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Abstract

The aims of this thesis are two-fold: finding a geometric realjsation for Nahm’s con-
formal superalgebras and generalising the concept of a conformal Killing spinor to
supergravity, in particular M-theory.

We introduce the necessary tools of conformal geometry and construct a conformal
Killing superalgebra (that turns out not to be a Lie superalgebra in general) out of the
conformal Killing vectors and the conformal Killing spinors of a semi-Riemannian
spin manifold and investigate a natural definition of the spinorial Lie derivative that
differs from the more commonly used Kosmann-Schwarzbach Lie derivative. We
then attempt to generalise the definition of conformal Killing spinors to M—ﬂleory
and characterise M-theory backgrounds admitting such spinors. We also construct
a M-theory analogue of the conformal Killing superalgebra. We show that further
examples can be constructed in type IIA and in the massive IIA theory of Howe,
Lambért and West via Kaluza-Klein reduction. We also comment on a curious iden-
tity involving the Penrose operator in type IIB supergravity.

Finally — building on known results about the relationship between the dimension
of the space of conformal Killing sjjinors on a non-simply connected manifold and
the choice of spin structure —— we explore the importance of the choice of spin struc-
ture in determining the amount of supersymmetry preserved by a symmetric M-
thebry background constructed by quotienting a supersymmetric pr-wave'with a

discrete subgroup in the centraliser of its isometry group.



Acknowledgements

A lion’s share of thanks for this thesis must go to José Figueroa-O’Farrill, who has
been the very model of a modern supervisor, offering ideas, advice, patience, guid-
ance and encouragement at every turn. I also owe much to discussions I have had
w1th numerous other people, ihcluding Helga Baurn, David Caléierbank, Sunil Gad-
hia, Emily Hackett-Jones, Felipe Leitner, George Moufsopoulos and in particular Si-
mon Philip — thank you! Any misunderstandings and mistakes here are, of course,
my own. |
I wish to thank the Erwini Schrodinger Institute for geherous hospitality during the
final stages of this work, and gratefully acknowledge financial support from the Acﬁdemy
of Finland and the Vaisala Fund, without which this work would have not Been pos-
sible.
This thesis is built on the support of all those who have shared my life in this city
for the past four years. You know who you are, but just to name a few — Darren
Brierton, Chrissy dé Chaves, Felicity King-Evans, Nana Lehtinen, Jelena Meznaric-
Broadbent, Rebecca Smith and the whole East Coast Writers’ Group: Jack Deighton,
Stephen Christian, Andrew Ferguson, Gavin Inglis, Jane McKie, Martin Page, Stefan
Pearson, Charlie Stross and Big Andrew (and Lorna and Iames).Wﬂson — see you
around. |
I also want to thank to my colleagues and friends at ThinkTank Mathematics — Sam
‘Halliday, Angela Mathis and Dan Winterstein — for embarking upon a strange jour-
ney that has just gotten started.,
There are a lot of important people in Finland and elsewhere I don’t see nearly often
enough: the Helminen family (Antti, Katri, Jaakko, Olli and Lauri), Esa Hilli, Anni
Siitonen and Antti M#ki, Panu Pasanen, Ismo Puustinen and Arto Pylvis — thank -

you and see you soon.



I want to thank all my fellow students at the University of Oulu in the good old days,
for their friendship and all they taught me — especially Antti-Jussi Mattila, Petri
Mihénen for support, advice and encouragement, to Alli Huovinen for showing me
how to study mathematics, and finally to St. Jude, the patron saint of lost causes and
desperate situations.

No words can thank Isabelle and the wild animals for all their love and patience.

Isille ja didille: kiitos, ettd toivoitte, luotitte ja uskoitte.



Table of Contents

Chapter1 Introduction

Chapter 2 Preliminaries
2.1 Algebraic preliminaries . ... ... ... . ... 0 oo
2.1.1 Natural properties of vector spaces with an inner product . . . .
2.1.2 The Mﬁbius Ligalgebraof V. . ....................
2.1.3 TheClifford algebrasof VandV . ... ...............
2.1.4 Spinorrepresentations of the Mébius algebra . . . ... ... ..
2.2 Geometric preliminaries . . . . ... ... ........ .........

22.1 The Riemann curvature tensor and its relatives . . . . ... ...

Chapter 3 The Lie algebra of conformal Kﬂling vectors
3.1 Conformal Killingtransport . . . .. .. ... oo vt
3.2 Theconformal[iealgebra..;................; .......
3.3 Conformalchangesofthemetric. . ... ... ... ............
3.4 Weylconnections . .. ............. ...............
3.5 Weyl-invariant conformal Killing traﬂsport .................
3.6 The conformal Lie algebra of a Weyl structure . . . . ...........

3.7 Normal conformal Killingvectors . ... ..................

Chapter 4 Conformal Killing spinors
4.1 Spinorial conformal Killing transport . . . . ... .. ... ... ...
4.2 Conformal covariance of the Penroseoperator . . . . ... ........

43 Weyl-invariant spinorial conformal Killing transport . . . . .. ... ..

12
13
14
'15

16

19
19
22
24
25
27
29

29

31



Chapter 5 Conformal Killing superalgebras

5.1
3.2
5.3
5.4

5.5

From conformal Killing spinors to conformal Kﬂiing vectors .. ...
Spinorial Lie derivatives . . ... ... ... ... . ... .. .. .....
The Kosmann-Schwarzbach Lie derivative . . ... ........ L
The Jacobiidentities . ... .................. A

The Minkowski conformal Killing superalgebra . . ... ........

"Chapter 6 Conformal Killing spinors in M-theory

6.1
6.2
6.3
6.4
6.5

M-theorybackgrounds . . . . ... ...... R
The M-theory Penrose operator . ............. R
Supercovariant conformal Killingtransport. . . ... ..........
M-theory backgrounds admitting conformal Killing spinors . . . . . .

Conformal Killing spinors of Hpp-waves . . ...............

Chapter 7 Conformal Killing superalgebras in M-theory

7.1
7.2

7.3

M-theory conformal Killing Spinors . . . .................
Supernormal conformal Killing vectors . . . . . . N

Jacobi identities in the M-theory conformal Killing superalgebra . . . .

Chapter 8 Conformal Killing spinors in type I1A and IIB supergravities

8.1
8.2
8.3
8.4

8.5

8.6
8.7

8.8

The Kaluza-Kleinansatz . . .. ... ....................
Kaluza-Klein reduction of the conformal Killing spinor equation . . .
Kaluza-Klein reduction and conformal Killing superalgebras . . . . .
Conformal Killing spinors and Kaluzal-Idein reductions of flat space . .
Conformal superalgebras of nullbranes . . . ... ............
8.5.1 Thenullbrane ........ e e e
8.5.2 Interpolatingsolutions. .. .....................
Conformal Killing spinors in HIW massive [IA supergravity . . . . ..
A HILW massive ITA conformal Killing superalgebra . .. ... ... ..

Conformal Killing spinors in type IIB supefgravity ............

39

39
40
45
49

50

53
53
55

56

. 60

63

66
66
67

69

71
72
74
76
81

83 |
84
86



Chapter 9l Killing spinors, discrete quotients and spin structures
9.1 Discrete quotients and spinstructures . ... ...............
9.2 Hpp-wavesinM-theory ... ............ e
9.3 Symmetric discrete quotientsof Hpp-waves . . . . ... .........
9.3.1 The maximally supersymmetriccase ................
9.3.2 Thefour-parametercase. . . . . . . . . .« . oot v i v n v ..
9.3.3 Theseven-parametercase. . . . . . . . .« .« v v v v v v v v v v o

9.4 ACONJECIUIE . . . . . . o ottt it et et e e e e
Chapter 10 Conclusions ’
Bibliography

Appendix A Metrics of pp-waves with supernumerary supersymmetries

94
95
95
103
105
107
109

110

113

117

123



Chapter 1

Introduction

Pitkén harkinnan jilkeen

tultiin oikeaan tulokseen

Neliulotteista ei voi ihmisaivoin visualisoida
Riemannin metrinen tensori on

Meidin Braillemme todellisuudelle

It took a Iot of thought

to conclude

The human brain

is blind to the the four-dimensional
The Riemann metric tensor is

Qur Braille for reality

— A. W, Yrjdnd, Tesserakti

It is widely acknowledged that one of the key components in any theory that at-
tempts to formulqte physics beyond the Standard Model must be supersymmetry.

During the last three decades the study of supersymmetric field theories and super-

string theories has grown into a vast subject. Supersymmetry has appeared in many

guises both in pure mathematics (inspiring intense study of Calabi-Yau manifolds

and manif:/alds of exceptional holonomy) and theoretical physics, and the hope of

finding supe'rsymmetric partners of known particles continues to drive experimen-

tal particle physics as well.

In 1975, Haag, Lopuszarski, and Sohnius [1] showed that under relatively weak as-

sumptions, the only possible symmetries of the S-matrix of a quantum field the-

ory in addition to the standard Poincaré symmetries and “internal” symmetries re- -

lated to conserved quantum numbers are those which mix bosonic symmetries with
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fermionic ones. Soon afterwards, Nahm [2] gave a classification of possible super-
symmetry algebras, based on Kac's classification of simple Lie superalgebras [3].

In the mid-70s, study of supersymmetric field theories led to the realisation that
in addition to global supersymmetry invariance, it is possible to construct theo-
ries with local supersymmetries, that is, theories with supersymmetry invariance
where the fermionic generators are allowed to depend on spacetime coordinates.
This led to the discovery of the supergravity zoo — a bewildering number of theo-
ries in spacetime dimensions ranging up to eleven, all incorporating Einstein’s grav-
ity and a variety of other bosonic and fermionic fields. Many of these theories were
constructed by “gauging” [4] one of Nahm's supersymmetry algebras -— basically by

requiring that the ground state of the theory should naturally admit a given symme-

~ try algebra.

A particularly interesting discovery was the eleven-dimensional supergravity in 1976
[5], which was found to be essentially unique: for a short while in the early 80s (to-
gether with its Kaluza-Klein compactifications) it was even a contender for the cov-
eted title of Theory of Everything [6]. However, it was soon overtaken by its younger
and hungrier siblings, so-called superstring theories [7, 8]. Superstring theories ap-
proach the problem of quantum gravity by quantising a one-dimensional extended
object — the string — instead of a pointlike particle. They have attracted an enor-
mous amount of attention from the mid-80s onwards, experiencing an explosive
renaissance d'uring the past decade or so.

It was during this recent burst of activity that eleven-dimensional supergravity again
rose into prominence. The five consistent superstring theories — Type I, Type IIA,
Type IIB, Heterotic Eg x Eg and Heterotic Spin/z, — all feature spacetime local su-
persymmetry in ten dimensions. In.fact, their low energy limits correspond to known
ten-dimensional supergravity theories. It is a long-standing conjecture that there is
an eleven-dimensional quantum theory, tentatively called M-theory that underlies
all the known string theories and relates them to each other via a complex web of

dualities. The low-energy limit of M-theory is believed to be no other than eleven-
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dimensional supergravity,,and these days the terms are often used interchangeably
in thé literature.
Since the study of non-perturbative sectors of these theories is at present extremely
difficult, much of recent research has focused on studying supersymmetric solu-
tions of eleven-dimensional supergravity and lower-dimensional supergravities. Since
the bosonic sectors of supergravity theories resemble Einstein's gravity coupled to
Maxwell-like p-form fields, they can be studied using classical tools of differential
geometry and spin geometry. In particular, it turns out that supersymmefry ofa
supergravity background can be characterised geometrically: it corresponds to the
existence of so-called supergravity Killing spinors, spinors which are parallel with
respect to a special connection induced from the supersymmetry variation of the

. gravitino. In this sense, supergravity Killing spinors are a supergravity generalisation
of geometric parallel spinors’. Parallel spinors have, of course, also played a crucial
role in string theory in the context of realistic compactifications of string theories
and M-theory to four dimensions due to their relationship with manifolds of special
holonomy.
There are many parallels between the study of supergravity Killing spinors and the
study of special spinors (that is, spinors annihilated by some natural differential op-
erator) in spin geometry. Parallel spinor fields are in fact special cases of a more
general class of objects' called conformal Killing spinors or ltwistor spinors. Con-
formal Killing spinors were originally introduced by Penrose in the context of gen-
eral relativity [9] and appeared in pure mathematics as integrability conditions for
the complex structure of a four-dimensional Riemannian manifold [10]. In the late
80s Lichnerowicz started a systematic investigation of conformal Killing spinors on
Riemannian spin manifolds in the context of conformal differential geometry [11],
and since then, a body of strong structure results, examples and a partial classifica-
tion has developed, both in the Riemannian and in the Lorentzian setting (see e.g.

[12, 13, 14, 15] and references therein).

1A better name might be “superparallel spinors”, to avoid confusion with geometric Killing spinors,
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The space of parallel vector fields and parallel spinors on a semi-Riemannian spin
manifold can be given the structure of a Lie superalgebra, with the Lie bracket be-
tween a vector field and a spinor given by the spinorial Lie derivative (whichris actu-
ally trivial in this case). The odd bracket between two spinors can be defined as the
so—calléd Dirac current associated to the spinors, which is also parallel if the spinors
are. Similarly, one natural object one can associate to a supergravity background is
its supersymmetry superalgebra. This is a Lie superalgebra constructed out of the
Killing spinors of the background and the Killing vectors of the background’s metric
which also preserve the p-form fields: guaranteeing the closure of these algebras
also usually requires imposing the equations of motion of the theory. The super-
symmetry superalgebras of many supergravity backgrounds have been computed
(16, 17, 18, 19] and it has been found that many of them correspond to Lie superal-
gebras on Nahm’s list. Thus, many of the supersymmetry algebras have a manifest _
geometric origin. |

The space of conformal Killing spinors and conformal Killing vectors on a semi-
Riemanniaxll manifold also admits a natural algebraic structure, first investigated
by Habermann[rzo], which we call a conformal Killing superalgebra. 1t would thus
be natural to be able to fill in the question marks in the lower right corner of the

following diagram
parallel vectors . Killing vectors

Vy=0—> D=0
Py =0 ??Q

conformal Killing vectors 22

where V is the Levi-Civitad connection, P is the so-called Penrose operator whose
kernel defines conformal Killfng spinors, and D is the supercovariant connection.

' The primary goal of this thesis is to construct the supergravity analogue of confor-
mal Killing spinors in eleven-dimensional supergravity and type 1IA and IIB super-
gravities and to see if supergravity backgrounds admitting such spinors can be char-

acterised geometrically. A secondary — although not unrelated — goal is more al-
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gebraic in flavor. Many of the superalgebras on Nahm’s list incorporate conformal
symmetry algebras in their even part. Although some of these superconformal al-
gebras have been realised as symmetry superalgebras of supergravity backgrounds
with an AdS factor, others still lack a manifest geometric origin. We will construct
conformal Killing superalgebras both in geometric and supergravity context and try
to see if these objects could provide a geometric origin for known Lie superalgebras
involving conformal symmetries. |

Along the way we afe naturally led to reconsider the definition of the spinorial Lie
derivative and introduce other machinery such as Weyl connections and Kaluza-
Klein reductions: we use the latter as a tool to construct a number of explicit exam-

ples of conformal Killing superalgebras.



Chapter 2

Preliminaries

In this chapter we introduce the notation and some basic algebraic and geometric
tools that we will need in the following chapters. The material herein is mostly stan-
dard, although presented with a view towards our applications and utilising some

non-standard but useful notation.

2.1 Algebraic preliminaries

2.1.1 Natural properties of vector spaces with an inner product

Let V be a n-dimensional vector space equipped with an inner product {(—, —). There
are natural “musical” isomorphisms p: V — V* and § : V* — V relating V and its

dual, given by

_ Xb(Y)_ = (X,Y)

(ad,¥)

I
R
=

- wherea € V* and X, Y € V. The isomorphisms also induce an inner producton V*,
which we will similarly denote {—, —). Any endomorphism of V also acts naturally

on V*. Given A€ End(V)and fe V*, AB=—-fo A, or
(AB)(Y) =—B(AY) . 2.1)

Now let s0{V) be the skew-symmetric endomorphisms of V with respect to the inner

product. If X € Visavector fieldand a € V* isa 1-form, then we define X La € so0(V)



by
(X A @)Y, 2)=a(Y)X, Z)—(X,V)a(Z) (2.2)

forall Y,Ze V.
There is also a natural isomorphism so(V) Z A?2V". Given a skew-symmettic endo-

morphism A € so(V), we can find a corresponding two-form w4 via
walX,Y)=(X,A(Y)) . (2.3)
Correspondingly, any w € A2V* defines a skew-symmetric endomé?phism A” by
AY(X) = -(1ix)*, 2.4)

where the sign on the right-hand side turns out to be convenient later on.
Let co(V) denote those endomorphisms whose symmetric part is proportional to

the identity — in othgr words, co(V) =s50(V} R Idy. We define a natural map
:VaV"*—co(V) (2.5)
by Xea=X A a+a(X)Ild, or more explicitly
(Xea)(YV)=a(Y)X+a(X)Y - (X,V)d* (2.6)

Note that this is manifestly symmetric in X, Y, so in fact (X ¢ a)(Y) = (Y « a)(X).

Similarly, we can exhibit the actionof X e ¢ dn v
((X' a)(ﬁ)] (V)=-B((Xea)(Y)=—aX)B(Y) - f(X)a(Y) +(X,Y){(a, B},

which is also symmetric in a, f and hence (X « a){f8) = (X « f){a).
We collect these observations and other properties of the « operator into the follow-

ing useful
Lemma 1. The following identities hold forall X,Y eV, a,f€ V* and A€ co(V):
fa) (Xea)Y =(Yea)X

b) Xea)=(Xe+Pla
10



(© [AXea]l=AX)sa+ X Ala)

(d) [Xea,Yeala=0,
where [—, —] denotes the natural commutator of two endomorphismes.

Proof. We've already established (a) and (b).
(c): Both sides of the eqﬁation are linear, so it is sufficient to check it for A € so(V)
— obviously, the result holds if A = Idy, since then both sides vanish identically.

Therefore, we assume that A is skew-symmetric and compute the left-hand side:
[4,X » al(Y) = a(Y)AX) - (X, VY A(a") - a (A(Y) X+ (X, A(Y)ya! ,
On the other hand, the first term on the right-hand side gives

(A(X) e a)(Y) a(Y)AX) + a (A(X)) Y - (A(X), V)a!

a(V)AX) + a(AX)) Y +(X,A(Y)a!,
whereas the second term yields

(X » Ala))(Y) A@Y)X +A@(X)Y — (X, Y) Al@)!

il

—a(AY)X - a(AX)Y —(X, Y)A(ah) .

Adding the last two equations gives the result.

(d): We define the one-form w(X,Y) € V* by
w(X,Y)=[Xea,Yeala,

which is manifestly antisymmetricin X, Y. We now use (c}, (a) and (b), in that order,

to find

w(X,Y) HwX,Y)-o(X,Y)

- %(X.a)y.a)a+(}’.(Xoa)a—((Y-a)X-a)a—(X'(Y°a)a)a)
= L(Ye(Xea)@)a— (XY em)@)a)

= (Y ea)(Xea)a—(Xsa)(Y «a)a)

= %[Y.a,X-a]a

= —1w(X,Y)
11



so w(X, Y) =0, which proves the result. O

2.1.2 The Mébius Lie algebra of V

Consider the vector space V @ co(V) @ V*. We can make it into a Lie algebra mo(V),

called the Mébius Lie algebra of V, by introducing the Lie bracket given by
AY -BX
=|[ABl+Xey-Yef|, 2.7)

)]

which is manifestly antisymmetric. It is a straightforward calculation to show that

the Jacobi identity of this bracket vanishes. Using (2.7), the vanishing of
X Y\ (Z ZN [(X\ (Y Y\ [{Z\ (XY
Al,lIBI|.|C Cl,|IA|,|B B, [|C|.|A
a Bl \v Y al \p p Y] \a

is equivalent to
O0=—(Xef)Z+(Yea)Z~(Zea)Y +{Xe1)Y,

+ +

0=[AYefl-[AZeBl+XeBy—XeCB—~BZea+CYea
+[B,Zea]—[B,Xeyl+YeCa-YeAy—CXef+AZe+[C,Xef]
~[C,Yeal+ZeAB—ZeBa—AY sy +BXey,

0= (Xef)y—(Yea)y—(Ze@)f+(Xop)f—(Yep)a+(ZsPa,

which can be seen to hold by using the first three identities in Lemma 1.

The Mdbius Lie algebra me(V) is in fact isomorphic to so(V), where V = Vo R},
where the inner product on V (which we also denote by (-, —)) extends the one on
V.

Let eg, ey span R ! and define e, = —}_E(eo +e)). Thene, L V and (e,,e_) = 1. We

decompose an arbitrary vector ¥ € V as
Y=Y+yTe.+ye,
where Y € V, and a two-form & € A2V* as

d»zw+af\e++eﬂf\)ﬂ’+he+f\e_,

12



where a € V*, w € A>V* and X € V. Then the action of a skew-symmetric endomor-

phism 82 on Y is given by (2.4):

541

SY (V) + J;'J“X—y_m:Ii +(@(Y)-hyDe, + (hy” —(X,Y))e_

s X -al\(Y
a -h 0 [{y].
-X o0 h ¥y

This gives us the identification

S X -af
(X, Aa)—| a -h 0 |eso(]), (2.8)
-xXx* 0 h :

where A= S+ hldy and S € so(V). It is easy to see that using this identification, the
matrix commutator on so(V) induces the Lie bracket (2.7) on mo(V), so equation

(2.8) is an explicit isomorphism mo (V) — sa(V).
2.1.3 The Clifford algebras of V and V
Let C#(V) denote the Clifford algebra of (V, (-, -)), defined by the relation
X'Y+Y - X=-2(X,Y)Id. (2.9)

We will frequently need the following formulas for the Clifford product bétween a

vector X € Vand a p-formne APV™:

X7 X’ An—ix7 (2.10)

n-X DPX° A+ 2.11)

We also introduce the gamma matrices I'; as the generators of the Clifford alge-
bra, corresponding to the image of the pseudo-orthonofma,l frame e; on V under
the embeddi;lg V — C#(V). The following Clifford product identities are frequently
useful:

Zri-tei'r)
i

Sri8ian = —(n—-pm, | (2.13)
i .

P, . (2.12)

13



The associative algebra CZ(V) can be made into a Lie algebra using the Clifford com-
mutator, and the embedding so(V) — C#(V) defined by A— -—%w 4lsalie algebra

homomofphism. Furthermore, if X € V < C#(V), using (2.10) we see that |
[—30a,X]= AX). (2.14)
This follows because

—2waX] = —jwaX-X wa)

—lxWwa

= A(X).

