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CHAPTER 1

INTRODUCTION

1.0 Introduction

A knowledge-based [1,2,3,4] or expert system is a system
which can replace, improve or aid a human "expert" in a given problem
field. Such systems can be expected to increase productivity,
improve reliability and reduce costs in a wide range of applications
(production, planning, fault diagnosis, system control and others) .
Despite the fact that research in this area is still in its infancy,
and the systems have yet to produce many of the benefits promised,
vast amounts of money and effort are being invested in expert systems
research. The Alvey and Esprit programmes are two cases in point.

The Alvey programme is a U.K. government backed information
technology initiative while Esprit is a collaborative European

technology development programme.

Although the theoretical basis of many different types of
expert system have been developed and reported in the literature,
very few working systems have been detailed and implemented. The
importance of producing an actual working system, and of evaluating
the applicability of existing techniques to a specific task, provided
the motivation for the work presented in this thesis. Once working
expert systems have been developed for specific problems and they are
shown to really free human experts to address themselves to other
technical problems, then the knowledge gained in building these

systems can be applied to other tasks to create a greater range of

expert systems.



One of the subdivisions of expert systems consists of rule-
based [5,6] systems which contain knowledge on how to solve a
particular problem (fault diagnosis in this case). Such knowledge is
embedded within the system as a set of rules. These rules are
searched by a form of control to find the solution to the problem.
The control can simply examine each rule in the order they are
written or it can involve some other search technique, which looks

for specific properties in a rule, before using the rule.

Another subdivision of knowledge-based systems is the machine
learning system [7,8,9); this kind of system obtains its information
of the problem domain from a training sequence. Within the system
there can be a variety of different algorithms which extract
knowledge from the training sequence. This enables these systems to
solve the problem during operation, when the algorithms are used in

working mode instead of in training mode.

The area of application chosen to utilize the knowledge-based
methods was the fault diagnosis of 16 state quadrature amplitude
modulation (QAM) [10] digital microwave radio relay equipment. This
task was chosen because it seemed a soluble problem and its
successful completion would produce a system which would be of
considerable assistance in the manufacture and maintenance of 16 QAM

radios.

Fault diagnosis of 16 QAM digital radio equipment is required
for two separate scenarios: first, for the initial tuning and setting
up of the radio in the factory so that it meets its design

specification; and secondly, for correcting faults which may occur in



the radio during normal operation. An expert system could be used in
both of these applications to aid an engineer in his task of

impairment minimisation.

The information source from which the expert system was able
to diagnose faults in the radio was the signal constellation [11].
This is a graphical representation of the received information whose
characteristics change in the presence of certain faults. The signal

constellation is also the information source which is used by a human

expert to perform fault diagnosis.

An extensive search of the literature on expert systems
failed to reveal any published work in this area. There are numerous
publications [12,13,14] on the approaches and techniques used for
designing expert systems, but little information on systems which are

actually operational.

This study started, therefore, with virtually no available
knowledge of how expert systems can actually be applied to technical
problems. In those circumstances it can be argued that if solutions
are found to specific practical tasks, then the knowledge gained from
this will be of benefit. It is valuable because it enables effective
methods for developing expert systems to be generated. Further the
applicability of particular techniques to specific problem types can
be judged. The resulting decrease in effort required to produce
acceptable working knowledge-based systems for other purposes will
encourage their development and use which will, in turn, mean many of

the potential benefits of these systems will be reaped.



The problem to be tackled was well defined with the
information source that a human expert uses to perform the fault
diagnosis known. An expert system was required to diagnose the
faults occurring in a 16 QAM radio. The signal constellation was used
to provide the input data to estimate the impairments present. In
this study existing knowledge-based techniques were used in order to
evaluate their applicability to the chosen problem, rather than
developing new methods. This choice permitted an operational
prototype system to be developed and evaluated within the timescale
of the project. The alternative of developing new methods might have
produced better techniques for implementing a system but it is
unlikely that it would have given a useful indication of their

suitability for practical application within the period of study.

Applying existing knowledge-based techniques to solve a
specific defined problem in this way diverts from the main body of
expert system research conducted by the artificial intelligence (AI)
community. Knowledge-based systems have formed a major area of AI
work since the early 1970's when the first expert system DENDRAL
[15] was reported. This has led to much of the work involving the
simulation of human intelligence and developing techniques which
mimic this intelligence. However, taking an engineering standpoint,
with a problem requiring a solution, and applying expert system
methods to achieve a solution does not involve any appreciation of
the "intelligence". Without the constraint of "intelligence" in the
system, the application of the existing knowledge-based techniques to
the problem of fault diagnosis of the 16 QAM digital microwave radio
equipment can be tackled. The remainder of the thesis details the 16

QAM radio equipment, the effects of the faults, the knowledge-based



techniques developed to detect them and the evaluation of the expert

systems’ perfomance.

1.1 Thesis Outline

The description of the work starts in Chapter 2 with some
basic information on digital radio. The most significant benefits
derived from digital transmission are presented to explain why
digital radio is gaining in popularity [16,17]. The basic elements
of a digital radio are initially described. 16 QAM modulation is
then discussed and its benefits over other modulation techniques in
terms of efficiency and ease of implementation are explained. The
possible fault sources, apart from channel impairments, and their
effects on the radio signal are identified and discussed. In the
final section of Chapter 2 the 16 QAM signal constellation is
presented and its characterisation is explained using a set of
geometric features. The geometric feature set forms the parameters
which are used to provide the information to establish the fault
levels. Without the required parameters, it would prove impossible
accurately to assess the faults present. This chapter forms an
introduction to 16 QAM digital radio, its faults and their effects on
the signal constellation. Only with an adequate appreciation of the

working radio can the development of the expert systems be fully

understood.

Since it was not possible to gain access to a 16 QAM radio
throughout the period of the project, a radio model was developed
which could be used to evaluate the expert systems' performance. The

radio model is described in Chapter 3. Various requirements of the



model for this work, and the specific type of model chosen, are
identified along with the hardware on which it was implemented. The
structure of the radio model, and the techniques that were used to
simulate the elements of this structure, are explained. Results
obtained from the radio model in the form of the relationships
between the introduced distortions and the signal constellation'‘s
geometric feature set are also recorded. These relationships form
the information which is used to create rules for the development of
a rule-based system. This chapter discusses, therefore, the choice
of radio model and its implementation, and then presents the results

used in the generation and evaluation of the knowledge-based systems.

In Chapter 4 a brief review of expert systems, their merits,
structures, languages and impact is presented. Their areas of
application and the potential benefits to be derived from their use
are discussed. The basic structures of various expert system types
are then explained together with the method by which they search the
available data. Programming languages and shells available for use
with expert systems are presented before discussing details of some

of the systems already developed and their areas of application.

The rule-based and machine learning systems formed the basis
for the expert system techniques used during the project. The rule-
based approach was chosen because it is the most widely tried method
and it can, in some respect, model the way a human expert performs
the fault diagnosis. The machine learning method was chosen to
permit a more automated system to be produced, which would not

require such a great input of human expertise to devise the rules.



The first approach to constructing a knowledge-based system
in this study took a rule-based approach; this is described in
Chapter 5. Two methods of implementing a rule-based system were
attempted and both are detailed. General purpose tools called
"shells" exist and can be used to develop expert systems. In this
case the development of a rule-based system using a Prolog shell was
initially undertaken. Another rule-based system was also written in
the C programming language based on similar rules. The generation of
these rules from the fault/feature relationships obtained in
Chapter 3 is explained. Results obtained while evaluating the

diagnostic performance of the C based system are discussed.

The second method of creating an expert system, using a
machine learning technique, is detailed in Chapter 6. An account is
provided of the structure of the machine learning system, the
algorithms within the structure and how the training of the system is
performed. The machine learning system was tested on a 16 QAM
digital radio; the faults introduced and the diagnostic performance
of the system are presented. The machine learning system was also
tested on the radio model and these results are recorded and
discussed. A comparison of the rule-based and machine learning
systems is given. This has led to the development of a hybrid system
which is also described. The performance achieved by the hybrid

system on tests with the radio model is recorded and reviewed.

In the final chapter the conclusions drawn from the work
presented in the thesis are discussed. A number of suggestions for
additional work are also offered. These suggestions follow from the

results and conclusions of the research reported in this thesis.
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CHAPTER 2

DIGITAL RADIO

2.0 Introduction

Digital modulation techniques are increasingly being used for
radio transmission [18,19]. These methods are used in
satellite/earth stations and in terrestrial line of sight radios.
Using signal regeneration techniques and error detecting and
correcting codes [10,20,21], digital transmission allows the carrier
to noise ratio (CNR) to be reduced without increasing the error
rates. With an 8 state trellis coding system [16] a further 4 dB

reduction in CNR can be achieved for no increase in the error rate.

The introduction of spectrally efficient modulation
techniques [22,23] has lead to digital transmission becoming more
widely applied. These techniques, such as quadrature amplitude
modulation (QAM), offer the advantages of digital transmission
including: signal regeneration; error detecting and correcting
coding; and signal encryption. Figure 2.0.1 shows how the spectral
efficiency of multilevel QAM systems increases with the number of

signal states, and also the resultant increase in CNR required.

In this Chapter a brief outline of the basic elements of a
digital radio is presented. In Section 2.1 the elements of a typical
radio transmitter and receiver are described. The purpose of each
block within the radio’s structure and its interconnection with the
rest of the radio is also explained. Section 2.2 gives an account of

16 QAM modulation and its implementation, discusses the strengths and
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Figure 2.0.1 Spectral efficiency of multi-level QAM systems and resultant
increase in carrier to noise ratio (CNR).
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weaknesses it exhibits over other modulation techniques, and shows
how tradeoffs in efficiency and ease of implementation have led to 16
QAM being the most widely applied modulation technique for digital
radios. The possible fault sources, apart from channel impairments,
and their effects on the radio are identified and discussed in
Section 2.3. Finally, in Section 2.4 the signal constellation
features which are used to describe the geometry of the signal
constellation are presented. The calculation of the features and the

unique properties they describe about the constellation, are also

explained.

2.1 Typical Radio

The block structure of a typical digital radio transmitter
and'receiver is shown in Figure 2.1.1. In the transmitter section of
the radio, the intermediate frequency (IF) modulated signal is first
amplified and then bandpass filtered to ensure that the signal
remains within the regulatory bandlimits. The filtered signal is
next predistorted to compensate for the non-linear distortions

introduced by the power amplifier.

The non-linearities present in the power amplifier depend
upon the type of amplifier being used. Travelling wave tube (TWT)
(24] amplifiers are the most common; solid state amplifiers, which
are more efficient [25], are under development and are gradually
being introduced. The characteristics of a TWT power amplifier are

discussed in Section 3.3.
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Figure 2.1.1 Block structure of a typical digital radio.
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The automatic gain control (AGC) amplifier is included to
ensure that the signal fed into the radio frequency (RF) power
amplifier is at the correct power level. This level is set so that
the transmitted signal is at a high enough power for efficient
operation, whilst not driving the amplifier too far into its non-

linear regions.

The non-linear regions of the power amplifier produce
amplitude to amplitude conversion (AM-AM) effects and amplitude to
phase conversion (AM-PM) effects. These effects cause signals to
have an amplitude and phase distortion dependent upon the signal
magnitude, as shown in Figures 2.1.2 and 2.1.3 respectively. As many
of the preferred modulation techniques require linear transmitter and
receiver operation to enable the received signal states to be easily
distinguished/detected, non-linear effects impose severe constraints

on the system operation.

After levelling by the AGC amplifier the IF signal is
up-converted to RF before the high power amplification stage. The
AGC loop has a bandwidth considerably less than the information
bandwidth to ensure no distortion is introduced by the levelling
process. This is then output via a waveguide filter to the antenna
for transmission. The waveguide filter also prevents the
transmission from extending outside the specified reqgulatory
frequency ranges by reducing the level of the unwanted sidebands

generated in the up-conversion process.

The receiver also has a waveguide filter connected to its

antenna, this discriminates against any unwanted signals which are
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14

present. The waveguide filter facilitates multiplexing, dropping out
the different channels in the frequency spectrum. The signal is then
down-converted from RF to IF and is filtered to produce the required
IF signal, which is adaptively equalised [26,27] before passing to
the demodulator. The adaptive equaliser helps to remove some
distortions introduced from the channel, in particular, group delay.
The AGC amplifiers at RF and IF ensure the signal remains at the

correct power level for the accompanying processing circuits.

A typical 11 GHz 16 QAM microwave radio will have a
transmission rate of 140 Mbits/sec and a 40 MHz bandwidth, with a
spectral efficiency of 3.5-3.7 bits/sec/Hz. The repeater station
spacing will be between 20 and 50 km with a transmitting power of

between 25 to 40 dBm.

Some radios may not include all of these elements, or may
contain additional components, e.g. additional filtering stages.
However, Figure 2.1.1 shows the outline of a radio which provides the

functions of an operational system.

2.2 16 QAM Modulation

There are many types of digital modulation techniques
currently in use. These techniques include amplitude shift keying
(ASK), frequency shift keying (FSK), phase shift keying (PSK) and a
derivative of ASK and PSK, quadrature amplitude modulation (QAM) .
There are also various other hybrid techniques apart from QAM, which
are variants of the methods mentioned above, such as quaternary phase

shift keying (QPSK) and quadrature partial response signalling
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(QPRS) . In addition to these methods, there are some more
specialised techniques [28,29] which improve system performance under
specific interference conditions. All of these alternatives have
tradeoffs with regard to bandwidth efficiency, noise immunity and
technical realisability. Feher [30] details the currently available

spectrally efficient digital modem techniques.

The number of signal states can vary, depending upon the
method being used, from the simple binary case of 2 states up to
experimental systems of 1024 states. The systems with 1024 states
are normally 1024 QAM systems; they are not in widespread use
however, because of the highly linear systems that are needed to
implement them. These systems are in the experimental stage and

should come into limited use in the next few years.

Currently the most common type of signalling used for high
data rate systems is 16 QAM. A 16 QAM modulated signal has a
theoretical Nyquist rate [31,32] of 4 bits/s/hz, although practical
systems achieve only 3.5-3.7 bits/s/hz. (Bits/s/hz is the number of
binary bits which can be transmitted each second in 1 hz of
bandwidth) . This is however, a large improvement on the spectral

efficiency of a purely binary signal with a maximum theoretical

Nyquist rate of 1 bits/s/hz.

The theoretical Nyquist rate for any modulation technique is
never achieved because of imperfect filtering. 64 QAM systems have a
theoretical Nyquist rate of 6 bits/s/hz, but, because of the severe
filtering requirements of these systems those currently in use

achieve only 4.5-5.0 bits/s/hz. A 6 dB increase of carrier to noise
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ratio (CNR) is needed for these 64 QAM systems over the 16 QAM
systems, to achieve the same BER. Figure 2.0.1 shows the spectral
efficiencies of these systems and the increase in CNR. This increase
in CNR is required because the signal states in a 64 QAM
constellation have smaller amplitude and phase separation than those

in a 16 QAM constellation and, therefore, are less noise tolerant.

Figure 2.2.1 shows the two dimensional amplitude phase
diagram of the 16 different signal states of a 16 QAM signal
constellation [18]. This diagram illustrates how the 16 different
signal states are separated by amplitude and phase. There are 3
distinct amplitudes (V2, V10, 3V2) and 12 distinct signal phase
values (18°, 45°, 72°, 108°, 135°, 162°, 198°, 225°, 252°, 288°,
315°, 342°) in a 16 QAM signal constellation. The signal

constellation is described in greater detail in Section 2.4.

The modulation of a 16 QAM signal is performed by first
splitting the binary data into two parallel bit streams at half the
data rate. These two data streams are then converted into a four
level signal. These two parallel four level signals are used to
phase modulate two orthogonal carriers: an inphase (I) and a
quadrature (Q) carrier. The two modulated carriers are then summed
to produce a 16 QAM signal. Figure 2.2.2 shows a block diagram of

such a 16 QAM modulator.

The 16 QAM constellation provides a good noise immunity
(33,34,35] while still remaining relatively easy to modulate and
demodulate. There are other 16 state signals, such as 1-5-10, V.29

and optimum [16], which provide greater immunity to certain types of
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interference, such as multiplicative noise or phase jitter. However,
these require more complex modulators and demodulators and hence are

not widely used in digital microwave radio systems.

The structure of a 16 QAM demodulator is shown in
Figure 2.2.3. The first stage of demodulation involves recovering
the carrier [36,37], normally using a phase lock loop (PLL). This
recovered carrier is then used to generate orthogonal (quadrature)
reference signals. These two orthogonal signals are used to
demodulate the inphase and quadrature components of the signal. From
the four level inphase and quadrature components, the symbol timing
recovery (STR) [36] is performed. This STR information is used in
the four tec two level converter to establish the correct sampling
instant for both the I and Q channels. These two binary signals are

then recombined to give the binary output signal.

QAM modulation techniques are now well tried and it has
proved to be economic to produce and operate the equipment to
implement them, whilst still providing a spectrally efficient method
of transmission. Of these modulation techniques, 16 QAM is currently
the most common, although 64 QAM and 256 QAM [38] are gradually being
introduced for some terrestrial applications despite their
requirement for greater equipment linearity and receiver CNR. The
other signalling techniques [39] with superior interference rejection
properties have not gained significant popularity in engineering
applications primarily because of the requirement for increased

sophistication in the modulators/demodulators.

2.3 Fault Sources in Digital Radio
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There are many possible sources of faults in digital
microwave radio relay equipment. Faults can occur in the channel
which include: interference in the form of noise or a specific tone,
multipath effects [40,41,42) or blockage of the direct path by a
solid object such as a building. These channel faults are of
considerable importance to the operation of a radio system; they can
vary between those which are catastrophic in nature and so prevent
any data transmission, or are relatively minor and increase the BER.
However, since they are not part of the actual radio equipment, and
so are not faults in the transmitter or receiver, these channel
impairments will not be discussed further here. This thesis

concentrates on the detection and analysis of equipment malfunctions.

In the transmitter and receiver of a digital radio,
Figure 2.1.1, faults can occur in the filtering sections,
amplification stages and the quadrature phase splitting during
modulation and demodulation. If the IF and RF filtering, of both the
transmitter and the receiver, are maladjusted introducing a slope,
ripple or notch into the passband, additional intersymbol
interference (ISI) will be caused. Without a completely flat
passband there will be distortion of the signal spectrum causing ISI
and a resultant increase in the BER. These faults occur if either
resonant circuits for IF filtering or cavities for waveguide

filtering are incorrectly tuned.

If the amplification stages are incorrectly aligned, due to a
fault in the setting of one of the AGCs or the malfunction of one of
the amplifiers, then the signal fed into the following section of the

radio will be at an inappropriate level. Any of the amplifiers, in



21

either the transmitter or the receiver, can be driven at an incorrect
level causing their output signal to be at an unsuitable level which
can cause the radio to fail completely or the BER to increase.
However, the RF power amplifier in the transmitter, usually a
travelling wave tube (TWT) amplifier, will have highly non-linear
characteristics and so a small maladjustment of this section will
create a large signal distortion. This maladjustment is termed
either an amplifier overdrive or underdrive from the preferred level,

depending upon the precise input signal levels.

The quadrature splitters, both in the transmitter and the
receiver, do not always split the signal by exactly 90°, and so the
two signals may not be truely orthogonal. If the deviation from 90°
is sufficiently great then a non-orthogonal carrier fault will

result.

In the transmitter modulator if either the I or the Q channel
2 to 4 level coder is incorrectly adjusted, one or more of the signal
amplitudes (or spacings) will be incorrect. This can occur in either
or both channels (I and Q) and will cause the signal at the
demodulator output to possess incorrect amplitude and phase

information. This fault is termed a gap spacing level error.

In the receiver demodulator the carrier recovery system may
not lock onto the carrier at all; in that event, there will be no
phase information available for the demodulation process. The
carrier recovery system may lock onto the signal with a phase
difference which will introduce a fixed phase error to the signal for

decoding. If the oscillator producing the carrier is not stable and
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has a varying frequency, this will appear as phase jitter on the

signal.

The signal constellation is viewed in the demodulator once
the received carrier has been removed from the signal to bring the I
and Q components down to baseband. Errors can occur in the STR
circuitry and the four to two level converters. However, these
faults happen in the system after the signal constellation has been
viewed. Since the signal constellation is used as the information
source for the fault detection, these faults have to be diagnosed

using other techniques.

The faults described cover many of the operational problems
associated with digital microwave radio transmitters and receivers.
Some radios do not include all of these components and some have
additional filtering and equalisation sections; the fault sets

available will be different therefore, for each design of radio.

Figure 2.3.1 shows a normal 16 QAM signal constellation. A
radio with a 3 dB TWT amplifier overdrive generates a signal
constellation as illustrated in Figure 2.3.2. This shows how the
outermost states of the constellation are rotated clockwise and
compressed in amplitude, while the innermost states are contra-
rotated and expanded in comparison to the normal signal
constellation. Figure 2.3.3 shows a signal constellation of a radio
with a non-orthogonality of the I and Q carriers of 5 degrees. The
signal constellation must now be described by a set of parameters

which provides a basis for describing the effect of each introduced
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impairment. The set of constellation features detailed in the next

section have been developed to describe the 16 QAM constellation.

