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Abstract

In this thesis, a series of related studies on opioids are reported. In epidemiological
studies of opioid overdose it is shown that opioid overdose has increased 14 times
more than other overdoses in Edinburgh in the past 4 decades. I also discussed the
predisposing factors for overdose. I developed and calculated a series of toxicity indices
for opioids in Scotland, and used hospital discharge data, poisons information statistics
(telephone enquiries/TOXBASE accesses) and prescription data to calculate fatality
indices (FTI) and minimise the effects of confounders on the traditional FTI which uses
only prescription volume as the denominator. I used an identical methodology to relate
non-fatal consequences of overdose to prescriptions and proposed toxic morbidity
indices (TMIs). I suggest an integrated approach by using both FTIs and TMIs as new
methods for toxico-vigilance. Using this methodology I demonstrated that co-proxamol
has a10 times excess risk of fatality in comparison to co-codamol and co-dydramol,
while TMIs are similar. This demonstrates the inherent toxicity of the drug in overdose,
and led, in part, to withdrawal of this drug in the UK. Further I showed in patients that
QRS duration is prolonged in co-proxamol overdose, an effect which was dose
dependent, suggesting sodium channel blockade as a potential cause of its excess
mortality in overdose. I showed from mortality statistics that dihydrocodeine appears
safer than methadone. I also estimated diamorphine illicit availability from overdose
rates in Edinburgh. I introduced a comparison of mortality from single agent in
comparison to multiple agent overdose (MSDPR) as a measure of risk from co-
intoxications. I showed that diamorphine, morphine and codeine are significantly more
dangerous in co-intoxication than other opioids.
Studies on the cardiovascular effects of opioids in overdose and in volunteers were
then performed. It has been suggested previously that therapeutic doses morphine
have no effects on the cardiovascular system in man in the supine position. I first
showed acute depressor effects of dihydrocodeine and methadone overdose on
peripheral systolic, diastolic, pulse, and aortic and end systolic pressures, and 02
saturation in dihydrocodeine overdose in comparison to a parallel control group. I was
able to exclude any effect on arterial stiffness. I showed that 02 saturation under 95% is
a marker of haemodynamic depressant effects of dihydrocodeine.
Later in a controlled trial in healthy volunteers, I verified the cardiovascular depressor
effects of intravenous morphine in doses to a maximum of 16 mg. These effects were
not dose dependent. There was also no relationship to change in reaction time, and no
major change in plasma concentrations of histamine or catecholamines. Lower 02
saturation, and higher end tidal volume C02 potentially contributed to the
haemodynamic effects. I showed that intra venous morphine decreased aortic and
peripheral systolic, diastolic, mean, pulse, end systolic, and sitting systolic pressures,
while heart rate increased. A number of other indices, stroke index, systemic vascular
resistance, ventricular ejection time, peak flow index, ejection ratio, end diastolic index,
index of contractibility and acceleration index also decreased. Overall these findings
indicate that at these doses morphine decreased afterload, was negatively inotropic,
positively chronotropic, had no effect on cardiac work, while maintaining left ventricular
performance. In a second study I found that these effects in general were not
antagonised by naloxone. Using occlusion plethysmograph and intra arteriolar
morphine infusion, I further showed the existence of a peripheral action of morphine on
arteries, at higher concentrations 0.6 to 3 microgram/ml, which was dose dependent.
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Weal, flare and itching also developed rapidly and were dose dependant. Tachyphylaxis
to these effects did not develop. By using pre treatment with antihistamines and
measurement of plasma histamine I showed that histamine was the prime mediator for
both arteriolar and skin effects. The peripheral site of action is likely to be mediated via
mast cell release of histamine from arteriolar surrounding supporting tissues, and this
effect influences vascular tone in man. The arteriolar effects were antagonised by L-
NMMA, indicating that nitric oxide release is probably caused by histamine.
High concentrations of morphine induce anaphylactoid reactions. The novel
observations in this thesis explain this phenomenon and may clarify the
pathophysiology of opioid-induced non-cardiac pulmonary oedema, and anaphylactoid
reactions. If fluid shifts occur elsewhere in the body this may contribute to hypovolemia
in shock, since endogenous opioids are thought to have a role in this situation. These
findings suggest that Hi and H2 blockers should be studied in the management of
patients with opioid-induced non-cardiac pulmonary oedema, and those receiving high
doses of morphine such as in surgery and acute pain. The effects of Ht and H2 blockers
in opioid overdose should also be investigated, afsharireza@yahoo.com
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Glossary Table of cardiovascular variables
Acceleration Index (Acl); Acl is a measures of inotropic state. It is much less dependent on
preload and after load. Normal range is 0.7 -1.5 sec -2 for males (0.9-1.7 for females).

Afterload; Afterload is a measure of the tension produced by a chamber of the heart (left
ventricle) in order to contract.
Aortic pulse pressure (APP); APP is the difference between ASBP and ADBP. As the
physiological pulse pressure is amplified between central and peripheral arteries (Nichols &
O'Rourke, 1998; O'Rourke & Frohlich, 1999; Stergiopulos & Westerhof, 1998) brachial
peripheral PP may not reflect aortic PP. APP influences left ventricular afterload and coronary
perfusion.
Aortic systolic and diastolic blood pressure (ASBP & ADBP); They are the maximum and
minimum pressures of the central waveform. Total arterial resistance and total arterial
compliance are sufficient to accurately describe systolic and diastolic aortic pressure
(Stergiopulos & Westerhof, 1998). Central systolic blood pressure should be considered for
planning therapeutic strategies for prevention of left ventricular hypertrophy in hypertensive
patients (Lekakis et al., 2004).
Cardiac index (CI); CI describes the level of pump perfusion capability (adequacy of perfusion).
The electrical bioimpedance measurement is a reproducible and accurate technique (Northridge
et al., 1990) and agrees with serial thermodilution methods (Appel et al., 1986). CI corrected for
body surface area (BSA) is less subject to the effects of metabolic rate than CI corrected for
weight. CI by weight is also not accurate in overweight subjects. The result is reported as I per
min per square meter. CI = CO/BSA (l/min/m2; normal values are 3.5 and 3.3 in young and old
adults respectively).
Cardiac output (CO); CO is the volume of blood the heart pumps in one minute. In a poor
ventricular performance with low SV the heart can increase HR and still perfuse the body
adequately. CO = SV x HR; (l/min); normal value for a 50kg woman is 5.0 and for a 85 kg male
body builder is 8.5.

Chronotropic effect; Chronotropic effects refer to the positive or negative changes in heart
rate.

Diastolic blood pressure (DBP); DBP is the lowest pressure (at the resting phase of the
cardiac cycle). It is largely determined by peripheral arterial resistance.

Ejection duration (ED); ED is the period of time from the start of the pulse for which the aortic
valve is open to the closure of the aortic valve or end of systole. It was measured by the
SphygmoCor equipment. It theorically provides the ability to distinguish primarily systolic from
primarily diastolic dysfunction in heart failure patients, and to then manage the diastolic
dysfunction patients more effectively.

Ejection Fraction (EF); EF is related to left ventricular performances and pump emptying
efficacy. EF represents the volumetric emptying efficiency of the left ventricle (percentage of the
total volume contained in the ventricle just before beginning of the systolic phase (end diastolic
volume)). EF is calculated using the following formula; EF = [0.84 - (0.64 * STR)] *100 % or EF =
SV/EDV %

Ejection ratio (ER); Ejection ratio can be calculated from Heart Rate Period (HRP) in seconds
and ventricular ejection time (VET). ER = 100* VET/HRP, where HRP = 60/HR. This can
eliminate the effects of heart rate. ER can be called a preload index.
End Diastolic Index (EDI); EDI is the body mass indexed form of end diastolic volume (EDV).
Normal EDI values are 45-100 ml/m2; mean 71 ml/m2
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Glossary Table of cardiovascular variables

End Diastolic Volume (EDV); The amount of blood in the ventricle immediately before a
cardiac contraction begins. It's a measure of cardiac filling, and is related to diastolic function.
EDV = 100 * SV/EF (ml)
End systolic pressure (ESP); ESP is the pressure at the end of systole. It is determined by the
amount of blood in the ventricle at the end of the cardiac ejection period and immediately
preceding the beginning of ventricular relaxation. ESP is the measurement of the adequacy of
cardiac emptying, related to the systolic function. ESP measured by SphygmoCor.
End tidal C02 (ETC02); ETC02 reflects the C02 level in blood at the end of expiration.
Heart rate (HR); HR is the number of contractions of the heart in one minute. The results are
reported as beat per minutes. Normal range is 65 for adult male (75 for female).

Index of Contractibility (IC); IC measures the inotropic state during the ejection phase. It is
volume dependent, and is related to the left ventricular performance. Under normovolumic
states it can be used to measure changes of contractibility in response to inotropic therapy. Its
normal range is 0.033-0.065 sec-1.

Inotropic effect; Inotropic effects are the ones that change the force of heart muscle
contractions, and are defined and positive or negative.
Mean blood pressure (MBP); MBP is the average or the mean pressure for the peripheral and
aortic waveform. In these studies it is true mean, not the 1/3 method as commonly used.
Peak Flow (PF); PF represents the highest rate of left ventricular volumetric delivery during the
ejection phase. Flow reaches its peak value in the first third of systole, typically 65 ml per sec
after the opening of the aortic valve. PF time remains unchanged with variation of heart rate. PF
is directly linked to the ejection phase contractibility and as such is dependent on volumetric
status.

Peak Flow Index (PFI); PFI is related to left ventricular performance. To calculate PFI, peak
flow (PF) should be corrected on body surface area. PFI = PF/BSA (ml/sec/m2; normal ranges
of PFI are 170-370).

Peripheral pulse pressure (PPP); PPP is the height of the peripheral pulse. This is determined
by subtracting the minimum pressure from the maximum pressure. Large artery stiffening is
associated with a widened pulse pressure and increased central systolic BP, which is
augmented by early peripheral waveform reflection. Arterial stiffness can influence the value of
PP as well as HR, cardiac contractility, and venous pressure (Nichols & O'Rourke, 1998;
O'Rourke & Frohlich, 1999; Stergiopulos & Westerhof, 1998). Therefore, brachial PPP is a
surrogate index of arterial stiffness.

Preload; Preload is the volume of blood present in a ventricle of the heart (left ventricle), after
passive filling and atrial contraction. Increase in preload will result in increase of SV and hence
an increase in pumping time.
Reaction time (RT); RT for a reflex is the interval of time between application of a stimulus and
detection of a defined response.

Respiratory rate (RR); Respiratory rate (RR) is the number of breaths per minute.

Sitting systolic and diastolic blood pressures (sSBP & sDBP); sSBP and sDBP were
measured after one minute sitting in 90 degree position.
Stroke index (SI); SI is stroke volume adjusted for body surface area (SI = SV/BSA ml/m2;
normal range 30-65). It describes the volumetric delivery of the pump per each contraction. SI
values are affected by heart rate, preload, contractibility, afterload and ejection fraction. SI is the
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Glossary Table of cardiovascular variables
most commonly used parameter to describe left ventricular performance. (SI can also be
calculated from SV and weight.)

Systemic Vascular Resistance (SVR); Systemic vascular resistance is the resistance to blood
flow from all of the systemic vasculature (excluding the pulmonary vasculature). Mechanisms
that cause vasodilatation or reduce viscosity decrease SVR.
SVR = (mean arterial pressure - central venous pressure) / cardiac output.
As the central venous pressure is normally near 0 mmHg, the simplified version of SVR is: SVR
= MAP / CO.

Systolic blood pressure (SBP); Blood pressure is the pressure exerted by the blood on the
walls of the blood vessels. The peak pressure in the arteries during the cardiac cycle is the SBP.
It is determined by the stiffness of large arteries, as well as peripheral pulse wave reflection and
the pattern of left ventricular ejection.

Systolic Time Ratio (STR); STR is related to the left ventricular performance and pump
emptying efficacy. It can be used to estimate ejection fraction.
Thoracic Fluid Index (TFI); TFI is the total bioimpedance of the thorax (measured between the
root of the neck and the diaphragm). TFI is related to thoracic fluid, represents total impedance
(resistance to the high frequency measurement AC current) of the thorax. As more fluid is
present within the Thorax, the thorax becomes more conductive, hence its TFI will be lower. TFI
is affected by the conductibility of the thorax, hence by thoracic cross-sectionand, therefore it is
gender dependent. Normal values are 20-33 ohm for males (27-48 for females). A decline in TFI
can occur as a result of redistribution of intravascular fluids due to gravity (changing position
from standing to supine), and also as a result of replacement of non conductive air in the lungs
by conductive fluids (pulmonary oedema).
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Chapter I; Introduction
The cardiovascular effects of opioids
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1.1. Historical introduction

Picture 1-1. Papaver somniferum Picture 1- 2. Avicenna (AD 980-1030)

Opium, a poppy extract from the plant Papaver somniferum (Picture 1-1), has been

used for centuries as an analgesic (Table 1-1). The use and extraction of opium were

described in a Babylonian text dated from 4000 BC. Egyptians used it as a children's

sedative and teething remedy in 2000 BC (Poison et al., 1983). The papyrus Ebers from

1500 BC mentions opium as a poison (Gettler, 1956). The first reference in Greek

literature to the opium poppy was written in Homer's Odyssey where it was described

as a drug that "quiets all pains and quarrels". Nicander of Colophone who lived in

western Asia Minor about 130 B.C. wrote about fatal opium overdose and described

some antidotes; hot wine and the syrup made from grapes, the oil of roses, olive oil, the

oil of iris, and even slapping the hapless victim on the cheeks, shaking him too, hoping

that vomiting will follow (Scarborough, 1995). The Roman Theophrastus refers to it in

the third century B.C. (Poison et al., 1983). Razi (AD 864 - 930), the Persian surgeon

used opium for anaesthesia (Al-ghazal, 2003). Another Persian scientist, Avicenna (AD
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Introduction

980-1030) wrote enthusiastically about opium, especially in diarrhoea and is believed to

have died from an accidental overdose (Macht, 1915) (Picture 1-2). Paracelsus (1490-

1540) owed much of his success to the bold way in which he administered opium to his

patients. He carried opium in the pommel of his saddle and called it the stone of

immortality. In 1680 Syddenham wrote: "among the remedies which it has pleased

Almighty God to give to man to relieve his sufferings, non is not so universal and so

efficacious as opium" (Gutstein & Akil, 2001).

Source Discovery Date

Babylonian texts The use and extraction of opium were described 4000 BC
The papyrus Ebers Mentions opium as a poison 1500 BC
The Roman Theophrastus Refers to it in details 300 BC
Nicander of Colophone Wrote about fatal opium overdose & described

some antidotes
130 BC

Razi (Persian surgeon) Used opium for anaesthesia for the fist time 864 - 930
Avicenna (Persian Recommended opium especially in diarrhoea & is 980-1030

physician) believed to have died from an accidental overdose
Paracelsus Owed much of his success to opium.

He called it the stone of immortality
1490-1540

Syddenham among the remedies which it has pleased Almighty
God to give to man to relieve his sufferings, non is
not so universal and so efficacious as opium

1680

Robiguet Isolated codeine 1832
Serturner Isolated morphine (Gr. Morpheus, God of sleep) 1863

Heroin (diacetylmorphine) was isolated. It was 1874
claimed to be non addictive.

Table 1-1. Opioids, historical perspective

The pharmacology of the opium alkaloids has been closely studied for nearly 200 years.

Serturner isolated morphine (Gr. Morpheus, God of sleep) in 1863. Robiguet isolated

codeine in 1832. Heroin (diacetylmorphine) was isolated in 1874 and introduced to

clinical practice in 1898. It is interesting to reflect that it was claimed to be non-addictive

(Poison et a!., 1983). Extensive study of the pharmacology of opioids in the 20th century

has led to a more detailed understanding of the complexity of its receptor mechanisms.

Opioids that have been studied for their haemodynamic effects in this thesis are

summarised in Table 1-2.
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Product Comment References

Agonist*
Non specific agonists

Morphine Mu (+++) & K (+), K3(+)
beta-endorphin Mu (+++) & Delta (+++)
Mu agonists

Hydromorphone
Oxycodone Morphine like mu agonist
DAGO; [D-Ala2, N-Me-Phe4, Selective
Gly5-ol]-enkephalin
H-Tyr-D- Arg-Phe-Lys-NH2 Highly selective opioid peptide
[D-ala2, MePhe4,Gly-(ol)5]
enkephalin
RX783016

Pentamorphone
Endomorphin 1 (Tyr-Pro-Trp-Phe-NH2; EM1)
Endomorphin 2 (Tyr-Pro-Phe-Phe-NH2; EM2)

(Gutstein & Akil, 2001)
(Gutstein & Akil, 2001)

(Preston & Bigelow, 1993)
(Mildh et al., 2000)
(Shen & Ingenito, 1999a;
Keay et at., 1997)
(Kett eta!., 1998)
(Krumins et at., 1985)

(Petty & Reid, 1982)
(Afifi etal., 1990)
(Czapla et at., 2000)
(Czapla et at., 2000)

Delta agonists
Metkephamid Relatively selective
DPDPE [D-Pen2,D-
Pen5]enkephalin
D-ala2, D- Leu3] enkephalin
[D-Ala2, D-Leu5] enkephalin

(Pasanisi et at., 1985)
(Marson et at., 1989)

(Krumins et at., 1985)
(Petty & Reid, 1982)

Kappa agonists
U-62066E
Niravoline
U50488H

Dynorphin A
Spiradoline (U-62.066E)
Asimadoline

Orphanin FQ
spiradoline mesylate

((5,7,8)-(+)-N-Methyi-N-[7-(1-pyrrolidinyl)-1-
oxaspiro[4.5]dec-8-y l]-benzeneacetamide
Ketazocine

(Rimoy et at., 1994)
(Bellissant et at., 1996)
(Hall etal., 1988)
(Gutstein & Akil, 2001)
(U r etal., 1997)
(Kramer et at., 2000)
(Zhang et al., 1999)
(Shen & Ingenito, 1999a;
Pugsley et al., 1998)
(Keay ef al., 1997)

(Petty & Reid, 1982)
Antagonists

Non specific
antagonists
Naloxone Mu, Kappa & Delta

Naltrexone Mu (more potent); kappa receptor

(Gutstein & Akil, 2001)
(Kienbaum et al., 2002a)
(Preston & Bigelow, 1993)

Specific antagonists
beta-FNA Mu selective antagonist
Naloxonazine Mu selective antagonist
Binaltorphimine (nor-BNI) Selective kappa
Nor-binaltorphimine Selective kappa
dihydrochloride

(Kai et al., 2004)
(Sakamoto & Liang, 1989)
(Chen et al., 2003)
(Shen & Ingenito, 1999a)

Mixed agonist -antagonist
Pentazocine Mixed agonist (kappa) -antagonist (Preston & Bigelow, 1993)

Table 1- 2. Opioids that have been studied for their haemodynamic effects, *; Classification has
been done based on references
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1.2. Current Background

Opioid overdose is a common cause of drug-induced hospitalisation in the UK and

Scotland, in particular, is facing a serious drug problem. Fifty six thousand individuals

aged 15 to 54 years (2% of the Scottish population) were misusing opioids or

benzodiazepines in 2000 (Simoens et al., 2002). In the Royal Infirmary of Edinburgh

from July 2000 to July 2002, there were 1331 overdose admissions that involved an

opioid (alone or in combination). In contrast in a middle-income Middle Eastern country

(Mashhad, Iran) opioid overdose is the most common intoxication in all age groups with

the highest relative frequency of death (22.5 %) with an 8th rank of case fatality rate

(1.9%) (Afshari, 2001; Afshari et at., 2004).

1.3. Epidemiology and importance of opioid overdose

Trends in hospital discharge for the diagnosis of poisoning over the past decade in

Scotland demonstrate a clear increase in admissions for poisoning with or misuse of

opioids. Overdose was more common in males (Bateman et al., 2003). Official data on

overdose deaths attributed to illicit drug addiction and abuse (ICD-9 codes 304 and

305) from 1984 to 2000 in Italy showed that in both genders the age group 35-44 was

subject to the highest mortality rate increase over the study period, however, the

highest overdose rates for both males and females were observed in the 25-34 age

group (Preti et al., 2002). In another study, trends in opiate overdose deaths in Australia

from 1979 to 1995 have been studied. The average age at death for males increased

from 24.5 years in 1979 to 30.6 years in 1995. The increase in overdose mortality was

greatest among men and women aged 35 to 44 years and 25 to 34 years respectively
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(Hall & Darke, 1998). Overall opioid overdose is a progressive health problem with

more effects on males and young, and middle-aged subjects.

1.4. Clinical uses

The clinical usefulness of opiates has been established for centuries. Opioids,

particularly morphine sulphate, are used widely for therapeutic purposes including pain

control post operatively and during anaesthesia, and in the management of pulmonary

oedema and myocardial infarction. This is despite the main concern about the

compounds, particularly the prevalence of drug addiction and abuse (Table 1-3).

Medical usage of opioids
• Analgesia (acute, chronic, postoperative)
• Terminal/palliative care
• Premedication
• Myocardial infarction
• Acute pulmonary oedema
• Cough
• Antimotility (antidiarrhoeal)
• Adjunct in treatment of opioid dependence
• Euphoria

Table 1- 3. Medical usage of opioids

1.5. Opioid drugs and the cardiovascular system

The cardiovascular effects of opioids in man are not consistently reported in the

literature and potential peripheral mechanisms of action have not been well studied. A

systematic review of the international literature was carried out to evaluate the reported

haemodynamic effects of opioids and, in particular, to examine influence of receptor

type, mechanisms of action and sources of discrepancy which result from different

experimental designs.
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1.6. Review literature strategies

The systematic review of the literature (PubMed) was undertaken with the aim of

evaluating the known haemodynamic effects of opioids and generating further

hypotheses about their potential mechanism of actions. In particular the influence of

receptor type, mechanisms of action and sources of discrepancy in different

experimental design were considered. Additional information was sourced from

individual theses, books in relevant scientific disciplines, Scottish Executive publications

in the field of addiction and Scottish Poison Information Bureau files. The review

focussed on studies published between 1967 and 2002 written in English or Persian

were included. For human studies, preference was given to randomised control trials

but quasi-randomised controlled trials, case-control studies, and patient case series

were also included. Preference was given to the studies that had enrolled healthy

participants above 18 years old of both sexes. The full text as far as possible or abstract

of each potentially relevant article was obtained. The initial search strategy is

summarised in Figure 1-1.

Figure 1-1. Search Strategy; Number of articles identified, retrieved, and included in the
review
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1.7. Haemodynamic effects of opioids

In spite of a wide range of experimental evidence supporting the role of opioids in

cardiovascular regulation particularly in pathophysiological conditions, the mechanisms

involved are not well elucidated and, in some cases, disputed. The available evidence

suggests strongly that opioids have significant effects on the cardiovascular system. In

many experimental studies looking at different cardiovascular parameters opioids have

shown to produce significant effects (Holaday, 1983). The presence of opioid peptides

or opioid receptors in brain and spinal cord sites (e.g. hypothalamus, nucleus

ambiguous, nucleus tractus solitarius, intermediolateral nucleus and peripheral blood

vessels) suggests their involvement in cardiovascular control (Khachaturian et al.,

1985b; Martin-Schild et al., 1999). This is supported by observed cardiovascular

changes after microinjection of opioids into these sites, which are reversible by opioid

receptor antagonists (Faden, 1993). Moreover, evidence of altered levels of

endogenous opioids, or their receptors, in pathophysiological conditions such as

hypertension also supports this hypothesis (Zamir et al., 1980). Opioids might modulate

the influence of psychosocial stress on blood pressure as a mechanism of participation

of endogenous opioids in the tonic regulation of blood pressure and in pathogenesis

and maintenance of essential hypertension (Kraft, 1994). Systemically injected opioids

have cardiovascular effects (Faden, 1993), however they are different in effect,

magnitude and time course from the effect seen after direct CNS administration,

suggesting different mechanisms of action depending on site of effect.

Patients undergoing opiate withdrawal experience cardiovascular effects, which are

usually the opposite of the effects of opioid agonism. The Fultz and Senay grading of

7
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withdrawal includes hypertension as grade 3 in hospitalised patients undergoing opiate

withdrawal (Fultz & Senay, 1975). Haemodynamic changes have also been shown in

acute naloxone detoxification of addicted patients (Kienbaum et at., 2002a). Antagonist

studies also show cardiovascular effects (Foss et at., 1997). Thus there might be

benefits, in addition to pain relief, from morphine use in the treatment of angina pectoris

and acute myocardial infarction, and this is probably because of decreases in preload,

force of contraction and heart rate. The evidence of opioid effects in the literature that

may support a role for opioids on the cardiovascular system is summarised in Table 1-

Evidence Reference
1 Reported experimental studies in which opioids have shown (Holaday, 1983)

some actions on the cardiovascular system
Systematically injected opioids have shown cardiovascular (Faden, 1993; Martin-
effects Schild et at., 1999)
Cardiovascular changes after microinjection of opioids into (Faden, 1993)
central sites, which are reversible by opioid receptor
antagonists
Hypotension occurs in opioid overdose (TOXBASE, 2001)

2 Evidence of altered levels of endogenous opioids or their (Zamir et at., 1980)
receptors in pathophysiological such as hypertension
conditions as compared with a normal status

3 The presence of opioid peptides or opioid receptors in brain (Khachaturian et a!.,
and spinal cord sites suggests their involvement in 1985a; Khachaturian
cardiovascular control et at., 1985b)

4 Opioids might modulate the influence of psychosocial stress (Kraft, 1994)
on tonic regulation of blood pressure and essential
hypertension

5 Patients undergoing withdrawal experience some (Fultz & Senay, 1975)
cardiovascular effects, which are usually the opposite of the
effects of opioid agonism.

6 Haemodynamic changes in acute naloxone detoxification of (Kienbaum et at.,
addicted patients 2002a)

7 N-methylnaltrexone bromide (methylnaltrexone), an antagonist (Foss et at., 1997)
that has a limited ability to cross the blood-brain barrier
induced orthostatic hypotension

Table 1-4. Evidence supporting the role of opioids in the cardiovascular system
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Although, hypotension occurs in opioid overdose (TOXBASE, 2001), therapeutic doses

of morphine-like opioids, do not cause major effects on blood pressure or cardiac rate

and rhythm in supine patients, despite evidence of peripheral vasodilatation (Gutstein &

Akil, 2001). Reduced peripheral resistance and an inhibition of baroreceptor reflex,

which may lead to orthostatic hypotension in the head up position have been reported

(Feldberg & Wei, 1986). These effects are not consistent for all opioids, for instance

fentanyl has less cardiovascular effects (Rosow et at., 1982).

It is also important to differentiate effects on the cardiovascular system due to effects on

opioid receptors from those due to effects on other receptors. Thus,

dextropropoxyphene causes arrhythmia, an effect not thought to be related to its opioid

agonist properties (Whitcomb et at., 1989; Stork et a!., 1995). In summary, the site and

mechanism of action of opioids on the cardiovascular system in man are not well

understood. The profile of response is likely to be due to actions at several sites, the

effects seen being dependant on the receptor selectivity of the compound.

1.8. Opioid receptors

The existence of an opioid receptor was suggested in the pioneering work of Beckett

and Casy in 1954 (Beckett & Casy, 1954a; Beckett & Casy, 1954b). Portoghese

developed the theory that there were separate kinds of opioid receptors in 1965

(Pugsley, 2002). Opioid binding sites were originally believed to be a homogenous

group (Simon et al., 1973; Terenius, 1973). Later however, based on pharmacological

evidence, multiple opioid receptors were suggested (Gilbert & Martin, 1976). Now, it is

clear that at least three major classes of opioid receptors, so called p (mu), k (kappa),

9
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and 8 (delta) exist in the central nervous system. However a wide range of other opioid

receptors have been suggested including: a (sigma) (Gilbert & Martin, 1976) which

Zukin later suggested might belong to another class (Zukin & Zukin, 1979); e (epsilon)

from rat vas deferan (Chang et al., 1984; Garzon et at., 1984); i (lota) or intestinal from

rabbit ileum (Oka, 1980); A (lambda) from rat brain (Grevel & Sadee, 1983); £ (zeta)

from the growth inhibitory effects of opioids in neuroblastomas (Zagon et al., 1989).

There is also evidence for the existence of subtypes of the major types of opioid

Opioid receptor References

8
9
10

11

12

13

14

15

Suggestion of the existence of opioid receptor by Beckett
and Casy in 1954.
Theory of existence of separate opioid receptors
developed by Portoghese in 1965
Opioid binding sites were originally believed to be a
homogenous group in 1973
Pharmacological evidence suggest the existence of
multiple opioid receptors in 1976
Existence of endogenous encephalin has been shown in
rat and rabbit atria in 1977
lota (intestinal) receptors reported from rabbit ileum in
1980
Evidence for the existence of subtypes of the major types
of opioid receptors, such as m & p2 reported in 1981
Evidence for the existence of k-i & k2 reported in 1982
lambda receptors reported from rat brain in 1983
£ receptor reported from rat vas deferan reported in 1984

[3H] diprenorphine binding sites in the heart suggested as
physiologically active receptors, involved in regulation of
peripheral cardiovascular system in 1985
Myocardial infarction, hypertension, and cardiomyopathy
reported to lead to increased enkephalin or proenkephalin
mRNA in the heart in 1988 & 1992.

Zeta receptors reported from the growth inhibitory effects
of opioids in neuroblastomas in 1989
Cardiac tissue and isolated cardiac myocytes were shown
to contain dynorphin and prodynorphin mRNA in 1991
An endothelial opioid receptor, p3 claimed in 1995

(Beckett & Casy, 1954a;
Beckett & Casy, 1954b)
(Portoghese, 1965)

(Simon et al., 1973;
Terenius, 1973)
(Gilbert & Martin, 1976)

(Hughes et al., 1977)

(Oka, 1980)

(Wolozin & Pasternak,
1981)
(Attali et al., 1982)
(Grevel & Sadee, 1983)
(Chang et al., 1984;
Garzon et al., 1984)
(Krumins et al., 1985)

(Paradis et al., 1992)
(Dumont & Lemaire,
1988) (Ouellette &
Brakier-Gingras, 1988)
(Zagon et al., 1989)

(Spampinato et al., 1991)
(Canossa et al., 1993)
(Stefano et al., 1995a;
Cadet et al., 2000),

Table 1- 5. Opioid receptors, historical presentation
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receptors, such as ^ and p2 (Wolozin & Pasternak, 1981) and ki and k2 (Attali et al.,

1982). The endogenous opioid encephalin has been shown in rat and rabbit atria

(Hughes et al., 1977). Recently, an endothelial opioid receptor, p3, has been

hypothesised (Stefano et al., 1995a; Cadet et al., 2000). Based on an experiment in rat

hearts using the opioid ligand [3H] diprenorphine it has been suggested that binding

sites in the heart may be physiologically active receptors, involved in regulation of

peripheral cardiovascular processes (Krumins et al., 1985). Table 1-5 describes the

progressive understanding of opioid receptors over the last 50 years.

1.9. Endogenous opioid peptides

The opioid peptide families first identified were enkephalins, dynorphines and

endorphins. These are a large group of small proteins that interact with cell membrane

receptors in a similar way to opioid alkaloids. Endogenous opioid peptides may be

either secreted from nerves that innervate the heart or be produced in myocardial tissue

(Pugsley, 2002). There is some evidence that endogenous opioids play a role in the in

development of hypertension. A range of different opioid receptors is present in the

brain nuclei involved in cardiovascular regulation (Khachaturian et al., 1985b). Injection

of endogenous opioid peptides into certain areas of the brain (cerebral ventricles and

brain nuclei) in experimental animals elicit cardiovascular changes (Feuerstein, 1985).

Systemic injection of these compounds in anaesthetised rats elicited dose-dependent

hypotensive responses concomitant with decreases in peripheral vascular resistance

(Czapla et al., 1998; Champion et al., 1997). Experimentally hypertensive rats have a

45% higher level of opioid activity in the spinal cord than controls measured with the

radioreceptor assay in several brain regions and the pituitary gland compared to control
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(Zamir et al., 1980). Experimentally hypertensive rats have reduced nociceptive

responses compared with normotensives (Zamir & Segal, 1979). Under in vitro

conditions, stimulation of presynaptic opioid kappa, but not mu or delta, receptors

inhibits the release of noradrenaline from sympathetic neurones innervating the sinus

node in the rabbit isolated heart (Starke et al., 1985). In perfused rat hearts delta and

mu opioid receptor agonists directly depress cardiac function (Vargish & Beamer, 1989;

Mcintosh & Faden, 1986; Feuerstein & Siren, 1987; Barron, 2000; Pugsley, 2002).

1.10. The cardiac effects of opioids

Opioid peptides (enkephalins, dynorphins, and endorphins) have long been considered as

neuropeptides or neurotransmitters. There is some evidence that cardiac myocytes produce

enkephalins and they may therefore have functions in the heart. Enkephalins have also been

localised to many autonomic ganglia and nerves (e.g. stellate ganglia and vagus) (Lundberg et

al., 1978; Tang et al., 1982) and non-neuronal tissues. Cardiac tissue and isolated cardiac

myocytes contain dynorphins and prodynorphin mRNA (Spampinato et al., 1991; Canossa et al.,

1993). It has also been reported that myocardial infarction (Paradis et al., 1992), hypertension

(Dumont & Lemaire, 1988), and cardiomyopathy (Ouellette & Brakier-Gingras, 1988) lead to

increased levels of enkephalins or proenkephalin mRNA in the heart. The documented effects of

opioids in man are summarised in table 1-6.

1.11. Haemodynamic effects of opioids

The haemodynamic effects of opioids, categorised by the type of receptor and

experimental model are summarised in Table 1-7 (A & B). As can be seen the effects of

opioid agonism are overwhelmingly reported as haemodynamic depressor. In general,
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• Central nervous system
Analgesia, Drowsiness, Changes in mood, Mental clouding, Euphoria, anaesthesia (Large doses of
Morphine), Hypothalamus; body temperature I, chronic high doses t

• Neuroendocrine effects
GnRH I & CRF 4-, LFl, FSHl; & ACTHl, p-endorphini =>Testosteronel, Cortisol 1, Thyrotropin
PRLt, GH & t, ADH l(p),t(K)

• Myosis
Excitatory action on the parasympathetic intervention of the pupils

• Convulsions
Induced by high doses in animals, ? by IGABA by interneurones

• Respiration
I respiration (rate, minute volume, & tidal volume ) Reduction of the responsiveness of the brainstem
respiratory centres to the carbon dioxide), Irregular, periodic breathing, 4- the cough reflex ( direct
effect of the cough centre in the medulla)

• Gastrointestinal tract
Nauseant & emetic effect (direct stimulation of the chemoreceptor trigger zone for emesis , in the area
postrema of the medulla)
Stomach; Hydrochloric acid I, Somatostatin t from pancreas, Acetylcholine 4-, Gastric motility I,
gastric emptying time 4-, =>oesophageal refluxt, tone antral & first part of duodenum t, delayed
passage and delayed absorption of drugs.
Small intestine; intestinal secretion!, delays digestion of foods, resting tonet & periodic spasm,
Amplitude of non propulsive rhythmT, propulsive I,
Large intestine; propulsive peristaltic waves in the colon I, tonet & spasm, delayed passage,
desiccation of the faeces, tone of anal sphincter?
Biliary tract; sphincter Oddi constriction, rise in pressure up to 10 fold

• Other smooth muscles

Ureter; tone & amplitude t, inhibit the urinary voiding reflux
Bladder; tone of external sphincter & volume t

• Uterus; prolong labour
• Skin; dilation of cutaneous blood vessels, facial flushing, urticaria (histamine release, not

blocked by Naloxone)
• Immune system; inhibition of formation of rosetts by human lymphocytes
• Tolerance & physical dependence
• Cardiovascular system

BP; Si,I, <->, t, St
HR; Si,I, t, St
Peripheral vasodilatation, Dilation of cutaneous blood vessels & facial flashing
Peripheral resistance Sl,l
Inhibition of baroreceptor reflexes
Cardiac indexes I, <-», Cardiac work I
Oxygen consumption!
Left ventricular end diastolic pressure I
Hypovolaemic shock t
Cerebral circulation (vasodilatation) (Indirect by opioid induced respiratory depression and C02
retention)
Arrhythmia

Table 1- 6. Overview of the effects of opioids on man, Si; Significant decrease, I; Non
significant decrease, <-»; No changes, t; Non significant increase, St; Significant increase, ?;
Probably
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A) Agonist
Non-specific

Human Animal
Effect H. Volunteers Dependent Patients

t (Mildh et at., 2000) (Rubio ef a/., (Gomes et al., 1976; Kayaalp &
1997) Kaymakcalan, 1966; Sitsen et al., 1982;

Vatner ef al., 1975)
I (Petry et at., 1998) (Rubio et al., (Cathelin et al., (Gomes ef al., 1976; Sitsen ef al., 1982)

1992) 1980b; Cathelin
et al., 1980a;
Rosow et al.,
1982)

<-> (Lowenstein et al.,
1969)

p specific
t (Preston & (Kiritsy-Roy ef al., 1989; Bachelard & Pitre,

Bigelow, 1993) 1995; Keay ef al., 1997; Bachelard ef al.,
1997; Widy-Tyszkiewicz & Czlonkowski,
1991)

(Patschke et al., (Marson ef al., 1989; Randich etal., 1993;
1976; Sebel et Czapla ef al., 2000; Laubie ef al., 1977;
al., 1995; Lyons Widy-Tyszkiewicz & Czlonkowski, 1991;
et al., 1995) Petty &Reid, 1982)

<-» (Mildh et al., 2000) (Crosby et al., (Shen & Ingenito, 1999a; Keay etal., 1997;
1994; Murat et Ogutman ef al., 1995; Laubie ef al., 1977;
al., 1988; Rosow Petty & Reid, 1981)
ef al., 1982;
Fiacke et al.,
1987)

8 specific
t (Kiritsy-Roy ef al., 1989; Rochford & Henry,

1990; Bhargava & Rahmani, 1993; Widy-
Tyszkiewicz & Czlonkowski, 1991; Petty &
Reid, 1982).

I (Pasanisi et al., (Marson ef al., 1989; Widy-Tyszkiewicz &
1985) Czlonkowski, 1991)

<-> (Pasanisi et al., (Randich etal., 1993; Bachelard & Pitre,
1985) 1995; Keay etal., 1997)

k specific
t (Bellissant et al., (Rochford etal., 1991; Glattef a/., 1987;

1996) Widy-Tyszkiewicz & Czlonkowski, 1991;
Petty & Reid, 1982).

4- (Shen & Ingenito, 1999a; Zhai & Ingenito,
1998; Hall etal., 1988; Pugsley etal., 1998)
(Keay ef al., 1997; Ogutman ef al., 1995;
Wright & Ingenito, 2001; Shen & Ingenito,
1999c) (Wright & Ingenito, 2000; Zhai &
Ingenito, 1997; Zhai & Ingenito, 1998; Wang
& Ingenito, 1994a) (Zhang et al., 1999;
Randich ef al., 1993; Wang & Ingenito,
1994b; Widy-Tyszkiewicz & Czlonkowski,
1991; Glatt ef al., 1987; Shen & Ingenito,
1999b).

<-> (Rimoy et al., (Bachelard & Pitre, 1995)
1994; Kramer et
al., 2000)

B) Mixed antagonist-agonist
Non-specific

Human Animal
Effect H. Volunteers Dependent Patients

t (Preston & Bigelow, 1993)

1
(Lamas et al., 1994)

(Petty & Reid, 1982)
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C) Antagonist
Non-specific

Human Animal
Effect H. Volunteers Dependent Patients

t

4
<->

(Kienbaum et at.,
1998; Kienbaum et at.,
2002a; Preston &
Bigelow, 1993)

(Coppola ef at., (Coppola et at., 1994) (Petty & Reid, 1982)
1994;
Fuenmayor &
Cubeddu, 1986;
Staessen et at.,
1989).

/j specific
t
4
<-»

8 specific
t
4
<-» (Rochford & Henry, 1990; Marson et at.,

1989; Randich eta!., 1993)
k specific

t
4

(Shen & Ingenito, 2000; Wright et at., 1999)

(Shen & Ingenito, 2000; Wright eta/., 1999)

Table 1- 7. Haemodynamic effects of opioids agonists (A), mixed agonist-antagonist (B) and
antagonists (C) (t; Pressor (e.g. increase in blood pressure), 4; Depressor, <->; No effect) and
antagonism

opioid antagonism results in no effect or, more rarely, a pressor effect. The type of

receptor involved and experimental conditions are other determinants of the results.

1.12. Electrophysiological effects

Although opioids are generally assumed to have no effect on the electrocardiogram,

there is evidence suggesting that structurally similar opioids, dextropropoxyphene and

methadone, particularly in overdose, are electrophysiologically active. In anaesthetized

rats has been shown that the kappa agonist spiradoline dose-dependently reduces

blood pressure and heart rate and prolongs the PR interval and QRS width. These

effects suggest of sodium channel blockade in the rat were dose-dependently
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increased. Spiradoline produced its antiarrhythmic actions via sodium channel blockade

in myocardial tissue, although higher doses also block potassium currents (Pugsley et

a/., 1998). Dose-dependent QT prolongation and occurrence of Torsades des pointes in

patients treated with methadone has been reported (Krook et at., 2004; Krantz et at.,

2003). High dosages of the long-acting methadone derivative, levomethadyl acetate

HCI (LAAM; ORLAAM) has also induced a prolonged QTc interval and polymorphic

QRS complexes (Deamer et at., 2001).

Dextropropoxyphene in particular causes prolongation of PR interval and QRS duration

in high doses in animals (Bredgaard et at., 1984; Holland & Steinberg, 1979). In man,

dextropropoxyphene overdose has also been shown to cause QRS complex widening,

and other arrhythmias (Stork et at., 1995; Whitcomb et a!., 1989; Heaney, 1983). This

effect has been attributed to its membrane stabilising effect through blockade of fast

Electrophysiological effects of opioids References
1 Prolongation of PQ and QRS duration has been reported in (Bredgaard et at..

intoxicated pigs with dextropropoxyphene 1984)
2 Prolongation of PR interval in conscious dogs has been shown (Holland & Steinberg,

to be significant (p<0.05) with dextropropoxyphene but not 1979)
significant with norpropoxyphene

3 Death has frequently been reported from dextropropoxyphene (Jonasson et at.,
2000a; Obafunwa et
at., 1994)

4 Death from dextropropoxyphene overdose is rapid (Whittington, 1984).
5 In a case report, dextropropoxyphene intoxication induced (Stork eta!., 1995)

QRS complex widening
6 This is claimed to be attributed to its membrane stabilising (Henry & Cassidy,

effect through blockade of fast sodium channel, as quinidine 1986; Stork et at.,
cause similar wide complex dysrhythmia 1995)

7 In another case report marked QRS widening was reversed by (Whitcomb et at., 1989)
lidocaine

8 One case of left bundle branch block following acute (Heaney, 1983)
dextropropoxyphene hydrochloride overdose has also been
reported, which was transient and associated with no
permanent sequelae.

Table 1- 8. Electrophysiological effects of opioids
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sodium channel, as quinidine cause similar wide complex dysrrhythmia (Henry &

Cassidy, 1986; Stork et al., 1995). Evidence related to dextropropoxyphene induced

ECG changes are summarised in table 1-8.

1.13. Potential sources of discrepancy in literature

The inconsistent results of experimental studies on the haemodynamic effects of

opioids make it difficult to produce a single hypothesis as to their mechanism of action.

This is partly because opioid effects on the cardiovascular system may be a result of

Confounders References

Related to opioid properties
1 Type of opioid (Rosow et al., 1982; Flacke etal., 1987;

Fuenmayor & Cubeddu, 1986; Khalid et al.,
1987; Wang & Ingenito, 1994b)

2 Anaesthetic state (Gomes etal., 1976; Sitsen etal., 1982)
3 Type of anaesthetic (Sitsen et al., 1982)
4 Background condition (Feuerstein et al., 1989)
5 Route of administration (Glatt et al., 1987; Widy-Tyszkiewicz &

Czlonkowski, 1991)
6 Concentration of opioid receptors at (Feuerstein & Faden, 1982)

administration site
7 Dose (Bellet et al., 1980; Faden & Feuerstein, 1983)
8 Acute or chronic administration (Tress & El Sobky, 1980)
9 Subject position (Pasanisi et al., 1985)
10 Agonist - antagonist pharmacokinetics (Ngai etal., 1976)
11 Type of experimental species (Nickander etal., 1984)
12 Exercise (Carter et al., 2002)

Related to opioid induced interaction with other pathways
1 Opioid induced hypoxia (Leino et al., 1999; Moody et al., 2001;

Ishimura et al., 1996)
2 Opioid induced hypercapnia (Thompson et al., 1995; Ganong, 2001)

Related to opioid induced secondary mechanism
1 Opioid induced histamine release (Flacke et al., 1987)
2 Nitric oxide pathway activation (Stefano et al., 1995a)
3 Sodium channel blockade (Stork et al., 1995; Heaney, 1983; Whitcomb

etal., 1989)

Table 1- 9. Major confounders affecting experimental studies on the role of opioids in the
cardiovascular system.
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action on central and peripheral sites and partly because of different experimental study

designs employed in the literature (Table 1-9). The source of discrepancy may be

related to opioid properties, to opioid-induced interaction with other pathways, or related

to opioid-induced secondary mechanism.

1.14. Mechanistic studies (Human studies, whole animal models, isolated tissues)

Morphine is traditionally regarded as a hypotensive agent. Several mechanisms of

action have been hypothesised for this effect including histamine release, changes in

vagal tone, and venous and arterial vasodilatation (Lowenstein et at., 1969), decreases

in cardiac and renal sympathetic nerve activity (Feldberg & Wei, 1986; Mori et at.,

1998), actions on ion channels, and concurrent hypoxia and hypercapnia. On the other

hand, morphine has also reported as a pressor compound. Central mechanisms,

activation of the sympathetic system (Hoar et at., 1981), and renin-angiotensin system

(Bailey et at., 1975) have also been proposed. The potential mechanisms of

haemodynamic effects man are discussed below.

1.14.1. Mu receptor

The peripherally active antagonist N-methylnaltrexone bromide has a limited ability to

cross the blood-brain barrier and induced orthostatic hypotension with no release of

histamine (Foss et at., 1997). Moreover, a /j3 opiate alkaloid-specific receptor has been

claimed to be present in the vasculature based on cell culture (Stefano et at., 1995a).

This has been extensively studied by the same group (Cadet et at., 2000; Stefano et at.,

2002; Stefano, 1998; Stefano et at., 1998; Cadet et at., 2004). They also showed this

receptor is identical with the neuronal human m^ receptor (Cadet et at., 2000).

However, its presence has not been confirmed independently.
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1.14.2. Histamine

Morphine stimulates the release of histamine from mast cells directly and without prior

sensitization (Brown & Reberts, 2001). Moreover, the majority of normal subjects

receiving intravenous bolus doses of morphine or nalbuphine have been reported to

show significant elevations in plasma histamine (Fahmy et al., 1983; Doenicke et at.,

1995). The degree of haemodynamic compromise was related to the plasma histamine

concentration (Flacke et al., 1987). This effect is probably due to relaxation of arteriolar

smooth muscles, precapillary sphincters and muscular venules mediated via Ht and H2

receptors, which may stem from the activation of adenylate cyclase (Brody et al.,

1998).

Histamine causes dilatation of small blood vessels and reduces total peripheral

resistance causing a fall in systemic blood pressure. Vasodilatation involves both Ht

and H2 receptors distributed throughout the resistance vessels in most vascular beds

(Brown & Reberts, 2001). This action appeared to be independent of the action of the

endothelium (Ganong, 2001). Histamine has been shown to induce a concentration-

dependent coronary vasodilatation, with increase in basal cGMP and nitric oxide

release in the isolated pig hearts. This is mediated either by ^-receptor mediated nitric

oxide release from the endothelium (Kelm et al., 1993) or an cAMP-initiated action

through the histamine H2-receptor (Kishi et al., 1998). Histamine mediated

vasodilatation was partially blocked by antagonists, however, it was also effectively

reversed by naloxone (Gutstein & Akil, 2001).
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Involvement of histamine is also supported by the fact that the selective p agonist,

fentanyl, and its derivatives, which do not release histamine (Flacke et al., 1987), are

less likely to cause haemodynamic instability (Gutstein & Akil, 2001). Remifentanil

induced a slight reduction in systolic blood pressure, which was not associated with

alterations in histamine concentration (Sebel et al., 1995). Therefore, it is likely that

differences in the release of histamine might account for some, if not all, of the different

effects of morphine and fentanyl on the peripheral vasculature (Rosow et al., 1982).

Moreover, in man, antagonism of the haemodynamic effects of morphine can be

obtained by the use of the combination of Fh (diphenhydramine) and H2 (cimetidine)

antagonists (Philbin et al., 1981). A combination of Fh and H2 antagonists is optimal as

shown by the protective effects of preoperative terfenadine and ranitidine on

tubocurarine and morphine-induced blood pressure changes (Treuren et al., 1993).

1.14.3. Nitric oxide (NO)
It is accepted that the flow induced arteriolar dilation is due to local release of NO. Also

a prompt rise in blood pressure occurs when an inhibitor of NO is administered to

experimental animals and man (Ganong, 2001; Haynes et al., 1993). Morphine and NO

are related in many biological circumstances. For instance, they have been linked in

gastrointestinal regulation in which It is suggested that endogenous nitric oxide is likely

to be involved in the gastroprotective action of morphine (Gyires, 1994). In mice

endogenous nitric oxide modulates morphine-induced constipation (Calignano et al.,

1991). Peripheral morphine analgesia probably involves NO-stimulation of cGMP

(Ferreira et al., 1991). Endothelial cells might therefore be under the direct control of

opioids.
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It has been shown that morphine, but not the mu agonist DAGO, resulted in a dose-

dependent release of nitric oxide from endothelial cells, which was blocked by

naloxone. This has led to the suggestion of alleged mu3 opioid specific receptor

(Stefano et at., 1995a). These authors described a specific binding site for morphine on

endothelial cells coupled to nitric oxide release in human endothelial cells. This

suggests a direct modulatory control over the activities of endothelial cells leading to

vasodilatation.

This production of nitric oxide has been shown to be sensitive to naloxone antagonism,

as well as nitric oxide syntheses inhibition (Stefano et a!., 1995a). However, it has been

reported that unlike morphine, fentanyl, a mu specific agonist which has less ability to

release histamine (Flacke et at., 1987), does not possess the ability to bind to this

alleged mu3 receptor, and therefore does not increase nitric oxide release (Bilfinger et

at., 1998a). These facts together raise the possibility of the existence of a morphine

induced non-opioid receptor pathway for NO release, possibly due to histamine release.

This hypotheses is explored later in this thesis.

1.14.4. Hypoxia

Morphine causes hypoxia. Intravenous morphine and oxycodone decrease respiratory

rate, minute ventilation and respiratory cycle (Leino etal., 1999). Pentamorphone which

has a rapid onset and short duration of action, produced dose-related reductions in the

ventilatory response to hypoxia (Afifi et at., 1990). In volunteers intrathecal

administration of morphine led to a dose-related decrease the Sp02. heart rate, systolic

blood pressure, and respiratory rate changes were not dose related, but low doses
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were used (Bailey et al., 1993). Also intravenous morphine has shown to decrease

breathlessness during exercise in healthy man (Masood et al., 1995).

A fall in 02 tension in most tissues produces vasodilatation by local autoregulatory

mechanisms (Ganong, 2001). Hypoxia also stimulates the vasomotor centre directly

(Ganong, 2001) and leads to tachycardia and increased cardiac output by reflex

activation of the sympathetic nervous system. Therefore unless hypoxia is prolonged or

severe, blood pressure will be maintained (Moody et al., 2001). In cats hypoxia-induced

arteriodilation was related to changes in the nitric oxide pathway (Ishimura et al., 1996).

In newborn pigs norbinaltorphimine, a kappa-opioid antagonist, potentiated hypoxia-

induced pial dilation. An increase in CSF methionine encephalin, a mu-opioid agonist

was seen. N omega-nitro-L-arginine (L-NMMA), an NO synthase inhibitor also blunted

hypoxia-induced vasodilatation (Armstead, 1995).

Overall, respiration is inhibited by opioids and hypoxia has cardiovascular effects.

Therefore cardiovascular changes due to opioids may in part be secondary to hypoxia.

In overdose, where respiratory effects are predominant and more serious, hypoxia

might be more important.

1.14.5. Hypercapnia
The main adverse reaction limiting the therapeutic potential of opioids is dose-

dependent respiratory depression (Florez & Hurle, 1993). Intravenous morphine

produces a significant increase in arterial PC02 (Thompson et al., 1995). In healthy

volunteers pentamorphone reduced the ventilatory responses to hypercapnia in a dose-

related manner (Afifi et al., 1990). Coronary blood flow increases at arterial PC02
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values above 85 mmHg. Carbon dioxide in high concentration is a vasodilator and is a

negative inotrope (Van den bos et a/., 1979). Increase in C02 level increases the

plasma concentration of adrenaline and noradrenaline by activation of sympathetic

nervous system (Moody et at., 2001). The vasodilator effect of C02 is most pronounced

in the skin and brain (Ganong, 2001). However, rise in arterial PC02 stimulates the

vasomotor area. Therefore, the central and peripheral effects tend to cancel each other.

Exposure to high concentration of C02 is associated with marked cutaneous and

cerebral vasodilatation, but there is vasoconstriction elsewhere and usually a slow rise

in blood pressure (Ganong, 2001). In a study using colour Doppler imaging in 12

volunteers showed C02 altered flow velocity predominantly in the middle cerebral artery

and less so in other vessels studied. Peak systolic and end-diastolic velocities rose

(Harris et at., 1996). Positron scanning also show regional differences in cerebral

vascular response to PaC02 changes (Ito et at., 2000).

Overall, the effects of hypercapnia, both central and peripheral, should be considered

as a possible mechanism for the haemodynamic effects of opioids. Moreover, in opioid

overdose in which the respiratory effects are predominant and more serious this

mechanism might be particularly important.

1.14.6. Sympathetic activity
1.14.6.1. Human studies

Although opioids are normally considered as cardiovascular depressor agents, a short

duration increase in arterial blood pressure caused by morphine has been reported in

man (Mildh et at., 2000). These authors reported no change in plasma adrenaline

levels, however, some experiments show that plasma adrenaline increases in man after
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morphine injection (Flacke et al., 1987). This may suggest an activation of the adrenal

medulla by histamine (Fahmy et at., 1983). Concurrent vasodilatation and

sympathoadrenal activation have been shown in patients with coronary artery disease

that received morphine sulphate for surgery (Pant et at., 1983; Hoar et at., 1981;

Yoshimoto et at., 2005).

Despite evidence suggesting an association between opioids and muscle sympathetic

nerve activity in man at rest, opioids do not alter cardiovascular and muscle

sympathetic nerve activity responses to isometric handgrip or post-exercise muscle

ischemia (Carter et al., 2002). Overall these studies suggest that mu agonism has

effects on the sympathetic system, which probably coincides with opioid depressor

effects.

Other opioid receptors might also be involved. A selective kappa agonist, niravoline,

significantly increased plasma levels of noradrenaline accompanied by a slight and

transient increase in blood pressure (Bellissant et at., 1996). However, another

selective kappa agonist, spiradoline (U-62066E) failed to change the plasma

catecholamines, blood pressure, or pulse rate (Ur et al., 1997). The delta receptor

agonist, deltorphin, attenuated stress-induced activation of the sympathetic nervous

system (an inhibitory effect on noradrenaline release) induced by both insulin-induced

hypoglycemia and the cold pressor test (degli Uberti et al., 1993). Opioid involvement

in muscle sympathetic activity in man is also supported by the studies in which subjects

on chronic mu-opioid receptor agonist thrapy have been shown to havbe a decrease in
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the resting muscle sympathetic activity, despite similar arterial blood pressure and heart

rate to matched healthy subjects (Kienbaum etal., 2001; Kienbaum etal., 2002b).

The contribution of catecholamines to the cardiovascular effect of opioids is also

supported by antagonist studies. Opioid receptor blockade in chronic users markedly

increased resting muscle sympathetic activity and noradrenaline and adrenaline arterial

plasma concentrations as well as mean arterial pressure and heart rate (Kienbaum et

al., 2001). However, this result was not consistent with some other studies (Farrell et

at., 1991). During acute detoxification with naloxone and under anaesthesia a 30-fold

increase in adrenaline and a three-fold increase in noradrenalin plasma concentrations

were seen. These were associated with increased oxygen consumption and marked

cardiovascular stimulation. This suggests that opioid receptor agonists may act via the

sympathetic nervous system particularly by effects on the adrenal system (Kienbaum et

al., 2000). However, increase in catecholamines might be in part due to concurrent but

independent withdrawal syndrome.

