(molecules of rank 0) whose input antics are all e and whose output arities cover

all the primes. This allows the skeletal form of a molecule to be constructed from

discard operations (to make up the input arity) and such particles (to make up

the output arity). Indeed, we have already encountered such a family of particles:

the restriction particles.

Definition 4.26 (Restriction skeleta) The actions of restriction skeleta vSKEL,

ranged over by s have the following form:

s ::= ()vS(2)

where S C {}. The names Y and S are all distinct and are binding occurrences;

each name in F is free unless bound by one of the binding occurrences.

Remark The constraint S ç {î} in the above definition expresses our require-

ment to enhance pure skeleta just enough to allow the representation of control

Chapter 4. Skel eta 	 101

bound names: names in S which do not bind any name in do not assist in such

representation and are therefore, at least, superfluous to our aim.

When we wish to indicate that S is the set of names present in the vector W we

shall often write . We shall now show that restriction skeleta are strict reflexive

control structures and also that they are isomorphic to the quotient of the term

algebra T(K) and the theory AC together with the equations ii ..' = id and

K() = w' ® n for each KeK.

Definition 4.27 We define the following operations on IISKEL. Assume s 1 =

(ui)(vS i)(i), S2 = ()(vS2)(ü) and s = (yiZ)(vS)(xii) with the names in ii, 9 , Si

and S2 distinct.

def
1dm = ()() (:m)

def (x) = ()(x)
def = (x)()

	

81S2 =
def (iZ)v((S1 US2)fl{cff})(c) 	 (o.{t7/})

def
81082 = (ii)v(S1 US2)(ii)

def
abs1 = (xZ)vS 1 (xii)

def I ()(Sfl{{Y/x}ii})({/x}i3) ifxy
fs

= 	(v((SU{x})fl{ii})(ifx=y
.

Proposition 4.28 For any set of controls K, IISKEL together with the operations

of Definition 4.27, any reaction relation on vSKEL and, for any K e K,

- K(s) =
def ()vy()

is a strict reflexive control structure over K.

Proof Consider the molecular forms over the strict reflexive action calculus

AC(K). We define the map vskel : AC(K) -+ vSKEL as follows: for each

a E AC(K) with molecular form (iZ)1i(0)(t), vskel(a) 	(i)vS(tii) where S =

Chapter 4. Skel eta 	 102

{ii}fl{tii}. Clearly, vskel is onto. It therefore suffices to show that vskel preserves

the operations of a strict reflexive control structure.

Remark The mapping vskel: (ii) i(ii)(zi) i-+ (i)(vS)(ii) where S = {il} fl {tfl},

is well-defined for the molecular forms of action calculi and also of its reflexive

variants. In all these cases the mapping preserves the (non-control) operations of

a control structure, and in the case of the reflexive variants, preserves refiexion as

well.

The proposition below states that the skeletal form of any control in vSKEL may

be built from discard and restriction operations.

Proposition 4.29 In vSKEL, for any K,

K(s)=wm ®v'

Proof By inspection of the molecular forms.

Remark We note that in vSKEL, ii 0 ii 54 v (x)(xx). However, we shall define

a dynamics for VSKEL where v 0 v may react to v - (x)(xx).

4.2.2 Terms

We shall now give a characterisation of vSKEL as a quotient of the terms Y(K).

Definition 4.30 (The theory AC") Let ACVS be the theory resulting from the

addition of the following equations to the theory AC:

VW = id

K(t) =
U

Definition 4.31 (vSKEL to Terms) Define the translation (-) : vSKEL-+Y(AC)

as follows:

Chapter 4. Skel eta 	 103

()(v) 	 .

Lemma 4.32 The translation (-) : vSKEL*y(ACv)/AC s is well-defined.

Proof The translation (-) preserves aiphaconvertibility. To show that (-)

preserves the permutation of restriction bound names it suffices to show that

(vx)(uy)t = (vy)(vx)t is provable in the theory ACVS Assume x : p, y: q:

(vx)(iiy)t = (ii 0 id) (x)((v 0 id) (y)t)

= (ii ® id) ab(v (9 id) . (x)(y)t

= (vOid). (id®v0id).(x)(y)t 	 (x Øfn(v))

= (v®v®id).(x)(y)t

(v 0 1' 0 id). (Pp,q (9 d) (y)(x)t

= (v(9 v®id).(y)(x)t

= (v 0 id) (id q 0 ii 0 id) . (y)(x)t 	(y: q)

= (vOid). ab(v(9 id).(y)(x)t 	 (yfn(v))

= (v 0 id) (y)((v ® id) . (x)t)
.

Lemma 4.33 (-) preserves the operations of a control structure over any signa-

ture ?,.

Proof Routine.

Definition 4.34 (Terms to vSKEL) Define the translation : T(C) -* vSKEL

to map each constructor to the corresponding operation in vSKEL.

Lemma 4.35 For any two terms t 1 , t2 , whenever ACPS tj = t2 , we have t 1 JJ =

I[t2]I.

Proof Since the map is inductively defined on the operations of a control structure

and the skeletal forms in vSKEL satisfy the axioms of ACVS (by propositions 4.28

and 4.29), the result follows.

Chapter 4. Skeleta 	 104

Proposition 4.36 The morphism (of control structures) from vSKEL to the quo-

tient T(K)/AC is an isomorphism.

Proof We must show both 	= s and 01 = t for arbitrary pure skeleta s and

terms t. For 191 = s, consider s = ()(zi)(2); then 9 = ()(')(y-). Since

preserves the operations of a control structure the result follows. For 	= t, result

follows by the fact that the [-]J is defined inductively on the operations and (-)

preserves all of them.

4.2.3 Effect structures

The notion of effect, introduced by Mimer in [21] in the context of action struc-

tures, provides an abstract description of what entities might be said to flow

through dataflow channels. Effects, ranged over by e, are defined in terms of the

static and dynamic properties of the factorisations (a', e) of each action a = a' . e.

Essentially, an effect is a spent action, one which cannot carry out further compu-

tation no matter what "information" it may receive. It may, on the other hand,

supply "information" to some other action, causing it to react. These dynamic

characteristics are captured by the following definition of inertia:

Definition 4.37 (Inertia) An action a is inert if, whenever b•a \ c, there exists

some b' such that bNb' and c = b' . a.

Effects are required to be inert. This, together with the property that a set

of effects is closed under composition will allow effects produced by successive

reactions to accumulate, thus:

% a\a'.eN /a,, .c,
) e=aI, (e -e)

The set of effects is required to be closed under the action structure operations.

While it is clearly desirable for effects to be closed under composition (if effects

are to accumulate), it is debatable whether closure under abstraction is justified

in the abstract definition.

Chapter 4. Skel eta 	 105

Definition 4.38 (Effect structure) Let A be an action structure, and E a static

sub-actionstrzicture of A. Then E is a postcomponent of A if, whenever a =

a1 e1 = a2 e2 , (with e 1 ,e2 E E) then for some a' and E E

a1 =-a'e (i=1,2) and e•e1 =ee2

If all the actions in E are inert, then E is an effect structure for A. 	•

Remark Our definition of postcomponent differs slightly from the one in [21]. We

require that a prospective postcomponent E be a static sub-actionstructure rather

than a sub-actionstructure of A. This is justified since the notion of postcomponent

is inherently a static one— the notion is of relevance even in the absence of any

dynamics.

Consider some postcomponent E of A (by our definition) whose reaction rela-

tion is the identity relation (i.e. E is effectively a static action structure). Then, if

the (images of the) actions of E are inert in A it will also be a sub-actionstructure

of A. To see why, consider the injective homomorphism of static action structures

E -+ A. We can show that whenever 1e N e' then 1e = e'. Assume

4e N e'; then clearly, id . 4e \ e'. Hence, by inertia, there is some a E A such

that Id N a and e' = a Oe. But, by definition id N a implies a = id, hence

= Oe. Now, since 1 is injective, e = e'. We can now show that the extra

condition required for a static sub-actionstructure to be a sub-actionstructure is

satisfied; namely that

1!eN the' 	> eNe'

Since 4e N he' implies e = e', we have e \ e' by the reflexivity of reaction. For

the other direction, the homomorphism 'Il trivially preserves the identity relation

on E, again by reflexivity of reaction.

The following definitions lead to a technique for showing that certain static sub-

actionstructures are postcomponents.

Chapter 4. Skel eta 	 106

Definition 4.39 Let E be a static sub-actionstructure of A. Then the pair (a', e)

is a decomposition of a for E, if a = a' e and e E E. We define the following

preorder over decompositions for E.

(a1 , e i) < (a2 , e2) if a 1 = a2 e and e e1 = e2 for some e E E

Say the decomposition (as, e5) of a is maximal if (a', e) :~ (a5 , e5) for any other

decomposition (a', e) of a for E.

For some static sub-actionstructures E of A, there may exist certain actions in A

which cannot be decomposed further (in the sense of the above preorder).

Definition 4.40 Let E be a static sub-actionstructure of the action structure A.

Then a E A is pure for E if for every e E E the decomposition (a, e) is maximal.

We say that the decomposition (a, e) is pure for E if a is pure for E and e E E..

The proposition below gives sufficient conditions for E to be a postcomponent.

Proposition 4.41 Let E be a static sub-actionstructure of the action structure

A. If every a has a pure decomposition, then E is a postcomponent of A.

Proof See [21].

It remains to be seen whether the notion of effect is useful in the semantic treat-

ment of action calculi; in any case, our results will be shown for a particular choice

of effect and may easily be stated without reference to Milner's definition of such.

We shall now describe a concrete action structure which will turn out to be an

effect structure for certain action calculi. The intuition behind our choice stems

from the illustration we gave earlier of the possible effects of exported control-

bound names. We argued that such bound names might need to be distinguished

from each other; our definition of concrete effects admits all such names that can

occur at the export. A concrete effect is just a vector of names together with

a vector of binding names ii which identify those names in VY which are bound by

controls.

Chapter 4. Skel eta 	 107

Definition 4.42 (Concrete effects) The concrete effects E for a control struc-

ture A, ranged over by e, are those actions which can be expressed in form ()()

such that {} C {ilJ.

We will first show that E is closed under the operations of an action structure.

Lemma 4.43 The concrete effects for A are a static sub-actionstructure of A.

Proof It is easy to see that concrete effects are closed under tensor product,

composition and abstraction. For the case of composition we show that if e 1 =

(iZ)(il) and e2 = ()(with {i} C {ti} and {} C {, then for e e2 = (u)(a,

{ii} C {ci} where a = { ti/}. For any w E {ii} we have w e ii. Let the name in

the corresponding position in Y be z. Then z E Y. By {tO/Z}Z = w and {W/z} E a,

it follows that w E cU.

We shall require the following fact about effects.

Lemma 4.44 Let A be any control structure for which E is a postcomponent.

Then, for any e E E, there is some e 1 E A such that e e 1 = Id.

Proof Consider an arbitrary effect ()(). Then, substitute by a name not in

every duplicate occurrence of a name in il to get 17 Hence 17 consists of distinct

names with exactly one occurrence of each name occurring in (byY C yj . Choose

.

Remark The retraction of e, e 1 may not be in E. Consider, for instance, (x).

Its retraction is c, which is not in E.

We cannot yet show that E is an effect structure for action calculi since that would

depend on the reaction rules (unless we limit ourselves to static action calculi).

However, it is possible to show that E is a postcomponent of any action calculus.

Proposition 4.45 For any action calculus AC(X), E is a postcomponent.

Chapter 4. Skel eta 	 108

Proof By lemma 4.43, E is a static sub-actionstructure of AC(K). By proposi-

tion 4.41, it suffices to identify certain molecular forms as pure actions for E and

show that every action in AC(K) has a pure decomposition. First we shall show

that every action a of the form

((D ()

where i are distinct names and {} C {}, is pure for E. Consider any effect

e = (zl(ii) (the choice of i in the effect does not result in any loss of generality, by

alphaconversion) giving a - e = (()(i). We show that whenever a e = a' e',

then for some e", a' = a e" and e = e" e. For any e' = (0i)(0) (again, choosing il

does not reduce generality, by aiphaconversion), we choose e" = (z)(t1i). We must

now show that every action a has a pure decomposition. Consider a =

Now, a = ((il)(ti) (i)(z) for some tii such that {ii} = {z'} fl {f}. Clearly

(iY)() E E and (),TZ(D(ti) is a pure action. 	 u

Remark The reader will, by now, be unsurprised by the fact that E is a post-

component for both AC'(K) and AC()C), for any 1C.

Proposition 4.46 E is a postcomponent for IISKEL.

Proof Similar to that of proposition 4.45 with pure actions ()v(z) with C

{fj}.
	 U

4.2.4 Dynamics

We have already hinted at the connection between L'SKEL and concrete effects.

Proposition 4.46 expresses the precise correspondence between the static structure

of vSKEL and the concrete effects. In this section we shall see that, under a

natural choice of dynamics for vSKEL, there exists a further connection which

makes restriction skeleta an interesting classifier.

Chapter 4. Skeleta 	 109

Definition 4.47 (Restriction skeleta: dynamics) The relation N on vSKEL

is the reflexive transitive closure of the smallest relation such that, for any skeleton

s=(x)vS(z)

(i?)vS() N ()v(S - { U})({V/U}Z)

where U E S. 	 U

Proposition 4.48 The relation \ on vSKEL is preserved by the operations of

an action structure together with reflexion.

Proof Routine. 	 U

The following propositions give a flavour of the dynamics for VSKEL. We note, by

Proposition 4.49, the interesting distinction between pSKEL and vSKEL, caused by

the simple relegation of an equation to a reaction rule. This effectively expresses

the intuition that two distinct bound names (two independent dataflow channels)

convey less information than two identical bound names (signifying a dataflow

channel forked into two).

Proposition 4.49 The relation N is the smallest reaction relation on vSKEL

closed under the following rules:

v N (x)

i'®i' N I1.(X)(XX)

Proof Let N be the smallest reaction relation on T(K)/AC closed under the

rules. We can then show that s N s' if and only if IN?.

(==) By proposition 4.48, it suffices to show that ii N (x) and v®v N " (x)(xx)

in vSKEL. It is immediate that v N (x) in VSKEL, i.e. ()vu(u) N ()(x); and

ii ® ii N (x)(xx), i.e. ()vux(ux) N ()vx(xx).

(==) To see that the reaction

N ()v(S 	f)({v/u})

Chapter 4. Skeleta 	 110

is derivable from the above rules, consider whether v is in S. If it is, then

= ()((v(&v) (uv)(y1)(z)) for some such that S = {u, v, }. Clearly, by

ii 0 v Nz,• (x)(xx), ()((v ® ii) (uv)(y)(i)) \ ()(v. (v)(vv) (uv)(y)(2)) which

is equal to ()v(S _{u})({V/u}i)

If v V S, then we have (= (f)(zi (u)(ij)(2)) for some 9 such that

S = {u, 91. By ti\ (v), ()(v. (u)()(z)) N. ()((v) (u)((z)) which is equal

to ()v(S _{u})({V/u}) 	 •

The following logical characterisation of the dynamics of vSKEL is the essence of

the qualification of z'SKEL as a classifier of dynamics.

Proposition 4.50 For any two skeleta s 1 and 82,

I-. 	 I 	 I
Si N 82 	Vs 1 , X. (f) S = s e = 	() s2 = s2 e

Proof (==) First we shall demonstrate that it suffices to show that for some

pure sç, ifs1 Ns2 and (ti) s1 = s!j' e' for some e" and ?, then there is some

such that S2 = s'2' e7'. Assume that this is true; then if (tii) . s1 	s' e for any

s'1 and e, we have s'1 = s e' and e' = e' e for some e' . In this case, choosing

s'2 = s'2' e ' would give the result since (tii) 82 = S'1' e' = s'1' e' e.

Consider s1 = ()vu(). Then 82 = (v({il/ii}) where il = 	Now tii>.

Si = (v)({1li/}z) can be written as the composite of a pure action and an effect

Also, () 82 = (vy)({/X}{V/u}) = (,4)({V/iI}{ 29/x1z)
where Y' = {t1/}il. Hence (tY) 82 = (v')(ii'ü') . 	({t1i/i}z) and result follows.

(==) First we note that, for any ii, 'ii, #such that Ill = I yl
,
we have (v)() N (vü)(vi).

Now consider Sj and 82 of equal arity (if not, our assumption would not hold

by an argument based on well-formedness); by alphaconversion we can write

si = ()v) and S2 = ()vü(ti). Then () si = (v)() = (v)(). ()().
By assumption, () 82 = (z.'ü)(i) . ()(), for some V. But by (v)() \ (vü)(i)

and the fact that reaction is preserved by composition, () Si N () 82. Hence

()((f) s) N ()(() • 82) and since are not free in either S or 82 we get S N 82.

Chapter 4. Skeleta 	 111

Lemma 4.51 For any 81 , s'1 , 8 2 and e, whenever s, N S2 and s1 = 8'1 e then, for

some s, s 2 = s'2 e and s'1 N s.

Proof Assume s 1 N S2 and si = s'1 e. Choose £ not in the surfaces of 82 and

e. Then (2) s1 = (2) s e. By proposition 4.50, for some s'2', (2) . s2 = s'2' e.

Then 2 (2)(2) S = (2)((2) 82) = (2)(s'2' . e) = (2)4 e. Choosing s'2 = (2)4
gives S2 = s'2 e. To show that s' N% s'2 we apply the context [] e to each side

of 81Ns2. .

First we shall establish an important connection between concrete effects and

vSKEL.

Proposition 4.52 E is an effect structure for vSKEL.

Proof By proposition 4.46, E is a postcomponent of iiSKEL. We now show that

all the actions in E are inert in vSKEL. Consider s - e N s', we must show that,

for some s", s N s" and s' = s" e. By lemma 4.51 result follows immediately. •

Indeed we can prove something stronger. The following lemma will prepare the

ground for our main theorem which justifies the choice of vSKEL as a classifier of

dynamics.

Lemma 4.53 Let A be a control structure for which E is a postcomponent. If

there is a morphism 1' : A—*vSKEL in CS 3 (K) such that

4'(a)=s.e = 	a'€A.a=a'e

then E is an effect structure for A.

Proof Assume a e Nb. Then, 41(a . e) N (b). Now, (a. e) = 4(a) e. By

lemma 4.51, for some s, (b) = s e. Then, by assumption, there is some a' such

that b = a' e. Hence a e N a' e, and applying the context [] e to each side

gives the result.

Chapter 4. Skel eta 	 112

Theorem 4.54 For any signature K and reaction rules 7., the action calculus

AC(AC, R.) has a morphism to vSKEL in CS(K, R.) if and only if the concrete

effects E give an effect structure for AC(K, R.).

Proof (=='.) By proposition 4.45, E is a postcomponent of AC(K) and hence of

AC(K, R.). Then, by lemma 4.53, it suffices to show that the morphism vskel:

AC(C)-+vSKEL has the property

VaEAC(K). vskel(a)=s.e = a'EAC(C). a=a'e

To show this we note that the mapping vskel takes each pure action in AC(K) to

a pure action in vSKEL. Hence, consider an arbirary a E AC(K). Then a = a . e,

for some pure action a; and therefore vskel(a) = vske1(a) e,,. But vske1(a)

is pure in vSKEL and hence, if a = s e, then by the definition of purity, for some

e', s = vske1(a) e' and e = e' e. Choosing a' = a, e' gives the required result.

(==) There is a (unique) morphism vskel in CS 3 (K) from AC(AC) to VSKEL. It

therefore suffices to show that vskel preserves the reaction relation. Assume a \ b.

By proposition 4.50, it suffices to show that, for any XF, s and e, if () vskel(a) =

s e, then vskel(b) = s' e, for some s'. Now a \ b implies (ri) a \ () b. But,

vske1((ã) a) = () . vskel(a) = s e and therefore, for some a', () a = a' e.

Hence a' e \ () b. But, since e is an effect in AC(K), it is inert and therefore

() .b = b'e for some Y. Since vskel preserves the operations of a control structure,

(f) vskel(b) = vskel((f) b) = vskel(b') e. Choosing s' = vskel(b') gives the

result.

Let us review what has been achieved. We started with an examination of the

information that flows through dataflow channels in the setting of action calculi.

Our analysis led us to distinguish the concrete effects, a class of actions which are

inactive but which may instigate reaction upon being fed to certain actions. We

then considered effect structures which give an abstract account of what actions

can send through dataflow channels. For any action structure A, an effect structure

E for A must be a postcomponent of A (a property of the statics) and must consist

Chapter 4. Skeleta 	 113

of inert actions (a property of the dynamics). We then showed that the concrete

effects satisfy the postcomponent property for arbitrary action calculi (and their

variants). The above theorem states that the inertia property holds for an action

calculus just when there exists a morphism (in CS(AC)) from it to z'SKEL, hence

the claim that vSKEL acts as a classifier.

Discussion Analogous results to theorem 4.54 can be obtained for the reflexive

variants of action calculi with very similar proofs. This suggests that there is some

common structure which, when elicited, can be employed to prove our results more

abstractly. There are some similarities which are simple to state and which may

have bearing on the uniformity with which similar results could be obtained for

the variants. For instance, in all three variants, there exists an injection from the

(set of) concrete effects to the horn-set consisting of all the actions. Also, in each

case, every action has a pure decomposition for the concrete effects.

One also asks whether variants of skeleta arise from other concrete forms of

effect (or vice versa). A variation that springs to mind is that which result from

removing the constraint (in the definition of restriction skeleta) that the names in

the set S bind at least some name in the export vector E'. Does the variation of

skeleta given by removing the constraint allow us to obtain analogous results? For

such a case, it is natural to take as operations on the skeletal forms those defined

exactly for the reflexive molecular forms over the empty signature. This means

that strictness is lost, and therefore our scope will exclude strict reflexive action

calculi. In this setting, a concrete kind of effect that suggests itself is that given

by entities—call them pre-effects—of the form () () with Y and ff unconstrained

beyond the requirement that XF consist of distinct names. These pre-effects form a

postcomponent of both action calculi and reflexive ones; it is easy to see why by

considering the pure actions (for the pre-effects) of the form

() Uz()] (:)

Included among the pre-effects, is the discard operation w since it is equal to (x)().

This immediately implies that we lose retractablility - the guaranteed existence

Chapter 4. Skel eta
	

114

of a right inverse - in the action calculi and its reflexive variants. Retractability

effectively says that any entity of information (effect) can be discarded and is

therefore an intuitively desirable property. The loss of this property also renders

our method of proof of the inertia of effects (see proposition 4.51) inapplicable.

Chapter 5

The Reflexive it-calculus

Earlier it was claimed that several existing concrete models of concurrency fit

readily in the framework we have developed. One leading example of such models

is Mimer's it-calculus which allows the expression of independent processes that are

able to pass links to each other, hence its claim as a calculus of mobile processes.

Several operational models for this calculus have been developed, largely along the

lines familiar in mainstream process algebra of which the it-calculus is an instance,

if a rather powerful one. Therefore, by presenting an operational semantics of a

reflexive action calculus inspired by the it-calculus, we hope to throw some light

on the connections between mainstream process algebra and our framework.

In this chapter and the next we shall examine the reflexive it-calculus PlC',

a reflexive action calculus determined by controls whose behaviour is similar to

that of the essential constructs of the original it-calculus. In particular, it is

possible to express mobility—the ability of processes to exchange (the names of)

communication ports—in both calculi. The choice of dealing with the it-calculus

cast in the reflexive framework rather than the (non-reflexive) one was deliberate

since, as we shall see, the presence of reflexion plays a crucial role in the operational

semantics that we shall develop.

Besides the presence of reflexion, there are other important differences between

PlC' and the original it-calculus. First, the only prefix operator is input prefix in

PIC', the output being asynchronous as in the v-calculus of Honda and Yoshida

[11]. There are also important enhancements not found even in the full it-calculus:

115

Chapter 5. The Reflexive ir-calculus 	 116

processes, which in action calculi are represented as (complex) actions, may import

as well as export names through the basic operations of datum, abstraction and

composition. In short PlC' is an asynchronous ir-calculus with explicit dataflow

operators.

