
Process Modelling to Support
Software Development

under the Capability Maturity Model

Kann-Jang Yang

Doctor of Philosophy

University of Edinburgh

1998

To My Father,
who died on January 5 1996.

Abstract

In 1913, the Ford Motor Company successfully introduced the assembly-line

mass production of motor vehicles. The success of mass production came in the

concept of interchangeable parts and manufacturing processes. Currently, after

struggling with "software crisis" in the last decades, the software community is

trying to imitate the concept of mass production.

Problems arise from the characteristics of software. Software is a logical rather

than a physical system element. We develop software products but not manufac-

ture them. However, researchers still believe in the practices used for assembling

previously existing components into large software systems.

Before the technique of software components is mature, we believe that the

software process is another essential topic for "manufacturing software products".

The steps in the software process must be defined very precisely and carefully.

Process-centred Software Engineering Environments (PSEEs) are viewed by many

as a way to assist developers in the execution of their work. Research has produced

a variety of PSEEs providing support for management and technical activities.

However, it is hard to say which process is the most appropriate one.

The Capability Maturity Model for Software (CMM), developed by Software

Engineering Institute in Carnegie Mellon University, provides software organisa-

tions with guidance on how to gain control of their processes for developing and

maintaining software. For the last few years, some organisations have successfully

improved their software process maturity by using the CMM.

This research builds a PSEE, called SPI (Software Process Improvement)

PASTA , that models the CMM by using the process notation PASTA (Pro-

cess and Artifact State Machine Transition Abstraction). There are two reasons

for doing this research. Firstly, we believe that a PSEE must comply with a

framework of continuous process improvement, such as the CMM, in order to

improve project management in software organisations. Secondly, in any context

in which the CMM is applied, a reasonable interpretation of the practices should

be used. The CMM must be appropriately interpreted for different size projects

and software organisations.

The SPI PASTA provides a framework for continuous improvement of the

process. This framework complies with a supporting knowledge transfer and

implementation services architecture that makes it possible to achieve higher

software process maturity. Therefore, the software organisation's productivity

and quality can be improved over time through consistent gains in the discipline

achieved by using the SF1 PASTA. Furthermore, by means of a CMM-based

appraisal method, the state of an organisation applying the SPI PASTA will be

determined. As a result, the organisation's software process can be continuously

improved.

Acknowledgements

After four years of PhD research, I can now add the final and most enjoyable part

to my thesis; it is in these lines I can finally thank the many people that have

enabled me to produce this work, by providing the fruitful environment that I

have worked in for the last four years.

Firstly, I would like to use this thesis to memorialise my father who died on

5 January 1996. Without his support, I could not have finished my research

career. Furthermore, I have to thank my mother, Hsin Yang-Huang, and my

wife, Pei-Pei Tsai, whose patience, love and sacrifices made this dream come

true. Next, special thanks go to Kirsti Withell and Paul Coe, who gave me

such useful help in doing this research, and to Robert Lai, who gave me his

continued help and encouragement as I was first learning the software process. I

would also like to acknowledge the help and encouragement I have received from

my friends, Marcio Fernandes, Ana Goldenburg, Nils Knafia, Rob Payne, Isabel

Rojas-Mujica, Perdita Stevens, Thomas Zurek and so many more who deserve to

be mentioned.

I am deeply indebted to my supervisor, Dr. Rob Pooley, who contributed so

much to the numerous discussions that we had about my work. Supervising a

foreign student cannot be an easy job; he must put in additional effort to improve

my writing and listen carefully to my strange accent. Without his patience, I

would not have completed this thesis, and for all this I am extremely grateful.

Thanks to all of you!

Table of Contents

Chapter 1 	Introduction 1

1.1 Is software development tricky? 2

1.2 Motivation 4

1.2.1 	Software Process Improvement4

1.2.2 	Japan's Software Factory9

1.2.3 	Microsoft Secrets 14

1.3 Research 	focus16

1.4 Contributions 20

1.5 Thesis Organisation20

Chapter 2 Background 22

2.1 	Related Work 22

2.1.1 The Software Process Improvement Programs 22

2.1.2 Process-centred Software Development Environments 	. 24

2.2 	Standards and Modelling Method 30

2.2.1 The Capability Maturity Model 30

2.2.2 Software Life Cycle Processes 36

2.2.3 Process and Artifact State Machine Transition Abstraction

(PASTA) 40

Chapter 3 	Process Tailoring 48

3.1 	The Relevant Activities and Products in the CMM Levels 2 and 3 49

3.2 	Organisation Process Focus 53

3.2.1 	The Software Process Improvement Plan 54

3.2.2 	Processes in Software Process Improvement 55

3.2.3 	Processes in Organisation Process Focus 56

3.3 	Organisation Process Definition 60

3.3.1 	Organisation's Software Process Assets 61

3.3.2 	Processes in Organisation Process Definition 63

3.4 	Integrated Software Management 67

1

3.4.1 The Project's Defined Software Process69

	

3.4.2 	Process Tailoring69

3.4.3 The Software Development Plan70

	

3.4.4 	Processes in the PDSP70

Chapter 4 The Processes in the CMM Level 2 75

4.1 	The Software Management Process 75

4.1.1 	Requirements Management79

4.1.2 	Software Project Planning 84

4.1.3 	Software Project Control 98

4.1.4 	Software Acquisition Management100

4.2 	The Software Support Process 109

4.2.1 	Software Quality Assurance 111

4.2.2 	Software Configuration Management 117

4.3 	Summary 122

Chapter 5 The Processes in the CMM Level 3 123

5.1 	The Software Technical Processes 123

5.1.1 	The Unified Modelling Language 131

5.1.2 	Requirements Analysis 132

5.1.3 	The Software Design 139

5.1.4 	Software Implementation 146

5.1.5 	Software Testing 150

5.2 	The Organisational Process 156

5.2.1 	Organisation Training Program 159

5.2.2 	Risk Management 164

5.2.3 	Project Interface Coordination171

5.2.4 	Peer Reviews 173

5.3 	Summary 179

Chapter 6 Implementation and Assessment 180

6.1 	Implementation of SPI PASTA 180

6.2 	Assessment of SPI PASTA 186

6.2.1 	The CMM Appraisal Framework 186

6.2.2 	Software Process Assessment190

6.2.3 	Assessing SPI PASTA 194

6.2.4 	Post 	Action 194

11

Chapter 7 Conclusions and future work 	 199

7.1 Conclusions199

7.2 	Future Work201

List of Figures 	 203

List of Tables 	 207

Bibliography 	 208

Bibliography 	 208

Appendix A P-state Definition Forms 	 220

111

Chapter 1

Introduction

On the 4th June 1996, the maiden flight of the Ariane 5 launcher ended in failure.

Only 40 seconds after initiation of the flight sequence, at an altitude of about 3700

in, the launcher veered off its flight path, broke up and exploded. An independent

Inquiry Board was immediately set up and finally submitted its report[L1096].

The report indicated:

The failure of the Ariane 501 was caused by the complete loss of guid-
ance and attitude information 37 seconds after start of the main en-
gine ignition sequence (30 seconds after lift-off). This loss of inform-
ation was due to specification and design errors in the software of the
inertial reference system.

The extensive reviews and tests carried out during the Ariane 5 Devel-
opment Programme did not include adequate analysis and testing of
the inertial reference system or of the complete flight control system,
which could have detected the potential failure.

On the 14th September 1997, Microsoft announced that it would delay until

spring the release of Windows 98. The product, which features tight integra-

tion with the company's Internet Explorer software, is strategically important.

Microsoft wants to make Windows 98 a key weapon in its battle with Netscape

Communications to provide the main software package for using the Internet.

The company will release Windows 98 in June 1998 rather than in March. Con-

sequently, Wall Street traders pushed Microsoft's stock down 5 percent.

Software development has been a troublesome technology for a long time. A

majority of large software projects tend to run late or out of control, or to fail

to meet their target. The two cases above are good examples where a minor

mistake could destroy the whole project or cost companies considerable sums. In

this thesis, we try to help software organisations by building a software process

framework, called SPI (Software Process Improvement) PASTA , that models the

1

CMM by using the process notation PASTA (Process and Artifact State Machine

Transition Abstraction).

1.1 Is software development tricky?

In the first Industrial Revolution, the process of change from an agrarian, han-

dicraft economy to one dominated by industry and machine manufacture had

been well prepared for a long time. Towards the end of the nineteenth century,

the second Industrial Revolution was linked with a sharp increase in scale of

production and the size of companies. Today, the third Industrial Revolution is

taking place. Electronic and computer-based technologies rapidly shift the locus

of economic and industrial power.

Each Industrial Revolution brings new management theories to the new en-

terprise. For the first and second wave, people took a long time to adjust to the

new idea. However, for the third wave, it seems that we have not enough time to

sort out how to enter the digital era, especially in the software industry, a totally

new industry for human beings.

Basically, software is a logical rather than a physical system elernent[Pre94].

This is the biggest difference between software and traditional mass production

industries. In the early years, software programmers were viewed as craftsmen.

They built software products for special customers. However, software systems

are increasingly big and complex. Software development is not a craft any more.

It is team work.

From his study, Jones[Jon96] described how a significant percentage of projects

are cancelled before completion, fail to deliver expected features, run over budget

and overshoot schedules. Table 1.1 shows the approximate frequency of various

kinds of outcomes, based on the overall size of the project being attempted.

Project Size Expressed in Function Points
Project Outcome < 100 100-1000 1000-5000 > 5000

Cancelled 3% 7% 13% 24%
Late by > 12 months 1% 10% 12% 18%
Late by > 6 months 9% 24% 35% 37%

Approximately on-time 72% 53% 37% 20%
Earlier than expected 15% 6% 3% 1%

Table 1.1: Software Project Outcome By Size of Project[Jon96]

Table 1.1 clearly shows that only one fifth of projects, which are larger than

2

5000 function points, are completed on time. This percentage is far less than for

small projects. From this survey, conclude that we have to gain an understanding

of the properties of software. What is the main reason for this "software crisis"?

Kraut and Streeter[KS95b] suggested that uncertainty is one of characteristics

of software development. They listed the following:

. Unlike much manufacturing, software development is a nonroutine activity.

The lifecycle of software development is not clear. The classic "waterfall"

lifecycle model has been criticised for a long time since real projects rarely

follow the sequential flow. Booch[Boo96] described real processes as both

cyclic and opportunistic. This means that a well-managed iterative and

incremental development life cycle might be a good paradigm for software

development.

Uncertainty increases because specifications of the software's functionality

change over time.

Bersoff[BHS80] said that no matter where you are in the system life cycle,

the system will change, and the desire to change it will persist throughout

the life cycle. Change always happens when software is used by end users

as this is the time when end users understand software's capabilities and

limitations.

Software development is uncertain because specifications for it are invariably

incomplete.

The software engineering textbook usually describes how software require-

ments, such as major functions, interfaces and information, must be fully

understood before successive layers of detail are specified. However, the

true story is that too few people working on a software project have suf-

ficient knowledge about the domain in which they are working. Analysts

with varying degrees of domain knowledge interview customers and users.

The specifications seem to he inevitably incomplete. Even worse, some of

the users' requirements will not be uncovered until the product is released.

This is really a nightmare for software developers.

Software is uncertain because the different subgroups involved in its develop-

ment often have different beliefs about what it should do and how it should

do it.

3

Professionals generally develop their products by using their own methods

and techniques. They might do a good job; however, without disciplined

frameworks, the project could become out of control.

Therefore, software development is very different from traditional industries.

We can not simply adopt traditional management theories to fit the software

industry. We have to discover a new method to enter this new digital era.

1.2 Motivation

Cusumano[Cus9l] in his book described the concept of the software factory. With

the increasingly popular Internet, the virtual corporation is becoming reality.

This effort is building large international systems with multi-national participa-

tion. However, to create these system, it needs a common international frame-

work for specifying the best of practices for software processes, activities, and

tasks. Without this commitment, developers will struggle with communicating

each other.

The effort of software process improvement has been verified to be a good

solution to resolve the problems[PW96, HIW95, DS97]. With this consensus,

those multi-national participants may follow the rule to develop software pro-

jects. To run an international software project, Microsoft's secrets[CS95, CS97]

can provide an effective method for those software organisations. This "synch-

and-stabilise" approach complying with disciplined process will effectively and

efficiently develop a big software project.

1.2.1 Software Process Improvement

In recent years, process modelling has become one of hottest topics in the issue of

software engineering. Researchers focus on software processes which can effect-

ively combine related staff, resources and activities. As mentioned in Section 1.1,

the software community faces significant difficulties. Researchers have been trying

to tackle these problems. Their efforts include object-oriented methodology[BJR97],

Frameworks [F597], Patterns[GHJV94] and so on. The goal of each effort is to

provide an effective and efficient method to help the software community com-

plete their mission. However, software projects are not only about technology

but about management. Methodologies, tools and people all influence software

development.

For the last decade, the software community has focused on the area of soft-

ware process improvement, in particular for those who contract to governments.

An organisation such as NASA has to develop, maintain and manage complex

flight systems. It is very important to develop a continual process improvement

approach that allows NASA to fine tune its process for its particular domain.

