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Abstract 

Action structures have been proposed as an algebraic framework for models of con-

current behaviour. In this thesis, refinements of action structures are developed, 

providing an abstract treatment of the structural aspect of processes, as well as a 

setting in which to study their dynamics. 

Concrete models of concurrent computation such as Petri nets and the 'r-

calculus have been cast as action structures in a uniform manner, giving rise to 

a concrete class of action structures, called action calculi. As a result, action 

calculi are here adopted as the point of departure towards an abstract algebraic 

treatment of process construction and concurrent computation. The refinement 

of action structures to control structures gives a semantic space for action calculi; 

and includes a semantic account of names, based around a semantic counterpart 

to the syntactic notion of free names called surface. 

Two variants of action calculi are explored in analogous fashion. Present in 

these variants are some intuitively appealing aspects, such as greater expressivity 

of dataflow; a semantic treatment of name hiding or restriction; and, in one of the 

variants, garbage collection of restricted but unused names and a characterisation 

of surface in terms of restriction. 

While the treatment of process constructors reveals rich structural issues, the 

algebraic framework given by control structures provides considerable support for 

studying the dynamical aspects of processes. In particular, it allows a comparison 

of diverse action calculi upon their dynamic properties; illustrated here is a method 

of achieving this. The method involves an examination of action calculi dynamics 

through the images of the calculi on a common static model called a classifier. 

Finally, as a step towards establishing formal connections with mainstream 

process algebra, an operational semantics for PlC, the ir-calculus cast in the frame-

work, is developed. Labelled transition relations on the terms of PlC' are defined, 
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leading to the formulation of operational models through the familiar technique 

of bisimulation. 
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Chapter 1 

Introduction 

In the study of concurrency one encounters two distinct but complementary no-

tions: independence and interaction. Independent entities, which we shall refer to 

as processes may interact and moreover, interaction may result in dependencies—or 

links—being established between such processes. Processes which are independ-

ent and yet cannot influence one anothers' behaviour are hardly interesting: it is 

debatable whether such silent or non-interacting processes are even observable. 

One of the aims of developing a theory of concurrency is to support engineering 

reasoning for the construction and analysis of systems composed of concurrent 

parts. This imposes two broad concerns on our enquiry: one to do with structure, 

specifically relating to how entities may be put together; and the other to do 

with behaviour, which allows us to tell when two such entities may be considered 

equivalent or interchangeable without effect on the system they might form part 

of In this setting, the abovementioned concerns with linkage (dependency) and 

interaction are manifest as the interplay between structure (statics) and behaviour 

(dynamics). 

Many existing models for concurrency address both these concerns ,in either 

of two ways. Process-algebraic models start by identifying process constructors 

(structure) and then go on to assign behaviours to the processes built from them. 

An alternative, sometimes called denotational, approach starts by proposing struc-

tures for modelling behaviour and then provides constructions on these structures 

which correspond to the process-algebraic constructs. 

1 
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Behavioural models are often based on an abstract notion of interaction or its 

observation: in such models these notions are assumed as given a priori. Moreover, 

most models of this kind capture a specific type of relationship between distinct 

events, as we shall refer to both interaction and its observation; the relationship 

is usually expressed in terms of mathematical structure imposed on the events. 

Examples of such structures are traces and synchronisation trees which respectively 

reflect the linear and branching ordering of (potential) events. Some structures 

such as asynchronous transition systems and event structures account also for the 

causal relationships between events. The notion of independence, concurrency 

or parallelism is typically presented as a property of the structures employed to 

describe such causal links between events. 

Taking the behavioural approach, Nielsen, Winskel and others [32,33] have clas-

sified some of the existing models by casting them in a category theoretic setting 

where the relationships between the models are expressed in terms of reflections 

and coreflections: adjunctions which represent the embeddings between models. 

Their classification is motivated by three independent parameters: abstraction 

from the causal independence of events by a nondeterministic interleaving; abstrac-

tion from the looping structure by unfolding; and abstraction from the branching 

structure by regarding a process as a collection of event sequences corresponding 

to paths in the computation tree (traces). Their work also addresses the issue 

of process constructs through categorical constructions on the behavioural struc-

tures. Indeed, an important part of their work is in establishing connection with 

process algebra, not only by recovering the constructions, but also in giving an 

account of the ubiquitous operational-semantic device of bisimulation [13]. 

Even within a narrow behavioural view, the degree of choice (of process model) 

is large. In [7] van Glabbeek provides an extensive comparison between the vari-

ous equivalences which abound in what he calls the linear time-branching time 

spectrum bounded by bisimulation on transition systems at one end and trace 

equivalence at the other. The models considered differ in their choice of what 

should be taken as an observable interaction, in the structures built from the ob- 
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servations and finally in the equivalences on the structures used to obtain more 

abstract models. 

The traditional approach employed in process-algebraic models has been to 

describe (a fixed set of) process constructors as a term algebra. The behaviour of 

a process would then be obtained by defining labelled transition relations between 

terms which reflect the ability for interaction of the process described by the term. 

The labelled transition relations are then employed to generate, depending on the 

behavioural structure favoured, transition systems; transition trees; or transition 

paths for each term. These structures would then be factored by equivalences 

based on the labelled transitions which constitute them, giving a behavioural jus-

tification to the semantics. Some of the equivalences will be congruences and the 

identifications made induce equations on the terms giving a term algebra. One pos-

sible advantage of this approach over the behavioural one is that no commitment 

to a particular notion of behaviour (or its observation) is made a priori. Indeed, 

by considering different equivalences, the interpretation of process terms can be 

effectively varied; even the notion of interaction can be modified by changing the 

labelled transition relations for a given set of process constructors. Examples of 

the algebraic approach includes process algebras such as CCS [31], CSP [9], the 

box calculus [4] for Petri Nets [34] and the ir-calculus [30,22]. 

Process calculi take process constructions as their starting point and include 

explicit accounts of the dynamic interactions of processes. However, the variety 

of process algebras indicate the absence of a canonical algebraic structure for 

concurrency. One interesting approach to dealing with this diversity is provided 

by Berry and Boudol's Chemical Abstract Machine (CHAM) for "implementing" 

process calculi [3]. Based on multisets—following the ideas of Banâtre and Metayer 

[2]—the CHAM suggests common underpinnings for the various process calculi 

representable as CHAMs and also provides a basis for comparison. Indeed, the 

CHAM was to prove an important source of inspiration for the concrete structures 

in which existing process calculi are cast in this thesis [21,24]. 

Action structures have been proposed by Mimer [21] as a general framework 

in which concrete models of concurrency and interaction may be studied. These 
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structures are essentially strict monoidal categorieS' [161 with added structure in-

cluding reaction, 
a local preorder on the arrows. The arrows of an action structure 

are called actions 
and represent processes, while reaction represents their dynam-

ics. This algebraic framework does not make any commitment to a specific level of 

abstraction and simply provides a setting in which to cast and study combinatorS 

which express process constructions: the axioms of an action structure constrain 

but do not determine the interpretation of the operations. Furthermore, a class of 

syntactic action structures has been developed [24], called 
action calculi; provid- 

ing machinery fordealing—syntactically—with name binding and substitution. 

In addition to these operations, an action calculus is obtained by the inclusion 

of a set of combinators, called controls, and an associated set of rules describing 

their dynamic behaviour. These combinators are sufficiently powerful to enable 

processes to be represented as complex actions. Mimer has shown that existing 

models such as Petri Nets and the ir-calculus fit readily in this framework [2411 

indicating that the expressiveness provided by existing models is not limited by 

this reduction of entities. 

To return to our initial remark, we shall now cast the notions of independence 

and interaction in terms of action structures. Processes (here called 
actions) are 

represented by the arrows of an action structure: tensor product embodies the 

operation of parallel composition or, in behavioural terms, independence. Com-

position signifies a form of data dependency: a . b indicates that the information 

produced by a, say, as a result of computation, is fed into b. The idea of datafiow 

may be hard to intuit in the context of process algebra. In most process algebras, 

processes exchange data through synchronisation and not through static links of 

input and output as in functional paradigms. Such processes can be thought to be 

special cases where such input and output "datafiow channels" are absent. The 

presence of datafiow channels provides an interesting form of dependency; in a b 

use of monoidal categories to model concurrency has at least one precursor in 

Meseguer and Montanan's modelling of Petri Nets as a monoidal category [191. 
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the process b "depends" on a in the sense that information passed by a to b may 

influence the behaviour of b. 

Interaction, or computation (we shall not distinguish the two), is represented 

by the reaction preorder \A  with a \ b meaning that a can get to b as a result 

of computation. The correspondence between independence and interaction may 

now be phrased as follows: computation may produce changes in the dataflow 

topology of a process; and, in turn, the presence of dataflow channels between 

processes may, by the information flowing through them, affect the computational 

behaviour. 

Other approaches towards establishing a general framework for concurrency in-

dude Meseguer's conditional rewriting logic [18], whose models he calls R.-systems. 

In an 1Z-system algebra, the carrier consists of the computations of an individual 

process, whereas in action structures, the processes (actions) themselves constitute 

the carrier. An alternative approach with similar motivation as for action struc-

tures is Abramsky's interaction categories [1] which provide an expressive type 

structure that controls the construction or linking-together of processes. One dif-

ference between interaction categories and action structures is that in the former 

the use of names to express such linkage (as employed inaction calculi) is eschewed. 

Another is that the treatment of dynamics in action calculi is more explicit through 

the employment of controls and reaction rules. The differences apparent among 

the various models are indeed striking; yet, if a canonical abstract semantic model 

for concurrency is to be found, the common elements underlying the structure of 

processes and their dynamic behaviour must be identified. It is their aspect, not 

the elements, that is distinct in each of the models mentioned. 

1.1 Objectives and Outline 

The task of eliciting common abstract structure in process-algebraic models for 

concurrency is assisted by the ability to cast various existing models within a 

common framework. This is just what the notion of an action structure provides; 
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indeed, as mentioned above, a concrete kind of action 
structure_actbont calculi-

exists which allows such models to be represented. The availability of a common, 

albeit concrete, structural basis leads to a natural strategy for 
extracting the 

underlying abstract structure; the strategy is to look for the additional 
abstract 

structure present in (all instances of) action calculi which is not provided for by 

action structures. Technically, this is achieved in this thesis by a refinement of 

action structures, which we call 
control structures, amongst which action calculi 

occupy a special place as the initial such. Two remarks are in order at this 

point; the first concerns the qualification of action calculi as the right kind of 

structure in which to cast concrete models of 
concurreflcy can one do with less 

structure, or, indeed, does one need even more? That 
commonly used models fit 

the mould is evidence only of being on the right track. The second remark concerns 

the refinement of action structures which will provide an abstract semantic space 

of interpretation for action calculi: there may be many such refinements which 

give the required result, namely the initiality of action calculi. The choice must 

therefore be justified by additional factors. 

The starting point of this thesis—that which is justified solely by example and 

intuitiOnis a syntactic form for representing concrete models of concurrent com-

putation: the molecular form presentation of action calculi. Mimer claims that 

Berry and Boudol's CHAM provided an inspiration for the molecular forms; and 

that the resulting action calculi provide a kind of algebraic version of it. A con-

templation of their similarity highlights also their differences, and also suggests 

possible variations. To simplif3' 
considerably, the molecular form provides an en-

hanced kind of CHAM with datafiow between molecules. We shall see that, in the 

first kind of molecular form presented in this thesis, this datafiow is constrained 

in a particular fashion. This will lead us to present a variation of the molecular 

forms where the constraint is eased. Such consideration of alternatives is partly in 

response to our concern with the qualification of the molecular forms as the right 

concrete common basis for representing processes. 

As suggested by the above, the main result obtained about action calculi con-

sists in providing an appropriate refinement of action structures, of which action 
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calculi are the initial instances. In the search for the right abstract structure, 

the problem of giving a semantic account of names, and their attendant syntactic 

notions such as freeness, binding and substitution, turned out to be one of the 

most challenging aspects. In many process calculi, names have a crucial role in 

specifying interaction and have a greater role than that of simple "place-holders" 

as do variables in, say, the A-calculus. Thus, names—or as John Power insists [8], 

naming—have a semantic presence beyond that of simple indeterminates. While 

in many process calculi, the names of channels are kept distinct from the names 

employed as place-holders or variables, this is not universally the case: in the 

ir-calculus, names assume both roles, giving the calculus the means to express 

mobility of channels. Therefore, it should not be surprising that in developing our 

model we were compelled to deal with the issue of naming. 

Our abstract semantic treatment of action calculi focuses predominantly on 

their static structure. We recall that action calculi are determined by the controls 

and their reaction rules; the controls are responsible for providing additional static 

constructions. The computational behaviour of an action calculus is specified 

syntactically by a set of reaction rules which, by some closure conditions, determine 

the reaction relation. In the definition of action calculi, only lax constraints have 

been imposed on the forms that such rules can assume (for instance, that both 

sides of a reaction must have the same antics). Therefore, one way to explore 

the dynamics is by means of a classification of reaction relations based on some 

syntactic criteria on the reaction rules which induce such relations. 

An alternative means for exploring dynamics is provided by a device we shall 

call a classifier. A classifier is a (concretely or abstractly specified) model of static 

action calculi—that is, one which does not necessarily preserve the dynamics-

which arises uniformly from any set of controls. This allows a comparison of 

action calculi to be made by considering their image onto a common model. For a 

comparison of the dynamics, we shall consider (homomorphic) maps from action 

calculi to their models which preserve the reaction relation; accordingly, associated 

with the classifier will be a (fixed) reaction relation, which somehow embodies the 

property of dynamics in question. Thus, since static structure alone ensures the 
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existence of a map to the classifier, the existence of a map which preserves the 

reaction relation will depend on the reaction relation of the action calculus. In 

this way the classifier distinguishes between those action calculi which have such 

a map to those which do not. This approach is useful when the existence of 

such a map can be related to some interesting property of the dynamics, such as 

mobility. In the second part of this thesis, we will explore two related examples of 

such classifiers. 

One of the results obtained for control structures, and their reflexive variants, 

is closure under quotient by congruence. This allows us to obtain computationally 

meaningful models (control structures) through an operational semantics. For 

process algebras such models have traditionally been obtained through bisimilarity 

on labelled transition relations between process terms. This technique will be 

applied to a leading example: the ir-calculus cast in our framework. 

In summary, this thesis will include a general treatment of the static, or data-

flow, aspect of processes and a foray, largely by way of concrete example, into the 

issues concerning dynamics. It is loosely organised in three parts. The first ex-

plores mainly the static structure of processes, with special emphasis on the nature 

of static dependencies and their expression through naming. The rest of the thesis 

will be concerned with providing examples and applications of the semantic frame-

work established. In particular, we illustrate the potential of the framework for 

providing a means of comparing diverse action calculi upon their dynamic proper-

ties. Another example deals with an operational semantics of the ir-calculus cast 

in our framework. The notion of a labelled transition is developed for this example 

with the purpose of eliciting the underlying semantic ideas embodied by labelled 

transition relations. The presence of labelled transitions permits comparison with 

the traditional presentation of the ir-calculus and provide a basis for obtaining 

operational models through bisimulation. 

Outline by chapter 

Below is a brief outline of each chapter. 
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Chapter 2: Control structures Action structures are reviewed as an algebraic 

variety underlying models of concurrency. Action calculi, a syntactic class 

of action structures parameterised over a set of control constructions, are 

then introduced. Action calculi, each determined by sets of such controls, 

are presented in two ways: through syntactic constructions called molecular 

forms; and as a term algebra factored by a congruence arising from a set 

of equations (the theory AC). Central to the semantic treatment of action 

calculi is the notion of surface, which provides a semantic counterpart to 

the syntactic concept of free names. Inspired by the definition of surface, 

we formulate an elegant refinement of action structures which yields a class 

(actually, a category) of models for action calculi. The category of control 

structures is shown to be closed under quotient by congruence. 

Chapter 3: Reflexive control structures The reflexion operation, which cor-

responds to a form of feedback in a dataflow interpretation, is introduced 

by means of a set of equations (giving, together with AC, the theory AC") 

constraining its interaction with the operations of a control structure. By 

way of illustration, we show how reflexion—in the presence of higher order 

controls—provides a form of recursion. The inclusion of reflexion leads to a 

variation of action calculi which will be called reflexive action calculi. Sim-

ilarly reflexive control structures are defined as a corresponding refinement 

of control structures in which reflexion is manifest as a trace on a strict 

monoidal category. Analogously to chapter 2, the main result holds that 

the reflexive action calculus determined by a given set of controls is initial 

in the category of reflexive control structures over that set of controls. The 

imposition of an additional equation governing reflexion is also considered, 

resulting in a form of garbage collection in the resultant (reflexive) molecular 

forms; it also allows an alternative characterisation of surface. 

Chapter 4: Skeleta Two kinds of reflexive control structures are explored in 

terms of both their static and dynamic properties. Skeleta are syntactic 

reflexive control structures in which some of the structure of the controls 

is forgotten. This allows them to be uniformly defined for arbitrary sets 
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of controls and this fact makes them useful in comparing and classifying 

reaction rules, and thereby, action calculi. For each of the skeleta under 

consideration, we shall define a natural notion of dynamics. This will be used 

to determine certain dynamic properties of those action calculi for which a 

structure-preserving map (homomorphism) to the skeleta exists. 

Chapter 5: The reflexive ir-calculus In this chapter we establish the setting 

for an exploration of the dynamics of an important example of reflexive con-

trol structures: the reflexive ir-calculus PlC'. Derivation rules for labelled 

transitions on the terms of PlC are presented and shown to derive identical 

transitions from equal terms. This allows us to establish a meaningful corres-

pondence between transitions on terms and computations on the molecular 

forms, thereby justifying our use of the labelled transition relations as a basis 

for an operational semantics. 

Chapter 6: Bisimilarities Strong bisimilarity is defined in the expected way 

on the labelled transitions. This bisimilarity is shown to be too strong as 

it does not identify enough actions which are deemed behaviourally indis-

tinguishable. A technique for obtaining weaker forms of bisimilarity is then 

presented. This technique consists essentially of specifying the set of labelled 

transitions upon which the bisimilarity will be based. Sufficient conditions 

are given for the congruentiality of the bisimilarities obtained in this way. A 

limitation of the technique is also identified and a rectification is proposed 

through the introduction of a further rule for obtaining labelled transitions. 



Chapter 2 

Control Structures 

Concrete models of concurrency such as Petri Nets and the ir-calculus, may be cast 

as action structures in a uniform way, as instances of a syntactic class of action 

structures called action calculi. Two presentations of action calculi exist [24]: 

a direct construction of the syntactic objects called molecular forms, and the 

quotient of a term algebra whose constructors include the operations of action 

structures. These two presentations have been shown isomorphic in [23]. 

Each action calculus AC(AC) is determined essentially by a set AC of control 

operations called a signature; for example, an action calculus for an interesting 

fragment of the ir-calculus is obtained by the controls ii, out and box (restriction, 

output and input guarding respectively). AC(K) may also be equipped with a 

set of reaction rules R.—in which case we write AC(AC, R.)—which determine its 

reaction relation; these rules provide the meaning of the controls in AC. 

Our aim in this chapter is to find a natural category of action structures in 

which AC(AC) is initial. In effect, this entails selecting a space of semantic interpret-

ations for AC(AC), which we shall call control structures over AC. These structures 

together with the expected notion of homomorphism form a category CS(AC) with 

AC(AC) initial. 

A significant difficulty to be overcome in defining control structures is the 

treatment of names. The difficulty arises as the axioms of an action calculus 

are not purely algebraic; they are axiom schemata rather than axioms since they 

11 
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contain side conditions which make reference to the free names of action terms. A 

finite set of pure algebraic axioms which are equipotent (in the term algebra) with 

the action calculus axioms would guarantee initiality for AC(AC) in the category 

of structures arising from such axioms. Such a set is not uniquely determined 

but we have found a set which we believe is satisfying both mathematically and 

intuitively. This has been achieved by introducing a semantic counterpart to the 

notion of the free names of an action. 

Each action a of AC(K), for certain cases of K (for instance, that which gives the 

ir-calculus), represents a process with an external surface through which other pro-

cesses may communicate with it. This surface is therefore semantically significant, 

since the potential for communication is expected to be at least partly determined 

by it; for instance, in the ir-calculus, those independent processes (those not con-

nected through datafiow channels) which do not have any free names in common 

in their respective surfaces will not be able to communicate. 

An important property of the category CS(K) is closure under quotient by an 

arbitrary congruence. In particular, it will contain any model derived by factoring 

the action calculus AC(AC) by a congruence; when the congruence has operational 

significance, as in the case of bisimulation congruence, this accords with the es-

tablished practice of giving operational semantics to such calculi. Moreover, the 

surface of each action in the model (an equivalence class) is given exactly by the 

intersection of the surfaces of all the actions in the equivalence class: thus, those 

names which are semantically insignificant are discarded in the model. 

Outline In Section 2.1 action structures are reviewed followed, in Section 2.2, 

by a presentation of action calculi in terms of syntactic constructions known as 

molecular forms as well as a quotient of a term algebra by a theory AC. The section 

ends with a discussion on the axioms of AC. This leads the way to the formulation 

of control structures via the intermediate step of symmetric action structures which 

are defined in Section 2.3. In this section we shall also introduce the notion of 

surface and derive some relevant properties in the context of symmetric action 

structures. Control structures are defined in Section 2.4; the main results are that 
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AC (K) is initial in the category of control structures and that this category is 

closed under quotient by arbitrary congruence. 

2.1 Action Structures 

An action structure is a strict monoidal category with additional structure. The 

arrows of the category are called actions and the objects are called arities: these 

objects may be interpreted as types for the input and output of each action. 

The additional structure is given by endofunctors called abstractOrs indexed by 

a set of names. Dynamic action structures are also equipped with a preorder on 

actions called reaction 
which embodies the computational behaviour or dynamics 

of the actions. The following definitions give an algebraic description of an action 

structure. 

DefinitiOn 2.1 (Static action structure) Let X be a set of names (ranged over 

by x, y, z) and (M, (&, e) be a 'monoid of antics with an assignment of an arity 

m E M to each x E X. Let A be a set of actions partitioned by pairs of arities 

m,n where for each partition Am,n, if a E Am,n we say that a has arity m—n and 

write a : m-+n. Let A be equipped with 

. an identity operation 1dm  : m-+m for each arity m; 

composition . and tensor 0 operations subject to the rules of arity 

a1  : m1 -4 n1  a2 : m2 -4Th2 
a1  : k - in a2  : Tn -4Th 

a1  a : k-+n 	 a1  0 a2 : mi 0 in2 4 fli ® n2  

• and for each name x, an abstraction operation ab x  subject to the arity rule 

a: 
ab 

aba: k®m-4k®fl 

Then (M, X, A) is a static action structure 
over X if the following axioms hold in 

A: 
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Cl : aid=a=ida 
	

C2 : a (b.c)=(a.b)c 

P 1 : a®id€ =a=id€ Øa 
	

P2 : a®(bøc)=(a(&b)Øc 

PF 1 : idøid=id 
	

PF2 : (a. b) 0 (c. d) = (a 0 c) (b (& d) 

AF 1 : abid = id 
	

AF2 : ab(a• b) = (aba) . (abb) 

where, in the above equations, arities may be assigned in any way that obeys the 

rules of arity. 

The definition of homomorphism is standard. 

Definition 2.2 Let A and B be two static action structures. Then a homomorph-

ism of static action structures cJ : A -+ B consists of 

• a monoid homomorphism : MA -+ MB, 

. a map : XA -+ XB such that x : m implies 4Dx : 

• a map '1 : A -+ B such that 

- a: m -3 n implies 4M : c1m -* cIn; 

- preserves id, , 0 and abs ; 

If, in addition, ob is injective, then A is called a static sub-actionstructure of B. 

We can motivate the operations by an informal interpretation in terms of data-

flow. We think of an action a : in -+ n as a black box with input (dataflow) 

channels of aggregate width m and output channels of width n. Identity is just 

a simple dataflow channel through which information may pass unobstructed and 

unchanged [24]. The tensor operation may be interpreted as parallel composition: 

it is a construction which does not create dataflow dependencies and simply places 

two actions side by side, thus aggregating both input and output arities. The com-

position operation on the other hand connects two actions by tying the outputs of 
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one to the inputs of the other; hence the arity rule requiring the output arity of 

a1 to match the input arity of a2 for the composite ai a2 to be well formed. 

The inclusion of names in action structures is hard to motivate since there is 

no jn
terestiflg role for them given within the abstract structure itself. Informally 

we have suggested that the abstraction operation ab captures parametrisatiofl 

by the name z; hence, it may be expected that every "free" occurrence of the 

name x in a would be "bound" in aba. In dataflow terms this allows the creation 

of a new datafioW channel connected to each point where x occurs "free". But 

freeness and binding are concrete notion which assume a concrete or syntactic 

structure for objects. There is, however, an indirect way to capture the semantic 

notion of freeness for names by analysing the effect of applying abstraction of a 

given name upon an action. Although some insights can be derived even at this 

stage, treatment of this will be deferred until further structure has been introduced, 

par
ticularly that which allows more to be said about the interaction of abstraction 

with the tensor operation. 

Note on names and arities 
For this thesis we shall assume that M is freely 

generated by a set P of prime arities (ranged over by p, q,...), that the arity of 

every name is prime and moreover, that there are infinitely many names associated 

with every prime arity. 

DefinitiOn 2.3 ((DynamiC) action structure) 
Let (M, X, A) be a static ac-

tion structure and let " be a preorder on each Am,n called 
reaction which is pre-

served by composition, tensor and abstraction. Also each id is minimal for 
N, 

i.e. if id N a then Id = a. Then (M, X, A, N) is a (dynamic) action structure. 

DefinitiOn 2.4 
Let A and B be two action structures. Then a homomorphism of 

action structures 4!: A -+ B is a homomorPhism of static action structures which 

preserves the reaction relation i.e. whenever a N Aa then 4!a N 54!a. 

If, in addition, 4! is injective, and 4!a N B4!a implies a N Aa' then A is called a 

subactio structuTe of B. 
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Discussion For the definition of homomorphism of action structures we might 

have chosen a stronger condition than the preservation of the reaction relation. 

For instance we might have required that 4 exactly preserves the relation i.e 

a N Aa if a N aa. This, of course, depends on our intended role for homo-

morpisms of action structures. We expect that the semantics of concrete models 

can be expressed as homomorphisms of action structures: it may be that some 

models collapse computational steps. The double implication form can accomod-

ate such models since every step in the model will have at least a counterpart 

concrete computational step. However, we also intend homomorphisms to repres-

ent encodings of one concrete model into another: in this case one computational 

step in the source model may be "implemented" through a greater number of steps 

in the target model (such as in the compilation of a high level language into low 

level assembly). It is possible in this case, that in the target model there will be 

intermediate states which have no counterpart in the source and hence the trans-

lation or encoding would not fit the double implication form of homomorphism. 

At this point, therefore, we shall keep the condition fairly weak but we expect that 

certain applications will suggest stronger conditions. 

2.2 Action Calculi 

We shall address the problem of providing notions of free name, binding and 

substitution first in a rather concrete setting given by a syntactic class of action 

structures called action calculi. These concrete action structures will in turn lead 

us to a refinement of action structures that deals semantically with names in a 

more satisfactory manner. Before presenting the technical details, we illustrate 

the ideas by an example derived from the ir-calculus. Consider the term 

P = (vu)(iy I u(z).Q) 

where the subterm iZy represents a message y to be transferred along the channel 

u, causing any (free) occurrence of z in Q to be replaced by y. (The restriction 
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(vu) ensures that the message can be received nowhere else.) Formally, this is 

represented by the reduction: 

P -+ P' = (vu)({Y/z}Q) 

In the molecular form presentation of action calculi, actions are built from mo-

lecules, each of which arises from some control in K. This form is in the spirit of 

the Chemical Abstract Machine (CHAM) of Berry and Boudol [3]. For P above, 

the molecular form of the corresponding action P contains three molecules and is 

written 

P = [v(u), (uy)out, (u)box((z)Q)] 

where Q is the molecular form for Q. The difference from the CHAM is that 

molecules may bind one another; in this case, the molecule v(u) binds the other 

two molecules through the name u. Note that the box control encapsulates an 

inner molecular form. In the dynamics of molecular forms, redexes consist of 

certain patterns of molecules; in this case the last two molecules form a redex, and 

the following reduction occurs (releasing ): 

P"L = [v(u),{Y/z}Q] 

In the term algebra presentation of the action calculus, writing P as the term 

arising from P, we can recast the above example as follows: 

= V
. (u)((uy) . out ® (u) . box((z)Q)) 

N
P7, =v.(u)((y)(z)Q) 

Note that the tensor product ® of action calculi represents parallel composition; 

also that composition and abstraction (u)—a derived form of abe—represent 

both kinds of binding (restriction and input) in the ir-calculus. 

Molecular forms can be seen as normal forms for the term algebra. But with 

molecules as binding operators we obtain a view of the structure of actions which 

differs strikingly from that offered by conventional term structure. This section is 
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a review of t231 whose main objective was to prove the isomorphism of these two 

presentations. 

Notation Throughout, we shall adopt the convention that all names 
appearing in 

a vector within round brackets are distinct. Moreover, it will also be assumed that 

all terms and expressions used are well formed, and when they occur in definitions 

or equations, those occurring on each side have identical arities. 

An action calculus is determined by a set C of control operators, called a signature, 

together with a set 1?. of reaction rules 
whose form we shall define later. We let K 

range over controls. 

Definitiofl 2.5 (Controls (statics)) A control K is an operator which allows 

the construction of 
an action K() from a sequence of actions, subject to a rule 

of arity having the following form: 

ai : m -+ fli ... a : mr + 
flr (x) 

K(aj,.. .,a) : 

where the sideconditi0n x may constrain the value of the integer r and the arities 

rn1 ,n,m,fl. 

An example of a signature for the fragment of the ir-calculUS mentioned in the 

introduction is given by the set of controls {v, out, box) with rules of arity as 

follows: 
a: m-+n 

out:p®m 	 - boxa:p-4fl 

Another example is given by the signature K 
= { ', ap} which gives a repres-

entation of the simplY typed ) ¼-calculus as an action calculi. To obtain the arrow 

types in the Acalculu5, we assume that M supports expOflefltiation m n of 

arities (with m = n prime). The arity rules are then: 

a : m -*Th 	 ap: (m = n) 07Th -4 fl 

-+(m=ri) 
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By combining signatures, any action calculus can be lifted to higher order; for 

instance, the higher order ir-calculus is obtained by the signature containing the 

controls { ', ap, ii, out, box} together with their rules of arity. To indicate the 

union of the signature {' , ap} with some signature K; we shall write V. 

2.2.1 Molecular Forms 

We shall now define the following syntactic forms which will turn out to be normal 

forms for the actions of an action calculus. 

Definition 2.6 (Molecular forms) Let K; be a set of controls. The molecular 

forms over K;, denoted M(K;), are syntactic objects; they consist of the actions a 

and the molecules p defined as follows: 

a ::= () P1 	Pr (ii) 	(: m,iZ: n, a: m— n) 

p ::= (vi)KQ 	 (ii: k,17: l,Kg: k—+l) 

We let ), it range over molecules. In both actions and molecules, whenever a vector 

occurs in round brackets, its names (which by our convention must be distinct) 

are binding occurrences with scope extending to the right to the end of the smal-

lest enclosing action, capturing occurrences of the names XF even within molecule 

constructions. Names which are not thus bound are free and alpha conversion of 

bound names is allowed. We assume that no name has more than one binding 

occurrence in any molecule or action. 

In the action a of the above definition, are called the imported names and 

i, the exported ones. The construct P1 • Pr, called the body of a, is a possibly 

empty partial sequence of molecules, where the commutation of any two molecules 

is allowed provided neither binds a name occurring free in the other. 

We shall now define the operations of an action structure, the control operations 

as well as two additional ones, datum (x) and discard c, which represent provision 

of (exported) and discarding of (imported) names respectively. 



1dm 
def = ()() 

a•b de 
=l  (ii)Li11(cU) 

a®b de 
=

f 
 (iZ)Xji(ii) 

aba def = (xu'i),\(xvi) 

(x) d ef  = ()(x) 
def = (x)() 

K(a;.-.  = def 
 (x)()Kd(l7)() (,il not free in o) 

(II=m) 
(a={}) 
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Definition 2.7 Assume a = (ii) A (Y) and b = () i  () where no name which is 

bound in one occurs in the other. 

where {
161} is simultaneous substitution of i for I. 

Fact 2.8 x is free in a if and only if aba id (9 a. 

Proposition 2.9 (M(K), id, •, (9, ab) is a static action structure. 

2.2.2 The theory AC 

We are now ready to define an action calculus as a quotient of a term algebra. An 

action calculus AC(AC) possesses a set K of controls, each equipped with an arity 

rule. Each AC(K) is determined by its controls ?C together with a set of reaction 

rules which defines its dynamics. 

Definition 2.10 (Terms) The terms over K, denoted by T(K), are generated as 

follows (we let t range over terms): 

t 	Id I (x) I w  I K I 	t 2  I  t 1  0 t 2  I abt 

where (x) : c —3p (x:p) andw : p — € (for eachp), and the other constructions have 

arities dictated by the arity rules of the constructors. The notions of free name 

and bound name are standard; ab binds x and (x) represents a free occurrence 

of x. The set of names free in t is denoted by fn(t). 
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Definition 2.11 (Derived operations) We define an alternative form (x)t of 

abstraction, and the permutors Pm,n,  as follows (together with some abbreviations): 

def (x)t = abt• (w 0 id) 
d ()t ef  = (x1) ... (Xr)t (x = Xi 	X,., all distinct, r > 0) 

-. 	def 
(X1 = (Xi)O"®(Xr) (=Xi ... X,  r>_O) 

def 
Pm,n =( D(0) 	(: m, : n) 

U 

Note that Pm,n  is defined using a particular vector YY of distinct names; with 

of-conversion, we shall be justified in choosing these names at will. 

Although unsurprising, we define substitution upon terms in detail as we shall 

need a careful analysis of it later. 

Definition 2.12 (Substitution) Substitution {Y/x} upon terms is defined as fol-

lows: 

{Y/x}id Id 

{Y/x}& def 
 = 

{Y/x}(z) def 
 = (z) (z x) 

{Y/x}(x) def 
 = (y) 

def {Y/x}(ti®t2) = {Y/x}t i O{Y/x}t 2  
def {Y/x}(ti . t 2 ) = { Y/z}ti . {Y/x}t 2  

{Y/x}K(t .... ) T K({Y/x}t,...) 

{Y/x}abt ab{Y/x}t 

{Z/x}abt ! ab w {Z/x}{W/z}t 

{Y/z}abt def
=  abet 

(z V {X,y}) 

(zX, wfn(t)U{x,z}) 

U 

Note that, in the penultimate equation, some particular w is chosen. We are not 

assuming of-convertibility at this stage, but it is a consequence of the axioms of 

action calculi given below. 

Lemma 2.13 {Z/x}t = t. 
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Proof Induction on the structure of terms. 

DefInitiOU 2.14 (The theory AC) The equational theory AC is the set of equa-

tions upOn terms generated by the action structure axwms together with the 
fol- 

lowing: 

(x fn(t)) 
-y: (x)t=W®t 

5: (x)((X) 01dm) = Idp®m 	(x : p) 

: Pk,m (t2 ® t 1 ) = (t1 ® t2) . 	(t 1  : k& t 2  : mn) 

o: ((y) 01dm) (x)t = {Y/x}t 	(t : m-4n) U 

With some abuse of terminol0)' we shall consider AC to stand for either the 

above set of four axioms, or the set of equations inferred from them (a congruence 

relation). It will be clear from the context which we mean. 

It is natural to ask why the axioms AC have been expressed using the derived 

form (X )t of 
 abstraction rather than directly using abt. This is mostly for con-

venience; note especially that the permutations are more directly definable using 

t 	
equivalent formulation of  y using ab: 

he derived form. However, there is an  

proposition 2.15 
The theory AC is unchanged when the axiom -y is replaced by 

the following axiom: 

-y': abt = Id 0 t 	(x V fn t) 

proof Let AC' be the theory given by replacing the axiom -y by 	Then it may 

be shown that y is derivable in AC'. 

(x)t = 
-yl  

= (Id(9t):(WOid) 

wot 

It may also be shown that ' is derivable in the theory AC. 
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abt = abt°(x)((x)(9id) 	 05 

= abt ab((x) (9 id) (w 0 Id) 

= ab(t ((x) (9 id)) (w (9 Id) 

= ab((x) 0 Id) ab(id 0 t) (w ® Id) 

= ab((x) (9ld) (x) (id 0 t) 

= ab((x)0id).(w®id(9 t) 

= ab((x) 0 Id). (w 0 Id). (id ® t) 	 45 

= idOt 
U 

We shall now derive several equations in the theory AC. These demonstrate the 

consequence of the theory and will also serve us in later proofs. In particular note 

that a-conversion is obtained. 

Lemma 2.16 The following are provable in AC whenever x V  fri (t2 ): 

(x)(t 1  . t2 ) = (x)t i  t2 ; 

(x)(t 1  (9  t2 ) = (x)t i  0 t2 ; 

(x)(t2  0 t 1 ) = t2  0 (x)ti , if t2  : 

a: (y)t = (x){X/y}t, if x iV fn (t); 

ab 1 t = (x)((x) 0 t); 

()((f)®id)=id; 

abut = abz {X/y}t. 

Proof 

(1) 	(x)(ti t2) = abti  (x)t2  

	

= abt1•(w®t2) 	 if 

= abti •((9id).t2  

= (x)t 1  . t2 
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(*) (x)(t i  (g id) = (x)(((x) 0 id) (x)t i  0 id) 

= (x)((x) ® id (D id) ((x)t i  (D id) 

(x)t 1 Oid 

(x)(ti (g  t2) = (x)((t i  (& id) (id 0 t2 )) 

= (x)(t i  ® id) (id®t2) 

= ((x)t1 0 id) (id (9  t2 ) 

= (x)t1®t2 

(x)(t2  ® t 1) = (x)(t i  • (t2  (9 Id)) 

= (x)t 1  (t2  0 id) 

= t2 0(x)t i  

(a) 	(x){X/y}t = (x)(((x) (9 id) (y)t) 

= (x)((x) 0 id) (y)t 

= (y)t 

2.13, o 

(1) 

(5 

(1) 

(*) 

(1) 

0 

(1) 

(5 

abt = abt•(x)((x)(9 id) 

(x)(t.((x)(& id)) 

= (x)((x)®t) 

Induction on length of Y. Basis true by definition. For the inductive step: 

(x((xü) 0 id) = (x)(((() (9 id). ((x) (9 id)) 

= (x)((')(() (& id) ((x) 0 id)) 	 (1)* 

= (x)((x) 0 id) 	 induction 

=id 	 (5 

If x = y then result follows by lemma 2.13. Assume x 

abx {X/y}t = (x)((x) 0 {X/y} t) 	 (4) 

= (x ){X/y }(( y ) Ot) 

= (y)((y)®t) 	 a 

= abut 	 (4) 
U 

We are now ready to define action calculus. 
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Definition 2.17 (Action calculus: statics) The static action calculus AC 8 (K) 

is defined to be the quotient T(K)/AC. 

Fact 2.18 AC8 (1C)is a static action structure. 

The following theorem [23] shows that the molecular forms M (K) provide an 

explicit representation of AC 8  (K). 

Theorem 2.19 For any signature K, the static action structure M(K) of mo- 

	

lecular forms is isomorphic to AC 3  (K). 	 . 

We shall now introduce the reaction rules which assign computational significance 

to the control operations. 

Definition 2.20 (Controls (dynamics)) A reaction rule over a signature K 

takes the form: 

t[a]Nt'[a] 

where t, t' are terms of T(K) which may contain metavariables al over actions. • 

An example of a reaction rule over the signature {zi, out, box} presented earlier 

is 

(((2;) (9 id).out) (9 ((x).boxa) Na 

The reaction rules for the controls { ', ap} are 

	

('t'®id) . (x)t'N{t/x}t' 	 N: (ra l®id) 'ap\a 

where {t/x}t'  signifies the substitution of f1  for each free occurrence (x) of x in 

t'. N is actually a rule schema; giving a rule for each pair of terms t, t'. The 

second rule corresponds to /3-reduction. The dynamics of AC( , ap) is studied 

in more detail in [28]. 
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It is important to note that a reaction relation need not be preserved by con-

trols; thus from a N a' it does not follow that boxa N boxa'. Indeed, the role of 

box on the ir-calculus is to prevent such reaction from occurring thereby providing 

a form of sequential control over reactions. 

Definition 2.21 (Action calculus: dynamics) Let 1?. be a set of reaction rules 

over a signature K. Then the (dynamic) action calculus AC(K, R) is the static 

action structure AC'(K) equipped with the smallest reaction relation N which 

satisfies the rules 1Z (for all replacements of metavariables d by actions). • 

We shall henceforth use AC 8 (K) and AC(K, 0) interchangeably to denote the static 

action calculus over K. 

As an example of an action calculus we shall now bring together a signature and 

a set of reaction rules which together completely define the calculus PlC . In the 

light of the informal explanation given in Section 2.2, we note the correspondence 

between PlC and a fragment of the ir-calculus. A similar correspondence with a 

variant of PlC is stated more formally at the end of chapter 6. 

PlC is defined as the action calculus over the controls {out, box} together with 

the following arity rules 

a : m-+n 

out:p®m-+e 	 boxa:p-+n 

and the reaction rule outs  ® boxa N a where 

def 	j out = (tx) (9 id) . out 
def boxa = (x) boxa 

Throughout this thesis we shall draw examples from the actions, signature and 

reaction rule of the above calculus. 

Discussion The axiomatization of AC, though succinct, is impure in two ways; 

the axiom 'y has a syntactic condition upon terms, and the axiom a is expressed 
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in terms of substitution of names into terms. Thus each of these axioms is more 

exactly an axiom schema: a finite presentation of an infinite set of axioms. We 

could define a control structure to be an enriched action structure which satisfies 

this infinite set of axioms, and then by an entirely standard argument we would 

find AC(K) to be initial in this subcategory of action structures. 

One shortcoming of this approach is that it does not provide a semantic account 

of what it means for a name to belong to the "surface" of an action, generalising 

the syntactic notion of free occurrence of a name in a term. Another is that 

instances of y or o, interpreted in an arbitrary action structure A, constrain only 

those actions which lie in the image of AC(K) under a homomorphism; they impose 

no constraint upon actions of A in general, and thus contribute no understanding 

of A as an algebraic structure. Finally, a finite set of axioms is more satisfactory 

than an infinite set. 

Bearing these arguments in mind, in the spirit of universal algebra we seek to 

characterise control structures by a finite set of pure axioms, such that AC 8 (K) 

is the initial control structure over K. Apart from the greater elegance of this 

approach and greater mathematical insight it provides, it has the advantage that 

properties such as initiality then follow by standard arguments. 

Initiality will be ensured if the axioms we propose generate exactly the theory 

AC, i.e. they are equipotent with 'y, 6, C and o over the term algebra. This con-

dition does not fully determine the notion of control structure; therefore we must 

justify our choice. Our axiomatisation has other qualities; it is simple, it is a nat-

ural extension of a known categorical structure (symmetric monoidal categories) 

and it gives a convincing account of the notion of surface. 