2.4 16 QAM Signal Constellation Features

The signal constellation of a 16 QAM digital radio is viewed
by a constellation analyser [43] connected to the receiver
demodulator as shown in Figure 2.4.1. The signal constellation is an
amplitude-phase diagram of the position of the signal states and the
spread of each of these states. In signal constellations the inphase
component lies along the x axis direction and the quadrature
component along the y axis direction. The distance from the centre
of the constellation (the origin) to each signal state provides a
measure of the amplitude of that signal state. The angle formed
between the x axis and a line through the origin and the centre of
the state is the phase of the signal. The 16 QAM signal has 3
distinct signal amplitudes and 12 discrete signal phase values to

describe the 16 signal states as shown in Figure 2.4.2.

Human experts who perform fault diagnosis on digital
microwave radio use the signal constellation as their information
source for the diagnoses. To allow a knowledge-based system to
exploit the information in the signal constellation, for digital
radio fault diagnosis, a method is required that represents the
information in the signal constellation. A geometric feature set was
developed to describe the signal constellation using a set of
geometric parameters calculated from a set of 16000 signal sample
values. The use of approximately 1000 samples per signal state,

provides a suitably averaged description of the signal constellation.
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Figure 2.4.2 16 QAM constellation showing 3 distinct amplitudes and 12
distinct phases present.
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The geometric features calculated comprise:

(1) % Expansion of outer states

(2) % Expansion of inner states

(3) %I + %Q gap spacing error

(4) %I - %Q gap spacing error

(5) Constellation rotation (degrees)

(6) Differential rotation of inner to outer states (degrees)
(7) Non-orthogonality of constellation (degrees)

(8) Ratio of number of inner points to outer points in sample set
(9) I pool deviation (sum of I squared)

(10) Q pool deviation (sum of Q squared)

(11) I.Q pool variance (sum of I*Q)

(12) Correlation coefficient

This geometric feature set primarily describes the location
(in amplitude and phase) of the signal states. Faults other than
those considered here (e.g. phase jitter) can effect the shape of the
signal state. If these faults were to be diagnosed, further
geometrical features would be required. The feature set is
calculated by first forming two reference squares from those of the
eight signal states which are neither among the four innermost or
four outermost signal states. The position of each signal state is
taken to be the mean position of the cluster of points forming that
state. Figure 2.4.3 shows these two reference squares. These
squares are used to help to determine the expected amplitudes and
phases of the inner and the outer signal states of an undistorted

constellation.
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Figure 2.4.3 Construction of inner and outer reference squares.
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The geometric features listed are calculated in the following
manner. The first two features, the expansion of the outer states
and the expansion of the inner states, are calculated by taking the
average percentage increase in observed amplitude of the four
outermost signal states (or of the four innermost states) compared to
the expected amplitude, given by the corners of the reference square.
If the signal states are compressed rather than expanded, these
features are negative. The equations for calculating the percentage

expansion using the distances shown in Figure 2.4.4 are:

% outer expansion x 100% (2.4.1)

% inner expansion x 100% (2.4.2)
Where 0. ve and Il e ar€ calculated by taking the average amplitude

of all four of the outermost and innermost signal states.

Features 3 and 4 are calculated from the I and the Q gap
spacing errors. The gap spacing errors are found by taking the
percentage difference between twice the length of the side of the
inner reference square, and the length of the side of the outer
reference square in the I direction and in the Q direction. This
gives the %I gap spacing error and the %Q gap spacing error. Using
the dimensions shown in Figure 2.4.5 the %I gap error and the %Q gap

error are found using:

%1 gap spacing error = Xi—%fiii x 100% (2.4.3)



Square

Figure 2.4.4 Calculation of % expansion of the innermost and outermost
signal states of a 16 QAM constellation.

Figure 2.4.5 Calculation of I and Q gap spacing error for a 16 QAM
constellation.
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%Q gap spacing error = 19—55159 x 100% (2.4.4)
Features 3 and 4 are subsequently calculated by taking the sum and

difference of these, %I + %Q gap spacing error and %I - %Q gap

spacing error.

Feature 5, the constellation rotation, is the average
rotation of all of the 16 signal states in the received constellation
with reference to a perfect constellation with its I component
parallel to the x axis and its Q component parallel to the y axis.
This is taken as the average of the sum of the phase angles of all 16
states minus 2880 degrees (the sum of the phases of the normal

constellation). Taking the angles in Figure 2.4.6 this is calculated

using:

16
( Z on) - 2880
n=1

constellation rotation = 3 degrees (2.4.5)

Feature 6, the differential rotation between the innermost
and outermost signal states, is the mean of the phase difference
between the innermost and the outermost signal states. This is

calculated using the angles illustrated in Figure 2.4.7 by:

4 .
y @in - oon

differential rotation = 7 degrees (2.4.6)

n=1

Feature 7, the non-orthogonality of the signal constellation,

is the mean of the difference between the angles of the corners of
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both reference squares and 90 degrees. Figure 2.4.8 shows the angles

taken to calculate this:

non-orthogonality of constellation =
%[{180-8i1-8i3)+(5i2+51‘+—180)+(180-801-803)+(802+801‘-180)] degrees

(2.4.7)

The ratio of the number of points in the innermost signal
states to the number of points in the outermost signal states is
taken for the sample set. This ratio is the inner to outer ratio and
is a measure of how evenly the points are distributed between the
inner signal states and the outer signal states. The I and Q pool
deviation gives an indication of the distribution of the clusters
forming the signal states. For each point in each of the 16 states’
clusters the square of the I component and the square of the Q

component are summed to form the I and Q pool deviation

16000 2

I pool deviation = I 1In (2.4.8)
n=1
16000 2

Q pool deviation = I Qn (2.4.9)
n=1

Where In is the magnitude in the I direction of the nth point

and On is the magnitude in the Q direction of the nth point.

The I.Q pool variance is the sum over all the points in the
sample of the I direction magnitude multiplied by the Q direction

magnitude.



34

@--—7“”

@/m

Figure 2.4.8

_.__Q

_@___@

Calculation of non-orthogonality of 16

QAM constellation.



35

16000
I.Q pool variance = L InQn (2.4.10)
n=1

The correlation coefficient is given by the I.Q pool variance
divided by the square root of the I pool deviation multiplied by the

Q pool deviation.

; fk - . 1.0 pool variance
correlation coefficient T{(Ipool dev.) (Qpool dev.])

(2.4.11)

This is a measure of the correlation of the noise in the

signal in the I and in the Q directions.

These geometric features are mostly first order features.
That is they are formed from linear combinations of the geometry of
the signal constellation. There are four of the set, however, which
are second order features: the I pool deviation, the Q pool
deviation, the I.Q pool variance and the correlation coefficient.
These second order features use quadratic and linear combinations of
the signal geometry. Apart from the four features mentioned the

remaining features are first order.

These simply calculated geometric features define the
positions of each of the constellation states. They can be used as
the information input to a knowledge-based diagnostic system for

16 QAM radio equipment analysis.
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CHAPTER 3

DIGITAL RADIO MODEL

3.0 Introduction

The main focus of this thesis is on the diagnosis of faults
in digital radios using knowledge-based systems. In the development
of such systems it was necessary, of course, to have some means of
accurately evaluating their performance, and for that a test vehicle
was required. A model of a digital radio was seen as an appropriate
vehicle. In the absence of existing models suitable for the purpose,
a development was undertaken to design a model specifically for the

evaluation of the diagnostic performance of knowledge-based systems.

In this chapter the various aspects of the radio model
chosen, and the results obtained from it, are examined. Section 3.1
presents the various requirements of the radio model to permit the
satisfactory evaluation of the knowledge-based systems’ diagnoses,
and the rationale behind the choice of the specific radio model type.
The hardware used to implement the model (HP4948A In-Service
Transmission Impairment Measuring Set [44]), the original intentions
for its use, and the software available from Hewlett Packard to run
on it are described in Section 3.2. Section 3.3 provides details of
the specific structure of a digital radio which was simulated by the
radio model. The techniques used to simulate the elements of the
radio, apart from those available in the form of Hewlett Packard
software for the HP4948A, are also explained. Finally, in Section
3.4 the relationships linking the distortions introduced into the

radio model to the constellation geometric feature set are
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catalogued. These relationships form the basis for creating the
rules for a rule-base and those which are most significant, in the

rule generation process are highlighted.

31 Model Requirements

The difficulty of access to an appropriate radio throughout
the period of the project, combined with the possibility of the
presence of unknown faults in the equipment, precluded the use of
such a radio for evaluating the performance of the knowledge-based
system. The presence of unknown faults could adversely affect the
analysis of the distortions caused by deliberately introduced faults
and could result in incorrect associations of distortions and fault
conditions being formed. It was decided, therefore, that a digital
radio model, would be used to permit the distortions caused by the

various impairments in a digital radio to be examined.

If the impairments are introduced into a perfectly
functioning model, all of the distortions will be attributable to the
known faults and none to unknown problems. Each fault is introduced
in measured amounts which allows the distortions to be examined in a
quantified way. The use of a model, therefore, allowed faults to be
introduced into a radio to obtain data to test the knowledge-based
systems. Faults introduced into the model were diagnosed by the
expert system and, by comparison with known types and levels of
faults present, the accuracy of the diagnoses were subsequently
determined. The distortions were characterised by the variation of
the signal constellation geometric features, which were detailed in

Section 2.4.
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There were two available options to model the digital radio
and its fault conditions: one makes use of an off-line software
simulation and the other a signal processor running in real time.
Using an off-line software simulation permits any specified accuracy
of modelling for any component in the digital radio to be achieved.
This accuracy in the modelling is obtained at the expense of
computational time. The off-line simulation could be written in a
high level language, making the coding and the finding of programming
faults easier than if assembly language or machine code was used.

The time needed to produce the code for the model, therefore, would
be kept relatively short. Simulating each section of the radio would
be relatively straightforward as there are already, within the
Electrical Engineering Department at the University of Edinburgh,
routines written to model specific elements of digital radios such as
filtering stages. Interaction with the model, however, would be
difficult; (by means of a constellation display), adjusting its
various parameters during operation in the way one can when adjusting

a real radio.

A signal processor running in real-time would allow the
results to be produced in a continuous recognisable form (as a signal
constellation), as well as recording the signals for further
analysis. The signal processor would not necessarily be required to
produce data at the same rate as real microwave radio. The effect of
running it at a fraction of the normal rate would only reduce the
rate of data collection compared to a real radio. The model could
then be treated, therefore, as if it were a real radio, apart from
the fact that data collection would be at 9.6 k bits/s rather than at

140 M bits/s. It would then be possible to view the constellation in
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real-time and to monitor its variation with the introduction of
specific faults. However, the amount of processing required to
perform this type of modelling is large and the accuracy is less than
that obtained from an off-line model. This reduction in accuracy is
caused by the limited processing power available from a real-time

processor.

The alternative of a real-time processor was chosen despite
its potential accuracy being lower than that of an off-line model.
It was found that the accuracy of the real-time processor was still
high, as it used 16 bit arithmetic, and further it permitted
interaction with the user in the form of a constellation display to
indicate the effect of the introduced impairments. A commercial
product, the HP4948A non-intrusive communications analyser, was
chosen to implement this type of digital radio model as it was
readily available. Section 3.2 details the HP4948A non-intrusive

analyser.

3.2 HP4948A Non-Intrusive Analyser

The HP4948A non-intrusive analyser was originally designed
for testing leased voice frequency data circuits. Figure 3.2.1 shows
a HP4948A analyser unit. Conventional test methods require that the
circuit be removed from service for test. The HP4948A can be
connected to a suitable point in a network and it will monitor live
modem signals to perform the required tests. As well as being able
to test in-service circuits, it can be used on out-of-service
circuits with conventional test sets providing a modem like signal,

and it may be remotely monitored as one of a network of test devices.
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Figure 3.2.1 HP 4948A Non-intrusive analyser unit.
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By logging the results over a long time period, changes in
performance can indicate impending faults, permitting preventive

maintenance to be accomplished.

The processing is all performed digitally and the input
signal to the unit is sampled by a 12 bit analogue to digital
converter. These digital samples are passed to a specially designed
signal processor which executes, in real-time, the various algorithms
required to simulate the modems and perform the required
measurements. The overall structure of the hardware of the HP4848A

is shown in Figure 3.2.2.

The processor execution unit has been optimised to perform
digital convolution, since this function represents the largest
processing requirement for real-time computation. The execution unit
is designed around a 16-by-16 bit multiplier. This multiplier is fed
by two segments of memory, memory A and memory B. An arrangement of
this kind allows the accumulate and add function (X * Y + P) to be
performed efficiently, which is required for digital convolution.
There are various other scratch pads and registers which are used for
the sequencing, control and manipulation of the data. The
controlling software for this unit was developed using a software
development system which links the routines and libraries together
before compiling the assembly language into executable code. The
code is then downloaded from the computer running the software
development system to the HP4948A unit. This permitted new assembly
language code routines to be written and linked to the existing
routines to perform additional tasks. Without this facility the

software for the unit would be required to be interconnected at each
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stage of writing the code, and thus software preparation would have

been a much more time consuming process.

The HP4948A has software developed to permit it to be treated
as a universal modem for transmitting or receiving signals typically
encountered in the commonly used modems. The available modems
include: the Bell 209, CCITT V.29 and 8 DPSK. The software for
these modems provides the basic building blocks for simulating a
digital radio transmitter and receiver. Routines available for the
simulation provide modulators, demodulators, adaptive equalisers and
IF filters. The HP4948A, in conjunction with the software
development systems, thus provides a unit which can be used to

simulate the basic blocks of a communications system.

3.3 Elements of the Radio Model

A digital radio model was constructed on the HP4948A non-
intrusive analyser. This was done by writing subroutines to simulate
the elements of a radio; these subroutines were written in AM2910
assembly language [45]. The elements of the digital radio which were
modelled are shown in Figure 3.3.1. There is no power amplifier
predistorter, as shown in Figure 2.1.1, nor are any of the channel
impairments such as multipath fading and other interfering signals
included in the model; these are not part of the radio equipment .
The data is transmitted at 2400 bits/s as opposed to a typical 16 QAM
digital microwave radio transmission rate of 140 M bits/s. This
model does, however, allow the introduction of the same impairments

as would occur in a real radio.
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Figure 3.3.1 Elements of the modelled digital radio.
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The faults introduced into the radio model were: errors in
the in-phase(I) or quadrature (Q) spacing levels, non-orthogonality
of the I and Q carriers and travelling wave tube (TWT) power
amplifier distortions. The I (or Q) spacing errors were introduced
by directly altering the values of the levels in the subroutine
performing the coding. The non-orthogonality of the I and Q carriers
is simulated by a routine which adds an offset to the signal; this
is dependent upon which of the 16 signal states is being transmitted.
The offset is the difference between a perfect constellation and a
constellation formed by non-orthogonal carriers. This operation is
performed before any additional filtering so that the signal
undergoes all the perturbations which it would have been subject to

had the impairment been caused by non-orthogonal carriers.

These two types of fault were straightforward to introduce
into the model, because both use look-up tables to alter the signal
levels. These look-up tables were constructed by determining the
appropriate value for each entry in the table to produce the required
distortion. The distortion due to the TWT power amplifier, however,

proved more complicated to simulate.

The distortions caused by a TWT power amplifier are in
general non-linear and cause both AM-AM and AM-PM conversions.
Figure 2.1.2 shows the effect of the AM-AM conversion in a TWT
amplifier, and the AM-PM conversion is shown in Figure 2.1.3. Saleh
(46] gives simple two parameter formulae for describing these TWT
distortions; these formulae apply to both an amplitude-phase and to

a quadrature non-linear model of a TWT amplifier.
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The amplitude-phase model is given by:-

x(t) = r(t)cos(mot + y(t)) (3.3.3)

x(t) is the input signal
r(t) is the modulating envelope
LS is the carrier frequency

Y(t) is the modulating phase

y(t) = A(r(t)) cos(mot + y(t) + o(r(t))) (3.3.2)

y(t) is the output signal

A(r(t)) the output signal amplitude is an odd function of T
with the leading term representing AM-AM conversion

¢(r(t)) the output signal phase due to TWT non-linearities is
an even function of r, with quadratic leading term

representing AM-PM conversion.

I
(=3

A(r) {9, 3.3}

r
oqQ, ——
¢ (1 + B¢r2)

¢(r) (3.3.4)

where scale factors & and P for A and ¢ are determined by particular

amplifier characteristics.
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The alternative quadrature model where the output signal y(t)
is expressed in rectangular co-ordinates is shown in Figure 3.3.2.

where

p(t) P(r(t)) Cos(wot + y(t)) (3.3.5)

q(t) = =Q(r(t)) Sin(wot + y(t)) (3.3 <8)

This expression for the TWT distortions is obtained from the

amplitude phase model with

P(r) = A(r)cos(d(r))
and Q(r) = A(r)sin(¢(r))
P(r) = @ —% (3.3.7)
¥ e Bprz)
3
Q(r) = L (3.3.8)

a__
q (1 + qu2)3

On first inspection the quadrature model seems the most
convenient form to simulate the TWT power amplifier distortions on
the radio model. The I and the Q components of the signal are
available directly in the HP4948A equipment. This means that

conversion to polar co-ordinates would not be required.

The distorted levels of the I and Q components of the signal

could then be computed directly:-

—
I

s B(r)l (3.3.9)

| &)
]

o nd Q(r)Q (3.3.10)



48

P(t)=P(r(t)cos(w +p)
P(r)
X(D=r(t)}cos(wt+Y) y(t=p(t) +c(t)
summer
-/
0 Q(r)
90
=q(=Q(r(t)sin(w, t+}))

Figure 3.3.2 Quadrature non-linear model of a travelling wave tube power
amplifier.
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When using the HP4948A, however, it was found that P(r) and
Q(r) could not be calculated because the amount of processing
required more time than that available between the data samples. The
calculation of r is performed by taking the square root of r2 and
this requires the use of a time consuming iterative sub-routine. The
division required to calculate P and Q also uses an iterative, and

therefore computationally expensive, technique.

The simulation of the distortion, therefore, was achieved
through an alternative strategy in which the quadrature model was
rejected and the amplitude-phase model was re-examined. Saleh and

Salz [47] gave the amplitude and phase relationships as:-

A(r) = 2r2 (3.3.11)
1 +r
2
0(x) = 60° —— (3.3.12)
l+r

These two equations are updates of equations (3.3.3) and
(3.3.4) with the actual parameters for a specific TWT amplifier
included. These are: ®, = 2, Ba =1, a¢ = 60° and B¢ = 1. This
requires that the I and Q values be converted to polar co-ordinates.
Performing this conversion and the calculation of A(r) and ¢(r) would
require more processing than simply using the quadrature model. To
avoid this a combination of the two forms of representing the
distortions was developed. The magnitude of the signal, r, was
calculated from the I and Q values, and from this A(r) and 0(r) were
evaluated. 0(r), the phase change, was then applied to the I and Q

levels to correspond to the required phase shift. A(r) can be
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expressed as a multiplier of the I and Q values to give their

magnitudes after the TWT distortions. This is done by:-

A(r) = kr (3.3.13)
where k is a multiplier
r is the magnitude of the signal

given from the I and Q values.

The range of the numbers that the HP4948A can handle is
limited to -1 and +1. A(r) and k can both exceed this range so they

require to be scaled along with the numerator and denominator of o(r)

and A(r). These scaled versions are:-
Alr) = 0.5 —— (3.3.14)
0.501 # &™)
0(r) = 60° —M”T (3.3.15)
0.5(1 + %)
Alx) 0.5(1 = r?)
X = ~aad 0.5 + 0.5 —;______E_ (3.3.16)
0.5(1 + %)

This scaling of the signal is removed, after the TWT
distortion has been introduced, by using a routine which alters the
signal to give a specified root mean square (RMS) level of the
signal. These steps, which are performed to model the TWT

distortions, are shown in the form of a flow chart in Figure 3.3.3.

This technique still did not meet the speed requirements for

implementing the required distortions. Furthermore, it was not
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Figure 3.3.3 Steps in modelling travelling wave tube distortions.
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possible to operate the HP4948A with lower data rates which would

have provided the extra time needed to complete the processing.

Updating the phase of the I and Q values and altering their
magnitude to distort the signal was an efficient technique. It
allowed the use of the amplitude-phase model while not requiring
conversions between rectangular and polar co-ordinates. The time-
consuming elements of the process were calculating A(r), ¢(r) and the
square root of rz. To overcome this inefficiency, a look-up table
approach was used. By constructing the look-up table as a function
of r2 no square roots had to be calculated, and k and ¢(r) values
could be simply obtained. Splitting r2 onto 128 steps from 0 to 1
gives a look-up table with its address offset being the 7 most
significant bits (MSB) of r2. This has a step size of less than 1%
in the look-up table, minimising the errors in ¢(r) and k. To
account for the backoff on the TWT, r2 is altered before it is used

as an address offset in the look-up table.

This technique, which is shown in the form of a flow chart in
Figure 3.3.4, successfully models the TWT distortion in the radio
simulation. The three fault types were simulated in a radio model as
shown in Figure 3.3.1. The changes in the various constellation

features with these introduced faults are detailed in Section 3.4.
Appendix B contains a listing of the subroutine which
simulates the TWT distortion and the program which calls up the

required subroutines to simulate a radio transmitter using the 4948A.