Thus, any C#(V)-module M restricts to a s0(V}-module, giving rise to a spinor rep-
resentation of se(V). We recall that there is a natural isomorphism between A*V*
and C#(V), which allows us to define the Clifford action of a p-form on M. When
there is no chance of confusiqn, we will also denote this action by -.

Let G be anirreducible C#(V)-module. It is possible to extend it into a co(V)-module |
by introducing a weight: if ¢ : s0(V) — End(G) denotes the representation map,
we define % : co(V) — End(&) for all w € R by o%(A) = o(A) for A € s0(V) and
o' (Ildy) = wldg and extending linearly. We denote the corresponding co{V)-module
by &%, Using this representation, we can express the Clifford algebra element

identified with X . a in terms of Clifford products:

c¥(Xea)=-1X-a' +(w-})a(X)ds .
2.1.4 Spinor representations of the Mébius algebra

We can also relate the Clifford algebras of V and V. As associative algebras, C£(V) =
C#(V)®End(R ). An irreducible CZ(V)-module & decomposes into a direct sum of
CZ(V)-modules: & = G, @ G_, where G, = Kefri. (See e.g. [21] for a proof of the
isomorphism.)

In fact, G, are isomorphic as C#(V)-modules: the isomorphism :: &_ — & is given
by the restriction of T'y to G_. Since I', T = -T'_T', —21d, the inverse isomorphism
17! is the restriction of -iT 0 G,.

14



The module & also restricts to a co{V)-module since ¢co(V) € mo(V) = s0(V). The
element of C#(V) corresponding to A= S+ hIdy € co(V) is —%SUI‘U— - %h(l"-l} -
r.I_), and thus & =Kerl', @ Ker['_ = 6[%] 696[_%] as a co(V)-module.

Composing the isomorphism (2.8) with the embedding s0(V) — C¢ (V), we obtain
the following embedding ma(V) — CZ(V):

X
1 .. 1 , ;
(A] — —Zs‘lrl—j - Zh(r_r+ ~T, )+ 3a' T - 3 XTI (2.15)
a

The spinorial representation g : mo(V) — End(&_ @ &) induced by the embedding

is thus given explicitly by

loijp,. 4+ 1 ~X'r;i!
~1§Hry;+ Lhid X'T1 ) (2.16)

eX, 4, a) =( sa'Tii —181r;j-1h1d

Note that this representation automatically gives the right weights to the represen-

-tations of A € co(V), so we can rewrite g as

1
p(X, A a)= oA "IX' . 2.17)
ja- 0"2(A)

We remark that the isomorphism 7 could be rescaled by any scalar, although here we

have taken it to be the identity.

2.2 Geometric preliminaries

We now fix our geometric conventions and introduce a number of useful tensors.
Our conventions are consistent with [22].

Let (M", g) be an n-dimensional pseudo-riemannian manifold and let V denote the |
Levi-Civita connection. Apart from TM and T* M (whose sections will be denoted
& (M) and Q' (M), respectively), we will be somewhat cavalier about the distinction
between bundles and their sections, often taking A € End(T M) to mean that Ais a
smooth section of End(T'M). |

The algebraic machinery introduced in Section 2.1 naturally carries over to this global

setting if we now take the vector space V to be T, M, where p € M, and operations

15



such as « naturally extend to 2 (M) and Q! (M) as well if we replace the inner prod-
uct {—,—) with the metric g. Let s0(TM) c End(TM) denote those endomorphisms
of TM which are skew-symmetric relative to g, and co(TM) = s0(T M) @ (Id) denote
those endomorphisms whose symmetric part is proportional to the identity. We can

redefine X Aa € so(TM) as
gliXna)Y,Z)y=a(Y)g(X,2)-g(X,Y}a(Z) (2.18)

Similarly we define X sa:= X A a + a(X)Id € co(TM).

We note that since equation {2.18) is homogenenous in g, it is apparent that X A
and X « a depend only on the conformal class of the metric. Indeed, introducing the
musical isomorphismsf: T*M — TM and b: TM - T*M defined by the metric g,

we can rewrite X A @ as
Xna=Xea—aleX e TMe T* MZEnd(TM),

" which is manifestly invariant under conformal rescalings of the metric.

Itis also clear that any section (X, A, @) of TM&co(TM)& T* M defines an endomor-
phism of the bundle s ® S (where $ is the spinor bundle on M, which we take to be
a bundle of irreducible C#(T M)-modules over M) — sometimes known as the “local

twistor bundle” — via the global version of (2.17).

2.2.1 The Riemann curvature tensor and its relatives

The Riemann curvature operator of the Levi-Civita connection V is defined by
R(X, Y)Z:le,y]Z—VXVyZ+VyVXZ. (2.19)
and the corresponding curvature tensor is
R(X,Y,Z,U)=g(RIX,Y)Z,U). (2.20)
The curvature operator satisfies the algebraié Bianchi identity

RX, Y)Z+R(Y,Z) X+R(Z,X)Y =0. (2.21)
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The Ricci tensor is defined as the trace with respect to the the second argument of

the curvature operator:

r(X,Y)=tr(Z— R(X,Z)Y). ' (2.22)

It turns out to be convenient to introduce the Ricci operator Ric: TM — TM via
. gRic(X), V) =r(X,Y), (2.23)

whose trace gives the scalar curvature s. The Riemann curvature tensor has a natural

decomposition
RX.)Y,.ZU=WX,Y,Z,U)+(feg)X,Y,Z,U) (2.24)

where W is the (conformally invariant) Weyl curvature tensor and © stands for the
Kulkarni~Nomizu product of two symmetric tensors which guarantees that a@ b has

the symmetries of a curvature tensor:

{2.25)

and ¢ is the Schouten tensor

1
r(XpY)_

(X, V)=
n-2 2(n—-1)

g(X, Y)) ’ (2.26)

which can be thought as the first quotient of the division of the Riemann tensor R
by the metric.
Alternatively, one may define the Schouten tensor via its associated map L: TM —
T*M, by

RX,Y)=W(X,Y)-Xe L(Y)+ Y+ L(X) eEnd(TM), (2.27)

Another useful tensor will be the Cotton-York tensor C: A? TM — T*M, defined as
CX,Y):=(VxL)(Y)-(VyL}{X)}. _ (2.28)

Taking the appropriate traces in the differential Bianchi identity we can show that

the Cotton-York tensor is nothing more than the divergence of the Weyl tensor:

(diviW)(X,Y)=(n-3)C(X,Y), (2.29)
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Chapter 3

The Lie algebra of conformal Killing
vectors |

In this chapter we introduce the notion of conformal Killing transport and study the
Lie algebra of conformal Killing vector fields. We also define the Weyl structure ona
semi-Riemannian manifold and present manifestly Weyl-invariant versions of both

the conformal Killing transport equations and the conformal Lie algebra.

3.1 Conformal Killing transport

Definition 2. A vector field X on (M, g) is a conformal Killing vectorif £xg = —2hxg

for some smooth function hy € C*(M).

The equation £y g = —2hy is equivalent to
gVy X, Z2)+g(Y,VzX)=-2hxg(Y,Z) (3.1)

for all vector fields Y, Z. In local coordinates this equation is often called the confor-
mal Killing equation

VaXp+VpXa=-2hxgab (3.2)

from which we see that hyx = %divX, where divX = -V ,X?. Equivalently, confor-
mal Killing vectors are characterized in terms of the endomorphism Ax € End(T M)},
defined by

AxY =-VyX foral Y e C®(M, TM). . (3.3)

Indeed, we have
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Lemma 3. A vector field X is a conformal Killing vector if and only if Ax € co{TM).

Proof. Let Sx € so(T M) denote the skew-symmetric part of Ax. Thenif Ay € co(TM),

we have
Ax =Sx+hxId, ' (3.4)
or in local coordinates
VaXy=Sap— hxgap - (3.5)
Then
8(AxY,Z) +g(Y,AxZ) =~g(VyX,Z)—g(Y,VzX)=2hxg(Y,2), {3.6)

so obviously X satisfies the conformal Killing equation (3.1). The converse is obvi-
ous, since if X satisfies (3.1), then clearly Ax can be written in the form (3.4) and is

thus an element of co(TM). 0
Differentiating Ay further we obtain VAx € Q1(M, co(TM)).

Lemma 4.

VyAx=R(Y,X)+Y eayxeco(TM),

whereay =dhy.
Proof. We can write the covariant derivative of Ay as

(VzAx)Y = Vz(AxY)-AxVzY

—VzVy X+ szyX

§0

(VzAX)Y - (VyAx)Z

R(Z, V)X

R(Z,X)Y =R(Y,X)Z,

where the last line follows from the algebraic Bianchi identity (2.21). This means
that if we define

F(Z,Y,U):=g((VzAx-R(Z,X)Y, 1),
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then # is symmetric in the first two arguments:
FZ,Y, Uy =F(Y,Z,U) , 3.7
We can also take V of the confo;mal Killing equation (3.6), obtaining
g((VzAx)Y, U+ g((VzAx)U,Y) = 2ax(Z)g(Y,U),
where ax = dhy. It follows that
F(Z,Y, ) =-F(Z,U,Y)+a(Z)g(¥,U), (3.8)
and combining this with (3.7), we have
F(Z,Y, U)=a(D)gY,U)—aU)g(Z,Y)+al(Y)g(U,2). ‘ (3.9

Comparing this with (2.18), we conclude that

VyAx=R(Y,X}+Yeayx. | {3.10)
O
Inlocal coordinates,
VaSpe = X*Ragbe + Bab@c— §acGy  and  Vghx=aaq. (3.11)
In other words,
VoV Xe = X?*Raabe + ab®c — §ac@b — Vagbe » (3.12)

whence tracing with g%, we obtain
V2X, =(n-2)a.— R.gX?, (3.13)

or
1

Ug=——
n-2

(vzxa +RapX*) . (3.14)

Differentiating further we find

Vaap=(VcLgp) X® + Lacsbc + Lp®Sac—2Laphx , (3.15)
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where L, éré the components of the Schouten tensor.

Now note that the Lie derivative of a vector field can be writtenas %Y = [X, Y] =
VxY -VyX =VyxY + AxY, where Ay is the endomorphism associated to the co-
variant derivative of X as defined in Equation 3.3. (In fact, the Lie derivative of any
tensor can be written as %y = Vy+p{Ax), where g is the representation of Ay acting
on the appropriate bundle.)

Rewriting Equation 3.15 using this observation gives

Lemma 5.
Vyax =(VxINY)-L(Y)o Ax —L(AxY) = (VxL)(Y) + (AxL)(Y)} = (£xD)(Y).

Putting Lemmas 4 and 5 together, we arrive at the characterization of conformal

Killing vectors in terms of conformal Killing transport.

Proposition 6. Conformal Killing vectors are in bijective correspondence with sec-
tions of the bundle TM & co(TM) & T* M which are parallel relative to the following

connection which we call the Geroch connection:

X : VyX +AY
Dy [A = ( VyA+R(X,Y)-Yea g (3.16)

a Vya—(VxL)(Y)+ L(Y)o A+ L(AY)
Indeed a Killing vector X determines and is determined uniquely by a parallel section

(X, Ax,ay).

We remark that in terms of B := a - L{X), the Killing transport equations can be

rewritten in terms of the Weyl, Schouten and the (normalized) Cotton-York tensor:

X Vy X+ AY
@Y(A] = |Vy A+ WX, Y)-YeB-XeL(V)|. (3.17)
i VyB+C(X,Y)+L(Y)o A

3.2 The conformal Lie algebra

If X, Y are conformal Killing vectors, so is their Lie bracket; indeed,

Zixv18=—2hxy g,
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where

hixy = ay (X) - ax(Y) = By () — Bx(Y). (3.18)

This means that conformal Killing vectors span a Lie subalgebra of the Lie algebra
of vector fields, which we call the conformal Lie algebra of (M, g).

Proposition 6 implies that a conformal Killing vector is uniquely determined by
its conformal Killing transport data (X, Ax,ax) or.(X, Ax,Bx) at a point p € M.
This exhibits the conformal Lie algebra of (M, g} at a point as a vector subspace of
mo (T, M). We will now determine the Lie bracket for this algebra.

The conformal Killing transport data for [X, Y]is ({X, Y1, Aix,v], @[x,v}), orwith §ix v

replcing a(x y). Since the Levi-Civita connection is torsion-free,
(X, Y]=VxY-VyX=AxY-AyX.

Differentiating (X, Y] we obtain

Aixy) =lAx, Ayl+Xeay - Yeax+R(X,Y), (3.19)
or, in terms of 8,

A[X,y]z[AX,Ay]+X-ﬁy—Y-ﬁX+W(X, Y). | (3.20)
Différentiating h(x,y) we obtain

aixy)=axoAy—ayoAx—C(X,Y)+L(AxY — Ay X) + L(Y)o Ax — L(X)o Ay (3.21)

or, in terms of B,

Bix,y1=PxoAy - fyoAx—C(X,Y). (3.22)

In summary, we have the following Lie brackets for the conformal Killing transport

data:
X\ (Y AxY — AyX |
Ax | | Ay || =|[Ax, Ayl + X e By - Y o Bx+ W(X,Y) |, (3.23)
Bx) \Br —fyoAx+PxoAy-C(XY)

which shows that the Weyl curvature measures the failure of this Lie bracket to agree
with the algebraic Lie bracket on sections of TM @ co(T M)& T M, given by equation
(2.7). |
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3.3 Conformal changes of the metric

i

Let § = e*f g, where f € C®(M) is a smooth function, be a conformal rescaling of the
metric. If X is a conformal Killing vector for g, itis also a conformél Killing vector
for g. Indeed, |
Zx8 =-2hxEg,

where hy = hxy —df (X). As this calculation already shows, the conformal Killing
transport data for X does depend on the metric and not just on its conformal class.
Let (X, Ax,@x) denote the conformal Killing transport data associated to X relative
to the conformally rescaled metric g. To relate (X, Ax,ax) to the conformal Killing
transport data (X, Ay, ax) relative to the original metric, we need to see how certain
geometric objects behave under conformal rescalings of the rﬁetric. The Levi-Civita

connection changes by [22]

Vx=Vx+Xedf, (3.24)
whence 7
Ax=Ax-Xedf. " (3.25)
Finally, |
Ax=dhy=ax—dixdf=ax-Lxdf. (3.26)

In summary, under a conformal rescaling of the metric, the conformal Killing trans-

port data associated to a conformal Killing vector X changes by

X X 0
(Zx) = (AX] - (Xodf) . (3.27)
ax ay Zxdf '

Things are a little more complicated in terms of §, since the Schouten tensor has
more complicated transformation laws under conformal rescalings of the metric.

The (4,0) Riemann curvature tensor transforms as [22]
R=eYR-go(vdf-@n?+1lidfi’g), (3.28)
with Vd f the Hessian of f. On the other hand, from (2.24), we have that

R=W+goL=¢W+goL,
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whereas on the other hand, inserting (2.24) into (3.28), we have that
R=e¥W+go(L-vdf+@dfH*-Lidfig) .

Comparing the two expressions, we can read off how the Schouten tensor trans-
forms:

L=L-Vdf+(df)*-1ldf’g. (3.29)

In local coordinates,

Lab=Lab—VaVpf +VafVpf - 18V fVafgap - (3.30)

The Cotton-York tensor transforms in a particularly simple way under Weyl trans-
formations:

CX,V)=CX,Y)+W(X,Y}df. (3.31)

Wenote that Vxd f—dixdf =Vxdf—.%xdf =—-A.df, whence
Bx=PBx—Axdf—dfXydf -HdfIPx’. (3.32)

Since the conformal Lie algebra is an invariant of the conformal structure, we would
like to find a version of the Geroch connection (3.16) which is manifestly invariant
under conformal rescalings of the metric. This requires introducing a Wey! connec-

tion.

3.4 Weyl connections

By a Weyl connection we mean a torsion-free connection D on TM preserving the
conformal class of the metric; that is, a connection which obeys, for any vector field
X,

Dxg=208(X)g, {3.33)

where 0 is a 1-form. This connection is invariant under conformal rescaling of the
metrics g = e?/ g, provided that the one-form @ transforms as 6=0+df. Wecall
such a transformation a Weyl transformation.
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A manifold M equipped with a conformal class of metrics and a Weyl connection is
often said to have a Weyl! structure: in fact, it can be realised as a reduction of the
frame bundle of M to CO(TM). We will work with a fixed representative metric g,
but one frequently encounters the more general viewpoint in conformal geometry
literature [23]. |

One can derive an explicit formula for D in terms of the Levi-Civita connection of g:
Dy=Vx-Xe0. (3.34)
The curvature R of the Weyl connection is defined by
RP(X,Y)=Dxy- DxDy +DyDy,

and using the above expressioﬁ for Dy, can be related to the Riemann curvature R
of g by
RPx,v) =R(X,Y)~XeVyO0+YeVx—{Xe0,Ye0]. {3.35)

Inserting (2.27) into this equation and decomposing the result in a way similar to

(2.27) itself, we find
RPX,Y)=W(X, V) - X IP(V)+ Y LP(X), (3.36)

where

LP(X) = LX)+ Vx0+8(X)0 - 1102 X", (3.37)

or, equivalently, using that Dy8 = V x0 — 26(X)6 + 182 X°,
LP(X) = L(X) + Dx6 - 0(X)0 + L0 2 X" . (3.38)

Unlike the Schouten tensor L, the map L is not symmetric, and we can make this

manifest by rewriting (3.36) as follows
R,V =WX, )+ F X, Y)IAd-X A LP(Y)+Y A LP(X), (3.39)

where we have introduced the Faraday 2-form FP = d@, which is invariant under

Weyl transformations. It follows from Equation 3.39 that L? is also Weyl-invariant,
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a fact which can also be checked directly from equations (3.29) and (3.34) and using
equation (3.24).
Similarly, we can construct the Weyl-invariant analogue of the Cotton-York tensor.

From the Weyl transformation law (3.31), we itnmediately see that
CP(X,Y):=CX,Y)-W(X,Y)8 (3.40)

is Weyl-invariant. Note that this is in fact equal to the “naive” Weyl-covariantisation
i

of the Cotton-York tensor, i.e. obtained simply by replacing the Levi-Civita connec-

tion with the Weyl connection in equation (2.28) and the Schouten tensor with its

Weyl-invariant analogue:
- CPX,Y) = (DxLP)(YV) -~ (DY LP)(X) .

" Naturally, one can also show that C can be obtained as the D-divergence of the

Weyl tensor.

3.5 Weyl-invariant conformal Killing transport

Defining manifestly Weyl-invariant conformal Killing transport requires redefining -
the conformal Killing transport data itself — although the vector field X itselfis con-
formally invariant, because of (3.24) Ax and ax are not. We will remedy the situa-
tion by adding 8-dependent terms to tﬁem in such a way that the resulting data
(X, AR, %) is Weyl-invariant.

Taking into account the transformatiqn property of 8 and equation (3.25), it is easy

to see that

A= Ax+ X0 (3.41)

is Weyl-invariant. However, the one-form ax actually has a one-parameter family
of Weyl-invariant extensions, since we can always add the manifestly Weyl-invariant

term (x FP to it. From equation (3.26) it is apparent that

al:=ax+ Lx0+ tixFP (3.42)
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. is Weyl-invariant for all ¢. Similarly, for any choice of ¢, |
pR=aR-IPX) (3.43)

is manifestly Weyl-invariant.
It remains to be shown that (X ,A?,a?) is also parallel with respect to a suitable
connection on the Mdébius bundle TM é co(TM) e T* M. Using equation (3.34) and

{3.41), we observe that in fact
A§Y=AXY+(X-8)Y:—VyX+(Y-6)X:—DyX, (3.44)

which would suggest attempting a naive covar_iantisatioﬁ of the conformal Killing
transport equations (3.16) simply by replacing V by D. Indeed, applying D to (3.41)
and using (3.34) and (3.35) yields

DyAR=RP(Y,X)+Y e (ax +.%x0), (3.45)

which in comparison with (3.42) and (3.16) suggests setting the parameter £ = 0 in
the definition of a?. This allows us to rewrite equation (3.45) in a more familiar
form:

Dy AR =RP(V,X)+Yea?, | (3.46)
which can also be rewritten in terms of ﬁ? with the help of equation (3.35) as
bYAD =W, X)+Ye R+ X LP(Y). (3.47)
: Similarly, we can calculate Dyag and ﬁﬁd
Dyay = (DxLP)(Y)+ (AR L°)(Y) = (foD)(i') : (3.48)
or using f%,
DypR=-CPx,v)+ ARLP(v). (3.49)

Combining these results allows us to define the manifestly Weyl-invariant version of
the Geroch connection, whose parallel sections are in one-to-one correspondence
with conformal Killing vectors on M:
X DyX+ AY
9}9 Al=|DyA+W(X,Y)-Ye =X LP(V)]. {3.50)
i Dyp+CP(X,Y)- ALP(Y)
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3.6 The conformal Lie algebra of a Weyl structure

The conformal Lie algebra of a Weyl structure (M, g,08) can now be determined with
the help of the Weyl-invariant Geroch connection (3.50). Since D is torsion-free, the

T M-component of the bracket does not change:
[X,Y]=DxY-DyX=ARY-ADX.
Proceeding in a similar fashion as before, we find
Al v = 1A, AD1+ X = B0 - Yo B2+ WX, Y) (3.51)

and

ﬁ&,n = ARPY - AP - CP (X, Y). (3.52)

Combining these, we obtain the Weyl-invariant version of equation (3.23):

X\ (Y APy - ADX
( 5) (Ag) ( %AD 1+XepR-vepR+ WX, V), (3.53)
B p Pixyv = ARBY —AQﬁ?—CD(X, Y)

where the Weyl curvature again measures the failure of this bracket to agree with the

natural Lie bracket of the Mbius algebra.

3.7 Normal conformal Killing vectors

Naturally, when (M, g) is conformally flat and thus W = 0, the bracket (3.53) agrees
with the algebraic one. However, even in general, (M, g) may possess a Lie subal-
gebra of conformal Killing vectors whose Lie bracket does agree with the Mdbius

algebra bracket.

