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QUOTATION 

"...And make the sound a picture of the sense." 

Christopher Pitt (1699 -1748) 
Translation of Yida's Art of Poetry 



ABSTRACT 

The design and implementation of an ultrasonic dynamic 

focusing annular array system is described. The array is designed 

for use as a contact transducer and for eventual incorporation 

into the head of a real -time mechanical scanner. 

A solution for the continuous wave field of a focused thin 

ring array is used to examine the effects of the number of rings, 

ring arrangement and apodisation of the array aperture on its focal 

plane response. Other aspects of array design are also considered. 

A suitable method of array fabrication, based on printed circuit 

board techniques, is described. 

The design and implementation of an electronic system for the 

generation, detection and processing of the array signals is given. 

Digital techniques are used to implement the dynamic delays. 

The dynamic focusing capabilities of the array are confirmed 

experimentally. Dynamic focusing of the reception response of the 

array is usually combined with a fixed focus on transmission. The 

compromise of fixed focusing on transmission may be overcome by 

applying the idea of Synthetic Aperture Imaging. An effective 

dynamic focus is then achieved on both transmission and reception. 

This novel application to annular arrays is investigated 

experimentally, and significant advantages are confirmed, however, 

at the expense of a lower pulse repetition frequency. 
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Chapter 1 

DYNAMIC FOCUSING: AN INTRODUCTION 

A bat emits short pulses of high frequency sound and uses the 

reflections of these from surrounding objects to guide its path. Man 

uses a similar technique, SONAR (SOund NAvigation and Ranging), to 

detect and locate under -water objects. On a smaller scale in Non - 

Destructive Testing, flaws and irregularities in metalwork may be found. 

In Man himself, ultrasound is used as a diagnostic tool to image the 

internal structures of the body. 

1.1 Introduction 

Meire and Farrant (1982) in their text on the clinical usage of 

ultrasound, briefly trace its history since the discovery that sound 

waves above the audible exist. McDicken (1981) describes modern ultra- 

sonic instrumentation from the users point of view and lists its 

advantages and attractions in a text on "Principals and Use of 

Instruments ". The physical and technical aspects of diagnostic ultra- 

sonics are well covered in texts by Wells (1977) and Woodcock (1979). 

1.2 Present Status of Diagnostic Ultrasonic Instrumentation 

Since its inception, diagnostic ultrasonic imaging has developed 

considerably, aided primarily by the parallel development of modern 

electronic and associated devices. Exceptionally, one area has been 

relatively neglected until recently, the ultrasonic transducer. It is 

ultimately the quality of the ultrasound beam itself, used to interrogate 

the interior of the body which determines the quality of the image 

produced. 

Improvement in beam shape is achieved by manipulation of the 

transducer aperture and the signals associated with it. The first 
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attempts to improve beam quality involved the use of acoustic lenses 

or bowl shaped transducers. These focus the ultrasound beam at a 

particular depth. Compared to the unfocused beam, the focused beam 

produces better images, but only over a limited range about the focus. 

Outside this range the beam is of poorer quality than the original 

unfocused beam (figure 1.1). (Note: figures and tables will normally 

be found on the page succeeding that on which reference is made to them). 

The problem of achieving a suitable compromise has been addressed by 

Kossoff (1963). 

Ideally, a focused response is sought at all depths within the 

image. The development of "Axicon" devices, which produce a line focus 

in place of a point focus, has been one approach, Burckhardt et al.(1975), 

Patterson and Foster (1978). A second approach has been to have a 

"moveable" focus which can be made to track the point from which echoes 

are returning at a given moment. This technique is variously referred 

to as "Dynamic ", "Swept" or "Electronic" Focusing. 

1.3 Dynamic Focusing 

Consider a plane arbitrarily shaped transducer receiving echoes 

from a depth z1 (figure 1.2). Echoes returning to the central region 

of the transducer arrive before those to the outer areas because of their 

shorter path. They may arrive out of phase thereby reducing their 

combined output from the transducer. If an acoustic lens is introduced, 

signals arriving at the centre may be delayed relative to those to the 

outer edge if the lens is chosen to have a lower acoustic velocity than 

the surrounding medium, (figure 1.3). Echoes returning from a 

particular depth zf, will now arrive at the transducer face in phase if 

the lens is appropriately shaped. 

A similar effect may be achieved using electronic delays if the 
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Figure 1.1: Beam -shape of an ultrasonic transducer (schematic). 

(a) unfocused 

ALANE TRANSDUc ?.. 

(b) focused 

FocUSED TRANSI3UCeR 
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Figure 1.2: Echoes received from an on -axis point by a 
plane transducer 
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Figure 1.3: Echoes received via a lens, from its focus 
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transducer is split into isolated regions, see figure 1.4. The path 

difference to each element of the transducer array is a function of 

depth and so of time. The replacement of the fixed delays in figure 

1.4 by time variable delays enables compensation for path difference at 

all depths. This technique enables a focused response to be maintained 

throughout the range of interest. The focal point tracks the returning 

echoes as the transmitted pulse travels outwards from the array. 

The separation of the original transducer into an array of 

separate elements opens up possibilities for other forms of electronic 

processing applied to the signals from each element. Apodisation or 

"weighting" of the signals relative to one another or non -linear 

amplification are two such possibilities. 

1.4 Real -time Imaging 

Early imaging techniques required the transducer to be scanned 

manually across the surface of the body. The resulting image was static. 

Rapidly moving tissue within the image area introduced artifacts. In 

order to adequately observe tissue motion, for example in the heart, an 

image must be produced approximately 30 or more times per second. An 

equally important aspect of real -time imaging is the ability to rapidly 

search through large volumes of tissue to identify the optimum image 

plane. 

Three main methods,of achieving real -time images have evolved: 

(1) rapid motion of the transducer previously used in 

static image production by a suitably driven mechanical 

device - mechanical real -time scanner; 

(2) an array of small transducers, operating in parallel, 

each creating a separate line in the image - linear 

array scanner; 
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(3) an array of a few small transducers, the signals 

from which are variably phased relative to one 

another to steer the beam through a sector of 

tissue - phased array scanner. 

The development of real -time mechanical scanners has been 

described by McDicken et al. (1974) and Bow et al. (1979). Linear 

arrays were pioneered by Bom et al. (1971), and Sourer (1968) is 

credited with much of the early work on phased array transducers. 

Both linear and phased arrays lend themselves to the provision 

of dynamic focusing. Phased array systems in particular already 

contain the necessary phase control circuitry. In linear arrays, 

small groups of elements are used together and appropriate delays 

added, to implement individual swept focus lines. Both these types 

of transducer, however, display one significant deficiency. Dynamic 

focusing can only be implemented in one plane, that in which the 

image lies. In a plane perpendicular to this, fixed geometrical 

focusing may be provided, but this has the disadvantages described in 

Section 1.2. 

Swept focusing in both lateral dimensions requires the use of a 

two dimensional array. Two dimensional arrays of small rectangular 

elements are currently under investigation by Beaver et al. (1975). 

A simpler solution, giving a circularly symetric focused beam, is to 

incorporate dynamically focused annular arrays into real -time 

mechanical scanners. 

1.5 Review of Annular Array Technology 

The first description of an annular array dynamic focusing system 

is given in a British patent applied for by Brown and Haslett in 1959. 

The proposed system was for use in flaw detection in Non -Destructive 

Testing (NDT). 
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1.5.1 Array Design 

Melton and Thurstone (1978) present a general procedure for the 

design of annular arrays as contact or water bath transducers. A 

specific design for a water bath transducer is given. Dietz et al. 

(19 ?9) discuss the design of an "expanding aperture" array for use as 

a contact E -scan transducer. 

The available literature to date, on the various aspects of annular 

array design is reviewed in the following paragraphs. 

1.5.1.1 Number of Rings 

Melton and Thurstone, and Hubelbank and Tretiak (1970), present 

computer simulations on the effects of the number of rings on focal 

response. 3 rings appear to produce a good response (Melton and 

Thurstone), with 5 rings producing a response similar to that of a 

completely filled aperture. Arrays of 5 - 15 rings are considered by 

Hubelbank and Tretiak, whose results suggest a similar conclusion. 

Experimental systems of between 5 and 12 rings are reported by 

Dietz et al., Conner et al. (1975), Bernardi et al. (1976), Melton (1979) 

and Melton and Thurstone. 

1.5.1.2 Ring Width 

The effects of ring width have been considered by Dietz et al., 

Melton and Thurstone, and Conner et al. It is concluded that focusing 

should take place in the far- fields of the rings. Dietz et al. indicate 

the desirability of relatively large elements giving lower cross talk, 

less coupling of energy into radial modes of vibration and a higher 

signal -to -noise ratio. 

1.5.1.3 

Hubelbank and Tretiak, in their computer simulations, study two 
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different ring arrangements, equal spacing and " Fresnel" pattern 

spacing. The latter gives a narrower main lobe in the focal region, 

and is that generally adopted by other workers, Dietz et al., Melton 

and Thurstone, and Bernardi et al. 

1.5.1.4 Apodisation 

Dietz et al. (1978, 1979), report theoretical and experimental 

results. A weighting function tapered towards the outer edge of the 

array results in lower side lobe levels, but an increased beam width. 

Conversely, tapering the function towards the array centre may be used 

to improve resolution without grossly affecting side lobe levels. 

Melton identifies a Gaussian function as the optimum of a series 

of functions tested on an experimental imaging system. 

1.5.2 Signal Compression 

The echo video signal is often compressed before being fed to a 

display. This helps to match the dynamic range of the signal to that 

of the display and prevents the "loss" of low level echoes. 

Unfortunately, it effectively raises side lobe levels and increases beam 

width. Ligtvoet et al. (1977) applied signal compression prior to the 

combination of signals from elements of a dynamic focusing linear array 

and found that this reduced the undesirable effects while maintaining 

the required compression. Melton and Thurstone found from beam 

simulations that side lobe levels are reduced and the resolution of low 

level reflectors close to high level ones is improved. Melton further 

investigated various compression ratios to find an optimum. Corl et al. 

(1978) and Dietz et al. (1979) also report the use of signal compression. 

1. Resolution and Side Lobe Levels 

Bernardi et al., Dietz et al. (1979) and Melton and Thurstone, all 
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report close to diffraction limited resolution over an extended depth 

obtained with experimental dynamic focusing systems. 

Dietz et al. report side lobes between 20 and 40 dB below the 

main lobe depending on depth and apodisation. 

1.6 Proposed Project 

McDìcken et al. (1974) describe a scanner which used a single 

crystal oscillating about a point on its front face to provide real -time 

sector scans. Bow et al. (1979) report the development of a mechanical 

real -time scanner for routine investigation of the heart. This scanner 

used four plane, unfocused transducers mounted around the circumference 

of a spinning "wheel ", to obtain real -time images. Image quality was 

later improved in this system by the use of fixed focus transducers. 

The limitations of fixed focusing are discussed in Section 1.3. 

Deficiencies in the focusing action of other real -time scanners has been 

discussed in Section 1.4. The incorporation of dynamically focused 

annular array transducers into the head of a mechanical real -time scanner 

presented itself as a logical step towards further improvement of real - 

time image quality. 

It was proposed that as a first step towards putting an annular 

array into a mechanical scanner a prototype system should be designed and 

built which could be used with a contact B- scanner. The annular array 

and associated electronics would replace the standard transducer and 

couple into the B- scanner at its scan converter input. 

At the start of this project in 1977, the available literature on 

annular array technology was relatively sparse and generally oriented 

towards the design of water bath rather than hand held contact transducers. 

It was decided, therefore, that the project should follow both 

theoretical and experimental lines of investigation. 

-10- 



1.6.1 Theoretical Approach 

This was to present a coherent investigation of the effects of 

all aspects of array design on the quality of the focused beam. The 

effects of parameters such as aperture size and frequency are well 

known. Those of number of rings, ring arrangement, ring width and 

apodisation are less well documented, even now, in the literature. 

This particularly applies to the former two. 

1.6.2 Experimental Approach 

The proposed prototype system was to be designed based on the 

available literature and early theoretical results. Such a system 

would allow an experimental assessment of the feasibility and focusing 

capabilities of contact annular array transducers. Confirmation of 

the theoretical results would be sought with a view to their application 

in future designs. 

In general, an annular array system will be dynamically focused 

on reception and have a fixed point or line focus on transmission. 

Some means of extending the focus on transmission, as has been done on 

reception, is desirable. 

1.6.2.1 Synthetic Aperture Imaging 

Synthetic aperture imaging is a technique whereby each region of 

an aperture is sampled independently and successively, often by a single 

transducer. The echo information from each region is stored and then 

suitably combined to form the final image after the complete aperture 

has been sampled. In this way a large aperture is synthesised yielding 

higher resolution than would be possible with the small sampling 

transducer alone. The following description is given by Lancée and 

Boni (1977). 



"Practically all developments in the medical ultra- 
sound area are induced by preceding investigations 
in either Sonar, Radar or NDT techniques. One of 
such techniques is the synthetic aperture system 
(SAS) used in airborne Radar applications SAS 
enables high resolution mapping of areas. Instead 
of a lateral trajectory of one antenna accomplished 
by motion a similar effect can be obtained by using 
a linear array. By subsequent scanning from each 
position within the array and storage of the echo 
signals in a fast memory, high resolution imaging 
can be achieved. In this way parallel processing 
at many elements in a large aperture is replaced by 
repeated processing of one element followed by fast 
combinational scanning of the memory content. Thé 

development of such techniques may provide a new 
powerful diagnostic instrument to the medical 
profession." 

Corl et al. describe the technique applied to an NDT system. 

Individual elements of a linear array are used to scan the aperture. 

The techniques may also be implemented with an annular array 

system. Successive annuli are pulsed on successive transmit - 

receive cycles until an echo line has been received and stored from 

each element of the array. Compensation is then possible for the 

varying echo path lengths to each element on both transmission and 

reception. The array is effectively dynamically focused on both 

transmission and reception. 

Unlike linear array synthetic aperture systems, in which the 

final image is similar in width to the length of the array, a synthetic 

aperture annular array system must still be scanned mechanically across 

the region of interest to achieve a two dimensional image. 

Earlier remarks (Section 1.4) on the limited resolution of linear 

arrays in one lateral dimension also apply here. 

The application of the synthetic aperture concept to annular array 

technology is considered to be a novel idea. It was, therefore, 

proposed to investigate the possibilities of synthetic aperture annular 

array imaging as a further part of the investigations intended with the 

prototype dynamic focusing system. The modifications required to 
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perform this further investigation were minimal (Section 4.2.1). 

1.7 Format of Thesis 

The main body of the thesis consists of four chapters. Chapter 2 

reviews the acoustic theory used in the development of computer beam - 

simulation programs. These are described and results from them used 

to analyse the effects of number of rings, ring arrangement and 

apodisation of the array. The following chapter covers other aspects 

of array design and the actual fabrication techniques developed. 

Chapter 4 describes the design and construction of the associated 

dynamic focusing electronics. Chapter 5 presents experimental results 

obtained using the prototype system. The experimental and theoretical 

performance of the array are compared. Pulse -echo beam plots and 

phantom images are presented and discussed. The final chapter 

summarises conclusions drawn from the results of both theoretical and 

experimental approaches. 

considered. 

Further development of the system is 

-13 - 



Chapter 2 

THEORETICAL ANALYSIS OF THE ULTRASONIC FIELD 

Theoretical analysis offers a means of prediction and explanation 

- of experimental observations. 

2.1 Introduction 

In ultrasonic imaging theoretical analysis can identify the sources 

of features of the ultrasonic field; these may or may not be desirable 

and may be inherent in the design or simply a result of manufacturing 

errors. Theory may also be used to predict the field shapes of designs 

not yet put into practice. Design parameters may be varied to optimise 

the desirable features and minimise the undesirable. In this way the 

costly production of a large number of prototypes to investigate the 

effects of varying a given parameter is eliminated. Artifacts introduced 

by manufacturing variations and indistinguishable from the real effects 

of variations in the parameter of interest are also obviated. 

It is difficult to take into account all possible influences on the 

ultrasonic field which may occur in real life. It is not so difficult to 

produce a simplified model which does not try to take account of all 

influences, but which will still produce a useful result. Such an 

approximate model has been used, with the aim of: 

(1) attaining a better understanding of the way in 

which the transducer affects the beam shape; 

(2) having a flexible, economical method of transducer 

design. 

In pursuing the second of these aims it has been necessary to 

develop a series of computer programs to solve the equations which define 

the beam shape for a given transducer. The output of these programs is 



subject to various approximations and limitations and is, therefore, 

not readily comparable to, for example, pulse -echo beam plots derived 

experimentally. However, it is sufficiently realistic to allow 

intercomparison of the theoretical plots for different transducers with 

the knowledge that the optimum from these will represent the optimum 

transducer design in practice. The results which will be presented 

are intended for intercomparison as an aid to design rather than 

quantitative prediction of experimental results. Experimental 

verification of the theory used is available in the literature, see 

Section 2.4.1.2. Qualitative comparison of theoretical and 

experimental results is performed in Section 5.5, as a confirmation of 

the reasonable use of the theory. 

2.2 Format of Chapter 

The theory of sonic fields is well documented in the literature. 

By way of introduction a brief review of the relevant publications will 

be given. As the derivation of the basic equations governing sound 

propagation is given in a number of publications it will not be repeated 

here. Only the results and conditions on them will be quoted, with the 

appropriate references. 

The program suite and the facilities it offers will be introduced. 

Use has been made of both continuous wave (CW) and pulsed wave (PW) 

theories, although the majority of imaging transducers operate in pulsed 

mode. The reasons for using CW theory are explained in Section 2.5. 

The results presented in this chapter are those derived for CW fields. 

The PW results are presented along with the experimental pulse -echo 

results in Chapter 5. Because it has proved useful to use results 

derived for CW fields, careful consideration is given to their 

applicability to pulsed fields. 

-15 - 



2.3 Review of Acoustic Theory 

Radiation from plane piston radiators and the propagation of 

acoustic waves in lossless homogeneous media have been widely discussed 

in the literature on theoretical acoustics and scalar diffraction 

theory. (Kinsler and Frey (1962), Morse and Ingard (1968), Strutt 

Lord Rayleigh (1945)). With the increasing use of ultrasound in recent 

years, in a number of technological disciplines, there has been renewed 

interest in the solution of related theoretical problems. The general 

solution for the radiation propagated from radiators of arbitrary shape 

has been known for many years, see Rayleigh's treatise on sound, 

published in 1896. These general solutions have been in the form of 

integral equations for which no closed form analytic solutions could be 

found. Approximate methods have been used to obtain solutions for 

specific cases under limited conditions and have yielded useful insights. 

It was not until recently, with the advent of high speed digital 

computers, that it has been possible to obtain exact solutions for a 

large variety of cases, numerically. 

The radiation pattern produced by a given form of radiator is a 

problem in Scalar Diffraction Theory and is usually approached via 

Green's equation (Goodman 1968). Green's equation is solved for a 

particular Green's function which conforms to the boundary conditions 

set by the radiator configuration and surrounding medium (Archer -Hall and 

Gee 1980). The solution used here is one commonly found in the literature 

and uses a Green's function corresponding to a plane rigid piston situated 

in an infinite rigid planar baffle. The piston is assumed to radiate 

into a semi -infinite lossless homogeneous medium to one side of the baffle. 

Other Green's functions have been identified (Archer -Hall and Gee) 

corresponding to different boundary conditions. The Green's function most 
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closely corresponding to an actual ultrasonic transducer used for 

medical diagnosis is a subject for some discussion. However, the 

three solutions arrived at by Archer -Hall and Gee, of which one 

corresponds to the one used here, all converge to similar values beyond 

the penultimate axial maximum of a plane circular piston transducer. 

Only the near -fields differ, the closer to the transducer the more 

dramatic the difference. However, as will be seen later, it is only 

beyond or just prior to, the near -field /far -field transition distance, 

which is of interest when considering individual rings of an annular 

array, and so any of the solutions may be used. 