As a result, the Software Engineering Laboratory (SEL) was created in 1976 in

NASA and concentrated on software process improvement for the purpose of un-

derstanding and improving the overall software process and products that were

being created within the Flight Dynamics Division (FDD)[MPB94]. The SEL's

recently completed 1996 organisational baseline shows across-the-board improve-

ment in all measurement[PW96].

Average mission costs decreased by 15% when compared with the 1993

baseline, totalling a 60% overall reduction in mission costs since 1985.

The cost of developing a line of new code has decreased by nearly 35% since

1993.

Ground system projects saw a modest 7% reduction in project cycle time,

while simulators experienced a 20% reduction since 1993.

Error rates continued to drop, with a 40% reduction in development error

rates since 1993. This combines with earlier improvement to total an 85%

drop in development error rates over the past 10 years.

The impacts of these process changes are evident in the resulting character-

istics of FDD products. This results in a belief that software products can be

improved by optimising the software engineering process used to develop them.

In 1987, the Software Engineering Institute (SET) in Carnegie Mellon Uni-

versity released a software process maturity framework and maturity question-

naire to support organisations in improving their software process[PCCW93a,

KCF96, Pau95]. Four years later, the SET released the Capability Maturity

Model for Software (SW-CMM or CMM)[PCCW93b, PWG93]. Since then, the

CMM has become an important guide to help software organisations select process

improvement strategies.

The CMM was originally developed to assist the U.S. Department of Defence

(DoD) in software acquisition. However, the use of the CMM swiftly pervaded the

wider software engineering community. Not only the DoD contracting community,

but also commercial organisations adopted the CM1'vl as a framework for their own

internal improvement initiatives and gained significant benefit from the CMM.

Ratheon Electronic Systems (RES) began its software improvement activities

in 1988, driven by compelling business reasons to improve the cost and schedule

5

SEL CMM Level Number of Projects 1 Qualityf Cycle Time 1
(X factor)

Productivity

I 	(Relative)

1 3 n/a 1.0 n/a

2 9 890 3.2 1.0

3 5 411 2.7 0.8

4 8 205 5.0 2.3

5 9 126 7.8 2.8

fIn-Process Defects/Million assembly-equivalent lines of code 	 I

Table 1.2: Motorola GED Project Performance by SET CMM Level[DS97]

predictability of its major business areas' software components. These activities,

guided by the CMM, include[Hal96]:

to establish a strong and effective software process infrastructure for con-

tinuous improvement and to maintain the team's enthusiasm over time, and

to measure and analyse process and project data to quantity the benefits

of software process improvement.

In eight years, Raytheon has demonstrated significant improvements to its soft-

ware engineering process. During the period, productivity of the development

staff has increased by a factor of almost 2.8, and predictability of their develop-

ment budget and schedule has been reduced to a range of +/- 3%[HIW95].

Motorola[D597] has long been a famous organisation which has adopted the

CMM as a vehicle for software process improvement. In November 1995, the

company's Government Electronics Division was independently assessed at SET

level 4. Table 1.2 summarises the Motorola GED improvement trends for quality,

cycle time and productivity by SET level. In typical projects on level 4, Motorola

achieves a 5-fold reduction in product cycle time to accelerate the introduction

of new products, and a 4-fold reduction in defects and 2.3 time productivity than

projects on level 2.

This achievement brought Motorola a remarkable return on investment and

implied that there is a good business case for those who follow the SET software

process improvement approach.

There are other samples from the survey conducted by the SET[CLMZ96,

CLM+97]. The result of the survey was a mixture, in particular for those organ-

isations which appeared to be of low process maturity. Nevertheless, the benefits

of adopting the CMM are significant.

However, some research has different opinions. Fayad[FC96] argued that ad-

opting the CMM recommended practices is not especially easy and smaller or-

Lf

ganisations cannot afford the two- to three-year duration it normally takes to

reach CMM level 3. In addition, the CMM is continuously being questioned by

the software community. One of the common complaints concerning the CMM is

the organisation of the information contained within the document. References

to software process practice for a given CMM Key Process Area (KPA) are not

located in the same section but are dispersed throughout the document. This

makes the job of reviewing a defined process against the recommendations made

by the CMM particularly difficult for an organisation trying to improve their

CMM maturity rating or trying to define a CMM consistent process[AES95].

To resolve these arguments, the SEI Software Process Definition Project has

developed the Software Process Framework (SPF) to support users access to the

process maturity criteria, or key practices established in the CMM[OR094]. The

purposes of the SPF are[Gat97]:

. to present information recommended by the CMM in a format that is con-

venient for software process definition tasks,

to identify the policies, standards, processes, procedures, training, and tools

recommended by the CMM,

to provide checklists for ensuring that process documents are consistent

with the CMM.

The SPF comprises a set of templates derived from the CMM and maps all

CMM KPA specific recommendations. The policies and standards checklists are

used to verify that policies and standards are in place to guide the use of the pro-

cess. Furthermore, the process checklists are used to review and analyse software

process documents. However, for software development, the software organisa-

tions have to cover all the software processes which include[Pau97]:

software technical processes

software support processes

software management processes

organisational processes

These four processes, shown in Figure 1.1, provide services to and support the

work required by one another. The main problem is that software organisations

have to invest in considerable resources to fit the SET's process improvement

activities. This problem is not only for large organisations but also for small

7

companies which might be dispersed teams connected by the Internet and/or

intranet.

SW-CMM

Software 	 Software
Technical 	 Management
Processes 	 Processes

Software 	 Organisational
Support
Processes 	 Processes

Figure 1.1: The Process Architecture of the CMM

100% -
90% -

21

10%- 	 :

lntal

f1iiriI ___ ______

Repeatable Defined Managed Optimising

1987-1991

El 1992

1993

LifI 1994

1995

1996

1997

Figure 1.2: Trends in the Community Maturity Profile

However, as Figure 1.2[SEI97] shows, only 16 % of assessed organisations

(13.9% on Level 3, 2.1% on Level 4 and 0.3% on Level 5) could reach higher than

maturity Level 3 in 1997. This shows that adopting the CMM recommended prac-

tices is a big challenge for software organisations. The process maturity profile

surveyed bv the SEI[SE197] showed that the time taken to move from maturity

level 1 to 2 is 32 months for all organisations and 27 months for organisations

that began their CMM-based SPI effort in 1992 or later. All groupings exhibit a

similar pattern for moving from maturity level 1 to 2 and level 2 to 3. This means

that an organisation might take four or five years to achieve Level 3. CMM-based

SPI is not a cheap nor a quick solution.

Diaz and Sligo concluded and found some reasons to explain why in lower

maturity organisations it is much more difficult to implement software process

improvements [DS97]:

Keying process changes to metric analysis data is not addressed until CMM

levels 4 and 5. Such data is critical to improving the effectiveness of SPI

efforts.

. Lower maturity organisations focus on defining their core processes, not on

improvement.

Lower maturity organisations are just starting to improve their software

processes. This requires significant effort, especially in the beginning.

We are faced with some basic problems in promoting CMM to software organ-

isations. Although the SPF provides a framework to check the processes which

are used in software organisations, it is still like a roadmap and cannot tell you

how to design or how to analyse software process documents. There is still a

gap between the CMM and the SPF. In this thesis, we try to use SPI PASTA to

assist lower maturity organisations to implement software process improvement.

By using SPI PASTA, those lower maturity organisations may easily apply key

practices recommended by the CMM. This will significantly reduce their effort

and earlier form a base to achieve higher maturity.

1.2.2 Japan's Software Factory

In 1913, the Ford Motor Company successfully introduced the assembly-line mass

production of motor vehicles. The concept of mass production has dominated the

automotive industry. Mass production methods are based on two general prin-

ciples: the division and specialisation of labour and the use of tools, machinery

and other equipment in the process combining precision, standardisation, inter-

changeability, synchronisation and continuity.

In the 1970's several Japanese firms, led by the Toyota Motor Corporation,

developed radically different approaches to the management of inventories. By

relying on careful scheduling and the coordination of supplies, just-in-time man-

agement ensured that parts and supplies were available in the right quantity,

with proper quality, at the exact time they were needed in the manufacturing

11

or assembly process[Mon83]. Since then, the concepts of mass production and

just-in-time management have influenced the software industry. The idea of the

"software factory" has been widely discussed in the literature[Man84, TT84].

Cusumano[Cus9l] studied some companies, such as IBM, System Development

Corporation (SDC) and General Telephone and Electric (GTE) which pioneered

variations of software factory approaches during the 1970's. The common activ-

ities of these companies were incorporated into a standardised set of engineering

methods, controls and support tools. These standards specified a hierarchical ar-

chitecture for all software systems, a formal engineering process based on a com-

mon life-cycle model, a list of required documents for each phase and a glossary

of terms and symbols for developing programs. However, most of the compan-

ies abandoned their efforts after a couple of years of operation since information

technology can not well support the concept of software factory.

Despite the unsuccessful implementations by American companies, we have to

ask whether the concepts of "factory" provide solutions to problems in software

production at all. In industries such as automobile manufacture, the de-skilling or

routinsation of work, high levels of control over production tasks and work flows,

division and specialisation of labour, interchangeable parts and automation have

well been implemented. However, with respect to the software industry, the highly

skilled programmers, wide variations in project contents and work flows, unclear

requirements of the customer were the major obstacles in implementation

of factory concepts. In his book, Pressman[Pre94] suggested that software is

developed or engineered rather than manufactured in the classical sense. This

means that software projects cannot be managed as if they were manufacturing

projects. Besides, in mass production, the use of interchangeable components

is necessary and essential. Without standardisation of parts, mass production

would be impossible to implement. However, some research has recently focused

on this field:

• 	Object-Oriented Frameworks

A framework is a reusable, "semi-complete" application that can
be specialised to produce custom applications[FS97].

Mattsson also defined an object-oriented framework as a (gener-
ative) architecture designed for maximum reuse, represented as a
collective set of abstract and concrete classes; encapsulated poten-
tial behaviour for subclassed specialisations/11at96J.

The difference between an object-oriented framework and a class library is

that an 00 framework is targeted for particular business units and applic-

10

ation domains. A framework contains the basic application structure that

application programmers previously had to develop on their own. By start-

ing with a business framework, applications can be created more rapidly

since developers have only to concentrate their development efforts on the

unique differentiators they need for their customers.

Research into object-oriented frameworks has boomed since the introduc-

tion of object technology and a matured distributed environment. IBM's

Commercial Shareable Frameworks initiative[Boh97], also called project San

Francisco, is trying to build server-side core business process components

that can be reused as a base for creating applications for specific industry

domains. San Francisco will restructure the way applications can be built

and sold by providing about 40% of a typical working application within the

supported domains. ISVs (Independent Software Vendors) would develop

the remaining 60% of the application business processes and services on

top of San Francisco and bundle both the IBM and ISV code into a single

solution which the ISV will then sell to customers.

Meanwhile, the Software Engineering Institute (SET) in Carnegie Mellon

University built the product line systern[BC96, CFM96, WAN], a group

of products sharing a common, managed set of features satisfying specific

needs of a selected market or mission. All products in a product line share

a common architecture[CN96] and control the variability inherent in a fam-

ily of similar systems. The work of the product line system is focused in

three areas: Domain Engineering, Software Architecture and Reengineer-

ing. Through careful management and engineering, a product line can be

developed that exploits a common set of assets, ranging from reusable soft-

ware components to work breakdown structures for individual projects.

Both systems share the same idea of developing a framework or an archi-

tecture with reusable components as a foundation for a specific application

domain. By implementing a "standardised variety" approach, organisations

can build a production system that can support the concurrent develop-

ment of software for multiple projects. As in the concept of just-in-time

management (a close coordination of information and plans with suppliers

and vendors), project managers focus on domain engineering and receive

components at the last minute.

. Distributed and Concurrent Development

This is another type of just-in-time management. The concept of distrib-

11

uted and concurrent development arose because of the Internet. Virtual

collaboration over the Internet is a new paradigm of software development.

It enables multiple small teams, geographically distributed, to concurrently

develop multiple functions for a family of large-scale software systems. Pro-

jects such as the Agile Software Process Model[Aoy93, Aoy90, Aoy97] and

Fujitsu's Distributed and Concurrent Development Environment[NFK97]

paid attention to distributed development processes. To implement the

concept, the Japanese developed a cyclic enaction model in which devel-

opment of each enhancement has to be completed in a fixed time period,

and iterated over multiple releases. The key point of the model is precisely

controlling the process over multiple releases, since each process instance

has to meet an exact development schedule. This is the key concept of

just-in-time management.

To implement the concept of just-in-time management, software organisa-

tions can benefit from the use of object-oriented technology. Booch{Boo93]

gave an object a definition:

An object has state, behaviour and identity; the structure and
behaviour of similar objects are defined in their common class;
the terms instance and object are interchangeable.

Hence, the features of objects support the ability to create systems com-

posed of independent parts and systems that can be extended without du-

plicating effort. However, if you are going to see the benefits of object-

oriented technology, you have to create a work style that promotes identify-

ing and working on well-defined and manageable system components. This

is the crucial point which the Japanese software factory focuses on. By

using components, software engineers can develop and release projects in-

crementally, create subteam structures that encourage parallel work and

promote reuse opportunities.