Definition 7. If X is a conformal Killing vector field of (M, g,8) and in addition
WX, Y)=C(X,Y)=0 (3.54)

for ény vector field Y € Z (M), we call X a normal conformal Killing vector field.
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While we will content ourselves with the above definition for the purposes of this
thesis, the term “normal” here is motivated by the fact that normal conformal Killing
vector fields arise as parallel sections of mo(TM) with respect to not just the Geroch
connection but a connection induced from the so-called normal conformal Cartan
connection of M (24, 25, 26], an important tool in conformal geometry. In our nota-

tion, this connection can be written as [24]
PYC =Vy +adY +ad L(Y), (3.55)

where the connection acts on the Mébius bundle and the adjoint action is with re-
spect to the bracket (2.7). More explicitly, we can write
X Vy X+ AY
70 =|VyA-YeB-XeL(Y)|. (3.56)
i Vy - AL(X)
Comparing equation (3.56) with (3.17), we see that a conformal Killing vector which

is also parallel with respect to the normal conformal Cartan connection satisfies

equation (3.54).
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Chapter 4

Conformal Killing spinors

Let (M, g) be a n-dimensional Lorentzian spin manifold!, s its spinor bundle and
V the spin connection acting on S induced from the Levi-Civita connection. We
denote the Clifford multiplication of a spinor by a p-form - the Clifford action of
the Clifford bundle C#(TM) on S — by -. The spin connection respects the Clifford

product in the following way: if Y is any vector field and ¥ is a spinor, then
V(Y- y}=VzY - w+Y -Vzy. 4.1)

Note that the following relationship holds between the Riemann curvature tensor

and the curvature of the spin connection:
RX,Y)y =Vixyw-I[Vx,Vyly = —3RX, V) -y, (4.2)

where the right-hand side means the Clifford action of the Riemann curvature ten-
sor R(X, Y} considered as a two-form.

There are two natural first-order opérators acting on S derived from the connection
and the Qlifford product. The Dirac operator V is the connection V composed with
the Clifford product. Given aspinory €S, if e, is alocal pseud;)—orthonormal frame
and e is the coframe defined by g{e,, e?) = 8 2, then the Dirac operator acting on y
can be expressed as

Vy=) e* Ve,u. 4.3)

1 enceforth we will always assume that g has Lorentzian signature unless explicitly stated other-
wise,
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The Penrose operator P is complementary to the Dirac operator in the following
sense. Let u: TM®5S — S denote the Clifford multiplication by a vector. Then Ker
is a subbundle of TM®S. Let p: TM®S — Ker i be the projection on the kernel.
Then P is defined to be the composition of the spin connection and the projection
p.

P:I(S) L T(T*"M®s) 2 Kerp. | (4.4)
Much of our treatment is concerned with spinors that lie in the kernel of the Penrose

operator.

Definition 8. A spinof weSiscalleda conformal Killing spinor iff Pxw = 0 for all
X e Z (M). Equivalently, ¥ satisfies the differential equation

Vxy+iX.-vy=0. (4.5)

S admits a Spin-invariant inner product (—, —) whose properties depend on dimen-
sion and signature of g. Details can be found in standard texts, for example [21], but

the only properties we will need are the following:

(v.x) = ey (4.6)
Xy = ew,X-) | (4.7)
Xw,y) = Vxg,0+@Vxn, (4.8)

where € is a sign. Now given any two spinors (1;), one can define a vector field Vy 4
using the spinor inner product, sometimes known as the Dirac current.

It is defined by the following equation:

glY,Vyd=,Y x) for all vector fields Y (4.9)

t

The reason why spinors in the kernel of P are called conformnal Killing spinors? is

explainéd by the following proposition.

Proposition 9. Ify, y are conformal Killing spinors, Vy,y is a conformal Killing vector.

2Conformal Killing spinors are also often known as twistor spinors in the literature due to their
relationship with the twistor bundle in four dimensions[15]
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Proof. Taking Vz of equation (4.9), we find:

gV2Viyy V)48V g, VzY) = (V20 Y - )+ (0, VY -0+ (W, Y -Vzp),  (4.10)

S0
gVzVy YY) = (Vzy, x)+(y,Y -Vzy)
= —2ZVy,Y-)- 7Y -Z-Vp)
(_1)€+1 1
= - Y-ZVy,0) -y, Y-Z2-Vy),
whence

. 2 '
gV Vyr, Y+ g(Vy Vi, Z) = - (w, V) +eWy, ) gY.2), (4.11)

where we have used the defining relation of the Clifford algebra (2.9). Equation
(4.11) shows that in fact Vw.x. satisfies the conformal Killing equation (3.1), with

hy,, =+ (@, V) +eVy, ). | O

4.1 Spinorial conformal Killing transport

We saw in the previous chapter that conformal Killing vectors deﬁne parallel sec-
.. tions of the M&bius bundle TM ® co(TM) @ T* M. Similarly, there exists a charac-
terisation of conformal Killing spinors as parallel sections of S @ S with respect to a
certain connection. We will determine this connection by rewriting the conformal

Killing spinor equation (4.5) as a first-order system.

Lemma 10. If ¥ is a conformal Killing spinor, then the following identities are satis-

/

fied for every vector field X:
(@) Viy=1lrsy
(b) VxVy=—-3L(X) vy,

where L(X) is the Schouten map defined in equation (2.27).
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Proof. For this calculation, it is convenient to assume that the pseudo-orthonormal
frame e, arises from a basis of T, M for some p € M via parallel transport along

geodesics, so that )

Veq(p) = 0

I
=]

[ea; eb] (,U)

(a): Differentiating the conformal Killing spinor equation (4.5), using the property

(4.1} and taking the trace, we obtain (at the point p € M):

o
It

Y VaVay+ iV, (e V)
a

~Ay + LV,

where A is the spin connection Laplacian. We now apply the Weitzenbéck formula
[22] ¥2 = A+ &5 to obtain ‘
1
Vz Y= Z n_zf sy .
(b): The conformal Killing spinor equation impliés
R(X,epy=—Le; VxVy+1x.v, 9y,
and taking the Clifford trace, we obtain
Ric(X) ¢ = —2vwi—%zef XV Vy
i

' 4
= —2VxVy+2X -Viy+-VxVy,

and substituting the result of (a) and using the definition of L in equation (2.26), we

arrive at the result. : ‘ O

Using Lemma 10, we can immediately see what the spinorial analogue of Proposi-

tion 6 is.

Proposition 11. Conformal Killing spinors are in one-to-one correspondence with

sections of the bundle S ® S which are parallel with respect to the following connec-

#:(3)= 0wl
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A conformal Killing spinor determines and is determined uniquely by a parallel sec-

tion (y, % Yy). Furthermore, the connection & has curvature

W(X,Y) 0

cxy) wxy @12

RZ(X,Y)= Pixvy— [ Px, Pyl = —%(

Proof. The first part follows immediately from Lemma 10. As for the curvature, we

simply compute

' Vix,y] [X, Y]
Pin =19, 01 =1 % )
(X,Y] XY LUX, Y Vixy

_[ Vx,Vyl+1X-LOY) - 1Y - L(X) VxY-VyX )
VDY) - 3(Vy DX)+ LUX, YD) [Vx,Vyl+3X-L(Y)-3Y - L(X)

_ (WX Y 0 )
Tzlcx,y) wx,y)'

where we have used equation (2.27). ad

4.2 Conformal covariance of the Penrose operator

An important property of the Penrose operator P is conformal covariance under
Weyl transformations. This implies that Ker P — the space of conformal Killing
spinors — is an invariant of the conformal structure on M. In this section we show
how spinors transform under Weyl transformations.

Let (M, g) and (M, g = ¢*/ g) be conformally related pseudo-riemannian spin man-
ifolds. Given a a pseudo-orthonormal frame (e;) for g, we can readily construct
a frame (e,) for g by setting €, = e/ e,. This defines a bundle isomorphism be-
tween the two frame bundles ¢ : Psq(M, g) — Psqg(M, g), which in turn lifts to a bun-
dle isomorphism of the spin bundles E : Pgpin(M, g8) — Pspin(M,E), provided that
we choose the same topological spin structure for both manifolds. Now let S and
S be the corresponding spinor bundles constructed as associated bundles of the
spinor representation o : Spin - GL{G) — in other words, S = Pgpin{M, g) xo & and
' § = Pgpin(M, g} x; &. The bundle isomorphism £is Spin-equivariant, and thus in-

duces a further bundle isomorphism Z: s — S, which obeys

Eleq-w) =¢lea) - E(y) . (4.13)
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To keep the notation from getting out of hand, we often simply denote E(y) = v,

rewriting the previous equation as

ea‘w:ea'w.

This means that for 311 vector fields X € Z (M), X -w=e X ..
It is also convenient to introduce bundle isomorphisms Z,,: S — S for every weR,
defined by

Ewp) = e E(y) = ey (4.14)
Using these isomorphisms, we can now compute what happens to the spin connec-

tion, the Dirac operator and the Penrose operator under a Weyl transformation.

Proposition 12. The spin connection, Dirac and Penrose operators of (M, g) and '

(M, g) are related as follows:

VxoZ = Zo(Vx-1X-gradf-1ldf(x)1d)

=]
o
(1
1]

E_10(V+3(n—1)gradf)

PxoZ = EO(PX—%df(X)Id——iX-gradf) .

Proof. Beginning with the spin connection, it is easy to see that the transformation

law for V follows using the structure equations:

de®+wyne’ = 0
= d(efe“)+ﬁ)'“b/\5b
= efdfne®+efde® +wo e
= dfre’-efwinel+w% e’
= —0pfe A8 -0l AEP+B 9 AED,
whilch implies that_
WP =wPirEl, (4.15)
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Substituting this identity into the expression for the spin connection in local coor-

dinates, we have

1 . —
Vx = X“aa+zw“bzab

= Vx-30°fXTap

Vx-3X-gradf-—3df(X)1d,

where we have used T 45, = —3Tap and Tap = TaTp +Ngp. The expression for the
Dirac operator now follows simply by taking the Clifford trace, and combining the

two gives the expression for the transformed Penrose operator. O

It follows that the Dirac and Penrose operators are covariant, provided that they act

on spinors with the correct weight.

Corollary 13.

=4]
Q
[1
N|=._
Il
[11
NE
Q
==

o
b
(o]

(11
N

whereX =éTX.

1
In particular, it follows that if  is a conformal Killing spinor on (M, g), then ezf Y is

a conformal Killing spinor on (M, g).

4.3 Weyl-invariant spinorial conformal Killing transport

As in the case of conformal Killing vectors, we would like to modify the spinorial
conformal Killing transport equation and make it transform covariantly under Weyl
transformations. This requires determining how the Weyl connection D acts on
spinors: that is, we must specify how spinors transform under the action of co(TM).
A spinor is said to have a weight w € R if for any A= S+ hld € co(TM), Ay =
—18-y + why, where S € 50(TM) has been identified with the corresponding two-

form in A27T* M and we use the identification of the spin representation of S with
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—% times the Clifford multiplication by S. As before, we will denote the bundle of
spinors with weight w by 5! and the Weyl connection acting on it by D¥. Using

these definitions and equation (3.34), it is easy to see how D% acts on 5 [#1;

C VW 3IXAG -y — w8y

Dyy

= Vxy+3X-0-9+G-—wbX0y.

The Clifford trace of the last equation gives an expression for the corresponding
Dirac operator:

DYy=Vy+3G-2-wl-y. (4.16)

Finally, combining these two results, we obtain the Penrose ‘operator PP assaci-

ated to the Weyl connection D.

PR y=Pyy+ (L -w)EX 6.y +8(X)y) . (4.17)

1
It is apparent from this expression that in fact, P}? 2 = Py. Thisand Corollary 13 then

 give rise to the following result:

Proposition 14. Conformal Killing spinors are in one-to-one correspondence with,
1 _1 ,
sections of the bundle $'2) @ 52! which are parallel with respect to the following

connection:

1
2 .
P (w) o I T [w) (4.18)

X Ll

1

3LP(X)- Dy
: 1

with a conformal Killing spinor vy determining a unique parallel section (1, % D2y,

In addition, 2P has curvature

'%(W(X’ vy o0 ) . (4.19)

oD '__ l D _ D Dy_
R (X, V) =Py - Px, Pyl = CcP(x,v) w(X,Y)
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Chapter 5

Conformal Killing superalgebras

In this sectioﬂ, our aim is to construct a superalgebra b = hp®h,; associated to (M, g,0)
which is also a conformal invariant. The natural object turns out to be the algebra
for which by consists of the normal conformal Killing vectors of (M, g) and §); is the
space of conformal Killing spinors. In this section we define the natural préduct
structure of this algebra. Unlike in the analogous Killing superalgebra case, we will
see that § is not in general a Lie superalgebra: one of the Jacobi identities of the al-
gebra can fail. Nevertheless, we find that there are well-defined maps ho % b — ho,
| fo x h1 — b1 and by x hi — hp. In Chapter 3, we have already defined the natural Lie
bracket of conformal Killing vectors. In this chapter we define the two remaining

maps and study the structure of the superalgebra we thus obtain.

5.1 From conformal Killing spinors to conformal Killing
vectors

We begin by determining the odd-odd bracket [—,~]: %1 x h; — §p. In other words,
1 1
we want to define a map [—,—] : §° (S 12l s [_51) — mo{TM) which preserves paral-

lel sections with respect to & and the Geroch connection Z.

Proposition 15. The map [—,-]: (;’:) — (X, A, B) is defined by
gX,y) = Y- ¥ ' (5.1)
gl¥Y,AZ) = 2y, Y -Z-y) (5.2
BY) = 2(Yx 1, (5.3)
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when (1, x) € Ker 22.

Proof. A natural way to define X is to take it to be the Dirac current X = Vy, ;. To

obtain A, we differentiate it, obtaining

VzglX,Y) = giVzX. YV)+g(X,VzY)

H

(VZW1W) + (w; VZY 'W) + (WI Y- VZW) H

andsince VX =-AxZandVzy=-Z2-y,

g(AxZ,Y) Z-xY yi+(y.Y-Z:-3)

209, - Zy)

20, YANZ-x)—-28(Y,2)(y,x),

which also implies thatif Ax = Sx+ hxId, hx ==2(y, ) and ws, (Y, Z) =2(y, YA Z-

x)-

Now

ax(Y) = Vyhy

=2(Vyy, x)-2(¥,Vyy)

Z(Y'x:x) + (w;L(Y) 'W) »

and since Bx = ax — L(X), we have

Bx(Y)=2(Y-xx) -

(5.4)

Proposition 9 guarantees that (X, A, f) is parallel with respect to the Geroch connec-

tion 2.

O

Lo 1
We extend the map defined in the previous Proposition to §2 (S Plgg! 2]) using a

standard polarisation argument.

5.2 Spinorial Lie derivatives

The general question of constructing a Lie derivative for spinors was first studied

by Kosmann-Schwarzbach (27] and by Bourguignon and Gauduchon [28]. Bour-

guignon and Gauduchon construct the so-called metric Lie derivative for spinor
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fields. Computing the Lie derivative of a spinor with respect to a conformal Killing
vector, however, requires comparing spinors on manifolds with different metrics.
Using the isomorphism for identifying the spinor bundleé on manifolds with con-
formally related metrics which we introduced in Chapter 4, Section 4.2 makes it pos-
sible to define a Lie derivative in a classical manner — that is, aiong a paramétrized
curve generated by the vector field, and this is the approaph taken in [27, 20].

For us, however, this approach is not completely natural as we want to empha-
sise the underlying algebraic structure of conformal Killing spinors and conformal
Killing vectors. Furthermore, there seems to be some confusion about the correct
definition of the spinorial Lie derivative and its properties. Therefore, we choose to
work from first principles and define our Lie derivative in terms of the connection
P and the natural spinorial representation of the conformal Killing data p. We will
show that the action of this Lie derivative agrees with the Kosmann-Schwarzbach

Lie derivative.

Definition 16. By a spinorial Lie derivative we mean an endomorphism .#x of sec-
i 1 -

tions of the local twistor bundle s'Z! @ s!™2! associated to any conformal Killing

vector X, satisfying the following properties when X and ¥ are conformal Killing

vectors and Z is any vector field:
(a) Zx(fy)=X(ly+ fL%y, e Zxisaderivation

(b)) L%, Ly] = Lx.yv), so the map X — x is a homomorphism from the Lie
1
algebra of conformal isometries to the Lie algebra of endomorphisms of s [2lg

i
g [-31 :
() [ Zx, 9’{?] = .@&.Y], so that .%x preserves the space of conformal Killing spinors.

A Lie derivative of a section of any vector bundle with respect to a vector field can be
written as a sum of a connection and a suitable representation acting on the section.

L 1
Acting on the bundle s (3 ¢ 51-2!, a natural candidate is thus

Lx=PR+0X,AR.BR) (5.5)
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where p(X) is the spinor representation of mo(TM) defined in (2.16). Clearly, this
Lie derivative satisfies property (a) in Definition 16. The other two properties can be

rewritten in the following way.

Proposition 17. The operator #x defined above is a spinorial Lie derivative if for

every X, Y conformal Killing vectors, the following equalities hold:
(22,0011 = RZ°(X,Y) = RU(X, V), 5.6)

where
RO(X,Y):=p(X,Y]) - [p(X),p(Y)]. (5.7
Proof. The properties that need to be checked are (b) and (c). We begin with (¢) and
compute
[0, PP~ Py = [PRPF-Phn+ex), 27

RZ°(v,x)- [22,0%)],

which clearly vanishes if the first equality in (5.6) is satisfied.
Similarly, for the property (b) we can compute

Lxn = [Lx, Lyl = Py +o(X. YD) - (27, 27| - [2R.000)] - [0(X), 27] - [o(X), 0(V))]

which also vanishes provided equation (5.6) holds. a

Using the definition of p and the Weyl-invariant bracket of conformal vector fields
(3.53), one finds that Re(X, V) = R®” (X,Y) as required. However, the first equality

fails to hold. Instead, we have:

L[ WX, Y) 0

(PR eW=-1|_cox vy w1’

The offending term is the lower left-hand corner, which has the wrong sign. This
means that neither property (b) or (c) are satisfied unless C”(X,Y) = 0. Since we
are primarily interested in conformal Killing spinors in supergravity, we might be

content with this, since in the absence of fluxes and cosmological constant terms,
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the supergravity field equations require (M, g} to be Ricci-flat, in which case this
condition is automatically satisfied. It seems counterintuitive that such a natural
candidate for the spinorial Lie derivative should fail in the general case.

However, equation (5.6) is satisfied for normal conformal Killing vectors: this is ob-
vious since (recalling equation (3.40)) CP(X,Y) = C(X,Y) - W(X,Y)8. Thus, it is
natural to define §g as the Lie algebra of normal conformal Killing vectors on (M, g).
This is admittedly a strong restriction, but without it we have little hope of finding a
well-defined conformal Killing superalgebra.

We now show that conformal Killing vectors arising as Dirac currents of conformal
Killing spinors are actually normal, so that the bracket [—,—] : $2h; — hq is well-

defined.

Proposition 18. Let X = Vi, be a conformal Killing vector obtained as the Dirac
current of a conformal Killing spinory. Then X is a normal conformal Killing vector:

that is, W(X,Y) =0, where Y is any vector field (not necessarily conformal).

Proof. We begin by showing that W(X, Y) = 0. From the conformal Killing transport

equations (3.17) we know that for any conformal Killing vector X,
WtX, Y)==-VyAx+YeBxy+XeL(Y). {5.8)

We will show that if X is the Dirac current of a conformal Killing spinor , the right-
hand side of this equation vanishes. |

Recall that if X = Vi, 4, g(AxZ,U) =2(y, U - Z - 3). Differentiating this, we find
gUVyAX)Z, N =2(Y -3, U-Z- )+ (@, U-Z-L(Y)-y). (5.9)
Similarly — again using Proposition 15 — for the second term in (5.8) we have

g, (Yo Bx) = gW,Bx(DY +Px(Y)Z-gY,2)p%)

gW.Y)Bx(Z)+gU, Z)bx(Y) —g(Y,Z)ﬂx(U)

26U YVZ 2, 0)+28WW, ZNY -x, 1) -28(Y, 2)(Y -2, 1) .
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Finally, the last term in equation (5.8) can be rewritten as

gWU, (X L(Y))Z) L(Y,Z}g(U, X)+ L(X,Y)g(U,Z) - LU, Y)g(X, Z)

LY, Z)y,U-y)- LU, Y)y, Z-y)+ g(U, 2}y, L(Y)- ) .
The right-hand side of equation (5.9) can be rewritten using the fact that
U-Z- LY)=UAZALY)-gJ,2) LYY+ LY, \NZ-L(Y,Z)U,

and

Z-U-Y=ZAUAY-gU,2)Y +g(Y,Z2)U-gU,Y)Z,

where we have repeatedly used the formula (2.10). Substituting these results into

equation (5.9) and into (5.8), we find that
gWX, NZ N =, UANZALY)- ) +2(ZAUAY -1, 7). (5.10)

Itis possible to show that the right-hand side of this equation vanishes by symmetry.

For any spinor v, it holds that

W, Tapcy) = (D¥*Tepaw, ¥)
= —(=1)*(Capcy, v)
= —(-1)*,Tapcy)

= —(W,Fabc‘{’) y -

so in fact — given the assumptions we made about the spinor inner product —
any three-form constructed out of a spinor must vanish. Applying this to equation
(5.10), we see that

WE.Y)=0,

as required.
Similarly, from the conformal Killing transport equations (3.l17) we know that when

X is a conformal Kﬂlihg vector,

C(X,Y)=-VyPx+L(Y)oAx. 5.11)
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When X is the Dirac current of a conformal Killing spinor 4, we compute (using

Proposition 15 as before):

(VyBx)(Z) = 2(Z-Vyx,x)+2(Z-x,Vyyx) .
= 2y, L(Y)-Z-y)
= =20(Y,el)(y,eq-Z-))

= {(Y,AxZ).
But the second term in (5.11) gives
(L(Y)o Ax)(Z) = £(Y, Ax Z) ,

so the RHS of equation (5.11) vanishes and C(X, Y} = 0 as required. O

We remark that it can be shown [13] that the normal conformal Cartan connection
induces the connection &2 onthebundle s [% osl™ %’ as well as the connection defin-
ing normal conformal Killing vectors we mentioned in section 3.6. In this sense,
both hy and b originate as parallel sections of the same connection acting on dif-
ferent vector bundles on M, and thus it is not surprising that there exists a natural
algebraic structure involving them both. Since there is no analogue of the normal
conformal Cartan connection in the supergravity case which we will discuss later,
we forego presenting this unified viewpoint in more detail and refer the interested
reader to the literature [29, 30].

Note that because of the Weyl-invariant way we have defined both conformal Killing
transport, its spinorial counterpart and the Lie derivative .#, b is manifestly a con-

formal invariant of (M, g).

5.3 The Kosmann-Schwarzbach Lie derivative

We now introduce the definition of the spinorial Lie derivative that has become

standard in the literature [20, 27, 28].
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Definition 19, The Kosmann-Schwarzbach Lie derivative .%x of a spinor v with re-
spect to a conformal Killing vector field X is defined as follows [27]:

. L
_E‘,ax'([l=wa—%SX-W+%th=Vx+O'Z(Ax). (5.12)

r

The Kosmann-Schwarzbach Lie derivative fails to respect the Clifford product, as

the following Lemma shows.