3.4 Constellation Feature Variation
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Figure 3.3.4 Technique for simulating travelling wave tube distortions.
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TWT power amplifier overdrive and underdrive, spacing errors
in the coder and non-orthogonal I and Q carriers were the faults
introduced into the radio model. These faults were introduced singly
to examine how they altered the constellation features of an
otherwise good radio. The ranges of these distortions examined
were:-

TWT overdrive up to 10 dB overdrive in 2 dB steps

TWT underdrive up to 8 dB underdrive in 2 dB steps

Spacing errors in constellation -10% to +10% in 1% steps

Non-orthogonality of carriers up to 5 degrees in 1 degree

steps

A complete set of these variations for all the constellation
features for each fault are given in Appendix A. Figures Al to Al2
show the variation of the geometric features for the different levels
of TWT backoff. The "normal" level for the TWT amplifier was taken
to be when the TWT amplifier was backed off by 12 dB. This figure
was chosen because it represents a level with little constellation
distortion, but with the TWT still being driven quite hard and,
therefore, in its efficient operation region. A TWT amplifier
backoff greater than 12 dB is an underdrive and one of less than
12 dB is an overdrive. Figures Al3 to A24 show the variation of the
geometric features with the varying degrees of non-orthogonality of
the carriers. Figures A25 to A36 show the variation of the geometric

features with the introduced spacing error of the constellation.

The geometric features which show a distinct relationship
with the level of TWT amplifier backoff are the inner expansion,
outer compression and the inner to outer differential rotation.

These variations with TWT backoff are shown in Figures 3.4.1, 3.4.2

Note The TWT amplifier backoff is the reduction in the input signal from the
level at which the output signal reaches saturation.




55
15 4
¥
*
*
12 4
%
*
¥
S
) ¥
! *
l *
| %
! ¥
|
z ‘TL T LG L L] T N |
e S 10 1S5 =) =] 32

Travelling wave tube backoff (dB)

Figure 3.4.1 Variation of outer states compression with travelling wave
tube backoff.

i .l
i
15 <
f s ¥
: *
| ¥
12 -
¥
5 B *
¥
¥
*
Z 5 T T p= 1 * T e
2 5 10 15 20 25 %)

Travelling wave tube backoff (dB)

Figure 3.4.2 Variation of inner states expansion with travelling wave



inner Lo outer rotation \(aegrees)

56

2 .
|
|
5
*
12 4 ¥
|
? '
|
|
5 *
| :
; ¥ ¥
| ¥ .
¥
zljr T T T T ml
2 S 18 15 20 29 £ |
Travelling wave tube backoff (dB)
Figure 3.4.3 Variation of inner to outer rotation with travelling wave

tube backoff.



57

and 3.4.3. These features vary over the whole range of the
introduced TWT amplifier distortions. All of the other geometric
features, apart from the correlation coefficient, remain constant
over the full range of TWT backoff until the backoff is less than

6 dB (that is a TWT amplifier overdrive of more than 6 dB). This
change, when the TWT amplifier overdrive is greater than 6 dB, arises
from distortions causing the signal states to cross the normal
decision boundaries introducing a change in the signal statistics.
The correlation coefficient rises as TWT amplifier backoff is
increased until a 6 dB underdrive is reached and, thereafter, remains

constant.

The constellation features which show a discernible
correlation with the spacing error in the modulator are the I gap
spacing error and the Q gap spacing error. Figures 3.4.4 and 3.4.5
show the relationships between the introduced spacing error and the I
and Q gap spacing errors. All of the other constellation features

remain constant over the whole range of introduced spacing errors.

One of the constellation geometric features shows a clear
relationship with the introduced non-orthogonality of the I and Q
carriers. This feature is the non-orthogonality of the signal
constellation; the variation of this feature with the introduced
carrier non-orthogonality is shown in Figure 3.4.6. The other
features all remain constant over the examined range with the
exceptions of the I.Q. pool variance and the correlation coefficient.
However, these features vary so little compared to their overall

magnitude that they provide little information.
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The features which show a distinct relationship with the
faults present provide a basis for establishing the level of each
fault present. Those constellation features, which remain constant
for most fault conditions, can be used to reinforce the conclusion
that the radio is correctly adjusted since they would be expected to
vary with the introduction of other unexamined faults (such faults
would prevent the radio being correctly adjusted). The generation of
rules to determine the condition of the radio and the levels of the

faults present is detailed later in Chapter 5.
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CHAPTER 4

EXPERT SYSTEMS

4.0 Introduction

In Chapters 2 and 3 accounts have been given of digital radio
and a model of a digital radio. These accounts are a preliminary to
the discussion of the use of knowledge-based systems for the purpose
of diagnosis of faults in digital radios. This chapter provides a
brief review of knowledge-based or (expert) systems which recently

have become a popular area for research [1,2,3,4,48,49].

First in Section 4.1, the advantages and the most productive
areas of use for these systems are discussed. The limitations and
problems associated with the development and operation of these types
of systems are also detailed. Section 4.2 outlines the basic
structures of knowledge-based systems and the search techniques they
employ. In Section 4.3, a brief overview of the programming
languages used for expert systems, and of how these languages and
expert system shells can be of use for system construction, is given.
Some of the systems which have already been developed are presented
in Section 4.4. The discussion includes their areas of expertise,

operating structures, impact, advantages and disadvantages.

4.1 Advantages of Knowledge-Based Systems

Knowledge-based systems are optimised to solve, or help to
solve, a problem which would normally be referred to a human "expert"

in the field. They can approach, and in certain situations even
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surpass, human performance levels. These systems capture human
judgement or expertise for use in areas where there is a scarcity of
skilled encineers. A system to aid or replace an expert is a
valuable commodity which would release him or her to perform
additional tasks. Areas of application of knowledge-based systems
outwith engineering include: medicine, geology, chemistry, law, sonar
data interpretation and speech understanding amongst others
(50,51,52,53,54,55]. The majority of these systems are diagnostic

type systems, but some have been developed for aiding, planning and

advising functions.

Much of the work into expert systems has been performed by
researchers from the Artificial Intelligence (AI) community, among
whom there is substantial discussion as to whether these systems are
"intelligent" or are merely an extension of conventional programming.
This debate is centred around the large quantity of data which is
programmed into the knowledge-bases of these systems and used to
solve the problems. The point of contention is whether this
constitutes a similar basis for the thought processes in humans and
artificially intelligent systems, or if it is simply an elaborate
form of programming. This debate has been going on for many years
and will doubtless continue, but is relevant only to the definition
of expert systems within AI, and not to their actual implementation
and application. It is far more important to determine what can

actually be achieved by such knowledge-based systems.

An expert usually has to find the solution to a problem from
incomplete data using "expert knowledge" in the problem domain. A

human expert will have a knowledge both of the problem area and of
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the different ways that exist for solving the problem; this is termed
"meta-knowledge" or knowledge of the knowledge. Once this meta-
knowledge (of the problem solving techniques) has been programmed in
an appropriate form into a knowledge-base, it is possible to produce
a useful expert system. These methods of problem solving are often
referred to as heuristics. The knowledge engineer must understand
both the system's structure and the problem area, so that he can

correctly interrogate the expert and elicit the required information.

A knowledge-based system may be able to perform some or all

of the following:

(1) Solve the problem

(2) Explain its solution

(3) Learn from tackling the problem

(4) Update the knowledge-base

(5) Determine whether or not a problem lies within its area of
expertise

Any given knowledge-based system [14,56), however, will only
be able to perform a subset of these tasks; this should not present
any difficulty because, depending upon the application area, only a
certain subset will be needed for each specific problem. The
structure used to implement the expert system will be dependent upon
the tasks to be undertaken. A review of structure types and their

relative merits is given in Section 4.2.
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The most important requirement of an expert system is that it
be able to solve the given problem. The requirements for all the

other capabilities of an expert system are application dependent .

An explanation of the solution which has been arrived at may
be required for several reasons. If the expert system is being used
as an aid for a human expert, the human expert may require to see the
reasoning behind the system's solution before being prepared to use
it. If the human expert is not satisfied with the system's
reasoning, it may be possible for him to use this information to help
update the system's knowledge-base (if it is possible to alter the
knowledge-base). An explanation of the solution is also vital when
the expert system is being used as a teaching aid; under those
circumstances it is necessary to make explicit the reasoning behind
each decision if the user is to achieve an adequate understanding of

the process.

The facility of learning [8,9,57] from performing the task
allows a knowledge-base to be automatically improved upon if a
particular solution to the problem proves to be incorrect or
incomplete. This feature is potentially one of the most useful, but
it is also one of the most difficult, to implement. Learning of this
kind would imply that the initial generation of the knowledge-base
would be less critical since it would be continually updated during
operation. However, if the initial performance of the system has to

be near perfect, then learning would not be of such great benefit.

If the system can determine whether a problem is within its

area of expertise (or knowledge domain), then the system will not
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attempt to find a solution when its expertise lies outwith the

problem area.

There are many applications where carefully developed
knowledge-based systems can be of great value. A variety of tasks
which an "expert" is needed to perform have a narrow problem domain.
Expert systems are particularly well suited to this type of problem
since it is possible to produce a complete but still manageable
knowledge-base. In many situations an expert system's performance
can surpass that of a human expert purely because it is reliable and
immune to the boredom of the task. Used as teaching aids,
furthermore, these systems can train their operators and bring them
up to "expert" levels thus allowing less skilled personnel to

undertake the work, and so release the experts for other tasks.

There is, therefore, great potential for those systems to
increase productivity. To date, productivity has been limited by
lack of sufficient suitable expertise, although the availability of
systems which can perform experts' tasks would seem to allow

unlimited possibilities for production and development in many

fields.

There are, however, several problems. The main difficulty is
associated with the generation of a knowledge-base [12]. The problem
area has to be reasonably small so that whilst the knowledge-base
remains manageably small it can nevertheless be comprehensive. If
the knowledge-base is incomplete (that is, information for solving
certain problems is missing), or if it is too large to implement as

part of an economic system, the expert system will be of no use.
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Once it has been determined that an expert system represents a viable
solution to a particular problem area, generation of the knowledge-
base may still prove difficult. The knowledge-engineer must extract
information from an expert who may not be able (or willing) to pass
on this information. The final task in the generation of the
knowledge-base is to determine if it is complete or if more details

are required from the expert.

It is evident that the areas of application of expert systems
are limited to some degree. However, it is possible to build useful
expert systems if the problem domain is suitable and if the knowledge
engineer can gain the required information to generate the knowledge-
base. These systems can be expected to increase productivity and
performance, and to provide an important aid for established experts.
In addition these working systems then form a starting point for
producing more elaborate systems for solving more complicated

problems.

4.2 Expert System Structures

Most expert systems (5] organise their knowledge on three
levels: the data, the knowledge-base and the control. Figure 4.2.1
shows a general structure for an expert system. The control, or
"inference engine", is generally kept as simple as possible to
minimise the work required to produce comprehensive explanations of
decisions and to make changes and improvements to the overall system
easier to implement. A well designed system will make use of
redundancy in the information available to help reach a solution.

Redundancy involves making use of several paths leading to the same
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control knowledge
outside data base
world (inference engine)
output

Figure 4.2.1 Structure of a knowledge-based system.
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answer. Moreover, these multiple paths mean that the confidence in
the solution [13,58,59] can be reinforced. The inference engine can
also interface the data and the knowledge-base to update the
knowledge-base. It is possible for the knowledge-base and the
control to be merged into one unit, but it is generally more

convenient and common to keep them separate.

There are four main types of structure for the control: rule-
based, structured, logic and mathematical relationship systems.
Other types of structure exist but these are generally combinations
or slight alterations of these four. The following considers each of

the main types of structure:

(1) Rule-based Systems

Rule-based or production systems [6,60] consist of a set of
rules and a rule interpreter which decides the order in which the
rules are triggered or accessed. The rules of the system are applied
to the available information (the data) to reach one or more
conclusions. These conclusions can have a "confidence level" which
provides an indication or measure of the reliability of the final
conclusion. Valid conclusions for this type of system would include
a rule reporting that the problem was unknown to the system. This
would indicate that the system was being used to solve an

inappropriate problem.

Production systems can be forward or backward [6] driven,
that is, the reasoning can be data driven or goal driven. Data

driven, or forward chaining, takes a set of conditions or data and



69

uses these to reach a goal or goals. Goal driven, or backward
chaining, uses a conclusion or conclusions and establishes the
conditions required for these conclusions. These required conditions
are compared to the available data to see if the goals are valid.
The forward or® backward chaining processes can be performed in one
stage or multiple stages to reach the final conclusions. If there
are several stages, the goals from one stage are used as the input
data for the next stage. This type of multi-stage process can be
termed a "blackboard" system [61]. A blackboard system is one in
which hypotheses are put forward by several stages of a system and
these are then added to, or altered by, other stages of the system.
It is termed a blackboard because it can be compared to several
different experts each putting forward hypotheses on a blackboard,
with other experts then altering or updating the current best

hypotheses held on the blackboard.

Rule-based systems require a comprehensive set of rules,
known as a rule-base. These rules need to cover the conditions which
would be encountered for every different conclusion being considered.
During the development of such a system the knowledge engineer, who
generates the rule-base, and the expert, from whom he extracts the
information, must both ensure that all the required combinations of
data and conclusions are adequately covered. Once a comprehensive
rule-base is constructed this type of system can be very useful, as
explanations of decisions can be obtained by recording which rules
were used in reaching each conclusion. If, however, it is not
possible for the expert to express his knowledge in the form of
explicit rules to cover all the possible outcomes, then rule-based

systems do not provide a suitable structure.
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(2) Structured Systems [6,62]

These are systems which can be expressed as a structure of
nodes and arcs as in graph theory. These systems group information
in a "natural" way for use within an expert system. Semantic nets or
associative nets consist of nodes with connecting links representing
the various associations present. For example, the link between an
eagle and a bird could be "a kind of". This could then be used to
find out what type of animal an eagle is. A system of this type can
in many cases be more efficient than using a large number of
production rules. However, graph searches can have combinational
explosion problems when there is a large quantity of information

available.

Frame systems are constructed of frames which group
information about a particular topic into slots. The frames are
organised into trees to form hierarchies of subjects and their
attributes. These trees can then be matched to conclusions and,
depending upon the degree of matching, a confidence in the conclusion
can be given. An example of a frame for a person is: name, age, sex
and height. Then, as part of a tree, a subject with specified
attributes can be found. There are, however, some situations where
there is no convenient way of structuring the knowledge, and in which
case structured systems cannot be used. The search mechanisms for
structured systems, like production systems, can be goal or data

driven.

(3) Logic Systems [6]
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These systems have all their knowledge expressed in the form
of logical statements and they use this information to deduce the
conclusions. For example, if the system knows that "all birds have
wings" and is then given the information that "an eagle is a bird" it
can then deduce that "eagles have wings". These logically based
systems can be used for a variety of applications but not in
situations where it is not possible to form logical statements to
express the knowledge available to the system. These theorems of
logic are often implemented using logic programming languages such as
Prolog [63]. Using these methods with a knowledge-base of logical
theorems and a given set of input data, inferences to specific

conclusions can be made.

(4) Mathematical Relationship Systems

Some systems provide either an exact or an approximate
mathematical relationship [64,65,66] between the input data and the
goal. There are many different types of mathematical relationship
which can be used as the basis of one of these systems, but the exact
relationship between the data and the goals must be known. These
conditions are only infrequently met; if they are not, then there has
to be a way of training a suitable mathematical algorithm. The
algorithm after training must approximate the relationship between
the data and the goal. Mathematical systems are suited to problems
which involve numeric rather than symbolic data and in many
situations provide the most efficient method of implementing an
expert system. If an exact relationship is not known and training of
an algorithm is impracticable, then a different method will be

required.
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These four types of systems are not mutually exclusive and
some systems are built using combinations of the techniques to reach
a solution to the problem. Each method reduces the scale of the
problem by defining the search space in a different manner. Benefits
and drawbacks can be found for each technique, with no single method
or combination of methods proving to be the best for every
application. The problem area under investigation must be carefully
studied so that any structure or other search space reducing
technique can be exploited to provide the simplest and most efficient
expert system solution. Combinations of system types are often

implemented using a blackboard structure.

Expert system shells [67,68,69] are used as a quick and easy
method to develop expert systems. These shells can have any of these
structure types or combination of these structure types and are

discussed in Section 4.3

4.3 Languages and Shells for Expert Systems

There are many different programming languages used to
implement expert systems. These range from the conventional
programming languages (70,71] like Pascal and "C", to the languages
used primarily by the AI community like Lisp [72] and Prolog [63].
In addition to these, many programming environments have been
developed which are based on these languages and which simplify the

implementation of systems.

Prolog and Lisp are the two languages most often used by AI

programmers and expert system designers. Prolog has been chosen by
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the Japanese for their Fifth Generation projects and is also widely

used in Europe whilst Lisp is most common in North America.

Prolog is specifically designed for logic programming, and,
hence, it is used differently from conventional languages. Writing a
Prolog program involves specifying some facts about objects and
relationships and then providing rules about the objects and their
relationships. These relationships in Prolog are termed "predicates"
and the objects are "girguments". When questions are asked about
these arguements and their predicates, the Prolog program will infer
a solution. Prolog can be viewed as a limited form of logic
programming which infers a solution from a set of logical
relationships. This provides a way in which many solutions to expert

system problems can be viewed.

Lisp, a list processing language, knows little about numbers
and, therefore, is of little use for applications which have large
numeric computational requirements. Lisp deals mainly with symbols,
the structures of lists of symbols and their relationships. There
are many different variations of Lisp which limit the portability of
Lisp systems between machines, but it provides a convenient vehicle
for problems requiring symbolic manipulation. It is suited to areas
where little numeric capacity is needed. This type of symbolic
processing lends itself well to solving certain knowledge-based

system implementation problems.

Prism and Poplog (73] are two useful programming environments
used in the development of expert systems. Prism is not yet on the

commercial market, but it is used at Hewlett-Packard as an internally
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available development tool. It is a Lisp-based environment which
Hewlett-Packard have been developing to aid their evolution of
systems in the general field of AI. This software environment has
not been written for run-time efficiency, but for ease of prototyping
and improvement. The development of the machine learning system
detailed in Chapter 6 was carried out using Prism and it revealed the
significant increase in productivity offered by this type of software
environment. Upon completion of the development stage the machine

learning system was translated into Pascal to decrease its code size

and run-time, and to increase its portability.

Poplog is an environment for list processing and logic
programming. There are two programming languages available to the
user of Poplog: Pop-11 and Prolog. Both Poplog and Prism provide
many utilities to the user to make system development quicker and
easier than it would be using conventional techniques. These
environments, however, do require more powerful computers to run on
than standard techniques. They are complete environments which the

user enters upon logging on and remains within until logging out.

Poplog and Prism are best suited to applications in different
problem areas as are their base languages. The choice of software
environment is, therefore, dependent on the specific application and
it should be the type of tool which will best exploit the most
convenient methods for the problem solving. A choice of this kind
will also be affected by system availability and familiarity of the

user.
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The expert system shell is a further advancement beyond
programming environments which makes system development even more
efficient. An expert system shell is simply an expert system with an
empty knowledge-base. To create a working system, this empty
knowledge-base has to be filled with data in the required form. This
puts constraints on the problems which a shell can be expected to
handle and so a shell must be specifically tailored to a particular
problem type; its areas of application, therefore, are limited.

Where suitable shells already exist they allow quick system
development, minimising the work required from the knowledge engineer

to produce the knowledge-base. The requirements are that:

(1) A production system shell must have a set of rules for the
interpreter to trigger.

(2) Structured system shells require the frames, nodes and links
to be established for the inference engine to interrogate.

(3) Logically based shells require specification of the logical
theorems and relationships that form its knowledge-base.

(4) The knowledge-base of the mathematically based shell is
created by training the algorithms in the shell, or by
providing mathematical functions relating the data to the

conclusions.

Although these shells can greatly speed up the process of
constructing an expert system, there are a few associated problems.
In order to make full use of the benefits available from an expert
system shell it must be possible to express the knowledge of the
domain in a form suitable for the knowledge-base of that shell. If a

shell with the desired attributes for tackling a given problem is not
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available, it is generally better not to use a shell than to use an
unsuitable one. For any particular problem under examination a shell
with the correct attributes must be found. If a suitable shell is
not available, then the use of a different and less suitable shell
will probakly create more problems than simply trying to implement an

expert system from scratch.

A shell which uses a knowledge-base of an appropriate form
and which searches that knowledge-base efficiently can greatly reduce
the time required to produce prototype systems, and the major
advantage will be the speed at which prototyping can be performed.
The prototype allows the performance of the system to be evaluated
when solving the given problem. If this performance proves

satisfactory, then a final system can be produced with the shell and

knowledge-base as a model.

The reason for using shells only for prototyping is that many
shells are not written for efficiency of code size and speed of
operation, but for ease of generation of an expert system. To
increase the speed of operation and the variety of machines which can

use the system, these prototypes require to be efficiently

implemented.

4.4 Present Systems and Their Impact

There has been much research into expert systems in recent
years. These systems are often called intelligent knowledge-based
systems (IKBS) rather than expert systems or knowledge-based systems.

Whatever they are called they all aim to achieve the same goals of
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replacing or aiding a human expert. Figure 4.4.1 gives a selection
of the systems which have been developed and which have formed the
basis for most of the publications on knowledge-based systems. These
systems can be used to illustrate the various features in an expert
system. They use varying types of knowledge-base and have different
search mechanisms which have been developed for theproblem types that
are encountered. Most of these systems are diagnostic systems. This
is partly because of the high demand for diagnosis, and partly
because expert systems are best suited to diagnostic type
applications where the problem domain can be kept narrow and well

defined.

The three most documented working systems from the literature
are MYCIN [74], PROSPECTOR [25] and XCON/R1 [75]. MYCIN is a medical
diagnostic system, PROSPECTOR is a system to aid the interpretation
of geophysical data for mineral exploration and XCON/R1 is used to

aid the configuration of VAX computers.