It is worth remarking that we have chosen to present the operational semantics

for PlC' rather than PlC, the non-reflexive action calculus PlC determined by the

same controls together with restriction (which in the reflexive framework is a

derived operation). The reason for this is that the presence of reflexion is crucial

for our approach. One of the problems with giving an operational semantics for

PlC, is that in analysing actions for redexes, it does not suffice to determine the

presence of a complementary pair of controls (e.g. (x)boxa(y) and (xil)out); care

must also be taken to ensure that no links exist between them. In other words,

the names ii must be distinct from the names 7. This requirement arises since the

reaction rule out®boxa N a requires that the complementary molecules have no

common links. This is not the case in the reflexive framework since, by lemma 3.10,

every composition a - b can be expressed in terms of the tensor product of a and b

(together with permutators and reflexion). Since the occurrence of reaction is to

be concluded entirely upon consideration of the labels (rather than the actions or

terms which perform the labelled transition), in PlC (but not in PlC) this would

require labels to include information about the binding structure related to the

molecules. This significantly complicates the treatment and for this reason PlC'

was preferred.

Outline In Section 5.1 we present PlC' and explore its dynamics through ex-

amples. The examples will lead to an analysis of reaction and redex formation

and their interaction with the operations of the calculus. This analysis will serve

as a basis for the formulation of labelled transitions in the following section. In Sec-

tion 5.2 we introduce labels, which are descriptions of the contribution actions can

make towards the formation of redexes; followed by labelled transitions between

terms—represented as sequents—and the rules for deriving labelled transition se-

quents. In Section 5.3 labelled transition relations are defined in terms of derivable

sequents. Several important properties of derivable sequents, and thereby, of la-

Chapter 5. The Reflexive it-calculus
	

117

belied transition relations, are obtained. The main result in this chapter is that

terms of pic' which are provably equal in AC perform identical transitions to re-

sidual terms which are also equal, hence ensuring a well-defined notion of labelled

transition on the actions (rather than just the terms) of PlC'. We also give a

characterisation of labelled transitions in the setting of the molecular forms and

show that each r-transition corresponds to a computational step.

5.1 Controls and Reaction

The reflexive it-calculus PlC' is determined by the controls that together with

the operations of a reflexive control structure give the reflexive action calculus.

Informally, parallel composition corresponds to ®, asynchronous output (v) to

(v) .out, and input prefix x(y).P to boxa, where a corresponds to the abstraction

of y from P: (y)P by an abuse of notation.

Definition 5.1 (PlC) The reflexive it-calculus pic' is the reflexive action calcu-

lus over the controls {out, box} together with the following arity rules

a: m—+n

out :p®m—*E 	 boxa:p--+n

and the reaction rule outs ® boxa N a where

def outs = ((x) øid)out

boxa =
def

(x) . boxa
U

With reference to the constructs out and boxa the name x is sometimes referred

to as the subject name of the relevant molecule.

Chapter 5. The Reflexive 7r-calculus 	 118

Example As an example of reaction in PlC', consider the action ((xv) out) ®

box(y)a. In the theory AC the following equality is provable:

((xv). out) ®box(y)a = ((v) ((x) (9 id) out) ®box(y)a

(v) . ((((x) 0 id) out) ® box(y)a)

= (v) (out (9 box(y)a)

The reaction (v) . (out ® box(y)a) \. (v) (y)a is derivable by the reaction rule

outs ® boxa N a together with the condition that reaction is preserved by com-

position. For any action a, (v) (y)a = {V/y}a is immediately provable in AC'.

We then note the correspondence with the following transition in the original

ir-calculus:

(v) I x(y).P 	{V/y}P

In the above transition we note that the r label stands for a single interaction,

whereas the reaction relation N represents arbitrarily many (including zero) in-

teractions or computational steps. For the treatment of the dynamics of PlC', we

shall find it useful to define the single-step reaction relation \j. We can then

show that the reaction relation is identical to the reflexive transitive closure of the

single step reaction relation N' which is given as the smallest relation satisfying

the rules shown in figure 5-1. Then, as in the example above, the single step

reaction (v) . (outs (9 box(y)a) 'Ni {V/y}a is derivable by applying the rules SYNC,

R. and STRUCT in that order. Note also that STRUCT rule ensures that the relation is

well defined for the equivalence classes (on terms) induced byAC'•

Proposition 5.2 The reaction relation \ is equal to the reflexive transitive closure of

the single step reaction relation (Ni')'.

Proof The reaction relation \ is the smallest preorder which contains the reaction

out 0 boxt Nt and is preserved by the action structure operations together with

reflexion. Adding reflexivity and transitivity to the rules defining \j (as the smallest

relation satisfying the rules) gives identical rules as those for \.

Chapter 5. The Reflexive ir-calcuius
	

119

aN'a' 	 a\'a' 	 a\'a'
ab

a.b\'a'b 	 aøb\'a'®b 	 aba\'aba'

bNb' 	 b\'b' 	 ________

	

a. 	 a® 	 t
aØbNa®b' 	 ta\'ta'

a = b bN'b' b'=a'

	

SYNC 	 STRUCT

outs 0 boxa a 	 a \ a'

Figure 5-1: One-Step Reaction Relation

It is informative to consider the mechanics of reaction on the molecular forms, especially

for single step reaction. As we shall see, a redex corresponds to two complementary

molecules placed side by side. We recall that [-Il is the unique homomorphism from the

term algebra to the molecular forms, and (-) is its inverse. We shall denote molecules

()Kd(y) by 	and pi(Yi),...,irWr) by a(y) with a = 	and il=

Then,

de
p =f

def -
11 =

Proposition 5.3 For any t, t', t \. t' if and only if

= (tZ) [(xti)out, (x)boxa(ii i), 9(i 2)] (iY) and [t] =

where a = ()(°)(1°).

Proof (==) Induction on the depth of derivation of t \1j t'.

(==) Let the (unique) inverse map of [-1 be (-). Then, by the STRUCT rule it suffices

to give a derivation of ItI ' [t'. By alphaconversion we can assume w.l.o.g. that the

names :ia :Va do not occur except within a.

Chapter 5. The Reflexive ir-calculus 	 120

M 	= 	 out) ®bOX z (a)A(Ua)(4) (D10 (ii))

N tmi øm2 (t1U2ti)(((t14 (0)W0)(0)) 0 ® (ii))

= tmi®m2(tZ1U2U)([/Xa]tvz(1/o)(A® (i)) ®jZ® (i3)) 	 : n

= tmi®m2(titi2t)[/Xa1(tn(yo)(A® (Ia)) ®O (ii))

= tmi ®m2 (1ii12i)tm(a)(() ®tn(Ua)(® (Is)) ®ji® (ii)) 	3.29

= ®t(il0)(.® (fl) ØjØ (7) 	3.26*

= tmi ®m®m2 (o2il)(tn &a)(® (Is)) (9 (tii) 0110 (ii))

= tmj ®m®m 2 (tlot'2th)tnWa)P 0 (Is) 0 (fl) 0 Il®

= tm1 Øm (i1a)tm2 0n (2Ua 1)(5 0 110(.a) ® (ti) 0(i))) 	3.26*

= 	tmi®m(ihia)(i1)[X(Ua), 11(iZ2)](bat1)

jZ(i12)](ii)

=
U

5.1.1 Reaction and the operations of PlC'

Some actions are inactive, or unable to go to any action save themselves under reaction.

However, certain combinations of inactive actions may themselves be active. Consider

the actions out and boxa: no reaction can be derived from either of them in isolation.

However, when combined together by means of 0, the combination may react to a. Any

semantics based on the dynamics must take such interaction into account: the labelled

transitions upon which our semantics is based do just that.

Before presenting the operational semantics of PlC, we shall first explore some of the

interactions between reaction and the operations of the calculus. In particular, we want

to identify the components in an action which can contribute to the creation of a redex.

We will also examine the way in which the operations can bring such contributions

together, possibly resulting in the formation of a complete redex as a result. Later, we

shall formalise this by the notion of a labelled transition, with labels representing such

contributions. It is insightful to consider these interactions in the setting of molecular

forms since the intuitions behind the labelled transitions are most easily explained with

reference to them.

1. A single computational step, or reaction, occurs just when a molecule (xii)out()

encounters a molecule (x)boxa'(inside the body of an action a. If a contains

(xi3)out() but no (x)boxa'(y), a reaction may be induced by "placing" the re-

Chapter 5. The Reflexive ir-calculus 	 121

quired complementary molecule in the body of a. In terms of the operations of

the calculus, there may be various ways of introducing this complementary mo-

lecule. For instance, if the name x is free inside the molecular form of a, one

way of placing such a complementary molecule is through a tensor product of the

action with box,, a'; another way is to compose a with an action b containing the

complementary molecule (with x free in the molecular form of b). Hence, we may

regard a as being able to contribute a partial redex (xil)out ().

2. Consider now, the action a = (y)(out 2 0 boxa') whose molecular form is

(yvl [(xi)out(), (y)boxa'(ii)} (tZ)

Clearly, a is inactive and the placement of the molecule (x)boxa"(in its body

can create reaction. However, there are other ways by which reaction can be

induced: precomposing (x) 0 id will cause any free occurrence of y in the body of

the action to be replaced by x, thereby creating the redex out 2 0 box, a. Indeed,

precomposing by any action which exports the (free) name x at the appropriate

position will cause this redex to be formed. Letting b = (tZ) # (xe) (with x free

in b) gives b . a = (iZ) [ii, (x.)out(), (x)boxa"(i)] (til) where a" = {Xi/yii}a'. In

this case, the essential part of b which determines whether a reaction is created

(through name substitution) is its export vector of names xz. The point that

this example makes is that b, while not necessarily contributing any molecules

to create a redex in b a, still contributes a component (the free name x) which

caused a redex to be formed in the composite action. Consequently, we must take

into account not only of the molecules that an action can contribute but also of

the free names available at its export.

We emphasise that in this example, the occurrence of x in the export of b has to

be free, for otherwise (by the definition of composition on the molecular forms)

it would have had to be alphaconverted to some name other than x to avoid

clashing with the free occurrence of x in a. This example might suggest that

ignoring the bound names in the export vector is justified, but, as the following

example illustrates, this is not generally the case.

3. Consider the action a = (xy)(out 2 (9 boxa'), where both x and y are bound at

its input. Clearly, precomposing by any action which exports two identical names

(vv) (for any v) will induce reaction. it is important to note that the occurrences

Chapter 5. The Reflexive ir-calculus
	

122

of v need not be free in b, since any pair of identical names at the export of b

will create the redex: consequently, the forced aiphaconversion of v in b to, say, w

cannot prevent the formation of the redex out,, ® boxa'. We note that in the

case that v is bound in b, b can still be factorised into composites b' and (v)(vv),

for some b', whereas if the occurrence is free, factorisation into some b' and (vv) is

also possible. In both of these cases b may induce reaction when it is precomposed

to a suitable action. This example shows that not all exported names which are

bound should be ignored as possible contributions (to a redex).

We will now give an example which illustrates the complexity over the original

ir-calculus resulting from the presence of name export (non-empty output arity).

The action () [,i(x), (xv)out()} () cannot interact with any other action. We

would expect such an action to contribute as much to reaction as, for instance,

() [zi(x)] () 1 • However, consider the slight perturbation in their molecular forms

by introducing the name x at the export to give ()[v(x), (xv)out()] (x) and

()[v(x)] (x). For the former action, postcomposing b = (y) [(y)boxa()] (z) will

create a reaction whereas postcomposing with the latter action will not. Hence,

even restricted ports can be made visible provided the restricted name is exported.

It is clear that in our treatment we must make a distinction between ports whose

names are free and visible and those of the kind just described.

Last of all, we present an example of how the application of the reflexion operation

can create a redex within an action which previously had none. Consider the action

a with molecular form

(x)[zi(y), (xi)out, (y)boxa'(tii)](y)

where x, y : p. Applying reflexion on a, gives the molecular form:

[v(y), (y{Y/x}ii)out, (y)box{Y/x}a' (tii)] (ill)

'These actions are analogous to (vx)(v) and (vx)O respectively in the ir-calculus and

indeed, as in there, we would expect these two actions to be identified in any reasonable

model for the reflexive ir-calculus.

Chapter 5. The Reflexive ir-calculus 	 123

which clearly has a redex. Thus, reflexion, while providing no contribution in

itself, enabled the contributions of a to recombine in such a way as to create a

complete redex. Indeed, reflexion is necessary to create this redex since it is the

only operation which can cause the identification of the exported (restricted) name

y with the imported name x.

Based upon the notion of "contribution to reaction" illustrated above we would like to

formulate an operational semantics of PICr. As will be evident in the following sections

we will choose to formalise this notion of contribution in the setting of the term algebra

rather than directly on the molecular forms. The advantage of working with terms is

related to the requirement of showing how the mentioned contributions are affected by

arbitrary contexts built from the operations of PlC'. While the notion of context in the

case of terms is straightforward, the same cannot be said in the setting of the molecular

forms. The main technical results of this chapter show that the formulation based on the

terms corresponds to the intuition supplied with reference to the molecular forms. In

particular, a structural lemma (lemma 5.11) ensures that labelled transition relations on

molecular forms can be obtained by quotienting the labelled transition relations defined

on the corresponding terms.

5.2 Labelled Transition Sequents

In the previous section we presented several examples which motivate the organisation

of labelled transitions to reflect the kinds of interaction described. The essential idea

behind labelled traisitions is that labels should contain enough (ideally, just enough)

information about the action to determine whether the reaction will be made possible

when the action is placed in certain contexts. The residual of the transition allows

the action resulting from such reactions to be constructed. We would like to account

for any contribution to a redex no matter how small; for otherwise we cannot expect

bisimulation equivalence to be a congruence.

This section is organised in three parts: the first describes the labels which formalise

the notion of an action's contribution to a potential redex; the second describes labelled

transitions through syntactic constructs which we shall call sequents; while the third

describes a set of rules which allow such sequents to be derived.

Chapter 5. The Reflexive ir-calculus 	 124

5.2.1 Labels

As indicated by the examples presented in the previous section, the contribution an

action can make towards a redex may consist of exported names and molecules. We

have also shown that care must be taken to distinguish between free and bound names

occurring both in the molecules (in fact, the subject names suffice) and in the export

vectors of actions.

Exported names We shall start with an account of the possible substitutions an action

can cause in a postcomposed action. In terms of the molecular forms, these

substitutions are determined by the export vector of the precomposed action and

the import vector of the postcomposed one. It is also necessary as we have seen

to include some description of the freeness or otherwise of the names occurring

in the export vector of the precomposed action. Consider the following molecular

form:

a = ()[()K(y](z)

The names in the export of a may be bound by any name in Y and g. The

possible name contributions of a to postcomposed actions could be represented

as ((i). However, we would like to distinguish between bindings originating

from the imports of a and those originating from restrictions or controls since

precomposition of a by some action can cause names bound by XF to be instantiated

whereas those bound by il cannot change (up to aiphaconversion) as a result of

any (static) operation of the calculus. As an illustration of this point consider the

actions

b = (x1 x2)[()K(y 1)y2](x1 x2)

b' = (x1 x2)[()K(y 1)y2](y1 y2)

i)out, (z2)boxa(iZ)}(ti) c = (z1 z2)[(zj

Now consider the composite actions b c and b' c; neither of them have a redex

(unless due to K). However, further precomposing (zz) to each of these actions

produces a redex in (zz) . b•c but not in (zz) . b' c. This is due to the fact that Y', 1/2

are control bound and no static operation can unify them. To deal with this aspect

of molecular forms we consider factorisations relative to arbitrary substitutions

Chapter 5. The Reflexive 'jr-calculus
	

125

for the imported names. Concretely, this is achieved by precomposing to a an

arbitrary vector of data (ii) which we shall call an environment. Consider

(ii) a = [() K(y]({il/}z)

We can now factorise (01 . a into ()[K(y)](,7) (({}2). The component

(!J) ({/}i) is sufficient to determine which substitutions will be created in any

action postcomposed to (v) . a. Notice that such components are all of the form

()(Y-).

Molecules We note that the ability of two molecules to react depends on three factors:

they must be constructed of complementary controls, one being out and the other

box; their subject names must be identical; and finally, the links transmitted

by the molecule (xil)out() (represented by the names il: m) must be of the

same arity (m) as the links accepted by the molecule (x)boxa(y), in other words

a : m-3.n, for some n.

The labels, if they are to provide a basis for determining whether enough has

been contributed to allow reaction, must contain sufficient information to describe

these elements. Moreover, the labels must also identify whether the subject names

are bound: that a subject name is bound does not necessarily render a molecule

inaccessible to a complementary one, as the fourth example in the previous section

shows. Note that, as with our consideration of the exported names above, we must

also distinguish between bindings which originate from the import of the action

with those that originate from controls. Again, we will employ environments for

this purpose.

We shall choose to represent the molecular contributions of an action by means of

particles, each of which will contain information regarding the subject name, type

(out or box) and the arity of the links handled. Since we have just two types,

we can represent the particles as a disjoint sum of pairs of names and arities. The

binding will be represented as for the exported names. Thus, a possible concrete

representation of the molecular contribution of an action is as (iZ)5 where the

bindings are given by (iZ) and each particle a E (X x M) + (X x M).

i- particles For the purposes of our semantics, we shall choose to keep track of any

redex which has been reduced. This will allow us to obtain a strong semantics,

Chapter 5. The Reflexive ir-calculus
	

126

in the spirit of strong bisimilarity familiar in the mainstream process algebriac

setting. To achieve this we will introduce an additional kind of particle, r which

we shall assume to be distinct from any other particle defined above.

The exported names and the molecules are distinct contributions but both share the

same kind of binding considerations. Morever, as our last two examples in section 1 have

indicated, some redexes can only be discovered by considering both kinds of contribution

arising from the same action. These points make a case for combining the descriptions

of these two kinds of contribution to give a single label. That is what we shall do:

Definition 5.4 (Labels) Ranged over by £, labels have the form:

(iZ)7)

where each particle f3 in 6 (the body of £) is in ((X x M) + (X x M)) U {r}, where

r 95 X. We shall associate a pair of arities with the body 6 of a label as follows:

(O,(x,m)) :

(1,(x,rn)) : m-+e

6-46

12 : k 1 0 k2 -+11 012 	(cf, : k 1 -+11)

The names 9 are distinct and each name in iZ is binding throughout the label. If a

name occurring in £ is not bound (i.e. does not occur in iZ) then it is called free. We

denote the free names of £ by fn (i). Name substitution on labels {Y/x}t replaces each

free x in £ by y renaming bound names to avoid capture. Labels which differ only up

to alphaconversion and commutation of r-particles with any particle in the body of the

label are considered identical.

Notation We shall often abbreviate (0, (x,m)) to T and (1, (x,m)) to x when we do

not need to refer to the associated m. Each name in pr is associated with a prime

arity. The name x, its prime arity p (we write x : p) and arity m are called the subject

name, subject arity and object arity respectively of the particle in each case. The object

arity ofalabeU = (iZ)(ii), written Jil is m—*n just when d : m-+n. If iZ: rn and (1:

the subject arity of 9 is m -+ n, written £ : rn -* n. We shall denote the set of labels by L.

Chapter 5. The Reflexive ir-calculus 	 127

5.2.2 Labelled transition sequents

We shall now describe the next step towards obtaining a collection of relations on the

terms of PlC' which allow us not only to determine the reaction of its actions, but also

to elicit the contribution that each action is able to make towards redex formation and

the outcome of the resulting reaction under arbitrary contexts.

To explain the role of the labels in describing redex formation and that of labelled

transitions in predicting reaction and its outcome, it is best to consider what happens

when a reaction takes place between two complementary particles in a redex out s 0

boxa, where out : m - e and a : ra - n. The diagram below shows these two

molecules side by side ready to react.

The effect of the reaction is the creation of links of arity (or width) rn from the input

of the out s particle to the action contained within the box construct. One may view

this occurrence as two distinct steps: the first consisting of the controls disintegrating,

leaving, in the case of out dangling links of width rn and, in the case of boxa, the

exposed action a whose import links (also of width m) are also dangling, waiting for

connection with those arising from out s ; the second step establishes the connection

itself, in other words, joins the dangling links. The latter step, however, involves a static

or datafiow operation. One may think of the first step as a partial reaction and the

second as a synchronisation of partial reactions to produce a completed computational

step, or reaction.

Chapter 5. The Reflexive ir-calculus 	 128

- S

---- 	 I

-24 - 	 .

In this way we can break the outcome of a reaction into the effect suffered by the

participants (the dangling output links in the case of out and the exposed a, with

its dangling import links, in the case of boxa) and the static operation of connecting

the relevant links. This will allow us to write a labelled transition to represent partial

reactions; in other words, the contribution an action can make to a reaction (the label)

and the effect it will suffer as a result (the residual), should that reaction occur. In fact,

the T particles will also permit us to record completed reaction as well.

Our formal representation of this idea consists of four components: the term describing

the action under consideration, called the principal term; the environment which is a

vector of names, causing the import bound names in the action to be replaced by free

ones; the label, whose role we have described above; and finally, the residual term, which

describes the action with dangling links in place of each molecule indicated in the label.

Definition 5.5 (Transition sequents) A labelled transition sequent has the form:

(1) H t -s-, t,

to be read as: under environment i, the principal term t goes to the residual term t'

performing label £. Such sequents are well-formed just when

Chapter 5. The Reflexive ir-calculus 	 129

t 	: m-+n

k-*lØr

£ 	:

IRI = 	k-+L 	 -

The arity rule for sequents is best explained with reference to the intended interpretation

for the sequents. Consider the sequent (2) I- t --+ t'. The environment (2) can be

considered as supplying names 2' to t in an identical fashion as occurs in the composite

(2') . t. This ensures that the import-bound names in the molecular form of t are replaced

by free names, thereby ensuring that any bound name (in the molecular form of the

composite (2) . t) is control-bound. Hence, in order for the term (2) . t to be well formed,

whenever t: m —* n, then 2' must have arity m.

Let £ = (ii) J). The part (ii)... (ii) reflects the exported names ii of the molecular

form of t, of which ti are bound by controls (including v, see Discussion below). This

essentially signifies a factorisat ion of (2) t into composites C (for some such) and (iZ) (il).

Thus, if t : rn-*n and i: r, then t" : e-+r and ': n.

We shall now account for the emergence of the subject arities JfJ : k — 1. Informally,

if the label £ contains the particle Y : € -+ h it indicates the existence of a molecule

(xt)out, with t1: h, in the body of the molecular form of (2') . t. Moreover, this same

molecule is assumed to have partially reacted in the residual t'. Since we do not know at

this point, with which other action or molecule the reaction will take place (i.e. where

the complementary part of the redex will come from) we are left with a dangling link of

width h (indicated by the output arity of the particle). This link, which originated from

an output port, is ready to "connect" with a link arising from a complementary input

port. Until this occurs, the link is placed alongside the exported links in the residual.

The particle 7 : € -* h in the label £ records that a link of width h is dangling at the

export interface of the residual, waiting for connection with any recipient made available

through the reduction of the complementary part of the redex.

Chapter 5. The Reflexive ir-calculus 	 130

In this case, such a part must come from a boxa molecule, for some a : h -+ h'.

Such a contribution would be reflected as a particle x : h - € in the label: the links into

a will similarly be made available at the imports of the residual (which also includes the

action a which has been released from within the box construct).

Hence, for each particle in 5 we get an associated increase in arity either to the input

or to the output of the residual according to the type (input or output) and subject arity

of the particle. Thus, in the above, t' is obtained by redirecting in t" the appropriate

links; those of width k to the import and those of width 1 to the export resulting in the

arity t' : k *l 0 r. Consider, for instance, the transition

(2) I- t

which exposes the existence, in the molecular form of (2) .t, of molecules (xti)out() and

(y)boxa(tir) (for some a, ti, ti') together with exported names ii with names il bound by

controls. The names tir, which are control bound are included in il, the binding vector

occurring in the label. The residual t' contains the links (represented by the names tV

in the molecule (xti)out ()) at its export interface and the links into a at its import

interface.

If the same action contains two complementary molecules, then it will have a transition

with both and x (for some x) in its label. These complementary molecules can react

together, and the result of this reaction can be obtained by connecting, in the residual,

Chapter 5. The Reflexive it-calculus 	 131

the dangling output links to the corresponding input links arising from the partial re-

actions recorded by the complementary particles in the label. In order to achieve this

connection from export to import positions in the residual we need feedback, as provided

by the reflexion operation.