Both approaches have to face crucial problems. Two of the toughest problems

are domain engineering in frameworks and partition in distributed and concur-

rent development. In the framework approach, the first activity is to define the

conceptual framework. This activity is based on a functional decomposition. In

distributed and concurrent development, a good partition might closely coordin-

ate the project manager (vendor) and developers (suppliers) and complete the

products on time. Consequently, division of the software project into work com-

ponents is a crucial task.

12

By surveying the Japanese software industry, Cusumano[Cus9l] found that

Japanese software companies attempted the strategic management and integra-

tion of activities required in software production, as well as the achievement of

planned economies of scope. Cost reduction or productivity gains came from de-

veloping a series of products with one firm which is more efficient than building

each product from scratch in a separate project, and planned scope economies

required the deliberate sharing of resources across different projects. To manage

their projects, Cusumano explained that Japanese software companies focused on

several common elements[Cus9l]:

. Commitment to process improvement

Product-process focus and segmentation

Tailored and centralised process R&D

Skill standardisation and leverage

Dynamic standardisation

Systematic reusability

Computer-aided tools and integration

Incremental product/variety improvement

From this survey, we can determine some of the key points in the Japanese

software industry. As in other industries, Japanese software producers first con-

centrated on process and quality control and then on process improvement. The

managers who established software factories all believed they could improve soft-

ware operations by using an institutionalised software process and quality control.

In the meantime, the SET's CMM might be viewed as the same issue[PCCW93b].

The CMM recommends institutionalising measures and procedures based on his-

torical performance and statistical analysis as part of an organisational culture.

Japanese software producers developed tailored processes for particular types of

software products. The Japanese software companies established the organisa-

tion's set of standard software processes with centralised tools and methodology

above the level of individual projects. The companies tried to establish baselines

for software developers and product quality through a product focus and a stand-

ard process, as well as training in standard sets of tools. methods and management

procedures. As a result, the variability of personnel skill does not change the pro-

gress of a project too much, since all activities are controlled by a baseline. This

13

concept was suited to the CMM which, in level 3, integrates the software engin-

eering and management activities into a coherent, defined software process that

is tailored from the organisation's set of standard software processes.

1.2.3 Microsoft Secrets

In their research, Cusumano and Selby [CS95, CS97] described how Microsoft

uses the "synch-and-stabilise" approach to product development. First, Microsoft

teams try to understand users' needs and structure those needs into individual

features. They then assign priorities to these features and allocate them to sub-

projects that break up a development project into three or four milestone periods

(builds). Microsoft managers also try to fix project resources - limiting developers

and development time in any one project. The intended shipment date causes

the whole development team to bound its creativity and effort.

Figure 1.3 shows that the life cycle contains three phases; planning, devel-

opment and stabilisation. The planning phase takes three to twelve months,

depending on the features of the project. The development phase takes six to

twelve months and generally comprises three or four major milestone product re-

leases. The stabilisation phase takes another three to eight months and comprises

testing, buffer time and preparation for final release.

In the planning phase, Microsoft tries to use a high-level vision statement and

outline specification to get projects going, rather than trying to write a complete

specification at the outset. The program managers then write a functional spe-

cification, outlining the product features in sufficient depth to organise schedules

and staffing allocations. However, the initial specification does not cover all the

details as it is just a high-level vision statement. During the development phase,

the program managers revise the functional specification when they learn more

about what should be in the product. Of the total project time allocated for

development and stabilisation, a project will generally spend about two-thirds of

this time in the development phase and one-third in the stabilisation phase. The

development phase consists of three or four "milestones" (builds). At these stages,

program managers can revise their functional specification. In Microsoft, projects

spend approximately two to four months developing each milestone release. Each

release includes its own coding, testing, and debugging activities.

Microsoft also tried to fix shipment date to deliver products on time. Project

managers schedule backwards from the shipment date and define the dates for the

intermediate project milestones. Typical desktop applications, such as the next

release of Office, Word, or Excel, are 12 to 24 months in duration. Microsoft is

14

Phases
	

Timeline 	Milestones

In

C N

N
N

N
N

N
N

N
N

N
N

/
/

/
/

/
/

/
/

C

Milestone 0

Schedule complete

Project Plan
Approval

Milestone I
release

Milestone II
release

Milestone III
release
Visual freeze

Feature complete

Code Complete

Zero bug release

Release to
Manufacturing

(ship date)

Development
Subproject

2-4 months
(1/3 of all features)

6-10 weeks
- Code and

optimizations
- Testing and

debugging
- Feature

stablization

2-5 weeks
- Integration
- Testing and

debugging

2-5 weeks
Buffer time

Figure 1.3: Microsoft's Synch-and-Stabilise Life Cycle[CS95]

15

moving toward alternating 12 and 24 month schedules for applications products,

with the 12 month projects offering minor feature enhancements and 24 month

projects offering major feature and architectural changes. As a result, Microsoft

can ship a product release every 12 months{CS95]. The fixed shipment date keeps

pressure on developers to cut down on features. However, rushing the shipment

date generally leads to less time for testing and quality assurance activities at the

end of the project.

In addition, the DSDM Consortium in UK suggested the Dynamic Systems

Development Method (DSDM) as a framework of controls for the development of

IT systems to tight timescales[DSD97I. The mechanism for handling flexibility

of requirements in DSDM is the timebox. Each timebox is subdivided into three

parts: investigation (a quick pass to see whether the team is taking the right

direction), refinement (to build on the comments resulting from the review at

the end of investigation) and finally consolidation to tie lip any loose ends. The

timebox must have an immovable end date and a prioritised set of requirements

assigned to it.

Both cases show an essential concept that Yourdon[You96] argued the concept

of "good enough" software. He suggested that functionality, quality and schedule

are the three most important elements of "good enough" in most software today.

These elements form a triangle and are interconnected. The balance between them

shifts dynamically during a project. It has to be reevaluated by the customer and

the project manager.

1.3 Research focus

To tackle the previously mentioned problems, my research aims to build a Process-

centred Software Engineering Environment (PSEE) for software process improve-

ment. According to ISO/IEC 15504, the software process is defined as following:

The process or set of processes used by an organisation or project
to plan, manage, execute, monitor, control and improve its software
related activities. [1S096]

This concept was originally from manufacturing physical products, in partic-

ular the automobile industry. From the beginning, software engineers tried to

find solutions from industry. Although this is not an easy way to imitate in-

dustries' processes, at least, by following processes, the results can be planned

and tracked. As a consequence, researchers tried to build an environment which

16

provides computer-based support and guidance for the enactment of software de-

velopment processes. The implementation of PSEEs is increasingly popular in the

software engineering community. Ben-Shaul and Kaiser[BSK95] define a PSEE

as:

PSEEs are systems that support large scale software development by
providing: (1) mechanisms and notations for explicitly modelling the
process of development and maintenance of software, including task
definitions, control integration such as global task ordering and local
constraints on their activation, tool integration, data modelling and
integration, and user modelling; and (2) mechanisms for enacting the
modelled process by the PSEEs process-engine, where forms of enact-
ment include process automation, consistency, monitoring, enforce-
ment and guidance.

Finkelstein, Kramer and Nuseibeh[FKN94] also suggest a PSEE as:

A PSEE is centred around an explicit process description, often called
process model, that is defined using Process Modelling Languages (PMLs).
These languages offer powerful capability to describe roles, manual and
automated procedures, interaction among users, process artifacts, and
constraints. The execution (enactment) of the process model within
a PSEE provides support to process agents in the execution of their
work, for example, by offering guidance to them or by automating
some parts of the process.

As a consequence, a PSEE might include:

. a process model

. a process definition language

. mechanisms or notations for process enactment

. tool integration mechanisms

support for communications

Moreover, articles were focused on computer-supported cooperative work (CSCW)

which combines a study of the organisational, psychological, and social aspects

of people working together with the enabling technologies of groupware[TS96].

Bandinelli et al. argued that CSCW and PSEEs basically, address the same issue,

i.e., how to support cooperative activities in human-centred process[BNF96]. In

this research, we do not restrict which environment belongs to CSCW or PSEEs.

In principle, we are concentrating on supporting cooperative activities in software

development.

17

Why do software organisations need PSEEs? Firstly, software systems have

become increasingly more complex and larger in scale during the last decade. It

results in crucial problems such as:

. Software organisations require more and more skilled people to develop and

maintain their product.

. To manage these various experts, without a disciplined environment would

be much more difficult.

As a result, researchers are looking for solutions to these problems. Ebert[Ebe97]

in his article described that current software engineering practice is based on the

uniqueness of projects. Knowing that something similar has been done before

is considered to have no practical impact because some interfaces might differ

and several environmental flavours could have changed. However, he suggested

that software engineering should investigate how to copy what is good and use

what already exists. This is why Gamma et al.[GHJV94] used design patterns to

record experiences in designing object-oriented software. The goal of their study

is simple. They would like to capture design experience in a form that people

can use effectively. Design patterns make it easier to reuse successful designs.

Expressing proven techniques as design patterns makes them more accessible to

developers of new systems. If design patterns can help novices to learn by example

to behave more like experts, why do we bother spending a significant amount of

time hunting for any solution from scratch?

Design patterns have modified the ideal of using CASE tools. It is clear

that simply using CASE tools which support specific activities is not sufficient.

PSEEs which support software activities through the execution of the model of

the software process will be a good solution for software development. Such a

model describes the interaction between software developers and development

environment, such as the role assigned to perform the activities, the anticipated

work products needed by and produced by the activities of the process, as well as

the tools, methods and control points related to the process. As far as developers

are concerned, PSEEs provide them with an appropriate working context. This

will result in an environment in which developers can inherit experience abstracted

froin experts. This can reduce the complexity of software development and the

requirement for skilled people.

Secondly. the Internet has become one of the most popular innovations in

the world. The Internet allows users access to selected information regardless of

geographical distribution and heterogeneity within the physical computing en-

vironment. Since it is traditional that a software project might be composed of

separate teams for requirement analysis, design, coding, testing and maintenance,

the Internet could allow these teams developing software to be located around the

world. As a result, the concept of "virtual corporation" is increasingly more es-

sential for the software industry. A "virtual corporation" is a company that relies

on outsourcing almost every aspect of a software project, from requirement ana-

lysis to maintenance. It is similar to setting up an assembly line around the

world. We can imagine a scenario where teams in the United States and in India

electronically collaborate to develop a software project. The States' team works

on the project during the day and saves the work on a central computer. By

nightfall, it is daytime in India, and India's team takes over, working with what

the States' team has developed. The concept results in advantages such as:

Cost saving: An Indian programmer is much cheaper than his/her American

counterpart in Silicon Valley but is of similar quality. Since it is impractical

to hire all skilled people in one geographical area and put them in the one

physical building, the Internet enables companies to hire software engineers

in different geographical area. This reduces the cost of hiring qualified

people.

Time-to-market saving: The project development is worked on in different

time zone, shortening the time taking to develop a project.

Let us go back to Section 1.2. It is clear that the cases of Microsoft's de-

velopment teams and the Japanese software factory have been adopted by these

concepts. As a consequence, a disciplined environment with geographically dis-

persed teams, connected by the Internet and/or intranet, will be an essential

feature of PSEEs.

This research will try to build a PSEE by using the CMM and there are two

reasons for this. Firstly, we believe that a PSEE must comply with a framework

of continuous process improvement, such as the CMM, in order to establish a

disciplined environment. To date, we are not aware of any research building

an environment for software process improvement. Secondly, in any context in

which the CMM is applied, a reasonable interpretation of the practices should

be used. The CMM must be appropriately interpreted for different size projects

and software organisations. SF1 PASTA adopts the concept of artifact-driven to

build an environment for software development. In a development project, SPI

PASTA provides guidance on what sort of product it is necessary to create.

19

In this research, we will concentrate on CMM levels 2 and 3 since the KPAs

(Key Process Areas) on levels 2 and 3 include all basic processes for software

development. This research will provide practical guidance on how to introduce

the CMM into software organisations. We believe this PSEE will help lower

maturity organisations to easily achieve higher levels of process maturity and

effectively develop their software products.

1.4 Contributions

The main contribution of this research is that SPI PASTA (Software Process

Improvement PASTA) builds a framework to provide software organisations with

a defined process recommended by the CMM. This framework may help software

organisations developing their own software development process to ensure that

they are consistent with the CMM. Furthermore this framework may be a basis

to develop large international systems with multi-national participation. With

commitment to SF1 PASTA, software engineers from different countries can follow

the same rule to develop the software projects. Moreover, with SF1 PASTA,

software developers will better recognise what they have to do and accumulate

the knowledge and experience to improve their software process. This is very

helpful for new engineers who can use the SF1 PASTA as a training resources in

order to join the development team as soon as possible.

1.5 Thesis Organisation

This thesis describes how to define and model a software process by using a

modelling notation under the software process improvement architecture. The

organisation and content of the thesis is as following:

Chapter 1, Introduction, shows the motivations why we are going to do this

work, defines the research focus and presents what contributions have been

done in the thesis.