2.4 Transient and Stationary Fields of a Plane Piston Radiator 

Since detailed discussions of the derivation of both transient (PW) 

and stationary (CW) responses of plane piston radiators exist in the 

literature, they will not be repeated here. Derivations may be found 

in Kinsler and Frey (CW response) and Goodman (CW and PW response). 

Strutt, Lord Rayleigh (CW and PW response) published one of the original 

treatises on the theory of sound propagation in 1896. Excellent reviews 

of the literature have been published by Freedman (1970) and more recently 

by Harris (1981). 

2.4.1 The Transient Field 

The approach used to compute the transient response of a plane 

piston radiator follows that of Beaver (1974) who cites Rayleigh as the 

originator of this solution. Beaver solves the integral equation 

representing the transient response numerically in the time domain. The 

time domain approach is simpler to interpret physically, although 

possibly slower to compute, than others which utilise a frequency domain 

approach where the power and speed of numerical Fast Fourier Transform 

algorithms may be implemented. 
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The transient pressure in the sonic field of a plane piston 

radiator in an infinite planar baffle, radiating into a lossless 

isotropic medium is given by: 

9t') . ó\ . j íZ.I 
c pQ je, z,T - 
`O 

1-7t 

_ vn --- 
p + s swa 

where p is pressure 

c is velocity of sound propagation in the medium 

is equilibrium density of the medium 

v is normal velocity of the piston surface 

it is length of the excitation pulse 

rl is "departure time" = t - r/c 

t is time measured from some arbitrary zero 

It is understood that the integral covers only elements on the 

piston surface for which o L 'C p. A suitable choice of co- ordinate 

system has allowed the two dimensional surface integral derived by 

Rayleigh to be expressed as a one dimensional integral over the 

departure time,rl . The co- ordinate system used is illustrated in 

figure 2.1. 

The field point Pc, has co- ordinates z, along the axis and x, off 

the axis (the system is circularly symetric) and the distance between 

it and a general point Pb, on the piston surface is r. 8(r) is the 

angle subtended by the edges of the piston at the foot of the 

perpendicular Pa, from the field point Pc, to the plane of the piston, 

for a particular r. The arc so defined represents an arc of equal 

phase for the wave arriving at Pc. 

A numerical algorithm has been used to compute the exact solution 

for the quantity .P as a function of t, x and z. In future, 
cQo 

"pressure" or "relative pressure" will be used to refer to the quantity 

for transient radiation. 
Ro 



Figure 2.1: Co- ordinate system used in Section 2.4.1. 
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The aforementioned solution is for a plane disc radiator. The 

response for an annulus may be found using the Principle of Superposition. 

An annulus of radii a1 and a2, may be generated by removal from a disc of 

radius a2, a concentric disc of radius a1, the solution for the annulus 

is then the difference between the solutions for the separate discs. 

2.4.1.1 The Pulse Shape Function 

In order to solve equation 2.1 the excitation pulse shape vn, at the 

transducer face must be known. Consider equation 2.1 applied at an 

on -axis point in the very far -field of the transducer. 

hence 

A = AIT 

_r_ d 

ce à 
0 

Ps ca SJ7lFACE 

for an on -axis point 

r = z for all points on the transducer 
face, from the far -field 

` 

t 
G 

P(t) age, (E - tic) 
ar 

that is, the far -field axial pressure has been related to the normal 

velocity of the piston face. 

The pressure p, may be found empirically by observing the 

transmitted pulse in the very far -field of the radiator using a "thick" 

crystal receiver. The receiver consists of a cylinder of piezo- 

electric material, the length of which is greater than that of the pulse 

in the crystal. Suitable dimensions are 25 mm long x 10 mm diameter. 

If a low impedance load (e.g. 474 is connected across it, the voltage 

developed across this load is proportional to the incident pressure and 

represents a true replica of the impinging transmitted pulse (Foster and 

Hunt 1978). By recording this pulse shape and approximating to it by a 
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suitable mathematical function, an analytic description of p, and 

hence ^ is obtained. An example of such a recording is given in at 
figure 2.2(a). This was approximated mathematically by a 1.5 cycle 

sine wave with a 0.5 cycle sine envelope which is shown in figure 

2.2(b). The tail of the pulse is partly because of poor matching of 

the cable impedance to the transmitting electronics and as such has 

been ignored. A closer fit using a more complex mathematical 

representation could be found. However, a more complex mathematical 

formula considerably increases the computation time, which is 

undesirable. 

2.4.1.2 Assumptions and Limitations on Equation 2.1 

Certain assumptions and limitations are associated with equation 

2.1 and are summarised below. 

(1) The validity of the equation is limited to those 

regions where the "obliquity factor" may be ignored 

(Arditi et al. 1981 p.39). In practice it is 

invalid closer to the radiator than a few wavelengths. 

(2) Sound wave propagation is assumed to be linear and 

to occur in a non -attenuating isotropic medium. 

Only small amplitude oscillations fulfil the linearity 

condition. A suitable medium for observing the beam 

is water. 

(3) The radiator surface acts as a piston, i.e. all 

points on it move in phase. In practice this is not 

strictly true, particularly where the piezo -electric 

crystal used to generate the sound waves is supported 

around its edges. Dekker et al. (1974) investigated 

theoretically the implications for the response of 



Figure 2.2: Transmitted pulse shape from an ultrasonic transducer. 

(a) observed 

T IME 

(b) analytic approximation (Ao.sin wt. sin wt /3). 
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having the transducer edges bound. Evans 

and Parton (1981), while considering the fields 

of Doppler transducers both experimentally and 

theoretically, found that better correlation 

between the two sets of results was obtained if 

some allowance was made in the theory for the 

transducers being constrained around their edges. 

The effect of taking this into account is to 

slightly smooth the transducer's response (Dekker 

et al., and Evans and Parton). However, 

assuming a piston -like motion does not introduce 

gross discrepancies between theory and practice. 

(4) The transducer is assumed to be situated in an 

infinite planar baffle. In the case of medical 

transducers this depends mainly on the extent of 

the casing in the plane of the transducer. 

Where this extends for a number of wavelengths, 

this approximates to an infinite baffle. Other 

solutions which assume different or zero baffle 

conditions have already been discussed 

(Section 2.3) and shown to affect only the response 

in the very near -field of the transducer. 

Experimental verification of the theoretical results obtained 

using equation 2.1 is available in the literature (Weight and 

Hayman, 1978) . Duck (1981) has performed detailed theoretical and 

experimental investigations on pulsed fields and has obtained close 

agreement between the two. 
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2.4.1.3 Pulse -Echo Response 

Equation 2.1 represents the pressure at points in the sonic field 

of a particular radiator, i.e. it represents the transmission 

characteristics of a given transducer. A medical imaging ultrasonic 

transducer normally operates in pulse -echo mode where both transmission 

and reception responses influence the effective field shape. It is 

possible to'relate the reception sensitivity of a radiator towards any 

given point in the reception field, to the relative amplitude of its 

transmission response at that point. If the reception response at a 

particular field point is defined as the relative response of the 

transducer to a spherical wave diverging from that point and with a pulse 

shape similar to that defined for use in computing the transmission 

field, then the reception and transmission fields will be identical. 

It might then be assumed that the pulse -echo response would be formed by 

a simple multiplication of the two responses. Unfortunately, this is 

only true for CW radiation. The transmitted pulse in a pulsed system is 

distorted by diffraction, particularly in the near -field. The wave 

scattered from a point reflector does not have the temporal shape of 

that transmitted. In general, the pulse -echo response of a transducer 

may not be found by squaring its transmission response. In particular 

regions of the pulsed field, such as in the region of a focus and in the 

very far -field, the pulse shape at a given point is similar to that 

transmitted. Squaring the transmission response will then yield a good 

approximation to the pulse -echo response. 

In this work only one way processes have been considered, i.e. only 

separate transmission or reception responses, as the results have been 

intended mainly for intercomparison. An exception to this is Section 5.5 

where theoretical and experimental results are compared. 

zy 



2.4.2 The Stationary Field 

Equation 2.1 may be solved for monochromatic radiation under 

limited conditions. Dietz et al. (1978) (who ascribe the result to 

Goodman) quote the following as the response of an infinitesimally 

.narrow annulus in the far -field or at the focus, if the annulus is 

considered to be part of a focused system. Continuous wave excitation 

is assumed. 

R (x ,z ,r ) =1.2- , - TT T,¡ 211)k r) 
/ Z l 

where J0(.) is the zeroth order Bessel function 

x is ofd -axis distance 

z is axial distance 

"X is wavelength 

r is the radius of the annulus 
3 is 

Similar limitations and assumptions apply to this result as to equation 

2.1, Section 2.4.1.2, along with the additional ones given above. The 

above response is applicable in the focal plane of a focused radiator. 

A swept focus transducer is, ideally, always focused in the plane of 

interest during reception (Section 1.3). Its response throughout the 

reception field is a focal plane response. For further discussion of 

the reasons for using this expression and its applicability to pulsed 

wave fields see Section 2.5. 

Writing A lT r 

and ex P {LT ( z- x' - e'+ 
,! 

1 - 
a AZ 1 

equation 2.3 can be expressed as 

-Ft ANNV\VS = ca e; T, r.lTxrl 
l az / 
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e''' represents the phase of the wavefront, expressed as a complex 

number, at the point P(x,z). It is independent of r, and so the 

response of the array at P, may be found without reference to the 

relative phases of the contributions from each ring. 

W appears as a weighting or scaling factor on the off -axis response 

shape J0(.). The response for an array is given by the sum of the 

responses of the individual rings. 

Hence:- 
Rnaaay = R 

> n 

tJ; _ To (21Tx ri) 
1_1 az / 

where n is the total number of rings. Although to has been defined as 

? 
z 

in practice it may be influenced electronically by the amplitude of 

excitation or receiver gain. Hence, it may be varied from one ring to 

another. 

2.5 Comparison of Transient and Stationary Fields 

Equation 2.1 represents the exact solution for the sonic field of a 

transiently excited transducer. Its solution may be performed 

numerically on a computer. A suite of programs to do this has been 

developed and is discussed in more detail in Section 2.6. Ideally, to 

obtain the optimum design of transducer the effects of varying its design 

parameters should be investigated as each is incremented. This was 

discovered to be impracticable with the programs described and the 

computer available, (a DEC PDP -12 Mini -Computer with 32K of core memory 

and a floating point processor) because of the time required to produce 

the data. One to four hours were required for a cross -sectional plot of 

the beam, midfield, of a four ring annular array. Hence, it was decided 

to make use of the solution for monochromatic radiation. This has the 

advantage, as described in Section 2.4.2, that an analytic solution 



(equation 2.7) is available. The Bessel function part of the 

solution still requires evaluation by computer. However, a cross 

section using this method takes only seconds, compared to hours for 

the exact PW solution. Data from the analytic solution is fed into 

the program suite for display and analysis. The rest of this section 

is a comparison of CW and PW fields with a view to identifying the CW 

field features common to PW fields. 

2.5.1 Direct and Edge Waves in Transient and Stationary Fields 

CW or monochromatic excitation is a continuous sinusoidal wave 

(figure 2.3). Pulsed radiation is produced by shock excitation of the 

transducer giving a short burst of roughly sinusoidal oscillations with 

a smooth envelope (figure 2.4). Pulses may vary from approximately one 

to ten cycles in length. A pulse may be considered as a "temporally - 

apodised" version of the monochromatic radiation. 

Schoch (1941) has identified two major components of the sonic 

field. The more recent article by Duck also discusses these features 

which are illustrated for a single cycle pulse at a particular time in 

figure 2.5. A hemi -toroidal (in three dimensions) wave is associated 

with the edge of the transducer and appears as the two semi -circular 

edge waves in the figure. It is inverted with respect to the plane 

wave which propagates as a geometrical projection of the source. 

Interference of the "edge" and "direct" waves results in maxima and 

minima. The CW field may be looked at in the same way, figure 2.6. 

However, the degree of interference between components is much greater 

because of their "infinite" temporal, and hence spatial, extent. The 

field of a focused radiator is built up in a similar manner. The direct 

wave is no longer plane but is a projection of the radiator, which 

converges onto and then diverges from, the focus. This is illustrated 

in figure 2.7. 



Figure 2.3: Continuous sinusoid (monochromatic radiation). 

-r IME 

Figure 2.4: Short pulse (broad band radiation). 
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Figure 2.5: Direct and edge waves, single cycle pulsed radiation, 
plane radiator (note: the edge waves are generated in 
anti -phase with the direct wave). 

PLAN TiA1)1ATOR 

Figure 2.6: As above, continuous wave radiation. 
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Figure 2.7: Direct and edge waves, focused radiator. 

(a) single cycle pulsed radiation 

FOCOSE R Alp tATM 

(b) continuous wave radiation 
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Figure 2.7: Direct and edge waves, focused radiator, 

(c) five cycle pulsed radiation 

pULSE11WLINS 
EDgES 
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From figures 2.7(a) and (b) it is obvious that for a very short 

pulse (one cycle) CW and PW fields will only show any similarity in a 

region immediately about the axis. Off -axis, the edge waves no longer 

interfere and so the response falls off smoothly as the edge wave 

amplitude decreases with distance. For a pulse length typical of that 

used in diagnostic imaging (about five cycles) there is an area of 

interference defined mainly by the, leading and trailing edges of the two 

edge waves. From figure 2.7(c) it can be seen that maxima and minima 

occur in the same positions as for CW radiation. Hence, it might be 

expected that the main lobe and first few side lobes of the PW field in 

the focal plane would be similar to those for the CW field. In practice, 

the "temporal apodisation" of the pulse results in side lobes being formed 

by components of magnitude different from those of the CW radiation. By 

definition the pulse is not monochromatic and its zero crossings are not 

at precisely even intervals. The result is that between CW and PW fields, 

the magnitude of the side lobes may be altered considerably, particularly 

towards the off -axis extremes of the interference zone. 

the side lobes may be slightly shifted. 

Consider the beam in the region of the focus as being the result of 

adding three components (Dehn, 1960), one from each edge (the edge waves) 

and, at the focus, a direct wave, see figure 2.8(a). Moving outwards 

along a radius in the plane of the focus, the components move relative to 

each other, see figure 2.8(b). The main lobe and early side lobes will 

be similar to those for CW radiation so long as there are relatively even - 

amplitude sinusoidal cycles within the pulses to interfere with each other. 

For a pulse with four cycles in the centre of roughly even amplitude, it 

would be expected that the main lobe and first three side lobes be similar 

to those of the CW case. 

The position of 
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Figure 2.8: Three component construction for transmitted wave (Dehn). 

(a) on -axis, at a focus 

T ME 

(b) slightly off -axis, in the focal plane 
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Dietz et al. (1978) when considering the effect of bandwidth on 

beam shape, claim that the -20 dB beam width is unaffected by bandwidth 

for pulses up to a bandwidth of at least 100% (equivalent to a pulse of 

3 cycles or more). 

For very short pulses (approximately 1.5 cycles) and edge wave 

component separations of >? 0.1S1. the beam will begin to differ from its 

CW counterpart. This corresponds to the regions outside approximately 

the -10 dB (amplitude) main lobe width. This is illustrated in 

figure 2.9 for a focused annular array. 

2.5.2 Interpretation of Continuous Wave Data 

Studying the above constructions suggests that the following 

features of the CW field may be applied to PW fields in the region of a 

focus. 

(1) Mainlobe: the shape and size of the main lobe will be 

very similar in both cases (excepting for very short 

pulses (one to two cycles) which will cause marked 

broadening of the main lobe; 

(2) Sidelobes: side lobes will exist in the PW field at 

approximately the same positions as those occupied by 

side lobes in the CW field. Outside the interference 

region of the pulsed field, the beam profile falls off 

smoothly as a function of distance. The magnitude of 

the first N lobes will be similar to those of the CW 

field for a pulse containing N+1 even, maximum 

amplitude cycles. 

Results which will be quoted for CW fields are, therefore, -15 dB 

mainlobe half -width, first side lobe level and maximum side lobe level. 
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Figure 2.9: Focal plane response of an array. 

(a) continuous wave radiation 
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(b) two cycle pulsed radiation 
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2.6 Beam Simulation Programs 

A suite of interactive FORTRAN programs has been written to 

simulate the action of a swept focus annular array transducer. The 

transmission or reception response (Section 2.4.1.3) of a given array 

geometry is computed at specified field points for a given pulsed 

excitation. Various focusing options may be specified and allowance 

is made for the effects of various forms of signal processing to be 

investigated. The programs represent a numerical solution of equation 

2.1 along with data storage, manipulation and display routines. 

Because of the time involved in computing the PW response a program has 

also been written using the CW solution, equation 2.7. This program 

makes use of the same display routines as the pulsed solution. 

2.6.1 Hardware Implementation 

The programs have been implemented on a DEC PDP -12 Mini -Computer 

with 32k of core memory and incorporating a floating point processor. 

High speed back -up memory and bulk storage is provided by magnetic 

cartridge diskettes. Peripheral devices supported include teletype (TTY), 

visual display unit (VDU), and a Versatec "Matrix" printer /plotter. 

2.6.2 Software Implementation 

Because of the limited core memory available, the computation for 

the pulsed wave solution has been broken down into three sections. These 

will be referred to as Pass 1, Pass 2 and Pass 3, respectively. Several 

programs may be required to perform each Pass, for example, to handle data 

input or data transfer between files, as well as the main computation. 

However, only the effects of a given pass as a whole will be presented. 

Computation of the CW solution replaces Passes 1 and 2 with a single 

program. 
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2.6.2.1 Pass 1 

Pass 1 accepts as input, details of the annular array. For 

example, number of rings and frequency, the grid of points at which the 

ultrasonic field is to be computed, and the excitation pulse shape to 

be used. 

An automatic adaptive quadrature subroutine is used to perform the 

numerical integration( "QUANC8 ", Forsythe et al., 1977). 

The integral of equation 2.1 is well behaved throughout most of the 

field. However, there are certain field points particularly associated 

with the geometrical projection of the array, where the integrand 

contains severe discontinuities. These may result in false convergence 

in the integration routine which may pass undetected. Such points occur 

only occasionally and are easily detected in the final plot by inspection. 

A more sophisticated technique to correctly handle the discontinuities 

could be used (for the general procedure see Arditi et al., p 49) but was 

not considered worthwhile in the time available. 

The output from Pass 1 is the pressure pulse from each ring as a 

function of time at each field point and is stored in a data file on the 

bulk storage device. 

2.6.2.2 Pass 2 

Pass 2 simulates focusing and signal processing. It combines the 

'component' pulses from each ring, at a given field point, to form the 

resultant pulse from the whole array. Input is in the form of fixed 

delays, for a fixed focus at a single depth, or the specification of an 

appropriate delay function to simulate a swept focus. Various forms of 

signal processing may be implemented by loading different subroutine 

subprograms with the main program before running it. Signal processing 

can be performed either before or after the component pulses are combined. 

-37 - 



After the resultant pulse has been computed its amplitude at any 

given field point is found and stored. This characterises the field 

at that point. Other techniques may be used to simulate the 

rectification and smoothing of the pulse which occurs in a real system 

but were not considered of any benefit here. 

2.6.2.3 Pass 3 

Pass 3 is a flexible display and data analysis program which takes 

the output of Pass 2 as input. Pass 3 is highly interactive to allow 

the most suitable display of a given data set to be obtained. The 

desired plot is arrived at while the data is viewed on the VDU. It may 

then be hard- copied on the electrostatic printer /plotter. Two examples 

of plotter output are shown in figures 2.10 and 2.11. One is drawn on 

a logarithmic and the other on a linear scale. 

Other possibilities include the provision for loading a data pro- 

cessing subroutine with the main program. This allows automatic calcu- 

lation of such details as the -15 dB beam width of a given cross section, 

for example. 

Another program available, which does not fall directly in the main 

Pass 1 -2 -3 stream, performs the same data manipulations as Pass 2 but 

also allows component and resultant pulses to be displayed at each stage 

of the processing. Like Pass 3 this is a highly interactive program 

allowing the details of pulse shape at a given field point to be viewed 

and a hard copy to be made if so desired (figure 2.12). 

2.6.2.4 Continuous Wave Simulation Program 

This program replaces Passes 1. and 2 above. It uses a standard 

algorithm to compute the zero'th order Bessel function in equation 2.7. 