This is essentially the idea behind the synchronisation rule SYNC. The occurrence of

such a synchronisation is recorded in the label by replacing the complementary particles

, x with r. Since completed reaction does not add any links to the residual (i.e. pre-

serves the arities) the arity of a i- particles is -* €. - 	_
Thus, in summary, named particles (in a label) indicate partial reaction, while each

r particle records the sychronisation of partial reactions to achieve completed computa-

tional steps (reaction).

Discussion We note that in PlC there are two sorts of binding molecule: v(i) and

(x)boxa(ii). A more constrained version of PlC can be obtained by limiting binding to

restriction molecules. This can be done by replacing the arity rule for boxa as follows,

ensuring that such molecules will be of the form (x)boxa():

a:

boxa : p-4f

Chapter 5. The Reflexive ir-calculus 	 132

This constraint does not simplify (at least, not in a direct way) any aspect of our

semantics. It does, however, render picr somewhat closer to the original ir-calculus.

Also, we will then be justified in writing each label (ir)c(il) as (v)(i). Such occurrence

of restriction in labels is not new; Sangiorgi employs such in his treatment of the higher .

order ir-calculus[38]. On the other hand, we argue that this distinction from the ir -

calculus—that processes of arbitrary arities can fall within an input prefix—is natural

in a world where the antics of processes are other than e - E. We also note that, in

the more complex setting where there are two kinds of binding molecule (i.' and box, of

which box takes an action argument), it is unwieldy to employ the same method used

for dealing with such bindings in the labelled transition rules for the original ir-calculus;

namely the OPEN and CLOSE rules. Our use of refiexion avoids such special case treatment

for sending and receiving bound data and the benefit is especially evident when, as in

our case, the binding molecules are various and complex. We shall therefore refrain from

constraining PlC as suggested but the reader should keep in mind that for any term of

plcr that corresponds to a ir-calculus term (for a precise correspondence see [29]), the

bindings in labels originate solely from restriction molecules.

5.2.3 Labelled transition rules

We shall now describe a set of rules which allow the transition sequents to be derived,

formalising the interpretation we have described above. The rules 1Z. are presented in

figures 5-2, 5-3 and 5-4 and in the relevant rules we assume d i : k -+ L.

Inspection reveals three kinds of rule: constructor rules, which eliminate (from con-

clusion to premise) the outermost constructor of the principal term, permutation rules

which permute either the particles or the bindings of the label; and the sychronisation

rule which is the only rule that introduces r particles in the label. More interestingly, the

constructor rules are responsible for eliciting the contributions that actions may make

towards redex formation, in particular, the partial reactions. Each rule performs two

functions: from the labels and residuals of the subactions (the labelled transitions of the

premises) the rule tells us how to compute the combined label (or, aggregate contribu-

tion) and residual resulting from applying the principal constructor to the subactions.

Consider the rules of figure 5-2; in each case, the action resulting from precomposing

the environment to the term is analysed and the contribution of exported names (free

and bound), partial reactions, and completed ones are included in the label. Note that,

Chapter 5. The Reflexive ir-calculus
	

133

(x) 	()(z)
I-x) 	—*id

(X>
id

id
(z)I- id 	—*id

out1
(z) I- out 	>_+ (.) out

box1 	 (t1)(Z)
(x) H boxt 	-4 (x) boxt

out2
(x)I- out 	-)(z)

box2 x V (ii)
(x) H boxt

(ü)z(i

Figure 5-2: Labelled transition rules

in rules out 2 and box2 , the residual registers an increase in the output and input arities

respectively. In rule out2 , the data leading into the port out is made available at the

export of the residual, while in the rule box2 , the inputs to the term t (contained within

the principal term boxt) are made available at the imports of the residual (t itself).

The rules of figure 5-3 appear somewhat more complex. In the residual of the

conclusion sequent, the links corresponding to the particles in the label must be placed

in the correct positions at the import and export. This is achieved by organising the

dataflow between the residuals of the premise sequents. The considerable extent of

"wiring" necessary gives the appearance of complexity to the rules; however, each is

designed upon the same principle that the particle sequence in the labels must reflect

the positions of the links created by the partial reactions.

Consider, for instance, the composition rule. The subject arity of the labels t i =

(,),(i61) is k .-* l. Hence, the term t'1 has k 1 import and 1 1 export links due to ihe

partial reactions, whereas t has k2 and 12 import and export links respectively. When

combining t' and t'2 to get the residual, we must ensure that the mentioned export links

of t'1 are passed to the topmost position, hence the occurrences of id 11 in the residual

term. Similarly, the import links of t'2 necessitate the occurrence of idk 2 to ensure that

the links are connected to the imports in the residual. The use of abstraction (viz.

abt) in the residual is due to the fact that in obtaining t, the transition of t2 is

Chapter 5. The Reflexive ir-calculus
	 134

{91} fl fn(t2) = 0

{621flfn(ti,fl = 0

iZ : r

2)c2(il2) ,
(2)1- ti

(ei)6i 	
i1 	 (i 1) I- t2

(i 	-i t 2

0

(t'1 (9 idk2) (jt,, 0 abti1 t) (id, 1 0 Pr,12 0 Ld)
(2) 1- ti t2

(2k) I-• ti £1!1 t11 	 () 	

f (iZ)±!4 t'
2 	 2

(2) F- ti 0 t2
(112)d162(2) (t'1 0 t). (Id1 1 0 Pr,12 0 Id)

{IZ1}flfn(tz,12) = 0

{62}flfn(tj,ii) =0

il1 : r

(2)1- {W/y}t
({i)

ab

(w2) F abut -+ t

(y2) Ft 	t, 	 yfn(t)U{r}
ti 	_____

(1) F- tt -* (ziy)(t'. (id, 0 (y) 0 Id))

(yl) I- t
(
-

iZ)(w1)
* 	

yfn(t)U{i,fl

w~ y

t 	 f(y)(t' (Idt 0 (iT)(wii>) (p,p 0 id)) w,y : p

Figure 5-3: Labelled transition rules

Chapter 5. The Reflexive 7r-caIcuJus
	

135

(zFt't'
SYNC 	

(i)i-(
' (zFt 	 m

() F- t
(l112I22)i() ti 	

f, Mi

PERM1

('i) I-
(th1211il2)5)

 t'. (id, ® 0 Pm1,m3 (9 id) 	t11:

(1) Ft 	 t'
PERM2

() 	 (idk, 0 Pm2 .rn, ® d) t' (di 0 Pni,n2 (& id)

Figure 5-4: Labelled transitions rules

derived under the environment (1), some of whose names may be bound by i11 . Finally,

the permutor P1,13 is necessary to place the export links arising from t and t alongside

each other.

12

The rule for tensor can be explained in a similar manner; to obtain the residual, one

must direct the topmost 1 2 links of t'2 to the topmost position under the 1 1 export links of

t. The abstraction rule is straightforward: note the inclusion of w in the export vector

in the label alongside ii.

Arguably the most complex rules are those for reflexion. The complexity is partly

due to the complexity of the operation itself, as defined on the underlying molecular

forms. As in the definition of reflexion on the molecular forms, there are two cases to

consider; one in which a link is being reflected onto itself, and the other when this is not

the case. In order to detect the occurrence of a link being reflected onto itself, some fresh

Chapter 5. The Reflexive ir-calculus 	 136

name y is fed into the input of the topmost import position. If the same name emerges

at the other end in the topmost position of the export, then (by virtue of y being fresh)

it may be concluded that a link from the topmost import position to the topmost export

position is present in t. The molecular form of the residual will consequently include a

restriction particle as expressed in rule t1. Note that any free occurrences of y in the

label (iZ)5(il) are bound by the restriction particle in molecular form of the term t, hence

the introduction of the binding occurrence of y in the label for the conclusion sequent.

In the rule t2, no restriction particle is introduced by reflexion in the molecular form

of () tt. Note that the name w may or may not be bound by iZ. To deal with both

cases, the subterm (iZ) (wil) is employed in the residual, with w fed back into t' through

the abstraction of y.

So far, all the rules discussed eliminate (towards the premises) the principal term

constructor. The rules which we shall now discuss employ identical principal terms (and

environments) in both premise and conclusion sequents. There are two permutation

rules PERM1 and PERM2 which respectively permute the binding vector and the particle

sequence of the label. The latter operation on labels allows complementary particles to

migrate towards the required position to permit synchronisation to be derived. In each

case the links in the residual corresponding to bindings or particles in the label have to

be rerouted to maintain the proper correspondence.

The synchronisation rule identifies the existence of dangling links of equal width

which can be joined as a result of reaction. This is indicated by the presence of a

complementary pair of particles T, x at the rightmost position in the label: T : € -+ m

indicates the presence of links of width m at the export of t' while x : m -+ € indicates

that m links lie at the import. Moreover, since the particles bear the same name x,

the links must have arisen from complementary molecules. All is ready to join them:

this is achieved by reflecting the topmost m links of t'. This event is marked by the

replacement of the rightmost complementary pair by a T particle in the label.

Note that one sychronisation rule suffices to detect all possible redex formations in

any term of PICr. This is a remarkable fact and is due to the work each rule performs

in analysing the contribution to redex formation in each subterm, recording each such

information in the label and preparing the residual for the outcome. It is hard to envisage

how this could have been achieved without the use of reflexion.

Examples The following examples illustrate the use of most of the rules. We will first

Chapter 5. The Reflexive ir-calculus
	

137

present two simple examples and then a more complex one which allows a comparison

between unearthing, on the one hand, a redex by the structural manipulation of terms

(by means of the axioms of AC) and, on the other, eliciting a redex using the rules.

Since the rules introduce rather a lot of dataflow, even for simple cases, we shall cope

with the complexity of residual terms by writing instead terms which are equal. For this

end we shall adopt the notation

(z) F t-1-+t'

to mean that for some t", () F- t —4 t" is derivable and t' = t". This is justified, first,

because in none of the rules do the premisses or side conditions refer to any property

of the residual terms; and second, because we will later show that any two equal terms

derive identical transitions to equal residual terms.

We shall begin by deriving the reaction ((xv) out) 0 box(y)t N {V/y}t using

the rules. For simplicity we shall assume that t : € —* €. A r transition signals

the performance of a single computational step; effectively a single use of the

reaction rule for PlC'. The derivation of the transition F ((xv) . out) ® ((x)

box(y)t)_!4,{t'/y}t is given below:

I- (x) —p id
	

1- (v) 	id,

	

I- (xv)=ide 	 (xv)'- out -- (v) 	I- (x) --- id, 	(x) I- box(y)t -- (y)t

I- (xv) out-!-(v) 	 I- (x) box(y)t-.-+=(y)t
0

I- ((xv) -out) 0 ((x) . box(y)t)-Z=(v) 0 (y)t
SYNC

F- ((xv) . out) 0 ((x) box(y)t)-I.+{vhj}t

To see that the residual term is indeed equal to {V/y}t, consider that, by the last

rule use, the residual term should be equal to t((v) 0 (y)t). By lemma 3.29(1),

this term is equal to {v/y } t.

The following example illustrates the use of the first reflexion rule t1. We expect

the following rule to be derivable (modulo provable equality):

I, (x)(z)
F ii —p ji

A derivation for the transition F v-v is given below:

Chapter 5. The Reflexive it-calculus
	

138

(z)
I- (x) —+ id

Id
(xz)—p

	

(zz)
=id 	 (x) F w 	id 	(xx) I- Id 	id F

ab
(Xxx)

	

(x) F ab(xx) —4 	 (xxx) F w 0 Id--LId
0

(x) F ab(xx) (w 0 id) - =Id
ti

F t (ab(xx) . (, 0 Id))
(x)(
—p

z)

Note that the principal term is indeed z' by , T f(x)(xx) t(ab(xz) . (c(&id)).

It is also clear that the residual is equal to ii, since (vx)(x) = v.(x)(x) = vid = i.'

3. We shall now present an example of a term which requires complex structural

manipulation for the redex to become apparent. The rules we have given cannot

manipulate the principal term structurally—this is indeed their very source of

power, which permits redex formation to be analysed in a systematic way. Thus,

the rules remove the need for structural manipulations by extracting redex con-

tributions from terms in situ. The following example demonstrates this process.

Consider the term t((,.'about)®boxt), where, for simplicity, we take t :

We shall first derive reaction by unearthing a redex using equational manipulation

of the term. Then, for comparison, the same redex will be reduced through a

suitable derivation. We shall assume, for simplicity, that x, y ig fn (t):

f((i.' . about) (9 boxt)

= 	(9 Id) . (about (9 boxt))

= 	f((id (9 ii) . p 	(about 0 boxt)) C
= 	V f(PPIP(about (9 boxt)) P3

= 	v.f(p. (x)((x) 0 out 0 boxt)) 2.16(4)

= 	,. (x)f((x) (9 out s 0 boxt) P5

= 	v 	(x)t((x) 0 out 0 ((y)(y) . boxt)) 5

= 	ii 	(x)((x) 0 out 0 (y)((y) boxt)) 2.16(1)

= 	ii. (x)(y)((x) (9 out, 0 boxt) 2.16(3)

= 	s. (x)(out (9 boxt) 3.29(1)

\ 	z.s(x)t

= 	v.((Dt) ly

= 	(ii(9t).(x)id,,

(z)
I- (x) —p id

A derivation for the transition representing the reduction of the same redex is

given below:

Chapter 5. The Reflexive ir-calculus 	 139

I-
ab

z)
F- i/

(z)(
-+ ,a' x I- about4=id

	

(
° 	 box2 (z)

F -

	

v.about —4 -v 	 yI-boxt-1-t

(y)I-(v.about)Øboxt
(z)

 —
y(

*
z)

V®t
1-..

(z)z
F- t ((,i about) (9 boxt) —4 =t (y)((v (9 t) (z)(yx))

r
I- f ((& - about) ® boxt)

(x)
—*v 0 t 	

SYNC

Note that the residual of the transition derived differs slightly from the residual

of the reaction derived earlier. This is due to our decision to include in the label

all of the control bound names occurring in the molecular form of the principal

term. The restriction operation in the term t((v about) 0 boxt) gives rise to

a restriction particle v(x) in its molecular form, thereby causing the inclusion of

the binding (x) in the label (x)r. Later we shall propose a way to eliminate such

unnecessary bindings.

Discussion At first, the rules for deriving labelled transitions may appear complex.

Is their complexity justified? There are indeed alternatives which may be simpler in

some sense. For instance, we can rewrite the rules for the special case when at most one

particle is present in the label being derived 2 . If we write a rule for deriving transitions

treating separately each label containing a different type of particle or having an empty

body, the rules will be much simplified because in each case, some (in some cases, all)

of the subject arities will be E. Here is one of the rules for deriving transitions with

label (iZ)(for composition; for ease of comparison with our composition rule, we let

	

(tZz)(il2) 	,
(z) Ft1 	_+ t' (Vi) Ft 2 	+ t2 	{tTi}flfn(t2)=O

(ilitZ2)(t72>
t'1 (id,, 0 abil,4) 	{i12} nfn(t i ,i) = 0 (i)Ft1 .t2 	 —

In this case, using our convention for the subject arity of labels in our composition rule,

the arities k1 ,k2 and 12 are all c.

The disadvantage of this approach is that the number of rules required would be

much greater than the ones we have presented. For composition alone, we would need

2 The synchronisation rule would also have to be changed to allow r transitions to be

derived from single-particle labels.

Chapter 5. The Reflexive 7r-calculus 	 140

no fewer that seven rules! Moreover, we lose the ability to derive transitions whose labels

have multiple particles which allows us to derive a non-interleaving semantics, besides

the interleaving semantics that may still be obtained by our system by considering only

transitions with labels having at most one particle.

We suggest that such complexity is not excessive given the presence of actions of in-

put and output antics greater than € and the existence of operations such as abstraction,

composition and refiexion.

5.3 Labelled Transition Relations

We are now ready to define a collection of labelled transition relations on terms in the

familiar manner. One outcome of this is that the standard notion of bisimilarity can be

used to give an operational model to our calculus.

Definition 5.6 For any two terms t, t' and label t, (t, t') are in the relation !?4 just

when the labelled transition (il) H t -- t' is derivable by the rides R.

Notation We shall henceforth write (ii) I- t --* t' to mean that (t, t') are in the relation

14. In other words, it asserts that the sequent (ii) I- t --+ t' is derivable by the rules

1A

The main result in this chapter states that terms equal in AC have identical transitions

to equal residual terms. This immediately provides a well-defined notion of labelled

transition relations on the actions of PICr. In order to show this result we must first

establish a number of properties of the derivations. The first lemma shows that the free

names of both the label and the residual come from the environment and the principal

term.

Lemma 5.7 (Free names) Whenever () H t --* t' then fn () C fn (t) U {z} and

fn(t') Cfn(t)U{}.

Proof Induction on the depth of derivation of () H t -.-+ t'.

The following lemma shows that name substitution in both the environment and the

principal term is carried over to the label and the residual. Moreover, such substitutions

Chapter 5. The Reflexive it-calculus 	 141

(applied to both the environment and the principal term) do not give rise to additional

transitions which cannot be accounted for simply by the substitution on the label and

residual.

Lemma 5.8 (Substitution) Let 5 range over all labels not containing r-particles.

Then, 	 -

() I- t --* t' 	({Y/x}z) - {Y/x}t. 1-{Y/x}t';

({Y1x}2) I- {Y/x}t _--5 t' = 3t",5'. (1) I- t --+ t"

with t' = {Y/x}t" and S = {Y/x}5'.

Proof Induction on the depth of derivation of premise transition.

Remark To see why it was necessary to impose the constraint on the labels in (2)

above, consider the transition:

I- {Y/z}(out ® box,t) 	f(t7) {Y/x}t

For any £, if {Y/x}t = (u)r(iZ) then £ = (ii)r(u). However, no such labelled transition is

possible from out 0 boxt.

We shall now obtain a very useful property of derivations. For any derivable transition,

it is possible to find a derivation with a specific form, yielding the same transition to

an equal residual. The structure of a derivation in this latter form, called the standard

form, allows all the rules which eliminate term constructors to be applied first. There-

fore, for this part of the derivation, each subderivation operates on a strictly smaller

term. This allows proof techniques such as structural induction to be used in this part

of the derivation. Moreover, all applications of the sychronisation rule occur at the

very end of the derivation. This means that the part of the derivation consisting of

constructor elimination rules derives labels which do not contain any r particles. Both

these properties will be exploited in the proofs of the main result of this chapter as well

as that showing the congruence of bisimilarity, in the next chapter.

Definition 5.9 (Standard derivation) Let 1. be the set of rules given in figures 5-2,

5-3 and 5-4. A derivation obtained by the rules 7? is in standard form (for 1Z) just when

it is constructed in the following manner:

Chapter 5. The Reflexive 7r-calculus 	 142

a subderivation consisting of applications of just the constructor elimination rules;

followed by zero or more applications of the permutation rules (PERM1 and PERM2);

and ending with zero or more applications of the SYNC rule.

Lemma 5.10 (Standard derivation) For any derivable labelled transition (z) I- t

t', for some t" = t' there is a derivation of () F- t 1+ t" in standard form.

Proof We show that the permutation rules can be pushed down every rule except SYNC

and that SYNC can be pushed down every rule.

We have now come to the main result of this chapter; that terms which are provably

equal in the theory AC' have identical transitions to provably equal residuals.

Lemma 5.11 (Structural) Whenever t1 = t2 and (z) I- t1 	t'1 then, for some 4,
(

-) F- t2 -+ t'2 with t'j = t;.

Proof First we shall consider those transitions derived using only the constructor

elimination rules i.e. those in which the SYNC and permutation rules do not occur.

For each axiom of AC', tL = tR we consider the derivable transitions of tL and tR

under arbitrary environments (z). We show that whenever there is a derivation of

() F- tL -4 then, for some 4, there also exists one of (z) F- tR -+ t fl with t'L = 4
and vice versa.

By the standard derivation lemma, for any derivable (1) F- t1 _L 	, there is a

subderivation, for some S and t'= t, of (z) F- t 1 --+ t' following which only permutation

and SYNC rules are applied. The application of these rules does not depend on the

structure of t 1 but only on the labels of the transitions. Moreover, the residual of these

rules is obtained by introducing constructions around the residual of the premise which

also depend only on the labels. By the above, for some t, of (-- F- t2 4' with

t''= t. Applying the same sequence of permutation and SYNC rules to this derivation

clearly gives a derivation of () F- t2 -- 4 for some 4 which is equal to 4.
For the detailed proof the reader is referred to Appendix A.. 	 •

i--transitions and reaction We will now formally establish the relationship between

r-transitions and reaction. To do so, it will be useful to establish first the correspondence

Chapter 5. The Reflexive it-calculus 	 143

between partial reactions in the molecular forms and labelled transitions. One outcome

of the structural lemma is that labelled transition relations on the molecular forms can

be obtained through factorisation by structural equality. In other words, one can define

(z)Fa--*a' 	3t,t'.(-t_4t'withM=aandt'=a'

This approach at relating labelled transitions on terms to corresponding ones on the

molecular forms does not give any immediate insight regarding the relationship between

the structure of a molecular form and the labelled transitions it may perform. Nor does

it relate reaction to T-transitions. It simply assures us that it makes sense to talk about

labelled transitions in the world of the molecular forms. In particular, it fails to link our

informal explanation of partial reaction on the molecular forms—and the formal one for

(complete) single-step reaction given in propsition 5.3—to the labelled transitions. We

shall therefore start with a characterisation of simple labelled transitions in terms of the

structure of the underlying molecular forms.

Lemma 5.12 (2) F t--+t' if and only if I- (2) . t--+=t'.

Proof (==) Immediate by applying the composition rule.

(.==) By standard derivation lemma, for some t" there is a subderivation of F (2) .t ---* I"

where 5 is obtained by replacing each r in £ by some pair of complementary particles in

the leftmost position of the label (i.e. a sequence of applications of the SYNC rule suffices

to derive I- (2) . t--*t') and t' = tmt", with m-+m being the antics of the introduced

particles . Then, by inspection of the last constrtzctor rule (i.e. composition rule) in the

standard derivation of F (2) . t--4t', we are assured that (2) F t--+t" is derivable,

where 5' is obtained from 5 by the permutations resulting from the permutation rules in

the derivation of 1- (2) . t --* t". Then by applying the same sequence of PERM and SYNC

rules as in the standard derivation of I- (2) . t--+t' the required transition is derived.•

Proposition 5.13

(2) 1- t 	 (2) . 	= [jZ(i')](ii) and lt'I =

(2) Ft 	 () tj = [(xti)out,a(iZ')](i) and 1t' = [ji(ifl](tiiiZ);

1(2) tll = [(x)boxa(i i),fi(62)](€6) and

It'll =

Chapter 5. The Reflexive ir-calculus 	 144

with a = (a)X(go)(1a) and {i} = {iZ 1 iZ2 } = { it}.

Proof (==) Induction on the depth of derivation of (&) F- t --+ t'.

(==) Let the (unique) inverse map of [—] be (—). Then, by structural lemma and

lemma 5.12, it suffices to give a derivation of F- (t1-4IJt].

For detailed proof the reader is referred to Appendix A.3. 	 U

Lemma 5.14 (z) I- t 	-t' if and only if, for some

[(xtii)out, (y)boxa(iZ1),jZ(t1)}(ii)

It'JJ =

with a = (°) W)(i) and {iZ} = {i i92 }.

Proof (==) By induction on the depth of derivation, we show the stronger result that
(u)zy(l) 	, 	 (u)yz(il) 	, . 	 . 	 -. -. 	 -.

(z) F- t 	>,t or (1) Ft 	—,t implies that, for some a,i,u1 ,u2 ,

= [(xtZ)out, (y)boxa(iT 1),jZ(tZ)](ii)
=

with a = () X(ila)() and {iZ} = {iliZ 2 }.

(==) By structural lemma and lemma 5.12, it suffices to givea derivation of

F

The proof follows similar lines to that for proposition 5.13. 	 •

The following theorem states that a r-transition corresponds to a single computational

step. The legitimacy of our claim that our operational semantics is computationally

meaningful rests mainly upon this fact. While in this thesis no direct characterisa-

tion in terms of reaction is given for the bisimulation semantics we obtain in the

next chapter, the proposition below serves to establish a preliminary formal connec-

tion between reaction-based semantics and labelled transition semantics.

Theorem 5.15

1. Whenever () F t
()r 	

t' then (z) - t \j t' (ii)(il);

Chapter 5. The Reflexive ir-calculus
	

145

1 , 	 -. 	 . 	 ii -. 	 (il)r(il) 2. whenever t \ t then, for any z, there zs some t , u, v such that (2) F t 	—~ t

and C (tT)(il) = (1) . t'.