In general naloxone has been shown to be incapable of changing muscle sympathetic

activity at rest (Estilo & Cottrell, 1982; Rubin et al., 1983; McMurray et al., 1991);

however, in some other studies naloxone potentiated an increase in MSA during

exercise and in response to lower body negative pressure (Hara & Floras, 1992; Farrell

et al., 1991). Also it is shown that dynamic or static exercise induced cardiovascular

effects were not association with an opioid antagonist (Cook et al., 2000; Floras, 1991;

Kirno et al., 1993). As Carter argued, this is probably because, the exercise stimulus is
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not sufficient enough to activate the opioid system, particularly as the naloxone is an

receptor antagonist, rather than activator (Carter et al., 2002).

It is also suggested that catecholamine secretion from pathological chromaffin tissue is

modulated by endogenous opioids. This was particularly evident in patients with

pheochromocytoma (Mannelli et al., 1986). The main evidence supporting an

association of opioids and sympathoadrenal system in man is summarised in table 1-

10.

Comments Reference
1 Plasma adrenaline increases in man after morphine injection (Flacke et al., 1987)
2 Morphine induced f BP in man. (Mildh et al., 2000)
3 Morphine activates the adrenal medulla via histamine release (Fahmy et al., 1983)
4 Concurrent vasodilatation and sympathoadrenal activation in (Hoar et al., 1981)

cases receiving morphine prior to surgery
5 Selective kappa agonist, niravoline, significantly increased plasma (Bellissant et al., 1996)

levels of noradrenalin accompanied by a slight and transient
increase in blood pressure.

6 Delta receptor agonist, deltorphin, attenuated stress-induced (degli Uberti et al.,
activation of sympathetic nervous system. 1993)

7 Dependent subjects have decreased resting muscle sympathetic (Kienbaum et al.,
tone. 2001; Kienbaum ef al.,

2002b)
8 Opioid receptor blockade in chronic users markedly increased the (Kienbaum et al.,

resting muscle sympathetic activity and noradrenalin and 2001)
adrenaline arterial plasma concentrations as well as mean arterial
pressure and heart rate

9 The cardiovascular pattern in acute detoxification with naloxone (Kienbaum et al.,
and under anaesthesia has revealed a 30-fold increase in 2000)
adrenaline and three-fold increase in noradrenalin plasma
concentrations.

10 Catecholamine secretion from normal and pathological chromaffin (Mannelli ef al., 1986)
tissue is modulated by endogenous opioids.

Table 1-10. Evidence supporting the effects of opioid on sympathetic system in man
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1.14.6.2. Animal studies

Based on animal studies, there is considerable evidence to support a centrally

mediated role for endogenous opioid peptides in the brain as a regulator of

cardiovascular system activities (Feuerstein, 1985) (Table 1-11). Opioid receptors and

peptides have been found in the brain (Mansour et al., 1988). Central administration of

opioid peptide result in cardiovascular effects (Kiritsy-Roy et at., 1986). It has been

shown that the hypertensive response to central opioid stimulation is mediated by an

increase in the sympathetic outflow to the adrenal medulla and sympathetic nerve

terminals (Bachelard et at., 1997). Experimentally hypertensive rats have a 45% higher

level of opioid activity in the spinal cord compared to control (Zamir et al., 1980). In vivo

morphine has a dose- dependent depolarizing effect on the resting membrane potential

of most of the neurons in the stellate ganglion (Bosnjak et ai, 1986).

Opioid receptors in the brain regulate autonomic outflow. Injections of either the mu-

selective agonist, [D-Ala2, MePhe4, Gly-ol5]encephalin (DAMGO), [D-Ala2,N-Me-

Phe4,Gly5-ol]encephalin (DAGO) or the delta-selective agonist, [D-Pen2, D-

Pen5]encephalin (DPDPE), morphine, fentanyl and [D-Ala2]-met-enkephalinamide have

been shown to increase plasma catecholamine levels and blood pressure in a dose-

related manner (Kiritsy-Roy et al., 1989; Bellet et a!., 1980; Feldberg & Wei, 1986;

Kiritsy-Roy et al., 1986; Appel et al., 1986a; Bachelard et al., 1997; Paakkari et al.,

1992; Marson etal., 1989).

From a cell biological point of view, opioid signalling plays an extensive role in the

medullospinal network that controls the sympathetic tone and arterial pressure. Mu-
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opioid receptors are found post-synaptically, whereas presynaptic receptors probably

include both mu and delta subtypes (Guyenet et at., 2002; Ang et at., 1999;

Khachaturian et at., 1985a). A counteracting and masked or biphasic effect is also

suggested, as remifentanil decreases HR and MAP by its central vagotonic effect and

by stimulating peripheral mu-opioid receptors (Shinohara et at., 2000; Vatner et at.,

1975; Randich etal., 1993; Wallenstein, 1979).
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Comments Reference
1
2

10

11

12

13

14

Opioid receptors & peptides have been found in the brain
Mu-opioid receptors are found post-synaptically,
Both mu and delta subtypes are found presynaptic
In vivo morphine has a dose-dependent depolarizing effect
on the resting membrane potential of most of the neurons
in the stellate ganglion
Central administration of opioid peptide result in
cardiovascular effects

Hypertensive response to central opioidergic stimulation is
mediated by an increase in the sympathetic outflow to the
adrenal medulla and sympathetic nerve terminals
Experimentally hypertensive rats have a higher level of
opioid activity in the spinal cord
Injections of DAMGO, DAGO, DPDPE, morphine, fentanyl
and [D-Ala2]-met-enkephalinamide have been shown to
increase plasma catecholamine levels and blood pressure
in a dose-related manner

Concurrent or biphasic haemodynamic effects are also
suggested, such as remifentanil is centrally
haemodynamically depressor, and pressor via peripheral
mu-opioid.
I.v. morphine induced HR t, reversed by beta blockade,
Alpha receptor blockade abolished the late coronary
vasoconstriction
DAGO & DPDPE
Restraint stress: catecholamines t; BPt, DAGO &
DPDPE: catecholamines t; BPT, DAGO & DPDPE during
restraint, HR I; BP 1, Effects blocked by naloxone but not
by the delta-selective antagonist ICI 174864
l.c.v. DAMGO or DPDPE induced plasma catecholamine
levelst, BP T(dose-related), & HRt in highest dose.
Antagonized by naloxone
After haemorrhage Intrathecal & intracisternal naloxone
methiodide abolished the fall in blood pressure
I.v. DAGO & morphine
Either with bilateral cervical vagotomy
or pre-treatment with the mu2 opioid
receptor antagonist beta-FNA.
Pre-treatment with the mu 1 opioid
receptor antagonist naloxonazine
Remifentanil in intact rabbits

IHR

(Mansour et al., 1988)
(Guyenet et al., 2002; Ang et al.,
1999; Khachaturian et al., 1985a)
(Bosnjak et al., 1986)

(Kiritsy-Roy et al., 1986)

(Bachelard eta!., 1997)

(Zamir et al., 1980)

(Kiritsy-Roy et al., 1989; Bellet et
al., 1980; Feldberg & Wei, 1986;
Kiritsy-Roy et al., 1986; Appel et
al., 1986a; Bachelard et al., 1997;
Paakkari et al., 1992; Marson et
al., 1989)
(Shinohara et al., 2000; Vatner et
al., 1975; Randich et al., 1993;
Wallenstein, 1979).

(Vatner et al., 1975)

(Marson et al., 1989)

(Kiritsy-Roy et al., 1989)

(Ang etal., 1999)

(Randich et al., 1993)
IHR of both significantly attenuated

Baro-denervated rabbits

Baro-denervated & remifentanil
treated with naloxone

pre-

Affected DAGO, but not
morphine induced IHR
HR I; MAPI, Renal
sympathetic nerve activity, DD
HR I; MAPI, Increased RSNA
had returned to baseline
Abolished these changes

(Shinohara et al.,
2000)

Table 1-11. Evidence supporting the central role of opioids in animals, A; anaesthetised, C;
conscious, D; dog, DD; dose dependent, I; intact, N; normal, R; rabbit,

29



Introduction

1.14.7. Other potential mechanisms

Morphine infusion in conscious newborn piglets results in elevated mean arterial blood

pressure, and caused significant elevations in plasma ET-1(Modanlou & Beharry,

1998). In man also morphine significantly increased plasma ET-1 levels through

activation of neutral endopeptidase 24.11 (Wang & Chang, 2001; Wang & Hung, 2003).

Sodium channels may mediate some non opioid effects of opioids, although this has

shown to be controversial (Grudt & Williams, 1993; Pugsley, 2002; Pugsley et al., 1998;

Ingram & Williams, 1994; Tai eta!., 1992; Laurent etal., 1986).

1.15. Conclusion

Public exposure to opioids is high, and for illegal opioids such as diamorphine, precise

usage is unknown. In Edinburgh more than 10% of patients admitted to the toxicology

ward have taken an opioid as a part of their ingestion and opioids are also a significant

cause of death in young people. For these reasons improved understanding of the

immediate cardiovascular effects of opioids would be desirable. Chapter I has

summarised the evidence supporting haemodynamic activity of mu and kappa opioid

receptor agonists in particular. However, the findings are somewhat inconsistent in

animal and man (Gomes et al., 1976; Kayaalp & Kaymakcalan, 1966; Sitsen et al.,

1982; Gomes et al., 1976; Kayaalp & Kaymakcalan, 1966; Vatner et al., 1975), (Fahmy

et al., 1983; Rosow et al., 1982; Philbin et al., 1981; Lowenstein et al., 1969; Mildh et

al., 2000). Overall opioids seem to be haemodynamically depressor, although a

transient pressor effect has been seen from i.v. doses in man (Mildh et al., 2000).
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In general, it seems that the haemodynamic effects of opioids are probably due to a

combination of depressor effects of direct opioid receptor agonism and some addition

vasodilatation effects caused by histamine release. In addition, opioids induce

sympathetic and parasympathetic activation while also interact on the haemodynamic

responses (Marson et al., 1989; Randich et al., 1993; Czapla et al., 2000). Direct mu

agonism and histamine both seem to act on the vasculature via nitric oxide (Stefano et

al., 1995a; Cadet et al., 2000). Some opioids block sodium channels and this is another

potential mechanism of action of some opioids on the cardiovascular system. Indeed,

prolonged QRS duration is seen in dextropropoxyphene overdose. The complexity of

the potential influence of opioids on cardiovascular regulation is shown in Figure 1-2.

1.16. Scope of this thesis
The primary aims of this thesis were:

• To investigate the epidemiology and outcome of opioid overdose as it presents to

NHS Scotland using a series of approaches including information on supply

(measured by number of prescriptions), morbidity (telephone enquiries, TOXBASE

accesses, hospital discharges for overdose), mortality (number of deaths). This

information is used to compare the inherent toxicity of individual compounds using a

series of new epidemiological approaches.

• To investigate the cardiovascular effects (haemodynamic and electrophysiological)

of opioids following ingestion in overdose amongst patients admitted to the Poison

Centre of the Royal Infirmary of Edinburgh. These studies focused in particular on

dihydrocodeine, methadone and dextropropoxyphene (as a compound of co-

proxamol) as these drugs were taken frequently in the period of these studies.
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• To investigate the cardiovascular effects of opioids in healthy volunteers following

systemic (intravenous) administration.

• To investigate the local effects of opioids in the forearm circulation following intra¬

arterial administration into the brachial artery and the mechanisms that underlie

these effects.
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Hypoxia

Guanylyl cyclase

GTI^> cAMP

Nitric Oxide PVRl

Catecholamines

tHR & tCO

Potential Pathways of opioid induced cardiovascular based on this review effects

Direct p3* Histamine release Hypercapnia

Direct local Central Autonomic
nervous system

H, &H2
Receptors

mpheral
itoregulatory
mechanisms

Figure 1- 2. Potential mechanisms of opioid induced vasodilatation, *; Existence of this receptor
will be challenged
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. Material & Methods

2.1. Study designs, planned samples and target populations
The studies described in this thesis use a variety of methodologies to suit specific

goals, required powers and practical limitations. This chapter describes the overall

profile of techniques used, both epidemiological and clinical, but the details are

described in the individual chapters. The individual studies are listed in Table 2-1.

Studies Study Designs Planned samples Target population
P-P1 -1 Retrospective case series

study
P-P1-2 Observational prospective

parallel groups

P-P1 -3 Retrospective case series

P-P1-4 Observational prospective
case series study

P-P2 Observational prospective
parallel groups (case
control) study

HV-P1 & Single blind2 two ways
HV-P2 crossover randomized

clinical trial

FBF-PO Single blind in terms of
order of morphine saline
clinical trial

FBF-P1 As for FBF-PO
FBF-P2 As for FBF-PO
FBF-P3 Opened labelled, single

blind were possible as for
FBF-PO, four ways
crossover randomized
clinical trial

Young (18-SOy)1 co-
proxamol overdoses
Young (18-50y)1 combined
opioid and paracetamol
overdoses

Young (18-50y)1 co-
proxamol overdoses

Young (18-50y)1 co-
proxamol overdoses
Young (18-50y)1 pure
opioids & paracetamol
overdoses

Young (18-50y) non
smoker, normotensive,
total cholesterol level <6.0
mmol/lit) & naive to opioids
As for HV-P1

As for HV-P1
As for HV-P1
As for HV-P1

Admissions to the RIE from July 2001 to July
2002.
Admissions to the RIE from September
2002- to April 2003.

Admissions to the RIE from September
2002- to April 2003 admissions to the Clinical
Toxicology Unit of the Mater Hospital in
Newcastle, Australia.
Admissions to the RIE from June 2003- to
December 2004.
Admissions to the RIE from September
2002- to April 2003.

Healthy volunteers from the database of the
CRC-WGH-UE, who replied to the letter of
information sheet on a first come first served
manner.

As for HV-P1

As for HV-P1
As for HV-P1
As for HV-P1

Table 2-1. List of studies' designs, RIE; Royal Infirmary of Edinburgh, CRC-WGH-UE; Clinical
Research Centre of the Western General Hospital- The University of Edinburgh, P-P1-1; Co-
proxamol overdose induced electrophysiological changes study. P-P1-2; Combined opioid
overdose induced electrophysiological changes study. P-P1-3; Co-proxamol overdose induced
electrophysiological changes study (Edinburgh and Newcastle, Australia study). P-P1-4; Co-
proxamol overdose induced electrophysiological changes study (actual plasma measurements).
P-P2; Pure opioid overdose induced haemodynamic changes study. HV-P1; Morphine induced
haemodynamic changes study in comparison to saline (M & S, n=8)). HV-P2; Naloxone
antagonist effects on morphine induced haemodynamic changes study. (M/S & M/N, n=8). FBF-
PO; Local arteriolar morphine dose ranging study (pre-trial). FBF-P1; Local arteriolar morphine
dose ranging study (n=6). FBF-P2; Tachyphylaxis study (n=8). FBF-P3; Mechanism of action of
local arteriolar morphine study (n=8), 1; All patients with history of cardiologic diseases and co¬
ngestion of drugs with known ECG effects in overdose were excluded, 2; Because of the
probability of occurrence of side effects of these high doses of morphine, and also as morphine
is a controlled drug (two people were needed to document its use), these studies did not design
as double blinded.
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For epidemiological studies, the populations studied were either the whole of Scotland

or residents of Edinburgh in the catchment of the Royal Infirmary of Edinburgh

(prescriptions and patients admitted to the hospital with the poisoning). For volunteer

studies, healthy subjects were recruited in three different groups; 1) morphine versus

saline (coded HV-Pt), 2) morphine versus naloxone (coded HV-P2), and 3) forearm

blood flow studies (coded FBF-P0_3).

2.2. Eligibility Criteria

2.2.1. Ethics approval

Ethical approval was obtained from the relevant ethics committees before commencing

these studies. These were either the Multi-Centre Research Ethics Committee for

Scotland (MREC), the Lothian Healthy Volunteers/Student Research Ethics Committee

(LREC), and Lothian Research (Ethics) Committee (LREC)). The studies were all

carried out in line with the principles outlined in the Declaration of Helsinki. The Royal

Infirmary Research and Development Office also gave Trust Management approval to

allow the project to be performed in the Royal Infirmary of Edinburgh or Western

General Hospital. The Health and Safety Department of the University of Edinburgh

confirmed that volunteer studies came within the liability insurance cover held by the

University. Written informed consent was obtained from all subjects prior starting the

studies. The details of these letters of approval and their amendment are summarised

in Appendix I (Table l-l).
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2.2.2. Inclusion criteria

A. For epidemiologic studies, no inclusion, or exclusion criteria were set. Data sets

were anonymised for analyses.

B. For patient studies, patients treated in the Royal infirmary of Edinburgh without a

history of cardiac disease and co-ingestion of drugs known to cause ECG

changes or haemodynamic manifestation in overdose were included. Data were

extracted from patients' notes in retrospective studies. In prospective studies case

records were used and verbal confirmation from the patients was sought.

C. For volunteer studies, male healthy subjects between 18 and 55 years old

participated. Their ages were determined by verbal ascertainment of their date of

birth. Volunteers weighed between 60 and 100 kilograms weight. They were

weighed using an electrical scale before starting the first visit by the principal

researcher. Volunteers had no history and physical characteristics of opioid

abuse. They were required to undergo screening for drugs of abuse via

TRIAGE™8 (see later). The test procedure was followed as per the package

insert. All had no history of cardiovascular disease, high plasma cholesterol,

excess alcohol intake, and clinically significant hepatic, renal or respiratory

diseases. The subject's primary care physician was notified of subject's

involvements. Subjects were required not to have taken part in any study for three

months prior to starting the study. All subjects were asked to stop vasoactive

medications in the two weeks before each study, and abstain from alcohol,

caffeine-containing drinks, and tobacco from at least 12 h before each study. Each

subject fasted for at least 3 h before any measurements are taken.
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2.2.3. Exclusion criteria

1. Subjects with systemic blood pressure outside the normal reference range

(systolic blood pressure 90-150 mmHg and diastolic BP 50 to 90 mmHg).

2. Subjects with a positive screening urine test.

3. Subjects who revealed history of drug abuse, attempted suicide or any clinical

symptoms or signs of volume depletion or dehydration.

4. Intolerance to the study procedures.

2.2.4. Early withdrawal and discontinuation

1. For patient studies, subjects who decided not to sign consent form retrospectively.

2. For volunteer studies, adverse events (severe nausea or vomiting, clinically

important CNS depression, orthostatic hypotension (SBP less than 90 mmHg) and

or hypersensitivity).

3. Subjects who withdrew consent.

2.2.5. Recruitment

For epidemiologic studies patients were in the NHS in Scotland. For volunteer studies,

subjects were recruited by adverts approved by the ethics committee, and sent to

subjects on the list of healthy volunteers held by the clinical research centre.

2.3. Power of the studies

Power calculations were performed for patients (electrophysiological and

haemodynamic) and volunteer studies (whole man and forearm blood flow). Standard

deviation of QRS duration in similar overdoses, systolic blood pressure in opioid

overdoses, augmentation index and forearm blood flow in previous vasodilator studies
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were used to estimate sample sizes which an acceptable shift in the overall response at

first measurement following baseline. A sample of 12 cases in the patient

electrophysiological study, 10 cases in the patient haemodynamic study, 8 cases for the

whole man studies and forearm studies would have at least 80% power to detect a

consensually agreed mean difference of 5% change in QRS duration, systolic blood

pressure, augmentation index and forearm blood flow in these studies = n2).

Significance levels were set at 5% level.

2.4. Screening for drugs of abuse

Before participation in the clinical trials, volunteers were required by protocol to undergo

screening for drugs of abuse. This test was done once for each volunteer who joined

the study. The test kit used was TRIAGE™8 produced by Biosite Incorporated, 11030

Roselle Street San Diego, California 92121, USA. Briefly, freshly voided urine samples

were collected in a clean, previously unused plastic container. The reaction cap was

opened. The urine sample (140 microlitters) pipetted into the reaction cap and

incubated 10 minutes at 15 to 25 degree C. Pipette tips have discarded after use. A

new tip was used to transfer the reaction mixture from the reaction cup to the detection

area. Three drops of Wash Solution added to the centre of the Detection Area and

allowed to soak completely. The results were read within 5 minutes after completion of

the incubation. The test procedure was followed as per package insert. The result was

recorded in the drug test recording sheet.

2.5. Sources of epidemiological data

The numbers of deaths from opioid single overdose in Scotland from 1st July 2000 to 1st

July 2002 were obtained from the General Register Office (GRO). Hospital discharges
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from the Royal Infirmary of Edinburgh during the same period were gathered from data

held in the Scottish Poison information Bureau. Prescription data for primary care

prescriptions dispensed for NHS patients in Scotland and Lothian Health Board were

provided by the Information & Statistics Division of the Scottish Executive Health

Department for the years 1998-2002. The number of telephone enquiry data to the

Scottish Poisons Information Bureau from 1st July 2000 to 1st July 2002 was extracted

for the drugs of interest. The number of accesses to the Internet database run by

Scottish Poisons Information Bureau, TOXBASE, was extracted for the drugs of interest

for the same period.

2.6. Applied techniques

Instrumentation used to determine physiological variables in this thesis are summarised

in Table 2-2. Picture 2-1 shows the instruments used to measure cardiovascular

variables and deliver drugs.

2.6.1. Bioimpedance

Electrical bioimpedance has been shown to be a simple, reproducible and accurate

technique allowing continuous monitoring of cardiac output (Northridge et at., 1990). It

produces similar results to cardiac output measured by thermodilution and Doppler

echocardiography (Northridge et at., 1990; Appel et at., 1986b). The device evaluates

the transthoracic electrical bioimpedance (TEB) wave-form beat-by-beat (making a

separate measurement of the waveform for every individual cardiac cycle). BOMED

automatically ignores beats where the signal fails to meet certain predefined criteria -

e.g. a pre-ejection period that is too short, an inappropriate heart rate. Values for 16
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consecutive heart-beats are averaged for variables such as cardiac output and these

appear on the printer or screen. The TEB waveform has been shown to relate to certain

periods of the cardiac cycle (systolic time interval) such as pre-ejection period and

Instrument Model Manufacturer
Bomed NCCOMS® R7 BoMed® Medical

Manufacturing Ltd, USA
Centrifuge SIGMA 3-16K SCIQUIP

Digital timer SMITHS -

Dinamap
Processor Compact TS, 1998 CRTICON Vital

DURA-CUF™, REF
Answer™, FL, USA

Cuff Johanson-Johanson
2774

Interpretive cardiograph recorder M1700A 3350A06976 Hewlett-Packard, USA

Normocap DATEX NORMCAP 200
Airflow Sensor Cannula PIN: 1257, Qty:1, Pro-Tech, USA

PenScreen APPLE MessagePad
2000

Plethysmograph ADInstruments, Australia
Data Recording System MacLab/2e, Version 1.0
RAPID CULF INFLATOR E20
CUFF INFLATOR ATR SOURCE HOKINSON AG 101
PLETHY SMOGRAPH HOKINSON EC 4

Amplifier Bridge, bio and LVDT
Mac Computer, Monitor & Key board

Pumps IVAC® P7000 MK 11 ALARIS™ MEDICAL
SYSTEM, Hampshire

Scale Model 8241890 GEC AVERY, UK

SphygmoCor* West Ryde, NSW,
Australia

Notebook Toshiba Satellite
2140CDS

Software SphygmoCor 2000, Copyright Atcor Medical
version 7 (SCOR-2000) Pty Ltd, 1999-2002

Tonometer Micro-Tip®, Pulse Millar instruments INC.
transducer SPT-301 Huston, Texas, USA

Table 2- 2. Instruments that have been used in these studies, *SphygmoCor™ Model BPAS-1/
mm- PIO (PWV MEDICAL PTY LTD, 1998) used for patients study.
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B) Dynamap

2.6.2. Blood pressures and heart rate

A) BOMED

D) Tonometer

E) Pump
Picture 2-1. Instruments used to measure cardiovascular variables and deliver drugs. A)
BOMED, B) Dynamap, C) SphygmoCor™, D) Tonometer, E) Pump.
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ventricular ejection time (Lababidi etal., 1970; Bernstein, 1986b; Bernstein, 1986a;

Northridge etal., 1990; White etal., 1990). A BOMED set up was used as shown in

Picture 2-1-A.

Peripheral blood pressure and oxygen saturation were determined indirectly in patient

and healthy volunteer in the supine position and after sitting at 90 degrees for one

minute. Appropriate inflatable cuffs (at least 80% of circumference of the arm and at

least 40% of the width) were used to achieve adequate occlusion.

Patients were comfortable in the supine position for at least 10 minutes prior to

measurement. The arm was held horizontally and supported at mid sternal level. Tight

or restrict clothing was removed from the arm. The midpoint of an appropriate sized cuff

was placed over the position of maximal pulsation of the brachial artery. For sitting

systolic and diastolic blood pressure, patients were comfortably seated for 1 minute

prior to measurement of the blood pressure. The results are reported in mmHg. A

Dynamap was also used to determine the oxygen saturation (Picture 2-1-B).

2.6.3. Capnography

Capnography is the measurement and display of carbon dioxide (C02) on a digital or

analogue monitor. Maximum inspiratory and expiratory C02 concentrations during a

respiratory cycle were displayed, end tidal C02 calculated by the instrument and partial

pressure of C02 at the end of expiration was reported as percentage. Capnography is

widely used in clinical practice. It provides a rapid and non-invasive method for

estimating carbon dioxide tension in different situations, including emergency
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departments, intensive care units, and during anaesthetic procedures (Soubani, 2001).

The measurements were recorded for one minute and the median value was used as

the end tidal C02. Respiratory rate was measured using the same device. The results

are reported as breath per minute (bpm). All measurements were done after at least 10

minutes resting in the supine position.

2.6.4. Central nervous system assessments

Changes in central nervous system function due to drugs can be objectively measured

by using performance testing. Impaired performance is seen with sedative drugs

(Tiplady, 1991; Tiplady et al., 2003). The pen-computer system accepts information

using a special pen or stylus on a computer screen. The equipment is simple and

portable (Frewer & Lader, 1993). The device weighs approximately 700g and has

screen dimension of 12.5 x 8.5 cm, which makes it suitable for taking to a patient's

bedside in a hospital setting (Tseng et al., 1998). Such devices have been used for

patient questionnaires and psychomotor and cognitive tests (Drummond et al., 1995;

Swift et al., 1999). Validity and sensitivity of these tests have been previously shown

(Cameron et al., 2001).

Volunteers sat in a comfortable position for two minutes, and were asked to tap the

targets on the screen with a pen as fast as possible. Based on consensus the "arrows

test" was used. The length of this test was agreed to be three blocks (75 questions),

which is smaller than the existing conventional computer tasks for the purposes of

detection of drug-induced impairments. It takes around two minutes to be performed.

The arrows "light up" in random sequence, and the subjects respond by pressing the
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appropriate button as quickly as possible. The mean response time for three blocks of

repetitive and random sequences and number of correct, incorrect and no responses

were recorded. The results of reaction time are reported in milliseconds (Figure 2-1).

2.6.5. Electrocardiography

ECG recordings were obtained after 10 minutes lying in the supine position. The

computer software within the machine automatically calculated electrocardiographic

indices, including heart rate, PR interval, QRS duration and axis, QT duration, and QTc

using the Bazett correction i.e. QTc= QT/square root of RR (Sagie et al., 1992).

2.6.6. Pulse Oximetry

Pulse oximetry monitors the percentage of haemoglobin that is saturated with oxygen

and can detect hypoxemia (Pedersen et al., 2003). It provides a rapid non-invasive

method for estimating arterial oxygen saturation (Soubani, 2001). A probe was

attached to the patient's or volunteer's finger and linked to a computerised unit of

Dynamap. The unit displays the percentage of haemoglobin saturated with oxygen. An

Figure 2-1. PenSceen, and arrows test Figure 2- 2. Contractor for Forearm blood flow
measurements
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audible alarm was also in use for detection of hypoxia. In volumteer experiments this

was set at 90%. Dynamap uses a source of light which originates from the probe at two

wavelengths. The amount of light, which is partly absorbed by haemoglobin, depends

on its saturation fraction of oxygen. The processor then computes the proportion of

haemoglobin which is oxygenated by calculating the absorption at the two wavelengths.

It also distinguishes pulsatile flow from other more static signals such as venous

signals, and picks up only the arterial flow, thus calculating pulse rate.

2.6.7. Pulse wave analysis

Pulse wave analysis was undertaken using the SphygmoCor system. The augmentation

index (Al) is an indicator of arterial stiffness and was determined from the radial artery

using the technique previously described (Nichols & O'Rourke, 1998). A high-fidelity

micro-manometer was used to acquire accurate recordings of the peripheral pressure

waveforms by flattening, but not occluding the artery (applanation tonometry). Blood

pressure and recordings of peripheral pulse waveforms are used to estimate the central

aortic pulse waveform is derived using a generalized transfer function (Nichols &

O'Rourke, 1998). Augmentation index (Al) is the difference between the second and

first systolic peaks of the central pressure waveform expressed as a percentage of the

pulse pressure, and is a measure of systemic arterial stiffness (Wilkinson et al., 2002b).

Pulse wave analysis is a simple and reproducible technique (Wilkinson et al., 1998) that

provides an assessment of arterial stiffness (Wilkinson et al., 2002a). Data are collected

directly into a microcomputer and after 20 sequential waveforms an averaged

peripheral waveform is generated. A corresponding averaged central pressure

waveform is then estimated by using a validated transfer function (Karamanoglu et al.,
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1993; Pauca et ai, 2001). Al, ascending aortic pressure and heart rate are then

determined using the integral software.

To conduct these studies, subjects lay on a bed with their arm along side their body and

their palm facing upwards for at least 10 minutes. Their forearm rested on the bed. The

wrist was dorsifelexed to push the artery towards the surface and therefore make for

easier access. The wrist was supported using a small cushion. The strongest pulse at

the radial artery was located by placing using the index and middle finger, and the

Tonometer was placed between the two fingers. The Tonometer was then adjusted to

get maximal response. As a standard method at least eleven seconds of high quality

waveform (consistent, large-at least 3 cm on the screen and in a steady vertical

position) was used. The results are reported as percentage.

2.6.8. Venous occlusion plethysmography

The use of venous occlusion plethysmography to measure blood flow in human was

first described around 100 years ago by Hewlett and van Zwaluwenburg. It has become

an accepted method with which to assess the effect of vasoactive drugs and hormones

in human in man. The underlying principle of this technique is simple; when venous

drainage from the arm is briefly interrupted, arterial inflow is unaltered and blood can

enter the forearm but cannot escape. This results in a linear increase in forearm volume

over time, which is proportional to arterial blood flow, until venous pressure rises

towards the occluding pressure. It is standard practice to exclude the hands from the

circulation during measurement of forearm blood flow, as the hands contain a high

proportion of arterio-venous shunts. Venous return from the forearm is briefly
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interrupted by inflation a cuff, placed around the upper arm, to well above venous

pressure but below diastolic pressure, typically around 40 mmHg for intervals of 10

seconds followed by 5 second of deflation. The hands are excluded by rapid inflation of

another cuff, placed around the wrist to well above systolic pressure (220 mmHg for

normotensive subjects). The wrist cuffs must be inflated at least 60 s before starting

measurements of flow in order to allow FBF to stabilise. Changes in forearm volume are

measured by a plethysmograph. Strain gauges are placed around the widest part of the

forearm. Venous occlusion plethysmography is usually expressed as ml per 100 ml of

forearm volume per minute (Wilkinson & Webb, 2001). Picture 2-2 shows the forearm

blood flow in a historical point of view, examining the brachial artery for arterial

bloodletting, forearm blood flow set up and arteriolar and concurrent arteriolar and

venous brachial cannulation.

2.6.9. Data acquisition and statistical analysis

Voltage output from a dual channel Vasculab SPG 16 strain gauge plethysmograph

was transferred to a Macintosh personal computer using a MacLab analogue-digital

converter and Chart software. Plethysmographic data converted to windows compatible

chart, and were extracted from data files and forearm blood flows calculated for

individual venous occlusion cuff inflations using a template spreadsheet (Excel 5.0;

Microsoft).

FBF was obtained from the mean of the last five consecutive recordings of each period.

Curves manually rejected if portrated unsuitable for analysis where necessary. The
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A) Forearm arteries (980-1037 AD)

C) Venous occlusion plethysmography set up D) Insertion of the IA cannula

Picture 2- 2. A) Forearm arteries according to Avicenna (980-1030), from Avicenna's al-qanun
Fi-T-Tibb (Canon of Medicine) in 1632, Isfahan, Persia (Iran), courtesy of Welcome Trust. B)
"Method of putting hand on the [brachial] artery pulse [blood letting]" according to Persian
Medicine, courtesy of the Clendening History of Medicine Library, University of Kansas Medical
Centre, USA for their permission to reproduce a copy of their original miniature painting from
Ghajar dynasty (1700-1800) during the government of Fath-ali-Shah, Shiraz (?), Persia (Iran). C)
Venous occlusion plethysmography experimental set up. The volunteer lies supine with his arms

B) Brachial artery pulse (1700-1800 AD)
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steep linear part of each slope of the response curve was taken to be recorded. By

measuring the slope a mean value for FBF was finally produced. Baseline blood flow

was taken as the last measurement during the saline infusion (0 min), before the start of

the active drug infusion. As morphine appeared to be arterio-dilator, forearm blood flow

results are expressed as absolute number of change in infused arm in ml/min/100ml of

forearm volume

(Wilkinson & Webb, 2001). For a statistical & assumption checking purposes, the data

of infused arm were also compared to the non infused arm.

2.7. Equipment

Equipment that was used in the volunteer studies is summarised in Appendix (Table II-

I)

2.8. Definition determining the haemodynamic variables

Some of the indices such as blood pressure, index of contractility and heart rate were

measured non-invasively and directly, whereas the others such as systemic vascular

resistance index were derived. Variables were measured 10 minutes after resting in the

supine position unless stated otherwise. All measurements, except reaction time and

peripheral blood pressures were done twice and the mean calculated. See Glossary of

the variables for the details.
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2.9. Plasma assays

A) In volunteer studies with systemic intravenous morphine, the

right dominant arm was cannulated. Before each blood sampling,

and throw away and then 10 ml blood taken. After each sampling

with 5 ml saline.

B) In tachyphylaxis study, both right and left arms were cannulated in the direction of

flow. Before each blood sampling, 3 ml of blood taken and throw away and then 30 ml

samples taken from each arm. Specimen collection, sample handling and storage

procedure are summarised in table 2-3.

Test Technique Size Tube Ice Centrifuge Storage
t-PA Coaliza t-PA(antigen)

, Chromogenix for
activity

4.5ml Stabylite (black) + 2000gfor 30
minutes at
4°C

-80 for 6
months

PAI-1 As for t-PA 3 ml Trisodium citrate

(green)
+ As for t-PA As for t-PA

vWF Both for antigen
and activity

3 ml Trisodium citrate + 1000g for 10
min at 4°C

As for t-PA

TNF-o 3 ml EDTA (red) + As for vWF As for t-PA
IL-6 3 ml EDTA + As for vWF As for t-PA
Histamine 3 ml EDTA + 2000g for 10

min at 4°C
As for t-PA

Tryptase 3 ml Clotting, no
anticoagulation

As for vWF As for t-PA

Spare HLA Typing 6 ml EDTA + As for vWF As for t-PA
Spare 6 ml Heparin Lithium + As for vWF As for t-PA
Table 2- 3. Specimen collection, sample handling and storage procedure.

2.10. Drugs

Manufacturing process and pharmacokinetics of the drugs administered in this thesis

are summarised in table 2-4. Summary of the pharmacokinetics of the drugs used are

shown in table 2-5.

brachial vein of the

3 ml of blood taken

the canullas flushed
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Products Strength Type Factory & Country Expired Rout
e

Cetirizine Zertek, 10 Tablet UCB Pharma Ltd, UK 10.2008 Oral

Cimetidine
mg
400 mg Tablet DEXCEL® Pharm Ltd, 09.2007 Oral

England
Morphine 10 mg/ml 1 ml Martindale Pharmaceuticals, 07.04.2007 i.a.

vial UK
Naloxone NARCAN ® 1 ml Myers Squible Pharmaceutical 08.2007 i.v.

400 mcg/ml amp Ltd, Bristol, UK
L-NMMA 270 mg Dry (Clinalfa) Merck Biosciences Manufactured i. a.

powder AG, Laufelfingen, Switzerland on 16.08.04
Saline Sodium 500 ml MacoPharma, UK 12.2006 i.v. &

chloride .09% i.a.
SNP 50 mg Dry Mayne Pharma Pic, Australia 09.2006 i.a.

Powder for powder
Infusion

Lignocaine 1% WA/ 5 ml B. Braun Melsungen AG, 08.2005 s.c

Melsungen

Table 2- 4. Summary of the manufacturing process of the drugs used.
Cetirizine (hydrochloride); H-, receptor antagonist, Cimetidine (hydrochloride); H2 receptor
antagonist, Morphine (Sulphate) non-specific, but dominantly p opioid receptor agonist, 4.
Naloxone (hydrochloride) non-specific opioid antagonist, L-NMMAor NG-Monomethyl-L-Arginine
Acetate; is an inhibitor of the synthesis of nitric oxide (NO) which acts in a dose-dependent
fashion. SNP; sodium nitro nitroprusside, *; references for this table are specific drug pamphlets
and (Dollery, 1999; Dollery C, 1991; ClinAlfa, 2005; Dux et al., 2002; Grossmann et al., 1999;
Clough et al., 1998).

Products* Bioavailabi Peak plasma Plasma half-life Volume of Protein plasma
lity concentration mean (range) distribution binding clearance

Cetirizine1 257 mg.l-1, 1 h of 10 7.4 (6.7-10.9) h 33.4 93%
mg oral

Cimetidine2 50% oral 60-90 min 28.8 2 (1-3)h 0.8-1.2. l.kg-1 13-25% 500
mmol.l-1 after 800 mg ml.min-1

Morphine3 30 30-120 min after oral 3 (1-5)h 1.5-4.0 l.kg-1 25-35% 99,
(10-50)% in man ml.min-1

Naloxone4 very low 0.5 - 2 h 200 mg i.m 60-90 min 5 l.kg-1 50%
elimination

Table 2- 5. Summary of the pharmacokinetics of the drugs used

2.11. Drug administration

Drug administration is summarised in Table 2-6. All dilutions were prepared in saline

from sterile stock solutions under standard aseptic conditions within the Clinical

Research Centre, Western General Hospital on the day of the study. All the dilutions

52



Material & Methods

Product Administration
Saline Continuously i.v. infused at a rate of 60 ml/h throughout the study for both visits

in HV-P1 and HV-P2.

Continuously i.a. infused at a rate of 1ml per minutes for 30 minutes before and
after administering morphine in FBF-PO, FBF-P1, and FBF-P3. 30 min before
and 60 min after in FBF-P2. Also co-infused 40 and 20 ml/h with morphine in
FBF P3-4. All syringes were coded.

Morphine Non selective (mainly (90%) /v, less k) agonist (Gutstein & Akil, 2001)
Systemic intravenous-active compound.
I.v. infusion in HV-P1 visit 1 and HV-P2 visits 1 & 2; 0.25, 0.5, 1, 2, 4, 8 mg
each one over 5 min infused, and repeated every 20 minutes for two hours.
Concentration in the serum quantified.
Local arteriolar-active compound.
I.a. infusions; P0 incremental doses of 1, 3, 10, 30, 100, and 300 mcg/ml/min
each one for 10 minutes including 3 minute measurements. The doses were 1,
3, 10, 30 and 100 mcg/ml/min in P1 in the same way. 50 mcg/ml/min were
infused in P2 and 80 mcg/ml/min in P3 for 30 minutes. All rates were 60 ml/h,
but FBFP3-4 20ml/h.

Naloxone Non-selective morphine receptor antagonist
Continuously i.v. infused at a systemically active dose of 200 mcg/h throughout
the HV-P2 & FBF P3-2, and just after 400 meg bolus via dominant brachial arm
(BNF, 2003).

Cetirizine H-i receptor selective antagonist
Administered at a dose of 10 mg/d for 2 days prior the study day, and followed
by a single 10 mg dose 1 hour before starting the study. Cetirizine administered
orally with maximum 200 ml water. Although concentration did not quantify in
the serum, but it is expected to be at the peak plasma level.

Cimetidine H2 receptor selective antagonist
Administered at a dose of 400 mg/BID for 2 days prior the study day and
followed by a single 400 mg dose 1 hour before starting the study. Cimetidine
administered orally with maximum 200 ml water. Although concentration did not
quantify in the serum, but it is expected to be at the peak plasma level.

L-NMMA L-NMMA is a specific substrate analogue inhibitor of nitric oxide synthesised in
humans (Vallance et al., 1989b; Vallance et al., 1989a). It has been shown that
100 nmol/min has no effect on basal hand vein size in contrast to forearm
resistance vessels (Vallance et al., 1989b).
L-NMMA continuously i.a. infused at a dose of 4 mcg/min at a rate of 20 ml/h
for 8 to 20 minutes to achieve maximal inhibition of local vascular endogenous
NOS activity. Thereafter, Sodium nitroprusside co-infused. Once a stable
baseline FBF obtained, the "NO clamp" continued with these doses of L-NMMA
and SNP for the reminder of the study to allow stimulation of basal NO activity
during continuous inhibition of endogenous NO synthesis.

SNP When maximal inhibition of local vascular endogenous NOS activity achieved
by L-NMMA, SNP co-infused at titrated doses (80 to 600 ng/min) (Helmy et al.,
2003) until FBF had been restored to within 10% of baseline flow and become
sustain for at least two consecutive FBF measurements. Once a stable
baseline FBF obtained, the "NO clamp" continued with these doses of L-NMMA
and SNP for the reminder of the study.

Lignocaine 0.5 ml subcutaneously injected.

Table 2- 6. Administrative methods of different drugs in this thesis, see table 2-1 for the list of
abbreviations.
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(except for L-NMMA which was used up to 4 days later) were discarded at the end of

the study. For locally active intra-arterial (IA) drug administration, the brachial artery of

the (left) non-dominant arm was cannulated under local anaesthesia (lignocaine 0.5%)

with a 27 SWG steel needle attached to a 16G epidural catheter (Figure 2.2). Potency

was maintained by infusion of 0.9% physiologic saline via a syringe pump. In all studies,

saline was infused at least for 30 min prior and at least 30 min after stopping morphine

to the infusion of the study agent. The total rate of intra-arterial infusion was maintained

constant throughout all intra-arterial studies at 60 ml/h. Measurements were done every

10 minutes. For systemic drug administration the brachial vein of the left (non-

dominant) arm was cannulated in whole man studies. Both arms were cannulated in

tachyphylaxis study.

2.12. Dermal effects

Cannulation site and local effects were examined and measured by meter (precision

1mm) for any potential redness (flare), weal, and any other adverse effects every 10

minute. This inspection continued for at least 30 minutes after stopping morphine

infusion. Volunteers were usually contacted 24 hours after the study to monitor for any

symptoms resulting from the cannulation procedure. Regular pictures were taken.

2.13. Itching

Itching measured on a subjective scale from 0 (no itching) to 9 irresistible itching.
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2.14. Measurement of restoring forearm blood flow in NO clamp visit

L-NMMA was infused to achieve maximal inhibition of local vascular endogenous NOS

activity. Thereafter, sodium nitroprusside was co-infused at titrated doses until FBF had

been restored to within 10% of baseline flow (Helmy et al., 2003). The flow output was

displayed on a monitor screen and an overlay transparency used to estimate the 10%

of baseline flow level (Figure 2-2). This technique is explained in chapter 8.

2.15. Statistics

2.15.1. Data analysis methods

The majority of the haemodynamic variables are reported as percentage of change

from baseline. In most cases, the statistical significance of the observed difference of

mean values for subgroups was determined using two-tailed distribution t-test at each

time point. ANOVA was used for the result of all measurements in one group such as

morphine versus placebo arm. A p-value of less than 0.05 was considered to be

statistically significant. Power was determined to be above 80% for all studies. All

statistics were analysed using SPSS (Statistical Package for the Social Sciences) 11.5

and Microsoft Excel 2000. Raw data are attached in appendix III.
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Chapter III, Pharmaco-epidemiology and
toxico-epidemiology of opioids in Scotland

The difficulty many intelligent people have with "sums" are infinite.
Greenwood, 1948
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3.1. Introductory remarks

3.1.1. Aims and scope of this chapter

The aim of this chapter is to develop indices for evaluating the consequences of

overdose, in particular for opioids. To do this I will use prescription data, poison

enquiries, and mortality data for Scotland, and prescription data and hospital discharge

data for Edinburgh. Fatal and non-fatal consequences of drug overdose will be

considered as independent variables.

This chapter deals with a wide rage of different issues in toxico-epidemiology, and

includes the results of a variety of different studies. It firstly discusses the pattern of

opioid overdoses in the Royal Infirmary in the past four decades. This is followed by a

detailed study of opioid overdose cases over two years. The main part of this chapter is

focused on describing the current methodology of adjusting national data on overdose

and death. It also outlines weaknesses of current approaches, describes predisposing

factors, and introduces new indices which may address some of the current problems in

toxico-epidemiology. Prescription data, telephone enquiries, TOXBASE accesses,

hospital discharges, and deaths from opioid overdoses in Scotland over two years are

discussed in detail. Mortality risk in relation to opioid ingestion from opioid drugs is

examined using death certificate data. Finally risks from co-intoxication are estimated

from this mortality data.

3.1.2. Risk determinants in this thesis

Absolute availability of drugs, a major determinant of frequency of overdose, is not

clear, as there are illicit sources of supply and over the counter supply of some drugs.
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However, prescription volumes have been used frequently as a surrogate of the

availability of drugs (Buckley & McManus, 2004). The approach ignores the fact that the

number of prescriptions that reach suicidal people from pharmacies, and the amount of

drugs which remain in houses as a potential source for overdose by others are not

considered separately. In this chapter, volume of prescriptions to Health Boards in

Scotland is nevertheless used as a measure of "exposure risk".

An important source of information on poisoning is the number of enquiries to poisons

information services. In Scotland two such routes of enquiry exist, telephone enquiry to

the local centre of the National Poisons Information Service (NPIS), and, increasingly,

accesses to the NPIS internet database, TOXBASE (Bateman et at., 2002). These are

not the actual volumes of overdoses, however, they are a nationally available surrogate

of potential of overdose numbers by product. Their volumes are influenced by the

individual professionals seeing cases, and the frequency and severity of individual

overdoses, inherent toxicity of the products and local health policy. For example

overdoses with very minor clinical manifestation or the ones which kill rapidly before

reaching the hospital are under reported. Overdoses involving more than one

component, such as ethanol, may not be accurately reflected in centrally collected

datasets. A better estimate is probably the number of hospital discharges, but at the

moment this is not nationally available by product. Therefore, discharges from the Royal

Infirmary of Edinburgh were used as a surrogate for Scotland. This hospital serves

approximately 10% of the Scottish population. Three data sets, two of poisoning

enquiries, and one of discharges were used to estimate "poisoning risks".
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Overdose fatality data are also available nationally by product. However, case finding is

not 100%. The reports may not be completely accurate as only some of them are based

on laboratory findings. In cases of co-intoxication, it may be unclear which agent is the

primary cause of death. These data have been used to estimate "fatality risk".

Definition; In this chapter, buprenorphine, codeine phosphate, dextropropoxyphene,

diamorphine hydrochloride, dextromoramide, fentanyl, meptazinol, methadone

hydrochloride, morphine, nalbuphine hydrochloride, pentazocine, pethidine

hydrochloride, and tramadol hydrochloride are considered as pure opioids. Data on

dipipanone with cyclizine was also included in this category.

Co-codamol (codeine & paracetamol), co-dydramol (dihydrocodeine & paracetamol)

and co-proxamol (dextropropoxyphene & paracetamol) are referred as compound

opioids.

3.1.3. Epidemiology

Epidemiology (epi = among; demos = people, logos = discourse, Gr.) is thus defined

literally as the study of epidemics in humans. John M. Last defined epidemiology as

"the study of the distribution and determinants of health-related states or events in

specified populations and the application of this study to control health problems".

Epidemiology describes health and diseases in population rather than individuals, and

relates measurement outcomes to population at risk, and allows conclusion based on

comparison (Detels et al., 2002; Rathman & Greenland, 1998). This approach my also

be used clinical toxicology. In an epidemiological approach, the disease and population

should be quantified. Well defined populations, that of Scotland (approximately 5 000
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000 population) and Edinburgh (500 000) are considered in this chapter as the target

populations.

In epidemiology, events are described in terms of crude and specific rates (Coggon et

at., 1997). In clinical toxicology, event-related data can be sought from a variety of

sources, and population at risk can be replaced to a more reliable subpopulation that is

exposed to drugs (volume of prescriptions). As a result, classical mortality and morbidity

may be replaced with case fatality or case morbidity rates. In clinical toxicology

identifying more dangerous drugs in overdose is a priority in national surveillance. The

aim of an epidemiological approach should, therefore, be standardizing the statistics

(population based describing the events) to elucidate the spectrum of different risks. I

have attempted to develop indices to describe these risks. Any new index or system

should be clear and simple, and adaptable to current surveillance systems (Klaucke et

at., 1988; Birmingham et a!., 1997). To focus on drugs with a higher burden of disease

co-proxamol, diamorphine and methadone were selected.

3.2. Pure opioid overdose discharges of Royal infirmary of Edinburgh from 1967
to 2002

Drug overdose is a common cause of hospital discharges. An increasing frequency of

opioid overdose was reported in the 1990s in Scotland (Bateman et at., 2003). National

statistics, however, do not provide information on the precise nature of the opioid

product consumed.
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Methods

This study was designed to determine of the frequency of opioid, and all other

overdoses in the Royal Infirmary of Edinburgh from 1967 to 2002. The frequency of

pure opioid discharges was gathered from different sources (Table 3-2). The target

Period Source of data
01.01 1967 - from the files of 6 monthly reports of the Toxicology department
30.12.1976.
01.01.1977 - from the files of a research (Medical Research Council) project in
30.12.1986 the Royal Infirmary of Edinburgh
01.01.1987 - from hospital discharge records of the Information and Statistics
30.12.2000 Division (ISD) of the NHS in Scotland through the Scottish

Morbidity Record 01 (SMR01)2.
2001-2002 from the data set of the Scottish Poison Information Bureau3

Table 3- 1. Source of data for opioid overdose in Scotland, 1967 to 2002, 1) it was not possible
to access the frequency of compound opioids during this 36 years period, 2) the diagnostic
codes used in this analysis were ICD9 until the end of March 1996, and ICD10 codes later, when
they were introduced. The relevant codes were: opioid poisoning ICD9 (965.0) and ICD10
(T40.0-T40.4), opioid misuse ICD9 (304.0, 305.5) and ICD10 (F11), 3) these data start from
01.07.2000 to 01.07.2002, as the whole year data, at the time of study, was not accessible.

population, Lothian Health Board, was assumed stable and homogenous, for all

overdoses admitted to the Royal Infirmary of Edinburgh. No inclusion and exclusion

criteria have been set. The results are reported descriptively, and Chi-square used to

define the difference.

Results

Overdose discharges overall have increased from around 1000 per year in 1967 to

around 2500 in 2002. In the same period, opioid overdoses have increased from less

than 10 cases a year to over 270 in 2002 Figure 3-1.
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To describe the ratios of these changes, odds ratio of the probability of opioid overdose

discharges to all toxicological discharges were calculated in the Royal infirmary of

Edinburgh Figure 3-2. This ratio (95% CI) has increased 14.36 fold (7.17, 29.88) during

this period (Chi-square P < 0.001). In conclusion, opioid overdose has been an

increasing toxicological issue over the past 4 decades in Edinburgh.

Others -o-Opioids

Figure 3- 1. Frequency of opioid overdose
in comparison to total cases from 1967 to
2002 in the Royal Infirmary of Edinburgh.

14 i

67 72 77 82 87 92 97 02

Figure 3- 2. Opioid relative frequency rate
(RFR) in Royal Infirmary of Edinburgh, 36
years.
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3.3. Demographics of opioid overdose patients from 2000 to 2002

To understand the demographics of opioid overdose, hospital discharges from

01.07.2000 to 30.06.2002 were examined with respect to agents involved, patient age

and gender.

Results

1331 opioid overdose patients were discharged in this period. Co-proxamol (286,

21.5%), co-codamol (16.7%), dihydrocodeine (15.9%), diamorphine (14.7%),

methadone (10.7%) and co-dydramol (8.9%) were the most common agents (Table 3-

2). Compound opioid discharges (57.8%) were more frequent than pure opioids.

Diamorphine (27.4y) and methadone (29.1y) had the lowest mean age, while migraleve

(38.6y), co-proxamol (38.1y) and tramadol (38.Oy) had the highest mean age (Table 3-

2). Second and third decades were the dominant age groups of patients. Mean (95%CI)

age of compound opioids 36.06 (35.07, 37.05) is significantly higher than pure opioids

30.64 (29.81, 31.47). Mean age for whole opioid overdoses was around 34 year with a

range of 74 years (13 to 87).

Among the cases 685 (51.5%) were female. All cases of feminax, paracodol, and

pethidine were female. Diamorphine and methadone were dominantly male. 63.3% of

compound opioids, but only 36.0% of pure opioids were in females (Table 3-2).

Duration of admission in the hospital for compound opioids 0.76 (0.70, 0.82) days was

not significantly different from pure opioids 0.66 (0.60, 0.71). Destination of discharge

was home in 79.9% of cases. Patients on buprenorphine, morphine and diamorphine

63



Epidemiology

had the highest tendency for police custody. Major association with self discharge were

diamorphine (25.0%), dihydrocodeine (21.2%) and methadone (15.2%). 41% of 29

cases referred back to Nursing Homes were intoxicated with just co-proxamol. 35 cases

(2.5%) were homeless (Table 3-2).

A) Products
N % F% Mean age (95% CI) Duration of admission*

CO-PROXAMOL 286 21.5 60 38.1 (35.9, 39.4) 0.9 (0.7, 0.9)
CO-CODAMOL 248 16.7 62 34.8 (32.3, 36.3) 0.7 (0.7, 0.9)
DIHYDROCODEINE 212 15.9 48 33.1 (31.3, 35.0) 0.6 (0.5, 0.7)
DIAMORPHINE 196 14.7 24 27.4 (26.3, 28.5) 0.6 (0.5, 0.7)
METHADONE 143 10.7 32 29.1 (27.7, 30.4) 0.8 (0.7, 0.9)
CO-DYDRAMOL 118 8.9 57 36.2 (33.6 38.6) 0.8 (0.6, 1.0)
TRAMADOL 42 3.2 57 38.0 (34.4, 41.7) 0.8 (0.5, 1.0)
CODEINE 21 1.6 66 33.5 (28.1, 38.7) 0.7 (0.4, 1.0)
SOLPADEINE 21 1.6 81 33.4 (27.9, 38.9) 0.7 (0.5, 0.9)
MIGRALEVE 13 1 84 38.6 (26.4, 50.8) 1.3 (-0.1, 2.7)
FEMINAX 11 0.8 100 30.6 (21.8, 39.4) 0.6 (0.1, 1.0)
MORPHINE 10 0.8 50 31.8 (15.4, 48.1) 1.0 (0.1, 1.9)
BUPRENORPHINE 2 0.2 0 33.7 (-68.1, 135.6) 0.5
PETHIDIN 2 0.2 100 34.0 (-6.8, 74.8) 1
CO-CODAPRIL 1 0.1 **

CODAFEN 1 0.1
CODIS 1 0.1
DICONAL 1 0.1
MEDOCODEN 1 0.1
SYNDOL 1 0.1
TOTAL 1331 100

B) Referral
Destination N %
Home 1024 76.9
Self Discharge 132 9.9
REH 51 3.8
Police c 43 3.2

Nursing Homes 29 2.2
Others 52 3.9

Table 3- 2. A) Socio-demographics of discharged cases of opioid overdose from RIE, 01. 07.
2000-01. 07. 2002. B) Referral of opioid overdose discharges. N; frequency, %; percentage, F%;
female percentage, (*) Any admission is assumed to be a minimum of 24 hours, (**) Percentage
and mean for the products with frequency of "one" have not shown.

In conclusion opioid overdose presentations in general have short duration of

admission. For pure opioids; male dominance, low mean age, tendency to self

discharge and discharge to police custody of illegal (diamorphine) or highly supervised
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drugs (methadone) are noted. The high percentage of co-proxamol overdoses, which

were referred from nursing homes, is a health policy concern. Based on these

demographic factors, pure and compound opioids represent different public health

challenges.

Implications from this work are that preventive programs should target particularly the

young male homeless population to minimise diamorphine abuse. Older females were

at most risk of co-proxamol use.