Before presenting the axioms, let us further analyse the central problem. The 

greatest difficulty is to replace the axiom schema 

abt = id ® t 	(x fn (t)) 

(which by Proposition 2.15 is equipotent with '7) by a finite set of purely algebraic 

axioms. A less satisfactory solution is to give up the purely algebraic approach, 
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and to postulate that every control structure is equipped with a map surf which 

assigns to each action a a set surf (a) ç X; then one adopts the single axiom 

aba=idØa 	(x V surf(a)) 

One also imposes upon surf the reasonable condition that, roughly, the surface 

of each algebraic construction is no greater than the union of the surfaces of its 

arguments. More precisely, one imposes the following surface axioms: 

surf(id) = 0 

surf (a (9 b) surf (a) U surf(b) 

surf (a . b) C 	surf (a) U surf(b) 

surf (aba) C 	surf (a) - {x} 

surf((x)) C 	{x} 

surf(w) = 0 
surf (Kd) C 	U1 surf (a1) 	

( 	
= a1  ... a,.) 

One then obtains a finite (but not purely algebraic) set of axioms for control 

structures which ensures that AC(K) is initial. 

This was indeed our first approach. We were then surprised to find that from 

these axioms one can derive the double implication 

aba=id®a 	xØsurf(a) 

To see this, note that one direction (=) is already given by dy" . For the other (), 

suppose that aba = id ® a. For any y we have 

a = ((y) 0 id) . (id 0 a) . 	(9 id) 

using (y) 	= id(  which is ensured by the other control structure axioms. It 

follows that 

surf (a) 	{y} U surf (id (9 a) 	by the surface axioms 

	

= {y} U surf (aba) 	by assumption 

= {y} U (surf (a) - {x}) by surface axiom 
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and by choosing y x we deduce x surf (a). In other words, the surface axioms 

have constrained surf (a) to be exactly the set {x I aba 54 Id ® a}. We therefore 

have the same effect if we remove "y" and define surface by 

surf (a) 
d 
=ef {x I aba 0 Id ® a) 

The axioms are still not purely algebraic, since the surface axioms remain; each 

of these has now become an implication between equations. Our second discovery 

was that these implications can be replaced (with equivalent power) by a small 

number of purely equational axioms. 

It is convenient to introduce the axioms in two steps. The first step is to define 

symmetric action structures, an enrichment of symmetric monoidal categories. 

2.3 Symmetric Action Structures 

We begin by recalling the standard notion of a symmetric monoidal category. 

Definition 2.22 (Symmetry) A symmetry on a strict monoidal category is a 

family of arrows c with components Cm,n : m 0 n -+ n 0 m such that 

Cm,n (b 0 a) = (a 0 b) . Cm',nI 

Cm,n Cn,m = Id 

(Cm,n  0 Idk). (ida  0 Cmk) = Cm,n®k 

where a: m—m', b: n-+n'. 

Remark The axiom S 1  states that the symmetry is a natural transformation as 

can be seen by expressing S 1  by the following commutative diagram: 

m On  aOb 

Cm,n 	 I Cm'fll 

nØmbOa 	n'Om' 
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Definition 2.23 (Symmetric action structure) 
A symmetric action structure 

is an action structure with a symmetrY c on it for which 

abc=id®c 

ab(aba) = id ® aba 

ab(a (9 id) = aba ® id 

(ck,t®id).aby 	
(c,i(g) (x: k,y :,xy) 

Remark 
It may be helpful to express the axiom S7 by means of the following 

commuting diagrafll 

abab y a 
k ® £ 0 m 

Ck,f ® 1dm 	
Ck,1 ® 1dm' 

tOkOrn abab xa 

Lemma 2.24 Let a : m -+fl, 
b : k —pt, x : k andy: £, where x,y are distinct 

names. The following equations are valid in symmetme action structures: 

a® b = Cm,k (b (& a) . 

abab y a = (ck,L ® id) ababa (CL,k (9 Id); 

(Idk 0 cm,n) (ck,n (g 1dm) = ckøm,n 

c.,e = 1dm = C,m. 

Proof 
S2 

a 0 b = (a(9 b) . c,i c 

Cm,k (b (9 a) 

ababya = ababa (ck,l 0 id) (cl,k ® Id) 	
S2 

	

= (ckj 0 id) . ababa (C1,k 0 Id) 	 S7 
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Ck®m,n = CkØm,n (cfl ,k 0 jdm ) (ck, fl  0 1dm ) 	 S2 

= Ck®m,n (cfl ,k 0 1dm ) (Idk 0 Cn,m) 

(idk 0 Cm,n) (C,n  0 1dm ) 	 S2 

= CkØm,n Cn,kØm (idk 0 Cm,n) (ck, fl  (9 1dm ) 	S3 

= (idk (9 Cm,n) (C,n  (9 1dm ) 	 S2 

We show that for every n, id 0 Cm,E = id 0 idm : then n = E gives result. 

idn  0 idm  = Cn,m Cm ,n 	 S2 

= Cn,m (Cm ,n  (9 Id6) (ida  (9 Cm,6) 	 S3 

= idn  0 Cm,6 	 S2  

Now, prompted by Fact 2.8, we define a semantic notion of surface. Intuitively, 

the surface of an action a contains just those names x for which the abstractor 

ab acts non-trivially upon a. 

Definition 2.25 (Surface) Call the set 

{XEX I abaid®a} 

the surface of a, written surf (a). 

Remark By Fact 2.8, when a is a molecular form its surface is exactly its set of 

free names. 

Another way to express our semantic understanding is that an action "depends 

upon" a name x just in the case when x is in its surface. Whatever "depends upon" 

means, it should surely be the case that a compound action depends upon no more 

names than do its components (taken together). The notion of symmetric action 

structure is significant, compared to that of action structure, because it entails a 

proposition which expresses this property: 

Proposition 2.26 

1. surf(id) = 0; 
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surf(c) = 0; 

surf(a b) c surf a U surf b; 

surf(a (9 b) C surf a U surf b; 

surf(aba) C surf a - {x}. 

Proof (1) and (2) follow trivially from the axioms abid = id and (S4) respect-

ively. For (3) and (4) it suffices to show that if aba = Id 0 a and abb = Id 0 b 

then ab(a• b) = id 0 (a . b) and ab(a (9 b) = Id 0 a 0 b. For (5), by (S 5) we 

have x V surf(aba). So, let y V surf (a) with y 0 x. Assume y : £, x : k and 

a : m—n. 

ab(ab) 

= aba . abb 

= (id(&a).(id(&b) 

= idO(a.b) 

ab(a(9 b) 

= ab((a (9 id). (id 0 b)) 

= ab(a 0 id) . ab(id 0 b) 

= (aba 0 Id) . ab(id 0 b) 	 S6  

= (aba 0 Id) ab(c. (b(9 ld) . c) 	 2.24(1) 

= (aba0id) (idOc) (abb0id) . (id(&c) 	 s4)  S6 

= (id 0 a 0 id) (id (9 c) . (id ® b ® id) . (id (& c) 

= (id®aOid).(id®idOb) 	 2.24(1) 
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(5) ababxa 

(c1,k ® Id) . ababya (ck,t ® Id) 

(Cj,k (9 Id) abx (idt (9 a) . (Ck,e (9 Id) 

(C1,k (9 Id) abz(C,m 
(a 0 Id) . c,t) . (c,t 0 id) 

(cj,k (9 Id) . (Id (9 Ct,m) . ab(a 0 Id) 

.(id 0 	(ck,1 0 Id) 

= C1,kOm (aba (9 Id) . CkØn,t 

= IdOab1a 

2.24(2) 

2.24(1) 

S6 

S3, 2.24(3) 

2.24(1) 
U 

Remarks In proposition 2.26, clauses (3)-(5) 
are inclusions rather than equations. 

In the more refined class of models for action calculi given by control structures 

(see the following section) we prove a stronger version of 
(5) with inclusion being 

replaced by equality. 

However, equality does not hold for (3) or (4). A countereXamP for (3) given 

by (x) = ide , which holds in any action calculus. For 
(4), a counterexample 

is provided by the action structure whose typical element is of the form 
()g(), 

where g 
is an element of the free abelian group generated by the names X; thus 

g takes the form x' x where h,,.. . , h,. are integers 1 . The tensor product of 

and b = ()g()Z)f(ii) 	
is (ii)f x g(vTff), where f x g is the group product. If 

a = (  

a = Xy 1  and b = yz 2  are two actions of arity € — f , then y lies in the surface of a 

2  
and of b but not in the surface of a(9 b = xz. 

PropoSition 2.27 The action calculus AC(1, R.) is a symmetric action structure. 

Proof We take the permutations Prn,n 
as the symmetrY on AC(K, 1Z). NaturalitY 

(S,) is immediate by C
. We shall now show that axioms S 2-S7 are provable in AC. 

In the proofs that follow assume that : 
m, : m, : n, : n and : k and that 

names i, , i5, , are al
pear in the right-hand l distinct. Reasons for each step ap 

cates repeated use of an equation. column; an asterisk indi  

'This example arises as a quotient of the action structure for Synchronous CCS 
1211. 



34 

Chapter 2. Control Structures 

(S2) p,,n Pn,m 

= (fW) . (W)(iiui) 
2 . 16(1)* 

= () (Wi) . (iW) (iiiZ)) 

= (f?J) 
2.16(5) 

=id 

(S3) (Pm,n (9 idk) . (ida  (9 Pm,k) 

= (()(il)(9 idk) (ida  ® (iiii)(tYi)) 

= (y1() ® id (ida  ® 	
2.16(2) 

W  

= ()(() 0 idk) . (ida  0 (ii)(tii))) 	
2.16(1) 

W  
id,) 0 (((i) ® Idk)' (ii)())) 

= (D(W)® ()(t)) 	
tT* 

2.16(3) 

= Pm,n®k 

(S4) abp 	
2.16(4) 

= (x)((X)(9 P) 
2.16(2) 

= (x)(x)®P o 
= id®p 

(S5) ab(abxt) 	
2.16(4) 

= (x)((X) ® abt) 
2.16(2) 

= (x)(x) ® abt 
a 

= 1d®abt 

(S6) ab(t ® Id) 
2.16(4) 

= (x)((x)®t®id) 
2.16(2) 

= (x)((x)®t)®id 
2.16(4) 

= abxtOid 
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(S7) ababt• (pp,q  0 Id) 

= 	ababt• ((xy)(yx) Old) 

ababt.(xy)((yx)0id) 2.16(2) 

= 	ababt abxabv ((yx) Old) 	(x)(w Old) 

= 	ab1ab((yx) 0 t) 	(x)(w 0 Id) 

= 	(xy)((yx)(9t) 

= 	(xy)(((x) (9 Id) . (x)((yx) (9 t)) 2.13,o 

= 	(xy)(((x) 0 id) 	((y) 0 id) 	(yx)((yx) (9 t)) 2.13,o 

= 	(xy)(((yx) (9 Id) 	(yx)((yx) (9 t)) 

= 	(xy)(((yx) 0 Id) . (y)((y) (9 (x)((x) (9 t))) 2.16(3) 

= 	(xy)(((yx) 0 id) . (y)((y) (9 abt)) 2.16(4) 

= 	(xy)(((yx) (9 id) 	ababt) 2.16(4) 

= 	(xy)((yx)0id).ababt 2 . 16(1)8 

= 	(Pp,q  0 id) ababt 2 . 16(2)8 

2.4 Control Structures 

We have prepared the way for the central definition and result of the chapter, 

namely the definition of control structures over )C and the proof that AC 8  (AC) is the 

initial control structure. Our strategy has been to find a finitary axiomatization 

of the equational theory AC (see [24]); once this is found, the step to a suitable 

category of models for the molecular forms is much better defined. 

Definition 2.28 (control structure) Let A be a symmetric action structure (over 

X). Let K be a set of controls, equipped with reaction rules. Then A together with 

- datum (x)A : €-+p for each x : p E X; 

- a discard operation w : p —+ e, for each prime arity p; 

- a control operation KA  for each K E K, obeying the arity rules for K; 
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is a control structure over K if 

where 

Surface 

72: 

Datum 

Substitution o 1  

03 

ab(y)=id®(y) 	 ifyOz 

ab =id®w 

(x)(x) = id 

[X/x]a = a 

[Y/x]((x) (9  (x)) = (y) 0 (y) 

[Y/x]K(a i ,. . . , a,) = K([Y/x]a i ,. •, [Y/x]a) 

def (x)a = (aba)(w(9id) 

[Y/x]a =
def 

 ((y) ® id) (x)a 	(arity(x) = arity(y)) 
U 

Remarks The operation [Y/x] is called semantic substitution. Notice that the ax-

iom u simply asserts that, in AC 8 (K), semantic substitution agrees with syntactic 

substitution. 

The axioms 1i  and 72  are counterparts to in AC; € is an instance of 5 

and 0'1-03,  in the presence of the other axioms correspond to the substitution 

equations together with o. 

Note that the employment of symmetry in our formulation has allowed us to 

avoid the use of vectors of names and also to isolate the treatment of datum, 

discard and the controls. We shall discuss alternative axiomatisation after pro-

position 2.36. 

The following proposition expresses the interaction between data and discard. 

Proposition 2.29 (Absorption) (x) . = idE . 

Proof 

WE = [x/z]jdE 	 01 

= () . abid€  . 

= (x).id., 

= 
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U 

Proposition 2.30 For any a and x, the following are equivalent 

1. aba=id®a; 

. (x)a=&'®a; 

3. [Y/x]a = a, for all y. 

Proof By definition (1) implies (2) and, by proposition 2.29 and the definition of 

[Y/x], (2) implies (3). To show that (3) implies (1) choose y 0 x. 

aba = ab([Y/x]a) 

= ab(((y) ® Id) (x) a) 

= ab((y) (9 Id) ab(x)a 

= (Id 0 (y) 0 id). (id (9 (x)a) 	 S6 ,1y 11 S51 y2  

= Id® (((y)®id) (x) a) 

= id®[Y/x]a 

= idOa 
U 

Remark The above proposition can be regarded as the semantic equivalent of 

y. If x V surf (a), then by the definition of surface, aba = id 0 a. By proposi-

tion 2.30, (x)a = w 0 a. 

Proposition 2.31 (surface) 

surf((x)) ç {x}; 

surf(.) = 0; 

surf(aba) = surf (a) - {x}; 

surf (K(a i ,. . . , an )) c U1<< surf a. 
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Proof (1) and (2) follow trivially from  lfi and Y2 respectively. 

For (3) we need only show that surf (aba) 	surf (a) - {x} since proposi- 

tion 2.26(5) gives the other inclusion. By 
i, a = ((x)®id).abx (w(gid). Hence, 

by (1), (2) and proposition 2.26 (3) and (4) we get surf (a) 9 {x} U surf (aba) 

and the result follows immediately. 

To show (4), assume x V surf(a), for all aii in K. Now by , [
Y/x]K = K[Y/xId. 

By assumption, for each i, ab,,ai = Id 0 a, so by propoSition 2.30, tY/xIai = a 1 . 

Hence [7J/x1K = Ka and by propoSitiofl 2.30, the result follows. 

Remark We do not have surf ((z)) = {x} 
in general, since in the trivial control 

structure where all terms of the same arity are identified (the terminal control 

structure) the surface of each term is necessarily empty. Note also that we have 

refined proposition 2.26(5) 
by equality rather than inclusion. 

PropOSitiOIl 2.32 (6) (x)((X) ® Id) = Id. 

Proof 

(X)((X) (9 id) 	abz((X) (9 Id). ( (9 Id) 
S6 

= (abx(x) (9 Id) ( (9 Id) 

= (ab1(x) .(w(9 Id))01d 

= (x)(x)®id 
€ 

=id a 

Proposition 2.33 
The following equations hold in a control structure whenever 

x V surf(b): 

(x)(ab) = (x)ab; 

(z)(a (9 b) = (x)a 0 b; 

(x)(b(9a)(Cp,?n(9id) 	Ø(x)a), ifb:m-*n. 
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a: (y)b = (x)[X/ylb; 

 

()(() ® Id) = id; 

(x)(y)a = (cp,q (9 Id) (y)(s)a, where x : p, y: q. 

Proof 

(1) 	(x)(ab) = aba(X)b 	
2.30 

= aba( ,J®b) 

= 
= (x)ab 

(*) (x)(a®id) = (x)([x/xIa®id) 	
all  

= (x)(((X) ®id) . (x)a(9 id) 

= (X)((X)®1d®1((x)a(&) 	
(1) 

2.32 
= (x)a®id 

(2) 	(x)(a(9b) 	(x)((a(9id)(k1(&b)) 
(1),2.26(1, 4) 

= (x)(a(9id).(id®b) 

= ((x)a (9 id) (id (9 b) 	 (*) 

= (x)a®b 

(f) ()(idm ® a) = (x)(Idm 0 a) (b (& Id) 	 (1) 

(X)(Cm,k (a(9 1dm) . Ci,yn) 	
2.24(1),a: k-+1 

= abxCm,k (x)(a 0 1dm) Cn 	
(1) 

= (id (9 Cm,k) (x)(a 0 1dm) CZ,m 	 S4 

= (id 0 Cm,k) ((x)a (9 1dm) Cl,m 	 (2) 

= (Id,, 0 Cm,k) CpØk,m (1dm 0 (x)a) . Cmj Cl,m 2.24(1) 

(Id,, (9 Cm,k) Cp®k,m (1dm  (9 (x)a) 	 S2 

= (id (9 Cm,k) (idp  (9 Ck,m) 

(9 id) (1dm (9 (x)a) 	2.24(3) 

= (cp,m(9 )(m®() 	
S2 
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(x)(b(9a) = (x)((idm ®a) (b®id)) 

= (X)(ldm  ® a) (b (9 id) 	 (1) 

= (Cp,m  ® id) (idm  ® (x)a) (b ® id) 	 (f) 
= (cp ,m øid) .(b®(x)a) 

(cr) 	(x)[X/y]b = (x)(((x) (& id) (y)b) 

= (x)((x)(Did).(y)b 	 (1) 

= (y)b 	 2.32 

aba = aba• (x)((x) (& id) 	 2.32 

= (x)(a.((x)(9id)) 

= (x)((x)®a) 

Induction on length of Y. Basis true by definition. Step: 

(xi7)((x) (9 id) = (x)(((() (9 id) . ((x) 0 id)) 

(x)(()((ü) 0 id)) • ((x) ® id) 	 (1)* 

= (x)((x) (9 id) 	 induction 

= id 	 2.32 

(x)(y)a = ab(aba ( ®id)) . (w (9 id) 

= ababa . ab(w (9 id) . (w 0 id) 

= ababa• (id (9 w 0 id) . (w 0 id) 	 S6, V2 

= (Cp,q  0 id) ababa (c q ,p  (9 id) 

.(id 0 w (9 id). (e (9 id) 	2.24(2) 

= (cp,q  (9 id) . ababa• (w 0 id) (w 0 id) 	S1,2.24(4) 

= (cp,q  0 id) . (y)aba (& 0 Id) 

= (cp,q  0 id) . (y)(aba• ( (9 id)) 	 2.33(1) 

=(Cp,q (9 id) (y)(x)a 
. 

Remark When x V surf (b), abb = ab x [X/y]b follows from c, (4) and proposi-

tion 2.36(5). 
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Proposition 2.34 Define Pm,n as (f(), where : m and: n. Then Pm,n = 

Cm,n. 

Proof 

(:)(U) = ()((()(9()) 	 2.33(2)* 

= ()(id(9()) 	 2.33(5) 

= ()((()®id)Cm ,n ) 	 Si 

= (E)(() (9 id) . Cm,n 	 2.26(2),2.33(1)* 

= Cm,n 	 2.33(5) 
. 

Corollary2.35 () Assumea m -+n andb: k-3L Then pk m (a(9b) 

(b®a) Pt,• 

Proof Immediate by proposition 2.34 and naturality of symmetries (S 1 ). 

The following proposition asserts that the semantic substitution [Y/x] behaves equa-

tionally like the syntactic substitution {Y/x} as given in definition 2.12. 

Proposition 2.36 The following properties of semantic substitution hold in any 

control structure: 

[Y/x]id=id 
	

5. [Y/x](a (g b) = [Y/x]a ® [Y/x]b 

[Y/z]w = 
	

6. [Y/x](a . b) = [Y/x]a. [Y/xJb 

[Y/x](z) = (z) (z 0 x) 
	

7. [Y/x]K(a .... )=K([Y/x]a,...) 

[Y/xJ(x) = (y) 

[Y/x]aba=ab[Y/x]a 	(z{x,y}) 

[Z/x]aba = ab w [z/x][W/zja (z x, w 0 surf (a) U {x, z}) 

[Y/z]aba = aba. 

Proof (1), (2), (3) and (10) follow directly from proposition 2.30(3), and (4) 

follows directly from E. (7) is exactly 03. For the remaining cases, assume x, y, z: 

KO 
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[Y/xJ(a(&b) 

= [Y/x]([X/xja®[X/xjb) 	 47 1  

= [Y/x]((((x) 0 id) (x)a) 0 (((x) (9 jd) (x)b)) 

= [Y/x](((xx) 0 1d (gm ) ( idp  0 Cp,k 0 1dm ) ((x)a (9 (x)b)) 	S 1  

= ((y) (9 jdj ®m ) ((x)(xx) 0 1d ®m ) 

(id 0 Cp,k (9 idm ) ((x)a 0 (x)b) 	2.33(1,2) 

= ((yy) 0 d 0m ) . ( idp  (9 Cpk 0 1dm ) ((x)a (9 (x)b) 	0"2 

= ((y)(9idk) (x)aO((y)(9id m ) (x)b) 	 S 1  

= [Y/x]a 0 [Y/x]b. 

[Y/x](a.b) 

= ((y) 0 Id) . (x)(a b) 

= ((y) 0 id) (x)((x) ® a) . (x) b 	 2.33(4) 

= [Y/xJ((x). (9 a) . (x) b 

= ((y) 0 [Y/x]a) (x)b 	 (4),(5) 

= [Y/x]a. ((y) 0 id) (x)b 

= [Y/x]a. [Y/x]b. 

(9) [Z/x]aba 

= ((z) Old) abab2 a• (c#.., 0 id) 

= ((z) 0 id) . (c ® id) abab1a• (c ® id) (w 0 id) 	2.24(2) 

= (idO(z)Oid)•ababa.(id0w(&id) 	 S 1  
= (Id 0 (z) (9 id) . (z)((z) 0 aba) . (Id Ow 0 id) 	2.33(4) 

= (Id 0 (z) 0 Id) . (W)([W/Z]((Z) (9 aba)) (id 0 w (9 id) 	a 

= (id 0 (z) (9 Id) (w) ((w) 0 abx [W/z]a). (id 0w (9 Id) 	(5),(4),(8) 

= (Id 0 (z) (9 id) abw abr [W/zja. (id 0 w (9 id) 	 2.33(4) 

= ab((z) (9 id) . abab[W/z}a. ab(w (9 id) 	 711 7 
= abw [z/x][W/z]a. 
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(8) [Y/x1aba 

- ((y) (9 id) ababa (w 0 id) 

= ((y) 0 id) (c ® id) ababa. (c (9 id). (w (9 id) 	2.24(2) 

= (id 0 (y) 0 id) ababa (id 0 w (9 id) 	 S 1  

= ab((y) 0 id) ababa 	(9 id) 

= ab[Y/x]a. 
U 

Discussion There are alternative sets of axioms to the ones given above and 

which is the most elegant or natural set is arguable. For instance, we can replace 

02 by o : ab(x) = ab(y). This equation is provable by proposition 2.33(4) and 

a-conversion, while 0'2  is provable (from the alternative set of axioms) as follows: 

[Y/x]((x) 0 (x)) = ((y) 0 id) (x)((x) (9 (x)) 

= ((y) 0 id) . (y)((y) 0 (y)) 	 c,2.33(4) 

= [Y/y]((y) (9 (y)) 

= (y)®(y) 	 471 

U 

Note that ab(x) = ab(y) would be the only explicit instance of a-conversion in 

the axioms which is required to derive a-conversion for arbitrary terms. Finally, 

the axiom can also be replaced by [Y/x]((x) 0 (x)) = [Y/x](x) 0 [Y/x](x), in the 

presence of c. 

Definition 2.37 (The category of control structures) The category CS 3 ()C) 

of control structures over a signature K1 has as objects control structures, and as 

morphisms action structure homomorphisms which act as identity upon X and M 

and also preserve the data, discard and control operations. 

It is immediate that every morphism in CS 3 (K) reduces surface: 

Proposition 2.38 (Surface reduction) Let : A -* B be any morphism of 

control structures. Then surf(a) 9 surf (a) for all a e A. 
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Since CS 3 (K;) is characterized equationally, it is easy to see that it is closed un-

der factoring by a congruence. Moreover we can state precisely what effect the 

morphism has upon surface. 

Proposition 2.39 (Congruence) Let 	be a con grtience over each action-set 

A(m, n) in a control structure A, i.e. an equivalence which is preserved by the 

action structure operations, by the control constructions K; and by reaction. Then, 

the quotient A/ is a control structure, with C1 : a -+ [a] as the induced morphism 

from A to A/ , where [a] is the congruence class of a. Moreover, 

surf ([a]) = fl{surf(a') I a' E [a]} 

Proof The proof is mostly of a kind which is standard in universal algebra. For 

the last part, we prove each inclusion as follows. 

(ç) It is enough to show that surf ([a]) 9 surf (a) for each a; but this follows 

from Proposition 2.38. 

(2) Assuming x 0 surf ([a]), it is enough to find a' 	a such that aba' = 

id 0 a'. Pick a' = [Y/x]a, where y x; then a' a follows from aba id 0 a and 

the rest follows much as in Proposition 2.30. 

ab[Y/x]a = ab(((y)®id)•(x)a) 

= ab((y) Old) ab(x)a 

= (id 0 (y) 0 Id). (id (9 (x)a) 	 S61 1 1 ,S5172  

= id® (((y)oid) .(x)a) 

= idO[Y/x]a 

We now proceed to consider initiality among control structures. The following has 

a standard proof, since the axioms are purely algebraic: 

Proposition 2.40 The category CS 8 (AC) has an initial object. 
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Our next task is to establish the status of action calculi among control struc-

tures. The following result depends upon the fact that semantic and syntactic 

substitution coincide in the theory AC due to u. 

Proposition 2.41 AC(AC) is a control structure over K with the permutations 

Pm,n as the symmetry. 

Proof By proposition 2.27, we already have that AC 3 (K) is a symmetric action 

structure. Moreover € is a special case of 5. By o, {Y/x} agrees with the derived 

operation [Y/x] and 0'2  and 03 follow from the equations for {Y/x}. By lemma 2.13 

we have The following proofs give y1  and 72 

ab(y) = (x)((x)®(y)) 	 2.16(4) 

(x)((x)(9id).(id(9 (y)) 	 2.16(1) 

= id®(y) 	 S 

72 	abxw = (x)((x)®w) 	 2.16(4) 

= (x)((x)(9id)•(id®w) 	 2.16(1) 

=id®w 	 S 
. 

Finally we establish our main result. It depends upon the fact that, in any control 

structure, semantic substitution [Y/x} provably satisfies the equations which define 

syntactic substitution {Y/x}. 

Theorem 2.42 (Initiality) AC 8 (1C) is initial in CS 8 (AC). 

Proof Since we have shown that the action calculus is a control structure, there 

is a unique map to it from the initial control structure. That map is obviously 

onto, so it remains to show that it is one to one. To do that, we must show that 

whenever the images of two terms are provably equal in AC, then they are equal in 

the initial control structure. It suffices to show that in the initial control structure, 

the axioms of AC are valid. By propositions 2.32 and 2.36, and corollary 2.35 we 

get 5, a and C respectively. It remains to derive 'y. 
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By proposition 2.30, it suffices to show that whenever x fn (t) (where fn 

is defined as previously), x surf(t). This involves an easy induction on the 

structure of terms (of the initial control structure): for instance, in the case of 

t K', x V fn (t) if and only if x V fn (t'), for each t' E t1 . By proposition 2.31(4) 

the result follows immediately. • 

Remark Note that proposition 2.36(9) holds for any w 0 surf(a). In general, 

there may not be any such w; however, in action calculi, there will always be such 

a w as the surface of any action is finite, by Fact 2.8. 

We note that CS 8 (K) contains any control structure over the signature K, with 

any reaction relation. We often wish to confine attention to those which satisfy a 

set of rules, hence we define: 

Definition 2.43 If 1Z is a set of reaction rules over K, then CS(K, 1Z) is the 

full subcategory of CS8  (K) containing just those control structures whose reaction 

relation satisfies R. 

The following is immediate: 

Corollary 2.44 AC(K,R.) is initial in CS(K,R). 

When 1Z. is understood, we often write CS(K) to mean CS(K,1Z). 

Discussion The initiality of AC 3  (K) is significant largely because it has a dir-

ect presentation (up to isomorphism) as the action structure of molecular forms 

M (K). The appeal of action calculi as concrete models of concurrent computa-

tion depends on the adequacy of the molecular forms as concrete representations 

of concurrent reactive systems. Evidence in favour is the fact that known concrete 

models fit readily into the framework. However, this does not necessarily justify 

every choice made in the formulation of the molecular forms: in other words, 

there may be variations on molecular forms and consequently in the formulation 

of action calculi and control structures which would still do the job. 
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It is still too early to decide which is the best notion of molecular form (indeed, 

we must first generate competing variations) and in the meantime we can only 

appeal to the elegance and simplicity of the molecular forms we have presented. In 

the following chapter we shall explore a natural variation which allows a tractable 

labelled transition semantics to be developed for a descendant of the it-calculus. 

It is worth reflecting on the kind of applications our formulation of control 

structures can support. We have already noted that the category of control struc-

tures is closed under congruences and therefore any model of an action calculus 

obtained by quotient with a congruence gives a control structure. The homo-

morphism from the action calculus to such models will be onto; there are inter-

esting control structures to which the initial morphism may not be onto. One 

such kind of morphism represents the notion of encoding or implementation. For 

instance, the actions of an action calculus AC(K) may be encodable as actions of 

another AC(ftC'). If the encoding is compositional, then it may be represented as 

a morphism in the category of control structures over X; indeed AC(K') itself can 

be shown to be an object in the category CS(K). 

Another useful application of control structures concerns the classification of 

dynamics. Since morphisms of control structures preserve reaction, the existence 

of a morphism from an action calculus AC(K) to some control structure indicates 

some constraints on the reaction relation of AC(K). One way of classifying reaction 

rules is through such control structures; each such classifier C determines for which 

sets of reaction rules 1Z a morphism from AC(frC, R.) to C exists. In chapter 4 we 

shall see two examples of such classifiers. 



Chapter 3 

Reflexive Control Structures 

In the previous chapter, a refinement of action structures was developed to give a 

space of models for a concrete representation of a class of action structures given 

by the molecular forms. These molecular forms are essentially linear syntactic de-

scriptions of directed acyclic graphs whose nodes consist of syntactic constructions 

called controls, together with a facility for handling names through binding and 

substitution. 

An illustration of this will suffice for our purposes. The construction shown 

below, is a molecular form of the term z.'. (x)(xx) (id,, ® boxt) out in PlC, whose 

signature was encountered in Chapter 2: 

[v(x), (x)boxa(y), (xy)out( )} 

where a : q —* q is the molecular form of t. 

In a directed graph representation, binding occurrences stand for sources of 

edges, whose destinations are identified by the bound occurrences, as shown below 

by the diagrammatic representation of the above molecular form: 

— 	 '- 
'UIaW — 

48 
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In thinking of molecular forms as graphs, it is helpful to consider the directed edges 

as channels through which names "flow". A little reflection reveals that the binding 

structure of the molecular forms of action calculi imposes certain constraints on 

which kind of directed graphs (and hence, dataflow configurations) are expressible: 

for instance, while a channel can be "split" through copying (as in the case of 

the channel identified by x in the above example), it is not possible to 'loin" or 

"merge" two dataflow channels into a single channel. Also, all dataflow proceeds in 

one direction; as illustrated by action graphs, a graphical representation of actions 

as an enhanced form of directed acyclic graphs [29]. The molecular forms which 

gave rise to control structures, convincing as they are by virtue of their elegant 

accomodation of existing concrete computational models, should not be taken as 

the sole form that can provide such accomodation. A natural variation, suggested 

by the constraint on dataflow in the molecular forms encountered hitherto, is to 

remove such; in other words, to move from acyclic graphs to cyclic ones. 

Such cyclicity can be achieved by a suitable variation in the directionality of 

binding in the molecular forms. As they stand, binding in the molecular forms 

is to the right and hence a molecule /2 which is bound by some molecule .A to its 

left, cannot itself bind A. Moreover, there is no way in which the exported names 

of an action can be fed into an action which is precomposed to it. This form of 

backward dataflow is generally recognised under the term feedback. In this chapter 

we shall study such an operation, here called reflexion, introduced by Mimer and 

Jensen in [25] giving a refinement of action calculi called reflexive action calculi. 

The feedback operator that we shall study was discovered independently by 

several researchers working in quite dissimilar contexts. Stefnescu studied the 

feedback operator in the context of flow charts [39]; Bloom and Esik treat feedback 

in the context of iteration theories [5]; Milner first discovered reflexion (feedback) 

in the context of an action structure for the ir-calculus [26] and then studied it in 

the context of action calculi in [25]; while Joyal, Street and Verity treat feedback 

(which they call trace) in the setting of (a mild generalisation of) strict symmetric 

monoidal categories [14]. 

There are several reasons which make the introduction of reflexion as a struc- 
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tural operation interesting in the context of action calculi. First, as argued above, 

the restriction on dataflow between actions to just the forward direction is effect-

ively removed. The bodies in the molecular forms for reflexive action calculi are 

representable, as a result of reflexion, by multisets of molecules, rather than partial 

sequences. This is a manifestation of the freedom to express dataflow in any dir-

ection. Also, it makes the resulting molecular forms closer to Berry and Boudol's 

Chemical Abstract Machine (CHAM) [3]: the solution of a CHAM consists of a 

multiset of molecules. As an additional benefit, the restriction operation ii, present 

as a control operation in the action calculi for both Petri nets and the ir-calculus, 

is derivable in terms of reflexion and copying ((x) (xx)). Moreover, reflexion can 

also be used, in the presence of higher order controls {' ', ap}, to deriye a form 

of recursion. Finally, as will be discussed in greater depth in chapter 5, the pres-

ence of reflexion will be crucial to obtaining an elegant operational semantics of 

(a reflexive variant of) the ir-calculus based upon labelled transition relations. 

Outline The presentation of reflexive action calculi in Section 3.1 is essentially 

a summary of [25]. In this section we review reflexive molecular forms and define 

the operations of control structures upon them. The reflexion operation is then 

defined, through the auxiliary notion of reflexive substitution on these molecular 

forms. As for action calculi, a term algebra presentation is given and shown to 

be isomorphic to the reflexive molecular forms. This term algebra is essentially 

that for action calculi with the inclusion of the reflexion operation together with 

equations which effectively constrain its interaction with the other operations. 

Further to this summary of [25], we develop an example of the use of reflexion to 

derive recursion in the presence of higher order controls. A further variation of 

the reflexive molecular forms—giving strict reflexive action calculi—is then briefly 

described. 

In the following section we present a refinement of control structures which 

gives a category of models for reflexive action calculi. This is done through the 

intermediate notion of a trace on a strict monoidal category, introduced by Joyal, 

Street and Verity in [14]. The abstract treatment of reflexion allows us to deal 

semantically with the derived restriction operation ii. In particular, we explore the 
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effect of restriction on the surface of an action. Extending the abstract treatment 

to the strict variant also leads to a characterisation of surface which captures the 

intuition that the surface of an action consists of those names that, when "hidden" 

by restriction, affect the behaviour—hence, the semantic interpretation—of that 

action. 

3.1 Reflexive Action Calculi 

We shall begin by presenting the reflexive variant of the molecular forms mentioned 

above: 

Definition 3.1 (Reflexive Molecular Forms) Let K; be a signature and, for 

every  prime arity  p let v : i —+ p be a control not in K;. The reflexive molecular 

forms over K2, denoted Mr(K;),  consist of the actions, given by 

a ::= (M) Pi 	p,. (ii) 	(: m, iZ: n, a: m—n) 

p ::= (ii)K( 	 (il:k,:l,K:k—l) 

where p ranges over molecules and K ranges over K; U {zi,, I p E P}. The body 

of a is a multiset of molecules where any two molecules can commute. For each 

molecule (ii) K(y) the binding occurrences have scope throughout the action a. 

In the action a the binding occurrences in each molecule and the names in I must 

all be distinct. Actions which differ only by a change of bound names are not 

distinguished. 

We shall now define reflexive substitution, which ensures that channels which loop 

upon themselves are detected and duely give rise to a restriction particle in the 

molecular form. 

Definition 3.2 (Reflexive substitution) Let x be a name not bound in a. Then 

reflexive substitution {Y/x} on actions is defined as follows: 

deI !1

l  
/Xa 	(xy) 

1Y/x}a 	
(vx)a (x = y) 

A. 

< 
- 
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where YtXa  denotes the literal replacement of y for x in the syntactic form of a and 

(vx)a denotes the introduction of the molecule Øv(x) in a. 

Reflexive substitution now allows us to define our feedback operator: 

Definition 3.3 Let a = (xu)Z(yii) with x, y : p. The operation of reflexion on 

reflexive molecular forms is defined as follows 

tTM a 	 U 

We shall often use a derived form of reflexion which operates on channels of ar-

bitrary (rather than prime) arity. As reflexion on a link of prime arity is defined 

in terms of reflexive substitution of a single name, we will also wish to relate the 

derived form with an appropriate version of reflexive substitution: 

Definition 3.4 The iterated reflexion operator t, for m = Pi ® 	® Pr, is 

given by 

M (ef M 

	

I(m)a 	Ipr Ipi a 

Note that, if r = 0 then m = € and t(m)a = a. 

The simultaneous reflexive substitution t{il/} is given recursively in terms of the 

single form by 

	

* 	def {}a = a 
c 

U 

Proposition 3.5 

The reflexive substitution *{9/.}  is unaffected (up to alphaconversion and 

permutation of molecules) by permutation of the substitution elements Yi/;; 

If y,i: m and a = ()ji(iZ) then t)a = 
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Proof See [25]. 

There is also a presentation of reflexive action calculi as term algebras over a set 

of controls: the main result will be that the two presentations are isomorphic. 

Definition 3.6 (Terms) The terms over signature K, denoted by T(/C), are gen-

erated as follows (where t ranges over terms): 

t::= id 1(x) I'' I KIt1•t2 I t 1 ®t2 IabtItt 

where each construction has arities dictated by the arity rules of the constructors 

including the following for t: 

t:p®m—)p®n 

m-+n 

The notions of free name, bound name and substitution are as before, with {Y/x}tt = 

t{Y/x}t. 

It is helpful to view the graphical representation of reflexion. Let t denote the 

action graph (or molecular form) a : p 0 m —+ p 0 n. Then tt denotes the 

following action graph: 

p 	 p 

a 
m 	 n 

Such graphic representation may greatly clarify the constructions and manipula-

tions on reflexive terms. Note that the inclusion of action graphs here is informal 

and is used only to assist intuition. Nevertheless, the reader is encouraged to relate 

results and manipulations involving complex terms with their graphical represent-

ations. 
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Definition 3.7 (The theory AC) The equational theory AC is the set of equa-

tions upon terms generated by the equations of AC together with the following: 

Pi : Id,, = 

p2: t,,t®id=t,,(t(9id) 

p3 : t,ti t2 = fp(t l•  (id,, ® t2 )) 

p4 : t 1  =t((id®t1) .t 2 ) 

P6 : tqtpt = 1ptq ((Pq,p (9 id) . t (Pp, q  ® Id)) 

As for AC, we shall consider AC' to be either the above set of axioms, or the set 

of equations inferred from them (a congruence relation). It will be clear from the 

context which we mean. 

Remark The attentive reader will notice the absence of any axiom labelled p5 . 

In Mimer's formulation of reflexive action calculi, there was such an axiom 

(x)tt = tp((Pp,q  ® id) . (x)t) 

where x : q. This axiom was subsequently found to be redundant by Masahito 

Hasegawa. His proof is reproduced below. 

Proposition 3.8 In AC', (x)1,,t = tp((pp,q (9 id) (x)t) where x: q. 

Proof 

(x)1',,t = (x)(1,,(((x) ® id) . (x)t)) 

= (x)(t,,((id,, 0 (x) 0 id) . (Pp q  ® Id) . (x)t)) 	C 
= (x)(((x) 0 Id) . 1p((Pp,q  (9 id) (x) t)) 	P4 

= (x)((x) 0 id) . tp((Pp, q  0 id). (x)t) 	 2.16(1) 

= tp ((Pp ,q OId)(2)t) 
. 

The following equations, which are counterparts to the axioms for reflexion, are 

provable in AC' (AC) for the derived form of reflexion already encountered in the 

molecular form setting: 
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Lemma 3.9 Let t( m)t tpr t 1 t form = Pi 0 ®Pr,  with 	= 

t(m)Pm,m = idm ; 

t(m)tl 0 t2 = t(m)(tl (9 ta); 

tl Oj()t 	t(m)((m (9 tl) .t2 ) 

4 t(m)l t2  = t(m)(tl (idm  0 t); 

t1 • 	= t(m)((1(1rn 0 ti) t2 ), 

= t(m)t(n)((Pn,m (9 id) t. (Pm,n 0 id)) 

Proof See [25]. 	 • 

The following lemma shows how, in the presence of reflexion, the composition of 

two actions can be expressed in terms of their tensor product, composition by 

permutors and reflexion. 

Lemma 3.10 

t 1  t2 = t(m)(Pmk (t1 (9 t2 )), if t 1  : k—*m,t 2  : m—+n; 

(t 1  (9 idk) t2 = t(m)(tI 0t2), if t 1  : €—+rn,t2  : m(9 k — n; 

t 1  N 0 ida ) = 1(m)(tl (9 t2 ), if t 1  : k—+m On, t 2  : m—+. 

Proof See [25]. 

Lemma 3.10(1) states the equality of the action graphs shown below, where the 

terms t 1  and t2  denote graphs a and b respectively. 
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Example By the above lemma, any composition of terms can be rewritten with 

reference to their tensor product. This has an interesting consequence in Pl', the 

reflexive counterpart of PlC, given as the reflexive action calculus over the same 

signature (less ii, which is derivable) and reaction rules as PlC. In PlC, unlike in 

PlC, the following reaction is derivable: 

box1a outs  = t(m)(boxxa (9 out s,) 	3.10(2) 

N 1( m)a 

A graphical representation of the reaction is included below: 

Refiexion can express cyclic dataflow with an action a feeding b while b feeds a. As 

the following lemma states, this may be written with either the term representing 

a precomposed to b or vice versa (for an illustration see figure 3-1 on page 66): 

Lemma 3.11 (Sliding) Let t 1  : m-+n. Then 

t(m)((tl (9 id) t 2 ) = 	. (t 1  (9 id)) 

Proof 

t()(t2 (t 1  (9 Id)) 

= t()(t2 ((t(m)Pmm t1) (9 id)) 	 Pi 

= 	() (t2  (t(m)(Pmm  (idm  (9 t 1 )) 0 id)) 

= 	() (t2  t(m)((Pn,m  (1dm  (9 t 1 )) 0 Id)) 	 P2 

= t(n)t(m)((1dm (9 t2 ) ((Pm,m  (1dm  0 ti)) (9 id)) 	P4 

= t(n)t( n)((Idm (9 t2 ) ((t1  (9 1dm ) pn,m) (9 Id)) 	2.27,S1 
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= t(n)t(m)(( 1dm ® t2) (t 1  ® id) 	(9 id)) 

(Pn,m 0 id) 	(Pm,n  (9 Id)) P8 

(D id) 	(t 1  0 t2 )) 2.27,S2  

= 	t(m)t(n)((Pn,m 0 id) 	(t 1  (9 id) 	(ida  0 t2)) 

= 	t(m)t(n)(((Pn,m . (ti (9 Id)) (9 id) 	(ide  0 t2)) 

= 	1(m)t(n)(((( 1dn ® t1) . 	0 id) 	(id0  (9  t2 )) 2.27,S 1  

= 	t(m)(t(n)((( 1(mn (9 t1) 	pn,n)  (9 d) 	t2) O3 

= 	1(m)((t(n)(( 1dn 0 t 1 ) 	Pn,n) 0 id) 	t2) P2 

= 	t(m)(((tl 	t(1)P) 0 Id) 	t2) P4 

= 	t(m)((tl Old) 	t2) Pi 

We shall now define reflexive action calculi in a straightforward manner: 

Definition 3.12 (Reflexive action calculus: statics) The static reflexive ac-

tion calculus AC' 3 (K) is defined to be the quotient T(C)/AC'. 