Chapter 2, Background, presents related work from several software organ-

isations to set the context for the thesis and explores the standards and

modelling method we used. These standards contain the CMM which we

model, MIL-STD-498 providing uniform requirements for software develop-

ment and documentation, which is used as a supplement for the CMM, and

PASTA being a modelling notation, which we use to model the software

process.

20

Chapter 3, Process Tailoring, describes the KPAs for process tailoring. This

will let the software organisation define the most appropriate software pro-

cess for the organisation and the software project.

Chapter 4, The Processes in the CMM Level 2, consists of the management

process, focusing on the software project planning and explores software

management activities before technical processes are implemented, and the

support process, describing two essential KPAs, Software Quality Assurance

and Configuration Management, which support implementation of manage-

ment and technical processes.

Chapter 5, The Processes in the CMM Level 3, consists of the technical

process, describing software engineering activities which we use the UML

to implement them, and the organisational process, describing four organ-

isational topics which belong to the CMM level 3.

Chapter 6, Implementation and Assessment, describes how to implement

the SF1 PASTA and how to assess the processes in order to improve organ-

isation's software process.

In Chapter 7, Conclusion and future work, finally, we make a conclusion for

our work and suggest further work to be done in the future.

21

Chapter 2

Background

2.1 Related Work

In this section, we will summarise some related work on the software process im-

provement field. We firstly discuss the infrastructure that guides organisations in

planning and implementing an effective software process improvement program.

The Process Improvement Strategy from SEL (Software Engineering Laborat-

ory) in NASA and the SEI's IDEAL (Initiating, Diagnosing, Establishing, Acting

and Learning) model provide a concept of the life cycle for software process im-

provement. To implement these strategies, secondly, we focus on process-centred

software development environments. Four projects, the Software Technology for

the Adaptable, Reliable Systems (STARS) program from DoD in the US, EPOS

(Expert System for Program and ("og") System Development), SPADE and Oz,

define the process modelling language to model software processes and build a

software engineering environment to support an organisation's development prac-

tices. Finally, we will introduce a commercial software development environment,

Objectory, which defines a process to control software development during the

software life cycle.

2.1.1 The Software Process Improvement Programs

2.1.1.1 SEL Process Improvement Strategy

The SEL has long been a pioneer for software process improvement because of

the characteristics of its products. The SEL defined a standard paradigm to

illustrate its concept of software process improvement. This paradigm is a three-

phase model which includes the following steps[MPB94]:

1. Understanding: Improve insight into the software process and its products

by characterising the production environment, including types of software

22

developed, problems defined, process characteristics and product character-

istics.

Assessing: Measure the impact of available technologies and process change

on the products generated. Determine which technologies are beneficial and

appropriate to the particular environment and, more importantly, how the

technologies (or processes) must be refined to best match the process with

the environment.

Packaging: After identifying process improvements, package the techno-

logy for application in the production organisation. This includes the devel-

opment and enhancement of standards, training and development policies.

In the SEL process improvement paradigm, these steps are addressed iterat-

ively, and form a base for the software process community.

2.1.1.2 The IDEAL Model

The IDEAL model[McF96, GM97], developed by the SET in Carnegie Mellon

University, is an organisational improvement model that serves as a roadmap for

initiating, planning and implementing software process improvement actions. As

in the CMM for software, IDEAL provides an approach to continuous improve-

ment by outlining the steps necessary to establish a successful improvement pro-

gram. The model provides a disciplined engineering approach for improvement,

focuses on managing the improvement program and establishes the foundation

for a long-term improvement strategy. The IDEAL model is composed of five

phases:

Initiating: During the initiating phase, the business reasons for undertak-

ing the effort are clearly articulated. The effort's contributions to business

goals and objectives are identified, as are its relationships with the organisa-

tion's other work. The support of critical managers is secured, and resources

are allocated on an order-of-magnitude basis. Finally, an infrastructure for

managing implementation details is put in place.

Diagnosing: The diagnosing phase builds upon the initiating phase to de-

velop a more complete understanding of the improvement work. During the

diagnosing phase, two characterisations of the organisation are developed,

the current state of the organisation and the desired future state. These or-

ganisational states are used to develop an approach for improving business

practice.

23

Establishing: The purpose of the establishing phase is to develop a de-

tailed work plan. Priorities are set that reflect the recommendations made

during the diagnosing phase as well as the organisation's broader operations

and the constraints of its operating environment. An approach is then de-

veloped that honours and factors in the priorities. Finally, specific actions,

milestones, deliverables and responsibilities are incorporated into an action

plan.

Acting: The activities of the acting phase help an organisation implement

the work that has been conceptualised and planned in the previous three

phases. These activities will typically consume more calendar time and

more resources than all of the other phases combined.

Learning: The learning phase completes the improvement cycle. One of

the goals of the IDEAL Model is to continuously improve the ability to

implement change. In the learning phase, the entire IDEAL experience is

reviewed to determine what was accomplished, whether the effort accom-

plished the intended goals and how the organisation can implement change

more effectively and/or efficiently in the future. Records must be kept

throughout the IDEAL cycle with this phase in mind.

2.1.2 Process-centred Software Development Environments

2.1.2.1 STARS

The STARS program [RE95, KS95a, Uzz96] is sponsored by the Defence Advanced

Research Projects Agency (DARPA) in the United States. The goal of the STARS

project is to increase software productivity, reliability and quality by integrating

support for modern software development processes and reuse concepts within

software engineering environment technology.

The STARS program uses a megaprogramming (or product-line) concept [BBB95]

for software development and life-cycle support characterised by an architecture-

based approach to software engineering with application domains. Basically,

the STARS program builds a process-centred software engineering environment

(PSEE) which includes the definition and enactment of disciplined processes

for the development of applications and the evolution of the product-line as a

whole. In addition to the PSEE, the crucial feature in the STARS program is

domain-specific reuse which addresses the systematic creation of domain mod-

els and domain-specific architecture and their use in building applications[BC96,

CFM96].

24

To date, there are three STARS Demonstration Projects, one with each of the

three services (Army, Navy and Air Force), which are currently engaged in ap-

plying the principles of megaprogramming to real systems. The major objectives

for each of the projects are:

Apply megaprogramming principles to the development of software for an

actual DoD application, to establish the credibility of the approach.

Collect and document experience about the benefits and costs of megapro-

gramming as well as the effectiveness of the specific tools and techniques

used on the project, to help other organisations plan for and implement

similar approaches.

Transition to the Demonstration Project's parent organisation, to establish

the capability to apply megaprogramming to other applications in their

product-line.

2.1.2.2 EPOS

EPOS[NaC96, Con95, CLM95] is a Software Engineering Environment with em-

phasis on process modeling, software configuration management, and support for

cooperative work. The rationale for the scientific initiative is to improve software

quality through better process support for the software production process.

EPOS defined a reflexive, object-oriented software process modelling language

called SPELL. By using SPELL, the Planner can execute the task network. In

addition, EPOS also creates the following meta-process tools to support software

projects:

Schema Manager is responsible for textually/ graphically browsing, edit-

ing, defining, analysing, translating and evolving the Process Schema and

can be used on all the process models.

Task Network Editor makes it possible to directly manipulate the task

network before and during execution, and supports features such as add/remove/mo

Tasks and Products.

Planner is incrementally invoked by the Process Engine to decompose high-

level tasks into a task network.

Project Manager is used to start and stop a project and to retrieve useful

project metrics from the EPOS-database.

25

To perform a successful improvement program, EPOS defined a meta-process

which consists of four steps:

Planning and Instantiation: A new project is initiated with a specific project

context. The Planner will automatically build a task network based on the

generic process model. The Project Manager will then use the project

context to retrieve a set of previous similar projects from the Experience

database.

Execution and Tracking: The Process Engine interprets the task network

and enacts the task with sufficient and available resources.

Packing and Assessment: The current performance progress is compared

and assessed against previous models, historical profile and experiences of

the baseline project by the Project Manager.

Evolving and Learning: Improvement achievements from a completed pro-

ject are generalised, formalised and stored for future use.

2.1.2.3 SPADE

The goal of the SPADE project[CNFG96, BNF96, NF95] is to provide a soft-

ware engineering environment to support Software Process Analysis, Design and

Enactment. The environment is based on a process modeling language, called

SLANG (SPADE Language), which is a high-level Petri net based formalism.

SLANG offers features for process modeling, enaction and evolution. In addition,

it describes interaction with external tools and humans in a uniform style.

The architecture of SPADE is based on three separate layers:

Process Enactment Environment (PEE): The main component of the PEE

is the Process Engine which executes a SLANG process model.

User Interaction Environment (UIE): The goal of the UIE is to manage the

interaction between SPADE and its users. Users coordination and interac-

tion is achieved through tools that are integrated into SPADE.

The SPADE Communication Interface (SCI): The SCI is a filter which al-

lows communication between the PEE and the UIE.

SPADE-1 is an implementation of the SPADE environment. It supports the

enaction of SLANG process models. SPADE-1 includes a process interpreter

which is able to enact process models written in SLANG, a SLANG editor which

26

creates and modifies SLANG process models, a monitor which controls the en-

action state of the process, and an agenda which interacts with process agents.

SPADE-1 supports tool integration at different granularity levels. In particular,

it is possible to integrate stand-alone tools.

2.1.2.4 Oz Project

Oz[BSK96, BSK95, KDJY97] was developed by the Programming Systems Labor-

atory in Columbia University. It is a multi-site collaborative workflow manage-

ment system (WFMS) that supports interoperability among heterogeneous and

autonomous processes. The basic idea of the Oz project is that a large software

project may be decomposed into teams that are each responsible for full develop-

ment of a distinct component of the system, exhibiting intra-group heterogeneity.

In a multi-team development, it may be desirable to allow teams to use their own

set of software tools and hardware, their own private files or databases and their

own development policies and process. Consequently, the development teams

need to collaborate in order to develop the product.

The internal architecture of Oz consists of three main runtime computational

entities: the Environment Server, the Connection Server and the Client. The

Environment Server is composed of three components: process, transaction and

data managers. The process manager loads the process model, the transaction

manager is parameterised by lock tables and concurrency control policies and the

data manager loads the schema for the product data and process state. The client

is composed of four major subcomponents: (1) access to information about rules

and built-in commands, (2) objectbase representation, (3) activity execution, and

(4) an ad hoc query interface. The Connection Server's main responsibility is to

establish connections to a local server from local clients, remote clients and remote

servers.

A local process in Oz is defined using a rule-based language. Each activity

is enclosed in a rule with formal typed parameters, and optional condition and

effects that serve two purposes: to enforce and assert conditions that pertain to

the activity itself; and to connect to other related activities and specify automa-

tion and/or atomicity requirements across activities. Related activities can be

invoked automatically as part of either backward chaining to satisfy the predic-

ates in a rule's condition, or forward chaining as a result of the assertions in a

rule's selected effect. A rule thus defines a process step, and the set of all chains

emanating from that rule define a task.

27

2.1.2.5 Trillium

The Trillium Model [Tri94] was developed by Bell Canada to assess the product de-

velopment and support capability of prospective and existing suppliers of telecom-

munications or information technology-based products. In principle, the Trillium

Model provides key industry practices which can be used to improve an existing

process or life-cycle. The Trillium Model is mainly based on the CMM version

1.1 and incorporates international standards, such as ISO 9001, IEEE Software

Engineering Standards Collection, and so on. However, the big difference is that

its architecture is based on roadmaps, rather than key process areas. Basically,

the Trillium Model consists of Capability Areas, Roadmaps and Practices. In the

top level, eight Capability Areas are defined in the Trillium Model:

Organisational Process Quality

Human Resource Development and Management

Process

Management

Quality

System Development Practices

Development Environment

Customer Support

Each Capability Area incorporates one or more roadmaps. A roadmap is a set

of related practices that focus on an organisational area or need, or a specific ele-

ment within the product development process. Within a given roadmap, the level

of the practices is based on their respective degree of maturity. Since these prac-

tices are taken from standards, meeting the requirements of a Trillium practice

means meeting the requirements of the corresponding referenced standards.

2.1.2.6 Objectory

The Objectory Process[0bj97] is a Software Engineering Process which is origin-

ally defined by Jacobson[Jac87]. It provides a disciplined approach to assigning

tasks and responsibilities within a development organisation. Basically, the pro-

cess description integrates the method description into a framework, stating how

the work should be carried out as interacting processes within each phase of the

development. In general, Objectory can be described in two dimensions:

28

Along time, the life cycle aspects of the process as it will unroll itself.

Along process components, which groups activities logically by nature.

The first dimension represents the dynamic aspect of the process, as it is

enacted, and is expressed in terms of cycles, phases, iterations, and milestones.

The software life cycle is broken into cycles, each cycle working on a new

generation of the product. The Objectory process divides one development cycle

into four consecutive phases:

Inception

Elaboration

Construction

Transition

Each phase is concluded with a well-defined milestone - a point in time at

which certain critical decisions must be made, and therefore key goals must have

been achieved.

The second dimension represents the static aspect of the process: how it is

described in terms of process components, activities, workflows, and so on.