3.4. Adjusting raw data in overdose events

3.4.1. Current approaches and pitfalls in toxo-epidemiology

In the past, fatality risk related to prescription volume has been calculated with a wide

range of drugs. An index, standardized fatal toxicity index (FTI) as deaths per million

prescriptions was derived (King & Moffat, 1981; Henry et at., 1995; Buckley &

McManus, 1998; Buckley & McManus, 2002; Serfaty & Masterton, 1993). In this way,

the number of drug poisoning deaths is divided by a measure of drug exposure

(prescriptions). FTI is currently considered the best means for comparing fatal toxicity in

human overdose (Buckley & McManus, 2004). However, all studies that used FTI fail to

take into account any predisposing factors in drug overdose. This separation of

"frequency of being taken for overdose" from drug "availability" is important. When a

drug appears more frequently in overdose deaths, it maybe because: a) it is frequently

prescribed (higher availability such as paracetamol), b) it is frequently taken for

overdose (higher overdose tendency such as use in depression, c) it could be because

the drug is highly toxic relative to other drugs prescribed for the same indication (more

severe inherent toxicity), or d) because there is an additional source of supply (such as
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illicit use of diamorphine). The relationships between different categories of these

epidemiological determinants in fatal toxicity are illustrated in Figure 3-3. This figure

clarifies the magnifying effect of predisposing factors. Later in this chapter, these

relationships have been descriptively scrutinised to develop particular indices.

► Overdose fatalW

-*■ Overdose fatality

FTI corrects death on prescriptions; implies the inherent toxicity
plus predisposing factors impact

FTITei/rox/HD corrects death on poison
risks, implies the inherent toxicity alone

FTI minus FTITel/ToxJHD
is a surrogate for

predisposing factors

Figure 3- 3. Predisposing factors' contribution in overdose induced fatality. Exposed population;
number of prescriptions, FTI; fatal toxicity index, which relates deaths to volume of prescription.
FTITei/Tox/HD> corrected FTIs based on telephone enquiries, TOXBASE accesses and hospital
discharges newly introduce indices, true model (—*■), hypothetical frequency-exclusive-based
model (—► ).

These relationships can be summarised in the equations 3-1 for fatal

consequences of overdose. As can be seen, volume of death in overdose for a

certain drug is directly associated with prescriptions, predisposing factors and inherent

toxicity.

Equation 3 -1. D = e x pK x iK, where
D is the number of deaths, e is exposure, pK is the constant co-efficient for
predisposing, and iK is the constant co-efficient for inherent toxicity.

Belief structure

General
population

Exposed
population

Inherent

toxicity
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In Edinburgh, all cases of overdose are admitted; therefore, hospital discharges would

be interdependent from inherent toxicity (Equation 3-2).

Equation 3 - 2. HD = e x pK , where
HD is the volume of discharges.

Inherent toxicity and exposure of a particular drug can be considered constant. In

equation 3-1 and 3-2; therefore, death (D) and hospital discharges (HD) may change

just by Pk- This means that the predisposing factors are the only determinants capable

of decreasing volume of deaths and hospital discharges. For example widely available

cimetidine hardly ever is taken in overdose. This is partly because; it mainly reaches to

a sub-population who is not prone to suicide or weak perceived susceptibility leading to

a low PK. To my knowledge, predisposing factors has never been taken into account in

toxicological monitoring of drugs, and might be of interest of the pharmaceutical

industry.

One of the goals of analytic epidemiology is to identify the factors that predispose

individuals to the development of diseases and to quantify the risks. In this way

preventive measures can be more easily demonstrated. For health policy makers, pK

could also is the most important determinant in planning preventive measures. In this

regard reforming of the belief structure of individuals seems the only educate-able

determinants in overdose. Health behaviors can be explained by using Health Belief

Model (HBM), in which attitudes and beliefs of individuals are the core determinants

(Janz & Becker, 1984; Roden, 2004; Yarbrough & Braden, 2001); although, belief

structure is only one part of multifactor strategies for actions. As HBM can be more

easily manipulated, it was separated from other predisposing factors.
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Consider a particular drug in overdose is in part consciously selected from a potential

variety of accessible drugs. I have adapted classical HBM and its revised versions to

suit "choice of preference" in overdose. Potentially this can be used as another source

of information for planning preventive measures and toxicological licensing of drugs.

Concept Definition Decisive determinants

Perceived

Susceptibility

Perceived

Severity

Perceived
Benefits

Perceived
Barriers

Cues to Action

Self-Efficacy

likelihood of experiencing
overdose of a drug

Likelihood of seriousness of
overdose and its consequences
of a drug

Likelihood of benefits from taking
particular overdose to reduce
current impact
Likelihood of costs of a particular
drug, which drive them away.

Strategies to activate "readiness",
incentive s or reminder messages

Likelihood of ability to find or buy
a particular drug

Determined; effective killer

Attempted; well known but safe

Personal; drugs with less pain,
discomfort, financial burdens,
duration and long side effects.

Familial-social; Drugs with high loss
of work time, difficulties with family,
and relationships.

Clarity of process, and familiarity of
particular drugs in overdose; need for
a long antidote therapy.
Known drugs for inconvenience,
expensive, and painful overdose or
completely unknown drugs
Internet messages; Path to
successful suicide

OTC, or stigmatized drugs (e.g.
female hormones)

Table 3- 3. Belief structure for choice of preference in clinical Toxicology (Definition and
determinants). The idea of expressing result in this way obtained from ReCAPP (HBM & In
Resource centre for adolescence pregnancy prevention, 2005)

In summary, health belief of individuals is affected by the feeling of capability to avoid a

negative condition, positive expectation towards recommended action, and belief in

their capability of taking this recommendation. Definitions and determinants in this

model for choice of preference in clinical toxicology are developed and summarized in

Table 3-3.
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The overall purpose of this discussion is to direct focus of attention to the dynamic

variables of choice of preference in taking overdose rather than static variables of

exposure and final impact (death).

Traditional FTI, in which frequency of deaths is adjusted on prescriptions, assumes that

drugs are proportionately taken in suicide. However, some drugs may be prescribed

more frequently in high risk group patients, particularly those with psychiatric illnesses

Age, gender, social class, other medical conditions, dependency, psychiatric illness,

drugs that are indicated for counteracting suicidal behavior, books and internet

confounders of disproportionate use of drugs in suicide attempts (Buckley & McManus,

2004). Concerns about using FTI have previously been identified (Buckley & McManus,

1998).

These problems can possibly be overcome by adjusting the number of deaths over a

more relevant target population, people who actually took overdose, instead of

prescription volume. In this way predisposing factors for taking overdose are no longer

determinants. This should lead to a more reliable index for quantifying the severity of

inherent toxicity of a particular drug.

Focusing on FTIs of different drugs can address fatal consequences of overdose but

does not necessarily relate to non-fatal consequences of toxicity. In this thesis overdose

rates have been studied using hospital discharges, telephone enquiries and TOXBASE

accesses, and comparative ratios between different drugs derived. When opioids are

taken in overdose as the sole agent they are rarely fatal, which is reflected in FTI;

however, overdoses of these products result in admission for decreased level of

consciousness, bradypnea, nausea, vomiting, hypotension and for patient observation.
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These events are not reflected in FTI. Measurements that are relevant to mortality

assessments, indices based on non-fatal consequences of overdose, are thus needed.

In conclusion, an integrated method, in which FTI of a drug is studied concurrently with

indices of its non-fatal consequences of overdose, should be developed. These indices

should be calculated in a similar way to be comparable.

3.4.2. Current approach for quantifying non fatal consequences of drug overdose

Poisoning risks (telephone enquiries, TOXBASE accesses, frequency of hospital

discharges) can be studied and adjusted for prescription volumes. Flowever, in an

attempt to compare different products, statistical derivatives (based on likelihood; odds

ratios or risk ratios) have been calculated in which the rate of one drug is expressed in

comparison to the rate of the average of the group or one particular drug as the

baseline index (Buckley et at., 1995; Isbister et at., 2003; Kelly et at., 2004). This

approach seems problematic Table 3-4, as particularly strong effects (an extremely

toxic agent), which will change the risk ratio of that drug, can also change the average

of the group and eventually, inversely, the ratios of other drugs (via changes in

denominator). The proportions remain stable in a particular study, but this may make

some drugs appear safer than they are when compared with other studies.

Moreover, odds ratios are comparisons of two numbers with the same units, as a result

the ratio itself posses no unit, and therefore is a difficult concept to be understood. In

general, however, ratios are good indicators for comparison of two drugs in the same

subgroup such as for studying the risk of mirtazepam in comparison to other

antidepressants, but they have no absolute significance. The result cannot be extended

to another drug group, in which for example, odds ratio of diamorphine in comparison to
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codeine is reported. For similar reasons these ratios cannot be compared with fatal

toxicity index (FTI) of the same, or different drugs, as the methodologies are different.

The aim, therefore, should be shifted to presenting a "rate", expressing the value of one

quantity (telephone enquiries) in terms of another scale (prescriptions) for a particular

drug. The result would be a fixed number with an understandable unit (e.g. number of

telephone enquiries per 1 000 000 prescriptions). The absolute number of the rate of

any drug in a particular study can then easily be compared with those of any other

study.

3.4.3. Poisoning risks and deaths

Health professionals in Scotland call the Scottish Poisons Information Bureau (SPIB) to

consult about overdose patients. They also access TOXBASE for poison information.

These two resources are nationally available, and have previously used to describe and

compare different drug overdoses (Bateman D.N. et al., 2003).

However, there is a lack of objective evidence to show that to what extend these

measure overdose rate. The possibility of over reporting for complicated overdoses and

underreporting of frequent (familiar) or low toxicity overdoses is also not clear.

TOXBASE accesses can also potentially be used as an education source, and health

professional may access repeatedly for one case.

The Royal Infirmary of Edinburgh has a policy of admitting all overdoses. This provides

the best estimate of overdose. This type of measure has previously been used to

describe the pattern of poisoning risks of drugs (Isbister et al., 2004; Kelly et a!., 2004;

Bateman D.N. et al., 2004; Bateman D.N. et al., 2003; Wynne et al., 1987). However,

71



; Epidemiology

currently national data for hospital discharges by product are not available, limiting the

scope of studies using national studies. None of these data sets are ideal, but they may

represent an advance on previous approaches.

Overall, in view of a lack of availability of national data for hospital discharges by

product, and possibility of multiple use of TOXBASE for one patient, telephone inquiries

are arguably the best surrogates of poisoning risk index.

3.4.4. Modelling of overdose

The epidemiological factors underlying overdose are complex. A range of independent

variables which potentially determine the rate and impact of overdose (death) can be

proposed. These are illustrated in Figure 3-3. Overall, exposure determinants,

predisposing determinants, and errors suggested as the major influential factors on

overdose outcomes.

72



Epidemiology

Overdose
outcome

Predisposing
determinants

Patient related Physician related

Demographic variables; age.
gender & social class

Medical conditions; chronic use
of drugs

Supply pattern; Illicit supply,
over the counter drugs

Physician-patients behaviour;
frequency of prescription,
preparation pattern (% of

injection prescriptions) number
of tablets in each prescription,

fraction consumed for
therapeutically reasons

Forensic availability

Routine screen tests

Systematic errors
& confounders

Exposure
determinants

Mis-calculation, zero or very low values

Different populations

Inherent high fatality of a
drug & rapidly killers

Frequency of severe symptoms or
severity of symptoms CNS depression
& seizure, vital signs changes, ECG
changes, laboratory changes

Underlying diseases

At risk populations; depression,
psychiatric illnesses, dependency

Social recommendation (internet,
books & historical events)

Religious & cultural Stigma, value
of life, family / social support

Health system policy; availability
costs, antagonist availability,

frightening patients of dangerous
side effects, when drugs are

prescribed, Familiarity of health
professional

Severity of symptoms of scare
overdose

Concurrent ethanol

Safe drugs in overdose

Frequency of overdose

Co-intoxication

Greater health policy

Drugs with many brand names

None toxicological cases of the department

Interference of chance, low sample size

Mis-documentation

Frequent use of TOXBASE for one
patients or for educational purposes

Figure 3- 4. Epidemiological variables, which potentially can influence overdose outcomes.

3.4.5. Net Inherent Toxicity

As discussed before the number of deaths can be related to the number of

prescriptions, omitting the impact of exposure as a determinant, and a "case fatality

rate" calculated. This was called FTI, and used as an indicator for comparing inherent

toxicity of drugs in overdose, which is rather problematic. By combining equations 3-1

and 3-2, however, it is possible to estimate the net inherent toxicity co-efficient.

Equation 3 - 3. iK= D h- HD
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As can be seen the net co-efficient of inherent toxicity is actually derived by dividing

number of deaths by an index of overdose rate, such as the number of hospital

discharges.

To explore the relationship between "FTI" and "inherent toxicity", both sides of equation

3-3 were divided by "exposure (E) x 106" and equation 3-4 derived.

D (Ex106) = [E X PK X iK] -*■ (Ex106) or
Equation 3 - 4. FTI = lK xPKx 10"6

Equation 3-4 suggests a relationship between FTI and the net inherent toxicity of drugs.

As can be seen FTI is in fact (predisposing constant x 10"6) times different from the net

inherit toxicity (l«), and therefore should not be considered as equal as inherent toxicity

of a particular drug. Despite the differences, equation 3-5 shows that FTI and net inherit

toxicity are directly related, so FTI can be considered as a surrogate of net inherit

toxicity.

Inherent toxicity is actually derived by dividing number of deaths by an index of

overdose rate, such as the number of hospital discharges. As hospital discharges by

products are not nationally available, telephone enquiries and TOXBASE accesses may

be used as a surrogate for overdose rate.

3.4.6. Quantifying the indices

Non-fatal consequences

Indices relating poison risks and prescriptions toxic morbidity indices are called (TMIs).

They include telephone enquiries (TMITei), TOXBASE accesses (TMIyox) and hospital
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discharges (TMIHd). The methodology for calculating these indices is the same as the

calculation of FTI. The upper and lower 95% confidence intervals for the index are

calculated as described before (Buckley & McManus, 1998). Briefly, I assumed that

prescriptions (i.e. the denominator) were fixed and that the telephone enquiries,

TOXBASE accesses, and hospital discharges followed a Poisson distribution. The so-

called "exact" 95% confidence limits were obtained for the rates. These indices are

expressed as number of events per million prescriptions.

Fatal consequences

In line with FTI, fatal toxicity index for telephone enquiries (FTITei), TOXBASE accesses

(FTIjox) and hospital discharges (FTIHd) were similarly calculated. For these

calculations, however, I assumed that telephone enquiries, TOXBASE accesses, and

hospital discharges (i.e. the denominator) were fixed and that the deaths followed a

Poisson distribution. The results are expressed as number of events per 1000 poison

risks, and show the probability of death reports to overdose reports for a particular drug.

In these new FTIs the denominator of the rate (prescriptions) is replaced by a different

measure of the target population (poison risks; i.e. telephone enquiries (FTITei))- In this

way, the effects of predisposing factors, OTC, and illegal supply can be included in the

index, as it reflects case presentation rates. Table 3-4 summarises these indices, and

the way that they are calculated. The use of identical methodology for calculating FTI

and TMIs thus creates an opportunity to compare fatal and non-fatal consequences of

drug overdose.

The FTI, FTIhd and TMIHd seem to be more realistic measurements as both their

numerator and denominators (prescriptions, hospital discharges and deaths) are true
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values, while FTITei, FTIjox, TMITei, and TMIt0x contain one surrogate event. These

limitations inevitably restrict the applicability of these indices. However, as actual

numbers of overdoses "by product" are not nationally available, TMITei, TMITOx, FTITei,

and FTIjox posses some advantages. Target populations of the numerator (Scotland)

and denominator (Edinburgh) of FTIHd are also different.

Abbreviation Explanation Calculation

A) Current index
FTI Fatal toxicity index Number of deaths/ volume of prescription *10

B) Introduced indices
FTIhd Hospital discharge-

FTI

FTITel Telephone
enquiries-FTI

FTITox TOXBASE
accesses-FTI

TMI Toxic Morbidity
Index

TMIhd Hospital discharge-
TMI

TMITOX TOXBASE
accesses-TMl

TMIxei Telephone
enquiries- TMI

MSDR Multi/single death
ratio

Number of deaths/ volume of admission *10

Number of deaths/ volume of Telephone enquiries
*103
Number of deaths/ volume of TOXBASE accesses

*103
In this chapter "morbidity" & "case fatality" are used
interchangeably
Number of hospital discharges/ volume of
prescription *106
Number of TOXBASE accesses / volume of

prescription *106
Number of telephone enquiries/ volume of
prescription *106
Number of multi drug overdose deaths/ number of
single drug overdose deaths*102

Table 3- 4. Glossary table of the current available index (A), and new indices introduced in this
chapter (B)

In summary fatal and non fatal consequences of overdose are different, thus to have a

valid judgement about drug-induced consequences of overdose both fatal (FTIs) and

non fatal indices (TMIs) of all drugs should be calculated. For comparability they should

be calculated in a similar way.

Associations of poison risks and indices

In order to investigate the relationships between the measurements used correlations

are shown in Table 3-5. In the table, strength of correlation is used as an indicator of
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validity of an index. If an index is not associated to other indices, it is assumed to be

less representative.

P L TE TA HD SD TMIre, TMItox TMIhd FTI
[n=14]
FTlye, FTItox

[n=10]
FTIhd

PS
.975 .872 .939 .808 .493 -.184 -.229 -.119 -.161 -.195 -.139 -.310
.000 .000 .000 .000 .038 .465 .360 .638 .524 .504 .583 .384

P L
.878 .917 .838 .585 -.189 -.236 -.122 -.165 -.198 -.142 -.310
.000 .000 .000 .011 .453 .346 .628 .513 .497 .575 .383

TE
.942 .923 .68 .148 -.182 .223 -.141 -.258 -.105 -.336
.000 .000 .002 .558 .469 .375 .577 .373 .680 .343

TA
.853 .453 -.046 -.202 .022 -.152 -.233 -.194 -.422
.000 .059 .855 .420 .931 .546 .422 .440 .225

HD
.704 .244 -.139 .331 -.120 -.240 -.099 -.486
.001 .329 .582 .180 .636 .409 .697 .154

SD
.278 -.068 .294 .117 .073 .300 .079
.263 .790 .236 .645 .803 .226 .828

TMIxel
.253 .967 .328 .137 .210 -.095
.310 .000 .184 .639 .403 .795

TMItox
.232 .235 .616 .106 -.134
.354 .349 .019 .676 .711

TMIhd
.115 -.070 .029 -.129
.649 .811 .910 .723

FTI
.980 .861 -.047
.000 .000 .897

FTIxel

FTItox

.899 .590

-000J14] .073
.794
.006

Table 3- 5. Correlation of availability, poison risks, fatality and derived indices for opioids in
Scotland & Edinburgh 01.07.2000-01.07.2002, In each cell Pearson Correlation (P value)
[number of cases] are reported, wherever [number of cases] is not reported, n is equal to 18. PS;
prescription in Scotland, PL; prescription in Lothian Health Board. TE; telephone enquiries,
TMIjei; telephone toxic morbidity index, TA; TOXBASE accesses, TMIjox; TOXBASE toxic
morbidity index, HD; hospital discharges, TMIHd; hospital discharge toxic morbidity index, SD;
single deaths, SD-FTI; single death fatal toxicity index, (1) products sorted by descending
TMI™.

I have used these indices in a variety of ways: firstly to explore the toxicity of co-

proxamol in comparison to other compound analgesics; secondly to examine the

relative toxicity of drugs in overdose.

To assess the validity of these indices the effects of mis-documentation, illicit supply,

and rarely prescribed drugs were studied by comparing the result of diamorphine,

dextropropoxyphene and rarely prescribed drugs. TMItei, TMITox, TMIHd and FTI are

sensitive to these problems, while FTItei, FTIt0x, and FTIHd are relatively robust to these

confounders.
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3.5. Prescription of opioids in Scotland

In a retrospective study of prospectively gathered data, prescriptions for opioids in

Scotland from 01.07.2000 to 01.07.2002 were obtained. Prescriptions dispensed within

the NHS in primary care (ie excluding use in hospitals) in Scotland (population 5.1

million) and for the Lothian catchment area (population approximately 500,000) were

obtained.

Results

In Scotland compound opioid prescriptions (74.4%) are more common than pure

opioids. Some of the opioids are prescribed very rarely (e.g. nalbuphine 575

prescription in two years). Diamorphine is prescribed rarely. The most commonly

prescribed opioids in Scotland and Edinburgh are shown in Table 3-6.

Prescription items of co-codamol and co-proxamol were approximately three times

higher than for co-dydramol. Dihydrocodeine and methadone are prescribed almost

equally in Scotland. In Edinburgh with a tenth of population, methadone is prescribed at

a similar rate to the whole of Scotland, but dihydrocodeine is prescribed twice as

frequently.

As compound opioids are prescribed even more frequently than pure opioids, they

should also be studied when evaluating opioid overdose. Illegal supply of some opioids

makes systematic comparison of the frequency of opioid use difficult.
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Drug Prescription
Scotland

Prescription
Lothian

Telephon
e

enquiries1
TOXBASE
accesses1

Hospital
discharge
s2

Single
deaths1

Multiple
deaths1

Pure opioids
Diamorphine 24845 2842 46 238 196 20 371

Dextropropoxyphene 2285 420 1 19 0 10 42

Morphine 235718 30062 20 59 10 15 352

Pethidine 30380 3349 1 16 2 1 2

Meptazinol 29975 1931 0 29 0 1 2

Methadone 847416 80063 25 105 143 19 144

Dihydrocodeine 865460 145347 48 558 212 13 95

Tramadol 632763 48643 47 489 42 3 11

Codeine 219581 28721 5 92 21 1 30

Dipipanone with
cyclizine

13296 612 0 18 0 0 2

Dextromoramide 6829 333 1 7 0 0 1

Nalbuphine 575 200 0 16 0 0 0

Pentazocine 5141 555 1 5 0 0 0

Fentanyl 32221 3597 0 8 0 0 0

Buprenorphine 11932 1707 1 8 0 0 0

Compound opioids
Co-proxamol 3453604 448166 92 907 286 43 86

Co-dydramol 1217376 184592 28 370 118 1 3

Co-codamol 3932153 363403 79 1155 245 3 8

Table 3- 6. Reference table, 1) prescriptions, telephone enquiries, TOXBASE accesses, and
single and multi-agent deaths of pure and compound opioids in Scotland from 1st July 2000 to
30th June 2002 , 2) hospital discharges in Royal Infirmary of Edinburgh and prescription from its
catchments area, Lothian Health Board in the same period.

3.6. Non fatal consequences of opioid overdose in Scotland

The aim of this study was to calculate toxic morbidity indices of different opioids in

Scotland and compared then to the traditional FTI. In this study, an overdose death is a

single agent-cause-death with or without alcohol documented by death certificate or

forensic laboratories, which is captured by General Registry Office.

Results
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To illustrate the overall profile of opioid exposure and non fatal consequences of

overdose, TMITei, TMIjox, and TMIHd, are compared with traditional FTI, and shown in

Table 3-7.

Products

Pure opioids
Diamorphine

Dextropropoxyphene
Pethidine

Dihydrocodeine
Meptazinol
Tramadol
Methadone
Codeine
Morphine
Nalbuphine

TMIT

1851.5

(1347.1, 2454.3)
437.6 (1.1, 242.2)
32.9 (0.8, 185.7)
55.5 (40.9, 73.6)
0.0 (0.0, 123)
74.3 (54.6, 98.7)
29.5 (18.5, 42.2)
22.8 (7.4, 53.3)
84.8 (52.0, 131.4)
0.0 (0.0, 6148.1)

Pentazocine
Dextromoramide

Fentanyl
Buprenorphine
Dipipanone
cyciizine

194.5 (5.1, 1114.3)
146.4 (3.6, 795.9)
0.0 (0.0, 115.3)
83.3 (.0, 464.0)

with 0.0 (0.0, 283.8)

Compound opioids
Co-proxamol
Co-dydramol
Co-codamol

26.6 (21.4, 32.7)
23.0 (14.6, 31.9)
20.1 (15.9, 25.0)

TMItox TMIH

9579.4 68965.5

(6189.3, 14373.2) (42985.6, 108685.4)
8315.1 (4974.6, 12901.0) 0.0 (0.0, 9222.2)

FTI

805.0 (488.7,
1235.5)
4376.4 (2098.6, 8048.3)

526.6 (304.8, 866.1)
645.1 (301.0, 855.3)
967.5 (647.3, 1388.3)
772.8 (56.6, 217.0)
123.9 (98.3, 145.4)
419.0 (338.7, 515.2)
250.3 (191.1, 323.9)
27826.1 (15242.3,
43305.0)
972.6 (324.7, 2333.7)
1025.0 (402.1, 2060.4)
250.0 (107.9, 492.6)
670.5(287.8, 1313.6)
1353.8(820.6,2189.3)

597.2 (73.4, 2189.3) 32.9 (0.8, 185.7)
1458.6 (894.4, 2208.6) 15.0 (8.0, 25.7)
0.0 (0.0,1941.5) 33.4(0.8,185.7)
863.4 (622.8, 1168.1) 4.7 (1.0, 13.9)
1786.1 (956.0, 2933.9) 22.4 (13.1, 33.9)
731.2 (452.9, 1118.5) 4.6 (0.1, 25.4)
332.6 (159.3, 611.0) 63.6 (35.7, 105.3)
0.0 (0.0, 18444.4)

0.0 (0.0, 6148.1)
0.0 (0.0, 12296.3)
0.0 (0.0, 1024.7)
0.0 (0.0, 2169.9)
0.0 (0.0, 6148.1)

262.6 (212.1, 2323.5)
303.0 (214.0, 418.99.0)
293.7 (243.8, 352.4)

638.2 (335.9, 1135.6)
639.2 (529.4, 765.9)
674.2 (445.2, 1015.5)

0.0 (0.0, 6148.1)

0.0 (0.0, 737.8)
0.0 (0.0, 527.0)
0.0 (0.0, 115.3)
0.0 (0.0, 307.4)
0.0 (0.0, 283.8)

12.5 (9.0, 16.8)
0.8 (0.0, 4.4)
0.8 (0.1, 2.2)

Table 3- 7. Toxic morbidity indices (TMIs) and fatal toxicity index (FTI) ( with 95% CI) of pure
and compound opioids extracted from prescription, poison risk values in Scotland from 1st July
2000 to 30th June 2002, and hospital discharges in Royal Infirmary of Edinburgh and
prescription from its catchments area, Lothian Health Board, in the same period.

3.7. Fatal consequences of opioid overdose in Scotland

The aim of this study was to calculate the fatality rates of different opioids in Scotland

and to examine the range of Fatal Toxicity Indices I have described. In this study, death

is an overdose death due to a single agent with or without alcohol, as documented by

death certificate, and captured by the General Registry Office.

Results
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To illustrate the overall profile of opioid exposure and fatal consequences of overdose,

FTITei, FTIjox, and FTIHd, are compared with traditional FTI, and shown in Table 3-8.

In Scotland overdose deaths are due both to pure opioids (63.8) and to a lesser extend

compound opioids. Among the compound opioids co-proxamol is by far the most

common cause of deaths (Table 3-5) followed by diamorphine (15.4%), methadone

(14.6%) and morphine (11.5%) and dihydrocodeine (10.0%).

Product Single deaths / Single deaths /thousand
million prescriptions Telephone enquiries
(95% CI) FTI (95% CI) FTItei

Single deaths /thousand Single deaths
TOXBASE accesses /thousands discharges
(95% CI) FTItox (95% CI) FTIhd

Pure opioids
Diamorphine 805.0 434.8 84.0 102.0

(488.7, 1235.5) (265.6, 671.5) (51.3, 129.8) (62.3, 157.6)
Dextropropoxyphene 4376.4 10000.0 526.3 oo

(2098.6, 8048.3) (4795.4, 18390.4) (252.4, 967.9)
Morphine 63.6 (35.7, 105.3) 750.0 (419.8, 1237.0) 254.2 (142.3, 419.3) 1500.0 (839.5, 2474.0)
Pethidine 33.0 (0.8, 185.7) 1000.0 (25.3, 5571.6) 62.5 (1.6, 348.2) 500.0 (12.7, 2785.8)
Meptazinol 33.4 (0.8, 185.7) oo 34.5 (0.9, 192.1) ~

Methadone 22.4 (13.1, 33.9) 760.0 (457.6, 1186.8) 181.0 (108.9, 282.6) 132.9 (80.0, 207.5)
Dihydrocodeine 15.0 (8.0, 25.7) 270.8 (144.2, 463.1) 23.3 (12.4, 39.8) 61.3 (32.7, 104.9)
Tramadol 4.7 (1.0, 13.9) 63.8 (13.2, 186.5) 6.1 (1.3, 17.9) 71.4 (14.7, 208.7)
Codeine 4.6 (0.1, 25.4) 200.0 (0.1, 1114.3) 10.9 (0.3, 60.6) 47.6 (1.2, 265.3)
Dipipanone with 0.0 (0.0, 283.8) oo 0.0 (0.0, 204.9) oo

cyclizine
Dextromoramide 0.0 (0.0, 527.0) 0.0 (0.0, 3688.9) 0.0 (0.0, 527.0) OO

Nalbuphine 0.0 (0.0, 6148.1) oo 0.0 (0.0, 230.6) oo

Pentazocine 0.0 (0.0, 737.8) 0.0 (0.0, 3688.9) 0.0 (0.0, 737.8) oo

Fentanyl 0.0 (0.0, 115.3) oo 0.0 (0.0, 461.1) OO

Buprenorphine 0.0 (0.0, 307.4) 0.0 (0.0, 3688.9) 0.0 (0.0, 461.1) oo

Compound opioids
Co-proxamol 12.5 (9.0, 16.8) 467.4 (338.3, 629.6) 47.4 (34.3, 63.9) 150.4 (108.8, 202.5)
Co-dydramol 0.8 (0.0,4.4) 35.7 (1.0, 199.0) 2.7 (0.1, 15.1) 8.5 (0.2, 47.2)
Co-codamol 0.8 (0.1, 2.2) 38.0 (7.8, 111.0) 2.6 (0.5, 7.6) 12.2 (2.5, 35.8)

Table 3- 8. Fatal toxicity indices, indexed based on overdose volumes for pure and compound
opioids in Scotland from 1st July 2000 to 30th June 2002, hospital discharges in Royal Infirmary
of Edinburgh and prescription from its catchments area, Lothian Health Board, in the same
period, infinity; denominator is zero.

Dextropropoxyphene (4376.4), which is probably a result of mis-documentation, and

diamorphine, which is due to illicit supply, have the highest FTI, followed by morphine.
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Commonly prescribed compound opioids have very low FTI. The rank order of FTITei,

FTIjox and FTIHd are different to traditional FTI (Table 3-8).

Diamorphine has an illicit source of supply that cannot be detected by FTI. This problem

can be overcome by using FTITei, FTITOx, and FTIHD- Diamorphine-FTI is 805 and over

50 times higher than dihydrocodeine. By calculating FTIHd this difference decreases to

1.6 times. This shows the benefit of using indices that reflect net inherent toxicity to the

traditional one based on prescriptions only.
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3.8. Estimation of co-proxamol excess risk

Co-proxamol is a prescription-only analgesic that combines paracetamol (325mg) with

the opioid analgesic dextropropoxyphene (32.5mg). The data for this study was used to

assess its toxicity in overdose.

Prescription of co-codamol and co-proxamol were rather higher than co-dydramol in

both Scotland and Edinburgh (Table 3-9). A similar pattern was also found in the

telephone enquiries and TOXBASE accesses for these medicines. Frequency of death

related to co-proxamol was predominantly higher than with the other combinations

Table 3-10 and Figure 3-5 illustrates the relationship between exposure to these

medicines based on numbers of prescriptions (FTI) and (TMIs).

Products Prescription Prescription Telephone TOXBASE Hospital Single
Scotland Lothian1 enquiries accesses discharges1 deaths

Co-proxamol 3453604 448166 92 907 286 43

Co-codamol 3932153 363403 79 1155 245 3

Co-dydramol 1217376 184592 28 370 118 1

Table 3- 9. Prescriptions, TOXBASE accesses, telephone enquiries, single deaths, and
admissions of different combinations of opioids and paracetamol in Scotland from 1st July 2000
to 30th June 2002, 1; Data from admission in Royal Infirmary of Edinburgh and prescriptions
from its catchments area, Lothian

Telephone TOXBASE Hospital Deaths
Products enquiries/million accesses/million discharges/million single/million

prescriptions prescriptions (95% CI) prescriptions (95% prescriptions
(95% CI) Cll)C (95% CI)

Co-proxamol 26.6 (21.5,32.7) 262.6 (212.1,2323.5) 638.2 (433.4,929.3) 12.5 (9.0,16.8)
Co-codamol 20.1 (15.9,25.0) 293.7(243.8,352.4) 674.2 (445.2,1015.5)0.8 (0.16,2.2)

Co-dydramol 23.0 (15.3,33.2) 303.0 (214.0,418.99.0) 639.2 (529.1,765.5) 0.8 (0.0,4.6)

Table 3- 10. Telephone, TOXBASE, hospital discharges and deaths indices (per million
prescription) in Scotland from 1st July 2000 to 30th June 2002, 1; Data from admission in Royal
Infirmary of Edinburgh, and prescriptions from its catchments area, Lothian
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The national rate of TOXBASE accesses and telephone enquiries were similar for each

medicine when expressed per million prescriptions. Local hospital admissions were also

similar when expressed in this way. Similar TMIs of telephone enquiries range from

20.1 to 26.6 per million prescriptions, of TOXBASE accesses from 263.0 to 304, and of

admissions from 638.2 to 647.0. When the prescribing data were combined with

fatalities to give the FTI it was apparent that this index was significantly higher for co-

proxamol (12.5 deaths per million prescriptions) than co-codamol (0.8) and co-dydramol

(0.8) Figure 3-5.

1000

CO

o 100

c 10
o

1

37.4

2.8 3.3

6
Co-proxamol Co-codamol Co-dydramol

□ Telephone □ TOXBASE □ Admissions ■ Deaths

Figure 3- 5. Telephone enquiries, TOXBASE accesses, hospital discharges and deaths
adjusted on the volume of prescriptions /106 of combination opioids and paracetamol,
July 2000 to June 2002 in Scotland

Discussion

The main findings of this study are that while the rates of overdose for three common

paracetamol/opioid combination analgesics are very similar based on the number of

prescriptions within the Scottish population the proportion of these episodes, which

result in fatality is very significantly higher for co-proxamol. The 16 times higher FTI

and 13 times higher FTITei of co-proxamol than co-codamol and co-dydramol are
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sufficient evidence to suggest a complete withdrawn of co-proxamol from the market.

These data suggests that toxicologically, co-proxamol should be replaced by other

available combination analgesics. This study was done in early August 2004. The

Committee on Safety of Medicines advised that co-proxamol should be withdrawn from

the market on January 2005 (MHRA, 2005).
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3.9. Estimation of methadone excess risk

This approach to toxicity assessment can also be applied to the comparison of

methadone and dihydrocodeine. Both methadone and dihydrocodeine are used for

replacement therapy (Krausz et at., 1998; Puigdollers et at., 2003; Puigdollers et at.,

2004; Backmund etal., 2003).

The results are summarised in Table 3-11. As can be seen, prescription of methadone

and dihydrocodeine were similar in Scotland, while in Edinburgh dihydrocodeine was

used more. Deaths with methadone were more frequent than dihydrocodeine.

TMIs of dihydrocodeine in general is non-significantly higher than methadone except for

TMIjox in which dihydrocodeine is significantly higher than methadone (123.9 (64.8,

232.3).

However the FTITOx of methadone (137.1 (72.9, 223.7)) is significantly higher than

dihydrocodeine (17.0 (13.8, 20.8)). This is consistent with the significant higher FTITei of

methadone (576.0 (306.2, 939.6)) compared to dihydrocodeine (197.9 (160.1, 241.9).

Thus, although prescribed to a similar extent methadone and dihydrocodeine seem

different in overdose. Methadone has a higher mortality as measured by FTIs (FTITei &

FTIjox significantly, and FTI and FTIHd non-significantly). This pattern may suggest a

social trend in which dihydrocodeine is taken more frequently in overdose, while

methadone is more toxic. This suggests a strategy in which methadone was replaced

by dihydrocodeine in maintenance therapy of addicts might reduce overdose mortality.

This ought to be explored further.
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A) Raw data
Products Prescription Prescription Telephone

Scotland Lothian enquiries
TOXBASE
accesses

Hospital Deaths
discharges' Single

Methadone 847416 80063 25 105 143 19

Dihydrocodeine 865460 145347 48 558 212 13

B) TNI Is
Telephone enquiries
prescription

/million TOXBASE

prescription
accesses /million Hospital discharges/million

prescription'
Methadone 29.5(19.1,43.5) 123.9 (64.8, 232.3) 1786.1 (956.0, 2933.9)
Dihydrocodeine 55.5 (40.9, 73.5) 644.7 (488.8 840.3) 1458.6 (894.4, 2208.6)

C) FTIs
Deaths/million

prescription
Deaths/thousand

telephone enquiries
Deaths/thousand
TOXBASE accesses

Deaths/thousands

hospital discharges'
Methadone 169.9 (90.3, 277.2) 576.0 (306.2, 939.6) 137.1 (72.9, 223.7) 100.7(53.5, 164.3)

Dihydrocodeine 109.8 (88.8, 134.2) 197.9 (160.1, 241.9) 17.0 (13.8, 20.8) 44.8 (36.3, 54.8)

Table 3-11. Prescriptions, TOXBASE accesses, telephone enquiries, and deaths for Scotland
and prescriptions and admissions for Lothian and Edinburgh Royal Infirmary for methadone and
dihydrocodeine from 1st July 2000 to 30th June 2002, TMIs. B) Estimated poisoning risks of
telephone and TOXBASE accesses (Scotland), or admissions (Edinburgh/ Lothian) per million
prescriptions (95%CI). C) Death in relation to risks of exposure (95%CI), FTIs. Data from deaths
in Scotland and hospital discharges from Royal Infirmary of Edinburgh.
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3.10. Estimation of illicit supply of diamorphine using toxicological data

Illicit supply of drugs can be calculated from the demand side via the data from the

Health Research Unit's National Drug Survey (Wilkins et a!., 2002) as well as drugs

seized on the illicit drug market by police (Kaa & Bowmann, 1998). Calculating FTI for

the drugs that have illicit supply is not appropriate. The aim of this study is to estimate

the illicit supply of diamorphine via overdose related data. As methadone prescriptions

are for a similar population as diamorphine abusers, and methadone has no other

clinical indication than for management of drug addiction, poison risks and fatality of

diamorphine were compared with methadone (as an index) from 1st July 2000 to 30th

June 2002 in Edinburgh and Scotland.

Within Lothian 80,063 prescriptions of methadone resulted in 143 hospital discharges.

In the period of the study there were 196 admissions for diamorphine poisoning. If

diamorphine were used in a similar way to methadone, which seems at least plausible, I

estimate that over 100,000 prescription items for diamorphine would have been

required to produce the rate of presentation we observed in our catchment area of

around half a million. Since most prescriptions are for 28 days supply, the street

availability of diamorphine may equate to over a million doses a year.

Police data reflect availability, this data may be a better indication of usage. This

approach provides a potentially useful marker of illicit drug availability.
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3.11. Risk factors in multi-agent intoxication

3.11.1. Introduction
The death rate for opioid intoxication has increased over the past 20 years, and these

rates of change have been different among various opioids (Hickman et al., 2003;

Rossler et al., 1993). Opioid overdose has emerged as a major international public

health issue. Observational forensic studies have shown that opiate multi-drug

intoxications are common (Soja et al., 2003) and are a major risk factor for death after

acute opioid overdose (Coffin et al., 2003; Darke, 2003).

Some mechanisms for this risk factor have been suggested including enhancement of

acute toxicity (with ethanol) (Ruttenber et al., 1990), severe central nervous system and

respiratory depression (with benzodiazepines) (Burrows et al., 2003), cardiotoxic death

(with amphetamine and benzodiazepines) (Klys et al., 2001). Higher levels of

methadone may occur in acute and chronic mixed intoxication of methadone and

benzodiazepines (Mikolaenko etal., 2002).

Recently fatality has been shown to be increased in co-intoxication of benzodiazepines

and a variety of opioids in rats (Borron et al., 2001). This has raised the possibility of

different inherit toxicity of various opioids in this regard. Moreover, although

benzodiazepines were shown to alter neuro-respiratory toxicity of buprenorphine in a

patient study (Megarbane B et al., 2004), pharmacokinetic interactions have been ruled

out as a cause of death in rats by the same group (Megarbane B et al., 2001)

suggesting a pharmacodynamic interaction. Another possibility might be the existence

of a particular metabolite, which is toxic in co-intoxication. Co-intoxication in opioid

overdoses and deaths related to opioids is common (Sporer, 1999), and opioid
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overdoses are associated with longer periods of heroin use (Darke et al., 1996)

suggesting that overdose deaths are not exclusively related to opioid effects.

Fatality rates for various opioids are different in man, however, it is not clear what role

co-intoxication plays. To explore the effects of co-intoxication in fatality of different

opioids, I have compared the pattern of deaths in single and mixed opioid overdoses in

Scotland. To my knowledge, no methodology is currently available to quantify the

effects of co-intoxication on fatality in overdose.

3.11.2. Methods

The number of deaths in Scotland due to acute poisoning by a single opioid agent or

opioid co-ingestions from 1st July 2000 to 30th June 2002 (population 5.2 million) was

obtained. Single overdose of commonly used tablets of combination of opioids and

paracetamol (co-codamol, co-dyddramol & co-proxamol), in which the ratio of

ingredients are fixed and pharmaceutically accepted, were considered as single agent

overdose.

I used a similar methodology to FTI (Buckley & McManus, 1998) to calculated a multiple

agent to -single agent death probability ratio (MSDPR) as a quantifier of co-intoxication

risk. Opioids were subsequently categorised into two main groups, with or without ability

to biotransform to morphine, and MSDPR was calculated for these two groups.

3.11.3. Results
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In the period of study 1149 (89.8%) overdose deaths were documented as co-

intoxication and 130 as single opioid deaths in the Scotland. MSDPR for all opioids was

7.3 (8.8, 10.6) suggesting that co-intoxication is an important risk factor for opioid death.

Table 3-12 shows the values of MSDPR in descending order by product. Rank order of

the frequency of opioids in single agent and co-intoxication groups was similar except

for co-proxamol, which with 33.1% is the most common cause of single agent death. No

report of deaths due to nalbuphine, pentazocine, fentanyl and buprenorphine were

documented.

Products Multiple Single MSDPR
deaths deaths

Diamorphine 371 20 18.6 (10.0, 25.5)
Dextropropoxyphene 42 10 4.2 (3.0, 5.7)
Morphine 352 15 23.5 (16.3, 32.5)
Pethidine 2 1 2.0 (0.2, 7.2)
Meptazinol 2 1 2.0 (0.2, 7.2)
Methadone 144 19 7.6 (4.0, 12.4)
Dihydrocodeine 95 13 7.3 (5.9, 8.9) Table 3- 12. Reference
Tramadol 11 3 3.7 (1.8, 6.6) table; single and multi-
Codeine 30 1 30.0 (20.2, 42.8) agent deaths of pure
Dipipanone & cyclizine 2 0 OO ^oO( oo ^ and compound opioids
Dextromoramide 1 0 oo ^ oo ^ oo ^ in Scotland from 1st July
Nalbuphine 0 0 NaN'(NaN, «) 2000 to 30th June 2002,
Pentazocine 0 0 NaN (NaN, °°) and multiple over single
Fentanyl 0 0 NaN (NaN, °°) death probability ratios,
Buprenorphine 0 0 NaN (NaN, °°) MSDPR; multiple over
Co-proxamol 86 43 2.0 (1.6, 2.4) single death probability
Co-dydramol 3 1 3.0 (0.6, 8.8) ratio, NaN; not a

Co-codamol 8 3 2.7 (1.2 (5.3) number, «; infinity

The literature to categorise opioids into different subgroups based on their major

metabolites. The results are summarised in descending order of MSDPR (95% CI) in

Table 3-13. As can be seen opioids may be categorised into two subgroups; morphine,

codeine, and diamorphine for all of which the main active agent is morphine and its

metabolites; and the opioids which are not morphine related (methadone,

dihydrocodeine, pethidine, meptazinol, tramadol, dextropropoxyphene). Figure 3-6

shows the values of MSDPR in descending order by product. As can be seen, codeine,
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morphine and diamorphine have significantly had higher probability of death in co-

intoxication than other opioids. MSDPR for two categories of opioids based on their

Drug MSDPR Opioid metabolites
Codeine 30 Morphine, glucronate and sulphate of both codeine and its

metabolites, conjugated codeine, norcodeine , conjugated
norcodeine, conjugated morphine, hydrocodone

Morphine 23.5 6-glucronade, 3-glucronade, morphine conjugates, normorphine,
conjugated normorphine, normorphine-3-glucronade, morphine-
3-ethereal sulphate, morphine-3, 6-diglucuronide, codeine

Diamorphine 18.6 6-monoacetylmorphine, morphine, morphine-6-glucuronide,
morphine-3-glucuronide, Conjugated morphine, normorphine,
normorphine-3-qlucronade

2-ethylidene-1,5-dimethyl-3,3-diphenyl pyrrolidine (EDDP), 2-
ethyl-5-methyl-3,3-diphenylpyrroline (EMDP), p-hydroxylated
derivatives, glucuronide conjugated derivatives, methadol,
normethadol

Nordihydrocodeine, dihydromorphine, dihydromorphine-6-
glucronide, Dihydrocodeine-6-glucuronide
Nordihydrocodeine, dihydromorphine, dihydromorphine-6-
glucronide, Dihydrocodeine-6-glucuronide (& paracetamol)
Pethidine acids & its conjugates, norpethidine, norpethidinic acid
& its conjugates, pethidine N-oxide, 4 hydroxy pethidine
O-glucronide, azepin-[2H]-2-7?
O-demethyl tramadol, and -demethylation
Norpropoxyphene, dinorpropoxyphene, p-hydroxypropoxyphene,
p- hydroxynorpropoxyphene, cyclic dinorpropoxyphene
Morphine, glucronate and sulphate of both codeine and its
metabolites, conjugated codeine, norcodeine , conjugated
uuicudeine, conjugated moiptiiiie, hydtocodone (&
pararptamnl)

Co-proxamol 2.0 Norpropoxyphene, dinorpropoxyphene, p-hydroxypropoxyphene,
p- hydroxynorpropoxyphene, cyclic dinorpropoxyphene (&
paracetamol)

Table 3- 13. Different opioids and their metabolites in their MSDPR order, Grey areas; are
opioids which biotransform to morphine & its metabolites, Italic numbers; are significantly higher
than others, (1) total number of co-codamol deaths was 11 and each tablet contains a very small
amount of codeine, perhaps explaining this finding

ability to biotransform to morphine are shown in Figure 3-7. The opioid subgroup, which

bio-transforms to morphine has a ratio of multiple to single death probability of 19.5

(15.4, 24.4) indicating that they are extremely fatal in co-intoxication. The ratio for

opioids, which are not related to morphine, is significantly lower, and only 4.3 (3, 5.9)

times more fatal in co-intoxication.

Methadone 7.6

Dihydrocodein 7.3
e

Co-dydramol 3

Pethidine 2

Meptazinol 2
Tramadol 3.7

Dextropropox 4.2
yphene
Co-codamol1 2.7
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Q 95%CI of all

Figure 3- 6. Probability of multiple agent Figure 3- 7. Multiple single drug probability
deaths as a ratio of single agent deaths for ratio overdose ratio in different opioid,
individual opioids categorised base on their ability to

biotransform to morphine

MSDPR of the highest opioids (codeine) was 15.0 (10.1, 21.4) times higher than the

lowest (co-proxamol).

Association between single agent (death equal to opioids) and co-ingestion (death

contain opioids) is shown in Figure 3-10. Diamorphine and morphine are clearly

differently from other agents, including co-proxamol. They appear safer when are taken

as a sole agent than in combination.

0 100 200 300 400

Frequency fo multiple deaths

Figure 3- 8. Association between single agent and co-ingestion opioids-induced deaths
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3.11.4. Discussion

The main findings of this study are that opioids in general are significantly more fatal in

co-intoxication, suggesting that co-intoxication maybe a risk factor for opioid overdose

death, which is consistent with the previous reports (Coffin et al., 2003; Darke, 2003).

Mirakbari et al 2003 showed that 79.8% of surviving patients with acute opioid overdose

were co-intoxicated. This raises the possibility that the high prevalence forensic reports

of co-intoxication may at least in part reflects a high rate of multi-drug administration as

well as a higher mortality rate (Mirakbari et al., 2003). In this study, two metabolically

different subgroups of opioids emerged. Opioids which biotransform to morphine

appear to be far more fatal in co-intoxication in man. This suggests that morphine itself,

or one of its metabolites (eg morphine-6-glucuronide,) contribute to this problem.

Opioids are an important problem, as the death rate associated with them is increasing

(Hickman et al., 2003; Rossler et al., 1993). Understanding the risk factors in overdose

is therefore valuable.

This study uses a methodology to quantify the risk of dying from different opioids in co-

intoxication in man. It has compared the effects of co-intoxications on overdose

mortality. The confounders for both multiple and single agent deaths are likely to be the

same.

It should also be considered that diamorphine and morphine are in general illicitly

supplied and different doses, and methods of administration are used. Therefore, an

interaction of one of their illicit additives with other drugs might make them more fatal.

This hypothesis is not consistent with findings related to codeine in this subgroup, or

previous reports in which diamorphine fatalities were associated with its average purity
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(Darke et al., 1999). Co-codamol contains codeine which is also metabolised to

morphine, however, as amounts of codeine in each tablet is very little (8- 30 mg). The

lower co-codamol MSDPR might be because there is not enough codeine to be

metabolised to the required level of morphine.

3.11.5. Conclusion

Mixed overdose including opioids are more toxic than single opioid ingestion. Morphine

may be the main factor that increases mortality risk in mixed overdose.

3.12. Limitations of these indices

Applying the indices described in toxico-epidemiology would not be reliable if the

sample size is small, period of study is short, or samples limited to certain fractions of

population that have different level of self harm, or use drugs that are rarely prescribed.

Only a proportion of people who overdose are captured by the health system, and only

for a minority of these is an electronic or telephone consultation made. Therefore, these

indices do not show the prevalence of overdose, however, they are surrogates of

relative product use and toxicity. Potential systematic errors and confounders in this

approach are summarised in Table 3-14.

The indices cannot be used as means of comparing the incidence of death and

overdose. However, these indices are a method for describing characteristics of drugs

in overdose. They compare rates of drug use in self harm and suicide and offer

practical rates for public health policy makers.
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Probable bias Example of disproportionate result
=> suggestion

Illicit supply, or over the counter
drugs.

Mis-documentation of one ingredient
instead of combination product

High tendency for taking some drugs
more frequently in overdose

Familiarity of medical personnel with
more common overdoses.

High prevalence of dangerous
consequences of overdose or
likelihood of medico-legal
involvement

Use of TOXBASE for non overdose
related reasons such as education

purposes

Repeated use of TOXBASE for one
patients such as prolonged toxicity

Rapid mortality in overdose

Drugs that have many brand names
might result in more enquiries as a
result of self confidence

Effect of chance by one case of
death for rare products

Safe drugs in overdose, which are
not fatal

Diamorphine illicit supply or OTC paracetamol
leads to a bigger FTI => FTITei, FTITOx, or FTIHd

Co-proxamol has a high FTI of
dextropropoxyphene => FTITei, FTITOx, or FTIHd
Favourable drugs give high FTI and also TMI =>
FTIiei, FTIjox, or FTIHd-

Morphine overdose give low TMItei & TMITOx =>
TMIhd, FTI or FTIHD

Chloroquine overdose give high TMItei & TMIjox
=> TMIhd, FTI or FTIHD

Nalbuphine gives a high TMITOx => TMITei, TMIHd,
FTI, FT ITei i or FTIHD

Nalbuphine gives a high TMITOx TMItei, TMIHd>
FTI, FTI-rei, or FTIHD

Co-proxamol gives lowTMIs. => FTIs.

Dihydrocodeine (DF118 forte, DHC Continuous)
gives high TMITei & TMITOx => TMIHd or FTIs

Dextromeromide deaths gives high FTIs or TMIs
=> no suggestion

Codeine gives low FTIs => TMIs

Table 3- 14. The potential source of biases in the use of TMIs & FTIs, =>; implies to
"confounding effect will be adjusted by concurrent using of the following indices".

3.13. Conclusion

From an epidemiological point of view, any approach in toxico-epidemiology should be

systematically developed to assist professional decisions about appropriate

management for specific circumstances. Validity, reliability, clinical applicability,

flexibility and clarity are essential for this approach and any indices applied. This
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chapter deals with examples of epidemiological methodologies in the field of clinical

toxicology. Since the introduction of fatal toxicity index (FTI) in the early 1980s, there

have been significant developments in recognising problems of this approach. I have

attempted to develop more valid and reliable methodologies capable of evaluating new

resources which improve the current approach.

Using a non-homogenous group of drugs, I have demonstrated practical applications of

the approach. In this chapter the risk posed by the opioid overdoses in the past four

decades in Edinburgh is quantified for individual products. The data suggested a

withdrawal of co-proxamol and this happened on 31.01.05.

Evidence that methadone is more toxic in overdose than dihydrocodeine is presented

here, and replacement of methadone with dihydrocodeine for maintenance therapy

suggested. Diamorphine supply was estimated from toxicology data. Diamorphine and

morphine are identified as dangerous products in co-intoxication, and a more careful

monitoring is suggested.

I would propose this integrated method of concurrent measuring of TMIs and FTIs for

future toxico-epidemiological studies. Interpretation of just one part of available data

may lead to inappropriate conclusions. Applying this integrated method can promote

toxicological appraisal in licensing of drugs.

Toxicological appraisal should, be shifted towards, predisposing factors, which are

dynamic determinants of overdose fatality. In this way, individual belief structure can be

altered to improve preventive measures in overdose.
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I have shown that extra supply, mis-documentation, zero values of prescription are

potential confounders of these indices, therefore, in these situations the result should

be interpreted conservatively.

Morphine (or one of its metabolites), but not other opioids or their metabolites, induce

higher fatality in co-intoxication. Diamorphine and morphine overdoses should be

considered at high risk when they co-intoxicated with other drugs. Pure diamorphine

and morphine overdoses seem relatively safer.

Use of codeine, morphine and diamorphine in patients who are at risk of suicide and

have access to other drugs should if possible be replaced by alternatives. MSDPR can

be used as a practical index to describe differences of fatal interactions (co-intoxication)

of a particular group of drugs in man.

Overall, this suggested integrated method should improve evidence in the field of

toxico-vigilance, it should be considered as a scale for assessment in toxicological

hazard appraisals.
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Chapter IV, Electrophysiological effects of
co-proxamol overdose

"One must see the musical character of the pulse. For the art of music, sounds are juxtaposed in
orderly relation of loudness and softness, which keep on repeating at regular intervals; rates of
utterance vary-some sounds coming close to one another, and others being further apart; the
attack may be abrupt or gentle, sharp or dull. The notes may be sounded clearly or be indefinite;
they may be strong or weak; the volume may be full or thin, the rhythm of the sequence of the
sounds may be regular or irregular...Irregularity of the pulse applies to a succession of beats or
to any individual beat."

Avicenna (980-1030 A.D.), The Canon of Medicine
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4.1. Introductory remarks

Co-proxamol is widely used as an analgesic in the United Kingdom, this drug was the

most common product ingested among 1331 hospitalised patients in Royal Infirmary of

Edinburgh (from July 2000 to July 2002) who took an opioid as part of their ingestion

(co-proxamol cases 270, 23.3% of total) (chapter 1). Co-proxamol is a common cause

of drug-induced death in the UK (Whittington, 1984; Shah et al., 2002), and it is also

recognized to be associated with a greater risk of successful suicide than paracetamol

or tricyclic antidepressants (Hawton et al., 2003).

Co-proxamol comprises two ingredients, paracetamol 325 mg, and dextropropoxyphene

32.5 mg. In post mortem reports in the UK, the presence of dextropropoxyphene is

generally taken to indicate co-proxamol ingestion, as so few dextropropoxyphene

prescriptions are dispensed. Overdose with co-proxamol is well known to cause liver

damage because of the paracetamol content. Although naloxone is an effective antidote

to the opioid effects of dextropropoxyphene, death in overdose may occur very rapidly

as early as 1 hour after overdose (Whittington, 1984), and subjects frequently succumb

before treatment can be made available (Young, 1983). Co-proxamol overdose

frequently causes death. This is more common in middle-aged, habitual or social-

drinking men, on medication for pain (Sloth et al., 1984; Jonasson et al., 2000a;

Jonasson et al., 2000b). It has also been suggested that suicide may be over reported

and accidents underreported among fatalities in which dextropropoxyphene is

implicated (Jonasson et al., 1999). In the Lothian and Borders of Scotland a large

proportion of the dextropropoxyphene associated deaths were related to suicide
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(81.3%), which was more common in the urban areas, and equally common in men and

women (Obafunwa etal., 1994).

Death with co-proxamol overdose is highly likely to be due to the dextropropoxyphene

content because in addition to its opioid receptor agonist properties,

dextropropoxyphene has cardiovascular effects (Holland & Steinberg, 1979; Stork et al.,

1995).