All the appropriate input parameters, numbers of rings, ring radii, 

frequency, may be entered by the user. 

-38- 
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compatible with that of Pass 2, represents the CW focal plane response 

of an array of ideally narrow concentric annuli. 

2.7 Discussion of Continuous Wave Simulation Results 

The model for the focal plane transmission response of an array, 

discussed in Section 2.4.2, leads to an expression for the response given 

by equation 2.7: 

ñ = >%) . To (ic.r\ 
Az 

In determining the amplitude response the phase term e'1' has been 

omitted as it is independent of i. 

Three variables of interest may be identified from the above equation, 

n,wi and ri, that is the number of rings, the weighting factor applied to 

each ring (apodisation) and the radius of each ring (ring arrangement). 

The program discussed in Section 2.6.2.4 has been used to investigate the 

effects of these three variables on the array response. During the 

investigation the outer radius of the array rn, has been kept constant at 

11.5 mm. This was considered a reasonable value for the type of array 

being designed, see Section 3.3.1.5. z and were also held constant at 

100 mm and 0.44 mm (_ 3.5 MHZ), respectively. The spatial scales on the 

graphs reflect these choices. This in no way reduces the generality of 

the results which may be scaled in length to apply to other rn, x, or z, 

by the use of the appropriate factor. The factor ui has also been chosen 

so that its maximum value within the aperture is unity. 

In practice, array rings are of finite width. Considering relative 

widths, two specific cases of interest may be identified: 

(1) where the rings are of equal area; and 

(2) where they are of equal width. 



These two cases are modelled in the above equation by choosing the 

following forms for wi: 

(1) equal area i.o x of 

(2) equal width - 

where 40(.1. represents an apodising function applied electronically. 

When no electronic apodisation is applied (c =1.0) rings of equal area 

have a constant 'natural' weight. For rings of equal width the weight 

is directly proportional to the position of the ring within the array 

aperture. In reality the relative weight of a finite width ring varies 

with depth, the above approximations being most realistic in the far - 

field or at a focus. 

2.7.1 Effects of Number of Rings 

The effect of number of rings n, on beam quality is considered for 

an array of evenly spaced rings. The results are presented in figures 

2.13 and 2.14. As the number of rings increases the array response 

asymptotically approaches a limiting value. A small number of rings 

(4.15) achieves a response similar to that of a filled aperture. The 

change in array response is slower for arrays of equal area rings than for 

those of equal width. The main features as n increases are as follows: 

(1) An increase in the width of the main lobe. Rings 

are added nearer the centre of the array, whose energy 

is less well localised about the central axis. 

(2) A steady decrease in the height of the maximum side 

lobe. As more rings are added this occurs further 

and further off -axis. Consequently, there is less 

energy in the diverging wave which forms it. 

(3) The first side lobe also decreases monotonically for 

equal width rings. For equal area rings a sharp 

-1,3 - 



Figure 2.13: Effect of number of rings on array focal plane 
response (equal area rings). 

(a) -15dB main lobe half width vs. number of rings. 
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Figure 2.13: Effect of number of rings on array focal plane 
response (equal area rings). 

(c) maximum side lobe level vs. number of rings. 
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Figure 2.14: Effect of number of rings on array focal plane response 
(equal width rings). 

(a) -15 dB main lobe half width Vs. number of rings. 
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Figure 2.14: Effect of number of rings on array focal plane, 
response (equal width rings) 

(c) maximum side lobe level vs. number of rings. 
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minimum at 3 rings is observed after which the 

level increases towards its final value. 

The values of the beam quality parameters for a filled aperture 

focused at the same depth as the array are indicated on both sets of 

figures. They represent the limiting values to which an array of 

equal width rings approaches. This is to be expected as the areas of 

the equal width rings are proportional to radius, as is the area at any 

given radius, in a filled aperture. 

In the context of array design these results suggest that an array 

may be fabricated having a focal plane response similar to that of a 

filled aperture, with 10 rings or less. In particular, 4 or 5 rings 

are sufficient for arrays with rings of equal width. 

By altering the number of rings the array may be designed to 

optimise some particular feature. However, the choice between optimum 

side lobe level and main lobe width is always a compromise. It should 

also be remembered that the addition of each ring can represent a marked 

increase in cost and complexity of the system. For arrays intended for 

use with signal processing techniques a larger number of returned signals 

is probably required to obtain optimum results. 

Based on these results, investigation of the effects of ring 

arrangement and apodisation will be performed for 4 and 10 ring arrays. 

These represent an array similar to the one envisaged as a prototype in 

the actual system and one well into the limiting region of response shape. 

2.7.2 Effects of Ring Arrangement 

The alteration of the position of the rings relative to one another 

within the aperture has a pronounced effect on beam quality. The 

individual Bessel function responses are expanded or contracted as the 

rings are made smaller or larger in radius, respectively. The degree 



of constructive and destructive interference amongst the side lobes 

and the width of the main lobe are varied. 

To investigate the effects of ring arrangement, the ring radii have 

been chosen to follow two (arbitrary) functions containing a single 

parameter which defines a particular ring arrangement. Evenly spaced 

rings are defined as the norm and variations are referred to the results 

for this case. 

Four variations have been performed: 

(1) with the rings concentrated towards r = rn 

(2) with the rings concentrated towards r = 0 

(3) with the rings concentrated towards r = 0.5rn 

(4) with the rings concentrated away from r = 0.5rn 

Two functions are used to produce these variations. Variation of f1 

in equations 2.8 and 2.9 produces the desired ring arrangement: 

types 1 and 2 

ri 
! ñ / 

r 
= 1.0 corresponds to evenly spaced rings; 

_ -_2.8 

types 3 and 4 

l ll = 213 -0.111 3 

+ 
(-3+ 0.15(il t ( +0.75)(1) - - -R.9 

1J 

j3 = 0.25 corresponds to evenly spaced rings. 

The choice of a specific function out of the many which would 

produce similar variations was arbitrary. Extreme values for these 

functions are shown in figures 2.15 and 2.16 along with the variations 

in beam quality factors. The results of varying ring arrangement are 

presented for arrays of equal area rings in figures 2.17 and 2.19 and 

equal width rings in figures 2.18 and 2.20. 

2.7.2.1 Major Features of the Results 

The beam quality factors of equal area ring arrays show a marked 



Figure 2.15: Normalised ring radius (ri./1-0 vs. relative 
position (i /n) for extreme values of (J in 
equation 2.8: 

(a) = 0.2, (b) ß = 1.0, (c) = 2.0. 

.N 

X X 

X 

X 

X 

r 
% 

X 

X 

X 

X ti 

X 
RRRR4 R01.15 



Figure 2.16: Normalised ring radius (rt /rh) vs. relative 
position (i /n) for extreme values of IS in 
equation 2.9: 

(a) 43 = 0.0, (b) = 0.25, (c) ß = 1.0. 
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Figure 2.17: Effect of ring arrangement on array focal plane 
response (equal area rings; equation 2.8). 

(a) -15dB main lobe half width vs. (3 , 

4' 

(b) 

o 

e 

o 

o 

K - 
o- 

1st side lobe level vs. 

A 

o- 

0-o- 

1 
Id "10" 
7 
W 
J 

E- 

e 

o + e 

o 

C , : 
O O 

O O 

o 1_ 

-52. - 



Figure 2.17: Effect of ring arrangement on array focal plane, 
response (equal area rings; equation 2.8). 

(c) maximum side lobe level vs. 13 
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Figure 2.18: Effect of ring arrangement on array focal plane 
response (equal width rings; equation 2.8). 

(a) -15dB main lobe half width vs. . 
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Figure 2.18: Effect of ring arrangement on array focal plane, 
response (equal width rings; equation 2.8). 

(c) maximum side lobe level vs. ß 
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Figure 2.19: Effect of ring arrangement on array focal plane 
response (equal area rings; equation 2.19). 

(a) -15dB main lobe half width vs. . 
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Figure 2.19: Effect of ring arrangement on array focal plane 

response (equal area rings; equation 2.19). 

(c) maximum side lobe level vs. p . 
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Figure 2.20: Effect of ring arran¡,ement on array focal plane 
response (equal width rings; equation 2.19). 

(a) -15dB main lobe half width vs. 

(b) 1st side lobe level vs. 
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Figure 2.20: Effect of ring arrangement on array focal plane 
response (equal width rings; equation 2.19). 

(c) maximum side lobe level vs. 13 . 
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dependence on p, . By comparison the variations for equal width ring 

arrays are less marked and more regular. 

Variation of beam quality factors with increasing )3 

(a) In equation 2.8, for equal area ring arrays, (figure 2.17): 

1) main lobe width increases; 

2) side lobe levels pass through a series of maxima and 

minima; 

for equal width ring arrays,(figure 2.18): 

1) main lobe width increases; 

2) first side lobe level decreases; 

3) maximum side lobe level decreases and then remains 

constant for p>1.4. 

(b) In equation 2.9 (figures 2.19 and 2.20): 

In general the effect of varying the ring arrangement 

towards or away from the mean radius of the array is only slight. 

The only marked feature being a minimum of the first side lobe 

level of the equal area ring array. Part of the reason for this 

lack of variation is the relatively small variations of the 

function over the range of S3 chosen. 

2.7.2.2 General Discussion 

It has been shown that side lobe levels and main lobe width are 

sensitive to ring arrangement. Any arrangement which tends to place a 

preponderance of rings towards the centre of the array tends to widen 

the main lobe, because the energy from these rings is less well 

localised about the central axis (figures 2.17(a) and 2.18 (a)). 

The reverse is true where rings are concentrated towards the outer edge. 

The response of each ring consists of a main lobe and a series of 

positive and negative going side lobes (the J0 Bessel function), the 
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width of these lobes increases with decreasing ring radius. Hence, 

as radii are gradually increased or decreased with respect to one another 

interference maxima and minima are observed at any given point in the 

response and while observing particular side lobes (figures 2.17 - 2.20, 

(b) and (c)). 

When the responses from each ring have the same on -axis magnitude 

independent of radius (equal area rings, Wi = 1.0) there are pronounced 

interference effects in the definition of the side lobes (e.g. figures 

2.17(b) and (c)). The responses of the inner rings dominate the width 

of the main lobe (e.g. figure 2.17(a)). Hence, larger variations in 

beam quality factors are observed. Particular values of F3 suggest the 

possibility of marked improvements in side lobe response without major 

sacrifice of main lobe width. However, the variability of the response 

and the speed with which it changes in the region of minima indicates a 

strong dependence on ring radius, and suggests poor tolerance of 

manufacturing errors. With the model used to arrive at these results, 

rings are free to move within the aperture. In practice this is not 

true because of the finite width of the rings. Whatever radius is 

chosen to represent a ring, may only be brought as close to the next ring 

as slightly greater than the ring width, see Section 3.3.1.8. This 

constraint is more severe for equal area rings, where in order to maintain 

an equal area, rings towards the centre of the array must increase their 

width at a rate somewhat greater than their rate of decrease of radius. 

For equal width rings the variations in response are smoother and 

generally monotonic, (e.g. figure 2.18). The outer ring has the highest 

on axis response. The respohse of rings closer to the centre decreases 

with decreasing radius. The decrease in response from rings as they move 

towards the centre is responsible for the smooth variation in beam 



characteristics with varying 13 . As a ring is moved closer and 

closer to the centre, its contribution to the response gets less and 

less. Hence, limiting values are approached. The more even variation 

of response with 13 suggests greater tolerance of manufacturing errors. 

As all the rings have equal width, they have greater freedom, 

particularly towards the centre of the aperture, than equal area rings. 

The functions chosen to control variation of ring arrangement have 

been arbitrary, within the constraint that the four general variations 

outlined in Section 2.7.2 be achieved. Variations of ring arrangement 

with similar general characteristics could be obtained with many other 

functions. The general features of the beam quality parameters would 

be similar whatever the function, but specific features would not. 

All the figures indicate that the responses of 4 and 10 ring arrays 

are very similar, although particular features (e.g. the minimum in 

figure 2.19(b)) occur at different values of 13 . The variation of 

array response with number of rings has only been considered for evenly 

spaced rings. The effect of number of rings for some other ring 

arrangement has not been investigated, but is assumed to be similar. 

The fact that this is only partially true is indicated by figures 2.17(c) 

and 2.18(a) where the 4 and 10 ring responses cross at various points. 

This suggests that some other parameters such as minimum or maximum ring 

spacing may be of more fundamental significance than either number of 

rings or ring arrangement, both of which vary these quantities. 

2.7.2.3 Implications for Array Design 

The implications of this section for array design must be read in 

conjunction with similar sections for the effects on array response of 

number of rings, apodisation and practical construction techniques, 

(Sections 2.7.1, 2.7.3.3 and Chapter 3). 
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The control of side lobe levels and main lobe width by altering 

the relative positions of the annuli within the aperture of an array 

has been illustrated. Specific arrangements of rings have been shown 

to be particularly advantageous, for example, for an array of equal 

area rings, the ring arrangement given by equation 2.8 with 0.7<13(1.0 

reduces first and maximum side lobes and main lobe width (the total energy 

in the side lobes is probably increased with respect to that in the main 

lobe, but is more evenly distributed between lobes). An array of equal 

width rings has been shown to have a more predictable response. 

2.7.3 Effects of Apodisation 

The effects of apodising the array aperture for a number of different 

apodising functions are shown in figures 2.21 - 2.25. These functions 

have been applied to arrays of 4 and 10 evenly spaced rings, and both 

equal area and equal width 

apodising functions as applied 

(1) = brt 

(2) b(r;-i)+1 

( 3) z.v.? 

(4) ta ; = ex p 

ring arrays 

to equal 

1 r 

Tr, 

[-- (L) 
r 

= á (r; - 0.51 

C 

have been investigated. The 

area rings are: 

-1 4 b S o 

o<b4+ 

o , b c z 

x 

o b 4 4 
J 1 

The parameter 6 is used to vary the function over an arbitrary range 

(cf 13 for defining ring arrangement). The functions are illustrated for 

extreme values of 6 in the figures for the corresponding quality parameter 

variations. In order to apply the above functions to arrays of equal 

width rings the factor ri. /rn is introduced, for example, type (1) 
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Figure 2.21: Effect of apodisation on array focal plane response 
(equal area rings; types 1 and 2). 

(a) -15dB main lobe half width vs. ó . 
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Figure 2.21: Effect of apodisation on array focal plane response 
(equal area rings; types 1 and 2). 

(c) maximum side lobe level vs. S 



Figure 2.21: Apodisation (tai.) vs. relative position (i /n) for 
extreme values of b (equal area rings). 
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Figure 2.22: Effect of apodisation on array focal plane response 
(equal width rings; types 1 and 2). 

(a) -15dB main lobe half width vs. á . 
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Figure 2.22: Effect of apodisation on array focal plane response 
(equal width rings; types 1 and 2). 

(c) maximum side lobe level vs. i . 
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Figure 2.22: Apodisation (et) vs. relative position (i /n) for extreme values of C (equal width rings). 
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Figure 2.23: Effect of apodisation on array focal plane response 
(equal area rings; tpe 3). 

(a) -15dB main lobe half width vs. t . 
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Figure 2.23: Effect of apodisation on array focal plane response 
(equal area rings; type 3). 

(c) maximum side lobe level vs. . 
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Figure 2.24: Effect of apodisation on array focal plane response 
(equal width rings; type 3). 

(a) -15dB main lobe half width vs. . 
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Figure 2.24: Effect of apodisation on array focal plane resronse 
(equal width rings; type 3). 

(c) maximum side lobe level vs. i 

o 

(d) apodisation W¿) vs. relative position (i /n) for extreme 
values of 6 . (i) 6 = 0.0, (ii) S = 2.0. 
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Figure 2.25: Effect of apodisation on array focal plane response 
(equal area rings; type 4). 

(a) -15dB main lobe half width vs. t 

(b) 1st side lobe level vs. i 
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Figure 2.25: Effect of apodisation on array focal plane response 
(equal area rings; type 4). 

(c) maximum side lobe level vs. 
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apodisation would become: 

= ri g 

r r 
when applied to equal width rings. Type(4) has only been investigated 

for equal area rings. In all cases 8=0 corresponds to the natural 

apodisations of equal area (cai =1.0) and equal width (uki= ri/rn) ring 

arrays. Types (1) and (2) are based on linear functions and types (3) 

and (4) on Gaussian. 

2.7.3.1 Major Features of the Results 

The effects of apodisation bear many similarities to those of ring 

arrangement, with respect to the way the two different types of array 

behave. Arrays of equal area rings show less regular variations, 

particularly in side lobe levels, than do those of equal width rings. 

Variation of beam quality factors with increased weighting towards the 

array centre. 

(a) Equal area ring arrays (figures 2.21 and 2.23): 

1) main lobe width increases; 

2) the first side lobe level passes through a 

series of maxima and sharp minima; 

3) the maximum side lobe level shows little 

variation. 

(b) Equal width ring arrays (figures 2.22 and 2.24): 

1) main lobe width increases; 

2) the first side lobe level decreases monotonically; 

3) the maximum side lobe level shows little variation. 

When the apodising function has its maximum value at the mean radius of 

the array (type 4), only the first side lobe level of the 4 ring array 

shows any marked change as the apodisation is varied, (figure 2.25). 



These features are very similar to the effects of varying the ring 

arrangement about the array's mean radius, see Section 2.7.2.1. 

2.7.3.2 General Discussion 

As has already been noted for variations in ring arrangement, where 

the major portion of the active area of the array is towards its centre, 

(i.e. rings arranged closer to the centre, or higher weighting of central 

rings), energy from this region is less well localised about the central 

axis and so the beam width increases. From investigations on the 

effects of number of rings (evenly spaced) it was observed that the 

maximum side lobe level occurs at the first off -axis point where side 

lobe contributions from each ring are most closely "in phase" as radial 

distance increases. Hence, if the contribution to the maximum side lobe 

is reduced from any given ring, the contribution to the main lobe will be 

reduced by a similar factor. Because contributions from each ring are 

added, the maximum side lobe level relative to the main lobe (i.e. in dB) 

changes only gradually. 

The first side lobe is formed by a more complicated pattern of 

positive and negative contributions and may lie within the main lobe of 

inner ring contributions. Its more complex formation makes its variatio 

more difficult to predict and is reflected in the greater variations 

observed in its level. The pre- weighting effects of the "natural" 

apodisation of equal width rings has a similar effect on the response to 

further apodisation as it does to variations in ring arrangement, i.e. to 

reduce the effect of a given apodising function and particularly to make 

variations in first side lobe level more predictable. 

2.7.3.3 Implications for Array Design 

Lower side lobe levels with main lobe width improvement, or only 

slight degradation, are possible by apodising the array aperture. 
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example, with type (1) apodisation applied to equal area ring arrays, 

marked minima in first side lobe level occur, with some degree of main 

lobe narrowing. Unfortunately, for equal width rings, decreasing side 

lobe levels are always associated with increasing main lobe width and a 

favourable compromise is less easy to find. 

2.8 Summary 

The ultrasonic field has been considered from a theoretical view 

point. The relationship between pulsed and continuous wave fields has 

been investigated using constructions found in the literature. A suite 

of programs to solve the equations defining the ultrasonic field for a 

given shape and excitation of radiator has been described. A detailed 

investigation of the effects of the radiator for annular arrays has been 

performed and the results of this are summarised below. Other practical 

considerations are involved in array design. These have not been 

considered here but appear in the next chapter on the design and 

construction of a prototype array. Many of the results on array design 

from this chapter were not available when the prototype was manufactured. 

It is, however, intended to test them in future arrays. 

2.8.1 Summary of the Effects of Number of Rings, Ring Arrangement and 
Apodisation 

(1) A reasonable approximation to a filled aperture is obtained 

using only 4 or 5 rings. Limiting values are approached by 

arrays of 10 rings. 

(2) Any increasó in the dominance of the outer region of the 

array relative to the centre, either by increasing the 

relative number of rings in that region or by increased 

weighting, will reduce the main lobe width. Improvement is 
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found only for a particular direction of change of 

apodisation or ring arrangement. 