Theorem 3.13 For any signature JC, the reflexive action calculus AC'(K) is iso-

morphic to the molecular forms M'(K). 

Proof See [25]. 

The isomorphism between ACC) and M'()C) is given by the map [-I : AC'(AC) —* 

M'(K) with inverse (-) : M'(ftC) -+ ACt (C). Both maps were shown in [25] to 

preserve the control structure operations together with reflexion. Thus, -JJ is 

obtained by defining the map inductively on the structure of terms with each 

term constructor mapped to the corresponding operation on the molecular forms: 

to demonstrate that -J is well defined it was shown that whenever AC I- t 1  = t 2  

then tiJ = 1t21. The definition of (-) is less obvious and we reproduce it below as 

57 



Chapter 3. Reflexive Control Structures 	 58 

it gives some insight into relationship between reflexion and the scope of binding 

(to both left and right) in the molecular forms. Let 

a = (1)[(61)K1 1 (?7l),. . . , 

whereKEKU{l1}andki(1<i< 1 ) Then 

a=tktkl (y1 . yr)((vi) K 1 ®®( r)Kr(9()) 

def with ii = t(x)(xx). 

We note that AC' 8  (K) together with an arbitrary local preorder on its actions is a 

control structure over K. Choosing the appropriate local preorder for the reaction 

rules R. will give us the reflexive action calculus AC'(K, R.): 

Definition 3.14 (Reflexive action calculus: dynamics) Let 'R. be a set of re-

action rules over a signature K. Then the (dynamic) reflexive action calculus 

AC'(K,R.) is the control structure given by AC' 3 (K) equipped with the smallest re-

action relation N, which is preserved by reflexion and satisfies the rules 1Z. (for 

all replacements of metavariables al by actions). . 

As for action calculi, we will write AC'(K) for AC'(K,R) when R. is understood. 

3.1.1 Example: recursion from refiexion 

To provide an illustration of the use of reflexion we shall present an example of a 

reflexive action calculus in which two forms of recursion can be defined using re-

flexion. We shall consider the reflexive action calculus over the signature { , ap} 

which has already been encountered (by way of example) in chapter 2. 

First we shall define the operator rec as a form of reflexion that allows the 

feedback loop to be tapped. 
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Definition 3.15 (Recursion) Let t : p® m-+p ® n. Then 

recp(t) def
= t(t (copy,, ® id)) 

where copy,, lef
(x) (xx) for x : p. 

In the following section (Definition 3.27) we will derive restriction v as the refiexion 

of copy. Thus, recursing the identity also gives restriction: 

Proposition 3.16 rec(id) = ii. 

Proof Immediate. 

A more interesting application of rec, however, is obtained when reflexion is used 

to feed a code back into itself: 

Proposition 3.17 rec(x)'t' N (rec (x)rt) . ()rf1. 

Proof 

rec(x)'t' 	= tOxrt.copy) 

= t(x)t'copy) 	 2.16(1) 

N t(x)(rt®rt) 

= .f(x)(rtl. (id ® 

= t(ab't (x) (id ® f1)) 

t(abxrt (x)((rt 0 id) . Pnin:::83) 

= t(abxrt 	((x)rt 0 id) . Prn:::n,7n:::4,) 	 2.16(1,2) 

= t(abzrf P7 	(id 0 (x)rt)) 

= t(abxrtp,)(x)rt 	 p3 

= t(x)(((x) 0 	 . (x)rt 	2.16(4,1) 
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= t(x)(rt(x)) . (x)m 	 C 

= 	 (xVt) (& (x)) (x)rt 

= 

= t((x)(xx) ((x) r'f' (9 Id)) . (x)rt 	 2.16(1) 

= tx)rt.(x)(xx)).(x)t 	 3.11 

= (rec(x) r t') (x)'t' 	
U 

Note that the rec operator recurses only codes. The following construction allows 

recursion on arbitrary actions with identical input and output arity. 

Definition 3.18 Let t : m-+m and x : m ==> m such that x V fn(t); then 

iterj (t) 	(rec((x)'((x) 0 id) . ap f') (9 idk) ap 

iterb(t) 	! ((rec(x)r((x) (9 t) . ap) (9 1dm ) . ap 	
U 

Remark In the above definition for iterj , the arity of x : k = m and that of 

ap: (k=m) 0 k -*m; while in the definition of iterb, x : m=k and ap: (m= 

k) 0 m -+ k. The arities of the above constructions then obey the following rules: 

t : m-+m 
	 t : m-+m 

iter1(t) : k-+rn 
	iterj (t) : m-*k 

Note that k is unconstrained, and therefore, any choice of k will do in the above 

definitions. This means that there are a family of iteration operators indexed 

by arities. The semantic relationship between the iterators in each family is an 

interesting question. 

These operators provide left and right recursion as shown below: 

Proposition 3.19 

1. iterj (t) N, iterj (t) . t ; 
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2. iterb (t) N t - iterb (t). 

Proof 

iter1 (t) 

(rec((x)r((x) ® Id) ap t') 0 id) ap 

\ (rec((x)r((x)(9id).ap.t)Oid) 

.((X)r((X) 0 id) ap . t0 id) ap 	3.17 

= (rec((x)'((x) 0 Id) ap - t) (9 Id) 

.(x)((r((x) ®id) .ap.t(9id) .ap) 	2.16(1,2) 

N (rec((x)((x)Oid) .ap.t')(&id) (x)(((x)(9id) .ap.t) N3 
= (rec((x)r((x) 0 id) ap t) 0 id) . (x)((x) Old). ap t 	2.16(1) 

= (rec((x)'((x) (9 id) ap- t) 0 id) . ap t 	 6 

= iter,(t) t 

iterb (t) 

= ((rec(x)r((x) 0 t) ap) 0 1dm ) ap 

N ((rec(x) I ((x) 0 t) . ap') (9 1dm ) 

.((x)r((x) (9 t) . ap' (9 1dm ) ap 	3.17 

= 	((rec(x)'((x) 0 t) . ap') (9 Id,,,) 

.(x)((r((X) (& t) ap' (9 idm) . ap) 	2.16(1,2) 

N ((rec(x)r((x)Ot) ap)®idm) . (z)(((x)Ot) .ap) 

= ((rec(x)((x) (& t) . ap) 0 1dm) (id,,,,,. 0 t) ap 	2.16(1,2), 6 

t. ((rec(x)'((x)Ot) ap)Oid m ) ap 

= t iter 6 (t) 

Remark Note that when t: e —+€, then iter1t \ tO itert and iterb t N tO iterb t. 

Hence, for ftC = {out, box} (our fragment of ir-calculus), we can encode a form of 

replication in V as follows: 

def rept = iter,(boxt) 
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Then outs  ® repa NA a ® repa. 

Discussion The encoding of recursion from refiexion, coding and application 

poses some interesting problems. In an extension of the theory AC by the higher 

order axioms introduced by Mimer in [281, instead of proposition 3.19 we can 

derive fixed point equations as follows: 

iterf(a) = iterj(a) a 

iterb(a) = a iterb(a) 

giving iter1 (a) and iterb(a) as left and right fixed points of a with respect to 

composition. Are they distinguished as fixed points, for instance as the least such, 

in some suitable ordering? 

3.1.2 Discarding redundant restrictions 

Inspection of the axioms introduced for refiexion reveals that the only structural 

(non-control) operations whose interaction with refiexion is not constrained is the 

identity. Refiexion of the identity corresponds, in terms of datafiow, to looping a 

channel onto itself. This means that the channel will not be accessible any longer 

(at least statically or structurally). We shall express this by considering such an 

action to be equal to id as follows: 

Po : tid = idE  

We shall refer to the theory resulting from adding Po to AC' as AC. 

Lemma 3.20 t(m)'rn = IdE . 

Proof Let m = Pr ® ® p. Proof follows by induction on r. The case for r = 0 

follows by definition. Assume r = s + 1, letting in' = p 0 	0 i'i. By induction 

hypothesis, we have (*) : 	= idE. 
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t(m)rn = 

= t(ml)(tps+i ldpa+j  ®ldm') 	 P2 

= t(m)1(1rn' 	 Po 

id 	 (*) 
D 

One outcome of the axiom is to provide molecular forms with garbage collection: 

restriction particles which do not bind any name are discarded. Hence we define 

strict reflexive molecular forms over K as just those reflexive molecular forms (over 

K) where, for every restriction particle v(x), there is at least one free occurrence 

of the name x bound by it. 

Theorem 3.21 For any signature K, the set of terms factored by AC', (K)/AC 

is isomorphic to the set of strict reflexive molecular forms M(K). 

Proof See [25]. 	 El 

We define strict reflexive action calculi in a manner similar to reflexive action 

calculi; when R. is understood we abbreviate AC()C, 7Z) to AC'(K). 

3.2 Reflexive Control Structures 

An obvious way to proceed to a formulation of reflexive control structures is 

through the refinement of control structures by introducing the reflexion oper-

ation constrained by the equations Pi - Pe• However, this will not give us enough 

axioms to obtain the initiality result for reflexive action calculi. The proof of 

proposition 3.8 gives an indication of what is lacking. The proof makes use of 

the fact that x is not free in t((p, ® id) (x)t). To obtain this equation in the 

abstract setting, we expect to rely on the corresponding property that x is not in 

the surface of (cp ,q  (9 id) . (x)a. To do this, however, we must show that reflexion 

does not increase surface. In other words, from the fact that x is not in the stir- 

face of (cp ,q  (9 id) . (x)a we must be able to deduce that x is also absent from the 
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surface of tp ((cp,q  0 id) (x)a). It is unlikely that this property can be deduced 

from the axioms mentioned so far since none of them deal with the interaction 

between abstraction and reflexion. As will be explained, by taking the equation 

(x)ta = tp ((cp,q  (9 id) (x)a) (where x : q) as an axiom, it can be shown that 

reflexion does not increase surface. 

However, we recall that the problem of ensuring that operations do not increase 

surface has already been encountered in the formulation of control structures. 

There it was solved by introducing the axioms, one for each control operation K: 

[Y/x]K(ã) = K([Y/x]ã) 

It turns out that the addition of the axiom [Y/x]ta = t[Y/xla, suggested by 

Hasegawa, provides a theory which is equipotent with that given by adding instead 

the axiom (z)ta = tp(('p,q (9 id) . (x)a) (where x : q). 

More directly, consider a possible proof that reflexive action calculi are initial 

reflexive control structures: this may be done by showing that the theory AC and 

the theory given by the axioms of reflexive control structures are equipotent over 

the term algebra. To show that o is provable in the latter theory, the equation 

[Y/x]ta = t[Y/x]a is necessary. We recall that o: [Y/x}a = {Y/x}a asserts the 

identification of syntactic and semantic substitution. In the context of reflexive 

action calculi, the definition of syntactic substitution was extended to include 

{Y/x}tt = {Y/x}t. Therefore, in a most direct manner, the axiom [Y/x]ta = t[Y/x]a 

allows us to obtain a in the theory defining reflexive control structures. 

As mentioned previously, the notion of reflexion or feedback has found expression 

in several independent research efforts. One particular formulation which is suit-

able for our purposes comes from Joyal, Street and Verity [14] who introduced 

the notion—called a trace—in the context of symmetric monoidal categories. We 

shall see that their axioms for the trace operation, together with the additional 

axiom presented above concerning semantic substitution, suffice to give a category 

of models in which reflexive action calculi are initial. The definition of a trace on 

a strict symmetric monoidal category given below essentially follows [14]. 
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Definition 3.22 (Trace) A trace on a strict symmetric monoidal category A is 

a family of functions f 1  : A(m (g k, m ® 1) -4 A(k, 1) indexed by the objects m of 

A such that the following axioms hold (in A): 

Yanking 	T1  

Superposing T2 : 

Naturality 	T3 : 

 

 

tmCm,m = ld m  

al®tma2 =tm((cm,k®jd) . (a i  (9a2) (Ci,m ®id)) 

(ai  : k-41) 

l m al a2  = tm (ai . (id (9 a2 )) 

a1  tm a2 = tm ((j(lrn (9 ai ) a2 ) 

tm ((ai (9 id) . a2) = t(a2 . (ai  0 id)) 

(a1  : m-+n) 

Vanishing 	T6 : t€a = a 

T7 : l' m®na = tn(tma) 
U 

Remark In the setting of action graphs, the trace axioms may be illustrated by 

the equalities shown in figure 3-1. The axioms T 3-T5 , which assert the naturality 

of , are labelled Right Tightening, Left Tightening and Sliding respectively. 

Notation We shall usually drop the superscripts k, I in 	since in any tm(1  they 

are deducible from the arities of a. Moreover, we shall refer to the trace operation 

in the context of reflexive control structures as reflexion. 

Definition 3.23 (reflexive control structure) Let A be a control structure over 

a signature ftC. Then A together with a trace t is a reflexive control structure over 

ftC if f preserves the reaction relation and the following equation holds (in A): 

cr t :  [Y/x}ta = f[Y/x]a 	 U 

We shall now show that reflexion does not increase surface. 

Lemma 3.24 (Surface) surf(ta) C surf (a). 
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Vanishing 
Superposing 

= 

_ 	 -- 

Yanking 

-Lid--- - _____ 

Left Tightening 	
Right Tightening 

Sliding 

Figure 3-1: Trace axioms 
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Proof Assuming x V surf (a) we show that x V surf(ta),  or in other words, 

abta = id 0 ta. By x surf (a) we have aba = id ® a. Now, consider an 

arbitrary y of the same arity as x. By proposition 2.30 [Y/x]a = a. Hence ta = 

t[Y/x]a and hence, by o,  fa = [Y/xjta. Then, by proposition 2.30, aba = id 0 a 

and hence x V surf(ta). . 

Remark A comparison between the theory AC' and that given by the axioms of a 

reflexive control structure is assisted by considering the (independent) replacement 

of axioms T2  and T5  by the axioms shown below: 

T: tm a ® Id = tm ((1 0 id) 

T'5 : tm®n (2  = tn®m ((Cn,m (9 id) a - (c 0 Id)) 

Proof Assume a: m ® k —+ m 0 1, a1  : k -+1 and a2  : m ® k' —pm 0 1'. 

(T2) a1  0 tma2 

= Ck,k' (tma2 (& ai ) ci'j 	 2.24(1) 

Ck,ICI . (tma2 0 id) . ( idii 0 ai ) cp,j  

= CIC,IC' tm ((22 0 id) . (id1  (9 a1 ) . c1',1  

= Ck,k' tm((°2 0 id) . (Idm®j' 0 ai)) Cj',l 	 T3  

= Ck,k' tm (22 (9 a1 ) . c1',1  

= tm(( 1'1rn 0 Ck,k') (a2 0 ai) . (1dm  (9 c1i,1)) 	 T3 , T4  

= tm ((jdm 0 Ck,k') CmØk',k . (a1  (9 a2 ) 

(1dm  0 cp,j )) 	 2.24(1) 

= tm ((jdm 0 Ck,k') (1dm  0 Ck',k) (Cm ,k 0 Id) 

.(ai  (9 a2) . C1,m®jl (1dm  0 c1:,1 )) 	 2.24(3) 

= tm ((Cm,k (9 Id) (ai  (9 a2) C1,m®l1  (1dm  0 c1',1)) 	 S2 

= tm ((Cm,k 0 id) - (a1  0 a2) . (Ci,m  0 id) 

(idm  0 c1,1:) . (1dm  0 c 1:,1 )) 	 S 3  

= tm ((Cm,k 0 Id) - (ai  0 a2) . (Ci,m  0 id)) 	 S2 



Chapter 3. Reflexive Control Structures 	 68 

(T) tm a 0 id, 

= Ck,n (Id,,, (9 tm a) c,,,1 	 2.24(1) 

= Ck,n tm ((Cm,n (9 Id) (ida  (9 a) (Cn ,m  (9 Id)) 	 T2  

= tm ((11rn 0 Ck,n) (Cm ,n  (9 id) (ide  (9 a) 

(Cn ,m  (9 id) (jdm  (9 c,j)) 	 T3 , T4  

= tm('rn(&i,n (ide  0 a) Cn,m®i) 	 S3 ,2.24(3) 

= tm (a 0 id,,) 	 2.24(1) 

(T5 ) 	f(a2• (ai 0 id)) 

= 	1(a2 	((tmCm,m 	a1 ) (9 Id)) T1  

= 	t(a2 	(fm(Cm,m 	(id, 0 ai )) (9 Id)) T3  

= 	tn(a2tm ((cm,m(m(&ai))(9)) 

= 	tilm((j1m(9a2) 	((Cm,m 	(1dm  (9ai))(9 id)) T4  

= 	lntm((hlrn 0 a2) 	((ai  (& 1dm) . Cn,m) 0 Id)) S i  

= 	tntm((rn 0 a2) 	(a1 0 Id) 	(Cnm  (9 id)) 

= 	1ntm((ai 0 a2 ). (cn ,m  0 Id)) 

= 	tmln((Cm,m 0 Id) . (ai  0 a2) 

(Cn ,m  Old) 	(Cm,n  0 Id)) T'5  

= 	tmtn((Cn,m 0 id) . (ai  0 a2 )) S2 

= 	tmtn((Cn,m Old) . (a1  0 Id) . (ida  ® a2 )) 

= 	tmtn(((Cn,m 	(ai (9 id)) 0 Id) 	(ide  (9 a2 )) 

= 	tmtn((((j(1n 0 a1) 	0 id) . (ida  ® a2 )) S i  

= 	tm(tn(((Mn (9 ai ) . 	0 id) 	a) T3  

= 	tm (( n ((n0a1)n,n)0Ya2) 

= 	tm (((ai 	0 Id) 	a2 ) T4  

= 	tm((a10)12) T1  

(Ti) tmøna 

= 1 m®n ((Cm,n 0 id). (Cn,m  (9 id) a) 	 S2 

= tm®n ((Cm,n (9 Id) a - (Cn ,m  (9 Id)) 	 T5 
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While its similarity to 0.3 makes the axiom oJ appealing, sometimes we shall need 

equations in a form that expresses the interaction between reflexion and (the two 

kinds of) abstraction. Indeed, as we shall see below, the equations we shall take 

are not only provable, but actually induce identical theories when either of them 

replaces cr 1 . 

Proposition 3.25 The theories obtained from adding any one of the equations 

shown below to the axioms of control structures together with T 1  -T7  are identical. 

Ut: [Y/xjtma = 

T8 : (x)tma = tm ((Cm,p ® id) . (x)a) 	 (x : p) 

7: abxtma = tm((Cm,p ® id) . aba• (Cm ,p  (g id)) (x : p) 

(0.t = T8 ) (x)tm a 

= (X)(tm(((X) (9 id) (x)a)) 

= (X)(1m((id 0 (x) 0 id) (Cm ,p  (9 id) (x)a)) 

= (x)(((x) 0 id) . tm ((Crn,p (9 Id) (x)a)) 

= (x)((x) 0 id) . tm ((Crn,p 0 Id) (x) a) 

= tm(('rn,p (9ld) . (x)t) 

U' 

2.24(1,4) 

T4  

2.33(1) ,3. 24 

2.33(5) 

(T = cr1) [Y/x]ta 

= ((y) (9id) . (x)tma 

= ((y) 0 Id) abxtma• (, ® Id) 

= ((y) ®ld) tm ((Cm,p 0 id) . aba (Cm ,p  (9 id)) . (w 0 id) 

= tm((rn (9  (y) 0 id) . (Cm ,p 0 id) 

•aba - ( Cm ,p  0 id)) . (Ci) 0 id) 

= tm(((Y) 0 id) aba• (Cm ,p  0 id)) (w 0 id) 

= tm(((Y) Old) aba '(Cm tp 0 jd) (1dm  0 w 0 id)) 

= 1m(((Y) 0 id) . aba• 	® id)) 

= tm(((Y)O) (x)a) 

= 

T18  

T4  

2.24(1,4) 

T3  

2.24(1,4) 
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(T 8  = T) abx1 m a 

= (x)((x) (9 tm (2) 	 2.33(4) 

= (X)tm((Cm,E (9 id) ((x) (9 a). (Cp,m  ®id)) 	 T2  

= (X)tm(((X) ® a). (Cp,m  0 id)) 	 2.24(4) 

t((cm ,p ® id)(x)((x)(9 a)(cp,m ®id)) 	 T8  

= t((Cm,p 0 id) aba (Cp,m  (9 id)) 	 2.33(4) 

Remark We do not have surf(ta) = surf (a) in general by the following counter-

example in AC'. Let a = (x) 0 u.'. By lemma 3.10(1), ta = (x) . w = ide . Hence 

surf(ta) = 0 while surf (a) = {x}. 

The equations given in proposition 3.25 express the interaction of reflexion with 

abstraction when the link created by abstraction is distinct from that operated 

upon by reflexion (the link which is fed-back). We shall now consider the case 

when reflexion operates on an abstraction. 

Lemma 3.26 Let x : p, y : q and x y. Then 

1. (x)t q (y)a = tq (y)(x)a; 

. abt(y)a = tq (y)(abz a (cq,p (9 id)); 

3. tp®q (2)(Y)e2 = tq®p(y)(x)(a (c p,q  0 id)); 

i tp(x)t q (Y)a = t q (y)tp(x)(a 	(9 id)). 

Proof 

(3) tp®q (2)(Y)(2 

(9 id) . (y)(x)a) 	 2.33(6) 

= t ® ((c, (9 id) . (y)(x)a•(c p ,q (9 id) (cq ,p  0 id)) 	S2 

= tq®p (y)(x)(a. (c p,q  0 id)) 	 T 
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(1) tq (YX) 0' 

= 	(x)((x)®id)tq(YX)a 2.33(5) 

(x)(((x)(9id)tq(YX)a) 2.33(1) 

= 	(x)tq((idq(9(x)®id)(YX)a) T4 

(X)tq(aby((2) ® Id) 	(yx)a) 

(9 id) 	(x)a) 2.33(3), 2.24(4) 

= 	(x)1q(y)a 071 

(2) abxtq (y)a 

= 	(x)((x)(&t(Y)a) 	. 2.33(4) 

= 	(x)((tq(y)00(2))(Cn,p0id)) Si 

= 	(x)(tq ((y)a (9 (x)) 	(9 id)) T, T3  

= 	(x)(tq(y)(a ® (x)) 	(9 Id)) 2.33(2) 

(x)tq ((y)(a (9 (x)) 	(idq  (& Cn,p  (9 Id)) 

(x)tq(y)((a (9 (x)) 	(idq  0 Cn,p 0 Id)) 2.33(1) 

(x)1 q (Y)(((2 ) 0 a) . (cp,q®n  (9 id) . (idq  (9 Cn ,p 0 Id)) S 1  

(x)tq(Y)(((2) (9 a) 	(cp,q  0 Id) 

(idq  (& Cp,n 0 id) . (idq  (9 c.,p  (& Id)) S3 

= 	(x)1q(Y)(((X) (9 a) 	(cp,q  (9 id)) S2 

= 	tq (Y)(X)(((X) 0 a) 	(9 id)) (1) 

= 	fq (y)((X)((1) (9 a) 	(cp ,q  (9 id)) 2.33(1) 

= 	tq(y)(abx (1 	(cp ,q  0 id)) 2.33(4) 

(4) tp(2)tq (Y)a 

tptq(y)(2)a 	
(1) 

T7  

= TPgq(x)(y)(a.(Cq,p(D id)) 	 (3) 

= tq tp(x)(y)( (cq,p  (9 Id)) 	 T7 

= tq(y)tp(X)( (cq ,p  0 Id)) 	 (1) 
0 
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Restriction The reflexion operation allows us to derive restriction, an operation 

which occurs in the action calculi for both Petri nets and the ir-calculus. Since 

it can be derived from algebraically defined operations, the restriction (or hiding) 

of names can be examined at a semantic level. Unsurprisingly, this involves the 

consideration of refiexion on the surface of an action. 

Definition 3.27 (Restriction) We define restriction on names as follows: 

'! f(x)(xx) 

(vx)a de =f (v(9id)(x)t 
. 

rA - 

Notation When consists of distinct names x 1  Xk, we shall often write (v)a 

to mean (vx 1 ) . . . (j)j 

The equations proved below give a flavour of how the restriction operation is 

expected to interact with the operations of a reflexive control structure. 

Lemma 3.28 (Restriction) 

(vx)a ® b = (vx)(a ® b) if x 0 surf(b); 

a®(vz)b= (vx)(a(&b) ifx Osurf(a); 

(vx)a . b = (vx)(a. b) if x 0 surf(b); 

a (vx)b = (vx)(a. b) if x 0 surf (a); 

(vx)aba = ab(vx)a if x 

(vx)(y)a = (y)(zix)a if x 

(vx)ta = 
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8. (vx)(vy)a = (vy)(vx)a. 

Proof 

(1) (vx)a®b 

= ((v®id).(x)a)®b 

= (v®id).((x)a(9b) 

= (v®id).(x)(a(9 b) 

(3) (vx)ab 

= ((v(9id)•(x)a).b 

= (v®id)((x)a•b) 

= (v®id)•(x)(a•b) 

(2) a®(vx)b 

= aØ((v(9id).(x)b) 

= (a®id).(idØvØid)•(id®(x)b) 

= (a(9 v®id)•(id(9 (x)b) 

= (1' ® a ® id) . 	® id). (ida  0 (x)b) 

= (ii ® a (9 id) (x)(id ® b) 

= (vOid)•(id®aOid)•(x)(idOb) 

= (v®id)•(aba®id)•(x)(id(9b) 

= (v 0 id) . ab(a Old) (x)(id 0 b) 

= (ii (9 id) . (x)((a 0 id) (ida (9 b)) 

= (i (9 id) (x)(a (9 b) 

(4) a(vx)b 

= a.((v(9id).(x)b) 

= (a. (v®id))•(x)b 

= (v(9 a)(x)b 

= (ii ® id) (id (& a) . (x)b 

= (v(9id).aba)•(x)b 

= (ii 0 id) (x)(a. b) 

2.33(2) 

2.33(1) 

(a : m—*n) 

2.24(1,4) 

2.33(3), Si 

2.33(2,4) 
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(5) (zix)aba 

(v(9id).(x)aba 

(ide  (9 v 0 id) (cq ,p 0 Id): (x)aba 

= (idq  01/(D id) (cq ,p 0 Id) ababa (w (9 ld) 

(idq  Ov(9id)• ababa (c q ,p OidY() (9I 1) 

(idq  Ov (9 id) ababa -ab y (w 0  Id) 

(idq OV(9 1d)by( 

= ab(z' (9 id) ab(x)a 

0 Id) (x)a) 

(vx)(y)a 

= (vx) (aba (w (9 id)) 

(VX)abva.(W(91) 

= ab(vX)a(W(9) 

= (y)(vx)a 

(zix)ta 

= (v(9 id) (x)ta 

= (i.'O Id) . t((c, (9ld) (x)a) 

= t((1 0 1' (9 id) (cp,q (9 id) (x)a) 

= 

(x p,y : q) 

S7 

Si ,2.24(4) 

S4 

(3) 

(5) 

T8 ,x : q 

T4 

2.24(i,4) 

(8) (vx)(vy)a 

= (v0id) (x)(((9 ld) (y)a) 

= (vOid) ab(ii Old) . (x)(y)a 

= (zi 0 Id) .(id 0 z' (9ld) (x) (y)a 

= (vOvOid).(x)(y)a. 

= (ii 0 11 0 Id) . (cp,q 0 Id) (y)(x)a 

(vOv(9id)..(y)(x)a 

= (ii 0 id) (id q  0 v® Id) . (y)(x)a 

= (LI (9 ld) ab(ii Old) (y)(x)a 

= (v (D id) (y)1I (9 Id) . (x)a) 

(z : p) 

2.33(6),y: q 

2.24(1,4) 

0 
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Remark The above lemma holds in any control structure with control operation 

v : i -+ p in its signature. Any such control has an empty surface (in the action 

calculus, its surface is empty, homomorphisms reduce surface, and a homomorph-

ism exists from the action calculus to the control structure). Assuming this fact, 

the above lemma is provable in AC. 

The following lemma illustrates the intuition of reflexion as feedback. In particular, 

(1) shows how a datum is fed back and (2) shows that a link looped onto itself 

effectively removes input access to that link, producing a restriction. 

Lemma 3.29 Let x : p. Then 

f,(x)((y) (9a) = [Y/x]a if x 

t(x)((x) (9 a) = (vx)a; 

Proof 

(1) t(x)((y)®a) 

= 	t((y)(9(x)a) 2.33(3) 

= 	t(((y)®id) . (id,,(9(x)a)) 

= 	fp  ((y)Øid).(x)a T3  

= 	t((id ® (y) 0 id) 	(9 id)) . (x)a 2.24(1,4) 

= 	((y) Old) 	0 id) 	(x)a T4  

= 	 (fpcpp  

= 	((y)Oid).(x)a T1  

= 	[Y/x]a 

(2) 1(x)((x)®a) 

= 1(x)(((x) (9 id) . (Id,, (9 a)) 

= t(x)(((x) 0 id) . (id,, 0 (((x) 0 id) (x)a))) 	 a. '  

= t(x)(((x) 0 id) . (Id,, 0 (x) 0 id) (id,, 0 (x)a))) 
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= t(x)(((x) ® (x) (9 id) (id (9 (x)a)) 

= t(((x)(xx) (9 id) (id ® (x)a)) 	 2.33(1) 

= t((x)(xx)(9id)(x)a 	 T3  

= (v(9id)(x)a 	 T 12  
U 

Remarks 

1. A generalised version of the above lemma is easily obtained as follows. Let 

, : m and {} n {} = 0. Then, if []a 	[Y11x 1 J . . [Yn/x ]a, for Y= 

X1X n ,YY1"Y n : 

tm()(()  (& a) = [a; 

tvn()(() ® a) = (v)a; 

Proof Induction on li]. 

Base case 1A = 0 Trivial. 

Inductive step 1A = i + 1 Assume u, v : p. First consider an arbitrary F. 

tm®p(tL)((1t') (9 a) 

tptm()(tt)((2) ® (v) (9 a) 

= tptm()(()®(tL)((t') (9 t2)) 	 2.33(3) 

Case {iv}fl{u}=O: 

= t(u)[1/]((v) ® a) 	 induction 

= t(u)((v)®[1/Ja) 	 2.33*,2.24(4)* 

= [V/u1[V/u]a 	 3.29(1) 

= ((v) 0 id) . (u)(((i) 0 id) . ()a) 

= ((v) ® id) ab(() 0 id) (ux)a 

= ((v) (9 id) (id (9 (z) 0 id). (uf')a 2.30 

= ((v2) 0 id) (ux)a 

= [iV/u]a 
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Cev=u: 

= t(u)(vx)((v)(9a) induction 

= 	 3 . 28(1)* 

= (vu)a 	 3.29(2),3.28(8) 

2, We could, in place of (2), have derived 1aba = (vx)a using practically 

the same proof, since aba = (x)((x) ® a). This fact is used to prove the 

following proposition which expresses the effect of restriction on the surface 

of an action. 

Proposition 3.30 

surf(v) = 0; 

surf((vx)a) C surf (a) - {x}. 

Proof For (1), surf(v) = surf (t(x)(xx)). Therefore, by lemma 3.24, surf(v) C 

surf((x)(xx)). But surf ((x)(xx)) = 0. For (2), by lemma 3.29, (vx)a = faba. 

Hence surf ((iix)a) = surf (taba) C surf (aba) = surf (a) - {x}. 	. 

We shall now express a sort of semantic counterpart to reflexive substitution. In 

particular it is worth noting how (semantic) substitution may occur across bindings 

without renaming, akin to the literal replacement of names employed in defining 

reflexive substitution over the molecular forms. 

Proposition 3.31 

([Z/xIa (xz) 

(y1)(vx)a (x=z) 

Proof First, by sufficiently many applications of lemma 3.26(1), t, (xy) ((z) ® a) = 

(y')t(x)((z) 0 a). By lemma 3.29 result follows immediately. 

In the expected manner, we shall now define a category of reflexive control struc-

tures in which the reflexive action calculus ACrS(AC) is initial. 
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Proposition 3.32 ACrS(K) is a reflexive control structure over K. 

Proof By proposition 2.41, we already know that, over the term algebra, the 

axioms of a control structure are provable in AC, and therefore in AC'. This means 

that AC'3 (K) is a control structure. Therefore, the result will follow if a trace is 

defined in terms of the operations of AC' 8 (K) which satisfies the axioms T 1 —T7  

and at. Let the trace tm 4ef t(m) Then, by definition, the axioms T 6  and T7  are 

provable. Also, T 1 , T3  and T4  follow from lemma 3.9(1,3,4) respectively; T5  follows 

from lemma 3.11. ot follows immediately by o and the definition of substitution. 

The proof of T2  in AC  is shown below: 

(T2) t 1  tm2 

= 	Pk,W 	(tmt2 0 t 1 ) 	Pi',i 2.27,2.24(1) 

= 	Pk,k' 	(1mt2 (9 Id) . (id1i (9 t 1 ) 	Pv,i 

= 	Pk,W 	tm (t2 (9 d) . (Idz' (9 t 1 ) 	Pu,: 

= 	Pk,k' 	tm ((t2 (9 Id) . (1dm(& 1' 0 ti)) . P3 

= 	Pk,k' 	tm (t2 (9 t1) . Pi',i 

= 	tm ((hlm 0 	(t2  0 t1) . (1dm  0 P11,1)) P3, P4 

= 	tn((rn (9  Pu') 	Pm®k',ic . (t 1 o t) 

(dm  0 P11,1)) 2.27,2.24(1) 

= 	tm(rn (& Pis) 	(1dm (9  Pk',k) 	(Pmj 0 d) 

.(t 1 (9  t2) . Pi,m®i' 	(1dm  (9 Pt',:)) 2.27,2.24(3) 

= 	lm((Pm,k 0 id) . (t 1  0 t2) . Pi,m®i' 	(1dm  0 P:',z)) 2.27,S2  

= 	tm((Pm,k 0 id) . (t 1  0 t2 ) . (P1 Tfl 0 id) 

(idm  0 pjjs) 	(1dm  (9 Pu,:)) 2.27,S3  

= 	tm((Pm,ic 0 id) 	(t 1  0 t2) 	(Pi,m  (9 id)) 2.27,S2  

Definition 3.33 The category of reflexive control structures over K, CS' 8 (K), is 

the subcategory of CS3  (K) whose objects are the reflexive control structures and 

whose morphisrns are all those (morphisms between reflexive control structures) 

which preserve reflexion. 
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Remark Since we have added only purely equational axioms to those of control 

structures, the category of reflexive control structures is guaranteed an initial 

object. 

Theorem 3.34 AC"8 (K) is initial in the category CS"(K). 

Proof Since AC' 8 (1Q is a reflexive control structure, there is a unique map to 

it from the initial reflexive control structure. That map is onto, so it remains to 

show that it is one to one. To do that, we must show that whenever the images 

of two terms are provably equal in ACr, then they are equal in the initial reflexive 

control structure. It suffices to show that in the initial reflexive control structure, 

the axioms of AC" are valid. We have already shown that the pure axioms of 

AC are valid (i.e. true in any control structure, hence in any reflexive control 

structure); therefore, it remains to validate the axioms p1 —p5  together with the 

axiom schemas o and -y. The validity of the axioms p1 —p5  follows from T1 , T, 

T3 , T4 , T 5  respectively. By propositions 2.36 and ot we get o. It remains to show 

-y. 

For y,  it suffices, by proposition 2.30, to show that whenever x V fn (t) then 

x V surf (t). This involves an easy induction on the structure of terms (of the 

initial reflexive control structure): the only new case is that for reflexion where for 

t jt', we have x E fn (tt') if and only if x e fn (t'). Hence, assuming x V fn (t) 

gives x it fu (t') and by induction hypothesis we get x V surf(t'). By lemma 3.24 

the result follows immediately. 

We shall now define a subcategory of models for reflexive action calculi which takes 

the dynamics into account. 

Definition 3.35 If 1Z. is a set of reaction rules over ?, then CS'(K,lZ) is the 

full subcategory of cs"3 (K) containing just those reflexive control structures whose 

reaction relation satisfies R. 

Corollary 3.36 AC"(K,1Z) is initial in CS"(1C,7). 
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3.2.1 Strict reflexive control structures 

We shall now define a category of reflexive control structures (a subcategory of 

CS(AC)) in which the strict reflexive action calculus AC(AC) is initial. An inter-

esting property of the objects of this category is that their surface map can be 

characterised in a very appealing manner. - 

Definition 3.37 (strict reflexive control structure) Let A be a reflexive con- 

trol structure over a set of controls AC (and over X). Then A is a strict reflexive 

control structure if the equation tmldm = id(  holds. 	 . 

Proposition 3.38 AC(AC) is a strict reflexive control structure over K. 

Proof Again choosing tm,  by proposition 3.32 we have that the axioms of a re- 

flexive control structure are provable in ACr,  and therefore in AC. By lemma 3.20, 

the axiom T0  is provable, hence result follows. 	 . 

Theorem 3.39 Strict reflexive control structures over AC and homomorphisms of 

reflexive control structures form a category in which AC  (AC) is initial. 

Proof We already have, by proposition 3.38 that AC(AC) is a strict reflexive 

action calculus. By theorem 3.34, we also know that, over the term algebra, all 

the axioms of AC' are provable from the axioms of reflexive control structures. By 

a similar argument, it suffices to show that Po is derivable. This follows by the 

fact that Po is a special instance of T0. . 

We note that restrictions of names which are not in the surface of an action a should 

not affect the behaviour of the action. Indeed, the strict reflexive molecular forms 

illustrate this in a concrete manner, by discarding restriction particles which do 

not effectively bind any name in the action. An analogous semantic notion of such 

discarding of redundant restrictions is obtainable in the strict theory AC. 

Lemma 3.40 (Garbage collection) If x V surf (a), then (vx)a = a. 
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Proof Assume x V surf (a). Then aba = id 0 a. 

(vx)a = taba 

= t(id®a) 

= t((id0id) .(id(9a)) 

= t(id®id)a 	 T3  
= (tid®id)a 	 T 

= (id®id)•a 	 T0  

U 

Corollary 3.41 v w = id 

Proof z' 	= 1/ (x)id = ide . 	 • 

Example As an example of garbage collection following computation consider 

the following reaction in PlC, assuming x 10 surf (a): 

(vx) (out x  0 boxa) N (vx)a 

= a 	 3.40 

We shall now show that, in strict reflexive control structures, the surface of an 

action a is exactly given by the set of names x, the restriction of which changes 

the action, i.e. (x)a 0 a. This corresponds very satisfyingly with the notion that 

the surface of an action consists of the names which "matter semantically" in that 

action. 

Proposition 3.42 (Surface) For any name z and action a, x E surf (a) if and 

only if(vx)aa. 

Proof (4==) By lemma 3.40 we have that if (vx)a a then x € surf (a). 

(==) We now show that if x € surf (a), (vx)a j4 a. We shall prove the contra- 

positive: assuming (vx)a = a we show that x V surf(a). Now by lemma 3.24, 
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surf (taba) C surf(aba). Hence by lemma 2.31(3) x V surf (aba) and hence 

x V surf(taba). But, by lemma 3.29(2), (vx)a = t(x)((x) ® a) = taba. Since 

a = (vx)a, we get a = taba and therefore x surf (a). 

Discussion What are the relative merits of the two kinds of reflexive molecular 

forms and the abstract structures they give rise to? Consider the molecular forms 

as a kind of "programmer's notation", where the imported names serve as formal 

parameters. Then, if programmers are to be allowed to declare extra (local) names 

which they then do not use within the body of the program, then the strict form 

is not suitable. Discarding redundant restrictions is, in a sense, a semantic or 

behavioural notion rather than a syntactic one. This does not mean that models 

in which the strictness axiom holds are uninteresting; indeed, we expect that, in 

behaviourally motivated models of (non-strict) reflexive action calculi, the strict-

ness axiom will hold. This point, in modified form, will again appear when we 

deal with the operational semantics of the reflexive ir-calculus, PlC, in chapters 5 

and 6. 



Chapter 4 

Skeleta 

So far, the main examples of control structures we have encountered are action 

calculi and their reflexive variants. We shall now explore two instances of strict 

reflexive control structures which are simple, universal, in the sense that they arise 

from any set of controls K, and are models of static action calculi. Both examples 

can be obtained by factoring the term algebra T(K) by the congruence induced by 

the theory ACre together with simple equations. Alternatively, a characterisation 

in terms of the term algebra Y(K) over any signature K may be obtained which 

contains at least the restriction operation I,. We shall adopt the latter approach 

since it allows the results to hold in the wider context of control structures (rather 

than reflexive, or even strict reflexive, control structures). 

We choose to call such structures skeleta since they do not contain any reference 

to the specific controls making up the bodies of the action from which each skeleton 

arises: only the free names and (some of) the binding structure are retained. 

Of particular interest is their usefulness in classifying reaction rules for ac-

tion calculi. The idea of using certain control structures to classify dynamics first 

appeared in [20], where a control structure I M was described together with its 

property as a classifier of reaction rules according to whether or not they result 

in a certain kind of mobility. In summary, for those action calculi (such as the 

lambda calculus) in which the kind of immobility characterised by IM is express-

ible, there exists a morphism of control structures to I M, whereas for other action 

calculi which exhibit a corresponding form of mobility, such as the action calcu- 
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lus originating from the ir-calculus, no such morphism exists. We expect to find 

many such classifiers, each characterising some property of the dynamics of control 

structures. Both kinds of skeleta presented here may be employed as classifiers: 

whether the properties they embody are useful in understanding the dynamics of 

processes is another question. 

Outline A simple kind of skeleta, called pure skeleta, is introduced in section 1; 

it results from an analysis of the exported names in the molecular forms un-

der contexts built from the operations of reflexive control structures. They are 

presented as skeletal forms, a form which emphasises their nature as abstractions 

of molecular forms. An alternative presentation as a term algebra—essentially the 

same algebra as for action calculi (with restriction) but with additional axioms—is 

given. This further clarifies what structure in the actions of action calculi is being 

forgotten in obtaining pure skeleta. Indeed, this consideration leads to an abstract 

characterisation of (the control structure of) pure skeleta as a terminal object in 

a suitable category of control structures. Section 1 ends with an exploration of 

dynamical aspects of pure skeleta, in particular, of their use as a classifier of action 

calculi upon a property of their dynamics. 