It has previously been shown that dextropropoxyphene induces a decrease in heart rate

and contractility of dog and cat heart muscles in vitro (Holland & Steinberg, 1979;

Amsterdam et al., 1981; Nickander et al., 1984). Dextropropoxyphene-induced ECG

changes are similar to a variety of potent anti-arrhythmic agents that act at least partly

by inhibiting the rapid sodium channel in the cardiac membrane (Roth & Seeman, 1971;

Hondeghem & Katzung, 1977; Lund-Jacobsen, 1978; Stork et al., 1995; Henry &

Cassidy, 1986). The dextropropoxyphene metabolite, norpropoxyphene, also induces

cardiotoxicity and has been shown to be associated with changes in ion-selectivity and

gating of HERG currents (Ulens et al., 1999). In the dog, which like man mainly

converts dextropropoxyphene into norpropoxyphene, and pigs, oral and intravenous

dextropropoxyphene caused an increase in the PR interval, QTc and QRS, and

arrhythmias such as intermittent A-V block and ventricular extrasystole occurred

(Holland & Steinberg, 1979; Bredgaard et al., 1984; Bredgaard et al., 1985). PR

prolongation was maximal 2 hour after dosing and gradually subsided over the next 6

hours (Holland & Steinberg, 1979; Lund-Jacobsen, 1978). QRS prolongation was

correlated with plasma concentrations during and after dextropropoxyphene and

norpropoxyphene infusion (Lund-Jacobsen, 1978). In contrast, in some animal and
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human studies no significant ECG effects are reported (Warren et al., 1974; Mauer et

at., 1975; Nickanderetal., 1984; Page eta!., 1979).

Although the acute toxic effect of dextropropoxyphene in animals may be prevented by

naloxone (Nickander et al., 1977) and it is also recommended in man overdose (Kersh,

1973), cardiac depressor effects were not reversed by naloxone (Amsterdam et al.,

1981; Nickander et al., 1984). Therefore, cardiac changes can be considered as non

specific effects of dextropropoxyphene. These effects may partly be due to

norpropoxyphene in man (Holland & Steinberg, 1979; Amsterdam et al., 1981). In some

cases of dextropropoxyphene overdose in man, electrocardiographic alterations have

been reported (Stork et al., 1995), which were concentration dependent (Gustafson &

Gustafsson, 1976). Cardiac conduction abnormalities, dysrhythmia, cardiac

haemodynamic impairment and death have been widely reported from overdose (Gary

et al., 1968; Starkey & Lawson, 1978; Barraclough & Lowe, 1982; Heaney, 1983;

Staikowsky et al., 1995; Hantson et al., 1995; Sloth et al., 1984). Some patients do,

however, respond well to naloxone (Elonen & Neuvonen, 1984; Hantson et al., 1995).

Sodium bicarbonate, lignocaine, dopamine, or even plasma exchange have been used

as treatment in some case reports(Whitcomb et al., 1989; Strom et al., 1985; Thamdrup

et al., 1986; Stork et al., 1995; Krantz et al., 1985).

4.2. Pharmacokinetics

The paracetamol half life (t1/2) at therapeutic doses in man is considered to be around 2

hours (Dollery C, 1991; Sahajwalla & Ayres, 1991); however, prolongation of the half

life with increasing dose has been reported in hamster, mouse, and rats (Miller &
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Jollow, 1986; Siegers et al., 1978; Davis et a!., 1976). Following over dosage of

paracetamol in man, significant increase in plasma 11/2 has been reported (Prescott et

al., 1971; Prescott & Wright, 1973; Prescott, 1980; Forrest et al., 1979; Schiodt et al.,

2002). The volume of distribution (Vd) of paracetamol is less likely to be related to

dose-effect and is regarded to be 0.8 L/kg. The half life of paracetamol used in the

treatment monogram is 4 hours (Dollery C, 1991; BNF, 2003; Prescott LF, 2004; Baselt

& Cravey, 1995; BNF, 2003).

Dextropropoxyphene is rapidly absorbed from the gastrointestinal tract and detectable

in plasma 5 minutes after administration by mouth (Rodda et al., 1971). The peak

concentration in plasma is reached between 1 and 2 hour after oral administration on

an empty stomach (Verebely & Inturrisi, 1974). Reported plasma half lives vary widely

(8 to 35 h) for dextropropoxyphene and (6 to 53 h) for its metabolite, norpropoxyphene

(Pearson, 1984; Gram et al., 1979; Crome et al., 1984), The half life was longer in

poisoned patients, the elderly and after repeated doses (Schou et al., 1978; Crome et

al., 1984; Pearson, 1984).

In clinical practice, plasma concentrations of dextropropoxyphene are rarely measured

(Proudfoot, 1984). The interpretation of plasma levels in poisoning is difficult as

dextropropoxyphene and norpropoxyphene both persist and may have different

dynamic effects (Buckley & Vale, 1984). Dextropropoxyphene is redistributed post¬

mortem (heart blood/femoral blood concentration ratio averaged 3.5) (Anderson &

Prouty, 1989) which may make concentration relationships inaccurate in fatal cases.
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In summary, available data regarding ECG changes in man is limited to some case

reports, and the extent to which respiratory depression from the opioid, and

electrophysiological changes from the sodium channel blockade, manifest in clinical

cases of poisoning has not been well described. In their recent paper Hawton and

colleagues concentrated on the opioid properties as the likely reason for mortality

(Hawton et at., 2003).

In this chapter ECG changes in co-proxamol overdose cases were studied, and the

following hypotheses addressed.

1. Dextropropoxyphene (present in co-proxamol) overdose in man, unlike

dihydrocodeine and codeine (present in co-dydramol and co-codamol) will lead to

widening of QRSD and elongation of QTc.

2. The electrophysiological (QRSD) effect of dextropropoxyphene in co-proxamol

overdose is dose dependent after an acute overdose.

4.3. Methods

Hospital discharge records for patients admitted to the Royal Infirmary of Edinburgh

from July 2001- to July 2002 were retrospectively examined as a preliminary case

series. Patients were included if they had an ECG in the first 24 hours following

exposure to co-proxamol. Patients who had co-ingested paracetamol or drugs known to

cause cardiac conduction abnormalities, and patients with plasma paracetamol level of

zero were excluded. Nine eligible cases were identified in a preliminary analysis. This

study suggested that QRS duration prolongation was occurring.
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A prospective case control parallel group study was then conducted. ECG changes in

15 consecutive patients ingesting co-proxamol admitted to the Royal Infirmary of

Edinburgh from September 2002- to April 2003 were compared with age and sex

matched controls who had ingested co-dydramol (paracetamol and dihydrocodeine) or

co-codamol (paracetamol and codeine). However, due to late presentation of some

subjects, uncertain timing of some ECGs, and early discharge of some patients

the power of the study falls towards the end of the patient observation period.

Overall 4 cases were excluded and 11 subject pairs were entered into the final

analysis. Routine paracetamol levels and ECG readings were obtained four hours after

drug ingestion or as soon after four hours as possible. ECGs were performed again, 8-

10 hours after the stated time of ingestion. Further ECGs were performed at 6-8 hour

intervals until hospital discharge. In all patients paracetamol poisoning was managed

routinely, using the normal regimen of intravenous n-acetylcysteine in patients whose

paracetamol concentration at four hours or beyond was above the treatment line (British

National Formulary 2003). In eligible cases, alleged number of co-proxamol tablets

ingested, 4 hour paracetamol levels and time interval to sample, time interval to ECG,

heart rate, blood pressure, PR, QRS and QT interval were documented on a data

collection form.

Electrocardiographic indices were automatically calculated by the Hewlett-Packard

machine in Edinburgh, (see chapter II for details related to the machine). The maximum

perturbation on the ECG observed was also recorded. Cases and controls were

considered independent groups for analysis.
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4.3.1. Estimation of dextropropoxyphene dose

Plasma concentration of paracetamol and time from ingestion were used to estimate

the dose of paracetamol by back extrapolation (measurements before 4 hours and

beyond 12 hours were omitted). The half life of paracetamol assumed to be 4 hours

(Forrest et at., 1979; Prescott LF, 2004), and the volume of distribution of 0.8 L/kg

(Dollery C, 1991). Estimated paracetamol dose was used as a surrogate to approximate

ingested dextropropoxyphene dose, since the ratio of dextropropoxyphene to

paracetamol is fixed in co-proxamol tablets. No plasma concentration measurements of

dextropropoxyphene or its major metabolite norpropoxyphene were available at that

stage. Certain assumptions have made to apply this methodology (Table 2-8). The

following equations were used:

Equation 2-1. C = C0*e"KeAt
Equation 2-2. ke = total plasma clearance / volume of distribution (CL/Vd)

(first order rate constant)
Equation 2-3. InC = lnC0 - CL/V * t
Equation 2-4. Log C = (Log C0) - CL/Vd*t/ 2.303
Equation 2-5. Vd = dose / C0
Equation 2-6. dextropropoxyphene dose = paracetamol dose * 10~1

where t = any particular time, C = plasma concentration at time t, C0 = estimated

concentration at time zero (the ordinate intercept), e = base for natural logarithm (In), ke

= the negative of the slop of the curve. A co-proxamol tablet contains 325 mg

paracetamol and 32.5 mg dextropropoxyphene).

List of assumptions that are necessary for relating concentrations of two drugs by back

extrapolation, and using drug response curve are summarised in Table 4-1.
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Assumptions
Back extrapolation
1 The body is a single homogeneous and theoretical divided into one part, compartment

(simplest model).
2 Their absorption and distribution is rapid, first order (rate of handling drug is proportional to

concentration) and identical, and half-lives are constant

Drug response curve

1 The plasma concentration is related to therapeutic efficacy, which is linear (a sigmoid curve)
2 Drug's actions are reversible
3 Drug's concentration in plasma and at the receptor site are related
4 Active metabolites play no role in drug action
5 Tolerance to drug does not develop
6 Plots of logarithm of both drug concentrations in plasma against time assumed to be linear.

Table 4-1. List of assumptions necessary for relating concentrations of two drugs by back
extrapolation and using drug response curve

4.4. Results

Firstly (study 1), ECG effects of co-proxamol were prospectively compared to co-

codamol and co-dydramol. Data on the two groups are shown in Table 4-2.

As can be seen, the groups were similar in respect to age, blood pressure and heart

rate. However, QRS duration was significantly longer in patients who ingested co-

proxamol (mean (95%CI)) 99 (96, 103) in comparison to the subjects ingesting the

other opioid combinations 83 (81, 85)). There was no significant difference in other

ECG parameters Table 4-2.

QRS durations in 6 hour time points are shown in Figure 4-1. As can be seen, QRS

intervals in co-proxamol overdoses in comparison to controls become significantly

prolonged soon after exposure (during the first 6 hours after overdose) and remained

prolonged in those patients still in hospital 24 hours after drug ingestion. In no patient

was QRS prolongation to a level at which arrhythmias would be expected in a well

oxygenated patient, and no arrhythmias were observed.
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Variables Cases mean (95%
confidence interval)

Controls mean (95%
confidence interval)

Male % 45.5% 45.5%

Age 38.1 (30.1, 46.0) 37.6 (28.9, 46.4)

Plasma Paracetamol level 71 (38, 103) 115 (27, 202)*
Systolic blood pressure 116 (111, 121) 119 (109, 128)
Diastolic blood pressure 69 (65, 73) 69 (54, 84)
Hear rate 75(72, 79) 71 (63, 78)
PR interval 166 (162, 171) 163 (155, 171)
QRS duration* 99 (96, 103) 83 (81, 85)
QT interval 379 (369, 389) 389 (377, 401)
QTc interval 421 (413,428) 417 (410, 425)
P axis 40 (34, 46) 47 (41, 53)
Q axis 27 (17, 38) 41 (33, 49)
T axis 40 (35, 45) 33 (27, 40)

Table 4- 2. Demographic and cardiovascular variables of co-proxamol overdose in comparison
to co-codamol and co-dydramol, *; Significant different, *; plasma paracetamol level of one of the
cases was very high. n=11 in each group.
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Figure 4- 1. QRS duration (mean +- 95%CI) in millisecond measured during recovery from co-
proxamol overdose ) or other combination of opioids and paracetamol ^ • •), n=11.
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In order to compare the relationship between ingested dextropropoxyphene dose and

ECG changes in a larger sample, data from a retrospective study and prospectively

gathered data in Edinburgh were amalgamated with data from a cohort of patients from

the Clinical Toxicology Unit of the Mater Hospital in Newcastle, Australia (Curtsey of

Professor Dawson). In these studies, dextropropoxyphene dose was estimated using

paracetamol plasma concentrations as a means of estimating dextropropoxyphene

dose. Back extrapolation was used to estimate plasma paracetamol level 4 hours after

exposure (see chapter 2 for details). A study of the pooled cohorts of co-proxamol

overdose (study 2) was then performed. Figure 4-2 shows the relationship between

actual or estimated 4 hour plasma paracetamol concentrations as a surrogate of

dextropropoxyphene dose, and QRS duration (measured manually in Newcastle

Australia) obtained from data in a group of 159 overdose cases. Measurements of

paracetamol less than 4 h and more than 12 h were omitted as these were less likely to

produce accurate back extrapolation. Data for 74 cases were complete.

Estimated plasma paracetamol 4 hours after exposure

Figure 4- 2. Actual or estimated plasma paracetamol level 4 hours after exposure in mg per dL
was statistically significantly correlated with QRSD in seconds. Pearson Correlation was 0.338,
P value (2-tailed) 0.003, n=74.
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As can be seen from Figure 4-2 there was a weak, but statistically significant positive

correlation between the estimated paracetamol 4 hours after exposure and QRS

duration (r=0.338, P (2-tailed) 0.003, n=74).

There was no significant correlation between maximum perturbations in other cardiac

indices, including blood pressure, heat rate, PR interval and QTc Table 4-3.

Variable Pearson Correlation P value Number

Systolic blood pressure -0.046 0.696 76
Diastolic blood pressure 0.068 0.561 76
Heart rate 0.030 0.783 85
PR interval 0.144 0.218 75
QRS duration 0.338** 0.003 74
QTc interval 0.114 0.333 74

Table 4- 3. Correlation of cardiac indices with actual or estimated plasma paracetamol level in
mg 4 hours after exposure.

4.5. Discussion

In chapter 1, I have shown that co-proxamol was a common cause of hospital

discharges in Edinburgh. Major confounders such as age and sex were not different for

these three combinations of paracetamol and opioids. This increases the validity of any

comparison between these treatments. In chapter 3 I have shown that this combination

opioid is extremely toxic in overdose in comparison with other combinations. In this

chapter, I attempted to demonstrate a reason for these findings.

Dose dependent ECG abnormalities in animals and case reports of arrhythmias in man

were reported previously (Holland & Steinberg, 1979; Amsterdam et a!., 1981;

Nickander etal., 1984; Bredgaard et al., 1984; Bredgaard etal., 1985). Data presented

here expanded the current information to show firstly QRSD is prolonged in a
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preliminary retrospective case series in man. Secondly in a prospective study it is

shown that the effects on QRS are not shared by other combinations of paracetamol

and opioids. In addition these effects appeared to occur rapidly (within 6 hours) after

exposure and remained for at least 24 hours. These effects therefore are at least in

part, related to the parent drug, and tolerance does not appear to happen in the first 24

hours after exposure. They may also be related to a long pharmacologic effect. In the

large combined study is was demonstrated these effects are dose dependent,

therefore, they will probably happen in all patients if the dose is high enough. However,

these studies cannot rule out the possibility of an idiosyncratic effect in some patients at

lower quantities.

In clinical practice, plasma concentrations of dextropropoxyphene are rarely measured

(Proudfoot, 1984; Buckley & Vale, 1984). In the current study plasma paracetamol

concentrations have been used to estimate the dextropropoxyphene dose to explore

the dose response effect.

These findings, taken with the previous data on rapidity of death in co-proxamol

overdose add to the weight of evidence supporting a role for sodium channel blockade

as a factor in causing death in co-proxamol poisoning, particularly in the context of a

hypoxic patient. All cases reported here were in hospital and adequately oxygenated.

In-hospital deaths are extremely unusual, and we did not document arrhythmias. The

high mortality seen in the community raises the possibility that other, at present

unknown factors may be operating, including a sub-group of patients who are

particularly sensitive to the cardiac effects of this drug or the possibility of interaction

with other cardio active drugs such as antidepressants in mixed overdoses.
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There are difficulties for licensing authorities in limiting availability of prescription

medicines that are only hazardous in overdose. The present data suggest that the

electrocardiologic effects of dextropropoxyphene warrant further evaluation of its risk-

benefit as a prescription analgesic. In January 2005, the license for co-proxamol was

changed, in part due to data presented here.

4.6. Limitations

The power of the prospective study was affected by some patients taking early

discharge. Other potential confounders in the results such as age, sex, inaccurate time

interval to exposure, gastric emptying half life, dose dependency of half life, and

involvement of the metabolites in the effects were not assessed. The combined

Edinburgh and Australian data showed a relatively weak correlation between

paracetamol concentration and effects on QRS, nevertheless these findings might be

potential explanation for the high mortality of co-proxamol in overdose.

4.7. Conclusion

The dextropropoxyphene ingredient of co-proxamol is electrophysiologically active in a

manner which is consistent with sodium channel blockade. These effects appear within

6 hours of overdose, are dose dependent and last for at least 24 hours. The ECG

effects seem likely to contribute to the mortality of co-proxamol overdose.
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methadone, dihydrocodeine and diamorphine
overdose in comparison with low dose
paracetamol overdose.
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5.1. Introductory remarks

5.1.1. Scope of the problem and justification for the study

I have previously shown that in a middle income country (Mashhad, Iran) opium was the

most common cause of overdose hospital discharges overall in almost all age groups.

In that study opium overdose had the highest mortality rate (22.5 %) but was the 8th

rank cause of hospital fatality (1.9%) (Afshari, 2001; Afshari et al., 2004). Scotland, a

high income country, is also facing a serious drug problem. Fifty six thousand

individuals aged between 15 and 54 years, that is 2% of the Scottish population, were

misusing opioids or benzodiazepines in 2000 (Simoens et al., 2002). In chapter 3 of this

thesis it is shown that opioid overdose is a common cause of drug related hospital

discharges and death in Edinburgh and Scotland.

As discussed in chapter 1, the haemodynamic effects of opioids reported in animal and

human studies are contradictory (Gomes et al., 1976; Kayaalp & Kaymakcalan, 1966;

Sitsen et al., 1982; Vatner et al., 1975), (Mildh et al., 2000; Fahmy et al., 1983;

Lowenstein et al., 1969; Rubio et al., 1997; Rubio et al., 1992; Cathelin et al., 1980a;

Rosow et al., 1982). In overdose, these effects are also inconsistent (Whipple et al.,

1994) but can be antagonised by the opioid antagonist naloxone (Lenton & Hargreaves,

2000). In chapter 4, I have suggested that electrophysiological effects of

dextropropoxyphene contribute to morbidity and mortality of some opioid overdoses.

Haemodynamic effects of opioid overdose also might contribute in their morbidity and

mortality and warrant investigation.
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5.1.2. Cardiovascular variables

The pattern of left ventricular ejection, vasodilatation and the changes in the stiffness of

the large arteries such as the aorta and its major branches largely account for the

changes in systolic BP and pulse pressure (PP); however, diastolic BP is more

dependant on peripheral arterial resistance. The contribution of drug effects to arterial

stiffness is an important factor in SBP, DBP and PP. It is not clear if and how opioids

affect systolic and diastolic blood pressure in man. A range of opioid-induced effects on

the cardiovascular system will be studied in chapters 6, 7 and 8 in healthy volunteers. In

this chapter I will describe studies in overdose patients.

Pulse wave analysis (PWA) is a noninvasive method that allows large artery stiffness to

be quantified in vivo (Mackenzie et al., 2002). The haemodynamic effects of opioid

overdose is usually thought to be due vasodilatation (el Sharkawy et al., 1991;

Patschke et al., 1977); however, the role of arterial stiffness has not been studied. The

SphygmoCor equipment used in these studies also allows anumber of other

cardiovascular indices to be calculated.

5.1.3. Arterial stiffness; definition, description and mechanisms

The heart pumps blood into the aorta, which then travels to the tissues through

relatively non-elastic vessels. Systole initiates an arterial pressure wave from the heart

to the periphery. Wave reflection occurs at impedance mismatch points, mainly at the

high-resistance arterioles (Nichols & O'Rourke, 1998). The augmentation index (Al)

quantifies the extent to which central BP is augmented during systole by pressure

waveforms reflected from the peripheries.
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The circulation is a central elastic reservoir (the large arteries with high elastin to

collagen ratio in their walls) (Windkessel theory). The elasticity is negatively associated

with its distending pressure. This pressure in the circulation is determined by mean

arterial pressure. If this changes, it will alter the elasticity of the arterial wall and

measurements of arterial stiffness. In addition, the endothelium and arterial wall smooth

muscle bulk and tone (partly controlled by endothelium) also influence elasticity.

Therefore, potential opioid-overdose-induced changes in arterial stiffness warrant

measurement.

Arterial stiffness is also determined by a number of genetic influences such as fibrillin-1,

angiotensin II type-1 receptor, and endothelin receptor genes, and angiotensin-

converting enzyme (ACE) l/D polymorphism (Medley et al., 2002; Lajemi et a!., 2001b;

Lajemi et a!., 2001a).

If opioid-induced peripheral haemodynamic effects were to be Al independent, these

effects should also be reflected in aortic indices, as in a healthy young population high-

pressure amplification and low Al at baseline are expected findings (Wilkinson et al.,

2001).

5.1.4. Oxygen saturation and haemodynamic effects

Decreases in 02 tension in most tissues produces vasodilatation (Ganong, 2001).

These effects are at least partly nitric oxide related (Ishimura et al., 1996; Armstead,

1995; Wilderman & Armstead, 1996).

In man, oral morphine or pentamorphone produced significant dose-dependent effects

on blood oxygen saturation and the respiratory system (Afifi et al., 1990; Petry et al.,
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1998; Bailey et al., 1993; Leino et al., 1999). Therefore low oxygen saturation may

contribute to opioid-induced haemodynamic effects.

In summary despite the high frequency of opiate overdose the profile of effects and

mechanisms in opioid overdose are not clear. In addition, Al (an index of arteriolar

stiffness), aortic systolic and diastolic blood pressures (ASBP & ADBP), peripheral and

aortic pulse pressure (PPP & APP), end systolic pressure (ESP) and diastolic duration

(DD) have not been previously studied non-invasively in overdose.

C02 level is also an influence on haemodynamic variables, which might also be affected

by opioids. The effects of morphine on C02 are discussed in chapters 6 and 7.

5.1.5. Objectives

To prospectively describe the pattern of change in haemodynamic indices in overdose

due to methadone, dihydrocodeine and diamorphine in comparison with minor

paracetamol overdose, not requiring antidotal therapy, as control.

This study will address the following hypotheses:

1. Methadone, diamorphine and dihydrocodeine overdoses lead to decrease in

augmentation index measured by SphigmoCor (primary endpoint).

2. Methadone, diamorphine and dihydrocodeine overdoses lead to decrease in

peripheral and central systolic and diastolic blood pressure, mean pressure and pulse

pressures, end systolic pressure, heart rate and diastolic duration.

Secondary hypotheses
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3. Methadone, diamorphine and dihydrocodeine overdoses lead to decrease in oxygen

saturation.

4. The cardiovascular effects of opioid overdoses and decreased oxygen

saturation are associated.

5.2. Methods

5.2.1. Study design

Observational, prospective, parallel group study using low dose paracetamol overdose

cases as a control group.

5.2.2. Inclusion criteria

It was intended to study 10 concurrent patients with alleged single overdose of

methadone, diamorphine, dihydrocodeine, or low dose paracetamol admitted to the

Royal Infirmary of Edinburgh from January 1st 2003 to December 30th 2003. History of

ingestion and evidence of prescription of methadone and dihydrocodeine were taken

into account for diagnosis of the cases.

5.2.3. Exclusion criteria

Patients clinically in withdrawal state (normal or wide pupils, shaking, sweating, or

craving), patients, in whom an additional diagnoses were made, or those who

retrospectively refused to give consent, were excluded.

118



Haemodynamics in overdose

5.2.4. Consent taking

Ethical permission, in which consent could be sought retrospectively, was obtained for

this study. The details of eligibility criteria and consent processes were accepted by the

Multi Centre Research Ethics Committee (MREC). Although this was not a multi-centre

study, this design was deemed sufficiently novel to warrant this referral.

5.2.5. Baseline definition

Patients were studied every 6 hours for up to 18-23 hours after exposure or until

hospital discharge. Values of variables obtained at 18-23 hours after exposure were

used as the baseline of the variables in analysis, as at this time drug concentrations

and their related effects are expected to be lowest. Absolute change in each variable

was used in the analysis.

Techniques, measurements, and statistical methodology are described in Chapter 2.

The following variables were measured; systolic blood pressure; SBP, diastolic blood

pressure; DBP, mean blood pressure; MBP, aortic systolic blood pressure; ASBP, aortic

diastolic blood pressure; ADBP, peripheral pulse pressure; PPP, aortic pulse pressure;

APP, augmentation index; Al, end systolic pressure; ESP, diastolic duration; DD, and

oxygen saturation; 02Sat. in supine position.

5.3. Results

All diamorphine cases, but two, were excluded from the study, as by the time of

measurements they were not in state of overdose, but in withdrawal. Therefore, no

diamorphine cases were included in this analysis.
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Demographic variables (sample size, gender, age, weight, dependence, and withdrawal

clinical features at admission) of patients are summarized in Table 5-1. As can be seen

40% of patients in dihydrocodeine and 60% in methadone groups and 30% in control

group were male. All methadone (M) and 90% of dihydrocodeine (D) subjects, but none

of paracetamol (P) overdoses were drug dependent on history. Mean (95% CI) ages

(M; 36.0 (11.0), D; 33.6 (10.0), and P; 33.1 (13.4) years) and weight (M; 67.70 (6.5), D;

66.8 (8.7), and P; 72.9 (14.2) kg) were similar Table 5-1.

Dihydrocodeine Methadone Paracetamol

Min-Max Mean (SD) Min-Max Mean (SD) Min-Max Mean (SD)
AGE

WEIGHT

22-55

58-79

36.0

(11.0)
67.70

(6.5)

23-53

50-79

33.6

(10.0)
66.8 (8.7)

19-55

59-108

33.1

(13.4)
72.9

(14.2)

Male (%) 40% 60% 30%

Dependence(%) 90% 100% 0%
Withdrawal clinical 0% 0% 0%
features (%)

Table 5-1. Demographic variables of patients in 3 different groups (n=10), two eligible cases of
diamorphine overdose are not reported.

Not all the patients were admitted soon after overdose and not all of them stayed in the

hospital for a full 24 hours. The number of cases in each group is reported on the

horizontal axis of each time point in the figures. Time is the interval from stated time of

ingestion of the drugs.

Haemodynamic variables (SBP; systolic blood pressure, DBP; diastolic blood pressure,

MBP; mean blood pressure, ASBP; aortic systolic blood pressure, ADBP; aortic

diastolic blood, PPP; peripheral pulse pressure, APP; aortic pulse pressure, Al;

augmentation index, ESP; end systolic pressure, HR; heart rate, DD; diastolic duration)

and 02Sat.; oxygen saturation of patients are summarized in Table 5-2.
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Variables

Drugs
n(P;D;M)

0-5 h1
(8; 6; 7)

Mean SEM

6-11 h

(10; 10;10)
Mean SEM

12-17 h

(10; 9; 10)
Mean SEM

18-23 h

(9; 9; 9)
Mean SEM

SBP2 P 140 4.7 134 4.1 135 4.9 135 5.2
D 105 6.9 113 5.2 113 5.4 121 7.1
M 112 3.2 112 3.9 116 4.9 125 5.3

DBP P 76 3.8 72 2.6 71 4.1 70 2.8
D 52 3.2 59 3.1 66 3.9 65 4.5
M 67 5.4 68 5.7 69 3.1 73 3.4

MBP P 99 3.2 94 3.1 93 3.6 92 3.5
D 72 3.9 78 3.2 82 3.4 84 4.9
M 85 4.7 83 4.4 88 3.3 92 3.1

ASBP P 124 4.9 116 4.6 116 5.1 115 5.5
D 94 5.7 100 4.5 102 4.8 106 6.7
M 99 3.7 100 3.9 104 3.3 111 3.6

ADBP P 79 3.7 73 2.7 74 3.9 72 2.7
D 57 3.1 61 2.9 66 3.3 66 4.6
M 71 4.3 66 2.8 72 3.0 75 3.1

PPP P 64 5.6 62 4.0 64 4.8 65 3.7
D 52 4.5 55 4.7 47 4.4 56 5.9
M 46 4.1 44 3.8 47 3.3 53 2.9

APP P 45 5.0 43 3.8 42 4.3 42 3.7
D 38 3.9 39 3.3 36 4.1 40 5.2
M 28 3.0 35 2.9 32 2.4 37 3.0

Al (%) P 12 3.2 18 3.0 14 3.0 10 3.0
D 20 4.6 14 3.2 21 4.5 27 5.2
M 4 8.2 14 5.8 17 4.7 14 7.6

ESP P 106 4.6 103 4.1 102 4.5 100 4.7
D 81 4.1 87 3.6 89 4.2 90 6.7
M 88 3.9 89 2.5 91 3.6 92 3.4

DD P 52 4.9 51 5.1 50 4.5 49 4.5

(S*102) D 54 4.7 53 4.6 53 4.2 52 4.1
M 42 3.0 49 4.1 50 4.3 51 4.6

02 Sat. P 98 0.3 98 0.3 99 0.3 99 0.3

(%) D 95 2.0 95 1.3 96 0.6 97 0.7
M 97 0.6 95 1.7 95 1.4 95 1.4

Table 5- 2. Mean SEM of haemodynamic variables and oxygen saturation of patients in the first
24 hours after exposure, (1) hours after exposure, (2) in this table mmHg is the unit unless
clarified, SBP; systolic blood pressure, DBP; diastolic blood pressure, MBP; mean blood
pressure, ASBP; aortic systolic blood pressure, ADBP; aortic diastolic blood, PPP; peripheral
pulse pressure, APP; aortic pulse pressure, Al; augmentation index, ESP; end systolic pressure,
HR; heart rate, DD; diastolic duration, 02Sat.; oxygen saturation. P; paracetamol, M;
methadone, D dihydrocodeine.
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In paracetamol overdose all variables were relatively stable in the first 24 hours after

exposure.

5.3.1. Systolic Blood Pressure (SBP)

Overall absolute values of SBP were significantly different in dihydrocodeine,

methadone and paracetamol overdose (F=22.1, p<0.001) Table 5-3, Figure 5-1-A

(mean + 95% CI). Bonferroni multiple comparisons show that dihydrocodeine and

methadone groups were similar, but significantly different from paracetamol (p<0.001)

Table 5-3. These differences are greatest at 0-5 hours after exposure (mean decrease

around 30 mmHg), and less clear cut at 6-11, and 12-17 hours after exposure Figure 5-

1. Dihydrocodeine and methadone decreased SBP to a similar extent.

5.3.2. Diastolic Blood Pressure (DBP)

Overall DBP was significantly different in dihydrocodeine, methadone and paracetamol

overdose (F=9.295, p<0.001) Table 5-3, Figure 5-1. Bonferroni multiple comparisons

show that DBP was significantly lower with dihydrocodeine than paracetamol (p<0.001)

and methadone (p=0.007) Table5-3, Figure 5-1 -B. These differences are significant at

0-5 and 6-11 hours after exposure (mean decrease around 25 and 20 mmHg), and not

different at 12-23 hours after exposure. DBP of methadone and paracetamol are not

different. Dihydrocodeine, but not methadone, deceased DBP in this study.

5.3.3. Mean Blood Pressure (MBP)

Since there were differences in systolic and diastolic BP effects on MBP were also

examined. Overall MBP values were significantly different in dihydrocodeine,

methadone and paracetamol overdose (F=16.6, p<0.001) Table 5-3, Figure 5-1-C.

122



Haemodynamics in overdose

A) ANOVA for different groups
Variable Homogeneity of Variances ANOVA

Levene Statistic P value F P value
SBP 2.810 .065 22.073 .000
DBP .999 .372 9.295 .000
MBP .499 .608 16.606 .000
ASBP 2.638 .076 14.021 .000
ADBP .659 .520 13.033 .000
PPP 1.997 .141 15.101 .000
APP 2.669 .074 6.173 .003
Alx 6.554 .002 2.858 .062
ESP 3.998 .021 16.529 .000
HR .411 .664 .805 .450
DD 1.794 .171 1.113 .332
02 sat 5.851 .004 10.622 .000
B) Post Hoc multiple comparison with Bonferroni correction
Variables Drug (1) Drug (2) Mean Difference (1 & 2) P value

SBP1 P (n=37) D(n=34) 22.29(*) .000
M (n=36) 18.81 (*) .000

D M -3.48 1.000
DBP P D 11.250 .000

M 2.64 1.000
D M -8.61 (*) .007

MBP P D 14.93(*) .000
M 7.320 .019

D M -7.61D .015
ASBP P D 16.51 (*) .000

M 13.630 .000
D M -2.88 1.000

ADBP P D 11.840 .000
M 4.10 .265

D M -7.73C) .005
PPP P D 11.47(*) .001

M 16.31 (*) .000
D M 4.83 .352

APP P D 4.68 .222
M 9.230 .002

D M 4.56 .264
Al (%) P D -6.54 .153

M .74 1.000
D M 7.29 .101

ESP P D 15.70(*) .000
M 12.58(*) .000

D M -3.12 .878

HR(bpm) P D .09 1.000
M -2.90 .832

D M -2.98 .798
DD (S*10"^) P D -1.64 1.000

M 2.96 1.000
D M 4.60 .429

02 sat. (%) P D 2.820 .001
M 2.960 .000

D M .14 1.000

Table 5- 3. Summary of analytical statistics for differences in haemodynamic variables & 02 sat.
A) ANOVA for difference in all groups (df=2) B) Post Hoc Multiple Comparisons with Bonferroni
correction for difference in individual drugs, (*); the mean difference is significant at the 0.05
level, (1) units in this table are mmHg unless clarified, SBP; systolic blood pressure, DBP;
diastolic blood pressure, MBP; mean blood pressure, ASBP; aortic systolic blood pressure,
ADBP; aortic diastolic blood, PPP; peripheral pulse pressure, APP; aortic pulse pressure, Al;
augmentation index, ESP; end systolic pressure, HR; heart rate, DD; diastolic duration, 02Sat.;
oxygen saturation, P; paracetamol, M; methadone, D dihydrocodeine.
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Figure 5-1. Mean (95% CI) of A) systolic blood pressure in mmHg, B) Diastolic blood pressure
in mmHg, C) Mean blood pressure in mmHg, D) End systolic pressure in mmHg, paracetamol
group ( o ), methadone group (-*-) dihydrocodeine group (-•-), (n in each time point is
reported in horizontal axis for paracetamol, methadone and dihydrocodeine consecutively.

Bonferroni multiple comparisons showed statistical difference between dihydrocodeine

and methadone (p=0.015) and that both were significantly different from paracetamol
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(p<0.001, p=0.019) Table 5-3. The differences between dihydrocodeine and

paracetamol were highest and significant in pair wise comparisons at 0-5 and 6-11

hours after exposure (mean decrease around 25 and 20 mmHg), and not significantly

lower at 6-11, and 12-18 hours after exposure. Thus dihydrocodeine decreased MBP

to a greater extent than methadone in this study.

5.3.4. Augmentation index (Al)

Overall absolute values of Al were not significantly different in dihydrocodeine,

methadone and paracetamol overdoses (F=2.9, p<0.062) Table 5-2 and 5-3, Figure 5-

2. Table 3-4.
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Figure 5- 2. Mean (95% CI) of augmentation index in (%), paracetamol group ( o-), methadone
group (-*-) dihydrocodeine group (-•-), (n in each time point is reported in horizontal axis for
paracetamol, methadone and dihydrocodeine consequently.

5.3.5. Derived variables

Overall Aortic Systolic Blood Pressure (ASBP) (F=14.0, p<0.001), Aortic Diastolic Blood

Pressure (ADBP) (F=13.0, p<0.001), Peripheral Pulse Pressure (PPP) (F=15.1,
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p<0.001), Aortic Pulse Pressure (APP) (F=6.2, p<0.003) and End Systolic Pressure

(ESP) (F=16.5, p<0.001) were significantly different. Post hoc multiple comparisons

with Bonferroni showed that dihydrocodeine and methadone ASBP, PPP and ESP, and
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Figure 5- 3. Mean (95% CI) of A) aortic systolic blood pressure in mmHg, B) aortic diastolic
blood pressure in mmHg, C) peripheral pulse pressure in mmHg, D) aortic pulse pressure in
mmHg, paracetamol group (o ), methadone group (-*-) dihydrocodeine group (-•-), (n in each
time point is reported in horizontal axis for paracetamol, methadone and dihydrocodeine
consequently.
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dihydrocodeine ADBP were significantly different from paracetamol (p<0.001).

Methadone APP was significantly different from paracetamol (P=0.002).

Dihydrocodeine and methadone decreased ASBP, PPP and ESP to similar extents but

dihydrocodeine alone decreased ADBP, and methadone alone decreased APP.

Dihydrocodeine and methadone overdose had no effect on HR and DD.

For detail of absolute values of pairwise differences, level of significance and graphical

description see Tables 5-2 and 5-3, and Figure 5-4.

Overall HR (F=0.8, p<0.450) and DD (F=1.1, p<0.332) were not significantly different

among these three groups.

5.3.6. Oxygen Saturation (02 Sat.)

Overall absolute values of 02 Sat were significantly different in dihydrocodeine,

N= 8 7 6 10 10 10 10 10 9 9 9 9

0-5 6-11 12-17 18-23

Time after exposure (h)

Figure 5- 4. Mean (95% CI) of oxygen saturation in (%), paracetamol group (o ), methadone
group (-*-) dihydrocodeine group (-•-), (n in each time point is reported in horizontal axis for
paracetamol, dihydrocodeine and methadone consequently,
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methadone and paracetamol overdoses (F=10.6, p<0.000) Table 5-3, Figure 5-4.

Bonferroni multiple comparisons showed no difference between dihydrocodeine and

methadone, but that both were significantly different from paracetamol group (DHC;

p=0.001, M; p<0.001) Table 5-3.

The lower 02 Sat of dihydrocodeine and methadone is stable throughout the first 24

hours after exposure. Close examination of the values of both dihydrocodeine and

methadone revealed wide ranges of SD (see Figure 5-4 for CI). This implies that

hypoxia happens in just a subpopulation.

5.3.7. Relationship of haemodynamic changes and oxygen saturation

The relationships between dihydrocodeine, methadone and paracetamol overdose-

induced haemodynamic effects and oxygen saturation are shown in Table 5-4. As can

be seen, in general haemodynamic variables are not correlated with oxygen saturation

in paracetamol and dihydrocodeine groups. SBP (r=-0.349, P=0.043), DBP

Paracetamol (n=37) Dihydrocodeine (n=34) Methadone (n=36)
r P Value1 r P Value r P Value

SBP -.110 .518 .198 .247 -.3490 .043
DBP .203 .229 -.020 .908 -.531 (*) .001
MBP .082 .630 .019 .914 -.519(*) .002
ASBP -.003 .987 .129 .454 -.469(*) .005
ADBP .184 .276 -.046 .791 -.299 .086
PPP -.251 .139 .263 .121 .211 .232
APP -.151 .372 .212 .215 -.297 .088
Al (%) -.018 .917 -.036 .834 -.073 .683
ESP .111 .512 -.108 .532 -.058 .745

HR(bpm) -.165 .330 -.4420 .007 -.359(*) .037
DD .410(*) .012 .029 .868 -.432H .011

Table 5- 4. Association of dihydrocodeine, methadone and paracetamol overdose induced
haemodynamic changes with oxygen saturation, 1) df1 =2, 2) in this table mmHg is the unit
unless clarified, SBP; systolic blood pressure, DBP; diastolic blood pressure, MBP; mean blood
pressure, ASBP; aortic systolic blood pressure, ADBP; aortic diastolic blood, PPP; peripheral
pulse pressure, APP; aortic pulse pressure, Al; augmentation index, ESP; end systolic pressure,
HR; heart rate, DD; diastolic duration, *; correlation is significant at the 0.05 level (2-tailed).
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(r=-0.531, P=0.001), MBP (r=-0.519, P=0.002), ASBP (r=-0.469, P=0.005), HR (r=-

0.359, P=0.037) and DD (r=-0.432, P=0.011) were significantly correlated with oxygen

saturation in methadone overdose.

These associations were examined in detail graphically, and as an example the result

for SBP in dihydrocodeine suggest the possibility of two distinctive subpopulations

separated below oxygen saturation of 95%. In this group for the small sample with

oxygen saturation less than 95%, SBP appeared to be lower. This suggests that if

oxygen saturation drops to less than 95% it may contribute to opioid-induced

cardiovascular effects.

5.4. Discussion

The two opioids studied lowered blood pressure in overdose, and there was no reflex

tachycardia. This study has shown that dihydrocodeine and methadone overdoses

significantly depress haemodynamic function. This effect was seen on SBP, MBP, and

the derived measures of ASBP, PPP, and ESP. Dihydrocodeine reduced DBP and

ADBP, an effect not induced by methadone. As a result, peripheral and aortic pulse

pressures were also significantly decreased. Methadone induced a significant

depressor effect on APP. Both opioids decreased oxygen saturation.

A decrease in SBP might be attributed to vasodilatation and decrease in systemic

vascular resistance, and decrease in arterial stiffness or to negative inotropism and /or

chronotropism.
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The pattern of observed effects suggests that dihydrocodeine and methadone induce

decrease in afterload, which may provide a pharmacologic explanation for their

widespread use in congestive heart failure and acute myocardial infarction. The

significant decrease in the derived measurement of end systolic pressure in opioid

overdose suggests that dihydrocodeine and methadone may have effects on cardiac

emptying, and in turn energy consumption of the heart. In the context of heart failure

treatment this may also maybe of benefit.

There was no significant effect on Al, HR and DD. Augmentation index results suggest

that a change in arterial stiffness is not the mechanism of haemodynamic effects. As Al

did not decrease, large artery stiffness is probably not the mechanism of depressor

effects of opioids. HR also did not change, suggesting that vagal tone is also not

affected, nor did baroreceptor mediated tachycardia occur. As all subjects were supine,

this may have masked postural effects.

Both dihydrocodeine and methadone overdoses significantly decreased oxygen

saturation. The strength of these haemodynamic effects, however, was not clearly

associated with oxygen saturation in general. An oxygen saturation of less than 95%

might contribute to haemodynamic effects of opioids in overdose. A concurrent increase

in C02 may also be a factor. C02 is studied in volunteers in chapters 6 and 7.

The observed effects happen early after exposure (0-5 hours), which is consistent with

peak plasma concentration of 1.8-1.9 and 4 hours after oral doses of dihydrocodeine

and methadone respectively after therapeutic dosing (Dollery C, 1991).
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The effects were maximal early after exposure and decreased over the next 24 hours,

suggesting these effects are probably concentration dependent in overdose, however,

tolerance to the effects cannot by fully excluded. In the case of dihydrocodeine, which

has a partial agonist metabolite (nordihydromorphine and dihydromorphine-6-

glucuronide) (Rowell et al., 1983), the potential interpretations are more complex.

In this study methadone and dihydrocodeine in overdose appeared to be

haemodynamic depressant. It has been shown previously that chronic methadone

administration in rats did not change blood pressure (Lewanowitsch et al., 2004). In

patients on maintenance methadone significant positive associations with heart rate

have reported (Mitchell et al., 2004).

As might be expected haemodynamic indices were most similar between groups at

"baseline" (18-23 hours after exposure).

In terms of cardiovascular risks, opioid overdose induced reduction in SBP, PPP, and to

a lesser extend DBP suggests an effect of opioids which might offer benefits in

hypertension. These results were in overdose and might explain why opioid induced

haemodynamic effects have not been seen in some studies in which lower doses were

used (Lowenstein et al., 1969; Crosby et al., 1994; Murat et al., 1988).

5.5. Limitations

As in any patient study, the homogeneity of the subjects and reliability of control group

make interpretation of data more conservative. Some of the techniques used in this

study were also indirect measurements.
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Moreover, opioid doses were different and not precise from a design perspective. Most

patients were hospitalised and habituated to opioids, and these findings might not apply

to the general population.

Some opioid overdose patients in this study received naloxone in low doses some

hours prior to these investigations. Any contribution of naloxone in these effects is

therefore ignored. Sample size was limited, and all diamorphine cases were excluded

due to strict eligibility criteria. The power of the study was affected as it was not

possible to keep all cases admitted soon after exposure, and not all of them remained

in the hospital for a full 24 hours. The potential contribution of dependency raises the

possibility that naive subjects might produce different results.

The last clinical examination was approximately 18-23 hours after exposure, and as the

half life of methadone is longer than dihydrocodeine, it is probably not be enough for

effects to have completely worn off.

5.6. Conclusion

In conclusion, dihydrocodeine and methadone overdose result in haemodynamic

depression. A fall in oxygen saturation to less than 95%, may also contribute to these

changes. These findings have clinical relevance to management of opioid overdoses in

terms of continuous blood pressure monitoring and oxygenation.

An opioid-induced decrease in afterload, as measured by fall in MAP, and negative

inotropism, as measured by reduced ESP are consistent with the use of opioids such as

morphine in congestive heart failure and acute myocardial infarction pain. It seems
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likely these cardiovascular effects might also be seen following use of opioids in pain

management.

If these effects are seen with lower doses of opioids in healthy volunteers, and if

tolerance does not develop, these findings might suggest that opioid related

haemodynamic depression could occur, particularly in end stage patients with pain who

are receiving long term morphine.

In addition, these findings raise the possibility that suitable peripheral acting opioids

could have a role in the management of cardiovascular diseases such as hypertension

and heart failure.

These results are of interest since high doses cannot be ethically tested in volunteers,

and also overdose cases are not able to give consent in advance for research

purposes; therefore, little experimental data are available in this patient group.
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6.1. Introductory remarks

Opioids may act at a range of opioid receptors, and the affinity to them may vary.

Haemodynamic effects of morphine are controversial; depressor (Fahmy et at., 1983;

Petry et at., 1998) pressor (Mildh et at., 2000) and lack of effect (Lowenstein et at.,

1969) have been reported. Histamine and catecholamines have been claimed as

potential secondary mechanisms of morphine induced cardiovascular effects (see

introduction).

6.1.1. Cardiac mechanic

Mechanisms involved in cardiac mechanics are summarised in Figure 6-1.

Figure 6-1. Schematic diagram of mechanisms involved in cardiac function. ED; end diastolic,
Sys; systolic, SVR; systemic vascular resistance, i\ decrease,
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6.1.2. Alteration in cardiovascular performance

Cardiac performance can alter in two major ways, changing the initial ventricular muscle

length (Frank-Starling phenomenon) and changing the contractile state through

inotropic intervention, or changing cardiac output, chronotropism. However, passive

ventricular wall stress or tension at the end of diastole (preload) and total myocardial

wall stress or tension during systolic ejection (afterload) (Norton, 2001) also influence

cardiovascular performance.

6.1.3. Outline of the mechanisms of afterload

Afterload is determined by arterial and cardiac factors. Arterial factors include

resistance, impedance and capacitance. A second compound is systolic

pressure and flow which in turn are determined by ventricular wall stress,

ventricular volume during systole, blood viscosity, heart rate and stroke volume.

6.1.4. Outline of the mechanisms of arterial stiffness

The circulation has a central elastic reservoir (Windkessel theory) (Nichols & O'Rourke,

1998). Blood is pumped into the aorta and its major branches by the heart, and travels

to the tissues through relatively non-elastic vessels (peripheral arteries). These include

more muscular conduit arteries, such as the radial, and the smaller, predominantly

muscular, peripheral arteries. The elasticity associated with its distending pressure. The

pressure in the circulation is determined by mean arterial pressure, which affects the

elasticity of the arterial wall in measurements of arterial stiffness. Systole initiates an

arterial pressure wave from the central circulation to the periphery. Wave reflection

occurs at impedance-mismatch points, mainly at the high-resistance arterioles (Nichols
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& O'Rourke, 1998). Arterial stiffness is also determined by a number of genetic

influences such as fibrillin-1, the angiotensin II type-1 receptor, endothelin receptor

genes, and angiotensin-converting enzyme (ACE) l/D polymorphism (Medley et at.,

2002; Lajemi et al., 2001b; Lajemi et at., 2001a). Drugs affect arterial stiffness by acting

on endothelium, arterial wall smooth muscle tone or both. The endothelium and arterial

wall smooth muscle tone also influence elasticity.

6.1.5. Therapeutic uses of morphine in cardiovascular diseases

Morphine is recommended in the treatment of the patients with acute left ventricular

failure and ischaemic-type chest pain and without ST segment elevation to control the

pain and anxiety. Morphine decreases pain, and therefore diminishes the sympathetic

nervous system activity and catecholamine secretion. Pain related catecholamines

increase blood pressure, cardiac chronotropic and inotropic responses, and oxygen

consumption and therefore intensifying ischemia. Although morphine has been reported

to have no significant cardiac depressor effect (Fuster, 2001), repeated doses of

morphine, may decrease cardiac work, and oxygen consumption, by causing

venodilatation and slightly decreasing heart rate and blood pressure (Topol, 1998).

6.1.6. Primary Hypothesis

This study addresses the following hypotheses; Morphine causes cardiovascular

changes in man which are dose dependent. These effects are in part related to

concurrent CNS and respiratory effects of morphine, and histamine and catecholamines

play some role it them.

To test this hypothesis, a range of haemodynamic, respiratory and CNS variables were

estimated, following a stepped-dose of morphine given by IV infusion. This chapter will
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discuss key findings, but the full range of indices measured and derived is shown in

Table 6-1.

6.2. Materials and methods

Ethical approval was obtained from the Lothian Research Ethics Committee (LREC),

Research and Development Office (R&D), and liability insurance cover held by the

Primary end points
Abbreviations Abbreviations

Al augmentation index
ASBP aortic systolic blood pressure
SBP systolic blood pressure

Secondary endpoints
Cardiovascular Respiratory

Acl acceleration index ETCOz end tidal carbon dioxide

APP aortic pulse pressure O2 Sat. oxygen saturation
CI cardiac index RR respiratory rate
DBP aortic diastolic blood pressure
DBP diastolic blood pressure Central nervous system
ED ejection duration RT reaction time

EDI end diastolic index CR correct response
EF ejection fraction IR incorrect response
ER ejection ratio NR no response
ESP end systolic pressure
HR heart rate

HRP heart rate period
IC index of contractibility
MBP mean blood pressure
PFI peak flow index
PPP peripheral pulse pressure
SI stroke index

sSBP sitting systolic blood pressure
sSDP sitting diastolic blood pressure
STR systolic time ratio
SVR systemic vascular resistance index
TFI thoracic fluid index

VER ventricular ejection time

Table 6-1. Primary and secondary end points and list of abbreviations in alphabetical order.
Morphine only altered reaction time values, other CNS responses are not reported.
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Health and Safety Department of The University of Edinburgh. Written informed consent

of each subject was obtained.

6.2.1. Study design

The study was a single-blind two-way crossover randomized clinical trial. Potential

adverse effects of high doses of morphine prevented us ethically designing a fully

double blind study.

6.2.2. Subjects

Subjects were healthy male volunteers aged 18 to 50 years, weighing 60 to 100 kg. See

Chapter II for study population.

6.2.3. Inclusion criteria

Volunteers with no history or physical characteristics of opioid abuse were selected. All

subjects were, however, required to undergo screening for drugs of abuse using

TRIAGE™8. The test procedure was followed as per package insert. Volunteers had no

history of cardiovascular disease, known high plasma cholesterol, excess alcohol

intake, clinically significant hepatic, renal and respiratory diseases. All subjects were

required to sign a written informed consent. All subjects were asked to desist from

vasoactive medications in the two weeks before each study and from alcohol, caffeine-

containing drinks, and tobacco for at least 12 h before each study. Each subject was

fasted for at least 3 h before any measurements were taken.
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6.2.4. Exclusion criteria

Subjects were excluded if their systolic blood pressure was lower than 90 mmHg or

higher than 160 mmHg, and diastolic BP 50 or 90 mmHg, women and anyone positive

for illegal drugs, subjects with any history of drug toxicity, subjects with any clinically

symptoms or signs of volume depletion or dehydration were also excluded.

6.2.5. Specific criteria for early withdrawal and discontinuation

The study was planned to be discontinued if moderate adverse events (severe

nausea, vomiting, clinically important drowsiness, respiratory depression,

orthostatic hypotension and hypersensitivity) occured. In addition, if any severe

abnormal test results develop, considered dangerous by the principle

researcher, subjects would be withdrawn. Subjects could withdraw their consent

at any time.

6.2.6. Outline of the study

The subjects were supine and cannulated in both arms at 10 a.m. They remained in a

supine position for at least 20 minutes before starting the study. Patients were

connected to all measurement equipment. A rehearsal of the study explained, and each

subject tried a reaction time test to be familiar with this prior to starting the study. Sitting

blood pressure was measured 1 minute after sitting in 90 degrees.

Incremental does of morphine sulphate (0.25, 0.5, 1, 2, 4, 8 mg) or saline control were

infused over a 5 minute period, using an automated pump at 20 minutes intervals.
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There was a 15 minutes gap between each infusion in which measurements were done.

Another pump continuously infused saline in the same cannula at a rate of 60 ml per

hour. All solutions were prepared sterile in the morning of each study day.

Blood samples were taken at baseline, 5 minutes prior to starting the experiment, and 5

minutes after 0.25 (+25 mins), 1 (+65 mins), 8 (+125 mins) mg of morphine infusion to

measure morphine, histamine, adrenaline and noradrenaline concentrations. The period

of the study in total was about two hours followed by 4 hours observation of the

subjects for their own safety and for documenting side effects. The patients were

accompanied home by principle researcher in a taxi, as the ethics committee required.

SPSS (Statistical Package for the Social Sciences) 11.5 and Microsoft Excel 2000 were

used to describe and analyse the data.

Chapter II, the method section, discusses drugs, drug administration, sample handling,

plasma assays, applied techniques, and tools for assessing end points, power of the

study and data analysis method.

, and body surface area (BSA)) of the 8

Table 6- 2. Descriptive Statistics of
volunteers, BSA; is calculated from the
square root of ([Height (cm) x Weight (kg)]/
3600), Mosteller formula (Mosteller, 1987).

6.3. Results

The demographic variables (age, height, weight

volunteers are summarized in Table 6-2.

Variable Min Max Mean SD

Age (year) 20 50 34.13 10.79

Height (cm) 165 189 173.25 7.13

Weight (kg) 61 99 80.75 11.82

Body Surface Area (m2) 1.67 2.28 1.97 0.17
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The difference between values for placebo and active drug were then compared first by

ANOVA TABLE 6-3. Secondly when ANOVA was significant, their differences at

individual time points were compared and P value of the significance were calculated,

and are summarized in Table 6-3.

6.3.1. Systolic blood pressure

Variables F P value

Haemodynamic variables
Acceleration index (%) 11.471 0.001
Aortic diastolic blood pressure (%) 4.996 0.027
Aortic systolic blood pressure (%) 14.726 <0.001
Aortic pulse Pressure (%) 10.309 0.002

Augmentation index (%) 2.942 0.089
Cardiac index (%) 0.149 0.700
Diastolic blood pressure (%) 3.576 0.620

Ejection fraction (%) 0.276 0.601

Ejection duration (%) 0.564, 0.454

Ejection ratio (%) 8.087 0.005

End diastolic index (%) 19.800 < 0.001
End systolic pressure (%) 9.270 0.003

Heart rate (%) 12.909 <0.001

Heart rate period (%) 2.507 0.116

Index of contractibility (%) 16.238 <0.001

Mean blood pressure (%) 15.117 <0.001
Peak flow index (%) 9.818 0.002

Peripheral pulse pressure (%) 14.294 < 0.001

Sitting diastolic blood pressure (%) 0.051 0.821

Sitting systolic blood pressure (%) 11.563 0.001
Stroke index (%) 13.787 <0.001

Systemic vascular resistance index (%) 5.202 0.024

Systolic blood pressure (%) 19.583 <0.001

Systolic time ratio (%) 1.081 0.301
Thoracic fluid index (%) 1.853 0.176
Ventricular ejection time (%) 14.538 <0.001

Respiratory and CNS variables
End tidal carbon dioxide (%) 36.291 <0.001

02 Saturation (%) 6.938 0.010

Respiratory rate (%) 19.096 <0.001

Reaction time (%) 5.025 0.027
Plasma assays
Plasma histamine concentration 0.457 0.501
Plasma adrenaline concentration 2.119 0.162
Plasma noradrenalin concentration 0.637 0.437

Plasma morphine concentration N/A N/A

Table 6- 3. Analysis of
variance of percentages of
change from baseline
between morphine and
placebo groups for
homodynamic, respiratory
and central nervous

system variables, NA; did
not applied as the
technique used was
sensitive enough to detect
morphine in just two
samples of placebo group,
(%); percentage of change
from baseline.
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Overall morphine induced significant decrease in SBP (F=19.583, P< 0.001) Table 6-3,

Figure 5-1-A (mean + SEM). Mean difference (SEM) between percentage of change

from baseline in morphine and placebo was -5.64 (1.35) %. Visual comparison of each

time point from the two visits showed that this depressor effect started with 0.250 mg

morphine (P=0.047). To explore dose response an association analysis was done and

this showed that the effect did not appear to intensify with higher doses (r= 0.003,

P=0.983) Tables 6-4, and 6-5.