(3) For arrays of equal area rings the first side lobe 

passes through a series of maxima and minima. Values 

are found which offer an improvement over standard 

arrangements in both first side lobe level and main 

lobe width. 

(4) For equal width ring arrays the first side lobe level 

changes almost monotonically in a direction opposite 

to the variation in main lobe width. An improvement in 

both parameters at once is not possible. However, a 

marked improvement in first side lobe level is noted in 

one case for only a slight degradation in main lobe 

width. 

(5) Maximum side lobe level may generally be ignored unless 

very long pulses are used in the system. 

2.8.2 Equal Width Versus Equal Area Rings 

Although the above investigations have been conducted as if applied 

to equal width ring arrays and equal area ring arrays, in fact, the, 

specific dimensions of the rings are unimportant, so long as they appear 

narrow, as the effects of their dimensions can be simulated 

electronically, to reproduce the desired geometrical effect. The 

decision on ring width may be left to be determined by other criteria, 

(Section 3.3.1.6). 

2.8.3 Apodisation Versus Ring Arrangement 

Improvement in the ultrasonic beam quality is possible by using 

either an apodising function or by an appropriate arrangement of rings 

within the aperture. Further improvement of the beam produced by a 
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useful ring arrangement, by apodisation of the aperture, would need 

further investigation. An ultrasonic transducer is an expensive item 

and once fabricated it cannot be easily modified. Any chosen pattern 

of rings is fixed for the life of the transducer. Apodisation, 

however, which is electronically implemented, is simple to alter and 

adjust. The gains which accrue from its use are at least equal to 

those possible by altering the ring pattern. The use of apodising 

functions to tailor the beam shape would, therefore, appear to be a 

better method. This also allows the maximum distance to be maintained 

between each ring and so minimise cross talk, (Section 3.3.1.7). 



Chapter 3 

THE DESIGN AND CONSTRUCTION OF ANI,'ULAR ARRAYS 

The design of a simple single crystal ultrasonic transducer 

involves relatively few decisions compared to that of an annular array. 

3.1 Introduction 

Ultrasonic transducers have gradually increased in complexity as 

the use of ultrasound has become more wide -spread. Plane single element 

transducers have developed through fixed focus transducers, into today's 

mati- element arrays. One dimensional arrays are now commonplace. 

These are connected to sophisticated electronic packages which effectively 

steer the ultrasound beam and provide swept focusing. (One dimensional 

arrays are linear or "phased" arrays, and annular arrays if the radial 

co- ordinate is considered as the one dimension.) Two dimensional arrays 

allowing beam steering and focusing in both lateral dimensions have been 

reported as experimental at development. 

The increased complexity of arrays implies that a greater number of 

parameters must be defined in their design than for single crystal 

transducers. A number of authors have published design procedures for 

annular arrays, Melton and Thurstone (1978) and Dietz et al. (1979). 

Other authors have considered the design of linear phased arrays which 

share some similar problems, (Vogel et al.(1979)). However, design 

procedure is central to array production and so a detailed discussion is 

given in Section 3.3. 

3.2 Format of Chapter 

The chapter is split into two sections, the first covering design 

procedure, and the second, manufacturing techniques. The section on 

design is further sub -divided. Firstly, the general design of annular 



arrays is considered and certain design criteria are developed. These 

are then applied to the design of an array which fulfils the aims of the 

project laid out in Chapter 1. The chapter concludes with a 

specification for the array used to obtain the experimental results 

presented in Chapter 5. 

3.3 Array Design 

3.3.1 Design Procedure 

The procedure for the design of an annular array is summarised by 

the flow diagram, figure 3.1. Although the procedure is shown as a 

steady progression from one stage to the next, in practice this is not 

always the case. Certain decisions may give rise to impractical or 

conflicting requirements at a later stage. The process must then be 

repeated a number of times with different initial values until an 

acceptable compromise is achieved. 

Apodisation and signal processing have been included in the diagram. 

Although they are not part of the transducer itself, when performed 

electronically, they are closely associated with it. Similar 

theoretical techniques have been used to investigate their effects and 

have been discussed in Chapter 2. 

3.3.1.1 Use 

Before any other factor may be considered, the area of clinical 

application for the transducer must be clearly defined. Preferably this 

should be done in consultation with those who will eventually use the 

machine and after observation of current techniques. 

3.3.1.2 Range 

This is unambiguously defined once the area of clinical application 

has been decided upon. The only modifying factor is the possibility of 



Figure 3.1: Annular array design, flow diagram. 
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using a stand -off water bath. This may be considered where access to 

the site of interest is difficult possibly because of a large aperture 

array, or for other reasons discussed later in Section 3.3.1.6. 

3.3.1.3 Wavelength 

The wavelength of the ultrasound will define both the depth of 

penetration and resolution of the image. The att.".3..cA coefficient 

for ultrasound in tissue is inversely proportional to wavelength. In 

general, the wavelength will be chosen as the shortest possible, while 

maintaining the desired penetration, to give the best possible resolution, 

see Section 3.3.1.4. Melton and Thurstone give a thorough discussion of 

the relationship between frequency, depth of penetration, dynamic range, 

receiver gain and signal -to -noise ratio. 

3.3.1.4 Resolution 

The definition of the term "resolution" is difficult as it depends 

on both the structure of the tissue under investigation and the 

characteristics of the imaging system. Resolution defines the size of 

detail which may be observed in an image. Here, it will be considered 

only insofar as it may be affected by the transducer. 

As higher resolution, influenced by both frequency and aperture, is 

usually desired than is practicably attainable, the quotation of any 

figure to be used as a criterion to be met, is unhelpful. 

One expression relating wavelength, aperture and resolution at a 

particular depth is given by the Rayleigh Criterion which leads to: 

at = o.6(o i )' + 

a 

where d 
1 

is lateral resolution 

% is wavelength 

a is radius of the aperture 

zf is focal length 



This expression applies to the CW focal plane response of a lens. In 

practice, %1 is usually defined by the maximum depth of penetration z2 

(Section 3.3.1.3), and a, by the site of application (Section 3.3.1.1). 

3.3.1.5 Aperture 

Although aperture will be defined if a specific resolution is 

sought at a given wavelength, it has already been stated that practical 

considerations of size in relation to use, are more important. 

3.3.1.6 Ring Width 

When designing an annular array it is important that the ring widths 

fulfil a number of criteria if maximum sensitivity is to be obtained from 

the array over the complete range of interest. The path difference 6 , 

(figure 3.2) between the inner and outer edges of the ring to an on -axis 

point z, is given by 

(ri' + z't 

vi r; ¡or z » r; 
z 

If 6 exceeds 0.5 2, , the sensitivity of the array towards the point z, is 

reduced. In order to maintain an even sensitivity towards all on -axis 

points of interest, the width of the ring should be such that 640.5"), for 

z1> z> z2 (where z1 is the minimum depth of interest). The point zt, at 

which 6 = 0.57% is the near- field /far -field transition distance for the 

ring. It is, therefore, desirable to use only the far -field of any given 

ring. 

The sensitivity of the ring towards an on -axis point z>> zt, is 

given approximately by: 

sensitivity oC 6 

-(5 

OC w rL r 



Figure 3.2: Maximum contribution from ith ring at z, only if 
(1... 0.55 . 
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For large z, this function is approximately constant over diagnostic 

ranges and so the relative sensitivities of individual rings maintain 

a fixed relationship. 

The transmitted pulse shape in the far -field suffers less 

"diffraction distortion" than in the near -field. Aligning pulses from 

separate rings in a swept focus is therefore easier in this region. 

The approximation used in defining the sweep function, that the 

transmitted pulse originates at the array's centre, see Section 4.2.4.1, 

is more reasonable. 

The width of a ring should be such that only its far -field is used 

to form the resultant beam, i.e. its transition distance zt, should be 

less than the initial depth of interest zl. This condition imposes an 

upper limit on the width of the ring. 

A lower limit is imposed by the behaviour of the crystal when any 

of its lateral dimensions approach the crystal thickness. If these 

dimensions are not significantly greater than the crystal thickness then 

energy will be absorbed in radial modes of vibration. These are 

undesirable as they absorb useful energy from the normal operating mode. 

They may also introduce unwanted frequency components into the 

transducer response. In this case, as these are usually of low 

frequency, they may be filtered out by the receiver electronics. An 

arbitrary lower limit is placed on the ring width of one wavelength, or 

twice the crystal thickness, as the crystal is usually operated as a 

half wave resonator. Dietz et al. (1979) have used a width -to- thickness 

ratio of 0.6, which is lower than this. 

3.3.1.7 Ring Separation 

A number of methods may be used to separate individual rings and 

isolate them acoustically and electrically. 



(1) The array may be formed from individual crystal 

annuli separated by an acoustic and electric 

insulator which also holds them in place. 

(2) It may be machined from a single disc by forming 

grooves between the annuli. The rings are then 

defined electrically and mechanically on only one 

side of the crystal. 

(3) The rings may be defined only on the surface of 

the transducer by a suitable electrode pattern. 

Acoustic isolation between rings is provided by 

the crystal material itself. 

The degree of isolation between rings varies over the three 

methods, as does the probability of exciting radial modes of vibration. 

Capacitive coupling between rings will be similar in all three cases. 

Acoustic isolation may vary considerably, being greatest in (1) and 

least in (3). Radial modes of vibration are least likely to occur 

where the mechanical extent of intact crystal is greatest, i.e. in (3). 

All three methods of fabrication were attempted to produce arrays 

for use in this project. In both cases (1) and (2) where the 

integrity of the disc was broken the transmitted pulses from individual 

rings were observed to be unacceptably long. Using method (3) short 

pulses similar to those from commercial transducers could be obtained. 

Using techniques similar to those for producing printed circuit boards, 

accurate reproducible array patterns could be obtained (Section 3.4). 

Where the fabrication technique leaves the array "disc" partially 

or wholly mechanically intact, i.e. (2) and (3), the separation of the 

rings becomes particularly important in defining the "cross talk" between 

them. Cross talk between channels will introduce an out of phase 

component into the signal from each, which will not be correctly 



accounted for by the swept focusing electronics. This will reduce the 

focusing effect of the array. An arbitrary value of one wavelength is 

defined as a minimum ring separation for a wholly intact disc. This is 

similar to the minimum value for ring width. Values for cross talk 

between rings are given at the end of this chapter. 

3.3.1.8 Number of Rings 

The effects which number of rings has on the quality of focus 

which the array produces have been investigated theoretically in the 

previous chapter (Section 2.7.1). From these results a suitable number 

of rings may be chosen. The model used in this investigation considers 

rings to be infinitesimally narrow and so any number may be fitted 

within a given aperture. In practice rings are of a finite width and 

should have a finite separation (Sections 3.3.1.6 and 3.3.1.7). The 

number which may be placed within a given aperture is strictly limited. 

Within an aperture of radius a, the maximum number of contiguous equal 

area rings is given by: 

e, < 

where wmin is the minimum ring width as defined in Section 3.3.1.6. 

If the rings are instead, all defined to be of equal width wmin, 

then the maximum number of contiguous rings is increased to: 

'.' ' 4 .... n 

If the rings are not contiguous but have a minimum separation wmin, as 

discussed in the previous section, then the minimum number of rings is 

reduced, in the latter case to approximately 0.5nnax, and in the former 

case to slightly greater than 0.5nman, the actual value being between 

nmax and 0.5nmax. The results of the previous chapter may need to be 

modified in the light of these constraints where they suggest larger 

numbers of rings than may actùally be accommodated. 

_8c - 



3.3.1.9 Ring Arrangement and Apodisation 

These have already been considered in the previous chapter. In 

a similar way to number of rings, ring arrangements may be affected by 

the finite width and separation of real rings. 

3.3.2 Design of a Prototype Array 

The aims of this project have been defined in Section 1.6. In 

order to investigate and evaluate annular array fabrication and swept 

focusing techniques an initial project on the design and evaluation of a 

contact B -scan swept focusing system was proposed. This would also 

allow confirmation of the theoretical model, enabling it to be applied 

with confidence in future designs. The eventual aim was the 

incorporation of an array into a mechanical real -time abdominal scanner. 

The abdomen was chosen as the "target" site for investigation 

using the prototype system. This was for three reasons: 

(1) eventual incorporation in an abdominal scanner; 

(2) ease of accessibility, particularly for relatively 

large aperture arrays; 

(3) local expertise and experience in general abdominal 

scanning. 

Because of their relatively large diameter, annular arrays are 

often designed for use in conjunction with a water bath, (Kossoff (1975) 

and Melton and Thurstone). This also facilitates location of the 

transition distances of individual rings prior to the initial depth of 

interest. The intention that this array be a precursor of one fitted 

into a real -time head precluded this idea. In abdominal scanning the 

range of interest extends from approximately 10 to 200 mm under the 

skin's surface. Routine clinical practice suggests that 3.5 MHz is the 

highest frequency which will give this degree of penetration. This 

corresponds to a wavelength in tissue of about 0.44 mm. 

_an _ 



To obtain a resolution of 0.5 mm midrange, i.e. at 100 mm depth, 

an aperture of about 62 mm would be required (Section 3.3.1.4). For 

a contact scanner this is clearly impracticable. The maximum 

transducer diameter useable in a contact transducer is about 30 mm. 

The prototype array was designed around a 30 mm diameter piezo- 

electric crystal. The overall diameter of the transducer is 36 mm and 

that of the active area is 24 mm. As this is a prototype array, effort 

was not put into obtaining the maximum active area for a given 

transducer diameter. The resolution, defined by the Rayleigh Criterion 

for a 24 mm diameter, 3.5 MHz radiator focused at various depths, is 

given in Table 3.1. Certain criteria which define maximum and minimum 

ring widths have been identified in Section 3.3.1.6. A 3.5 MHz, 

PZT -5A ceramic crystal has a thickness of about 0.5 mm when operating 

as a half -wave resonator. The minimum allowable ring width is therefore 

1 mm. A ring of minimum width, located at the maximum radius of the 

aperture, i.e. 12 mm, has a transition distance zt, of about 51 mm. 

. Clearly this does not fulfil the condition that zt be less than z1, the 

initial depth of interest. It is not generally possible to fulfil this 

condition for a contact scanner and it is for this reason that a water 

bath is often used. In order to reduce fluctuations in sensitivity in 

the axial response of the array caused by having the transition distances 

of several rings within the range of interest, it was decided to stagger 

the zt's of each ring to produce as smooth as possible a resultant 

response from their combination. Figure 3.3 shows the reception 

sensitivity responses of a series of evenly spaced annuli with a maximum 

radius of 12 mm excited with a short pulse of ultrasound. These results 

were obtained using the beam simulation programs introduced in Chapter 2. 

A number of such plots were considered and the optimum was that in which 

each ring has its minimum width, i.e. 1 mm. The combined reception 



Table 3.1 Resolution (defined by the Rayleigh criterion) 

vs. depth, for a 3.5 MHz, 24 mm diam. radiator 

focused at each depth. 

Depth (mm) Resolution (mm) 

20 0.5 

50 1.1 

100 2.2 

150 3.3 

200 4.4 
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response of the rings assuming a swept focus is given in figure 3.3(e). 

The overall variation in sensitivity is ± 5 dB. 

Sensitivity is proportional to area for z 2zt. In the far - 

field, equal width rings have sensitivities in proportion to one another 

as their radii. This variation of sensitivity between rings was found 

undesirable from the point of view of the receiving electronics and the 

introduction of apodising functions. The advantages to having 

approximately equal signals from all rings at the input to the receivers 

outweighs the small advantages which might be achieved by varying ring 

widths to give a more even on -axis response. A better design would have 

rings of equal area. 

The minimum allowable separation for the rings (Section 3.3.1.7) is 

similar to the minimum ring width, 1 mm for a 3.5 MHz array. This 

constraint was not applicable to this array as all the separations are 

greater than the minimum. 

The rings in was decided upon from 

the results of Melton and Thurstone and those presented in Section 2.7.1. 

4 or 5 rings were identified as sufficient to give a response approaching 

that of a filled aperture. Additional considerations of cost led to the 

choice of 4 rings. As no results were available at that time on the 

effects of ring arrangement, the rings were spaced evenly within the 

available aperture. The limitations on number of rings given in 

Section 3.3.1.8, suggest a maximum number of 6x1 mm wide annuli could be 

placed within the 24 mm aperture, separated by 1 mm. Between 3 and 6 

equal area rings could be fitted suitably spaced. These figures indicate 

the quite severe constraints on the useable number when designing with 

relatively small array apertures. 
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3.4 Array Manufacture 

The design and manufacture of simple single crystal transducers 

has been given by Bow (1979) based on backing and waveplating 

considerations published by Kossoff (1966) and Posakony (1975). This 

method, with slight modifications,.has been used to produce annular 

array transducers with appropriate backing material and a quarter wave 

matching layer. Figure 3.4 shows the general construction of a 

prototype array. 

The backing material is a mixture of Flexane 95 (Devcon Ltd), a 

two part room temperature vulcanising rubber compound, and tungsten 

powder, centrifuged down onto the back of the crystal. The quarter 

wave matching layer is a mixture of tungsten powder and Araldite MY753 

potting compound (Ciba -Geigy Ltd.) machined and then lapped to the 

correct thickness. The crystal material is PZT -5A piezo- electric 

ceramic. Prototype arrays were formed from 30 mm diameter discs which 

had both sides silvered. Three methods of forming the actual array 

from the basic crystal were attempted. These have already been 

discussed in Section 3.3.1.7 and method (3) was the one used. 

The crystal itself is left mechanically intact, the array being 

defined by etching away the electrode in the appropriate pattern on both 

sides. Small joining sections of the electrode are left between annuli 

on one side which forms the common or "ground" electrode. Fine 

insulated wires are soldered to the edges of the rings on the reverse 

side to carry the necessary signals. It is this side which eventually 

faces into the backing material. 

The array is produced in a manner similar to the production of 

printed circuit boards. The crystal is first dipped into an ultra- violet 

sensitive etch resist lacquer, Kodak KPCR. When this is dry it is 
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exposed via a suitable mask to ultra -violet radiation. Subsequent 

development in the appropriate developer and etching in ferric nitrate 

solution removes the silvering from the required regions. The mask 

was photo reduced for accuracy from a large scale drawing. 

Preparation, through coating, exposure, development and etching, is a 

process lasting about half a day. A further two to three days is 

required to add leads, back, wave plate and test the finished transducer. 

The process is illustrated at various stages in figure 3.5. 

Series tuning inductors to match the impedance of individual rings 

to the transmitters are added close to the array. These were chosen 

empirically by observing their effects on the pulse -echo pulse shape and 

mounted on the crystal holder. 

A number of attempts at constructing a useful prototype array were 

made. The array used for obtaining the experimental results given in 

Chapter 5 was array $ 2(c). Details of the array are given in Table 3.2. 

3.5 Summary 

The design procedure for an annular array has been discussed. 

Various constraints have been identified and the effects of these 

estimated. The procedure has been illustrated by considering the design 

of an array suitable for the fulfilment of the aims of this project 

referred to in Chapter 1. This has resulted in the manufacture of a 

3.5 MHz, 4 ring annular array of diameter 24 mm intended for use as an 

abdominal contact scanner. Plots of the beam from this array and images 

produced using it are presented in Chapter 5. 

Methods of fabricating arrays in the laboratory have been discussed 

and the most suitable is identified. This method has been used to 

successfully manufacture a number of arrays. 
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Figure 3.5: Annular array transducer construction: 

(a) PZT disc and UV opaque mask, 

(b) Array showing electrical connections to individual annuli. 



Figure 3.5: Annular array transducer construction: 

(c) Array mounted in holder, prior to backing, 

(d) Backed and waveplated (waveplate prior to lapping down). 
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Table 3.2 Specification, annular array VF2c. 

Nominal operating frequency: 3.5 MHz. 

Approximate zero -crossing frequency of transmitted pulse: 2.5 MHz. 

Dimensions: 

Radius (mm ± 0.025) 

Ring Inner Outer Average 

1 2.34 3.32 2.83 

2 5.28 6.26 5.77 

3 8.16 9.14 8.65 

4 11.05 12.06 11.55 

Tuning inductors (series): 

Ring Inductor (t.H) 

1 3.3 

2 1.5 

3 0.47 

4 

Crosstalk: (array driven continuous wave in air, with each annulus 

terminated in 47s1.). 