In section 2, the notion of name export which motivated pure skeleta is regarded 

as an instance of information flow. A slightly richer, but still concrete, notion of 

information than exported names is proposed, leading to a corresponding kind of 

skeletal form: restriction skeleta. As for pure skeleta, a term algebra presentation 

of restriction skeleta is given with the relevant theory being obtained by revoking 

one axiom from that which gives pure skeleta. Prior to dealing with the dynamic 

aspects of restriction skeleta, Milner's effect structures [21]—an abstract treatment 

of computationally-generated information—are reviewed. We show that the con-

crete notion of information adopted in the context of restriction skeleta gives an 

effect structure for just those action calculi which have a homomorphism to (the 

control structure of) restriction skeleta. 
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4.1 Pure Skeleta 

Pure skeleta arise from a consideration of the free names exported by an action. 

Consider an action a in the reflexive action calculus over the controls {out, box} 

in its molecular form: 

a = (x) [(xu)out( ), (y)boxb(w)] (wxz) 

The action a exports the names w, x and z, of which only z is free. Although they 

are both bound, there is a significant difference between the names w and x. If a 

datum (v)—or indeed any action which exports the free name v—is precomposed 

to a, then, in the composite action, x would be replaced by v and the action 

will then be able to export the free name v. However, there is no operation in 

the action calculus that, when applied to a, would allow the bound name w to 

be replaced by a free name. Note that it doesn't matter to which molecule the 

binding occurs, the names thus bound cannot be replaced by free names as a 

result of applying any operation defined in terms of the action calculi operations. 

Thus, we distinguish between three kinds of exported name: those which are free; 

those which are bound by the names in the import vector; and finally, the control 

bound names which can never be replaced by free ones (unless freed as a result of 

reaction). It may be argued that, since it is only the exported free names that we 

are concerned with and since control bound names can never be replaced by free 

ones, any distinction between control bound names can be ignored. This is what 

we shall do to obtain pure skeleta. 

4.1.1 Skeletal forms 

Definition 4.1 (Pure skeleta) The actions of pSKEL pure skeleta, ranged over 

by s have the following form: 

S ::= ()() 
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where {} C X U {*} with * 	are distinct names and s : m—+n if x: m and 

ii. Each name in binds any occurrence of that name in; names (in X) not 

thus bound are free. Aiphaconversion of bound names is allowed. 	 • 

We shall now show that pure skeleta give strict reflexive control structures. First, 

we must define the operations of a reflexive control structure on pSKEL. 

Definition 4.2 We define the following operations on pSKEL. Assume s = (ux)(vy), 

s1  = (u1)(i) and 82 = ()() with the names in iZ distinct from those in Y. 

def 
1dm   

d (x) ef 
 = 

def = 

si.82 
def
= 

S1®82 
def
= 

absi def 
= 

de f 
ts= 

() 

()(x) 

(x)() 

(iZ)(c) 

(ilf)(ii) 

(xii)(xil) 

J ()({V/}y) 

(f)({*/U}17) 

if u V 

if u = V 

(: m) 

({i1/}) 

U 

Proposition 4.3 For any set of controls AC, pSKEL together with the operations 

of definition 4.2, any reaction relation on pSKEL and, for each K E AC, 

def K() = ()(*.. .*) 

is a strict reflexive control structure over K;. 

Proof Consider the molecular forms over the strict reflexive action calculus 

AC(AC). We define the map pskel : AC(AC) —+ pSKEL as follows: for each 
-. 	-. 	 def 	.. _. a E AC (AC) with molecular form (iZ)t(vi)(w), pskel(a) = (iZ')({ */v}w). Clearly, 

pskel is onto. It therefore suffices to show that pskel preserves the operations of 

a strict reflexive control structure. 
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Remark It can easily be demonstrated that the mapping pskel : (i)iTZ(ii)(tii) 

when defined on the molecular forms for both action calculi and re-

flexive action calculi, preserves the operations of a control structure, and in the 

case of reflexive action calculi, preserves reflexion as well. 

It will be noted that, for all the main results of this section bearing reference to 

action calculi and control structures, corresponding ones replacing those references 

respectively by ones to reflexive action calculi and reflexive control structures (and 

even their strict variants) are easily obtained with almost identical proofs. The 

reason behind this uniformity must come from the fact that pSKEL captures un-

derlying structure which is common to the molecular forms of all these variants. 

The following proposition is a case in point; the propositions obtained by repla-

cing AC8 (K) and CS3 (K) by AC' 8 (AC) and CSrS(K)  respectively, and also AC 8 (1C) 

and CS 3 (1C) (the static counterparts of AC()C) and CS(K) respectively), are 

demonstrable by practically identical proofs. 

The pure skeleton arising from the action (x) [(xu)out( ), (y)boxb(w)] (wxz) is 

(x) (*xz). Thus, as the following proposition shows formally, the pure skeleton 

of an action (in an action calculus) accounts for the free and import-bound names 

exported in the molecular form of that action. 

Proposition 4.4 Let pskel be the unique morphism (in CS 3 (K)) from AC8 ()C) 

to pSKEL. Then, for all s e pSKEL and z *, pskel (a) = S (1dm  ® (z) 0 id) 

implies that, for some a', a = a' (1dm  0 (z) 0 Id) with pskel (a') = s. 

Proof Consider the molecular form of a = (ii)ji(Y)(tiY). Then, pskel (a) = 

(i)({/il}w). Then if pskel(a) = S (idm  0 (z) Old), we must have s = ()(2) 

with tiJ = ti1 zii2 , = {/il}tii (i = 1,2), : m and z . Hence, a = 

((ii)(üii zzii2 ) = ( Th2(iJ)(tii1?ii2) (1dm  0(z) Old). 

In pSKEL we do not expect to distinguish between different control actions having 

the same arity. The following proposition allows us to derive this property: 

Proposition 4.5 In pSKEL, for any K, K(i) = m 0 1/1. 



Chapter 4. Skel eta 	 88 

Proof Trivial. 

Corollary 4.6 For any two control actions K1 (a) and K2 (b), if their arities are 

identical, then K 1 (d) = K2 (). 

Nor do we expect to distinguish between control bound names: 

Proposition 4.7 ii (x)(xx) = ii (9 v. 

Proof Trivial. 	 . 

4.1.2 Terms 

We shall now give a characterisation of pSKEL as a quotient of the terms T(K), 

when K contains the restriction controls v : € -+ p, for each prime p. To denote 

such signatures uniformly over arbitrary control sets, we shall write K,., for the 

signature IC U 1VP I p E P). 

Definition 4.8 (The theory ACPS)  Let ACPS  be the theory resulting from the ad-

dition of the following equation to the theory AC: 

U 

= id 

v.(x)(xx) = p® ,' 

K() = rn®,'n 

. 

Since pSKEL is a strict reflexive control structure, it might be expected that the 

characterisation we seek would involve the reflexive terms T(AC). Indeed, this is 

possible, and it is fairly easy to show that adding the equation K(t) = ,m ® 

(with v as defined previously) to AC' would allow every term in T(ftC) to be 

proven equal to a term in T(ftC,') in the resulting theory. Also, the equation 

v 	= id is derivable in the theory AC' and therefore adding the other two 

equations to this theory would also suffice. Our chosen approach is then justified 
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by the fact that our results do not depend on the presence of reflexion but rather on 

that of restriction, which while derivable in arbitrary reflexive control structures, 

may nevertheless be present in control structures where the reflexion operation 

is absent. The advantage of our approach will be apparent as we shall be able 

to derive results concerning the classification of dynamics which are applicable to 

both reflexive and (ordinary) action calculi. 

Let us extend the notion of substitution of names to restriction particles: we 

let {V/x }t denote the term obtained by replacing every occurrence of (x) by V in 

t, provided the name x is free in that occurrence. Note that since ii is not itself a 

name, name clashes with binding occurrences can never occur. 

Lemma 4.9 For any term t, ACPS  I- (v ® id) (x)t = {L'/x}t. 

Proof Induction on the structure of terms. 	 U 

The following definitions shall provide the isomorphism (and its inverse) between 

pSKEL and the term algebra factored by the theory ACPS.  First, the map from 

pSKEL to the terms Y(AC,,). 

Definition 4.10 (pSKEL to Terms) Define the translation (-) : pSKEL-+T(K) 

as follows: 

-f 
() 	 ( ) 

where 	V. 	 U 

We would like to get a translation from pSKEL to equivalence classes of terms 

T(Kv) induced by the theory ACPS.  By an abuse of notation let (-) denote a 

mapping from the skeleton s to the equivalence class [i]. 

Lemma 4.11 The translation (-) : pS K EL -* Y(CL, ) /AC' is well-defined. 

Proof It suffices to show that the translation (-) preserves alphaconvertibility. 

This is trivial. 
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The following lemma shows that the map (-) is a morphism of control structures. 

Lemma 4.12 (-) preserves the operations of a control structure over any signa-

ture K,. 

Proof Routine. 

Definition 4.13 (Terms to pSKEL) Define the translation [—] : T(K 1.1) -* pSKEL 

to map each term constructor to the corresponding control structure operation in 

pSKEL. 	 . 

The following proposition ensures the existence of a morphism of control structures 

T(ACp )/ACPs_pSKEL. 

Lemma 4.14 For any two terms t 1 ,t2 , whenever ACPS  t1  = t 2 , we have Itil = 

1Et2]I. 

Proof Since the map is inductively defined on the operations of a reflexive control 

structure and the skeletal forms in pSKEL satisfy the axioms of a control structure, 

the result follows easily. 

Proposition 4.15 The morphism (of control structures) (-) from pSKEL to the 

quotient Y(C11)/AC is an isomorphism. 

Proof We must show both J91 = s and [tlj = t for arbitrary pure skeleta s and 

terms t. To show that N = s, consider s = ()(. Then 9 = ()(, where (*) 

corresponds to ii. Since -JJ preserves the operations of a control structure and 

Iv = (*), result follows. For 	= t, result follows by the fact that the [-Jl is 

defined inductively on the operations. and (-) preserves all of them. 	• 

Remark We note that in pSKEL, asin any action calculus, x E surf((x)); in other 

words, the inequality ab(x) id 0 (x) holds. It is worth remarking that should 

we add the equation ab(x) = id 0 (x) to the theory ACPS  (making x V surf((z)) 

in the quotient of the terms by the resulting theory), all terms of equal arity would 

be provably equal in the resulting theory. 
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Lemma 4.16 The equation ab(x) = id ® (x) is not provable in the theory ACPS 

Proof We show that if such an equation were provable in ACPS  then all terms 

would be provably equal. By proposition 4.15 we would get a contradiction, since 

there clearly exist pure skeleta of equal arity which are not identical. First we will 

show that, for any x, (x) = v. 

(x) = (v.,)®(x) 

= (v®(x)).(w®id) 

= v.(id ® (x)) (w ® Id) 

= v - (ab(x)) . (c (9 Id) 	 assumption 

v•(x)(xx)•(c.'(9 id) 	 2.16(4) 

= (v(9v).(w®id) 

= ii 

Then any two terms consisting of a tensor product (of arbitrary, but finite length) 

of subterms ii and (x) for any x are provably equal. Then so are terms of the 

form ()t and ()t' when t, t' are built from tensor product, restriction and datum, 

by alphaconversion. Now consider two arbitrary terms t 1 , t2  of equal arity. Then, 

by proposition 4.15 and the definition of (-), there are terms [t i ] and which 

have forms ()t and (y)t' respectively, with t, t' built as above. Result follows 

immediately. 

4.1.3 Statics 

We shall now characterise pSKEL as a terminal object in a suitable subcategory of 

CS8  (K). This characterisation hinges on the structure that pskel retains from the 

molecular forms; essentially, enough to account for the exported free names and 

enough to ensure that pskel is a homomorphism of control structures. Our result 

will also highlight a further application of surface as the semantic counterpart of 

free names. 
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Notation Consider any control structure A over a signature IC,,. We define the 

pure skeleton of A, pSKEL(A) as the quotient of the smallest congruence on its 

actions induced by the equations: 

= id 

ii. - (x)(xx) = ii®ii 

K(o) = rn®,n 

We shall call the unique morphism which takes any action in A to its equivalence 

class in pSKEL(A), pskelA. 

Until otherwise stated, in what follows we shall assume that the reaction relation 

for pSKEL is the universal relation on its arrows. 

Lemma 4.17 For any control structure A over some K;,, in which x E surf((x)) 

and the following equations hold: 

zi•c., = id 
 WmoVn K(d) = 

v.'(x)(xx) = V®L' 

there is a unique morphism from pSKEL to A mapping each (*) in pSKEL to ii, in 

A. This morphism is injective. 

Proof We know that AC is equipotent to a purely equational theory on the term 

algebra (over any signature, including K,,). Therefore, the theory ACPS  is also 

equipotent to a purely equational theory, and by a standard argument we obtain 

that there is a unique morphism of control structures from pSKEL to any such 

A. It remains to show that this morphism 'I' : pSKEL -+ A is injective. First we 

shall show that in A, for any x, y: (1) (x) 54 z'; and (2) if x y then (z) 0 (y). 

(1) follows since the surface of V is necessarily empty (it is empty in the action 

calculus, there is a morphism from the action calculus to A and morphisms do 

not increase surface). (2) follows immediately since the surfaces of (x) and (y) 

are not equal. Consider arbitrary s 1 , s2  € pSKEL such that s 1  3k  s2 . We show 
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that '(s 1 ) 0 4(S2). It suffices to consider s1 , s2  of identical arity (otherwise the 

proof is trivial). Assume that 1(si) = 1(S2). By alphaconversion we know, for 

some S CX and 11,IIC X u{*} that s 1  = (iZ) and s2  = ( ii). Assume ii and ii 

differ in some position such that ii = w i yi1  and ii = :VW292  with : m, w 1 , w 2  : p 

and w 1  w 2 . Now choose some distinct names F such that {} fl fn (s 1 , s2 ) = 0. 
Clearly, {1:}w 1  {}w 2 . Now, for i = 1, 2: 

(i) 	(s). (w m  ® id,, (9 id) = ({ } w 1 ) 

Then ({}w i ) = ({}w 2 ). But by {}w i  {}w 2  this is a contradiction. • 

Lemma 4.18 For any control structure over K,,, A, such that x e surf((x)), 

there exists a unique injective morphism from pSKEL to pSKEL(A) (in CS 8 (K)). 

Proof By lemma 4.17, we need only show that whenever x E surf((x)) in A, 

then x E surf((x)) in pSKEL(A). By lemma 4.16 the result follows. 

Theorem 4.19 pSKEL is terminal in the full subcategory of CSs(Cj,)  whose ob-

jects are just those control structures to which the unique morphism from AC(K) 

is onto and in which x E surf ((x)). 

Proof First we note that the following diagram commutes in the subcategory: 

AC(K) 	
pskel 	

pSKEL 

!' 

A 	
pskelA 	

pSKEL(A) 

To see this consider that there is a unique morphism from AC(AC) to pSKEL(A). 

We shall now show that 1 : pSKEL —+ pSKEL(A) is onto. This will conclude the 

proof, since by lemma 4.18, is injective. This would make pSKEL and pSKEL(A) 

isomorphic and since there is a unique morphism from any A to pSKEL(A), the 

result follows. To show that 4D is onto, we need 

Vs e pSKEL(A).as E pSKEL. (s) = s 
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Assume not; that is, there is some s E pSKEL(A) for which there is no s E pSKEL 

such that <I(s) = s. Now, since pskel A  and 'I' are onto, there is some a E A 

such that pskel A(a) = s and some a E AC(K) such that W(a) = a. Hence s = 

pskelA('I'(a)). Now let s = pskel(a). We get (pske1 (a)) = pskel A(W(a)) = s 

which gives a contradiction. U 

Remark We can prove an analogous result concerning the terminality of pSKEL 

in the full subcategory of CS' 8 (1C) (and of CS' 68 (1C)) whose objects are just those 

reflexive control structures to which the unique morphism from ACrS(AC)  (and, 

respectively, AC 3 (1C)) is onto and in which x E surf((x)). 

4.1.4 Dynamics 

We shall now consider pSKEL as a classifier of action calculi. Recall that pskel 

AC(K) —+ pSKEL captures the potential of an action to export free names. But so 

far we have onlyconsidered the statics of pSKEL, using the universal relation on 

its actions as its reaction relation to ensure that any map to it from any control 

structure trivially preserves the reaction relation. We shall now choose a smaller 

reaction relation, which will give pSKEL its power as a classifier of dynamics. 

The intuition behind what follows relies on the property that whenever an 

action a reacts to, say, a', then a' should have at least as many exported free 

names as a had. In other words, reaction can only add exported free names but 

never retract them. Whether this condition on reaction is one we would wish or 

expect computational calculi to have universally is not known; however, in all the 

examples (available to date) of existing computational calculi cast in the action 

calculi mould, this property does hold. This is not to say that stronger properties 

do not; indeed, in the following section we will examine what is, in a sense, a 

stronger form of this property. 

There are three equivalent characterisations of the reaction relation on pSKEL 

all of which provide an elegant way of defining it. We choose to define reaction on 

the molecular forms. 
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Definition 4.20 (Pure skeleta: dynamics) The relation N on pSKEL is the 

transitive reflexive closure of the smallest relation such that, for any skeleton s = 

()(th *y2) and name z: 

()Wi *U2) N ()W1z2) 	 U 

We must show that the relation we have defined is indeed a reaction relation. 

Proposition 4.21 The relation N on pSKEL is preserved by the operations of 

an action structure together with reflexion. 

Proof Mostly routine; we shall show the most interesting case, that for reflexion. 

Assume s = (ux)(vff). Then, if s N s', s' = (ux')(v'yP), where v'y' is obtained by 

replacing in vy some number of occurrences of * by names. 

Case 1: u = v Then, since u e X, v 0 * and, hence v = v'. We get ts = 
()({*/u}) and ts' = ()({*/u}). Since u 0 *, any occurrence of u in ff 

indicates a corresponding occurrence in 9. Hence any occurrences of * intro-

duced inby the substitution {*/u} are also introduced (in the corresponding 

places) in V . 

Case 2: u V 

Case 2.1: v 54 * Then v = v' and ts = ()({ V/u}y) and ts' = (x)({V/ u }y'). 

By the same reasoning as for the previous case, any occurrences of v 

introduced in ff by the substitution {V/u} are also introduced (in the 

corresponding places) in 7. 

Case 2.2: v = *, v' 0 u Then ts = ()({*/u}) and ts' = ()({ V '/u}y) 

Thus, any * introduced in by the substitution {*/u} is replaced by V. 

Case 2.3: v = *, v' = u Then fs = ()({*/u}) and ts' = ()({*/u} y ') 

Thus, since the occurrences of u inare unchanged in , the result 

follows. 	 . 



Chapter 4. Skel eta 	 96 

The following proposition captures the essence of reaction for pSKEL: (*) may 

react to become a datum. 

Proposition 4.22 The relation N is the smallest reaction relation on pSKEL 

closed under the following rule: 

Proof The reaction ii 	(x) is clearly derivable by the rule given in definition 4.20. 

The reaction 

(Xffi * ff) N ()WizU) 

is derivable since ()(th*) = ()((Y-i) ® '® (92)). Since reaction is preserved by 

tensor and abstraction 

()(Wi)®v® (ff2))N()((ff1)® (z)Ø(ff2)) = (x)(fflzy2) 

It is the following, logical form of characterisation that we shall use to demon-

strate the role of pSKEL as a classifier of dynamics. The proposition expresses our 

intuition about the retention of any exported free name under reaction. The im-

ported names, which may be replaced by free names as a result of precomposition 

by data, are also taken in account. 

Proposition 4.23 For any two skeleta s 1  and 82 of identical arities, si  N S2 if 

and only if, for all z 0 *,f,m, s'1 , 

(Y) - si  = S(idm ®(Z)®id) 	5.(X)S25(id m ®(Z)®id) 

Proof (==) Assume s 1  N 82 and () s 1  = s'1  (idm  0 (z) (9 id). Then, (i). 

siN(s) 2. Now, for some ff', Y 2  X u{*} with ffi  m, () .s = (ff1 zff) = 

(ff1ff2) (idm  (9 (z) 0 id). Since z 0 *, it follows by the reaction rule on molecular 

forms that (f) 82 = ( z) where and are obtained by replacing some 

occurrences of * by some names in ff and respectively. Hence () s2 = ( z) = 

(idm  0 (z) (9 id). 
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(=) Consider an arbitrary s i  = ()(il) where 9 ç X U {*}. By aiphaconversion 

for any S2  of identical arity. s2 = () ( Y) for some V. It suffices to show that 

whenever s2  satisfies this condition, then it can be obtained from s1  by replacing 

some number of occurrences of * in the skeletal form of si by some names. Assume 

not. Then there is some name w (e X) such that iT = il1 wfZ 2  which is not equal 

to the corresponding name in V. But this is easily shown to violate the property 

of s2  regarding the identical provision of exported names under precomposition by 

arbitrary data. 

Lemma 4.24 Let A be a control structure with a morphism to pSKEL such that 

for all a E A, whenever pskel (a) = s (1dm  ® (z) id) then, for some a' E A, 

a = a' (1dm  (9 (z) ® Id). 

For any a, a' € A such that a = a' (1dm  (9 (z) ® id) and a N b, there exists some 

b' such that b = b' (1dm  ® (z) (9 id) 

Proof By a = a'• (1dm  ® (z) (D Id) and the fact the pskel preserves the operations 

of a control structure we have, in pSKEL, pskel(a) = pskel (a') . (1dm  ® (Z) (& id). 

Choose which is distinct from any names in the surfaces of a and b (and therefore, 

z). Now, () . pskel (a) = () . pskel (a') . (idm  (9 (z) ® id). Since a \ b implies 

pskel (a) \ pskel (b), by lemma 4.23 we get pskel ((x) . b) = () . pskel (b) = 

8 (jdm  ® (z) (9 id), for some s. By assumption, there is some b' such that () . b = 

b' (1dm  0 (z) 0 Id). Then, abstracting by on either side of this equation gives 

b = ()b' (1dm  (9 (z) 0 id). 

Remark In the above it is easily shown that a' N b' by applying the context 

[] . ( 1dm 0 w ® Id) to both sides of a N b. 

We are now in a position to state our main result concerning pSKEL as a classifier 

of dynamics: 

Theorem 4.25 For any signature K and reaction rules R., the action calculus 

AC(4C, 7Z.) has a morphism of control structures to pSKEL if and only if for all 
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a, a', b E AC(AC, R.) and name z *, whenever a = a' - (1dm  ® (z) 0 id) and a 

then, for some b', b = b'. (1dm  ® (z) (9 Id) and a' '\b'. 

Proof (=) By lemma 4.24, it suffices to show that the morphism pskel 

AC'(AC, R) —+ pSKEL has the property 

for all a E ACr()C, R.), whenever pskel (a) = s (1dm  ® (z) ® id) then, 

for some a', a = a' (1dm  ® (z) ® Id). 

By proposition 4.4 the result follows immediately. 

(==) We know that there is a (unique) morphism pskel in CS3  (AC) from AC 8  (AC) 

to pSKEL. It therefore suffices to show that pskel preserves the reaction relation. 

Assume a \ b. Now by proposition 4.23, we need just show that, for any 1 and s, 

whenever () . pskel (a) = s1  (1dm  ® (z) 0 Id), then for some S2, () pskel (b) = 

S2 (1dm  ® (z) 0 Id). But, by proposition 4.4, () pskel (a) = Si (1dm  0 (Z) (9 id) 

implies that, for some a', () 'a = a' (Id (9 (z) 0 id). By assumption, and since 

() a \ () . b, there is some b' such that () b = b'. (1dm  0 (z) (9 id). This clearly 

implies, () pskel (b) = pskel (b') . ( idm  0 (z) (9 id); hence choosing pskel (b') as 

s2  gives the result. 

Remark As intimated previously, by replacing CS 8 (1C) and AC 8 (K) respectively 

by CS 8 (1C) and AC" 8 (1C), and even by CS 8 (AC) and AC 8 (AC), in the statement 

of the above theorem, we obtain valid theorems. There is however an interesting 

difference in the morphism pskel in each case: for action calculi, there is no 

guarantee that this morphism, if it exists, is onto (it will depend on the signature 

AC), whereas for the reflexive variants this is always the case. 

Discussion Since the existence of a morphism to pSKEL is constrained by the 

reaction relation of an action calculus; and the same reaction relation depends on 

the reaction rules R. of the action calculus, it is natural that one should ask which 
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kinds of reaction rule permit and prohibit the existence of such a morphism. It is 

clear that reaction rules having any of the following forms 

a (Id (9 (x) ® Id) N K( 

a.(idm®(x)®id)Nb.(id m ®(y)(9 jd) (xy) 

will ensure that no morphism from the action calculus to pSKEL can exist. Con-

versely, in any action calculus which has a morphism to pSKEL, such rules—indeed, 

such reactions—are absent. However, a morphism to pSKEL does permit an action 

calculus to have rules, and reactions, such as the ones shown below: 

K(?i). (id ® (x)(xx) (9 Id) N K'() 

K(d) (idm  ® (x)(xx) (g id) N1) (1dm  (& (yz) ® Id) (y z) 

In both of these examples the identity of the two control bound exported names is 

lost as a result of reaction. In the first, the loss is to distinct control bound names; 

whereas in the second, distinct free names take the position of the identical control 

bound names. If we want to think of the controls as computational entities which 

may, upon involvement in computational activity, supply names into the links they 

command (through binding originating from the control), then such behaviour as 

display by the above reactions is not acceptable. 

4.2 Restriction Skeleta 

The intuition behind composition as connection of dataflow channels poses an im-

portant question: what can be said to flow through such channels. One simple 

answer is that it is the names which flow; this is indeed corroborated by the defin-

ition of composition for the molecular forms for action calculi. It is worth noting 

that both free and bound names flow in this way, and therefore, the exclusive con-

sideration of the exported free names is flawed if we wish to account for the flow• 

of names (free and bound) through dataflow channels in our semantic treatment 

of action calculi. 
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As an illustration of why an exclusive consideration of free (and import-bound) 

exported names might not be enough, consider the actions v - (x)(xx) and ii ® V. 

As we have seen, both of these actions have the same pure skeleton. We can show 

that these actions, say in PlC, may cause different behaviour when precomposed to 

certain actions. One such action which reveals this difference is (uv)(outØboxa). 

Precomposing this action by v - (x) (xx) unifies the port names parameterised 

by u and v causing a potential reaction to (vx)({XZ/uv}a). On the other hand, 

precomposing the same action by ii 0 ii results in an action which is inert, that 

is, cannot perform further computation. 

4.2.1 Skeletal forms 

We shall diverge just enough from pure skeleta in order to introduce a distinction 

between v.(x)(xx) and v®v. This involves having some means of expressing those 

bindings which originate from molecules; we do not want to distinguish between 

the molecules themselves, but only between the bound names originating from 

them. All that is required in order to achieve this, is some family of particles 

(molecules of rank 0) whose input antics are all e and whose output arities cover 

all the primes. This allows the skeletal form of a molecule to be constructed from 

discard operations (to make up the input arity) and such particles (to make up 

the output arity). Indeed, we have already encountered such a family of particles: 

the restriction particles. 

Definition 4.26 (Restriction skeleta) The actions of restriction skeleta vSKEL, 

ranged over by s have the following form: 

s ::= ()vS(2) 

where S C {}. The names Y and S are all distinct and are binding occurrences; 

each name in F is free unless bound by one of the binding occurrences. 

Remark The constraint S ç  {î} in the above definition expresses our require- 

ment to enhance pure skeleta just enough to allow the representation of control 
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bound names: names in S which do not bind any name in do not assist in such 

representation and are therefore, at least, superfluous to our aim. 

When we wish to indicate that S is the set of names present in the vector W we 

shall often write . We shall now show that restriction skeleta are strict reflexive 

control structures and also that they are isomorphic to the quotient of the term 

algebra T(K) and the theory AC together with the equations ii ..' = id and 

K() = w' ® n  for each KeK. 

Definition 4.27 We define the following operations on IISKEL. Assume s 1  = 

(ui)(vS i )( i), S2 = ()(vS2)(ü) and s = (yiZ)(vS)(xii) with the names in ii, 9 , Si  

and S2  distinct. 

def 
1dm = ()() (:m) 

def (x) = ()(x) 
def = (x)() 

	

81S2 = 
def (iZ)v((S1 US2 )fl{cff})(c) 	 (o.{t7/}) 

def 
81082 = (ii)v(S1 US2)(ii) 

def 
abs1  = (xZ)vS 1  (xii) 

def I  ()(Sfl{{Y/x}ii})({/x}i3) ifxy 
fs 

= 	(v((SU{x})fl{ii})( 	ifx=y 
. 

Proposition 4.28 For any set of controls K, IISKEL together with the operations 

of Definition 4.27, any reaction relation on vSKEL and, for any K e K, 

- K(s) = 
def ()vy() 

is a strict reflexive control structure over K. 

Proof Consider the molecular forms over the strict reflexive action calculus 

AC(K). We define the map vskel : AC(K) -+ vSKEL as follows: for each 

a E AC(K) with molecular form (iZ)1i(0)(t), vskel(a) 	(i)vS(tii) where S = 
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{ii}fl{tii}. Clearly, vskel is onto. It therefore suffices to show that vskel preserves 

the operations of a strict reflexive control structure. 

Remark The mapping vskel: (ii) i(ii)(zi) i-+ (i)(vS)(ii) where S = {il} fl {tfl}, 

is well-defined for the molecular forms of action calculi and also of its reflexive 

variants. In all these cases the mapping preserves the (non-control) operations of 

a control structure, and in the case of the reflexive variants, preserves refiexion as 

well. 

The proposition below states that the skeletal form of any control in vSKEL may 

be built from discard and restriction operations. 

Proposition 4.29 In vSKEL, for any K, 

K(s)=wm ®v' 

Proof By inspection of the molecular forms. 

Remark We note that in vSKEL, ii 0 ii 54 v (x)(xx). However, we shall define 

a dynamics for VSKEL where v 0 v may react to v - (x)(xx). 

4.2.2 Terms 

We shall now give a characterisation of vSKEL as a quotient of the terms Y(K). 

Definition 4.30 (The theory AC") Let ACVS  be the theory resulting from the 

addition of the following equations to the theory AC: 

VW = id 

K(t) = 
U 

Definition 4.31 (vSKEL to Terms) Define the translation (-) : vSKEL-+Y(AC) 

as follows: 
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()(v) 	 . 

Lemma 4.32 The translation (-) : vSKEL*y(ACv)/AC s  is well-defined. 

Proof The translation (-) preserves aiphaconvertibility. To show that (-) 

preserves the permutation of restriction bound names it suffices to show that 

(vx)(uy)t = (vy)(vx)t is provable in the theory ACVS  Assume x : p, y: q: 

(vx)(iiy)t = (ii 0 id) (x)((v 0 id) (y)t) 

= (ii ® id) ab(v (9 id) . (x)(y)t 

= (vOid). (id®v0id).(x)(y)t 	 (x Øfn(v)) 

= (v®v®id).(x)(y)t 

(v 0 1'  0 id). (Pp,q  (9 d) (y)(x)t 

= (v(9 v®id).(y)(x)t 

= (v 0 id) (id q  0 ii 0 id) . (y)(x)t 	(y: q) 

= (vOid). ab(v(9 id).(y)(x)t 	 (yfn(v)) 

= (v 0 id) (y)((v ® id) . (x)t) 
. 

Lemma 4.33 (-) preserves the operations of a control structure over any signa-

ture ?,. 

Proof Routine. 

Definition 4.34 (Terms to vSKEL) Define the translation : T(C) -* vSKEL 

to map each constructor to the corresponding operation in vSKEL. 

Lemma 4.35 For any two terms t 1 , t2 , whenever ACPS  tj  = t2 , we have t 1 JJ = 

I[t2]I. 

Proof Since the map is inductively defined on the operations of a control structure 

and the skeletal forms in vSKEL satisfy the axioms of ACVS  (by propositions 4.28 

and 4.29), the result follows. 
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Proposition 4.36 The morphism (of control structures) from vSKEL to the quo-

tient T(K)/AC is an isomorphism. 

Proof We must show both 	= s and 01 = t for arbitrary pure skeleta s and 

terms t. For 191 = s, consider s = ()(zi)(2); then 9 = ()(')(y- ). Since 

preserves the operations of a control structure the result follows. For 	= t, result 

follows by the fact that the [-]J is defined inductively on the operations and (-) 

preserves all of them. 

4.2.3 Effect structures 

The notion of effect, introduced by Mimer in [21] in the context of action struc-

tures, provides an abstract description of what entities might be said to flow 

through dataflow channels. Effects, ranged over by e, are defined in terms of the 

static and dynamic properties of the factorisations (a', e) of each action a = a' . e. 

Essentially, an effect is a spent action, one which cannot carry out further compu-

tation no matter what "information" it may receive. It may, on the other hand, 

supply "information" to some other action, causing it to react. These dynamic 

characteristics are captured by the following definition of inertia: 

Definition 4.37 (Inertia) An action a is inert if, whenever b•a \ c, there exists 

some b' such that bNb'  and c = b' . a. 

Effects are required to be inert. This, together with the property that a set 

of effects is closed under composition will allow effects produced by successive 

reactions to accumulate, thus: 

% a\a'.eN /a,, .c,
) e=aI,  (e -e) 

The set of effects is required to be closed under the action structure operations. 

While it is clearly desirable for effects to be closed under composition (if effects 

are to accumulate), it is debatable whether closure under abstraction is justified 

in the abstract definition. 
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Definition 4.38 (Effect structure) Let A be an action structure, and E a static 

sub-actionstrzicture of A. Then E is a postcomponent of A if, whenever a = 

a1  e1  = a2  e2 , (with e 1 ,e2  E E) then for some a' and E E 

a1 =-a'e (i=1,2) and e•e1  =ee2  

If all the actions in E are inert, then E is an effect structure for A. 	• 

Remark Our definition of postcomponent differs slightly from the one in [21]. We 

require that a prospective postcomponent E be a static sub-actionstructure rather 

than a sub-actionstructure of A. This is justified since the notion of postcomponent 

is inherently a static one— the notion is of relevance even in the absence of any 

dynamics. 

Consider some postcomponent E of A (by our definition) whose reaction rela-

tion is the identity relation (i.e. E is effectively a static action structure). Then, if 

the (images of the) actions of E are inert in A it will also be a sub-actionstructure 

of A. To see why, consider the injective homomorphism of static action structures 

E -+ A. We can show that whenever 1e N e' then 1e = e'. Assume 

4e N e'; then clearly, id . 4e \ e'. Hence, by inertia, there is some a E A such 

that Id N a and e' = a Oe. But, by definition id N a implies a = id, hence 

= Oe. Now, since 1 is injective, e = e'. We can now show that the extra 

condition required for a static sub-actionstructure to be a sub-actionstructure is 

satisfied; namely that 

1!eN the' 	> eNe' 

Since 4e N he' implies e = e', we have e \ e' by the reflexivity of reaction. For 

the other direction, the homomorphism 'Il trivially preserves the identity relation 

on E, again by reflexivity of reaction. 

The following definitions lead to a technique for showing that certain static sub-

actionstructures are postcomponents. 
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Definition 4.39 Let E be a static sub-actionstructure of A. Then the pair (a', e) 

is a decomposition of a for E, if a = a' e and e E E. We define the following 

preorder over decompositions for E. 

(a1 , e i ) < (a2 , e2) if a 1  = a2  e and e e1  = e2  for some e E E 

Say the decomposition (as,  e5 ) of a is maximal if (a', e) :~ (a5 , e5 ) for any other 

decomposition (a', e) of a for E. 

For some static sub-actionstructures E of A, there may exist certain actions in A 

which cannot be decomposed further (in the sense of the above preorder). 

Definition 4.40 Let E be a static sub-actionstructure of the action structure A. 

Then a E A is pure for E if for every e E E the decomposition (a, e) is maximal. 

We say that the decomposition (a, e) is pure for E if a is pure for E and e E E.. 

The proposition below gives sufficient conditions for E to be a postcomponent. 

Proposition 4.41 Let E be a static sub-actionstructure of the action structure 

A. If every a has a pure decomposition, then E is a postcomponent of A. 

Proof See [21]. 

It remains to be seen whether the notion of effect is useful in the semantic treat-

ment of action calculi; in any case, our results will be shown for a particular choice 

of effect and may easily be stated without reference to Milner's definition of such. 

We shall now describe a concrete action structure which will turn out to be an 

effect structure for certain action calculi. The intuition behind our choice stems 

from the illustration we gave earlier of the possible effects of exported control-

bound names. We argued that such bound names might need to be distinguished 

from each other; our definition of concrete effects admits all such names that can 

occur at the export. A concrete effect is just a vector of names together with 

a vector of binding names ii which identify those names in VY which are bound by 

controls. 
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Definition 4.42 (Concrete effects) The concrete effects E for a control struc-

ture A, ranged over by e, are those actions which can be expressed in form ()() 

such that {} C {ilJ. 

We will first show that E is closed under the operations of an action structure. 

Lemma 4.43 The concrete effects for A are a static sub-actionstructure of A. 

Proof It is easy to see that concrete effects are closed under tensor product, 

composition and abstraction. For the case of composition we show that if e 1  = 

(iZ)(il) and e2 = ()( with {i} C {ti} and {} C {, then for e e2  = (u)(a, 

{ii} C {ci} where a = { ti/}. For any w E {ii} we have w e ii. Let the name in 

the corresponding position in Y be z. Then z E Y. By {tO/Z}Z = w and {W/z} E a, 

it follows that w E cU. 

We shall require the following fact about effects. 

Lemma 4.44 Let A be any control structure for which E is a postcomponent. 

Then, for any e E E, there is some e 1  E A such that e e 1  = Id. 

Proof Consider an arbitrary effect ()(). Then, substitute by a name not in 

every duplicate occurrence of a name in il to get 17 Hence  17 consists of distinct 

names with exactly one occurrence of each name occurring in (byY C yj . Choose 

. 

Remark The retraction of e, e 1  may not be in E. Consider, for instance, (x). 

Its retraction is c, which is not in E. 

We cannot yet show that E is an effect structure for action calculi since that would 

depend on the reaction rules (unless we limit ourselves to static action calculi). 

However, it is possible to show that E is a postcomponent of any action calculus. 

Proposition 4.45 For any action calculus AC(X), E is a postcomponent. 
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Proof By lemma 4.43, E is a static sub-actionstructure of AC(K). By proposi-

tion 4.41, it suffices to identify certain molecular forms as pure actions for E and 

show that every action in AC(K) has a pure decomposition. First we shall show 

that every action a of the form 

((D () 

where i are distinct names and {} C {}, is pure for E. Consider any effect 

e = (zl(ii) (the choice of i in the effect does not result in any loss of generality, by 

alphaconversion) giving a - e = (()(i). We show that whenever a e = a' e', 

then for some e", a' = a e" and e = e" e. For any e' = (0i)(0) (again, choosing il 

does not reduce generality, by aiphaconversion), we choose e" = (z)(t1i). We must 

now show that every action a has a pure decomposition. Consider a = 

Now, a = ((il)(ti) (i)(z) for some tii such that {ii} = {z'} fl {f}. Clearly 

(iY)() E E and (),TZ(D(ti) is a pure action. 	 u 

Remark The reader will, by now, be unsurprised by the fact that E is a post-

component for both AC'(K) and AC()C), for any 1C. 

Proposition 4.46 E is a postcomponent for IISKEL. 

Proof Similar to that of proposition 4.45 with pure actions ()v(z) with C 

{fj}. 
	 U 

4.2.4 Dynamics 

We have already hinted at the connection between L'SKEL and concrete effects. 

Proposition 4.46 expresses the precise correspondence between the static structure 

of vSKEL and the concrete effects. In this section we shall see that, under a 

natural choice of dynamics for vSKEL, there exists a further connection which 

makes restriction skeleta an interesting classifier. 
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Definition 4.47 (Restriction skeleta: dynamics) The relation N on vSKEL 

is the reflexive transitive closure of the smallest relation such that, for any skeleton 

s=(x)vS(z) 

(i?)vS() N ()v(S - { U})({V/U}Z) 

where U E S. 	 U 

Proposition 4.48 The relation \ on vSKEL is preserved by the operations of 

an action structure together with reflexion. 

Proof Routine. 	 U 

The following propositions give a flavour of the dynamics for VSKEL. We note, by 

Proposition 4.49, the interesting distinction between pSKEL and vSKEL, caused by 

the simple relegation of an equation to a reaction rule. This effectively expresses 

the intuition that two distinct bound names (two independent dataflow channels) 

convey less information than two identical bound names (signifying a dataflow 

channel forked into two). 

Proposition 4.49 The relation N is the smallest reaction relation on vSKEL 

closed under the following rules: 

v N (x) 

i'®i' N I1.(X)(XX) 

Proof Let N be the smallest reaction relation on T(K)/AC closed under the 

rules. We can then show that s N s' if and only if IN?. 

(==) By proposition 4.48, it suffices to show that ii N (x) and v®v N " (x)(xx) 

in vSKEL. It is immediate that v N (x) in VSKEL, i.e. ( )vu(u)  N ( )(x); and 

ii ® ii N (x)(xx), i.e. ( )vux(ux) N ( )vx(xx). 

(==) To see that the reaction 

N ()v(S 	f)({v/u}) 
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is derivable from the above rules, consider whether v is in S. If it is, then 

= ()((v(&v) (uv)(y1)(z)) for some such that S = {u, v, }. Clearly, by 

ii 0  v  Nz,• (x)(xx), ()((v ® ii) (uv)(y)(i)) \ ()(v. (v)(vv) (uv)(y)(2)) which 

is equal to ()v(S _{u})({V/u}i) 

If v V S, then we have ( 	= (f)(zi (u)(ij)(2))  for some 9 such that 

S = {u, 91. By ti\ (v), ()(v. (u)()(z)) N. ()((v) (u)((z)) which is equal 

to ()v(S _{u})({V/u}) 	 • 

The following logical characterisation of the dynamics of vSKEL is the essence of 

the qualification of z'SKEL as a classifier of dynamics. 

Proposition 4.50 For any two skeleta s 1  and 82, 

I-. 	 I 	 I 
Si N 82 	Vs 1 , X. (f) S = s e = 	() s2 = s2  e 

Proof (==) First we shall demonstrate that it suffices to show that for some 

pure sç, ifs1 Ns2  and (ti) s1 = s!j' e' for some e" and ?, then there is some 

such that S2 = s'2'  e7'. Assume that this is true; then if (tii) . s1 	s'  e for any 

s'1 and e, we have s'1  = s e'  and e' = e'  e for some e' . In this case, choosing 

s'2 = s'2'  e '  would give the result since (tii) 82 = S'1'  e' = s'1'  e'  e. 

Consider s1 = ()vu(). Then 82 = ( v({il/ii}) where il = 	Now tii>. 

Si = (v)({1li/}z) can be written as the composite of a pure action and an effect 

Also, () 82 = (vy)({/X}{V/u}) = (,4)({V/iI}{ 29/x1z) 
where Y' = {t1/}il.  Hence (tY) 82 = (v')(ii'ü') . 	({t1i/i}z) and result follows. 

(==) First we note that, for any ii, 'ii, #such that Ill = I yl
, 
we have (v)() N (vü)(vi). 

Now consider Sj and 82 of equal arity (if not, our assumption would not hold 

by an argument based on well-formedness); by alphaconversion we can write 

si = ()v) and S2 = ()vü(ti). Then () si = (v)() = (v)(). ()(). 
By assumption, () 82 = (z.'ü)(i) . ()(), for some V. But by (v)() \ (vü)(i) 

and the fact that reaction is preserved by composition, () Si N () 82. Hence 

()((f) s) N ()(() • 82) and since are not free in either S or 82 we get S N 82. 
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Lemma 4.51 For any 81 , s'1 , 8 2  and e, whenever s, N S2 and s1  = 8'1 e then, for 

some s, s 2  = s'2  e and s'1  N s. 