Overall, morphine significantly decreased systolic blood pressure in a non dose-

dependent manner, an effect which appeared to start at very low doses.

6.3.2. Mean, sitting systolic and Diastolic blood pressures, and pulse pressure

Overall morphine induced significant decrease in MBP (F=15.117, P<0.001) Table 6-3,

Figure 6-1-C, significant decrease in sitting systolic blood pressure (F=11.563,

P=0.001) Figure 6-1-D, and significant decrease in peripheral pulse pressure

(F= 14.294, P<0.001) Figure 6-1-C. Again these effects were not clearly dose-

dependent.

Tables 6-4 and 6-5 and Figure 6-1-B. Morphine had no effect on diastolic blood

pressure at these doses.
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Morphine Baseline 0.250mg 0.500mg 1mg 2mg 4mg 8 mg

Abb. M1 P2 M P M P M P M P M P M P

Haemodynamic variables
Acl 0.00 N/A -6.1 0.11 -2.8 0.36 -5.48 0.21 -3.8 0.24 -3.2 0.54 -3.9 0.10

ADBP 0.00 -1.7 0.67 -4.3 0.18 1.06 0.74 -1.5 0.56 -6.5 0.11 -5.3 0.29

ASBP 0.00 -6.2 0.03 -8.4 0.02 •4.85 0.07 -4.5 0.12 -3.8 0.46 -6.3 0.32

APP 0.00 -15.8 0.05 -18.3 0.06 -12.17 0.14 -16.8 0.02 -2.3 0.83 -12.6 0.28

EDI 0.00 -7.1 0.05 -7.2 0.08 -9.34 0.05 -4.3 0.27 -2.9 0.60 -8.2 0.02

ER 0.00 4.3 0.08 4.3 0.12 2.94 0.30 1.8 0.64 0.9 0.85 5.3 0.07

ESP 0.00 -5.9 0.05 -6.8 0.06 -3.01 0.20 -1.5 0.35 -3.3 0.46 -4.4 0.50

HRB 0.00 6.4 0.07 4.9 0.10 6.40 0.02 4.2 0.28 1.2 0.81 5.4 0.05

IC 0.00 -6.6 0.07 -3.7 0.18 -6.11 0.10 -4.2 0.17 -3.6 0.46 ■4.6 0.05

MBP 0.00 -5.6 0.06 -7.2 0.03 -2.99 0.16 -3.3 0.16 -5.3 0.23 -6.0 0.26

PFI 0.00 -5.6 0.13 -2.2 0.42 -4.74 0.18 -5.2 0.19 -2.5 0.61 -3.5 0.17

PPP 0.00 -15.5 0.04 -20.1 0.05 -14.05 0.03 -16.2 0.02 -2.5 0.81 -12.0 0.26

sSBP 0.00 -5.3 0.20 -8.4 0.00 -3.54 0.40 -5.8 0.10 -5.2 0.07 -7.4 0.13

SI 0.00 -8.1 0.13 ■4.4 0.33 -8.90 0.07 -10.1 0.08 -4.5 0.53 -6.6 0.11

SVR 0.00 -5.0 0.38 -10.7 0.08 -2.92 0.55 -3.3 0.61 -6.3 0.51 -7.1 0.38

SBP 0.00 -7.5 0.05 -9.2 0.06 -3.90 0.24 -7.0 0.01 -4.8 0.36 -7.2 0.22

VET 0.00 6.1 0.08 4.9 0.17 5.75 0.18 5.5 0.33 3.6 0.51 10.6 0.05

Respiratory and CNS variables
ETC02 0 00 1-5 0.41 1.4 0.63 2.72 0.05 11.6 0.01 11.5 0.00 21.0 0.00

02 Sat. 0.00 0.1 0.84 0.1 0.74 0.14 0.77 -1.4 0.11 -1.2 0.27 -2.3 0.05

RR 0.00 ■4.0 0.44 -3.8 0.57 2.24 0.68 -12.0 0.21 -17.8 0.01 -32.0 0.00

RT 0.00 -3.9 0.23 -6.4 0.03 -3.86 0.23 -4.2 0.21 0.4 0.88 3.3 0.25

Table 6- 4. Mean of paired differences of percentages of changes from baseline at each time
points of morphine and placebo visits for haemodynamic, respiratory and CNS variables with the
P value of significance of their differences at each time point, df; 7, Abb.; abbreviations, M; mean
of paired differences of percentages of changes from baseline at each time points of morphine
and placebo visits, P; P value, N/A; could not be computed because the standard error of the
difference was 0.

Haemodynamic variables; Acl; acceleration index, Al; augmentation index, ADBP; aortic
diastolic blood pressure, APP; aortic pulse pressure, ASBP; aortic systolic blood pressure, CI;
cardiac index, DBP; diastolic blood pressure, ED; ejection duration, EDI; end diastolic index, EF;
ejection fraction, ER; ejection ratio, ESP; end systolic pressure, HR; heart rate, HRP; heart rate
period, IC; index of contractibility, MBP; mean blood pressure, PFI; peak flow index, PPP;
peripheral pulse pressure, SI; stroke index, sSBP; sitting systolic blood pressure, sDBP; sitting
diastolic blood pressure, SBP; systolic blood pressure, STR; systolic time ratio, SVR; systemic
vascular resistance index, TFI; thoracic fluid index, VER; ventricular ejection time. Respiratory
variables; ETC02; end tidal C02, 02Sat.; oxygen saturation, RR; respiratory rate, CNS variable;
RT; reaction time.
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Figure 6- 2. Mean (SEM) of percentage of change from baseline of A) supine systolic blood
pressure, B) supine diastolic blood pressure, C) supine mean blood pressure Sitting, D) sitting
systolic blood pressure in morphine group (-•-) and placebo group (—O—) (n=8).

6.3.3. Augmentation index, systemic vascular resistance and aortic derived variables

Overall, morphine had no effect on arterial stiffness (Al) (F=2.942, P=0.089) Table 6-4,

Figure 6-3-A. Despite this, systemic vascular resistance (F=5.202, P=0.024) and aortic

derived variables significantly decreased; aortic systolic blood pressure (F=14.727,

P<0.001) Figure 6-3-B, aortic diastolic blood pressure (F=4.996, P=0.027), and aortic
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pulse pressure (F=10.309, P=0.002). These effects were not dose-dependent Tables 6-

3, 6-4 and 6-5.
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Figure 6- 3. Mean (SEM) of percentage of change from baseline of A) augmentation index, B)
aortic systolic blood pressure, C) Sitting Systolic blood pressure, D) Mean blood pressure in
morphine group (-•-) and placebo group (-o-) (n=8).

6.3.4. Heart related variables

Overall morphine induced significant decrease in the index of contractibility (F= 16.238,

P<0.001), stroke index (F=13.787, P<0.001), end diastolic index (F=19.800, P<0.001),

end systolic pressure (F=9.270, P=0.003), and peak flow index (F=9.818, P=0.002)

(Figure 6-4 A-E), and Tables 6-3 to 6-5. Heart rate in the placebo group, was

significantly lower than morphine group (F=12.909, P<0.001) (Figure 6-4-F). Morphine

had no effect on the other variables Table 6-4.
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Figure 6- 4. Mean (95% CI) of percentage of change from baseline of A) systolic blood pressure,
B) diastolic blood pressure, C) Sitting Systolic blood pressure, D) Stroke index, E) End diastolic
index in morphine group( -•-) and placebo group (—O—) (n in each time point is reported in
horizontal axis for paracetamol, methadone and dihydrocodeine consequently.
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6.3.5. Non-haemodynamic variables

Overall morphine produced a significant decrease in respiratory rate (F=19.096,

P<0.001), end tidal C02 (F=32.296, P<0.001), oxygen saturation (F=6.938, P<0.010),

and reaction time (F=5.025, P=0.027) (Figure 6-5 A-D, Tables 6-3, and 6-4).
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Figure 6- 5. Mean (SEM) of percentage of change from baseline of A) respiratory rate, B) end
tidal C02, C) oxygen saturation, and D) reaction time in morphine group, P; P value of the
difference at the last dose (df; 7)( -•-) and placebo group (—O—) (n=8).
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6.3.6. Plasma assays

Overall morphine induced no significant change in plasma histamine, adrenaline and

noradrenaline concentrations Figure 6-6, Tables 6-3, and 6-4. Morphine plasma

concentrations are also shown in Figure 6-6
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Figure 6- 6. Mean (SEM) of absolute values of plasma concentrations of A) histamine in ng/ml,
B) morphine mcg/ml in morphine group (-♦-) and placebo group (—O-) (n=8).
The techniques were not sensitive for values less than 2.5 mcg/ml for morphine levels. These
values were omitted, and the actual N in reported below the horizontal axis for each time point
for morphine and saline visits respectively.

The used techniques were not sensitive for values less than 30 pg/ml and 150 pg/ml for

adrenaline and noradrenaline respectively. When catecholamines were detected, they

were in a small amounts with no significant different to placebo arm, and there were no

dose response.

6.3.7. Dose, age and body mass index dependency

In general in the morphine group, haemodynamic variables were not dose dependent,

but non-haemodynamic variables of RR (r=-0.813, P<0.001), ETC02 (r=0.775, P<
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0.001) and RT (r=0.303, P=0.023) were dose dependent. This probably suggests an

independent mechanism of action.

As it is expected augmentation index (r=0.793, P<0.001), and also ED (r=0.445,

P=0.001)) and VET (r=0.276, P=0.040) were significantly age related. Reaction time

was negatively age related (r=-0.301, P=0.024).

SBP, DBP, sSBP, ASBP, ADBP, ESP, STR, MBP, SVR, and 02 Saturation were

positively, and PF, EF, IC, Acl, and ED were negatively body mass index related. Age

and particularly BMI should be considered as potential confounders.

6.3.8. Reported adverse effects

In eight cases and one control light-headedness were reported. Three cases and two

controls reported sleepiness. Four cases vomited. One case reported itching. Light¬

headedness started during the higher doses of morphine and lasted a maximum of 8

hours. The first episode of vomiting started with a median of 3 hours (range 3 to 7 h)

after discontinuing morphine. In two cases it lasts for 4 and 15 hours. These two

subjects received cyclizine. Nausea was not reported for more than a minute before

vomiting. These effects are illustrated in the Figure 6-8.
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Figure 6- 7. Morphine-induced side effects, Light headedness (o), vomiting (•) (n=8)

6.4. Discussion

This study has investigated a wide variety of haemodynamic indices, together with

respiratory and CNS variables in subjects receiving morphine into a slightly higher than

therapeutic range (total dose 16 mg). Overdose cannot be ethically tested in volunteers,

but ethical approval for this supra-therapeutic dose of morphine was obtained.

The findings can be summarised as; SBP, sSBP, 02 saturation, SI, EDI, PFI, HRB, IC,

ER, ACI, ESP, ASBP, ADBP, MBP, PPP, APP, VET, SVR, and RR, 02 Sat., ET C02

and RT were significantly changed by morphine. In general haemodynamic changes

appeared to start after very low doses (0.25mg), but did not appear to be dose

dependent. On the contrary respiratory and CNS effects were dose dependent. In these

studies there was no evidence of an effect on histamine release catecholamine level in

the circulation.
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To interpret these findings, an integrated model of morphine-induced changes on veins-

heart-arteries may need to be considered, but the effects of morphine described on

each part separately.

6.4.1. Preload

In this study morphine did not change total bioempedance of the thorax (thoracic fluid

index), which probably suggests that it has no effect on preload at these doses.

6.4.2. Heart

Cardiac rate; Heart rate fell in both placebo and morphine groups, but morphine

treatment was associated with higher heart rate in comparison to the saline visit.

Morphine appeared to be is positively chronotropic. This is consistent with previous

finding that morphine is positively chronotropic (Mildh et ai, 2000), but since there

was a fall in blood pressure this effect might also reflect autoregulation.

Cardiac work; in this study morphine appeared to be negatively inotropic, which is

indicated by a significant decrease in index of contractibility and peak flow index. The

later indicates a decrease in the highest rate of left ventricular volumetric delivery during

the ejection phase. As the patients were normovolaemic these changes are likely to be

a true effect. Negative inotropism of morphine was also confirmed by a significant

decrease in acceleration index, which is much less dependent on preload and afterload

(Anonymous2005; Bernstein, 1986a; Scherhag etal., 1999).
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Morphine also significantly decreased end diastolic index (cardiac filling in diastole).

Morphine induced a significant decrease in end systolic pressure (cardiac emptying in

systole).

Stroke index in this study significantly decreased, which is probably a result of a

negative inotropic effect of morphine. Other reasons for a decrease in stroke index

including decrease in preload, and ejection fraction have been ruled out in this study. In

summary morphine decreased cardiac work.

Morphine-induced changes in stroke index and heart rate together resulted to a stable

cardiac index (CI=HRxSI), which indicates maintenance of left ventricular performance

and overall perfusion. Significant increase in ventricular ejection time and ejection ratio,

with no change in systolic time ratio and ejection fraction, is also consistent with this

hypothesis. Thus morphine did not appear to impare left ventricular performance.

6.4.3. Afterload

Morphine significantly decreased systolic blood pressure in supine and 90 degrees

sitting positions, and mean blood pressure and pulse pressure. These changes were

also mirrored in aortic systolic and diastolic blood pressure, and pulse pressure.

Diastolic blood pressure in supine and sitting positions, however, were not changed.

These findings suggest morphine decreased afterload.

Overall, morphine did not change preload, is probably positively chronotropic,

negatively inotropic, and decreased afterload. Morphine reduces heart work, but did not

impair the adequacy of the cardiac performance. The effects of morphine on the

cardiovascular system in this study were surprisingly not dose dependent.
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6.4.4. Non-haemodynamic variables

Morphine significantly decreased respiratory rate, and as a result increased end tidal

Co2and reduced 02 saturation. Reaction time surprisingly initially appeared to decrease

suggesting an initial improvement effect of morphine on central nervous system.

However, scrutiny of the results in separate time points revealed that reaction time has

decreased with 0.250 (-3.89%), 0.500 (-6.37%), 1 (-3.86%), 2 (-4.23%) mg infusions,

but increased with 4 (0.36%) and 8 (3.34%) mg. This suggests that as expected

morphine induces CNS depression in higher doses. Improved CNS function in lower

doses remains unexplained. The well recognised respiratory and also CNS effects of

morphine were dose dependent.

6.4.5. Potential pathways

The fall in SBP is not caused by a decrease in stiffness of large arteries or peripheral

pulse wave reflection, as augmentation index did not altered.

Morphine also significantly decreased systemic vascular resistance. Assuming that

viscosity of blood was stable in this study, this is probably mediated via morphine

induced vaso (arterio) dilatation. The increase in the radius of arteries should be

profound, as despite a minor increase in Al which potentially may increase afterload,

aortic variables significantly decreased.

Velocity was not measured in this study, but based on Bernoulli's equation, (Q = A-, x V-,

= A2 x V2, where A is cross-section of the vessels, v is velocity, and Q is volume of
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liquid entering per unit time) (Nichols & O'Rourke, 1998), as the radius of arteries were

increased the velocity should have decreased.

Increased C02 and decreased 02 may play some contribution to the cardiovascular

effects of morphine, as C02is a vasodilator (Van den bos et at., 1979; Ganong, 2001).

Opioids have been shown to induce histamine release or increase plasma

catecholamine concentrations, which may affect haemodynamics (Flacke et at., 1987;

Fahmy eta!., 1983; Doenicke etal., 1995).

Histamine, adrenaline, and noradrenaline concentrations at the sensitivity of the

techniques, and power of the study were not significantly different, which imply that

observed effects were independent of these neurotransmitters in the doses of morphine

used in this study. As plasma level of these mediators were at the limit of the sensitivity

of the assay, it remains possible that an effect of low mediator concentration could be a

factor.

Vomiting happened with a three hours delay in comparison with other changes,

suggesting that it might have been induced by an active metabolite rather than the

parent drug. Alternatively, a late redistribution of morphine in the medulla cannot be

ruled out.

6.5. Implication

As patients live longer, the prevalence of congestive heart failure is increasing.

Currently vasodilators and diuretics are used in inpatient treatment to reduce mainly
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afterload, and preload to a lesser extend. Inotropic support is also needed in some

(Moazemi et at., 2003; Mosesso et a!., 2003).

Acute left ventricular dysfunction in myocardial infarction should be treated to maximise

preload (Bates, 1992), and decrease heart work and oxygen consumption.

Based on these findings, morphine appears to have specific cardiovascular effects and

its indications in these situations should not be restricted to its current analgesic and

relaxant effects which previously stated (Topol, 1998), but also a decrease on cardiac

work and oxygen consumption, probably via negative inotropism and decrease in

afterload.

If tolerance to these effects does not develop, these finding might support an

argument for a heart-arteriolar indication of morphine in congestive heart failure

and Ml as well as its current painkiller and relaxant indication. Also end stage

patients with chronic pain that are receiving long term morphine, might also

develop hypotension from morphine.

6.6. Conclusion

Morphine causes a significant reduction in afterload and left ventricular cardiac work,

with maintained cardiac performance. Morphine had little or no effect on preload in

doses less than 16 mg. The cardiac effects were not dose dependent in this study.

Morphine induces a dose dependent increase in end tidal C02, and a decrease in end

tidal 02 saturation. Morphine had no effect on plasma concentration of histamine and

catecholamines.
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Arterial stiffness, plasma concentration of histamine and catecholamines appeared to

play no role in the haemodynamic effects of morphine with this experiment protocol. An

increase in end tidal C02 might be responsible in part in these effects.

Based on these studies, morphine induced haemodynamic effects are caused by

arteriolar vasodilatation. This suggests that morphine, either via a receptor on

endothelium or arteriolar smooth muscles, or peri-arteriolar tissues, increases the

radius of the arteries. It can be postulated that this is an opioid receptor; however, a

morphine induced non-opioid pathway cannot be excluded.
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: Morphine versus Morphine & Naloxone

7.1. Introductory remarks

In chapter V and VI, I have explored the haemodynamic effects of morphine and other

opioids in overdose and healthy volunteers. In this chapter I conducted studies to clarify

the role of opioid receptors in the haemodynamic effects of morphine in a single blind,

prospective, two way crossover clinical trial. In this study the haemodynamic effects of

morphine and placebo (saline) were compared with morphine and the opioid antagonist,

naloxone, in healthy male volunteers.

7.1.1. Outline of morphine antagonism

A semi-synthetic derivative of thebaine, naloxone (C19H21N04.HCI 4, 5-Epoxy-3,14-

dihydroxy-17-(2-propenyl)morphinan-6-one hydrochloride) is a pure opioid antagonist.

Its free base molecular weight is 399.9. It can cross the blood brain barrier. Naloxone is

a competitive antagonist particularly at p and k receptors (Zhu et al., 1995; Gutstein &

Akil, 2001; Kienbaum et al., 2002a). Naloxone is more potent as an antagonist at p -

receptors than at others.

In therapeutic doses naloxone has no direct effect on healthy volunteers, and all its

effects are thought to be related to antagonism of endogenous or exogenous opioids.

Haemodynamics of naive subjects, respiratory rate, oral temperature and plasma

catecholamines are not affected by naloxone (Fuenmayor & Cubeddu, 1986). In

isolated rat hearts, however, naloxone antagonised the hypotensive effect induced by

morphine on the coronary pressure, but was ineffective in counteracting the negative

inotropic and chronotropic effects (Ventura et al., 1987). Haemodynamic changes,

however, have been shown in acute naloxone detoxification of addicted patients

(Kienbaum et al., 2002a), with increase in blood pressure and pulse rate.
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The aims of this study were to determine if naloxone had any significant effect on the

morphine-induced haemodynamic, respiratory and CNS effects, and if histamine,

adrenaline and noradrenaline are involved in these effects.

7.1.2. Hypotheses

1. Naloxone can reverse morphine-induced haemodynamic, respiratory and CNS

effects.

2. Histamine, adrenaline and noradrenaline are the mediators by which naloxone

antagonises these effects.

7.2. Materials and methods

Study design, inclusion and exclusion criteria, drug preparation, blood sampling, safety

measurements, ethical approval, and the techniques that were used are identical to

chapter VI (see also chapter II and the Table of Glossary for the details).

All subjects received morphine as described in chapter VI, a stepwise infusion with

measurement after each dose. Naloxone was injected as an initial bolus of 400

microgram intravenously (1 ml), and by continuous infusion throughout the study at a

rate of 200 micrograms per hour in 60 ml saline.

Saline was injected as a bolus of 1 ml followed by a continuous infusion at a rate of 60

ml per hour throughout the study for the other visit as placebo control. The order was

randomized. Analysis was as described in chapter VI, with the groups being compared

as morphine alone and morphine plus naloxone.
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7.3. Results

Demographic variables (age, height, weight, and body surface area (BSA)) of 8

Table 7-1. Descriptive Statistics of
volunteers, BSA; is calculated from
the square root of ([Height (cm) x
Weight (kg)]/ 3600), Mosteller formula
(Mosteller, 1987).

The difference between morphine-saline and morphine-naloxone visits for each

haemodynamic, respiratory and central nervous system variable was compared by

using ANOVA (Table 7-2). When ANOVA was significant, mean and SEM of all

variables at each time point for both visits was shown in Table 7-3 to emphasize the

direction of the effects.

7.3.1. Cardiovascular effects

Overall morphine-induced decreases in supine DBP (F=4.728, P= 0.032), ESP

(F=10.365, P=0.002), SI (F=5.978, P=0.016), and CI (F=10.038, P=0.002) were

significantly reversed by naloxone Figure 7-1-B and Table 7-3. Mean (SEM) value at

each time points are shown in Table 7-2.

Naloxone significantly decreased sSBP (F=4.366, P=0.039), as compared to the

morphine alone. Naloxone significantly intensified morphine-induced decrease in supine

HR (F=17.443, P<0.001) Figure 7-1-D and Table 7-3. Mean (SEM) value at each time

points are shown in Table 7-2.

volunteers are summarized in Table 7-2

Variable Min Max Mean SD

Age (year) 23 50 38.9 10.8

Height (cm) 161 185 171.3 8.0

Weight (kg) 60 96 74.5 13.5

Body Surface Area (m2) 22.2 30.0 25.2 2.7
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Supine systolic blood pressure fell in both morphine-saline and morphine-naloxone

groups Figure 7-1-A (mean + SEM). However, the difference between these two groups

was not significant (F=0.027, P=0.869) Figure 7-1 and Table 7-3.

Morphine-saline and morphine-naloxone groups were not significantly different for

mean blood pressure (F=2.386, P=0.125), sitting diastolic blood pressure (F=0.005,

P=0.946) and pulse pressure (F=3.008, P=0.086) Table 7-3.

Variables F P value

Haemodynamic variables
Systolic blood pressure (%) .027 .869
Diastolic blood pressure (%) 4.728 .032
Mean blood pressure (%) 2.386 .125

Peripheral pulse pressure (%) 3.008 .086

Sitting systolic blood pressure (%) 4.366 .039

Sitting diastolic blood pressure (%) .005 .946
End systolic pressure (%) 10.365 .002
Heart rate (%) 17.443 <0.001

Augmentation index (%) .013 .910
Stroke index (%) 5.978 .016
Cardiac index (%) 10.038 .002

Respiratory and CNS variables
Respiratory rate (%) 17.295 < 0.001

02 Saturation (%) 1.425 .235
End tidal carbon dioxide (%) .124 .726
Reaction time (%) 7.800 .006
Plasma assays
Plasma histamine concentration .016 0.901
Plasma adrenaline concentration .062 .806
Plasma noradrenalin concentration .792 .377
Plasma morphine concentration .343 .561

Table 7- 2. Analysis of variance of
percentages of change from
baseline between morphine and
naloxone groups for homodynamic,
respiratory and central nervous
system variables

7.3.2. Respiratory variables

Overall morphine-induced decrease in supine respiratory rate was significantly reversed

by naloxone (F=17.295, P<0.001) Figure 7-2-A and Table 7-3. Mean (SEM) values at

each time point is shown in Table 7-2. Naloxone, however, failed to influence

morphine's effect on oxygen saturation (F=1.425, P=0.235) or end tidal C02 (F=0.124,

P=0.726) (Figure 7-2-B & C and Tables 7-3 and 7-4).
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Dose Baseline 0.25 mg 0.5 mg 1mg 2mg 4 mg 8 mg

Mean SEM Mean SEM Mean SEM Mean SEM Mean SEM Mean SEM Mean SEM

Morphine-Saline visit
SBP* 132 4.2 126 4.0 125 3.6 125 4.0 130 5.1 127 4.9 121 6.4

DBP 77 3.9 71 2.9 72 2.6 71 3.0 72 3.9 73 4.0 70 4.7

MBP 95 3.4 89 2.8 90 2.2 89 2.7 91 3.6 91 3.7 87 5.0

PP 56 4.7 55 3.7 52 4.2 54 4.1 58 5.2 54 4.6 51 4.3

SSBP 127 4.0 127 5.2 127 5.6 126 5.2 125 6.7 126 7.5 115 9.8

SDBP 75 3.0 75 3.4 76 3.4 75 4.1 70 4.5 74 4.7 72 6.6

ESP 106 5.6 98 5.4 98 3.8 97 4.1 98 6.2 100 6.4 94 7.3

HR 62 2.7 60 2.5 59 2.2 57 1.9 59 1.8 57 2.0 57.6 1.7

Al 6.3 7.3 12.4 5.8 10.6 6.6 11.8 6.4 8.3 6.8 12.5 7.5 11.3 8.1

SI 57.9 5.9 60.0 4.8 55.4 4.7 58.0 4.3 55.5 3.8 55.5 4.2 56.7 5.4

CI 3.7 0.4 3.6 0.3 3.3 0.3 3.5 0.3 3.4 0.3 3.3 0.3 3.5 0.4

RT 0.86 0.05 0.83 0.04 0.85 0.06 0.86 0.05 0.86 0.05 0.87 0.06 0.88 0.06

RR 18 0.4 17 0.8 16 0.6 15 0.4 16 1.1 13 0.7 12 0.7

02 98 0.5 98 0.4 98 0.5 98 0.5 98 0.4 98 0.5 98 0.6

C02 5.3 0.1 5.4 0.1 5.4 0.1 5.4 0.2 5.5 0.1 5.5 0.2 6.0 0.2

Morphine-Naloxone visit
400 microgram Naloxone stat before baseline followed by 200 microgram per hour

SBP 129 4.7 125 5.3 123 3.6 124 4.3 122 5.0 123 4.4 124 6.0

DBP 71 3.8 70 3.7 70 3.5 68 3.9 72 5.4 70 3.7 70 5.3

MBP 91 3.4 88 3.8 87 3.1 87 3.2 88 4.9 88 3.6 88 5.1

PPP 58 4.9 55 4.3 53 3.5 56 5.2 50 4.3 53 3.6 54 4.4

SSBP 131 5.4 124 6.2 126 5.8 119 4.9 122 5.9 126 5.3 126 6.3

SDBP 76 4.2 75 4.7 73 4.5 76 3.3 74 5.2 74 5.3 77 5.2

ESP 97 6.1 94 6.2 94 5.6 94 5.5 96 6.4 97 5.3 97 6.8

HR 62 1.9 57 1.8 57 2.2 54 1.7 55 1.9 53 1.9 56 1.8

Al 9.5 7.0 8.9 8.1 10.5 6.6 11.0 6.3 14.7 6.6 12.4 6.8 11.9 7.0

SI 63.9 4.0 60.0 4.5 61.5 4.5 61.3 4.4 59.1 5.0 59.5 4.4 58.8 4.9

CI 3.9 0.3 3.6 0.3 3.5 0.3 3.5 0.3 3.3 0.3 3.2 0.3 3.3 0.3

RT 0.86 0.05 0.87 0.06 0.83 0.07 0.80 0.07 0.81 0.06 0.82 0.06 0.79 0.06

RR 16 0.5 16 0.6 16 0.9 15 0.8 16 0.7 15 0.7 15 0.7

02 98 0.5 97 0.5 98 0.4 98 0.4 98 0.4 98 0.6 98 0.5

C02 5.4 0.1 5.4 0.1 5.6 0.1 5.6 0.1 5.5 0.1 5.5 0.1 5.6 0.1

Table 7- 3. Mean and SEM of haemodynamic, respiratory and central nervous system variables
in healthy volunteers who received incremental doses of morphine with saline or naloxone,
Haemodynamic variables; Al; augmentation index, CI; cardiac index, DBP; diastolic blood
pressure, ESP; end systolic pressure, HR; heart rate, MBP; mean blood pressure, PPP;
peripheral pulse pressure, SI; stroke index, sSBP; sitting systolic blood pressure, sDBP; sitting
diastolic blood pressure, SBP; systolic blood pressure,
Respiratory variables; ETC02; end tidal C02, 02Sat.; oxygen saturation, RR; respiratory rate,
CNS variable; RT; reaction time (n=8).
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Figure 7- 1. Mean (SEM) of percentage of change from baseline of A) systolic blood pressure, B)
diastolic blood pressure, C) end systolic pressure, D) heart rate, E) stroke index and F)
Augmentation index in morphine-saline group (-•-) and morphine-naloxone group (-o-) (n=8).
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7.3.3. Reaction time (RT)

Overall morphine-induced change in reaction time was significantly decreased by

naloxone (F=7.800, P=0.006) (Figure 7-2-D and Tables 7-2 and 7-3). At the highest

dose of morphine, the pair wise difference between two groups was also significant

(p=0.015).

P = 0.015
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Figure 7- 2. Mean (SEM) of percentage of change from baseline of A) respiratory rate, B)
oxygen saturation, C) end tidal C02, D) reaction time, in morphine-saline group (-•-) and
morphine-naloxone group (—o—) (n=8).
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7.3.4. Plasma assays

Concentration (mean (SEM)) of plasma histamine (ng/ml), adrenaline (pg/ml),

noradrenalin (pg/ml) and morphine (mcg/ml) at baseline, and after 0.25, 1 and 8 mg

morphine are shown in Figure 7-3.
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Figure 7- 3. Mean (SEM) of absolute values of plasma concentrations of A) histamine in ng/ml,
B) adrenaline in pg/ml, C) noradrenalin in pg/ml, D) morphine mcg/ml in morphine group ( -•-)
and placebo group (o ) (n=8). Techniques, which have been used, were not sensitive for
values less than 30 pg/ml, 150 pg/ml and 2.5 pg/ml for adrenaline, noradrenalin and morphine
levels respectively. These values were omitted, and the actual N in reported below the horizontal
axis for each time point for morphine and saline visits respectively.

Overall, morphine-saline and morphine-naloxone groups were not significantly different

for plasma assays of histamine (F=0.16, P=0.901), adrenaline (F=0.062, P=0.806) and
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noradrenalin (F=0.792, P=0.377) Table 7-2. Morphine plasma concentrations are

shown in Figure 7-3-D. It seems that naloxone has no effect on pharmacokinetics of

morphine.

7.3.5. Association of haemodynamic variables with central nervous system and
respiratory variables

RT% P RR% P o2% P co2% P

Morphine-Saline visit
SBP*** .105 .441 .065 .636 .127 .350 .106 .436
DBP -.231 .087 .096 .484 .145 .287 .161 .235
MBP -.091 .503 .094 .490 .163 .229 .159 .241
PP .226 .093 -.008 .952 -.035 .796 -.058 .670
sSBP .002 .989 .202 .138 -.052 .705 -.245 .072
sDBP -.164 .232 .249 .067 -.085 .536 -.340* .011
ESP -.191 .159 .240 .075 -.132 .331 -.105 .441
HR -.057 .677 .214 .113 -.025 .854 -.206 .128
SI -.258 .055 -.284* .034 -.510* .000 .240 .075
CI -.205 .130 -.189 .163 -.364* .006 .196 .147
Al .014 .917 -.044 .748 -.088 .517 -.047 .732
RT 1 -.053 .701 .404* .002 -.041 .763
RR -.053 .701 1 .282* .035 -.390* .003

o2 .404* .002 .282* .035 1 -.164 .228

co2 -.041 .763 -.390* .003 -.164 .228 1 .003

Morphine-Naloxone visit
SBP .462* .000 .547* .000 .260 .053 -.240 .075
DBP .291* .029 .039 .777 .044 .750 -.044 .747
MBP .431* .001 .317* .017 .167 .217 -.171 .207
PP .269* .045 .500* .000 .210 .120 -.158 .244
sSBP .115 .401 -.133 .328 .088 .517 .351* .008
sDBP .172 .204 -.015 .911 .050 .716 -.092 .501
ESP .263 .051 -.175 .196 .095 .485 .445* .001
HR .016 .905 -.033 .811 -.182 .179 -.405* .002
SI -.424* .001 .279* .037 .120 .379 -.459* .000
CI -.254 .058 .208 .124 -.040 .772 -.547* .000
Al .246 .070 .032 .816 -.125 .364 -.178 .193
RT 1 .164 .226 .193 .154 -.013 .925
RR .164 .226 1 .339* .011 -.367* .005

o2 .193 .154 .339* .011 1 .015 .913
co2 -.013 .925 -.367* .005 .015 .913 1

Table 7- 4. Association of percentage of change from baseline of haemodynamic variables with
central nervous system and respiratory variables (df=55), *; correlation is significant at the 0.05
level (2-tailed), **; correlation is significant at the 0.01 level (2-tailed),
Haemodynamic variables; CI; cardiac index, DBP; diastolic blood pressure, ESP; end systolic
pressure, HR; heart rate, MBP; mean blood pressure, PPP; peripheral pulse pressure, SI; stroke
index, sSBP; sitting systolic blood pressure, sDBP; sitting diastolic blood pressure, SBP; systolic
blood pressure, Respiratory variables; ETC02; end tidal C02, 02 Sat.; oxygen saturation, RR;
respiratory rate, CNS variable; RT; reaction time (n=8).
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Results of correlation of haemodynamic variables with non-haemodynamic variables

are shown in Table 7-4. As can be seen, haemodynamic variables are in general not

correlated with central nervous system and respiratory variables. This suggests lack of

a common mechanism of action for these different effects, the The correlatation of

reaction time and SBP, DBP, MBP, and PP following naloxone and morphine was,

surprisingly, stronger than for morphine alone. Among non haemodynamic variables,

respiratory rate was, as expected, associated with both 02 and C02 measurements.

7.4. Discussion

Chapter 6 suggests that morphine in incremental IV doses of 0.250 to 8 mg tends to

depress both haemodynamic and respiratory systems in man. Afterload, (systolic blood

pressure, pulse pressure, systemic vascular resistance) and cardiac work (index of

contractibility and stroke index) were decreased but left ventricular performance

maintained (cardiac index).

In this study naloxone did not antagonise morphine-induced changes in SBP, MBP, PP

or sDBP. Morphine induced depressor effects on DBP, ESP, SI and CI, however, were

revered by naloxone. SSBP and HR were also significantly different between

treatments, but it seemed that naloxone increased the effect of morphine rather than

reversing it. Thus naloxone at these doses reversed some of the morphine-induced

effects on afterload and cardiac variables.

DBP is largely determined by peripheral arterial resistance, in contrast, SBP and PP are

influenced more by the stiffness of large arteries, as well as peripheral pulse wave
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reflection and the pattern of left ventricular ejection (Oliver & Webb, 2003). As the

determinants of these variables are different, and naloxone can antagonise some but

not the others, it can be postulated that haemodynamic effects of morphine might be

mediated via more than one pathway. Based on this study, haemodynamic variables

which are more related to afterload (SBP, MBP, and PP) may be opioid receptor

independent. Heart related variables such as stroke and cardiac indices, however,

appeared to be opioid receptor related. As majority of measured variables were indirect

or derived, the detailed relationships between them were not scrutinised.

Naloxone's failure to reverse some of the haemodynamic variables might also be also

due to the fact that the power of this study was not enough to detect some effects as

statistically significant, or that its dose was not adequate. Potential reasons for this

discrepancy in result are shown in Figure 7-4. Details of the potential mechanism s are

discussed in chapter 1.

This study indicates that changes in reaction time and respiratory rate are reversible by

naloxone and therefore mu receptor mediated. These effects were not time-linked to

haemodynamic effects of morphine. This suggests that it is less likely that a common

pathway causes CNS, respiratory, and cardiovascular effects. The effects on the

cardiovascular system, therefore, are compatible with a peripheral cardiovascular site of

action reversed by naloxone. This might be consistent with the work of Stefano et al

who have reported opioid effects on the cardiovascular system in vitro, and in animal
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Figure 7- 4. Morphine induced opioid receptor dependent and independent haemodynamic
effects

studies in relation to a probable p3 receptor and nitric oxide pathway (Bilfinger et al.,

1998b; Bilfinger et at., 2002; Cadet et at., 2000; Fimiani et al., 1999b; Fimiani et at.,

1999a; Magazine et al., 1996; Solenkova et al., 2002; Stefano et al., 1995a; Stefano et

al., 2000; Stefano, 1998; Stefano et al., 1998; Stefano et al., 2002). As discussed in the

introduction of this thesis, these effects are likely to be due to opioid induced secondary

mechanisms such as histamine release. Stefano et al also showed that morphine's

cardiovascular effects are not shared by fentanyl (Bilfinger et al., 1998a; Stefano,

2002). There is some evidence that fentanyl, unlike morphine, did not release histamine

and thus has less cardiovascular effects (Cathelin et al., 1980a; Philbin et al., 1981;

Rosow et al., 1982; Flacke et al., 1987; Gutstein & Akil, 2001). In the present study,

histamine concentration did not increase, and this may explain differences in results

from different studies.
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In this study naloxone significantly intensified the effects of morphine on heart rate. The

interpretation of this finding is difficult, since heart rate will rise if blood pressure falls,

and subjects may feel relaxed under the assumption that they are receiving morphine,

and as the study goes on. The fact that adrenaline and noradrenaline did not change

adds to the difficulties in interpreting this finding.

Overall, haemodynamic effects of morphine (up to 16 mg in 2 hours intravenously)

appear, at least in part, not mediated via naloxone sensitive receptors. In addition,

systemic histamine and catecholamine release probably play no role in the effects at

these doses of morphine.

The presence of a potential concurrent involvement of central nervous system or

respiratory mediated effects on cardiovascular responses related effects to morphine

induced were examined in both this chapter and chapter VI, but the magnitude of their

contribution could not be determined in these experiments. Based on these studies the

presence of a peripheral site of action for morphine can be postulated but not

confirmed. Further studies such as a forearm blood flow study are needed to explore

these effects and the mechanisms of action.

7.5. Limitation

The effect of naloxone in the absence of morphine was not studied, although other

workers suggest that it has no haemodynamic effects (Fuenmayor & Cubeddu, 1986).

The doses of morphine used were relatively low, in comparison to the many published

studies in anesthetic patients. The study was not placebo controlled, and this make the

conclusion less clear cut. The design was similar to that in the study described in
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chapter VI. The effects of morphine in this study appeared to be in general similar to

those seen in the subjects of that experiment.

7.6. Conclusion

In conclusion, at the doses studied naloxone did not antagonize some of

haemodynamic caused by morphine demonstrated in Chapter VI, specifically those on

SBP, MBP and PP. This suggests the presence of receptor pathways in man which are

affected by morphine but not antagonized by naloxone. These may be non-opioid

effects. Naloxone, however, was able to antagonize some haemodynamic changes

induced by morphine. This supports the presence of an opioid receptor pathway for

some of the effects.

Histamine and catecholamine release, oxygen saturation, and effects on end tidal C02

seemed to play little role in the naloxone-morphine interaction. Both morphine and

naloxone have no effect on arterial stiffness.
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allt bt'rrg fmb gtfft/vnb nichte £fifff/2j|| an bu
boffs m^chtA^cfe btiijfefngtfhff.

Everything is a poison, and nothing is not-poisonous, this is just the dose which makes a
poison

Philip Theophrastus Bombast von Hohenheim (Paracelsus) 1564 A.D.

Courtesy of the National Library of Medicine, National Institutes of Health, Bethesda, which gave
their permission to reproduce a copy of the original print of Paracelsus metaphor in this thesis
from Paracelsus' Drey Bucher printed in Cologne by the Heirs of Arnold Byrckmann in 1564.
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8.1. Introductory remarks

8.1.1. The maintenance of vascular tone

Many physiological mechanisms, including cardiac output and peripheral vascular

resistance contribute to blood pressure control. Peripheral vascular resistance and

blood pressure are measurable indicators of vascular tone. Vasodilatation decreases

peripheral resistance, as the radius of the lumen is the most important factor in

resistance (Nichols & O'Rourke, 1998). Systems effecting basal vascular tone in the

human forearm include the sympathetic nervous system, renin-angiotensin system, L-

arginine nitric oxide pathway, and endothelin system (Wilkinson & Webb, 2001).

8.1.2. Mast cell degranulation and anaphylactoid reactions

Anaphylactoid (anaphylaxis-like) reactions should be distinguished from anaphylaxis, as

they are not mediated by IgE antibodies. Similar pharmacologic mediators, including

histamine, are responsible for the clinical features of both of them; however, the stimuli

for their release differ. In anaphylactoid reactions substances act directly on mast cells

or the alternative pathway of complement activation. This is not immunologically

specific and does not need to have been previously sensitised (Chapel ef a/., 1999).

Urticaria (oedema in the superficial portion of the dermis) may be related to IgE or IgE-

receptor dependent reactions, complement system activation of cellular arachidonic

acid, be idiopathic and also occur after direct mast cell degranulation. The common

causes of acute urticaria are upper respiratory tract infections and drugs, it is often

idiopathic. Urticaria is also associated with dilation of the venules (Soter, 1999). Mast

cells are probably the major effector cell in most forms of urticaria. They reside in tissue

adjacent to blood vessels Surrounding supporting tissues (Steven & Lowe, 2005). Skin
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mast cells contain secretary granules of tryptase, chymase, carboxypeptidase and

cathespin G (Soter, 1999; Abbas & Lichtman, 2004).

Various therapeutic and diagnostic agents have been associated with urticaria,

including opiates, which directly release histamine from mast cells and basophils.

However, the molecular mechanism is unknown (Soter, 1999).

Mast cell degradation releases a variety of mediators including histamine and tryptase.

Histamine induces vasodilatation via action on H2 receptors on the smooth muscle of

the arteries. It also increases vascular permeability. Dermal injection of histamine

induces urticaria (weal-and-erythema (flare) reaction), which develops in 1 to 2 minutes

and reaches to maximum at 10 minutes (Davies et al., 2001). As histamine has been

found in the weal fluid, it probably induces it, but histamine was not found in the

erythema suggesting a different pathway (Soter, 1999). This supports the theory that

the histamine related flare reaction is a neurogenic reflex not involving histamine

release at its effector site. The ^ antagonist cetirizine blocks both weal and flare

effects (Clough et al., 1998). In man a particular class of neurons is selectively excited

by iontophoretic histamine (Andrew & Craig, 2001). Vagus nerve stimulation reduces

histamine induced itching in man (Kirchner et al., 2002).

Tryptase is the most abundant mediator stored in the mast cell granules. Increased

beta-tryptase levels are suggestive of an immunologically mediated reaction or may

also occur following direct mast cell activation (Payne & Kam, 2004).
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8.1.3. Permeability, extravasation and inflammation

Morphine has been shown to release histamine (Flacke et al., 1987; Brown & Reberts,

2001). Histamine is one of the endogenous mediators of the acute inflammatory

response, which causes immediate transient increase of vascular permeability.

Extravasation of plasma increases colloid osmotic pressure and in turn increases the

fluid loss from vessels. Any increase in hydrostatic pressure in arterial end capillaries

will intensify this process (Underwood, 2004). Vascular permeability in skin is produced

by the interactions of both Ht and H2 histamine receptors (Soter, 1999). It has also been

shown that in mice, stimulation of mu opioid receptors results in an increase in BBB

permeability (Baba et al., 1988). During prolonged venous occlusion plethysmography

there is a small but measurable continued increase in forearm volume, which is due to

extravasation of fluid from the capillaries (Wilkinson & Webb, 2001).

Opiates including diamorphine and morphine cause non-cardiac pulmonary edema

(NCPE) (Frishman et al., 2003; Lusk & Maloley, 1988). NCPE is a common respiratory

complication in opioid agonist addiction, heroin overdose and methadone causes death

(Ben Noun, 2000; Sporer, 1999; Sporer & Dorn, 2001; Corkery et al., 2004). Common

features of NCPE includes damage to and increased permeability of vascular

endothelium (Overland & Severinghaus, 1978). The mechanism, by which opioids

particularly in overdose, cause non-cardiac pulmonary oedema, however, is not clear.

Heroin overdose has been shown to induce profound circulatory shock (Remskar et al.,

1998). Morphine exacerbates but naloxone prevents fatal histamine shock in mice. The

mechanism appear to be histamine release (Amir, 1984). Opioids play a role in

response to shock or stress (Smith & Lee, 1988). Morphine degranulate mast cells.

They are the major effector of the immediate hypersensitivity (allergic) reactions (Abbas
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& Lichtman, 2004). An extreme systemic form of immediate hypersensitivity results in

anaphylaxis (anaphylactic shock).

8.1.4. Endothelium

The endothelium lines the entire circulatory system by a continuous, single cell layer. It

is a selective permeability barrier, and source and target of biologically active agents

(Gerritsen & Bloor, 1993; Gimbrone MA & Topper JN, 1999). Nitric oxide is released

continuously by the endothelium to regulate basal vascular tone (Vallance et ai, 1989a;

Haynes & Webb, 1998) and contributes in blood flow and blood pressure in normal

subjects and cardiovascular diseases (Casino et at., 1995; Luscher, 1992; Panza et al.,

1990). The effects of morphine on endothelial action and nitric oxide have not yet been

studied in man.

The aims of the studies described in this Chapter are to describe the effects of intra

arteriolar morphine in the forearm and investigate its mechanisms of action.
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8.2. Exploratory dose ranging study

8.2.1. Planning the study protocols

Morphine has never been used intra-arteriolarly in man. The first step, therefore, was to

define a dose at which morphine induces changes in vascular tone in man. The aim

was to find a dose that was locally effective but with no systemic effects, and that did

not induce significant adverse effects. The lowest effective dose and the shortest period

of administration were sought for further studies. Thus, it was necessary to establish a

dose response curve. Any adverse consequences of these injections were carefully

monitored and used to inform future protocols.

8.2.2. Methods

In an observational clinical trial two healthy men without history of opioid abuse were

recruited to the study, after obtaining the approval of the Research Ethics Committee

and with the written informed consent of each subject. Subjects were asked to rest

recumbent throughout each study in a quiet temperature-controlled room (23-25 °C).

Strain gauges and arm cuffs were applied and a cannula sited in the brachial artery of

the non-dominant arm. Blood pressure and heart rate were measured in the non-

infused arm using a semi automated non-invasive method, Dinamap. Blood pressure

was measured immediately after forearm blood flow to avoid any effect on these

measurements from the venous congestion caused by this procedure. FBF was

measured as described previously (Helmy et al., 2003). Briefly, the response to intra¬

arterial infusion was assessed by measurement of forearm blood flow in both the

infused and non-infused forearms by venous occlusion plethysmography using

mercury-in-silastic strain gauges securely applied around the widest part of the forearm.

The hands were placed above the level of the heart throughout the study period and
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were excluded from the circulation during measurements through inflation of wrist cuffs

to 220 mmHg. Upper arm cuffs were intermittently inflated to 40 mmHg for the first 10 s

in every 15 s to temporarily prevent venous outflow from the forearm and thus obtain

plethysmographic recordings. Recordings of forearm blood flow were made over 3 min

periods at 10 min intervals. Venous occlusion plethysmography (dual channel strain

gauge plethysmograph) was used and calibration was performed prior to the study. The

infusion rates were kept constant at 1 ml/min for all dose levels. All dilutions were

prepared in 0.9% saline from sterile stock solutions on the day of the study. In this study

subjects received incremental doses every 6 minutes of 1, 3, 10, 30, 100, and 300

mcg/min/ml morphine sulphate with ten minutes wash out of saline applied between

each dose at a rate 1 ml per min.

Blood pressure and heart rate were measured in the non-infused arm just after each

FBF measurement to avoid any effect on measurements from the venous congestion

caused by this procedure (Patterson et al., 1954).

8.2.3. Results

Two male subjects were studied with no history of smoking, high BP, and

hypercholesterolemia or positive result for drugs of abuse. Their age (mean (SD)) was

33.0 (14.1 )y , BMI (mean (SD)) 26.2 (3.1)kg/m2 and the ratio of flow in the Infused/non-

infused arm at baseline 1.1 (0.2).

8.2.3.1. Forearm blood flow

Forearm blood flow in the infused arm for incremental doses of 1, 3, 10, 30, 100, 300

mcg/min/ml (6 min each) for two individual volunteers are shown in Figure 8-1 A), mean
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values are in Fig 1 B. As can be seen, FBFs in the infused arm increased from 2.0

(0.5) ml/100 ml forearm at baseline, to 3.3 (1.4) at 30 mcg/ml/min morphine, 4.8 (0.3) at

100 mcg/ml/min morphine and 10.8 (0.2) at 300 mcg/ml/min morphine. Overall forearm

blood flow increased from around 30 mcg/ml/min. Baseline measurements of forearm
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Figure 8-1. Individual results (A) and mean (SEM) (B) of forearm blood flow in two subjects that
received incremental dose of 1, 3, 10, 30, 100, 300 mcg/min/ml (6 min each) in pre trial of dose
ranging study.

blood flow in the infused and non-infused arms were similar. There was no change in

FBF of the non-infused arm. No further statistical analytical calculation has been made,

as the sample was small.

8.2.3.2. Skin effects

Local skin effects were considerable in these subjects. These were local itching, which

was severe. The intensity of itching was not quantified. Both cases developed local

redness and weal, which in one case, was around 300 cm2 Picture 8-1 (A & B). This

giant weal developed quickly in a few minutes after starting the highest morphine dose.

Pitting existed in the area of the weal.
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A) 30 minutes after last dose B) 30 minutes after last dose

Picture 8- 1. Local effects of IA morphine in one subject who received incremental doses of 1, 3,
10, 30, 100, 300 mcg/ml/min every 6 minutes, A) 30 minutes after the last dose, B) 60 minutes
after the last dose.

8.2.3.3. Systemic effects

In total, the subjects received less than 3 mg morphine sulphate. They developed no

systemic effects in terms of systolic and diastolic blood pressure, heart rate,

generalised itching, dyspnoea, cough and CNS related symptoms and signs. This lack

of systemic effects together with the fact that forearm blood flow was not changed in the

non-infused arm confirms that any drug effects were confined to the infused arm.

8.2.4. Discussion

Mast cells reside in tissue adjacent to blood vessels (Steven & Lowe, 2005). They

contain numerous pharmacologically active substances and express high affinity Fc

receptors for IgE (Soter, 1999; Abbas & Lichtman, 2004).

This preliminary study shows that morphine sulphate is an arteriolar dilator agent, and

at these doses induces massive weal, flare and itching. Figures 1 and 2 indicate that

vasodilatation started at doses around 30 mcg/min/ml (concentration of 0.6 mcg/ml) and
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increased up to 300 mcg/min/ml (concentration of 6 mcg/ml). This novel observation is

dose dependent.

The protocol was revised and ethics approval obtained for continuing the study with a

lower maximal dose following the observation of this large increase in forearm blood

flow and the skin effects.
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8.3. Dose response study

8.3.1. Methods

Venous occlusion plethysmography was used to evaluate intra-arteriolar morphine-

induced effects as described in section 8.1. Six healthy men without history of opioid

abuse were recruited to the study. Subjects received incremental doses at 6 minutes of

1, 3, 10, 30, and 100 mcg/min/ml morphine. The rate of infusion was constant at 1 ml

per min. A measuring tape was used to estimate the area of the flare and weal just after

each forearm blood flow measurement. Maximum length and breath were used to

estimate the size of each lesion. To quantify the intensity of the itching, subjects were

asked to express subjectively the intensity of itching from a range of scores from zero

(no itching) to nine (irresistible itching). All skin related measurements were done every

6 minutes during baseline, morphine infusion, saline washout and up to 60 minutes

after last dose.

8.3.2. Results

Six male subjects were studied with no history of smoking, hypertension, and

hypercholestrolaemia or positive result for drugs of abuse. Their age (mean (SEM)) was

31.2 (1.3) y, body mass index 25.8 (0.8) kg/m2.

8.3.2.1. Forearm blood flow

Mean (SEM) FBF in infused arms are shown in Figure 8-2 (A & B). The ratio of

infused/non-infused arm FBF at baseline was 1.0 (0.1). As can be seen, overall forearm

blood flow increased gradually from baseline to 30 mcg/ml/min (P=0.001) and then

increased sharply from 30 to 100 mcg/ml/min (P=0.003).
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Baseline FBF measurements in the infused and non-infused arms were similar. There
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Figure 8- 2. Forearm blood flow in infused arm, A) individual results, B) mean (SEM) in six
subjects that received incremental dose of 1, 3, 10, 30, 100 mcg/min/ml (6 min each) in
modified dose ranging study.

were no changes in FBF of the non-infused arms. The baseline FBF was different

among individual subjects. FBF increased with morphine in all six subjects, and the

highest rate of FBF consistently achieved at 100 mcg/ml/min in all of them. The rate

and magnitude of the peak of response, however, were not similar in different

individuals Figure 8-2-A. During the washout period, FBF gradually decreased, and

after 12 minutes the difference from the highest measurement was significant

(P=0.028). Mean FBF did not return to baseline even after a 30 minute washout. Mean

(SEM) of forearm blood flow in infused and non-infused arms and the ratio of forearm

blood flow in infused over non-infused arms are shown in Figure 8-3. Incremental doses

of IA morphine increased FBF significantly in the infused arm in comparison to the non-

infused arm (P=0.001). This is also reflected in the ratio of flare in the infused to non-

infused arms.
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Figure 8- 3. A) Mean (SEM) of forearm blood flow in infused arm ("•") and non-infused arm
("°") in ml/100ml forearm volume, B) Ratio of forearm blood flow in infused arm over non-
infused arm in six subjects that received incremental dose of 1, 3, 10, 30, 100 mcg/min/ml (6 min
each) in modified dose ranging study (P-i).

8.3.2.2. Skin effects
This study caused measurable skin effects, which were maximal at 100 mcg/ml/min

Picture 8-2.

A) Subject 1 B) Subject 2

Picture 8- 2. Local effects of IA morphine in one subject who received incremental doses of 1, 3,
10, 30, 100 mcg/ml/min every 6 minutes (1 minute after replacing 100 mcg/ml/min with saline.

Flare

Area of the flare (cm2) in the infused arm is shown in Figure 8-4-A. Overall area of the

flare was significantly increased from 30 to 100 mcg/ml/min (P=0.022). The dose at
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which flare occurred was different among individual subjects, but all six subjects finally

developed local redness.

During washout local redness gradually decreased and after 18 minutes the difference

from the highest value of red area was significant (P=0.028). Redness disappeared in

all cases after 90 minutes.

Weal

Area of the weal (cm2) in the infused arm is shown in Figure 8-4-B. The area of the weal

was significantly increased from 30 to at 100 mcg/ml/min (P=0.009). The dose at which

weal was occurred was different among individual subjects, bur all six subjects

developed a local weal. Pitting of the weal was also present.

During the washout period, local erythema gradually decreased and after 24 minutes

the difference to the highest value of erythema area was significant (P=0.011). Weal

disappeared in all cases after 90 minutes.

Presence of itching

Presence of itching in the infused arm is shown in Figure 8-4-C as a percentage of

subjects. Itching occured in 50% of subjects who received 30 mcg/ml/min and affected

all subjects when they are receiving 100 mcg/ml/min. Itching was reported up to the first

washout measurement (6 mins). Intensity of itching followed the same pattern Figure 8-

4-D. In the majority of cases itching was reported during the FBF measurements (at 30

at 100 mcg/ml/min). Itching decreased or disappeared between measurements during

the morphine infusion.
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Figure 8- 4. Mean (SEM) of A) area of flare in square centimetre, B) area of weal in square
centimetre, C) percentage of subjects with itching (%), D) intensity of itching (on a subjective
scale of 0 (no itching) to 9 irresistible itching) in six subjects that received incremental dose of 1,
3, 10, 30, 100 mcg/min/ml (6 min each) in modified dose ranging study.

8.3.2.3. Systemic effects

Systemic haemodynamics were stable throughout the study, and are summarized in

Figure 8-5. As can be seen none of the variables changed during the study and all

values were within the normal ranges.