Lemma-20. The Kosmann-Schwarzbach Lie derivative has the following properties
with respect to Clifford multiplication when X is a conformal Killing vector, ¥ is a

conformal Killing spinor, Y is an arbitrary vector field andn is a p-form.
@ Px (Y -y) =LY -w+Y-Lxw-hxY-y
®) Lxm-y)=Lxn-w+n-Lxy+phxn-y

Proof. (a): Recall that we can write %Y = [{X,Y] = VyY - VyX = VxY + AxY,
where Ax = Sx + hx1d. Using Definition 19, the properties of the épin connection

H
and equation (2.14}, we compute

Lx(Y ) VxV y+Y -Vxy—3Sx- Y y+ihxV -y

= VxV -y+[-15x, Y]y +Y - Py

= VxY y+5xY -v+Y Py

= VxY -y+AxY w—hx¥Y w+Y - Py

= Y w++Y - Pxy—hxY- -y,
(b): Now equation (2.1} implies that if 8 is a one-form, .#xf = Vxf— fo Ax. This |
leads to an almost identical calculation as above, except that now the remaining kx

term has a different sign. It is straightforward to extend the resuit to p-forms by

linearity. ' 0

Given the suggestive name of this operator, it is not surprising that we can prove the

following proposition.

46



Proposition 21. The Kosmann-Schwarzbach Lie derivative # is a spinorial Lie deriva-

tive in the sense of Definition 16.
Proof. Property (a) in Definition 16 is again obvious.
(b): We simply compute
(P, B = IV, Uy 1+ 95,02 (Ap)] = [V, 02 (A + 03 (LAx, Ay]
= R, V)+ Vi) + 0% (Vx Ay) - 0% (Vy Ay) + 02 ([Ax, Ay))
=-R(X,Y)+Vxy
+o? (RIX,Y)+Xeay—R(Y,X)-Yeax+Axy—R(X,Y)-Xeay +Yeay)
=Vixy+ 0% {Aix,v))
=Zxx), |
where we have used the identity — %RV (X,Y) =R(X,Y), the conformal Killing trans-
port equations and the Lie bracket for conformal Killing data deﬁnéd in equation

(3.23).

(c): We begin by computing the commutator of 2 and the spin connection V. Now

o 1
%%, Vyl Vx,Vyl+lo2(Ax),Vy]

, 1
= —R{X,Y)+Vixy)—02(VyAyx)
1
= —-R(X,Y)+V[X’Y]—O'E(R(X,Y]-I-Y.ax)

= Vixy +%Y‘ax- .
Using Lemma 20, we can now show that
(%, 20 Vyl = L2 Vy+ 20 [P, Vvl + hx Z-Vy (5.13)

and taking the trace of this equation over Y and Z, we obtain the following result for '

the Dirac operator V:
[,.?},W]=$Xe“-Va+e“-V[x,ea]—gax-J-hXV . (5.14)
Combining these results and using Lemma 20 again, it follows that

(%%, Pyl =Pxy .. (5.15)
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Thus, % preserves the space of conformal Killing spinors on M. 4

Because 6f Prbposition 21, the Kosmann-Schwarzbach Lie derivative would also
appear to be a natural candidate for a spinorial Lie derivative. However, it only con-
tains the TM- and the co(TM)-components of the conformal Killing data defining
X. : :

Given that we have shown that there is a well-defined action of (X, A, ) on the local
twistor bundle 5 [%] osl %! —including thelone-form part — oﬁr definition appears
more natural, even if there is an obstruction (proportional to the Cotton-York tensor
CP) for it to be a spinorial Lie derivative.

1

We now show that in fact the actions of ,?}} and .%y on 8 2] agree when X is nor-

mal, so that there is no ambiguity in the way we define the even-odd bracket of the
conformal Killing superalgebra .

1 1
Suppose that X is normal and (v, ¥) is any section of 52/ @ 5 =2!. Then
: 1
#lt)o|  PRreXpeot ey

X -3

\LLP(X) + D2y + %ﬁg.w;a—%mg)x
_ Vxlff+0%(Afo ' )
Vxx+a_%(Ax)x+ lax-y ,
where we have used the definitions of the Weyl-invariant conformal Killing data and

the Weyl connection from Chapter 3, Section 3.5; The action on the S %-component

clearly agrees with the Kosmann-Schwarzbach Lie derivative. Since Zand . both
preserve the kernel of P, it is also clear that the induced action én thesl™ %] -component
agrees with that of % when (1;;) defines a conformal Killing spinor.

When we havé explicit expressions for conformal Killing spinors, the Kosmann-Schwarzbach
Lie derivative & is often more convenient, whereas the “natural” spinorial Lie deriva-

tive .%° makes the unified origin of conformal Killing vectors and conformal Killing

spinors as parallel sections of bundles \.ﬁth a natural algebraic Lie bracket more
manifest. Since their actions agree on conformal Killing spinors, for the remain-

der of this thesis we will denote both Lie derivatives simply by %, trusting that it

will be apparent from context which one we are using,
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5.4 The Jacobiidentities
The Jacobi identity for a Lie superalgebra g = go @ g1 can be written as
(X,1Y,Z]] = [[X, Y], Z] + )XWy (x, Z]), (5.16)

where X, ¥, Z € g are homogeneous elements and | X| denotes the degree of X. In
this section we show that the conformal Killing superalgebra ) is not a Lie superal-
gebra in general. We will examine each of the four possible Jacobi identities in turn.
We already know that the natural Lie bracket on fy satisfies the Jacobi identity, since
for normal conformal Killing vectors the Lie bracket (3.53) reduces to the natural al-
gebraic Lie bracket on mo(T M). We have also shown that the even-even-odd Jacobi
identity holds: it is easy to see that this is equivalent to property (b) in Definition 16.
Assume that ¥ := (y, y) defines a conformal Killing spinor. Checking the even-odd-

odd Jacobi identity amounts to showing that
(X, [V, ]} = [ZXx Y, Y]+ ¥, ZxY] . (5.17)

It is enough to check this identity for the T M-component, since we are dealing with -
% -parallel sections of mo(7M). The other components are then fixed by the confor-
mal Killing transport equations. We denote the Dirac current of ¢ by V := V,, , and
the TM-compdnent of [Zx¥,¥] by Veyyy .

Let us begin by computing the T M-component of the leﬁ-hand side of equation

(5.17). We recall that [X, V] = AxV — By X (where By = —VV) and obtain

gAxV,Z)—g(BvX,Z)" glAxV, Z)-2(w,Z-X - ¥)

= W, SxZ-Y)+hxW,Z-9) -2, Z-X- 7).
On the other hand, computing the right-hand side of (5.17) yields

1 1
Wy £)+ 8(Vy ) = (G2Z(Ax)W, Z ) — (X',‘{c, Zy+W, Z-a2{Ax)y) -y, Z-X-x)

=—(y,[-38x, Z] W)+ hx(y, Z- 9} -2y, Z- X - ),
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where we have used the fact that the adjoint of a two-form n with respect to the
spinor inner product is —n and equation (2.14). The even-odd-odd Jacobi identity is
thus satisfied.

By a standard polarisation argument, the vanfshing of the odd-odd-od.d Jacobi iden-
tity would be equivalent to

By (‘;’) =0. (5.18)

Unfortunately, we find that
| z (Ay) |4
o2 -V.
ng'w(w)z ) Vw_l x .
) \-1Bv-w+o 2(Ay)y

The vanishing of this expression is equivalent to

1l
o

(W, Lgul gy + (@, UapX)w + (w, )V

It
o

(Cax, DT W + @, Uapx W aby — (W, 1)X

However, the expressions on the left-hand side do not vanish in general for arbi-
trary spinors v, x, and thus we are forced to conclude that h is not necessarily a Lie
superalgebra. This result is not new: Habermann [20] studies the algebra of con-
formal Killing vectors and conformal Killing spinors énd presents an explicit (non-
complete} example where the fourth Jacobi identity is not satisfied. However, from
the above considerations it is evident that the fourth ]acob_i.identity may fail purely

for algebraic reasons.

5.5 The Minkowski conformal Killing superalgebra

In this section, we exhibit the simplest possible example of a conformal Killing su-
peralgebra: that of the flat Minkowski space (R Le-1 Nap)- For convenience, we com-
pute the brackets of the algebra using the Kosmann-Schwarzbach Lie derivative and
the Lie bracket of vector fields, although of course we could have used the natural
bracket of ma(R ?~!) and the spinorial Lie derivative .# as well.

The conformal algebra of the Minkowski space R ""! with coordinates x% and the
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standard flat metric 1,5 is generated by P,, Mgy, D, Kz — corresponding to transla-

tions, rotations, the dilatation and the special conformal transformations.

Pg = 0Og (5.19)
Map = Xxq0p—Xpla, (5.20)
D = x%d,, (5.21)
K, = 2xaxbab—(x,x)6a. (5.22)

The even part of the algebra is given by

[Pg, Pyl = 0, (5.23)
[Map, Pl = 1NocPa—TacPp, (5.24)
[Mab, Mcal = 1beMad = NacMbd —NbaMac + aa Mpe, (5.25)
(Pa,D] = Pg, (5.26)
[Ka,D] = =K, : (5.2'7)
[Pa,Kpl = 21apD—2Mgp, (5.28)
[Map, Kel = Ko —NacKp. (5.29)

The conformal Killing spinor equation is readily solved using Lemma 10: V (V) =0,

so V1 = y, a constant spinor. Substituting this into the equation Pxy =0, we have
w=Wo+xX, : (5.30)

where x- y := x°T .y and 1, Y are arbitrary constant spinors. It is straightforward
to compute the action of the conformal algebra generators on y via the Kosmann-

Schwarzbach spinorial Lie derivative. This yields

L,y = Tays, (5.31)

PV = —5Map-y1— 5% Map w2, (5.32)

Loy = —3W1+3X9, (5.33)

Sy = xTaw. (5.34)
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- Finally, we compute the Dirac current V := V;, , associated to a conformal Kﬂliﬁg |

spinor . In local coordinates, we have

Ve = (y,I'%y)
= (o, T%o) + x"(wo,TTpx) + xP (Tpx, T*y0) + xPx (T, ToT )
= (yo,T%yo) +2xb D) —2x" (o, x) + xPx¢(Cpby, T°T 1)

= (o, T o) +2x"(wo,T'% 1) — 2x%(wo, 1) — 22°x° Loy, 1) + 122 (T2%, 1) ,

where we have used the Clifford algebra identity T'yp, = [Tl — 74.Tp + 6T +
Nepl g and the fact that the three-form constructed out of the spinor y vanishes due
to the symmetry properties of the spinor inner product. We can rewrite this in terms

of the conformal Lie algebra generators as
Vi = (W0, D)2+ 2(1pg, T Map —2(wo, X})D — (T%x, X)Ka - (5.35)

In particular, this shows that all the conformal Killing vectors of Minkowski space

are normal, since they arise as Dirac currents of conformal Killing spinors.
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Chapter 6

Conformal Killing spihors in M-theory

In this chapter we generalise the concept of conformal Killing spinors to eleven-
dimensional supergravity. We show that M-theory backgrounds that admit a su-
pergravity conformal Killing spinor distinct from supergravity Killing spinors and
geometric conformal Killing spinors must be of a very particular type: the metric
must be one of the so-cé.lled Bryant metrics and the four-form must satisfy a strong

integrability condition.

6.1 M-theorybackgrounds

A (bosonic) background of eleven-dimensional supergravity is a triple (M, g, FF), where
M is an 11-dimensional Lorentzian spin manifold with metric g, and F is a closed

four-form subject to the following equation:

d*F=3FAF (6.1)

, /
There is also an Einstein-type equation relating the Ricci curvature of g to the stress-

energy tensor of F.

r(X,Y) =3(xFiwyFy- }g(X,Y)|FI*, (6.2)

where (—, —) is the inner product on p-forms induced by the metric g.
We remark that equations {6.1) and (6.2) actually arise as the Euler-Lagrange equa-
tions of the eleven-dimensional supergravity action: we will not need the explicit

form of the action here, and refer the interested readed to e.g. [5] for details.
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For future reference we note that equation (6.2) also implies that the Schouten ten-
sor L can also be expressed in terms of F. A straightforward computation using the

definition of L and equation (6.2) gives
LX,Y) = (B Py - 558 (X VIFE 6.3)

We remark that since the geometric conformal Killing spinors are conformally co-
variant objects, one might worry that the lack of conformal invariance in M-thery
might prevent one from defining their supergravity analogue. It is known, however,
fhat the M-theory equations of motion (6.2), (6.1) admita scalting symmetry
| g~
(6.4)
F—A73F,

where A is a constant. It is easy to see that this transformation maps M—theory‘back—
grounds to other M-theory backgrounds since the equations of moﬁon transform
homogeneously under (6.4). One might therefore expect that a M-theory back-
ground admits some sort of scale-invariant structure, characterised by rscale-invariant
spinorial objects.
The spinors in'M-theory are real and 32-dimensional. There are two possible Clif-
ford modules, both isomorphic to R 3; we choose the one for which the action of the
eleven-dimensional volume element is nontrivial. The spinor inner product (—, -} is
now symplectic and obeys (y, Y - y) = —(Y -y, x) for any vector field Y. Moreover, if
‘is a p-form, its Clifford adjoint (considered as a spinor endomorphism) with respect
to the spinor inner product is n* = (~1) wq.

With these conventions, the supercovariant connection acting on s is given by
Dx=Vx+iixF+LX°AF:=Vx+Qx. (6.5)
The curvature of D is defined in the usual way:
RP(X,Y)=Dixy)- [Dx, Dyl . 6.6)

It is an important fact that the vanishing of the Clifford trace of R? considered as a

Clifford endomorphism is equivalent to the equations of motion. {31, 32]. In other
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words,the identity
Y e* RP(X,e,)=0. 6.7)
a

is equivalent to (6.2),(6.1).
Unlike the Levi-Civita spin connection V, D does not respect the Clifford product.

Instead, we have the identity

Dy(Z-¢)=VyZ-y+Z Dyy—-LZ°AiyFy-LZAY’AF.w.  (6.8)

6.2 The M-theory Penrose operator

We wish to consider spinors in the kernel of a Penrose-type operator defined using
the supercovariant connection. Note that this can be thought of as the composi-
tion of the projection to the kernel of Clifford multiplication with the supercovariant

connection. We therefore define
Py=Dy+3Y-D, (6.9)

where D=} e*-D,=V +ﬁF- is the Dirac operator associated to the supercovari-
ant connection. We note that P can be written as a sum of the geometric Penrose

operator and the F-dependent terms as
Pxy=Pxy+Qxy+ X -Foy.

We call the spinors in the kernel of P supergravity conformal Killing spinors (SCKS)!,
Since this is a somewhat unwieldy term, for the rest of the chapter we refer to them
simply as conformal Killing spinors, makiﬁg the distinctioh between them and geo-
metric conformal Killing spinors when necessary.

The reason for this nomenclature is that spinors in the kernel of P have the proper-
ties that we would expect supergravity generalisations of conformal Killing spinors
to have. The D-parallel spinors — the supergravity Killing spinors — are obviously in

KerP, for instance. In addition, when F = 0, supergravity conformal Killing spinors

'with some reluctance, we refrain fram introducing the acronym SUCKS, suggested by José
Figueroa-O'Farrill. Nevertheless, look out for a forthcoming paper [33].
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reduce to geometric conformal Killing spinors. We now show that the Dirac currents
of supergravity twistor spinors are conformal Killing vectors, obtaining a M-theory

analogue of PropositionVS.

Proposition 22. Suppose thaty, y € Ker P are supergravity conformal Killing spinors.

Then the Dirac current Vi, , is a conformal Killing vector.

Proof. We proceed in a similar fashion as in the geometric case, taking the covariant

derivative of the Dirac current.

gVyVyn,Z) = (Vyu,Y 1)+, Z-Vyy)
= My Fy,Zp -l Z P - KV ARy, Z 1)
= -+, Z Y'AF p-L(Y Dy, Z- 0 -FW,Z.Y-Dy)

= —LziyF @)+ HZPAY ARy, 1)

+&(Z- Y- Dy, p)-(Y-Z-y, D))

where we have made use of the fact that the Clifford adjoints of the terms appearing
in Qy are (ty F)* = 1y F and (Y’ A F}* = —Y® A F. The first two terms in the final

expression are manifestly antisymmetric, so antisymmetrising it gives
EVy Vi, 2)+8(Y, VzVy,y) = -2hy, g(Y.2),

where hy, , = -4 [y, D) - (Dy,1)]. In other words, the conformal Killing equa-

tion is satisfied. O

6.3 Supercovariant conformal Killing transport

We will now find a connection that allows us to identify Ker P with parallel sections

ofses.

Lemma 23. Ify is a conformal Killing spinor, Dy satisfies the following identity:

DxDy=LDy+ LixF- Dy+EX AF-Dy. (6.10)
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Proof. Suppose e, is again a geodesic frame as in the proof of Lemma 10. We differ-

entiate the conformal Killing spinor equation at a point p € M, obtaining

0,

Dx (Do) + 4 Dx (ea- D)

Da(Dxy)+ D (X- D) 0.

. Subtracting the second equation from the first and applying (6.8),we obtain

0=RP(X, ey +L(ea- Dx Dy ~se Ay F-Dy

e AXAF- DYy -X-DaDy—LX At ,F- Dy -t X°neAF-Dy)

Taking the Clifford trace of this equation and using equations (2.12) and (6.7}, this
yields | |
DxDy=L1D*y+LixF-Dy+2X AF-Dy. 6.11)

We can compute D? by taking the Clifford trace of this equation:
D*y=5F Dy (6.12)
and substituting this expression back to (6.11) gives
VxDy=4ixF-Dy+5X AF-Dy.

We can also write this as

i)x@ﬂl:O.

where D x = Vx — {tix F— 55 X” A F - a connection similar to the supercovariant con-

nection, but with different numerical coefficients. O
This immediately gives us the supercovariant version of Proposition 11.

Proposition 24, M-theory conformal Killing spinors are in one-to-one with with par-

allel sections of S @ S with respect to the connection

vy _(Dx X-\(y
ox(3)=(o 5lz): 6w



with a conformal Killing spinor vy uniquely determining a parallel section (v, TII D).
Furthermore,  has curvature

RP(X,Y) —1X° Ay F+1lY nixF-LiiyF- ZX°AYPAF

v =
) 0 RPX,Y)

(6.14)

Proof. The first part follows from Lemma 23. Obtaining the curvature of g is a
straightforward calculation using equation (6.8) and the usual Clifford product iden-

tities (2.10). : O

We observe that knowing the expression for the curvature (6.14) immediately allows
us to determine when a (simply connected} M-theory background admits a mauxi-
mal number of confo.rmal Killing spinors. This happens when R¥ = 0, which in turn
implies that R? and R® must vanish as well. The vanishing of R” means that the
background must be maximally supersymmetric. Such eleven-dimensional back-
grounds have been classified [34], up to local isometry, and in fact the only possibil-
ities are the AdS, x S” and AdS; x S* Freund-Rubin solutions, the maximally super-
symmetric Hpp-wave and flat Minkowski space.

The vanishing of the remaining component of the curvature gives
XAy F~ LY AixF+ By F+ ZX AY AF =0

But this implies that F = 0 and hence the only remaining possibility is Minkowski
space.
What about the non-maximal case? We now show that an important corollary of

Proposition 24 is a very strong integrability condition.

Corollary 25. Let (v, x) € Kerg define a conformal Killing spinor on (M, g, F). Then
the spinor. x mustin fact be parallel with respect to the Levi-Civita spin connection V.
In addition,

XbAF-xzth-x=F-x=0. {6.15) -
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Proof. Since (1, y) is parallel with respect to g, we have that
RP(X,Y) (”") =0
X
forany X, Y € 2 (M). This is equivalent to

RPX, Yy = (X AF-L¥P AuxF+ By F+ EX° AYPAF) 7,

RPx,viy = o.

Taking the Clifford trace of the first equation with respect to ¥ and using (6.7) again

gives (after some manipulation)
X°AF- x=0.

Taking a Clifford trace of this equation and using (2.12) then gives F- y = 0. This tells
us that for any vector field X, X - F-y = (X* AF—ixF)-x = txF-x =0. Using equation
(6.10), we obtain

Dzx=Dzx=Vzx=0.

a

M—_theory backgrounds that admit conformal Killing spinors must thus be rather
special. Not only must they admit solutions of the conformal Killing spinor equa-
tion, they must also possess (supergravity) Killing spinors y which are parailel.

We thus have a set of necessary (but not sufﬁcient).conditions for a M-theory back-
ground M to admit supergravity conformal Killing spinors. If x = ﬁ Dy vanishes,
the supergravity conformal Killing equétian reduces to the usual supergravity Killing
equation. We already know that if F = 0, the supergravity Penrose operator agrees
with the geometric Penrose operator. The remaining possibility (that allows for the
existence of supergravity conformal Killing spinors distinct from geometric confor-
mal Killing spinors or supergravity Killing spinors) is that y is nonzero and parallel
(so that M has constrained holonc;my), Fis nonzero and moreover satisfies the in-
tegrability condition (6.15).

We summarise these findings in the following proposition.
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Corollary 26. If (y,x) € Kergp is a conformal Killing spinor. on a M-theory back-
ground (M, g, F), then one of the following holds.

(a) M is Ricci-flat and y is ageometric conformal Killing spinor. This occurs when

X° A F =0 forall X, which implies F = 0.

®) x= TIT Dy =0 and thus Pxy = Dxy = 0; in other words, v is a supergravity
Killing spinor.

(c) The spinor x is parallel, F # 0 and in addition F- y = X’ A F - x=txF-x=0for
any vector field X.

In the sequel we will mostly be interested in case (c) since the two other cases have

been studied extensively in the literature.

6.4 M-theorybackgrounds édmitting conformal Killing
spinors |

Using Corollary 25, we will now attempt to characterise M-theory backgrounds which
admit non-trivial (i.e. distinct from geometric conformal Killing and supergravity
Killing) solutions to the SCKS equation.

Suppose thét (M, g, F) is a M-theory background and that in addition, (M, g) admits
a parallel spinor y. Metrics of this tgfpe have been studied extensively for example in
[35, 36] and in supergravity context in [37].

- It is well known that the existence of a parallel spinor constraints the holbnomy of
a manifold. in eleven dimensions, the subgroups H < Spin(1, 10) that leave a spinor
invariaﬁt have been classified by Bryant [35, 36]. There are two possibilities, distin-
guished by the type of the Dirac current V; of y. Note that since y is parallel, V; is
parallel as well. |

As Bryant shows, if Vy is time-like, Hol(M) must be contained in SU(5) < Spin(10).