Proof

(iZ)'z(iJ) 	ii By standard derivation lemma (2) F t 	* =t for some t such that t = tmt

if the subject arity of the particle pair Yx is m-+m. By lemma 5.14 we have, for

some a,ji,ili ,i12 :

= [(zii)out, (x)boxa(it i), fZ(t1)](i)

with a = (f0)X(U0)(0) and {iZ} = { 1 ü2 }. By aiphaconversion, we can assume

w.l.o.g. that {ti} fl {J.} = 0 . Also, if a: rn-+n then : m and i,2Q : n.

Now t' = tm t " . We can write t" as f (i1 a) [XW0), ji(i)] (tiii). Hence:

It' (ii)(i) 	= (tmtn(io)[X(ila),7(2)](2ct)) . (t)(ti)

= (iZ)(i)

= tn®m (jtia)[(ia), 012A(2at)

= 	{o 1/ili o }(iZ)[.(ila), 1I(i 2)](i)

By proposition 5.3 (2) . t \ t' (i)(i7).

By proposition 5.3 we have

11th = (2) [(xti)out (x)boxa(i4), a(62)] (v)

(v)

where a = (ff 0).(ff0)(20). Choose t" = 	 i0}[X(il0),ii(i12)](Z). Writing

as (2) t m(iii4 2')[(ia), 1TZ(tZ2)](20ti1i1) it is easy to show that it'] . (iZ)(i) =

(2) t' and hence that t". (tZ)(ii) = (1) t'. By structural lemma and lemma 5.12,

it suffices to give a derivation of I- 11(2).t1rJt h]. This easily follows by

lemma 5.14 and the SYNC rule.

Remark As remarked previously, and shown in [29], terms of the (asynchronous) ir-

calculus are representable as terms of arity € —* € in PICr. For such terms t,t', the

Chapter 5. The Reflexive it-calculus
	

146

transition (z) - t 	t' collapses, to () F- t 	
)r(

1 which we can write as

t --+ t'. Then, by proposition 5.15, we can write

t__r_*=t, .

which corresponds precisely to our intuition of r-transitions in the traditional treatment

of the it-calculus.

Chapter 6

B isimilarities

A common method of obtaining an operational semantics for a process calculus is

through the notion of bisimilarity on a collection of labelled transition relations. In

the previous chapter we defined such a collection; however, we are not obliged to base

our definition of bisimilarity on the entire collection of labelled transition relations. In

this chapter we shall consider a way of obtaining various bisimilarities by choosing dif-

ferent subsets of the collection of labelled transition relations we have defined.

In order to assist us in showing that the bisiniilarities we shall define are congruences,

a proof technique will be introduced. This technique may have applications beyond

our specific setting and so, it shall be presented separately for some unspecified process

calculus. For this process calculus, we assume, as given, appropriate notions of process

term, context (term with a single hole, or process metavariable) and labelled transition.

Let P, Q,... range over process terms, C range over contexts and a over labels of labelled

transition relations -- over process terms. As usual we shall write P -- Q for (F, Q) E

--* and C[P] to denote the instantiation of the metavariable in C by P. The definitions

of bisimulation and bisimilarity are standard:

Definition 6.1 A bisimulation S is a symmetric binary relation on process terms such

that, for any (P, Q) E 8, whenever P --* F', then for some Q', Q --+ Q' with (P', Q') E

S.

Bisimilarity - is the largest bisimulation relation on process terms. Say that P and Q

are bisimilar if(P,Q) € -.

It is usually desirable to determine whether ". is a congruence over the process terms, in

other words, if process terms P and Q are bisiniilar, then so must be C[P] and C[Q], for

147

Chapter 6. Bisimilarities 	 148

arbitrary P and Q. This may be done by showing that for each process term constructor

C we have, for any R, C(P, R) - C(Q, R). The theory of bisimulation asserts that in

order to show that P and Q are bisimilar it suffices to give a bisimulation S such that

(P, Q) E S. Hence, the proof of congruence may be accomplished by constructing a

bisimulation relation containing (C(P, 1), C(Q, 1)) for each C. This technique is only

advantageous if showing S to be a bisimulation is easier than a more direct proof of

the bisimilarity of C(P, 1) and C(Q, 1). However, for certain process calculi it may be

difficult to find simple bisimulations which are easily shown to be such. This difficulty

may arise, for instance, from a disparity between the (syntactic) structure of the principal

and residual terms in the rules for deriving transitions. As an example, consider the

composition constructor in PIC we would like to determine whether whenever t1 t2 ,

we also have t 1 . t . t. Assume that () F t 1 . t si is derived by the composition
,

rule from premises (2 	
(iZ)(ø)

) F tj 	-+ t1 and (ii) F 	()ö(g) t 	— t. Then, for appropriate k•,

1, and r, we have i (t 0 idk 2) . (id: 1 0 abzt') . (id,, 0 Pr,:, 0 id). Clearly, the transition

can be matched by t 2 t to give 32 = (t 0 idk,) . (id1 , 0 abet') (id1 , 0 p,.j, 0 id)

for some t'2 where t'1 t. Hence, in specifying the putative bisimulation relation

containing (t 1 . t,t2 t) we must ensure that (81,82) is also present. We can ensure this

by specifying closure under abstraction, tensor and composition—but, of course, that

involves including almost everything! Alternatively, we note that the terms s and 82

differ only in the subterms t and t which are in fact bisimilar. Our proof technique

takes advantage of this observation.

Lemma 6.2 Let be some bisimulation equivalence over process terms. Assume that

(*) for any context C and label a, whenever P1 P2 and C[P1] -- Q, then for some

Q2, C[P2] -- Q2 and there exist some C', P, P such that F1' - P and Q,, C'[P]

(fori e {1,2}).

Then ' is a congruence.

Proof Consider S = {(Q1,Q2) I 2C,P1 ,P2 . P1
'

P,Qj C[P1],Q2 C[P2]}. First we

shall show that S =

(—.
ç 5) Consider arbitrary P1 ,P2 such that P1 	P2 . Then, taking C 	[..], it is

immediately clear that (P1 ,P2) ES.

(S C) It suffices to show that S is a bisimulation, since if this is the case then must

include S by definition. Consider an arbitrary (Qi, Q2) E S. Hence, by definition, there

Chapter 6. Bisimilarities 	 149

exist C, P1 , P2 such that P1 P2 , Qi C[P1] and Q2 C[P2]. Assume Qi 	Q. Now,

since is a bisimulation, C[P1] -- Q' for some Q' 	Q. Also, by assumption (*), we

have C[P2] --* Q'2' and there exist some C', P, P such that P 	P2', Q'1' C'[P] and

Q' 	C'[P21 J. Now, by Q2 C[P2], we get, for some Q, Q -- Q'2 with Q' 	Q. By

transitivity of we have Q 	C[Pfl and Q'2 C[P]. Hence, by definition, (Q,Q) eS.

This concludes the demonstration that S is a bisimulation.

We must now show that S is a congruence, i.e. it is closed under arbitrary contexts.

Assume (F, Q) in S. Then P - Q since S = -. By reflexivity of we have (C[P], C[Q})

in 5, hence C[P] C[Q].

Remarks

The above technique is useless unless the demonstration of the property (*) is

tractable for the process calculus in question. In the case of p icr we have been

able to prove this property by an induction on the depth of derivation of the

labelled transitions. Whether this approach will serve just as well in other process

calculi has not been explored.

The weakest choice of is bisimilarity itself and the strongest is 	(syntactic

equality). Often, as in the case of PICr, there will be some structural equality

which is stronger than but weaker than syntactic equality. This is the one that

we shall use for the treatment of bisimilarity in PlC.

Outline In Section 6.1 we will examine the bisimilarity obtained by the obvious choice

of taking the entire collection of labelled transition relations defined in the previous

chapter. This will yield a bisimilarity which is very strong; indeed too strong to give

an interesting model. In the next section we will set the scene for obtaining weaker

semantics by parameterising bisimilarity by sets of labels; effectively, by sets of labelled

transition relations. Several general properties of such parameterised bisimilarities can

be obtained. In particular we shall adapt the proof technique described above to the

setting of PICr. In Section 6.3 we argue that while this technique provides a way of

obtaining weaker bisimilarities, it still does not allow (without identifying too much) the

identification of certain actions which we expect to be behaviourally indistinguishable. A

possible solution is outlined, involving the addition of an extra rule for deriving sequents.

In the following section we outline further applications of our technique of specifying

Chapter 6. Bisimilarities 	 150

bisimilarities by sets of labels to obtain diverse operational models of PICr. The final

section consists of suggestions for further work.

6.1 Strong Bisimilarity

We shall now define the obvious form of bisimilarity based on the entire collection of

labelled transition relations derivable by the rules R.

Definition 6.3 (Strong bisimulation) A strong bisimulation is an indexed set of re-

lations S = {Sm , n I rn,n E M}, where each Sm,n is a symmetric binary relation on terms

of aritym-4n and for anySES,

(*) given any t 1 St 2 , environment Y and a label t, whenever (z) F- t 1 _L+ 4, then for

some 4, (F-f2 --+ 4 with t'1 S't'2 where S' e S.

We shall write t 1 S t2 if t 1 S t2 for some S E S. Strong bisimilarity - is the strong

bisimulation where each relation is the largest symmetric binary relation satisfying the

property (*).

The lemma below follows immediately from lemma 5.11.

Lemma 6.4 Structural equality is a strong bisimulation.

As the following proposition states, strong bisimilarity andare not identical.

Proposition 6.5 Strong bisimilarity strictly includes structural equality 	Cr.o

Proof By lemma 6.4 it suffices to show that there is a pair of strongly bisimilar terms

which are not provably equal. The following pair has such a property:

® box(v. (x)(xx)))

t(x)box (xx)

To show that they are not provably equal it suffices to consider their molecular forms:

the molecular form for the first term has a restriction particle which is absent in that of

the second.

Chapter 6. Bisimilarities 	 151

Discussion It is rather difficult to find pairs of terms which are strongly bisimilar yet

not provably equal in ACr. For instance, even the terms ii .' and id, are distinguished

despite being provable in AC". Indeed, we conjecture that, in the version of PlC' with

the constraint that boxa is only well formed when a : m -4 e, bisimilarity coincides

with structural equality. This may suggest that all the machinery we have introduced

is unjustified. However, as we shall see, by limiting the kind of labelled transitions that

may be taken into account in comparing actions in terms of their behaviour we shall

effectively obtain weaker equivalences.

The labels give a kind of syntactic description of the "dynamic interface" of an

action. Unfortunately, some labels do not really reflect any potential for interaction.

Consider, for instance the terms (vx)((xv) out) and Id,. Neither of these terms can

ever interact with any other action either through the provision of names or through the

contribution of molecules for reaction. Hence we would like a semantics which identifies

them. The term (vx)((xv) out) can have the labelled transition

I- (vx)((xv) out)
(z)z();,()

while the only one for id, is I- id, --,? id,. Clearly, these two are not strongly bisimilar.

Inspection of the label (x)() reveals that there is no context which will furnish

the required particle x, since the name x is rendered private by the binding. Nor is the

private name exported and hence it can never be present in an external action. This

suggests that such labels should be disregarded in the definition of bisimilarity.

6.2 Parameterising Bisimilarity

We shall now examine a way by which weaker forms of bisimilarity may be obtained,

motivated by the reasons given above. The method we shall adopt involves restricting

consideration to a subclass of the labelled transition relations in determining whether

two actions (or terms) are bisimilar. A similar approach was taken by Mimer in [21]

through the notion of incident sets. In [21], the choice of the subset of labels (and

consequently, labelled transition relations)—the incidents—was not arbitrary but was

subject to certain conditions. Here, we shalt impose no such conditions a priori; although,

in our examples, the choice of labels will in each case be defined through some structural

property of the labels.

Chapter 6. Bisimilarities 	
152

Definition 6.6 (Strong Abisimulati0fl) Let A be a set of labels in L. A strong A-

bisimulation is an indexed set of relations S = {Sm,n I m,n € M}, where each Sm,n is a

symmetric binary, relation on terms of arity m-+n and for any S € S,

(*) given any t 1 St 2 and a label £ € A, whenever (z) F t 1 ---* t', then for some t,

() F t2 -- 42 with 45' 4 where 5' e S.

We shall write t 1St 2 if t 1 St 2 for some S E S. Strong AbisimilaritY ' is the strong

bisimulation where each relation is the largest symmetric binary relation satisfying the

property (*). 	 U

The following two simple lemmas hold for strong A bisimulation, given any A 9,C.

Lemma 6.7 For any A' g A, if S is a strong A-bisimulation, then it is also a strong

A' _bisimulatiofl.

Proof Assume a 1 Sa2 and consider the transition () F a1 --- a'1 for an arbitrary £ E A'.

Now, since £ € A and S is a strong Abisimulati0i1, we have (E) F a2 --* a for some a'2

such that a'1 Sa'2 . Hence result.

This immediately gives the following result:

Corollary 6.8 For any A, structural equality Acr is a strong A-bisimulation.

Proof Immediate, by lemma 5.11 and lemma 6.7.
	 U

Definition 6.9 (Contexts) A context in PICr is a term with a single hole (metavari-

able) [.], generated as follows:

C ::= [.] I tøC I C®t It 	tI8bzCI tCI boxC

We write C[t] to mean the replacement of the hole occurring in C by t. U

Lemma 6.1.0 Assume that for any context C and label £ E A, whenever t 1 .' t2 and

(z) F - C[t1] -* s 1 , then for some 52 , (z) F C[t2] --* 52 and, there exist some C',t'1 ,t'2

where 4 4 and s = C'[4] (for i € {1,2}). Then 	is a congruence.

Chapter 6. Bisimilarities 	 153

Proof The proof involves a straightforward application of the technique introduced at

the start of this chapter. By lemma 6.2, it suffices to show that equality = is a strong

A-bisimulation. Hence, by corollary 6.8 the result follows.

We will now use the above lemma to show that strong bisiinilarity is a congruence:

Lemma 6.11 Let t 1 	t2 . Then, for any context C and label £, whenever (2) I-
I 	I

C[t1] -+£ s, then for some 82, (2) F- C[t2 1 -4£ S2 and, there exist some C I ,t 1 ,t2 where

t'1 i'-' t' and s = C'[t] (for i E 11, 2)).

Proof Whenever C [] the result follows by definition of bisimulation. For C 0 []
the result is obtained by induction on the depth of derivation of (2) 1- C[t1] 	s 1 . •

Theorem 6.12 Strong bisimilarity is a congrlLence on the terms of PICr.

Proof Immediate by lemma 6.10 and lemma 6.11. 	 .

6.3 Discarding Redundant Bindings

While the technique described in the previous section allows a great variety of bisimilar-

ities to be obtained, the fineness with which the strength (or weakness) of the resulting

model can be controlled is limited by the available labelled tiansition relations. In

other words, there may be terms which cannot be identified by any model thus obtained

without resulting in other identifications, possibly undesirable, being made. In this sec-

tion we shall give an example of such a circumstance together with a simple solution

for changing the set of available labelled transitions which, in addition to the technique

described in Section 6.2, allows us to obtain an interesting model.

Consider the transitions in figure 6-1; the transitions are exhaustive for the terms

shown. We would not like to distinguish between any of the terms in each pair on

behavioural grounds; yet, it is clear that they do not derive the same transitions. The

difference between the labels in each case is also easy to discern: for one of the terms

the label has an extra binding occurrence and significantly, this extra name does not

bind anything in the label.

Chapter 6. Bisimilarities 	 154

I- id-4Lid.

F- (vx)box(x)-ii (y V {x,u})
(uu)

F- boxv
)(

—*ii 	(yu)

F (VX)bOXy(X)ZU>rri1 (y {x,u})
(u)y(u)

Fboxz'—*i' 	(yu)

F- (box(x)) • w - =z' 	(y 0 u)

F-

)y(
) F- (box(x)) •

(u
- v (y u)

F- boxyid>Jd

Figure 6-1: Distinctions caused by redundant bindings

Chapter 6. Bisimilarities 	 155

Prompted by the technique described in section 2, we could try to obtain an appro-

priate model via the bisimilarity induced by just those labels in which such redundant

bindings do not occur. However, on its own this measure will not result in a weaker

bisimilarity. This is because the vector of binding occurrences in labels is predetermined

(up to permutation) by the structure of the molecular form of the term undergoing the

transition (see proposition 5.13). Inspection of these propositions reveals that, for any

given term, in each of its transitions the vector of bindings of the label is some per-

mutation of the binding occurrences originating from the controls (including restriction

particles) present in its molecular form.

This means that, for any non-empty set of labels A, the resulting A-bisimilarity

will distinguish some terms, such as those of figure 6-1, which are distinguishable (by

bisimilarity) solely upon the difference in the mentioned binding vectors. To see why,

take any term t with a labelled transition whose label is in A. Then t 0 (ii' c) will be

distinguished from t (although behaviourally we do not expect the distinction) since for

any labelled transition of t 0 (ii .), the label will differ from that for t in the binding

vector.

In order to rectify this, we shall introduce a new rule DISCARD which allows redundant

binding occurrences in labels to be discarded. This will break the uniqueness of binding

vectors for each given term and will in fact allow us to obtain the required form of

bisimilarity. The DISCARD rule simply takes a redundant binding occurrence from the

label and places it at the export of the residual. This is accomplished by deleting

the occurrence and postcomposing with the residual a discard operation () in the

appropriate place. We will show that when this rule is added to the other rules 7?.

we will still be able to obtain the relevant counterpart of the structural lemma. Unless

otherwise stated we shall henceforth use the notation () I- t --+ t' to denote a transition

which is derivable by the rules 7?. together with DISCARD. As before, we shall assume that

: k -+1 in the rule below:

(i) I- t 	''- t'
DISCARD

(.) Ft (ilWO t'. (id,OwØid) 0

n(6)u{i1}

Definition 6.13 (Standard derivation) Lt 7ZD be the set 7?. together with the DISCARD

rule. Then a derivation is in standard form for 7ZD just when it consists in a subde-

rivation which is in standard form for 7?. followed by zero or more applications of the

DISCARD rule.

Chapter 6. Bisimilarities 	 156

Lemma 6.14 (Standard derivation) For any labelled transition (z) F- t --+ t' deriv-

able by the rules 1ZD, there exists some t" such that t" = t' for which there is a derivation

of
()

I- t t" in standard form (for 7ZD).

Proof We show that the DISCARD rule can be pushed down every rule. Hence there is

a derivation consisting of a subderivation not containing an applications of the DISCARD

rule followed by some number of applications of the DISCARD rule. By lemma 5.10 this

subderivation can be replaced by a subderivation which is in standard form for R. •

Lemma 6.15 (Structural) Whenever t 1 = t2 and (z) I- t1 -- t'1 then, for some t,

(z) F- t2 _L 42 with t'1 = t.

Proof By the standard derivation lemma, for any derivable (z) I- t1 _! 	, there is

a sub derivation, for some 5 and t' = t'1 , of () F- ti 	t following which only the

DISCARD rule is applied. The application of this rule does not depend on the structure

of t 1 but only on the labels of the transitions. Moreover, the residual is obtained by

introducing contructions around the residual of the premise which depend only on the

label of the premise transition. By lemma 5.11, for some t, () I- t2 -- t' with t' = t.

Applying the same sequence of DISCARD rules to this derivation clearly gives a derivation

of () F- t2 -* tI 2 for some t
I
2 which is equal to tI1 . •

Definition 6.16 A label (tZ)(ii) has redundant bindings if there is some x E {iZ} which

occurs neither in nor in V.

We shall now consider bisimulation on transitions whose labels do not contain redundant

bindings. We shall henceforth let 4 stand for the set of labels with no redundant

bindings, i.e. those labels £ = (iZ)(iY) where {i} 9 fn () U {ii}.

Lemma 6.17 Structural equality ocr is a strong 4-bisimulation.

Proof Immediate, by lemma 6.15.
	 n

We shall now show that strong 4-bisimilarity is a congruence. We note that the proof

of lemma 6.10 depends on the set of rules used for deriving the sequents only insofar

as structural congruence is a bisimilarity. Since adding the DISCARD rule preserves this

property of structural congruence (for arbitrary sets of labels A) we can use the same

technique.

Chapter 6. Bisimilarities 	 157

However, we cannot use a straightforward induction on the depth of derivation of

(z) F- C[ti] 1---* .s l to get the required result as stated in corollary 6.20, since in the case

of the DISCARD rule, we would not be able to apply the inductive hypothesis to its premise

(in which the label has at least one redundant binding and therefore is not in 4).

Notation Let £ = (iZ)&(iY). Then we shall write £ to denote the label obtained by

discarding all binding occurrences in £ which do not bind any name (in £). Hence,

£= (iZ')(ii) where,

i'=i4tZ2 ... iZ1;

{'}Cfn(c)U{ii};

{w1 ,...,w}fl(fn()U{i})=O

In other words the binding occurrences wi are redundant in £ while the binding occur-

rences ir are not.

Lemma 6.18 Whenever () F- t --* t', then

()
F- t-4=t' (Id1 ®

where £ = (iI)(il) and 1= (iflc(ii).

Proof Let iZ = 61 w 1 	 and ii' = u1 iZ2 .. . t1fl+1, i.e. w 1 	w, redundant. We

proceed by induction on n.

Base Case: n = 0 Immediate.

Inductive Step: n = j + 1 Assume (1) F- t --* t'. Then, by applying PERM1 to pull

the name w31 in the leftmost position, we get (E) I- t --+ t' . (Id, 0 Pm,p (& Id)

where £' = (w +1iZ1w1 ... wjij+ltij+2)6(i3) with u1 w 1 w.iZ +i m and wj i : p.

Applying the DISCARD rule to remove the redundant binding occurrence of w 42

we are left with the transition () I- t --+ t'. (Id, 0 Pm,p 0 id) (Id, 0 (i) (& id),

Chapter 6. Bisimilarities 	 158

with £" = (61w1 wu1+1u1+2)ci). We can now apply the inductive hypothesis,

getting,

(zl F- t —-* t"

where t" = t' - (Id1 (9 Pm,p old) - (Id 1 Ow(D id) (id, 0 (iWi . . . w1z71+1ti1+2)(1)).

Butt" =1 and

(IdiOPm,p(&Id)•(Idi(&W®Id) = id i O(iii wi .

Hence we have t" 	. (Id1 0 (iiw1 	wJi1J+1wl+1iZJ+2)(ti)).

Lemma 6.19 Let t1 t2 . Then, for any context C, whenever (i) F- C[t1] --+ s, then
. 	 b for some 82, (z) F- C[t2] —£* 2 and, there exzst some C I ,tI1 ,t I 2 where tl 1 .-tI2, C I [tI1 } =

• (id 1 0 ()(it)) and C'[t'2] = s2 ; where £ = (iZ)á(iJ) and 1= (iflc(ii).

Proof Assume C
[].

Let (z) F- t 1 	s. Then, by lemma 6.18, () F- t 1 _L3s1 -

(Idi 0 (iZ)(u')). By definition of 4-bisimilarity, (z) F- t 1 	S2 such that, by lemma 6.17

the transitivity of bisimilarity Si (id1 0 (tZ)(u ')) 	s,.

Assume C t= []. We proceed by induction on the depth of derivation of () F- C[t1]

Corollary 6.20 Let t 1 t2 . Then, for any context C and label £ E 4, whenever () I-

C[t] --* s, then for some s 2 , (F- C[t2 } —4 82 and, there exist some C, 4,4 where

4 and s = C[tJ (for i E {1, 2}). t'1

Proof By lemma 6.19, since for any label £ with no redundant bindings, i= £.

Theorem 6.21 Strong bisimilarity 	is a congnience on the terms of PlC.