Proof Assume s 1  N S2 and si  = s'1  e. Choose £ not in the surfaces of 82  and 

e. Then (2) s1 = (2) s e. By proposition 4.50, for some s'2', (2) . s2  = s'2' e. 

Then 2 (2)(2) S = (2)((2) 82) = (2)(s'2' . e) = (2)4 e. Choosing s'2  = (2)4 
gives S2 = s'2  e. To show that s' N%  s'2  we apply the context [] e to each side 

of 81Ns2. . 

First we shall establish an important connection between concrete effects and 

vSKEL. 

Proposition 4.52 E is an effect structure for vSKEL. 

Proof By proposition 4.46, E is a postcomponent of iiSKEL. We now show that 

all the actions in E are inert in vSKEL. Consider s - e N s', we must show that, 

for some s", s N s" and s' = s" e. By lemma 4.51 result follows immediately. • 

Indeed we can prove something stronger. The following lemma will prepare the 

ground for our main theorem which justifies the choice of vSKEL as a classifier of 

dynamics. 

Lemma 4.53 Let A be a control structure for which E is a postcomponent. If 

there is a morphism 1' : A—*vSKEL in CS 3 (K) such that 

4'(a)=s.e = 	a'€A.a=a'e 

then E is an effect structure for A. 

Proof Assume a e Nb. Then, 41(a . e) N (b). Now, (a. e) = 4(a) e. By 

lemma 4.51, for some s, (b) = s e. Then, by assumption, there is some a' such 

that b = a' e. Hence a e N a' e, and applying the context [] e to each side 

gives the result. 



Chapter 4. Skel eta 	 112 

Theorem 4.54 For any signature K and reaction rules 7., the action calculus 

AC(AC, R.) has a morphism to vSKEL in CS(K, R.) if and only if the concrete 

effects E give an effect structure for AC(K, R.). 

Proof (=='.) By proposition 4.45, E is a postcomponent of AC(K) and hence of 

AC(K, R.). Then, by lemma 4.53, it suffices to show that the morphism vskel: 

AC(C)-+vSKEL has the property 

VaEAC(K). vskel(a)=s.e = a'EAC(C). a=a'e 

To show this we note that the mapping vskel takes each pure action in AC(K) to 

a pure action in vSKEL. Hence, consider an arbirary a E AC(K). Then a = a . e, 

for some pure action a; and therefore vskel(a) = vske1(a) e,,. But vske1(a) 

is pure in vSKEL and hence, if a = s e, then by the definition of purity, for some 

e', s = vske1(a) e' and e = e' e. Choosing a' = a, e' gives the required result. 

(==) There is a (unique) morphism vskel in CS 3 (K) from AC(AC) to VSKEL. It 

therefore suffices to show that vskel preserves the reaction relation. Assume a \ b. 

By proposition 4.50, it suffices to show that, for any XF, s and e, if () vskel(a) = 

s e, then vskel(b) = s' e, for some s'. Now a \ b implies (ri) a \ () b. But, 

vske1((ã) a) = () . vskel(a) = s e and therefore, for some a', () a = a' e. 

Hence a' e \ () b. But, since e is an effect in AC(K), it is inert and therefore 

() .b = b'e for some Y. Since vskel preserves the operations of a control structure, 

(f) vskel(b) = vskel((f) b) = vskel(b') e. Choosing s' = vskel(b') gives the 

result. 

Let us review what has been achieved. We started with an examination of the 

information that flows through dataflow channels in the setting of action calculi. 

Our analysis led us to distinguish the concrete effects, a class of actions which are 

inactive but which may instigate reaction upon being fed to certain actions. We 

then considered effect structures which give an abstract account of what actions 

can send through dataflow channels. For any action structure A, an effect structure 

E for A must be a postcomponent of A (a property of the statics) and must consist 
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of inert actions (a property of the dynamics). We then showed that the concrete 

effects satisfy the postcomponent property for arbitrary action calculi (and their 

variants). The above theorem states that the inertia property holds for an action 

calculus just when there exists a morphism (in CS(AC)) from it to z'SKEL, hence 

the claim that vSKEL acts as a classifier. 

Discussion Analogous results to theorem 4.54 can be obtained for the reflexive 

variants of action calculi with very similar proofs. This suggests that there is some 

common structure which, when elicited, can be employed to prove our results more 

abstractly. There are some similarities which are simple to state and which may 

have bearing on the uniformity with which similar results could be obtained for 

the variants. For instance, in all three variants, there exists an injection from the 

(set of) concrete effects to the horn-set consisting of all the actions. Also, in each 

case, every action has a pure decomposition for the concrete effects. 

One also asks whether variants of skeleta arise from other concrete forms of 

effect (or vice versa). A variation that springs to mind is that which result from 

removing the constraint (in the definition of restriction skeleta) that the names in 

the set S bind at least some name in the export vector E'. Does the variation of 

skeleta given by removing the constraint allow us to obtain analogous results? For 

such a case, it is natural to take as operations on the skeletal forms those defined 

exactly for the reflexive molecular forms over the empty signature. This means 

that strictness is lost, and therefore our scope will exclude strict reflexive action 

calculi. In this setting, a concrete kind of effect that suggests itself is that given 

by entities—call them pre-effects—of the form () () with Y and ff unconstrained 

beyond the requirement that XF consist of distinct names. These pre-effects form a 

postcomponent of both action calculi and reflexive ones; it is easy to see why by 

considering the pure actions (for the pre-effects) of the form 

() Uz()] (:) 

Included among the pre-effects, is the discard operation w since it is equal to (x)(). 

This immediately implies that we lose retractablility - the guaranteed existence 
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of a right inverse - in the action calculi and its reflexive variants. Retractability 

effectively says that any entity of information (effect) can be discarded and is 

therefore an intuitively desirable property. The loss of this property also renders 

our method of proof of the inertia of effects (see proposition 4.51) inapplicable. 



Chapter 5 

The Reflexive it-calculus 

Earlier it was claimed that several existing concrete models of concurrency fit 

readily in the framework we have developed. One leading example of such models 

is Mimer's it-calculus which allows the expression of independent processes that are 

able to pass links to each other, hence its claim as a calculus of mobile processes. 

Several operational models for this calculus have been developed, largely along the 

lines familiar in mainstream process algebra of which the it-calculus is an instance, 

if a rather powerful one. Therefore, by presenting an operational semantics of a 

reflexive action calculus inspired by the it-calculus, we hope to throw some light 

on the connections between mainstream process algebra and our framework. 

In this chapter and the next we shall examine the reflexive it-calculus PlC', 

a reflexive action calculus determined by controls whose behaviour is similar to 

that of the essential constructs of the original it-calculus. In particular, it is 

possible to express mobility—the ability of processes to exchange (the names of) 

communication ports—in both calculi. The choice of dealing with the it-calculus 

cast in the reflexive framework rather than the (non-reflexive) one was deliberate 

since, as we shall see, the presence of reflexion plays a crucial role in the operational 

semantics that we shall develop. 

Besides the presence of reflexion, there are other important differences between 

PlC' and the original it-calculus. First, the only prefix operator is input prefix in 

PIC', the output being asynchronous as in the v-calculus of Honda and Yoshida 

[11]. There are also important enhancements not found even in the full it-calculus: 

115 
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processes, which in action calculi are represented as (complex) actions, may import 

as well as export names through the basic operations of datum, abstraction and 

composition. In short PlC' is an asynchronous ir-calculus with explicit dataflow 

operators. 

It is worth remarking that we have chosen to present the operational semantics 

for PlC' rather than PlC, the non-reflexive action calculus PlC determined by the 

same controls together with restriction (which in the reflexive framework is a 

derived operation). The reason for this is that the presence of reflexion is crucial 

for our approach. One of the problems with giving an operational semantics for 

PlC, is that in analysing actions for redexes, it does not suffice to determine the 

presence of a complementary pair of controls (e.g. (x)boxa(y) and (xil)out); care 

must also be taken to ensure that no links exist between them. In other words, 

the names ii must be distinct from the names 7. This requirement arises since the 

reaction rule out®boxa N a requires that the complementary molecules have no 

common links. This is not the case in the reflexive framework since, by lemma 3.10, 

every composition a - b can be expressed in terms of the tensor product of a and b 

(together with permutators and reflexion). Since the occurrence of reaction is to 

be concluded entirely upon consideration of the labels (rather than the actions or 

terms which perform the labelled transition), in PlC (but not in PlC) this would 

require labels to include information about the binding structure related to the 

molecules. This significantly complicates the treatment and for this reason PlC' 

was preferred. 

Outline In Section 5.1 we present PlC' and explore its dynamics through ex-

amples. The examples will lead to an analysis of reaction and redex formation 

and their interaction with the operations of the calculus. This analysis will serve 

as a basis for the formulation of labelled transitions in the following section. In Sec-

tion 5.2 we introduce labels, which are descriptions of the contribution actions can 

make towards the formation of redexes; followed by labelled transitions between 

terms—represented as sequents—and the rules for deriving labelled transition se-

quents. In Section 5.3 labelled transition relations are defined in terms of derivable 

sequents. Several important properties of derivable sequents, and thereby, of la- 
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belied transition relations, are obtained. The main result in this chapter is that 

terms of pic' which are provably equal in AC perform identical transitions to re-

sidual terms which are also equal, hence ensuring a well-defined notion of labelled 

transition on the actions (rather than just the terms) of PlC'. We also give a 

characterisation of labelled transitions in the setting of the molecular forms and 

show that each r-transition corresponds to a computational step. 

5.1 Controls and Reaction 

The reflexive it-calculus PlC' is determined by the controls that together with 

the operations of a reflexive control structure give the reflexive action calculus. 

Informally, parallel composition corresponds to ®, asynchronous output (v) to 

(v) .out, and input prefix x(y).P to boxa, where a corresponds to the abstraction 

of y from P: (y)P by an abuse of notation. 

Definition 5.1 (PlC) The reflexive it-calculus pic' is the reflexive action calcu-

lus over the controls {out, box} together with the following arity rules 

a: m—+n 

out :p®m—*E 	 boxa:p--+n 

and the reaction rule outs  ® boxa N a where 

def outs  = ((x) øid)out 

boxa = 
def 

(x) . boxa 
U 

With reference to the constructs out and boxa the name x is sometimes referred 

to as the subject name of the relevant molecule. 
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Example As an example of reaction in PlC', consider the action ((xv) out) ® 

box(y)a. In the theory AC the following equality is provable: 

((xv). out) ®box(y)a = ((v) ((x) (9 id) out) ®box(y)a 

(v) . ((((x) 0 id) out) ® box(y)a) 

= (v) (out (9 box(y)a) 

The reaction (v) . (out ® box(y)a) \. (v) (y)a is derivable by the reaction rule 

outs  ® boxa N a together with the condition that reaction is preserved by com-

position. For any action a, (v) (y)a = {V/y}a is immediately provable in AC'. 

We then note the correspondence with the following transition in the original 

ir-calculus: 

(v) I x(y).P 	{V/y}P 

In the above transition we note that the r label stands for a single interaction, 

whereas the reaction relation N represents arbitrarily many (including zero) in-

teractions or computational steps. For the treatment of the dynamics of PlC', we 

shall find it useful to define the single-step reaction relation \j. We can then 

show that the reaction relation is identical to the reflexive transitive closure of the 

single step reaction relation N' which is given as the smallest relation satisfying 

the rules shown in figure 5-1. Then, as in the example above, the single step 

reaction (v) . (outs  (9 box(y)a) 'Ni {V/y}a is derivable by applying the rules SYNC, 

R. and STRUCT in that order. Note also that STRUCT rule ensures that the relation is 

well defined for the equivalence classes (on terms) induced byAC'• 

Proposition 5.2 The reaction relation \ is equal to the reflexive transitive closure of 

the single step reaction relation (Ni' )'. 

Proof The reaction relation \ is the smallest preorder which contains the reaction 

out 0 boxt Nt and is preserved by the action structure operations together with 

reflexion. Adding reflexivity and transitivity to the rules defining \j (as the smallest 

relation satisfying the rules) gives identical rules as those for \. 
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aN'a' 	 a\'a' 	 a\'a' 
ab 

a.b\'a'b 	 aøb\'a'®b 	 aba\'aba' 

bNb' 	 b\'b' 	 ________ 

	

a. 	 a® 	 t 
aØbNa®b' 	 ta\'ta' 

a = b bN'b' b'=a' 

	

SYNC 	 STRUCT 

outs  0 boxa a 	 a \ a' 

Figure 5-1: One-Step Reaction Relation 

It is informative to consider the mechanics of reaction on the molecular forms, especially 

for single step reaction. As we shall see, a redex corresponds to two complementary 

molecules placed side by side. We recall that [-Il is the unique homomorphism from the 

term algebra to the molecular forms, and (-) is its inverse. We shall denote molecules 

()Kd(y) by 	and pi(Yi),...,irWr) by a(y)  with a = 	and il= 

Then, 

de 
p =f  

def - 
11 = 

Proposition 5.3 For any t, t', t \. t' if and only if 

= (tZ) [(xti)out, (x)boxa(ii i ), 9(i 2 )] (iY) and [t] = 

where a = ()( °)(1° ). 

Proof (==) Induction on the depth of derivation of t \1j t'. 

(==) Let the (unique) inverse map of [-1 be (-). Then, by the STRUCT rule it suffices 

to give a derivation of ItI ' [t'. By alphaconversion we can assume w.l.o.g. that the 

names :ia :Va  do not occur except within a. 
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M 	= 	 out) ®bOX z ( a )A(Ua )(4) (D10 (ii)) 

N tmi øm2 (t1U2ti)(((t14 (0)W0)(0)) 0 ® (ii)) 

= tmi®m2(tZ1U2U)([/Xa]tvz(1/o)(A® (i)) ®jZ® (i3)) 	 : n 

= tmi®m2(titi2t)[/Xa1(tn(yo)(A® (Ia)) ®O (ii)) 

= tmi ®m2 ( 1ii12i)tm(a)(() ®tn(Ua)(® (Is )) ®ji®  (ii)) 	3.29 

= ®t(il0)(.® (fl) ØjØ (7) 	3.26* 

= tmi ®m®m2 (o2il)(tn &a)(® (Is )) (9 (tii) 0110  (ii)) 

= tmj ®m®m 2 (tlot'2th)tnWa)P 0 (Is ) 0 (fl) 0 Il® 

= tm1 Øm (i1a)tm2 0n (2Ua 1)( 5 0 110(.a) ® (ti) 0(i))) 	3.26* 

= 	tmi®m(ihia)(i1)[X(Ua), 11(iZ2)](bat1) 

jZ(i12 )](ii) 

= 
U 

5.1.1 Reaction and the operations of PlC' 

Some actions are inactive, or unable to go to any action save themselves under reaction. 

However, certain combinations of inactive actions may themselves be active. Consider 

the actions out and boxa: no reaction can be derived from either of them in isolation. 

However, when combined together by means of 0, the combination may react to a. Any 

semantics based on the dynamics must take such interaction into account: the labelled 

transitions upon which our semantics is based do just that. 

Before presenting the operational semantics of PlC, we shall first explore some of the 

interactions between reaction and the operations of the calculus. In particular, we want 

to identify the components in an action which can contribute to the creation of a redex. 

We will also examine the way in which the operations can bring such contributions 

together, possibly resulting in the formation of a complete redex as a result. Later, we 

shall formalise this by the notion of a labelled transition, with labels representing such 

contributions. It is insightful to consider these interactions in the setting of molecular 

forms since the intuitions behind the labelled transitions are most easily explained with 

reference to them. 

1. A single computational step, or reaction, occurs just when a molecule (xii)out() 

encounters a molecule (x)boxa'( inside the body of an action a. If a contains 

(xi3)out() but no (x)boxa'(y), a reaction may be induced by "placing" the re- 
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quired complementary molecule in the body of a. In terms of the operations of 

the calculus, there may be various ways of introducing this complementary mo-

lecule. For instance, if the name x is free inside the molecular form of a, one 

way of placing such a complementary molecule is through a tensor product of the 

action with box,, a'; another way is to compose a with an action b containing the 

complementary molecule (with x free in the molecular form of b). Hence, we may 

regard a as being able to contribute a partial redex (xil)out (). 

2. Consider now, the action a = (y)(out 2  0 boxa') whose molecular form is 

(yvl [(xi)out( ), (y)boxa'(ii)} (tZ) 

Clearly, a is inactive and the placement of the molecule (x)boxa"( in its body 

can create reaction. However, there are other ways by which reaction can be 

induced: precomposing (x) 0 id will cause any free occurrence of y in the body of 

the action to be replaced by x, thereby creating the redex out 2  0 box, a. Indeed, 

precomposing by any action which exports the (free) name x at the appropriate 

position will cause this redex to be formed. Letting b = (tZ) # (xe) (with x free 

in b) gives b . a = (iZ) [ii,  (x.)out( ), (x)boxa"(i)] (til) where a" = {Xi/yii}a'. In 

this case, the essential part of b which determines whether a reaction is created 

(through name substitution) is its export vector of names xz. The point that 

this example makes is that b, while not necessarily contributing any molecules 

to create a redex in b a, still contributes a component (the free name x) which 

caused a redex to be formed in the composite action. Consequently, we must take 

into account not only of the molecules that an action can contribute but also of 

the free names available at its export. 

We emphasise that in this example, the occurrence of x in the export of b has to 

be free, for otherwise (by the definition of composition on the molecular forms) 

it would have had to be alphaconverted to some name other than x to avoid 

clashing with the free occurrence of x in a. This example might suggest that 

ignoring the bound names in the export vector is justified, but, as the following 

example illustrates, this is not generally the case. 

3. Consider the action a = (xy)(out 2  (9 boxa'), where both x and y are bound at 

its input. Clearly, precomposing by any action which exports two identical names 

(vv) (for any v) will induce reaction. it is important to note that the occurrences 
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of v need not be free in b, since any pair of identical names at the export of b 

will create the redex: consequently, the forced aiphaconversion of v in b to, say, w 

cannot prevent the formation of the redex out,, ® boxa'. We note that in the 

case that v is bound in b, b can still be factorised into composites b' and (v)(vv), 

for some b', whereas if the occurrence is free, factorisation into some b' and (vv) is 

also possible. In both of these cases b may induce reaction when it is precomposed 

to a suitable action. This example shows that not all exported names which are 

bound should be ignored as possible contributions (to a redex). 

We will now give an example which illustrates the complexity over the original 

ir-calculus resulting from the presence of name export (non-empty output arity). 

The action ( ) [,i(x), (xv)out( )} ( ) cannot interact with any other action. We 

would expect such an action to contribute as much to reaction as, for instance, 

( ) [zi(x)] () 1 • However, consider the slight perturbation in their molecular forms 

by introducing the name x at the export to give ()[v(x), (xv)out( )] (x) and 

()[v(x)] (x). For the former action, postcomposing b = (y) [(y)boxa()] (z) will 

create a reaction whereas postcomposing with the latter action will not. Hence, 

even restricted ports can be made visible provided the restricted name is exported. 

It is clear that in our treatment we must make a distinction between ports whose 

names are free and visible and those of the kind just described. 

Last of all, we present an example of how the application of the reflexion operation 

can create a redex within an action which previously had none. Consider the action 

a with molecular form 

(x)[zi(y), (xi)out, (y)boxa'(tii)](y) 

where x, y : p. Applying reflexion on a, gives the molecular form: 

[v(y), (y{Y/x}ii)out, (y)box{Y/x}a' (tii)] (ill) 

'These actions are analogous to (vx)(v) and (vx)O respectively in the ir-calculus and 

indeed, as in there, we would expect these two actions to be identified in any reasonable 

model for the reflexive ir-calculus. 
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which clearly has a redex. Thus, reflexion, while providing no contribution in 

itself, enabled the contributions of a to recombine in such a way as to create a 

complete redex. Indeed, reflexion is necessary to create this redex since it is the 

only operation which can cause the identification of the exported (restricted) name 

y with the imported name x. 

Based upon the notion of "contribution to reaction" illustrated above we would like to 

formulate an operational semantics of PICr.  As will be evident in the following sections 

we will choose to formalise this notion of contribution in the setting of the term algebra 

rather than directly on the molecular forms. The advantage of working with terms is 

related to the requirement of showing how the mentioned contributions are affected by 

arbitrary contexts built from the operations of PlC'. While the notion of context in the 

case of terms is straightforward, the same cannot be said in the setting of the molecular 

forms. The main technical results of this chapter show that the formulation based on the 

terms corresponds to the intuition supplied with reference to the molecular forms. In 

particular, a structural lemma (lemma 5.11) ensures that labelled transition relations on 

molecular forms can be obtained by quotienting the labelled transition relations defined 

on the corresponding terms. 

5.2 Labelled Transition Sequents 

In the previous section we presented several examples which motivate the organisation 

of labelled transitions to reflect the kinds of interaction described. The essential idea 

behind labelled traisitions is that labels should contain enough (ideally, just enough) 

information about the action to determine whether the reaction will be made possible 

when the action is placed in certain contexts. The residual of the transition allows 

the action resulting from such reactions to be constructed. We would like to account 

for any contribution to a redex no matter how small; for otherwise we cannot expect 

bisimulation equivalence to be a congruence. 

This section is organised in three parts: the first describes the labels which formalise 

the notion of an action's contribution to a potential redex; the second describes labelled 

transitions through syntactic constructs which we shall call sequents; while the third 

describes a set of rules which allow such sequents to be derived. 
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5.2.1 Labels 

As indicated by the examples presented in the previous section, the contribution an 

action can make towards a redex may consist of exported names and molecules. We 

have also shown that care must be taken to distinguish between free and bound names 

occurring both in the molecules (in fact, the subject names suffice) and in the export 

vectors of actions. 

Exported names We shall start with an account of the possible substitutions an action 

can cause in a postcomposed action. In terms of the molecular forms, these 

substitutions are determined by the export vector of the precomposed action and 

the import vector of the postcomposed one. It is also necessary as we have seen 

to include some description of the freeness or otherwise of the names occurring 

in the export vector of the precomposed action. Consider the following molecular 

form: 

a = ()[( )K(y](z) 

The names in the export of a may be bound by any name in Y and g. The 

possible name contributions of a to postcomposed actions could be represented 

as ( (i). However, we would like to distinguish between bindings originating 

from the imports of a and those originating from restrictions or controls since 

precomposition of a by some action can cause names bound by XF to be instantiated 

whereas those bound by il cannot change (up to aiphaconversion) as a result of 

any (static) operation of the calculus. As an illustration of this point consider the 

actions 

b = (x1 x2 )[( )K(y 1 )y2](x1 x2 ) 

b' = (x1 x2 )[( )K(y 1 )y2](y1 y2 ) 

i)out, (z2 )boxa(iZ)}(ti) c = (z1 z2 )[(zj   

Now consider the composite actions b c and b' c; neither of them have a redex 

(unless due to K). However, further precomposing (zz) to each of these actions 

produces a redex in (zz) . b•c but not in (zz) . b' c. This is due to the fact that Y', 1/2 

are control bound and no static operation can unify them. To deal with this aspect 

of molecular forms we consider factorisations relative to arbitrary substitutions 
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for the imported names. Concretely, this is achieved by precomposing to a an 

arbitrary vector of data (ii) which we shall call an environment. Consider 

(ii) a = [( ) K(y]({il/}z) 

We can now factorise (01 . a into ()[K(y)](,7) (({}2). The component 

(!J) ({/}i) is sufficient to determine which substitutions will be created in any 

action postcomposed to (v) . a. Notice that such components are all of the form 

()(Y- ). 

Molecules We note that the ability of two molecules to react depends on three factors: 

they must be constructed of complementary controls, one being out and the other 

box; their subject names must be identical; and finally, the links transmitted 

by the molecule (xil)out() (represented by the names il: m) must be of the 

same arity (m) as the links accepted by the molecule (x)boxa(y), in other words 

a : m-3.n, for some n. 

The labels, if they are to provide a basis for determining whether enough has 

been contributed to allow reaction, must contain sufficient information to describe 

these elements. Moreover, the labels must also identify whether the subject names 

are bound: that a subject name is bound does not necessarily render a molecule 

inaccessible to a complementary one, as the fourth example in the previous section 

shows. Note that, as with our consideration of the exported names above, we must 

also distinguish between bindings which originate from the import of the action 

with those that originate from controls. Again, we will employ environments for 

this purpose. 

We shall choose to represent the molecular contributions of an action by means of 

particles, each of which will contain information regarding the subject name, type 

(out or box) and the arity of the links handled. Since we have just two types, 

we can represent the particles as a disjoint sum of pairs of names and arities. The 

binding will be represented as for the exported names. Thus, a possible concrete 

representation of the molecular contribution of an action is as (iZ)5 where the 

bindings are given by (iZ) and each particle a E (X x M) + (X x M). 

i-  particles For the purposes of our semantics, we shall choose to keep track of any 

redex which has been reduced. This will allow us to obtain a strong semantics, 
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in the spirit of strong bisimilarity familiar in the mainstream process algebriac 

setting. To achieve this we will introduce an additional kind of particle, r which 

we shall assume to be distinct from any other particle defined above. 

The exported names and the molecules are distinct contributions but both share the 

same kind of binding considerations. Morever, as our last two examples in section 1 have 

indicated, some redexes can only be discovered by considering both kinds of contribution 

arising from the same action. These points make a case for combining the descriptions 

of these two kinds of contribution to give a single label. That is what we shall do: 

Definition 5.4 (Labels) Ranged over by £, labels have the form: 

(iZ)7) 

where each particle f3 in 6 (the body of £) is in ((X x M) + (X x M)) U {r}, where 

r 95 X. We shall associate a pair of arities with the body 6 of a label as follows: 

(O,(x,m)) : 

(1,(x,rn)) : m-+e 

6-46 

12 : k 1  0 k2 -+11  012 	(cf, : k 1 -+11 ) 

The names 9 are distinct and each name in iZ is binding throughout the label. If a 

name occurring in £ is not bound (i.e. does not occur in iZ) then it is called free. We 

denote the free names of £ by fn (i). Name substitution on labels {Y/x}t replaces each 

free x in £ by y renaming bound names to avoid capture. Labels which differ only up 

to alphaconversion and commutation of r-particles with any particle in the body of the 

label are considered identical. 

Notation We shall often abbreviate (0, (x,m)) to T and (1, (x,m)) to x when we do 

not need to refer to the associated m. Each name in pr is associated with a prime 

arity. The name x, its prime arity p (we write x : p) and arity m are called the subject 

name, subject arity and object arity respectively of the particle in each case. The object 

arity ofalabeU = (iZ)(ii), written Jil is m—*n just when d : m-+n. If iZ: rn and (1: 

the subject arity of 9 is m -+ n, written £ : rn -* n. We shall denote the set of labels by L. 
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5.2.2 Labelled transition sequents 

We shall now describe the next step towards obtaining a collection of relations on the 

terms of PlC' which allow us not only to determine the reaction of its actions, but also 

to elicit the contribution that each action is able to make towards redex formation and 

the outcome of the resulting reaction under arbitrary contexts. 

To explain the role of the labels in describing redex formation and that of labelled 

transitions in predicting reaction and its outcome, it is best to consider what happens 

when a reaction takes place between two complementary particles in a redex out s  0 

boxa, where out : m - e and a : ra - n. The diagram below shows these two 

molecules side by side ready to react. 

The effect of the reaction is the creation of links of arity (or width) rn from the input 

of the out s  particle to the action contained within the box construct. One may view 

this occurrence as two distinct steps: the first consisting of the controls disintegrating, 

leaving, in the case of out dangling links of width rn and, in the case of boxa, the 

exposed action a whose import links (also of width m) are also dangling, waiting for 

connection with those arising from out s ; the second step establishes the connection 

itself, in other words, joins the dangling links. The latter step, however, involves a static 

or datafiow operation. One may think of the first step as a partial reaction and the 

second as a synchronisation of partial reactions to produce a completed computational 

step, or reaction. 



Chapter 5. The Reflexive ir-calculus 	 128 

- S 

---- 	 I 

-24 - 	 . 

In this way we can break the outcome of a reaction into the effect suffered by the 

participants (the dangling output links in the case of out and the exposed a, with 

its dangling import links, in the case of boxa) and the static operation of connecting 

the relevant links. This will allow us to write a labelled transition to represent partial 

reactions; in other words, the contribution an action can make to a reaction (the label) 

and the effect it will suffer as a result (the residual), should that reaction occur. In fact, 

the T particles will also permit us to record completed reaction as well. 

Our formal representation of this idea consists of four components: the term describing 

the action under consideration, called the principal term; the environment which is a 

vector of names, causing the import bound names in the action to be replaced by free 

ones; the label, whose role we have described above; and finally, the residual term, which 

describes the action with dangling links in place of each molecule indicated in the label. 

Definition 5.5 (Transition sequents) A labelled transition sequent has the form: 

(1) H t -s-, t,  

to be read as: under environment i, the principal term t goes to the residual term t' 

performing label £. Such sequents are well-formed just when 
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t 	: m-+n 

k-*lØr 

£ 	: 

IRI = 	k-+L 	 - 

The arity rule for sequents is best explained with reference to the intended interpretation 

for the sequents. Consider the sequent (2) I- t --+ t'. The environment (2) can be 

considered as supplying names 2' to t in an identical fashion as occurs in the composite 

(2') . t. This ensures that the import-bound names in the molecular form of t are replaced 

by free names, thereby ensuring that any bound name (in the molecular form of the 

composite (2) . t) is control-bound. Hence, in order for the term (2) . t to be well formed, 

whenever t: m —* n, then 2' must have arity m. 

Let £ = (ii) J). The part (ii)... (ii) reflects the exported names ii of the molecular 

form of t, of which ti are bound by controls (including v, see Discussion below). This 

essentially signifies a factorisat ion of (2) t into composites C (for some such) and (iZ) (il). 

Thus, if t : rn-*n and i: r, then t" : e-+r and ': n. 

We shall now account for the emergence of the subject arities JfJ : k — 1. Informally, 

if the label £ contains the particle Y : € -+ h it indicates the existence of a molecule 

(xt)out, with t1: h, in the body of the molecular form of (2') . t. Moreover, this same 

molecule is assumed to have partially reacted in the residual t'. Since we do not know at 

this point, with which other action or molecule the reaction will take place (i.e. where 

the complementary part of the redex will come from) we are left with a dangling link of 

width h (indicated by the output arity of the particle). This link, which originated from 

an output port, is ready to "connect" with a link arising from a complementary input 

port. Until this occurs, the link is placed alongside the exported links in the residual. 

The particle 7 : € -* h in the label £ records that a link of width h is dangling at the 

export interface of the residual, waiting for connection with any recipient made available 

through the reduction of the complementary part of the redex. 
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In this case, such a part must come from a boxa molecule, for some a : h -+ h'. 

Such a contribution would be reflected as a particle x : h - € in the label: the links into 

a will similarly be made available at the imports of the residual (which also includes the 

action a which has been released from within the box construct). 

Hence, for each particle in 5 we get an associated increase in arity either to the input 

or to the output of the residual according to the type (input or output) and subject arity 

of the particle. Thus, in the above, t' is obtained by redirecting in t" the appropriate 

links; those of width k to the import and those of width 1 to the export resulting in the 

arity t' : k *l 0 r. Consider, for instance, the transition 

(2) I- t 

which exposes the existence, in the molecular form of (2) .t, of molecules (xti)out( ) and 

(y)boxa(tir) (for some a, ti, ti') together with exported names ii with names il bound by 

controls. The names tir, which are control bound are included in il, the binding vector 

occurring in the label. The residual t' contains the links (represented by the names tV 

in the molecule (xti)out ()) at its export interface and the links into a at its import 

interface. 

If the same action contains two complementary molecules, then it will have a transition 

with both and x (for some x) in its label. These complementary molecules can react 

together, and the result of this reaction can be obtained by connecting, in the residual, 
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the dangling output links to the corresponding input links arising from the partial re-

actions recorded by the complementary particles in the label. In order to achieve this 

connection from export to import positions in the residual we need feedback, as provided 

by the reflexion operation. 

This is essentially the idea behind the synchronisation rule SYNC. The occurrence of 

such a synchronisation is recorded in the label by replacing the complementary particles 

, x with r. Since completed reaction does not add any links to the residual (i.e. pre-

serves the arities) the arity of a i-  particles is -* €. - 	_ 
Thus, in summary, named particles (in a label) indicate partial reaction, while each 

r particle records the sychronisation of partial reactions to achieve completed computa-

tional steps (reaction). 

Discussion We note that in PlC there are two sorts of binding molecule: v(i) and 

(x)boxa(ii). A more constrained version of PlC can be obtained by limiting binding to 

restriction molecules. This can be done by replacing the arity rule for boxa as follows, 

ensuring that such molecules will be of the form (x)boxa( ): 

a: 

boxa : p-4f 
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This constraint does not simplify (at least, not in a direct way) any aspect of our 

semantics. It does, however, render picr somewhat closer to the original ir-calculus. 

Also, we will then be justified in writing each label (ir)c(il) as (v)(i). Such occurrence 

of restriction in labels is not new; Sangiorgi employs such in his treatment of the higher .  

order ir-calculus[38]. On the other hand, we argue that this distinction from the ir -

calculus—that processes of arbitrary arities can fall within an input prefix—is natural 

in a world where the antics of processes are other than e - E. We also note that, in 

the more complex setting where there are two kinds of binding molecule (i.' and box, of 

which box takes an action argument), it is unwieldy to employ the same method used 

for dealing with such bindings in the labelled transition rules for the original ir-calculus; 

namely the OPEN and CLOSE rules. Our use of refiexion avoids such special case treatment 

for sending and receiving bound data and the benefit is especially evident when, as in 

our case, the binding molecules are various and complex. We shall therefore refrain from 

constraining PlC as suggested but the reader should keep in mind that for any term of 

plcr that corresponds to a ir-calculus term (for a precise correspondence see [29]), the 

bindings in labels originate solely from restriction molecules. 

5.2.3 Labelled transition rules 

We shall now describe a set of rules which allow the transition sequents to be derived, 

formalising the interpretation we have described above. The rules 1Z. are presented in 

figures 5-2, 5-3 and 5-4 and in the relevant rules we assume d i  : k -+ L. 

Inspection reveals three kinds of rule: constructor rules, which eliminate (from con-

clusion to premise) the outermost constructor of the principal term, permutation rules 

which permute either the particles or the bindings of the label; and the sychronisation 

rule which is the only rule that introduces r particles in the label. More interestingly, the 

constructor rules are responsible for eliciting the contributions that actions may make 

towards redex formation, in particular, the partial reactions. Each rule performs two 

functions: from the labels and residuals of the subactions (the labelled transitions of the 

premises) the rule tells us how to compute the combined label (or, aggregate contribu-

tion) and residual resulting from applying the principal constructor to the subactions. 

Consider the rules of figure 5-2; in each case, the action resulting from precomposing 

the environment to the term is analysed and the contribution of exported names (free 

and bound), partial reactions, and completed ones are included in the label. Note that, 
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(x) 	( )(z) 
I-x) 	—*id 

(X> 
id 

id 
(z)I-  id 	—*id 

out1 
(z) I- out 	>_+ (.) out 

box1 	 (t1)(Z) 
(x) H boxt 	-4 (x) boxt 

out2 
(x)I-  out 	-)(z) 

box2 x V (ii) 
(x) H boxt 

(ü)z(i 

Figure 5-2: Labelled transition rules 

in rules out 2  and box2 , the residual registers an increase in the output and input arities 

respectively. In rule out2 , the data leading into the port out is made available at the 

export of the residual, while in the rule box2 , the inputs to the term t (contained within 

the principal term boxt) are made available at the imports of the residual (t itself). 

The rules of figure 5-3 appear somewhat more complex. In the residual of the 

conclusion sequent, the links corresponding to the particles in the label must be placed 

in the correct positions at the import and export. This is achieved by organising the 

dataflow between the residuals of the premise sequents. The considerable extent of 

"wiring" necessary gives the appearance of complexity to the rules; however, each is 

designed upon the same principle that the particle sequence in the labels must reflect 

the positions of the links created by the partial reactions. 

Consider, for instance, the composition rule. The subject arity of the labels t i  = 

(,),(i61 ) is k .-* l. Hence, the term t'1  has k 1  import and 1 1  export links due to ihe 

partial reactions, whereas t has k2  and 12 import and export links respectively. When 

combining t' and t'2  to get the residual, we must ensure that the mentioned export links 

of t'1  are passed to the topmost position, hence the occurrences of id 11  in the residual 

term. Similarly, the import links of t'2  necessitate the occurrence of idk 2  to ensure that 

the links are connected to the imports in the residual. The use of abstraction (viz. 

abt) in the residual is due to the fact that in obtaining t, the transition of t2  is 
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{91} fl fn(t2) = 0 

{621flfn(ti,fl = 0 

iZ : r 

2)c2(il2) , 
(2)1- ti 

(ei)6i 	
i1 	 (i 1 ) I- t2 

(i 	-i t 2 

0 

(t'1  (9 idk2 ) (jt,, 0 abti1 t) (id, 1  0 Pr,12 0 Ld) 
(2) 1- ti t2  

(2k ) I-• ti £1!1 t11 	 () 	

f (iZ)±!4 t' 
2 	 2 

(2) F- ti 0 t2 
(112)d162(2) (t'1  0 t). (Id1 1  0 Pr,12 0 Id) 

{IZ1}flfn(tz,12) = 0 

{62}flfn(tj,ii) =0 

il1 : r 

(2)1- {W/y}t 
({i) 

ab 

(w2) F abut -+ t 

(y2) Ft 	t, 	 yfn(t)U{r} 
ti 	_____ 

(1) F- tt -* (ziy)(t'. (id, 0 (y) 0 Id)) 

(yl) I- t 
(
-

iZ)(w1)
* 	

yfn(t)U{i,fl 

w~ y 

t 	 f(y)(t' (Idt 0 (iT)(wii>) (p,p 0 id)) w,y : p 

Figure 5-3: Labelled transition rules 
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(zFt't' 
SYNC 	

(i)i-( 	
' (zFt 	 m 

() F- t 
(l112I22)i() ti 	

f, Mi 

PERM1 

('i) I- 
(th1211il2)5) 

 t'. (id, ®  0 Pm1,m3 (9 id) 	t11: 

(1) Ft 	 t' 
PERM2 

() 	 (idk, 0 Pm2 .rn, ® d) t' (di 0 Pni,n2 (& id) 

Figure 5-4: Labelled transitions rules 

derived under the environment (1), some of whose names may be bound by i11 . Finally, 

the permutor P1,13  is necessary to place the export links arising from t and t alongside 

each other. 

12 

The rule for tensor can be explained in a similar manner; to obtain the residual, one 

must direct the topmost 1 2  links of t'2  to the topmost position under the 1 1  export links of 

t. The abstraction rule is straightforward: note the inclusion of w in the export vector 

in the label alongside ii. 

Arguably the most complex rules are those for reflexion. The complexity is partly 

due to the complexity of the operation itself, as defined on the underlying molecular 

forms. As in the definition of reflexion on the molecular forms, there are two cases to 

consider; one in which a link is being reflected onto itself, and the other when this is not 

the case. In order to detect the occurrence of a link being reflected onto itself, some fresh 
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name y is fed into the input of the topmost import position. If the same name emerges 

at the other end in the topmost position of the export, then (by virtue of y being fresh) 

it may be concluded that a link from the topmost import position to the topmost export 

position is present in t. The molecular form of the residual will consequently include a 

restriction particle as expressed in rule t1. Note that any free occurrences of y in the 

label (iZ)5(il) are bound by the restriction particle in molecular form of the term t, hence 

the introduction of the binding occurrence of y in the label for the conclusion sequent. 

In the rule t2, no restriction particle is introduced by reflexion in the molecular form 

of () tt. Note that the name w may or may not be bound by iZ. To deal with both 

cases, the subterm (iZ) (wil) is employed in the residual, with w fed back into t' through 

the abstraction of y. 

So far, all the rules discussed eliminate (towards the premises) the principal term 

constructor. The rules which we shall now discuss employ identical principal terms (and 

environments) in both premise and conclusion sequents. There are two permutation 

rules PERM1 and PERM2 which respectively permute the binding vector and the particle 

sequence of the label. The latter operation on labels allows complementary particles to 

migrate towards the required position to permit synchronisation to be derived. In each 

case the links in the residual corresponding to bindings or particles in the label have to 

be rerouted to maintain the proper correspondence. 

The synchronisation rule identifies the existence of dangling links of equal width 

which can be joined as a result of reaction. This is indicated by the presence of a 

complementary pair of particles T, x at the rightmost position in the label: T : € -+ m 

indicates the presence of links of width m at the export of t' while x : m -+ € indicates 

that m links lie at the import. Moreover, since the particles bear the same name x, 

the links must have arisen from complementary molecules. All is ready to join them: 

this is achieved by reflecting the topmost m links of t'. This event is marked by the 

replacement of the rightmost complementary pair by a T particle in the label. 

Note that one sychronisation rule suffices to detect all possible redex formations in 

any term of PICr.  This is a remarkable fact and is due to the work each rule performs 

in analysing the contribution to redex formation in each subterm, recording each such 

information in the label and preparing the residual for the outcome. It is hard to envisage 

how this could have been achieved without the use of reflexion. 

Examples The following examples illustrate the use of most of the rules. We will first 
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present two simple examples and then a more complex one which allows a comparison 

between unearthing, on the one hand, a redex by the structural manipulation of terms 

(by means of the axioms of AC) and, on the other, eliciting a redex using the rules. 

Since the rules introduce rather a lot of dataflow, even for simple cases, we shall cope 

with the complexity of residual terms by writing instead terms which are equal. For this 

end we shall adopt the notation 

(z) F t-1-+t' 

to mean that for some t", () F- t —4 t" is derivable and t' = t". This is justified, first, 

because in none of the rules do the premisses or side conditions refer to any property 

of the residual terms; and second, because we will later show that any two equal terms 

derive identical transitions to equal residual terms. 

We shall begin by deriving the reaction ((xv) out) 0 box(y)t N {V/y}t using 

the rules. For simplicity we shall assume that t : € —* €. A r transition signals 

the performance of a single computational step; effectively a single use of the 

reaction rule for PlC'. The derivation of the transition F ((xv) . out) ® ((x) 

box(y)t)_!4,{t'/y}t is given below: 

I- (x) —p id 
	

1- (v) 	id, 

	

I- (xv)=ide 	 (xv)'- out -- (v) 	I- (x) --- id, 	(x) I- box(y)t -- (y)t 

I- (xv) out-!-(v) 	 I- (x) box(y)t-.-+=(y)t 
0 

I- ((xv) -out) 0 ((x) . box(y)t)-Z=(v) 0 (y)t 
SYNC 

F- ((xv) . out) 0 ((x) box(y)t)-I.+{vhj}t 

To see that the residual term is indeed equal to {V/y}t,  consider that, by the last 

rule use, the residual term should be equal to t((v) 0 (y)t). By lemma 3.29(1), 

this term is equal to {v/y } t. 

The following example illustrates the use of the first reflexion rule t1. We expect 

the following rule to be derivable (modulo provable equality): 

I, (x)(z) 
F ii —p ji 

A derivation for the transition F v-v is given below: 
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(z) 
I- (x) —+ id 

Id 
(xz)—p 

	

(zz)
=id 	 (x) F w 	id 	(xx) I- Id 	id F 

ab 
(Xxx) 

	

(x) F ab(xx) —4 	 (xxx) F w 0 Id--LId 
0 

(x) F ab(xx) (w 0 id) - =Id 
ti 

F t (ab(xx) . (, 0 Id))
(x)(  
—p

z) 
 

Note that the principal term is indeed z' by , T f(x)(xx) t(ab(xz) . (c(&id)). 