This means that (M, g) is locally isometric to =aproduct R x N with metric

g=-dt*+h, : (6.16)
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where (N, k) is any Calabi-Yau 5-fold. Such spacetimes are automatically Ricci-flat
(as the product of a flat direction with a Ricci-flat manifold}, which means that from

equation (6.2) we must have

(xFiyF)

|
o

IFI? = 0

for all vector fields X, Y.
Considering the possible non-vanishing components that F can have in this case,
it is not hard to show that in fact F = 0. In a pseudo-orthonormal frame ey, ¢;, the
possible coniponents of F are F+_'1-j,F_,-J-k,FH:jk,Fijkg. The condition (¢ xF iy F) = 0
then implies that (with summation over repeated indices implied):

ijk

FH'ij_,_ 0

FapF Y =0
FijF,M = 0

FijkzFijkl 0.

Since these are sums of squares, each term must in fact vanish separately and thus
rall components of F vanish.
In other words, F = 0 and any solutions of the SCKS equation are again geometric
conformal Killing spinors.
The remaining possibility is that V; is null and Hol(M) < (Spin(7) x R %) x R. In this
case it can be shown [12] that '

vy x=0. (6.17)
Since ¥ is parallel, we have Vxx = 0 for any vector field X, and itefating this equa-tion

" we find the following integrability condition:
R(X,Y)-x=0 ' (6.18)

for any vector fields X, Y. Taking the Clifford trace of this equation and using the al-

gebraic Bianchi identity (2.21), we find that or, using the Ricci map defined in {2.23),

Ric(X)-1 =0, (6.19)
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which in turn implies that |Ric(X) |2 x = 0. Since g(Ric(X),Ric(Y)) = 0 for all vector
fields X, Y, metrics of this type are often called Ricci-null.
The most general local metric in eleven dimensions admitting a parallel null spinor

is given by [36] :
g=2dx"dx" +aldx)? +(dx*)* + hydx‘dx’ T (6.20)

where i, j = 1...9 and and « is a function satisfying d, a = 0 but otherwise arbitrary.
h;i; is now an x~-dependent family of metrics with holonomy contained in Spin(7)
and with the property

I Y=AY+¥, : (6.21)

where Y is the self-dual Spin(7)-invariant Cayley 4-form, A a smooth function of
(x~,x%) and ¥ is an anti-selfdual 4-form. Bryant calls such metrics conformal anti-
selfdual and shows that any one-parameter family of Spin(7)-metrics can be made
to satisfy this property usiﬁg diffeomorphisrns[36].. |

Following [37]1, we want to couple the metric (6.20} to a four-form F satisfying the
- M-theory equations of motion (6.1), (6.2} in addition to the SCKS integrability con-
ditions 25. Note that for the metric (6.20), the vector 8, is parallel and null and in
fact Vy o 8.

The only nonzero component of the Ricci tensor is R__, which follows from the
Ricci-null propety[37] and the fact that @, is parallel. Satisfying the Einstein equa-
tion then requires that the four-form F must be null. It is easy to see that the only

nonzero components of F are F_;;; in other words, F must be of the form
F=dx nG, (6.22) .

where @ is a 3-form on the transverse space Ny with coordinates x°, x’: we refer to
[37] for details. The requirement dF = 0 is satisfied provided that 4,0 =0 and that
O is closed as a three-form on Ny; note that it may still have x~-dependence. The
Maxwell equation (6.1) is satisfied [37] if d xg © = 0 on Ny, where %g is the Hodge
dual operator on N.
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Finally, we want to make sure that the integrability conditions (6.15), necessary for
the SCKS equation to admit solutions, are satisfied. Using the condition ixF-y =0

and contracting F with 4_ implies that
Q.-r=0.

In addition, since Vy o< d+ and V, - x = 0, we know that r€eKerl,.

In summary:

Theorem 27. Let (1, y) € Ker @ define a (non-Killing, non-geometric) SCKS on a M-
theory background (M,g,F). Then the vector Vy is null, (M,g) is Ricci-null and
Hol(M) c (Spin(7) x R®) x R. Furthermore, locally the; metric g can be written in
the form (6.20). The four-form F can be written as F = dx™ A©, with® an x™ -
'dependent family of 3-forms which are closed and coclosed on Ny. In addition, yeI',

and®-y=0.

There are plentiful examples of this type[37], so provided that we equip them with
suitable four-forms satisfying the integrability conditions (6.15), we expect to find
examples of non-Killing, non-geometric supergravity conformal Killing spinors out
of which we also hope to construct a supergravity version of the conformal Killing

superaigebra.

6.5 Conformal Killing spinors of Hpp-waves

We are now ready to solve the SCKS equation Py = 0 on Hpp-waves, that is, the

equations

by = 0, (6.23)
O_y+ix' ATy +30-y+ ST Op+T_y = 0, (6.24)
Ok + §T+ Ol + [, T @ +Txy = 0, (6.25)

where y € KerI'; is a constant spinor that also satisfies @ - y = 0. The first equation
simply implies that ¢ = ¢(x~, x%). It is convenient to decompose ¥ as ¢ =¥ +¥_,
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where 1/, € KerI'y. Thus we can rewrite the last equation as
OkW+ +0kw_ + ROT Ty + 5O y_+Tyy =0.

It immediately follows that drw_ = 0. Taking d; of the previous equation also shows
that 4;,w. = 0, which means that v, depends at most linearly on the transverse

coordinates x‘. We can therefore decompose it as

e, x) =)~ 10 xt Doy - Lxt-ely_-xty,  (6.26)

where x*-:= x'T"; and ¢ € Ker T,

Next, we look at the KerI'_-component of the 8_1 €quation. We find
B-y-=-§0-y_— ﬁf—r+®‘W— -Tx=-TI%,
becauseI'_T,y_= ¥2w_. We can immediately integrate this equation and ﬁﬁd
y-=C-xTgx,

where {3 € KerI'_ is a constant spinor. We substitute the expressions for ¥,y _ into
the remaining equation and obtain
0=¢ +3:0-¢— i@-xl x+ %xiAijrfr+C0
+ xiAiijx_x - %@2 cxt I'ilo— Z%GZJCJ' Xy
- ﬁ@.xl NCIge _é@.xl.x .
This equation contains three kinds terms: those depending only on x7, those de-
pendingon x"' and those depending on both. Taking derivatives, it is easy to see that

all three must vanish separately. The terms depending solely on x™ give an equation

for ¢,
which is readily solved to give

.where ¢y € KerT'; is a.constant spinor.
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The vanishing of the terms depending on x~ and x~ both implies that
ATy =0Ty, , (6.27)
and the vanishing of the remaining terms requires that
— 30Ty + AijTjT4{y— 2;0°TiT 4o — 507,07, {g = 0. (6.28)
Recall that the M-theory equations of motion are satisfied when Tr A = —% |©)2. Tak-
ing the trace of equation (6.27), we find that
1817t = 558 jkn@ntmTiT jeimTix

(6.29)
= _%ijnenlmrjklmx ,

where we have used a C#4(9) Fierz identity I';T jgimI's = —T jzim. Butrecall that @y =
0. This means that the Clifford square of © acting on y must vanish as well, which
implies |

18P % = 105nOnimT jiim »
since @ is a 3-form. Clearly, this contradicts (6.29), unless either @ = 0 or y = 0. We

have thus estabilished the following somewhat disappoinfing result:

Proposition 28. Let (M, g, F = dx™ A ©) be a supersymmetric Hpp-wave solution of

M-theory and (v, x) define a SCKS. Then one of the following holds.
(a) © =0 andy is a geometric conformal Killing spinor.

(b} x =0 andy is a (supergravity) Killing spinor (Dy =0).
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Chapter 7

Conformal Killing superalgebras in
M-theory

Wé now turn to the question of defining a supergravity analogue of the conformal
Killing superalgebra introduced in Chapter 5. In particular, we will define a su-
percovariant conformal Killing superalgebra associated to a M-theory background
(M, g, F) consisting of supergravity conformal Killing spinors and so-called super-

normal conformal Killing vectors of M.

7.1 M-theory conformal Killing spinors

As in the geometric case, we would also like to construct a map from §%(s ®8) to sec-
" tions of mo{7T M) which maps parallel sections with respect to g to parallel sections

of the Geroch connection 2.

We can easily formulate the anélogue 6f Proposition 15 with slight modifications -

involving F-dependent terms.

Proposition 29. The map [—,=):(w,x) — (X, A, B) is defined by the following equa-

tions

gX,Y) = (w,Y-w)

g(AxZ,Y) 2, Y- Z-x)+2(y, Y -Qz-y)

Z(Y'XrX)—L(X; Y).

Bx(Y)

Proof. Let (y, ) € Kergp. As before, we take X to be the Dirac current of ¢ and dif-
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ferentiate it, obtaining

giVzX,Y) (Vzy, Y -y)+ (¢, Y - V)

-Z-nY Y- Y-Z.)-Qz v, Y -y)-(y,Y -Qz-y).

and using the properties of the symplectic spinor inner product gives the result.

Now hx = —2(y, ), and thus we find the one-form ax by differentiating
ax(Y)=Vyhe =2(Y -1, 1) +2(Qv -y, 1),

since x is parallel, and in fact taking the Clifford adjoint of Qy and using the in-
tegrabﬂitgr condition in Corollary 25, we see the last term in the previous equation
vanishes. Thus, ax(Y) = 2(Y - x,x) and using the definition of 8, we arrive at the

desired result, O

7.2 Supernormal conformal Killing vectors

In order to be able to construct a well-defined superalgebra from M-theory confor-
mal Killing spinors, we must again show that there is a special ideal of conformal
Killing vectors X for which C(X,Y) = 0 for any vector field Y — recall that this is
required for % to be a homomorphism from the algebra of vector fields to a subal-
gebra of mo(TM). To get an idea of what we should require from these vectors, we
now determine if Dirac currents of M-theory conformal Killing spinors satisfy this
condition. |

Recall that the conformal Killing transport equations (3.16) imply that if X is a con-

formal Killing vector and Y is any vector field,
ClX,Y)=-VyBx—L(Y)o Ax . (7.1)

Now suppose (1, ¥) € Kerg define a conformal Killing spinor and X is the Dirac
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current of 1. Then we have

CX,NZ = -Vy[2Z g0 -LX, 2] -LX,VyZ) - L(Y, AxZ)

= (VyD(X,2)+L(Vy X, Z} + L(Y,V 2 X)
= (VyLD(X,Z}+(AxI)Y, Z)

= (KLY, 2) +(VyLWX, 2) - (VxL)(Y, 2},
where we recognise the last two terms as ~C{(X, Y) Z. Thus, we see that
CX,Y)Z = (DY, 2). . (7.2)

This suggests that a natural choice for the analogue of normal conformal Killing
vectors in supergravity context would be the CKVs for which .#x L = 0 . We can state
this requirement in a slightly more M-theoretic way by rewriting expression (6.3) in

local coordinates as

kl _mn

§°8 gpqg”kanerlnqs ) (7.3)

7
Lab - 'nggmngpqgrsp‘mpraansb - 4' " 360

where g% are the components of the inverse metric. Since .Zx g% = 2hx g?? (which
is easy to see by taking the Lie derivative of Id = gg™"), the Lie derivative of Lap

vanishes if ZxF=-3h ,{F . This motivates the following definition.

Definition 30. Let (M, g, F) be a M-theory background. If X is a conformal Killing

vector of (M, g) and in addition,
PxF=-3hxF, : (7.4)
we call X a supernormal conformal Killing vector.

Note that a supernormal conformal Killing vector is not necessarily normal in the

same sense as in the geometric case, since it might not'correspond to a parallel sec-

tion with respect to the normal conformal Cartan connection (even if it does define

a parallel section of mo(T M) with respect to the Geroch connection).

It is clear that supernormal conformal Killing vector fields form a subalgebra of the

conformal Lie algebra of M, since if X and Y\are supernormal, Lx,y|L = (£x Ly -
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Ly Lx)L = 0. Note, however, that unlike for normal conformal Killing vectors, their
Lie bracket does rnot reduce to the algebraic one since W(X, Y) does not necessarily
vanish even when X and Y are supernormal.

We can motivate this definition further with the following proposition.

Proposition 31. Let (M, g, F) be a M-theory background and X a conformal Killing

vector. Then X preserves the kernel of P, that is,
[Zx, Pyl = Pix,r
ifand only if X is supernormal.
Proof. Usirig equation (9.6), we can rewrité Py as
iPy;zPy+%F-Y—%X-F. (7.5)

_ We know that [.%%, Py| = Px,v; by equation (5.15), Now note that

.Zx,F- Y] ExF-Y-w+4hxF’Y'1,U+F'gx(Y-1[/)—X-F'EXW

xF- Y w+3hxF-Y-w+F-|X, Y]y,

where we have used the properties of the Kosmann-Schwarzbach Lie derivative from

Lemma 20. In other words, [%x,F- Y] = F-[X, Y] ifand only if % F = —3hxF; sim-
ilarly for [¥x,Y - Fl. . O

7.3 Jacobi identities in the M-theory conformal Killing
superalgebra

As before, we need to check the Jacobi identities of the conformal Killing superal-
gebra we have construced. Again, the even-even-odd Jacobi identity follows from
the fact that for supernormal conformal Killing vectors, X — .Z% is a Lie algebra
homomorphism. Let ¥ = (¥, x) € Kerp define a SCKS and let X be a supernormal

confornial Killing vector. The even-odd-odd Jacobi identity can be written as
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Again, we have

8(AxVyy, Z) -8By, , X, Z) = —g(Vyy,SxZ)+hxgWVyy, Z) =209, Z-X - x)— 2, X -Qz 1

—,SxZ-wy+hx(y,Z-w) -2y, Z-X-x) -2y, X-Qz-y)
Note that when (i, y) Ker g, the spinorial Lie derivative .% acts as follows:

(Y

(Px +0(X) (""

_ (wa+X x UZ(AX)W X X
= 1

LX)y f’X Y+o Z(AX)X
X—
1

_ O'Z(Ax)‘w X-
-tIX Yv+o Z(Ax)x

We can thus write the right-hand side of equation (7.6) as

‘ 1 1
g(V.wa,WrZ)+g(Vw,.?xwrz) = (UZ(AX)W)Z'W)_(QX'W!Z'W)+(w,Z'UZW)_(w,Z'QX"l

—(, SxZ-y)+hx(y, Z-y)-2(p,Z-X-x) -2y, X - Qz-y)

which thus agrees with the left-hand side and the Jacobi identity is satisfied. As for
the odd-odd-odd Jacobi identity, the same comments as in the geometric case apply.
Since geometric conformal Killing spinors are special cases of M-theory conformal

Killing spinors, the fourth Jacobi identity does not vanish in general.
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Chapter 8

Conformal Killing spinors in type IIA
and IIB supergravities

One way to generate supergravity solutions starting from purely geometrical back-
grounds is Kaluza-Klein reduction. In this procedﬁre one exploits a symmetry of the
background corresponding to a Killing vector ¢, which generates a 1-parameter sub-
group I of the isometry group of M. If we take M to be a principal I'-bundle, we can
constructa metric on the base N = M/T, This is a special case of a semi-Riemannian
submersion[22] . In addition to thé metric, there will also be other fields on N, aris-
ing from the curvature of the bundle and the norm of the vector field ¢. For super-
gravity backgrounds without flux, the field equations amount to the Ricci-flatness
of the metric on M, and the corresponding equations on N can be derived e.g. us-
ing standard formulas relating the Ricci curvatures of the total space and the base of
a semi-Riemannian submersion [38]. Any other objects on M (such as differential
forms and Killing or conformal Killing spinors) left invariant by the action of ¢ will
also induce correspondiné objects on N.

In particular, it is well known that the 10-dimensional type IIA supergravity can be
obtained as a Kaluza-Klein reduction of M-theory. Many of the supersymmetric
reductions of M-theory backgrounds to type IIA solutions have been classified re-
cently, including reductions of flat space (leading to so-called fluxbranes), the M-
wave, the Kaluza-Klein monopole and the M-branes(39, 40, 41; 42].

For our purposes, the utility of the Kaluza-Klein procedure lies in the fact that the
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connection in the lower-dimensional theory now includes fluxes even if we start
with a purely geometric backgrdund of the higher-dimensional theory.

In this chapter we show that starting from geometric M-theory backgrounds, we
can use the Kaluza-Klein procedure to construct 10-diménsional supergravity back- .
grounds with supergravity conformal Killing spinors. We also compute the associ-
ated conformal Killing superalgebras. Finally, we make a brief comment on the role

of conformal Killing spinors in type IIB supergravity.

8.1 The Kaluza-Klein ansatz

Let (M, g) be an eleven-dimensional Lorentzian manifold that admits a Killing vec-
tor { which is everywhere spacelike. Note that if we regérd (M, g) as a M-theory
background with F = 0, it must actually be Ricci-flat by virtue of the field equations
(6.2).
Now suppose that ¢ genefates a 1-parameter group I'. We think of M as a principal
[-bundle .
M-~ N=MIT,

where 7 is the projection hat maps points in M to their I'-orbits. We also have the
derivative of this map: . : T,M — T;N, where g = n(p).
For any point p € M we have a split T,M = 3¢, ® ¥, of the tangént space into hor-
izontal and vertical subspaces, where ¥, = Kern.. This split is orthogonal with re-
spect to g, and the vertical subspace ¥}, is spanned by {. Now let a = ﬁffb. Clearly
a{{) =1and a(X) =0~ X L { — thatis, ¢, = Kera. We call a vector field X hori-

zontalif a(X) =0, |
For every X € TN, there exists a horizontal lift Xe 7}, defined via T, X=X, Tﬁere
is a unique metric 4 on N for which the map 7, is an isometry, defined via h(X,Y) =

g(X,¥). We can write g in the following form:!

g=n"h+|¢lPaca. . (8.1)

! In string theory literature, this is often called the Einstein-frame Kaluza-Klein ansatz: this can be
related to the standard IIA string-frame ansatz via a conformal rescaling.
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We can characterise geometric objects induced on N with the help of the following

definition.

Definition 32. Let n be a p-form on M. We say that # is horizontal if ;7 = 0, and
invariant if Zn = 0. If n satisfies both of these properties, we call it basic. A basic

form is a pull-back of a form on N.
Applying this definition to the objects defined above, we find:

Proposition33. Let(M, g) be a M-theory background with a Killing vector § as above.

Then ||&||* and da are basic.

Proof. The squared norm of ¢ is clearly basic since ¢ is Killing: .%:g({,¢) = 0. An-
other natural basic form is da. 1t is easy to show that it is horizontal. For any vector

field X,
teda = da($, X)

=¢a(X) - Xal() —a(ls, X])

8¢, X) gli¢, X1,4)
11 (23
which vanishes since .£; g(X,¢) = 0. Since da is closed, ¥;da = dia =0, so da is

=¢

invariant as well, and hence basic. ' |

We express these fields as ||€]|2 = 2% ¢, where ¢ is a function on N — usually called
the dilaton — and da = n* F», where F, is a 2-form on N. In the sequel we usually

omit explicit pull-backs.

Definition 34, Let (M, g) and (N, h, F>,¢) be as above. We say that (N, h,F,¢) isa

Kaluza-Klein reduction of (M, g).

In summary, via the Kaluza-Klein reduction we can identify (M, g) with a back-
ground (N, h, F», ¢) of type IIA supergravity. The Ricci-flatness of M naturally gives
rise to the IIA field eqliations which can be readily derived by the s;[andard submer-
sion formulas for the Riemann curvature [38, 22]'. In particular, the Ricci tensor of

(N, h,F2,¢) can be written in our conventions as’

r(X,Y) = e*(xFo, iy Fo) + $e* | FPR(X, Y) . (8.2)
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We remark that it is possible to include the four-form F in this construction by
further demanding that %;F = 0. Then it is easy to show that we can write F =
aAJI“H3 +n* Hy, where H3, Hy a3-formanda4-formon N, respectively. However, in
this thesis we will only consider Kaluza-Klein reductions of M-theory backgrounds

with F=0.

8.2 Kaluza-Klein reduction of the conformal Killing spinor
equation

We begin by descfibing the connection that the Levi-Civita connection on (M, g)
induces on (N, h, F>, ¢b).

A natural coframe for the metric (8.1) is {&%, &'}, where 8% = %a. We can define a
coframe on (N, k) via ¢’ = &.. Note that the 11-dimensional volume element dvol
éan be written as

dvolys = dvoly Ae?, ' (8.3)

Since we're focusing on the Clifford module on M for which the action of the center -

of the Clifford algebra is non-trivial,
“dvolps -y =dvoly -e® y = -,

Now dvoli, = —1Id, so the last equation implies that e -y := I'*y = dvolx 1. In other
words, ¢ acts on spinors like the 10-dimensional volume element. As a representa-
tion of Spin(1,9), the 11-dimensional spinor bundle S 1; breaks up into S 1'0 DS 1gm,
where s, are distinguished by chirality. For the purposes of this section, we prefer |
not to break 11-dimensional spinors explicitly into 10-dimensional spinors, leaving

the 10-dimensional volume element manifest in the expressions below.

Proposition 35. The spin connection V on (M, g) induces the following connection

on(N,h,F;,¢).

Px=Vx- %e"t’a:(X) grad¢-dvoly - — -é-e‘Pthz -dvoly -, (8.4)
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whereV is the Levi-Civita connection of h. We call D the IIA supercovariant connec-

tion on (N, h, F>, ).

Proof. Recall that the spin connection acting on aspinor ¥ is Vxy = X(9)+10(X)%T 4y,
where @4? are the connection one-forms on (M, g). To determine the connection on

(N, h} induced from the spin connection of M we logk at the structure equations.
de® + @5 A e = 0,
dei+£)fjAej = 0.

The latter equation implies that w’ = E)ij.. To determine the remaining connection

one-forms, we compute

de® = d{e%a)

= e?dpra+elda,
and, writing F> = da,
0% e =2ePandp+ e’ (Fr)ijel ne

which becomes

&% =2e%0;pa+ Le?F;jel,
Now ix Fo = tx ($(Fo)ije’ A el) = —(Fa)ijel (X)e!, so
o (X) =2e?d pa(X)—Le? (xF2) (8.5)
and the resuit follows. O

Using Proposition 35, we can now work out what happens to the conformal Killing
spinor equation under Kaluza-Klein reduction. To begin with, we can decompose

the Dirac operator.

Vy = I*V,u+I'Vy (8.6)

I“Voy+Vy - 1e?F - dvoly -y, (8.7)
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where we have used (2.10).

Now suppose v is a conformal Killing spinor on M which is left invariant by ¢; that
is, Zry =0, so that it can be identified with a pullback of a spinor on N. We wish to
know what equation it satisfies on N.