Proof The proof follows that of lemma 6.10, which cannot be applied here as it was

shown in the context of the rules 1?. and not 1D•

Consider S = {(Si,S2) 1 2C,t 1 ,t2 . ti Zb t21 s 1 = C[ti],s2 = C[t2 }}. Clearly, S contains
4 (choosing C []) and is closed under contexts. Therefore, if we show that S is a

ACb 4-bisimulation then we are done since that would imply that S =

Consider an arbitrary (5 1 ,s2) E S. Assume () F- Sj --+ s, where £ € A. Since

(s i , 82) € S there exist C, t1 , t2 such that t1 t2 , 51 = C[ti] and 82 = C[t2]. By the

Chapter 6. Bisimilarities 	 159

structural lemma (z) I- C[ti]!*=s and by corollary 6.20, we have () I- C[t2] -- s'2

and, for some, C', t, t such that t 	4, s 	C'[t'1 } and s = C'[t'2}. Hence, since

82 = C[t2], we have () I- 82-=S' with (s',$) ES. 	 U

Examples The following are some examples of terms which are not provably equal in

AC but are bisimilar.

v - id 4 id
4 (boxa) . 	box(a

(vy)boxa 	box(z'y)a (x j4 i)

Discussion We may consider adding the axiom Po (which holds in the model obtained

above), to the equations on terms defining structural equality, giving us PIC: the

reflexive ir-calculus with garbage collection. In this setting, the structural lemma (for

=ACn) fails. This is illustrated by the equation v w = id, provable in AC", where the

transition I- ii . &, (L)_41 ii cannot be matched by id,. However, such transitions should

hardly matter since we have decided to ignore them in our semantics. Instead, it should

be possible to show the weaker result that is a strong £b-bisimulation.

6.4 Other models

There are several interesting semantics which can be defined in terms of sets of labels.

While it remains to be checked whether the bisimilarities concerned are congruences, the

following examples illustrate some computationally meaningful choices for the mentioned

sets.

Non-interleaving semantics At the end of section 6.1, it was suggested that for any

labelled transition () I- t -- t', no context applied to t can provide complement-

ary particles to those particles whose names are bound in £ but not exported. Such

labels were at least partially responsible for the distinction between terms which

we expect to be identified in an operational model. We can develop a semantics

based on those transition relations whose labels do not contain such particles.

Definition 6.22 (Active labels) A label (iZ)c(ii) is said to be active if,

	

Chapter 6. Bisimilarities 	
160

it has no redundant bindings; and,

for any particle in d whenever its subject name is bound (occurs in 7), then

the same name is also exported (occurs in ii).

The set of active labels is denoted by La .

Examples Below are some pairs of L 0-bisimilar terms:

id,

(i'x)(out)

(vx)(boxa)

(iiy)boxa 	box(vy)a (x y)

Interleaving semantics The bisimilarities described so far have the common feature

that they all give a non-interleaving semantics. We shall weaken the semantics

further by basing bisimilarity on the set of just those active labels at most one

particle in their bodies. This will give a weaker (strong) bisimilarity that . We

let L = {iELa I £ = ()(),I'I < 11.

Examples The following pairs of terms are L-bisimilar:

	

box(boxjd) 	boxzid,Øboxjd,

(vxy)(out (9 box(out, ® box,id,))

(vxy)(out 0 boxid, 0 out s, (9 boxid,)

Restriction skeleta revisited We conjecture that vSKEL can be obtained by a suit-
able choice of labels. Let L, = {(ii)(v) I il C €i}. Note that C. is a subset of all

the sets of labels considered so far, hence resulting in the weakest model. Indeed,

factoring the terms of P IC' by strong L 8-bisimilarity should give (a reflexive
control structure isomorphic to) L'SKEL.

Chapter 6. Bisimilarities 	 161

6.5 The Asynchronous 7r-calculus

Throughout this thesis we have informally referred to a correspondence between PlCT and

the ir-calculus; therefore, a natural task would be to make this correspondence precise.

This may be achieved by, first, defining a translation from the terms of the asynchron-

ous ir-calculus to those of PlC' followed by an comparison between the manifestations

of labelled transition relations and strong bisimulation in both calculi. We shall now

briefly illustrate what this involves, confining ourselves to the monadic version mainly

for simplicity of exposition.

The terms of the asynchonous ir-calculus P essentially correspond to the fragment

of the full ir-calculus, or more closely, to the v-calculus of Honda and Yoshida in [11,10].

P ::= 0 I (v) I x(y).P I (vx)P I PQ

To obtain processes, the terms of P are factored by a structural congruence induced

by the following equations:

PjO P 	 (vx)(vy)P (vy)(vx)P

PIQ QIP 	 (vx)(PIQ) PI(z'x)Q 	(x 95 fn (P))

PI(QIR) (PIQ)IR 	 (vx)P (vy)({Y/x}P) 	(y §t fn (F))

z(x).P z(y).({Y/x}P) 	(y V fn (P))

where fn (P) denotes the free names of F, with the occurrence of any name x in P being

free unless bound in some subterm Q of P, by a (vx)Q or z(x).Q construct, whose scope

extends throughout the subterm Q.

The dynamics are given in terms of reduction -* the smallest relation over P closed

under and the following rules:

COM : (z)Ix(y).P _* {Z/y}P

P-4P' 	 P__*Pl
PAR 	 RES

PIQ -4 P'IQ 	 (vx)P -+ (vx)P'

Chapter 6. Bisimilarities 	 162

In [29], Mimer has shown the correspondence between the processes in P and PlC. The

translation to P1 cr is identical:

Ô del'
= id,
del' = 	(v) outs

x(y).P del'
= 	box(y)

(vx)P del' 	-.

= 	(zix)P

The terms of 7' translate to pr terms of arity e-+€. Then, from [29], we have

PQif and only ifP=Q.

IfP -QthenP\.

If P\tthenfor some P',P-P' and P'=t.

Labelled Transitions In figure 6-3 we give the derivation rules for transitions terms in

P. The rules allow the derivation of early transitions allowing a precise correspondence

between labelled transitions in P and PlC to be stated.

The relationship expected between T transitions in pr and reductions in P is fairly

easy to establish. It may be obtained through the intermediate relationship of both

relations with single-step reaction. Recall that theorem 5.15 states that, for actions

P,p' of arities c -+e:

This, together with above relationship between reaction and labelled transition relations

gives:

P -~ Q

However, we still do not have any information about the relationship between labelled

transition relations; and more importantly, between the models of each given by bisiinili-

arity. In particular we expect the following to hold:

p.J_p'

Chapter 6. Bisimilarities 	 163

OUT 	-

-

	

x(w) 	0
IN

 x(y).P !f {W/y } P

pf 4 p'
RES 	 x n(a)

(vx)P -- (zix)P'
OPEN 	 wfn(P)

(vy)P -1 {W/y } P'

P--3.Pl

PIQ-.*P'IQ
bn(a)flfn(Q)=ø

Q-4Q'
PAR-R 	 bn(a) fl fn(P) - 0

PIQ - PIQ'

P4P' Q4Q'
	

P4P' Q - Q'
CLOSE-i
	

CLOSE-2

PQ -- (ziv)(P'IQ')
	

PIQ -- (vv)(P'JQ')

p!4p' Q-4'
	

P3P' Q4Q'
COM-i
	

COM-2

PIQ —'-* P'IQ'
	

PIQ 	P'IQ'

Figure 6-2: Transition rules for P

Chapter 6. Bisimilarities 	 164

A question of greater significance is whether we can capture the model obtained from

strong bisimilarity (as given in definition 6.1)

P Q if and only if P Q.

by any of the bisimilarities suggested in chapter 6. £1 -bisimilarity, which gives an inter-

leaving semantics, seems a likely candidate.

6.5.1 The Asynchronous ir-calculus

In the preceding chapters we have informally referred to a correspondence between PlC'

and the ir-calculus; therefore, a natural task would be to make this correspondence

precise. This may be achieved by, first, defining a translation from the terms of the

asynchronous ir-calculus to those of pr followed by an comparison between the maul-

festations of labelled transition relations and strong bisimulation in both calculi. We

shall now briefly illustrate what this involves, confining ourselves to the monadic version

mainly for simplicity of exposition.

The terms of the asynchonous ir-calculus 'P essentially correspond to the fragment

of the full ir-calculus, or more closely, to the v-calculus of Honda and Yoshida in [11,10].

P ::= 0 I (v) I x(y).P I (vx)P I PQ

To obtain processes, the terms of P are factored by a structural congruence induced

by the following equations:

PlO P 	 (vx)(vy)P (vy)(vx)P

PIQ QIP 	 (vx)(PIQ) Pl(vx)Q 	(x V fn(P))

Pl(QIR) (PIQ)IR 	 (vx)P (vy)({Y/x}P) 	(y V fn (P))

z(x).P z(y).({V/x}P) 	(y V fn (P))

where fn (P) denotes the free names of F, with the occurrence of any name x in P being

free unless bound in some subterm Q of P, by a (vx)Q or z(x).Q construct, whose scope

extends throughout the subterm Q.

Chapter 6. Bisimilarities 	 165

The dynamics are given in terms of reduction —* the smallest relation over P closed

under and the following rules:

COM : (z)Ix(y).P _* {Z/y}P

P-+P' 	 P-4P
PAR 	 RES

PIQ - P'IQ 	 (vx)P — (vx)P'

In [29], Mimer has shown the correspondence between the processes in P and PlC. The

translation to p,r is identical:

O de =f 	ide
def = 	(v)•out

x(y).P def = 	box(y)A

(vx)P def = 	(zx)

The terms of P translate to ic terms of arity €-c. Then, from [29], we have

PQifandonlyifP=Q.

IfP - QthenP\Q.

IfP'\tthenforsomeP',P-*P'andP'=t.

Labelled Transitions In figure 6-3 we give the derivation rules for transitions terms in

P. The rules allow the derivation of early transitions allowing a precise correspondence

between labelled transitions in P and pr to be stated.

The relationship expected between r transitions in pr and reductions in P is fairly

easy to establish. It may be obtained through the intermediate relationship of both

relations with single-step reaction. Recall that theorem 5.15 states that, for actions

P, P of arities e —+ e:

P --*P,
RES 	 zn(a)

(vx)P -- (six)P'

p!4p'
OPEN 	 wUn(P)

(vy)P 	{W/y } P'

Chapter 6. Bisimilarities
	 166

OUT
	 IN

 x(y).P14{w}P

P --+P,
PAR-L 	 bn(a) fl fn(Q) =0

PIQ -4 P'IQ

Q-4Q'
PAR-ft 	 bn(a) fl fn(P) = 0

PIQ -4 PIQ'

ayj 	Q-4Q'
CLOSE-i

PIQ -13 (t'v)(P'IQ')

• 	P4P' QQ'
CLOSE-2

PIQ -'3 (vv)(P'IQ')

COM-i

p ! 4p' Q-4Q'

PIQ 14 P'IQ'

p4p' Q4Q'
COM-2

PIQ -'3 P'IQ'

Figure 6-3: Transition rules for P

Chapter 6. Bisimilarities 	 167

This, together with above relationship between reaction and labelled transition relations

gives:

P —*Q

However, we still do not have any information about the relationship between labelled

transition relations; and more importantly, between the models of each given by bisimili-

arity. In particular we expect the following to hold:

P -4 P' := I- P!*P1

A question of greater significance is whether we can capture the model obtained from

strong bisimilarity (as given in definition 6.1)

i P - Q if and only f P Q.

by any of the bisimilarities suggested in the previous section. In particular, C-bisimilarity,

which gives an interleaving semantics, seems a likely candidate.

Chapter 7

Conclusions and Further Work

In this chapter we present some current work on control structures and outline possible

directions for further work. The chapter is concluded by a summary of what has been

achieved in this thesis.

7.1 Current Research in Control Structures

In all the categories of control structures presented in this thesis, the names X and

antics M have been assumed fixed. Milner [27] and Power [35] have considered how

this condition can be relaxed while still obtaining the initiality results for action calculi.

Both approaches result in attributing greater structure to naming, than present in our

definitions where a set of names X suffices. Mimer observes that it is easy to refine the

structure of names from a set X to the free monoid (X, (9, 1) generated by X; with data

and abstraction extended as follows:

def
= ab 1 • . ab,,a 	(r > 0)
def (x 1 (9 	0 Xr) = (x 1) 0 	0 (x r)a (r > 0)

Mimer's account then considers which class of monoids—of which (X, (9, 1) is a member-

contains sufficient structure to allow a generalisation of control structure morphism

which removes the requirement that such morphisms act as the identity on the names.

This extraction of the essential structure from the free monoid, brings i.is closer to an

abstract account of naming. Power [35] shows how such naming monoids can arise from

the arity monoid in a natural fashion.

Chapter 7. Conclusions and Further Work 	 169

Another approach in which names are rendered implicit is taken by Gardner [6] who

introduced closed action calculi—essentially a name-free variant of action calculi—and

established the precise correspondence with the action calculi (including the reflexive

variant) referred to in this thesis. This effort aims to demonstrate that while names

play a useful presentational role they are not essential.

An abstract treatment in which names are implicit—but naming explicit—in the

spirit of categorical logic [15] is provided by Power and Hermida in their fibrational con-

trol structures [8]. A generalisation of this account is developed by Power [36]; providing

connections between control structures and his work with Robinson on a general se-

mantic theory of "notions of computation" [37].

Throughout this thesis we have relied on the idea of dataflow to give an intuitive

interpretation of the operations encountered. Indeed, this visualisation of the structure

of actions as graphs where links are dataflow channels and nodes are molecules has been

of great assistance in developing equational proofs, and also in formulating the labelled

transition rules for the reflexive ir-calculus. In a recent paper [29], Milner introduced

action graphs which formalise this intuition. A rigorous treatment of these graphs is to

be presented in Ole Jensen's forthcoming PhD thesis [12].

The intuition of actions as graphs informs not just our enquiry into the structure of

actions but also that concerning their dynamics: as a result of computation the static

structure of an action (the controls and datáflow links) may evolve. The transformation

of the action graph resulting from computation may be used to compare the dynamic

characteristics of diverse action calculi. A classifier IMGRAPH is being developed by

Leifer [17] based on this idea: only for those action calculi in which mobility is not

expressible does there exist a homomorphism of control structures to IMGRAPH.

7.2 Further Work

As the work on action structures is relatively recent there is an abundance of virgin

territory to explore. Taking the contents of this thesis as a starting point various dir-

ections suggest themselves. For instance, the development of classifiers, as examplified

by skeleta in chapter 4, could prove a fruitful way of studying the kind of dynamic be-
-

haviour expressible by various models. It may also be possible to give a generic form

Chapter 7. ConclUsions and Further Work 	
170

of o
perational semantics in terms of skeleta, for instance, through relations S with the

property that, whenever alSa2, then

a1 N a' 	: a2 N. a'2 with aSa

vskel(ai) = Isskel(a2)

The contribution of restriction skeleta in the above is highlighted by the fact that the

largest binary relation on processes having the property

I
.

ai=a2andaiNai = a2 Na2 w1tha1 2

is the universal relation, which gives a trivial semantics. Thus by
examining the pattern

of reaction in the image of the action calculus on vSKEL, a comparison of the actions

may be made on their ability to generate effects as a result of computation. Indeed,

such a comparison may also be made between terms for distinct action calculi, allowing

the notion of en
coding (of a process term in one action calculus by another term in the

other calculus). Such e
ncodings deserve study in their own right; and we suggest that

the fr
amework we have presented can be developed to assist such study.

7.2.1 Embeddings

One of the aims of dev
eloping control structures is to allow the comparison of concrete

models by pr
oviding a framework where each model may be represented. One form

of comparison may be based on expresSivenessi but this in turn requires agreement of

what entities are to be expressed; in other words, a
COIflIflOU

model. A special case in

ext arises when the controls of one action calculus
AC(K) can be encoded in

our cont

terms of the operations of another AC(?C). The encoding, if compoSiti0al, can easily

be captured as a morphism of static control structures (over AC). However, an action a

in AC(K) and its encoding 4)a are to be accepted
as expressing the same entity, then,

some suitable relationship between the dynamics of a and those of a is required.

In order to see the kind of properties such a relationshiP is expected to imply, consider

one possible application for such embeddin 	
the idea of an implementation. One

may think of an
 implementation for a concrete model as a compiler to a lower level

(also concrete) model which may have more objects which are expressible in it. Such a

ressed as a morphism of control structures from one action calculus
compiler can be exp we should not expect the morphism to have
(high level) to another (low level). Note that

Chapter 7. Conclusions and Further Work 	 171

an inverse, indeed, nor expect it to be onto. The idea of source and machine languages

comes to mind: there may be many machine code programs which are not generated by

any Pascal program.

Homomorphisms of action structures (and their refinements) provide a suitable start-

ing point for talking about such embeddings. However, while homomorphisms preserve

the operations (giving us a compositional translation from source to target codes, so

to speak) they may be too weak to guarantee an acceptable computational correspond-

ence between source and target. We recall that a homomorphism of action structures

A —* B (and hence of control structures, reflexive and strictly reflexive ones) preserve

reaction:

aN 4 a' =

This means that the target object must have at least matching computational behaviour

to the source object. However, it may also have additional behaviour: this means

that it is not precluded that the target program will behave as one expects from the

source program but there is no guarantee that it will not follow some other path in its

computation tree! This is, of course, unacceptable as a notion of implementation and,

consequently, we require homomorphisms of reflexive control structures that preserve the

reaction relation in a stricter fashion. Say that a homomorphism of action structures

A -+ B confines reaction just when the following property holds for all a € A:

(a) \ b 	. ga'. a NA a' with b \8 (a')

The intuition behind this condition is that the target object can have additional com-

putational behaviour to the source; however, any such behaviour will necessarily consist

of intermediate computations that are guaranteed to lead to a state that is matched by

one in the source.

Such morphisms are closed under composition and clearly, the identity morphism

confines reaction; therefore, one can speak of categories of control structures in which

the morphisms confine reaction. Even when present, the action calculus AC(K, R.) is not

necessarily initial in any such category CS'(K), since for any control structure A in the

category, the unique homomorphism from AC'C) to A in CS(K) might not be reaction

confining and therefore not present in CS 1 (AC). If we limit our interest to embeddings of

a given action calculus over some signature IC and reaction rules 1Z., then as a suitable

Chapter 7. Conclusions and Further Work 	 172

category one could take any subcategory of CS(K) in which the unique morphism from

AC(K, 1Z) to the objects of the subcategory confines reaction.

It is fairly easy to show that the morphism determined by the quotient of a control

structure by any reduction-closed congruence necessarily confines reaction. Since the

universal relation on actions is reduction closed, the unique morphism from AC(K, 1.) to

the terminal control structure is reaction confining. Therefore, terminal control structure

is not excluded from any such subcategory as described above; but the terminal control

structure can hardly be considered a suitable structure in which to embed AC(x, 1Z)!

One way to exclude such candidates is to impose additional conditions on the morph-

isms. Here again, classifiers may be useful; requiring that the morphism to the classifier

be preserved by the embedding morphism may exclude undesirable candidates and, de-

pending on the choice of classifier, such a condition might be justified by computational

considerations.

It will be interesting to explore existing examples of embeddings, such as that of

the polyadic ir-calculus in the monadic version given in [22], in order to see whether

the resulting morphism is indeed reaction confining and also to gain insight in what

additional properties such morphisms may be expected to have.

7.3 Summary and Conclusions

In this thesis we have taken a concrete class of action structures—that given by the

molecular forms—as a promising starting point in the development of an abstract al-

gebraic account of process construction and concurrent computation. The identification

of a suitable abstract structure which underlies the molecular forms, and, it is hoped,

concurrent computation at large, was achieved in two broad steps: the first consisting

of a term algebra, providing a sort of half-way house between syntax and algebra; and

the second step involving an abstract semantic treatment of the operations defining the

term algebra. Phrased differently; the first step provides a compositional syntax for rep-

resenting processes and the second, a space of models for the processes thus specified.

In going from action calculi (the term algebra) to control structures (abstract algebra),

we were obliged to give a semantic treatment of names: this was achieved by means

of the notion of surface. While surface has a specific definition which depends on the

operations found in control structures, the issue that it serves—the behavioural signi-

Chapter 7. Conclusions and Further Work 	 173

ficance of names beyond their "traditional" role as place-holders—is arguably of wider

relevance within the quest for abstract models of concurrency.

The feasibility of the molecular forms as a syntactic framework for representing

concrete models validates much of the abovementioned achievement. However, feasibility

does not imply optimality, and therefore the consideration of alternatives to, or at least

variants of, the molecular forms was a natural step in our enquiry. Two variants were

considered and given an analogous semantic treatment. Whether either of the variants

will emerge as the preferred structure remains to be seen; it is clear, however, that

present in the variants are some intuively appealing aspects, such as greater expressivity

of datafiow; a semantic treatment of restriction; and, in the most variant case, garbage

collection of restricted but unused names and a revealing characterisation of surface in

terms of restriction.

While the treatment of process constructors (statics) reveals rich structural issues,

our algebraic framework provides significant support for studying the dynamical aspects

of processes. In concurrency theory, the manifestation of interaction and computation is

greatly varied and establishing a common basis for representing these dynamic aspects

poses a considerable challenge. It is to be expected that a structure which fits all

must be a modest one; as indeed is the one employed in our framework: the humble

preorder! With so little inherent abstract structure, how does one study dynamics in a

general fashion? One answer is to adapt existing techniques for obtaining models—such

as those based on bisimulation—by recasting them in terms of the generic structure

present in all action calculi; in particular, reaction. We have not done this; instead, we

have presented a concrete instance of the technique to obtain an operational semantics

of the ir-calculus cast in our framework. A characterisation of the bisimilarities we have

obtained in terms of reaction will provide valuable insight into how the technique can be

adapted. An alternative path towards the study of dynamics across action calculi (and

their reflexive variants) is through classifiers: by examining the dynamics in the images of

the calculi on a common static model (the classifier), we can derive insightful comparison

based upon their dynamic characteristics. A simple manifestation of this is achieved by

equipping the classifier with a specific reaction relation; then, a simple comparison is

obtained by the existence or otherwise of a reaction preserving homomorphism. We have

shown, by two examples, that with a judicious choice of reaction relation, the basis for

such a comparison can be computationally meaningful.

Bibliography

S. Abramsky. Interaction categories and the foundations of typed concurrent pro-

gramming. In Proc. '94 Marktoberdorf Summer School. Springer-Verlag, 1995.

J. P. Banâtre and D. Metayer. The GAMMA model and its discipline of program-

ming. Science of Computer Programming, 15:55-77, 1990.

G. Berry and G. Boudol. Concurrency and atomicity. Theoretical Computer Sci-

ence, 96:217-48, 1992.

E. Best, R. Devillers, and J. G. Hall. The box calculus: a new causal algebra with

multi-label communication. In G. Rozenberg, editor, Advances in Petri Nets '92,

volume 609 of LNCS, pages 21-69. Springer-Verlag, 1995.

S. L. Bloom and Z. Esik. Iteration Theories. Springer-Verlag, 1993.

P. Gardner. A name-free account of action calculi. In Proc. 11th Conference on

Mathematical Foundations of Programming Semantics, Tulane, 1995.

R. van Glabbeek. The linear time - branching time spectrum. In Eike Best, editor,

CONCUR '93, 4th International Conference on Concurrency Theory, volume 715

of LNCS, pages 66-81. Springer-Verlag, August 1993.

C. Hermida and A. J. Power. Fibrational control structures. In CONCUR '95, 6th

International Conference on Concurrency Theory. Springer-Verlag, 1995.

C.A.R Hoare. Communicating sequential processes. Communications of the ACM,

21:666-677, 1978.

K. Honda and Y. Nobuko. Combinatory representation of mobile processes. In

POPL '94, Conference Record of the 21st Annual Symposium on Principles of Pro-

gramming Languages, pages 348-360, 1994.

174

Bibliography 	 175

K. Honda and Y. Nobuko. On reduction-based process semantics. Theoretical

Computer Science, 151:437-486, 1995.

0. Jensen. Forthcoming PhD thesis, University of Cambridge.

A. Joyal, M. Nidsen, and G. Winskel. Bisimulation from open maps. Technical

Report BRICS RS-94-7, Computer Science Department, Aarhus University, 1994.

A. Joyal, R. Street, and D. Verity. Traced monoidal categories. In Mathematical

Proceedings of the Cambridge Philosophical Society, 1994. To appear.

J. Lambek and P. J. Scott. Introduction to Higher-Order Categorical Logic,

volume 7 of Cambridge Studies in Advanced Mathematics. Cambridge University

Press, 1986.

S. Mac Lane. Categories for the working mathematician. Springer-Verlag,

1971.

J. Leifer. Private communication.

J. Meseguer. Conditional rewriting logic as a unified model of concurrency. Theor-

etical Computer Science, 96:73-155, 1992.