It is also clear that the residual is equal to ii, since (vx)(x) = v.(x)(x) = vid = i.' 

3. We shall now present an example of a term which requires complex structural 

manipulation for the redex to become apparent. The rules we have given cannot 

manipulate the principal term structurally—this is indeed their very source of 

power, which permits redex formation to be analysed in a systematic way. Thus, 

the rules remove the need for structural manipulations by extracting redex con-

tributions from terms in situ. The following example demonstrates this process. 

Consider the term t((,.'about)®boxt), where, for simplicity, we take t : 

We shall first derive reaction by unearthing a redex using equational manipulation 

of the term. Then, for comparison, the same redex will be reduced through a 

suitable derivation. We shall assume, for simplicity, that x, y ig fn (t): 

f((i.' .  about) (9 boxt) 

= 	(9 Id) . (about (9 boxt)) 

= 	f((id (9 ii) . p 	(about 0 boxt)) C 
= 	V f(PPIP(about (9 boxt)) P3 

= 	v.f(p. (x)((x) 0 out 0 boxt)) 2.16(4) 

= 	,. (x)f((x) (9 out s  0 boxt) P5 

= 	v 	(x)t((x) 0 out 0 ((y)(y) . boxt)) 5 

= 	ii 	(x)((x) 0 out 0 (y)((y) boxt)) 2.16(1) 

= 	ii. (x)(y)((x) (9 out, 0 boxt) 2.16(3) 

= 	s. (x)(out (9 boxt) 3.29(1) 

\ 	z.s(x)t 

= 	v.((Dt) ly 

= 	(ii(9t).(x)id,, 

(z) 
I- (x) —p id 

A derivation for the transition representing the reduction of the same redex is 

given below: 
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I- 
ab 

z) 
F- i/ 

(z)(
-+ ,a' x I- about4=id 

	

( 	
° 	 box2 (z) 

F - 
 

	

v.about —4 -v 	 yI-boxt-1-t 

(y)I-(v.about)Øboxt
(z) 

 — 
y(

*
z) 

V®t 
1-.. 

(z)z 
F- t (( ,i  about) (9 boxt) —4 =t (y)((v  (9  t) (z)(yx)) 

r 
I- f ((& - about) ® boxt) 

(x)  
—*v 0 t 	

SYNC 

Note that the residual of the transition derived differs slightly from the residual 

of the reaction derived earlier. This is due to our decision to include in the label 

all of the control bound names occurring in the molecular form of the principal 

term. The restriction operation in the term t((v about) 0 boxt) gives rise to 

a restriction particle v(x) in its molecular form, thereby causing the inclusion of 

the binding (x) in the label (x)r. Later we shall propose a way to eliminate such 

unnecessary bindings. 

Discussion At first, the rules for deriving labelled transitions may appear complex. 

Is their complexity justified? There are indeed alternatives which may be simpler in 

some sense. For instance, we can rewrite the rules for the special case when at most one 

particle is present in the label being derived 2 . If we write a rule for deriving transitions 

treating separately each label containing a different type of particle or having an empty 

body, the rules will be much simplified because in each case, some (in some cases, all) 

of the subject arities will be E. Here is one of the rules for deriving transitions with 

label (iZ)( for composition; for ease of comparison with our composition rule, we let 

	

(tZz)(il2) 	, 
(z) Ft1 	_+ t' (Vi) Ft 2 	+ t2 	{tTi}flfn(t2)=O 

(ilitZ2)(t72> 
t'1  (id,, 0 abil,4) 	{i12} nfn(t i ,i) = 0 (i)Ft1 .t2 	 — 

In this case, using our convention for the subject arity of labels in our composition rule, 

the arities k1 ,k2  and 12  are all c. 

The disadvantage of this approach is that the number of rules required would be 

much greater than the ones we have presented. For composition alone, we would need 

2 The synchronisation rule would also have to be changed to allow r transitions to be 

derived from single-particle labels. 
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no fewer that seven rules! Moreover, we lose the ability to derive transitions whose labels 

have multiple particles which allows us to derive a non-interleaving semantics, besides 

the interleaving semantics that may still be obtained by our system by considering only 

transitions with labels having at most one particle. 

We suggest that such complexity is not excessive given the presence of actions of in-

put and output antics greater than € and the existence of operations such as abstraction, 

composition and refiexion. 

5.3 Labelled Transition Relations 

We are now ready to define a collection of labelled transition relations on terms in the 

familiar manner. One outcome of this is that the standard notion of bisimilarity can be 

used to give an operational model to our calculus. 

Definition 5.6 For any two terms t, t' and label t, (t, t') are in the relation !?4 just 

when the labelled transition (il) H t -- t' is derivable by the rides R. 

Notation We shall henceforth write (ii) I- t --* t' to mean that (t, t') are in the relation 

14. In other words, it asserts that the sequent (ii) I- t --+ t' is derivable by the rules 

1A 

The main result in this chapter states that terms equal in AC  have identical transitions 

to equal residual terms. This immediately provides a well-defined notion of labelled 

transition relations on the actions of PICr.  In order to show this result we must first 

establish a number of properties of the derivations. The first lemma shows that the free 

names of both the label and the residual come from the environment and the principal 

term. 

Lemma 5.7 (Free names) Whenever () H t --* t' then fn () C fn (t) U {z} and 

fn(t') Cfn(t)U{}. 

Proof Induction on the depth of derivation of () H t -.-+ t'. 

The following lemma shows that name substitution in both the environment and the 

principal term is carried over to the label and the residual. Moreover, such substitutions 
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(applied to both the environment and the principal term) do not give rise to additional 

transitions which cannot be accounted for simply by the substitution on the label and 

residual. 

Lemma 5.8 (Substitution) Let 5 range over all labels not containing r-particles. 

Then, 	 - 

() I- t --* t' 	({Y/x}z) - {Y/x}t. 1-{Y/x}t'; 

({Y1x}2) I- {Y/x}t _--5  t' = 3t",5'. (1) I- t --+ t" 

with t' = {Y/x}t" and S = {Y/x}5'. 

Proof Induction on the depth of derivation of premise transition. 

Remark To see why it was necessary to impose the constraint on the labels in (2) 

above, consider the transition: 

I- {Y/z}(out ® box,t) 	f(t7) {Y/x}t 

For any £, if {Y/x}t = (u)r(iZ) then £ = (ii)r(u). However, no such labelled transition is 

possible from out 0 boxt. 

We shall now obtain a very useful property of derivations. For any derivable transition, 

it is possible to find a derivation with a specific form, yielding the same transition to 

an equal residual. The structure of a derivation in this latter form, called the standard 

form, allows all the rules which eliminate term constructors to be applied first. There-

fore, for this part of the derivation, each subderivation operates on a strictly smaller 

term. This allows proof techniques such as structural induction to be used in this part 

of the derivation. Moreover, all applications of the sychronisation rule occur at the 

very end of the derivation. This means that the part of the derivation consisting of 

constructor elimination rules derives labels which do not contain any r particles. Both 

these properties will be exploited in the proofs of the main result of this chapter as well 

as that showing the congruence of bisimilarity, in the next chapter. 

Definition 5.9 (Standard derivation) Let 1. be the set of rules given in figures 5-2, 

5-3 and 5-4.  A derivation obtained by the rules 7? is in standard form (for 1Z) just when 

it is constructed in the following manner: 
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a subderivation consisting of applications of just the constructor elimination rules; 

followed by zero or more applications of the permutation rules (PERM1 and PERM2); 

and ending with zero or more applications of the SYNC rule. 

Lemma 5.10 (Standard derivation) For any derivable labelled transition (z) I- t 

t', for some t" = t' there is a derivation of () F- t 1+ t" in standard form. 

Proof We show that the permutation rules can be pushed down every rule except SYNC 

and that SYNC can be pushed down every rule. 

We have now come to the main result of this chapter; that terms which are provably 

equal in the theory AC' have identical transitions to provably equal residuals. 

Lemma 5.11 (Structural) Whenever t1  = t2  and (z) I- t1 	t'1  then, for some 4, 
( 	

- ) F- t2  -+ t'2  with t'j  = t;. 

Proof First we shall consider those transitions derived using only the constructor 

elimination rules i.e. those in which the SYNC and permutation rules do not occur. 

For each axiom of AC', tL = tR we consider the derivable transitions of tL and tR 

under arbitrary environments (z). We show that whenever there is a derivation of 

() F- tL -4 then, for some 4, there also exists one of (z) F- tR -+ t fl  with t'L = 4 
and vice versa. 

By the standard derivation lemma, for any derivable (1) F- t1  _L 	, there is a 

subderivation, for some S and t'= t, of (z) F- t 1  --+ t' following which only permutation 

and SYNC rules are applied. The application of these rules does not depend on the 

structure of t 1  but only on the labels of the transitions. Moreover, the residual of these 

rules is obtained by introducing constructions around the residual of the premise which 

also depend only on the labels. By the above, for some t, of ( -- F- t2 4' with 

t''= t. Applying the same sequence of permutation and SYNC rules to this derivation 

clearly gives a derivation of () F- t2  -- 4 for some 4 which is equal to 4. 
For the detailed proof the reader is referred to Appendix A.. 	 • 

i--transitions and reaction We will now formally establish the relationship between 

r-transitions and reaction. To do so, it will be useful to establish first the correspondence 
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between partial reactions in the molecular forms and labelled transitions. One outcome 

of the structural lemma is that labelled transition relations on the molecular forms can 

be obtained through factorisation by structural equality. In other words, one can define 

(z)Fa--*a' 	3t,t'.(-t_4t'withM=aandt'=a' 

This approach at relating labelled transitions on terms to corresponding ones on the 

molecular forms does not give any immediate insight regarding the relationship between 

the structure of a molecular form and the labelled transitions it may perform. Nor does 

it relate reaction to T-transitions. It simply assures us that it makes sense to talk about 

labelled transitions in the world of the molecular forms. In particular, it fails to link our 

informal explanation of partial reaction on the molecular forms—and the formal one for 

(complete) single-step reaction given in propsition 5.3—to the labelled transitions. We 

shall therefore start with a characterisation of simple labelled transitions in terms of the 

structure of the underlying molecular forms. 

Lemma 5.12 (2) F t--+t' if and only if I- (2) . t--+=t'. 

Proof (==) Immediate by applying the composition rule. 

(.==) By standard derivation lemma, for some t" there is a subderivation of F (2) .t ---* I" 

where 5 is obtained by replacing each r in £ by some pair of complementary particles in 

the leftmost position of the label (i.e. a sequence of applications of the SYNC rule suffices 

to derive I- (2) . t--*t') and t' = tmt", with m-+m being the antics of the introduced 

particles . Then, by inspection of the last constrtzctor rule (i.e. composition rule) in the 

standard derivation of F (2) . t--4t', we are assured that (2) F t--+t" is derivable, 

where 5' is obtained from 5 by the permutations resulting from the permutation rules in 

the derivation of 1- (2) . t --* t". Then by applying the same sequence of PERM and SYNC 

rules as in the standard derivation of I- (2) . t--+t' the required transition is derived.• 

Proposition 5.13 

(2) 1- t 	 (2) . 	= [jZ(i')](ii) and lt'I = 

(2) Ft 	 () tj = [(xti)out,a(iZ')](i) and 1t' = [ji(ifl](tiiiZ); 

1(2) tll = [(x)boxa(i i ),fi(62)](€6) and 

It'll = 
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with a = ( a )X(go )(1a ) and {i} = {iZ 1 iZ2 } = { it}. 

Proof (==) Induction on the depth of derivation of (&) F- t --+ t'. 

(==) Let the (unique) inverse map of [—] be  (—). Then, by structural lemma and 

lemma 5.12, it suffices to give a derivation of F- (t1-4IJt]. 

For detailed proof the reader is referred to Appendix A.3. 	 U 

Lemma 5.14 (z) I- t 	-t' if and only if, for some 

[(xtii)out, (y)boxa(iZ1 ),jZ(t1)}(ii) 

It'JJ = 

with a = (°) W)(i) and {iZ} = {i i92 }. 

Proof (==) By induction on the depth of derivation, we show the stronger result that 
(u)zy(l) 	, 	 (u)yz(il) 	, . 	 . 	 -. -. 	 -. 

(z) F- t 	>,t or (1) Ft 	—,t implies that, for some a,i,u1 ,u2 , 

= [(xtZ)out, (y)boxa(iT 1 ),jZ(tZ)](ii) 
= 

with a = () X(ila )() and {iZ} = {iliZ 2 }. 

(==) By structural lemma and lemma 5.12, it suffices to givea derivation of 

F 

The proof follows similar lines to that for proposition 5.13. 	 • 

The following theorem states that a r-transition corresponds to a single computational 

step. The legitimacy of our claim that our operational semantics is computationally 

meaningful rests mainly upon this fact. While in this thesis no direct characterisa-

tion in terms of reaction is given for the bisimulation semantics we obtain in the 

next chapter, the proposition below serves to establish a preliminary formal connec-

tion between reaction-based semantics and labelled transition semantics. 

Theorem 5.15 

1. Whenever () F t 
()r 	

t' then (z) - t \j t' (ii)(il); 
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1 , 	 -. 	 . 	 ii -. 	 (il)r(il) 2. whenever t \ t then, for any z, there zs some t , u, v such that (2) F t 	—~ t 

and C (tT)(il) = (1) . t'. 

Proof 

(iZ)'z(iJ) 	ii By standard derivation lemma (2) F t 	* =t for some t such that t = tmt 

if the subject arity of the particle pair Yx is m-+m. By lemma 5.14 we have, for 

some a,ji,ili ,i12 : 

= [(zii)out, (x)boxa(it i ), fZ(t1)](i) 

with a = (f0 )X(U0 )( 0 ) and {iZ} = { 1 ü2 }. By aiphaconversion, we can assume 

w.l.o.g. that {ti} fl {J.} = 0 . Also, if a: rn-+n then : m and i,2Q  : n. 

Now t' = tm t " . We can write t" as f (i1 a)  [XW0 ), ji(i)] (tiii). Hence: 

It' (ii)(i) 	= (tmtn(io)[X(ila),7(2)](2ct)) . (t)(ti) 

= (iZ)(i) 

= tn®m (jtia)[(ia), 012A(2at) 

= 	{o 1/ili o }(iZ)[.(ila ), 1I(i 2 )](i) 

By proposition 5.3 (2) . t \ t' (i)(i7). 

By proposition 5.3 we have 

11th = (2) [(xti)out (x)boxa(i4), a(62 )] (v) 

(v) 

where a = (ff 0 ).(ff0 )(20). Choose t" = 	 i0}[X(il0),ii(i12)](Z). Writing 

as (2) t m(iii4 2')[(ia), 1TZ(tZ2 )](20ti1i1) it is easy to show that it'] . (iZ)(i) = 

(2) t' and hence that t". (tZ)(ii) = (1) t'. By structural lemma and lemma 5.12, 

it suffices to give a derivation of I- 11(2).t1rJt h]. This easily follows by 

lemma 5.14 and the SYNC rule. 

Remark As remarked previously, and shown in [29], terms of the (asynchronous) ir- 

calculus are representable as terms of arity € —* € in PICr.  For such terms t,t', the 
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transition (z) - t 	t' collapses, to ( ) F- t 	
)r( 	

1  which we can write as 

t --+ t'. Then, by proposition 5.15, we can write 

t__r_*=t,  . 

which corresponds precisely to our intuition of r-transitions in the traditional treatment 

of the it-calculus. 



Chapter 6 

B isimilarities 

A common method of obtaining an operational semantics for a process calculus is 

through the notion of bisimilarity on a collection of labelled transition relations. In 

the previous chapter we defined such a collection; however, we are not obliged to base 

our definition of bisimilarity on the entire collection of labelled transition relations. In 

this chapter we shall consider a way of obtaining various bisimilarities by choosing dif-

ferent subsets of the collection of labelled transition relations we have defined. 

In order to assist us in showing that the bisiniilarities we shall define are congruences, 

a proof technique will be introduced. This technique may have applications beyond 

our specific setting and so, it shall be presented separately for some unspecified process 

calculus. For this process calculus, we assume, as given, appropriate notions of process 

term, context (term with a single hole, or process metavariable) and labelled transition. 

Let P, Q,... range over process terms, C range over contexts and a over labels of labelled 

transition relations -- over process terms. As usual we shall write P -- Q for (F, Q) E 

--* and C[P] to denote the instantiation of the metavariable in C by P. The definitions 

of bisimulation and bisimilarity are standard: 

Definition 6.1 A bisimulation S is a symmetric binary relation on process terms such 

that, for any (P, Q) E 8, whenever P --* F', then for some Q', Q --+ Q' with (P', Q') E 

S. 

Bisimilarity - is the largest bisimulation relation on process terms. Say that P and Q 

are bisimilar if(P,Q) € -. 

It is usually desirable to determine whether ". is a congruence over the process terms, in 

other words, if process terms P and Q are bisiniilar, then so must be C[P] and C[Q], for 

147 
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arbitrary P and Q. This may be done by showing that for each process term constructor 

C we have, for any R, C(P, R) - C(Q, R). The theory of bisimulation asserts that in 

order to show that P and Q are bisimilar it suffices to give a bisimulation S such that 

(P, Q) E S. Hence, the proof of congruence may be accomplished by constructing a 

bisimulation relation containing (C(P, 1), C(Q, 1)) for each C. This technique is only 

advantageous if showing S to be a bisimulation is easier than a more direct proof of 

the bisimilarity of C(P, 1) and C(Q, 1). However, for certain process calculi it may be 

difficult to find simple bisimulations which are easily shown to be such. This difficulty 

may arise, for instance, from a disparity between the (syntactic) structure of the principal 

and residual terms in the rules for deriving transitions. As an example, consider the 

composition constructor in PIC  we would like to determine whether whenever t1  t2 , 

we also have t 1  . t . t. Assume that () F t 1  . t si  is derived by the composition 
, 

rule from premises (2 	
(iZ)(ø) 

) F tj 	-+ t1  and (ii) F 	()ö(g) t 	— t. Then, for appropriate k•, 

1, and r, we have i (t 0 idk 2 ) . (id: 1  0 abzt') . (id,, 0 Pr,:,  0 id). Clearly, the transition 

can be matched by t 2  t to give 32  = (t 0 idk,) . (id1 , 0 abet') (id1 , 0 p,.j, 0 id) 

for some t'2  where t'1  t. Hence, in specifying the putative bisimulation relation 

containing (t 1  . t,t2  t) we must ensure that (81,82) is also present. We can ensure this 

by specifying closure under abstraction, tensor and composition—but, of course, that 

involves including almost everything! Alternatively, we note that the terms s and 82 

differ only in the subterms t and t which are in fact bisimilar. Our proof technique 

takes advantage of this observation. 

Lemma 6.2 Let be some bisimulation equivalence over process terms. Assume that 

(*) for any context C and label a, whenever P1  P2  and C[P1] -- Q, then for some 

Q2, C[P2] -- Q2 and there exist some C', P, P such that F1' - P and Q,, C'[P] 

(fori e {1,2}). 

Then ' is a congruence. 

Proof Consider S = {(Q1,Q2) I 2C,P1 ,P2 . P1 
' 

P,Qj  C[P1],Q2  C[P2]}. First we 

shall show that S = 

(—. 
ç 5) Consider arbitrary P1 ,P2  such that P1 	P2 . Then, taking C 	[..], it is 

immediately clear that (P1 ,P2 ) ES. 

(S C ) It suffices to show that S is a bisimulation, since if this is the case then must 

include S by definition. Consider an arbitrary (Qi, Q2) E S. Hence, by definition, there 
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exist C, P1 , P2  such that P1  P2 , Qi  C[P1 ] and Q2  C[P2]. Assume Qi 	Q. Now, 

since is a bisimulation, C[P1 ] -- Q' for some  Q' 	Q. Also, by assumption (*), we 

have C[P2 ] --* Q'2' and there exist some C', P, P such that P 	P2', Q'1' C'[P] and 

Q' 	C'[P21 J. Now, by Q2  C[P2], we get, for some Q, Q -- Q'2 with  Q' 	Q. By 

transitivity of we have Q 	C[Pfl and Q'2 C[P]. Hence, by definition, (Q,Q) eS. 

This concludes the demonstration that S is a bisimulation. 

We must now show that S is a congruence, i.e. it is closed under arbitrary contexts. 

Assume (F, Q) in S. Then P - Q since S = -. By reflexivity of we have (C[P], C[Q}) 

in 5, hence C[P] C[Q]. 

Remarks 

The above technique is useless unless the demonstration of the property (*) is 

tractable for the process calculus in question. In the case of p icr we have been 

able to prove this property by an induction on the depth of derivation of the 

labelled transitions. Whether this approach will serve just as well in other process 

calculi has not been explored. 

The weakest choice of is bisimilarity itself and the strongest is 	(syntactic 

equality). Often, as in the case of PICr,  there will be some structural equality 

which is stronger than but weaker than syntactic equality. This is the one that 

we shall use for the treatment of bisimilarity in PlC. 

Outline In Section 6.1 we will examine the bisimilarity obtained by the obvious choice 

of taking the entire collection of labelled transition relations defined in the previous 

chapter. This will yield a bisimilarity which is very strong; indeed too strong to give 

an interesting model. In the next section we will set the scene for obtaining weaker 

semantics by parameterising bisimilarity by sets of labels; effectively, by sets of labelled 

transition relations. Several general properties of such parameterised bisimilarities can 

be obtained. In particular we shall adapt the proof technique described above to the 

setting of PICr.  In Section 6.3 we argue that while this technique provides a way of 

obtaining weaker bisimilarities, it still does not allow (without identifying too much) the 

identification of certain actions which we expect to be behaviourally indistinguishable. A 

possible solution is outlined, involving the addition of an extra rule for deriving sequents. 

In the following section we outline further applications of our technique of specifying 
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bisimilarities by sets of labels to obtain diverse operational models of PICr.  The final 

section consists of suggestions for further work. 

6.1 Strong Bisimilarity 

We shall now define the obvious form of bisimilarity based on the entire collection of 

labelled transition relations derivable by the rules R. 

Definition 6.3 (Strong bisimulation) A strong bisimulation is an indexed set of re-

lations S = {Sm , n  I rn,n E M}, where each Sm,n is a symmetric binary relation on terms 

of aritym-4n and for anySES, 

(*) given any t 1 St 2 , environment Y and a label t, whenever (z) F- t 1  _L+ 4, then for 

some 4, ( F-f2  --+ 4 with t'1 S't'2  where S' e S. 

We shall write t 1 S t2  if t 1 S t2  for some S E S. Strong bisimilarity - is the strong 

bisimulation where each relation is the largest symmetric binary relation satisfying the 

property (*). 

The lemma below follows immediately from lemma 5.11. 

Lemma 6.4 Structural equality is a strong bisimulation. 

As the following proposition states, strong bisimilarity andare not identical. 

Proposition 6.5 Strong bisimilarity strictly includes structural equality 	Cr.o 

Proof By lemma 6.4 it suffices to show that there is a pair of strongly bisimilar terms 

which are not provably equal. The following pair has such a property: 

® box(v. (x)(xx))) 

t(x)box (xx) 

To show that they are not provably equal it suffices to consider their molecular forms: 

the molecular form for the first term has a restriction particle which is absent in that of 

the second. 
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Discussion It is rather difficult to find pairs of terms which are strongly bisimilar yet 

not provably equal in ACr.  For instance, even the terms ii .' and id, are distinguished 

despite being provable in AC". Indeed, we conjecture that, in the version of PlC' with 

the constraint that boxa is only well formed when a : m -4 e, bisimilarity coincides 

with structural equality. This may suggest that all the machinery we have introduced 

is unjustified. However, as we shall see, by limiting the kind of labelled transitions that 

may be taken into account in comparing actions in terms of their behaviour we shall 

effectively obtain weaker equivalences. 

The labels give a kind of syntactic description of the "dynamic interface" of an 

action. Unfortunately, some labels do not really reflect any potential for interaction. 

Consider, for instance the terms (vx)((xv) out) and Id,. Neither of these terms can 

ever interact with any other action either through the provision of names or through the 

contribution of molecules for reaction. Hence we would like a semantics which identifies 

them. The term (vx)((xv) out) can have the labelled transition 

I- (vx)((xv) out) 
(z)z();,() 

while the only one for id, is I- id, --,? id,. Clearly, these two are not strongly bisimilar. 

Inspection of the label (x)( ) reveals that there is no context which will furnish 

the required particle x, since the name x is rendered private by the binding. Nor is the 

private name exported and hence it can never be present in an external action. This 

suggests that such labels should be disregarded in the definition of bisimilarity. 

6.2 Parameterising Bisimilarity 

We shall now examine a way by which weaker forms of bisimilarity may be obtained, 

motivated by the reasons given above. The method we shall adopt involves restricting 

consideration to a subclass of the labelled transition relations in determining whether 

two actions (or terms) are bisimilar. A similar approach was taken by Mimer in [21] 

through the notion of incident sets. In [21], the choice of the subset of labels (and 

consequently, labelled transition relations)—the incidents—was not arbitrary but was 

subject to certain conditions. Here, we shalt impose no such conditions a priori; although, 

in our examples, the choice of labels will in each case be defined through some structural 

property of the labels. 
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Definition 6.6 (Strong Abisimulati0fl) Let A be a set of labels in L. A strong A-

bisimulation is an indexed set of relations S = {Sm,n I m,n € M}, where each Sm,n is a 

symmetric binary, relation on terms of arity m-+n and for any S € S, 

(*) given any t 1 St 2  and a label £ € A, whenever (z) F t 1  ---* t', then for some t, 

() F t2  -- 42  with 45' 4 where 5' e S. 

We shall write t 1St 2  if t 1 St 2  for some S E S. Strong AbisimilaritY ' is the strong 

bisimulation where each relation is the largest symmetric binary relation satisfying the 

property (*). 	 U  

The following two simple lemmas hold for strong A bisimulation, given any A 9,C. 

Lemma 6.7 For any A' g A, if S is a strong A-bisimulation, then it is also a strong 

A' _bisimulatiofl. 

Proof Assume a 1 Sa2  and consider the transition () F a1  --- a'1  for an arbitrary £ E A'. 

Now, since £ € A and S is a strong Abisimulati0i1, we have (E) F a2  --* a for some a'2  

such that a'1 Sa'2 . Hence result. 

This immediately gives the following result: 

Corollary 6.8 For any A, structural equality Acr is a strong A-bisimulation. 

Proof Immediate, by lemma 5.11 and lemma 6.7. 
	 U 

Definition 6.9 (Contexts) A context in PICr is a term with a single hole (metavari-

able) [.], generated as follows: 

C ::= [.] I tøC I C®t It 	tI8bzCI tCI boxC 

We write C[t] to mean the replacement of the hole occurring in C by t. U 

Lemma 6.1.0 Assume that for any context C and label £ E A, whenever t 1  .' t2  and 

(z) F - C[t1 ] -* s 1 , then for some 52 , (z) F C[t2] --* 52 and, there exist some C',t'1 ,t'2  

where 4 4 and s = C'[4] (for i € {1,2}). Then 	is a congruence. 
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Proof The proof involves a straightforward application of the technique introduced at 

the start of this chapter. By lemma 6.2, it suffices to show that equality = is a strong 

A-bisimulation. Hence, by corollary 6.8 the result follows. 

We will now use the above lemma to show that strong bisiinilarity is a congruence: 

Lemma 6.11 Let t 1 	t2 . Then, for any context C and label £, whenever (2) I- 
I 	I 

C[t1 ] -+£ s, then for some 82, (2) F- C[t2 1 -4£ S2 and, there exist some C I  ,t 1 ,t2  where 

t'1  i'-' t' and s = C'[t] (for i E 11, 2)). 

Proof Whenever C [] the result follows by definition of bisimulation. For C 0 [] 
the result is obtained by induction on the depth of derivation of (2) 1- C[t1 ] 	s 1 . • 

Theorem 6.12 Strong bisimilarity is a congrlLence on the terms of PICr. 

Proof Immediate by lemma 6.10 and lemma 6.11. 	 . 

6.3 Discarding Redundant Bindings 

While the technique described in the previous section allows a great variety of bisimilar-

ities to be obtained, the fineness with which the strength (or weakness) of the resulting 

model can be controlled is limited by the available labelled tiansition relations. In 

other words, there may be terms which cannot be identified by any model thus obtained 

without resulting in other identifications, possibly undesirable, being made. In this sec-

tion we shall give an example of such a circumstance together with a simple solution 

for changing the set of available labelled transitions which, in addition to the technique 

described in Section 6.2, allows us to obtain an interesting model. 

Consider the transitions in figure 6-1; the transitions are exhaustive for the terms 

shown. We would not like to distinguish between any of the terms in each pair on 

behavioural grounds; yet, it is clear that they do not derive the same transitions. The 

difference between the labels in each case is also easy to discern: for one of the terms 

the label has an extra binding occurrence and significantly, this extra name does not 

bind anything in the label. 
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I- id-4Lid. 

F- (vx)box(x)-ii (y V  {x,u}) 
(uu) 

F- boxv 
)(

—*ii 	(yu) 

F (VX)bOXy(X)ZU>rri1  (y {x,u}) 
(u)y(u) 

Fboxz'—*i' 	(yu) 

F- (box(x)) • w - =z' 	(y 0 u) 

F- 

)y( 
) F- (box(x)) • 

( u 
- v (y u) 

F- boxyid>Jd 

Figure 6-1: Distinctions caused by redundant bindings 
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Prompted by the technique described in section 2, we could try to obtain an appro-

priate model via the bisimilarity induced by just those labels in which such redundant 

bindings do not occur. However, on its own this measure will not result in a weaker 

bisimilarity. This is because the vector of binding occurrences in labels is predetermined 

(up to permutation) by the structure of the molecular form of the term undergoing the 

transition (see proposition 5.13). Inspection of these propositions reveals that, for any 

given term, in each of its transitions the vector of bindings of the label is some per-

mutation of the binding occurrences originating from the controls (including restriction 

particles) present in its molecular form. 

This means that, for any non-empty set of labels A, the resulting A-bisimilarity 

will distinguish some terms, such as those of figure 6-1, which are distinguishable (by 

bisimilarity) solely upon the difference in the mentioned binding vectors. To see why, 

take any term t with a labelled transition whose label is in A. Then t 0 (ii' c) will be 

distinguished from t (although behaviourally we do not expect the distinction) since for 

any labelled transition of t 0 (ii . ), the label will differ from that for t in the binding 

vector. 

In order to rectify this, we shall introduce a new rule DISCARD which allows redundant 

binding occurrences in labels to be discarded. This will break the uniqueness of binding 

vectors for each given term and will in fact allow us to obtain the required form of 

bisimilarity. The DISCARD rule simply takes a redundant binding occurrence from the 

label and places it at the export of the residual. This is accomplished by deleting 

the occurrence and postcomposing with the residual a discard operation () in the 

appropriate place. We will show that when this rule is added to the other rules 7?. 

we will still be able to obtain the relevant counterpart of the structural lemma. Unless 

otherwise stated we shall henceforth use the notation () I- t --+ t' to denote a transition 

which is derivable by the rules 7?. together with DISCARD. As before, we shall assume that 

: k -+1 in the rule below: 

(i) I- t 	''- t' 
DISCARD 

(.) Ft (ilWO  t'. (id,OwØid) 0

n(6)u{i1} 

Definition 6.13 (Standard derivation) Lt 7ZD be the set 7?. together with the DISCARD 

rule. Then a derivation is in standard form for 7ZD  just when it consists in a subde- 

rivation which is in standard form for 7?. followed by zero or more applications of the 

DISCARD rule. 
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Lemma 6.14 (Standard derivation) For any labelled transition (z) F- t --+ t' deriv-

able by the rules 1ZD, there exists some t" such that t" = t' for which there is a derivation 

of 
() 

I- t t" in standard form (for 7ZD). 

Proof We show that the DISCARD rule can be pushed down every rule. Hence there is 

a derivation consisting of a subderivation not containing an applications of the DISCARD 

rule followed by some number of applications of the DISCARD rule. By lemma 5.10 this 

subderivation can be replaced by a subderivation which is in standard form for R. • 

Lemma 6.15 (Structural) Whenever t 1  = t2  and (z) I- t1  -- t'1  then, for some t, 

(z) F- t2 _L  42  with t'1  = t. 

Proof By the standard derivation lemma, for any derivable (z) I- t1 _! 	, there is 

a sub derivation, for some 5 and t' = t'1 , of () F- ti 	t following which only the 

DISCARD rule is applied. The application of this rule does not depend on the structure 

of t 1  but only on the labels of the transitions. Moreover, the residual is obtained by 

introducing contructions around the residual of the premise which depend only on the 

label of the premise transition. By lemma 5.11, for some t, () I- t2  -- t' with t' = t. 

Applying the same sequence of DISCARD rules to this derivation clearly gives a derivation 

of () F- t2  -* tI  2  for some t
I  
2  which is equal to tI1 . • 

Definition 6.16 A label (tZ)(ii) has redundant bindings if there is some x E {iZ} which 

occurs neither in nor in V. 

We shall now consider bisimulation on transitions whose labels do not contain redundant 

bindings. We shall henceforth let 4 stand for the set of labels with no redundant 

bindings, i.e. those labels £ = (iZ)(iY) where {i} 9 fn () U {ii}. 

Lemma 6.17 Structural equality ocr is a strong 4-bisimulation. 

Proof Immediate, by lemma 6.15. 
	 n 

We shall now show that strong 4-bisimilarity is a congruence. We note that the proof 

of lemma 6.10 depends on the set of rules used for deriving the sequents only insofar 

as structural congruence is a bisimilarity. Since adding the DISCARD rule preserves this 

property of structural congruence (for arbitrary sets of labels A) we can use the same 

technique. 
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However, we cannot use a straightforward induction on the depth of derivation of 

(z) F- C[ti ] 1---* .s l  to get the required result as stated in corollary 6.20, since in the case 

of the DISCARD rule, we would not be able to apply the inductive hypothesis to its premise 

(in which the label has at least one redundant binding and therefore is not in 4). 

Notation Let £ = (iZ)&(iY). Then we shall write £ to denote the label obtained by 

discarding all binding occurrences in £ which do not bind any name (in £). Hence, 

£= (iZ')(ii) where, 

i'=i4tZ2 ... iZ1; 

 

{'}Cfn(c)U{ii}; 

{w1 ,...,w}fl(fn()U{i})=O 

In other words the binding occurrences wi  are redundant in £ while the binding occur-

rences ir are not. 

Lemma 6.18 Whenever () F- t --* t', then 

() 
F- t-4=t' (Id1  ®  

where £ = (iI)(il) and 1= (iflc(ii). 

Proof Let iZ = 61 w 1 	 and ii' = u1 iZ2  .. . t1fl+1, i.e. w 1 	w, redundant. We 

proceed by induction on n. 

Base Case: n = 0 Immediate. 

Inductive Step: n = j + 1 Assume (1) F- t --* t'. Then, by applying PERM1 to pull 

the name w31  in the leftmost position, we get (E) I- t --+ t' . (Id, 0 Pm,p (& Id) 

where £' = (w +1iZ1w1 ... wjij+ltij+2)6(i3) with u1 w 1  w.iZ +i  m and wj i  : p. 

Applying the DISCARD rule to remove the redundant binding occurrence of w 42  

we are left with the transition () I- t --+ t'. (Id, 0 Pm,p  0 id) (Id, 0 (i) (& id), 
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with £" = (61w1 wu1+1u1+2)ci). We can now apply the inductive hypothesis, 

getting, 

(zl F- t —-* t" 

where t" = t' - (Id1  (9 Pm,p  old) - (Id 1  Ow(D id) (id, 0 (iWi . . . w1z71+1ti1+2)(1)). 

Butt" =1 and 

(IdiOPm,p(&Id)•(Idi(&W®Id) = id i O(iii wi  . 

Hence we have t" 	. (Id1  0 (iiw1 	wJi1J+1wl+1iZJ+2)(ti)). 

Lemma 6.19 Let t1  t2 . Then, for any context C, whenever (i) F- C[t1 ] --+ s, then 
. 	 b for some 82, (z) F- C[t2 ] —£* 2 and, there exzst some C I  ,tI1 ,t I  2  where tl  1  .-tI2, C I  [tI1 } = 

• (id 1  0 ()(it)) and C'[t'2 ] = s2 ; where £ = (iZ)á(iJ) and 1= (iflc(ii). 

Proof Assume C 
[]. 

Let (z) F- t 1 	s. Then, by lemma 6.18, () F- t 1 _L3s1  - 

(Idi  0 (iZ)(u')). By definition of 4-bisimilarity, (z) F- t 1 	S2 such that, by lemma 6.17 

the transitivity of bisimilarity Si  (id1  0 (tZ)(u ')) 	s,. 

Assume C t= []. We proceed by induction on the depth of derivation of () F- C[t1 ] 

Corollary 6.20 Let t 1  t2 . Then, for any context C and label £ E 4, whenever () I-

C[t] --* s, then for some s 2 , ( F- C[t2 } —4 82 and, there exist some C, 4,4 where 

4 and s = C[tJ (for i E {1, 2}). t'1   

Proof By lemma 6.19, since for any label £ with no redundant bindings, i= £. 

Theorem 6.21 Strong bisimilarity 	is a congnience on the terms of PlC. 

Proof The proof follows that of lemma 6.10, which cannot be applied here as it was 

shown in the context of the rules 1?. and not 1D• 

Consider S = {(Si,S2) 1 2C,t 1 ,t2 . ti Zb  t21 s 1  = C[ti],s2  = C[t2 }}. Clearly, S contains 
4  (choosing C []) and is closed under contexts. Therefore, if we show that S is a 

ACb 4-bisimulation then we are done since that would imply that S = 

Consider an arbitrary (5 1 ,s2 ) E S. Assume () F- Sj --+ s, where £ € A. Since 

(s i , 82) € S there exist C, t1 , t2  such that t1  t2 , 51 =  C[ti ] and 82 = C[t2 ]. By the 
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structural lemma (z) I- C[ti ]!*=s and by corollary 6.20, we have () I- C[t2] -- s'2  

and, for some, C', t, t such that t 	4, s 	C'[t'1 } and s = C'[t'2}. Hence, since 

82 = C[t2], we have () I- 82-=S'  with (s',$) ES. 	 U 

Examples The following are some examples of terms which are not provably equal in 

AC but are bisimilar. 

v - id 4 id 
4 (boxa) . 	box(a 

(vy)boxa 	box(z'y)a (x j4 i) 

Discussion We may consider adding the axiom Po (which holds in the model obtained 

above), to the equations on terms defining structural equality, giving us PIC: the 

reflexive ir-calculus with garbage collection. In this setting, the structural lemma (for 

=ACn) fails. This is illustrated by the equation v w = id, provable in AC", where the 

transition I- ii . &, (L)_41  ii cannot be matched by id,. However, such transitions should 

hardly matter since we have decided to ignore them in our semantics. Instead, it should 

be possible to show the weaker result that is a strong £b-bisimulation. 

6.4 Other models 

There are several interesting semantics which can be defined in terms of sets of labels. 

While it remains to be checked whether the bisimilarities concerned are congruences, the 

following examples illustrate some computationally meaningful choices for the mentioned 

sets. 

Non-interleaving semantics At the end of section 6.1, it was suggested that for any 

labelled transition () I- t -- t', no context applied to t can provide complement-

ary particles to those particles whose names are bound in £ but not exported. Such 

labels were at least partially responsible for the distinction between terms which 

we expect to be identified in an operational model. We can develop a semantics 

based on those transition relations whose labels do not contain such particles. 

Definition 6.22 (Active labels) A label (iZ)c(ii) is said to be active if, 
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it has no redundant bindings; and, 

for any particle in d whenever its subject name is bound (occurs in 7), then 

the same name is also exported (occurs in ii). 

The set of active labels is denoted by La . 

Examples Below are some pairs of L 0-bisimilar terms: 

id, 

(i'x)(out) 

(vx)(boxa) 

(iiy)boxa 	box(vy)a (x y) 

Interleaving semantics The bisimilarities described so far have the common feature 

that they all give a non-interleaving semantics. We shall weaken the semantics 

further by basing bisimilarity on the set of just those active labels at most one 

particle in their bodies. This will give a weaker (strong) bisimilarity that . We 

let L = {iELa  I £ = ()(),I'I < 11. 

Examples The following pairs of terms are L-bisimilar: 

	

box(boxjd) 	boxzid,Øboxjd, 

(vxy)(out (9 box(out, ® box,id,)) 

(vxy)(out 0 boxid, 0 out s, (9 boxid,) 

Restriction skeleta revisited We conjecture that vSKEL can be obtained by a suit-
able choice of labels. Let L, = {(ii)(v) I il C €i}. Note that C. is a subset of all 

the sets of labels considered so far, hence resulting in the weakest model. Indeed, 

factoring the terms of P IC' by strong L 8-bisimilarity should give (a reflexive 
control structure isomorphic to) L'SKEL. 
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6.5 The Asynchronous 7r-calculus 

Throughout this thesis we have informally referred to a correspondence between PlCT and 

the ir-calculus; therefore, a natural task would be to make this correspondence precise. 

This may be achieved by, first, defining a translation from the terms of the asynchron-

ous ir-calculus to those of PlC' followed by an comparison between the manifestations 

of labelled transition relations and strong bisimulation in both calculi. We shall now 

briefly illustrate what this involves, confining ourselves to the monadic version mainly 

for simplicity of exposition. 

The terms of the asynchonous ir-calculus P essentially correspond to the fragment 

of the full ir-calculus, or more closely, to the v-calculus of Honda and Yoshida in [11,10]. 

P ::= 0 I (v) I x(y).P I (vx)P  I PQ 

To obtain processes, the terms of P are factored by a structural congruence induced 

by the following equations: 

PjO P 	 (vx)(vy)P (vy)(vx)P 

PIQ QIP 	 (vx)(PIQ) PI(z'x)Q 	(x 95 fn (P)) 

PI(QIR) (PIQ)IR 	 (vx)P (vy)({Y/x}P) 	(y §t fn (F)) 

z(x).P z(y).({Y/x}P) 	(y V fn (P)) 

where fn (P) denotes the free names of F, with the occurrence of any name x in P being 

free unless bound in some subterm Q of P, by a (vx)Q or z(x).Q construct, whose scope 

extends throughout the subterm Q. 

The dynamics are given in terms of reduction -* the smallest relation over P closed 

under and the following rules: 

COM : (z)Ix(y).P _* {Z/y}P 

P-4P' 	 P__*Pl  
PAR 	 RES 

PIQ -4  P'IQ 	 (vx)P -+ (vx)P' 
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In [29], Mimer has shown the correspondence between the processes in P and PlC. The 

translation to P1 cr  is identical: 

Ô del' 
= id, 
del' = 	(v) outs  

x(y).P del' 
= 	box(y) 

(vx)P del' 	-. 

= 	(zix)P 

The terms of 7' translate to pr  terms of arity e-+€. Then, from [29], we have 

PQif and only ifP=Q. 

IfP -QthenP\. 

If P\tthenfor some P',P-P' and P'=t. 

Labelled Transitions In figure 6-3 we give the derivation rules for transitions terms in 

P. The rules allow the derivation of early transitions allowing a precise correspondence 

between labelled transitions in P and PlC to be stated. 