MYCIN is a backward chaining rule-based system which proved
successful in diagnosing antimicrobial therapy. Although MYCIN is
not widely used because of its need for a large amount of processing
power, it has spawned many other knowledge-based systems which use a
similar structure. These systems are used in situations with a
smaller problem domain than MYCIN‘s; the reduction in the domain
allows the system to remain at a manageable size. Two systems in
particular are derived directly from the MYCIN projects: EMYCIN [15]
(Empty or Essential MYCIN) which is an expert system shell using
MYCIN's structure and search mechanisms, and NEOMYCIN [15] which is a

system to help generate the rule-base for MYCIN.
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YSTEM EXPERTISE

ASNET Glaucoma diagnosis

NTERNIST Internal medicine

)X Medical consultation

(CIN Antimicrobial therapy

JFF Pulmonary function tests

Lpmeter 0il exploration

ivisor

INDRAL Molecular structures

ROSPECTOR Mineral exploration

\RT /DASD Computer fault analysis

AS 0il well log

J Circuit analysis

"ON/R1 Computer configuration

\CSYMA Symbolic integration

)LGEN Planning DNA experiments

)AH Robotic planning

\SP/SIAP Signals to symbols
Figure 4.4.1
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Stanford

SRI
IBM/Stanford
Amoco/Rutgers
MIT

CMU/DEC

MIT

Stanford

SRI

Stanford

A selection of expert systems and their areas of expertise.
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PROSPECTOR is a system which is used for mineral exploration.
It provides help for geologists in locating certain types of mineral
deposits by examining information from the survey data. PROSPECTOR
covers only a limited number of geological structure types, but even
so it has been successfully used to find a previously overlooked
valuable mineral deposit. This provided a demonstration that a
strategy which keeps the problem domain sufficiently narrow makes it

possible to use these types of systems to solve significant problems.

XCON/R1, a system developed by the Digital Equipment
Corporation (DEC) to help configure VAX computer systems, has now
been in use for several years. This system has saved DEC several
million dollars in producing specific system configurations to meet a

customers' specification.

Although there is much literature detailing theoretical
architectures for expert systems and their search methods, there
seems to be little material on operational systems (76,77,78]. The
main problem appears to be that the expectation of the capabilities
of knowledge-based systems is too high and, hence, the developed
systems require too much processing power to be economically viable.
Apart from the systems already mentioned, most of the working systems
in existence are small and cover very limited problem areas. By
concentrating on practical applications for problems which have
realisable solutions, expert systems will come into their own. If
too much time is spent on deciding upon the intelligence of a system,
or on systems to cope with unbounded problem areas, then expert

systems will continue to be very much of a theoretical nature.
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As expert systems which work on bounded problem areas are
developed it is expected that their use will increase rapidly. The
increased use of expert systems will ensure that the systems become
more refined and knowledge engineers become more familiar with the
types of solution which best suit their problem types. Greater
availability of expert systems will release many experts to perform
other more productive work, or will simply provide an aid for experts
and improve their reliability. Benefits of increased production and
reliability without an accompanying increase in personnel will be
achieved. Reliance upon certain key personnel, whose absence would
otherwise completely stop production, will be reduced. This
particular benefit could create a problem: an expert may not be
willing to impart his knowledge for a system which could affect his
job security. This difficulty, however, is unlikely to be very great
as systems will have to be built on very narrow problem domains if
their construction is not to prove impracticable. Human experts
cover broader domains than could be achieved by an expert system and,

therefore, could not be replaced solely by any such system.

The narrow problem domains which would be suitable for expert
system application include the areas of automated test and specific
fault diagnosis of a wide range of equipment. These are areas of
production where reliability and speed of test and adjustment
currently present problems. With suitable knowledge-based systems
these problems can be minimised and production rates improved. The
following chapters in this thesis provide an example of the
application of knowledge-based systems to one specific area:

diagnosis of faults in digital microwave relay equipment.
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CHAPTER 5

RULE-BASED SYSTEM

5.0 Introduction

In Chapter 4, four main types of control for knowledge-based
systems were described. The first of these, the rule-based system,
was selected for the task of fault diagnosis in a digital radio.

This method was chosen because it is currently the most commonly used
technique for implementing diagnostic expert systems, and intuitively
rules with a set of conditions for a given conclusion are the most
direct solution to this type of problem. Rule-based systems can
require a great deal of "expert" knowledge about the problem and can
take a long time to produce, but they do provide an understandable
solution to the problem. This comprehensibility arises from the
ability to examine the actual rules being used to find out how the

diagnosis is actually being performed.

Two approaches to implementing the rule-based system were
attempted: one used a Prolog expert system shell and the other was
written in the C Programming language. Both of these methods of
implementing a diagnostic rule-based system are presented; the Prolog
expert system shell is described in Section 5.2 and the C based
system in Section 5.3. The rules used for both methods of
implementing the rule-based system are the same; the generation of
these rules which define the relationships between features and
faults, is detailed in Section 5.1. The performance of the C based

system, when used for diagnosing faults in the radio model, is
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reported in Section 5.4. A brief summary of this Chapter is

presented in Section 5.5.

5.1 Rule Generation

Figure 5.1.1 shows a flow diagram of the steps involved in
the generation of the rules, these steps are described in more detail
in the remainder of this Section. The rules which express the
relationships between the features and the faults are the same
irrespective of which method of implementing the rule-based system is
used. In Section 3.4 the variation of each geometric feature with
the introduced fault conditions was presented. The figures in
Appendix A illustrate the variation between the features and the
faults. Certain features formed a distinct relationship to specific
fault conditions; these variations of features with introduced faults
are shown in Figures 3.4.1 - 3.4.6. Other features, however,
demonstrated a less pronounced association with the fault conditions,
and these features were not used to provide information about the

levels of the specific faults.

The TWT power amplifier overdrive and underdrive faults were
most closely related to: the outer compression and the inner
expansion of the constellation states, and to the differential
rotation of the inner and outer constellation states. The geometric
features bearing the clearest association to the introduced gap
spacing error in the modulator were the I gap and the Q gap spacing
errors. The parameter which demonstrated a clear correlation with
the introduced non-orthogonality of the I and Q carriers was the non-

orthogonality of the signal constellation.
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Plot relationships of all
the features and faults.

Determine which fault/feature
relationships provide the
most information about each
fault condition.

Establish the fault conditions
which will effect the features
used to determine other faults

Write rules from the
fault/feature relationships
to determine each fault
level, taking account of
those conditions which effect
_other determining features.

Produce a complete set of
rules in the required form
for the system being used.

Figure 5.1.1 The steps involved for rule generation.
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These six geometric features formed the basis for the
"generation" of the rules to perform the fault detection and to
determine the levels of the faults which are present. Some of the
geometric parameters showed such a weak coupling to all of the faults
under examination, that it was impossible to extract from them the
information about which of the distortions were present. These
geometric features were not used to generate any of the rules, but
they would be employed to determine other unexamined fault types
which affected these parameters in a quantifiable manner. The
constellation features which were unused were: the I pool deviation,
the Q pool deviation, the I.Q pool variance and the correlation

coefficient.

The remaining constellation features were used, in
conjunction with the features which exhibited a clear relationship to
specific faults, to determine whether the radio was well adjusted. A
rule was generated which determines if the radio is "normal" (or well
adjusted). This is the first test to be carried out on the
constellation and it checks that the expected level of each feature
within the constellation is, in fact, found. If the radio is
established as being correctly adjusted the system will indicate this

to the user and terminate its analysis.

To identify the possible fault conditions, it is necessary
that rules be written to attribute the variation of specific features
to specific fault conditions. This is not a trivial task since the
geometric features which vary in a certain manner due to one of the
introduced faults can be altered by the presence of another fault.

The non-orthogonality of the I and Q carriers and the constellation
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spacing faults only affect their own determining features. However,
when the TWT amplifier overdrive is 6 dB or greater all of the
geometric features start to vary. The variation of all of the
parameters is caused by incorrect decisions being made about which
signal state specific symbols belong to. The abrupt changes in the
feature set indicate that the signal constellation is being received
incorrectly. The changes can aid the correct determination of the
level of TWT overdrive, but adversely affect the diagnoses of the
other fault types. The techniques for overcoming these difficulties
are explained in the descriptions of the rules for establishing the

gap spacing errors and the non-orthogonality of the I and Q carriers.

In order to establish whether a TWT amplifier underdrive or
overdrive fault exists and, if so, what magnitude of fault is
present, we use the outer states compression plus inner states
expansion (the inner to outer expansion), and the inner to outer
states differential rotation, as the determining features. The inner
Lo outer expansion was chosen in preference to using the two
geometric features of expansion and compression because both features
appeared to vary in a similar manner, and using one combined feature
made the writing of the rules simpler. The inner to outer expansion
variation with TWT backoff is shown in Figure 5.1.2. The rule to

establish whether there is a TWT overdrive present is:

If the inner to outer expansion is greater than 8.5%,
and the inner to outer differential rotation is greater

than 3.5 degrees, then there is a TWT overdrive.
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The threshold values of 8.5% and 3.5 degrees were selected after

examining the relationships shown in Figures 5.1.2 and 3.4.3.

TWT underdrive is determined by the following:
If the inner to outer expansion is less than 8.5%
and the inner to outer differential rotation is less

than 3.5 degrees, then there is a TWT underdrive.

To establish whether there is an error present in the coding levels

the following rule is used:

If the I gap spacing error or the Q gap spacing error

are not zero, then there is a spacing error present.

The presence of an error in the orthogonality of the I and Q carriers

is concluded by:

If the measured non-orthogonality of the constellation
is not zero, then there is an error of non-orthogonality

of the I and Q carriers.

These rules determine whether the radio is normal or if there
are any of these faults present. However, if the radio is not normal
and there are no faults present, there is a rule to indicate that the

radio is in an unknown condition and the processing is stopped.

The remaining rules establish the levels of each fault
present. If there is a TWT overdrive or TWT underdrive fault, then

there are a set of rules to establish the level of overdrive and
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underdrive. These rules use the expected values of inner to outer
expansion and inner to outer differential rotation for each specific
level of TWT backoff. These expected values were found by examining
the relationships shown in Figure 5.1.2 and Figure 3.4.3. When the
expected values of these features correspond to a specific level of
overdrive or underdrive, the conclusion formed by the rule is that
this is the actual level of the TWT overdrive or underdrive. An

example of one of these rules is:

If the inner to outer expansion is 17% and the inner
to outer differential rotation is 7.5 degrees then there

is a TWT amplifier overdrive of 4 dB.

These rules are used if a TWT overdrive or underdrive has been

indicated by the earlier rules.

Several factors must be accounted for before the level of a
constellation spacing error can be determined. The receiver is
required to "lock" onto a signal constellation which is generated by
a pseudo random binary sequence (PRBS). Since there is no
information for the receiver to establish a reference phase, it is
possible for the receiver to lock onto the signal in any one of four
orientations, corresponding to phase shifts of 90 degrees. To
overcome the problem of the I and Q values and the sign of the errors
being interchangeable, the sum and the difference of the I and Q gap
errors are used as the determining parameters. This removes
information regarding whether the fault occurred in the I or Q leg of

the coder, but the magnitude of the fault can still be diagnosed.
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The variation of the I plus Q gap spacing errors with the
introduced spacing errors is shown in Figure 5.1.3. Two rules are
used to establish the level of the gap spacing error: one is used
when there is a TWT overdrive fault and the other if there is no TWT
overdrive present. The two rules are required because the I and Q
gap error features are altered for high levels of TWT overdrive. 1In
the presence of TWT overdrive, the I and Q gap errors increase by
approximately equal amounts so the spacing error in the modulator can
be estimated by taking the difference between the I and Q gap errors.
The calculation of the I and the Q gap errors introduces a scaling
factor of two over the introduced spacing error, and this scaling is

removed by the rules.

The two rules for determining the level of the spacing errors

are:

If there is a spacing error and there is no TWT overdrive,
then the level of the spacing error is interpreted as twice

the sum of the I gap and Q gap spacing errors.

If there is a spacing error and there is also a TWT overdrive
present, then the level of the spacing error is identified as

twice the difference between the I gap and the Q gap errors.

The error on the estimate of the spacing error is increased by the

presence of TWT overdrive.

The level of the non-orthogonality of the I and Q capriers is

determined by the measured non-orthogonality of the signal

Note ~The rules used will not correctly identify the gap Spacing errors if the

I and Q channels are both in error by the same amount and there is a TWT
overdrive.
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constellaticn. However, if there is a TWT overdrive present then the
confidence in the estimate of the level of the non-orthogonality

error is diminished.

There are also rules which provide an explanation of the
fault diagnosis that has been performed. The explanatory rules
examine which faults are present, and indicate to the user the values

of the features which were used to determine the faults.

5.2 Prolog Shell

An expert system shell written in Prolog was used for the
first attempt at developing a rule-based system. The shell (KS-299)
is based on a shell written by Tecknowledge Inc. (KS-300). Appéndix
C is a listing of the source code for this shell. The Prolog expert
system shell is an interpreter of a knowledge-base of rules which

must be of the form:

Rule N : if PREMISE then CONCLUSION

Where rules 1 to N correspond to combinations of PREMISES and

CONCLUSIONSs.

A PREMISE is a simple proposition about the value of a
variable, or that a fact is known or unknown. It can also be a
combination of propositions built up using "and" and "or".

A CONCLUSION can either simply state the assumed value of a
variable or it can also include a level of confidence in its
assumption. A CONCLUSION may also be a combination of simple

conclusions built up using "and".
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The confidence in a CONCLUSION expresses the degree of belief
in that CONCLUSION and in our system it lies in the range from
0 to 1000 inclusive. A confidence level of 0 indicates that there is
no belief in the CONCLUSION at all. The reliance upon a CONCLUSION

is unqualified if the level of confidence has a value of 1000.

The knowledge-base also contains a list of questions which
can be asked of the user to ascertain facts or the values of

variables. These are given in the form:

QUESTION obtains "information™ - where a QUESTION is a
question to ask the user and "information" is the variable or

fact which answers the QUESTION.

Figure 5.2.1 is an example of part of the knowledge-base used
with this shell to perform the fault diagnosis of the digital
microwave radio equipment. The complete knowledge base used is in
Appendix D. Figure 5.2.2 is a flow diagram of the sequence of tasks

performed by the shell in performing its fault diagnosis.

The system is similar to MYCIN in that it performs its search
of the knowledge-base by backward chaining. When asked to find
"information" it searches to see if a QUESTION refers to the
"information". If there is, the QUESTION is used and the shell will
not use any rules to establish the "information". If, however, there
is no suitable QUESTION, the rules are searched for those which have
a CONCLUSION that indicates a value for the "information". The
system then attempts to satisfy the PREMISE of each of these rules.

This is performed by finding all of the rules with a CONCLUSION
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"What is the correlation coefficient’
finds correlation.

‘Are the I and Q gap errors different (y=>1, n=>0)’
finds iq diff.

rule 1:
if expan=8.5
and iqgap=0
and rot=0.5
and nonorth=0.25
and ratio=1l
then fault=normal cf 950.
rule 2:
if expan=12 or expan=17 or expan=22.5 or expan=27.5
then expan_cond=overdrive expan.
rule 3:
if expan=3.5 or expan=3.5 or expan=2.5 or expan=1.5
then expan_cond=underdrive expan.
rule 4:

if drot=0.5 or drot=1.5 or drot=2.5
then drot_cond=underdrive drot.

Figure 5.2.1 Excerpt from the knowledge-base used with the prolog
hell.
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Find Faults

Is there a question no Is there a rule to no
to find the information find the information

yes yes

the rule

N

yes Is additional
~ information required

]
|
' 1 Ask Question Attempt to satisfy

A%

no

no Have all the current
rules been completed

/N

yes v/

Output the faults
and their levels

Figure 5.2.2 The sequence of tasks performed by the shell for its fault

diagnosis.
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relating to each PREMISE before moving on to the next PREMISE. The
shell first attempts to satisfy those rules which are non-recursive,
that is rules in which the PREMISE and the CONCLUSION do not both
refer to the "information". This enables the shell to establish
something about the "information" preventing it from using the same
rule to complete its own PREMISE when attempting to satisfy a

recursive rule.

The system uses confidence factors in a similar way to MYCIN.
The confidence in the PREMISE of a rule is assigned to the CONCLUSION
of that rule. This confidence level will then be modified by the
confidence factor specified in the CONCLUSION of the rule. If the
confidence in the PREMISE is A, and the confidence given in the
CONCLUSION of the rule is B, then the new confidence C in the

CONCLUSION is given by:

C = 1000*(1-(1-A/1000)*(1 - B/1000)) (5.2.1)

Unless A and B are independent, there is no theoretical basis
for this method of manipulating confidence factors. However, as A
and B are normally subjectively determined by a human "expert" this
is not too important. Provided the depth of search (the number of
levels of rules used) is not too great (less than five levels), this
method of manipulating confidence levels is documented as working in

practice.

When trying to establish the PREMISE the shell attempts to
satisfy each part of the PREMISE in turn. The confidence in the

PREMISE is given as the lowest confidence of any conjunction
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(A and B) or the highest confidence of any disjunction (A or B) that
occurs in the PREMISE. If the confidence is less than 200 the
PREMISE will not be satisfied. If in a conjunction, working from
left to right, the system cannot satisfy any one condition, then it
will not try to satisfy the others and will fail the PREMISE. In a
disjunction, working from left to right, the shell will stop as soon
as it establishes a condition with a confidence of 1000 and will
satisfy the PREMISE without attempting to satisfy the rest of the

disjunction.

The system has no means of ensuring that a user’s reply is
valid, nor does it permit the user to specify a confidence in a
reply; it simply assumes a confidence level of 1000. The system
cannot access any of the arithmetic function of Prolog and so rules
requiring any arithmetic cannot be written. Care is needed if
recursive rules are to be used. If there is a recursive rule, then
there also must be a non-recursive rule with the same ’information’
in its CONCLUSION to prevent the recursive rule initiating an endless

loop of calls on itself, trying to satisfy its own PREMISE.

The knowledge-base generated to perform the fault diagnosis
of the digital radio model consisted of 12 QUESTIONS to interrogate
the user on the values of the constellation features. To detect the
faults there were 27 rules in the rule-base. The rules detected
single fault conditions, but not the interactions caused by multiple
faults. There were no recursive rules used, which ensured that their
associated problems were avoided. The greatest depth of search by
these rules was three, thus the method of manipulation of the

confidence factors will remain adequate.
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The knowledge-base was simple to generate using the expert
system shell for development. Any information which could be
elicited from the user was specified as a question in the standard
form for the system. The rules which made use of this user-entered
information were put into the knowledge-base in the standard form.
The order in which the rules are entered into the knowledge-base is
unimportant as the shell’s interpreter searches the rules using a
backward chaining search. The above factors combine to ensure that
the only difficult task involved in generating the knowledge-base is

defining the rules for establishing each fault level.

The twelve questions and twenty seven rules covered all the
single fault conditions for the four faults under investigation. The

faults were:

TWT amplifier overdrive up to 8 dB in 2 dB steps

TWT amplifier underdrive up to 8 dB in 2 dB steps

Unequal constellation spacing levels from -10% to +10% in 1%
steps

Non-orthogonality of I and Q carriers up to 5 degrees in 1

degree steps.

When the system was tested on the digital radio model, with
single introduced fault conditions, all of the faults and their
levels were correctly detected. This performance is not surprising
since there is a separate rule corresponding to each level of each

fault condition.
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The shell was subsequently abandoned since one requirement on
the system is that it can diagnose multiple faults. With this shell
a separate rule corresponding to each combination of faults and
levels would be required. The number of rules required to cover all
these possible combinations of fault conditions would be 1134. This
would result in a knowledge-base which would be too large to be
practicable, but if the shell had the facility to access simple
arithmetic functions (addition, subtraction and inequalities), then

the number of rules needed would have remained manageable.

Although this shell was abandoned it did prove to be a
suitable prototyping vehicle for a simple rule-based system. The
generation of the knowledge-base was simple and straight forward as
only a standard form of questions and rules was required and its
operation was not dependént on their order. This shell would provide
an excellent method of generating an expert system if the determining
features for every fault encountered in the problem were mutually
exclusive. Once a system was generated and tested, it could be
translated from the Prolog shell and knowledge-base to another
programming language. This would allow the system’s code to be more
compact, efficient and machine portable. If the TWT overdrive had
been kept to less than 4 dB, then the determining features for the
distortions would have been mutually exclusive and this shell could
have been successfully used. However, without modifying the shell it
was not suitable for this application. Modification of the shell
would have been a major undertaking, and it was preferable to put

effort into an alternative approach to solving the problem.

5.3 C Based System
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Having tried the Prolog shell to implement the rule-based
diagnostic system and found it to be of limited value, an alternative
approach was chosen. The programming language ’C’ was chosen to
implement the system because C expertise is available within the

Department of Electrical Engineering at Edinburgh University.

The C programming language was originally designed for, and
implemented on, the UNIX [79] operating system which is used by all
the Department’s computing machines. The C programming language has
control flow, data structures and a large set of operators which have
not been restricted to one particular area of application. It is,
therefore, a suitable language to use during the development of an

expert system.