Maximum cross talk between any two rings 

at 3.5 MHz: -24dB 

in frequency range 1.5 - 5.5 MHz: -16dB 



Chapter 4 

ELECTpCI+ICS: DESIGN AND IMPT,T iE T;,TIGN 

The electronics of a dynamic focusing unit is centred on the 

provision of time variable echo delays. 

4.1 Introduction 

The design of an annular array is more complex than that of a 

single crystal transducer, likewise that of the electronic unit which 

generates and receives the signals for the array. The unit must be 

capable of all the standard functions of transmission and reception of 

ultrasonic pulses and these features must be replicated for each element 

of the array. Additionally, the unit must apply the correct dynamic 

delays to the signals received from each element, to achieve a dynamic 

focus. Processing of the signals from each ring before they are 

combined, is a further feature which may be incorporated into an array 

system. 

4.1.1 General Features of a Dynamic Focusing System 

The detailed configuration of a dynamically focused annular array 

system may vary considerably from one to the next. General features 

readily identifiable in them all are illustrated in figure 4.1. 

The array is excited by one or more transmitters. Use of more 

than one transmitter facilitates achievement of a fixed focus on 

transmission. Echoes returning to the array are fed from each ring to 

the receiver electronics where they are amplified. They may then be 

processed separately either before or after the appropriate variable 

delay has been imparted. The effects of such processing as non -linear 

amplification have been discussed (Section 1.5.2). Subsequently the 

signals are combined. Combination usually takes the form of summation, 

-101- 



F
i
g
u
r
e
 
4
.
1
:
 

G
e
n
e
r
a
l
 
f
e
a
t
u
r
e
s
 
o
f
 
a
 
d
y
n
a
m
i
c
 
f
o
c
u
s
i
n
g
 
s
y
s
t
e
m
.
 

A
lC

0.
 A

V
 

T
R

A
N

S
M

\T
ï'E

R
S

 

S\
C

,N
 A

L
 

,ti
N

A
M

\C
 

\C
,N

 A
L 

R
E

C
E

 IV
 E

R
 

13
-1

k0
C

E
5N

N
A

 
1)

E
U

A
N

S
 

C
1J

M
$\

N
 A

T
 \O

N
 

M
U

LT
\P

LE
 

gt
G

N
A

L 
15

A
T

F\
 

N
C

aL
E

 
C

D
M

ß
1N

E
..3

) 

-P
bb

vc
 1

oN
 

SE
N

5I
N

C
, 

T
R

 A
N

°S
l)

C
.E

îZ
 

-r
o 

E
A

C
H

 
11

.\N
C

{ 
O

F
 T

H
E

 
A

R
A

N
 

"S
i. 

F
. 

S
\C

,N
A

L 

S
\C

,N
 A

l_
 

l'A
1J

C
_E

°s
5\

N
î.\

 

V
 I
.
D
E
.
O
 

A
-S

C
A

N
 

rj\
c,

N
 A

L 

FU
L

L
 

W
 A

V
E

 

E
C

T
 IF

 \ C
 A

-C
 \O

N
 

A
N

3,
 
st

A
co

 \
1I

N
A

 

1.
)\

bl
i)L

P
A

i 

E
 L

E
 C

I-
R

C
N

 IC
3 



but multiplication or other form are equally feasible if they are 

electronically possible. Further processing of the now single 

composite signal, e.g. re- expansion if the individual signals were 

previously compressed, may precede full wave rectification and smoothing. 

This video signal, along with outputs from the array position- sensing 

transducers, is passed to a standard video display package, i.e. X -Y 

display, or scan converter and T.V. monitor, etc., where a B -scan 

image is formed. 

4.2 Design and Implementation 

A detailed block diagram of the electronic unit is shown in 

figure 4.2. The design of this will be discussed as the system is 

described in detail. Each section of the system will be considered 

separately. Those parts of the unit which are standard, such as the 

receiver, will be dealt with only briefly, greater detail may be found 

elsewhere (Wells, 1977). Most attention will be paid to the parts, 

e.g. the variable delays, which are peculiar to a swept focusing system. 

4.2.1 Serial versus Parallel Data Acquisition 

Echoes from within the body are continuously received by all rings 

of the array. They may be fed via four identical but completely 

independent paths until they reach the "combination" stage of the 

electronics. The path for one channel is shown in figure 4.3. The 

variable delay has been implemented digitally using an Analogue to 

Digital (A to D) converter, digital memory, Digital to Analogue (D to A) 

converter and control electronics (Section 4.2.3.2). A similar path 

must be reproduced for each array channel. For the proposed research 

system it was not necessary to have independent channels for each array 

element. Evaluation could be performed without compromise on a less 

extensive system. 
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If echoes are only accepted on one ring at a time for each 

transmission pulse and then stored until a complete line of echoes has 

been received from each ring, much of the duplicate electronics may be 

done away with. A single channel is switched between rings on each 

new transmission pulse, see figure 4.2. "Serial data acquisition" or 

"collection ", as this technique will be called, has advantages over 

parallel data collection. 

Advantages: 

(1) low cost; 

(2) the same receiver and processing unit are used 

for each channel so that a series of parallel 

units do not have to be set up and matched; 

(3) a novel focusing technique may be implemented, 

see Section 1.6.2.1. 

Disadvantages: 

(1) the maximum possible pulse repetition frequency 

(p.r.f.) is reduced; 

(2) there is greater sensitivity to tissue movement. 

Consider an abdominal scanning system with a maximum depth of 

penetration of 190 mm. To transmit and receive one line of information 

for one ring takes about 247 r,sec. To do this for four rings and then 

to read out and display the stored information takes about 247 x 5 ,.sec = 

1.235 msec. This implies a maximum p.r.f. of about 800 Hz. For 

interfacing with a unit such as a Diasonograph where the p.r.f. is 

normally 600 Hz, this is perfectly adequate. For inclusion in a 

mechanical real -time scanner where the p.r.f. is normally about 3,000 Hz, 

it would not be sufficient. 

Tissue may move between generating a line of echoes to be received 

and stored on one channel and generating a line for the next. Consider 
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the time between an echo being generated for ring 1 and the same echo 

being generated for ring 4. The time elapsed is 3 x 247 rsec = 741 µsec. 

In this time the tissue must remain stable compared with the wavelength 

of the ultrasonic pulse. Let a reasonable stability be 0.1 wavelengths. 

At 3.5 MHz in tissue, this is 0.044 mm. (If two equi- amplitude 

sinusoids are parted by 0.1 wavelengths their combined amplitude falls by 

5 %, a separation of 0.2 wavelengths. produces a 19% fall.) Hence, the 

tissue must not move with a speed in excess of (0.044 x 10- 3)(741 x 10 -6) 

60 mm sec-1. Movement of the abdomen due to respiration occurs at a rate 

of approximately 15 cycles per minute. If the maximum displacement is 

40 mm then the tissue speed is of the order of 10 mm sec -1, below that 

which would seriously degrade the focus. 

The disadvantages become more acute for larger numbers of rings. 

They restrict the use of serial data collection to: 

(1) static B -scan imaging in regions where tissue 

movement is slow; 

(2) "frame- grab" mode on real -time scanners. 

They do not restrict the attainment of the original aims of this project, 

in that the array system may be fully investigated by beam plotting and 

imaging static phantoms. When the array is to be incorporated into a 

real -time scanner the electronic unit may readily be modified to a fully 

parallel system. 

4.2.2 Components of the Electronic Unit 

The various sections of the swept focusing electronics are listed 

below and also illustrated in the form of a block diagram in figure 4.2. 

(1) Transmitters and attenuator banks. 

(2) Receiver "front -end" protection and preamplifiers. 

(3) Multiplexer. 
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(4) Amplifier with Time Gain Compensation (T.G.C.). 

(5) Signal processing block. 

(6) Low pass filter. 

(7) Analogue to digital converter. 

(8) Digital memories. 

(9) Digital to analogue converters. 

(10) .Fixed input clock. 

(11) Swept output clocks. 

(12) Signal combination. 

(13) Full wave rectification and smoothing. 

(14) Display and position sensing electronics (Fischer 

4201 Diasonograph). 

(15) Digital control circuitry. 

The electronic unit was designed initially for interface to a Fischer 

4201 Diasonograph, static B- scanner. The B -scan unit provides a 

pulse to control the timing of the swept focusing unit, from which an 

A -scan video line is fed into the Diasonograph digital scan converter. 

Items (1), (2), (4), (13) and (14) are standard circuits of which 

examples may be found in many instruments and texts on ultrasonics and 

so they will be dealt with only briefly. Those parts which are 

peculiar to a swept focusing system and which differentiate it from the 

standard system will be dealt with in more depth, particularly items 

(6) - (11) which form the delays. 

Item (15), the control logic, contains a 50 MHz crystal controlled 

and temperature stabilised master oscillator from which delays and other 

timing signals are derived with an uncertainty of 10 nsec. This 

corresponds to 0.035 of a period at 3.5 MHz. Signals derived from the 

control logic may be referred to in association with the parts of the 

unit to which they apply. Its detailed operation will not be discussed 

as it is standard logic circuitry. 
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4.2.2.1 Transmitters and Attenuator Banks 

A separate transmitter is connected to each ring of the array. 

Their firing times are delayed relative to one another. In this way a 

fixed focus can be achieved on transmission. The type of focus, e.g. 

point focus or line focus, and the depth at which the focus occurs are 

defined by the magnitudes of the relative delays. 

Each transmitter fires on reception of a TTL pulse from the control 

logic. There is a variation in transmitter output pulse height of 

±3ió, from pulse to pulse, due to the short recovery time allowed between 

pulses, 250 rsec. Each transmitter is capable of providing at least 

320 volts across any ring of the array, with a pulse width of 1 rec. 

The output from each transmitter is fed via a switchableT[ attenuator 

network giving 0, 10, 20, 30 and 0, 2, 4, 6, 8 dB attenuation steps. 

Apodisation may be achieved on transmission by introducing different 

attenuations into each transmitter line or by adjusting the transmitter 

supply voltages. 

4.2.2.2 Receiver "Front -End" Protection and Preamplifiers 

The preamplifiers are at all times connected across their 

respective rings. In order to protect these sensitive first stages from 

the high excitation voltages produced by the transmitters, some form of 

"front -end" protection must be included. This is a standard circuit with 

two back to back diodes as its basis. Impedance matching is also 

incorporated, to correctly couple the transducer impedance to that of the 

preamplifier input stage. Following the protection circuit is a three 

stage l'ET preamplifier for each ring. These have a 70dB maximum gain, a 

band width of 10 MHz and a dynamic range of 50 dB. 

4.2.2.3 Multiplex Unit 

Immediately following the initial protection and first preamplifier 
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stage is an r.f. multiplex unit which switches the outputs one ring at 

a time to the receiver, until a complete line of information has been 

stored in the unit's memory, from each ring. Multiplexing in this way 

necessitates the use of only one receiver, signal processing block and 

stages in the variable delays prior to the memories. 

4.2.2.4 Main Receiver 

The main receiver is a standard three stage FET wide band r.f. 

amplifier with T.G.C. facility. It has a gain of 48 dB, with a band 

width of 1.5 - 10 MHz and dynamic range of 60 dB. The time gain controls 

available are near gain, delay and slope. 

driving a 50 .fL load. 

4.2.2.5 Signal Processing 

The output is capable of 

This may take any electronically feasible form. The most common 

types of processing involve dynamic range compression. It is envisaged 

that logarithmic compression would be used at this point, the advantages 

of which have been discussed in Section 1.5.2. No form of processing 

was used in obtaining the results presented in Chapter 5. 

4.2.2.6 Signal Combination 

An inverting summing amplifier is used to sum the r.f. signals from 

each channel. This allows an apodising function to be implemented on 

reception by suitable weighting of the amplifier inputs. Any other form 

of signal combination electronically feasible, could be incorporated as 

an alternative. 

4.2.2.7 Full Wave Rectification and Smoothing 

The single r.f. signal from the summing amplifier is full wave 

rectified and smoothed. This signal feeds a 50 IL line driver which 



provides the A -scan video signal to be fed into the scan converter 

of the Diasonograph. The driver output begins to saturate at ^'1V 

and clips at ^,1.8V, to prevent damage to the Diasonograph input. 

The noise level at this output is -' -10mV. 

4.2.3 Dynamic Delays 

Dynamic delay of the signals from each region of the array lies at 

the heart of the swept focusing system. As echoes are returned from 

increasing depth the delay imparted to each channel must be altered so 

as to maintain the signals in phase at the delays' outputs. 

4.2.3.1 Variable Delay Lines 

Three major means of imparting the appropriate delays are 

identified in the literature: 

(1) analogue lumped- constant tapped delay lines; 

(2) Charged Coupled Device (CCD) analogue serial delay 

lines; 

(3) digital delays (using random access memory or shift 

registers) . 

Variable delays using analogue lumped -constant tapped delay lines 

involve the switching of signals from each ring onto the appropriate 

delay line tap. The tap is chosen to give the requisite delay for that 

ring, for that point in the receive cycle. The coherent summation of 

the signals from each ring appears at the end of the delay line. 

McKieghen and Buchin (1977) list some of their disadvantages as "bulky, 

expensive and introduce insertion losses and phase distortion ", 

particularly when used for long delays. A further disadvantage is that 

the minimum delay increment is limited by the distance between taps. 

To obtain very fine increments requires many taps. 
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CCD analogue serial delay lines operate by passing a charge 

"packet" proportional to the voltage at the device input, along its 

surface from under one "capacitor" to the next. The device samples 

the input waveform and stores it, up to the maximum number of "bits" it 

possesses. By reading the data out at a different clock rate from 

that at which it was written in or at a varying clock rate, fixed or 

variable delays may be obtained. 

CCD's are sampling devices. An ultrasonic pulse has a bandwidth 

similar to its centre frequency. To avoid aliasing, a sampling rate 

of at least twice the highest frequency component, equivalent to 3 

times the centre frequency, is necessary. Rates of 4 - 5 times the 

centre frequency are desirable in practice. A nominally 3.5 MHz pulse 

should be sampled at 17.5 MHz and a 5 MHz pulse at 25 MHz. Sampling 

rates for devices available at the start of this project were limited 

to the low megahertz range, necessitating multiplexing two or more 

devices together to effectively increase the sampling rate. 

CCD's exhibit a limited signal -to -noise ratio. McKieghan and 

Buchin quote 30 dB at a 4 MHz clock rate for the Reticon SAM -64 device. 

A dynamic range of 26 dB at a clock rate of 20 MHz was exhibited by a 

Fairchild CCD 321A device on evaluation. The maximum analogue bandwidth 

available from this device was 4 MHz. 

Leakage of charge from under each "capacitor" in a CCD limits the 

maximum time that a signal may be held. The maximum delay is limited 

by this. 

Use of CCD's as variable delays in beam steering and swept focusing 

applications is evident in the literature. It is also evident that such 

devices have been custom made at institutions where CCD's are being 

actively researched, see Eaton et al. (1980) and Melen et al. (1977), at 
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Stanford University. The devices available commercially are limited 

in number and performance and there seems little commercial interest in 

producing and marketing new devices. 

Digital delays, like CCD's, rely on sampling and temporary storage 

of the r.f. signal. A to D converters working at the necessary clock 

rates are expensive. The dynamic range of the signal is limited by the 

maximum number of;bits to which the converter will digitise. It may not 

be possible to obtain sufficiently large memories operating at this speed, 

necessitating the multiplexing together of a number of lower speed 

memories. High speed wideband D to A converters are required to produce 

the conversion back to an analogue signal. 

As with CCD's, delays are imparted either by holding the data in 

memory and then reading out at a fixed clock rate, fixed delay, or a 

variable clock rate, fixed plus variable delay. Quasi- continuous 

variation of the delay is possible. Unlike CCD's digital memories can 

hold data indefinitely without degradation. Degradation occurs only at 

the A to D and possibly D to A stages and is independent of the length of 

delay. McKeighen and Buchin, when comparing various types of variable 

delays, concluded that digital techniques offer the optimum solution. 

Corl et al.used digital techniques in their non -destructive evaluation 

system. A vast quantity of digital circuitry already exists and the 

market is still rapidly expanding. The cost of devices continues to fall. 

The choice of delays was made on the following considerations: 

(1) versatility and flexibility; 

(2) quality of signal reproduction at the output; 

(3) cost; 

(4) availability. 

Analogue tapped delay lines probably offered the cheapest solution but 

are less versatile and may introduce insertion losses and phase distortion 



for long delays. They are commonly used by commercial manufacturers 

but were not considered appropriate for the proposed research system. 

CCD's offered a promising solution but were found technically difficult 

to use and had not the required specification. Their availability was 

uncertain. Digital methods offered versatility and flexibility, a 

high quality of reproduction and ready availability. The use of serial 

data collection enabled cost to be kept to an acceptable level. 

4.2.3.2 A Variable Digital Delay Line 

Figure 4.4 is a block diagram of the variable delay electronics for 

one ring. The data input to the variable delay block is an r.f. ultra- 

sonic signal with a nominal centre frequency of 3.5 MHz and bandwidth of 

approximately 1.5 - 5.5 MHz. The circuitry has been designed to handle 

pulses of centre frequency up to 5 MHz. In order to sample the incoming 

r.f. signals adequately a sample rate of five times the centre frequency, 

three times the highest frequency component, was chosen, i.e. 17.5 MHz. 

In order to prevent aliasing of higher frequency components back into 

the signal band a low pass filter was included before the A to D converter. 

This is a Matthey 7th order eliptic function low pass filter type 

FLM55OP with an upper cutoff frequency of 5.5 MHz. The A to D converter 

is a single 64 pin integrated circuit, TRW type TDC 10075, 8 bit, fully 

parallel (flash) monolithic A to D converter. Its maximum digitisation 

rate is typically 25 MHz and it has an analogue bandwidth extending to 

7 MHz. Its 8 bit capacity implies a maximum dynamic range of 48 dB. 

The sample clock is provided by a fixed frequency oscillator similar 

to those used to provide the swept clocks. After digitisation, 

successive data samples are read into successive memory locations in a 

4k x 8 bit Random Access Memory (RAM). In order to obtain the required 

speed of operation using relatively inexpensive, readily available devices, 
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4 separate lk x 8 bit RAM's were multiplexed together. Switching 

between RAM's in this manner means that individual memory chips are 

driven at only one quarter of the full sample rate. High speed data 

latches are used to hold data at the inputs and outputs of the lk blocks. 

The memory devices used were INTEL 2115A lk x 1 bit static N- Channel 

MOS RAM's. These were built up to give the full 4k x 8 bit memories. 

In further discussion they will be treated simply as single 4k x 8 bit 

RAM's capable of the required clock rate. 

A serial data collection system requires that the echo data from 

each ring be stored until data from all rings has been collected. At a 

clock rate of 17.5 MHz, 4k of memory can hold 234 rec of information. 

This corresponds to an ultrasonic line length of approximately 180 mm 

which was thought adequate for abdominal work. 

On write -in and read -out the memories are controlled by the fixed 

or swept clocks which sequentially increment the location addresses at 

which data is to be written or read. 

From the memory the data passes to a video D to A converter. The 

devices used were encapsulated screened units, Analogic type MP8318, 

8 bit video D to A converters, capable of a 40 MHz clock -in rate. The 

D to A output is passed through a Cathodean 10 MHz low pass filter to 

remove any residual clock- related frequency components from the output 

r.f. wave form. 

Variable delay line /stores form the central components of a swept 

focusing system. Central to these are the clocks which control the rate 

of data transfer. Consideration of how the clocks should be implemented 

and controlled and the specification they should meet is of great 

importance to the success of the system as a whole. It is desirable to 

control the phases of the incoming ultrasonic signals to within 0.1 of a 



period, i.e. about 29 nsec, and achieve a variation in delay between 

channels of between 0 and 3 rsec. Before going into detail of how this 

control is achieved the actual functions of frequency versus time and 

some idea of the precision required will be considered. 