The vertical component of the conformal Killing spinor équation implies that

TV, = ¥y, (8.8)

::In—-

Inserting this into (8.6), we obtain
Ay =5 Vy - g e? - dvoly -y (8.9)
The horizontal component of the twistor equation can then be written as

wa—%€¢th2-dV01N'w+ H'IZ'I'XVW (4 X - dVOlNVJ 0, (8.10)

4{n 1)

where X is any horizontal vector field.

We have thus proven the following:

Proposition 36. Let (M, g) be a vacuum M-theory background with a Killing vector £
and (N, ‘h, F, @) its Kaluza-Klein reduction with respect to {. Furthermore, let vy bea
conformal Killing spinor satisfying £y = 0. Then Py = 0, where for any horizontal
vector field X,

Px=Vx—1eP1xF-dvoly-+ 11 X- ¥ s e¢x - Fp-dvoly -

is the Penrose operator associated to the IIA supercovariant connectionon (N, h, F», ¢).

8.3 Kaluza-Klein reduction and conformal Killing su-
peralgebras

As we have seen, we can associate a conformal Killing superalgebra f = o ® fj;
to (M, g), constructed out of its normal conformal Killing vectors and conformal

Killing spinors. In this section we show that via Kaluza-Klein reduction we can con-

struct a supergravity conformal Killing superalgebra  from .
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We define b; to be the space of ¢-invariant conformal Killing spinors of M, that is
by = { eKer P|.Ly =0}.

As for by, suppose that by < fyy is a subalgebra. Let v € h; and X € ho Then it follows

from the even-even-odd Jacobi identity of f that
LeLxy = Lex)v + Lx Ly

But the last term vanishes, since .y = 0. Therefore, for Zxy to lie in b;, we must
require that .Z;, x)% = 0, which implies that [, X) leaves  invariant. Since we are
only considering Kaluza-Klein reductions with respect to one Killing vector, we as-
sume [¢, X] must be proportional to ¢, In othér words, we must have X € Norm(¢),
where Norm(¢) is the normaliser of ¢ in 50.

Furthermore, we can prove the following:

Proposition 37. Let (M, g} be a vacuum M-theory background, £ a Killing vector and
X e Norm(¢) a normal conformal Killing vector with [ X,&] = ¢£ withc €R aconstant.
Then X induces a conformal Killing vector X of (N, h, F»,¢), and furthermore it holds

that

Lxp=—fx+c

gXFz = —CFZ .

Proof. Suppose that X is a conformal Killing vector on M, with fy = ﬁ divX. Fur-
thermore, assume that X € Norm(¢&), with [X,&] = ¢cX for some constant ¢. We can
decompose X as X = a¢ + X, where a is a function on M and X is the horizontal
component of X. |

As a preliminary, let us compute the Lie derivative of & along X. Let Y be any vector
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field on &V and Y its horizontal lift. Then

£ () = X(eD)-21x17)

= g(Vxe ¥)+g(6 V5 7)-g (51X, 7))

Il
i
[y
e
+
— & — [—

oq
~
=

I
r—-\
I’\J
>y
+
i3]

where we have used the Koszul formula and the conformal Killing equation (3.1).

Another useful quantity is the Lie derivative of [|£]|%: this is simpﬂy

Zx (11€1°) X(g(5,0)

= 2g(Vz$.4)

= 2g(VeX.§)+2cg6,9)
= 2(-fx+c)gi.9)

= 2(-fx+c)l6I*.

- From this we can immediately see the action of X on the dilaton ¢, for

X(g(&,0)=2e2X(¢), o (8.11)

and combined with the previous result this implies that Zx¢ = X(¢) = - fx +¢.

It remains to compute the action of X on @ and F» = da. Using the above,

oo = b
Zxa (Ilfllzf)
1
= L
NHE Ze () + ||£||2 X6
_ 2(=fx+c), (-2fg+c)
T
__C
HE
= —ca
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What about da? The last equation immediately gives

Zrda

I
S
ES]

+
oy
B

a8

]

since #ya = —ca and d? = 0.
With these observations in mind, we use the Kaluza-Klein ansatz (8.1) to determine

the action of X on the lower-dimensional metric h:
L8 = Zxh+Zy(léaea)
= Zxh+(ZxlElP)aea+2|él (Lra)ea
= Pxh+(-2fz+2c)lElPaea-2¢clélfaea
= Zxh-2f3l¢Paea
= —2f38.
For this équality to hold, we must have #xh = -2 fgh = ~2fxh, so X is indeed a

conformal Killing vector of (N, h). O

We can in fact do slightly better and show that conformal Killing vectors on N in-
- duced by normal conformal Killing vectors of the M-theory background satisfy a

property analogous to Definition 30.

Definition 38. Let X bea conforrﬁal Killing vector field of (N, k, F2, ¢). Then we say
that X is IIA supernormal if
FxL=0,

where L is the Schouten tensor of (N, k).

Proposition 39. Let (N, h, F2,¢) be a Kaluza-Klein reduction of a vacuum M-theory
background (M, g) and X a conformal Killing vector field induced by a normal con-

formal Killing vector of (M, g). Then X is IIA supernormal.
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Proof. Asanimmediate consequence of Proposition 37 we have Pxl(e?Fs) = fx e?E.
Using’a similar argument as in Section 7.2, Chapter 7, it is clear from equation (8.2)

that %xr = 0. It follows that .%’x L must vanish as well. O

Finally, we show that'a conformal Killing vector X on N inherited from X € Norm(¢)

on M preserves the space of supergravity conformal Killing spinors on N.

Proposition 40. Let (N, h, F,,¢) be a Kaluza-Klein reduction of a vacuum M-theory
background (M, g) and X a conformal Killing vector field induced by a normal con-
formalKilling vector of (M, g) Then ¥x preserves the space of superconformal Killing
spinorson N, that is |

&%, Pyl =Px,y) .
Proof. Obviously P can be writen as P +® [Fg; ¢), where
Py = —%e‘btng - ——4[,,1_1} Y Fy, (8.12)

Then we have

[Zx, Pyl = Pix,y) + [-Z%, Pyl . (8.13)
Using Proposition 37 and the properties of Kosmann-Schwarzbach Lie derivative,
we compute
[ﬁ,ﬂx, e¢£yF2] = (e¢lyF2) S+ e¢LyF2 By — fxe‘PLsz Sy — e‘Ptsz -y

‘Ze"bX((p)tng Y+ e(’btlx_y]Fz Y+ e('bty,iﬂng 'w—fxe(Ptsz Y

i

uxnF v,

since #xF» = —cF, and X(¢) = — fx +c. A similar calculation for the remaining term

yields

[ L, e?Y By = ZLx(e?Y) - Foy+e?Y - L (Fy)- fxe®Y -Fy—eY K-y

i

2e°X(P)Y By +e?Y B ow+e? (X, Y] By - fxe?Y By

XY By,

because ¥y (Fz 1,{!) = %xFy-y+2hxF-y. Tt follows that [fx,@y] =0x,v) O
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The results of this section guarantee that we can associate awéll-deﬁned conformal
Killing superalgebra b to a IIA background (N, k, F;, ¢) obtained as a quotient of the
geometric conformal Killing superalgebra of a vacuum M-theory background (M, g).

We devote the rest of this chapter to presenting a number of explicit examples.

8.4 Conformal Killing spinors and Kaluza-Klein reduc-
tions of flat space
A generic Killing vector of Minkowski space R " can be written in the form
E=T+A, | (8.14)

where 7 is a translation and A is a Lorentz transformation. Requiring that a confor-
mal Killing spinor ¥ = y + x- x of the flat space given in equation (5.30) is invariant

under ¢ implies that

Ay = 0, (8.15)

T-x—3Awe = 0. (8.16)

By imposing the requirement that ¢ be everywhere spacelike (so that its action on
Minkowski space is free), it can be shown [39] that there are two families of space-
like Killing vectors which give rise to smooth quotients and preserve some spinors.

There exists a coordinate system (z, x!, x%) in which the flat metric takes the form

B ) -
grio =2dxTx™+ Z dx'dx' +dz?, 8.17)

i=1

and in this metric (up to a scale}, the normal forms of the relevant Killing vectors are

given by
& = 3;+Ri2(B)+Ra(B2) + Ros(Pa) + Rs(Ba) , (8.18)
2.8 =0 (8.19)
,
and by -
& = 0+ Ni1(w)+ Ray(B)) + Rss(B3) + Rea(B3) (8.20)
lZﬁ; = 0. (8.21)
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Here R;;(f8) are rotations in the {j plane with parameters § and N () is a null ro-

tation in the ith direction with parameter u. In the second case (8.18) the condition

(8.15) can be written as

(N+S8xy

0, {8.22)

Ty —3(N+Syo 0, (8.23)

where N is nilpotent and S is semisimple (since the R;;’s all commute and are there-
fore simultaneously diagonalisablle); furthermore, N and S commute. The first con-
dition then implies that N¢; and Sy =0 separaterly. In addition, N and S commute
with T, and I'2 = - Id.

Let us loc;k at these possibilities separately. First, note that it follows from equation
(8.15)that a conformal Killing spinor with ¥ = 0 can never be invariant, since equa-
tion (8.15) then implies that y must vanish as well: therefore, both 1, ¥y must be
honzero, constrained by the invariance condition.

Consider the normal form (8.18). There are several possibilities depending on which
of the f’s vanish. At most two of the ﬁ,-’s can be zero, since if three vanish, the
remaining one must vanish as well. Therefore, let us consider the case when two
are nonzero; without loss of generality we can choose them t.o be p1, f2. Equations

(8.15) then become

I
==

BTy + PaTaay (8.24)

Tx— 3 (BiT12+ PaT34) %o

|
==

(8.25)

Since R = $,I'12 + B234 commutes with Iz, Clifford multiplying the last equation
again by R we obtain
R-R-y =0, (8.26)
which implies that |
21 PaT1234%0 = (61 + B3) wo,
and using the fact that f; + B, = 0 and writing 2 + 2 = (B, + f,)° — 21 B2, we get

Favo=Tseo,
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in other words, R - ¢y = 0, which implies that y =0 and the conformal Killing spinor
¢ is simply a parallel spinor invariant under the action of £.

In fact, one can show in general that for -a. semisimple element S, S-S- ¢ implies
that S-¢ = 0. Complexifying the spinors, if necessary, we can diagonalise the matrix
§S- by which we mean the matrix that gives the Clifford action of S on spinors, not
the usual rotation matrix. The eigenvalues of $2- are the squares of the eigenvalues
of 8., so the zero eigenvalues of both matrices coincide. This means that the only
conformal Killing spinors of flat space left invariant by the action of a Killing vector
of the form (8.18) are (a subset of) the parallel spinors.

Next, let us consider the case involving the null rotation. Now {8.15) becomes
Tzx—3(N+S)wo=0, (8.27)

from which we can deduce that

N-§8-yp 0,
821[!0 = 0,
since N is nilpotent. Using a similar argument as before, we can again conclude that

S- ¢, = 0. Now we can solve (8.27) to obtain
x=3TzN-vq, (8.28)

whence the conformal Killing spinors invariant under the action of a Killing vector

of the form (8.20) are given by
Y () ={+5x-TN-(, - (8.29)

and { is an arbitrary constant spinor.

8.5 Conformal superalgebras of nullbranes

In [39] the reductions of flat space with respect to Killing vectors involving a nul_l
rotation are called nullbranes, which have recently attracted much interest in the

context of time-dependent string solutions and cosmological toy models {43, 44, 45].
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In the previous section we showed that in addition to parallel spinors, certain non-
parallel conformal Killing spinors are also invariant under the action of the Killing
vector used inrthe reduction. Therefore, it is possible fo associate a conformal Killing
superalgebra to each nﬁllbrane solution. There are three distinct cases: the null-
brane solution and two sclutions which interpolate between the nullbrane and fluxbrane
solutios: we consider each in turn, although it turns out that the form of the confor-
mal Killing superalgebras of the latter follow largely from the computation of the

former.

8.5.1 The nullbrane

When the Killing vector (8.20) used in the reduction is a pure null rotation (i.e. all
the f’s vanish, with u # 0), one obtains a IIA solution which the authors of [39] call a
nullbrane. Thisisa %_—-BPS solution with the following metric, dilaton and Ramond-

Ramond 2-form:

1 1
g = A2 [de*’dx' - (Jc:l)2 (dx") +ds* (E-")] +A7Z (dx' + xlx'dx"]2 ,

' 2
B = ﬁdx_/\dx1 ,
¢ = %logA ,

where A =1+ (x7)2.
Note that the metric does not depend on the parameter w: it has been absorbed by
arescaling x* — ut!x*,

It is straightforward to calculate the normaliser of { = d, + uM,,. Norm(¢{) is gener-

ated by
X = My,-iuk,-1p_,
= Py+uM,,,

Z = M,_-D,

P, Py, Mij, My, Pz, Moy,

where i = 2...8. As with the metric, it is possible to absorb the parameter u into the
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translation generators P;. Also, because we're quotienting by § and set { = 0 in the
quotient algebra, we can eliminate one generator, leaving P, = —uM, := W, say.
We can also compute the Dirac current of two arbitrary {-invariant twistor spinors,

Y1) ={+5x Tp{and wo (W) =v+ Jx-Tppyv.

V (w1, 92) = Col 0E+ (T + Tal,0) X

+Y Tz, TV My + 3 (Ce—Taad, T'0) M

iy i

9 .
+({,T-v)Py + ) (,T'v)P;. (8.30)
i=2

For the even-odd bracket of the superalgebra we also need to compute the Lie deriva-

tive of w(t ) with respect to elements of N¢. This yields

Lo ) =y (4T iz018) L v O =y (-3Ti8)
Zp,y()=0 Lxy() =y (30d+T.T-)T1()
Ly = ¢ (ulz4) L7y =y (-1T.T-0)

Lwyp@) =y (5Tnl) .

where we have used (5.31): To exhibit the form of the nullbrane conformal Killing .
superalgebra, it is convenient to write { = {4 +_( —, where {, € KerT',.. To write down
the algebra in a form that is more in line with notation used in the physics literature,
we introduce “fermionic” generators Q,, S, which generate infinitesimal shifts in
the direction of { , and {_, respectively. Note that Q. corresponds to the supersym-
metry generator of the usual nullbrane supersymmetry algebra.

Thus, the (non-trivial) brackets of the nullbrane conformal Killing superalgebra are:

(X, YI=¢ (=0 [Z,Y]=Y
W, Z]=-W [W,X]=Y
[W,Y]=-uP, [M;;, Pe] =685 P;— 611 P
[Mir, Pj] =0 Py [Mis, X1 =3 Py
(M;y, Z] = —M;, [Py, Z} =—-2P
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[Pi, Q] = %T,41S- [Mij, Q] =—3T:;Q4

[Mij,S-] = —4T;S- [Mi+, Q4] = —3T: S-
[X,Q:]=(31d-T1;) Qs X,S-1=1s
[Y, Q4] = ul 7+ S- [Z,Q:1= Qs
[W,Q4]= §T1S- Qr,Qul=T_C'P,

and
[S-,8-) =T, C X +THT,,,C' M,
[Q+,S_1 =T,C Y +T1CT Y + Y I'TC 7 My + Y TIC Py,
i i

where C is the “charge conjugation matrix” used to define the spinor inner product
as (y, ) = @' Cy, notation often favored by physicists. Note that the even part of the

algebra contains a natural iso(8) subalgebra generated by M;;, M;,, P; and P,.

8.5.2 Interpolating solutions -

When the Killing vector also contains rotations, one obtains solutions that interpo-
late between the nullbrane and the supersymmetric fluxbrane solutions described

in [39]. There are two possible cases:
1. ﬁI:O,ﬂZZ—ﬂszﬁ
2. ﬁliﬂZ!ﬁa#O!ﬁl'}'ﬁZ'}'ﬂs:O

The explicit metrics can be found in [39]. The conformal Killing superalgebras of

these solutions are actually subsuperalgebras of the nullbrane superalgebra.
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In case (1) an iso{4) subalgebra remains. The brackets are?

[X,Y]=£(= 0) W, X]=Y
[W,Y]=-uP, [M;j, Py) =6 kP;— 6P,
[Miy, Pj]==8;;Ps (M, X]=-L1P;
[P;, Q4] = 3T iz415- [M;j,Q)=—3T:;Qs
[Mij,5_] = ~4T3;5- (M1, Q4] = 3T, S
[X,Q+1= (31d-T12) Q. (X,5-1=35-
[V, Q4] = ul'z4S- [W,Q4]= 5T 1S

[Q+rQ+] = 1—‘—C_IP+

and.

[S-,8_)=T.C ' X +TT ., C My,

[Qe,S-1=T,C ¢ +IC Y + Y T'T,1C M, + Y Tic!p;,
i i

where index i can now only take values 2,3, 4.
In the case (2) we only have an is0(2) subalgebra: the only possible value of i is 2,

otherwise the form of the algebra remains the same.

8.6 Conformal Killing spinors in HLW massive IIA su-
pergravity |

It has been shown by Howe, Lambert and West [46] that any M-theory background
(M, g, F) car be viewed as a Weyl structure (M, g, F,6), where the Weyl one-form 9 =
dl is exact. The M-theory equations of motion written using the Weyl connection
are then equivalent to the standard ones, and spinors are taken to be sections of
S [%]. This fact has been used in [47, 46, 48] to produce a variant of the Kaluza-Klein

construction we presented in' Section 8.1,

ZNote that this is the algebra in the quotient, so we set £ = 0.
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Lemma 41. Suppose (M, g, F) is an M-theory background that admits a homothety
& (in other words, ;8 = —2m§ for some constant m) which is also supernormal,
ie. £+F = —3m. Then there exists a M-theory background with a Weyl connection

(M, g, F,0 = dl) for some function | for which £:g =0 and % F =0.

Proof. We simply perform a Weyl transformation g — g = e%.g and in addition rescale
the four-form; F— F = &3/ F. Provided that &£(I) = m, the above conditions are then
satisfied. We can always find such an I, for instance by solving the equation (/) = m

in adapted coordinates where ¢ = d;. , a

We can now use the usual Kaluza-Klein procedure and find that (M, E,f, dl) gives
rise to the data (N, h, F», Hy, Hs, ¢, m). The submersion formulas for curvature again
give rise to'10-dimensional equations of motion which are distinct from those of
the IIA theory sincé they now involve rﬁ-dependent terms. These equations define
a theory called the HLW massive 1A supergravity. Note that m is actually a free pa-
rameter since we can send it to any value by rescaling ¢, and if m = 0 we recover the
usual ITA equations of motion.

We call (N, h, F», Hy, Hz, b, m) a homothetic Kaluza-Klein reduction of (M, g, F}. As
before, we will only consider reductions of M-theory bac':kgro unds for which F van-
ishés.

1
Since acting on s 2, PP = P, we immediately have

Proposition 42. Let (M, g) be a vacuum M-theory background with homc.)tl'u»;'t)u,r 50 .
that ¥;g = —2mg and let (N, h, F>,¢p, m) be the corresponding homothetic Kaluza-
Klein reduction. The Penrose operator P on M induces the following Penrose-type

operator on N:
Pxty = Vxy—L1eixF-dvoly v+ 5 X V- meﬁbXer -dvolyy,  (8.31)

We remark that although P agrees fbrmally with (8.10), the fields appearing in the

expression now satisfy different equations of motion.

88



8.7 A HLW massive 1A conformal Killing superalgebra

In this secfion we construct an example of a conformal Killing superalgebra asso-
ciated to a background of HIW massive 1A supergravity as a quotient of eleven-
dimensional Minkowski conformal Killing superalgebra we introduced in Chapter
5, Section 5.5.

We proceed in a fashion similar to {47]. Consider a homothety
{=D+R,

where D = x“d, is the dilation vector field and R = R2x?3, is a rotation. Let y =

%o + x - ¥ be an arbitrary conformal Killing spinor. The action of { on v is given by

1l

Zey D("U)+R(¢)“%dDb'W"ide-w—%w

x-x+(Rx)-y-iRy-iR-x-y-3¥—3x-1

Note that

R-x-y=Rapl®xT .y =x-R-x+4(Rx)- ¥, (8.32)

where we have used the commutation relation
[0, 7€) = 2n¢T? — 214, (8.33)

The x-dependent part and the constant part of the expression must vanish sepa-

rately, so R must satisfy

R-y=-2y

R-y=2yx

Without loss of generality we can take R = 2 Mgy, Half of the conformal Killing spinors

of the 11-dimensional Minkowski space satisfy the above condition. Hence, the
space of ¢-invariant conformal Killing spinors is 32-dimensional. .

For the following computations we prefer to use lightcone coordinates x* = ~\}-§ (x0 £ x%),
where x! is the 10th spacelike direction. This implies that e KerT_and y € KerT',
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so we write a conformal Killing spinor as % ({) = {- + x-{+. In these coordinates
f = D + M_+.
We also want to exhibit the HIW solution itself. The reduction ansatz for the eleven-

dimensional metric g is usually written in the so-called string frame as [47]:
omz—L
g=e?""3) (h+e®dz+ A7), (8.34)

and F> = dA.

We start by writing the flat eleven-dimensional flat metric in the form
g =—(dx")? +(daM? + (dr? + r2dQd) (8.35)

where dﬂg is the metric on the 8-sphere. We choose new coordinates adapted to the

vector field ¢ = D +2 Mg, such that { = @;.

XL = %yz (ezz + 9_2”) ,
xh = %}’2 (822__6-2_}'1),
ro= &Y

In these coordinates, the eleven-dimensional metric becomes
g == [(dz- 1 -20"Ndy, - Y dyH? + 4y§(1 -yhayh?
—(1+AIEYE +40A%dy dy? +dQB .
From the reduction ansatz (8.34) we can then read off the HLW solution:
g=e ' (40D - DAy - a+ I +a(yH dy'dy® + dQF),
Fp=—-4y*dy' ndy?,

¥l

3ol [V

(P:

Note that the metric k has a singularity at y* = 0. Given the form of the adapted
coordinates, at a first glance one coul.d imagine that this is a coordinate singular-
ity, but computation of the Ricci scalar R and the fully contracted Riemann tensor
Rapca R%P°? shows that they both diverge as y* — 0, so it is in fact a genuine curva-

ture singularity.
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We are now ready to calculate the structure of the superconformal algebra aslsoci-
ated to this HLW IIA background. We proceed in a similar fashion as in Section 8.5.
Itisa straightforward calculation to show that the normaliser Norm({) is generated
by M_,,D,M;;, P and K. In fact, this agrees with the centraliser of {. As we set ¢
to zero in the quotient, we can eliminate one of the generators, leaving D = -M_,
in the algebra.