The Rational Objectory Process is composed of seven process components,

four engineering process components:

Requirement capture

Analysis & Design

Implementation

Test

and three supporting components:

Management

Deployment

Environment

Each process component comprises a set of correlated activities. An activity

describes the tasks done by workers to create or modify artifacts, together with

the techniques and guidelines to perform these tasks, and possibly including the

use of tools to automate some of these tasks.

29

2.2 Standards and Modelling Method

The SET's Capability Maturity Model for Software has popularised the notion

of measuring the software process maturity of organisations. In addition, some

efforts have been done in this field. In UK the Central Computer and Telecom-

munications Agency (CCTA) developed PRINCE (Projects in Controlled En-

vironments) which is a project management method covering the organisation,

management and control of projects[PRI97]. Furthermore, ISO 15504 project is

currently creating a set of international standards for software process manage-

ment that attempts to harmonise existing approaches. One of the ISO 15504

objectives is to create a way of measuring process capability, while not using a

specific approach such as the SET's maturity levels. The approach selected is to

measure the implementation and institutionalisation of specific processes; a pro-

cess measure rather than an organisation measure. Maturity levels can be viewed

as sets of process profiles using this approach. During the development of version

2 of the CMM, one of the technical issues to be decided is whether to re-architect

the CMM by layering organisational maturity on top of the ISO 15504 process

capability framework.

2.2.1 The Capability Maturity Model

In 1987, the SET released a brief description of the process maturity framework

and a maturity questionnaire. Originally, the CMM was developed to assist the

U.S. DoD in software acquisition. After four years, the SET evolved the software

process maturity framework into the Capability Maturity Model for Software

(CMM). Then, the SEI released Version 1.1 of the CMM for Software in 1993.

Since then, the CMM has been widely used by the software engineering com-

munity for appraising software processes and guiding software process improve-

ment. Currently, the SET recognises that the CMM should continue to evolve

because continuous improvement applies to the CMM, just as it does to the soft-

ware process[PGC96]. The new version would be released consistent with the

CMM Integration Framework.

The two documents that provided the foundation for Version 1.1 of the CMM

are:

Capability Maturity Model for Software, Version 1.1[PCCW93b], and

Key Practices of the Capability Maturity Model, Version 1.1[PWG93].

The first one contains an introduction to the model, descriptions of the five

30

maturity levels, an operational definition of the CMM and its structure, a dis-

cussion of how organisations can use the maturity model, and some remarks on

the future directions of the CMM. The second one contains the key practices

that correspond to the key process areas at each maturity level of the CMM and

information to help interpret the key practices.

The CMM is a descriptive model in the sense that it describes essential (or

key) attributes that would be expected to characterise an organisation at a par-

ticular maturity level. It is a normative model in the sense that the detailed

practices characterise the normal types of behaviour that would be expected in

an organisation doing large-scale projects in a government contracting context.

The intent is that the CMM is at a sufficient level of abstraction that it does

not unduly constrain how the software process is implemented by an organisa-

tion; it simply describes what the essential attributes of a software process would

normally be expected to be.

In any context in which the CMM is applied, a reasonable interpretation

of the practices should be used. The CMM must be appropriately interpreted,

using informed professional judgement, when the business environment of the

organisation differs significantly from that of a large contracting organisation.

The CMM is not prescriptive; it does not tell an organisation how to improve.

The CMM describes an organisation at each maturity level without prescribing

the specific means for getting there.

The CMM is composed of five maturity levels. With the exception of Level

1, each maturity level comprises of several key process areas. In Version 1.1,

there are 18 key process areas. In Version 2, the SET restructures the CM1\/1 in

particular on Levels 4 and 5. There will be 19 key process areas in new version.

Each key process area is organised by a set of goals and the key practices that

accomplish the goals of the key process area. The key practices are belonged

to common features which contain five sections. The structure of the CMM is

illustrated in Figure 2.1.

2.2.1.1 Maturity Levels

A maturity level is a well-defined evolutionary plateau toward achieving a ma-

ture software process. Each maturity level provides a layer in the foundation for

continuous process improvement. Maturity levels are a staged architecture. As

organisations establish and improve the software processes by which they develop

and maintain their software work products, they progress through levels of ma-

turitv. Achieving each level of the maturity model institutionalises a different

31

CMM Maturity Levels (5)

Key Process Areas (18)

Key Practices

-Commitment to Perform

-Ability to Perform

-Activities PerfonTned

-Measurement and Analysis

-Verifying Implementation

Figure 2.1: The CM1\/I Structure

32

component in the software process, resulting in an overall increase in the process

capability of the organisation.

The CMM is structured into five maturity levels[PCCW93b], as Figure 2.2:

Initial: The software process is characterised as ad hoc, and occasionally

even chaotic. Few processes are defined, and success depends on individual

effort and heroics.

Repeatable: Basic project management processes are established to track

cost, schedule, and functionality. The necessary process discipline is in place

to repeat earlier successes on projects with similar applications.

Defined: The software process for both management and engineering activ-

ities is documented, standardised, and integrated into a standard software

process for the organisation. All projects use an approved, tailored version

of the organisation's standard software process for developing and main-

taming software.

Managed: Detailed measures of the software process and product quality

are collected. Both the software process and products are quantitatively

understood and controlled.

Optimising: Continuous process improvement is enabled by quantitative

feedback from the process and from piloting innovative ideas and technolo-

gies.

2.2.1.2 Key Process Areas

As illustrated in Figure 2.2, with the exception of Level 1, each maturity level

comprises of several key process areas which indicate the areas an organisation

should focus on to improve its software process. Key process areas are described

in terms of a set of goals and the key practices. The goals summarise the key

practices of a key process area and can be used to determine whether an organisa-

tion or project has effectively implemented the key process area. All the goals of a

key process area must be achieved for the organisation to satisfy that key process

area. When the goals of a key process area are accomplished on a continuing

basis across projects, the organisation can be said to have institutionalised the

process capability characterised by the key process area.

The key practices describe the infrastructure and activities that contribute

most to the effective implementation and institutionalisation of the key process

33

Level 5 - Optimizing

Process change management
Technology change management
Defect prevention

Level 4 - Managed

Quality management
Quantitative process management

Level 3 - Defined

Peer reviews
Intergroup coordination
Software product engineering
Integrated software management
Training program
Software process definition
Software process focus

Level 2 - Repeatable

Software configuration management
Software quality assurance
Software subcontract management
Software project tracking and oversight
Software project planning
Requirement management

L Level 1 - Initial

Figure 2.2: SEI Capability Maturity Model

34

area. To ensure consistent accomplishment of the goals of a key process area, the

organisation can establish a documented procedure extracted from key practices

of the key process area. However, the key practices describe "what" is to be

done, but they should not be interpreted as mandating "how" the goals should

be achieved. The key practices should be interpreted rationally to judge whether

the goals of the key process area are effectively achieved.

For convenience, each of the key process areas is organised by common fea-

tures. The common features are attributes that indicate whether the implement-

ation and institutionalisation of a key process area is effective, repeatable, and

lasting. The five common features, followed by their two-letter abbreviations, are

listed below[PCCW93b]:

Commitment to Perform (CO): Describes the actions the organisation must

take to ensure that the process is established and will endure. Includes

practices on policy and leadership.

Ability to Perform (AB): Describes the preconditions that must exist in

the project or organisation to implement the software process competently.

Includes practices on resources, organisational structure, training, and tools.

Activities Performed (AC): Describes the roles and procedures necessary

to implement a key process area. Includes practices on plans, procedures,

work performed, tracking, and corrective action.

Measurement and Analysis (ME): Describes the need to measure the process

and analyse the measurements. Includes examples of measurements.

Verifying Implementation (VE): Describes the steps to ensure that the activ-

ities are performed in compliance with the process that has been established.

Includes practices on management reviews and audits.

However, Bach[Bac94] argued that the SET process maturity model has a

number of limitations and weaknesses and that it may actually be dangerous in

some circumstances. Bollinger and McGowan[BM91] also argued that unexpec-

ted problems pop up in the detailed implications of levels 4 and 5. The process-

instrumentation approach causes software processes to fossilise into inflexible con-

figuration. Furthermore, in level 5, the traceback methods seem in the case of

software to be belated and poorly focused. Humphrey and Curtis[HC91] insisted

that a defined engineering process cannot overcome the instability created by the

absence of sound management practices. SF1 PASTA are developed to lay the

foundation on which effective practices for the higher level are built.

35

2.2.2 Software Life Cycle Processes

Currently, two standards, MIL-STD-498 and ISO 12207, are widely accepted by

the software community for software life cycle processes. Both standards offer a

framework for software life cycle processes from concept through retirement. They

provide a structure of processes using mutually accepted terminology, rather than

dictating a particular life cycle model or software development method. In spite

of the similarity, both standards are very different in their scope.

2.2.2.1 ISO 12207

ISO 12207, published in August 1995, was created to establish a common inter-

national framework to acquire, supply, develop, operate and maintain software.

It is especially suitable for acquisitions because it recognises the distinct roles

of acquirer and supplier. The standard is intended for two-party use where an

agreement or contract defines the development, maintenance or operation of a

software system.

ISO 12207 consists of three main processes, primary life cycle processes, sup-

porting life cycle processes and organisation life cycle processes. The contents of

these processes as following:

Primary Life-Cycle Processes

Acquisition Process

Supply Process

Development Process

Operation Process

Maintenance Process

Supporting Life-Cycle Processes

Documentation Process

Configuration Management Process

Quality Assurance Process

Verification Process

Joint Review Process

Audit Process

36

. Problem Resolution Process

Organisation Life-Cycle Processes

Management Process

Infrastructure Process

Improvement Process

Training Process

These processes would not be fit for any organisation. Consequently, ISO/IEC

12207 describes how to tailor the standard for an organisation or project.

2.2.2.2 MIL-STD-498

MIL-STD-498[D0D94], developed by U.S. DoD, identifies a set of software de-

velopment activities and defines the software products to be generated by those

activities. This standard is written in terms of Computer Software Configuration

Items (CSCIs) which is an aggregation of software that satisfies an end use func-

tion and is designated for separate configuration management by the acquirer.

The MIL-STD-498 package consists of the standard and 22 Data Item Descrip-

tions (DIDs). Basically, Nineteen major software development activities compose

of the detailed requirements of MIL-STD-498, as following:

Project planning and oversight

Establishing a software development environment

System requirements analysis

System design

Software requirements analysis

Software design

Software implementation and unit testing

Unit integration and testing

CSCI qualification testing

CSCl/HWCI integration and testing

37

System qualification testing

Preparing for software use

Preparing for software transition

Software configuration management

Software product evaluation

Software quality assurance

Corrective action

Joint technical and management reviews

Other activities

In comparison with ISO 12207, there are no the acquisition process, the supply

process, the operation process, the maintenance process or the training process

in MIL-STD-498. However, ten activities, from software requirement analysis to

preparing for software transition, in MIL-STD-498 correspond to only a single

process in ISO 12207, the development process. MIL-STD-498 provides more

detailed requirements for the software development process.

In addition to the activities and DIDs, MIL-STD-498 also suggests the pro-

gram strategies for the system. These strategies are:

Grand design: The "grand design" strategy is essentially a "once-through, do-

each-step-once" strategy.

Incremental: The "Incremental" strategy determines user needs and defines

the system requirements, then performs the rest of the development in a

sequence of builds.

Evolutionary: The "Evolutionary" strategy also develops a system in builds,

but differs from the Incremental strategy in acknowledging that all require-

ments cannot be defined up front.

The grand design is similar to the "waterfall" approach with projects seeking

to "freeze" the specification at the beginning, then developing design, coding, and

testing. This approach has gradually lost favour, especially in the object-oriented

field.

In Incremental and Evolutionary strategies, MIL-STD-498 suggests the concept

of a build (see Figure 2.3). It means:

38

5.1
5.2

5.3
5.4

5.5
Requirements

Analysis

5.6
Software

Design

5.7
Software

Implementatiot

5.8
Unit Testing

5.9
5.10
5.11 	 E

5.12
5.13

/
/ / / /

/

A version of software that meets a specified subset of the requirements that

the completed software will meet.

The period of time during which such a version is developed.

MIL-STD-498 	 Phases

Section 5

SDP

System Requirements Analysis

Work Breakdown Structure

CSCI1 CSCI2 CSCIi
H -

H H
a a a

CQ - - -
-

CN

-
- Cq -

H
a

H
a

H
a
fQ -

Integration
Test

Integration
Test

Integration
Test

Figure 2.3: The Software Engineering Process in MIL-STD-498

Basically, both Incremental and Evolutionary strategies are based on the spiral

rnodel[Boe88]. The model defines four major activities:

Planning: determination of objectives, alternatives and constraints,

Risk analysis: analysis of alternatives and identification /resolution of risks,

39

Engineering: development of the "next-level" product, and

Customer evaluation: assessment of the results of engineering.

The spiral model is much more flexible and realistic than the classic "water-

fall" life cycle. Both Incremental and Evolutionary strategies adopt these four

activities to develop a project. However, there is a difference between Incremental

and Evolutionary strategies.

The Incremental strategy is suitable for the concept of the software factory.

When using the incremental strategy, the system requirements must be available

and clear, such as bidding for government contracts. Project managers make

reasonable estimates of schedules and arrange the appropriate resources. Under

the schedule, the managers can establish three or four builds for the project to

complete the system.