J. Meseguer and U. Montanan. Petri nets are monoids. Journal of Information

and Computation, 88:105-155, 1990.

A. Mifsud, R. Milner, and J. Power. Control structures. In LICS '95, 10th Annual

IEEE Symposium. IEEE Ccomputer Society, 1995.

R. Milner. Action structures. Research Report ECS-LFCS-92-249, Laboratory for

the Foundations of Computer Science, Department of Computer Science, University

of Edinburgh, December 1992.

R. Milner. The polyadic ir-calculus: A tutorial. Research Report ECS-LFCS-91-

180, Laboratory for the Foundations of Computer Science, Department of Computer

Science, University of Edinburgh, December 1992.

[23] R. Milner. Action calculi IV: Molecular forms. Draft research note, November

1993.

Bibliography 	 176

R. Mimer. Action calculi, or syntactic action structures. In Proc. Mathematical

Foundations of Computer Science, Gdansk, Poland, volume 711 of LNCS, pages

105-121. Springer-Verlag, 1993.

R. Mimer. Action calculi V : Reflexive molecular forms (with Appendix by Ole

Jensen). Research note., November 1993.

R. Milner. Action structures for the ir-calculus. Research Report ECS-LFCS-93-

264, Laboratory for the Foundations of Computer Science, Department of Computer

Science, University of Edinburgh, May 1993.

R. Milner. Control structures H: Naming monoids. Draft, July 1994.

R. Milner. Higher-order action calculi. In Karl Meinke, editor, Proc. Computer

Science Logic, 1992, volume 832 of LNCS, pages 238-260. Springer-Verlag, 1994.

R. Mimer. Calculi for Interaction. Draft, April 1995.

R. Milner, J. Parrow, and D.Walker. A calculus of mobile processes, Parts I and

H. Journal of Information and Computation, 100:1-77, 1992.

Robin Mimer. Communication and Concurrency. Prentice-Hall, 1989.

M. Nielsen, V. Sassone, and G. Winskel. A classification of models for concurrency.

In Eike Best, editor, CONCUR '93, 4th International Conference on Concurrency

Theory, volume 715 of LNCS, pages 82-96. Springer-Verlag, August 1993.

M. Nielsen and G. Winskel. Models for concurrency. Technical Report DAIMI

PB-429, Computer Science Department, Aarhus University, 1992.

C.A. Petri. Fundamentals of a theory of asynchronous information flow. In Proc.

IFIP Congress '62, pages 386-390. North Holland, 1962.

A. J. Power. Control structures ifi : Arity monoids and their associated naming

monoids. Draft, August 1994.

A. J. Power. Elementary control structures. Submitted, January 1996.

A. J. Power and E. P. Robinson. Premonoidal categories and notions of computa-

tion. Submitted, 1996.

Bibliography
	 177

[381 D. Sangiorgi. Bisimulation in higher-order process calculi. Submitted for IFIP'94,

1994.

[39] G. Stefànescu. Feedback theories (a calculus for isomorphism classes of flow-chart

schemes). Technical Report, Preprint Series in Mathematics No. 24, The National

Institute for Scientific and Technical Creation, Bucharest, 1986.

Appendix A

Proofs

Note All derivable sequents referred to in this appendix are assumed derivable by the

rules 'R.; in other words, the DISCARD rule is not used.

A.1 Auxiliary Results

The following lemmas are used in those proofs deferred from the main text to this

appendix. The results in this section are of purely technical necessity and were not

deemed sufficiently interesting for inclusion in the main text.

Lemma A.1 Let E,: m such that {} fl {77} = 0. Then

(i)((y) ® t2)) = 	 . (iZ)(() 0 {/}t 2))

Proof Induction on r =

Base Case: r = 0 Immediate.

Inductive Step: r = j + 1 Assume t 1 : k -+ 1, (il)t2 1 -4 n and, by aiphaconversion,

{tZ}flfn(t i) =0.

Appendix A. Proofs 	 179

tp®m(t')(ti . (ii)((wy) (9 t2))

3.26(1)

= tm()tp(t))tl(P1,k . (ti ® (il)((w) ® () (9 t2))) 	3.10(1)

= tm()tp(t)t1(P1,k Pkt

.(iZ)((w) ® () 0 t2 (9 t) . Pp®m®n,i) 	2.24(1), 2.33(2)

= 	 0 () 0 t2 0 t 1) Pp®m®n,i) S2 , 2.33(1)

= trn()ti()tp(?4(((W) 0 () 0 t2 (9 t 1)

Pp®m®nj (pj ,P 0 id)) 	 3.26(4)

= tm ()ti(1)tp(V)(((W) e (y) (g t2 ® t 1)

.(id (9 Pm®n,g)) 	2.24(3), S 2

= tm(Xiti&1)(tp(t)((W) e () ® t2 o t1) . Pm®n,i) 	P3

(9 t2 (9 t 1) Pm®n,t) 	 3.29(1)

tm()ti()({'/V}((Y') ® { W/v}t 2 0 t) . Pm®n,i)

by reverse argument

= tm()tp(t)(ti . (t)(() 0 () (9 {w,4,}t 2))

tp(t)tm()(ti . (j)((,) 0 () ® { w/v}t 2)

(Pp,m 0 id))

= tp(V)tm()(ti . (ifl(() 0 (w) 0 {W/v}t2))

= 1p(4tm()(ti (t)(() 0 {}(w) 0 {}{W/v}t2))

= fp(V)tm()(ti . (jj)(() 0(w) (9 {Wi,4,}t2))

= tpøm(t)(ti . (ii)((wy) (9 {w?/v}t 2))

Lemma A.2 Let 1, g: k and : m,z : n.

(ili) I- ()t--+=t' 	(z) I- {t}t--t'

('i2) I- Pm , n L4) =1(1

where {}t is the simultaneous substitution of il for £ in t.

Proof

3.26(4)

C 2.24(4)

induction

3.26, C 2.24(4)

(1) Induction on r = 	. Base case follows immediately. For the inductiye step

of (==*), consider the standard derivation of (wil2) I- (w)t-1-*t'. For some

(ilz) F- {W/u}()t

(w2) I- ab,(

(il) I- Id -- Id,

)t 	t" 	(wvi) F ca.' 0 id_
0

(wi7z) F ab()t• (, (9 id) 	-t"

(w) I- 	Id,
LJ 	 0

Appendix A. Proofs
	

180

t", there is some subderivation giving (wyi) I- (ux)t---3 =t" which consists only

of constructor rules, and from which the resulting derivation is obtained by a

sequence of PERM and SYNC rules. Consider the last part of such a derivation, with

= (tZ)t(i); in the standard derivation it must have the following form:

Since {W/u}()t 	('){W,4j}{ '/} t, for some 	such that {u, w} fl {'} = 0.

Hence, we have

(ill) F- ('){W/u}{ '/} t 	-* t"

and by inductive hypothesis:

(iZ)S(i)

But, { }{ W/u}{ '/x}t 	{Wil/u}t. Hence, by applying the same sequence of

PERM and SYNC rules as in the standard derivation of the left transition gives the

required result.

For the inductive step of (==), we use the fact that {W?i/ux}t {''}{W/u}{ '/} t.

Then, by inductive hypothesis, we have

() F- (){W/u}{i'/}t--*t'

But (x '){ W14}{ '1z}t 	{W/u}()t. Then, since £ = (i)d(3) for some iZ,iT,d, by

the above derivation the required result follows.

(2) For any , it is demonstrable by easy induction on , that F- ()Lid,. Then,

since Pm,n (12)(21), for some distinct names 12 : mOn, the result follows

immediately by (1).

Lemma A.3 Let d : k —4 1, i, th : m, and {} fl {iii} = 0. Then whenever () I-
(ü)(*iJi))

* t
, 	.

t 	- 	the followzng is derivable:

Appendix A. Proofs 	 181

Proof Induction on r =

Base Case: r = 0 Immediate.

Inductive Step: r = j + 1 Let y, : p such that {y}fl{tiy'} = 0. Since, by lemma 3.26(1),

tm®p()(Y)t = tp(y)tm(Xit, we can consider of tp(y)tm()t as principal term (by

structural lemma). Assume () F t 	-i t is derivable. Then, by the inductive

hypothesis, and since {t/}y' = y', we have:

-. =tm()(t' (Id, ® (ti)(tfl)) (Pg,m (9 Id)) I tm (X)t

By lemma A.2(1), we get

(iiz) F- (y)fm()t 	 4tm()(t' . (Id, 0 (Z)(tiu)) (Th,m (9 id))

and by the rule f21 we can derive:

() F- t (Y)tm

where t" = t(y) (tm () (t' . (Id, 0 (ii) (tiiui)) (p, (&ld)) . (Id, 0 (iZ) (y'fi)). (p, (9id)).

We must now show that the residual term is equal to the term we expect:

tp(y)(tm()(t' (Id1 0 (110 (tii10) (Pi,m (9 Id)) . (id, (9 (ii)(y'ilZ)) 	0 id))

= 	tp(Y)tm()(t' 	(id, 0 (ti) (iiiZ)) . (p,,,11 (D id)

(Idm®j 0 (il)(y'u)) . (1dm 0 Pi,p 0 id)) p,2 . 16(l)

(Pi,m 0 id) . (1dm (9 pjp (9 id)) C

(Idi®m 0 (t)(y'ti)) 	(Pi,m®p (9 Id)) S3

= 	tp(Y)tm()(t' - (id, 0 ((ii)(tiW10)

(jdm 0 ()(y'))) 	(Pi,m®p ® id))

tp(Y)tm()(t' - (id, o (6)(t9y'110) - (Pi,m(gp 0 Id)) 2.16(1), or

= 	tm®p(Y)(t' . (id1 0 (1)(Y'i10) - (Pi,m®,, 0 id)) 3.26

Appendix A. Proofs 	 182

Lemma A.4 Let 	k-4l. Then, whenever (i) Ft 	t', we also have, for any iil

such that {ti} = { iZ}:

Proof Every permutation t13' of it can be obtained from ii by some number n of successive

commutations of adjacent names. The proof is by a straightforward induction on n. •

Lemma A.5 The following is derivable:

for any fl, t9 such that

{iZ}n{ii}=O

{iZ} = {t}.

Proof Straightforward induction on r. 	 •

Appendix A. Proofs 	 183

A2 Structural Lemma

In this section we shall give a proof of the structural lemma in considerable detail. In

the equational proofs, the lemmas used for each step should be obvious in most cases,

and explicit reference is only made when the lemma used appears in the appendix.

Lemma 5.11 (Structural) Whenever t 1 = t2 and (z) F t1 --+ t'1 then, for some t,

(z) F t2 -- t'2 with t'1 = t.

Proof First we shall consider those transitions derived using only the constructor

elimination rules i.e. those in which the SYNC and permutation rules do not occur. For

each axiom, tL = tR we consider the derivable transitions of tL and tft under arbitrary

environments (i). We show that whenever there is a derivation of () F tL --+ t', using

just the constructor rules, then for some 4, there also exists a derivation (using any of

the rules) of (Z t 4 with t, = 4 and vice versa.

We shall adopt the following method. For the constructor part of the derivation, each

rule applied reduces the size of the term. Now each axiom has the form C[t] = C[tl. For

each side of the axiom we give the final part of all possible derivations up to premisses

whose principal term is one of F For each derivation with one side of the axiom as

principal term, we are done if we can find a matching derivation (with identical label

and equal residual) starting from the same premisses incorporating the terms Fwith the

other side as principal term. Indeed, we need not be so strict about the premisses, since

by the substitution lemma, we can be sure of the existence of derivations for variants

of the premisses which differ by the replacement of free names throughout the sequent.

Thus, to keep the proof relatively short and readable we will present matching derivations

for both sides of each axiom, and show that the residuals in each case are equal. We

will not explicitly point out the use of the substitution lemma, as in all cases it is quite

clear. An important point is that both parts of the substitution lemma may be used

since there cannot be any r-particles in those labels occurring in sequents derived using

just the constructor rules.

The proof for some of the axioms (such as C 1 , P 1 etc.) is straightforward. We shall

describe the proof in the case of C 1 but not of the others as they are either very simple

or follow similar lines.

Appendix A. Proofs
	 184

Axiom C 1 : t - id = t = id t Assume (z) F t id !4 t' by constructor rules. Clearly,

the last rule applied must be that for composition. In this case, the following

derivation for a transition incorporating the label £ = (tZ)5(il) is unique for the

term t - id.

(zFt--t" ()I-id-*id

	

() F t Id 	(t" ® Id e) (Id e ® abgid) (id e 0 p,., (9 Id)

Clearly, t" = t'. Hence we can use this sub derivation both to show the existence

of a derivation for the transition () I- t --* t" (for some t" = t') from that for

t . id and also as construction of the derivation of () I- t id-4=t' (replacing t"

by t' in the above derivation) from the derivation of () F t —+ t'.

The result for the axiom t = id t follows in a similar manner by the subderivation

shown below:

(z) F Id —4 Id, (z) I- t 0

((ø)

	

(F 1d _...__-4 (, 0 idk) . (id, 0 t") (Id, 0 p,,z 0 Id)

Axiom C2: t 1 (t2 . t3) = (t . t) . t3 We shall write the last part of the derivation in

each case until subderivationS with principal terms t 1 , t2 and t3 . It is easy to see

by comparing the derivation, that given the existence of one, one can construct

the other. Let ()(i) =

Left term tL: In the following derivation, we also have side conditions

tiii l=ri

{i 2 iZ3}fl(fn(ti)U{})=0

li!2 1 = r2

{i13 } fl (fn(t 2) U {ii}) = 0

(1)Ft2022t 	 23 (2)Ft3 t 	
0

tI 	t'1 (2) F t2 . t3
2_ 	

(t 0 Idk3) . (d1 2 0 ab 2t'3) . (Id1 2 0 Pr2 ,13 0 Id)
0

(ii)(il)
(2) F t1 . (2 t3) —4 tL

	
Appendix A. Proofs 	 185

where 	 II S

 t 'L 	(t'1 0 idk2 økS) . (id, ® ab 1 tL) (id, ® Prj .2013 0 id)

and t 	(t 0 idk 3) . (id,2 0 ab 2 t'3) (id,2 0 Pr2 ,i3 0 id).

Right term tR: In the following derivation, we also have side conditions

IiI=i
{i 2 }fl(fn(t j)U{}) =0

I142I=ri0r2

{iZ3 }fl(fn(4)Ufn(t 2)U{62 }) =0

(iZ1)i(il
4 	

t 1 	t'1 	(i 1) I-
t (iZ2)t2(,

2
0

(iii u2)al a
(z) F t 1 . t2 	- !2) (t (& idk2) . (id, 1 (9 ab.11 4) (id, 1 0 p,. 1 ,, 2 0 Id) 	(t) F t3 	t'3

0
(iZ)d(il)

(1) I- (t1 . t2) . t3 	tR

- I I where tR = tR 0 idk3) . (id, 1® ,2 0 aba1i2 t'3) . (jdi1® 0 Pr1 Ør2 ,1 3 0 d)

and t'., 	(t Oidk 2) . (id, 1 ®ab 1 t) . (di Op,.i,2 Oid).

It is easy to see that the side conditions in each derivation are equivalent. We

must now show that t 'L = 4.

tL 	(t'1 0 idk2 øks) . (id, 1 0 abji 1 ((t 0 id 3) . (id, 2 0 ab12 t)

.(id(2 0 p,.2 ,1 3 (& id))) . (ci, 1 0 p,. 1 ,013 (9 id)

= (4 0 idka(&ks) . (id, 1 0 ab 1 ((t (& id 3) . (id,2 (& ab2t'3)))

.(id, 1 ®,. 1 ®1 2 0 Pr2 ,1 3 0 Id) . (id, 1 0 Pr1 j2 013 (D id)

= (t'1 0 idk2(&ks) . (id, 1 0 abg1 ((t (9 Idk 3) . (id12 (9 ab,i2 t)))

.(Idj 1 0 P1,12 (9 Id) . (id, 1 012 0 Pr1 ®r2 ,1 3 0 id)

= (4 (g id2®3) . (id, 0 ((abj 1 t (& id 3) . (ab 1 (id,2 (& ab24))))

.(id, 1 0 Pr1 j2 0 id) . (id, 1 012 0 Pr1 ®r2 ,13 0 id)

= (4 0 id 2 ® 3) (id, 1 0 ((ab 1 t 0 id 3) . (ab 1 (id,2 0 ab 2 t))

(,.112 (9 Id))) . (id10012 (9 p,. 1 ®,.2 ,1 3 0 id)

= (4 0 idk2®kS) . (id, 0 ((ab 1 4 0 idk3) . (p,.1 , 2 0 id) . (id, 2 0 abil12 t'3))

.(•d, j 012 0 Pr1 ®r2 , s 0 Id)

= (((4 0 idk2) . (id, 1 0 ab 1 4) . (Id1 1 0 p,. 1 j2 0 id)) 0 idk3) .

(id11012 (& abji12 t) (ii, 1 012 0 Pr1®1-2,13 (9 Id)

-
31

Appendix A. Proofs
	

186

The equational proofs involve substantial tedious but routine calculations. The

reader may find it useful to construct a diagrammatic equivalent, which, while

not formal, provides an intuition of the equality of the terms. Such diagrams

representing the terms t'L and t', respectively are given below:

k,

k 3

' I

ii

1 3

k i

k 3

1,

12

13

Axiom P 1 : t 0 id, = t = Id, t Straightforward.

Axiom P2 : tj 0 (t2 (9 t3) = (t 1 (9 t2) 0 t3 We shall write the last part of the derivation

in each case until subderivations with principal terms t 1 , t2 and t3 . Let (iZ)d(ii) =

and F=

Left term tL: In the following derivation, we also have side conditions

{ii} fl (fn (t2) U fn (t 3) U {}) = 0

{il2 iZ3 }fl(fn(t 1)U{ i }) =0

jig,=r1

{ 3 }n (fn(t2) u{}) = 0

{iZ2 } n (fn(t3) U {1}) = 0

Appendix A. Proofs
	 187

6. u2I =

(i2) - t 2 	 2
(g2)2 	(z3) F t3 	4t' 0

 (a2

	

t', (2i) F t2 0 t 	
s)622s> (t ® t'3) . (d12 0 Pr2,13 0 id)

0

(2) I-t 1 ®(t20t3) -------4 t'&

where tL 	(t'1 (& t) . (idj , 0 Pr1 ,12®Is ® Id)

and t 	(t 0 t) . (1d12 0 Pr2,13 0 Id).

Right term tR: In the following derivation, we also have side conditions

{iZ1 }fl(fn(t2)U{}) =0

{iT2 }fl(fn(ti)U{i}) =0

1 141='i
{ti3} fl (fn (t 1) U fn (t2) U {i}) = 0

{iitZ} fl (fn (t 3) U {}) = 0

IiZliZ2ri0T2

- 	(i)Fti011t 	(F222t

	

) 	t
0

F t 1 ® t2 (j1
	152(il,c2)

(t'1 0 t) . (Id1, 0 Pr 1 ,1a 0 Id) 	() F t3 	43
0

(z)F(tj(9t2)0t3 	—+tR

- where 4 (
v

II
R ® t) . (idj 19 : 2 0 Pr1®r2,Is ® id)

and 4 (t'1 0 t) . (Id1 , 0 Pr,,i 2 0 Id).

It is easy to see that the side conditions in each derivation are equivalent. We

must now show that t'L = 4.

= (t' 0 ((t'2 0 t') (Id,2 0 Pr2 ,!3 0 id))) . (Id1, 0 Pr, ,l2®IS 0 Id)

= (t 0 t'2 0 t) . (Id1, 0 idri 0 1d12 0 Pr2 ,13 0 Id) . (Id1, 0 Pr 2®l3 0 id)

= (t'1 0 t'2 (& t) (id,, 0 p,.,,12 0 Id) (idi,01 2 0 Pr,®r2,13 (& Id)

t'2) (Id,, 0 P,.,,2 0 id)) 0 t') . (idi,®,2 0 Pr,®r2,ls 0 Id)

= tR

Appendix A. Proofs

Axiom PF1: id 0 id=id Straightforward.

Axiom PF2: (51 0 82) (t 1 (9 t2) = (s . t) 0 (82 t2) We shall write the last part of

the derivation in each case until subderivations with principal terms Sj, s2 ,t 1

and t2. Let £ = iji2 and (tZ)i) = and (u1)5'(v7) =

Left term tL: In the following derivation, we also have side conditions

{iZj }fl(fn(s 2)U{}) =0

{ 2 }fl(fn(s 1)U{ i }) =0

II = ri

{ j }fl(fn(t 2)U{il2 })=0

{ 2 }fl(fn(t i) U{i1 }) =0

= a,

0,:m-+n1 .

(iii)a1(ø 	 _______ 	 _______ 	 _______
si 	-- s'1 	() I- a

(il2)t212) ' 	F t 1 	t1 	(V2) H t (12)2(
1 2 2

0 	 0
(a,2)j2(il,i12) ,,

(i) H 8 0 2 	. 	-+ 	 (61 172) H t1 o t2
(12)/1I2(il) t'L

0

() H (s 1 082) (t1®t2)
(Z)(_ tL

#11 S where tL (s'L 0 jdmi®m2) (id 1®12 0 ab zltz2L) (id11® ,3 0 Pri®r2,niøn2 0 id)

with s 	(s' 0 s'2) (id,, 0 P1,,3 0 id) and t', 	(t' 0 t) . (id 1 0 p81,2 0 id).

Right term tR: In the following derivation, we also have side conditions

{ 1 }fl(fn(s 1)U{21 }) =0

{ 2 }fl(fn(s 2)U{})=0

II = ri

{i} fl (fn (82) U fn (t2) U {i;}) = 0

{iZ22}fl(fn(s 1)Ufn(t 1)U{ii }) =0

= s

Appendix A. Proofs 	 189

7. f3 1 :m 1 -+n1 .

(iZ1)6i(il 8
' 	(iii) F t1

0
(ii)di/i(Ui.) t (11) F s 1 .t j

(z
-. 1- (Z2)a(il 	

'2 	(62) I- t2
(2)B2(il2

 t2 2) 	s2
0

(12) Fs2 .t2
0'

(2) F (s i t1) ® (s2 t2) 	 6

where tR (t0 ® t,) (id:i@nj 0 Pri®sj,i2®nz 0 id)

with t, 	(s' 0 jdmi) (id, 1 0 ab 1 t'1) . (id j 0 Pr 1 ,nj ® id)

and tb (4 0 jdm2) . (id,2 0 ab 2 t). (id:2 0 Pr2 ,n2 (9 id).

Note that the two derivations do not derive transitions with identical labels. The

labels differ by permutations of the binding vectors and the vector of particles

constituting their bodies. From each derivation one can construct a derivation for

a transition which matches the other. We will just show one of the cases.

PERM1

(2) F (s i t1) 0 (82 	 4 (idg i øni 0120n2 ®rj 0 Pr,8 1 0 Id)
PERM2

(2) F (s t) 0 (82 t2) ()d(
	'I

where 4 (id ®Pka,m1 Old). 4. (id,,®1®,2®2®, ®Pra,si Oid) (id, Op,, 1 ,, 2 Oid).

It is easy to see that the side conditions in each derivation are equivalent. We must

now show that t'L = 4. We shall do this in several stages. Essentially, the proof

involves permuting the subterms 4,4, t'1 and t'2 and simplifying the (often large)

terms representing the isomorphisms. For the proofs concerning the rewriting of

terms representing isomorphisms we shall not give details: the simplest way to

demonstrate these term transformations is through diagrammatic means in the

style of Joyal et al.