Asbefore, we calculate the Dirac current Vy, 4, associated to two arbitrary ¢-invariant
conformal Killing spinors ¥ ({) = (- + x-{+ and w2 (v) = v~ + x-v;. After some I
matrix algebra and repeated use of the antisymmetry of the spinor inner product
with respect to the Clifford multiplication by a vector field (that is, (1, X -y¥2) =

—(X -y1,vy2)) we obtain

Ve = {{+, Tov Ky + (4, v) - (-, v )] (D+ M_y)
+ (€, T90,) = €4 T | My + € Ty ) P

We can also compute the action of the generators of Norm(¢) on a {-invariant con-

formal Killing spinor v ({-,{+) = {- + x-{, via the spinorial Lie derivative:
$K+W(C—:(+) ZW(Oar+C—) EP_W(C—JC+) :wu—“(+10)
EM”W (C-—;C+) =y (_%rij(—m "%rijf+) EDW(C—;(H =i (—%C—J %c+)
To exhibit the structure of the superalgebra we again introduce fermionic generators

Q_, S, which generate shifts along the spinors { _,{, respectively. In terms of these,

the non-trivial brackets of the algebra are

[P, K =¢(=0) [P_,D]=P_

(K;, Dl = —K [P, Si1=Q_,
[K:,Q-1= S, | [Mi;,Q-] = -1T;;0-
[Mi},5:] = 4TS, [D,Q-1=-1Q-,
[D,S+,1=3S+, [S4,8:1=T_C'K,, -

S4,Q-1=¢+TC™ My, [Q-,Q-1=T,C"'P_,
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where C is the charge conjugation matrix as before.

8.8 Conformal Killing spinors in type IIB supergravity

The spinors in type IIB supergravity [34] are real representations of Spin(1,9) xSL(2,R ).
It is convenient to consider them as sections of the bundle s, ® A, where S, is the
16-dimensional positive chirality representation of Spin(1,9) and A is the standard
representation of SL{2,R). The IIB backgrounds are given by the data (M, g, H),
where H is a self-dual closed 5-form that also satisfies an Einstein-type equation
along with the Lorentzian metric g. The full theory admits other fields, but we are

only interested in this truncated version.

Acting on the sections of § = 5. @ A, the supercovariant connection is
Dx=VX+£XH®],

where J is a complex structure on A. We can consider § as a complexification of 5
and write this as

DX=Vx+ile

Now as in the M-theory case, consider the twistor operator defined using the super-
covariant connection:

Px=Dx+ %X -D,
where D=3 ;e;-D;.
As observed by Leitner [49], P x actually agrees with the geometric Penrose operator
Py dueto a happyaccident of Clifford product identities involving the self-dual five-

form in ten dimensions, provided that only the self-dual 5-form flux is turned on. It

holds that

X-H

—ZL}(H

*(XbAH) = —ixH,

where the forms in these identities are understood to be acting on spinors via the
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Clifford product. Now

Px = Dx+&XD
= Vx+ 45XV +itxH+3X-iH
- = Px+ixH+3X-iH '

= Py,

so Ker P = Ker P. In particular, supergravity Killing spinors are geometric conformal
Killing spinors.

The simplest example of a IIB solution that admits conformal Killing spinors is again
the flat space R 9. Studying the existing classification of Lorentzian manifolds ad-
mitting conformal Killing spinors [12], we can find other examples. Perhaps the
most interesting is the IIB conformally flat pp-wave that has received much atten-
tion recently in the confext of BMN correspondence and the Freund-Rubin solution
AdSs x 8% — in fact, the former is the Penrose limit of the latter [50]. The confor-
mal Killing superalgebras of them both are isomorphic to the Minkowski conformal
Killing superalgebra we described in Chapter 5. ] '

It has been suggested by [49] that this curious identity between geometric and su-
' pergravity Penrose operator's might be useful in finding new supersymmetric back-
grounds of type IIB supergravity, perhaps among the 10-dimensional pseudo-Hermitian

Einstein spaces described in [51].
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Chapter 9

Killing spmors, discrete quotlents and
spin structures

The relationship between the choice of the spin structure of a Lorentzian symmetric
space and the dimension of the space of its conformal Killing spinors was analysed
in detail in (14]. In the case of non-conformally flat symmetric spaces, the conformal
~ Killing spinors actually agree with parallel spinors, corresponding to supergravity
Killing spinors when F = 0. It is a natural question to ask whether the dimension of
KerD also depends on the choice of spin structure in the case of nonzero four-form
flux.

The authors of [52] obsefved that it is possible to construct examples of non-simply
connected isometric M-theoﬁ backgrounds that have the same geometry and four-
form F but admit different fractions of supersymmetry depending on the choice of
the spin structure. Therefore, it would seem necessary to include the choice of spin
structure in the data defining a M-theory background as well.

In this chapter .we illustrate this point further by considering backgfounds’ that are
Lorentzian symmetric spaces (Cahen-Wallach spaces), as opposed to the Freund-
Rubin solutions involving spherical space forms that were treated in [52]. We will
show that at least for known symmetric M-‘theofy backgrounds with with more than
16 Killing spinors the choice of spin structure that preserves any supersymmetry
appears to be unique. In particﬂar, this includes symmetric discrete quotients of

M-theory pp-wave solutions.
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Orbifolds of 11-dimensional pp-wave solutions have also been considered previ-

ously in e. g. [53], but only for a very particular solution with 26 supersymmetries.

9.1 Discrete quotients and spin structures

Let (M, g) be a simply connected r-dimensional Lorentzian spin manifold. We de-
note its isometry group by I{M, g). Suppose D < I{M, g) is a discrete, orientation-
preserving subgroup, and let eg, B=0...n—1 be a- pseudo-orthonormal frame on
M. Then forany y € D at a point x € M, dy, € SO(1, n— 1) corresponds to the linear
map that transforms e4(x) to e4 (y(x))). There are now two possible lifts of dy; to
Spin(1, n — 1) since the covering map Spin(l,n ~1) — SO(1, n — 1) is two-to-one: we

denote these by +I'(x).

Now let € (D) be the set of all left actions of D on M x Spin(1, n — 1) satisfying

ey) (x,a) = (y(x),e(y,x)-a) , 9.1)

where e(y, x) = £I'(x).
Elements of € (D) correspond to spin structures on N = M/D. The spinor bundle

corresponding to € € € (D) is given by
Se=(Mx Ay p1)/e, 9.2)

Here A ,_; is the spinor module and e(y) {x,¥(x)) = (Y(x),e(y, x) - w(x)). It follows
that the spinor fields ¥ on N are the spinor fields on M that satisfy

v {yx) =ely, ) w(x) . - 93)

In particular, when M is a M-theory background and D also preserves the four-form

F, the Killing spinors on N = M/ D are the e-invariant Killing spinors of M.

9.2 Hpp-waves in M-theory

The M-theory Hpp-waves are supersymmetric solutions of eleven-dimensional su-
pergravity equipped with the metric of a Lorentzian symmetric space of the Cahen-

Wallach type [18} and a null homogeneous four-form. In the light-cone coordinates
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x%,x%,i =1...9 the Cahen-Wallach metric can be written as

g=2dx"dx"+Y Ayx'x) (dx P+ Z [d,x")z | 9.4)

i,j i

where A;; is a real 9 x 9 symmetric matrix. If A4;; is nondegenerate, (M, g) is inde-
composable; otherwise it decomposes to a product of a lower-dimensional inde-
composable CW space and an Euclidean space. If 4;; is zero, (9.4)'is simply the
metric on flat space. . '
The moduli space of indecomposable CW metrics agrees with the space of unordered
eigenvalues of A;; up to a positive scale: this space is diffeomorphic to $8/Zg, where
%y is the permutation group of nine objects(18]. In particular, a positive rescaling of
Aj;; can always be absorbed by a coordinate transformation. It is, of course, also pos-
sible to exhibit (M, g) as a symmetric space by constructing its transvection group
G4 for which (9.4) is the invariant metric. We refer the reader to [18] for details.
A natural choice of F is a four-form preserved by the symmetries of the CW metric
that also satisfies the field equations. As explained e.g. in [54, 18], the natural choice
is a parallel form '

F=dx An®,

where @ is a 3-form with constant coefficients on R . The equations of motion (6.2)
are satisfied iff Tr A= — 1|02,

We will make use of a global pseudo-orthonormal frame:

ey = a+r
e, = 0
e_. = 6_—Z%Aijxixf6+

i,j

et = dxt+ %A,-jx'xf dx”
e = dx”
e = dx'.
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For our purposes, there is no need to distinguish between coordinate and frame
indices.

The only nonzero connection forms for the metric (9.4) are
w* :A"jxfdx‘. (9.5)

To solve the SCKS equation for the Hpp-waves, we will also need the explicit form of
their parallel spinors that satisfy the integrability conditions (6.15). Observing that

Vax = 0implies that

0=a+x aix’

Il

d_x —%x"A,-jl"ﬁx,

and keeping in mind that since F -y = 0, we must have y € KerI', this implies that
1 is a constant spinor in the kernel of I'.. We also require that © -y = 0. It is clear
that there are many possible choices of © for which this condition is satisfied. For
example, we could choose 8 = dx'?® - dx3*9, for which the integrability condition
would be satisfied if

Ciosay =—%x,

- a condition which is generally satisfied by hélf of the spinors, since I'1334 squares to
the identity. In summary, the possible y lie in Ker['y nKer ©.

Before tackling the SCKS equation, we also determine the amount of supersymme-
try preserved by the Hpp-wave solutions. As previously mentioned, supergravity

Killing spinors are parallel sections of the supercovariant connection
Dx=Vx+éle+%Xb/\F:=Vx+Qx,
It is convenient to rewrite ( involving Clifford products as

Qx=3iF-X-%LX-F. (9.6)
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Thus, we find that for the Hpp-waves,

Q+ = 0,
Q. = l0+35dx"Adx O,
Q; = —~ﬁ1‘,~-dx‘/\®+%dx“/\®-r‘,-'.

For convenience, we denote the fraction of supersymmetry preserved by v= % dimKerD.
For the generic Hpp solution with arbitrary A; j and © one finds ([18]) that the solu-

tions to the Killing spinor equation

take the form
ews) =exp( %Ol ¥y, O 9.8)

where v, € Ker['; is a constant spinor. In other words, for the generic Hpp solution,

DO

V=

There is, however, a special point in the moduli space with

© = pdx'adx*adx®, (9.9)
{—%pzé,-j i,j=123

Ajj .
—3%#25'” ,j=4...9

(9.10)

which preserves all supersymmetry. The explicit expression for the Killing spinors

of this background was given in [18]:

'hl‘:

e;‘v+,w_(x)=(cos(z ]Id sm( )I]uu,

+(cos(1—pz ]Id—sin(lﬂz—x_]l’)w_
__p(;'xf‘——;xl")(sm(#z )Id-—cos(%x']lr)l}w_, (9.11)

where I =T33, [?=Id and v, € Ker[l'; are arbitrary constant spinors.
In addition to the maximally supersymmetric Hpp-solution and the lgeneric %-BPS
solution with arbitrary A, there are a number of other interesting loci in the Hpp-

wave moduli space. In [55] Gauntlett and Hull constructed Hpp-solutions admit-

u
16°

ting “exotic” values of v = =

. % These solutions possess Killing spinors that
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| lie in KérI“..(often referred to as supernumerary Killing spinors) in addition to the
“generic” ones given in (9.8). As we will see, in these cases the 3-form © takes a very
particular form.
We briefly outline how one obtains the form of the Killing spinors in these cases.

Since ©2;2; =0 for all i, j, a Killing spinor ¢ can always be written in the form
Eyoy ()= [Id +fo,~] @, 9.12)

where Q; =~ (T;© +30I';) 'y and
Cpi=exp(-gxO)y,,
(9.13)
p-=exp(-5xO)y_.
As in the generic case, ¥ is an arbitrary constant spimor annihilated by I'.. How-

ever, now the y_ € Ker_ are not arbitrary. Since (; always involves I';, substitut-
ing (9.12) into the Killing spinor equation (9.7) imposes no extra conditions on ¢.
But further analysis reveals that (9.7) can be split into independent x~ - and xt -
dependent parts, the former of which gives the form of ¢_ and the latter can be
written as

—144§Ajkrk+xfr,- p-=0, (9.14)
for each j, where X; = I';0T; + 30. Finding solutions with supernumerary Killing
spinors amounts to finding solutions to this equation.
Let us assume that A has been brought to a diagonal form via an orthogonal trans-
formation so that A = diag(g, gz...t9), i; € R. Then in order to find solutions
to equation (9.14), we must ensure that the action of XJ? on spinors is diagonalis-
able. Since X; involves the 3-form ©, the natural next step is to find a diagonalisable
ansatz for ©.

To proceed, we will utilise the following Lemma.
Lemma 43. The Lie algebra of SO(16) is isomorphic to AR ® @ A’R® ~s0(9) @ A’R®.

Sketch of proof. Representations of C#(9) are real and 16-dimensional, and thus there
exists a map
¢: C£@) — End® %)
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There is a C#(9)-invariant inner product with respect to which we can break up
End(R '%) into skew-symmetric and symmetric endomorphisms(21]. The space of
skew-symmetric endomorphisms of R 16 is nétura]ly isomorphic to s0(16).

As a vector space, C£(9) = A*R?, but since the volume form acts as +1d, c(A”R ") =

c(A®~PR9), This means that as endomorphisms of R 16,
Ce9)=RoR0aA’RY® AR 0 ARY.

It remains to be determined which of these corﬁponents give rise to skew-symmetric
endomorphisms with respect to the C#(9)-invariant inner product. This can be
done e.g. by utilising an explicit matrix representation of C#(9). We find that A%R%e
A®R? are skew under the inner product, giving s0(16) = A2R 9@ A3RY, i.e. the desired

~ result. O

In particular, given a Cartan subalgebra ¢ c s0(16) (generated by skew-diagonal ma-
trices with real skew eigenvalues), there is a decomposition ¢ = ¢, ® c3, where ¢; ©
50(9) and c3 © A3R 9. Since the 50(16) has rank 8 and 50(9) has rank 4, we can ésso-
ciate n < 4 2-form generators and 8—.n 3-form generators to every Cartan subalgebra
¢ via the isomorphism.

Now obviously

[c2,c2] < ¢,

[c2,c3] © 3,

since elements of ¢, act as infinitesimal SO(9)-rotations. Note that this doesn't nec-
essarily imply that c3 is commutative.

If we further assume that cs is also a Cartan subalgebra (so that [c3, c3] = 0 and hence
[c,C3] = 0 as well), a direct calculation [56] shows that only cases that occur are n=1
and n = 3, and a convenient choices for 2—fofm and 3-form generators in terms of

gamma matrix monomials are

[12, I'zq, I'sg, I'7g

I'129, T'349, I'seg, I'789
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in the n=1 case and

I'7g

T'123, T'145, T167, T246, T257: I'347, Tass

in the n =3 case.
These two orbit types give rise to 3-form ansétze whose action on spinors can be

diagonalised. The ansatz for @ is then
0= a1dx'® + a,dx®* + az3dx®® + aydx™ (9.15)
or
O = B1d B + Bodx™® + B3d xS + Bydx?*® + Bsdx® + fed VT + f7dx*°, (9.16)

where the a’s and B's are real parameters. As pointed out in [57], if the a's are set to
be equal, @ is proportional to dx® Aw, where w is the Kéhler form on R ®. Similarly, if
the B's agree in the second ansatz, ® is proportional to the G;-invariant associative
3-form on R ’. In both cases each of the three-form terms I'; ;,;, for iy,4;,i3 € {1...9} |
is a real structure on the spinor bundle, so when diagonalised they act as £1d. The

skew eigenvalues of ® in the four-parameter case are A4, @ =1...8, where

A = a1—ax+az3—ay
/1.2 = A1+a—Qa3— a4
13 = @1 +qA2+a3— A4
Ay = —a1—Qx—az—aq
As = 7—a1+a2+a3+a4
Ag = a1—az—aszt+ay
/17 = a)1—aztazt+ay
Ag = —a1+azx—asz+ay

Similarly the skew eigenvalues in the seven-parameter case are given by A a=
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1...8, where

A = —Pr-Pr—Ps~Pa+Ps+Pe+Pr

Ay = —Pi+Pa+P3+ By Ps+Ps+ P

Ay = Pr+Pa—Ps-Ba=Ps—Ps+fr

. Ay = Bi—P2+Pa+Ps+Ps—Pe+ b7

My = Bi-Po+Ba—Pa—Ps+Po—Pr

As = Bi+Bz2—Pa+PBa+Ps+Ps—Pr

A7 = Bi+fa+Pa—Pa+Ps—Ps—Br

Ag = —P1—P2-Pa+Pa—Ps— P~ 7
Note that by choosing suitable a's or 8's, some of the eigenvalues can be made to
vanish, i.e. © can have a nontrivial kernel. Eqﬁation (9.8) then implies that the sub-
space of Killing spinors that lies in Ker © will be independent of x~.

We can now work out the possible A that can occur in these ansitze, using the pro-

cedure explained in [57). In the 4-parameter case, Xq =40 acting on y—, and thus
ps =342 9.17)

for some choice of A,. That is, a priori we can choose ¢_ to be any eigenspinor of
0, and this choice in turn determines the rest of the u;. For example, consider the
direction { = 1. To determine y,, we need to solve the equation (X —x1)T - = 0.

Substituting )1{1 =T,0I" +30, we find that
Aq@-+3IM0OT - —x190-=0. (9.18)

Looking at the form of @, it is easy to see that the eigenvalues of T10T"; obtained
from those of ©® by reversing the signs of a,, a3 and a4 (since I'y anticommutes
with these terms). Applying this to A, is sufficient to solve the previous equation.
Following this procedure we can solve the rest of the ;. A similar argument works

in the 7-parameter case: now Xg = Xy = 26. The possible metrics that can occur can

102



-

be found in Appendix A. Note that in the four-parameter case 2 = pi2, pi = p2, p? =
12, H% = 12 and in the seven-parameter case p2 = 122,

The degeneracy of eigenspinors of © satisfying (9.14) gives the dimension of super-
numerary Killing spinors. In the generic case where the coefficients of @ are arbi-
trary there are 2 supernumerary Killing spinors, but there can be more if the coeffi-
cients are chosen so that some of the A;,’s or A};'s agree. The conditions for degener-
acy are worked out in detail in [55].

In both cases the supernumerary Killing spinors are independent of x~ if and only
if g = 0. Furthermore, if one or more of the y; vanish, the Killing spinors will be
independent of the corresponding transverse coordinates x'. For these solutions
the metric will be decomposable: the product of a lower-dimensional pp-wave with

an Euclidean space.

9.3 Symmetric discrete quotiénts of Hpp-waves

Considering all possible quotients of pr:solutions by discrete subgroups of I(M, g, F}
I{M, g) (the subgroup of the isbmetry group of M, g that also preserves the four-
form F) is somewhat intractable since we have no classification of the crystallo-
graphic subgroups of Hpp-wave isometry groups at hand. Therefore, we will restrict
ourselves to quotients that are also symmetric. It is known (58] that a quotient of a
symmetric space M = G/ H (where G is a Lie group and H is the stabiliser subgroﬁp
of a point) by a discrete subgroup D < I{M, g) is also symmetric if and only if D lies
in the centraliser of I{M, g) inside the transvection group G. In other words, we want

to study quotients by discrete subgroups D c Z, where
Z=[xelIM,g)|xh=hxVheG]. (9.19)

The isometries and conformal symmetries of Cahen-Wallach spaces were investi-
gated by Cahen and Kerbrat in [59]. They also give expressions for the centralisers
that can occur.

There are two possibilities:
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Case 1. One of the eigenvalues y; > 0 for some i, or Ef ¢ Q for some (i, j). Then
- Z=R =[ya|ya(x+,x_,xi]=(x++a,x_,xf 1, (9.20)
where a €R.

Case 2. All the eigenvalues y; are negative and ﬁ;‘ € Q for all (i, j). We write y; = —k?

for all i. Then
Z=Wam!|Yam (x+,x_,xi) = (x+ +a,x +p5, (—l)mfxi)] , 9.21)
where m; € Z and f= "X forall i.

The ratio of m; and k; is the same for all 7, and for any (i, j) we can write

_ kimy

mi="g 9.22)

The values of all m; are determined by any one of them, so in fact Z = Z ®R in this
case. Also note that for N to be orientable, ):?zl m; must be even: otherwise the
volume form dvol = dx* A dx~ A dx! A--- A dx? would not be left invariant.
Qualitatively speaking, in all cases quotienting by the action of Z consists of peri-
odic identifications of the light-cone coordinates and Z ;-orbifoldings of the trans-
verse coordinates. We observe that all the pp-wave soiut_ions with supernumerary
supersymmetries are examples of Case 2, provided that the ratios of the coefficients |
appeéring in © are also rational.

We are also interested in spinors (in particular Killing spinors) that are left invari-
ant by the quotient. In Case 2, a discrete subgroup Dy ,; < Z is generated by the

elements yq,0 and yg, 5. Their derivatives acting on the frame bundle are

dyao = i«

10 0 0 0 0
01 0 0 0 0
: 00 (<D™ 0 0 0
d¥ok = |00 0 (D™ o0 0
0 0 0 :
00 0 0 0 (-pms
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Now suppose that mg,ms, ..., ms, are the odd m;. The fact that we want Dy, to
preserve orientation means that r is even, as we mentioned previously. Then the
quotient N = M/Dg m has four possible spin structures, corresponding to the two
possible lifts of dyom: Com = £s5..5, € Spin(9) and T'q o = +1d [14]. Using these
expressions and equation (9.3}, we cz;n then study the existence of invariant spinors
explicitly.

It is easy to see that quotients of solutions for which Case 1 applies are rather trivial:
there are only two possible spin structures and since generic Killing spinors do not
depend on x*, only the trivial lift of y, ¢ will preserve any (and in fact all) Killing
spinors. Therefore, in the sequel we will focus on the solutions that admit supernu-

merary Killing spinors.
9.3.1 The maximally supersymmetric case

To begin with a simple example before studying the generaly supernumerary case
in detail, let us analyse the symmetric discrete quotients of the maximally super-
symmetric solution (9.9) and see which choices of spin structure preserve Killing
spinors. Now 4;; is diagonal and all eigenvalues of are negative,so Case 2 above ap-
plies. To obtain a quotient isometric to (M, g, F) as a supergravity sblution, we want
to focus on a subgroup Zr < Z that also preserves the four-form F. Looking at the
form of F in (9.9}, we observe that an element ya; m € Z will preserve F if and only if
none of (my, my, m3) are odd or if two of them are: yq,, acts triviallyon dx™. Now
kiz{%,u,z:= 1...3
sH,1=4...9
But since the k; are equal for i = 1...3, equation (9.22) implies that m, = my = m3.