4.2.4 Variable Delay Control Functions 

4.2.4.1 Dynamic Receive Focus Control Function 

An ultrasonic B -scan is made up of a series of successive lines, 

each of which represents the echoes received from structures within the 

body located along the axis of the transducer when pointed in a given 

direction. Consider a single reflector on the axis of the transducer, 

figure 4.5. The go- return path for a wave originating at the transducer 

centre is different for different points on the transducer face. The 

path length for a point B, near the transducer edge is greater than that 

for the point A, near its centre. This path difference also varies with 

the depth zR, of the reflector. Because of the difference in path lengths, 

echoes returning to the transducer may arrive there out of phase, thereby 

reducing the transducer's response to the reflector. To maximise the 

response of the transducer to on axis reflectors, a lens may be introduced 

into the path of the beam. Because the velocity of ultrasound in the lens 

is chosen to be different from that of the medium as a whole, the lens is 

able to compensate for the different path lengths by delaying signals 

returning to A relative to those returning to B, but only for a specific 

depth of reflector. Use of an annular array and variable electronic 

delays enables echoes returning to various parts of the array to be 

correctly delayed relative to one another for all depths of reflector. 

The response of the transducer is enhanced towards on -axis reflectors 
over 

an extended range limited by the performance of the electronic 
delays and 

aperture of the transducer. 



Figure 4.5: Differing path lengths from a field point to points 

on the transducer face. 

TRANSrVILER 
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Consider a three ring annular array being used to visualise a 

series of equally spaced on -axis reflectors, figure 4.6. The pulse 

from the transducer is assumed to originate at its centre. Echoes 

are received at the three annuli and fed into three electronically 

variable delays. The echoes received at the array centre remain 

equidistant. Those received at a radius r, start arriving later and 

are no longer spaced equidistantly. Equi -phase signals may be obtained 

at the delay outputs by queueing the echoes along until the first echo 

is aligned in each memory and then reading the memories out together, 

repeatedly trimming the relative delays of each channel by altering 

their clock -out rates so as to keep the echoes synchronised. Effectively, 

vector D3 is stretched, like a rubber band, until it is aligned with Dl. 

Alternatively, vector D1 may be compressed to match D3, or a combination 

of both may be performed. In practice it is better to stretch D3. Any 

variation in D1 will render the returned echoes, which should be 

equidistant in time, no longer so, and would require a non -linear time 

base to be implemented by the display electronics to maintain 

registration. Stretching D3 entails sweeping the output clock from a 

lower to a higher frequency. Compressing D1 requires the opposite. In 

order to adequately sample the ultrasonic pulses, high sampling rates are 

necessary. It then becomes increasingly difficult to run the electronics 

at even higher frequencies to achieve a high to low frequency sweep to 

compress a line. (It would be possible to scale all the read -out 

frequencies down, however this increases the time required to perform the 

operation, which is undesirable.) 

Consider data stored in two adjacent memory locations written -in at 

a frequency foHz. The time interval between the data bits is 1 /fo sec. 

If the memory is then read -out at a clock frequency of f1Hz. the time 
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interval between the bits becomes 1 /f1 sec. 

expansion ratio of the data E, is given by: 

e 1 l 1 /1 f {o 

The compression/ 

Whether it is a compression or expansion depends on the relative 

magnitudes of fo and f1. To implement a variable delay, E is made a 

function of time by making either fo, f1, or both, functions of time. 

It is assumed that if fo or f1 do vary with time, their rates of 

variation are slow compared with their periods. 

Consider reflectors A and B a distance Sz apart along the 

transducer axis, figure 4.7. Echoes returning from B to the centre of 

the array arrive a time btu, later than those from A where: 

c 

Echoes returning from B to a radius r, on the array, arrive a time it, 

later than those from A, where: 

str _ 1 (Sz+Sy) 
c 

If á y and 4.z. are small quantities: 

= 6 dy 
4. 7_ 

7-1 

Sz d (Z1+r1)' 
dz 

6z (zi * r1) 2z 
T. 

_ z 6 
s 

- (Za t r})1 

Substituting for Sy in equation 4.3: 

Str = Sz 
( 

%4 z 
(zz + r1)1 

-(22- 

- - -t 



Figure 4.7: Sweep function derivation Section 4.2.4.1. 

RßSLAY 
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In order to achieve a focus at all depths z, St,, must be made equal 

to btc for all z, by applying a variable compression /expansion function 

to one or other. That is: 

(Z) _ E(z) Otr 

Substituting for e from equation 4.1 gives: 

t= = i, f tr 

4. 

Substituting for 4tc and Str from equations 4.2 and 4.3: 

bz 1+ z = 2 áz 
c (e + rip) c 

- f (1 + z 
\ 

Equation 4.5 relates the rate at which data must be read -out of a delay 

memory relative to that at which it was read -in, in order to maintain a 

constant phase relationship for echoes from a depth z , returning to a 

radius r, on the array. 

To convert fl to a function of time, note that along the axis: 

t = Zz 

Hence: 

c 

1+ 1p\ i '0'1)-11 (t t + 
- - -4.6 

Note that if fl is to be swept from time zero, its initial value is 

0.5 fo. This is a large range over which to sweep frequency and entails 

high initial rates of change. However, actual imaging usually takes 

place from an initial depth of about 10 mm. If the initial delay is 

compensated for by queueing data up in the memories, so that echoes 



arriving from 10 mm depth are aligned for each channel before sweeping, 

the sweep range is reduced to about 0.1 fo. 

4.2.4.2 Synthetic Aperture Control Function 

An initial assumption in the above derivation was that the 

transmitted pulse originates at the array centre. The resulting sweep 

function produces a swept or zone focus effect on reception. In the 

system that has been built, using serial data acquisition, it is possible 

to produce an effective swept focus on transmission as well. This is 

implemented by transmitting and receiving on only one ring at a time. 

For any given ring the transmission pulse now originates at a radius r. 

Following a similar derivation to that outlined above, the sweep function 

required to produce a swept response on both transmission and reception 

is: 

(t} = To (t) 1 1+ rk 1 

! 

The use of this function in conjunction with an annular array is one of 

the novel features of this system. Its relationship to other focusing 

techniques described in the literature has been discussed in Section 

1.6.2.1. The improvements in beam shape which accrue are investigated 

in Section 5.6. The functions defined by equations 4.6 and 4.7 are 

illustrated in Figure 4.8. 

4.2.4.3 Representative Ring Radius 

In the above derivation the radius r, appears. In an actual array, 

rings have a finite radius. If imaging is to be performed only in the 

far -fields of all the rings, choice of a representative radius for each 

ring is simple. There, the pulse from each ring is virtually identical 

in shape and simply scaled in magnitude depending on the ring area. 
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Figure 4.8: Clock frequency vs. time. 

(a) for a dynamic focus on reception only (equation 4.6). 
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(b) for synthetic aperture focusing (equation 4.7). 
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Any consistent radius may be used to correctly align the pulses, 

e.g. inner radius of each ring, average radius, r.m.s. radius, etc. 

If, however, it is intended to perform contact B- scanning, it is 

impossible to design an array in which only the far -fields of the rings 

are used (Section 3.3.2). Pulse shape in the near -field is more 

complex and changes with depth. The results of computer simulations 

of the .transmitted pulse from array *2(c) suggest that the best 

representative radius for each ring is the inner radius. This aligns 

the pulse starts. In practice, the question is not very important as 

final pulse alignment is performed empirically. 

4.2.5 Clock Stability and Control 

The write and read memory functions of each block are under the 

control of two clocks. Data is written into memory at a fixed rate. 

It is read out at a variable rate under the control of a swept clock. 

The fixed clock is identical to the swept clock, less the voltage control 

circuitry. Figure 4.9 is a block diagram of the memory control system. 

The voltage- frequency characteristics of the Voltage Control 

Oscillators (VCO) were plotted under static conditions. The appropriate 

characteristic was combined with the required frequency -time function to 

yield the voltage ramp to control that particular VCO. The voltage - 

frequency characteristics and frequency -time functions were combined in a 

computer program and the resulting voltage -time function punched out as a 

sequence of eight bit binary numbers on paper tape. This tape was read 

into a z80 microprocessor, which was used to program the 8 bit numbers 

into an Intel 2708 lk x 8 bit ultraviolet erasable Electrically 

Programmable Read Only Memory (EPROM). The binary numbers stored 

represent a sampled version of the required voltage ramp. The sample 

interval chosen was 1 .sec. As the length of each sweep is less than 

234 r sec, more than one sweep may be stored in each PROM. Changing to 
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a different sweep is simply a matter of changing start and stop 

addresses, or plugging in a new PROM. A 1 MHz clock derived from the 

50 MHz master oscillator is used to increment the PROM address at which 

data is being read. The digital data is converted to analogue, 

smoothed and passed via gain and offset control amplifiers to a VCO. 

Each VCO consists of a stable varicap -tuned LC tuned circuit, with 

a linearised characteristic, followed by a high speed comparator to 

provide a TTL output to the digital memories. The VCO's are built 

with close tolerance high stability components and fully encapsulated in 

rubber and electrically shielded. 

The EPROM to VCO chain is an open loop. There is no feed back to 

compensate for drift or for variation in VCO characteristics under swept 

conditions. Bernadi et al. use a closed loop system in which an error 

signal is generated and used to modify the VCO control voltage to ensure 

accurate performance. Because of the cost and time involved it was 

decided not to develop such a system unless it was proven necessary. 

The clocks require sufficient stability to maintain the ultrasonic 

echo train at the output of each delay, co- phasal to with ± 0.1 periods. 

This implies an oscillator uncertainty of - 2 kHz over the period of each 

sweep (about 300 y.sec.), which represents a relative variation of - 1 

part in 8 thousand in the oscillator's 14.5 - 17.5 MHz frequency range. 

McKeighen and Buchin quote a less stringent stability requirement of 

1 part per 1000. 

The VCO control ramps are derived from a PROM look -up table via 

D to A converters. The 8 bit digitisation of the voltage control ramp 

implies an uncertainty of ± 6 kHz in VCO output or - 1 part in 3000. 

The stability of the oscillators themselves over a 1 hour period 

was measured at three fixed frequencies, see Table 4.1. Errors due to 
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Table 4.1: Voltar7e- controlled oscillator stability vs. frequency. 

Frequency (MHz) Stability (kHz) 

15.00 

16.25 

17.50 

± 1.50 

± 2.45 

± 7.60 

-130- 

Relative Stability 

± 1 part in 10,000 

± 1 part in 5,000 

± 1 part in 2,000 



variations in control ramp do not appear in these measurements. 

Other observations made from day to day at a fixed frequency of 17.5 MHz 

imply a VCO stability of better than 
± 

1 part in 4000. 

Dynamic performance of the VCO's was estimated by observation of 

actual echo trains. Final setting up of the VCO frequency versus time 

characteristic was performed empirically. Echoes returning to the array 

from an on axis spherical reflector in a water tank, were observed on 

each channel, see Section 5.3. The VCO voltage ramp gain and offset 

adjustments were used to obtain the best possible echo alignment over a 

complete line. Phase errors were typically 0.07 periods, and had a 

worst case extreme of about - 0.2 periods (equivalent to - 1 part in 

5600 and - 1 part iri 4000, respectively). 

The long term, unattended behaviour of the swept delays has not 

been fully investigated as they were always carefully adjusted before 

each trial session. It is felt that some form of feed -back control is 

probably desirable. Some reduction in the demands made on the VCO's 

would be possible by combining fixed geometrical focusing with swept 

focusing. A number of authors have described annular arrays formed from 

concave bowls for use as part of a swept focus system (e.g. Arditi et al.). 

This reduces the maximum relative delay between rings and the rate at 

which the VCO frequency must be changed. 

4.2.6 Interfacing 

The unit has been designed for ease of interface to a standard 

B- scanner. The transducer mount may be adapted to fit the arm of the 

particular scanner in use. A p.r.f. pulse from the B- scanner is fed into 

the swept focusing unit and initiates reading out of a video A -scan line 

which is fed into the B- scanner's scan converter in place of its own 

receiver output. 



The maximum rate at which the swept focusing unit can produce 

A -scan lines is 800 Hz, see Section 4.2.1. If the B- scanner attempts 

to drive the unit above this frequency it will only produce lines on 

alternate p.r.f. pulses. 

To obtain the images presented in Chapter 5 the swept focusing 

system was used with a Fischer Diasonograph 4201 Static B- Scanner with 

digital scan converter. 

4.3 Summary 

An electronic unit has been described which accepts signals from 

a 4 ring annular array, compensates for the phase variations with depth 

of the signal from each ring and produces a video A -scan output suitable 

for input to the scan converter of a standard static B- scanner. Signals 

are input serially from each ring of the array in turn. This method 

reduces overall cost without curtailing its versatility as an evaluation 

system. Associated disadvantages disqualify it from use in real -time 

imaging where parallel data collection would be necessary. Digital 

delays have been identified as the most suitable for use as dynamic delay 

elements and to meet the storage requirements of serial data acquisition. 

Control functions have been derived for the rephasing of the echo 

signals. A synthetic aperture function which accounts for the off -axis 

origin of transmitted pulses when the rings are fired individually, has 

been described. Using this novel feature, a dynamic focus response may 

be obtained on transmission as well as reception. 

The necessary VCO stability to maintain the echoes co- phasal 

throughout the depth of the scan was considered. A stability close to 

this is possible with the open loop control system used. 

Interface of the unit to a static B- scanner was described. 
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Chapter 5 

EVALUATION OF THE DYNAMIC FOCUSING SYSTEM 

Dynamic focusing presents a means of overcoming the compromise 

inherent to the design of fixed focus probes. 

5.1 Introduction 

The aims of this project have been laid out in Section 1.6. 

Annular array design has been investigated theoretically in Chapters 2 

and 3. The manufacture of an array and associated electronics has been 

described in Chapters 3 and 4. The feasibility and focusing 

capabilities of the prototype system are assessed experimentally in the 

present chapter, which also compares theoretical and experimental results 

to confirm the reasonable use of theoretical predictions in future 

designs. Assessment of the array's focusing capabilities is performed 

from iso -echo contour maps and images of phantom targets. 

5.2 Format of Chapter 

The swept focusing system has been designed as a flexible unit, so 

that the conditions under which it is being operated are clear, the 

control settings and setting up procedure are discussed in detail 

(Section 5.3). A number of different focusing modes have been 

investigated and these are outlined in Section 5.4. Section 5.5 compares 

computer beam simulations and experimental beam plots. This is followed 

by the main body of the chapter where the focusing capabilities of the 

system are assessed. 

5.3 Control Settings 

The control settings and setting up procedure prior to obtaining 

beam plots are given below. Details of the array used are given in 
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Section 3.4. 

(1) Apodisation: a weighting factor proportional to 

ring radius was used on both transmission and 

reception. For each channel the excitation voltage 

and the gain of the final summing amplifier were 

appropriately adjusted. 

(2) Time gain compensation: the T.G.C. facilities of 

the main receiver amplifier were switched out, so 

that the receiver gain was constant with time. 

(3) Attenuators: transmitter attenuation was set at 

-30 dB. The receiver attenuator was adjusted so 

that the maximum on -axis A -scan echo amplitude from the 

target was approximately 1 volt. Transmitter and 

receiver attenuator settings were noted so that the 

relative sensitivities of the different focusing 

modes could be calculated. 

(4) Transmit focus: the excitation delays for each 

channel relative to channel 4, were calculated for the 

desired focal position and then digitally programmed 

into the electronics. 

(5) Receive focus: the position of the receive focus is 

dependent on a set of initial delays and the clock 

sweep function programmed into the swept function 

control ROM's. Final setting up of the receive focus 

was performed empirically after approximate setting of 

the initial delays and programming of the ROM's with 

the appropriate function. A steel ball moveable 

along the transducer axis, was used as a target. 
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The initial delays were adjusted while observing 

echoes from it at the near point (30 mm), until 

they were aligned in each channel. The ball was 

moved to the far point (170 mm), and the echoes 

again observed. A fixed multiplying factor (gain) 

and off -set control are available for minor 

adjustment of the sweep functions. The gain 

control was used to align echoes from the far point. 

Alignment was checked at other points along the 

axis. A fixed receive focus was set up in a 

similar manner to the transmit focus but using the 

initial delays, the sweep function being disabled. 

With one exception, see Section 5.4, the receive swept focus was 

always adjusted with the array unfocused on transmission. In 

calculating the receive sweep function an assumption is made that the 

transmitted pulse originates at the centre of the transducer 

(Section 4.2.4.1). This is a reasonable assumption for points in the 

far- field. It becomes increasingly unrealistic as the near -field is 

entered. The pulse shape in the near -field is complicated and 

relatively long as contributions from each ring barely overlap. Even 

empirical adjustments become difficult. In general, alignment was 

performed for the initial cycles of the respective echoes. Observing 

the sums of various echo pairs and adjusting for a maximum was also 

found useful. In this respect the synthetic aperture focus is 

particularly advantageous. Only a single pulse from one ring is 

present in the transmission field on each transmit -receive cycle. 

The respective near -field echoes are therefore much simpler and more 

easily aligned. The sweep function takes into account the off -axis 
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origin of the transmitted pulses (Section 4.2.4.2). 

For obtaining phantom images, the control settings were as for 

beam plotting with the exception of the attenuation and T.G.C. controls. 

These were adjusted as would normally occur in imaging, to obtain the 

optimum image. 

5.4 Focusing Modes 

Storage and variable delay of the received signals from each ring 

of an array presents a flexible choice of focusing modes. The 

transmission focus may be varied by relative delay of the excitation to 

each ring. Point foci at predefined depths produced by spherical 

wavefronts, or a line focus produced by a conical wavefront, are 

possibilities. A large number of combinations of transmit and receive 

focus exist. Those chosen for investigation are listed in Table 5.1. 

Provision of the swept foci are discussed in Section 4.2.3. Mode (4) 

differs slightly from the others in that adjustment of the receive swept 

focus was performed with the array focused on transmission. 

Comparison of the prototype array with a commercial transducer is 

possible by driving it from one channel of the swept focusing unit. 

Unfortunately, probes (9) and (10) were not available at the time the beam 

plots were performed, as they would have provided a fairer comparison 

for the 24 mm aperture array. The 13 mm diameter probe is one used 

regularly for abdominal work in a busy diagnostic radiology department. 

Its imaging performance is considered good, better than that of some 19 mm 

probes. Because of its limited size it does not have as strong a 

focusing action as the larger array, particularly at depth, i.e. 100 - 

200 mm. 
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Table 5.1: Focusing modes. 

Notes: 

Index Transmit focus 

1 Unfocused 

2 Unfocused 

3 Point focus (90 mm) 

4 Point focus (90 mm) 

5 Point focus (130 mm) 

6 Point focus (90 mm) 

7 Swept focus 

Receive focus 

Unfocused 

Swept focus 

Swept focus 

Swept focus* 

Swept focus 

Point focus (90 mm) 

Swept focus 

(Synthetic aperture focus) 

8 Fischerl, 13 mm diam., 3.5 MHz, Medium Internal 
Focus (MIF) probe 

9 Diagnostic Sonar2, 19 mm diam., 3.5 MHz, Long 
Internal Focus (LIF) probe 

10 Fischer, 19 mm diam., 3.5 MHz, LIF probe. 

* See text 

(1) Fischer Ultrasound, Bankhead Crossway South, Edinburgh, 

Scotland. 

(2) Diagnostic Sonar Ltd., Livingstone, Scotland. 
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505 Comparison of Theoretical and Experimental Results 

Both pulsed and continuous wave field simulations are based on 

solution of the same equation describing the acoustic field 

(equation 2.1, Section 2.4). Experimental confirmation of theoretical 

predictions for the pulsed wave field is available in the literature, 

see Section 2.4.1.2. Further confirmation for the pulsed field of an 

annular array is presented here. 

The computer program described in Section 2.6.2 simulates the 

pulsed transmission or reception field of an annular array. Derivation 

of the transducer's pulse -echo response from this simulation is not 

strictly possible in general. Multiplying together transmission and 

reception responses to obtain the pulse -echo response has limited 

applicability, see Section 2.4.1.3. However, as only pulse -echo plots 

of the experimental field are available, this method has been used to 

provide comparable theoretical plots. 