The relationship expected between T transitions in pr  and reductions in P is fairly 

easy to establish. It may be obtained through the intermediate relationship of both 

relations with single-step reaction. Recall that theorem 5.15 states that, for actions 

P,p' of arities c -+e: 

This, together with above relationship between reaction and labelled transition relations 

gives: 

P -~ Q 

However, we still do not have any information about the relationship between labelled 

transition relations; and more importantly, between the models of each given by bisiinili-

arity. In particular we expect the following to hold: 

p.J_p' 
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OUT 	- 

- 

	

x(w) 	0 
IN 

 x(y).P !f {W/y } P 

pf 4 p' 
RES 	 x n(a) 

(vx)P -- (zix)P' 
OPEN 	 wfn(P) 

(vy)P -1 {W/y } P' 

P--3.Pl  

PIQ-.*P'IQ 
bn(a)flfn(Q)=ø 

Q-4Q' 
PAR-R 	 bn(a) fl fn(P) - 0 

PIQ - PIQ' 

P4P' Q4Q' 
	

P4P' Q - Q' 
CLOSE-i 
	

CLOSE-2 

PQ -- (ziv)(P'IQ') 
	

PIQ -- (vv)(P'JQ') 

p!4p' Q-4' 
	

P3P' Q4Q' 
COM-i 
	

COM-2 

PIQ —'-* P'IQ' 
	

PIQ 	P'IQ' 

Figure 6-2: Transition rules for P 
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A question of greater significance is whether we can capture the model obtained from 

strong bisimilarity (as given in definition 6.1) 

P Q if and only if P Q. 

by any of the bisimilarities suggested in chapter 6. £1 -bisimilarity, which gives an inter-

leaving semantics, seems a likely candidate. 

6.5.1 The Asynchronous ir-calculus 

In the preceding chapters we have informally referred to a correspondence between PlC' 

and the ir-calculus; therefore, a natural task would be to make this correspondence 

precise. This may be achieved by, first, defining a translation from the terms of the 

asynchronous ir-calculus to those of pr  followed by an comparison between the maul-

festations of labelled transition relations and strong bisimulation in both calculi. We 

shall now briefly illustrate what this involves, confining ourselves to the monadic version 

mainly for simplicity of exposition. 

The terms of the asynchonous ir-calculus 'P essentially correspond to the fragment 

of the full ir-calculus, or more closely, to the v-calculus of Honda and Yoshida in [11,10]. 

P ::= 0 I (v)  I x(y).P I (vx)P I PQ 

To obtain processes, the terms of P are factored by a structural congruence induced 

by the following equations: 

PlO P 	 (vx)(vy)P (vy)(vx)P 

PIQ QIP 	 (vx)(PIQ) Pl(vx)Q 	(x V fn(P)) 

Pl(QIR) (PIQ)IR 	 (vx)P (vy)({Y/x}P) 	(y V fn (P)) 

z(x).P z(y).({V/x}P) 	(y V fn (P)) 

where fn (P) denotes the free names of F, with the occurrence of any name x in P being 

free unless bound in some subterm Q of P, by a (vx)Q or z(x).Q construct, whose scope 

extends throughout the subterm Q. 
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The dynamics are given in terms of reduction —* the smallest relation over P closed 

under and the following rules: 

COM : (z)Ix(y).P _* {Z/y}P 

P-+P' 	 P-4P 
PAR 	 RES 

PIQ - P'IQ 	 (vx)P — (vx)P' 

In [29], Mimer has shown the correspondence between the processes in P and PlC. The 

translation to p,r  is identical: 

O de =f 	ide  
def = 	(v)•out 

x(y).P def = 	box(y)A 

(vx)P def = 	(zx) 

The terms of P translate to ic terms of arity €-c. Then, from [29], we have 

PQifandonlyifP=Q. 

IfP - QthenP\Q. 

IfP'\tthenforsomeP',P-*P'andP'=t. 

Labelled Transitions In figure 6-3 we give the derivation rules for transitions terms in 

P. The rules allow the derivation of early transitions allowing a precise correspondence 

between labelled transitions in P and pr  to be stated. 

The relationship expected between r transitions in pr  and reductions in P is fairly 

easy to establish. It may be obtained through the intermediate relationship of both 

relations with single-step reaction. Recall that theorem 5.15 states that, for actions 

P, P of arities e —+ e: 



P --*P,  
RES 	 zn(a) 

(vx)P -- (six)P' 

p!4p' 
OPEN 	 wUn(P) 

(vy)P 	{W/y } P' 
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OUT 
	 IN 

 x(y).P14{w}P 

P --+P,  
PAR-L 	 bn(a) fl fn(Q) =0 

PIQ -4 P'IQ  

Q-4Q' 
PAR-ft 	 bn(a) fl fn(P) = 0 

PIQ -4 PIQ' 

ayj 	Q-4Q' 
CLOSE-i 

PIQ -13 (t'v)(P'IQ') 

• 	P4P' QQ' 
CLOSE-2 

PIQ -'3 (vv)(P'IQ') 

COM-i 

p ! 4p'  Q-4Q' 

PIQ 14 P'IQ' 

p4p'  Q4Q' 
COM-2 

PIQ -'3 P'IQ' 

Figure 6-3: Transition rules for P 
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This, together with above relationship between reaction and labelled transition relations 

gives: 

P —*Q 

However, we still do not have any information about the relationship between labelled 

transition relations; and more importantly, between the models of each given by bisimili-

arity. In particular we expect the following to hold: 

P -4 P' := I- P!*P1 

A question of greater significance is whether we can capture the model obtained from 

strong bisimilarity (as given in definition 6.1) 

i P - Q if and only f P Q. 

by any of the bisimilarities suggested in the previous section. In particular, C-bisimilarity, 

which gives an interleaving semantics, seems a likely candidate. 



Chapter 7 

Conclusions and Further Work 

In this chapter we present some current work on control structures and outline possible 

directions for further work. The chapter is concluded by a summary of what has been 

achieved in this thesis. 

7.1 Current Research in Control Structures 

In all the categories of control structures presented in this thesis, the names X and 

antics M have been assumed fixed. Milner [27] and Power [35] have considered how 

this condition can be relaxed while still obtaining the initiality results for action calculi. 

Both approaches result in attributing greater structure to naming, than present in our 

definitions where a set of names X suffices. Mimer observes that it is easy to refine the 

structure of names from a set X to the free monoid (X, (9, 1) generated by X; with data 

and abstraction extended as follows: 

def 
= ab 1  • . ab,,a 	(r > 0) 
def (x 1  (9 	0 Xr) = (x 1 ) 0 	0 (x r)a (r > 0) 

Mimer's account then considers which class of monoids—of which (X, (9, 1) is a member-

contains sufficient structure to allow a generalisation of control structure morphism 

which removes the requirement that such morphisms act as the identity on the names. 

This extraction of the essential structure from the free monoid, brings i.is closer to an 

abstract account of naming. Power [35] shows how such naming monoids can arise from 

the arity monoid in a natural fashion. 
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Another approach in which names are rendered implicit is taken by Gardner [6] who 

introduced closed action calculi—essentially a name-free variant of action calculi—and 

established the precise correspondence with the action calculi (including the reflexive 

variant) referred to in this thesis. This effort aims to demonstrate that while names 

play a useful presentational role they are not essential. 

An abstract treatment in which names are implicit—but naming explicit—in the 

spirit of categorical logic [15] is provided by Power and Hermida in their fibrational con-

trol structures [8]. A generalisation of this account is developed by Power [36]; providing 

connections between control structures and his work with Robinson on a general se-

mantic theory of "notions of computation" [37]. 

Throughout this thesis we have relied on the idea of dataflow to give an intuitive 

interpretation of the operations encountered. Indeed, this visualisation of the structure 

of actions as graphs where links are dataflow channels and nodes are molecules has been 

of great assistance in developing equational proofs, and also in formulating the labelled 

transition rules for the reflexive ir-calculus. In a recent paper [29], Milner introduced 

action graphs which formalise this intuition. A rigorous treatment of these graphs is to 

be presented in Ole Jensen's forthcoming PhD thesis [12]. 

The intuition of actions as graphs informs not just our enquiry into the structure of 

actions but also that concerning their dynamics: as a result of computation the static 

structure of an action (the controls and datáflow links) may evolve. The transformation 

of the action graph resulting from computation may be used to compare the dynamic 

characteristics of diverse action calculi. A classifier IMGRAPH is being developed by 

Leifer [17] based on this idea: only for those action calculi in which mobility is not 

expressible does there exist a homomorphism of control structures to IMGRAPH. 

7.2 Further Work 

As the work on action structures is relatively recent there is an abundance of virgin 

territory to explore. Taking the contents of this thesis as a starting point various dir-

ections suggest themselves. For instance, the development of classifiers, as examplified 

by skeleta in chapter 4, could prove a fruitful way of studying the kind of dynamic be-  
- 

haviour expressible by various models. It may also be possible to give a generic form 
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of o
perational semantics in terms of skeleta, for instance, through relations S with the 

property that, whenever alSa2, then 

a1  N a' 	: a2  N. a'2  with aSa 

vskel(ai) = Isskel(a2) 

The contribution of restriction skeleta in the above is highlighted by the fact that the 

largest binary relation on processes having the property 

I
. 

ai=a2andaiNai = a2 Na2 w1tha1 2  

is the universal relation, which gives a trivial semantics. Thus by 
examining the pattern 

of reaction in the image of the action calculus on vSKEL, a comparison of the actions 

may be made on their ability to generate effects as a result of computation. Indeed, 

such a comparison may also be made between terms for distinct action calculi, allowing 

the notion of en
coding (of a process term in one action calculus by another term in the 

other calculus). Such e
ncodings deserve study in their own right; and we suggest that 

the fr
amework we have presented can be developed to assist such study. 

7.2.1 Embeddings 

One of the aims of dev
eloping control structures is to allow the comparison of concrete 

models by pr
oviding a framework where each model may be represented. One form 

of comparison may be based on expresSivenessi but this in turn requires agreement of 

what entities are to be expressed; in other words, a 
COIflIflOU 

model. A special case in 

ext arises when the controls of one action calculus 
AC(K) can be encoded in 

our cont  

terms of the operations of another AC(?C). The encoding, if compoSiti0al, can easily 

be captured as a morphism of static control structures (over AC). However, an action a 

in AC(K) and its encoding 4)a are to be accepted 
as expressing the same entity, then, 

some suitable relationship between the dynamics of a and those of a is required. 

In order to see the kind of properties such a relationshiP is expected to imply, consider 

one possible application for such embeddin 	
the idea of an implementation. One 

may think of an 
 implementation for a concrete model as a compiler to a lower level 

(also concrete) model which may have more objects which are expressible in it. Such a 

ressed as a morphism of control structures from one action calculus 
compiler can be exp  we should not expect the morphism to have 
(high level) to another (low level). Note that  



Chapter 7. Conclusions and Further Work 	 171 

an inverse, indeed, nor expect it to be onto. The idea of source and machine languages 

comes to mind: there may be many machine code programs which are not generated by 

any Pascal program. 

Homomorphisms of action structures (and their refinements) provide a suitable start-

ing point for talking about such embeddings. However, while homomorphisms preserve 

the operations (giving us a compositional translation from source to target codes, so 

to speak) they may be too weak to guarantee an acceptable computational correspond-

ence between source and target. We recall that a homomorphism of action structures 

A —* B (and hence of control structures, reflexive and strictly reflexive ones) preserve 

reaction: 

aN 4 a'  = 

This means that the target object must have at least matching computational behaviour 

to the source object. However, it may also have additional behaviour: this means 

that it is not precluded that the target program will behave as one expects from the 

source program but there is no guarantee that it will not follow some other path in its 

computation tree! This is, of course, unacceptable as a notion of implementation and, 

consequently, we require homomorphisms of reflexive control structures that preserve the 

reaction relation in a stricter fashion. Say that a homomorphism of action structures 

A -+ B confines reaction just when the following property holds for all a € A: 

(a) \ b 	. ga'. a NA  a' with b \8  (a') 

The intuition behind this condition is that the target object can have additional com-

putational behaviour to the source; however, any such behaviour will necessarily consist 

of intermediate computations that are guaranteed to lead to a state that is matched by 

one in the source. 

Such morphisms are closed under composition and clearly, the identity morphism 

confines reaction; therefore, one can speak of categories of control structures in which 

the morphisms confine reaction. Even when present, the action calculus AC(K, R.) is not 

necessarily initial in any such category CS'(K), since for any control structure A in the 

category, the unique homomorphism from AC'C) to A in CS(K) might not be reaction 

confining and therefore not present in CS 1 (AC). If we limit our interest to embeddings of 

a given action calculus over some signature IC and reaction rules 1Z., then as a suitable 
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category one could take any subcategory of CS(K) in which the unique morphism from 

AC(K, 1Z) to the objects of the subcategory confines reaction. 

It is fairly easy to show that the morphism determined by the quotient of a control 

structure by any reduction-closed congruence necessarily confines reaction. Since the 

universal relation on actions is reduction closed, the unique morphism from AC(K, 1.) to 

the terminal control structure is reaction confining. Therefore, terminal control structure 

is not excluded from any such subcategory as described above; but the terminal control 

structure can hardly be considered a suitable structure in which to embed AC(x, 1Z)! 

One way to exclude such candidates is to impose additional conditions on the morph-

isms. Here again, classifiers may be useful; requiring that the morphism to the classifier 

be preserved by the embedding morphism may exclude undesirable candidates and, de-

pending on the choice of classifier, such a condition might be justified by computational 

considerations. 

It will be interesting to explore existing examples of embeddings, such as that of 

the polyadic ir-calculus in the monadic version given in [22], in order to see whether 

the resulting morphism is indeed reaction confining and also to gain insight in what 

additional properties such morphisms may be expected to have. 

7.3 Summary and Conclusions 

In this thesis we have taken a concrete class of action structures—that given by the 

molecular forms—as a promising starting point in the development of an abstract al-

gebraic account of process construction and concurrent computation. The identification 

of a suitable abstract structure which underlies the molecular forms, and, it is hoped, 

concurrent computation at large, was achieved in two broad steps: the first consisting 

of a term algebra, providing a sort of half-way house between syntax and algebra; and 

the second step involving an abstract semantic treatment of the operations defining the 

term algebra. Phrased differently; the first step provides a compositional syntax for rep-

resenting processes and the second, a space of models for the processes thus specified. 

In going from action calculi (the term algebra) to control structures (abstract algebra), 

we were obliged to give a semantic treatment of names: this was achieved by means 

of the notion of surface. While surface has a specific definition which depends on the 

operations found in control structures, the issue that it serves—the behavioural signi- 
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ficance of names beyond their "traditional" role as place-holders—is arguably of wider 

relevance within the quest for abstract models of concurrency. 

The feasibility of the molecular forms as a syntactic framework for representing 

concrete models validates much of the abovementioned achievement. However, feasibility 

does not imply optimality, and therefore the consideration of alternatives to, or at least 

variants of, the molecular forms was a natural step in our enquiry. Two variants were 

considered and given an analogous semantic treatment. Whether either of the variants 

will emerge as the preferred structure remains to be seen; it is clear, however, that 

present in the variants are some intuively appealing aspects, such as greater expressivity 

of datafiow; a semantic treatment of restriction; and, in the most variant case, garbage 

collection of restricted but unused names and a revealing characterisation of surface in 

terms of restriction. 

While the treatment of process constructors (statics) reveals rich structural issues, 

our algebraic framework provides significant support for studying the dynamical aspects 

of processes. In concurrency theory, the manifestation of interaction and computation is 

greatly varied and establishing a common basis for representing these dynamic aspects 

poses a considerable challenge. It is to be expected that a structure which fits all 

must be a modest one; as indeed is the one employed in our framework: the humble 

preorder! With so little inherent abstract structure, how does one study dynamics in a 

general fashion? One answer is to adapt existing techniques for obtaining models—such 

as those based on bisimulation—by recasting them in terms of the generic structure 

present in all action calculi; in particular, reaction. We have not done this; instead, we 

have presented a concrete instance of the technique to obtain an operational semantics 

of the ir-calculus cast in our framework. A characterisation of the bisimilarities we have 

obtained in terms of reaction will provide valuable insight into how the technique can be 

adapted. An alternative path towards the study of dynamics across action calculi (and 

their reflexive variants) is through classifiers: by examining the dynamics in the images of 

the calculi on a common static model (the classifier), we can derive insightful comparison 

based upon their dynamic characteristics. A simple manifestation of this is achieved by 

equipping the classifier with a specific reaction relation; then, a simple comparison is 

obtained by the existence or otherwise of a reaction preserving homomorphism. We have 

shown, by two examples, that with a judicious choice of reaction relation, the basis for 

such a comparison can be computationally meaningful. 
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Appendix A 

Proofs 

Note All derivable sequents referred to in this appendix are assumed derivable by the 

rules 'R.; in other words, the DISCARD rule is not used. 

A.1 Auxiliary Results 

The following lemmas are used in those proofs deferred from the main text to this 

appendix. The results in this section are of purely technical necessity and were not 

deemed sufficiently interesting for inclusion in the main text. 

Lemma A.1 Let E,: m such that {} fl {77} = 0. Then 

(i)((y) ® t2 )) = 	 . (iZ)(() 0 {/}t 2 )) 

Proof Induction on r = 

Base Case: r = 0 Immediate. 

Inductive Step: r = j + 1 Assume t 1  : k -+ 1, (il)t2  1 -4 n and, by aiphaconversion, 

{tZ}flfn(t i ) =0. 
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tp®m(t')(ti . (ii)((wy) (9 t2 )) 

3.26(1) 

= tm()tp(t))tl(P1,k . ( ti ® ( il)((w) ® () (9 t2 ))) 	3.10(1) 

= tm()tp(t)t1(P1,k Pkt 

.(iZ)((w) ® () 0 t2 (9  t) . Pp®m®n,i) 	2.24(1), 2.33(2) 

= 	 0 () 0 t2  0 t 1 ) Pp®m®n,i)  S2 , 2.33(1) 

= trn()ti()tp(?4(((W) 0 () 0 t2  (9 t 1 ) 

Pp®m®nj (pj ,P  0 id)) 	 3.26(4) 

= tm ()ti( 1)tp(V)(((W) e (y) (g t2  ® t 1 ) 

.(id (9 Pm®n,g)) 	2.24(3), S 2  

= tm(Xiti&1)(tp(t)((W) e () ® t2  o t1) . Pm®n,i) 	P3 

(9 t2 (9  t 1 ) Pm®n,t) 	 3.29(1) 

tm()ti()({'/V}((Y') ® { W/v}t 2  0 t) . Pm®n,i) 

by reverse argument 

= tm()tp(t)(ti . (t)(() 0 () (9 {w,4,}t 2 )) 

tp(t)tm()(ti . ( j)((,) 0 () ® { w/v}t 2 ) 

(Pp,m 0 id)) 

= tp(V)tm()(ti . (ifl(() 0 (w) 0 {W/v}t2)) 

= 1p(4tm()(ti (t)(() 0 {}(w) 0 {}{W/v}t2)) 

= fp(V)tm()(ti . ( jj)(() 0(w) (9 {Wi,4,}t2)) 

= tpøm(t)(ti . ( ii)((wy) (9 {w?/v}t 2 )) 

Lemma A.2 Let 1, g: k and : m,z : n. 

(ili) I- ()t--+=t' 	(z) I- {t}t--t' 

('i2) I- Pm , n L4) =1(1 

where {}t is the simultaneous substitution of il for £ in t. 

Proof 

3.26(4) 

C 2.24(4) 

induction 

3.26, C 2.24(4) 

(1) Induction on r = 	. Base case follows immediately. For the inductiye step 

of (==*), consider the standard derivation of (wil2) I- (w)t-1-*t'. For some 



(ilz) F- {W/u}()t  

(w2) I- ab,( 

(il) I- Id -- Id, 

)t 	t" 	(wvi) F ca.' 0 id_ 
0 

(wi7z) F ab()t• (, (9 id) 	-t" 

(w) I- 	Id, 
LJ 	 0 

Appendix A. Proofs 
	

180 

t", there is some subderivation giving (wyi) I- (ux)t---3 =t" which consists only 

of constructor rules, and from which the resulting derivation is obtained by a 

sequence of PERM and SYNC rules. Consider the last part of such a derivation, with 

= (tZ)t(i); in the standard derivation it must have the following form: 

Since {W/u}()t 	('){W,4j}{ '/} t, for some 	such that {u, w} fl {'} = 0. 

Hence, we have 

(ill) F- ('){W/u}{ '/} t 	-* t" 

and by inductive hypothesis: 

(iZ)S(i) 

But, { }{ W/u}{ '/x}t 	{Wil/u}t. Hence, by applying the same sequence of 

PERM and SYNC rules as in the standard derivation of the left transition gives the 

required result. 

For the inductive step of (==), we use the fact that {W?i/ux}t {''}{W/u}{ '/} t. 

Then, by inductive hypothesis, we have 

() F- (){W/u}{i'/}t--*t' 

But (x ' ){ W14}{ '1z}t 	{W/u}()t. Then, since £ = (i)d(3) for some iZ,iT,d, by 

the above derivation the required result follows. 

(2) For any , it is demonstrable by easy induction on , that F- ()Lid,. Then, 

since Pm,n (12)(21), for some distinct names 12 : mOn, the result follows 

immediately by (1). 

Lemma A.3 Let d : k —4 1, i, th : m, and {} fl {iii} = 0. Then whenever () I- 
(ü)(*iJi))

* t 
, 	. 

t 	- 	the followzng is derivable: 



Appendix A. Proofs 	 181 

Proof Induction on r = 

Base Case: r = 0 Immediate. 

Inductive Step: r = j + 1 Let y, : p such that {y}fl{tiy'} = 0. Since, by lemma 3.26(1), 

tm®p()(Y)t = tp(y)tm(Xit, we can consider of tp(y)tm()t as principal term (by 

structural lemma). Assume () F t 	-i t is derivable. Then, by the inductive 

hypothesis, and since {t/}y' = y', we have: 

-. =tm()(t' (Id, ® (ti)(tfl)) (Pg,m  (9 Id)) I tm (X)t 

By lemma A.2(1), we get 

(iiz) F- (y)fm()t 	 4tm()(t' . (Id, 0 (Z)(tiu)) (Th,m (9 id)) 

and by the rule f21 we can derive: 

() F-  t (Y)tm 

where t" = t(y) (tm () (t' . (Id, 0 (ii) (tiiui)) (p, (&ld)) . (Id, 0 (iZ) (y'fi)). (p, (9id)). 

We must now show that the residual term is equal to the term we expect: 

tp(y)(tm()(t' (Id1  0 (110 (tii10) (Pi,m (9 Id)) . (id, (9 (ii)(y'ilZ)) 	0 id)) 

= 	tp(Y)tm()(t' 	(id, 0 (ti) (iiiZ)) . (p,,,11  (D id) 

(Idm®j 0 (il)(y'u)) . (1dm  0 Pi,p  0 id)) p,2 . 16(l) 

(Pi,m 0 id) . (1dm  (9 pjp  (9 id)) C 

(Idi®m  0 (t)(y'ti)) 	(Pi,m®p (9 Id)) S3  

= 	tp(Y)tm()(t' - (id, 0 ((ii)(tiW10) 

(jdm  0 ()(y'))) 	(Pi,m®p ® id)) 

tp(Y)tm()(t' - (id, o (6)(t9y'110) - (Pi,m(gp 0 Id)) 2.16(1), or  

= 	tm®p(Y)(t' . (id1  0 (1)(Y'i10) - (Pi,m®,, 0 id)) 3.26 
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Lemma A.4 Let 	k-4l. Then, whenever (i) Ft 	t', we also have, for any iil 

such that {ti} = { iZ}: 

Proof Every permutation t13' of it can be obtained from ii by some number n of successive 

commutations of adjacent names. The proof is by a straightforward induction on n. • 

Lemma A.5 The following is derivable: 

for any fl, t9 such that 

{iZ}n{ii}=O 

{iZ} = {t}. 

Proof Straightforward induction on r. 	 • 
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A2 Structural Lemma 

In this section we shall give a proof of the structural lemma in considerable detail. In 

the equational proofs, the lemmas used for each step should be obvious in most cases, 

and explicit reference is only made when the lemma used appears in the appendix. 

Lemma 5.11 (Structural) Whenever t 1  = t2  and (z) F t1  --+ t'1  then, for some t, 

(z) F t2  -- t'2  with t'1  = t. 

Proof First we shall consider those transitions derived using only the constructor 

elimination rules i.e. those in which the SYNC and permutation rules do not occur. For 

each axiom, tL = tR we consider the derivable transitions of tL and tft under arbitrary 

environments (i).  We show that whenever there is a derivation of () F tL --+ t', using 

just the constructor rules, then for some 4, there also exists a derivation (using any of 

the rules) of (Z t 4 with t, = 4 and vice versa. 

We shall adopt the following method. For the constructor part of the derivation, each 

rule applied reduces the size of the term. Now each axiom has the form C[t] = C[tl. For 

each side of the axiom we give the final part of all possible derivations up to premisses 

whose principal term is one of F For each derivation with one side of the axiom as 

principal term, we are done if we can find a matching derivation (with identical label 

and equal residual) starting from the same premisses incorporating the terms Fwith the 

other side as principal term. Indeed, we need not be so strict about the premisses, since 

by the substitution lemma, we can be sure of the existence of derivations for variants 

of the premisses which differ by the replacement of free names throughout the sequent. 

Thus, to keep the proof relatively short and readable we will present matching derivations 

for both sides of each axiom, and show that the residuals in each case are equal. We 

will not explicitly point out the use of the substitution lemma, as in all cases it is quite 

clear. An important point is that both parts of the substitution lemma may be used 

since there cannot be any r-particles in those labels occurring in sequents derived using 

just the constructor rules. 

The proof for some of the axioms (such as C 1 , P 1  etc.) is straightforward. We shall 

describe the proof in the case of C 1  but not of the others as they are either very simple 

or follow similar lines. 
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Axiom C 1 : t - id = t = id t Assume (z) F t id !4 t' by constructor rules. Clearly, 

the last rule applied must be that for composition. In this case, the following 

derivation for a transition incorporating the label £ = (tZ)5(il) is unique for the 

term t - id. 

(zFt--t" ()I-id-*id 

	

() F t Id 	(t" ® Id e ) (Id e  ® abgid) (id e  0 p,., (9 Id) 

Clearly, t" = t'. Hence we can use this sub derivation both to show the existence 

of a derivation for the transition () I- t --* t" (for some t" = t') from that for 

t . id and also as construction of the derivation of () I- t id-4=t' (replacing t" 

by t' in the above derivation) from the derivation of () F t —+ t'. 

The result for the axiom t = id t follows in a similar manner by the subderivation 

shown below: 

(z) F Id —4 Id, (z) I- t 0 

((ø) 

	

( F 1d 	......_...__-4 (, 0 idk) . (id, 0 t") (Id, 0 p,,z 0 Id) 

Axiom C2: t 1  (t2  . t3 ) = (t . t) . t3  We shall write the last part of the derivation in 

each case until subderivationS with principal terms t 1 , t2  and t3 . It is easy to see 

by comparing the derivation, that given the existence of one, one can construct 

the other. Let ()(i) = 

Left term tL: In the following derivation, we also have side conditions 

tiii l=ri 

{i 2 iZ3}fl(fn(ti)U{})=0 

li!2 1 = r2  

{i13 } fl (fn(t 2 ) U {ii}) = 0 

(1)Ft2022t 	 23 (2)Ft3 t 	
0 

tI 	t'1  (2) F t2  . t3 
2_ 	

(t 0 Idk3) . (d1 2  0 ab 2t'3 ) . (Id1 2  0 Pr2 ,13 0 Id) 
0 

(ii)(il)  
(2) F t1  . ( 2 t3 ) —4 tL 
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where 	 II   S 

  t 'L  	(t'1    0   idk2 økS )   .   ( id,   ®   ab 1 tL)   (id,   ®   Prj .2013   0 id) 

and t 	(t 0 idk 3 ) . (id,2  0 ab 2 t'3 ) (id,2  0 Pr2 ,i3  0 id). 

Right term tR: In the following derivation, we also have side conditions 

IiI=i 
{i 2 }fl(fn(t j )U{}) =0 

I142I=ri0r2 

{iZ3 }fl(fn(4)Ufn(t 2 )U{62 }) =0 

(iZ1)i(il
4 	

________ 

	

t 1 	t'1 	(i 1 ) I- 
t (iZ2)t2( 	, 

2 
0 

(iii u2)al a 
(z) F t 1  . t2 	- !2) (t (& idk2 ) . (id, 1  (9 ab.11 4) (id, 1 0 p,. 1 ,, 2  0 Id) 	(t) F t3 	t'3  

0 
(iZ)d(il) 

(1) I- (t1  . t2) . t3 	tR 

- I I where tR = tR 0 idk3 ) . (id, 1® ,2  0 aba1i2 t'3 ) . (jdi1®  0 Pr1 Ør2 ,1 3  0 d) 

and t'., 	(t Oidk 2 ) . ( id, 1  ®ab 1 t) . (di  Op,.i,2  Oid). 

It is easy to see that the side conditions in each derivation are equivalent. We 

must now show that t 'L = 4. 

tL 	(t'1  0 idk2 øks ) . (id, 1  0 abji 1 ((t 0 id 3 ) . (id, 2  0 ab12 t) 

.(id(2  0 p,.2 ,1 3  (& id))) . (ci, 1  0 p,. 1 ,013  (9 id) 

= (4 0 idka(&ks) . (id, 1  0 ab 1 ((t (& id 3 ) . (id,2 (& ab2t'3))) 

.(id, 1 ®,. 1 ®1 2  0 Pr2 ,1 3  0 Id) . (id, 1  0 Pr1 j2 013  (D id) 

= (t'1  0 idk2(&ks) . (id, 1  0 abg1  ((t (9 Idk 3 ) . (id12  (9 ab,i2 t))) 

.(Idj 1  0 P1,12 (9 Id) . (id, 1 012  0 Pr1 ®r2 ,1 3  0 id) 

= (4 (g id2®3) . (id, 0 ((abj 1 t (& id 3 ) . (ab 1  (id,2 (& ab24)))) 

.(id, 1  0 Pr1 j2  0 id) . (id, 1 012  0 Pr1 ®r2 ,13  0 id) 

= (4 0 id 2 ® 3 ) (id, 1  0 ((ab 1 t 0 id 3 ) . (ab 1  (id,2  0 ab 2 t)) 

(,.112 (9 Id))) . (id10012 (9 p,. 1 ®,.2 ,1 3  0 id) 

= (4 0 idk2®kS) . (id, 0 ((ab 1 4 0 idk3) . ( p,.1 , 2  0 id) . (id, 2  0 abil12 t'3 )) 

.(•d, j 012  0 Pr1 ®r2 , s  0 Id) 

= (((4 0 idk2 ) . (id, 1  0 ab 1 4) . ( Id1 1  0 p,. 1 j2  0 id)) 0 idk3 ) .  

(id11012 (& abji12 t) (ii, 1 012  0 Pr1®1-2,13 (9 Id) 

- 
31 
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The equational proofs involve substantial tedious but routine calculations. The 

reader may find it useful to construct a diagrammatic equivalent, which, while 

not formal, provides an intuition of the equality of the terms. Such diagrams 

representing the terms t'L  and t', respectively are given below: 

k, 

k 3  

' I  

ii 

1 3  

k i  

k 3  

1, 

12 

13  

Axiom P 1 : t 0 id, = t = Id, t Straightforward. 

Axiom P2 : tj  0 (t2 (9  t3 ) = ( t 1 (9  t2 ) 0 t3  We shall write the last part of the derivation 

in each case until subderivations with principal terms t 1 , t2  and t3 . Let (iZ)d(ii) = 

and F= 

Left term tL: In the following derivation, we also have side conditions 

{ii} fl (fn (t2 ) U fn (t 3 ) U {}) = 0 

{il2 iZ3 }fl(fn(t 1 )U{ i }) =0 

jig,=r1  

{ 3 }n (fn(t2 ) u{}) = 0 

{iZ2 } n (fn(t3 ) U {1}) = 0 
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6. u2I = 

(i2 ) - t 2 	 2 
(g2)2 	(z3 ) F t3 	4t'  0 

 (a2 

	

t', (2i) F t2  0 t 	
s)622s> (t ® t'3 ) . (d12  0 Pr2,13 0 id) 

0 

(2) I-t 1 ®(t20t3) -------4 t'& 

where tL 	(t'1  (& t) . (idj , 0 Pr1  ,12®Is ® Id) 

and t 	(t 0 t) . (1d12  0 Pr2,13 0 Id). 

Right term tR: In the following derivation, we also have side conditions 

{iZ1 }fl(fn(t2)U{}) =0 

{iT2 }fl(fn(ti)U{i}) =0 

1 141='i 
{ti3} fl (fn (t 1 ) U fn (t2 ) U {i}) = 0 

{iitZ} fl (fn (t 3) U {}) = 0 

IiZliZ2ri0T2 

- 	(i)Fti011t 	(F222t 

	

) 	t  
0 

F t 1  ® t2 (j1 
	152(il,c2) 

(t'1  0 t) . (Id1, 0 Pr 1 ,1a 0 Id) 	() F t3 	43 
0 

(z)F(tj(9t2)0t3 	—+tR 

- where 4 ( 
v 

II  
R ® t) . (idj 19 : 2  0 Pr1®r2,Is ® id) 

and 4 (t'1  0 t) . (Id1 , 0 Pr,,i 2  0 Id). 

It is easy to see that the side conditions in each derivation are equivalent. We 

must now show that t'L = 4. 

= (t' 0 ((t'2  0 t') (Id,2  0 Pr2 ,!3 0 id))) . (Id1, 0 Pr, ,l2®IS 0 Id) 

= (t 0 t'2  0 t) . (Id1, 0 idri  0 1d12 0 Pr2 ,13 0 Id) . (Id1, 0 Pr 2®l3 0 id) 

= (t'1  0 t'2  (& t) (id,, 0 p,.,,12 0 Id) (idi,01 2  0 Pr,®r2,13 (& Id) 

t'2 ) (Id,, 0 P,.,,2 0 id)) 0 t') . (idi,®,2  0 Pr,®r2,ls 0 Id) 

= tR 
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Axiom PF1: id 0 id=id Straightforward. 

Axiom PF2: (51 0 82) (t 1 (9  t2 ) = (s . t) 0 (82 t2) We shall write the last part of 

the derivation in each case until subderivations with principal terms Sj, s2 ,t 1  

and t2. Let £ = iji2 and (tZ)i) = and (u1)5'(v7) = 

Left term tL: In the following derivation, we also have side conditions 

{iZj }fl(fn(s 2)U{}) =0 

{ 2 }fl(fn(s 1 )U{ i }) =0 

II = ri  

{ j }fl(fn(t 2 )U{il2 })=0 

{ 2 }fl(fn(t i ) U{i1 }) =0 

= a, 

0,:m-+n1 . 

(iii)a1(ø 	 _______ 	 _______ 	 _______ 
si 	-- s'1 	() I-  a 

(il2)t212) ' 	F t 1 	t1 	(V2) H t (12)2( 	
1 2 2  

0 	 0 
(a,2)j2(il,i12) ,, 

(i) H 8 0 2 	. 	-+ 	 (61 172 ) H t1  o t2 
(12)/1I2(il) t'L 

0 

() H (s 1  082) (t1®t2) 
(Z)(_ tL 

#11  S  where tL (s'L 0 jdmi®m2 ) ( id 1®12  0 ab zltz2L) ( id11® ,3  0 Pri®r2,niøn2  0 id) 

with s 	(s' 0 s'2) (id,, 0 P1,,3  0 id) and t', 	(t' 0 t) . ( id 1  0 p81,2  0 id). 

Right term tR: In the following derivation, we also have side conditions 

{ 1 }fl(fn(s 1 )U{21 }) =0 

{ 2 }fl(fn(s 2)U{})=0 

II = ri  

{i} fl (fn (82) U fn (t2 ) U {i;}) = 0 

{iZ22}fl(fn(s 1 )Ufn(t 1 )U{ii }) =0 

= s 
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7. f3 1 :m 1 -+n1 . 

(iZ1)6i(il 8
' 	(iii) F t1  

0 
(ii)di/i(Ui.) t (11 ) F s 1 .t j  

(z
-. 1- (Z2)a(il 	

'2 	(62 ) I- t2 
(2)B2(il2 

 t2 2 ) 	s2  
0 

(12) Fs2  .t2  
0' 

(2) F (s i  t1 ) ® (s2  t2) 	 6 

where tR (t0  ® t,) (id:i@nj  0 Pri®sj,i2®nz  0 id) 

with t, 	(s' 0 jdmi ) (id, 1  0 ab 1 t'1 ) . (id j  0 Pr 1 ,nj  ® id) 

and tb (4 0 jdm2 ) . (id,2  0 ab 2 t). (id:2  0 Pr2 ,n2  (9 id). 

Note that the two derivations do not derive transitions with identical labels. The 

labels differ by permutations of the binding vectors and the vector of particles 

constituting their bodies. From each derivation one can construct a derivation for 

a transition which matches the other. We will just show one of the cases. 

PERM1 

(2) F (s i  t1 ) 0 (82 	 4 (idg i øni 0120n2 ®rj  0 Pr,8 1  0 Id) 
PERM2 

(2) F (s t) 0 (82 t2) ()d( 
	'I 

where 4 (id  ®Pka,m1  Old). 4. (id,,®1®,2®2®,  ®Pra,si  Oid) (id, Op,, 1 ,, 2  Oid). 

It is easy to see that the side conditions in each derivation are equivalent. We must 

now show that t'L = 4. We shall do this in several stages. Essentially, the proof 

involves permuting the subterms 4,4, t'1  and t'2  and simplifying the (often large) 

terms representing the isomorphisms. For the proofs concerning the rewriting of 

terms representing isomorphisms we shall not give details: the simplest way to 

demonstrate these term transformations is through diagrammatic means in the 

style of Joyal et al. 

(1) (idi j ør, 0 P1201-2,mj (& Id) . (id,, 0 Pr,Øm1,12 (9 id) (Id,,®, 2®, 0 Pmj,r2 0 id) 

= idI i Opri ,1 2  Old 

(2) F (Si  t1 ) 0 (32 . t2) (it')t'( 
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(idti®i2®r i  0 Pr,nØj 0 Id) . (1d1 1  0 p12,1®n1®8i 0 id) 

(id, 1  0 Pri ,n j  0 1d81®12 (9 Pr2 ,t 2  0 Id) (idz1®1 (& Pr1Ø81,120n2 0 Id) 

(idii®ni012®n 2 ®r2  (9 Pr2 ,8 2  0 Id) . (Id1 1  0 Pn 1 j2  0 id) 

= (Idji012®ri ®r2 ®ni  (9 P j ,n2  0 id) . (Id1 1 ®,2  0 PriØrz,nj®nz  (9 Id) 

id1 1  0 abz1 t 0 1d12  0 ab12 t 

= (id, 1  0 Pri®mj,12 0 id) (Id, 1 ®,2  0 ab 1 t (9 abiz2 4) 
.(id, 1  0 P12,rj®njØsj (9 id) 

= (id, 1  0 Prj Øm 1 ,13  (9 Id) (Idi1012®ri (& Pmj,r2 0 Id) 

abji12 (t 0 t'2)) . ( idgi(9120ri (9 Pr2 ,n j Ø. 1  0 id) 

P13,rjØn1®sj 0 id) 

(4)(Idk i  0 Pk2 ,m1  (9 id). (t0  (9 tb) 

= (Idk1  0 Pk2 ,m 1  (9 Id) (' 0 idmi  0 4 0 1dm2 ) 

.(id, 1  0 ab 1 t'1  0 id12  0 ab.j2 4) ' ( Id1 1  0 Pr1 ,n1  0 id81 ®12  0 Pr2 ,, 2 0 Id) 

= (id, 1 ®,.1  0 P120r2,mi  0 id) . (4 0  4 (9 Idmi ®ma ) 

•(Id, 1  0 abiz 1 t0 id12  0 abi2 t) . ( Id1 1  0 Pri ,n 1  0 1d81 ®12  0 Pr2 ,n2  0 id) 

(5) t' 

= (idki (9 Pk2 ,m 1  0 id) t'R (Idi i 8n1 0 2 ®n2 ®ri  0 pr2,81  0 Id) 

•(Id, 1  (9 Pn1 ,12  0 id) 

= (idk 1  0 Pk2 ,mj  (9 Id) ' (t0  0 tb) (id1 1 ® 1  0 Pr1 Ø8 1 ,120n2  (& id) 

'(Idii®ni®12®n2®ri 0 Pr2,81 (9 Id) (Id, 1  0 Pn 1 ,12  (9 Id) 

= (s' 0 4 0 Id) . (Id, 1  0 Pr1 ,12 0 Id) (id, 1 ®,2  0 abg12 (t'j  0 4)) 
(Idgi®i2®ri®r2®n i  (9 Psj,n2 0 Id) (Id, 1 ®,2  0 Pri®rz,njØna  (9 Id) 

= (s It 0 Idmi ®m2 ) (Id1 1 ®1 2  0 abi, 1 a2 t) . ( idg®ia  0 PriØr2,njØn2  0 id) 

=tL 

Axiom AF 1 : abid = id Straightforward. 

Axiom AF2 : ab(t j  .t2 ) = abt 1  abt2  We shall write the last part of the derivation 

in each case until subderivations with principal terms t 1  and t2 . Let (i(ti) = 

(12)1d2(yiT2). 
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Left term tL: In the following derivation, we also have side conditions 

y {9 1 i12 } 

{ii2 } fl (fn ({Y/x}t i ) U {z}) = 0 

ItZi I=r 

(i73)t3(il2' 	, 

() I- {Y/x}t 1  '-1 t' 	(t7) F {Y/x}t 2 	t2  
0 

(t 0 idk.,) (Id,, 0 ab,t) . ( Idi, 0 Pr 1, 0 Id) ( I- Y/xti TY/xTt9 
ab 

(y2) F ab(ti t2 ) 	-4 (t'1  0 idk2 ) . ( id, 1  0 abz1 t) (id, 1  0 Pr,1 3  0 Id) 

Right term tR: In the following derivation, we also have side conditions 

Yø{ii} 

y{iZ2 } 

{iZ2 } fl (fn ({Y/x}t i ) U {z}) = 0 

Iili I=r 

(1) F- {Y/x}t 1 	t'1 
ab 	

(iii ) F- {Y/x}t 2 	- t'2  
- 

(a2)2(yil2) 	, 

(yz) F abti 
(ili)i(vt7 	

(v'i) F abt2 	—3 
0 

0*50) 	
1(yz) F abti . abt2 	 (t 0 idk2 ) . ( id, 1  0 ab 1 t) (id, 1  0 Pr,12 0 Id) 

It is easy to see that the side conditions in each derivation are equivalent. 

Axiom 'y: (x)t = w 0 t (x fn (t)) Straightforward. 

Axiom ö: (x)((x) (9 id) = Id Straightforward. 

Axiom C: (t1  0 t2) . Pn i ,na  = Pm 1 ,m2  (t2  (9 t 1 ) (t 2  : m.-+n,) We shall write the last part 

of the derivation in each case until subderivations with principal terms t 1  and t2 . 