The Evolutionary strategy is suitable for highly competitive products like word

processors and spreadsheets in mass markets. Such highly competitive products

have the same characteristics. They all have great pressure on time-to-market. If

you miss your shipment date, you lose the market. Furthermore, at the beginning,

the managers cannot properly predict the specification of the project. As soon

as project managers have any kind of specification, they develop the system as

quickly as possible.

2.2.3 Process and Artifact State Machine Transition Ab-
straction (PASTA)

A process is a sequence of decision making activities. Software development

is a process of making decisions about what programs should implement the

software requirements and what the required properties of those programs are,

including properties such as their structure and interfaces. A particular software

process may be defined as a sequence of decisions made in different states. The

process modeller may model a methodology by a set of predefined states, i.e.,

it is a prescription for the artifacts to be used, the activities to be performed

and their sequencing, and the roles that people play. Process modellers provide

software developers with guidance on what to do next based on the state of the

development. A software developer using the methodology proceeds by following

the activities prescribed by the states to produce the prescribed artifacts in the

prescribed order.

In this thesis, we use the PASTA model[Lai9l] to define a process for software

development. The reason we chose the PASTA model is because the CMM model

40

provides a roadmap for software organisations to develop their software projects.

As a result, there are many difficulties for software organisations using the CMM

since the CMM contains so many key practices for developing and maintaining

software. The software development teams are easily confused in this "roadmap".

We try to use an artifact-driven approach to tackle this problem. Basically, the

PASTA model uses artifacts, process states and roles to describe the software

development process. In the PASTA model, artifacts capture the decisions made

during the software development process. To characterise the state of a software

development process, the software developer must characterise the state of the

artifacts produced during the software process. However, merely characterising

the state of the artifacts is insufficient to describe a complete software process.

The process modeller must also describe the activities that may be performed on

artifacts, the conditions under which those activities are performed, and the roles

of the people who may perform them. As a consequence, it is possible to know

exactly what the state of completeness of all artifacts is. By modelling the CMM,

software organisations will clearly get through the maze to the right destination.

In Figure 2.4, the state model shows two levels. The lower level is based

on the states of the artifacts produced during the software process; such states

are called artifact states (A-states). Because A-states alone are insufficient to

describe the software process completely, descriptions of activities, operations on

artifacts, analyses that the software developer can perform on artifacts within the

state, and the roles of the people involved augment them. The augmented states

in the upper level state model are called process states (P-states).

state-of

Figure 2.4: Relationships Defining the Design Model

PASTA uses tree-diagrams, forms, and state transition diagrams to describe

process elements. The hierarchy of process states, the hierarchy of artifacts,

41

and the hierarchy of roles are represented using trees. Forms define process,

artifacts and their states. Moreover, transition diagrams describe the process

state machines and the artifact state machines. Figure 2.5 shows the different

types of diagrams that PASTA uses for different process elements.

Role Definition Form

Name Role Name

Activities

Perform

Process_I

Process _2

P-State Definition Form

Name Process Name

Role Rote Name

Artifact Definition Form

i 	Name 	Artifact Name

A-State Machine 	 - - -

Role Tree 	 : :
	 Process Tree 	 : 	Artifact Tree

P-State Diagram 	,' 	 '. 	A-State Diagram

Process I

Proce I SSt pj57;I

Process 2

A-State_3

Figure 2.5: Representation of PASTA elements

Among these process elements, definition forms act as a key role in process

modelling. They provide all required information for the process model. PASTA

adopts a variety of forms to define many of the elements of a process model.

These forms are described as following:

. Artifact Definition Form: Defines the artifacts used by a process.

. P-State Definition Form: Defines a process state.

42

Name Artifact name
Synopsis Prose description of artifact
Complexity Either ELEMENTARY or COMPOSITE
Data Type Data type used to store information about the artifact,

predefined or user-defined
Artifact State Machine A list of ordered pairs of states that defines the possible

state transitions.
A-State Name For artifacts that are ELEMENTARY, i.e., not decom-

posed into subartifacts, this cell is blank. For composite
artifacts, a logical function of the states of other arti-
facts.

Subartifacts
Sub-artifact Name Synopsis of the sub-artifact.

Relations
Relation Name Names of related artifacts.

Table 2.1: The Artifact Definition Form Template

Operation Definition Form: Defines an operation that may be performed in

a P-state.

Analysis Definition Form: Defines an analysis that may be performed in a

P-state.

Relation Definition Form: Defines the relationships between pairs of arti-

facts. Mostly used for situations where the state of one artifact may depend

on the state of another artifact.

Role Definition Form: Defines a role used in a process.

Here, we focus on the artifact and process state definition forms and state dia-

grams because they are central to PASTA models. Furthermore, we also present

the operation definition form since it describes activities for the process model.

The Artifact Definition Form

Table 2.1 shows the Artifact Definition Form used to record information about

artifacts. An artifact has states, may have subartifacts, and may be related to

other artifacts.

The A-State Transition Diagram

In addition to the tabular description of the A-state machine for each artifact,

PASTA also shows the machine as a state transition diagram. Figure 2.6 shows

43

the A-state transition diagram. An A-state transition diagram is similar to a

conventional state transition diagram, where each arc represents the operation

that causes the A-state change, and the node represents the A-state.

Figure 2.6: The A-State Transition Diagram

The Process State Definition Form

Table 2.2 shows the template for the Process State Definition Form used to record

information about process states. A P-state may have substates, operations that

may change artifacts, analyses that provide information about artifacts but do

not change them, and roles that may perform the operations and analyses.

The P-State Transition Diagram

Figure 2.7 shows the P-state transition diagram. The larger rectangles with bold

names are the sub-states of the P-state. The smaller rectangles at the entrance

and exit to each substate represent the entry and exit conditions for the substate

and are called condition boxes. A set of cells divides the condition box. Each

cell represents one artifact in one A-state. The intersection lines between the

condition boxes and the P-state box divide the cells into two parts. The parts

outside of the P-state contain the name of the artifact, and the parts within the

P-state box represent the A-state of the artifact. Each artifact cell may have more

than one line connected to it. This means that operations in several different P-

states may change the state of an artifact, thereby affecting the P-state for which

44

Name The name of the state.
Main Role Names of the roles which are principally concerned with

activities in this state.
Synopsis Prose description of process state.
Entrance Condition Condition required for entry of an activity. The developer

uses this to determine when a process can enter a partic-
ular P-state.

Artifact List A list of artifacts upon which work may proceed in the
P-state.

Information Artifacts The artifact which holds information required to support
operations and analyses in this state.

Activities
Operations Operation name and description.
Analyses Analysis name and description.

Exit Condition Predicated on A-states that determine when the process
exits the P-state.

Table 2.2: The Process State Definition Form Template

the artifact state is a precondition. Also, a single A-state change may result in

several P-state transitions.

The Operation Definition Form

Table 2.3 shows the operation definition form. Operations may change artifacts,

often resulting in an A-state transition, or may just read them to obtain informa-

tion needed to perform the operation. Each operation has an entry condition and

an exit condition. The specification of an operation describes how to perform the

operation and is given in both informal and formal terms.

In general the definition forms are intended to define the complete semantics of

the model. The diagrams summarise the forms and act as a visual complement to

them. Those who prefer visual representations may look at the diagrams first and

the forms second; those who prefer textual representations may do the reverse.

Conclusion

In this section, we described those standards and methods that are used in this

thesis. An artifact-driven approach is adopted by using PASTA to model the

CMM. The CMM is a descriptive model in the sense that it describes essential

attributes that would be expected to characterise an organisation at a particular

45

Figure 2.7: The P-State Transition Diagram

Name Operation Name
Synopsis Prose description of operation
Role List List of roles that may perform the operation
Operation Type Either Manual or Automated
Entrance Condition Pre-condition for performing the operation
Artifact List Artifacts that may be modified by the operation

Information Artifacts Artifacts that may be read but not changed by the oper-
ation

Exit Condition Post-condition for the operation
Informal Specification Prose description of the procedure used to perform the

operation
Formal Specification Formal description of the procedure used to perform the

operation

Table 2.3: The Operation Definition Form Template

46

maturity level. It does not prescribe any standard or methodology to develop

software products. As a result, we adopted MIL-STD-498 to define a set of

software development activities. These efforts will establish a framework to assist

software organisations to develop their software projects.

47

Chapter 3

Process Tailoring

The CMM comprising a set of key practices suitable for use by all potential or-

ganisations and projects would be too general to be easily applied to any one

organisation. It has long been a criticism that the CMM is only appropriate for

large defence or avionics environments, and more difficult to apply to small organ-

isations. This is because the CMM covers so many materials during developing

a software project. As a consequence, by tailoring those key practices presented

in the CMM, small software organisation would be easier to apply the CMM.

Paulk[PWG93] suggested that a fundamental concept that supports the ap-

proach taken by the SEI in its process definition work is that processes can be

developed and maintained in a way similar to the way products are developed

and maintained. They include:

requirements that define what process is to be described,

an architecture and design that provide information on how the process will

be defined,

implementation of the process design in a project or organisational situation,

validation of the process description via measurement, and

deployment of the process into widespread operation within the organisation

or project for which the process is intended.

As Figure 3.1 shows, using the analogy of product development, a framework

for software process development and maintenance has evolved that translates

these concepts into ones which are more specific to the process development dis-

cipline.

SPI PASTA (Software Process Improvement PASTA) provides a process-

centred software engineering environment mainly based on the CMM Version

48

Figure 3.1: Process Definition Life Cycle

2.0 Draft C[Pau97]. The fundamental task to implement SPI PASTA is tailoring

software processes to fit the software projects. Figure 3.2 shows the tailoring

framework of SPI PASTA. However, the CMM is not only the process require-

ment at the starting point. We have to use other software processes and product

standards to comply with the CMM. Since the CMM doesn't indicate whether the

software organisation has the right process, these standards, such as ISO 12207,

MIL-STD-498, ISO 9001 and so on, will give the organisation a good guide to

complete its work.

The software organisations may view SPI PASTA as their organisation's stand-

ard software process which establishes a consistent way of performing the software

activities across the organisation.

3.1 The Relevant Activities and Products in the
CMM Levels 2 and 3

The SPI PASTA focuses on the CMM Levels 2 and 3. Before we go through the

SPI PASTA, It is better to recognise the relevant activities and products in the

CMM Levels 2 and 3. Figure 3.3 shows a framework of activities and products

in the CMM Levels 2 and 3.

The SET defined the CMM, which is a framework describing the key elements

49

Organisation'sj
Standard Softw
Process (OSSP

\\
CMM

Tailoring

I
Items

ossP

	
/ Guid

Tailoring

elines 	
/

I- -

Tasks 	
Tailoring 	

-

Process Flow

- - - 	Support

Project's
Defined Software
Process

Figure 3.2: A Tailoring Framework

50

Integrated
Software
Management

w 	Process Flow

Orç'anisation 's 	I - - 	Support
Standard 	 : Customer

Sqffivure
Requirement

:KPA

i:Artifact

System

Requirement

Project's

Dc/med
So/i ware

Process

I 	 I

Allocated - Requirement

- --Requirement

Managemnet

's

So/tware

Development: 	 : Software Software - - -- - - - - Product
Plan 	 : 	' Requirement

-
I'

Engineering

Organisation
Process
Focus

Organisation
Process
Definition

Software
Project
Planning

Software
Project
Control

:SoftwareH
Supplier
Management

- Plan

Software
Acquisition
Management

'Software 	i Software 	:Organisation 	:Peer 	 Project

i Quality 	I 	 Configuration I 	 Training 	I 	 Reviews 	I 	 Interface

Assurance 	 Management 	 Program 	 Plan 	 Coordination

I 	Plan 	 I 	Plan 	 Plan 	 I 	 Plan

Software 	 Software 	 Organisation 	 Peer 	 Project
Quality 	 Configuration 	Training 	 Interface
Assurance 	 Management 	Program 	 Reviews 	 Coordination

Figure 3.3: The Relevant Activities and Products in the CMM Levels 2 and 3

of an effective software process. The SET suggested that a software process can be

defined as a set of activities, methods, practices and transformations that people

use to develop and maintain software and the associated products (e.g., project

plans, design documents, code, test cases and user manuals). As a consequence,

the CMM provides software organisations with guidance on how to gain control of

their processes for developing and maintaining software and how to evolve toward

a culture of software engineering and management excellence.

A fundamental concept of process definition in the CMM is the organisation's

standard software process. An organisation's standard software process is the

operational definition of the basic process that guides the establishment of a

common software process across the software projects in the organisation. It

describes the fundamental software process elements that each software project

is expected to incorporate into its defined software process.

The primary purpose of the standard software process is to support the sharing

of software process assets and experiences across the organisation. The organisa-

tion's standard software process covers the entire software process, including:

. software technical processes,

. software management processes,

. software support processes, and

organisational processes.

The organisation's standard software process given in SPI PASTA provides a

general but not exhaustive definition which can be modified by an organisation.

The project's defined software process is developed by tailoring the organisation's

standard software process to fit the specific characteristics of the project. It is a

well-characterised and understood software process, described in terms of software

standards, procedures, tools and methods.