(1) (idi j ør, 0 P1201-2,mj (& Id) . (id,, 0 Pr,Øm1,12 (9 id) (Id,,®, 2®, 0 Pmj,r2 0 id)

= idI i Opri ,1 2 Old

(2) F (Si t1) 0 (32 . t2) (it')t'(

Appendix A. Proofs 	 190

(idti®i2®r i 0 Pr,nØj 0 Id) . (1d1 1 0 p12,1®n1®8i 0 id)

(id, 1 0 Pri ,n j 0 1d81®12 (9 Pr2 ,t 2 0 Id) (idz1®1 (& Pr1Ø81,120n2 0 Id)

(idii®ni012®n 2 ®r2 (9 Pr2 ,8 2 0 Id) . (Id1 1 0 Pn 1 j2 0 id)

= (Idji012®ri ®r2 ®ni (9 P j ,n2 0 id) . (Id1 1 ®,2 0 PriØrz,nj®nz (9 Id)

id1 1 0 abz1 t 0 1d12 0 ab12 t

= (id, 1 0 Pri®mj,12 0 id) (Id, 1 ®,2 0 ab 1 t (9 abiz2 4)
.(id, 1 0 P12,rj®njØsj (9 id)

= (id, 1 0 Prj Øm 1 ,13 (9 Id) (Idi1012®ri (& Pmj,r2 0 Id)

abji12 (t 0 t'2)) . (idgi(9120ri (9 Pr2 ,n j Ø. 1 0 id)

P13,rjØn1®sj 0 id)

(4)(Idk i 0 Pk2 ,m1 (9 id). (t0 (9 tb)

= (Idk1 0 Pk2 ,m 1 (9 Id) (' 0 idmi 0 4 0 1dm2)

.(id, 1 0 ab 1 t'1 0 id12 0 ab.j2 4) ' (Id1 1 0 Pr1 ,n1 0 id81 ®12 0 Pr2 ,, 2 0 Id)

= (id, 1 ®,.1 0 P120r2,mi 0 id) . (4 0 4 (9 Idmi ®ma)

•(Id, 1 0 abiz 1 t0 id12 0 abi2 t) . (Id1 1 0 Pri ,n 1 0 1d81 ®12 0 Pr2 ,n2 0 id)

(5) t'

= (idki (9 Pk2 ,m 1 0 id) t'R (Idi i 8n1 0 2 ®n2 ®ri 0 pr2,81 0 Id)

•(Id, 1 (9 Pn1 ,12 0 id)

= (idk 1 0 Pk2 ,mj (9 Id) ' (t0 0 tb) (id1 1 ® 1 0 Pr1 Ø8 1 ,120n2 (& id)

'(Idii®ni®12®n2®ri 0 Pr2,81 (9 Id) (Id, 1 0 Pn 1 ,12 (9 Id)

= (s' 0 4 0 Id) . (Id, 1 0 Pr1 ,12 0 Id) (id, 1 ®,2 0 abg12 (t'j 0 4))
(Idgi®i2®ri®r2®n i (9 Psj,n2 0 Id) (Id, 1 ®,2 0 Pri®rz,njØna (9 Id)

= (s It 0 Idmi ®m2) (Id1 1 ®1 2 0 abi, 1 a2 t) . (idg®ia 0 PriØr2,njØn2 0 id)

=tL

Axiom AF 1 : abid = id Straightforward.

Axiom AF2 : ab(t j .t2) = abt 1 abt2 We shall write the last part of the derivation

in each case until subderivations with principal terms t 1 and t2 . Let (i(ti) =

(12)1d2(yiT2).

Appendix A. Proofs 	 191

Left term tL: In the following derivation, we also have side conditions

y {9 1 i12 }

{ii2 } fl (fn ({Y/x}t i) U {z}) = 0

ItZi I=r

(i73)t3(il2' 	,

() I- {Y/x}t 1 '-1 t' 	(t7) F {Y/x}t 2 	t2
0

(t 0 idk.,) (Id,, 0 ab,t) . (Idi, 0 Pr 1, 0 Id) (I- Y/xti TY/xTt9
ab

(y2) F ab(ti t2) 	-4 (t'1 0 idk2) . (id, 1 0 abz1 t) (id, 1 0 Pr,1 3 0 Id)

Right term tR: In the following derivation, we also have side conditions

Yø{ii}

y{iZ2 }

{iZ2 } fl (fn ({Y/x}t i) U {z}) = 0

Iili I=r

(1) F- {Y/x}t 1 	t'1
ab 	

(iii) F- {Y/x}t 2 	- t'2
-

(a2)2(yil2) 	,

(yz) F abti
(ili)i(vt7 	

(v'i) F abt2 	—3
0

0*50) 	
1(yz) F abti . abt2 	 (t 0 idk2) . (id, 1 0 ab 1 t) (id, 1 0 Pr,12 0 Id)

It is easy to see that the side conditions in each derivation are equivalent.

Axiom 'y: (x)t = w 0 t (x fn (t)) Straightforward.

Axiom ö: (x)((x) (9 id) = Id Straightforward.

Axiom C: (t1 0 t2) . Pn i ,na = Pm 1 ,m2 (t2 (9 t 1) (t 2 : m.-+n,) We shall write the last part

of the derivation in each case until subderivations with principal terms t 1 and t2 .

Let (iZ)7) = (ili ii2)äj d2 (i1 112), (iZ)7') = (il2 ii1) 2i (ii2 ii1), and 2=

Left term tL: In the following derivation, we also have side conditions

Appendix A. Proofs
	 192

{jT 1 }fl(fn(t2)U{iz}) = 0

{iZ 2 }fl(fn(t i) U{ i }) = 0

1U2 1=?'2

0
(1I62(J12) t'1 0 t) • (idj, 0 Prj,2 0 Id) 	(1 ii2) I-. p1,2 	—*=id 2)

(Z)Ft10t2 0

() F (t1 0 t2) 	—4= (t'1 0 t'2) (1d1 1 0 Prj,2 0 td)

Right term tR: In the following derivation, we also have side conditions

{jt1 }fl(fn(t2)U{z})=0

{iZ2 }fl(fn(t i) U{i}) = 0

() F t2 	
24 	

() F- t1 	t
0

V24)
Pm3,mi 	 = id 	(1i2) F t2 0 ti

2g13 	i) (t'2 0 t'1) (id: 2 0 Pr2,li 0 Id)
0

(if) F Pm2,mj (t2 0 t 1) 	___-+= (t 0 t') . (Id12 0 Pr2,Ij 0 Id)

Note that the two derivations do not derive transitions with identical labels. The

labels differ by permutations of the binding vectors and the vector of particles

constituting their bodies. From each derivation one can construct a derivation for

a transition which matches the other. We will just show one of the cases.

() F Pm2,mi . (t2 0 t)
(r)! (2 ® t'1) . (Id:2 0 Pr2,1j 0 Id) PERM1

() F Pm2,mj (t2 0 t 1) 	 (t 0 t'1) . (Id1 2 0 Pr2,11 0 id) . (1d12 ®j, 0 Prj,r2 Old)
PER.M2

(1) F Pm2,m1 .(t2 ot1) 	—* tR

where 4 (p j , 2 0id) .4. (ide Opi2,ii ®id) and 4 = (t et) . (id12 ®Pr2j1 ®id).

It is easy to see that the side conditions in each derivation are equivalent. We

must now show that t'L = 4.

()_t2 22 t2

Appendix A. Proofs 	 193

4! 	

Pk1,k2 . (t ® 	. (12 ® Pr2,1l 0 Id) . (1)1211 0 Id)

= (t'1 0 t) . PiiØri,120r2 . (d, 2 0 Pr2 ,1, 0 Id) . (P12 ,1 1 0 Id)

= (t' o t) . (id, 1 0 Pr1 "2 ® Id)

tL

Axiom 0: ((y) (9 Id). (x)t = {Y/x}t Straightforward.

Axiom p: id,, = tp Straightforward.

Axiom p2 : f,,t 0 id = t(t 0 id) Straightforward.

Axiom p3: jt1 t2 = 	. (id,, (9 t2)) Let (il)(ii) = (i9j il2)c iä2 (ti2).

Case For y 19 (fn (t1) U {}) we have the derivation (yl) F t 1

Left term tL: In the following derivation, we also have side conditions

{yzZi }flfn(t 2)=0

{i2}fl(fn(t i) U{}) =0

lyill I=p®ri

y fn(t 1)U{71 }.

(yi) F t
(tZi)i(yi1)

 e1
(yii)di(il 	 ti

(E) F 	 i
) (&iy)(t' . (Id, 1 0 (y) (9 Id))

() F tt 1 .
t2 (yiI)c(i12)

tL

(il1) F 	(

	

t2 	(t I2
0

where t - (
'L = t I' L 0 id k2) . (id, ® ab 1 t) (id, 1 0 P®,.1 ,,a 0 id)

and t 	(vy)(t (id, 0 (y) 0 Id)).

Right term tR : In the following derivation, we also have side conditions

{ili }flfn(t2)=O

{i12 }fl(fn(t i) U{i}) =0

Appendix A. Proofs 	 194

Ii i l=ri

y' Øfn(t 1)Ufn(t2)U{IiZ 12 }.

Note that one of the side conditions requires that y' j9 fn (t2). Therefore, we

cannot simply rely on the name y used in the derivation (involving tL) above.

Instead, we shall choose such a fn (t 1) U fn (t2) U {'6j ii2 i}. We shall then

use the substitution lemma to establish the required correspondence between the

subderivations involving y and y'. In what follows, let a = {V/y}.

(i11) I- t2
12)2(il21

 t2
___________ 	 (t73)2(ail2) 	, (yz) I- t1 	

14> 	(y') F id 	id. (au 1) F at2 	 at

(') F 	 (y'aiTi) I- id,, 0 t223Lat
0

()ud(y
074 (at 0 idk2) . (ici1 1 0 abg1 c.Tt) (ii1, 0 Pr1 ,Ia 0 Id) (y)Ft1.(id0t2)

ti ., (y'Z)(o12) 	,
(z) F t(t1 (ici,, 0 t2)j)=tR

where 4 = (z,y')(4. (id,1®12 0(V) Oid)) and 4 (at Oidk2) (idi 0aba1 at).

(1d11 0 p102 (9 id).

First, note that the labels of the derived transitions for tL and tR are indistin-

guishable up to aiphaconversion. We shall now prove the equality of the residuals
41 — 41

4 	= (iiy')((at'1 0 id, 2) . (id1 j 0 abu,at)

(ici,, 0 P 1 ,i, (& Id) (id11012 0 (y') (9 id))

= (vy)((t 0 idk2) (icii 1 (& abil l t)

(Id1 1 0 Pr1 ,1 2 (9 Id) (idi 1 012 0 (y) (9 Id))

= (vy)((t 0 Idk,) . (idj 1 0 ab 1 t)

•(id, 1 0 (y) (9 id) (1d1 1 0 PpØr1,12 (& Id))

= (i.'y)((t 0 idk2) (Idli 0 (y) 0 ab, 1 4). (Id1 1 0 PpØr 1 ,1a 0 Id))

Appendix A. Proofs 	 195

= (vy)((t'1 (D id) (Id 0 (((y) (g Id) . (y)((y) (g aba1 t)))

.(1d1 1 0 (y) (9 ld) (Id1 1 0 Pp0102 (&ld))

= (vy)((t 0 id 2) . 	0 (y) 0 Id)

.(1d1 1 (9 ab 1 t) (Id11 (& Pp191%,12 (9 id))

= (vy)((t'1 0 id 2) (Id1 1 (9 (y) 0 Id))

.(1d1 1 (9 ab 1 t) . (ici, 0 Pp®r 1 ,1 2 0 Id)

= (vy)((t'1 (ici, (& (y))) (g id,) (g id))

.(1d1 1 0 abv1 t) . (Id1 (& PpØr 1 ,1 2 0 Id)

= tL

The above derivation shows how a matching derivation for tR can be obtained

from a derivation for tL. We argue that obtaining a matching derivation for tL

from a derivation for tR is simpler since the side conditions in the derivation for

tR (involving some y V fn (t 1) U fn (t2) U {}) are stronger than those required for

tL.

Case For y 5t fn (t 1) U {!it} we have the derivation (y) I- t1 	
°-

t'1 with

w

Left term tL: Let a' = {W/y}. In the following derivation, we also have side

conditions

{i 1 }flfn(t2)=O

{i12 }fl(fn(t j)U{i}) =0

lill=r

yfn(t1)U{iil1 }

wy.

(ai)i(w ti (yz)F-t 1

(2) I-
j,,t1 (i)d'aj)

t(y)(t'i (idi 0 (ili)(wii1)) • (Pi i ,p 0 	
t2

Id)) 	(a1 161) I- 1,2 222 tj

0

(2)F-tt1.t2 	 t
I

 L

where tL (t 0 idk2) (idj1 0 ab 1 4) . (id11 0 P1,:2 0 id)

and t't(y)(t . (id :1 0 (ili)(wil i)) . (p1 0 ld)).

Appendix A. Proofs 	 196

Right term tR: In the following derivation, we also have side conditions

{yZj }flfn(t2) = 0

{tZ2} fl (fn(t 1) U {y 'z}) = 0

Ii i I=ri

y' V fn (t 1) U fn (4) U {'i 1 i 2 }

W{il2}

y'w.

Note that one of the side conditions requires that y' fn (t2) U {iZ }. Therefore,

we cannot simply rely on the name y used in the derivation (involving tL) above.

Instead, we shall choose such a fn (t 1) U fn (t2) U {ii 1 i 2 z'}. Note that by the

free names lemma, {61 i12 } 9 fn (t1) U fn (t2) U {vecz} and hence y' 11 1 ,61 i12 }. We

shall then use the substitution lemma to establish the required correspondence

between the subderivations involving y and y'. In what follows, let a = { Y'/y}.

Now, by the above conditions, {W/y}11 1 = {W/y '}({ Y '/y}iii) and {W/y'}t 2 	t2 .

Hence, by the substitution lemma, there exist /, t92 and t' such that

(tZ2)2(il2 I, ({W/y'}({Y '/y}ii)) I- {W/y'}t 2 	i 42 	({Y'.hj}ii) I- t2
(2)i2(ti12

 2

where {W/y'}f = 62, {W/y'}i92 = 62 and {W/y'}t = t'2 .

(o'il1) i- t2
(a2)t2(t4

 t;

(au 1) i- t2 	
II

0
I, (i/i) 	(u1)ua1ti 	(waj) H 	® 1d, t2 H t 1

0
Wtil2)

(y 'z) I- t 1 . (ni,, 0 t2) (oa1)/32(
- 	(at'1 0 idk2) . (Id1 1 0 ab,t') . (Id11 (D 1,1 Pr 2 0 id)

(z) Ht,,(ti . (Id,,(9 t2)) 	 tR

where t', = t(y')(tr (id j1®12 0 (iii il2)(wili iZ2)) (p 912 ,, ® id))

and t = (at'1 0 idk2) . (id1 0 ab z, at') . (id1 0 P11,12 0 id).

It is easy to see that the side conditions in each derivation are equivalent. We

must now show that t'L = t.

(,31)1(wt7 	I (y2') I-t i)
(w)

(to) I- Id,, —+ Id,,

Appendix A. Proofs
	

197

t = (t(y)(t'1 (Id, 1 0 (ü1)(wii j)) (p, 1 , p (g Id)) (g Idk2) . (Id, 1 (D ab 1 t)

.(id, 1 (9 Pr j ,1 2 0 Id)

= (t(y')(v',t'1 . (id, 0 (iii)(wili)) (Pi i ,p 0 Id)) 0 Idk2) . (Id, 1 0 ab 1 t)

.(Id, 1 0 Pr 1 j2 0 id)

= (t(y')((v' ,i, t (9 Id 2) . (Id, 1 0 (1T1)(wil i) (& Id a)

•(Pi i ,p (9 id))) (Id, 1 (9 abjj1 t) . (Id1 1 0 Pri,12 Old)

= t&)((v','}t'i 0 Id 2) (i, 1 0 (ii)(wi4) 0 id 2)

(pij,p (9 Id) (id,,, 1 0 ab,i1 t) . (idp®i (& P1,12 (9 Id))

= t(y')(({v'h,}t' 1 (9 Id,2) (p,1,r1 (9 Id) • (iZ1)((Id, 1 0 (w i) (& Id, 2)

(Pl1,p (9 Id) (Id®, 1 (9 ab 1 t) . (idp®i 1 0 P1 1 ,12 (9 id)))

= t(y')((t 0 Idk2)
(P1i,ri

 Old) (u 1)(((w) Old1 1 0 (u1) 0 Idk2)

.(Id®, 1 0 ab 1 t) (idp®g (D 	(9 Id)))

.(ili)((w) (9 ld1 1 (9 (((il1) 0 t'2) (pri ,12 0 Id))))

= f(y')(({v',it (& Idka) (plirj 0 Id)

.(ui)((w) 0 (ici, 0 (L . (Id1 2 0 (u i) 0 Id)))))

= t(y')(({v'/y }t (9 Ida) (, 	(& jd)

.(ii)((w) 0 (id, 1 ® ({w,,'}t . (id1 2 0 () (9 ld)))))
	

A.1

t(y')((v'1 t'i 0 Id 2) (P1 1 ,r1 0 Id)

0 (11 ®
({w'}{w,'}t . (Id, 2 (9 (ti) 0 Id)))))

(9 Id 2)
(Plj,ri (9 Id)

•(ili)((w) 0 (Id, 1 0 ({w,s}t 	0 (t1) (& Id)))))

0 (I 	0 (t (id12 0 (il1) Old)))))
	

A.1

0 Idkz) (P1i,rj 0 Id) (ii)((Id, 1 0 (ii) 0 t'21)

.(id, 1 0 Pr 2 (9 Id) (Id, 1 012 0 (iliiZ2)(wiiiii2)) . (p,1912 0 Id)))

= f(y')(({vç,}4 01dk2). (Id, 1 Oab,j1 t)

.(Id, 1 (9 P,. 1 , 2 0 Id) . (Id, 1 012 0 (iiil2)(wiiil2)) (p,1012 (9 Id))

tR

A graphic representation of the two terms may be of assistance in following the

above proof; diagrams representing t'L and 4 respectively are included below:

Appendix A. Proofs

I

Axiom p4 : t 1 ft2 = t((id (9 t 1) t2) Let (i)(ii) = (t11 i12)5i 62 (ff2).

Case For y V fn (t 2) U {161} we have the derivation (y) I- t 2 	t:

Left term tL: In the following derivation, we also have side conditions

{tZ1 }flfn(t2)=0

{yil2 }fl(fn(t i)U{}) =0

J ill I=r

yfn(t2)U{iT1}.

(yiT1) F t2

()l-t 1 	—~ t i
 (161) F- tpt2 	 (ziy)(t (id12 0 (y) (& id))

0

(i) F- ti 1-t2
12 	

t'L

where tL (t ® idk 3) (id, 0 abg1 t'fl (id,, ® Prj ,i2 0 id)

and t'(iiy)(t. (id13 0 (y) 0 id)).

Right term tR: In the following derivation, we also have side conditions

1. {yiT1}flfn(t2)0

	

Appendix A. Proofs
	 199

{i12} fl (fn(ti) U {•}) = 0

IyiZ1I=P0'

y V fn(t1)Ufn(t2)U{iiiiZ2}.

	

(y) F- Id9 * id 	() I- t1 '-- 	t

I ___________________________
(yz) I- Id9 0 	 (yii) I- t2

0

(iZ)(72)
~= (t

	

(yz) F (Id9 0 t1) . t2 	- 	0 Id 2) 	0 (Id1 1 abt1 t) (Id1 1 0 Pr1 ,12 0 Id)
ti

(z) I- t9 ((Id9 0 t 1) . t2) 	?+=4

where 4 	(iiy)(t' (idj 1® 1 2 0 (y) 0 id)) and 4 	(t 0 idk2) (id1 1 0 abg1t).

(id,, 0 Prj,la (9 id).

Note that the two derivations do not derive transitions with identical labels. The

labels differ by permutations of the binding vectors. From each derivation one

can construct a derivation for a transition which matches the other. We will just

show one of the cases.

t9t2(tZ1yi12)5(ii2) 	
PERM1

(ya)d(i12) 	I

	

I- ti . t9t2 	—+ t 	(11012 0 Pr1,p 0 Id)

It is easy to see that the side conditions in each derivation are equivalent. We

must now show that t'L (id1101 2 0 p j ,9 (& id) = 4.

Appendix A. Proofs 	 200

tR = (vy)((t'1 (9 id 2) (id, 1 (9 ab, 1 t)

Pri ,1 2 (9 Id) . (id,,®, 2 (9 (y) 0 id))

= (t (g ldk2) . (vy)((idj, (g ab,t)

.(idj (& P11,12 0 Id) . (id, 1 012 0 (y) ® Id)))

(idi i ®ri®1 2 0 (y) (9 Id) (Id,1 (& Pr1 ,1 2 0p 0 id))

= (t 0 Idk2) . (z/y)((id, 1 0 ab,t)

(idi i ®r1 012 0 (Y) (9 Id)) . (Id, 1 0 Pr j ,12®p (9 Id)

= (t (9 Idk2)' (l/y)(id, 1 0 (ab,t (Idri ®1 2 0 (y) (9 Id)))

0 Pr, ,12Øp (9 Id)

= (t'1 (g idk2) . (id, 0 (t/y)(abj,t (Id r ,®1 2 0 (y) (g id)))

0 Prj ,120p (9 Id)

= (t 0 Idk2) . (Id, 1 0 (z'y)aba, (t . (Idri ®1 2 0 (y) 0 Id)))

'(id, 1 0 Pr, ,llØp (9 Id)

= (t'1 0 idk2) . (id, 1 0 (vy)abj,(4 (Id,. 1 ®, 2 0 (y) 0 id)))

•Qd,, (9 Pr1,12 0 id) . (Id, 1 ®, 2 0 Pr 1 ,p (9 Id)

= (Idli®12 0 Pr,,9 0 Id)

Case For y (fn (t2) U {z}) we have the derivation (ytii) F t2 	t'2 with

wy:

Left term tL: Let a' = {W/y}. In the following derivation, we also have side

conditions

{ili } flfn(t2)=O

{iZ2 }fl(fn(t 1)U{}) =0

IiI=ri

y ft fn(t2)U{ti1 tZ2 }

wy.

(yii) I- t2
22("_)

(z) F
t1 (1)d,(J,1

4 (i7) F tt2
(2)2(il2

t()(4 . (i,2 0 (i12)(wii2)) (p,2,9 0 Id))
0

I
(z)Ft 1 . i

'4'
 9t2 	 > tL

Appendix A. Proofs 	 201

where t 	(t'1 ® idk2) . (id, 1 0 ab 1 t) . (id, 1 0 	® id)

and tt(y)(t (id,2 0 (i12)(wtZ2)) (p, 0 id)).

Right term tR: In the following derivation, we also have side conditions

{iZ1 }flfn(t2)=O

{iZ2 }fl(fn(t j)U{y'}) =0

kiI=ri

y' V fn 41) u f (t2) u { 1 a2 }

W{ii2}

y'w. 54

Note that one of the side conditions requires that y' j9 fn (t2) U {i12 }. Therefore,

we cannot simply rely on the name y used in the derivation (involving tL) above.

Instead, we shall choose such a fn (t1) U fn (t2) U {iZj iZ2 i}. We shall then

use the substitution lemma to establish the required correspondence between the

subderivations involving y and y'. In what follows, let a = {Y '/y}.

(y') F- id --- id
	

()I-t 1
 (a1)1(il1

(y'z')F-ici0t j
 (ili)di(y'i11),

(yiij) I- t2
(t3)52(w)

 !2
(i12)062(woil2

(y'aiii) I- at2 	Lat2
_

0 id 2) . (id, 1 0 abil l at) . (d1 1 0 Prj ,1 2 0 d) (y'z) I- (id0t1) .t2
t2 (u)al(o'cx2)(o'i12) 	, (z) I-t((id(9t1) .t2) 	-

We shall now prove the equality t'L = tR.

'I
tL 	= t 1 0 id, 2) (id, 1 0 abi 1 t(y)(t (id,2 0 (ii2)(wii2)) (p,p 0 id)))

0 Pr02 (& id)

(I = 	t1 0 idk2) . (id, 1 0 abi1t(y')({v'/j}t . (id12 (& (t12)(wi12)) (pi,,p 0 id)))

-(id, 1 0 p 1 ,1 2 (D id)

= (I (9 id) . (ici, 0 t(y')(abj1 {v'h,}t (jj,.02 (& (12)(wi12))

(idri pi2,p (9 id) (Pri,p (9 id))) - (id, 1 0 Pr1 ,1 2 (9 id)

Appendix A. Proofs 	 202

= (t ® idk2) . (ide, ® t(y')(ab1v'/vt (id r,®1 2 0 (2)(wiZ2))

.(Id,p12 (9 Id) . (pri p (9 Id) . (id 0 P11,12 Old)))

•(id a®10 1 2 0 (i12) (wit2)) (jdii®ri 0 P12,P 0 id)

.(idi, 0 Prj ,p (9 Id) (Id,1® (& Prj2 0 Id) (pi i ,p (9 Id))

= t(y')((t 0 idg 2) . (id 0 aba1 {v'h,}t)

•(1d1 1 0 Pr 1 ,1 2 ® (it2)(wiZ2)) (pij®i®ri , p 0 Id))

0120ri 0 (it2) (wit2)) (P110120r,,p 0 Id))

= tR

The above derivation shows how a matching derivation for tR can be obtained

from a derivation for tL. We argue that obtaining a matching derivation for tL

from a derivation for tR is simpler since the side conditions in the derivation for

tR (involving some y fn (t i) U fn (t2) U {}) are stronger than those required for

tL.