5.5.1 Discussion 

Theoretical and experimental axial plots and cross -sectional plots 

at depths of 30, 50, 90 and 130 mm for the unfocused, and unfocused 

transmission -swept focus reception array are presented in figures 5.1 - 

5.4. The axial plots are normalised to their individual axial maxima. 

The theoretical cross -sectional plots are normalised to the on -axis value 

of the corresponding experimental plots. 

A similar shape for the unfocused- unfocused and unfocused -swept 

focus axial responses is predicted theoretically and confirmed 

experimentally. The experimental plots are, however, more peaked in the 

region of the maximum than is theoretically predicted. 

Agreement between theoretical and experimental cross -sectional 
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plots is quite good. Positioning of side lobes is correctly predicted 

although the magnitudes are not correctly estimated. 

Figures 5.5 and 5.6 present theoretical and experimental axial plots 

for the point 90 -point 90 and point 130 -swept focus modes. The peak of 

the point 90 -point 90 focus mode has actually occurred at 80 mm depth in 

the experimental case. After aligning peaks for the experimental and 

theoretical plots, agreement between the two is good. The simulation of 

the point 130 -swept response correctly predicts the features of the 

experimental plot, but agreement between their relative magnitudes is 

poor. 

The relative sensitivities at the foci are presented in Table 5.2 

for theoretical and experimental results. With the exception of the 

point 90 -point 90 mode the results agree well. 

5.5.2 Conclusions 

In spite of the limited validity of the derivation of the pulse -echo 

response from the transmission only response, theoretical and experimental 

results show good agreement. This suggests that the one way response 

simulation is very good. Comparison of this with the one way experimental 

response measured using a hydrophone is desirable; unfortunately, none 

was available. 

It is concluded that the theoretical approach laid out in Chapter 2 

represents a useful approach for the simulation of ultrasonic beams. The 

CW solution represents a limited application of the PW theory, hence its 

basic assumptions are also confirmed by the above results. Its 

interpretation for pulsed wave fields has been discussed in Section 2.5.2. 

5.6 Echo Amplitude Distributions 

5.6.1 Plotting technique 

The transducer was mounted in a water tank. 
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Table 5.2: Experimental and theoretical relative sensitivities. 

Mode Experiment* Theory* 

1 1.0 1.0 

2 2.4 2.6 

5 2.3 2.3 

6 2.2 4.o 

Notes: 

* Normalised to value for Mode 1. 
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steel ball mounted on a rigid wire was automatically scanned along a 

line through the transducer axis, in a plane perpendicular to it. A 

positional signal was fed to an X -Y oscilloscope's X- plates and the 

A -scan video signal from the swept focusing unit to the Y- plates. 

Records of the beam cross -sections were made on 35 mm film. 

Scans were performed at 10 mm axial intervals from 30mm to 170 mm. 

The oscilloscope spot size limited the display dynamic range to 20 dB. 

To increase this, plots were repeated at alternate depths with the 

Y -input sensitivity increased by 20 dB. The signal could then be 

observed down to the level of about -40 dB. "Ringing" of the 

transmitter pulse prevented useful results being obtained closer to the 

array than 30 mm. 

The ball target size may be chosen freely within wide limits. 

The resulting beam profile is unaffected by variations in ball diameter 

of between 1.6 and 100'X(Hospital Physicists Association publication 

1978). The ball used had a 4 mm diameter, i.e. 97t. 

Measurements made from enlargements of the 35 mm negatives have 

been used to produce the required iso -echo contour and axial echo 

amplitude plots. These are presented in figures 5.7 - 5.14, in the 

order they appear in Table 5.1. 

5.6.2 General Features 

A quantitative summary of the major features of the plots is given 

in Table 5.3. A detailed discussion of them is presented in the 

following sections. Column 1 lists the depths of occurrence of the 

on -axis maxima. These do not necessarily coincide with the nominal 

focal points because of the interaction between the focusing action of 

the ring's geometries, unfocused maximum at 50 mm, and that of the pulse 

delays. 
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It is apparent from the beam width measurements that the width of 

the focused beam is greater than that of the unfocused, even when the 

focus occurs at the same depth as the unfocused maximum (compare modes 

1, 2 and 7, Table 5.3). The path lengths from the array's inner and 

outer regions are different and uncompensated for in the unfocused array 

(figure 5.15). For array #2c the outer area has a greater sensitivity 

than the inner because it is larger. The contribution associated with 

it is greater. The conditioning applied to the returned signal defines 

the beam shape by the maximum amplitude observed with time at a given 

point and so the main lobe is defined mainly by the shape of the outer 

ring response, which is relatively narrow. Energy from the centre of 

the array becomes associated either with the side lobes or regions before 

or after the main pulse. On focusing, the energy from all parts of the 

array is constructively associated together at the focus. This enhances 

sensitivity. Energy previously in the side lobes is now associated 

with the main lobe and so side lobe levels drop. However, energy from 

towards the centre of the array is less well localised about the axis 

than is that from the outer regions and so the beam becomes slightly 

broader as well. 

Implementation of a dynamic receive focus improves the overall 

shape of the beam, reduces side lobe levels and increases sensitivity, 

see figures 5.7 and 5.8 and Table 5.3. It does not extend the "focal" 

region compared to the unfocused mode. Judicious selection of transmit 

and receive foci can significantly extend the focal region (point 

130 -swept and swept -swept modes, Table 5.3). 

5.6.3 Discussion 

5.6.3.1 Beam Width (Table 5.3, Columns 2 -4) 

The -10 dB beam full widths at the axial maxima are presented in 

-159- 
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Table 5.3, Column 2. It is assumed that the axial maximum is the 

point at which the beam is "most" focused. A measure of the expected 

beam width at the focus is given by the Rayleigh criterion: 

Rayleigh resolution limit -0.6rX02 A- zr ---5.1 
a 

This limit is tabulated in Column 3. It is evident from equation 5.1 

that beam width is proportional to depth and transducer radius. , In 

order to compare the efficacy of the various focusing modes the figures 

in Column 2 must be normalised with respect to these two quantities. 

The normalised values are given by: 

Normalised value Column 2 value 
Column 3 value 

- 5.2 

These are presented in Column 4. With the exception of the point 

90 -swept and swept -swept modes the array normalised widths all lie 

within - 3% of each other and about + 7% of that of the commercial. 

Fischer probe. This further confirms the correct focusing action of 

the array. The slightly lower value for the Fischer probe would be 

explained if it operates at a higher actual frequency than the array 

(their nominal frequencies are the same). 

The point 90 -swept result is inconsistent with the others probably 

because of poorer focusing action by the array in this case, see 

Section 5.6.3.4. The swept -swept mode does not fit in as its 

transmission and reception responses cannot be treated as two separate 

processes. The Rayleigh resolution limit given by equation 5.1 applies 

to the resolution of separate sources on transmission. It may be 

usefully applied as a normalisation factor in a pulse -echo system where 

the transmission and reception processes for the complete source occur 

separately. For the synthetic aperture focusing mode, pulse -echo 



responses occur separately for each ring and are then combined to form 

the overall pulse -echo response. This cannot be split into a separate 

transmission process for the whole array, followed by a reception 

process, and so normalisation based on equation 5.1 is not applicable. 

Under imaging conditions, time gain compensation is applied to the 

received signal. This compensates for attenuation of the signal with 

depth and for variations in on -axis sensitivity. Its effect on beam 

width is to increase it at points away from the maximum, particularly 

at depth. A relatively deep axial maximum may then be advantageous. 

Time gain compensated plots are discussed in Section 5.6.3.5. 

5.6.3.2 Side Lobe Levels (Table 5.3, Column 5) 

The maximum side lobe levels relative to the on -axis field maxima 

are quoted in Column 5. Side lobes present at 30 mm depth have not been 

included as "ringing" of the transmitter pulse affected these figures. 

The side lobe levels are reduced by'focusing, in most cases to below 

-36 dB, i.e. the minimum differentiable level. Side lobes present below 

this level are evident in some of the images presented later where signal 

compression before display increases the observed dynamic range. 

5.6.3.3 Sensitivity (Table 5.3, Column 7) 

Column 7 presents the amplitude sensitivities of the various focusing 

modes relative to the most sensitive. Transmitted pulse amplitude in 

the far -field is proportional to the excitation voltage VE, and transducer 

area A. The reception sensitivity of the transducer towards a similar 

point is proportional to area. These quantities are used to normalise 

the maximum echo amplitude emax, obtained using each focusing mode. 

all modes except the swept -swept mode this leads to: 

In 



SitnS.LrL,lty oC 

AivF;l ( A 
i J 

where Am is the area of the m th ring 

--5.3 

VEm is the excitation voltage applied to it. 

For the commercial transducer i = j = 1. Because the transmission - 

reception process occurs separately for each ring in turn for the swept - 

swept mode the denominator in equation 5.3 reduces to (A1VIE.Ì , for 

this case. 

The sensitivities fall into a reasonably predictable order. The 

swept -swept focus appears as the most sensitive, closely followed by the 

commercial probe. After these the other focused modes appear in order 

of depth of axial maximum. Those modes exhibiting an unfocused process 

appear lowest. Only the point 90 -point 90 appears away from its 

expected position alongside the point 90- swept* mode, see also Section 

5.5.1. The reason is unknown. When performing actual imaging, the 

swept -swept focus appears less sensitive than, for example, the point 

130 -swept mode. It requires a higher transmitter output to attain a 

similar image brightness. This is because less of the transducer's area 

is used on transmission. In terms of transmitted energy, it is more 

sensitive as illustrated by the figures in Table 5.3. 

5.6.3.4 Extent of Focal Zone (Table 5.3, Column 6) 

Column 6 presents the focal zone lengths measured between -6 dB 

points. The axial responses of unfocused- unfocused and unfocused -swept 

modes are very similar. That of the latter being more peaked. This 

similarity is predicted theoretically (Section 5.5.1). By choosing 

"complementary" transmit and receive foci a greatly extended focal zone 

can be achieved, for example with the point 130 -swept mode, see figure 



5.11. An extended focal region is also evident for the swept -swept 

and the point 90- swept* foci. 

The differences between the point 90 -swept and point 90- swept* 

modes illustrate a deficiency in the swept receive function algorithm 

used with a contact transducer. The sweep function is derived 

assuming a simple transmitted pulse originating at the array centre. 

Break down of this assumption can lead to features such as those shown in 

figure 5.9, where an on -axis minimum occurs between 130 and 140 mm. 

The degree to which this occurs is greater, the closer the transmitted 

wave is focused to the array, if the receive sweep function is set up 

with the transmitted wave unfocused. With the transmitted wave focused 

at depth there are no adverse effects, see figure 5.11 for the 130 mm 

transmit focus. Setting up of the receive swept focus with a focused 

transmitted wave also obviates the problem, see figure 5.10 for the 

point 90- swept *mode. The synthetic aperture algorithm does not suffer 

from this drawback as a more realistic assumption is made about the 

transmitted pulse's origin. 

5.6.3.5 Time Gain Compensated Distributions (Table 5.4) 

Iso -echo amplitude contour maps assuming a flat axial response have 

been drawn for unfocused -unfocused, point 90- swept *, point 130 -swept and 

swept -swept modes, see figures 5.16 - 5.19. These represent the 

transducer response in a non -attenuating medium, with an ideal time gain 

compensation function applied. Only main lobe contours are illustrated, 

side lobe contours have been omitted. The iso -echo amplitude contour 

lines form approximately linear functions of depth. Angles of divergence 

may be calculated for specific contours. These, and the -3 dB beam 

width at 50 mm depth, are presented in Table 5.4. 
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From Table 5.4 it is apparent that all three focusing modes 

produce a beam of similar width. However, that for the swept -swept 

mode is more uniform. Its divergence angles are about 30% less than 

those of the other two focusing modes. 

5.7 B -scan Images 

The following array focusing modes and commercial transducers have 

been used to assess the array's performance in the production of actual 

images, modes (1), (5), (6), (7) and transducers (8), (9) and (10), 

Table 5.1. The commercial transducers were driven via the swept focusing 

unit, except in the case of the Fischer 19 mm diameter probe (probe 10) 

which was driven directly by the Diasonograph. 

5.7.1 Test Phantoms 

Three different test phantoms were used in assessing the array's 

imaging ability: 

(1) A nylon mono -filament "ladder" phantom immersed in 

olive oil. 

(2) A 100 mm "open wire" AIUM test phantom immersed in 

water (Hospital Physicists' Association publication). 

(3) A "tissue equivalent" test phantom. 

The three phantoms are illustrated in figures 5.20 - 5.22. The 

tissue equivalent phantom is formed from a reticulated plastic foam, 

saturated with water. This provides a fine matrix of random low level 

reflectors into which may be introduced anechoic regions (holes) and 

regions of higher reflectivity (e.g. nylon monofilaments). 

Images from the 4201 Diasonograph were recorded on X -ray film via 

a'Matrix" multiformat imager. 
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Figure 5.20: Nylon monofilament ladder phantom, immersed in olive 
oil (courtesy S.Pye). 
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Figure 5.21: AIUM "Standard 100mm Test Object" immersed in water 
(courtesy American Institute for Ultrasound in Medicine). 
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5.7.2 Ladder Phantom Images 

These present no further information for the unfocused -unfocused, 

point 90 -swept and point 130 -swept modes, than already obtained from the 

beam plots. Images using the swept -swept mode, the Fischer MIF and the 

Diagnostic Sonar LIF probes are illustrated in figure 5.23. The MIF 

probe exhibits good resolution close to the transducer while the LIF 

probe exhibits it at greater depth. Away from these respective' regions 

lateral resolution is poorer for both probes. The array swept -swept 

mode combines the better features of both probes, a uniform spot size is 

maintained throughout the depth of the image. The origin of the 

multiple images of each filament in figure 5.23(a) is uncertain. 

Similar effects are not evident in other images. 

5.7.3 AIUM Test Phantom Images 

Example images of the ALUM test phantom are presented in figure 5.24. 

The transmitter and receiver attenuator settings were adjusted so that all 

the wires of the target appear in the image. Time gain compensation was 

set to give what was considered to be an "optimum" image in each case. 

(1) Point 90 -point 90 mode (figure 5.24b): illustrates 

the limited depth of focus of a large fixed focus 

aperture. (Note, this image is on a different 

scale from the others). 

(2) Point 130 -swept mode (figure 5.24c): this 

combination of fixed transmission and swept reception 

focus yields good resolution throughout the depth of 

the target with the exception of close to the 

transducer. The beam diverges only slowly with depth. 
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Figure 5.23: Ladder phantom images. 

(a) Array, tx. swept focus, rx. swept focus. 

(b) Fischer, 13mm diam. IMF probe. 

----6111=IP'' 
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Figure 5.23: Ladder phantom images. 

(c) Diagnostic Sonar, 19mm diam. LIF probe. 

ç, - DE _ - r=. 
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Figure 5.24: AIUM phantom images. 

(a) Array, tx. unfocused, rx. unfocused. 

(b) Array, tx. point focus (90mm), rx. point focus (90mm). 
(Note: different scale). 

gib 



Figure 5.24: AIUM phantom images. 

(c) Array, tx.point focus (130mm), rx. swept focus. 

(d) Array, tx. swept focus, rx. swept focus. 
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Figure 5.24: AIUM phantom images. 

(e) Fischer, 13mm diam. MIF probe. 

i r-11-1Z 

(f) Diagnostic Sonar, 19mm diam. LIF probe. 
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Figure 5.24: AIUN phantom images. 

(g) Fischer, 19mm diam. LIF probe (courtesy J. Nicoll). 
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(3) Swept -swept mode (figure 5.24d): very good lateral 

and axial resolution are maintained throughout the 

depth of the image. Side lobes are evident because 

of additional signal compression and saturation of high 

level echoes not present when beam plotting, but must 

be below -36 dB, see Table 5.3. These require some 

further investigation. 

(4) Fischer 13 mm probe (figure 5.24e): the small size 

and medium internal focusing yield quite good 

resolution close to the transducer, but not towards 

the bottom of the image. 

(5) Diagnostic Sonar 19 mm probe (figure 5.24f): this is 

a long internal focus probe and exhibits characteristics 

opposite to those of (4) above, i.e. poor resolution 

close to the transducer and good resolution at depth. 

(6) Fischer 19 mm probe (figure 5.24g): similar to (5), 

the focus would appear to be located very close to the 

bottom edge of the image. 

In general the array was better able to differentiate the six 

central wires in the target than were the commercial probes. The 

images presented reflect very closely the features of the beam plots 

presented in Section 5.6. 

,5.7.4 Tissue Equivalent Phantom Images 

Images of the tissue equivalent test phantom are presented in 

figure 5.26. Imaging towards the rear of the phantom was generally 

difficult. This may be due to entrained air or lack of transmitter 

power from the swept focusing unit. Artifacts at the edges of the 

images originate from the walls of the phantom holder. 
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Figure 5.26: Tissue equivalent phantom images. 

(a) Array, tx. unfocused, rx. unfocused. 

(b) Array, tx. point focus (90mm), rx. point focus (90mm). 
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Figure 5.26: Tissue equivalent phantom images. 

(c) Array, tx.point focus (130mm), rx. swept focus. 

(d) Array, tx.swept focus, rx.swept focus. 



Figure 5.26: 

(e) Fischer, 

Tissue equivalent phantom images. 

13mm diam. MIF probe. 

(f) Diagnostic Sonar, 19mm diam. LIF probe. 



Figure 5.26: Tissue equivalent phantom images. 

(g) Fischer, 19mm diam. LIF probe (courtesy J. Nicoll). 
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Figure 5.25 illustrates the arrangement of reflectors within the 

body of the phantom. Each group of reflectors has been numbered and 

a comparative, qualitative assessment of each is given in Table 5.5. 

This illustrates the compromise nature of fixed focus probes. These 

are only able to function well over one part of the image. 

focusing techniques produce an image of more uniform quality. 

5.8 Effects of Tissue Motion 

The swept 

One of the disadvantages of a serial data acquisition system is 

its sensitivity to tissue motion. Significant tissue movement 

occurring while a single focused line is being generated will degrade 

the quality of the focus. Limitations on acceptable tissue motion for 

the present 4 ring system have been discussed in Section 4.2.1. A 

tissue velocity of 60 mm sec -1 was calculated as the maximum possible 

before significant degradation of the focus would occur. The 

maintenance of a reasonable focusing action has been illustrated 

experimentally. 

A calibrated T -M trace of the tissue equivalent phantom in the 

direction of a well defined echo structure was performed while the 

phantom was oscillated in the direction of the beam axis (figure 5.27). 

The maximum velocity of motion is estimated at 56 mm sec-1. Parts of 

the echo pattern are not distorted relative to each other, merely shifted 

up and down. 

The effects of tissue motion are only really important for the 

synthetic aperture focus. This relies on serial data acquisition to 

operate. The other focusing modes could be implemented with a fully 

parallel acquisition system in which echo information from a reflector 

is taken in by all rings simultaneously. 
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Figure 5.27: T -M trace of tissue equivalent phantom, oscillated 
along the array axis. 



5.9 Summary 

The present chapter has described the assessment of an annular 

array dynamic focusing system. The applicability of the theory used 

in array design has been investigated and satisfactorily confirmed. 

The array used in these investigations:is relatively sparse, 

i.e. only 40% of the available area of the 24 mm aperture is actively 

used. However, its ability to achieve a focus similar to that of a. 

filled aperture is indicated by the correspondence of the array's 

normalised beam width (Table 5.3, Column 4) to that of the commercial 

probe. 

Of the focusing modes investigated, three are particularly 

effective, the point 90- swept', point 130 -swept and swept -swept modes. 

These exhibit an increased sensitivity of between 7 and 13 dB relative 

to the unfocused mode; focal zone length is increased by between 36 

and 108 %; side lobe levels are reduced by 18 dB. However, there is 

a corresponding increase in main lobe width of up to 27%. 

The use of time gain compensation markedly affects the beam shape. 