Morphine dose, and time after infusion

if v V ^

Morphine dose, and time after infusion

centage of subjects with itching D) Intensity of itching

187



Intra-arteriolar Morphine

Q- f

n
i«

il
o n

■o t
-

150

140

130

120

110

100

90

80

70

60

I

L-L_I—1L-T
ii i

% ' Sal Sal Sal 1 3 10 30 10 Sal Sal Sal Sal Sal
ine ine ine mc mc mc mc 0 ine ine ine ine ine

(- (- (Ba 9 9 g g mg (+6 (+7 (+8 (+9 (+1
—0—SBP 140 141 140 140 142 142 141 141 141 141 140 144 143

—■—DBP 62 66 64 63 64 63 65 65 64 65 65 66 66

—•-— MBP 79 74 76 77 79 78 75 76 76 75 75 78 77

■■•*■■■ HR 59 58 56 57 56 58 57 59 59 57 57 56 57

Morphine dose, and time after infusion

Figure 8- 5. Mean (SEM) of
systemic haemodynamic variables
in the modified dose ranging study;
dose ranging study of IA
incremental doses of 1, 3, 10, 30,
100 mcg/ml/min of morphine (n=6).

8.3.2.4. Reproducibility

By comparing the results of two subjects who participate in the pilot and main studies

reproducibility of morphine-induced increases in FBF were assessed. A common range

of doses of baseline, 1, 3, 10, 30 and 100 mcg/ml/min were studied (Figure 8-6 A and

B). Unlike the second study, there were 10 minutes inter-treatment washout in the pilot.

Comparing the effects, however, showed that there was no major difference in the

pattern of FBF changes.

Figure 8-6-C shows the correlation between values from two visits of subject (1)

(1^=0.89, P<0.001), and subject (2) (1^=0.64, P=0.000). Figure 8-6-D compares the

forearm blood flow in ml/min/100ml in the two visits. As can be seen the results are

reasonably reproducible.
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for the two subjects) (n=2).

8.3.3. Discussion

The principle finding of this study is that IA morphine sulphate causes dose-dependent

arteriolar dilatation, and induces weal, flare and itching. The highest dose of morphine

in this study was 100 mcg/min/ml and with a forearm flow of 50 ml per minute would

produce a concentration of 2 mcg/ml. The concentration of morphine in this study is
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thus higher than concentrations in studies (peak 80 ng/ml, mcg/l) reported in chapters

VI and VII.

Development of the weal implies extravasation of fluid from the vasculature. Opioid-

induce non carcinogenic pulmonary edema and anaphylactoid reactions, and these

findings suggest a mechanism.
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8.4. Tachyphylaxis study

Dorland's 28th Medical Dictionary defines tolerance as diminution of response to a

stimulus after prolonged exposure, or repeated constant doses of a drug. It may also be

the need for an increasing dose to maintain a constant response. Acquired tolerance is

divided into pharmacokinetic (i.e. increased metabolism), or pharmacodynamic (i.e.

receptor density).

Tolerance to opioids (loss of efficacy in vitro and in vivo) is a well known consequence

of opioid administration. Tolerance to opioids happens because of altered receptor

sensitivity, desensitization of the opioid receptor signaling pathways and complex

adaptative changes that occur at different levels in the nervous system (Angers et al.,

2002; Winstanley & Walley, 1996). Opioids increase dopamine release by inhibiting

GABAergic input onto the dopaminergic neurons (Neal, 1997). Tolerance develops

more rapidly to euphoria, than to gastrointestinal effects (O'Brien, 2001) and no

tolerance is seen for pupillary effects. Sensitization or reverse tolerance should also be

considered, which shifts the dose response curve to the left.

Dorland's defines tachyphylaxis (rapid protection) as rapidly decreasing response to a

drug after administration of a few doses, or a rapidly decreasing response to a drug

following administration of the initial doses. Tachyphylaxis is less common and more

selective than tolerance. It represents the adaptive response in the tissues, or

exhaustion of the stores of the responsible agent, or slow dissociation of drug from

receptor-drug complex (Lewis, 1980). Histamine releasing agents and

sympathomimetic amines that act indirectly by releasing noradrenaline cause depletion

of available mediators and may result in tachyphylaxis (Nies & Spielberg, 1996).
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The mechanism of acute tolerance, however, can also partially be explained by

receptor internalisation.

A tachyphylaxis study was performed to examine changes in the magnitude of

response after short term continuous IA infusion of morphine.

8.4.1. Methods

On revue of effective doses from the previous study 50 mcg/ml/min IA morphine in

saline at 1ml/min for 30 minutes was used to establish the pattern of change in

response over a short period. Potential mediators were also investigated via concurrent

blood sampling from both brachial veins. Venous occlusion plethysmography was used

to measure effects. After obtaining the approval of the Research Ethics Committee and

with the written informed consent, eight healthy men without history of opioid abuse

were recruited to the study.

8.4.1.2. Plasma assays

Overall 240 ml blood was taken from each volunteer, 60 ml at baseline, at 10, and 30

minutes after starting morphine, and 60 min after discontinuing morphine. Samples of

30 ml were taken concurrently from both arms. Samples were prepared and labeled to

be suitable for serum tryptase, plasma histamine, t-PA, PAI-1, vWF, TNF-alpha, IL-6,

and assays. Sample collection, handling, centrifuging, storing and analysis are

summarized in chapter 2.

8.4.2. Results

Eight male subjects were studied with no history of smoking, hypertension,
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hypercholestrolaemia or positive result for drugs of abuse. Their age (mean (SD)) was

34.4 (5.2), body mass index 25.7 (1.1).

8.4.2.1. Forearm blood flow

Forearm blood flow results are shown in Figure 8-7 (A & B). The ratio of flow in

infused/non-infused arm at baseline was 1.2 (0.1). Baseline measurements of forearm

blood flow in the infused and non-infused arms were not significantly different. There

was no change in FBF of the non-infused arm. The baseline FBF was different among

individual subjects but all of the eight subjects responded 10 minutes after starting 50

mcg/ml/min morphine by an increase in FBF (p=0.020). The magnitude of response

was different in different individuals.

,2
o
_l
E
o
o

c

E
Ij
5

5

4 ■

3 -

2 ■

1 ■

0

<# <5* <A ^ ^ ^ <^
^ ^ ^ ^ a! A? A?

J» <£ J* J* ^
<£> <>? <£> 9?

0

1
o
o

5
■5
3
5

Morphine dose, and time after infusion

A) Individual results

•o® ^ ^ ^ ^ ^
^ o A?

Oi» xN xl? x^ xN° x^ *fo x^ X*° A^ A A A V A?
fP <<&^ A® J?

<0° <0° <0° ^
Morphine dose, and time after infusion

B) Mean (SEM)

Figure 8- 7. Forearm blood flow in A) individual subjects and B) mean (SEM) of eight subjects
that received continuous IA 50 mcg/min/ml for 30 minutes

In this study, the forearm blood flow response to a continuous infusion of 50 mcg/min of

morphine did not change over the 30-minute infusion period, consistent with no
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development of tachyphylaxis. Therefore, morphine induced receptor down-regulation

in the short term is unlikely.

Washout

During 30-minutes washout forearm blood flow did not change significantly (P=0.542),

which shows a short term persistent effect. This may suggest one of the following

possibilities; continued release of mediators such as histamine from the weal area;

continued effects of morphine in the area; irreversible binding of either morphine or one

of the mediators with half life of action of more than 30-minutes.

8.4.2.2. Skin effects

Continuous infusion of 50 mcg/ml/min caused measurable skin effects Picture 8-4.

A) Subject 3 B) Subject 6

Picture 8- 3. Local effects of IA morphine in two subjects who received 50 mcg/ml/min for 10
minutes.

Tachyphylaxis to 30 minutes continuous infusion of 50 mcg/min/ml morphine for area of

the flare (p=0.178; 10 min and 30 min) and intensity of itching (P=0.155) did not

develop However, the weal developed slowly Figure 8-8 (A to D). Itching duration was

shorter than flare and weal. This might be due to slow recovery from weal once it was
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established. All subjects reported an intensified feeling of itching during 10, 20 and 30

minutes measurements, when the cuffs were up.

Sixty minutes after stopping morphine, the skin response to morphine had almost

returned to baseline; this suggests a relatively slow recovery from the effects.
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Figure 8- 8. Mean (SEM) of A) area of flare in square centimeter, B) area of weal in square
centimeter, C) percentage of subjects with itching (%), D) intensity of itching (on a subjective
scale of 0 (no itching) to 9 irresistible itching) in eight subjects that received continuous IA 50
mcg/min/ml for 30 minutes in tachyphylaxis study
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8.4.2.3. Plasma assays

Morphine did not cause increase in venous histamine during the 30 minutes continuous

infusion of 50 mcg/min/ml. However, at 90 minutes the ratio of plasma concentration of

histamine in infused arm over non-infused arm significantly increased mean (95% CI)

7.2 (4.1, 10.4). This delayed response is probably due to diffusion of histamine from the

weal to the vessel lumen. Plasma concentrations of tryptase were not changed Figure

8-9 (A & B).
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Figure 8- 9. Mean (SEM) of plasma concentration of histamine (A) and tryptase (B) in mcg/l in
the tachyphylaxis study; IA continuous infusion of 50 mcg/ml/min morphine for 30 minutes (n=8)

8.4.2.4. Systemic effects

Systemic haemodynamic effects in this study are summarized in Figure 8-10. As can

be seen, none of the systolic, diastolic, mean blood pressure and heart rate variables

were changed during the study and all values were within normal ranges.
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Figure 8- 10. Mean (SEM) of systemic
haemodynamic variables in the
tachyphylaxis study; IA continuous
infusion of 50 mcg/ml/min morphine for
30 minutes (n=8)

8.4.3. Discussion

This study shows that morphine-induced effects on FBF, area of the flare and weal and

itching were not subject to tachyphylaxis over a 30 minutes period. As histamine

increased at 90 minutes, the delayed response seen might be due to histamine

diffusion into the lumen of the vessels from weal fluid.
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8.5. Mechanism of action of morphine

8.5.1. Introductory remarks

Previously in this chapter it has been shown that morphine causes peripheral arterio-

dilatation, with no tachyphylaxis over a 30 minutes infusion. However, the mechanisms

involved in the arteriolar effects of morphine are not clear. Based on in vitro data,

animal and a small number of human studies a range of mechanisms has been

suggested or can be postulated. They include: direct mu receptor stimulation (Stefano

et al., 1995a), histamine release (Doenicke et al., 1995; Flacke et al., 1987; Rosow et

al., 1982; Philbin et al., 1981; Fahmy et al., 1983), and increased nitric oxide release

(Stefano et al., 1995a; Cadet et al., 2000). In this study the potential mechanisms of this

peripherally mediated action of morphine were evaluated pharmacodynamically.

Involvement of opioid receptors, morphine-induced histamine release and nitric oxide

mediated pathways were tested.

8.5.2. Methods

Venous occlusion plethysmography was used to evaluate these effects. An open label,

randomised, four ways crossover trial was used. Approval of the local Research Ethics

Committee and the written informed consent of each subject were obtained. Eight

healthy men without history of opioid abuse were recruited to the study. Four study

protocols were compared, i) morphine alone, ii) morphine and the nitric oxide clamp (L-

NMMA) (see below), iii) morphine and naloxone, iv) morphine following pre-treatment

with cetirizine and cimetidine (Hi & H2 blockers). The order of these visits was

randomised. The NO-clamp was used as described previously (Helmy et al., 2003;

Verhaar et al., 1998; Stroes et al., ). Briefly, L-NMMA was continuously infused at a

dose of 4 micromol/min for 12 to 20 minutes to achieve maximal inhibition of local
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vascular endogenous NOS activity as measured by forearm blood flow. Thereafter,

sodium nitroprusside (SNP) was co-infused at titrated doses (80 to 600 ng/min) until

FBF had been restored to within 10% of baseline flow and sustained for at least two

consecutive FBF measurements. Once a stable baseline FBF was obtained, the "NO

clamp" was continued at these doses of L-NMMA and SNP for the reminder of the study

to allow simulation of basal NO activity during continuous inhibition of endogenous NO

synthesis. Due to light sensitivity of SNP it was prepared and infused in syringes

covered by opaque foil. Morphine was co-infused for 30 minutes in all visits.

Histamine antagonism was achieved by maximum therapeutic doses of the non-

sedative H-i cetirizine, which has been used for a similar purposes previously (Dux et

at., 2002; Grossmann et at., 1999; Clough et at., 1998), 10 mg per day for 2 days and

10 mg 1 hour before the study, and the H2 blocker cimetidine, 400 mg bid for 2 days

and 400 mg 1 hour before the study. For naloxone the therapeutic dose of a bolus of

400 meg intravenously, followed by an intravenous infusion of 200 meg/hour was co-

infused with morphine.

In all visits a 30 min infusion of normal saline was given before starting the study and

again for a 30 min washout period after discontinuation of morphine. Forearm blood

flow, flare, weal, itching, intensity of itching, blood pressure and heart rate were

measured every 10 minutes.

8.5.3. Results

The subjects age (mean (SEM)) was 34.4 (4.5) y and body mass index was 25.7 (1.0)

kg/m2.
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8.5.3.1. Forearm blood Flow

FBF in the infused arm during 4 visits are shown in Figure 8-11. The ratio of

infused/non-infused arm FBF at baseline was 1.2 (0.0). Overall forearm blood flow was

significantly different in all four visits (F= 8.6, P < 0.001) (Table 8-1). Post hoc

comparisons revealed that pre-treatment with histamine antagonists (mean difference

(md)=0.87 ml/min/100 ml of forearm volume, P=0.008), and the nitric oxide clamp

(md=1.23 ml/min/100 ml of forearm volume, P<0.001), significantly antagonised the

vasodilator effects of morphine. In contrast naloxone failed to reverse the effects.

However, there was no significant difference between morphine alone and other arms

with paired comparisons at individual time points.

Morphine dose, and time after infusion

Figure 8-11. Mean (SEM) of forearm blood flow in infused arm in Ml/min/100 ml of forearm
volume, morphine alone visit (-o-), morphine and naloxone visit ( • ), morphine and pre-
treatment with cetirizine and cimetidine (-*-), morphine and nitric oxide clamp visit ( ••■•■) (n=8).
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A) ANOVA for different visits
Variable F P value
Infused 8.621 <001
Inf/Cont ratio % 1.994 .116
Washout % 2.619 .054
Flare 13.261 <001
Weal 11.116 <001

Itching 2.508 .060

Intensity of itching 2.944 .034

B) Post hoc Multiple Comparisons with Bonferroni correction
Mean Difference (1

Variable VISIT (1) VISIT (2) & 2) SEM P value
Infused Morphine M & Naloxone .236 .2715 1.000

M & Fl-i H2 ,873(*) .2690 .008
M & NO Clamp 1.226C) .2715 .000

Flare Morphine M & Naloxone -19.071 (*) 6.7519 .031
M & Ph H2 22.201(*) 6.5580 .005
M & NO Clamp -6.342 6.6502 1.000

Weal Morphine M & Naloxone -9.908(*) 2.5442 .001
M & Hi H2 4.324 2.5442 .544
M & NO Clamp -.440 2.5800 1.000

Itching Morphine M & Naloxone .161 .0630 .068
M & Hi H2 .125 .0630 .290
M & NO Clamp .125 .0630 .290

Intensity Morphine M & Naloxone .732 .2865 .068
of itching M & Hi H2 .732 .2865 .068

M & NO Clamp .571 .2865 .284

Table 8- 1. Summary of analytical statistics for mechanism of action study. A) ANOVA for
difference in all visits B) Post hoc Multiple Comparisons with Bonferroni correction for
differences in individual visits, Infused; forearm blood flow (FBF) in infused arm, Inf/Cont ratio %;
percentage of change from baseline of FBF of infused/control arms, Flare; area of flare (cm2),
weal; area of weal (cm2), Itching; percentage of subjects with itching, Intensity of itching;
intensity of itching on a subjective scale of 0 (no itching) to 9 irresistible itching, Morphine;
morphine alone visit, M & Naloxone; morphine and naloxone visit, M & Fh H2; morphine and pre-
treatment with cetirizine and cimetidine, M & NO Clamp; morphine and nitric oxide clamp visit,
(*); The mean difference is significant at the 0.05 level, Mean Difference of (1 & 2); the overall
mean difference between two individual visits (positive values show antagonist effects, negative
values show synergistic effect, * show the difference is significant at the 0.05 level (n=8).

8.5.3.2. Skin effects

Flare

Area of the flare (cm2) in the infused arm in four visits is shown in Figure 8-12-A. Overall

area of the flare was significantly different in all four visits (F=13.3, P<0.001). Post hoc

comparisons revealed that pre-treatment with histamine antagonists significantly
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reduced the effects of morphine (md=22.2 cm2, P=0.005). In contrast nitric oxide clamp

failed to reverse the morphine-induced effects, and naloxone significantly increased the

flare area (md=-19.1 cm2, P= .031) (Table 8-1). There was no statistically significant

difference in pair-wise comparisons of individual time points between the morphine visit

and other arms.

Weal

Area of the weal (cm2) in the infused arm in the four visits is shown in Figure 8-12-B.

The area of the weal was significantly different in all four visits (F=11.1, P<0.001). Post

hoc comparisons revealed that pre-treatment with histamine antagonists or nitric oxide

clamp failed to reverse the morphine-induced effects, and naloxone significantly

intensified the weal area (md=-9.9 cm2, P=0.001) Table 8-1.

Presence of itching

Presence of itching (%) in the infused arm in four visits is shown in Figure 8-12-C. The

percentage of subjects who report itching was not significantly different in all four visits

(F=2.5, P=0.06). Post hoc comparisons revealed that pre-treatment with histamine

antagonists, nitric oxide clamp and naloxone failed to reverse the morphine-induced

effects Table 8-1.

202



Intra-arteriolar Morphine

120

100

80

60 -

40

20 -

0

Saline Morohine Saline

-M-n

■nn r\N

-.C5\ sON ,<>N<5^ <<^
' & x0> ^^ v5 v? ^ ^
r£> <£> " " *
&

.<*V

Morphine dose, and time after infusion

A) Area of flare

Saline I Morphine I Saline I

c,^ c,#"
^ ^V° VfN° ^ ^ V* M? V"'^ fy- „^®v ,^v ,^®v^ c,#"* c,&* <o*

Morphine dose, and time after infusion

□ Morphine ■ M & N HM&H1H2 0 M & NO clamp

C) Percentage of subjects with itching

120 -|

100

£ 80

5 60

Saline Morphine Saline

/> /> />
^ ^ A x^ x'V0 xT> <S>_Vi ■<& v? V? vj v? V* vj
^ J> J» JT - - »
^ o& o& oS> <o° <c° <6"

^ x-r x-r

Morphine dose, and time after infusion

B) Area of weal

9

8

7

6

5

4

3 -

2 -

1 -

0

Saline Morphine I Saline

s»v'~ e>*N
^~c&^ cliSx\CM <-c\CW '

<&

Morphine dose, and time after infusion

D) Intensity of itching

Figure 8- 12. Mean (SEM) of A) area of flare in square centimetre, B) area of weal in square
centimetre, C) percentage of subjects with itching (%), D) intensity of itching (on a subjective
scale of 0 (no itching) to 9 irresistible itching), morphine alone visit (-o—), morphine and
naloxone visit (-♦-), morphine and pre-treatment with cetirizine and cimetidine (-3K-), morphine
and nitric oxide clamp visit ( •-■) (n=8).

Intensity of itching

Intensity of itching in the infused arm in four visits is shown in Figure 8-12-D. The

intensity of itching was significantly different in four visits (F=2.9, P=0.034). Post hoc

comparisons revealed that pre-treatment with histamine antagonists (md=0.7 score,

P=0.068) and naloxone (md=0.7 score, P=0.068) showed a non-significant tendency to
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antagonise morphine-induced effects. Nitric oxide clamp has no effect on these effects

Table 8-3. The overall significant difference was due to the magnitude of differences in

visits with different antagonists.

8.5.3.3. Systemic effects

Systemic haemodynamic effects in this study are summarized in Figure 8-13. As can be

seen, none of the systolic, diastolic, mean blood pressure and heart rate variables were

changed during the study and all values were within normal ranges.
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8.5.3.4. Summary of the results

To simplify these findings, the overall effects of the 3 potential antagonists on IA

morphine-induced-changes are summarised in Table 8-2.

FBF in infused arm

(ml/min/100 ml of
forearm volume)

Flare (mean)
(cm2)

Weal (mean)
(cm2)

Presence

itching (%)
j Intensity of

itching
(mean)

Antagonised1 by
Hi H2 blockers 0.88 (*) 22.20 (*) 4.324 0.13 0.73

NO clamp 1.23 (*) -6.34 -0.44 0.13 0.57
Naloxone 0.24 -19.07 (*) -0.91 (*) 0.16 0.73

Table 8- 2. Summary of antagonists' effects. The overall mean difference between two individual
visits are shown (positive values show antagonist effects, negative values show synergistic
effect), *; significant effect.

In summary, Fh and H2 blockers significantly antagonised the morphine-induced

increases in forearm blood flow and area of the flare, showed a non significant

tendency to antagonise morphine-induced intensity of itching but had no effect on the

other variables measured. Nitric oxide clamp significantly antagonised morphine-

induced increase in forearm blood flow, but failed to antagonise skin variables.

Naloxone, in contrast, significantly intensified the local effects of morphine on flare and

weal, but had no effect on blood flow. Forearm blood flow in the non-infused arm, blood

pressure and heart rate were stable throughout the four visits Figure 8-4.

8.5.4. Discussion

This study showed that naloxone at the dose administered failed to antagonise

morphine-induced effects on FBF, flare, weal and itching. This suggests that these

effects of morphine are not mediated via opioid receptors. This finding is in contrast with

the previously claim of the existence of p3 receptors in the vasculature (Stefano et ai,

1995b). Reports about the existence of a p3 receptor in vasculature by this group have

not been independently confirmed.
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The present findings, however, are consistent with some parts of this groups work on

remifentanil in which it failed to act as a vasodilator in the vasculature (Bilfinger et a!.,

1998a). Remifentanil is a selective mu agonist, which does not induce histamine

release and only induces minor haemodynamic effects systematically (Sebel et ai,

1995). Taken together, it can be postulated that histamine release, the difference

between morphine and remifentanil, is the cause of the alleged p3 receptor action on

the vasculature. This is consistent with this study.

Naloxone intensified the effect of morphine in causing flare and weal. This compound is

a competitive antagonist of morphine with a similar chemical structure. The intensifying

effect of naloxone might be due to an action on non-opioid receptors in inducing of

histamine release or to opiod counter-regulatory pathways. Histamine release is not a

function of therapeutic effects of naloxone (BNF, 2003).

Nitric oxide did not antagonise morphine-induced skin effects (flare, weal, and itching),

therefore, these effects of morphine are nitric oxide pathway independent. However, it

reversed arteriolar effects, and therefore, morphine directly or indirectly acts on arteries

via the nitric oxide pathway.

In this study, histamine receptor blockers successfully reversed morphine induced FBF

changes and area of the flare, suggesting these effects are mediated via histamine.

Histamine receptor antagonists did not significantly prevent the development of

morphine-induced weal or presence of itching. This might be because their dose was

too low, or the power of the study was limited. It might also indicate a different mode of

action of morphine in preventing weal and itching.
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Overall, this study suggests that morphine-induced arteriodilatation is related to opioid

induced secondary mechanisms related to histamine release. Either morphine itself, or

the secondary release of histamine activates nitric oxide mechanisms to cause

arteriodilatation. This experiment was not designed to explore this hypothesis. It also

shows that morphine-induced flare and probably to a lesser extend weal are related to

histamine release.

Figure 8-14 summarises the potential mechanisms of action of morphine on the

vasculature.

Morphine 80 mcg/min/ml IA

Axon reflex or
nerve-mediated

Extravasation:

J of fluid

H; Histamine receptors
M; Morphine
MR; M receptor

Occlusion

plethysmography

Figure 8- 14. Pathways of IA morphine-induced arteriolar and dermal effects, definite pathway
probable pathway no pathway (<S>).
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8.6. Overall discussion of FBF studies

In dose ranging studies I have shown that a range of 30 to 300 mcg/ml/min morphine

sulphate intra-arteriolarly causes dose dependent increases in FBF and induces flare,

weal and itching. Basal forearm blood flow is about 50ml/min, which is almost 100 fold

lower than cardiac output (Wilkinson & Webb, 2001), thus the resulting concentrations

of these doses would be 0.6 to 3 mcg/ml.

In systemic studies, a total dose of 16 mg IV morphine produced a maximal venous

concentration of 0.08 mcg/ml, which is similar to other observed therapeutic studies

(Hagen et at., 2005). The effective concentrations of morphine in FBF studies reported

in this chapter are 7.5 to 37.5 times higher than morphine concentrations in the whole

man studies. Arteriolar and skin effects are mediated via histamine as shown by

measuring plasma histamine level and also antagonising its effects. The likely source of

histamine is mast cells, which are located in surrounding supporting tissues of arteries

(Soter, 1999; Abbas & Lichtman, 2004; Steven & Lowe, 2005). This is also consistent

with the fact that various drugs including morphine can directly degranulate mast cells

and release histamine from them (Soter, 1999), and previous findings that morphine

and diamorphine release histamine from mast cells rather than basophiles (Withington

et at., 1993). These findings suggest that surrounding supporting tissues of arteries may

influence vascular tone.

In anaphylactoid reactions mediators such as histamine are involved and released by

compounds acting directly on mast cells in a non-immunological way in which previous

sensitization is not needed (Chapel et at., 1999). Morphine is known to induce

anaphylactoid reactions (Fahmy, 1981). Findings of this chapter suggest that morphine
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concentration might be responsible for anaphylactic responses, and drug induced acute

urticaria and itching caused by opioids.

Opioids, including morphine, methadone and diamorphine, in overdose and during high

dose treatment for acute pain have also been shown to cause non-cardiac pulmonary

oedema (NCPE) (Frishman et al., 2003; Lusk & Maloley, 1988; Sporer, 1999; Sporer &

Dorn, 2001; Corkery et al., 2004; Bruera & Miller, 1989). Common features of NCPE

includes damage to and increased permeability of vascular endothelium (Overland &

Severinghaus, 1978). The mechanism, by which opioids, particularly in overdose, cause

non-cardiac pulmonary oedema, may in part be explained by this study. Increased

permeability causes weal and NCPE. Taken together these findings also indicate that

opioid-induced noncardic pulmonary oedema might be a dose response effect.

The effects were dose dependent at lower doses, and accelerated at doses of 100-300

mcg/ml/min, and the curve did not become S shape; therefore, a quantal response (all-

or-none) might be plausible at these doses. If such a phenomenon happens in whole

man a large amount of fluid will extravasate, and it is plausible that a intravascular

hypovolemic state may develop.

Diamorphine overdose has been shown to induce profound circulatory shock (Remskar

et al., 1998). Morphine exacerbated anaphylactic shock in mice by stimulating central

opiate receptors (Amir, 1983). In this study high concentration of morphine caused

extravasation. If extravasation systematically occurs opioid might facilitate development

of shock by inducing intravascular hypovolemia.
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In some studies release of endogenous opioids was provoked by induction of

anaphylaxis (Amir, 1988). Morphine exacerbates histamine shock in mice (Amir, 1984).

An opioid-dependent pathway has been previously suggested to be involved in the

recovery from endotoxin shock (D'Amato & Holaday, 1984). In anaphylaxis mast cell or

basophil mediators cause bronchial constriction, massive tissue oedema, and

cardiovascular collapse. Overall, these findings suggest opioids may be involved in

anaphylactoid reactions, drug induced non-cardiac pulmonary oedema and

anaphyphylaxis, and endotoxin shock. Opioids by inducing systemic extravasation and

hypovolemia might also contribute to the pathophysiology of shock.

Nitric oxide is well recognized as a target for cardiovascular therapies. Enhanced

formation of NO contributes to the pathophysiology of experimental anaphylactic shock

(Szabo & Thiemermann, 1994). The current studies indicate that nitric oxide plays a

role in morphine-induced arteriodilatation. A schematic illustrating of the potential

mechanisms of morphine induced effects is shown in Figure 8-15.

In all these studies, response and antagonism of FBF changes were different among

different individuals, raising the possibility of genetic contribution to these effects. HLA

DR4, HLA DRB4 53, and HLA DQ8 and DQA 3011/12 have been seen more frequently

with patients with chronic idiopathic urticaria (Soter, 1999).

In this chapter a dose response in the vasculature and at the skin were reported. As the

time period between drug administration and effects is short (less than 10 minutes)

receptor activation is presumably mediated via parent drug. Morphine-induced release

of histamine from mast cells was not antagonised by naloxone. This raises the
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possibility of the existence of an opioid receptor for morphine on mast cells (extra

circulatory opioid receptors) independent of naloxone antagonismin vivo. Activation of

this receptor will release histamine from mast cells. However, as only therapeutic doses

of naloxone were used further studies are indicated.

As a similar pathophysiology for drug induced anaphylactoid reaction and non-cardiac

pulmonary oedema is suggested further studies on H-i and H2 blockers may be

indicated. In a similar way, pretreated with Ht and H2 blockers might be relevant to

|Morphine

Mast cell

degradation

Histamine
release ^Permeability —► Extravasation

Neurogenic reflex Itching

Weal

Axon reflex -*■ Dilation of arterioles -* Flare

Nitric
oxide

Intra vascular

hypovolemia

Anaphylactic shock
Endotoxin shock

Shock —

Noncardiac pulmonary oedema

Anaphylactoid reactions

Anaphyphylaxis

Figure 8- 15. Schematic of the pathophysiology of opioid induced effects based on the findings
of the forearm studies.
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treatment of acute pain and surgery with high doses of morphine. This is consistent with

previous observed benefits of histamine blockers in haemodynamic stabilizing in

anesthesia for the patients who were receiving high doses of morphine (Philbin et at.,

1981; Sanchez et al., 2000).

Schematic of the pathophysiology of opioid induced effects based on the findings of the

forearm studies is shown in Figure 8-15. . In this experiment a skin triple response was

induced intra-arterially, suggesting a model for experimental studies on drug-induced

anaphylactoid reactions in man.

8.7. Conclusion

A peripheral site of action on vasculature exists for morphine, which is mediated, at

least in part, via histamine, is dose dependent, and is activated in high concentrations

of morphine (0.6 to 3 mcg/ml). Involvement of peri-arteriolar mast cell in this process

indicates that arteriolar surrounding supporting tissues may contribute to the control of

vascular tone. These effects can be antagonized by anti-histamines. The observed

arteriolar and skin effects are mediated via histamine, but arteriolar effects are both

histamine and nitric oxide related.

High plasma concentrations of opioids maybe the pathophysiology of opioid induced

non-cardiac pulmonary edema and anaphylactoid reactions. ^ and H2 blockers should

be studied in the management of non-cardiac pulmonary oedema. Patients receiving

high doses of morphine in surgery and severe pain may be at risk of the effects

reported here.
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Discussion

9.1. Summary of the field of study

The history of opioids started 6000 years ago in Mesopatamia. Egyptians recognised

their toxicity in 1500 B.C (Gettler, 1956). In the Greek and Islamic-Persian "golden

ages" they were used as a "Teryak" or a universal remedy, and in surgery (Al-ghazal,

2003). In late medieval and early renaissance Europe, opium became "the stone of

immortality". While in the 20th century a massive international body of regulation

repeatedly failed to control opioid-induced addiction.

Currently, 19 pure opioids, 4 combination products, and 16 OTC opioid- containing

products are available in the UK (BNF, 2003) within association with opioid illicit supply

and excess risk of dependency, opioid overdose has become a common health

problem in Scotland. Among the opioids, morphine is extensively used in acute

medicine, and for end stage patients has a long term indication. This product is

indicated for situations where haemodynamic effects, such as pain control in myocardial

infarction and management of acute heart failure, may be important (Fuster, 2001;

Dollery, 1999).

Despite this long history, heavy regulation of use, impurity of illegal supplies, and

possibility of inducing dependence little work has been conducted on vascular effects of

opioids in healthy volunteers. In addition, major central nervous system, respiratory and

gastrointestinal depressor effects of opioids have overshadowed potential

cardiovascular effects, and gradually a concept that opioids have little effect on the

cardiovascular system in man in the supine position has developed (Gutstein & Akil,

2001). This is despite a body of evidence from animal and patient studies that show

opioid-induced cardiovascular effects. In addition, opioids and endorphins have been
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shown to be involved in many physiological and pathological processes.

9.2. Summary of the findings of this thesis

In my project, I have firstly describe the current situation in terms of determining opioid

prescriptions, non-fatal overdose events and overdose deaths in Scotland and

Edinburgh and introduced a series of indices for epidemiological use. Secondly, I

studied the concept that opioids have effects on the cardiovascular system, and

clarified the extent to which CNS and respiratory variables are involved in

haemodynamic effects of morphine. In particular I have attempted to demonstrate a

separation between non-opioid effects of opioids, such as dextropropoxyphene-induced

sodium channel blocker effects and morphine-induced histamine release, and effects

due to a direct action at opioid receptors. I conducted a series of studies aimed at

defining an independent peripheral vascular site of action for morphine in vivo in man,

and identifying the mechanism of action of direct effects of morphine on arterioles. The

theme of this thesis has been on both opioid effects, and effects associated with opioids

that are due to secondary mechanisms of opioids on the cardiovascular system.

In this thesis, a range of both epidemiological, patient and volunteer studies are

reported. In chapter 3, opioid overdose are shown to have increased 14 times more

than other overdoses in Edinburgh in the past 4 decades.

The predisposing factors for overdose are outlined. Fatal Toxicity Indices (FTI) for

individual opioids in Scotland were calculated using prescription data, and telephone

enquiries, TOXBASE accesses, and hospital discharge data used to develop a series of

fatality ratios, FTIs, designed to reduce the effects of confounders that influence the
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assessment of drug toxicity in overdose. A similar methodology was used to relate non¬

fatal overdose consequences to prescriptions, and toxic morbidity indices (TMIs)

calculated. I suggested an integrated approach by calculating FTIs and TMIs as the

gold standard for toxico-vigilance. Non fatal and fatal consequences of overdose are

suggested as independent variables.

Using these approaches I calculated that co-proxamol has a more than 10 times excess

fatal hazard in comparison to co-codamol and co-dydramol, while their TMIs are similar.

This led, in part, to withdrawal of this drug in UK. I showed that dihydrocodeine appears

safer than methadone, and may therefore be a better drug for substitution purposes. I

also estimated the availability of diamorphine from illicit supply using overdose data. I

used national mortality data to study the probability ratio of death from single agent or

multiple agent ingestions (MSDPR). Using this I showed that diamorphine, morphine

and codeine, which are all metabolised to morphine, seem far more dangerous in co-

intoxication than other opioids. This data is in keeping with animal work suggesting an

interaction with benzodiazepines (Burrows et al., 2003; Klys et at., 2001). Later, in

healthy volunteers I showed that morphine-induced vomiting happens 3 hours after

injection, raising the possibility of involvement of a morphine metabolite. Taken

together, morphine 6 glucronide or one of the other morphine metabolites might be

responsible for side effects and toxic interactions.

Currently it is believed that opioids in general do not induce electrophysiological effects

in overdose. In chapter 4, I have explored the effects of dextropropoxyphene in acute

overdose in man, and shown that QRS duration is prolonged in co-proxamol overdose,

an effect not found following co-codamol or co-dydramol poisoning. These
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electrophysiological effects were similar to other sodium channel blocking agents. In a

larger study including retrospective data from Australia I showed a dose dependency of

this phenomenon, using paracetamol levels as a surrogate for dextropropoxyphene

dose. This study may explain the cause of the excess mortality risk I have described in

overdose with co-proxamol, and may suggest why some of the individuals die so

quickly after co-proxamol overdose. These findings are compatible with

dextropropoxyphene being a sodium channel blocker (Roth & Seeman, 1971;

Hondeghem & Katzung, 1977; Lund-Jacobsen, 1978; Stork et al., 1995; Henry &

Cassidy, 1986), and death perhaps being due to a combination of respiratory

depression from its opioid effects and the sodium channel blocking effects my studies

indicate.

It is known that in anaesthetised patients where high doses of opioids are used the

cardiovascular system is affected (Pant et al., 1983; Hoar et al., 1981; Yoshimoto etal.,

2005). In chapter 5, I illustrated the haemodynamic profile of dihydrocodeine, and

methadone in overdose. Depressor actions on aortic and peripheral systolic, diastolic,

pulse, and end systolic pressures, and 02 saturation were shown in comparison to a

non-opioid poisoned control group. I also applied SphygmoCor techniques to measure

cardiovascular effects for the first time in overdose patients and was thus able to

exclude an action on arterial stiffness. My findings suggest that 02 saturation under

95% is probably a feature of cardiovascular depression in these patients. These effects

have a clinical impact on decisions for admission, duration of hospital admission, use of

antidotes and the possible occurrence of complications.
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Further work was required to clarify the potential mechanisms through which opioids

influence the cardiovascular system, including contributions to effects on inotropism,

systemic vascular resistance, central nervous system depression and respiratory

function. In addition, the dose-response-effect relationship of opioids for any changes

on the cardiovascular system needed to be estimated. In chapter 6, I studied the effects

of therapeutic doses of morphine on the cardiovascular system in healthy volunteers in

the supine position and expanded the initial findings in patients. I demonstrated

cardiovascular depressor effects of 16 mg intravenous morphine, which were not clearly

dose-dependent. These effects did not seem to be mediated via histamine or

catecholamines. Reaction time, an index of central nervous system depression, was

also unrelated to cardiovascular effects. Lower 02 saturation, and higher end tidal

volume C02, potentially contributed to the haemodynamic effects. Overall the findings

suggest that morphine decreased afterload, was negatively inotropic, positively

chronotropic, had no effect on cardiac work, but seemed to maintain left ventricular

performance. These changes were also not related to arterial stiffness. I concluded

vasodilatation is the likely mechanism of action of morphine. These findings also

suggest that morphine may have beneficial effects in congestive heart failure and

myocardial infarction due to its haemodynamic properties.

In chapter 7, the influence of morphine on the cardiovascular system was further

clarified. An antagonist study was conducted, in which naloxone antagonized a range of

morphine-induced haemodynamic effects. As the hypotensive effects of morphine in

part were not antagonised by the dose of naloxone used, they might be due effects of

morphine on a receptor other than a mu opioid one and therefore tolerance to these
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effects might not develop. The mechanism of observed effects, however, was not

related to arterial stiffness, histamine release, oxygen saturation, or end tidal C02.

Further work was required to clarify the potential vascular mechanisms through which

opioids influence haemodynamics in healthy volunteers. Using occlusion

plethysmograph and intra arteriolar infusion in chapter 8, I showed the existence of a

peripheral site of action for morphine on arteries, at high concentrations 0.6 to 3

mcg/ml. These effects were dose dependent. Weal, flare and itching also developed

rapidly and were dose dependant. Tachyphylaxis to the vascular effects did not develop

over 30 minutes. By plasma histamine measurement, and by using pre treatment with

anti-histamines, histamine was shown to have an important role for both arteriolar and

skin effects. The peripheral site of action is probably mediated via mast cell release of

histamine, and thus under these circumstances vascular tone is affected by transmitter

release from arteriolar surrounding supporting tissues. Arteriolar effects were also

mediated via nitric oxide, as L-NMMA also blocked this response.

Morphine is known to induce anaphylactoid reactions (Soter, 1999). The novel

observations in this thesis may explain the pathophysiology of opioid induced non-

cardiac pulmonary oedema, and anaphylactoid reactions. They may also be relevant to

the suggested role of opioids in hypovolemia shock. These finding raise the possibility

of the existence of a morphine effect on mast cells which at higher doses-causes

histamine release which may lead to hypovolemia due to tissue redistribution of fluid as

seen in the weal reaction in these studies. If further work confirms this fT and H2

blockade should be considered in the management of patients with opioid induced non-

cardiac pulmonary oedema, and those receiving high doses of morphine such as
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surgery and acute pain, and opioid overdoses will benefit from pre-treated by Hi and H2

blocker.

9.3. The message of this thesis

In overdose, methadone and dihydrocodeine are haemodynamic depressors, due to

vasodilatation rather than an action on arterial stiffness.

In comparison to other combinations of opioids and paracetamol, co-proxamol is more

than ten times more likely to be fatal in overdose. This difference is probably caused by

sodium channel blocking effects which my studies indicate are likely to be dose

dependant. It should be withdrawn from the market on toxicological grounds.

In healthy volunteers, morphine is a haemodynamic depressor at doses around the

therapeutic range, but this effect was not dose-dependent in my experimental model in

man. Morphine decreases afterload and was negatively inotropic. These effects were

partly antagonised by naloxone.

High concentrations of morphine directly affect mast cells, and release histamine. This

transmitter caused weal, flare and itching. Arteriodilatation was also seen and as this

was antagonised by L-NMMA, nitric oxide is one of the mediators. Antihistamines also

block this affect, suggesting release of histamine. Histamine release was also observed

by plasma measurement.

These findings together suggest that the haemodynamic effects of morphine can be

divided into those directly related to an action on opioid receptors, probably p, those
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caused by morphine that are opioid receptor independent (histamine and nitric oxide),

and those due to interaction with secondary mechanisms (02 and C02). An important

effect is arterial dilatation, but arterial stiffness and catecholamines played no role in its

mechanism in this work.

9.4. Future plans

I have shown the excess risk of co-proxamol in overdose, and this tablet is now

gradually being withdrawn from the market. The next stage should be evaluating the

impact of this withdrawal to see if mortality rate is Scotland has actually been affected.

I have shown that morphine is peripherally active. N-methylnaltrexone is a non selective

opioid receptor antagonist, which has limited ability to cross blood brain barrier, (Yuan

et al., 1996; Yuan et al., 1999; Yuan et at., 2000; Yuan et al., 2002; Yuan, 2003). This

chemical should be tested as an antagonist as it would allow a differential of effects due

to respiratory depression and those due to peripheral actions of morphine.

In opioid overdose, oxygen saturation of less than 95% was co-inside with low blood

pressure. Concurrent effect of high C02 level should be investigated in overdose cases.

I have shown that morphine induced changes were different among individuals, and

blood samples have been taken for HLA typing. Prime suspects would be HLA DR4,

HLA DRB4 53, and HLA DQ8 and DQA 3011/12, which have been seen more

frequently with patients with chronic idiopathic urticaria (Soter, 1999). The observed

effects may activate, or be a result of activation of many pathways. Blood samples for

IL-6, tPA, and PAI-1, vWF and TNF-« have also been taken, but not yet analysed.
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Morphine-induced forearm blood flow changes should be tested in dependent subjects

to explore the effects of dependency on these effects. I have shown that combination of

Hi and H2 blockers antagonise the effects of morphine. The next stage would be

examining their effects separately. Future studies with larger doses of naloxone, and

lower doses of morphine are also suggested.
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Appendix i. List of ethics approval forms
Table l-l. List of ethics approval forms, *; Liability of patients undergoing research in RIE is
covered by the NHS Trust.

Date Signed Number Organisation
Epidemiological studies — -

Patient protocols
08.10.02 Walter Hunter MREC/02/0/85 Multi-Centre Research Ethic committee for Scotland
01.11.02 Liz Jamieson MREC/02/0/85 Multi-Centre Research Ethic committee for Scotland
01.11.02 Walter Hunter MREC/02/0/85 Multi-Centre Research Ethic committee for Scotland
13.01.03 Liz Jamieson MREC/02/0/85 Multi-Centre Research Ethic committee for Scotland
03.06.03 Heather Cubie MREC/02/0/85 Research & Development Office

Whole man healthy volunteer studies
23.09.03 Heather Cubie LREC/2003/3/57 Research & Development Office
25.09.03 Heather Cubie LREC/2003/3/57 Research & Development Office
21.10.03 Liz Harden LREC/2003/3/57 Healthy Volunteer/Student Research Ethics Committee
23.12.03 Heather Cubie LREC/2003/3/57 Research & Development Office
25.11.03 Alastair G Reid LREC/2003/3/57 Health and Safety Department
26.01.04 Liz Harden LREC/2003/3/89 Lothian Research Committee 03
10.02.04 Alastair G Reid LREC/2003/3/89 Health and Safety Department
13.03.04 Alastair G Reid LREC/2003/3/89 Health and Safety Department
04.04.04 Liz Harden LREC/2003/3/57 Lothian Research Committee 03
01.06.04 Liz Harden LREC/2003/3/57 Lothian Research Committee 03
08.06.04 Heather Cubie LREC/2003/3/57 Research & Development Office
16.06.04 Alastair G Reid LREC/2003/3/57 Health and Safety Department

Forearm healthy volunteer studies
26.06.04 Liz Harden LREC/2003/3/89 Healthy Volunteers/Student Research Ethics Committee
31.08.04 Liz Harden LREC/2003/3/89 Lothian Local Research Committee 03
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Appendix II. Equipment

Table ll-l. Equipment that were used in these studies

Instruments Model Manufactured by Country Expiry date
Intra-arteriolar set

Epidural catheter 16G CT21 65L PORTEX UK 12.2008
Needle 27 SWG

steel
COOPER'S NEEDLE WORK Ltd Birmingham, UK ~

Rocialle Steriler Rocialle Medical Limited Cambridge, UK —

COTTRELL StickyWax COTTRELL Company England ~

LATEX MEDICAL SHERMOND SURGICAL supply UK 06.2005
GLOVES limited

I.V. Cannula B.D BECTON DICKINSON Venflon™
18 GA 1.2*45 mm Green 12.2005

17 GA 1.4*45 mm White 12.2005

20 GA1.0*32 mm Pink 12.2005

30 GA % 0.3*13 mm 08.2006

Sterile Needles BD Microlance™ 3
0.8*40 mm Green 12.2005

0.6*30 mm Blue 12.2005

Sterile Pre-injection Swabs Isopropyl Alcohol UK 08.2009

Transparent Dressing with 7*8.8 cm Tegaderm™ USA 01.2006

Security Tab
Topper 8 Swabs 5*5 cm Johnson & Johnson Medical

Limited
UK 03.2009

Blue line Manometer Portex Ltd UK 02.07

Connecting Tube
Airflow Sensor Cannula Adult size PRO-TEK WA, USA -

DP 3500 Dispensing Pin USA 09.2008

IV
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Appendix III. Raw data

Electrophysiological changes in opioid overdose

Table lll-l. Electrophysiological effects of co-proxamol

Stu Age Sex time Numb T.I. T.I P P SB DB HR PR QR QT QTc
dy er ECG P P SD

1 24 1 17 20 5 70 131 64 72 152 102 384 423
1 45 0 6 14 5.5 25 137 87 70 185 77 402 434
1 31 1 20 19 4 82 135 85 80
1 31 1 7.5 30 5.5 0 57 193 89 402 391
1 37 0 12 50 4 116 65 238 118 404 420
1 22 0 19 50 7 87 152 75 84 174 94 339 401
1 25 1 3 30 28 88 72 207 107 408 446
1 37 1 11 75 130 100 368 411
1 48 0 23 2.5 0 71 175 81 361 392

1 36 1 20 1.75 75 95 177 92 327 411
1 37 0 20 70 15 15 107 114 75 84 200 115 393 465
1 38 0 18 14 5 89 75 197 91 377 421
1 37 0 0 50 6 6 83 93 158 117 352 438
1 0 18 40 5 4 55 112 65 89 158 81 361 439
1 14 0 15 40 1.5 4.5 125 146 72 145 124 97 256 397
1 36 0 6 0 139 89 127 124 78 292 424
1 32 0 19 25 5.5 5.5 159 72 167 98 399 437
1 52 1 2 5 5 280 150 70 103 165 139 374 454
1 36 1 23 2 4 34 130 80 140 86 98 285 435
1 42 1 20 30 3 4 97 130 75 74 220 97 374 415
1 46 0 20 35 1 7 221 109 60 90 178 127 366 448
1 64 0 20 43 112 64 71 157 85 442 480
1 38 0 17 10 4.5 6 23 106 64 65 224 106 416 432
1 18 0 1 30 3 4 101 93 212 108 356 443
1 44 1 10 50 10 7.5 18 130 83 65 156 91 388 403
1 45 1 3.5 16 6 4 44 139 80 82 191 101 338 395
1 78 0 19 8 13 17 116 75 78 178 103 385 438
1 54 1 17 10 2 4 0 174 94 136 105 124 298 448
1 13 0 11 50 8 7 340 96 191 128 354 447
1 56 102 180 97 326 425
1 56 1 20 60 2 4 24 108 62 69 170 83 373 399
1 36 1 20 70 3 4 118 150 80 124 112 111 311 447
1 16 0 21 24 2 4 78 125 94 100 197 86 342 441
1 23 1 17 10 3 4 35 83 168 81 336 395
2 37 0 20 70 11 15 107 114 75 84 200 115 393 465
2 38 0 18 14 5 89 75 197 91 377 421
2 37 0 0 6 6 83 76 163 104 392 441
2 0 18 40 5 4 55 112 65 89 158 81 361 439
2 34 1 3.3 48 2 4 130 122 82 91 160 107 354 435
2 24 1 9.3 55 2 4 73 120 70 77 143 109 349 395
2 30 0 6 99 3 4 124 70 78 172 87 365 418
2 46 0 20 7 7 221 109 60 90 178 127 366 448
2 59 1 17 20 2.5 4 13 54 155 103 405 384
2 64 1 5.5 70 12.5 11 79 119 74 81 196 122 402 467
2 20 1 15 9 4 30 139 71 88 137 107 333 403
2 40 1 2 30 7 12 0 125 75 70 158 111 403 435
2 28 0 22 50 1.5 4 50 112 57 75 170 83 391 437
2 55 1 18 17 2 6 21 102 68 58 181 106 422 414
2 21 1 1.5 98 5 4 36 117 60 56 171 114 379 366
2 37 0 17 70 26 26 0 128 74 83 191 87 374 439
2 55 1 15 29 150 82 76 169 101 390 438
2 33 1 73 2 4 91 88 140 103 356 431
2 14 0 14 4 4 21 129 69 70 152 92 361 389
2 1 7 4 226 68 164 81 424 451

V
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Stu Age Sex time
dy

Numb
er

T.I.
ECG

T.I P P SB
P

DB
P

HR PR QR QT
SD

QTc

3 145 140 100 383
3 1.28 3.8 76 123 74 79 180 80 426
3 7.25 7 94 184 123 114 180 100 421
3 13.7 13 222 150 80 80 180 90 427
3 1.25 3.8 451 143 77 95 160 80 425
3 15 150 100 62
3 4.92 4.7 0 160 100 462
3 1.32 2.3 40 148 97 128 160 100 463
3 3.43 4 0 161 107 104 140 80 427
3 17.6 18 0 126 70 75 140 90 444
3 2.18 4.3 259 108 54 71 160 80 507
3 164 144 83 60 170 85 440
3 3.5 131 134 78 71
3 9 10 0 156 110 70 180 90 403
3 2.82 3 465 117 67 83 160 80 453
3 7.08 2 79 124 74 86 180 90 447
3 1.6 1.5 0 131 85 128 160 85 434
3 7 129 93 72 170 80 437
3 6.75 7.3 24 152 83 102 180 80 464
3 84 137 87 61 160 100 394
3 2.87 4 332 152 100 55 140 80 432
3 2.55 2.3 388 115 82 97 180 80 438
3 2.8 535 145 87 81
3 5.1 5 124 134 81 70 160 85 425
3 4.28 4 71 138 91 82 200 80 447
3 1.58 140 27 106 160 80 417
3 5 110 65 110 180 80 528
3 1.07 4.6 6 130 88 110 160 75 475
3 5.25 109 72 90 180 80 447
3 1.2 4.7 22 134 88 80 140 80 436

Study; 1 retrospective Edinburgh, 2 prospective Edinburgh, 3 retrospective, Australia, Sex; 1
male, P; paracetamol level, T.I; Time Interval

VII
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Haemodynamic changes in opioid overdose study

Table lll-ll. Haemodynamic effects of dihydrocodeine, methadone and paracetamol
overdoses

Dr Ag S TS HR SBP DB MB AS A PP AP Al DD ESP o2 Time

ug e e

X

P P BP D

BP

P P interv

al

1 D 36 1 3 87 98 51 67 83 51 47 32 35 63 67 98 0-5

2 D 10 78 102 52 72 89 54 50 35 5 61 76 96 6-11

3 D 12 75 123 60 79 105 61 63 44 15 63 72 98 12-17

4 D 19 72 127 62 84 102 63 65 39 19 60 69 99 18-23

5 D

6 D 37 0 10 55 123 48 76 114 62 75 52 23 66 79 97 6-11

7 D 17 55 94 60 73 88 61 34 27 29 66 84 96 12-17

8 D 24 57 139 59 85 115 60 80 55 43 63 87 98 18-23

9 D 27 5 76 102 48 66 95 64 54 31 7 65 83 96 0-5

10 D 8 76 116 65 80 97 67 51 30 -3 67 89 96 6-11

11 D 12 79 123 81 92 106 82 42 24 -8 65 96 95 12-17

12 D 19 84 122 82 93 105 83 40 22 -9 63 96 95 18-23

13 D 48 0 5 80 70 40 58 72 46 30 26 11 61 75 91 0-5

14 D 11 86 84 47 62 76 49 37 27 25 64 73 91 6-11

15 D 17 86 84 47 64 78 50 37 28 28 55 71 93 12-17

16 D 19 88 79 44 57 71 45 35 26 26 56 62 92 18-23

17 D

18 D 29 0 10 91 130 79 98 118 81 51 37 27 57 108 95 6-11

19 D 16 87 117 64 80 104 65 53 39 17 60 91 95 12-17

20 D 23 93 132 77 97 119 79 55 40 38 53 104 95 18-23

21 D 22 5 58 110 52 69 92 53 58 39 7 67 74 97 0-5

22 D 10 61 108 53 71 93 54 55 39 2 65 75 97 6-11

23 D 14 59 104 59 73 89 60 45 29 3 67 76 98 12-17

24 D 23 67 101 47 64 84 48 54 36 22 63 70 98 18-23

25 D 38 0 5 82 121 68 88 109 70 53 39 33 41 98 84 0-5

26 D 11 81 123 66 89 110 69 57 41 21 41 99 85 6-11

27 D 16 82 135 89 102 124 82 46 42 30 42 114 95 12-17

28 D 20 72 143 75 100 132 77 68 55 27 36 123 96 18-23

29 D 23 0 5 77 106 51 72 91 53 55 38 23 41 80 98 0-5

30 D 11 59 112 59 77 101 59 53 42 13 32 91 98 6-11

31 D 16 66 109 64 82 100 66 45 34 20 36 91 98 12-17

32 D 45 2 75 126 57 83 117 59 69 58 27 41 93 98 0-5

33 D 11 76 138 56 82 116 58 82 58 14 42 91 98 6-11

34 D 14 77 135 59 87 126 60 76 66 37 42 98 97 12-17

35 D 19 70 137 62 91 130 64 75 66 39 39 105 98 18-23

36 D

37 D 55 0 11 72 94 60 73 87 61 34 26 11 31 84 96 6-11

38 D 14 75 103 73 85 97 74 30 23 34 33 94 98 12-17

39 D 21 76 106 76 88 100 77 30 23 34 34 97 98 18-23

40 P 19 0 5 69 130 84 102 121 85 46 36 2 68 96 99 0-5

41 P 10 67 123 80 96 114 81 43 33 24 71 102 99 6-11

VIII
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Dr Ag S TS HR SBP DB MB AS A PP AP Al DD ESP o2 Time

ug e e P P BP D P P interv

X BP al

42 P 13 72 126 78 94 119 84 35 17 72 103 99 12-17

43 P

44 P 34 4 93 137 94 108 122 97 43 25 2 61 113 98 0-5

45 P 11 90 137 79 99 116 83 58 33 22 59 103 98 6-11

46 P 15 90 143 92 109 124 95 51 29 15 60 114 98 12-17

47 P 21 88 138 76 99 117 80 62 37 10 60 106 99 18-23

48 P 52 4 89 139 81 100 125 87 58 38 16 59 106 98 0-5

49 P 11 84 136 83 99 125 83 53 42 23 59 108 99 6-11

50 P 17 87 134 85 100 124 87 49 37 21 57 108 99 12-17

51 P 20 90 149 82 102 131 84 67 47 8 60 114 99 18-23

52 P

53 P 23 11 68 134 75 94 110 76 59 34 5 71 103 99 6-11

54 P 13 65 134 75 90 110 76 59 34 -5 67 97 98 12-17

55 P 19 83 122 68 83 100 69 54 31 -9 60 88 99 18-23

56 P 19 5 60 123 66 84 104 67 57 37 10 69 93 98 0-5

57 P 10 57 119 68 84 99 69 51 30 3 70 91 99 6-11

58 P 15 58 116 70 84 99 71 46 28 7 70 92 100 12-17

59 P 22 56 116 70 84 99 71 46 28 7 71 91 100 18-23

60 P 40 2 83 130 61 89 107 69 69 38 7 41 91 98 0-5

61 P 11 66 135 63 91 108 66 72 42 11 35 94 97 6-11

62 P 15 70 132 56 90 107 66 76 41 9 37 89 98 12-17

63 P 19 65 128 59 88 106 65 69 41 9 35 90 98 18-23

64 P 55 2 63 158 78 105 142 80 80 62 24 34 120 97 0-5

65 P 11 65 152 72 104 141 76 80 65 33 33 130 98 6-11

66 P 14 64 157 72 101 139 74 85 65 24 35 119 99 12-17

67 P 19 65 151 74 102 137 76 77 61 24 35 119 99 18-23

68 P 39 5 79 159 74 109 142 78 85 64 25 40 127 99 0-5

69 P 9 81 155 72 108 134 75 83 59 20 42 115 99 6-11

70 P 14 80 155 75 104 137 78 80 59 22 41 121 100 12-17

71 P 19 80 157 77 107 137 80 80 57 19 41 119 99 18-23

72 P 31 3 83 146 69 94 126 70 77 56 9 42 102 97 0-5

73 P 7 72 130 66 88 116 64 64 52 24 37 100 97 6-11

74 P 17 84 133 62 85 111 63 71 48 14 43 95 97 12-17

75 P 23 80 135 64 84 111 67 71 44 9 40 91 97 18-23

76 P 19 9 67 115 57 75 94 58 58 36 11 36 83 99 6-11

77 P 13 75 115 55 77 97 58 60 39 18 40 85 99 12-17

78 P 19 80 115 57 79 96 60 58 36 13 42 85 98 18-23
79 M 43 11 84 128 104 114 124 73 24 51 32 62 92 80 6-11
80 M 17 83 109 72 89 105 74 37 31 35 64 91 85 12-17
81 M 22 80 125 79 94 119 77 46 52 37 68 92 94 18-23
82 M 29 4 115 108 57 75 90 62 51 28 3 47 83 98 0-5
83 M 7 71 93 53 67 81 55 40 26 19 48 81 98 6-11
84 M 38 4 88 121 92 103 109 91 29 18 7 54 95 95 0-5
85 M 11 89 124 96 76 110 80 28 30 13 53 97 97 6-11
86 M 16 94 141 86 106 122 89 55 33 15 54 95 95 12-17
87 M 20 98 155 91 109 128 94 64 34 -26 57 93 85 18-23
88 M 36 11 80 112 53 72 92 56 59 36 5 65 78 95 6-11
89 M 16 73 118 67 85 105 69 51 36 13 64 77 95 12-17
90 M 19 83 135 74 97 121 76 61 45 31 65 75 98 18-23
91 M 23 1 10 68 121 66 81 98 67 55 31 -9 55 83 98 6-11

IX



Appcndice:

Dr Ag S TS HR SBP DB MB AS A PP AP Al DD ESP o2 Time

ug e e P P BP D P P interv

X BP al
92 M 17 56 106 75 85 96 76 31 20 10 56 85 98 12-17
93 M 20 54 116 74 88 101 79 42 22 6 59 87 98 18-23
94 M 0 7 71 92 52 69 88 54 40 34 30 63 79 95 6-11
95 M 14 74 92 52 69 88 54 40 34 38 62 79 96 12-17
96 M 20 75 102 56 76 97 59 46 38 38 61 89 96 18-23
97 M 31 5 87 110 65 77 92 68 45 24 -29 38 78 96 0-5
98 M 11 83 115 72 86 99 75 43 24 -16 37 89 96 6-11
99 M 15 87 128 72 90 105 75 56 30 -6 40 96 95 12-17
100 M 23 84 130 78 95 103 70 52 33 -11 39 97 96 18-23
101 M 26 4 76 115 68 81 96 69 47 27 -3 37 86 97 0-5
102 M 11 75 115 68 85 99 70 47 29 5 37 91 97 6-11
103 M 13 73 122 70 88 102 72 52 30 10 36 94 98 12-17
104 M 22 79 128 78 95 108 71 60 37 6 35 90 97 18-23
105 M 23 3 58 100 57 77 94 63 43 31 12 35 81 98 0-5
106 M 11 66 105 59 85 101 67 46 34 18 30 98 99 6-11
107 M 14 68 106 62 84 100 72 44 28 8 36 92 98 12-17
109 M 20 64 105 62 83 103 74 43 29 10 34 95 98 18-23
109 M 53 3 83 119 60 95 111 71 59 40 32 39 103 95 0-5
110 M 9 69 119 60 94 112 62 59 50 42 36 99 97 6-11
111 M 17 78 125 65 97 115 68 60 47 27 35 113 97 12-17
112 3 19 76 128 68 92 117 72 60 45 35 38 114 97 18-23

DR; Drug, HR; heart rate, SBP; systolic blood pressure, DBP; diastolic blood pressure, ASBP,
aortic systolic blood pressure, ADBP; aortic diastolic blood pressure, MBP, measnm blood
pressure, ESP, end systolic pressure, Al; augmentation index, DD; diastolic duration, TS; time
interval to sphygmogarphy, 02 saturation, T; time interval after exposure (h), D; dihydrocodeine,
P; paracetamol, M; methadone.