A structure for the system had to be decided upon now that it
was no longer constrained by the expert system shell. The method an
"expert’ would use to go about performing the fault diagnosis was
first examired. One possible approach an expert might use is shown
in Figure 5.3.1. This method can be viewed as a blackboard type
technique, where the expert initially forms a hypothesis as to what
faults are present and stores this as if on a ’blackboard’. A set of
rules then uses this hypothesis to form a further set of hypotheses
on the magnitude of each of the fault conditions which are present.
This information is then examined to determine if it agrees with the
data available from the signal constellation feature set. If there
is any disagreement the process is repeated to alter the non-
conforming hypotheses. When the constellation data and the
hypotheses agree, the faults, their levels and an explanation of the

reasoning behind the diagnosis is given.
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Evaluate the level of each fault and
where the fault does not match
expected feature values estimate

the magnitude of the impairment

Possible fault
magnitudes
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A

reached is valid or if the diagnosis
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Detail the faults and their magnitudes

and give explanations of the diagnoses

Figure 5.3.1 An expert'‘'s approach to digital radio fault diagnosis.
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The rule-based system written in C has a similar structure to
the approach shown in Figure 5.3.1, but without the option to rerun
the process to alter incorrect hypotheses. Figure 5.3.2 details the
structure of the rule-based system. The rule-based system does not
have the option to alter hypotheses because all of the information
available to the knowledge-base is @mbedded in the rules for
generating the diagnoses. The expert probably has additional
information which he does not initially use for his diagnosis and
this helps him to decide whether the final diagnosis is correct or
not. This may be information previously learned (from another
expert, literature of experience), or it may be something that was
not originally noticed. The rule-based system has to use all the
knowledge available in one pass to perform the fault diagnosis, and
it has no facility to ’learn’; any extension to the operation hés to
be achieved by physically modifying the rule-base. The lack of a
built-in 'learning’ capability is the main operational difference

between the C rule-based system and the human "expert’ .

The system performs its fault diagnosis by initially
accessing the signal constellation features which provide the
information about the constellation states’ geometry. These features
are then quantised to a set of discrete values to allow a reduction
in the number of rules required to perform the fault detection. The
limited number of values permitted for each feature implies that a
rule’s PREMISE can indicate that the level of a feature needs to be a
specific value. A range of values would have to be specified in the
rules if there were no restriction on the values that each feature
could have. To increase the system’s resolution extra levels would

be required for each feature at the quantisation stage, and
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Constellation features

N
Quantise feature set

Set of rules to establish
which impairments are
present

Set of rules to determine

the fault magnitudes

l

Set of rules for those

conditions which do not

conform to expected cases

Set of rules which explain
which features were used

to reach the diagnosis

Output the faults, their
magnitudes and explanations

Figure 5.3.2 The structure of the rule based system.
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additional rules to deal with these intermediate feature and fault
levels would need to be written. The existing rules in the
knowledge-base would, however, remain unchanged. If the rules were
written to cover ranges of feature levels, a complete new set of

rules would be needed to improve the system’s accuracy.

The quantised feature levels provide the input to the rules
which generate a hypothesis on the known faults could be present.

The possible radio conditions are combinations of:

(1) Radio is normal

(2) TWT amplifier overdrive or underdrive
(3) Error in the signal constellation levels
(4) Non-orthogonal I and Q carriers

(5) Unknown fault.

When the features all correspond to the expected values for a normal

working radio, the system indicates no fault and ceases processing.

Distortions are indicated by:

If the inner to outer expansion is above 8.5%, and the inner
to outer rotation is above 3.5 degrees, then a TWT amplifier

overdrive is indicated.

If the inner to outer expansion is less than 8.5%, and the
inner to outer rotation is less than 3.5 degrees, then a TWT

amplifier underdrive is suggested.
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If the I or the Q gap spacing does not equal 0%, a

constellation signal spacing level error is indicated.

A non-orthogonal I and Q carrier error is suggested if the

measured non-orthogonality of the constellation is not 0 degrees.

If the radio is not 'normal’ and none of the known fault
conditions are indicated the system outputs ’fault unknown’ and stops

processing.

The initial hypothesis about which distortions are present is
used as the input for the rules which establish the magnitude of the
faults. 1If there is a TWT amplifier overdrive fault present, its
magnitude is estimated from the inner to outer expansion and the
inner to outer rotation values. These two features are also used to
determine the value of the TWT amplifier underdrive if it is present.
TWT amplifier overdrive and underdrive are mutually exclusive fault
conditions. The level of spacing error, if present, is estimated
using the sum of the I and Q spacing errors when there is no TWT
amplifier overdrive. If there is TWT amplifier overdrive and
constellation spacing errors, the difference between the I and Q
spacing is used to establish the value of the spacing error. To
determine the level of the non-orthogonality of carriers the value of
the measured non-orthogonality of the signal constellation is used.
These should give an estimate of the levels of the faults which have
been detected. However, if a fault’s presence is indicated, the
geometric features may not exactly match the PREMISE of any of the
rules detailed above. If this is the case then the next set of rules

is triggered.
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This set of rules will estimate the level of the faults using
a subset of the information available from the signal constellation
features. The confidence in the conclusions of these rules is not as
great as the confidence in the previous set of rules since some
information has been ignored. These rules use the geometric feature

which has the strongest dependence on the introduced distortion.

When all of the distortions which are present and their
levels have been established, the rules which provide an explanation
of the fault diagnosis are implemented. These rules detail the
determining features of each detected distortion. When the indicated
faults have been identified, their levels and explanations of the
diagnosis are output to the user to aid decisions about what remedial
action should be taken. The explanations are included to permif the
user to make a separate evaluation of the diagnosis. If he disagrees
with any aspect of the system’s conclusions, then different action

from the recommended can be taken.

This structure for the system was chosen as it seemed a
‘natural’ way to perform the diagnosis, while still remaining
relatively easy to implement in C. By partitioning the rule-base
into sets of rules, which put forward hypotheses about the faults and
their levels, the ordering of the rules was simplified. The various
sets of rules also ensured that the addition and modification of
rules would be less complicated than if one large rule-set had been
used. This follows because the rules in each rule-set take the
problem only one step further without involving complicated

interactions between rules. The transfer of information between
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rule-sets is performed by the intermediate hypotheses, with the

outputs from one set forming the inputs to another rule-set.

This modular approach provided a workable technique for
producing a rule-based expert system for performing the fault
diagnosis. The constellation data and the required quantisation
levels form the input to the program. This information is processed
by forty rules similar to those used in the Prolog shell, but using
arithmetic capabilities to handle multiple fault conditions as well
as single fault conditions. The rules are of the same form as the

Prolog shell:

If PREMISE then CONCLUSION

Where the PREMISE can be any combination of conjunctions and

disjunctions of propositions, and the CONCLUSION is a

combination of conjunctions of conclusions.

5.4 Performance of the C Based System

The rule-based system was tested with a variety of introduced
fault conditions. Initially the testing examined the performance
when diagnosing faults on the radio model with only one distortion

type present at any given time. The faults investigated were:

TWT amplifier overdrive and underdrive, non-orthogonality of
the I and Q carriers and errors in the constellation spacing levels.
These distortions are detailed in Section 3.3. Figure 5.4.1 shows

the ranges of the faults examined and Figure 5.4.2 summarises the
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Fault Range Stepsize
TWT overdrive up to 8dB 2dB
TWT underdrive up to 8dB 2dB
Non-orthogonality up to 5 degrees 1 degree
of the I and Q
carriers
Constellation -10% to +10% 1%

spacing errors

Figure 5.4.1 The ranges of faults examined using the knowledge-based

systems.
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Fault levels:
Non-orthogonal carrier in degrees
Gap spacing as a percentage
TWT overdrive in dB
TWT underdrive in dB

Faults Introduced Level Faults Detected Level
Non-orthogonal carriers 1 Non-orthogonal carriers 1
rﬁon-orthogonal carriers 3 Non-orthogonal carriers 3
Non-orthogonal carriers 5 Non-orthogonal carriers 5

Gap spacing error 0
Gap spacing error -9 Gap spacing error -9
Non-orthogonal carriers 0
Gap spacing error -6 Gap spacing error -6
Non-orthogonal carriers 0
Gap spacing error -3 Gap spacing error -3
Non-orthogonal carriers 0
Gap spacing error 3 Gap spacing error 3
Non-orthogonal carriers 0
Gap spacing error 6 Gap spacing error 6
Non-orthogonal carriers 0
Gap spacing errcr 9 Gap spacing error 9
Non-orthogonal carriers 0
TWT overdrive 8 TWT overdrive 8
Gap spacing error 0
TWT overdrive 6 TWT overdrive 6
Gap spacing error 0
TWT overdrive 4 TWT overdrive 4
TWT overdrive 2 TWT overdrive 2
TWT underdrive 2 TWT underdrive 2
TWT underdrive 4 TWT underdrive -
TWT underdrive 6 TWT underdrive 6
TWT underdrive 8 TWT underdrive 8
Figure 5.4.2 The output from the rule-based system for diagnosing

single fault conditions
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results obtained from single fault condition tests. The system was

seen to correctly identify all of these fault conditions.

The system was then tested with combinations of two faults
introduced at one time. These results are detailed in Figure 5.4.3.
Finally, the performance of the rule-based system was examined with
three simultaneously occurring faults. Figure 5.4.4 details the
results obtained from the system for three faults present at one

time.

The single fault conditions were all correctly detected by
the rule-based system for all the ranges tested. The TWT amplifier
overdrive and underdrive faults were detected in 2dB steps over the
full range. With an 8 dB or 6 dB TWT amplifier overdrive a spacing
error was also indicated but with a value of 0%. The non-orthogonal
I and Q carrier faults were correctly identified over the range
0 degrees to 5 degrees in 1 degree steps. However, for a 5 degree
non-orthogonality a spacing error of 0% was again indicated. The
spacing errors were correctly detected from -10% to +10% in 1% steps,
while a non-orthogonal carrier fault of 0 degrees was specified.

Thus the rule-based approach correctly detected all the individually
present faults. 1In certain cases additional faults were indicated as

occurring, but with zero level.

The detection of the multiple fault conditions, including
both double and triple fault conditions, was not as accurate as that
of the single fault conditions. For the cases where there was no TWT
amplifier overdrive of 6 dB or greater, the diagnoses of the radio

condition were as accurate as for singly occurring faults. However,



Fault levels:
Non-orthogonal carrier in degrees
Gep spacing as a percentage
TWT overdrive in dB
TWT underdrive in dB

Faults Introduced Level Faults Detected Level

;
Gap spacing error 3 Gap spacing error 3
Non-orthogonal carriers 3 Non-orthogonal carriers 3
TWT underdrive 4 TWT underdrive B
Non-orthogonal carriers 3 Non-orthogonal carriers 3
EEWT overdrive 8 TWT overdive 8
Non-orthogonal carriers 3 Non-orthogonal carriers 0
Gap spacing error 1
ﬁEWT overdrive 2 TWT overdrive 2
Non-orthogonal carriers Non-orthogonal carriers 3
Gap spacing error 0
EEWT overdrive 6 TWT overdrive 6
Non-orthogonal carriers 3 Non-orthogonal carriers 2
Gap spacing error -4
TWT underdrive 5 TWT underdrive 4
Non-orthogonal carriers 1 Non-orthogonal 1
“TWT overdrive 8 TWT overdrive 8
Non-orthogonal carriers 1 Non-orthogonal carriers 0
Gap spacing error 0
TWT underdrive 4 TWT underdrive 4
Gap spacing error 6 Gap spacing error 6
Non-orthogonal carriers 0
TWT overdrive 2 TWT overdrive 2
Gap spacing error Gap spacing error 6
Non-orthogonal carriers 0
TWT overdive 6 TWT overdrive 6
Gap spacing error 6 Gap spacing error 5
- Non-orthogonal carriers 0
TWT overdrive 8 TWT overdrive 8
Gap spacing error 6 Gap spacing error 1
Non-orthogonal carriers 0
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Faults Introduced Level Faults Detected Level
TWT underdrive 4 TWT underdrive 4
Gap spacing error 3 Gap spacing error 3
Non-orthogonal carriers 0
TWT overdrive 2 TWT overdrive 2
Gap spacing errcr 3 Gap spacing error 3
Non-orthogonal carriers 0
TWT overdrive 6 TWT overdrive 6
Gap spacing error 3 Gap spacing error 2
Non-orthogonal carriers 0
TWT overdrive 8 TWT overdrive 8
Gap spacing error 3 Gap spacing error 1
Non-orthogonal carriers 0

Figure 5.4.3 The output from the rule-based system for diagnosing
double fault conditions.
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Fault levels:
Non-orthogonal carrier in degrees
Gap spacing as a percentage
TWT overdrive in dB
TWT underdrive in dB

Faults Introduced Level Faults Detected Level

TWT overdrive
Gap spacing error
Non-orthogonal carriers

TWT overdrive
Gap spacing error
Non-orthogonal carriers

TWT overdrive
Gap spacing error
Non-orthogonal carriers

TWT overdrive
Gap spacing error
Non-orthogonal carriers

TWT overdrive
Gap spacing error
Non-orthogonal carriers

TWT overdrive
Gap spacing error
Non-orthogonal carriers

TWT overdrive
Gap spacing error

Non-orthogonal carriers

TWT overdrive
Gap spacing error
Non-orthogonal carriers

TWT overdrive
Gap spacing error

Non-orthogonal carriers

W W NNDIWw W ol oo oW W ool — w M

TWT overdrive
Gap spacing error

Non-orthogonal carriers

W P DO N o oo v N © v~ o N

Figure 5.4.4

triple fault conditions.

The output from the rule-based system for diagnosing
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for multiple faults with TWT amplifier overdrive of 6 dB or more
there were some errors. The system always specified the correct
level of TWT amplifier overdrive, but the other faults were
erroneously diagnosed. The presence of the other faults was
detected, but their levels were incorrectly identified. This problem
arises from the fact that the high levels of TWT amplifier overdrive
affect the features which were used to determine the other fault
conditions. The features that establish the TWT amplifier overdrive

were not sensitive to the levels of the other faults present.

The performance of the fault detection of multiple faults
occurring simultaneously would be improved by using a two stage
diagnostic process. The first step would involve the detection and
removal of any TWT overdrive maladjustment, the second stage being
the diagnosis and correction of the remaining faults. Thus, the
effect of a TWT overdrive impairment that hindered the estimation of

other fault conditions would be removed.

5.5 Summary

The relationships between the features of the constellation
and the introduced impairments in the digital radio model, presented
in Section 3.4, provided suitable information to create a set of
rules to perform the fault diagnosis of the digital radio model.

Only those fault/feature relationships which provided clear
information regarding specific faults and their levels were used.
From these relationships a set of rules was generated which were used
to form the knowledge-base for both the Prolog shell and for the C-

based system.
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The Prolog shell proved to be a fast vehicle for producing a
prototype system, but it had no arithmetic capabilities so the most
efficient forms of the rules could not be used. Thus, this method
was only used to produce a system to diagnose and detect single fault
conditions. A C-based system using the rules obtained by examining
the fault feature relationships was produced to detect and diagnose
both single and multiple occurring faults. The rules for this system
were entered in the order which they would be used for the fault
analysis. The performance of the C-based system proved good, its
limitations in accuracy being attributable to the quantisation of the
written rules. This accuracy would be improved by a greater number
of rules. The main drawback of this system is the work required to
create it. The knowledge engineer has to generate all the requiredk
rules (more rules are needed for improved accuracy) and these rules.
must then be ordered to ensure correct operation of the system.
However, this method did produce a working system which could
diagnose the range of fault conditions, in the digital radio model,

being examined.
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CHAPTER 6

'MACHINE LEARNING SYSTEM

6.0 Introduction

Knowledge-based systems in general require a considerable
amount of work from a knowledge engineer to imbed in the system the
information that is required to perform the specified task. The
great effort needed will not necessarily prove prohibitive to the
system construction if: either there are many identical units
required, or the benefits accrued from one or a few units are
considerable. However, certain applications require many similar
systems (units with the same structure but different contents of
their knowledge-bases) to cover all of the different uses of the
system. This is the case for fault diagnosis of 16 QAM digital
radios. There are many different types of 16 QAM radio, each of
which could use the same structure of system to perform the fault

diagnoses, but would require different knowledge-bases.

One method of overcoming the problem of the quantity of work
required from a knowledge engineer is to produce a system of a
suitable structure which can generate its own knowledge-base. This
is termed a machine learning system and the "learning’, or creation
of the knowledge-base, is performed by training the system on
specific examples of fault conditions. A machine learning system
requires work by a knowledge engineer to produce a satisfactory
structure for the system, and operation initially in a training mode

Lo encode the information into the system.
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When an appropriate system is produced it can be relatively
easily trained for its required application. This type of system can
be a simple decision tree system which incorporates a training mode
to produce its knowledge-base, or it can be an adaptive system which
uses adaptive algorithms to create the knowledge-base. The machine
learning system described in this chapter uses adaptive algorithms to
acquire, from the training examples, the information required to

perform the fault diagnosis of the digital radio equipment .

The machine learning system uses techniques from two separate
areas: distance classifiers from geometry and pattern analysis [80],
and a recursive least squares (RLS) algorithm from adaptive filtering
[81]. The structure of the machine learning system, and the ways in
which the distance classifier and adaptive filtering techniques are
implemented within the structure, are detailed in Section 6.1. A
justification for the particular form of the algorithms chosen for
the system is also given. The performance of the machine learning
system in tests on a real radio is catalogued in Section 6.2 with
Section 6.3 providing details of the results obtained for the fault

diagnoses of the digital radio model.

In Section 6.4 a brief comparison of the rule-based and the
machine learning system is made, and the choice of a hybrid system
which uses techniques from both the rule-based and machine learning
approach is described. The performance of the hybrid system in tests

on the radio model is detailed in Section 6.5.

6.1 Structure of the Machine Learning System
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The machine learning system has two ’levels’ of operation:
the first level uses a distance classifier to separate the problem
into distinct conditions, and the second level uses recursive least
squares estimators to ascertain the magnitude of each fault.

Figure 6.1.1. shows the two level structure. The information input
to the machine learning system, as for the rule-based systems,
consists of the geometric features of the signal constellation. Both
levels, the distance classifiers and the recursive least squares

estimators, use the geometric features as the information for

performing their processing.

The distance classifier used by the system employs the
Mahalanobis distance [80] which is a matrix form of distance
classifier. A distance classifier measures the distance in a
geometric space between two points. The Mahalanobis classifier
weights this distance depending upon the distribution of the points
forming a cluster in the geometric space. When used in the machine
learning system the Mahalanobis distance is implemented in an n-
dimensional space, corresponding to the n geometric features of the
signal constellation. During training, feature sets are input to the
system along with the corresponding condition of the radioc. The
three conditions of the radio shown in Figure 6.1.1 are: well
conditioned, out of lock, and ball of noise. The ’'well conditioned’
mode corresponds to the radio condition when the signal constellation
shows 16 distinct signal states. ’Out of lock’ is the radio
condition when the receiver carrier recovery circuitry fails to lock
onto the signal and the constellation displays three concentric
rings, an example of which is shown in Figure 6.1.2. 'Ball of noise’

is the term given to the case when there is no amplitude or phase
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Figure 6.1.1 The structure of the machine learning system.
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information recovered and the signal constellation appears as one
state of noise; Figure 6.1.3 shows an example of a signal

constellation of a radio in this condition.

Several examples of geometric feature sets corresponding to
each of the radio conditions are input during training. These
feature sets form a cluster of points, one cluster for each
condition, in the n-dimensional space (the position of each point in
the space is determined by the corresponding feature set). A cluster
in this feature space is also formed for good radios which pass the
bit error rate (BER) test. After training is complete, the
Mahalanobis distance of a radio (given by the feature set of that
radio) from the centre of each radio condition cluster provides a
measure of how close the radio is to that particular condition.. Thé
shortest Mahalanobis distance to any one cluster gives the best
estimate of the condition of the radio. If the radio is well
conditioned, that is there are 16 distinct signal states, the
Mahalanobis distance from the mean of the radios which passes the BER
test gives a measure of how far the radio is from being correctly
adjusted. If the radio is not well conditioned, the system outputs
the state to which the feature set is closest (out of lock or ball of
noise in Figure 6.1.1) and no more analysis is performed. For a well
conditioned radio the feature set is analysed further in the least

squares estimation section of the system.

The Mahalanobis distance, rz(g(i),m(j)), from x(i), the
feature set, to m(j), the cluster centroid formed by the jth trained

condition, is:
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f(x),mG) = @b - 060 Tra) - m(§)) (6.1.1)
Where:

2(d) = [x() %01 ... ox (@)"

is the ith feature set under investigation.

() = m () my3) ... m (37
is the mean of the jth cluster.

C(j) is the covariance matrix formed from the jth cluster’s
training set defined as:

Ci) = E(x 1) - m(§)m’ (3) (6.1.2)

g_l(j) is the inverse of this covariance matrix.

The inverse covariance matrix, g-l(j), weights the distance
due to each feature from the feature set in inverse proportion to the
variance of that particular feature during the training of that
cluster. This prevents one feature with a large variance dominating
all of the other features in determining the distance from a cluster.
The matrix, g_l(j), also takes into account the effect of correlation
between features, by applying the appropriate weightings from its off

diagonal elements in the distance calculation.

The adaptive least squares estimator [81,82,83,84] section of
the system is structured as shown in Figure 6.1.4. There is one
linear combiner corresponding to each fault under investigation. The
geometric feature set, Section 2.4, forms the input to the adaptive

combiners, instead of using a time shifted signal input as is more
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Figure 6.1.4 The structure of the linear combiners in the machine
learning system.
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commonly used in adaptive filtering. Each feature is fed directly to
one of the taps of all of the combiners. The inner to outer ratio
and the correlation coefficient are not used by the adaptive
combiners. These two features are only used by the distance
classifier algorithm to determine the condition of the radio. In
addition to these ten geometric features the squares of the first
order features are used as input to these combiners. The second
order features (the I pool deviation, the Q pool deviation and the
I1.Q pool variance), are not squared. This is unnecessary as they are
already of second order which allows the combiner to directly form a
quadratic estimate of the relationship between the fault and the

features.