Axiom p5 : (x)tt = t0 ((p,,.0 0 id) (x) t) (x : q) Straightforward.

Axiom pe: tqtpt = tptq ((Pq ,p (& id) t (Pp,q (D id)) For y, 1/2 (fn (t)U{!}) we have
(iZ)(witu2il) ,

the derivation (1/11/21) F- t 	 t. By alphaconvertibihty of labels, we can

assume, without loss of generality, that {y j y2 z} n {ii} = 0.

Case w 1 = 1/1,W2 = 1/2:

Left term tL: In the following derivation, we also have side conditions

y1 fn(t)U{y2 ,z}

Y2 V fn(t)U{y1 ,}.

(y 1 y2 z) F-
t (a)d(111121)

ti
(1/21) 1- 	

(v1u06(22)V)
(vy')(t' . (id1 0 (yr) (9 Id))

(1) F tqtpt 	(vy2)((vyi)(t' . (ici, 0 (1/i) (9 id)) (Id1 0 (1/2) 0 Id))
ti

Right term tR: In the following derivation, we also have side conditions

(y1 y2 iJ) F- Pp,q ® id-
(y2yiil)

id
0

(Y2Y1 F- (pq,p 0 Id) t (Pp,q (9 Id)_(d)d(v2vii_tI

11
(y 	F- tq((pq,p 0 Id) . t (pp,q 0 Id)) (v2(v1 	(vy)(t' . (id, 0 (Y2) 0 Id))

ti

() F- -ptq((Pg,p 0 Id) t (Pp,q ® id))_(viv2c)(iJ)) (vy)t" . (Idi (9 (Yi) 0 Id))

(Y2Y12) I- Pq,p 0 Id (v1v2jd 	(y1y2) I- t
(iZ)&

(Y2Y1) F- (Pq,p 0 id) . t_(a)(v1Y2Y),

Appendix A. Proofs
	

203

{y 1 y2 fl{il}=0

y1 fn(t)U{y2 ,z}

y2 Øfn(t)U{y 1 ,i}.

where t'1 , 	 (vy2)(t' . (id, 0 (Y2) (8) id).

Note that the two derivations do not derive transitions with identical labels. The

labels differ by permutations of the binding vectors. From each derivation one

can construct a derivation for a transition which matches the other. We will just

show one of the cases.

(1') 1- ttt
(y2viiZ)(il)

t'L

(y1y2il)(i1)

() F- tqtpt 	 tj (ui, 0 Pq ,p (9 Id)

PERM1

It is easy to see that the side conditions in each derivation are equivalent. We

must now show that t. (id, 0 Pq ,p (& Id)
- 4.

tL 	= (ziy2)((vy1)(t ' . 	0 (yr) (& Id))

.(Id, 0 () (9 Id)) . 	 0 Pq,p 0 Id)

= (vy2)((vyi)(t ' . 	® (p1) (9 Id))

.(Id, 0 (Y2) (9 Id) . (id, (9 Pq,p (& Id))

= (vy2)(vyi)(t ' (ici, 0 (y) (& Id)

.(idj 0 () ® Id) . (Id, 0 Pq,p 0 Id))

= (iiy1)(vy2)(t ' . (Id, (9 (Y2Y1) 0 Id) . (Id, (9 Pq,p (9 Id))

= (vy1)(vy2)(t ' . (lii, (9 (y1y2) ® Id))

= (vy1)(vy2)(t ' (ici, 0 (Y2) 0 Id) . (Id, 0 (Yi) (9 id))

= (vyj)((vy2)(t ' . (Id, 0 (Y2) (9 Id))) (Id, 0 (yj) (& Id)

=4

	

Appendix A. Proofs
	

204

Case w 1 = y1 ,w 2 y2: Let a2 = {W2/y2}.

Left term tL: In the following derivation, we also have side conditions

w 2 5

y 1 fn(t)U{y 2 ,i'}

Y2 V fn(t) U {y ' ,z}.

(y1iz) 	t
(iZ)(viw2p

 1

	

(v2 	F- (YiZ)) (vyi)(t ' (ici1 ® (yr) 0 Id))

()
F tqtpt

1C202
tq(Y2)(t'L (ici1 0 (yjii)(w2y1i) 0 Id) (pi,q 0 id))

I, - where tL = (vyi)(t ' . (id1 0 (yr) (9 id).

Right term tR: In the following derivation, we also have side conditions

w2 y2

{y 1 y2 i}fl{iZ}=0

y 1 fn(t)U{y 2,}

y2 fn(t)U{y 1 ,Z1.

(yj w2 fi) F 	®•
(w2yiil)

id
0

i i1)
(y2Y12) F (pq,p 0 Id) . t (Pp,q 0

id) (ü) (w2y

t2
(yi) F tq((pq,p 0 id) . t (Pp, q 0

Id))()u2 (ylu2
Lt q (y2)(t' . (Ide 0 ()(w2)) (Piq 0 Id))

ti
(F tptq((Pq,p 0 Id) t (pp,q 0 id))122 -+(vyi)(t'. (Id1 0 (yi) 0 Id))

where t' 	tq(Y2)(t' (Id 1 0 (t)(w2t)) (Pi,q ® Id)).

We shall now prove the equality t'L = t.

ti

t2

(v1v2) 	 ____________ F Pq,p ® Id 	 id 	(y1y2) F 	
(il)6(ylw2i1 	

1

(Y2Y1 F (Pq,p ® Id) . t_((v1w2t

Appendix A. Proofs

t'1? = (iiyi)(t q (Y2)(t' (i1 0 (fi)(w 2 ii)) (0 Id))

.(1d1 0 () (9 Id))

= (iiyi)tq(Y2)(t' . (, 0 (iO(w2it)) (pi,q 0 Id)

(idq®i 0 () (9 ld))

= tq (Y 2)(ilY i)(t' . (idz 0 (iZ)(w 2 iZ)) (P1,q 0 d)

(idq®s 0 (ni) (9 id))

= tq(Y2)(l'Yi)(t' (id, 0 (il)(w2ylu)) ((& Id))

= tq(Y2)(1'Yi)(t' • 	0 ('1) (9 id) . (id, 0 (y19)(w2y1 u))

(pz,q 0 Id))

= tq (Y2)((1'Yi)(t' (ia, 0 (Yi) (g i) • (Id, 0 (y 1)(w 2 y 1))

(Pi,q 0 Id))

=t

Case w 1 96 Y1 i W2 = y2: Let Oj = {Wi/y 1 } .

Left term tL: In the following derivation, we also have side conditions

Wi 36 Yi

y1 fn(t)U{y2 ,i'}

y2 V fu(t)U{yi ,'}.

t2
(y2z) I- fpt ()15(v204 f(y1)(t ' . (ici, 0 (ii)(w i il)) 	0 (p,,, 	Id))

ti
(

) I- tgtpt
(v2)o16(c z 	 1

 (vy 2)(t. (Id, 0 (Y2) 0 Id))

where t't(y)(t' (id, 0 (6) (w, u—)) . 	id)).

Right term tR: In the following derivation, we also have side conditions

w1 	yj

{y1y2z}fl{iZ}=0

y1 fn(t)U{y2 ,}

Y2 V fn(t)U{yi , z}.

(y1y2z) I-
t (ii)(wiyiI)ti

205

Appendix A. Proofs
	

206

0

	

(Y2Y1) F (Pq,p 0 Id) . t_((w1v2+tI 	 (wiy2il) I Pp,q 	
(V2Wiil)

Old 	—) = Id
0

(y2y11) I• (Pq,p 0 Id) . t. (Pp,q 0 Id) 	1V2J_=t1

.tl
(y i z) F tq((pq,p 0 Id) t (pp,q (9 id)) (v2u)5(wiil_(vy2)(tl (j, (9 (Y2) 0 d))

(2
S 	 II

	

(1) 1- tptq((Pq,p 0 Id) t. (pp,g ® Id))21 	=tP(y1tR (Id, 0 (y2i)(wiy2u) (pi,p 0 Id))

where t' (vy2)(t'. (id, 0 (Y2) 0 id)).

We shall now prove the equality t'L = tR.

tL 	(z'y2)(t(y1)(t' (ici, 0 (ii)(w i ut)) (pg,p (& Id))

.(Id, (9 () 0 Id))

= (iiy2)t(y1)(t'• (Id, 0 (il)(w 1 u)) (pz,p (9 id)

•(Ici ®, 0 () (9 Id))

= t(y1)(vy2)(t' (id, 0 (iZ)(wi iZ)) (pz,p 0 id)

® () 0 Id))

= t(y1)(iy2)(t (Id, 0 (Y2) Old) (Id, 0 (y2)(w 1 y2))

(Pi,p (9 Id))

= t(yl)((i'y2)(t ' (ici, 0 (Y2) Old)) (ici, ® (y2 tZ)(wiy2 iZ))

(Pi,p (9 Id)

=4

Case w 1 34 Y1 i W2 96 y2:

Subcase w 1 = y2 ,w 2 = y: Let o = { Y2/y1} and a2 = {Y11y2}.

Left term tL: In the following derivation, we also have side conditions

Y1 36 !h

yi fn(t)U{y2 ,iZ,}

y2 fn(t)U{i}.

(y1y22) I- t ()(v2v4)
 t'

t2 (tZ)ajt(y2a
(y2z) F 	 - t(y1)(t' (ici, 0 (i)(y2ii)). (Pi,p Old))

ti
(1)

F ttt (yza)ai 	(vy 2)(t . (hi, 0 (Y2) 0 id))

(Y2Y1) F Pq,p ® d 	*=id 	(Y1Y2) I- t 	
z7)

 t1

I'

Appendix A. Proofs 	 207

where t'1 	t(y1)(t' (id1 ® (iZ)(y2il)) . (p,, 0 id)).

Right term tR: In the following derivation, we also have side conditions

{y j y2 }fl{iZ}0

Yi

yi fn(t)U{z'}

Y2 Øfn(t)U{yi,ii,.}.

	

(y2y1) F 	
(y1y2 r)

Pp,p 0 Id 	 id 	(YiY2) F t
(d)(y2y1) e

0
(ylyail)

(Y2Y1') F (pp,p 0 id) t_(a)(v2v1ll 	 (y2yi3) I Pp,p 0 d
0

(Y2Y1 2) F (pp,p 0 Id) t - (Pp,p 0 Id)_()&(v1vztI

	

(Yi 	F 	0 Id) . t. (pp,p 0 Id)) 	 (ide 0 (il)(Y2)) (pj,p (9 Id)) P,P

(V12c(u(Vy)((Id, 	(yr) 	Id)) (z) F 	 0 Id) . t. (pp,p 0 id)) 	 tn 	0 	0

where tI,
R = i 	. (id, 0 (iZ)(yiu)) (p1 ,, 0 id)).

Equality of labels and residuals follows by aiphaconversion.

Subcase -'(w 1 = y2 Aw2 = yi): Let o = { Wi/y}, a2 = {W2/y2}, 4 = {(a1W2)/y2}01i

and a = {((r2w1)ftJi}a2.

Left term tL: In the following derivation, we also have side conditions

w 1 	Yi, 0iW2 76 Y2

yifn(t)U{y2,t7,z'}

y2 fn(t)U{il,}.

(y1y2z)
F t (t)6(w,w1)

(Y2) F t,,t
(a)oi6(oiw 	

t(y1)(t' (Id, 0 (iZ) (w1u)) • (p,, 0 Id))

(z) F tqtpt 	 t(y2)(t'L • (ia, 0 (il)((aiw2))) (pz,q 0 Id))

where t'. 	t(v)(t' (id, 0 (iZ)(W i fi)). 	 (p,,, 0 id)).

Appendix A. Proofs 	 208

Right term tR: In the following derivation, we also have side conditions

{y i y2z}fl{i}0

0•2 w 1 54 Yi, W2 	Y2

y 1 fn(t)U{iZ,2'}

y2 fn(t)U{y 1 ,iZ,.'}.

(w2wjil)
(ww 2 i) F Pp,q 0 id

0

(y2y12) F (pq,p 0 Id) . t. (pp,q 0 Id)
(6)6(w2w11)

t2 ()u2a(o2wj
(Yi F f q ((Pq,p 0 Id) . t. (pp,q 0 id)) 	 . (id, 0 (ii)(w2 iZ) (pgq (9 Id))

(d(oi1)
i tptq((Pq,p (9 Id) . t. (Pp,q 0 Id)) 	 t(y 1)(t. (Id1 0 ()((a2 w 1)0) (p,9 (9 Id))

- I,
R where t = ig (y2)(t'• (id, 0 (iZ)(w 2 iZ)) (p (9ld)).

To show that the labels for left and right terms are equal, it suffices to show that

Orl = o. We are working under the following assumptions:

w1 y2 Vw2 y 1

Yi 0 Y2

w 1

Wi 0 Y2•

Case w1 0 y2 ,w2 54 !Ji Then

{ {W/. }Wi,6di } { W2/y2 } = {Wi/y1 } { W2/y2 }

= {W2/y 2 }{Wi/y} = {wiiW2, 2 }{Wi,6}

Case Wj y2,w2 = Yi Then

{{w22}Wifrg}{W2fry} = {Wi/y j }{1Ji/y2} = {Wi/y1}{Wi/y2}

= {Wi/y 2 }{Wi/y j } = {{wlbil}W2/y}{Wi/y}

Case Wj = Y2, W2 Yi Then

{ {w2/ii2}wl/y }{W2/y } = {Wi/y1}{Yi/y2} = {W1ftji}{Wi/2}

= {Wi/y 2 }{Wi/y j } = {{w1i}W2fry}{W1frj}

(y1y2)
(Y2Y12) F Pq,p 0 Id 	— id, (YiY2 F 	 '

(Y2Yi 	F (pq,p (9 id) t_()a(w1w2ilt,

t2

Appendix A. Proofs
	

209

We shall now prove the equality t = t.

= 'tp(yi)(tq(Y2)(t' . (Id1 0 (ifl(w2iZ)) (pz,q 0 Id))

0 (iZ)(({ w 2 ,2} w 1))) (pt,p 0 Id))

= tp (Yi)t q (Y2)(t' 	0 (iZ)(w2iZ)) (p,q 0 Id)

(id q®i 0 (IZ)(({t 02/V2}wl)ii)) (id q 0 p,p 0 Id))

= tp (Yi)tq (Y2)(t (pj,,. (D Id) . ()((idi 0 (w2ii)) (p, (& id)

(id q®i 0 (il)(({"2/i,2}Wi)ii)) (idq 0 p,p (9 id)))

= tp(Y1)tq (Y2)(t ' (pg,,. (9 jd) (iZ)((w2) 0 ({w2/y2 }Wj) 0 Id1 0 (ii)))

= tp(yi)t q (Y2)(t' . (p,,,. o Id) ()((W2) 0 (wi) 0 Id1 (9 (a)))
	

A.1

= tq (Y2)tp (Y1)(t' (pi,r Old) . ()((w) 0 (n) 0 Id, (9 (i)))

= t(y2)tP(y1)(t (p,r (9 Id) . ()((w 1) 0 ({Wih,j}tJ)2) 0 Id, 0
	

A.1

tq (y2)tp (Yi)(t' • (p,, 0 Id) ()((id, 0 (w i il)) (pi,q (g Id)

0 (?i)(({wl/0w2)i.Z)) . 	(9 P1,p 0 Id)))

= tq(Y2)tp(Y1)(t' (ii 0 (iZ)(wiu)) (p:,p (9 Id)

.(id,,j 0 (iZ)(({tlh/v1}W2)iZ)) (idp 0 P1,q (9 Id))

= tq(y2)(tp(Yi)(t' (idi 0 (it)(wj iZ)) (p, 0 Id))

. (Id, 0 (.ij)(({wl/1}w2)fj)) (pz, q 0 id))

41

-

By the standard derivation lemma, for any derivable () F- t1 --* t, there is a subderiv-

ation, for some 5 and t' = t, of (z) F t1 --+ t' following which only permutation and

sc rules are applied. The application of these rules does not depend on the structure

oft 1 but only on the labels of the transitions. Moreover, the residual of these rules is

obtained by introducing contructions around the residual of the premise which depend

only on the labels. By the above, for some t, of (z) F — t2 - t'2' with t = t'. Apply-

ing the same sequence of permutation and SYNC rules to this derivation clearly gives a

derivation of (i) F- t2 --+ t for some t'2 which is equal to 4.

Appendix A. Proofs
	

210

A.3 Labelled Transitions

Proposition 5.13

(z) F t 	 [(z) tj = (fl](il) and t' =

(z) F t 	 • t 	[(xti)out,a(i')](i) and t' =

(Z)z(i1) 	____ 	 _
(z) Ft 	—3 =t 	 t = [(x)boxa(u i),p(u2)](il)

and [t' =

with a = (0)XWa)(!0) and {iZ} = { ii12} = {'}.

Proof (==) Let the (unique) inverse map of 	be . Then, by structural lemma

and lemma 5.12, it suffices to give a derivation of F

(1) Consider the inverse translations of the molecular forms of (1) t and t', assuming

=
=

By lemma A.5, for any 9, 17 such that {il} fl {ti} = 0 and {il} = { 17}, we have:

(17)(i)

Choosing g, 17 such that {il} fl {IZ} = 0 and (17) () 	(ii') (iZ), we can derive by

lemma A.3, and the above transition:

(v1({/€r}il) F tm(fl(' (9 (ii)) 	—p tm()((17)() . ((17))

But since {17/iZ'} = {}, we have (({17/i}iJ) = (17)({9/ii}i) = (tZ)(ii). We shall

now show that the residual is as expected:

	

Appendix A. Proofs 	 211

(14- 	(uZ))

= tm(')(U7
(7)(4))

(9 (ii)) 	 2.16(5)

= tm (ui')(L1 ((')() 0 (II)))

= tm()(()((!i) 0 ())) 	 2.16(2)

= 	 A.1

= tm(')((9')((') 0 {'iZ}(iZ)))

=

(2) The inverse translations of the molecular forms of () t and t', assuming ir : m

are given below:

II = tm(')((10h1tz0(&(13))

=

By lemma A.5, together with the tensor and out2 rules, for any , !7 such that

{'} fl {il} = 0 and {ff} = {}, we have:

I- (u) .out®®(ii) 	(ti) ®(. ()())

where U: 1, and {} fl {xiiJ} = 0. Choosing il such that {} fl {il} = 0 and

()() = (ifl(iZ), we can derive by lemma A.3, and the above transition:

tm(fl((t) . out 0 I0 (il))_(i)cr(oi1)

where t" = tm (it)(((w) e(• ()())) . (id,®(1i)()) (pi,m(9 1)) and o

But since {fiZ'} = { i/1TZ}, we have ({/iTZ'}({li/it}il) = =
(iI)(i3). We shall now show that the residual is as expected:

tm(')((& (tiJiI))

= tm()((W)(ü)) 0 (1j1)) 	 2.16(5)

= tm (1t)(I (W)W) 0 (tliti)))

= tm()((?i)(W)®(T))) 	 2.16(2)

Appendix A. Proofs
	 212

= 	 A.1

= tm(')(
(4)((4) ® { 4/it}((tii) ® {il/iZ}(iZ))))

= tn()& (')(W) 0 {/r}((ti) ®

= tm (1Tt)(W)(() 0

= tm()(()(1)) 	 A.1

Id))

tm (t)&1 ()((((1dm 0 (ta) old))

= tm()Wt) (& ((7)()) (jd 0 (W) (p11 0 Id))

(3) Consider the inverse translations of the molecular forms of (1) t and t', assuming

m i and i7 : k.

fr = 	 (0uZ))

By the box2 rule and lemma A.4, we have I- boxa -V" a ® (th)() where

and x {}. Then, by lemma A.5, together with the tensor rule, for

any 17, such that {17}n{ii} = 0 {17} = {}, and {rfl(fn(boxa)Ufn(a0(i)) =0

we have the following transition:

I- box®i0 (ii) (u)Z!Z (a®Th (fl()

Choosing 17, 7 such that {17} fl {tZ} = 0 and (9') (1i) = (iZ1 iT2)(i), we can derive by

lemma A.3, and the above transition:

I- tmi®m2 (i2)(b0 	0 MU (9 (7)) (il)o4tll

where t" = fmj®ma (ili2)((a0a) • (ifl() (()) and a = {'/iZ1 ti2 }. But since

{'fiZ 1 i 2 } = {il,4TZ}, we have (y1ax(a5) = (){17fiZ}x({)4i}i) = (i)x(J). We shall

now show that the residual is as expected:

Appendix A. Proofs 	
213

tmi(l)tk®rn2Wa20® ® (U))

= 	tmi(1)tm2W2)tk 	a)(o)(® 	® (2a0)
3.26*

= 	tm2(U2)tmi(U')(tk)0®! 	(1a0)

(Pm2,111 (9 Id)) -
3.26*

tm2(2)tmi1)tk ®(&
(aU))

•(idk 0 Pm2,rni ®id)) 2 . 16(1)*, 3.9(4)

tm2(U2)1rnl(U1) 0® (ia) OLZO (ii))

= 	tm2(2)tml 	l)tkaa ®

.(id,O (4)(W') ® (iZ)))) 2.16(5,2)

= 	tm2(2)tmi(1) 	°)C'0 (so) 0Th
.()(() (D (Z))) 3.9(4)

) . (7)((7) ®

= 	tm2(2)tmi(1)®
 Ad

= 	tm2(2)fmi(ili)Ua0 	()(W) ® 	 (il)))

= 	tm2(u2)tml (ill) 	. (fl(Wy)))

(')(y)

tmi®ma (h1 2) 0 o) . ()() 	(()) 3.26*

Index

abstraction, alternative form, 21 copy, 59

AC, 22 CS(K), 46

ACVS , 102 CS(K,1Z), 46

ACPS , 88 CSr(AC,.R.), 79

AC, 54 CSrS(A), 78

AC, 62 CS 8 (K), 43

action calculus, 26
decomposition

molecular forms, 19
maximal, 106

statics, 25
ure, 106

p

terms, 20
DISCARD rule, 155

action structure, 15

static, 13 effect structure, 105

arity, 13 environment, 128

prime, 15

rule of, 18
free names

in label, 126

bisimilarity, 147 free names fn, 20

parameterised, 152

strong, 150 homomorphism

bisimulation, 147 of action structures, 15

parameterised, 152 of static action structures, 14

strong, 150
inertia, 104

body, of action, 19
iteration iter, 60

concrete effects, 107 	
label, 126

constructor rule, 132 	
active, 159

context, in PICr, 152 	
labelled transition relations, 140

control 	
labelled transition sequent, 128

dynamics, 25

statics, 18 	 molecular forms, 19

control structure, 35 	 operations on, 20

214

Index 	 215

reflexive, 51

strict reflexive, 63

names, 13

binding, 19

free and bound, 19, 20, 126

VSKEL, 100

iiskel, 101

permutation rule, 132

permutor p, 21

PlC, 26

Plcr, 117

postcomponent, 105

principal term, 128

pSKEL, 85

pskel, 86

reaction

preorder \, 15

rule, 25

single-step ", 118

recursion, 59

redundant binding, 156

reflexion, 52

iterated, 52

reflexive action calculus, 58

molecular forms, 51

statics, 57

terms, 53

reflexive control structure, 65

strict, 80

reflexive substitution, 51

simultaneous, 52

residual term, 128

restriction, 72

retraction, 107

semantic substitution, 36

signature, 18

skeleta

pure, 85

dynamics, 95

operations on, 86

restriction, 100

dynamics, 108

operations on, 101

standard derivation, 141

with DISCARD rule, 155

sub-actionstructure, 15

static, 14

subject name, 117

substitution, 21

surface surf, 31

symmetric action structure, 30

symmetry c, 29

synchronisation rule, 132

trace, 65