X
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Morphine versus saline study

Table lll-lll-l. Haemodynamic effects of morphine versus saline

Initi Age Heig Wei Visit Dos SBP SBP DBP DBP SSB SSB SDB SDB
als ht ght e % % P P% P P%

1 PD 41 172 91 M .00 127 0 86 0 136 0 88 0
2 PD 41 172 91 M .25 121 -5 80 -8 123 -11 85 -4
3 PD 41 172 91 M .50 127 0 80 -8 127 -7 89 1
4 PD 41 172 91 M 1.00 128 1 85 -1 129 -5 91 3
5 PD 41 172 91 M 2.00 127 0 80 -8 134 -1 89 1
6 PD 41 172 91 M 4.00 133 5 85 -1 135 -1 95 7
7 PD 41 172 91 M 8.00 133 5 90 4 135 -1 93 5
8 PD 41 172 91 .00 110 0 73 0 115 0 80 0
9 PD 41 172 91 P .25 112 2 70 -4 132 13 89 10
10 PD 41 172 91 P .50 114 4 75 3 120 4 79 -1
11 PD 41 172 91 P 1.00 111 1 71 -3 117 2 75 -7
12 PD 41 172 91 P 2.00 117 6 74 1 127 9 72 -11
13 PD 41 172 91 P 4.00 121 9 74 1 136 15 80 0
14 PD 41 172 91 P 8.00 120 8 72 -1 110 -5 78 -3
15 RK 49 166 76 M .00 122 0 76 0 117 0 81 0
16 RK 49 166 76 M .25 120 -2 79 4 117 0 82 1
17 RK 49 166 76 M .50 116 -5 78 3 115 -2 83 2
18 RK 49 166 76 M 1.00 115 -6 75 -1 111 -5 78 -4
19 RK 49 166 76 M 2.00 114 -7 69 -10 105 -11 76 -7
20 RK 49 166 76 M 4.00 106 -15 62 -23 108 -8 74 -9
21 RK 49 166 76 M 8.00 103 -18 61 -25 108 -8 71 -14
22 RK 49 166 76 P .00 114 0 78 0 113 0 79 0
23 RK 49 166 76 P .25 116 2 76 -3 133 15 75 -5
24 RK 49 166 76 P .50 123 7 78 0 122 7 76 -4
25 RK 49 166 76 P 1.00 126 10 78 0 116 3 77 -3
26 RK 49 166 76 P 2.00 123 7 73 -7 115 2 76 -4
27 RK 49 166 76 P 4.00 133 14 75 -4 117 3 79 0
28 RK 49 166 76 P 8.00 131 13 79 1 121 7 77 -3
29 AB1 20 174 78 M .00 133 0 56 0 133 0 61 0
30 AB1 20 174 78 M .25 121 -10 62 10 122 -9 65 6
31 AB1 20 174 78 M .50 120 -11 59 5 112 -19 58 -5
32 AB1 20 174 78 M 1.00 113 -18 61 8 117 -14 57 -7
33 AB1 20 174 78 M 2.00 127 -5 62 10 127 -5 59 -3
34 AB1 20 174 78 M 4.00 117 -14 57 2 121 -10 55 -11
35 AB1 20 174 78 M 8.00 128 -4 58 3 126 -6 65 6
36 AB1 20 174 78 P .00 131 0 61 0 137 0 68 0
37 AB1 20 174 78 P .25 143 8 55 -11 122 -12 77 12
38 AB1 20 174 78 P .50 135 3 62 2 131 -5 72 6
39 AB1 20 174 78 P 1.00 131 0 59 -3 131 -5 68 0
40 AB1 20 174 78 P 2.00 131 0 66 8 122 -12 57 -19
41 AB1 20 174 78 P 4.00 113 -16 66 8 131 -5 71 4
42 AB1 20 174 78 P 8.00 120 -9 73 16 111 -23 55 -24
43 WP 25 177 76 M .00 113 0 68 0 122 0 71 0
44 WP 25 177 76 M .25 121 7 71 4 123 1 73 3
45 WP 25 177 76 M .50 121 7 69 1 115 -6 67 -6
46 WP 25 177 76 M 1.00 108 -5 65 -5 109 -12 69 -3
47 WP 25 177 76 M 2.00 117 3 68 0 121 -1 70 -1
48 WP 25 177 76 M 4.00 133 15 77 12 129 5 74 4
49 WP 25 177 76 M 8.00 121 7 69 1 110 -11 66 -8
50 WP 25 177 76 P .00 114 0 72 0 116 0 79 0
51 WP 25 177 76 P .25 116 2 72 0 121 4 79 0
52 WP 25 177 76 P .50 110 -4 73 1 122 5 77 -3
53 WP 25 177 76 P 1.00 114 0 71 -1 126 8 78 -1
54 WP 25 177 76 P 2.00 114 0 66 -9 124 6 77 -3
55 WP 25 177 76 P 4.00 116 2 74 3 129 10 79 0
56 WP 25 177 76 P 8.00 129 12 70 -3 128 9 80 1
57 KN 34 165 61 M .00 113 0 63 0 111 0 61 0

XI
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Initi Age Heig Wei Visit Dos SBP SBP DBP DBP SSB SSB SDB SDB
als ht ght e % % P P% P P%

58 KN 34 165 61 M .25 101 -12 54 -17 105 -6 62 2
59 KN 34 165 61 M .50 100 -13 56 -13 97 -14 62 2
60 KN 34 165 61 M 1.00 115 2 68 7 110 -1 66 8
61 KN 34 165 61 M 2.00 107 -6 60 -5 108 -3 58 -5
62 KN 34 165 61 M 4.00 112 -1 54 -17 102 -9 53 -15
63 KN 34 165 61 M 8.00 97 -16 46 -37 90 -23 54 -13
64 KN 34 165 61 P .00 106 0 63 0 107 0 68 0
65 KN 34 165 61 P .25 109 3 66 5 104 -3 63 -8
66 KN 34 165 61 P .50 120 12 61 -3 94 -14 48 -42
67 KN 34 165 61 P 1.00 96 -10 55 -15 84 -27 55 -24
68 KN 34 165 61 P 2.00 103 -3 56 -13 96 -11 56 -21
69 KN 34 165 61 P 4.00 101 -5 59 -7 98 -9 53 -28
70 KN 34 165 61 P 8.00 101 -5 55 -15 106 -1 57 -19
71 AB2 30 189 99 M .00 136 0 62 0 135 0 70 0
72 AB2 30 189 99 M .25 138 1 66 6 147 8 71 1
73 AB2 30 189 99 M .50 133 -2 63 2 135 0 60 -17
74 AB2 30 189 99 M 1.00 134 -1 67 7 142 5 79 11
75 AB2 30 189 99 M 2.00 116 -17 58 -7 122 -11 68 -3
76 AB2 30 189 99 M 4.00 136 0 69 10 144 6 76 8
77 AB2 30 189 99 M 8.00 151 10 66 6 138 2 62 -13
78 AB2 30 189 99 P .00 139 0 59 0 129 0 66 0
79 AB2 30 189 99 P .25 136 -2 60 2 132 2 68 3
80 AB2 30 189 99 P .50 134 -4 57 -4 136 5 66 0
81 AB2 30 189 99 P 1.00 135 -3 54 -9 142 9 70 6
82 AB2 30 189 99 P 2.00 134 -4 58 -2 129 0 75 12
83 AB2 30 189 99 P 4.00 137 -1 62 5 135 4 62 -6
84 AB2 30 189 99 P 8.00 127 -9 59 0 134 4 63 -5
85 DC 24 174 72 M .00 122 0 66 0 122 0 68 0
86 DC 24 174 72 M .25 105 -16 57 -16 107 -14 59 -15
87 DC 24 174 72 M .50 106 -15 53 -25 105 -16 54 -26
88 DC 24 174 72 M 1.00 108 -13 56 -18 113 -8 64 -6
89 DC 24 174 72 M 2.00 107 -14 59 -12 110 -11 60 -13
90 DC 24 174 72 M 4.00 110 -11 56 -18 121 -1 72 6
91 DC 24 174 72 M 8.00 109 -12 54 -22 111 1 o 67 -1
92 DC 24 174 72 P .00 112 0 63 0 122 0 67 0
93 DC 24 174 72 P .25 114 2 60 -5 109 -12 66 -2
94 DC 24 174 72 P .50 113 1 63 0 116 -5 66 -2
95 DC 24 174 72 P 1.00 111 -1 60 -5 114 -7 69 3
96 DC 24 174 72 P 2.00 111 -1 62 -2 115 -6 72 7
97 DC 24 174 72 P 4.00 114 2 66 5 122 0 69 3
98 DC 24 174 72 P 8.00 112 0 65 3 116 -5 76 12
99 DS 50 169 93 M .00 143 0 88 0 146 0 91 0
100 DS 50 169 93 M .25 134 -7 81 -9 146 0 93 2
101 DS 50 169 93 M .50 133 -8 87 -1 142 -3 91 0
102 DS 50 169 93 M 1.00 132 -8 90 2 146 0 95 4
103 DS 50 169 93 M 2.00 137 -4 83 -6 147 1 93 2
104 DS 50 169 93 M 4.00 136 -5 80 -10 153 5 98 7
105 DS 50 169 93 M 8.00 132 -8 86 -2 138 -6 94 3
105 DS 50 169 93 P .00 116 0 79 0 126 0 83 0
107 DS 50 169 93 P .25 122 5 79 0 128 2 87 5
108 DS 50 169 93 P .50 128 9 79 0 134 6 84 1
109 DS 50 169 93 P 1.00 120 3 84 6 128 2 85 2
110 DS 50 169 93 P 2.00 122 5 79 0 146 14 91 9
111 DS 50 169 93 P 4.00 127 9 82 4 135 7 88 6
112 DS 50 169 93 P 8.00 131 11 86 8 142 11 93 11

SBP; systolic blood pressure, SBP%; percentage of change from baseline of systolic blood
pressure, DBP; diastolic blood pressure, DBP%; percentage of change from baseline of diastolic
blood pressure, sSBP; sitting systolic blood pressure sSBP%; percentage of change from
baseline of sitting systolic blood pressure, sDBP; sitting diastolic blood pressure, sDBP%;
percentage of change from baseline of sitting diastolic blood pressure.
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Table lll-lll-ll. Haemodynamic effects of morphine versus saline (continued)

Visit
dos
e o2 o2% CI Cl% SI Sl% EDI

EDI
% PFI

PFI
% EF EF%

1 M .00 97 0 3.3 0 49.3 0 87.1 0 332 0 57 0
2 M .25 98 1 3.3 0 48.5 -2 84.9 -3 319 -4 58 2
3 M .50 96 -1 3.1 -6 45.5 -8 80.6 -8 310 -7 57 0
4 M 1.00 97 0 3.2 -3 45.9 -7 82.3 -6 314 -6 57 0
5 M 2.00 98 1 3.1 -6 47.2 -4 87.9 1 319 -4 54 -6
6 M 4.00 100 3 2.9 -14 41.3 -19 85.8 -2 301 -10 49 -16
7 M 8.00 99 2 2.6 -27 34.0 -45 79.1 -10 287 -16 53 -8
8 P .00 98 0 2.9 0 48.0 0 90.0 0 304 0 53 0
9 P .25 97 -1 3.1 6 51.0 6 95.0 5 318 4 53 0
10 P .50 96 -2 2.9 0 47.0 -2 90.0 0 302 -1 51 -4
11 P 1.00 97 -1 2.9 0 49.0 2 90.0 0 301 -1 54 2
12 P 2.00 97 -1 2.8 -4 55.0 13 87.0 -3 287 -6 52 -2
13 P 4.00 96 -2 2.8 -4 49.0 2 88.0 -2 298 -2 55 4
14 P 8.00 98 0 2.4 -21 42.0 -14 85.0 -6 275 -11 50 -6
15 M .00 97 0 3.5 0 53.0 0 82.0 0 315 0 65 0
16 M .25 97 0 3.3 -6 48.0 -10 74.0 -11 285 -11 63 -3
17 M .50 97 0 3.1 -13 47.0 -13 74.0 -11 284 -11 63 -3
18 M 1.00 96 -1 3.0 -17 47.0 -13 72.0 -14 279 -13 65 0
19 M 2.00 97 0 3.1 -13 48.0 -10 74.0 -11 281 -12 64 -2
20 M 4.00 95 -2 3.1 -13 56.0 5 86.0 5 315 0 66 2
21 M 8.00 96 -1 3.1 -13 53.0 0 84.0 2 306 -3 63 -3
22 P .00 98 0 3.9 0 48.0 0 81.0 0 314 0 60 0
23 P .25 98 0 3.9 0 53.0 9 83.0 2 332 5 63 5
24 P .50 99 1 3.6 -8 45.0 -7 73.0 -11 292 -8 61 2
25 P 1.00 97 -1 3.9 0 54.0 11 86.0 6 336 7 62 3
26 P 2.00 98 0 3.4 -15 47.0 -2 75.0 -8 348 10 63 5
27 P 4.00 99 1 3.9 0 50.0 4 77.0 -5 310 -1 64 6
28 P 8.00 100 2 4.0 3 54.0 11 85.0 5 328 4 64 6
29 M .00 98 0 3.7 0 64.0 0 104.0 0 392 0 61 0
30 M .25 97 -1 3.9 5 69.0 7 107.0 3 415 6 64 5
31 M .50 98 0 3.5 -6 61.0 -5 99.0 -5 381 -3 61 0
32 M 1.00 98 0 3.4 -9 63.0 -2 101.0 -3 374 -5 62 2
33 M 2.00 97 -1 3.3 -12 59.0 -8 92.0 -13 357 -10 63 3
34 M 4.00 98 0 3.0 -23 61.0 -5 97.0 -7 355 -10 63 3
35 M 8.00 97 -1 3.3 -12 62.0 -3 97.0 -7 369 -6 63 3
36 P .00 97 0 3.5 0 55.0 0 98.0 0 359 0 57 0
37 P .25 98 1 3.5 0 58.0 5 99.0 1 371 3 58 2
38 P .50 98 1 3.3 -6 60.0 8 105.0 7 373 4 57 0
39 P 1.00 97 0 3.3 -6 61.0 10 104.0 6 363 1 58 2
40 P 2.00 98 1 3.2 -9 62.0 11 96.0 -2 348 -3 59 3
41 P 4.00 98 1 3.0 -17 59.0 7 98.0 0 355 -1 60 5
42 P 8.00 97 0 3.0 -17 56.0 2 98.0 0 347 -3 60 5
43 M .00 97 0 3.4 0 59.0 0 92.0 0 342 0 63 0
44 M .25 95 -2 3.1 -10 52.0 -13 86.0 -7 316 -8 60 -5
45 M .50 97 0 3.2 -6 56.0 -5 92.0 0 338 -1 60 -5
46 M 1.00 98 1 3.3 -3 57.0 -4 93.0 1 343 0 61 -3
47 M 2.00 95 -2 3.0 -13 54.0 -9 89.0 -3 328 -4 59 -7
48 M 4.00 95 -2 3.0 -13 50.0 -18 80.0 -15 299 -14 62 -2
49 M 8.00 96 -1 3.1 -10 51.0 -16 83.0 -11 308 -11 61 -3
50 P .00 97 0 3.1 0 46.0 0 78.0 0 299 0 59 0
51 P .25 97 0 3.4 9 57.0 19 91.0 14 342 13 62 5
52 P .50 97 0 3.2 3 55.0 16 92.0 15 338 12 59 0
53 P 1.00 97 0 3.2 3 50.0 8 83.0 6 321 7 60 2
54 P 2.00 97 0 3.4 9 57.0 19 88.0 11 329 9 64 8
55 P 4.00 97 0 3.5 11 59.0 22 93.0 16 352 15 62 5
56 P 8.00 98 1 3.2 3 48.0 4 82.0 5 311 4 58 -2
57 M .00 99 0 3.1 0 54.0 0 87.0 0 318 0 61 0
58 M .25 99 0 3.1 0 54.0 0 86.0 -1 329 3 62 2
59 M .50 98 -1 3.1 0 52.0 -4 86.0 -1 328 3 61 0
60 M 1.00 98 -1 2.6 -19 45.0 -20 75.0 -16 287 -11 60 -2

XIII



Appendices

Visit
dos
e o2 02% CI Cl% SI Sl% EDI

EDI
% PFI

PFI
% EF EF%

61 M 2.00 96 -3 2.8 -11 51.0 -6 88.0 1 323 2 58 -5
62 M 4.00 97 -2 3.0 -3 52.0 -4 83.0 -5 323 2 63 3
63 M 8.00 94 -5 3.2 3 57.0 5 88.0 1 338 6 64 5
64 P .00 97 0 2.7 0 48.0 0 79.0 0 306 0 60 0
65 P .25 97 0 2.5 -8 49.0 2 83.0 5 312 2 58 -3
66 P .50 97 0 2.5 -8 46.0 -4 83.0 5 295 -4 56 -7
67 P 1.00 98 1 2.5 -8 47.0 -2 80.0 1 295 -4 58 -3
68 P 2.00 99 2 2.5 -8 45.0 -7 79.0 0 286 -7 56 -7
69 P 4.00 99 2 2.6 -4 42.0 -14 72.0 -10 277 -10 57 -5
70 P 8.00 99 2 2.5 -8 49.0 2 96.0 18 316 3 51 -18
71 M .00 97 0 4.1 0 61.0 0 102.0 0 382 0 60 0
72 M .25 99 2 3.9 -5 61.0 0 105.0 3 385 1 58 -3
73 M .50 97 0 3.9 -5 64.0 5 108.0 6 375 -2 59 -2
74 M 1.00 96 -1 3.9 -5 58.0 -5 99.0 -3 361 -6 58 -3
75 M 2.00 97 0 3.4 -21 57.0 -7 100.0 -2 344 -11 57 -5
76 M 4.00 96 -1 3.8 -8 63.0 3 107.0 5 377 -1 59 -2
77 M 8.00 97 0 3.3 -24 51.0 -20 94.0 -9 324 -18 54 -11
78 P .00 97 0 4.7 0 82.0 0 133.0 0 474 0 61 0
79 P .25 96 -1 4.3 -9 79.0 -4 131.0 -2 462 -3 60 -2
80 P .50 96 -1 4.0 -18 73.0 -12 123.0 -8 429 -10 59 -3
81 P 1.00 96 -1 3.9 -21 72.0 -14 119.0 -12 423 -12 60 -2
82 P 2.00 98 1 4.2 -12 82.0 0 136.0 2 472 0 60 -2
83 P 4.00 98 1 3.9 -21 73.0 -12 121.0 -10 436 -9 60 -2
84 P 8.00 98 1 3.9 -21 74.0 -11 123.0 -8 438 -8 60 -2
85 M .00 97 0 3.4 0 50.0 0 92.0 0 341 0 54 0
86 M .25 96 -1 3.7 8 49.0 -2 91.0 -1 343 1 52 -4
87 M .50 97 0 3.4 0 49.0 -2 86.0 -7 332 -3 53 -2
88 M 1.00 97 0 3.8 11 57.0 12 97.0 5 376 9 56 4
89 M 2.00 95 -2 3.5 3 52.0 4 98.0 6 339 -1 58 7
90 M 4.00 97 0 3.8 11 54.0 7 94.0 2 352 3 58 7
91 M 8.00 94 -3 3.8 11 55.0 9 91.0 -1 348 2 57 5
92 P .00 96 0 4.0 0 61.0 0 104.0 0 403 0 58 0
93 P .25 96 0 3.9 -3 63.0 3 108.0 4 414 3 57 -2
94 P .50 96 0 3.7 -8 58.0 -5 109.0 5 387 -4 53 -9
95 P 1.00 97 1 3.8 -5 63.0 3 111.0 6 404 0 56 -4
96 P 2.00 97 1 3.5 -14 55.0 -11 99.0 -5 375 -7 55 -5
97 P 4.00 97 1 3.7 -8 61.0 0 107.0 3 390 -3 56 -4
98 P 8.00 98 2 3.6 -11 60.0 -2 104.0 0 382 -5 57 -2
99 M .00 93 0 2.6 0 42.0 0 75.0 0 256 0 56 0
100 M .25 92 -1 2.4 -8 42.0 0 72.0 -4 242 -6 58 3
101 M .50 94 1 2.5 -4 43.0 2 72.0 -4 248 -3 58 3
102 M 1.00 96 3 2.5 -4 40.0 -5 71.0 -6 245 -4 56 0
103 M 2.00 95 2 2.5 -4 39.0 -8 71.0 -6 243 -5 55 -2
104 M 4.00 94 1 2.7 4 43.0 2 74.0 -1 251 -2 59 5
105 M 8.00 94 1 2.4 -8 39.0 -8 70.0 -7 237 -8 56 0
105 P .00 93 0 2.9 0 40.0 0 67.0 0 254 0 59 0
107 P .25 91 -2 2.7 -7 40.0 0 70.0 4 251 -1 57 -4
108 P .50 92 -1 2.4 -21 43.0 7 75.0 11 255 0 56 -5
109 P 1.00 94 1 2.6 -12 45.0 11 82.0 18 272 7 55 -7
110 P 2.00 95 2 2.4 -21 41.0 2 76.0 12 258 2 55 -7
111 P 4.00 95 2 2.3 -26 39.0 -3 74.0 9 247 -3 53 -11
112 P 8.00 95 2 2.4 -21 40.0 0 73.0 8 243 -5 55 -7

02;oxygen saturation, 02%;percentage of change from baseline of oxygen saturation, CI; cardiac
index, Cl%; percentage of change from baseline of cardiac index, SI; stroke index, Sl%;
percentage of change from baseline of cardiac index, stroke index EDI; end diastolic index, EDI;
percentage of change from baseline of end diastolic index, EF; ejection fraction, EF%;
percentage of change from baseline of ejection fraction, PFI; peak flow index, PFI%; percentage
of change from baseline of peak flow index.
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Table lll-lll-lll. Haemodynamic effects of morphine versus saline (continued)

Visit Dose HR HR
%

TFI TFI
%

IC IC% ER ER
%

STR STR
%

ESP ESP
%

1 M .00 66 0 26.2 0 38 0 33 0 39 0 110 0
2 M .25 65 -2 26.8 2 36 -6 34 3 39 0 106 -4
3 M .50 66 0 26.9 3 35 -9 33 0 40 3 110 0
4 M 1.00 67 1 27.1 3 36 -6 34 3 41 5 111 1
5 M 2.00 62 -6 27.1 3 36 -6 32 -3 45 13 110 0
6 M 4.00 66 0 27.4 4 34 -12 32 -3 57 32 117 6
7 M 8.00 66 0 27.6 5 35 -9 32 -3 47 17 117 6
8 P .00 61 0 25.4 0 42 0 32 0 40 0 96 0
9 P .25 60 -2 24.8 -2 44 5 32 0 39 -3 97 1
10 P .50 62 2 24.8 -2 42 0 32 0 43 7 99 3
11 P 1.00 59 -3 24.8 -2 42 0 32 0 39 -3 96 0
12 P 2.00 62 2 24.9 -2 40 -5 32 0 42 5 101 5
13 P 4.00 57 -7 24.8 -2 42 0 31 -3 38 -5 104 8
14 P 8.00 58 -5 25.0 -2 38 -11 29 -10 46 13 102 6
15 M .00 66 0 28.5 0 49 0 37 0 28 0 103 0
16 M .25 69 4 28.0 -2 45 -9 38 3 28 0 104 1
17 M .50 66 0 28.0 -2 44 -11 37 0 30 7 102 -1
18 M 1.00 64 -3 28.2 -1 43 -14 36 -3 27 -4 101 -2
19 M 2.00 66 0 28.0 -2 44 -11 37 0 28 0 104 1
20 M 4.00 55 -20 28.6 0 49 0 33 -12 26 -8 90 -14
21 M 8.00 59 -12 28.6 0 47 -4 34 -9 30 7 89 -16
22 P .00 81 0 28.6 0 49 0 42 0 34 0 97 0
23 P .25 73 -11 28.8 1 52 6 39 -8 30 -13 100 3
24 P .50 80 -1 29.2 2 46 -7 41 -2 33 -3 102 5
25 P 1.00 73 -11 28.8 1 52 6 39 -8 30 -13 106 8
26 P 2.00 73 -11 28.9 1 46 -7 38 -11 30 -13 101 4
27 P 4.00 77 -5 29.3 2 48 -2 42 0 28 -21 109 11
28 P 8.00 74 -9 29.0 1 51 4 40 -5 29 -17 110 12
29 M .00 58 0 27.2 0 58 0 31 0 35 0 82 0
30 M .25 57 -2 26.6 -2 62 6 31 0 31 -13 82 0
31 M .50 56 -4 27.3 0 56 -4 30 -3 35 0 86 5
32 M 1.00 54 -7 26.4 -3 55 -5 30 -3 34 -3 84 2
33 M 2.00 57 -2 26.8 -1 53 -9 30 -3 32 -9 90 9
34 M 4.00 48 -21 27.1 0 52 -12 28 -11 33 -6 82 0
35 M 8.00 52 -12 27.2 0 55 -5 29 -7 32 -9 87 6
36 P .00 63 0 26.1 0 52 0 32 0 41 0 84 0
37 P .25 61 -3 25.0 -4 54 4 31 -3 40 -3 88 5
38 P .50 54 -17 27.0 3 54 4 29 -10 41 0 88 5
39 P 1.00 54 -17 25.9 -1 54 4 30 -7 39 -5 83 -1
40 P 2.00 56 -13 27.0 3 52 0 30 -7 38 -8 94 11
41 P 4.00 52 -21 27.0 3 52 0 29 -10 38 -8 82 -2
42 P 8.00 54 -17 25.9 -1 52 0 29 -10 37 -11 78 -8
43 M .00 58 0 30.2 0 50 0 33 0 31 0 90 0
44 M .25 61 5 29.8 -1 46 -9 33 0 37 16 97 7
45 M .50 58 0 29.6 -2 49 -2 31 -6 37 16 90 0
46 M 1.00 57 -2 29.8 -1 49 -2 31 -6 35 11 89 -1
47 M 2.00 56 -4 29.8 -1 47 -6 30 -10 38 18 94 4
48 M 4.00 61 5 29.8 -1 43 -16 33 0 34 9 105 14
49 M 8.00 59 2 30.3 0 45 -11 33 0 36 14 93 3
50 P .00 65 0 29.6 0 44 0 34 0 38 0 92 0
51 P .25 60 -8 29.9 1 50 12 33 -3 33 -15 97 5
52 P .50 59 -10 30.6 3 49 10 32 -6 39 3 92 0
53 P 1.00 63 -3 29.8 1 47 6 33 -3 38 0 93 1
54 P 2.00 60 -8 30.0 1 48 8 34 0 31 -23 92 0
55 P 4.00 60 -8 29.8 1 51 14 33 -3 34 -12 97 5
56 P 8.00 66 2 29.8 1 45 2 34 0 40 5 97 5
57 M .00 58 0 32.1 0 56 0 33 0 35 0 91 0
58 M .25 57 -2 32.2 0 57 2 30 -10 34 -3 82 -11
59 M .50 58 0 32.0 0 57 2 31 -6 36 3 80 -14
60 M 1.00 57 -2 33.2 3 50 -12 30 -10 37 5 80 -14
61 M 2.00 55 -5 33.2 3 56 0 29 -14 40 13 90 -1
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Visit Dose HR HR
%

TFI TFI
%

IC IC% ER ER
%

STR STR
%

ESP ESP
%

62 M 4.00 57 -2 32.6 2 56 0 30 -10 32 -9 90 -1
63 M 8.00 56 -4 32.6 2 58 3 31 -6 31 -13 71 -28
64 P .00 56 0 33.4 0 53 0 29 0 36 0 88 0
65 P .25 52 -8 33.1 -1 54 2 27 -7 39 8 92 4
66 P .50 53 -6 33.2 -1 52 -2 27 -7 43 16 94 6
67 P 1.00 54 -4 33.2 -1 51 -4 29 0 40 10 79 -11
68 P 2.00 56 0 33.2 -1 50 -6 29 0 42 14 85 -4
69 P 4.00 66 15 32.8 -2 47 -13 32 9 42 14 82 -7
70 P 8.00 51 -10 32.5 -3 55 4 26 -12 50 28 82 -7
71 M .00 68 0 30.9 0 46 0 36 0 30 0 86 0
72 M .25 63 -8 31.2 1 46 0 34 -6 31 3 91 5
73 M .50 61 -11 30.9 0 45 -2 34 -6 31 3 88 2
74 M 1.00 66 -3 30.5 -1 43 -7 35 -3 32 6 93 8
75 M 2.00 59 -15 30.7 -1 42 -10 32 -13 34 12 88 2
76 M 4.00 60 -13 30.5 -1 45 -2 33 -9 32 6 95 9
77 M 8.00 65 -5 30.9 0 39 -18 33 -9 38 21 104 17
78 P .00 56 0 28.6 0 57 0 32 0 27 0 84 0
79 P .25 55 -2 28.5 0 56 -2 31 -3 30 10 86 2
80 P .50 55 -2 28.8 1 52 -10 31 -3 32 16 83 -1
81 P 1.00 54 -4 29.0 1 51 -12 31 -3 28 4 87 3
82 P 2.00 51 -10 28.7 0 57 0 29 -10 30 10 84 0
83 P 4.00 53 -6 28.9 1 53 -8 30 -7 30 10 89 6
84 P 8.00 53 -6 28.8 1 53 -8 29 -10 31 13 80 -5
85 M .00 68 0 28.6 0 52 0 33 0 47 0 81 0
86 M .25 76 11 28.3 -1 52 0 36 8 48 2 69 -17
87 M .50 70 3 27.9 -3 51 -2 34 3 44 -7 69 -17
88 M 1.00 68 0 28.3 -1 57 9 34 3 40 -18 71 -14
89 M 2.00 68 0 28.3 -1 52 0 34 3 39 -21 76 -7
90 M 4.00 72 6 28.1 -2 53 2 36 8 41 -15 73 -11
91 M 8.00 71 4 28.0 -2 53 2 36 8 38 -24 73 -11
92 P .00 67 0 27.9 0 61 0 33 0 40 0 80 0
93 P .25 62 -8 26.2 -6 63 3 31 -6 41 2 80 0
94 P .50 63 -6 26.5 -5 59 -3 31 -6 48 17 82 2
95 P 1.00 61 -10 26.8 -4 61 0 31 -6 43 7 77 -4
96 P 2.00 64 -5 26.7 -4 57 -7 31 -6 44 9 77 -4
97 P 4.00 62 -8 27.2 -3 60 -2 31 -6 43 7 83 4
98 P 8.00 60 -12 26.0 -7 60 -2 30 -10 42 5 80 0
99 M .00 62 0 28.1 0 36 0 34 0 32 0 121 0
100 M .25 59 -5 27.9 -1 33 -9 34 0 28 -14 110 -10
101 M .50 58 -7 27.8 -1 34 -6 34 0 29 -10 114 -6
102 M 1.00 63 2 28.0 0 34 -6 34 0 33 3 117 -3
103 M 2.00 64 3 28.0 0 34 -6 35 3 34 6 118 -3
104 M 4.00 63 2 27.5 -2 35 -3 37 8 27 -19 115 -5
105 M 8.00 60 -3 27.7 -1 33 -9 34 0 32 0 115 -5
105 P .00 73 0 30.9 0 35 0 38 0 27 0 100 0
107 P .25 67 -9 30.9 0 35 0 36 -6 30 10 103 3
108 P .50 58 -26 30.2 -2 36 3 31 -23 32 16 107 7
109 P 1.00 60 -22 30.1 -3 38 8 32 -19 34 21 106 6
110 P 2.00 59 -24 30.4 -2 36 3 32 -19 34 21 106 6
111 P 4.00 64 -14 30.3 -2 34 -3 33 -15 38 29 105 5
112 P 8.00 60 -22 30.6 -1 33 -15 34 21 115 13

HR; heart rate, HR%; percentage of change from baseline of heart rate , TFI; thoracic fluid
index, TFI%; percentage of change from baseline of thoracic fluid index, IC; index of
contractibility, IC%; percentage of change from baseline of index of contractibility, ER; ejection
ratio, ER%; percentage of change from baseline of ejection ratio, STR; systolic time ratio,
STR%; percentage of change from baseline of systolic time ratio, Al; absolute change from
baseline of augmentation index.
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Table lll-lll-IV. Haemodynamic effects of morphine versus saline (continued)

Visi Dose Al ASB ASB ADB ADB MB MB PPP PP AP AP ED ED
t P P% P P% P P% P% P P% %

1 M .00 0 119 0 87 0 102 0 41 0 32 0 321 0
2 M .25 -3 115 -3 81 -7 96 -6 41 0 34 6 322 0
3 M .50 -7 120 1 81 -7 99 -3 47 13 39 18 323 1
4 M 1.00 -6 121 2 86 -1 101 -1 43 5 35 9 325 1
5 M 2.00 -4 121 2 81 -7 98 -4 47 13 40 20 327 2
6 M 4.00 -12 128 7 86 -1 105 3 48 15 42 24 330 3
7 M 8.00 -8 127 6 91 4 106 4 43 5 36 11 325 1
8 P .00 0 103 0 74 0 87 0 37 0 29 0 320 0
9 P .25 9 104 1 73 -1 87 0 42 12 33 12 317 -1
10 P .50 0 104 1 76 3 89 2 39 5 30 3 321 0
11 P 1.00 2 103 0 72 -3 85 -2 40 8 32 9 324 1
12 P 2.00 -2 109 6 75 1 89 2 43 14 35 17 325 2
13 P 4.00 -1 113 9 75 1 91 4 47 21 38 24 325 2
14 P 8.00 -5 111 7 73 -1 89 2 48 23 38 24 321 0
15 M .00 0 113 0 77 0 94 0 46 0 36 0 319 0
16 M .25 -10 113 0 80 4 94 0 41 -12 33 -9 332 4
17 M .50 -10 109 -4 79 3 92 -2 38 -21 30 -20 331 4
18 M 1.00 -13 108 -5 76 -1 91 -3 40 -15 31 -16 334 4
19 M 2.00 -11 111 -2 76 -1 92 -2 40 -15 35 -3 341 6
20 M 4.00 1 99 -14 63 -22 78 -21 44 -5 36 0 348 8
21 M 8.00 -2 96 -18 62 -24 76 -24 42 -10 35 -3 349 9
22 P .00 0 105 0 79 0 92 0 36 0 27 0 318 0
23 P .25 7 108 3 77 -3 92 0 40 10 31 13 318 0
24 P .50 -5 113 7 79 0 94 2 45 20 34 21 327 3
25 P 1.00 10 117 10 79 0 96 4 48 25 38 29 331 4
26 P 2.00 -3 114 8 74 -7 91 -1 50 28 40 33 332 4
27 P 4.00 0 123 15 77 -3 98 6 58 38 46 41 331 4
28 P 8.00 2 123 15 81 2 100 8 52 31 41 34 335 5
29 M .00 0 103 0 58 0 79 0 75 0 45 0 341 0
30 M .25 5 98 -5 63 8 78 -1 59 -27 35 -29 347 2
31 M .50 -7 98 -5 60 3 78 -1 61 -23 38 -18 344 1
32 M 1.00 -5 92 -12 64 9 76 -4 52 -44 32 -41 344 1
33 M 2.00 -11 103 0 63 8 82 4 65 -15 40 -13 345 1
34 M 4.00 -12 94 -10 58 0 74 -7 60 -25 36 -25 339 -1
35 M 8.00 -7 102 -1 59 2 78 -1 70 -7 43 -5 341 0
36 P .00 0 103 0 62 0 79 0 70 0 41 0 331 0
37 P .25 2 109 6 57 -9 79 0 88 20 53 23 334 1
38 P .50 3 106 3 63 2 81 2 73 4 43 5 336 1
39 P 1.00 1 110 6 60 -3 75 -5 60 -10 40 0 336 1
40 P 2.00 -5 110 6 67 7 86 8 65 -8 43 5 339 2
41 P 4.00 -2 93 -11 66 6 77 -3 45 -56 27 -52 329 -1
42 P 8.00 -2 90 -14 56 -11 71 -11 56 -25 34 -21 338 2
43 M .00 0 99 0 69 0 83 0 45 0 30 0 340 0
44 M .25 -9 106 7 72 4 88 6 50 10 34 12 338 -1
45 M .50 -1 98 -1 70 1 83 0 42 -7 28 -7 337 -1
46 M 1.00 -1 95 -4 66 -5 80 -4 43 -5 29 -3 342 1
47 M 2.00 -7 109 9 69 0 85 2 49 8 33 9 352 3
48 M 4.00 -18 119 17 79 13 96 14 56 20 37 19 360 6
49 M 8.00 -13 103 4 70 1 86 3 52 13 33 9 354 4
50 P .00 0 100 0 73 0 86 0 42 0 27 0 338 0
51 P .25 12 105 5 74 1 89 3 44 5 32 16 339 0
52 P .50 10 100 0 74 1 85 -1 37 -14 26 -4 338 0
53 P 1.00 2 101 1 72 -1 86 0 43 2 21 -29 350 3
54 P 2.00 8 101 1 67 -9 83 -4 48 13 34 21 343 1
55 P 4.00 14 106 6 75 3 89 3 42 0 31 13 343 1
56 P 8.00 0 110 9 71 -3 89 3 57 26 38 29 346 2
57 M .00 0 100 0 64 0 80 0 50 0 36 0 322 0
58 M .25 3 91 -10 55 -16 70 -14 47 -6 36 0 317 -2
59 M .50 3 89 -12 57 -12 70 -14 44 -14 34 -6 325 1
60 M 1.00 -12 88 -14 57 -12 71 -13 44 -14 31 -16 320 -1
61 M 2.00 1 98 -2 61 -5 78 -3 47 -6 37 3 324 1
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62 M 4.00 1 101 1 55 -16 76 -5 58 14 46 22 337 4
63 M 8.00 4 83 -20 47 -36 63 -27 51 2 37 3 327 2
64 P .00 0 95 0 64 0 78 0 43 0 31 0 313 0
65 P .25 4 97 2 67 4 81 4 43 0 30 -3 305 -3
66 P .50 -3 103 8 62 -3 81 4 59 27 41 24 318 2
67 P 1.00 -5 85 -12 56 -14 69 -13 41 -5 29 -7 317 1
68 P 2.00 -6 90 -6 58 -10 72 -8 47 9 35 11 326 4
69 P 4.00 -11 89 -7 59 -8 72 -8 42 -2 30 -3 325 4
70 P 8.00 5 89 -7 56 -14 70 -11 46 7 33 6 325 4
71 M .00 0 109 0 64 0 85 0 74 0 46 0 365 0
72 M .25 0 110 1 67 4 85 0 72 -3 43 -7 343 -6
73 M .50 -2 108 -1 64 0 82 -4 68 -9 42 -10 349 -5
74 M 1.00 -8 109 0 68 6 86 1 67 -10 41 -12 360 -1
75 M 2.00 -10 95 -15 59 -8 74 -15 58 -28 36 -28 358 -2
76 M 4.00 -1 110 1 69 7 88 3 67 -10 40 -15 352 -4
77 M 8.00 -19 122 11 67 4 92 8 85 13 55 16 360 -1
78 P .00 0 110 0 59 0 80 0 80 0 51 0 362 0
79 P .25 -3 108 -2 61 3 80 0 76 -5 45 -13 354 -2
80 P .50 -12 106 -4 58 -2 77 -4 77 -4 48 -6 359 -1
81 P 1.00 -13 107 -3 55 -7 78 -3 81 1 52 2 355 -2
82 P 2.00 1 106 -4 59 0 77 -4 76 -5 47 -9 357 -1
83 P 4.00 -10 109 -1 63 6 83 4 75 -7 46 -11 364 1
84 P 8.00 -8 101 -9 60 2 77 -4 68 -18 42 -21 365 1
85 M .00 0 100 0 67 0 81 0 56 0 34 0 332 0
86 M .25 -3 86 -16 57 -18 69 -17 48 -17 29 -17 326 -2
87 M .50 -2 84 -19 53 -26 67 -21 53 -6 31 -10 326 -2
88 M 1.00 11 87 -15 56 -20 70 -16 52 -8 31 -10 332 0
89 M 2.00 0 89 -12 60 -12 73 -11 48 -17 29 -17 335 1
90 M 4.00 4 89 -12 57 -18 72 -13 54 -4 32 -6 340 2
91 M 8.00 3 88 -14 55 -22 70 -16 55 -2 33 -3 349 5
92 P .00 0 93 0 64 0 77 0 49 0 29 0 330 0
93 P .25 -4 94 1 61 -5 76 -1 54 9 33 12 328 -1
94 P .50 -6 94 1 64 0 78 1 50 2 30 3 325 -2
95 P 1.00 -2 90 -3 61 -5 75 -3 50 2 29 0 318 -4
96 P 2.00 -10 92 -1 63 -2 75 -3 49 0 29 0 317 -4
97 P 4.00 -3 96 3 67 4 80 4 48 -2 29 0 330 0
98 P 8.00 -6 93 0 65 2 78 1 47 -4 28 -4 325 -2
99 M .00 0 132 0 89 0 109 0 55 0 43 0 338 0
100 M .25 -7 123 -7 83 -7 100 -9 53 -4 41 -5 339 0
101 M .50 -7 125 -6 88 -1 103 -6 46 -20 37 -16 344 2
102 M 1.00 -9 126 -5 91 2 107 -2 42 -31 35 -23 349 3
103 M 2.00 -6 129 -2 84 -6 103 -6 54 -2 45 4 359 6
104 M 4.00 -5 127 -4 81 -10 101 -8 56 2 46 7 352 4
105 M 8.00 -12 125 -6 87 -2 104 -5 46 -20 38 -13 356 5
105 P .00 0 108 0 80 0 92 0 37 0 28 0 322 0
107 P .25 -2 112 4 80 0 94 2 43 14 32 13 322 0
108 P .50 2 117 8 81 1 97 5 49 24 37 24 326 1
109 P 1.00 7 114 5 86 7 98 6 36 -3 29 3 331 3
110 P 2.00 1 114 5 80 0 95 3 43 14 34 18 337 4
111 P 4.00 -1 113 4 84 5 97 5 37 0 28 0 331 3
112 P 8.00 -3 124 13 87 8 103 11 45 18 37 24 333 3

ESP; end systolic pressure, ESP%; percentage of change from baseline of end systolic
pressure, ASBP; aortic systolic blood pressure, ASBP%; percentage of change from baseline of
aortic systolic blood pressure, ADBP; aortic diastolic blood pressure, ADBP%; percentage of
change from baseline of aortic diastolic blood pressure, MBP, mean blood pressure, MBP%,
percentage of change from baseline of mean blood pressure, PPP; peripheral blood pressure,
PPP%; percentage of change from baseline of peripheral blood pressure, APP; aortic pulse
pressure, APP%; percentage of change from baseline of aortic pulse pressure, ED; ejection
duration, ED%; percentage of change from baseline of ejection duration
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Morphine versus morphine and naloxone study

Table lll-IV-l. Haemodynamic effects of morphine versus morphine and naloxone

No VISI
T

Dos
e

CO
R

INC RT No
R

o2 co2 RR CO SV

1 1 1 0 54 0 .983 0 97 5.1 18 2.7 51
2 1 1 0.25 52 0 .913 2 97 5.1 12 3.2 61
3 1 1 0.5 54 0 .992 0 98 5.2 17 1.9 36
4 1 1 1 53 0 1.030 1 97 4.5 13 2.5 51
5 1 1 2 54 0 .950 0 98 5.3 22 2.6 50
6 1 1 4 54 0 1.184 0 100 4.8 11 2.8 49
7 1 1 8 54 0 1.189 0 100 5.6 19 3.5 56
8 1 2 0 54 0 .813 0 97 5.1 14 3.4 57
9 1 2 0.25 54 0 .868 0 97 5.2 16 2.6 51
10 1 2 0.5 54 0 .895 0 98 5.4 15 2.5 48
11 1 2 1 54 0 .873 0 98 5.5 16 2.5 48
12 1 2 2 54 0 .884 0 98 5.4 17 2.4 47
13 1 2 4 54 0 .959 0 99 5.4 14 2.7 55
14 1 2 8 54 0 1.012 0 99 5.4 15 2.5 48
15 2 2 0 54 0 1.181 0 99 5.2 18 4.3 69
16 2 2 0.25 54 0 1.253 0 97 5.5 19 3.2 55
17 2 2 0.5 54 0 1.242 0 98 5.7 16 3.4 60
18 2 2 1 54 0 1.234 0 98 5.5 12 3.4 61
19 2 2 2 54 0 1.134 0 99 5.3 13 3.8 65
20 2 2 4 54 0 1.078 0 99 4.9 16 3.5 63
21 2 2 8 54 0 1.049 0 96 5.2 16 3.6 60
22 2 1 0 53 0 1.079 1 96 5.3 18 4.0 57
23 2 1 0.25 54 0 1.057 0 96 5.6 18 3.9 62
24 2 1 0.5 53 0 1.190 1 99 5.4 16 3.6 61
25 2 1 1 54 0 1.069 0 98 5.2 16 3.6 63
26 2 1 2 54 0 1.145 0 97 5.6 19 3.7 61
27 2 1 4 54 0 1.015 0 98 5.8 15 3.4 56
28 2 1 8 54 0 1.158 0 97 6.1 12 3.7 57
29 3 2 0 54 0 .890 0 97 5.3 17 3.4 49
30 3 2 0.25 54 0 .891 0 97 5.2 17 3.1 48
31 3 2 0.5 54 0 .863 0 96 5.3 19 3.2 50
32 3 2 1 54 0 .712 0 97 5.6 18 3.0 51
33 3 2 2 54 0 .730 0 98 5.6 16 3.0 48
34 3 2 4 54 0 .712 0 96 5.6 16 2.8 47
35 3 2 8 54 0 .720 0 96 5.5 16 2.7 44
36 4 1 0 46 0 .776 0 99 5.1 17 2.6 50
37 4 1 0.25 54 0 .793 0 98 4.8 18 2.1 42
38 4 1 0.5 54 0 .769 0 99 4.8 16 2.4 47
39 4 1 1 54 0 .786 0 100 5.2 14 2.2 45
40 4 1 2 54 0 .822 0 99 4.7 15 2.3 43
41 4 1 4 54 0 .800 0 98 4.8 13 2.1 44
42 4 1 8 54 0 .820 0 97 5.6 12 2.0 39
43 3 1 0 54 0 .708 0 98 5.2 18 3.4 49
44 3 1 0.25 54 0 .709 0 98 5.2 17 3.0 48
45 3 1 0.5 54 0 .698 0 97 5.2 17 3.0 50
46 3 1 1 54 0 .717 0 97 5.3 16 3.1 48
47 3 1 2 54 0 .685 0 97 5.5 16 3.0 48
48 3 1 4 54 0 .658 0 99 5.2 14 2.9 45
49 3 1 8 54 0 .797 0 98 5.3 14 3.0 43
50 4 2 0 46 0 .776 8 98 5.1 16 2.7 51
51 4 2 0.25 54 0 .793 0 97 4.8 16 2.3 45
52 4 2 0.5 54 0 .769 0 97 5.1 14 2.3 47
53 4 2 1 54 0 .786 0 97 5.2 12 2.2 45
54 4 2 2 54 0 .822 0 98 5.3 14 2.2 44
55 4 2 4 54 0 .800 0 96 5.3 14 2.0 40
56 4 2 8 54 0 .820 0 98 5.3 15 2.0 42
57 5 1 0 54 0 .999 0 97 5.8 18 4.3 74
58 5 1 0.25 54 0 .875 0 97 5.7 17 4.1 70
59 5 1 0.5 54 0 .910 0 96 5.9 17 4.2 71
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No VISI
T

Dos
e

CO
R

INC RT No
R

o2 ooN) RR CO SV

60 5 1 1 54 0 .968 0 96 6.2 15 3.9 66
61 5 1 2 54 0 .829 0 98 6.1 15 3.9 63
62 5 1 4 54 0 .888 0 96 6.3 13 3.8 69
63 5 1 8 54 0 1.000 0 96 6.5 12 3.9 71
64 6 1 0 53 0 .811 1 100 5.1 20 2.3 29
65 6 1 0.25 54 0 .756 0 98 5.3 19 3.2 45
66 6 1 0.5 54 0 .772 0 97 5.1 13 2.9 43
67 6 1 1 54 0 .721 0 98 5.2 14 3.1 45
68 6 1 2 54 0 .771 1 97 5.4 13 3.1 44
69 6 1 4 54 0 .784 0 98 5.6 11 3.0 43
70 6 1 8 54 0 .810 0 96 6.2 10 2.9 46
71 7 2 0 54 0 .809 0 99 5.4 15 4.5 75
72 7 2 0.25 54 0 .796 0 97 6.0 13 3.9 68
73 7 2 0.5 54 0 .773 0 98 6.0 11 4.1 71
74 7 2 1 54 0 .687 0 98 5.9 13 3.6 69
75 7 2 2 54 0 .699 0 98 6.1 11 3.6 66
76 7 2 4 54 0 .782 0 98 5.9 11 2.8 57
77 7 2 8 53 0 .719 1 99 6.1 10 3.2 63
78 7 1 0 54 0 .673 0 97 5.6 17 4.6 76
79 7 1 0.25 54 0 .685 0 97 5.8 16 4.4 76
80 7 1 0.5 54 0 .659 0 97 5.9 14 4.0 64
81 7 1 1 54 0 .683 0 98 5.6 15 4.0 69
82 7 1 2 54 0 .750 0 97 5.8 12 3.3 62
83 7 1 4 54 0 .725 0 97 6.0 11 3.9 67
84 7 1 8 54 0 .692 0 99 6.4 9 4.5 66
85 6 2 0 54 0 .723 0 100 5.5 16 4.0 59
86 6 2 0.25 54 0 .734 0 99 5.5 15 4.1 58
87 6 2 0.5 54 0 .693 0 99 5.6 17 3.9 61
88 6 2 1 54 0 .675 0 99 5.5 15 4.5 63
89 6 2 2 54 0 .662 0 98 5.5 16 3.7 60
90 6 2 4 54 0 .660 0 100 5.6 16 3.8 64
91 6 2 8 54 0 .649 0 99 5.7 16 3.8 58
92 5 2 0 54 0 .734 0 97 5.6 17 4.1 75
93 5 2 0.25 54 0 .717 0 95 5.6 16 3.9 77
94 5 2 0.5 54 0 .607 0 97 5.7 17 3.8 77
95 5 2 1 54 0 .717 0 96 5.7 16 3.9 78
96 5 2 2 54 0 .616 0 97 5.7 17 3.6 75
97 5 2 4 54 0 .630 0 99 5.7 16 3.6 76
98 5 2 8 54 0 .659 0 98 5.8 16 3.9 75
99 8 1 0 54 0 .833 0 100 5.5 19 5.5 77
100 8 1 0.25 54 0 .816 0 100 5.7 16 5.0 76
101 8 1 0.5 54 0 .826 0 100 5.6 18 4.6 71
102 8 1 1 54 0 .909 0 100 5.6 16 5.2 77
103 8 1 2 54 0 .891 0 100 5.5 17 4.9 73
104 8 1 4 54 0 .913 0 100 5.7 16 4.4 71
105 8 1 8 54 0 .911 0 100 5.8 14 4.6 75
106 8 2 0 54 0 .922 0 100 5.6 17 5.0 76
107 8 2 0.25 54 0 .924 0 100 5.6 17 5.4 78
108 8 2 0.5 54 0 .763 0 100 5.7 19 4.7 78
109 8 2 1 54 0 .677 0 100 5.7 17 4.6 75
110 8 2 2 54 0 .819 0 100 5.8 18 4.7 75
111 8 2 4 54 0 .961 0 100 5.7 18 4.4 74
112 8 2 8 54 0 .703 0 100 5.8 16 4.9 80

No; randomisation number, COR; correct response, INC; incorrect response, NoR; no response,
O"; oxygen saturation, CO"; end tidal carbon dioxide, RR; respiratory rate, CO; cardiac output,
SV; stroke volume.
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Table lll-IV-ll. Haemodynamic effects of morphine versus morphine and naloxone
(continued)