The squared values of the first order features are taken so
the adaptive combiners can account for non-linear effects. The
adaptive combiners are linear classifiers and if only first order
features are included as inputs, then only a first order or linear
approximation [85] of the fault versus features relationship will be
formed. Including second order terms in the inputs to the linear
combiners produces a second order or quadratic approximation of the
fault versus feature relationship. The quadratic approximation
indicates that the relationships which are not purely linear can be
estimated. A relatively small number of training examples are
required for a second order approximation; a minimum of three
examples is needed. Higher order approximation would incur the
penalty of requiring a greater amount of training. The combiners are
adaptively trained using a recursive least squares (RLS) algorithm

(81], (see later for mathematical definition). The error in this
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quadratic approximation of the fault versus feature relationship is

minimised in a least squares sense.

The RLS algorithm was chosen as it provides fast convergence,
minimising the training examples required, to the optimum combiner
weights in a least squares sense. It also permits continuing
training which allows new data to be input to improve the system’s

performance.

The structure of one combiner corresponding to a single fault

is shown in Figure 6.1.5.

The tap weight adaption, which is performed during the
training phase using an RLS algorithm, takes the features (including
second order terms) as the inputs to the combiner. The magnitude of
the fault corresponding to that particular combiner forms the
training signal. Each combiner uses the same input feature set, but
has a different fault type as a training signal corresponding to the
particular fault the combiner is estimating. When the training phase
is complete, the tap weights are fixed and remain unchanged until
further training is initiated. To determine the levels of fault on a
radio with arbitrary faults, the features (including the second order
terms of each feature) are input to the combiners. The output from
each combiner is the sum of the product of the tap weights with the
input features. The output then represents the level of the specific

fault that the combiner has been trained on.

For an input feature set the level of the fault, which

corresponds to that combiner is given by:
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Figure 6.1.5 The structure of each adaptive combiner.
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y=%xh (6.1.3)

Where:

y is the estimate of the fault level

= 0xy x ... xn]T is the input feature set including the

second order terms

h=1[n By ... hn]T is the coefficient vector

The deviation of this estimate from the actual measured fault
level is:

e=y-y (6.1.4)
Where:

e is the deviation

y is the actual fault level

The optimum tap weights (gopt) are calculated to minimise the

sum of the squared errors over the k training examples.

k A
Eopt minimises nfo(y(n) = y(n))2

This value of ﬁopt is given by the Wiener-Hopf equation:

Bope (K) = RO ez, (k) (6.1.5)
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Where:

P(k) = E'ix(k) the inverse of the autocorrelation matrix
formed by x(k)
g T
r (k) = I x(n)x (n) (6.1.6)
k
gxy(k) = nfo x(n)y(n) (6.1.7)

gxy(k) is the cross correlation of x(k) and y(k) over the k training

examples.

For the set of k training examples these optimum tap weights
can be calculated recursively. This allows progressive training

without storing all of the previous data explicitly.
Equations 6.1.6 and 6.1.7 can be expressed recursively as
LK) = £ (k-1) + x()x (k) (6.1.8)
(k) = gxy(k-l) + x(k)y (k) (6.1.9)
Substituting 6.1.8 and 6.1.9 into 6.1.5 gives:
(k) = hoop (k=1) + B(K)x(k)e (k) (6.1.10)

hope (4 = B,

Where
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e(k) = y(k) - ﬁgpt(k-l)g(k) (6.1.11)

P(k) can be determined recursively without inverting I,y after each
training example. this is performed using the Sherman-Morrison

recursion [86]:

B(k-1)x (k) x" (k)P (k-1)

1+ x (KB (k-1)x (k)

B(k) = P(k-1) - (6.1.12)

To permit a greater weighting to be given to the most recent
training examples, a time windowed version of this recursion is used.
The exponentially windowed RLS is used which is a simple alteration

to equation (6.1.12):

B(k-1)x (X)X (k)P (k-1)

P(K) = F(B(k-1) - (6.1.13)

A+ T (K)B(k-1)x (k)

Where A < 1 and is usually in the range 0.9 < A < 1.

The exponential time window has been shown [87] to be a
reasonable approximation to the intuitively optimum rectangular
window. The RLS algorithm is used because it provides the fastest
possible convergence to the desired results; this minimises the
number of training examples required. The training needed is
independent of the correlation between the individual input features,
and is performed off-line so the computational complexity of the RLS
algorithm does not create a problem. Continuous training is not

used, so the numerical stability of the algorithm is not a problem.
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The same feature set forms the input to all of the combiners
so the inverse autocorrelation matrix, P(k), used for computing the
tap weights is identical for each combiner. This means that the
computational overhead for introducing additional fault combiners is
small compared to the overall computational load. Using the
geometric features of the signal constellation as the input, the
fault levels can be estimated using the outputs from the trained

linear combiners for each fault.

Appendix E contains a listing of the code used to form the
version of the adaptive combiner segment of the machine learning

system used in Section 6.3.

The RLS algorithms detailed above are equivalent to the
Kalman form of the tap weight recursion [88]. The Kalman algorithms
have been further developed to produce ’fast Kalman’ algorithms [89]
which have a computational complexity of order N rather than N2.
However, these 'fast’ forms cannot be used for this application
because they assume that their input is a time shifted sequence which
is not the case for the linear combiners used here. Macchi (90] and
Cowan [91] give a summary and comparison of these adaptive filtering
techniques, their uses (noise and echo cancellation (92], speech
prediction [93], medical application [94] and numerous others) and

their convergence and stability properties.

6.2 Performance of the Machine Learning System on a Real Radio

The machine learning system was tested on a real radio in the

laboratory. The digital radio used was an 11 GHz (16 QAM) digital
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radio looped back at RF. The constellation data was collected using
a constellation analyser (HP3709) directly connected to the I and Q
monitor points of the radio receiver demodulator. A data signal was
provided by the radio’s 17 stage pseudo random binary sequence (PRBS)
scrambler. The machine learning system was trained on a set of four
deliberately introduced quantified faults. The training was
performed by: altering the settings on the pre-set potentiometers by
a specific number of turns, or by adding external filters to the
receiver IF section to introduce known amounts of passband asymmetry
into a correctly set up radio. Four types of fault were introduced:
output amplifier overdrive; phase-lock potentiometer out of
adjustment; quadrature capacitor maladjustment; and an asymmetry in
the receiver’s IF filters. The output amplifier overdrive was
measured using an external power meter; the turns of the phase-lock
potentiometer and the quadrature capacitor were assessed by eye; and
the bandpass filter was adjusted off-line using a separate system

with different instrumentation.

After training on these faults, the system was connected to
the radio with an arbitrary set of introduced faults. This was done
for several sets of faults and when the adjustments recommended by
the system were completed the radio was again correctly set up. The
output from the machine learning system was a graphical bar display
of the faults which indicated the distance of the radio under test
from a correctly aligned radio. Figure 6.2.1 shows the output from
the machine learning system (which has been trained on four fault
types) connected to a maladjusted radio. Figure 6.2.2 shows the
output of the machine learning system after adjustments have been

made to remove the faults indicated in Figure 6.2.1. The adjustments
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Figure 6.2.1 The output from the machine learning system connected to a

maladjusted radio.
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Output OVERDRIVEN ( | unit = 2 dB overdrive )
Phase LOCK pot adjustment (1 unit = 1/2 turn)
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ASYMMETRY 1n BANDPASS filter

Figure 6.2.2 The output from the machine learning system connected to the
radio after the indicated adjustments have been made.
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recommended by the machine learning system correspond exactly to the

deliberately introduced impairments.

The top bar in the display represents the (Mahalanobis)
distance of the radio under test from the mean of well aligned radios
which passed the BER test. These good radios are input to the system
during training to indicate when a radio reaches an acceptable level
of performance. The lower set of bars represent the output of the
adaptive combiners and correspond to the magnitude of the faults (or
the adjustments required). These results demonstrate that the
machine learning system can deal with several simultaneously
occurring faults and accurately determine their levels. These faults
all formed tolerably linear relationships with their input feature
sets, making them suitable candidates for use with the linear
combiners. Fault conditions which exhibit a highly non-linear
relationship with the input features would not have been so

accurately detected.

6.3 Tests of the Machine Learning System on the

Digital Radio Model

The machine learning system’s performance was tested with the
same data used to test the rule-based system in Section 5.4. The
same ranges of each impairment were investigated. First, the system
was tested with only one fault present at one time; these results are
shown in Figure 6.3.1. Then combinations of two simultaneous impair-
ments were tested; these results are summarised in Figure 6.3.2.

Finally the performance of the machine learning system was tested
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Non-orthogonal carrier in degrees

Gap spacing as a percentage

TWT overdri
TWT underdr

ve in dB

ive in dB

Faults Introduced Level Faults Detected Level
Egn-orthogonal carriers 1 Non-orthogonal carriers 0.5
ﬁbn-orthogonal carriers 3 Non-orthogonal carriers 2.5
Non-orthogonal carriers 5 Non-orthogonal carriers 5.4
Gap spacing error =9 Gap spacing error -9
Gap spacing error -6 Gap spacing error -6
Gap spacing error =3 Gap spacing error -2.5

TWT underdrive 0.7
Gap spacing error 3 Gap spacing error 3

TWT underdrive 05
Eap spacing errcr 6 Gap spacing error 6
Gap spacing error 9 Gap spacing error 9
TWT overdrive 8 TWT overdrive 8.1
TWT overdrive 6 TWT overdrive 6.6
TWT overdrive 4 TWT overdrive 4.2
TWT overdrive 2 TWT overdrive 2.1

Gap spacing error 0.4
TWT underdrive 2 TWT underdrive 1.4
TWT underdrive 4 TWT underdrive 3.4
TWT underdrive 6 TWT underdrive 5.4
TWT underdrive 8 TWT underdrive 7.5

Figure 6.3.1

The output from the machine learning system
diagnosing single fault conditions

for




Fault levels:

134

Non-orthogonal carrier in degrees

Gap spacing as a percentage

TWT overdrive in dB
TWT underdrive in dB

Faults Introduced Level Faults Detected Level
Gap spacing error 3 Gap spacing error 3.3
Non-orthogonal carriers 3 Non-orthogonal carriers 3
TWT underdrive 4 TWT underdrive 3.4
Non-orthogonal carriers 3 Non-orthogonal carriers 2.4
TWT overdrive 8 TWT overdive 16
Non-orthogonal carriers 3 Non-orthogonal carriers -10
TWT overdrive . B B TWT overdrive 2
Non-orthogonal carriers 3 Non-orthogonal carriers 1,9
TWT overdrive e TWT overdrive 2
Non-orthogonal carriers 3 Gap spacing error 10.1
TWT underdrive 4 TWT underdrive 3.3
Non-orthogonal carriers 1 Non-orthogonal 0.5
TWT overdrive 8 TWT oveE&fiﬁéhm_ﬁ_zi 4v*_ﬂ;,77;;g__
Non-orthogonal carriers 1 Gap spacing error 4
TWT underdrive 4 TWT underdrive TN
Gap spacing error 6 Gap spacing error 6
TWT overdrive 2 TWT overdrive 2.6
Gap spacing error 6 Gap spacing error 4.8
ITWT overdive 6 TWT overdrive 1.8
Gap spacing error 6 Gap spacing error 16
Non-orthogonal carriers 2
EWT overdrive 8 TWT overdrive 10.5
Gap spacing error 6 Gap spacing error 7.5
Non-orthogonal carriers 0.8
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Faults Introduced Level Faults Detected Level
TWT underdrive 4 TWT underdrive 349
Gap spacing error 3 Gap spacing error 1.5
TWT overdrive 2 TWT overdrive 1 o
Gap spacing error 3 Gap spacing error 1.3
TWT overdrive 6 Non-orthogonal carriers =-1.3
Gap spacing error 3 Gap spacing error 9.8
TWT overdrive 8 TWT overdrive 3.5
Gap spacing error 3 Gap spacing error 10
Non-orthogonal carriers 1.1

Figure 6.3.2

The output from the machine learning system for
diagnosing double fault conditions.
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with three faults occurring at once; these findings are detailed in

Figure 6.3.3.

The machine learning system indicated the correct level of
the single TWT amplifier faults to within 1 dB for an overdrive of
8 dB through to an underdrive of 8 dB. The levels of the non-
orthogonality of the I and Q carriers for single faults were detected
to within 1° of the actual level. The levels estimated for single
spacing errors were within 0.5% of the introduced error. The
differences between the output of the system and the introduced fault
levels arose from errors caused by the approximations used in the

selected filter tap weight algorithm.

With multiple introduced fault conditions the machine
learning system’s performance degraded significantly. Fault
estimates of multiple impairments which included high levels of TWT
overdrive proved very unreliable. Estimates were up to: 8 dB in
error for the TWT overdrive level; 10% in error for the signal
constellation spacing fault; and up to 3° in error for the level of
the non-orthogonality of the I and Q carriers. The fault detection
for the cases with TWT underdrive or only low levels of TWT amplifier
overdrive, 2 dB to 4 dB, were much better except that the system
always failed to detect low levels of spacing error because the
training sequence included high levels of TWT overdrive. These
errors in the multiple fault cases were caused by the non-linear
changes in the feature set versus fault relationships for certain
fault levels. The nature of the adaptive combiners, which are linear
classifiers, does not permit them accurately to model these non-

linear relationships.
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Non-orthogonal carrier in degrees

Gap spacing as a percentage

TWT overdrive in dB
TWT underdrive in dB

Faults Introduced

Level Faults Detected Level

TWT overdrive 2 TWT overdrive 3
Gap spacing error 9 Gap spacing error 7.5
Non-orthogonal carriers 1 Non-orthogonal carriers 0
TWT overdrive 6 TWT overdrive 1
Gap spacing error 3 Gap spacing error 8
Non-orthogonal carriers 3 Non-orthogonal carriers 0.6
TWT overdrive 6 TWT overdrive 10
Gap spacing errcor 6 Gap spacing error 1:8
Non-orthogonal carriers 1 Non-orthogonal carriers 0.3
THT overdrive 8 TWT overdrive 3.7
Gap spacing error 3 Gap spacing error -1
Non-orthogonal carriers 3 Non-orthogonal carriers 0«2
TWT overdrive 2 TWT overdrive 1
Gap spacing error 3 Gap spacing error 2.9
Non-orthogonal carriers 3 Non-orthogonal carriers 2

Figure 6.3.3

diagnosing triple fault conditions.

The output from the machine learning system for
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The machine learning system’s performance is affected to a
much greater extent, than that of the rule based system, by the
presence of high levels of TWT overdrive. Single fault conditions
are correctly diagnosed by both systems as are multiple faults (
excluding TWT overdrives of >4dB ). However, creating the rule-base
for the rule-based system is a slow process, whereas, the training of

the machine learning system is a relatively quick proceedure.

6.4 Hybrid System

The machine learning and the rule-based systems both provide
solutions to the problem of fault diagnosis for digital microwave
radio equipment, using the signal constellation geometric features as
the information source. The geometric parameters accurately
represent the positions of the signal states of a 16 QAM signal
constellation, and from these features the faults present can be
diagnosed. Faults which do not affect the signal constellation
(faults in the slicer and decoder circuitry) are undetectable using
these systems and extra information would be required to correctly

diagnose them.

The rule-based system requires much work by a knowledge
engineer, examining the relationships between the faults in the radio
equipment and the changes in the geometric features. Once these
relationships have been established the knowledge engineer has to
write a set of rules (in an appropriate form for the system) which
express these relationships. The number of rules required increases
as the required accuracy of the diagnoses is increased. The work by

the knowledge engineer is appreciable; moreover, it must be repeated



139

for each different type of 16 QAM digital radio that the system is
used with. The rules written for one specific type of 16 QAM radio

would not necessarily work when applied to a different type of 16 QAM

radio.

The machine learning system also requires to be trained
separately on each type of radio with which is it used. However,
this training needs only a few examples of each fault condition, and
this can be performed in a few minutes. The training of the machine
learning system will not produce a working system if it is trained on
highly non-linear fault/feature relationships. This limitation of
the machine learning system restricts the variety of fault conditions

that the system can correctly diagnose.

The rule-based system requires extensive work by a knowledge
engineer and its accuracy is dependent upon the size of the rule-
base. While the machine learning system must be limited to
fault/feature relationships which are almost linear, there is little
additional work required from the knowledge engineer to perform the
training. These systems complement each other, with the areas of
weakness of one system being the areas of strength of the other

system,

Without developing any new techniques, or using any other
methods than those already detailed, an improved system is possible.
This would take advantage of the robustness of the rule-based system
to non-linear fault/feature relationships, and the accuracy, fine
tuning capabilities and ease of training of the machine learning

system. A hybrid of the two systems was formulated which consisted
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of a combination of the conventional rule-based approach and of the
machine learning system. The overall structure of the system
remained the same as that of the machine learning system, shown in
Figure 6.1.1. However, the adaptive algorithm section of the system
also contains some rules as well as the adaptive combiners detailed
in Section 6.1. The structure of this new section, which replaces
the adaptive combiner section shown in 6.1.1, is detailed in

Figure 6.4.1.

The rules are used to determine the level of the fault
conditions which exhibit a non-linear fault/feature relationship. 1If
these rules establish that there is a fault corresponding to a non-
linear relationship, then the level of the fault is output and no
more analysis is performed by the system. However, if only faults
corresponding to linear fault/feature relationships are present, the
system continues on to the adaptive algorithm and proceeds with the

processing as in the unmodified machine learning system.

The combination of the two systems in this form provides
several advantages. The size of the rule-base and therefore the
amount of work required to be done by the knowledge engineer is less.
Rules are only required to cover the faults corresponding to non-
linear relationships which are a small subset of all of the faults
under examination. These rules prevent the adaptive processing
section of the system having to make diagnoses from non-linear
fault/feature relationships. The adaptive algorithms provide an
accurate fault diagnosis of faults with linear fault/feature
relationships and the rules limit the adaptive section to these

cases. If there are no non-linear conditions among the faults being
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Tfeatures
|
!
non-linear
rules fault
level
adaptive
combiners

Figure 6.4.1 The structure of the hybrid system.
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examined, then the rule-base is left empty and the system reverts to
the machine learning system. If rules are required the knowledge
engineer will be required to write them, and then train the machine
learning system in the conventional manner. On the one hand, the
work required by the knowledge engineer is greater than if no rules
were used and it was left simply as the machine learning system; on
the other hand, considerably less effort is needed than that required

to produce a complete rule-based system.

The benefits of this system are that first, it does not have
to be limited to purely linear relationships as the machine learning
system does and secondly, it can provide more accurate results than
the rule-based system (without a very large number of rules and a
great amount of work by the knowledge engineer). This approach does
mean that for those cases where there is a non-linear fault the
system will have to use two passes to fully diagnose all of the
faults. On the first pass the non-linear condition will be
diagnosed, and then corrected; the second pass will diagnose the
remaining faults. However, this penalty is small compared to the

greater range of conditions that can be treated by such a system.

6.5 Performance of the Hybrid System used to Diagnose Faults

in the Radio Model

The performance of the hybrid system was examined by testing
it on a variety of induced fault conditions on the radio model. The
results of these tests are summarised in the table given in
Figure 6.5.1. This system correctly diagnoses all of the TWT

overdrive faults of 6 dB or greater without attempting to establish
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Non-orthogonal carrier in degrees

Gap spacing as a percentage

TWT overdrive in dB
TWT underdrive in dB

Faults Introduced Level Faults Detected Level
lon-orthogonal carriers | Non-orthogonal carriers 0.5
lon-orthogonal carriers 3 Non-orthogonal carriers 3.5
lon-orthogonal carriers 5 Non-orthogonal carriers 4.8
ap spacing error -9 Gap spacing error -3.5
ap spacing error -6 Gap spacing error -5.9
ap spacing error = Gap spacing error -3
ap spacing error Gap spacing error B é;} ﬂ
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Level Faults Detected Level
TWT underdrive 4 TWT underdrive 2.8
Gap spacing error 6 Gap spacing error 5.8
TWT overdrive 8 TWT overdrive 8
Non-orthogonal carriers 1
TWT overdrive 8 TWT overdrive 8
Non-orthogonal carriers 3
Gap spacing error 3
TWT overdrive 8 TWT overdrive 8
Gap spacing error 3
TWT overdrive 8 TWT overdrive 8
Gap spacing error 6
TWT overdrive 6 TWT overdrive 6
Non-orthogonal carriers 1
Gap spacing error 6
TWT overdrive 6 TWT overdrive 6
Non-orthogonal carriers 3
TWT overdrive 6 TWT overdrive b
Gap spacing error -3
Non-orthogonal carriers 3
TWT overdrive 6 TWT overdrive 6
Gap spacing error 3
TWT overdrive 6 TWT overdrive 6
Gap spacing error 6
Gap spacing error -3 Gap spacing error -3
Non-orthogonal carriers 3 Non-orthogonal carriers 2

Figure 6.5.1

Summary of the performance of the hybrid system
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the levels of any of the other faults present. This method, which
circumvents the problem of determining the other faults present when
there is a high level of TWT overdrive, allows the number of rules
needed for the system to be kept to a minimum. However, it does mean
that a two step process is required for the radio to be correctly
adjusted. If initially there was only a TWT overdrive fault present,
then the second examination of the radio by the system will show the

radio as functioning correctly.