Simulated application of T.G.C. to selected beam plots shows that the 

synthetic aperture focusing technique produces a significantly more 

uniform beam than those modes which exhibit a fixed focus transmission 

process. The beam width at 50 mm remains similar, while the synthetic 

aperture beam diverges by approximately 30% less than the others. 

Both beam plots and phantom images confirm the ability of a 

dynamically focused probe to overcome the compromise necessarily imposed 

on fixed focus probes. Further, the use of a novel synthetic aperture 

technique enables a dynamic focus to be achieved on transmission as well 

as reception, with a further improvement in beam characteristics. 
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SUMMARY 

The design and implementation of an ultrasonic dynamic 

focusing annular array system has been described. Theoretical 

investigation of the behaviour of an annular array transducer has 

been performed. This used a thin ring continuous wave approach 

to approximate the actual transient field of a pulse -echo transducer. 

The applicability of this approach has been discussed. Results 

from it indicate that a useful array may be formed from four or 

five rings, evenly spaced within the transducer aperture. 

Apodisation of the aperture such that the response of each ring is 

made proportional to its radius improves resolution without 

seriously raising side lobe levels. Experimental confirmation of 

the basic theory is available in the literature and in the present 

work. 

Description of an electronic unit to generate and process the 

signals from the array has been given. Conversion of the analogue 

echo signal to a digital one, followed by temporary storage in RAM, 

was identified as the most suitable means of achieving the required 

variable delays. Delay control functions have been derived. The 

stability required of the clocks controlling the variable delay 

process has been considered. 

The design of a specific array as a prototype for ones to be 

introduced into the head of a real -time mechanical scanner has been 

described, along with a suitable means of fabrication. This array 

has been evaluated as a contact scanner attached to a static B -scan 

instrument. Its capability as a dynamic focusing transducer has 

been confirmed. The novel application of Synthetic Aperture 



Imaging to an annular array has been introduced. This overcomes 

the compromise of dynamic focusing only on reception, with a fixed 

focus on transmission. A significant improvement in beam shape was 

observed, at the expense of a lower maximum P.R.F. 

Design of annular arrays, based on the present work, and their 

incorporation into a real -time scanner, has proceeded under 

Dr. W. N. McDicken (Department of Medical Physics and Medical 

Engineering, University of Edinburgh) in conjunction with a commercial 

firm, Diagnostic Sonar Ltd. (Livingstone, Scotland). An illustration 

of a commercial mechanical real -time scanner incorporating these 

arrays is given in figure 6.1. 



Figure 6.1: A commercial mechanical real -time scanner 
incorporating annular arrays. 
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APPENDIX 

R1.1 SOLUTION FOR PULSED ARRAY OF FINITE WIDTH RINGS 

THE ALGORITHM FOR GENERATION OF PRESSURE DATA AS A FUNCTION OF 
TIME AND SPACE IS PRESENTED BELOW (PASS 1. SECTION 2.6.2.1). IT 

REPRESENTS A NUMERICAL SOLUTION OF EQUATION 2.1 (SECTION 2.4.1). THE 
FUNCTION DEFINING THE INTEGRAND IS GIVEN IN SECTION A1.1.1. 

SYMBOLS: 

T - TIME 
X - DISTANCE OFF ARRAY AXIS 
Z - DISTANCE ALONG ARRAY AXIS 
CN - NORMALISED VELOCITY CF SOUND ( = VELOCITY / FREQUENCY ) 

R11 - MINIMUM DISTANCE FROM FIELD POINT TO INNER RADIUS OF 
RING 

RMAX1 - MAXIMUM DISTANCE FROM FIELD POINT TO OUTER RADIUS OF 
RING 

R12 - MINIMUM DISTANCE FROM FIELD POINT TO OUTER RADIUIS OF 
RING 

RMAX2 - MAXIMUM DISTANCE FROM FIELD POINT TO OUTER RADIUS OF 
RING 

TAUP - PULSE LENGTH ( ) 

QUANCB - IS AN ADAPTIVE QUADRATURE ROUTINE PUBLISHED BY FORSYTHE 
ET. AL. (1977) 

INPUT: 

INPUT PARAMETERS SUCH AS FREQUENCY, RING DIMENSIONS. ETC. ARE VIA 
AN INTERACTIVE SUB -PROGRAM WHICH STORES THEM FOR LATER USE. 

LISTING: 
C 

C 

C OPTION 3: PRESSURE AS A FUNCTION OF T.X & Z 

C 

PM:NZ =100.0 
PM:1' =0.0 
I2 =0 

3 CONTINUE 
C SET 'Z' COUNTER 

I2 =I2 +1 

Z= ZI +FLOAT(IZ -1) *DZ 
Pi IINX =100.0 
PMAXX =0.0 

C 

C OPTION 2:PRESSURE AS A FUNCTION OF T & X 
C 

C LEAVE SPACE FOR XSECTION HEADER 
CALL WRITE(DATA.S.NSTART.NBLOCK.9.2) 

C 

IX =O 

3 CONTINUE 
C SET 'X' COUNTER 

IX =IX +1 

X= X1 +FLOAT(IX -1) *DX 
PMAXT =0.0 

C 

C 

.0 OPTION 1: PRESSURE AS A FUNCTION OF T 
C 

C LEAVE SPACE FOR PULSE HEADER 
CALL IJRITE (DATA.S.NSTART.NBLOCK.8.2) 

C CHECK FOR EXIT REQUEST 
CALL RSW(1.RS1) 
IF(.NOT.RS1) GOTO 63 
IJRITE(4.261) 

261 FORMAT(' ARE YOU SURE (Y /N) ?: 'S) 

READ(4.160) ANS 
IF(ANS.EQ.'Y') CALL START1(2) 

C 

63 IT=0 
ITC=0 
R11=SORT(Z*",2+(A(1.NRING)-X)**2) 
RMAXI=SORT(Z*x2+(A(1,NRING)+X)**2) 
R12=SQRT(Z*a:2+(A(2.NP.ING)-X)**2) 
Rr!"2=4L1=:T(Z.:*2+(A(2.NRING)+X).K:K2) 

IF!'-'..'_ . ..il°.ING?) T1=R11iCN 
-. _.. -._-._:. 

ERROR =.O. D 
C 

1 CONTINUE 
C SET 'T' COUNTER AND 'PAGE' POSITION COUNTER 

IT =IT +1 
ITC =ITC +1 
T= TI+FLOAT(IT -1) *DT 
SUM =0.0 
ESTERR =0.0 

C 

,',I,00- 



C 

C SET INTEGRATION LIMITS 
C 

C 

C SET UPPER AND LOWER BOUNDS ON 'ETA' (OUTSIDE THESE LIMITS 
C '_TA' CORRESPONDS TO POINTS OFF THE XTAL FACE) 
C UPPER AND LOWER TIME LIMITS ON 'ETA' ARE 'TAUP' AND 0.0 
C DIVIDE INTEGRATION INTERVAL INTO NON -DISCONTINUOUS REGIONS 
C 

C DISCONTINUITIES OCCUR AT SOME /ALL THE FOLLOWING POINTS 
BNDRY(I)=T-RMAX2/CN 
BNDRY(2)= T- RMAX1/CN 
BNDRY(3)=T-Z/CN 
BNDRY(4)= T- R11 /CN 
BNDRY(5)=T-R12/CN 

C THERE ARE 4 DISCONTINUITIES EXCEPT FOR A(1.NRING)< X <A(2.NRING) 
C SET THE EXTRA BOUNDARY TO BNDRY(1) 

iF( X. LT .A(1.NRING).OR.X.GT.A(2,NRING)) BNDRY(3)=BNDRY(1) 
IF(X.EQ.A(1,NRING)) BNDRY(4)= BNDRY(1) 
IF(X.E0.A(2.NRING)) BNDRY(5)= BNDRY(1) 

C SET ANY BOUNDARIES OUTSIDE THE LIMITS ON 'ETA' BACK ONTO THE LIMIT 
DO 307 I =1,5 
IF(BNDRY(I).LT.0.0) BNDRY(I)=0.0 

307 IF(BNDRY(I).GT.TAUP) BNDRY(I) =TAUP 
C SORT INTO ASCENDING ORDER 

DO 350 J =1.4 
DO 301 I =1.4 
K =6 -I 

IF(BNDRY(K).GE.BNDRY(K -1)) GOTO 301 
TEMP = BNDRY(K -1) 
BNDRY(K-1)= BNDRY(K) 
BNDRY(K) =TEMP 

301 CONTINUE 
300 CONTINUE 
C 

C 

C INTEGRATION TO EVALUATE RELATIVE PRESSURE AT (T.X.Z) 
C >;(** w4aKN.^* ** Blok J,;. Iah %K*N:Ac ,KNf:;k:N,k%KNc:: *AotcYNOK*Aci : toic**.l tots o{ * * 
C THE INTEGRAND IS 'FCT' A FUNCTION OF 'ETA' 
C THE INTEGRATION VARIABLE IS 'ETA' 
C THE LOWER _SOUND OF THE INTEGRATION IS 'ENDRYI' 
C THE BOUNDARIES OF THE INTEGRATION ARE SET SUCH THAT 'ETA' ONLY TAKES 
C ON VALUES CORRESPONDING TO POINTS ON THE TRANSDUCER FACE 
C THE INTEGRATION IS PERFORMED USING 'QUANCB' 
C 

C INTEGRATE OVER EACH "WELL BEHAVED" SECTION SEPARATELY 
DO 302 1 =1,4 
BNDRY1= BNDRY(I) 
BNiiRY2= BNDRY(I +1) 
IF(BNDRYI.EO.6NDRY2) LOTO 302 
CALL QUANC3CFCT.P) 
SUI`I =SUM +P 
ESSTERR= ESSTERR +ERREST 

C HANDLE ERROR CONDITION 
IF(FLAG.NE.0.0) WRITE(4,202) NRING.Z.X.T.IT.FLAG 

292 FORMAT(' ALERT: NRING: "G14.6 
7/' Z:'G14.6 
?/' X:'G14.6 
?/' T:'G14.6 
" IT:'G14.6 

?/' FLAG:'G14.6) 
302 CONTINUE 

IF(RBSCESTERR).GT.ABS(ERROR)) ERROR = ESTERR 
C 

C DATA STORAGE 
C 

C 

C 

DATA PROCESSING: 

THE PULSES FROM EACH RING. AT THE FIELD POINTS SPECIFIED BY THE 
USER. ARE STORED SEPARATELY ON DISK FOR LATER COMBINATION AND PROCESSING 
BY PASS 2 (SECTION 2.6.2.2). PASS 2. IS LOADED WITH SUITABLE SUB- 
ROUTINES FOR APPLYING PROCESSING OF THE PULSES BEFORE OR AFTER SUMMATION. 
THE DESIRED USER DEFINED DELAYS ARE ALSO INCORPORATED. MOST OF THE 
PROGRAM IS SYSTEM DEPENDENT AND IS CONCERNED WITH THE CORRECT TRANSFER 
OF DATA BETWEEN DATA FILES. FOR THIS REASON IT IS NOT ILLUSTRATED. 

DATA D'.BPLAY IS PERFORMED BY PASS 3 AND IS DISCUSSED AND ILL USTRATED 
IN SECTION 2.6.2.3. 



A1.2 FUNCTION DEFINING THE INTEGRANO OF EQUATION 2.1 

THIS FUNCTION IS SPECIFIED TO QUANCS AND USED BY IT. 

LISTING: 

C SUSRTN FCT V1AA DWP 19-JUN-31 
C F:'_E BMFCT1.FT 
C 

C INTEGRAND FUNCTION FOR BM1 V2 
C 

CCCCCCCCCCCCCCCCCCCC'LCCCL"CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC 
C 

C 

C 

FUNCTION FCT(ETA) 

COMMON / / RCRD(85) 
COMMON /P101/ COMENT(25),IOPT.SHAPE(17O),TAUP 
COMMON /CFCT/ R11,RMAX1,R12.RMAX2,T 
COMMON /RESTRT/ CN.DFREQ. HEAD (8),IDAY,IhNTH.INDEXO.IYEAR, 

? NBLOCI (.NRING,NSTART.PI,PI2.SFREO 

DIMENSION A(2.10) 
EQUIVALENCE ( RCRD( 11). A( 1.1)).(RCRD(50),Z),(RCRD(57).X) 

C 

C FCT= THETA*DVN /(2 *PI) 
C 'R' IS THE DISTANCE FROM THE FIELD POINT TO THE POINT ON THE 
C XTAL FACE DEFINED BY THIS 'ETA' 

R =CN,(T -ETA) 
C 

C TREAT ANNULUS AS TWO CONCENTRIC DISCS TO FIND 'THETA' 
C EVALUATE 'THETA2' 
C TEST IFX >OR <A 

IF(X.GE.A(2.NRING)) GOTO 91 

C TEST IF PART /WHOLE OF THE PULSE IS ON THE XTAL FACE AS SEEN 
C FRON THE SOUND FIELD POINT 

THETA2 =PI2 
IF(R.LE.R12.OR.X.E0.0.0) GOTO 92 
D = R *R -Z*Z 
ARG= CD +X *X -A(2. NRING ) *A(2,NRING)) /(2.0 *X *SORT(D)) 
IF(ABS(ARG).GT.1.0) ARG =AINT(APG) 
THETA2 =2.0 *ACOS(ARG) 
GOTO 92 

C 

91 D= R*R -2*Z 
IF(D.EQ.0.0) D =.001 *); *X 
ARG=( D+ X* X -A(2, NRING) *A(2.NRING)) /(2.0* *SORT(D)) 
IF(ABS(ARG).GT.1.5) ARG =AINT(ARG) 
THETA2 =2.0a,ACOS(ARG) 

C 

C EVALUATE 'THETAI' 
92 THETA1 =0.0 
C TEST IF X > OR < A 

IF(X.GE.A(1,NRIHG)) GOTO 911 
C CHECK THIS POINT IS ON THE XTAL FACE 

IF(R.GE.RMAX1) GOTO 912 
C TEST IF FART /WHOLE OF THE PULSE IS ON THE XTAL FACE AS SEEN 
C FROM THE SOUND FIELD POINT 

THETA1 =PI2 
IF(R.LE.R11.OR.X.EQ.0.0) GOTO 912 
D= R*R -Z *Z 
ARG= (D +X *X -A(1. NRING ) *ACI.NRING)) /(2.0 *X *SORT(D)) 
IF(ABS(ARG).GT.1.0) ARG = AINT(ARG) 
THETA1= 2.0 *ACOS(ARG) 
GOTO 912 

C 

C CHECK THIS POINT IS ON THE XTAL FACE 
911 IF(R.GE.RMAX1.OR.R.LT.R11) GOTO 912 

D =P R -Z *Z 
IF(D.EO.0.0) D= .001 *X *X 
ARG= (D +X *X -A(1. NRING ) *A(1.NRING)) /(2.0 *X *SQRT(D)) 
IF(ABS(ARG).GT.1.0) ARG =AINT(ARG) 
THETA1= 2.0 *ACOS(ARG) 

C 

C COMPUTE 'FCT' 
912 THETA = THETA2- THETAI 
C EXCITATION VELOCITY FUNCTION FOR 0<ETA <TAUP 
C A: RECTANGULAR ENVELOPE 
C DVN /DT= A0*SIN(2'rPI *ETA) 

!'i =SIN (2. *kP i'frETA) 
C E: HALF . _LE 5iNUSOIDAL ENVELOPE 
C ;s 117.,Á01,S ro. ETA.?AIP'' ;,S!N(2.,.Ar., -q. 

RETURN 
END 



R1.3 SOLUTION FOR A MONOCHROMATIC 
(CW) RADIATION FOR AN ARRAY OF 

INFINITESIMALLY NARROW) RINGS 

THE ALGORITHM PRESENTED BELOW IS 
A NUMERICAL SOLUTION OF 

EQUATION 2.7 (SECTION 2.4.2). 
THE ZERO'TH ORDER BESSEL FUNCTION 

IS COMPUTED BY A STANDARD LIBRARY 
ROUTINE. 

C 

C 

SY":SOLS: 

J0(.) - ZEROTH ORDER BESSEL FUNCTION 

H(I) -I'TN RING RADIUS 

W(I) - WIEGHTING FUNCTION FOR I'TH RING 

ALPHA - FUNCTION POSSIBLY APPLIED ELECTRONICALLY 

ALAMBD - WAVELENGTH 

LISTING: 

C=1540.0 
FREn=3.5 
X1=0.0 
X2=39.0 
DX=0.2 
Z1=100.0 
Z2=100.0 
DZ=0.0 
APSIZ=11.5 

C 

C NORMALISE TO UNIT FREQUENCY: 

C N.E. INTERNAL TO THE PROGRAM. UNITS ARE RS FOLLOWS - 

C TIME -CARRIER FREO.PERIODS 

C SPACE- WAVELENGTHS 
C HENCE INTERNALLY. FRE0=1. ú TAU =I. AND THESE VARIABLES 

C DO NOT APPEAR EXPLICITLY IN EXPRESSIONS. 

C ALL DATA INPUT & OUTPUT IS IN UNITS OF MM. MHZ. M/SEC, MICRO SEC 

C 
CN =C /(1000.0^,FREO) 

C WHERE 'CN' IS NORMALISED VELOCITY (GIVES WAVELENGTH 
= CN) 

C 
C SET CONSTANTS 

PI =3.1415927 
=Z1 

IZ =1 

A'.'AMSD =CN 

Ai(= 2.:!:P I /(ALAMBD *Z) 

C 
> 

C COMPUTE RING RADII (A).WEIGHTS (li) & ELECTRONIC GAIN /ATTENUATION 

C -UNCTION (ALPHA). AND THE CO =FF (GAMMA) 

C 

DO 311 I =1.NR 

A(i) =(( FLOAT (I) /FLOAT(NR)) *NBETA)*APSIZ 

lJ(i) =A (I) /A.PS IZ:I:(- DELTA-* (I) /APSIZ 
+1.0 ) 

311 CONTINUE 
C 

C SCAN 'X' :PRESSURE AS A FUNCTION OF X 

C 

C SCAM EACH XSECTION 
I`; =0 

20 IH ='X +1 

X1+FLOAT(iX- 1):I:DX 

C 

C SYNTHESISE FOCAL PLANE RESPONSE OF 
ARRAY 

C 

C 

I =0 

D =.0001 
ABSERR =.0001 
ERREST =0.0 
REAL =0.0 
IMAG =0.0 
AMP =0.0 

CALL CPUOUT 

DO 300 NRING=1.NR 

C 

C COMPUTE JO(ARG) 
C 

ARG=AK:+cy(NRING)wX 
CALL SESJA(ARG.N.BJ.D.ABSERR.AERROR) 

C -u= COI*F.,TED 1ALWE.OF JO(='? S " 
C THE ABSOLUTE UNCERTAINTY ISJ PAERRO 

AMP =AMP+COEFFJfl4BJ 

ERREST=EP,REST+COEFFJ-*ERROR 

300 COIiTI'rIUE 

C 

CALL CPUIN 
DATA(IX) =AMP 
ERR(IX) = ERREST 
IF(X.LE.X2) GOTO 20 

C FINISHED THIS XSECTION 



C 

C FIND MAX AND MIN PRESSURES 

50 PMINX =1000. 
PMAXX =O.0 
DO S01 I =1. IX 

IF(ABS(DATA(I)).LT.ASS(PMINX)) PMINX=ABSCDATA(I)) 

IF(ASS(DATA(I)).GT.ABS(PMAXX)) PMAXX =ABS(DATA(I)) 

301 CONTINUE 
PMINZ =PMINX 
PMAXZ=PMAXX 

C 

C DATA STORAGE 

C 

C 

C 
DATA PROCESSING: 

THE PROGRAM PERFORMS REPEAT SOLUTIONS 
FOR CHANGING VALUES OF 

R(I). W(I). OR ALPHA AS DEFINED IN THE APPROPRIATE LOOP WITTHIN IT. 

EACH SOLUTION (LNICH IS A CROSS- SECTION OF THE ARRAY RESPONSE AT 

A PARTICULAR DEPTH) IS STORED SEPARATELY AND THEN INPUT TO PASS 3 

FOR DISPLAY. 
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