No VISI
T

Dos
e

SBP DBP SSB
P

SDB
P

HR Al ESP MBP

1 1 1 0 144 81 136 78 52 18 116 102
2 1 1 0.25 138 74 139 61 51 18 109 95
3 1 1 0.5 131 78 142 84 51 23 110 96
4 1 1 1 123 68 128 83 52 26 103 86
5 1 1 2 147 82 147 73 55 21 120 104
6 1 1 4 151 83 158 88 51 25 125 106
7 1 1 8 161 82 56 32 131 108
8 1 2 0 128 73 138 82 62 16 102 91
9 1 2 0.25 132 71 133 81 53 20 105 91
10 1 2 0.5 133 72 133 86 48 19 106 92
11 1 2 1 132 73 127 79 48 12 102 93
12 1 2 2 128 72 132 81 49 15 101 91
13 1 2 4 128 72 135 80 48 20 105 91
14 1 2 8 143 79 135 86 60 18 112 100
15 2 2 0 149 89 159 89 61 22 122 109
16 2 2 0.25 147 83 154 99 55 22 117 104
17 2 2 0.5 139 81 153 88 54 31 117 100
18 2 2 1 137 81 142 88 54 27 114 100
19 2 2 2 144 89 146 88 53 25 118 107
20 2 2 4 144 83 142 93 53 26 117 103
21 2 2 8 142 87 146 87 55 23 118 105
22 2 1 0 148 88 143 89 68 18 120 108
23 2 1 0.25 142 81 143 87 58 21 115 101
24 2 1 0.5 137 82 143 83 57 21 111 100
25 2 1 1 142 81 139 88 57 20 112 101
26 2 1 2 137 77 138 85 56 16 107 97
27 2 1 4 136 82 138 83 57 23 112 100
28 2 1 8 135 78 138 88 55 20 109 97
29 3 2 0 132 79 136 92 68 28 113 97
30 3 2 0.25 139 78 133 82 65 25 110 98
31 3 2 0.5 127 78 135 81 66 27 107 94
32 3 2 1 129 79 117 83 59 26 108 96
33 3 2 2 126 83 129 87 63 31 110 97
34 3 2 4 127 81 132 90 62 33 111 96
35 3 2 8 136 89 134 93 62 34 118 105
36 4 1 0 123 88 117 73 52 20 98 100
37 4 1 0.25 117 73 115 82 52 20 97 88
38 4 1 0.5 122 70 120 76 50 21 99 87
39 4 1 1 114 67 120 78 49 15 89 83
40 4 1 2 114 76 120 76 51 18 90 89
41 4 1 4 114 74 121 84 48 15 93 87
42 4 1 8 126 81 133 89 51 27 107 96
43 3 1 0 144 85 67 25 121 105
44 3 1 0.25 135 79 131 83 62 30 117 98
45 3 1 0.5 117 81 127 90 62 30 104 93
46 3 1 1 128 85 127 89 60 29 112 99
47 3 1 2 145 87 120 86 65 30 123 106
48 3 1 4 128 88 128 90 60 36 117 101
49 3 1 8 137 87 139 91 64 32 120 104
50 4 2 0 128 74 129 79 52 24 106 92
51 4 2 0.25 121 84 114 80 50 25 107 96
52 4 2 0.5 117 76 117 83 49 20 97 90
53 4 2 1 117 73 116 83 49 26 100 88
54 4 2 2 123 82 120 85 49 21 105 96
55 4 2 4 126 79 129 86 48 26 106 95
56 4 2 8 121 78 126 92 48 27 108 92
57 5 1 0 132 63 120 60 61 -22 83 86
58 5 1 0.25 114 61 121 80 60 -7 78 79
59 5 1 0.5 128 64 132 70 61 -7 95 85
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60 5 1 1 129 63 126 63 57 -7 90 85
61 5 1 2 131 65 122 58 62 -13 81 87
62 5 1 4 128 64 114 61 58 -6 87 85
63 5 1 8 109 60 123 54 60 -9 76 76
64 6 1 0 116 77 111 76 69 24 101 90
65 6 1 0.25 116 75 114 75 71 30 100 89
66 6 1 0.5 115 73 108 73 66 24 99 87
67 6 1 1 111 73 105 74 66 28 97 86
68 6 1 2 120 73 104 67 66 24 102 89
69 6 1 4 115 74 106 62 63 32 103 88
70 6 1 8 106 66 108 75 59 33 94 79
71 7 2 0 142 61 60 -23 77 88
72 7 2 0.25 129 62 132 71 56 -21 77 84
73 7 2 0.5 120 63 127 63 60 -7 78 82
74 7 2 1 134 55 127 76 51 -11 77 81
75 7 2 2 117 58 142 49 49 88 78
76 7 2 4 131 58 131 69 47 -8 91 82
77 7 2 8 135 61 142 72 54 -10 84 86
78 7 1 0 131 60 138 72 54 -20 124 84
79 7 1 0.25 129 58 147 64 56 -5 80 82
80 7 1 0.5 136 64 143 64 59 -8 86 88
81 7 1 1 136 64 151 67 54 4 93 88
82 7 1 2 139 54 152 58 58 -11 89 82
83 7 1 4 133 61 149 65 53 0 89 85
84 7 1 8 139 65 67 53 54 -7 85 90
85 6 2 0 110 76 108 70 68 26 95 87
86 6 2 0.25 105 68 101 69 62 34 91 80
87 6 2 0.5 114 76 101 62 60 21 98 89
88 6 2 1 110 74 97 68 61 25 96 86
89 6 2 2 102 70 108 60 59 30 91 81
90 6 2 4 106 65 98 63 57 25 91 79
91 6 2 8 102 64 97 62 58 27 89 77
92 5 2 0 131 60 133 63 58 -6 78 84
93 5 2 0.25 120 58 115 60 55 -18 74 79
94 5 2 0.5 122 55 133 57 57 -16 76 77
95 5 2 1 128 54 117 62 54 -3 77 79
96 5 2 2 113 51 122 64 55 -10 72 72
97 5 2 4 111 56 133 61 50 -11 74 74
98 5 2 8 114 50 123 57 49 -13 72 71
99 8 1 0 121 70 122 71 69 -13 88 87
100 8 1 0.25 116 69 109 68 68 -8 86 85
101 8 1 0.5 110 66 103 64 66 -19 81 81
102 8 1 1 114 63 110 58 62 -21 79 80
103 8 1 2 108 61 100 53 60 -19 75 77
104 8 1 4 108 57 96 59 64 -25 70 74
105 8 1 8 97 52 100 56 60 -17 66 67
106 8 2 0 112 59 115 59 66 -11 79 77
107 8 2 0.25 105 58 107 58 60 -16 74 74
108 8 2 0.5 108 58 109 62 60 -11 76 75
109 8 2 1 104 57 106 66 59 -14 74 73
110 8 2 2 116 55 99 56 56 -9 78 75
111 8 2 4 112 64 107 52 57 -12 82 80
112 8 2 8 102 54 102 63 58 -11 74 70

SBP; systolic blood pressure, DBP; diastolic blood pressure, sSBP; sitting systolic blood
pressure, sDBP; sitting diastolic blood pressure, HR; heart rate, Al; augmentation index, ESP;
end systolic pressure, MBP; mean blood pressure.
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Table lll-V. Histamine, adrenaline, noradrenaline, and morphine in whole man studies

Code Visit Vol Dos Visi Hista Lea Noradr Adrenal Morphin
unt e t mine se enaline ine e

eer No.
1 M & M-N 1 0 1 0.68 231.57 33.5333 <2.5
2 M & M-N 1 0 2 0.44 180.63 <30 <2.5
3 M & M-N 1 0.25 1 0.60 317.23 75.4667 2.6
4 M & M-N 1 0.25 2 0.45 271.67 <30 3.1
5 M & M-N 1 1 1 0.51 275.93 34.1667 13.8
6 M & M-N 1 1 2 0.69 188.47 <30 13.3
7 M & M-N 1 8 1 0.64 299.43 43.3333 97.6
8 M & M-N 1 8 2 0.89 182.6 <30 63.9
9 M & M-N 2 0 1 0.99 208.03 <30 <2.5
10 M & M-N 2 0 2 0.80 283.73 41.1667 <2.5
11 M & M-N 2 0.25 1 1.10 h++ 330.43 49.4333 2.8
12 M & M-N 2 0.25 2 0.61 467.17 33.4333 2.8
13 M & M-N 2 1 1 0.81 370.97 30.6667 10.8
14 M & M-N 2 1 2 1.02 h++ 504 45.4 11.7
15 M & M-N 2 8 1 0.85 271.43 40.8 69.9
16 M & M-N 2 8 2 0.56 392.8 35.9333 56.6
17 M & M-N 3 0 1 1.16 232.03 36.3333 <2.5
18 M & M-N 3 0 2 0.54 178.9 37.1333 2.8
19 M & M-N 3 0.25 1 0.96 186.7 44.2667 3.3
20 M & M-N 3 0.25 2 0.97 155.77 65.8 5
21 M & M-N 3 1 1 0.67 184.17 <30 16.7
22 M & M-N 3 1 2 0.95 156.03 43.8667 20.6
23 M & M-N 3 8 1 0.96 175.63 70.9 68.1
24 M & M-N 3 8 2 0.82 248.17 <30 67.1
25 M & M-N 4 0 1 0.48 211.37 <30 <2.5
26 M & M-N 4 0 2 0.62 245.47 44.4667 20.5
27 M & M-N 4 0.25 1 0.95 417.4 <30 4.3
28 M & M-N 4 0.25 2 0.46 179.67 61.1 5.3
29 M & M-N 4 1 1 0.48 202.63 31.5333 16.2
30 M & M-N 4 1 2 0.69 232.67 43.6333 3.6
31 M & M-N 4 8 1 0.74 283 39.2 93.5
32 M & M-N 4 8 2 0.60 149.63 37.6333 78.2
33 M & M-N 5 0 1 1.05 201.17 <30 <2.5
34 M & M-N 5 0 2 0.62 290.8 <30 <2.5
35 M & M-N 5 0.25 1 0.75 307.93 <30 <2.5
36 M & M-N 5 0.25 2 0.51 258.03 <30 <2.5
37 M & M-N 5 1 1 0.61 357.6 <30 10.4
38 M & M-N 5 1 2 0.80 311.67 <30 8.7
39 M & M-N 5 8 1 0.65 311.23 85.5333 50.4
40 M & M-N 5 8 2 0.68 281.8 <30 50
41 M & M-N 6 0 1 0.58 189.07 <30 <2.5
42 M & M-N 6 0 2 0.56 208.23 <30 <2.5
43 M & M-N 6 0.25 1 0.47 180.27 <30 <2.5
44 M & M-N 6 0.25 2 0.69 205.07 <30 3.6
45 M & M-N 6 1 1 0.66 205.9 <30 12.6
46 M & M-N 6 1 2 0.83 177.6 <30 11
47 M & M-N 6 8 1 0.76 414.17 <30 70.7
48 M & M-N 6 8 2 0.80 <150 <30 69.9
49 M & M-N 7 0 1 0.92 474.7 <30 <2.5
50 M & M-N 7 0 2 0.47 469.17 60.2667 <2.5
51 M & M-N 7 0.25 1 0.81 799.8 <30 <2.5
52 M & M-N 7 0.25 2 0.79 306.7 <30 2.7
53 M & M-N 7 1 1 0.63 457.1 <30 10
54 M & M-N 7 1 2 0.66 432.37 <30 12.1
55 M & M-N 7 8 1 0.62 402.27 <30 59.4
56 M & M-N 7 8 2 0.66 353.3 <30 57.7
57 M & M-N 8 0 1 4.06 164.97 <30 <2.5
58 M & M-N 8 0 2 2.70 334.5 <30 <2.5
59 M & M-N 8 0.25 1 3.60 269.4 <30 3.1
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Code Visit Vol Dos Visi Hista Lea Noradr Adrenal Morphin
unt e t mine se enaline ine e

eer No.
60 M & M-N 8 0.25 2 6.19 196.57 <30 5.2
61 M & M-N 8 1 1 3.04 <150 <30 16.8
62 M & M-N 8 1 2 4.35 <150 <30 43.8
63 M& M-N 8 8 1 3.10 178.27 <30 85.1
64 M & M-N 8 8 2 3.59 172.83 <30 98.2
65 M & P 3 0 4 0.65 <150 <30 <2.5
66 M & P 3 0 5 1.07 <150 <30 <2.5
67 M & P 3 0.25 4 0.65 <150 <30 3.8
68 M & P 3 0.25 5 1.01 <150 <30 <2.5
69 M & P 3 1 4 1.09 <150 <30 12.5
70 M & P 3 1 5 0.70 <150 <30 <2.5
71 M & P 3 8 4 0.82 <150 <30 71
72 M & P 3 8 5 0.83 <150 <30 <2.5
73 M & P 6 0 4 0.63 183.8 <30 <2.5
74 M & P 6 0 5 0.75 324.4 <30 <2.5
75 M & P 6 0.25 4 0.92 231.87 <30 3.2
76 M & P 6 0.25 5 0.50 277.6 <30 <2.5
77 M & P 6 1 4 0.68 229.73 <30 17.3
78 M & P 6 1 5 0.87 358.6 <30 2.8
79 M & P 6 8 4 0.87 194.73 <30 105.4
80 M & P 6 8 5 0.90 173.3 <30 3.1
81 M&P 7 0 4 0.59 <150 <30 <2.5
82 M & P 7 0 4 0.49 <150 <30 <2.5
83 M&P 7 0.25 4 0.58 <150 <30 <2.5
84 M&P 7 0.25 5 0.62 <150 <30 <2.5
85 M&P 7 1 4 0.76 <150 32.77 <2.5
86 M&P 7 1 4 0.58 <150 <30 <2.5
87 M&P 7 8 4 4.86 <150 <30 48.4
88 M&P 7 8 4 0.99 <150 <30 <2.5
89 M&P 9 0 4 0.56 263.5 <30 <2.5
90 M&P 9 0 5 0.75 <150 <30 <2.5
91 M&P 9 0.25 4 1.37 <150 34.17 <2.5
92 M&P 9 0.25 5 0.75 153.83 <30 <2.5
93 M&P 9 1 4 1.08 185.2 <30 <2.5
94 M&P 9 1 5 1.73 <150 <30 <2.5
95 M&P 9 8 4 0.50 181.33 <30 40.6
96 M&P 9 8 5 0.50 <150 <30 <2.5
97 M&P 10 0 4 0.43 <150 <30 <2.5
98 M&P 10 0 5 0.45 <150 <30 <2.5
99 M&P 10 0.25 4 0.53 206.67 30.4667 <2.5
100 M&P 10 0.25 5 0.69 <150 <30 <2.5
101 M&P 10 1 4 1.15 301.03 <30 <2.5
102 M&P 10 1 5 0.78 <150 <30 <2.5
103 M&P 10 8 4 0.75 188.23 40.1667 34.6
104 M&P 10 8 5 0.48 <150 <30 <2.5
105 M&P 11 0 4 0.48 <150 <30 <2.5
106 M&P 11 0 5 0.70 <150 46.8 <2.5
107 M&P 11 0.25 4 0.64 <150 35.1667 <2.5
108 M&P 11 0.25 5 0.81 <150 <30 <2.5
109 M&P 11 1 4 0.75 <150 <30 <2.5
110 M&P 11 1 5 0.94 <150 <30 <2.5
111 M&P 11 8 4 0.82 <150 49.8 28.7
112 M&P 11 8 5 0.38 <150 <30 <2.5
113 M&P 12 0 4 0.73 <150 65.9 <2.5
114 M&P 12 0 5 0.37 <150 42.3 <2.5
115 M&P 12 0.25 4 0.38 300.53 78.5667 <2.5
116 M&P 12 0.25 5 0.77 <150 <30 <2.5
117 M&P 12 1 4 0.46 <150 88.2 <2.5
118 M&P 12 1 5 0.39 241.07 40.9 <2.5
119 M&P 12 8 4 0.43 <150 104.5 19.9
120 M&P 12 8 5 0.63 201.3 48.6 <2.5
121 M&P 14 0 4 0.82 <150 59.8 <2.5
122 M&P 14 0 5 0.83 <150 31.5 <2.5
123 M&P 14 0.25 4 1.04 <150 56.5 <2.5
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Code Visit Vol Dos Visi Hista Lea Noradr Adrenal Morphin
unt e t mine se enaline ine e

eer No.
124 M & P 14 0.25 5 0.79 <150 <30 <2.5
125 M & P 14 1 4 0.59 <150 53.9 <2.5
126 M & P 14 1 5 1.00 <150 37.9333 <2.5
127 M & P 14 8 4 0.91 <150 33.4 142.2
128 M & P 14 8 5 0.69 <150 42.5667 <2.5

Histamine concentration (ng/ml), Adrenaline concentration (pg/ml), Noradrenaline concentration
(pg/ml), Morphine Concentration in ug/L, M & P; morphine versus saline study, M & M-N;
morphine and saline versus morphine and naloxone study.
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Forearm blood flow studies

Table lll-VI. Exploratory dose ranging study

lll-VI-l. FBF-Pq- Forearm blood flow in infused arm (ml/100ml forearm blood flow)
A B Mean SD SEM

Baseline 2.5 1.55 2.03 0.67 0.48
1 meg 2.86 1.56 2.21 0.92 0.65
3 meg 2.7 1.1 1.90 1.13 0.80
10 meg 3.2 1.01 2.11 1.55 1.10
30 meg 4.69 1.87 3.28 1.99 1.41
100 meg 5.1 4.59 4.85 0.36 0.26
300 meg 10.6 11.08 10.84 0.34 0.24
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Table lll-VII. Dose ranging study
lll-VII-l. FBF-Pj; Forearm blood flow in infused arm (ml/100ml forearm blood flow)

A B c D E F Mean SD SEM
Baseline 2.00 2.49 2.90 2.26 2.77 2.09 2.42 0.37 0.15
1 meg (0-6 min) 1.86 2.88 3.17 2.20 3.14 2.24 2.58 0.55 0.23
3 meg (7-12 min) 2.04 2.98 3.14 2.79 3.78 2.11 2.81 0.66 0.27
10 meg (13-18 min) 2.44 3.32 3.91 2.81 3.94 2.04 3.08 0.78 0.32
30 meg (19-24 min) 2.39 3.56 3.95 3.42 3.62 2.53 3.25 0.63 0.26
100 meg (25-30 min) 4.33 6.47 6.17 6.41 4.65 3.34 5.23 1.31 0.53
Saline (+ 6 min) 4.23 5.90 5.87 4.24 4.50 2.79 4.59 1.17 0.48
Saline (+12 min) 4.29 5.28 5.11 3.73 4.37 2.63 4.24 0.97 0.40
Saline (+18 min) 4.09 4.58 5.21 3.44 3.72 2.92 3.99 0.82 0.33
Saline (+24 min) 3.88 4.79 5.01 3.72 3.44 2.68 3.92 0.87 0.35
Saline (+30 min) 3.53 4.17 5.16 3.69 3.62 2.76 3.82 0.80 0.33

Ill-VII-lt. FBF-P1; Area of redness (em2)
A B C D E F Mean SD SEM

Baseline 0 0 0 0 0 1 0.1 0.2 0.1
1 meg (0-6 min) 0 0 0 0 0 0 0.0 0.1 0.0
3 meg (7-12 min) 0 0 0 0 0 0 0.0 0.0 0.0
10 meg (13-18 min) 0 0 0 0 0 0 0.0 0.1 0.0
30 meg (19-24 min) 0 9 0 9 0 0 3.0 4.6 1.9
100 meg (25-30 min) 62 196 56 18 70 22 70.7 65.0 26.6
Saline (+ 6 min) 84 168 64 35 70 20 73.5 51.9 21.2
Saline (+12 min) 74 131 56 35 48 17 60.1 39.8 16.2
Saline (+18 min) 50 100 46 32 55 22 50.7 27.1 11.1
Saline (+24 min) 60 24 42 33 25 14 33.0 16.3 6.6
Saline (+30 min) 53 24 39 26 20 15 29.5 14.0 5.7
Observed (+60 min) 18 0 5 14 0 0 6.0 7.9 3.2
Observed (+90 min) 0 0 0 2 0 0 0.3 0.8 0.3

lll-VII-lll. FBF-P1;Area of weal (em2)
A B C D E F Mean SD SEM

Baseline 0 0 0 0 0 0 0 0 0
1 meg (0-6 min) 0 0 0 0 0 0 0 0 0
3 meg (7-12 min) 0 0 0 0 0 0 0 0 0
10 meg (13-18 min) 0 0 0 0 0 0 0 0 0
30 meg (19-24 min) 0 0 0.5 0 0 0 0.08 0.2 0.08
100 meg (25-30 min) 19 15 30 12 22 27 20.8 6.91 2.82
Saline (+ 6 min) 62 21 36 12 33 16 30 18.3 7.46
Saline (+12 min) 62 21 36 12 30 24 30.8 17.3 7.06
Saline (+18 min) 54 18 33 10 12 20 24.5 16.6 6.76
Saline (+24 min) 43 11 33 7.5 11 12 19.4 14.6 5.96
Saline (+30 min) 47 11 33 7.5 11 12 20.2 16.1 6.56
Observed (+60 min) 23 0 4.5 4 0 15 7.75 9.27 3.79
Observed (+90 min) 7 0 0 1 0 6 2.33 3.27 1.33

lll-VII-IV. FBF-P1; Presence of itching (%)
A B c D E F Sum Percentage

Baseline 0 0 0 0 0 0 0 0
1 meg (0-6 min) 0 0 0 0 0 0 0 0
3 meg (7-12 min) 0 0 0 0 0 0 0 0
10 meg (13-18 min) 0 0 0 0 0 0 0 0
30 meg (19-24 min) 0 1 1 1 0 0 3 50
100 meg (25-30 min) 1 1 1 1 1 1 6 100
Saline (+ 6 min) 0 1 1 1 0 1 4 66.7
Saline (+12 min) 0 0 0 0 0 0 0 0
Saline (+18 min) 0 0 0 0 0 0 0 0
Saline (+24 min) 0 0 0 0 0 0 0 0
Saline (+30 min) 0 0 0 0 0 0 0 0
Observed (+60 min) 0 0 0 0 0 0 0 0
Observed (+90 min) 0 0 0 0 0 0 0 0
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lll-VII-V. FBF-P1; Intensity of itching (subjective scale)
A B c D E F Mean SD SEM

Baseline 0 0 0 0 0 0 0 0 0
1 meg (0-6 min) 0 0 0 0 0 0 0 0 0
3 meg (7-12 min) 0 0 0 0 0 0 0 0 0
10 meg (13-18 min) 0 0 0 0 0 0 0 0 0
30 meg (19-24 min) 0 5 3 5 0 0 2.17 2.48 1.01
100 meg (25-30 min) 7 8 8 7 5 3 6.33 1.97 0.80
Saline (+ 6 min) 0 1 1 1 0 1 0.67 0.52 0.21
Saline (+12 min) 0 0 0 0 0 0 0 0 0
Saline (+18 min) 0 0 0 0 0 0 0 0 0
Saline (+24 min) 0 0 0 0 0 0 0 0 0
Saline (+30 min) 0 0 0 0 0 0 0 0 0
Observed (+60 min) 0 0 0 0 0 0 0 0 0
Observed (+90 min) 0 0 0 0 0 0 0 0 0
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Table lil-VIII. Tachyphylaxis study (FBF-P2)

lll-VIII-l. FBF-P2; Forearm blood flow in infused arm (ml/100ml forearm blood flow)
A B c D E F G H Mean SD SEM

Saline ( 0 min) 3.6 2.7 3.1 2.1 3.7 4.8 1.7 2.5 3.03 0.99 0.35
50 meg (+10 min) 3.7 3.4 3.9 3.5 5.3 5 2.5 3.3 3.82 0.92 0.326
50 meg (+20 min) 3.6 3.2 4.2 3.6 5.6 5 3 3.1 3.91 0.96 0.34
50 meg (+30 min) 4.8 3 4.8 3.2 6 4.7 3.4 3.5 4.19 1.04 0.368
Saline (+40 min) 4.8 3.6 4.5 3.1 5.7 4.8 3.2 3.3 4.11 0.96 0.338
Saline (+50 min) 5.6 3.2 4.5 3.6 4.8 3.8 3.5 4.3 4.17 0.79 0.279

Saline (+60 min) 4.9 4.2 4.5 1.2 4.6 4 3.9 4.4 3.97 1.16 0.411
Saline (+70 min) 4.3 4 4.1 2.5 4.2 3.7 4 5.5 4.05 0.81 0.287
Saline (+80 min) 3.1 2.5 2.2 3.8 3.6 3.5 5 3.4 0.92 0.326
Saline (+90 min) 3.1 2.3 4.4 3.4 3.5 5.3 3.65 1.04 0.366

III-VIM II. FBF-P2; Forearm blood flow in non-Infused arm (ml/100ml forearm blood flow)
A B C D E F G H Mean SD SEM

Saline ( 0 min) 4.8 2.3 2.2 1.6 2.2 3.9 1.8 2.0 2.60 1.13 0.40
50 meg (+10 min) 2.8 2.1 2.4 2.1 2.7 3.2 1.8 1.4 2.30 0.58 0.21
50 meg (+20 min) 3.2 1.7 2.8 2.7 2.6 3.0 2.1 1.4 2.44 0.65 0.23
50 meg (+30 min) 4.0 1.8 2.8 2.3 2.8 2.7 2.2 1.0 2.45 0.86 0.31
Saline (+40 min) 3.9 3.0 2.8 2.0 2.4 2.8 1.8 1.1 2.48 0.84 0.30
Saline (+50 min) 5.5 2.5 3.0 2.3 2.7 2.2 1.7 1.3 2.63 1.26 0.45
Saline (+60 min) 4.2 2.4 2.3 1.0 3.2 2.4 1.9 1.3 2.35 0.99 0.35
Saline (+70 min) 4.1 2.9 3.2 1.9 2.7 2.2 2.2 2.8 2.76 0.68 0.24
Saline (+80 min) 2.4 1.7 1.6 2.8 2.1 2.3 2.1 2.16 0.41 0.15
Saline (+90 min) 2.5 1.7 3.4 2.0 2.3 1.9 2.29 0.61 0.21

lll-VIII-lll. FBF-P2; Area of the flare (cm2)
A B C D E F G H Mean SD SEM

Saline ( 0 min) 0 0 0 0 0 0 0 0 0.0 0.0 0.0
50 meg (+10 min) 12 8 54 40 18 80 5 22 29.9 26.2 10.7
50 meg (+20 min) 18 8 60 48 10 110 8 26 36.0 35.6 14.5
50 meg (+30 min) 20 6 52 60 10 120 10 26 38.0 38.7 15.8
Saline (+40 min) 18 6 42 60 10 128 10 24 37.3 41.0 16.8
Saline (+50 min) 12 6 25 50 10 128 10 20 32.6 41.0 16.7
Saline (+60 min) 12 4 18 20 10 62 10 10 18.3 18.4 7.5
Saline (+70 min) 10 2 12 20 2 20 2 0 8.5 8.3 3.4
Saline (+80 min) 0 0 8 10 1 6 1 0 3.3 4.1 1.7
Saline (+90 min) 0 0 0 0 0 6 0 0 0.8 2.1 0.9

III- VIII-IV. FBF-P2 Area of the weal (cm2)
A B C D E F G H Mean SD SEM

Saline ( 0 min) 0 0 0 0 0 0 0 0 0.00 0.00 0.00
50 meg (+10 min) 1 3 10 4 0 20 3 4 5.63 6.52 2.66
50 meg (+20 min) 8 4 18 8 0 36 3 3 10.00 11.84 4.84
50 meg (+30 min) 12 4 20 12 0 36 4 4 11.50 11.80 4.82
Saline (+40 min) 12 4 20 12 0 42 4 3 12.13 13.72 5.60
Saline (+50 min) 12 4 14 12 0 42 3 2 11.13 13.56 5.54
Saline (+60 min) 8 2 14 10 0 30 3 2 8.63 9.87 4.03
Saline (+70 min) 0 0 10 6 0 18 1 0 4.38 6.63 2.71
Saline (+80 min) 0 0 6 1 0 6 1 0 1.75 2.66 1.09
Saline (+90 min) 0 0 0 0 0 6 0 0 0.75 2.12 0.87
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lll-VIII-V. FBF-P2; Presence of itching (%)
A B c D E F G H Sum Percentage

Saline ( 0 min) 0 0 0 0 0 0 0 0 0 0.00
50 meg (+10 min) 1 1 1 1 1 1 0 1 7 87.50
50 meg (+20 min) 1 1 1 1 1 1 1 1 8 100.00
50 meg (+30 min) 1 1 1 1 1 1 1 1 8 100.00
Saline (+40 min) 0 1 0 1 0 1 0 0 3 37.50
Saline (+50 min) 0 1 0 1 0 0 0 0 2 25.00
Saline (+60 min) 0 0 0 1 0 0 0 0 1 12.50
Saline (+70 min) 0 0 0 1 0 0 0 0 1 12.50
Saline (+80 min) 0 0 0 1 0 0 0 0 1 12.50
Saline (+90 min) 0 0 0 0 0 0 0 0 0 0.00

III- VIII-VI. FBF-P2; Intensity of itching (subjective scale)
A B c D E F G H Mean SD SEM

Saline ( 0 min) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.00 0.00 0.00
50 meg (+10 min) 5.0 6.0 3.0 9.0 2.0 4.0 0.0 4.0 4.13 2.70 1.10
50 meg (+20 min) 3.0 7.0 3.0 9.0 1.0 5.0 2.0 3.0 4.13 2.70 1.10
50 meg (+30 min) 3.0 6.0 3.0 5.0 1.0 4.0 1.0 3.0 3.25 1.75 0.72
Saline (+40 min) 0.0 2.0 0.0 2.0 0.0 1.0 0.0 0.0 0.63 0.92 0.37
Saline (+50 min) 0.0 2.0 0.0 1.0 0.0 0.0 0.0 0.0 0.38 0.74 0.30
Saline (+60 min) 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.13 0.35 0.14
Saline (+70 min) 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.13 0.35 0.14
Saline (+80 min) 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.13 0.35 0.14
Saline (+90 min) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.00 0.00 0.00

III- VIII-VII. Tryptase
Patient

Arm Sample 1 2 3 4 5 6 7 8 Mean SD SEM
Control Baseline 5.92 1.74 2.62 8.86 3.63 1.92 15.2 5.7 4.9 0.6
Control 10 min 5.58 2.33 2.5 6.98 4.17 1.65 3.9 2.1 0.3
Control 30 min 5.12 2.41 1.97 8.86 4.51 1.18 15.8 5.7 5.1 0.6
Control 90 min 5.13 2.64 10.9 4.43 2.26 2.21 2.28 4.3 3.2 0.4

Sample 1 2 3 4 5 6 7 8 Mean SD SEM
Infused Baseline 4.29 1.87 2.89 9.89 4.34 3.81 11.8 1.72 5.1 3.7 0.5
Infused 10 min 4.6 2.01 8.01 4.16 1.06 5.54 1.59 3.9 2.5 0.3
Infused 30 min 3.03 1.99 2.42 9.47 4.08 5.64 4.4 2.8 0.3
Infused 90 min 5.08 1.77 2.36 10 3.2 2.44 1.86 3.8 3 0.4

III-VIII-VIII. Histamine
Patient

Arm Sample 1.00 2.00 3.00 4.00 5.00 6.00 7.00 8.00 Mean SD SEM
Control Baseline 0.36 0.31 0.25 0.26 0.27 0.28 0.50 0.60 4.50 2.45
Control 10 min 0.16 0.49 0.24 0.20 0.26 0.26 0.29 0.49 0.35 0.13 0.31
Control 30 min 0.11 0.12 0.18 0.12 0.21 0.16 0.25 0.21 0.30 0.13 0.02
Control 90 min 0.11 0.17 0.22 0.39 0.20 0.13 0.19 0.47 0.17 0.05 0.02

Sample 1.00 2.00 3.00 4.00 5.00 6.00 7.00 8.00 Mean SD SEM
Infused Baseline 0.08 0.17 0.18 0.19 0.19 0.21 4.50 2.45
Infused 10 min 0.12 0.60 0.18 4.17 0.36 0.13 0.90 0.57 0.35 0.13 0.31
Infused 30 min 0.16 0.20 0.19 0.21 0.29 0.23 0.54 0.17 0.30 0.13 0.02
Infused 90 min 0.27 0.12 0.23 2.88 0.30 0.26 0.89 17.82 0.17 0.08 0.02
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Table lll-IX. Mechanism of action study (FBF-P3)

IH-IX-I. FBF-P3; Forearm blood flow in infused arm (ml/100ml forearm blood flow)
Morphine visit

A B C D E F G H Mean SD SEM
Saline (-20 min) 3.1 2.5 2.6 4.3 1.9 2.2 3.4 2.3 2.77 0.79 0.28
Saline (-10 min) 2.7 2.4 2.0 5.8 1.8 2.2 2.9 2.1 2.73 1.28 0.45
Saline ( 0 min) 3.0 2.7 2.9 6.1 1.7 2.2 2.8 1.9 2.90 1.38 0.49
80 meg (+10 min) 3.7 3.0 3.9 9.0 3.2 2.8 2.9 3.2 3.95 2.06 0.73
80 meg (+20 min) 4.3 3.0 3.7 8.2 3.0 2.5 3.9 3.3 3.99 1.79 0.63
80 meg (+30 min) 4.5 3.4 4.2 10.3 3.0 2.7 3.5 2.8 4.30 2.51 0.89
Saline (+40 min) 4.0 3.3 5.2 8.7 3.2 2.6 3.3 2.8 4.13 2.03 0.72
Saline (+50 min) 4.1 2.7 3.6 6.9 2.9 2.7 3.3 2.2 3.54 1.48 0.52
Saline (+60 min) 2.7 3.1 3.3 8.7 3.2 2.3 3.2 2.3 3.60 2.08 0.74

Morphine and naloxone visit
A B C D E F G H Mean SD SEM

Saline (-20 min) 2.7 1.9 3.2 3.5 1.9 1.7 3.1 1.5 2.43 0.79 0.28
Saline (-10 min) 2.6 2.2 3.1 4.8 1.9 1.7 2.8 1.3 2.56 1.08 0.38
Saline ( 0 min) 2.8 1.7 3.7 4.1 2.2 1.6 3.0 1.4 2.56 0.99 0.35
80 meg (+10 min) 3.3 3.5 5.4 8.6 3.3 1.9 3.2 2.9 4.03 2.10 0.74
80 meg (+20 min) 4.2 3.5 6.0 7.0 3.1 1.6 3.2 3.5 4.02 1.70 0.60
80 meg (+30 min) 4.1 3.8 5.3 7.2 2.1 2.4 3.3 3.7 3.99 1.64 0.58
Saline (+40 min) 4.1 2.8 5.6 6.4 2.6 1.5 3.8 3.2 3.74 1.62 0.57
Saline (+50 min) 3.8 3.0 4.5 1.9 1.8 3.9 3.0 3.13 1.02 0.36
Saline (+60 min) 3.5 2.8 5.6 1.5 1.7 3.6 3.12 1.48 0.52

Morphine and Hi and H2 blocker visit
A B C D E F G H Mean SD SEM

Saline (-20 min) 2.9 2.2 4.1 2.2 2.8 1.6 2.3 1.4 2.42 0.85 0.30
Saline (-10 min) 2.4 1.8 4.4 1.9 2.7 1.2 2.3 1.3 2.25 1.02 0.36
Saline ( 0 min) 2.6 2.4 4.8 2.2 2.6 1.0 2.8 1.0 2.43 1.20 0.42
80 meg (+10 min) 3.3 2.5 5.1 2.8 3.1 1.2 3.6 1.3 2.87 1.27 0.45
80 meg (+20 min) 3.2 2.9 5.5 3.2 3.8 1.2 3.2 1.4 3.06 1.36 0.48
80 meg (+30 min) 3.0 2.5 6.0 3.2 3.3 1.0 3.3 1.9 3.02 1.46 0.52
Saline (+40 min) 2.8 3.0 5.3 4.2 3.7 1.4 2.9 1.6 3.13 1.31 0.46
Saline (+50 min) 2.4 3.1 5.4 3.9 3.2 1.2 3.3 1.3 2.99 1.37 0.49
Saline (+60 min) 3.1 4.1 3.7 2.9 1.3 3.2 1.2 2.79 1.12 0.40

Morphine and nitric oxide clamp visit
A B C D E F G H Mean SD SEM

Saline (-20 min) 2.1 2.6 1.6 4.3 1.9 1.7 3.5 2.1 2.46 0.94 0.33
Saline (-10 min) 2.1 2.2 1.4 3.8 1.7 2.5 3.3 1.8 2.34 0.84 0.30
Saline ( 0 min) 2.2 2.1 1.2 4.0 1.9 3.0 3.6 1.7 2.46 0.96 0.34
80 meg (+10 min) 2.4 2.6 2.4 3.6 2.9 2.7 3.6 2.9 2.90 0.48 0.17
80 meg (+20 min) 2.4 2.8 1.6 3.8 2.4 2.3 2.8 2.4 2.57 0.63 0.22
80 meg (+30 min) 2.3 3.0 2.0 4.0 2.3 2.2 2.8 2.9 2.71 0.63 0.22
Saline (+40 min) 2.4 2.9 1.5 2.3 2.6 2.9 3.0 2.52 0.52 0.18
Saline (+50 min) 2.0 2.8 1.8 2.1 2.2 3.0 3.1 2.44 0.55 0.19
Saline (+60 min) 2.0 2.6 1.9 1.9 2.2 2.6 1.9 2.17 0.32 0.11
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lll-IX-ll. FBF-P3; Forearm blood flow in non-infused arm (ml/100ml forearm blood flow)
Morphine visit

A B C D E F G H Mean SD SEM
Saline (-20 min) 2.3 2.4 2.7 4.9 1.9 3.4 2.8 1.9 2.78 1.00 0.36
Saline (-10 min) 1.9 2.1 2.6 5.4 1.9 3.4 2.8 1.6 2.73 1.24 0.44
Saline ( 0 min) 2.0 2.6 3.1 4.9 1.8 2.7 2.8 1.8 2.72 1.03 0.36
80 meg (+10 min) 1.8 2.4 2.6 4.6 1.4 2.7 2.5 2.3 2.52 0.92 0.33
80 meg (+20 min) 2.1 2.7 2.5 4.5 1.7 2.1 2.8 2.1 2.56 0.84 0.30
80 meg (+30 min) 1.8 2.9 2.5 4.6 1.9 2.5 3.0 2.1 2.66 0.91 0.32
Saline (+40 min) 1.8 3.0 2.5 4.0 2.3 2.6 2.8 2.3 2.68 0.65 0.23
Saline (+50 min) 2.0 2.7 2.4 3.7 2.1 2.6 2.7 2.2 2.54 0.54 0.19
Saline (+60 min) 1.8 3.1 2.2 5.5 1.9 2.6 3.2 1.9 2.77 1.24 0.44

Morphine and naloxone visit
A B C D E F G H Mean SD SEM

Saline (-20 min) 2.9 2.4 2.7 3.7 2.2 1.3 3.0 0.9 2.39 0.94 0.33
Saline (-10 min) 2.6 2.6 2.7 4.9 1.9 1.2 2.3 0.6 2.37 1.27 0.45
Saline ( 0 min) 2.8 2.3 2.8 4.3 2.4 1.4 2.5 0.7 2.41 1.04 0.37
80 meg (+10 min) 2.4 2.3 3.0 4.7 2.3 1.2 2.3 1.1 2.40 1.13 0.40
80 meg (+20 min) 2.9 2.1 2.5 4.1 2.0 1.1 2.6 1.6 2.37 0.91 0.32
80 meg (+30 min) 3.1 2.2 3.1 4.0 1.6 1.3 2.4 1.8 2.44 0.91 0.32
Saline (+40 min) 3.3 3.0 3.8 3.9 2.2 0.9 2.5 1.7 2.65 1.04 0.37
Saline (+50 min) 2.8 2.6 3.2 1.7 1.7 2.7 1.5 2.32 0.66 0.23
Saline (+60 min) 2.6 2.9 3.8 1.5 1.5 2.1 2.42 0.90 0.32

Morphine and Hi and H2 blocker visit
A B C D E F G H Mean SD SEM

Saline (-20 min) 1.8 1.9 3.6 3.3 3.8 1.5 3.2 0.9 2.50 1.09 0.38
Saline (-10 min) 1.8 1.5 3.6 2.5 3.4 1.5 2.1 1.0 2.16 0.94 0.33
Saline ( 0 min) 1.9 1.8 4.2 3.3 3.1 1.5 2.3 0.8 2.37 1.09 0.39
80 meg (+10 min) 2.0 1.2 3.4 3.3 2.8 1.9 2.8 0.9 2.29 0.94 0.33
80 meg (+20 min) 2.0 1.8 3.4 3.1 3.3 2.5 2.4 1.0 2.44 0.81 0.29
80 meg (+30 min) 1.8 1.3 3.8 2.9 2.8 2.0 2.4 1.2 2.26 0.88 0.31
Saline (+40 min) 1.9 1.5 3.2 3.2 3.4 2.5 2.2 1.0 2.37 0.87 0.31
Saline (+50 min) 1.5 1.3 3.3 3.2 3.1 2.3 2.4 1.1 2.27 0.88 0.31
Saline (+60 min) 1.9 2.7 3.5 2.8 2.3 2.4 1.0 2.36 0.79 0.28

Morphine and nitric oxide clamp visit
A B C D E F G H Mean SD SEM

Saline (-20 min) 1.5 2.9 1.8 4.6 2.1 2.8 3.5 1.5 2.57 1.07 0.38
Saline (-10 min) 2.0 2.3 1.3 3.7 1.9 3.3 3.0 1.2 2.34 0.91 0.32
Saline ( 0 min) 1.7 2.3 1.0 3.8 1.9 3.7 2.8 1.7 2.37 1.01 0.36
80 meg (+10 min) 1.5 2.4 1.6 4.2 1.8 2.1 2.4 2.0 2.24 0.88 0.31
80 meg (+20 min) 1.6 2.2 0.7 3.8 1.6 1.9 1.9 1.5 1.90 0.88 0.31
80 meg (+30 min) 1.4 2.1 1.1 4.2 1.5 1.7 1.9 2.2 2.00 0.95 0.34
Saline (+40 min) 1.7 2.2 1.1 4.0 1.6 2.4 1.9 2.0 2.10 0.86 0.30
Saline (+50 min) 1.3 2.4 1.3 4.0 1.7 1.9 2.2 2.5 2.17 0.86 0.30
Saline (+60 min) 1.6 2.3 0.9 4.0 1.6 2.1 1.9 1.8 2.02 0.90 0.32
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lll-IX-lll. FBF-P3; Area of the flare (cm2)
Morphine visit

A B c D E F G H Mean SD SEM
Saline (-20 min) 0 0 0 0 3 0 0 0 0.4 1.1 0.4
Saline (-10 min) 0 0 0 0 3 0 0 0 0.4 1.1 0.4
Saline ( 0 min) 0 0 0 0 3 0 0 0 0.4 1.1 0.4
80 meg (+10 min) 6 15 14 56 20 120 2 36 33.6 39.0 15.9
80 meg (+20 min) 6 5 60 80 5 121 11 45 41.6 43.1 17.6
80 meg (+30 min) 32 2 42 80 4 144 8 45 44.6 48.0 19.6
Saline (+40 min) 32 0 25 63 2 80 0 15 27.1 30.2 12.3
Saline (+50 min) 18 0 12 40 1 36 0 0 13.4 16.6 6.8
Saline (+60 min) 15 0 8 6 1 9 0 0 4.9 5.6 2.3

Morphine and naloxone visit
A B C D E F G H Mean SD SEM

Saline (-20 min) 0 0 0 0 0 0 0 0 0.0 0.0 0.0
Saline (-10 min) 0 0 0 0 0 0 0 0 0.0 0.0 0.0
Saline ( 0 min) 0 0 0 0 0 0 0 0 0.0 0.0 0.0
80 meg (+10 min) 70 27 0 45 40 196 77 64 64.9 58.6 23.9
80 meg (+20 min) 100 27 0 65 104 131 89 120 79.5 45.8 18.7
80 meg (+30 min) 86 25 0 75 128 156 101 120 86.4 52.5 21.4
Saline (+40 min) 83 16 0 48 104 91 55 36 54.1 36.7 15.0
Saline (+50 min) 50 9 0 15 24 9 36 15 19.8 16.3 6.7
Saline (+60 min) 0 9 0 0 0 6 38 0 6.6 13.1 5.4

Morphine and Hi and H2 blocker visit
A B c D E F G H Mean SD SEM

Saline (-20 min) 0 0 0 0 0 0 0 0 0.0 0.0 0.0
Saline (-10 min) 0 0 0 0 0 0 0 0 0.0 0.0 0.0
Saline ( 0 min) 0 0 0 0 0 0 0 0 0.0 0.0 0.0
80 meg (+10 min) 0 24 0 0 0 0 0 0 3.0 8.5 3.5
80 meg (+20 min) 0 20 0 0 0 0 0 0 2.5 7.1 2.9
80 meg (+30 min) 0 15 0 0 0 0 0 0 1.9 5.3 2.2
Saline (+40 min) 0 12 0 0 0 0 0 0 1.5 4.2 1.7
Saline (+50 min) 0 9 0 0 0 0 0 0 1.1 3.2 1.3
Saline (+60 min) 0 0 0 0 0 0 0 0 0.0 0.0 0.0

Morphine and nitric oxide clamp visit
A B c D E F G H Mean SD SEM

Saline (-20 min) 0 0 0 0 0 0 0 0 0.0 0.0 0.0
Saline (-10 min) 0 0 0 0 0 0 0 0 0.0 0.0 0.0
Saline ( 0 min) 0 0 0 0 0 0 0 0 0.0 0.0 0.0
80 meg (+10 min) 0 0 156 44 57 59 50 48 51.8 48.4 19.7
80 meg (+20 min) 0 0 131 20 100 50 90 30 52.6 49.1 20.1
80 meg (+30 min) 0 0 88 12 100 30 71 60 45.1 39.8 16.3
Saline (+40 min) 0 0 45 63 18 64 54 34.9 28.4 11.6
Saline (+50 min) 0 0 21 24 12 30 28 16.4 12.6 5.2
Saline (+60 min) 0 0 0 4 0 30 0 4.9 11.2 4.6
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lll-IX-IV. FBF-P3; Area of the weal (cm2)
Morphine visit

A B c D E F G H Mean SD SEM
Saline (-20 min) 0 0 0 0 0 0 0 0 0.0 0.0 0.0
Saline (-10 min) 0 0 0 0 0 0 0 0 0.0 0.0 0.0
Saline ( 0 min) 0 0 0 0 0 0 0 0 0.0 0.0 0.0
80 meg (+10 min) 0 0 0 8 0 15 2 0 3.1 5.6 2.3
80 meg (+20 min) 1 0 1 18 0 28 1 0 6.0 10.7 4.4
80 meg (+30 min) 2 0 2 18 0 42 1 0 8.1 15.0 6.1
Saline (+40 min) 2 0 1 11 0 39 1 0 6.8 13.5 5.5
Saline (+50 min) 1 0 1 11 0 21 1 0 4.4 7.7 3.1
Saline (+60 min) 1 0 1 3 0 9 1 0 1.9 3.0 1.2

Morphine and naloxone visit
A B c D E F G H Mean SD SEM

Saline (-20 min) 0 0 0 0 0 0 0 0 0.0 0.0 0.0
Saline (-10 min) 0 0 0 0 0 0 0 0 0.0 0.0 0.0
Saline ( 0 min) 0 0 0 0 0 0 0 0 0.0 0.0 0.0
80 meg (+10 min) 0 23 0 3 65 56 3 2 19.0 26.8 10.9
80 meg (+20 min) 0 23 0 4 73 64 6 5 21.8 29.8 12.2
80 meg (+30 min) 0 24 0 2 77 80 19 5 25.8 33.7 13.8
Saline (+40 min) 0 18 0 1 66 36 18 3 17.8 23.2 9.5
Saline (+50 min) 0 13 0 1 34 6 18 3 9.4 11.9 4.8
Saline (+60 min) 0 3 0 1 28 4 9 1 5.8 9.5 3.9

Morphine and Hi and H2 blocker visit
A B c D E F G H Mean SD SEM

Saline (-20 min) 0 0 0 0 0 0 0 0 0.0 0.0 0.0
Saline (-10 min) 0 0 0 0 0 0 0 0 0.0 0.0 0.0
Saline ( 0 min) 0 0 0 0 0 0 0 0 0.0 0.0 0.0
80 meg (+10 min) 0 0 0 0 0 0 0 0 0.0 0.0 0.0
80 meg (+20 min) 0 0 0 0 0 0 0 0 0.0 0.0 0.0
80 meg (+30 min) 0 0 0 0 0 0 0 0 0.0 0.0 0.0
Saline (+40 min) 0 0 0 0 0 0 0 0 0.0 0.0 0.0
Saline (+50 min) 0 0 0 0 0 0 0 0 0.0 0.0 0.0
Saline (+60 min) 0 0 0 0 0 0 0 0 0.0 0.0 0.0

Morphine and nitric oxide clamp visit
A B c D E F G H Mean SD SEM

Saline (-20 min) 0 0 0 0 0 0 0 0 0.0 0.0 0.0
Saline (-10 min) 0 0 0 0 0 0 0 0 0.0 0.0 0.0
Saline ( 0 min) 0 0 0 0 0 0 0 0 0.0 0.0 0.0
80 meg (+10 min) 0 0 0 1 10 0 2 0 1.6 3.5 1.4
80 meg (+20 min) 0 0 28 1 28 0 3 1 7.5 12.7 5.2
80 meg (+30 min) 0 0 18 0 56 0 9 1 10.5 19.5 8.0
Saline (+40 min) 0 0 15 28 0 4 1 6.9 10.8 4.4
Saline (+50 min) 0 0 12 24 0 3 1 5.7 9.1 3.7
Saline (+60 min) 0 0 2 3 0 3 0 1.1 1.5 0.6
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lll-IX-V. FBF-P3; Presence of itching (%)
Morphine visit

A B c D E F G H Sum Percentage
Saline (-20 min) 0 0 0 0 0 0 0 0 0 0.0
Saline (-10 min) 0 0 0 0 0 0 0 0 0 0.0
Saline ( 0 min) 0 0 0 0 0 0 0 0 0 0.0
80 meg (+10 min) 1 1 0 1 1 0 0 0 4 50.0
80 meg (+20 min) 1 1 1 1 0 0 0 1 5 62.5
80 meg (+30 min) 0 1 1 0 0 0 0 0 2 25.0
Saline (+40 min) 0 1 0 0 0 0 0 0 1 12.5
Saline (+50 min) 0 1 0 0 0 0 0 0 1 12.5
Saline (+60 min) 0 0 0 0 0 0 0 0 0 0.0

Morphine and naloxone visit
A B c D E F G H Sum Percentage

Saline (-20 min) 0 0 0 0 0 0 0 0 0 0.0
Saline (-10 min) 0 0 0 0 0 0 0 0 0 0.0
Saline ( 0 min) 0 0 0 0 0 0 0 0 0 0.0
80 meg (+10 min) 0 1 0 1 0 0 0 1 3 37.5
80 meg (+20 min) 0 1 0 0 0 0 0 0 1 12.5
80 meg (+30 min) 0 0 0 0 0 0 0 0 0 0.0
Saline (+40 min) 0 0 0 0 0 0 0 0 0 0.0
Saline (+50 min) 0 0 0 0 0 0 0 0 0 0.0
Saline (+60 min) 0 0 0 0 0 0 0 0 0 0.0

Morphine and Hi and H2 blocker visit
A B c D E F G H Sum Percentage

Saline (-20 min) 0 0 0 0 0 0 0 0 0 0.0
Saline (-10 min) 0 0 0 0 0 0 0 0 0 0.0
Saline ( 0 min) 0 0 0 0 0 0 0 0 0 0.0
80 meg (+10 min) 0 1 0 0 0 0 1 1 3 37.5
80 meg (+20 min) 0 1 0 0 0 0 0 0 1 12.5
80 meg (+30 min) 0 1 0 0 0 0 0 0 1 12.5
Saline (+40 min) 0 1 0 0 0 0 0 0 1 12.5
Saline (+50 min) 0 0 0 0 0 0 0 0 0 0.0
Saline (+60 min) 0 0 0 0 0 0 0 0 0 0.0

Morphine and nitric oxide clamp visit
A B c D E F G H Sum Percentage

Saline (-20 min) 0 0 0 0 0 0 0 0 0 0.0
Saline (-10 min) 0 0 0 0 0 0 0 0 0 0.0
Saline ( 0 min) 0 0 0 0 0 0 0 0 0 0.0
80 meg (+10 min) 0 0 0 1 0 0 1 1 3 37.5
80 meg (+20 min) 0 0 0 0 0 0 1 1 2 25.0
80 meg (+30 min) 0 0 0 0 0 0 0 1 1 12.5
Saline (+40 min) 0 0 0 0 0 0 0 0 0 0.0
Saline (+50 min) 0 0 0 0 0 0 0 0 0 0.0
Saline (+60 min) 0 0 0 0 0 0 0 0 0 0.0
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lll-IX-VI. FBF-P3; Intensity of itching (subjective scale)
Morphine visit

A B c D E F G H Mean SD SEM
Saline (-20 min) 0 0 0 0 0 0 0 0 0.0 0.0 0.0
Saline (-10 min) 0 0 0 0 0 0 0 0 0.0 0.0 0.0
Saline ( 0 min) 0 0 0 0 0 0 0 0 0.0 0.0 0.0
80 meg (+10 min) 4 3 0 2 3 0 0 0 1.5 1.7 0.7
80 meg (+20 min) 5 7 8 5 0 0 0 7 4.0 3.5 1.4
80 meg (+30 min) 0 2 6 0 0 0 0 0 1.0 2.1 0.9
Saline (+40 min) 0 2 0 0 0 0 0 0 0.3 0.7 0.3
Saline (+50 min) 0 2 0 0 0 0 0 0 0.3 0.7 0.3
Saline (+60 min) 0 0 0 0 0 0 0 0 0.0 0.0 0.0

Morphine and naloxone visit
A B c D E F G H Mean SD SEM

Saline (-20 min) 0 0 0 0 0 0 0 0 0.0 0.0 0.0
Saline (-10 min) 0 0 0 0 0 0 0 0 0.0 0.0 0.0
Saline ( 0 min) 0 0 0 0 0 0 0 0 0.0 0.0 0.0
80 meg (+10 min) 0 2 0 9 0 0 0 1 1.7 3.1 1.3
80 meg (+20 min) 0 3 0 0 0 0 0 0 0.4 1.1 0.4
80 meg (+30 min) 0 0 0 0 0 0 0 0 0.0 0.0 0.0
Saline (+40 min) 0 0 0 0 0 0 0 0 0.0 0.0 0.0
Saline (+50 min) 0 0 0 0 0 0 0 0 0.0 0.0 0.0
Saline (+60 min) 0 0 0 0 0 0 0 0 0.0 0.0 0.0

Morphine and Hi and H2 blocker visit
A B c D E F G H Mean SD SEM

Saline (-20 min) 0 0 0 0 0 0 0 0 0.0 0.0 0.0
Saline (-10 min) 0 0 0 0 0 0 0 0 0.0 0.0 0.0
Saline ( 0 min) 0 0 0 0 0 0 0 0 0.0 0.0 0.0
80 meg (+10 min) 0 7 0 0 0 0 0 2 1.3 2.5 1.0
80 meg (+20 min) 0 4 0 0 0 0 0 0 0.6 1.4 0.6
80 meg (+30 min) 0 1 0 0 0 0 0 0 0.1 0.4 0.1
Saline (+40 min) 0 1 0 0 0 0 0 0 0.1 0.4 0.1
Saline (+50 min) 0 0 0 0 0 0 0 0 0.0 0.0 0.0
Saline (+60 min) 0 0 0 0 0 0 0 0 0.0 0.0 0.0

Morphine and nitric oxide clamp visit
A B c D E F G H Mean SD SEM

Saline (-20 min) 0 0 0 0 0 0 0 0 0.0 0.0 0.0
Saline (-10 min) 0 0 0 0 0 0 0 0 0.0 0.0 0.0
Saline ( 0 min) 0 0 0 0 0 0 0 0 0.0 0.0 0.0
80 meg (+10 min) 0 0 6 1 0 0 2 4 1.9 2.3 0.9
80 meg (+20 min) 0 0 0 0 0 0 1 7 1.1 2.4 1.0
80 meg (+30 min) 0 0 0 0 0 0 0 3 0.4 1.1 0.4
Saline (+40 min) 0 0 0 0 0 0 0 0 0.0 0.0 0.0
Saline (+50 min) 0 0 0 0 0 0 0 0 0.0 0.0 0.0
Saline (+60 min) 0 0 0 0 0 0 0 0 0.0 0.0 0.0
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