However, the description of the project's defined software process will usually

not be specific enough to be performed directly. It does not specify the indi-

vidual who will assume the roles, the specific software work products that will be

created, nor the schedule for performing the tasks and activities. The project's

software development plan provides the bridge between the project's defined soft-

ware process (what will be done and how it will be done) and the specifics of how

the project will be performed (e.g., which individuals will produce which software

work products according to what schedule). The combination of the project's

52

defined software process and its software development plan makes it possible to

actually perform the process.

For completely establishing the project's software development plan, the sys-

tem requirements allocated to software, simply as the "allocated requirements"

in the CMM, must be a primary input to the software development plan. The

allocated requirements are a subset of the system requirements which are an

elaboration of the customer requirements to a level of detail needed to plan the

project's activities and work products.

Once the software development plan has been established, the software engin-

eering group can start analysing and elaborating the allocated requirements to

complete the software requirements. The software requirements are the technical

requirements for the software project and cover the software functions and per-

formance and the interfaces to hardware, other software components and other

system components. The software requirements form the basis for the software

design, coding, testing, documentation, delivery, support and maintenance.

In addition to the artifacts and activities described above, some support ar-

tifacts have to be established. The software supplier management plan identifies

acquisition needs for the software project. Software to be acquired falls into two

main categories. Firstly, some components of the project's software products

may be acquired externally rather than being developed by the software project.

Secondly, the software tools in the software engineering environment must be

acquired.

The purpose of software quality assurance is to ensure that software project's

activities and work products comply with the applicable requirement, process

descriptions, standards and procedures. The purpose of software configuration

management is to establish and maintain the integrity of the products of the

software project throughout the project's software life cycle.

The purpose of an organisation training program is to develop the skills and

knowledge of individuals so they can perform their roles effectively and efficiently.

The purpose of peer reviews is to remove defects from the software work products

early and efficiently. The purpose of software risk management is to identify and

mitigate software risks throughout the life cycle of a software product.

3.2 Organisation Process Focus

The purpose of Organisation Process Focus is to establish and main-
tain an understanding of the organisation's software processes and co-
ordinate the organisation's software process improvement activities[Pau97].

53

3.2.1 The Software Process Improvement Plan

Software process improvement is a lion-stop business. SEL[MPB94] reported some

attributes of the development organisation were an increasingly significant driver

for the overall definition of process change. These attributes include the types

of software being developed, goals of the organisation, development constraints,

environment characteristics, and organisational structure. This means software

organisations have to establish a baseline understanding of the software process,

products, and goals. This is the purpose of Organisation Process Focus.

Currently, two famous examples for software process improvement are

NASA's SEL process improvement paradigm and the SEI's IDEAL model. Fig-

ure 3.4 shows the SEL process improvement paradigm that includes three phases,

Understanding, Assessing and Packaging. This paradigm starts with improving

insight into the software process and its products, then measuring the impact of

available technologies and process change on the products generated, and finally

implementing the technology for application. In the SEL process improvement

paradigm, these steps are addressed sequentially, and iteratively, for as long as

process and product improvement remains a goal within the organisation.

Understanding I 	'H 	Assessing 	 Packaging

Figure 3.4: The SEL Process Improvement paradigm

Figure 3.5 shows the phases of the SET's IDEAL model. Each phase includes

activities arid resources needed for a successful process improvement effort. Unlike

the SEL, the IDEAL model starts with building an infrastructure for managing

implementation details, and securing the support and resources from the top

level of the organisation. After the Initiating phase, software organisations have

to develop a more complete understanding of the improvement work. Then, a

detailed plan for doing the work is developed and implemented. Finally, the

entire IDEAL experience has to be reviewed to determine whether the effort

accomplished the intended goals, arid how the organisation can implement change

more effectively and efficiently in the future.

Both strategies give us an idea of Total Quality Management on software

process improvement. The idea is not fixed by any standard and must be en-

compassed by the whole organisation. One of the most important ingredients

54

Initiating 	 Diagnosing 	Establishing 	.. 	Acting 	 Learning

Figure 3.5: The IDEAL Model for Software Process Improvement

in Organisation Process Focus is to check necessary competencies and commit-

ments. It must ensure that ability to perform is put aside to make sure that

implementation works and that people are committed to the solution.

3.2.2 Processes in Software Process Improvement

The tree-diagrams present the hierarchy of artifacts, roles and process states. By

expanding the P-state tree diagram, users can see the relationship between P-state

and easily recognise all relevant operations. Figure 3.6 shows the P-state tree of

Software Process Improvement which describes the relations of Sub-P-State.This

is the highest level in the model. From the beginning, an understanding of or-

ganisation's software processes must be established. The organisation's software

process assets are then built by a software engineering process group (SEPG).

Finally, the set of standard software processes is tailored by the software projects

and support groups to create their defined software processes. Figure 3.7 shows

the processes of developing software process improvement.

The processes of developing software process improvement start at Organisa-

tion Process Focus described in the CMM Level 3. The SET emphasised that

a repeatable process (Level 2) must be finished before implementing a defined

process (Level 3). However, we believe that the organisation's standard soft-

ware process should be established as soon as software process improvement is

developing. Each project needs its defined software process to guide all activit-

ies. Without a defined software process, the software development plan is hardly

complete and management processes could be in jeopardy.

In the rest of the thesis, we use the following template to describe each KPA:

. Main Roles: A list of roles of people who are allowed to perform this

operation.

. Entrance Conditions: Conditions required for entry of an activity.

. Artifact List: A list of artifacts upon which work may proceed in the

P-state.

55

. Information Artifacts: The artifacts which hold information required to

support operations.

Activities: A list of operations that developers may perform.

Exit Condition: Conditions required for exit of an activity.

This is a P-State style template and corresponds to the P-State diagram to

show the relevant information for the KPAs.

Develop_So ftware_Proces s_Improvement

Organisation—Process—Focus I

Establ±sh_Organ±sation_Process_Defiflitiofl

Establish_PDSP

Figure 3.6: The P-State Tree of Software Process Improvement

3.2.3 Processes in Organisation Process Focus

The first step in developing software process improvement is to establish and

maintain an understanding of the organisation's software process. Figure 3.8

shows the P-state tree of Organisation Process Focus. It describes the relationship

between P-states and operations in this KPA.

Main Roles: The main roles participating in the operations are senior man-

agers and SEPG who establish the policy for the organisations.

Artifact List: The artifact in this KPA is the Software Process Focus which

includes three sub-artifacts, Process Improvement Plan, Action Plan and Software

Process Definition as shown in Figure 3.9.

Entrance Condition: st ate- of (Organisation -Process _Focus) = Referenced

Once the need to establish and maintain an understanding of the organisa-

tion's software process is referenced, the processes of Organisation Process Focus

are started. Firstly, developers must check the artifact list to survey the re-

lationship between operations and artifacts. To do so, developers can use the

artifact tree and link to artifacts forms which list the details of the artifact (See

Appendix).

56

File Edit View Go Communicator 	 Help

41

	

Back Forward Reload Home Search Guide 	Print Security Stop

Bookmarks JL Location: Pasta. htiftl

Artifact Tree 	MIDeve1on Software Process Improvement
Role Tree

Mate Tree
Establish_Organisation_Process_Focus

OrgnisaonProces Fdinis[Rdferenceed] 1 I [Established] Organis on Process Focus

L.

	

. 	. 	. 	Est.ab1ish_Organisation _Process _Definitio 	

OrgsnisafionProcesFocu[EstablisledJ

OraisationProceso4DefiniUon [Referenced] 	1 [Established] Ortonisc on Process Definition

---. Organisdtiofl Process Defini 'or

Establish PDSP

I
I

:/tiiw.dcs.e d. ac.uChs ms/ky/PA STA/Maps/Develop_Ssflware_Process_lmprove ment,m

PDSPF[F

Establish_PDSP

sbliobed] . . 	• [Established]. PDSP 	• . • 	. 	. •

need] 	[Updated] Orga4soationProcess_Definrnon

Figure 3.7: The P-State Diagram of Software Process Improvement

57

Es tbal ± sh_Organi sati on_Proces s_Focus

Draft_Process_Improvement_Plan

Perform—Organisation _Process—Focus

Appraise—Software—Process

Draft—Action—Plan

Implement—Action—Plan

Deploy_So ftware_Process—Asset

Evaluate—Software—Process—Asset

Figure 3.8: The P-State Tree of Organisation Process Focus

Software_Process_Improvement

Organisation—Process—Focus

Proces s_Improvement_Plan

Action—Plan

Software—Process—Asset

Organisation—Process—Definition

PDSP

Figure 3.9: The Artifact Tree of Organisation Process Focus

58

Activities: Two operations are presented in the P-state diagram of Organisa-

tion Process Focus as shown in Figure 3.10. Before performing Organisation

Software Focus, the software process improvement plan must be established. The

SPI PASTA model might be a software process improvement plan, since it doc-

uments the process for software process improvement. The SF1 PASTA can be

tailored in order to align with the organisation's strategic business objectives.

Figure 3.10: The P-State Diagram of Organisation Process Focus

In the next step, the activities performed in Software Organisation Focus

are included in the Sub-P-State, Perform _Organisation -Process Yocus. When the

59

process improvement plan is drafted, developers can go down to the next layer to

perform Organisation Process Focus. This P-state consists of five operations: Ap-

praise Organisation Process, Draft Action Plan, Implement Action Plan, Deploy

Software Process Asset and Evaluate Software Process Asset. After appraising

the organisation's software process to identify strengths and weaknesses, SEPG

and senior managers should establish action plans to address the findings of the

software process appraisals. Then, in accordance with the priority of the recom-

mendations from the software process appraisal, SEPG implements the software

process action plan across the organisation and deploys the organisation's soft-

ware process assets. Finally, SEPG should conduct the evaluation of the action

plan and derive lessons learned from these operations. In SPI PASTA, all P-states

and operations have their own P-state and operations forms (See Appendix) de-

scribing the relevant activities and conditions. Developers can easily refer to these

forms to perform those activities.

Exit Condition: state-of (Organisat ion Yrocess_Focus) = Established

After completing the P-states, SEPG must check whether the exit condition

has been reached.

3.3 Organisation Process Definition

The purpose of Organisation Process Definition is to establish and
maintain a usable set of software process assets that help to ensure con-
sistent process performance across the organisation and that provide
a basis for cumulative, long-term benefits to the organisationlPau97J.

Organisation Process Definition is the action of the Organisation Process Fo-

cus key process area. It involves establishing and maintaining the organisation's

software process assets, including

. the organisation's set of standard software processes,

. descriptions of software life cycle models approved for use by the projects,

guidelines for tailoring the organisation's set of standard software processes,

. the organisation's software measurement database, and

the organisation's library of software process-related documentation

60

However, the SET does not prescribe what kind of models or processes may

be organisation's software process assets. Those assets are chosen by project

managers or senior managers in an organisation.

As Figure 3.11 shows, the Organisation Process Definition key process area

provides a base to establish process commonality across the organisation's pro-

jects. The activities managing the organisation's software process assets are in the

Organisation Process Focus key process area. Once the software process assets

are established, the project managers can use them in developing, maintaining

and implementing their project's defined software process.

Organisation Process Focus

Organisation's Software Process Assets

Descriptions Guidelines for 	 Organisation's Organisation's

of software tailoring the 	 software process library of

life cycle organisations 	 Database software

models standard process-

software process related
documentation

Organisation's Set of Standard Software Process

Process Tailoring
Process Flow

Project's Defined Software Process Support

Figure 3.11: The Framework of the Organisation's Standard Software Assets

3.3.1 Organisation's Software Process Assets

Organisation's Standard Software Process

An organisation's standard software process is the operational definition

of the basic process that guides the establishment of a common software

process across the software projects in the organisation[PWG+93]. It con-

tains process elements that may be interconnected according to one or more

software process architectures that describes the relationships among these

process elements. SPI PASTA provides this software process architecture

61

that describes the ordering, interfaces, interdependencies and other relation-

ships between the software process elements of the organisation's standard

software process. Each artifact is a software process element which is a

constituent element of a software process description. These artifacts are

incorporated into the relevant P-State performed by appropriate roles.

. Software Life Cycle Model

Software life cycle models partition the life of the software product into

phases that guide the project through the major steps of identifying cus-

tomer needs, developing, testing, installing, operating and retiring the soft-

ware pro duct [Pau97]. Software organisations have their software life cycle

model, such as a waterfall model, a spiral model and so on. Furthermore,

the standards have been published to support software development, such

as ISO/lEG 12207, MIL-STD-498, IEEE-STD-1074, etc. These models or

standards suggest activities, tasks and products for developing software

projects. The CMM does not prescribe software organisations to use any

standard or model. This task must be done in the Organisation Process

Definition key process area. SPI PASTA uses MIL-STD-498 as its software

life cycle model. MIL-STD-498 was developed by the US DoD and well

incorporated into the CMM. It has been modelled as SPI PASTA in man-

agement processes and technical processes. Each Data Item Description

(DID) has been deployed at the appropriate key practice. However, this

standard has to be tailored again to fit specific software projects. The pro-

ject manager must decide which DID is really appropriate for the project.