Let (iZ)7) = ( ili ii2 )äj d2 (i1 112 ), (iZ)7') = ( il2 ii1 ) 2i (ii2 ii1 ), and 2= 

Left term tL: In the following derivation, we also have side conditions 
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{jT 1 }fl(fn(t2)U{iz}) = 0 

{iZ 2 }fl(fn(t i ) U{ i }) = 0 

1U2 1=?'2  

0 
(1I62(J12) t'1  0 t) • ( idj, 0 Prj,2 0 Id) 	( 1 ii2 ) I-. p1,2 	—*=id 2)  

(Z)Ft10t2 0 

() F (t1  0 t2) 	—4= (t'1  0 t'2) ( 1d1 1  0 Prj,2 0 td) 

Right term tR: In the following derivation, we also have side conditions 

{jt1 }fl(fn(t2)U{z})=0 

{iZ2 }fl(fn(t i ) U{i}) = 0 

 

() F t2 	
24 	

() F- t1 	t 
0 

V24)
Pm3,mi 	 = id 	(1i2) F t2  0 ti 

2g13 	i)  (t'2  0 t'1 ) ( id: 2  0 Pr2,li 0 Id) 
0 

(if) F Pm2,mj (t2  0 t 1 ) 	___-+= (t 0 t') . ( Id12  0 Pr2,Ij 0 Id) 

Note that the two derivations do not derive transitions with identical labels. The 

labels differ by permutations of the binding vectors and the vector of particles 

constituting their bodies. From each derivation one can construct a derivation for 

a transition which matches the other. We will just show one of the cases. 

() F Pm2,mi . (t2  0 t) 
(r)! ( 2  ® t'1 ) . (Id:2  0 Pr2,1j 0 Id) PERM1 

() F Pm2,mj (t2  0 t 1 ) 	 (t 0 t'1 ) . ( Id1 2  0 Pr2,11 0 id) . (1d12 ®j, 0 Prj,r2 Old) 
PER.M2 

(1) F Pm2,m1 .(t2 ot1 ) 	—* tR 

where 4 (p j , 2  0id) .4. (ide  Opi2,ii ®id) and 4 = (t et) . ( id12  ®Pr2j1 ®id). 

It is easy to see that the side conditions in each derivation are equivalent. We 

must now show that t'L = 4. 

()_t2 22 t2  
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4! 	

Pk1,k2 . (t ® 	. (12 ® Pr2,1l 0 Id) . (1)1211 0 Id) 

= (t'1  0 t) . PiiØri,120r2 . ( d, 2  0 Pr2 ,1, 0 Id) . (P12 ,1 1  0 Id) 

= (t' o t) . ( id, 1  0 Pr1 "2 ® Id) 

tL 

Axiom 0: ((y) (9 Id). (x)t = {Y/x}t Straightforward. 

Axiom p: id,, = tp Straightforward. 

Axiom p2 : f,,t 0 id = t(t 0 id) Straightforward. 

Axiom p3: jt1  t2  = 	. ( id,, (9  t2 )) Let (il)(ii) = (i9j il2 )c iä2 (ti2 ). 

Case For y 19 (fn (t1 ) U {}) we have the derivation (yl)  F t 1  

Left term tL: In the following derivation, we also have side conditions 

{yzZi }flfn(t 2 )=0 

{i2}fl(fn(t i ) U{}) =0 

lyill I=p®ri  

y fn(t 1 )U{71 }. 

(yi) F t 
(tZi)i(yi1) 

 e1 
(yii)di(il 	 ti 

(E) F 	 i
)  (&iy)(t'  . ( Id, 1  0 (y) (9 Id)) 

() F tt 1  . 
t2 (yiI)c(i12) 

tL 

(il1 ) F 	( 

	

t2 	( 	t I2  
0 

where t - ( 
'L = t I'  L 0 id k2 ) . ( id, ® ab 1 t) (id, 1  0 P®,.1 ,,a  0 id) 

and t 	(vy)(t (id, 0 (y) 0 Id)). 

Right term tR : In the following derivation, we also have side conditions 

{ili }flfn(t2 )=O 

{i12 }fl(fn(t i ) U{i}) =0 
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Ii i l=ri  

y' Øfn(t 1 )Ufn(t2 )U{IiZ 12 }. 

Note that one of the side conditions requires that y' j9 fn (t2 ). Therefore, we 

cannot simply rely on the name y used in the derivation (involving tL) above. 

Instead, we shall choose such a fn (t 1 ) U fn (t2 ) U {'6j ii2 i}. We shall then 

use the substitution lemma to establish the required correspondence between the 

subderivations involving y and y'. In what follows, let a = {V/y}. 

(i11 ) I- t2 
12)2(il21 

 t2 
___________ 	 (t73)2(ail2) 	, (yz) I- t1 	

14> 	(y') F id 	id. (au 1 ) F at2 	 at 

(') F 	 (y'aiTi ) I- id,, 0 t223Lat 
0 

()ud(y 
074 (at 0 idk2 ) . (ici1 1  0 abg1 c.Tt) (ii1, 0 Pr1 ,Ia  0 Id) (y)Ft1.(id0t2) 

ti ., (y'Z)(o12) 	, 
(z) F t(t1 (ici,, 0 t2)j 	 )=tR 

where 4 = (z,y')(4. (id,1®12 0(V)  Oid)) and 4 (at Oidk2 ) (idi  0aba1 at). 

(1d11  0 p102 (9 id). 

First, note that the labels of the derived transitions for tL and tR are indistin- 

guishable up to aiphaconversion. We shall now prove the equality of the residuals 
41 — 41 

4 	= (iiy')((at'1  0 id, 2 ) . (id1 j  0 abu,at) 

(ici,, 0 P 1 ,i, (& Id) (id11012 0 (y') (9 id)) 

= (vy)((t 0 idk2 ) (icii 1  (& abil l t) 

(Id1 1  0 Pr1 ,1 2  (9 Id) (idi 1 012  0 (y) (9 Id)) 

= (vy)((t 0 Idk,) . (idj 1  0 ab 1 t) 

•(id, 1  0 (y) (9 id) (1d1 1  0 PpØr1,12 (& Id)) 

= (i.'y)((t 0 idk2 ) ( Idli 0 (y) 0 ab, 1 4). (Id1 1  0 PpØr 1 ,1a  0 Id)) 
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= (vy)((t'1  (D id) (Id 0 (((y) (g Id) . (y)((y) (g aba1 t))) 

.(1d1 1  0 (y) (9 ld) (Id1 1  0 Pp0102  (&ld)) 

= (vy)((t 0 id 2 ) . 	0 (y) 0 Id) 

.(1d1 1  (9 ab 1 t) (Id11 (& Pp191%,12 (9 id)) 

= (vy)((t'1  0 id 2 ) (Id1 1  (9 (y) 0 Id)) 

.(1d1 1  (9 ab 1 t) . (ici, 0 Pp®r 1 ,1 2  0 Id) 

= (vy)((t'1  (ici, (& (y))) (g id,) (g id)) 

.(1d1 1  0 abv1 t) . ( Id1 (& PpØr 1 ,1 2  0 Id) 

= tL 

The above derivation shows how a matching derivation for tR can be obtained 

from a derivation for tL.  We argue that obtaining a matching derivation for tL 

from a derivation for tR is simpler since the side conditions in the derivation for 

tR (involving some y V fn (t 1 ) U fn (t2 ) U {}) are stronger than those required for 

tL. 

Case For y 5t fn (t 1 ) U {!it} we have the derivation (y)  I- t1 	
°- 

t'1  with 

w 

Left term tL: Let a' = {W/y}. In the following derivation, we also have side 

conditions 

{i 1 }flfn(t2 )=O 

{i12 }fl(fn(t j )U{i}) =0 

lill=r 

yfn(t1 )U{iil1 } 

wy. 

(ai)i(w  ti (yz)F-t 1  

(2) I- 
j,,t1 (i)d'aj) 

t(y)(t'i (idi 0 (ili)(wii1)) • (Pi i ,p 0 	
t2 

Id)) 	(a1 161) I-  1,2 222 tj  

0 

(2)F-tt1.t2 	 t
I 

 L 

where tL (t 0 idk2 ) (idj1  0 ab 1 4) . ( id11  0 P1,:2  0 id) 

and t't(y)(t . ( id :1  0 (ili )(wil i )) . (p1 0 ld)). 
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Right term tR: In the following derivation, we also have side conditions 

{yZj }flfn(t2) = 0 

{tZ2} fl (fn(t 1 ) U {y 'z}) = 0 

Ii i I=ri  

y' V fn (t 1 ) U fn (4)  U {'i 1 i 2 } 

W{il2} 

y'w. 

Note that one of the side conditions requires that y' fn (t2 ) U {iZ }. Therefore, 

we cannot simply rely on the name y used in the derivation (involving tL) above. 

Instead, we shall choose such a fn (t 1 ) U fn (t2 ) U {ii 1 i 2 z'}. Note that by the 

free names lemma, {61 i12 } 9 fn (t1 ) U fn (t2 ) U {vecz} and hence y' 11 1 ,61 i12 }. We 

shall then use the substitution lemma to establish the required correspondence 

between the subderivations involving y and y'. In what follows, let a = { Y'/y}. 

Now, by the above conditions, {W/y}11 1  = {W/y '}({ Y '/y}iii) and {W/y'}t 2 	t2 . 

Hence, by the substitution lemma, there exist /, t92  and t' such that 

(tZ2)2(il2 I, ({W/y'}({Y '/y}ii)) I- {W/y'}t 2 	i 42 	({Y'.hj}ii) I- t2 
(2)i2(ti12 

 2 

where {W/y'}f = 62, {W/y'}i92 = 62  and {W/y'}t = t'2 . 

(o'il1 ) i- t2 
(a2)t2(t4 

 t; 

(au 1 ) i- t2 	
II 

0 
I, (i/i) 	(u1)ua1ti 	(waj) H 	® 1d, t2  H t 1  

0 
Wtil2) 

(y 'z) I- t 1  . (ni,, 0 t2) (oa1)/32( 
- 	(at'1  0 idk2 ) . ( Id1 1  0 ab,t') . ( Id11 (D 1,1 Pr 2  0 id) 

(z) Ht,,(ti  . (Id,,(9 t2)) 	 tR 

where t', = t(y')(tr (id j1®12  0 (iii il2 )(wili iZ2 )) (p 912 ,, ® id)) 

and t = (at'1  0 idk2 ) . ( id1  0 ab z, at') . ( id1  0 P11,12  0 id). 

It is easy to see that the side conditions in each derivation are equivalent. We 

must now show that t'L = t. 

(,31)1(wt7 	I  (y2') I-t i 	)  
(w) 

(to) I- Id,, —+ Id,, 
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t = (t(y)(t'1 (Id, 1  0 (ü1 )(wii j )) (p, 1 , p  (g Id)) (g Idk2 ) . (Id, 1  (D ab 1 t) 

.(id, 1  (9 Pr j ,1 2  0 Id) 

= (t(y')(v',t'1  . ( id, 0 (iii)(wili)) (Pi i ,p 0 Id)) 0 Idk2 ) . ( Id, 1  0 ab 1 t) 

.(Id, 1  0 Pr 1 j2  0 id) 

= (t(y')((v' ,i, t (9 Id 2 ) . ( Id, 1  0 (1T1 )(wil i ) (& Id a ) 

•(Pi i ,p (9 id))) (Id, 1  (9 abjj1 t) . (Id1 1  0 Pri,12 Old) 

= t&)((v','}t'i 0 Id 2 ) (i, 1  0 (ii )(wi4) 0 id 2 ) 

(pij,p (9 Id) (id,,, 1  0 ab,i1 t) . (idp®i (& P1,12 (9 Id)) 

= t(y')(({v'h,}t' 1  (9 Id,2) (p,1,r1  (9 Id) • (iZ1)((Id, 1  0 (w i ) (& Id, 2 ) 

(Pl1,p (9 Id) (Id®, 1  (9 ab 1 t) . (idp®i 1  0 P1 1 ,12  (9 id))) 

= t(y')((t 0 Idk2 ) 
(P1i,ri 

 Old) (u 1 )(((w) Old1 1  0 (u1 ) 0 Idk2 ) 

.(Id®, 1  0 ab 1 t) (idp®g (D 	(9 Id))) 

.(ili )((w) (9 ld1 1  (9 (((il1 ) 0 t'2) (pri ,12 0 Id)))) 

= f(y')(({v',it (& Idka) (plirj 0 Id) 

.(ui )((w) 0 (ici, 0 (L . ( Id1 2  0 (u i ) 0 Id))))) 

= t(y')(({v'/y }t (9 Ida) (, 	(& jd) 

.(ii )((w) 0 (id, 1  ® ({w,,'}t . (id1 2  0 () (9 ld))))) 
	

A.1 

t(y')((v'1 t'i  0 Id 2 ) ( P1 1 ,r1  0 Id) 

0 (11 ® 
({w'}{w,'}t . (Id, 2  (9 (ti) 0 Id))))) 

(9 Id 2 ) 
(Plj,ri  (9 Id) 

•(ili )((w) 0 (Id, 1  0 ({w,s}t 	0 (t1) (& Id))))) 

0 (I 	0 (t (id12  0 (il1 ) Old))))) 
	

A.1 

0 Idkz ) (P1i,rj 0 Id) (ii)((Id, 1  0 (ii ) 0 t'21 ) 

.(id, 1  0 Pr 2  (9 Id) (Id, 1 012  0 (iliiZ2)(wiiiii2)) . (p,1912 0 Id))) 

= f(y')(({vç,}4 01dk2 ). (Id, 1  Oab,j1 t) 

.(Id, 1  (9 P,. 1 , 2  0 Id) . (Id, 1 012  0 (iiil2)(wiiil2)) (p,1012  (9 Id)) 

tR 

A graphic representation of the two terms may be of assistance in following the 

above proof; diagrams representing t'L  and 4 respectively are included below: 
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I 

Axiom p4 : t 1  ft2  = t((id (9 t 1 ) t2) Let (i)(ii) = (t11 i12 )5i 62 (ff2). 

Case For y V fn (t 2 ) U {161} we have the derivation (y) I- t 2 	t: 

Left term tL: In the following derivation, we also have side conditions 

{tZ1 }flfn(t2)=0 

{yil2 }fl(fn(t i )U{}) =0 

J ill I=r 

yfn(t2 )U{iT1}. 

(yiT1 ) F t2   

()l-t 1 	—~ t i 
 (161) F- tpt2 	 (ziy)(t (id12  0 (y) (& id)) 

0 

(i) F- ti 1-t2 
12 	

t'L 

where tL (t ® idk 3 ) (id, 0 abg1 t'fl (id,, ® Prj ,i2  0 id) 

and t'(iiy)(t. (id13  0 (y) 0 id)). 

Right term tR: In the following derivation, we also have side conditions 

1. {yiT1}flfn(t2)0 
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{i12} fl (fn(ti) U {•}) = 0 

IyiZ1I=P0' 

y V fn(t1)Ufn(t2)U{iiiiZ2}. 

	

(y) F-  Id9  * id 	() I-  t1 '-- 	t 

I ___________________________ 
(yz) I- Id9  0 	 (yii) I- t2  

0 

(iZ)(72)  
~= (t 

	

(yz) F (Id9  0 t1 ) . t2 	- 	0 Id 2 ) 	0 (Id1 1  abt1 t) (Id1 1  0 Pr1 ,12 0 Id) 
ti 

(z) I- t9 ((Id9 0 t 1 ) . t2) 	?+=4 

where 4 	(iiy)(t' (idj 1® 1 2  0 (y) 0 id)) and 4 	(t 0 idk2 ) (id1 1  0 abg1t). 

(id,, 0 Prj,la (9 id). 

Note that the two derivations do not derive transitions with identical labels. The 

labels differ by permutations of the binding vectors. From each derivation one 

can construct a derivation for a transition which matches the other. We will just 

show one of the cases. 

t9t2(tZ1yi12)5(ii2) 	
PERM1 

(ya)d(i12) 	I 

	

I- ti . t9t2 	—+ t 	(11012  0 Pr1,p 0 Id) 

It is easy to see that the side conditions in each derivation are equivalent. We 

must now show that t'L (id1101 2  0 p j ,9 (& id) = 4. 
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tR = (vy)((t'1  (9 id 2 ) ( id, 1  (9 ab, 1 t) 

Pri ,1 2  (9 Id) . (id,,®, 2  (9 (y) 0 id)) 

= (t (g ldk2 ) . (vy)((idj, (g ab,t) 

.(idj (& P11,12 0 Id) . (id, 1 012  0 (y) ® Id))) 

(idi i ®ri®1 2  0 (y) (9 Id) (Id,1 (& Pr1 ,1 2 0p 0 id)) 

= (t 0 Idk2 ) .  (z/y )((id, 1  0 ab,t) 

(idi i ®r1 012  0 (Y) (9 Id)) . (Id, 1  0 Pr j  ,12®p (9 Id) 

= (t (9 Idk2 )' (l/y)(id, 1  0 (ab,t (Idri ®1 2  0 (y) (9 Id))) 

0 Pr, ,12Øp (9 Id) 

= (t'1  (g idk2 ) . ( id, 0 (t/y)(abj,t (Id r ,®1 2  0 (y)  (g id))) 

0 Prj  ,120p (9 Id) 

= (t 0 Idk2 ) . ( Id, 1  0 (z'y)aba, (t . (Idri ®1 2  0 (y) 0 Id))) 

'(id, 1  0 Pr, ,llØp (9 Id) 

= (t'1  0 idk2 ) . ( id, 1  0 (vy)abj,(4 (Id,. 1  ®, 2  0 (y) 0 id))) 

•Qd,, (9 Pr1,12 0 id) . (Id, 1 ®, 2  0 Pr 1 ,p (9 Id) 

= (Idli®12  0 Pr,,9 0 Id) 

Case For y ( fn (t2 ) U {z}) we have the derivation (ytii ) F t2 	t'2  with 

wy: 

Left term tL: Let a' = {W/y}. In the following derivation, we also have side 

conditions 

{ili } flfn(t2 )=O 

{iZ2 }fl(fn(t 1 )U{}) =0 

IiI=ri 

y ft  fn(t2 )U{ti1 tZ2 } 

wy. 

(yii) I- t2 
22("_) 

(z) F 
t1 (1)d,(J,1 

4 (i7) F tt2 
(2)2(il2 

t()(4 . (i,2  0 (i12)(wii2)) (p,2,9 0 Id)) 
0 

I  
(z)Ft 1 . i 

'4' 
 9t2 	 > tL 
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where t 	(t'1  ® idk2 ) . ( id, 1  0 ab 1 t) . ( id, 1  0 	® id) 

and tt(y)(t (id,2  0 (i12 )(wtZ2 )) (p, 0 id)). 

Right term tR: In the following derivation, we also have side conditions 

{iZ1 }flfn(t2)=O 

{iZ2 }fl(fn(t j )U{y'}) =0 

kiI=ri 

y' V fn 41 ) u f (t2 ) u { 1 a2 } 

W{ii2} 

y'w.  54 

Note that one of the side conditions requires that y' j9 fn (t2 ) U {i12 }. Therefore, 

we cannot simply rely on the name y used in the derivation (involving tL) above. 

Instead, we shall choose such a fn (t1 ) U fn (t2 ) U {iZj iZ2 i}. We shall then 

use the substitution lemma to establish the required correspondence between the 

subderivations involving y and y'. In what follows, let a = {Y '/y}. 

(y') F- id --- id 
	

()I-t 1 
 (a1)1(il1 

(y'z')F-ici0t j 
 (ili)di(y'i11), 

(yiij ) I- t2 
(t3)52(w) 

 !2 
(i12)062(woil2 

(y'aiii ) I- at2 	Lat2 
_

0 id 2 ) . (id, 1  0 abil l at) . (d1 1  0 Prj ,1 2  0 d) (y'z) I- (id0t1) .t2  
t2 (u)al(o'cx2)(o'i12) 	, (z) I-t((id(9t1)  .t2 ) 	- 

We shall now prove the equality t'L = tR. 

'I 
tL 	= t 1  0 id, 2 ) (id, 1  0 abi 1 t(y)(t (id,2  0 (ii2)(wii2)) (p,p 0 id))) 

0 Pr02 (& id) 

( I  = 	t1  0 idk2 ) . (id, 1  0 abi1t(y')({v'/j}t . (id12 (& (t12)(wi12)) (pi,,p 0 id))) 

-(id, 1  0 p 1 ,1 2  (D id) 

= (I (9 id) . (ici, 0 t(y' )(abj1 {v'h,}t (jj,.02 (& (12 )(wi12 )) 

(idri pi2,p  (9 id) (Pri,p  (9 id))) - (id, 1  0 Pr1 ,1 2  (9 id) 
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= (t ® idk2) . (ide, ® t(y' )(ab1v'/vt (id r,®1 2  0 (2)(wiZ2)) 

.(Id,p12  (9 Id) . (pri p (9 Id) . (id 0 P11,12  Old))) 

•(id a®10 1 2  0 (i12 ) (wit2 )) (jdii®ri 0 P12,P 0 id) 

.(idi, 0 Prj ,p (9 Id) (Id,1® (& Prj2  0 Id) (pi i ,p (9 Id)) 

= t(y' )((t 0 idg 2 ) . (id 0 aba1  {v'h,}t) 

•(1d1 1  0 Pr 1 ,1 2  ® (it2 )(wiZ2 )) (pij®i®ri , p 0 Id)) 

0120ri 0 (it2 ) (wit2)) (P110120r,,p 0 Id)) 

= tR 

The above derivation shows how a matching derivation for tR can be obtained 

from a derivation for tL. We argue that obtaining a matching derivation for tL 

from a derivation for tR is simpler since the side conditions in the derivation for 

tR (involving some y fn (t i ) U fn (t2 ) U {}) are stronger than those required for 

tL. 

Axiom p5 : (x)tt = t0 ((p,,.0  0 id) (x) t) (x : q) Straightforward. 

Axiom pe: tqtpt = tptq ((Pq ,p (& id) t (Pp,q  (D id)) For y, 1/2 (fn (t)U{!}) we have 
(iZ)(witu2il) , 

the derivation (1/11/21) F- t 	 t. By alphaconvertibihty of labels, we can 

assume, without loss of generality, that {y j y2 z} n {ii} = 0. 

Case w 1  = 1/1,W2 = 1/2: 

Left term tL: In the following derivation, we also have side conditions 

y1 fn(t)U{y2 ,z} 

Y2 V fn(t)U{y1 ,}. 

(y 1 y2 z) F- 
t (a)d(111121) 

ti 
(1/21) 1- 	

(v1u06(22)V) 
(vy' )( t' . (id1 0 (yr) (9 Id)) 

(1) F tqtpt 	(vy2 )((vyi )(t' . (ici, 0 (1/i) (9 id)) (Id1 0 (1/2)  0 Id)) 
ti 

Right term tR: In the following derivation, we also have side conditions 



(y1 y2 iJ) F- Pp,q ® id- 
(y2yiil) 

id 
0 

(Y2Y1 F- (pq,p 0 Id) t (Pp,q  (9 Id)_(d)d(v2vii_tI 

11 
(y 	F- tq((pq,p 0 Id) . t (pp,q 0 Id)) (v2(v1 	(vy)(t' . (id, 0 (Y2) 0 Id)) 

ti 

() F- -ptq((Pg,p 0 Id) t (Pp,q ® id))_(viv2c)(iJ) ) (vy)t"  . (Idi (9 (Yi) 0 Id)) 

(Y2Y12) I- Pq,p 0 Id (v1v2jd 	(y1y2) I- t 
(iZ)& 

(Y2Y1) F- (Pq,p 0 id) . t_(a)(v1Y2Y), 
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{y 1 y2 fl{il}=0 

y1 fn(t)U{y2 ,z} 

y2 Øfn(t)U{y 1 ,i}. 

where t'1 , 	 (vy2 )(t' . ( id, 0 (Y2) (8) id). 

Note that the two derivations do not derive transitions with identical labels. The 

labels differ by permutations of the binding vectors. From each derivation one 

can construct a derivation for a transition which matches the other. We will just 

show one of the cases. 

(1') 1- ttt 
(y2viiZ)(il) 

t'L 

(y1y2il)(i1) 

() F- tqtpt 	 tj  (ui, 0 Pq ,p (9 Id) 

PERM1 

It is easy to see that the side conditions in each derivation are equivalent. We 

must now show that t. (id, 0 Pq ,p (& Id) 
- 4. 

tL 	= (ziy2)((vy1)(t '  . 	0 (yr) (& Id)) 

.(Id, 0 () (9 Id)) . 	 0 Pq,p 0 Id) 

= (vy2)((vyi)(t '  . 	® (p1) (9 Id)) 

.(Id, 0 (Y2) (9 Id) . (id, (9 Pq,p  (& Id)) 

= (vy2)(vyi)(t '  (ici, 0 (y) (& Id) 

.(idj 0 () ® Id) . (Id, 0 Pq,p 0 Id)) 

= (iiy1)(vy2)(t ' . (Id, (9 (Y2Y1) 0 Id) . (Id, (9 Pq,p  (9 Id)) 

= (vy1)(vy2)(t '  . ( lii, (9 (y1y2) ® Id)) 

= (vy1)(vy2)(t '  (ici, 0 (Y2)  0 Id) . (Id, 0 (Yi) (9 id)) 

= (vyj)((vy2)(t '  . (Id, 0 (Y2) (9 Id))) (Id, 0 (yj ) (& Id) 

=4 
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Case w 1  = y1 ,w 2  y2: Let a2  = {W2/y2}. 

Left term tL: In the following derivation, we also have side conditions 

w 2  5 

y 1 fn(t)U{y 2 ,i'} 

Y2 V fn(t) U {y ' ,z}. 

(y1iz) 	t 
(iZ)(viw2p 

 1 

	

(v2 	F- (YiZ)) (vyi)(t '  (ici1 ® (yr ) 0 Id)) 

() 
F tqtpt 

1C202 
tq(Y2)(t'L (ici1 0 (yjii)(w2y1i) 0 Id) (pi,q 0 id)) 

I, - where tL = (vyi)(t ' . ( id1  0 (yr ) (9 id). 

Right term tR: In the following derivation, we also have side conditions 

w2 y2  

{y 1 y2 i}fl{iZ}=0 

y 1 fn(t)U{y 2,} 

y2 fn(t)U{y 1 ,Z1. 

(yj w2 fi) F 	®• 
(w2yiil) 

id 
0 

i i1) 
(y2Y12) F (pq,p 0 Id) . t (Pp,q 0 

id) ( ü) (w2y 
 

t2 
(yi) F tq((pq,p 0 id) . t (Pp, q  0 

Id))()u2 (ylu2 
Lt q (y2)(t' . ( Ide 0 ()(w2)) (Piq 0 Id)) 

ti 
( F tptq((Pq,p  0 Id) t (pp,q 0 id))122 -+(vyi )(t'. (Id1 0 (yi ) 0 Id)) 

where t' 	tq(Y2)(t' (Id 1  0 (t)(w2t)) (Pi,q ® Id)). 

We shall now prove the equality t'L = t. 

ti 

t2 

(v1v2) 	 ____________ F Pq,p ® Id 	 id 	(y1y2) F 	
(il)6(ylw2i1 	

1 

(Y2Y1 F (Pq,p ® Id) . t_((v1w2t 



Appendix A. Proofs 

t'1? = (iiyi)(t q (Y2)(t' (i1 0 (fi)(w 2 ii)) ( 	0 Id)) 

.(1d1 0 () (9 Id)) 

= (iiyi)tq(Y2)(t' . (, 0 (iO(w2it)) (pi,q 0 Id) 

(idq®i  0 () (9 ld)) 

= tq (Y 2 )(ilY i )(t' . ( idz 0 (iZ)(w 2 iZ)) (P1,q 0 d) 

(idq®s 0 (ni) (9 id)) 

= tq(Y2)(l'Yi)(t' (id, 0 (il)(w2ylu)) ( 	(& Id)) 

= tq(Y2)(1'Yi)(t' • 	0 ('1) (9 id) . (id, 0 (y19)(w2y1 u)) 

(pz,q 0 Id)) 

= tq (Y2)((1'Yi)(t' (ia, 0 (Yi) (g i) • ( Id, 0 (y 1 )(w 2 y 1 )) 

(Pi,q 0 Id)) 

=t 

Case w 1  96  Y1 i W2 = y2: Let Oj = {Wi/y 1 } .  

Left term tL: In the following derivation, we also have side conditions 

Wi 36  Yi 

y1 fn(t)U{y2 ,i'} 

y2  V fu(t)U{yi ,'}. 

t2 
(y2z) I- fpt  ()15(v204 f(y1)(t '  . (ici, 0 (ii)(w i il)) 	0 (p,,, 	Id)) 

ti 
(

) I- tgtpt 
(v2)o16(c z 	 1 

 (vy 2)(t. (Id, 0 (Y2)  0 Id)) 

where t't(y)(t'  (id, 0 (6) (w, u—))  . 	id)). 

Right term tR: In the following derivation, we also have side conditions 

w1 	yj 

{y1y2z}fl{iZ}=0 

y1 fn(t)U{y2 ,} 

Y2 V fn(t)U{yi , z}. 

(y1y2z) I- 
t (ii)(wiyiI)ti 

205 
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0 

	

(Y2Y1) F (Pq,p 0 Id) . t_((w1v2+tI 	 (wiy2il) I Pp,q 	
(V2Wiil) 

Old 	—) = Id 
0 

(y2y11) I• (Pq,p 0 Id) . t. (Pp,q 0 Id) 	1V2J_=t1 

.tl 
(y i z) F tq((pq,p 0 Id) t (pp,q  (9 id)) (v2u)5(wiil_(vy2)(tl  (j, (9 (Y2) 0 d)) 

(2 
S 	 II 

	

(1) 1- tptq((Pq,p 0 Id) t. (pp,g ® Id))21 	=tP(y1tR (Id, 0 (y2i)(wiy2u) (pi,p 0 Id)) 

where t' (vy2 )(t'. (id, 0 (Y2) 0 id)). 

We shall now prove the equality t'L = tR. 

tL 	(z'y2)(t(y1)(t' (ici, 0 (ii)(w i ut)) (pg,p  (& Id)) 

.(Id, (9 () 0 Id)) 

= (iiy2)t(y1)(t'• (Id, 0 (il)(w 1 u)) (pz,p  (9 id) 

•(Ici ®, 0 () (9 Id)) 

= t(y1)(vy2)(t' (id, 0 (iZ)(wi iZ)) (pz,p 0 id) 

® () 0 Id)) 

= t(y1)(iy2)(t (Id, 0 (Y2) Old) (Id, 0 (y2 )(w 1 y2 )) 

(Pi,p (9 Id)) 

= t(yl)((i'y2)(t '  (ici, 0 (Y2)  Old)) (ici, ® (y2 tZ)(wiy2 iZ)) 

(Pi,p (9 Id) 

=4 

Case w 1  34  Y1 i W2 96  y2: 

Subcase w 1  = y2 ,w 2  = y: Let o = { Y2/y1} and a2  = {Y11y2}. 

Left term tL: In the following derivation, we also have side conditions 

Y1 36  !h 

yi fn(t)U{y2 ,iZ,} 

y2 fn(t)U{i}. 

(y1y22) I- t ()(v2v4) 
 t' 

t2 (tZ)ajt(y2a 
(y2z) F 	 - t(y1)(t' (ici, 0 (i)(y2ii)). (Pi,p  Old)) 

ti 
(1) 

F ttt (yza)ai 	(vy 2 )(t . (hi, 0 (Y2)  0 id)) 

(Y2Y1) F Pq,p ® d 	*=id 	(Y1Y2) I- t 	
z7) 

 t1 



I' 
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where t'1 	t(y1)(t'  (id1  ® (iZ)(y2il)) . (p,, 0 id)). 

Right term tR: In the following derivation, we also have side conditions 

{y j y2 }fl{iZ}0 

Yi 

yi fn(t)U{z'} 

Y2 Øfn(t)U{yi,ii,.}. 

	

(y2y1) F 	
(y1y2 r) 

Pp,p 0 Id 	 id 	(YiY2) F t 
(d)(y2y1)  e 

0 
(ylyail) 

(Y2Y1') F (pp,p 0 id) t_(a)(v2v1ll 	 (y2yi3) I Pp,p 0 d 
0 

(Y2Y1 2) F (pp,p 0 Id) t - (Pp,p 0 Id)_()&(v1vztI 

	

(Yi 	F 	0 Id) . t. (pp,p 0 Id)) 	 (ide 0 (il)(Y2)) (pj,p (9 Id)) P,P 

(V12c(u(Vy)( 	(Id, 	(yr) 	Id)) (z) F 	 0 Id) . t. (pp,p 0 id)) 	 tn 	0 	0  

where tI, 
R = i 	. (id, 0 (iZ)(yiu)) (p1 ,, 0 id)). 

Equality of labels and residuals follows by aiphaconversion. 

Subcase -'(w 1  = y2 Aw2  = yi): Let o = { Wi/y}, a2 = {W2/y2}, 4 = {(a1W2)/y2}01i 

and a = {( (r2w1)ftJi}a2. 

Left term tL: In the following derivation, we also have side conditions 

w 1 	Yi, 0iW2  76  Y2 

yifn(t)U{y2,t7,z'} 

y2 fn(t)U{il,}. 

(y1y2z) 
F t (t)6(w,w1) 

(Y2) F t,,t 
(a)oi6(oiw 	

t(y1)(t' (Id, 0 (iZ) (w1u)) • (p,, 0 Id)) 

(z) F tqtpt 	 t(y2)(t'L • ( ia, 0 (il)((aiw2))) (pz,q 0 Id)) 

where t'. 	t(v)(t' (id, 0 (iZ)(W i fi)). 	 (p,,, 0 id)). 
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Right term tR: In the following derivation, we also have side conditions 

{y i y2z}fl{i}0 

0•2 w 1  54  Yi, W2 	Y2 

y 1 fn(t)U{iZ,2'} 

y2 fn(t)U{y 1 ,iZ,.'}. 

(w2wjil) 
(ww 2 i) F Pp,q 0 id 

0 

(y2y12) F (pq,p 0 Id) . t. (pp,q 0 Id) 
(6)6(w2w11) 

t2 ()u2a(o2wj 
(Yi F  f q ((Pq,p 0 Id) . t. (pp,q 0 id)) 	 . (id, 0 (ii)(w2 iZ) (pgq  (9 Id)) 

(d(oi1) 
i tptq((Pq,p  (9 Id) . t. (Pp,q 0 Id)) 	 t(y 1 )(t. (Id1 0 ()((a2 w 1 )0) (p,9 (9 Id)) 

- I, 
R where t = ig (y2)(t'• (id, 0 (iZ)(w 2 iZ)) (p (9ld)). 

To show that the labels for left and right terms are equal, it suffices to show that 

Orl = o. We are working under the following assumptions: 

w1 y2 Vw2 y 1  

Yi 0 Y2 

w 1  

Wi 0 Y2• 

Case w1 0  y2 ,w2  54 !Ji  Then 

{ {W/. }Wi,6di } { W2/y2 } = {Wi/y1 } { W2/y2 } 

= {W2/y 2 }{Wi/y} = {wiiW2, 2 }{Wi,6} 

Case Wj y2,w2 = Yi Then 

{{w22}Wifrg}{W2fry} = {Wi/y j }{1Ji/y2} = {Wi/y1}{Wi/y2} 

= {Wi/y 2 }{Wi/y j } = {{wlbil}W2/y}{Wi/y} 

Case Wj = Y2, W2  Yi Then 

{ {w2/ii2}wl/y }{W2/y } = {Wi/y1}{Yi/y2} = {W1ftji}{Wi/2} 

= {Wi/y 2 }{Wi/y j } = {{w1i}W2fry}{W1frj} 

(y1y2)  
(Y2Y12) F Pq,p 0 Id 	— id, (YiY2 F 	 ' 

(Y2Yi 	F (pq,p  (9 id) t_()a(w1w2ilt, 

t2 
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We shall now prove the equality t = t. 

= 'tp(yi)(tq(Y2)(t' . (Id1 0 (ifl(w2iZ)) (pz,q 0 Id)) 

0 (iZ)(( { w 2 ,2} w 1 ))) (pt,p 0 Id)) 

= tp (Yi)t q (Y2)(t' 	0 (iZ)(w2iZ)) (p,q  0 Id) 

(id q®i 0 (IZ)(({t 02/V2}wl)ii)) (id q  0 p,p 0 Id)) 

= tp (Yi)tq (Y2)(t (pj,,. (D Id) . ()(( idi  0 (w2ii)) (p, (& id) 

(id q®i 0 (il)(({"2/i,2}Wi)ii)) (idq  0 p,p (9 id))) 

= tp(Y1)tq (Y2)(t '  (pg,,. (9 jd) (iZ)((w2) 0 ({w2/y2 }Wj) 0 Id1 0 (ii))) 

= tp(yi)t q (Y2)(t' . (p,,,. o Id) ()((W2) 0 (wi ) 0 Id1 (9 (a))) 
	

A.1 

= tq (Y2)tp (Y1)(t'  (pi,r Old) . ()((w) 0 (n) 0 Id, (9 (i))) 

= t(y2)tP(y1)(t (p,r (9 Id) . ()((w 1 ) 0 ({Wih,j}tJ)2) 0 Id, 0 
	

A.1 

tq (y2)tp (Yi)(t' • (p,, 0 Id) ()((id, 0 (w i il)) (pi,q  (g Id) 

0 (?i)(({wl/0w2)i.Z)) . 	(9 P1,p 0 Id))) 

= tq(Y2)tp(Y1)(t' (ii 0 (iZ)(wiu))  (p:,p (9 Id) 

.(id,,j 0 (iZ)(({tlh/v1}W2)iZ)) (idp  0 P1,q (9 Id)) 

= tq(y2)(tp(Yi)(t' (idi 0 (it)(wj iZ)) (p, 0 Id)) 

. (Id, 0 (.ij)(({wl/1}w2)fj))  (pz, q  0 id)) 

41 

- 

By the standard derivation lemma, for any derivable () F- t1  --* t, there is a subderiv-

ation, for some 5 and t' = t, of (z) F t1  --+ t' following which only permutation and 

sc rules are applied. The application of these rules does not depend on the structure 

oft 1  but only on the labels of the transitions. Moreover, the residual of these rules is 

obtained by introducing contructions around the residual of the premise which depend 

only on the labels. By the above, for some t, of (z) F — t2  - t'2' with t = t'. Apply-

ing the same sequence of permutation and SYNC rules to this derivation clearly gives a 

derivation of (i) F- t2  --+ t for some t'2  which is equal to 4. 
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A.3 Labelled Transitions 

Proposition 5.13 

(z) F t 	 [(z) tj = (fl](il) and t' = 

(z) F t 	 • t 	[(xti)out,a(i')](i) and t' = 

(Z)z(i1) 	____ 	 _ 
(z) Ft 	—3 =t 	 t = [(x)boxa(u i ),p(u2 )](il) 

and [t' =  

with a = ( 0 )XWa )(!0 ) and {iZ} = { ii12} = {'}. 

Proof (==) Let the (unique) inverse map of 	be . Then, by structural lemma 

and lemma 5.12, it suffices to give a derivation of F 

(1) Consider the inverse translations of the molecular forms of (1) t and t', assuming 

= 
= 

By lemma A.5, for any 9, 17 such that {il} fl {ti} = 0 and {il} = { 17}, we have: 

(17)(i) 

Choosing g, 17 such that {il} fl {IZ} = 0 and (17) () 	(ii') (iZ), we can derive by 

lemma A.3, and the above transition: 

(v1({/€r}il) F tm(fl(' (9 (ii)) 	—p tm()( (17)() . ((17)) 

But since {17/iZ'} = {}, we have (({17/i}iJ) = (17)({9/ii}i) = (tZ)(ii). We shall 

now show that the residual is as expected: 
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(14- 	(uZ)) 

= tm(')(U7 
(7)(4)) 

(9 (ii)) 	 2.16(5) 

= tm (ui')(L1 ((')() 0 (II))) 

= tm()(()((!i) 0 ())) 	 2.16(2) 

= 	 A.1 

= tm( ')( 	(9')((') 0 {'iZ}(iZ))) 

= 

(2) The inverse translations of the molecular forms of () t and t', assuming ir : m 

are given below: 

II = tm(')((10h1tz0(&(13)) 

= 

By lemma A.5, together with the tensor and out2  rules, for any , !7 such that 

{'} fl {il} = 0 and {ff} = {}, we have: 

I- (u) .out®®(ii) 	(ti) ®(. ()()) 

where U: 1, and {} fl {xiiJ} = 0. Choosing il such that {} fl {il} = 0 and 

()() = ( ifl(iZ), we can derive by lemma A.3, and the above transition: 

tm(fl((t) . out 0 I0 (il))_(i)cr(oi1)  

where t" = tm (it)(((w) e(• ()())) . ( id,®(1i)()) (pi,m(9 1)) and o  

But since {fiZ'} = { i/1TZ}, we have ({/iTZ'}({li/it}il) = = 
(iI)(i3). We shall now show that the residual is as expected: 

tm(')( (& ( tiJiI)) 

= tm()((W)(ü)) 0 ( 1j1)) 	 2.16(5) 

= tm (1t)(I (W)W) 0 (tliti))) 

= tm()((?i)(W)®(T))) 	 2.16(2) 
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= 	 A.1 

= tm(')( 	
(4)((4) ® { 4/it}((tii) ® {il/iZ}(iZ)))) 

= tn()& (')(W) 0 {/r}((ti) ® 

= tm (1Tt)( W)(() 0 

= tm()(()(1)) 	 A.1 

Id)) 

tm (t)&1 ()( 	(( 	(1dm  0 (ta) old)) 

= tm()Wt) (& ( ( 7)()) (jd 0 (W) (p11  0 Id)) 

(3) Consider the inverse translations of the molecular forms of (1) t and t', assuming 

m i  and i7 : k. 

fr = 	 (0uZ)) 

By the box2  rule and lemma A.4, we have I- boxa -V" a ® (th)() where 

and x {}. Then, by lemma A.5, together with the tensor rule, for 

any 17, such that {17}n{ii} = 0 {17} = {}, and  {rfl(fn(boxa)Ufn(a0(i)) =0 

we have the following transition: 

I- box®i0 (ii) (u)Z!Z (a®Th (fl() 

Choosing 17, 7 such that {17} fl {tZ} = 0 and (9') (1i) = (iZ1 iT2 )(i), we can derive by 

lemma A.3, and the above transition: 

I- tmi®m2 (i2)(b0 	0 MU (9 (7)) (il)o4tll 

where t" = fmj®ma (ili2)((a0a) • (ifl() (()) and a = {'/iZ1 ti2 }. But since 

{'fiZ 1 i 2 } = {il,4TZ}, we have (y1ax(a5) = (){17fiZ}x({)4i}i) = (i)x(J). We shall 

now show that the residual is as expected: 
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tmi(l)tk®rn2Wa20® ® ( U)) 

= 	tmi(1)tm2W2)tk 	a)(o)(® 	® (2a0) 
3.26* 

= 	tm2(U2)tmi(U')(tk)0®! 	(1a0) 

(Pm2,111 (9 Id)) - 
3.26* 

tm2(2)tmi1)tk ®(& 
(aU)) 

•(idk 0 Pm2,rni ®id)) 2 . 16(1)*, 3.9(4) 

tm2(U2)1rnl(U1) 0® (ia) OLZO (ii)) 

= 	tm2(2)tml 	l)tkaa ®  

.(id,O ( 4 )(W') ® (iZ)))) 2.16(5,2) 

= 	tm2(2)tmi(1) 	°)C'0 (so) 0Th 
.()(() (D (Z))) 3.9(4) 

) . (7)((7) ® 

= 	tm2(2)tmi(1)® 
 Ad 

= 	tm2(2)fmi(ili)Ua0 	()(W) ® 	 (il))) 

= 	tm2(u2)tml (ill) 	. (fl(Wy))) 

(')(y)  

tmi®ma (h1 2) 0 o) . ()() 	(()) 3.26* 
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