The performance of the system for detecting the remaining
fault conditions (TWT overdrive up to 6 dB, TWT underdrive, spacing
errors and non-orthogonality of carriers) proved excellent. The
errors in the diagnoses remained constant for detecting single or
multiple occurring faults. The results indicate that a radio could
quickly and reliably be returned to correct adjustment provided the
only faults present were those upon which the system had been

previously trained.
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CHAPTER 7

CONCLUSIONS

7.0 Summary

Two main areas have been addressed in the work presented in
this thesis. First, a model of a digital radio was produced to
provide the information required to generate and evaluate several
knowledge-based systems. Secondly, the model was then used to assess
the applicability of three knowledge-based systems to fault diagnosis

of 16 QAM digital radio relay equipment.

The unavailability throughout the course of the project of a
suitable 16 QAM digital radio transmitter and receiver precluded the
use of actual radio equipment. An alternative to this equipment for
the purpose of evaluating the diagnostic expert systems was a digital
radio model which simulated the main components of a 16 QAM radio and

into which faults could be deliberately introduced.

A model of a typical 16 QAM digital radio transmitter and
receiver was successfully developed using two HP 49482 analysers, one
as a transmitter and one as a receiver, with a transmission rate of
2400 bits/s. Distortions were introduced in quantified amounts into
three of the components of the model‘s transmitter. The elements
into which the impairments were introduced were the 2 to 4 level
coder, the carrier phase splitter and the TWT amplifier. These
faults caused constellation gap spacing errors, constellation non-

orthogonality, and TWT overdrive and underdrive, respectively.
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The model with the facility to deliberately introduce
quantified distortions provided an excellent vehicle both for
producing the fault/feature relationships used to generate the
knowledge-bases, and for evaluating the performance of the diagnosis

of specific faults by the knowledge-based systems.

Two separate approaches to implementing a diagnostic expert
system (rule-based and machine learning methods) were examined and

then combined to generate a third technique.

The first of these initially use a Prolog shell (KS 299) to
implement the rule-based system. This method of implementing a rule-
based approach was dropped, however, as the constraints it placed on
the rules (no arithmetic functions could be used) were too great.
Instead a second method was employed in which the rule-based system
was constructed by writing a set of ordered conditional rules in C.
This method allowed access to all of the functions of the C
programming language, permitting the rule-base to be kept manageably

small.

The relationships between the faults and the features were
thoroughly examined to ascertain which features could be used to
determine most accurately the faults present and their magnitudes.
Producing the ordered rules was a very slow process but, when
completed, the system correctly diagnosed the faults present in the
radio model under test. However, the accuracy of the diagnoses by
the system was dependent upon the number of rules used. To increase
the accuracy of the diagnosis of the faults in the radio, therefore,

the stepsize between the estimates of the distortion levels made by
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the rules would have to be decreased. Almost any specified precision
could be achieved, but at the expense of additional work by the
knowledge engineer producing more rules. A rudimentary explanatory
facility, consisting of a set of rules, was provided by the rule-

based system.

It would be possible to diagnose other faults in a digital
radio, apart from those examined, using the rule-based system.
However, these faults would have to exhibit a clear unambiguous
relationship between their magnitudes and the constellation features
to permit rules to be written which estimate the fault levels from

the feature set.

The second approach, using the machine learning system, was
based on two separate techniques: a distance classifier and an
adaptive filtering algorithm. The machine learning system was
trained with data from the digital radio model. It's performance
proved very poor when used to diagnose faults which included TWT
overdrives of 6 dB or greater. This poor performance was caused by
the non-linear relationship between high levels of TWT overdrive and
the feature set. When limited to fault levels which did not form
such non-lirear associations within the feature set (TWT overdrives <
6 dB), the accuracy of the diagnoses made by the machine learning

system was excellent.

The training of the machine learning system required that a
minimum of three training examples of each fault condition be given.

It proved to be quick and simple to perform the training required to

produce an operational system.
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The machine learning system was tested to evaluate its
performance when used to diagnose faults in an acéual radio. It
correctly diagnosed the faults which had been deliberately introduced
into the radio. None of the ranges of faults examined formed highly
non-linear relationships with the feature sets. This limited the
machine learning system to its efficient area of operation, thus

producing accurate diagnoses of the fault conditions.

As with the rule-based system, the machine learning system
could diagncse faults other than those already examined provided that
they formed an unambiguous relationship within the feature set. If
such a relationship did not exist, then additional features would
have to be found. Additional constraints set by the machine learning
system were that only faults exhibiting linear
fault/feature relationships could be accurately diagnosed, and no
explanatory facility to give the user information about the rationale

behind each individual diagnosis was provided.

Whilst the rule-based and machine learning systems both
provided solutions to the problem of fault diagnosis of digital
microwave radio equipment, each had its own limitations. The rule-
based approach proved robust, giving dependable but crude estimates
of the fault levels. The production of the rule-base, however,
proved to be very labour intensive, particularly when the number of
rules required was increased to achieve better accuracy of the
diagnosis. The machine learning technique proved less robust, since
its application was limited to faults which do not form highly non-
linear relationships with the feature set. This approach does have

the benefits, however, of requiring much less labour to produce a
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working system and can potentially give high levels of accuracy of

fault diagnosis.

The strengths of these two techniques clearly complement each
other, and this led to the choice of a hybrid system which combined
both approaches. This hybrid system uses a small set of rules that
diagnose those faults which exhibit strong non-linear relationships
with the feature set. The machine learning system is thus
partitioned from certain fault conditions to ensure its performance
remains high. The work required to produce this hybrid for one
particular radio type is greater than for the machine learning

system, but is considerably less than for the rule-based system.

If the rule-based part of the hybrid system determines
whether a TWT overdrive of 6 dB or greater exists, and if so the
system will not attempt to diagnose further faults. A second
diagnosis would be required to discover any remaining impairments
once the TWT overdrive had been corrected. The machine learning
section of the system still provides no explanations of the fault
diagnoses. Other than this the performance of the hybrid system

proved excellent.

This work has demonstrated that it is possible to produce a
knowledge-based diagnostic system for 16 QAM digital radio relay
equipment. If the faults considered are limited to those which do
not form highly non-linear relationships within the feature set, then
the machine learning system is the most effective solution. However,
if this constraint is not possible, then the hybrid system provides

an excellent alternative.
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el Further Work

The knowledge-based techniques provided valuable tools for
performing the fault diagnosis of 16 QAM digital radio relay
equipment. However, there is much further work required to develop
and refine these methods before they could be used with actual radio

equipment to perform all of their required tasks.

Before these knowledge-based techniques could be applied to
an actual radio it would be necessary to ensure that the data (or
information source) detailing the faults under examination adequately
described all of the faults. The data used is the feature set and it
must be expanded to form a more complete set which could be used to

provide the required information for diagnosing a comprehensive set

of fault conditions.

If an operational system were developed using the machine
learning or hybrid system, then some form of explanatory facility
would be required. The explanations would be used by operators when
trying to justify the validity of any particular diagnosis as a check
on correct system operation, and could also be used as part of a
teaching aid for unskilled personnel. The most promising sources of
information within the machine learning system'‘s structure are the
covariance matrix (r,,) and the tap coefficient vector (h) which hold
the information from the training examples and, if properly

exploited, could form the basis for producing explanations.

The hybrid system requires a knowledge engineer to write the

rules which diagnose those faults which form highly non-linear
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fault/feature relationships. To minimise the effort required to do
this, and to ensure that the form of the rule-set was correct to
allow it to fit in properly with the rest of the system, a shell
could be developed. The shell would prompt the knowledge engineer
for the appropriate information and would create the rules, speeding

up the process of producing systems for different radio types.

To remove the need for rules in the hybrid system, a method
of enabling the machine learning system to accurately diagnose faults
which formed non-linear fault/feature relationships could be
developed. In those circumstances, the knowledge engineer would not
be required to produce any rules, making system generation simpler.
One possible approach to achieve this would use higher order
approximations of the fault/feature relationships (cubic and quartic
rather than only quadratic); however, a technique would be required
that would establish the necessary order of the approximations since
higher order approximations incur the penalty of requiring longer

training sequences.

Diagnostic expert systems have greater potential value for
more complicated modulation techniques than for 16 QAM because the
increased complexity of these systems provides greater problems for a
human expert trying to perform the equipment fault diagnosis. A more
complicated modulation technique (e.g. 64 QAM, 256 QAM and others)
would require that a suitable feature set be developed to form the
parameters from which a knowledge-based system could estimate the
impairments present. If an adequate set of parameters were created
for a 64 QAM (or any other modulation technique) radio, it would be

useful to investigate the performance of the hybrid system with the
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64 QAM equipment. This could show whether the increased problems of
fault diagnosis created by the greater complexity of the radio could
be overcome with the same form of diagnostic expert system as used

with a 16 QAM radio.
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Appendix A

The relationships between the introduced impairments and the
geometric features of the 16 QAM signal constellation.
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Appendix B

The subroutine for the HP4948A to simulate TWT distortions and the
routine for calling the various elements of the model transmitter.
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Appendix C

The source code for the prolog shell.



100
le: /u4/peter/prolog/ks299/1int

thor: Original by Steven Hardy. Reworked by Peter Ross.
dated: & Sep 84 by Peter Ross
Tpose: & simple rule interpreter in the style of K8-300

iginal code courtesy of Teknowledge Inc. - so don’t make use of it
thout acknowledging them.

@ rule base is made up of assertions of the form
RULE: i{¢ PREMISE then CONCLUSION.
ere RULE is an atom,
PREMISE is a simple proposition of the form
THING =, VALUE
or- THING is known
or THING is unknown
or is & combination of simple propositions
built up using "and"” and "or", where "“or"
binds tighter than "and",
CONCLUSION is a simple conclusion of the form
THING = VALUE
or THING = VALUE cf CONFIDENCE
or is a combination of simple conclusions
built up using “and" only.
ING and VALUE can be any Prolog term of precedence less than &00.
operator ‘of’ has been defined for convenience; it has precedence 599.
allows you to have THINGs of the form ATTRIBUTE of OBJECT.
NF IDENCF should be a number between O (no confidence at all) and 1000
omp letely sure) inclusive.

) must also provide assertions of the form

QUESTION finds THING.
ITe® QUESTION is an atom giving a question to ask the user to get a valyu
* the attribute. A question mark will be supplied by the system. If the
item can ask the user for a value, he will be asked as soon as the need
/nd, and only once. Valid replies are:

uhy.
(ing for a MYCIN-like justification in terms of the goal tree, or

show THING.
c(ing for what is known about a THING, or

show RULE.
ing to see the rule identified by the given tag. or

:= Command.
ing for some arbitrary Prolog command to be run., or

thing else, which the system will assume to be the value sought, with
)0 because you said so.

'Te are three extra useful predicates:

watch switches on printing of the recording of attribute
values
nowatch turns it off

tidy(Old, New) reads file Old and writes file New (not equal)

so that New contains a nicley laid out version of
rule base in Old.

(980, ¢x, [sought, find, invoke, seekl).
(980, xfy. (concludes, uses, referstol).
(973, xfy, :).

(980, #x, if).

(949, xfy., then)

(948, xfy, because).

(820, xfy, and).

(780, x#y, or).

(7238, xfy, c¥). % cf => certainty factor
(600, «xfy, finds).

(602, €x, show).

(999, Kfl‘: of).
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nd THING : -

prompt(Qld, * ==d>> ),
abolish(active, 1),
abolish(sought, 1),
abolish(because. 2),
seek THING,

show THING.

ek THING : -
sought THING,
I

ek THING : - .
QUESTION finds THING,
write (GUESTION),
urite(?’), nl,
read (REPLY),

( REPLY = why

-0 thl
seek THING
i REPLY = help
-2 h.lpl
seek THING

I REPLY = show SOMETHING
=> show SOMETHING,
seek THING
i REPLY = (:- COMMAND)
-> do_without_fail (COMMAND),
seek THING
I assert(sought THING),
note(THING = REPLY c# 1000 because (‘you said so‘])
).
.
2k THING : -
assert(sought THING),
( nonrecursive(RULE, THING)
i recursive(RULE, THING)
Y
notice (RULE),
invoke RULE,
tail.
 k THING.

without_fail (COMMAND) : -
COMMAND,
i

without_fail(_).

‘oke RULE : -
RULF : if PREMISE then CONCLUSION,
PREMISE cf CONFIDENCE,
( CONFIDENCE < 200
i note(CONCLUSION cf CONFIDENCE because CRULE])
Y

ice(RULF) : -
(watching => write( ‘##xsuxs Invoking ‘), write(RULE),nl; true),
assertalactive(RULE)).
ice(RUWLE) ;-
retract(active(RULE)),
fail.
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1 or PQ) cf CONFIDENCE : -
Pl c# C1,
( C1 = 1000
-2 CONFIDENCE = C1
I P2 cf C2,
( C1 > C2 -5 CCNFIDENCE = C1 ; CONFIDENCE = C2 )
),

1 and P2) cf CONFIDENCE : -
P1 cf CIt,
¢ C1 < 200
-> CONFIDENCE = C1
1 P2 cf C2,
( C1 € C2 -> CONFIDENCE = C1 ; CONFIDENCE = C2 )
)i
]

ING = VALUE c# CONFIDENCE : -
seek THING,
( THING = VALUE cf CONFIDENCE because REASON
i CONFIDENCE = O
17
]

ING is known cf CONFIDENCE : -
seek THING,
( ( THING = VALUE cf C because REASON, C > 200 )
-> CONFIDENCE = 1000
i CONFIDENCE = O
Y

ING is unknown cf CONFIDENCE : -
( THING is known cf 1000
-> CONFIDENCE = O
i+ CONF IDENCE = 1000
)
]

nrecuresive (RULE, THING) : -
RULF concludes THING,
not(RULE uses THING).

cursive(RULE, THING) : -
RULE concludes THING,
RULE uses THING.

_E concludes THING : -
RULE : if PREMISE then CONCLUSION,
CONCLUSION refersto THING.

_LE uses THING : -
RULF : if PREMISE then CONCLUSION,
PREMISE refersto CONCLUSION.
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' (P1 and P2) cf CONFIDENCE because REASON) : -
note(P1 cf CONFIDENCE because REASON),
note(P2 cf CONFIDENCE because REASON).
[ THING = (VALUE1 and VALUER) cf CONFIDENCE because REASON) : -
note(THING = VALUEL cf CONFIDENCE because REASON),
Note(THING = VALUERQ cf CONFIDENCE because REASON).
([ THING = (VALUE cf CONFIDENCE1) cf CONFIDENCER2 because REASON) : -
note((THING = VALUE) cf CONFIDENCE! c# CONFIDENCE2 because REASON).
 (PROPOSITION cf CONFIDENCE]) cf CONFIDENCE2 because REASON) : -
note(PROPOSITION cf CONFIDENCE!1 cf CONFIDENCE2 because REASON).
THING = (VALUE cf CONFIDENCE1) cf CONFIDENCE2 because REASON) : -
note(THING = VALUE c# CONFIDENCE! c# CONFIDENCE2 because REASON).
THING is unknown cf CONFIDENCE because REASON).
PROPOSITION cf C1 c# C2 because REASON) : -
C3 is (C1 # C2)/71000,
note (PROPOSITION cf C3 because REASON).
PROPOSITION cf C1 because [REASON1])) : -
remove (PROPOSITION cf C2 because REASON2),

C3 is C1 + C2 - (C1 # C)/1000,

add (FROPOSITION cf C3 because [REASON1IREASONZ21]).
PROPOSITION c+¥ C1 because [REASON11) : -

add (FROPOSITION cf C1 because [(REASON11]).

/e(Item) : -

retract(Item),

(watching -2 write(’'=—- deleted ‘), write(Item), nl; true).
[tem) @ -

assert(Item),
(watching => write( '+++ added ‘), write(Item), nl; true).

listof(R, active(R), C[CURRENTIOTHERS]),
tab(8),
write( 'Your answer to this question will help me determine if the’
nl,
tab(16), _
write('following rule is applicable: ),
nl,
show CURRENT,
( OTHFRS = (1]
i nl,

tab(8),

write('Other relevant rules are: ‘),

write (OTHERS),
nl

tab(8), write( 'When you get the prompt ==>> vaild replies are: '),
tab(16é6), write(’- an answer to the question’), nl,

tab(16), write( - why. to get a justification’), nl,
tab(16), write('— show RULE. to have that rule printed’), nl,
tab(16), write(’'— show THING. to see what is known about it’),

tab(16), write(’'- (:-= COMMAND). to have a Prolog command run’),
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and PR refersto THING : -
( P1 refersto THING
i P2 refersto THING
|y
g
or PR refersto THING : -
( Pl refersto THING
I P2 refersto THING '
|y
!,
POSITION cf CONFIDENCE refersto THING : -
PROPOSITION refersto THING,
)

NG = VALUE refersto THING : -
]

NG tsléTATUS refersto THING : -

v RULE : -
RULE : if PREMISE then CONCLUSION,

Y

éab(e), write(RULE), write(’: ‘), nl,
tab(10), write(’if ‘). pwrite(PREMISE, 16), nl,
tab(10), write(’then ‘), pwrite(CONCLUSION, 1&), nl.

 te(P1 and P2, Indent) : -

d .

pwirite(Pl, Indent), nl,

tab(Indent), write(‘and ‘), pwrite(P2, Indent).
te (P, _) g -

urite(P).

) THING : -

@ = (THING = VALUE cf CONFIDENCE because R).
listof ([CONFIDENCE, G1. G. 6S),

sort(GS, SGS), »
tab(8), write(’This is what is known about ‘),
Write(THING), write(’: ‘), nl,
bwrite (SGS).
| THING : -
sought (THING),

!,

tab(8), write(THING), write(’ is unknown. ‘), nl.

h :=
assert(watching).

tch : -
abolish(watching, 0).

te((C1).

te(CCA, BIiCY) : -
bwrite(C),
tab(16), write(B), nl.
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y(OLD:, NeW) ;-

(OLD =« NFW => write('Files must differ’), nl, fail; true),
(exists (OLD) -> true/ write(‘First file does not exist’), nl, fai
assert(rulenumber(l)),
'..(OLD’I
tell(NEW),
repeat,
read(FACT),
tidyprocess(FACT),
feen,
told,

abolish(rulenumber., 1).

yprocess(end_of_file).
yprocess(FACT) : -
QUtput(FACT),
nl, nl,

da

tail.

)ULt(NAME : if PREMISE then CONCLUSION) : -
retract(rulenumber(N)),
succ (N, N1),
assert(rulenumber(N1)),
write(rule), write(N), write(’: ), nl,
tab(B), write(’jf ‘). pwrite(PREMISE, 14), nl,

tab(8), write(’then ), pwrite (CONCLUSION, 14), write(’. ‘), nl.
Ut (QUESTION finds THING) : -

write(’ " "), write(QUESTION), write(“’“7), nl,

tab(4), write(’finds *), write(THING), write(’. 7), nl, nl.
ut(P) ;-

urite(P), write(’. 7), nl.

stof/3 behaves very like bagof/3, except that the collection of
swers it comes up with will never be empty. It will fail instead.

of((,P,Set) : -
bagof(X,P,Set),

s

X \ms C].

rt/2 is a vrsion of Hoare’s “Quicksort" algorithm designed to sort
rms of the form THING=VALUE cf CONFIDENCE because LIST into
creasing order of CONFIDENCE. The only specific reference to this
nd of term occurs within the definition of lesser/2, which succeeds
ly i its first argument is ‘less’ than its second. So, you could
sily adapt sort/2 to many other sorting jobs

(L,Sorted) : -
sort(lL,C], Sorted).

(CX!ILI, RO, RY :=-
partition(L, X, L1,L2),
'ort(inROIRl)a
sort(L1, CXIR11,R).

(C1,R,R).
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rtition(CXIL), Y, CXILLD, LR) @ -

lessar(X,Y),

partition(L, ¥, L1, L2).
rtition(CXILY, Y, L1, CXIL2]) @ -

partition(L,Y.L1,L2).
rtition(Cl, _. C1, C]).

sser(( = _ cf C1 becauvse _, X = _ cf C2 becauvse _) -
C1 < C2.
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Appendix D

The knowledge-base used with the prolog shell to perform the fault
diagnoses.
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Jhat is the %4 expansion + compression’
finds expan

Jhat is the X I + G space error’
finds 1qgap.

Jhat is the X I space error’
finds igap.

Jhat is the 4 QG space error’
finds qgap.

Jhat is the constellation rotation’
finds rot.

Jhat is the differential rotation’
finds drot.

Jhat is the nonorthogonality’
finds nonorth.

Khat is the inner to outer ratio’
finds ratio.

What is the I + QG deviation’
finds iqdev.

What is the I.QG pool variance’
finds iqvar.

Khat is the correlation coefficient’
finds correlation.