Therefore, for g, to preserve F, m; = mp = mg := 2k for some k € Z. Equation

(9.22) also implies that my =... = mg := k. We conclude that
Zo=Yar € Z | Yarlxt,x™,x') = (x+ +a,x + ﬁ,xl’z’s,(—l)kx4""'9)] , (9.23)
whereﬁ=%"andaeR.
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A discrete subgroup D, x of Zr is generated by elements y, g and yp,;. Looking at
the condition (9.3), it is again obvious that if dy. lifts to —Id, no spinors will be
left invariant. But provided that I'; o = Id, there are two possible spin structures
depending on the choice of sign for +Ip1.

The derivative of vy, lifts to the spinor bundle as £T' g. Using the familiar trigono-

metric identities cos (3 —8) = —sinf and sin (5 — ) = cos 8, we obtain

ey, (Yon () =(-cos(§x7)1d+ sin(£x7) 1)y
+(cos (§x7) I +sin(4x7)1d) y_

+%,u():x"r,~+% x"r,-)(cos(gx-)1d+sin(§x‘)1]r+w_, (9.24)
=4

i=3

Comparing this expression with (9.8) and noting that Iy ) anticommutes with I'; for

i =4...9, we find that we can write this as

Sy .y (To,l(x)) =E_fy, ny_(X) .
Thus, the action of y(g ) leaves ¢ invariant if
Togy+=-Iy,,
Ty =1y,

Recall that we have chosen the spinor module for which the action of the centre of

the Clifford algebra (and thus the volume element) agrees with - Id. Then
T_iT1 9%s =V, . - (9.25)

implies that (since ', =TT, +1d)

Ly ove=Ty,.

Correspondingly, 1"4;,_91;}_ = —Iy_. Thus, equaﬁon (9.24) is satisfied if and only if
[p,1 = —T4, 9. We can therefore conclude that for all symmetric discrete quotients of
the maximally supersymmetric Hpp-wave, out of the four possible choices of spin

structure there is precisely one that preserves any (and indeed, all) supersymmetry.
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9.3.2 The four*parameter case

Going through all possible quotients of supernumerary pp-wave solutions listed in
Appendix A using the explicit form of the Killing spinors would be somewhat te-
dious, so iﬁstead we use a method that can be implemented more easily using a
computer program (in our case, a Mathematica notebook).

To study the moduli space of possible quotients, we could take the coefficients of ©
as the data, allow them to vary and examine the consequences, as in [55]. However,
for computational purposes it is actually more useful to take the 9-tuple (m,,..., mg)
and the eigenvalue A4, (where A, is the eigenvalue chosen to appear in equation
(9.17), that is, g = 342 ) as the data defining a quotient. Looking at the different
metrics appearing in Table A, we find that it is always possible to express the a’s
— and thus the eigenvalues A, — in terms of k; (recall that the k; are related to
the eigenvalues of the matrix A by y; = —k?). In othef words, we can write 1, =
2, cik; for each 4,4 and_for some coefficients ¢;. Given (m;,..., mg), we can use
equation (9.22) to determine the k; and hence the coefficients a;,...,a4. Knowing
my ..., mg, A4, for the quotient is thus sufficient to determine the original solution.
Restricting to Zr, the subgroup of Z that also preserves the four-form F, we observe
that m9 must always be even. Using the equation (9.22) and the remarks in section
9.2, we also know that m; = ma, ms = my, ms = mg and mz; = my. To preserve
orientation, ¥, m; has to be even as well, but in this éase this imposes no further
restrictions, since there is always an even number of odd m;.

It is convenient to express the Killing spinors using the eigenspinors of © as a basis.
Note that acting on the A,-eigenspace, J;, = i@ is a real structure. Thus, we can

write the exponentials appearing in y. explicitly as

=Y (cosh (22 + sinh (225 )y, (1a) (9.26)
a=1
x-= cosh‘(l—“{’zi] +sinh()'“f;_))1,y+(ﬂ,ao) (9.27)

where ©- Wi (fla) = iﬂ'aw:t (/la)
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To determine the fraction of supersymmetry preserved by a symmetric discrete quo-
tient, we need to work out how yom and Iy, act on xs. Recall that Yom(x™) =
X"+ 'f—f";r for some i{. Computing the action of this shift on y. is straightforward.
As mentioned above, we can express the a’s — and thus the eigenvalues A, — in

terms of k;. Thus,
. .kl.
Aagr = ;c,-—’%-— | (9.28)
= Y eam, (9.29)
i .

so under the action of the isometry, A;x” — A,x~ + X, ¢;m;. Using this obser-
vation and usual trigonometric identities, we can work out how the trigonometric
functions in (9.26) transform under yg, .
We also need to know how I », acts on the eigenspinors. Since were ‘taking the m;
to be our data, it is not hard to enumerate the possibilities. In the four-parameter
case, each of m;, m3, my, ms and m, can be even or odd.
If we write the 3-form in this ansatz as © = a1 +ar b + as I3 + ay Iy, we can express
any A as

A=erNar +e2(Maz+es(Mas +es(Day, (9.30)
where Ipy . (A) = iep(Mw.(A), p= ’1...4 and €,(A) = £1. It is not hard to see that
any I'g m can be written as a product of the I p’s or identified with such a product via
the identity 'y 9. = +1 that relates the Clifford action of a form on R? to that of

its dual. We can thus always write

Tom=€e@IpIp,- .. Ip,
actingon v, and
Tom=—€@IpIp, ... I,
actingony_, where1 < g <4 ande(g) = -1if g=1 and 1 otherwise.
Since the action of each of the .I p on ¥ (1) is fixed by equation (9.30), thé action of

Ty, m on ¥+ (A) is given by

To,m ¥+ (A) = Felqdep, €p, ...epqif’w+ A,
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With these observations, the problem becomes essentially algorithmic and can be
easily implemented in a symbolic computation environment. We have written a
Mathematica notebook! that goes through the elements y,, m that generate discrete
subgroups D and computes their action on the Killing spinors. It turns out that for
every quotient, the result is similar to what occurs in the maximally supersymmetric
case: out of the four possible spin structures, there is 6nly one that preserves any of

the original Killing spinors.
9.3.3 The seven-parameter case

The method we described in the previous section also works in the seven-parameter
case, but now we must take care to ensure that the discrete subgroups D also pre-
serve the four-form F. The most convenient way to express this condition is to re-
quire that for each term I';;; appearing in ©, m; + m; + m; must be even. In other

words, we have the equations

m+ne+ns = 0
m+mg+ms = 0
m+mg+m; = 0
me+myg+mg = 0
np+ms+m; = 0
my+mg+my; = 0
nmy+ms+mg = 0.

modulo 2. This system of equations is not hard to'solve over z;, and thus we find

that the possible forms that I'g ,, can take are:

+01247, £T 1256, £T 1346,

01357, D345, £T 2367, T 4567 .

! Available upon request from the authar,
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Again, we note that all these terms can be written ﬁs products of terms in ©, and
thus the method described in the previous section works, provided that we take the
above constraints into account. |

Examining all the possible quotients yields the same result as in the four-parameter
case: for all possible quotients, there is only one choice of spin structure that pre-
serves any {and indeed all) of the supersymmetry of the original background. Fur-

thermore, we do not obtain any new fractions of supersymmetry in either case.

9.4 A conjecture

-

The results of the previous section lead to the curious observation that all symmet-
ric quotients of known symmetric M-theory backgrounds with more than 16 Killing
spinors posseés a unique spin structure that preserves supersymmetry - in contrast
to the supersymmetric space forms described in [52]. The only such backgrounds
we haven't yet considered are Freund-Rubin -type solutions of the form AdS x5/z 5,
since the only symmetric spherical space form is the projective space[60], and it
is easy to see that there is no ambiguity about the choice of spin structure in this
case — this situation only arises if | D| = 4, where D is the discrete group used in the

quotient[52]. Thus we arrive ata

Conjecture. All symmetric quotients of symmetric M-theory backgrounds for which
V> % possess a unique spin structure which preserves all of the original supersym-

metry.

We now show that the requirement v > % is in fact necessary.
Provided that we drop the requirement of supernumei‘ary Killing spinors, it is not
hard to exhibit examples of symmetric quotients of Hpp-waves that admit more

than one spin structure preserving some Killing spinors. For example, consider a
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solution of the form

® = p(dx'?®+dx*") (9.31)
| . ;
—%;551', ij=1,..4
Ajj = {406, i,j=5...8 (9.32)
2
- i=j=9.

The solution is obtained by taking a solution preserving 24 supersymmetries given
by taking a) = a3, a3 = a4 =0 in the four-parameter case and permuting the values
of the k;: equation (9.14) is no longer satisfied, and thus this solution only admits 16

supersymmetries.

Let us analyse the centraliser of the isometry group. Now k1 = k> = k3 = kg = %,
ks=...=kg= fé and kg = %‘i Equation (9.22) then implies that m; = ... = my4 and
ms = ... = myg = m. Moreover, m, = 2ms and mg = 4ms: in other words, my,...my

and mg will always be even, and since they correspond to the transverse directions
that appear in the form of ©, all elements of Z will preserve F as well. Thus, Z is of

the form
Z=lyax € Z | varxt, x7,x) = (o +a,x” + B, xV23 (- 1)Fx58 5] (9.33)

Again, Z is generated by ya, and yo,1. These elements lifi to the spinor bundle as
 Tap = +1d and T, = +T5678. The Killing spinors are of the form given in equation
(9.13). We could, of course, use the method described in the previous section and
decompose the spinorial parameter ., into eigenspinors of ® and work out pre-

cisely how Iy ; acts on them, but it is sufficient to observe that (9.3) becomes

ey, (Y0,1(0) = erypy. (%) .

For this equation tb be satisfied we must have Tsg7g1 . = £T1234% +. In other words,
.+ mustlie in the +-eigenspaces of T';2_g, depending on which lift of g, we choose.
Half of the v, satisfy this additional condition; I';>_s commutes with X7, so de-
rﬁanding that its eigenspinors belong to the t-eigenspace of I'jz_g is an indepen-
dent constraint.
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We conclude that out of the four possible spin structures on the quotient, two admit
no Killing spinors and two preserve 8 of the original sixteen supersymmetries, thus

showing that the inequality in our conjecture must be sharp.
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Chapter 10

Conclusions

Heitén kirjan luotani

Ennen kuin halu antautua

Valoa nopeamman matkustamisen
Pohdiskelemiseen kokopdiviisesti
Kéy ylitsepdédsemdttémiksi

I cast the book away

Before the desire to be consumed
By thoughts

Of faster than light travel
Becomes unbearable

" —A. W Yrjind, Tesserakti

In this thesis we have explored a natural conformal invariant associated to a semi-‘
Riemannian spin manifold: the conformal Killing Superalgebra. We constructed this
object from first principles in a manifestly Weyl-invariant way and were naturally led
to introduce a spinorial Lie derivative. However, wé were forced to conclude that the
resulting object is not in general a Lie superalgebra.

We have also seen that it is -possible to generalise the concept of conformal Killing
spinors to eleven-dimensional supergravity and other supergravity theories. We
have also singled out a subspace of conformal Killing vectors of supergravity back-
grounds — the supernormal conformal Killing vectors — that can be used alongside
the conformal Killing spinors to construct a supergravity conformal Killing superal-
gebra. We showed that M-theory backgrounds that admit a supergravity conformal

Killing spinor distinct from Killing spinors and geometric conformal Killing spinors

113



mﬁst be qf a very particular type: the metric must be one of the Bryant metrics and
the four-form must satisfy a strong integrability condition. We have also exhausted
oné possible class of examples, namely the supersymmetric Hpp-wave solutions of
M-theory. Nevertheless, we were able to find examples of supergravity conformal
Killing superalgebras in type IIA and the HLIW massive IIA supergravities, via Kaluza-
Klein reduction and homothetic Kaluza-Klein reduction, respectively.

Finally — deviating slightly from the main line of development — we saw that as in
the geometric conformal Killing spinor case, there is a relationship between tlile di-
mension of the space of Killing spinors of a non-simply connected M-theory back-
ground and its spin structure. In particular, we examined the symmetric di_sprete
quotients of all the known symmetric M-theory backgrounds with more than 16
Killing si)inors. In all cases, we found that there is a unique spin structure that pre-
serves all of the original supe;symrnetry.

All the three threads in this thesis provide ample material for future work. For exam-
ple, it would be interesting to study the interplay between spin structure, symmetry
anda supersymmetry and find a formal proof of the conjecture presented in section
9.4. Failing that, as we mentioned in section 9.2, the known Hpp-wave solutions
~ with supernumerary supersymmetries are very special and a more carefui study of
the moduli space 6f these solutions might reveal loci for which the matrix A is not
diagonal but which still admit more than 16 Ki]ling spinors. 1t would be ir_ltéresting
to. see if these solutions could provide counterexamples to Conjectlire 9.4.

While we have met our primary goal, we appear to have failed to provide Nahm's su-
perconformal algebras with. a geometric realisation. The algebras on Nahm's list [2]
certainly are Lie superalgebras, but in general conformal Killing superalgebras are
not. This is somewhat puzzling since in analogue with the Killing supersymmetry
algebra case (as mentioned in the introduction), one would expect at least some of
Nahm’s algebras to have a geometric orgin.

We now make a few speculative remarks to explain why this failure occurs. Namely,

some of the superconfdr{nal algebras appear to have a component which has no di-
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rect geometric analogue, namely the so-called R-symmetry. The R-symmetry gener-
ators commute with the even part of the algebra but act nontrivially on the odd part.
R-symmetry does not seem to arise naturally in the context of conformal Killing su-
peralgebras, and it is likely that it is this fact that is responsible for the failure of the
odd-odd-odd Jacobi identity (5.18) to vanish.

An example that occurs in the context of so-called AdS/CFT duality {61] provides
some hints as to how one might hope to remedy the situation. It is widely believed
that type IIB supergravity on the Freund-Rubin background AdSs x §° is dual to a
conformal field theory that admits a superconformal symmetry algebra living on
the conformal boundary of AdS; — that is, R3 x S!. In the IIB setting, the super-
symmetries of the theory correspond to supergravity Killing spinors on AdSs x S°.
In the Freund-Rubin ansatz, these are actually tensor products of geometric Killing
spinors on AdSs and S° [61, 62]. The generators of the odd part of the field theory su-
perconformal algebra correspond to the conformal Killing spinors of the boundary,
which are geometric Killing spinors from the AdSs point of view. The natural action
of s0(6) (the isometry algebra of S% on the S° part of the IIB Killing spinors then
induces the R-symmetry in the four-dimensional CFT. Obviously, the so(6)-action
commutes with the action of isometries of AdSs, the latter generating the conformal
symmetries of the field theory superalgebra.

Motivated by this example, one might imagine making a conformal Killing super-
algebra into a Lie superalgebra by adding a central extension to the even part and
tensoring the odd part with the (bundle of ) appropriate representations. Consider
a superalgebra h = h; ® b which is not a Lie superalgebra but satisfies all Jacobi

identities apart from the odd-odd-odd one: that is, we have a nonzero map
3:8°m — by (10.1)

defined by the fourth Jacobi identity. Now let g = gy @ g1, where gy = by x & and
g1 = b1 ® V, where V is a £;-module and [h, £} = 0 and furthermore now the Jacobi
map J : S3g; — g1 defined by the fourth Jacobi identity vanishes so that g is a Lie
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supéralgebra. In this construction, &, plays the role of R-s.ymmetry. Unfortunately,
given the above assumptions for ), there does not appear to be a general recipe for
carrying out this construction as ¢y and V have to be put in by hand.

We note that there is a geometric formalism in which one extends M to a superman-
ifold by introducing fermionic coordinates [63]. It is then possible [64, 65] to realise
some of Nahm's superconformal algebras directly as algebras of superisometries on
the superspace: the R-symmetries then correspond to rotations of the fermionic co-
ordinates. However, introducing supermanifold formalism and associated machin-
ery is beyond the scope of the present treatment.

In spite of the R-symmetry problem, we have presented a variety of conformal Killing
superalgebras in this thesis with the hope that they could perhaps be extended to Lie

superalgebras using the procedure outlined above.
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Appendix A

Metrics of pp-waves with
supernumerary supersymmetries

T 123



Hs = H9y

pi i=1...7

— L (~P1-P2—Ps—Pa+ Ps+ Pe+ )7 | 1

L(-2B1—2P2—2Ps+Ps— Ps— Ps— Pr)°
pz———( 281+ Ba+ B3 —2Ba+2Ps— Po— ﬁ?)z
Ps——— —2B1+ Pa+ B3+ Pa— Ps+ 206 +267)°
,u4———(ﬁ1 282+ B3 —2Ps— Ps+2Ps— B7)?
fis =~ (B1 — 22 + B3 + Pa+ 25— B + 27)°
,us——“-(ﬁ1+ﬁ2 2P3—-2B4— Ps— ﬁ6+2ﬁ7)2
,117— 36(ﬁ1+ﬁ2 2B3+ Pa+ 25+ 2P — Br)*

—(=B1+ P2+ B3+ Pa—Ps+Pe+P7)° |

36 (—2B1+2B2+2P3 — Pa+Ps— Po - ﬁ'i)z
.Uz— 5 (—2P1— B2 — a+2B4—2B5— Bs— )’
pt3 = —a= (=21 — o — P3 — Pa + Ps + 2P +2f7)°
Mg = ——(ﬁl +2f2—B3+2Pa+ Ps+206— ﬁ?)z
,Lts——-—(ﬁ1+2ﬁz Bs— Ba—2P5— Pe +2P7)°
Hs———(ﬁl B2 +2P3+2Ps+ s — Pe+267)°
#7— = (B1— Ba+2B3 = Pu — 285+ 2P6 — B7)?

—3c(B1+ B2 — B3— Bs— Ps ~ Bs + f7)*

(2ﬁ1+2l32 2B3+ s+ Bs + Bs — P7)°
Pz— = (2P1 — P2+ B3~ 2Bs—2Ps + fs — f7)°
Pa'—*— (261 — B2+ B3+ Pa+ Bs — 2Pe + 27)°
,U4———( B1+2P2+ B3 —2Ps+ PBs—2Ps— P7)°
{5 = — 2= (— 1+ 2P2 + Pa + Ps — 2P5 + B + 27)°
fte = —55 (= P1— B2 —2P3 - 2P+ s + Ps +2f7)°
#7———( B1—B2—-2Ps+Pa—2Ps—2Ps— 7)°

—315(131—132+ﬁ3+ﬁ4+ﬁ5—ﬁ6+ﬁ7)2

=73 =(2B1-22+2f3— Ps— Ps + B — B7)°
.Uz = —$ (2B1 + B2 — B3 + 24 + 2Bs5 + B — P7)°
fi3 = —=(2B1 + B2 — B3 — Pa— B5—2Be +2B7)°
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continued from previous page

Hs = Hg

Hi i=1...7

#4=—ﬁ(—ﬁl-2ﬁ2—ﬁ3+2ﬁ4—ﬁ5—2ﬁ6—ﬁ7)2
Hs = —35(—P1—2Ba— s — Pa+2Ps + P +257)* |

He=— 25 ~B1+ B2+2B3+204— Ps + Ps+267)°
H7———g( B1+ B2 +2B3 — By +2B5 25— B7)°
—55 (81— P2+ Pa—Pa— Ps+Ps— Br)° $(2ﬁ1-2ﬁ2+2ﬁ3+}34+ﬁ5 Bs + B7)°
,le— @(2ﬁ1+ﬁz Ba—2P4—2P5— Bs + f7)
:Ua——glg(zﬁ1+ﬁ2 Ba+ Ba+ Bs +2Ps —27)°
pa=— $( Br—2B2~ B3 =24+ Ps+2P+ f7)°
#5——q( B1—22~ B3+ Pa—2Ps— Ps —257)°
He = —35(—=B1+ B2 +2B3~2f4 + s — fs — 27)°
,U7— 51-( Br+ B2 +2P3 +Bs—2Bs + 25 + B7)°
—2(B1+ Po— Pa+ Pa+ Ps+Ps— Br)° —35(2B1+2P2—2f3— f4— Ps— ﬁ5+ﬁ7)2
}12——#(2[51 Po+Ba+2Ps+2P5— Ps+ B7)*
H3=— $(2ﬁ1 ~ P2+ B3~ fa—Ps + 26—~ 267)?
ﬂ4—-$( —B1+2B2+ B3 +2f4— Ps + 206+ f7)
Hs = —35(~ P1+202+ B3~ ﬁ4+2ﬂ5"ﬁ6"2ﬁ7)2

tg = —35(—P1— P2 —2P3 + 24 — Ps — fs — 2P7)?
H7———( B1— B2 —2P3— Ps+2P5+2Ps + fz)?

= (=B + B2+ P3— Pa+ Ps — fis— B7)?

a5(—2B1+2B2+ 203+ Pa — Ps + Bs + B7)°
P2 =— (Zﬁl Ba2—PBs-— 2ﬁ4+2ﬁ5+ﬁ5+ﬁ7)2
H3 =~ (2}31 Bz — B+ Bs— Ps—2Ps - 2f7)°
ﬂ4—-"(ﬁ1+2ﬁ2 B3 —2Ps— Ps—20 + P7)*
ps = —55{B1 + 2Bz ~ P3 + Pa+2Ps5 + P — 27)*
MG——G(ﬁl Ba+2P3—2f4— s + Ps —27)°
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- jg = [ig i i=1...7

—2=(B1+P2+P3—Pa+Ps+Bs+P7)° | 6(251+2ﬂ2+2ﬁ3+ﬁ4—ﬁ5—ﬁ6“ﬁ7)2
‘ ~(2B1— B2— B3~ 2B +2P5 — Pe— P7)°
.Ua— (21— P2 — P+ Py — Ps +2Pe +2p7)*
.114—*“( —B1+202~ P3—2Ps— Ps+2Ps - Pr)?
5= —35(— ﬁl+2ﬁ2-ﬁ3+ﬁ4+2ﬁ5—ﬂ6+2ﬁ7)2
o = —3g(— ﬁl—ﬁ2+2ﬁ3“2ﬁ4—ﬁ5—ﬁ6+2ﬁ7)
| pr==5:(=BL— B2 +2B3+ B+ 2P5+ 266 = 7)°

Table A.1: Metrics associated to different eigenvalues of @ for the 7-parameter
ansatz. '
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| m | pii=1..8 |

1 _ —_ 1
—glar+a+as+ag)® | g == —5(a; - ar~ a3 — ay)’
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Table A.2: Metrics associated to different eigenvalues of © for the 4-parameter
ansatz

127