Are the I and Q gap errors different (y=>1,n=>0)"
finds iq_diff.

ulel:
if expan=8.5 and iqgap=0.0 and rot=0.5 and nonorth=0.25
and ratio=1.0
then fault=normal cf 950.

ule2:
if expan=12 0 or expan=17.0 or expan=22. 5 or expan=27.5
then expan_cond=overdrive_expan.

ule3:
if expan=5 5 or expan=3. 5 or expan=2. 3 or expan=1.95
then axpan_cond=underdrive_expan.

ule4:

if drot=0.9% or drot=1.5 or drot=2. 5
then drot_cond=underdrive_drot.



uyled:

'vuleb:

ule?7:

uleB:

uylell:

uvlel2:

vielld:

uleld:

ulelS:

ulelé:

ulel?7:

ulelB:

ulel®:
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i drot=3. 0 or drot=7 3 or drot=10.0 or drot=12. 0
then drot_cond=overdrive_drot

if iqgap=1.0 or iqgap=2.0 or iqgap=3.0 or iqgap=4.0
or 1qgap=3.0 or iqgap=10.3
then iqgap_space=pogitive_iqgap.

if iqyap\=0. 0 and iqgap_space\=positive_iqgap
then iqgap_space=negative_iqgap.

if nonorth=1.0 or nonorth=2. 0 or nonorth=3. 0
or nonorth=4. 0 or nonorth=5. 0
then nonorth_cond=outofsquare

if nonorth=0. 29
then nonorth_cond=square.

if expan_cond=underdrive_expan and drot_cond=underdrive_drot
than cond=twt_underdrive.

i¥ expan_cond=overdrive_expan and drot_cond=overdrive_drot
then favlt=twt_overdrive cf 7350.

if nonorth_cond=outofsquare
then cond=nonorth_carrier

if iq _dif¥f=1 and iqgap_space=positive_iqgap
then cond=positive_gap_error

i¥ iq diff=1 and iqgap_space=negative_iqgap
then cond=negative_gap_error .

if iqdev=3600000
then fault=unknown_spread cf 950.

if cond=nonorth_carrier and iqdev=30000 and iqdiff=0
and expan=8.9 and drot=3. 5 and iqgap=0.0
then fault=nonorth_only cf 950.

if cond=positive_gap_error and nonorth=0.25 and expan=8.5
and drot=3. 5 and iqdev=30000
then fault=positive_gap_only cf 950.



vule20:

ule21l:

Ul e22:

Ule23:

J1e24:

;1e25:

;1e26:

;1e27:

11e28:

11029
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if cond=negative_gap_error and nonorth=0. 2% and expan=8. 9
and drot=3. 3 and iqdev=30000
then fauvlt=negative_gap_only cf 9950.

if cond-twt_undordr1§o and iqdiff=0 and iqgap=0.0
and nonorth=0.2% and iqdev=30000
then fault=twt_underdrive_only cf 950.

if cond=twt_overdrive and cond=nonorth_carrier and iqdev=30000
then fault=twtun_nonorth cf 900.

if cond=twt_underdrive and cond=positive_gap_error
and iqdev=30000
then favult=twtun_pge cf 900.

if cond=twt_underdrive and cond=negative_gap_error
and iqdev=30000
then fault=twtun_pge cf 200.

if cond=nonorth_carrier and cond=positive_gap_error
and iqdev=3C000
than fault=nonor_pge cf 900.

if cond=nonorth_carrier and cond=negative_gap_error
and iqdev=30000
then fault=nonor_nge cf 900.

if fault=twt_overdrive and cond=nonorth_carrier
then fault=nonorth_carrier cf B99.

it favlt=twt_overdrive and cond=positive_gap_error
then fault=positive_gap cf 750.

if favlt=twt_overdrive and cond=negative_gap_error
then fault=negative_gap cf 750.
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Appendix E

The source code for the adaptive combiner section of the machine
learning system.
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nclude Cstdio. hD
nclude <math. hD>

efine sigma 1

efine lamda O 98

efine signif 0.9

efine signifi 0.9 ‘
efine 1loop for(i=Q; iC=14i i++)
efine jloop for( ;=0; j<=16; j++)
efine k3loop for(k=Q, kC=Q; k++)

itialise(p.h,s)

this function initialises the covariance matrices, the inverse
variance matrix, the tap weights and the input vector. Sigma

st be defined in the calling program if this is used elsewhere*/
uble pC171C171];

uble hC171C31i

vuble sC1l;
t i, )0 ki
oop
{
jloop
1
pCilC 3=0.0;
F
k3loop
<
hCilCkI=0. 0 /#tap weights for all three filters»/
>
s(il=0. 0
}
oop
{
plillil=sigma;
}
r(s,y.h, e}

this calculates the error between the filter output and the
sired output+/

uble sC1;

uble yCJi

uble hC173C31;

uble eC1l;

uble ypi
& i ki
loop
{
yp=0. O
iloop
yp=yp+sCil#hCilCkli
elk]l = ylkl] - ypi /%#calculate error for each filter»/
}
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Jtoci(p, s, @/ h)

*this vpdates the covariance inverse and the tap weights»/
ovble pC171C17)y
ouble sC)s
ouble oC)
ouble AC171C3)
duble p¢L1710171), ;
duble mC171]
duble nC171;
At 1. J ki
uble ¢
0. O
loop
{
nlil=0. O
nlil=0. 0
Jloop
{
ptCilC I=0. 0O
mCiJ=mCil+sC jI%pCy3Cil;
NCiJ=nCil+pCilC jInsCJ;
>
}
o0p

fufemiInsCi];

1/ (lamda+f);

o0p

<
Jjloop
{
(RASSINBELISSEIL Y ISP H
PCiJCyI=(pCilCyl-ptlilCyl)/lamda; /*update
the inverse autocorrelation matrix#/
>
k3loop
ACiJCkI=hCilCkI+nCilnfreCkl;
>

Iter(p/h,s: 2,4y, @ input)

this

first finds the number of training examples then

Ils the functions to train the tapweights#/

uble
uble
uble
uble
uble
uble

pC171C171];
hC173C31;
sCli

L)

gyl

el];

LE #input;

t i, JI&I'
canf(input, “Xd", &i);
r(y=0i j<i; j++)

4

values(z,y, input);
second(z,s)i
earr(s,y.h, el
avtoci(p, s, e, h)i

}
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alues(z,y,input)

Juble 201,
>uble yC1,
[LE #input;

(5 TR ¥

T (1=0; i<=1]; i++)
fscanf(input, "41¢"“, &21Cil);
3loo0p
fescanf(input, “41¢", &yCk1),

pcond(z,8)

yuble zC1J;
yuble sC1;

tthis routine calculates the second order features#/
't 1

IT(1i=0; {<C=&; {++)
sCil=z(11];

v (i=7; i<=9; i++)
sCilmz(i+11;

IT(i=10; iCm1&; i++)
<
sCil=s(i-101#s(i-101;
}

ps(h, output)

)uble hAC171C31;
LE *output;

¢ i, ky
3loop
{
iloop
{
fprintf(output, “41f \n", hC1i1Ck1);
}
fprintf(output, "\n");
>
1in()

uble pC17IC171;

uble hC171C31;

uble sC1713;

uble zC157;

uble eC31;

uble yC31;

ar in_+ilel201;

LE #input, #oytput, #*fopen();
ar ouvut_filel201;

ar thr_¢filel(201:
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hile(1l)
{
fprintf(stderr, “\n please enter input file: \n"),
scanf("%s", in_¢file);
i# (input = fopen(in_file, "r"))

break;
fprinté(stderr, “\n cannot open %s \n",in_file);
}
hile(1)
L

fprintf(stderr, “\n please enter output file:\n");
scanf("%Zs", out_file);
if (output = fopen(out_file, "w"))

break;
fprintf(stderr, “\n cannot open %s \n“, out_file);
}

nitialise(p.h, s);
ilter(p,h. s, 2.y, @ input);
aps(h,output);
close(input);
Close(output)i
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Appendix F

A copy of the paper entitled "The Application of Knowledge-Based
Systems For Fault Diagnosis in Digital Microwave Radio Equipment", which

was presented at the IEEE International Conference on Communications in June
1987.
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LHITEAPPLICA TION OF KNOWIT | DG

BASED SYSTEMS TOR EAUT
DIAGNOSIS IN MICROWANVTE RADIO RETAY EQUIPMIE NI

K € Brown C FN Cowan. | M Crawford® and P M Grant

I'he University of Edinburgh, Department of Electrical Engineering
‘The Kings Buildings, Edinburgh, EH9 31

* permanent Affilation Hewlett Packard Q1D South Queensterey, West [ othian
'

Ic‘ -0 weoey .::'.
his  paper nvestigates  exploitation, by “expert” —_— ! . ; 96 %
v. ot the nformation present an the sienal i 48 d
lation of a 16 QAM radio. for fault diagnosis To
cate the practical application ot expert system -, . -
ques a 160 QAM radio model was developed on a ’ onsrrarion
it Packard non-intrusive communications analyser. | oen_|

approaches o the expert  system  are  under
vation, a conventional rule based system and a new
w  learning  svstem  based on  adaptive pattern
iion  techniques.  Both techniques are described
wir relauve performance 1s compared using data
he radio model. Typical synthesised faults are up
3 TWT overdrive and underdrive, up to 5 degrces
thogonality of 1 and Q carriers and up to +/- 10%
g error in the constellation. Further information is
ed on the machine learning system's performace on

radio system operating at 11GHz when fceding
o itself at RF.

iroduction

[here are a range of problem tvpes with varying
s of explicitness of knowledge about relationships
en causes and effects. These range from those
evervthing is known and can be expressed in the
of explicit elementary logical rules to cases where the
lving rules are not known and many of the varables
f a continuous nature. Fault diagnosis in digital
lies partway along this range. where some rules of
» are known. but complicated combinatonal effects
so present. This leads to the requirement to find the
appropnate method for performing the fault
osis. Human experts use the information in the
er signal constellation (1] (figure 1 gives point of
, to the constellation) to diagnose the faults in digital
wave radios. The signal constellation also provides
cellent information point which 1s suited to use in an
rt" system. The rule based [2] and the machine
ng [3] systems described here, both use the 16 QAM
~ constellation information to perform their fault
osis.

In our system 16000 samples from the constellation
aken, 1000 samples for each of the signal states.
sample is represented by the magnitude of the I
ase) and Q (quadrature) levels of the signal. These

[

&

FIGURE |

i wien
| | = —

1%
v " % a—a

DIGITAL RADIO TRANSMITTER

AND RECEIVER

samples are used to generate a geometric feature set which

desc

(]
(2]
(3]
(4]
(5]
(6]

(7]
(8)

9]

(10)
(11]
(12]

ribes the signal constellation.
The geometric feature set comprised:-
% Expansion of outer points
% Expansion of inner points
01+ %Q gap spacing error
%1-%Q gap spacing error
Constellation rotation (degrees)

Differential
(degrees)

Non-orthogonality of constellation (degrees)

rotation of inner to outer

points

Ratio of number of inner points to outer points in
sample set

I pool deviation (sum of I squared)

Q pool deviation (sum of Q squared)

1.Q pool vanance (sum of [*Q)

Correlation coefficient

These features are simply calculated using the I and

Q coordinates for each sample and by estimating which of

the

16 QAM constellation points has been received.

Figure 2 shows a 16 QAM constellation and the points

take

n for reference in calculation of the various geometric

features. These geometric features are used as the inputs
to the diagnostic systems.
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ule Based System

[nitially a Prolog expert system shell was used. This
based on KS399 by Tecknowledge Inc.. forms a
vard chaining system similar to the structure of
IN [1]. This system was subsequently abandoned as
uired too many rules to cover every possible fault
tion. due to the deficiency of this shell not providing
- to simple arithmetic capabilities which are needed
1imise the number of rules.

A rule based system was then written in the C
age. Figure 3 shows the overall structure of the rule
system. There are four distinct sets of rules within
ystem. each performing a certain task that would
lly be done by the human expert. The rule based
ach requires that the data fall within a specific set of
te levels, or for the rules to be written to cover any
ed data ranges. The features are initially processed
antise each feature so rules covering a discrete range
tures can be written. This quantised feature set is
ised directly by the rule based system.

[he first set of rules takes the quantised feature set
etermines the faults which could possibly be present.
ature sct is then processed by another set of rules to
sh the actual magnitude of cach of the detected

The next set of rules takes the feature set and
ines levels for any faults which were not covered by
evious scts of rules. The confidence level of the
from these rules is not as great as for the previous
ets. This structure allows the system to suggest the
ce of a fault. while indicating its level as zero.which
> of use to an operator when the initial adjustment
ted by the system does not cure the fault in the

Next there is g rule set 1o indicate which were the
uning features for estabhishing cach tault. Finally
v information 15 output to the operator.
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l CONITELLATION DATA ‘]

QUANTISATION OF FEATURE sET
TO DUCRETY LEVRLS

l

SET OP ' TMEN RULES TO DECIDE
SUT OF POSITALE PAULTY

l

ST OF P TN RuLEs O
DETEAMINE FAULT LEVELS

!

SET OF O TMEN RuULES TO

ESTIMATE  FAULT LEVELS ron
FEATURE SETS WHICH DO NOT
MATCH THOSE EXPECTED

!

RULES TO DETERMINE WHICH
FEATUNES WERE USED TO
ESTABLISH PAULTS AND THED
LEVELS

]

OUTPUT PAULTS. THEMR LEVELS

THER DETERMINING PFEATURES
AND THE CERTAINTY OF EACH
FAULY LEVEL

FIGURE 3 STRUCTURE OF RULE BASED
SYSTEM

The rule based technique cannot return to a previous
level as a human might. when a poor decision has been
made. to improve future decisions. This return by an
expert forms part of the learning process. to update
knowledge. In a rule based approach this would involve
modifying the rules to include the new information.

The system could be altered so that when instructed
by the user some rules could be invoked to alter the rule
base to take account of any errors found.

3. Machine Learning System

There are two levels to the machine Icarning system
as shown in figure 4. The features arc first fed into a
distance classifier which uses a special form of the
weighted Euclidean distance. the Mahalanobis distance
[4], to distinguish between radio states, such as receiver
out of lock. ball of noise and well conditioned system.

This first stage scts up an n-dimensional space. for
the n features, then cach radio state has examples of s
feature set input as training examples so cach state forms
a cluster in the spuce.  For a new feature set the
Mahalanobis distance is caleulated 10 cach of the clusters
and'the smallest distance indicates the received state. The
distance from the received features 1o the clusier centres
also gives o measure of how well the radio s set up

33.2.2.



the  distanee chissthier andhcates that the radio
sty well conditioned that o there are 1o distinet
utes, then the teatures are iput to the adaptive
swetton tor turther analvsis  1F the radio s ot
dittoned the svstem outputs the state which most
orresponds to the given Teatures (out ob lock or
o 1n higure 4) and no more processing s done

¢ adaptive hiltering part ot the system s shown in

When the svstem enters this made ot processing
t teatures form a more hnear relattonship to the
states . making  the  hncar  classihers . more
ate than the unconstrinned distance classihier A
finite impulse response (FIR) hilters [S] are set
v one hilter tor cach expected tault. The tegture
s nput data to cach hilter with the tap weights for
culiated durnng the trimning phase using a recursive
ares (RLS) aleorithm [6]0 This type ot algonithm
1 to munimuse the number of triuming examples to

steady  state. Each filter a8 trinned  for oty
ir fault with a senies of different fault levels and

—
[

ONSTELLATION |
DATA (

—_—
'
e aiie g
FLATURES |
PREPROCESSING |
e S e

4
pem| | G—
| / \
: 1 / DISTANCE
< — CLASSDTIER |
{ |
; |
¢

‘/ ADAPTIVE \
| (RLS)

ALGORITHM ' \
7 f Y

FAULTY FLAG FLAQ
ADIUSTMENTS

RE 4 STRUCTURE OF MACHINE
NING SYSTEM

—_—
COMBINER | . PAULT | LEVEL
TP WEIONTY
(" Tar
ey L DarTion
CATURES ] ol

el c————

COMBINER ¥ p—— P AULT W LBVEL

TAZ WRIGHTS
Tar

ADAPTION |

RE 5 CONFIGURATION FOR ADAPTIVE
{ATORS FOR EACH MODELLED FAULT

rresponding feature sets. Once training is
the feature set of the radio under investigation is
d each filter output corresponds to the level of
icular fault.

> machine learning system allows "learning” which
based approach did not readily do. If a result is
be incorrect the system can be retrained to give
ct output for that condition
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4. Performance Asnessment

[he tests show the performance of cach system .
under a range ot magnitudes for cach individual fault and
4ovancety of combinations of taults

Fhe Fault ranges examined were

[T]  Up o XdB overdrive by 2dB steps

[2]  Up to 8dB underdrive by 2dB steps

[3]  Non-orthogonality ot carriers up to S degrees by |
degree steps

[4]  Spacing crror in constellation trom 1077 to = 107
by steps ot 1%

Figures 6, 7 and 8 show how the first three of these
faults ctfect the constellation shape

FIGURE 6 16 QAM CONSTELLATION WITH
TWT OVERDRIVE

FIGURE 7 16 QAM CONSTELLATION WITH
TWT UNDERDRIVE

33.2.3.

1161



IGURE 8 16 QAM CONSTELLATION WITH
ON-ORTHOGONAL CARRIERS

Rule Based System

Single faults were detected correctly by the rule
d system for all the ranges tested. The TWT
drive and underdrive is detected in 2dB steps over the
range. For 8dB and 6dB overdrive a spacing error
indicated but its value was defined as 0%. The non-
bgonal carrier faults were detected correctly over the
e 0 to S degrees in 1 degree steps. however, for 3. 4
S degrees a spacing error of 0% was again indicated
spacing errors were correctly detected from -10% to
% in 1% steps, while a nonorthogonal carmer fault of
egrees was also suggested. Thus the rule based
oach correctly detected all the single faults present.
for some cases indicated faults which are not present.
till gives the level of that fault correctly as 0.

The detection of multiple fault conditions was not as
rate as that of single fault conditions. If the TWT
drive was less than 6dB the diagnosis was as accurate
r the single fault case. For multiple faults with TWT
drive of 6dB or greater there were some errors. The
m gave the correct level of TWT overdnive and
>ctly indicated the presence of other faults but
ided erroneous levels. This problem was caused by
effect of TWT overdrive on the features which were
to determine other fault levels, however, the features
to establish the level of TWT overdrive were not
tive to the other faults.

Machine Learning System

The machine learning system indicated the correct
of fault for single TWT faults to within 1dB for 6dB
drive to 8dB underdrive. The levels of the
rthogonality were detected to within 1 degree of the
al level. The detected levels for the spacing errors
within 0.5% of the actual error. The differcnces
cen the svstem output and the actual fault levels
s from errors duc to the approximations uscd in the
ted filter tup weight algorithm

I'he machine learning system again failed to provide
senwible estimates of fault levels for multiple faults which
include high TWT overdrive. Estimates can be up to 8dB
in crror for the overdrive level. The estimates for
underdrive or low values of overdrive. 2dB to 4dB, are
much better, except for some cases of spacing faults which
the system could not detect. Table 1 summanses these
results and provides a comparison between the systems

Fault | _Error in Rule Based System Error in Machine System |
[ TW1 |l < =148 <=1JB ]
LEDL!""L l < *08% <=05% j
[ Non orthogonal | < =0 $ deg | <= 0.5deg |
»—Mﬂ“plc' As for single conditions | _As for single conditions
[ Multiple®* TWT< = 1dB | TWT< =RdB |
L Spacing< +4% rSpacmg-: = 6% ]
L Non-orthogonal< = 3 deg T Non-orthogonai~ = 3 deg |

*(no TWT overdnve 6dB or greater)

**(including all faults)

TABLE 1| PERFORMANCE COMPARISON OF
RULE BASED AND MACHINE LEARNING SYSTEMS

5. Discussion

The rule based and the machine learning system
both perform well for single fault conditions, while falling
down to some extent with multiple fault conditions. The
rules for the rule based system are established by
examining the changes in the feature set for single fault
conditions and writing rules to match these changes
Then rules are written to try to account for the
interactions berween the determining features for each
fault. This accounts for the accuracy of single fault level
detection as the rules were written using data for single
faults. The reduction in accuracy for multiple faults arise
since the rules do not take full account of the interactions
on certain features by different faults.

The machine learning system demonstrated degraded
performance on some of the multiple fault conditions,
especially those with 6dB or greater overdrive and spacing
errors because of the nonlinearities in the changes of the
feature set for these ranges.

6. Demonstration of Machine Learning System on an
11GHz Radio System.

The machine learning system was trained on an
11GHz digital radio (16 QAM) looped back on itself at
RF. The data is collected using a constcllation analyser
(HP3709) directly connected to the | and Q monitor
points of the radio receiver demodulator. The data signal
is provided by the radio’'s 17 stage PRBS scrambler. ‘The
system 1s trained on dcliberately introduced faults, such as
maladjustments of a particular potentiometer or adding
external filters to the IF chain to give passband assvmetry
I'he  output 1s given in a  graphical display  of
faults’commands for adjustments as in Figure 9. Figure
94 1s the output of the system when it has been trained on
four types of fault (TWT overdrive, phase-lock out of
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nt. quadrature capacitor maladjusted and an
try in the system filters) and has been connected
10 with arbitary maladjustments in these faults.
b is the output after the commands have been

The overdrive is measured using an external
eter, the potentiometer adjustment is assessed by
the bandpass filtering can be adjusted offline
ifferent system.

: rule based and the machine learning systems
vide solutions to the problem of fault diagnosis
al microwave radio. The rule based approach
virical rules of thumb to make the combinatonal
f the faults manageable, whereas the machine
technique treats the vanables as being of a
us nature and uses adaptive pattern matching
ns to provide a solution. The rule based system
nd to be applicable where there was not a
orward linear relationship between the faults and
lting feature set. In conclusion the machine
system proved more appropriate than the rule
rstem for providing optimal adjustment of the
here the underlying mechanisms are too complex
simple rules of thumb to be applied.

combination of the two techniques would solve
the problems using the suitability of each method
ecific problem type. The rule based approach
yver the areas with large nonlinearnities while the
learning system is more applicable for the more
oblem regions.
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