Tailoring Guidelines

Tailoring guidelines are used by software projects and support groups to

tailor the organisation's set of standard software processes to fit their specific

needs[Pau97]. Since the organisation's standard software process defines

common processes for all projects, a tailoring guideline must be built in

order to tailor SPI PASTA to fit the projects. Ginsberg[GQ95] suggested

that some areas, such as the organisational structure, customers relation-

ships and requirements, business goals and so on, are essential for tailoring

the organisation's standard software process. With regard to DIDs, it is

not necessary that every project needs all DIDs defined in MIL-STD-498.

Tailoring guidelines have to give project managers a trade-off to select the

appropriate process items for their projects.

Organisation's Software Measurement Database

62

The organisation's software measurement database is used to collect and

make available measures and data on the software processes used in the or-

ganisation and on the resulting work products, especially the measures relat-

ing to the organisation's set of standard software processes[Pau97]. In SF1

PASTA, we adopt Humphrey's Proxy-based Estimating (PROBE) [Hum95]

to assist project managers with establishing a plan for building the software

product. This work may generate useful data for software organisations.

SF1 PASTA does not prescribe a typical database for storing this data.

Software organisations may use any commercial database to define their

database scheme to store all information from software process improve-

ment. This database will be viewed as an organisation's software measure-

ment database.

. Process-related Documentation

The organisation's library of software process-related documentation is used

to collect, store and make available process documentation that is poten-

tially useful to current and future projects[Pau97]. The process-related

documentation, such as software development plans, software test plans,

training records and so on, might be a pilot process item for software or-

ganisations. In particular, it helps future project managers to manage their

projects. Without an appropriate library of software process-related doc-

umentation, the development team may take much time to figure out the

relevant documents.

3.3.2 Processes in Organisation Process Definition

Figure 3.12 shows the P-state tree of Organisation Process Definition. This

P-state consists of five operations: Establish SSSP (Set of Standard Software

Processes), Approve Software life cycle, Establish Tailoring Guideline, Establish

Software Measurement Database and Establish Process-related Documentation.

Main Roles: The main roles participating in the operations are senior man-

agers, SEPG, project managers and software product managers who will establish

the software process assets for the organisation.

Artifact List: The artifact list in the KPA is Organisation Process Defini-

tion which consists of five sub-artifacts: SSSP, Software Life Cycle, Tailoring

Guideline, Software Measurement Database and Process-related Documentation.

The artifacts in this KPA are shown in Figure 3.13.

63

Establish_Organisatiofl_PrOCeSs_DefinitiOfl

Establish_SSSP

I Approve_Software_Life_Cycle I

Establish_Tailoring_Guideline

Establish—Software—Measurement—Database

Establish_LOC_Counting_Standard

Establish—Object—Size—Category

Establish_Productivity_Measure

Establish_Quality_Measure

Establish—Process-related—Documentation

Figure 3.12: The P-State Tree of Organisation Process Definition

Information Artifacts: The artifact, Organisation Process Focus, as an in-

formation artifact give the information to manage those artifacts.

Entrance Condition: state-of (Organisation -Pro cess_Focus) = Established and

st ate- of(Organisation -Process _Definition) = Referenced

Firstly, the need to perform Organisation Process Definition must be iden-

tified. Then, the activities of Organisation Process Focus should be completed.

Once the two conditions are satisfied, developers may enter the Organisation

Process Definition process.

Activities: Five operations are presented in the P-state diagram of Organisa-

tion Process Definition as shown in Figure 3.14. These operations do not have

relationship between them. This means each operation can be independently

performed by developers.

Firstly, SPI PASTA can be viewed as the organisation's set of standard soft-

ware processes for software organisations, since it has tailored the software pro-

cesses and decomposed each standard software process into constituent process

elements (artifacts). The SEPG and managers can use SPI PASTA to specify

64

Software—Process—Improvement

Organisation—Process—Focus

Organisation—Process—Definition

SS5P

Software—Life—Cycle

Tailoring_Guideline

Software—Measurement—Database

LOC_Count ing_Standard

Obj ect_Size_Category

Productivity_Measure

Quality_Measure

Process-related_Documentation

PDSP

Figure 3.13: The Artifact Tree of Organisation Process Definition

65

File 	Edit 	View Go 	Communicator Help

hI
Back 	Forward Reload 	Home 	Search 	Guide 	Print 	Security Stop

Bookmarks 4 Location 	ttp//dcedacuk/home/kJ/Pa5Th/SPIPastahtm1 JJ

Artifact Tree Establish_Organisation_ProcessDefinition

I Mate Tree

stab1ish Software Measurement Database

I Software Mehsuresnentl_Datmbase [Referencd] 1 	[0 0L1S11eUJ 	1[

.EstailishFrOcess—reiatedDocumentation

I Procss4e1atedDocentaonIReferenced] 	[Estabhshed] Process— elated—Do

100% 	 s.ed.ac.utlhome/lw/PASTAIMSps/EutabliSh_ Organisation _Process _DeliflItiOflmaP
	 \t II

Figure 3.14: The P-State Diagram of Organisation Process Definition

66

the critical attributes and relationships from artifacts and P-states for the or-

ganisation. Moreover, this operation must confirm that all process elements and

processes adhere to the organisation's policies and strategies. This set of stand-

ard software processes will be tailored by the project managers to fit the software

projects' need in the Integrated Software Management key process area. Fur-

thermore, with Organisation Process Focus, the organisation's set of standard

software processes should be checked periodically and receive feedback from the

active project managers.

Secondly, since the CMM does not prescribe a specific life cycle model, the

SEPG and managers must select the most appropriate life cycle model for the

organisation. MIL-STD-498 adopts three prograin strategies, grand design, in-

cremental and evolutionary for developing software. In addition, iterative and

spiral models are also very popular life cycle models.

Thirdly, SPI PASTA is described at a general level that might not be directly

usable by a project. In this operation, the SEPG and managers have to build

a tailoring guideline providing the criteria and procedures for selecting artifacts

and P-states. The project managers can adhere to the guideline tailoring SPI

PASTA to accommodate the project's characteristic and needs.

Fourthly, historical data is the most essential information for estimating soft-

ware size, effort and cost. Humphrey in his book[Hum95] designed templates

to collect software measures. These measures have to be stored in the software

measurement database as the historical data for next estimation. In addition to

the time and defect record, SEPG and managers must build the LOG counting

standard and object size category in order to estimate the productivity.

Finally, SEPG and managers must design a library to collect process-related

documentation. These documents can be reused in future projects

Exit Condition: state-of(OrganisationProcess_Deflnition) = Established

After completing the P-states, SEPG and managers must check whether the

exit condition has been reached.

3.4 Integrated Software Management

The purpose of Integrated Software Management is to proactively man-
age the software project according to an integrated, coherent, and
defined software process that is tailored from the organisation's set
of standard software processes[Pau97].

67

As Figure 3.18 shows, the main activity in the Integrated Software Manage-

ment key process area is tailoring the project's defined software process from

the organisation's standard software process. Moreover, the implementation and

management of the activities of the project's defined software process is primarily

described in the software development plan.

Organisation's Software Process Assets
Process Flow

Process Tailoring

Establish PDSP

Derive 	 Software
System 	 Management
Requirement 	Process

Derive 	 Derive Supplier
Software 	 Management
Project Plan 	 Plan

Derive 	 Software
Software Technical

L Requirement 	 Process

Derive
Software
Design

Derive

Test

- - 	Support

Develop
Software
Quality
Assurance

Develop
Software
Configuration
Management

Develop
Peer
Reviews
Plan

Develop
Organisational
Training
Program

Develop
Software
Risk
Management

Figure 3.15: The Framework of the Project's Defined Software Process

68

3.4.1 The Project's Defined Software Process

The project's defined software process (PDSP) is a well-characterised and un-

derstood software process, described in terms of software standards, procedures,

tools and methods. The PDSP provides the basis for planning, performing and

improving the activities of the managers and technical staff performing the pro-

ject's tasks and activities.

In the CMM[PWG93], the work to be performed is broken down into tasks.

Within the context of process definition, a task is a well-defined component of a

defined process. In SPI PASTA, tasks are described as the P-state of a process

which is the completeness of the process. Tasks can be divided into activities

which are steps taken or functions performed toward achieving some objective.

Operation forms provide a complete description for these activities. The results

of P-states and operations primarily consist of artifacts, called software work

products in the CMM. Artifacts can be anything created in the software process,

which include process descriptions, plans, procedures, computer programs and

associated documentation.

3.4.2 Process Tailoring

Since the PDSP is tailored to fit the specific characteristics of the project, the

project manager must carefully decide what artifacts are essential for the project.

A set of tailoring guidelines must be established in the Organisation Process

Definition key process area. Ginsberg[GQ95] suggested that the organisation's

tailoring guidelines must be developed and applied in a manner that will preserve

the benefits of having common practices based on the organisation's standard

software process. Moreover, the guidelines must grant projects the flexibility to

operate efficiently, while also preserving the maximum amount of commonality

possible.

SPI PASTA is built assuming a full development life cycle. We do not suppose

all organisations can fit this model. For example, it is not necessary to adopt the

Software Acquisition Management key process area for all projects. Furthermore,

the artifacts from MIL-STD-498's DIDs, such as System/ Subsystem Design De-

scription (SSDD), Software Design Description (SDD), Interface Design Descrip-

tion (IDD), may be tailored to one description. The SEPG and managers have

to depend on features of the project and the culture of the organisation to tailor

these artifacts.

69

3.4.3 The Software Development Plan

MIL-STD-498[D0D94] defines the Software Development Plan (SDP) as a de-

veloper's plans for conducting a software development effort. Moreover it provides

the acquirer insight into, and a tool for monitoring, the processes to be followed

for software development, the methods to be used, the approach to be followed

for each activity, and project schedules, organisation and resources. NASA's

SEL[NAS90] suggests that the SDP provides a disciplined approach to organising

and managing the software project. A successful plan serves as

. a structured checklist of important questions,

. consistent documentation for project organisation,

. a baseline reference with which to compare actual project performance and

experiences, and

. a detailed clarification of the management approach to be used.

The description of the PDSP will usually not be specific enough to be per-

formed directly. It describes "what" the project will be performed rather than

"how" the project will be performed. It does not specify the individual who will

assume the roles, the specific artifacts that will be created, nor the schedule for

performing the tasks and activities. The SDP should be living documents that

represent how the project work will be performed.

The SDP might be either a single document or a collection of plans collectively

referred to as a software development plan. The typical SDP is composed of a

project mission plan, an organisation and responsibility plan, a software engin-

eering activity plan, a schedule and resource plan, a configuration management

plan and so on. The combination of the PDSP and its software development plan

makes it possible to actually perform the process.

3.4.4 Processes in the PDSP

We use the title "Processes in the PDSP" instead of "Processes in Integrated

Software Management", because the main activity in Integrated Software Man-

agement is to establish the PDSP. There are other activities in the Integrated

Software Management key process area such as risk management. We would like

to focus on establishing the PDSP and split risk management as an operation

in the organisational processes. Therefore, in this P-state, the entire software

processes must be tailored to fit the project.

70

Figure 3.16 shows the P-state tree of PDSP. This P-state consists of four

operations: Develop Software Support Process, Develop Software Management

Process, Develop Software Technical Process and Develop Organisational Process.

Main Roles: The main roles participating in the operations are senior man-

agers, SEPG, project managers and software product managers who will develop

defined software processes for the projects.

Establish—PDSP

Develop_Software_Support_Process

Develop_Software_Management_Process

Develop—Software—Technical—Process

I Develop_Organisational_Process 	I

Figure 3.16: The P-State Tree of the PDSP

Artifact List: The artifact list in the KPA is the PDSP which consists of four

sub-artifacts: Software Support Process, Software Management Process, Software

Technical Process and Organisational Process. The artifacts in this KPA are

shown in Figure 3.17.

Information Artifacts: The artifact, Organisation Process definition, provides

organisation's standard software processes, selected software life cycle models,

tailoring guideline, the software measurement and process-related documentation

to perform the project's defined software process.

Entrance Condition: state-of(OrganisationJrocessDefinition) = Established

and state-of(PDSP) = Referenced

In addition, the need to perform the PDSP must be identified, the activities of

Organisation Process Definition should first be completed. Once two conditions

are satisfied, developers may enter the Project's Defined Software Process.

71

Software_Process_Improvement

Organisation_Process_Focus

Organisation—Process—Definition

PDSP

Software_Support_Process

Software_Management_Process

Software—Technical—Process

organisational—Process

Figure 3.17: The Artifact Tree of the PDSP

Activities: Four operations are presented in the P-state diagram of the PDSP

as shown in Figure 3.18. These operations cover the entire software processes.

However, as Hurnphrey[Hum88] mentioned, it is better to focus on management

processes before engineering processes.

To tailor the PDSP for the entire software process, SEPG and managers should

first select a software life cycle model appropriate to the scope, magnitude and

complexity of the project from those available from the organisation. Then, SEPG

and managers tailor SPI PASTA according to the tailoring guideline. Unfit ar-

tifacts and P-states may be disabled and all activities in the P-state should be

carefully checked. In the meantime, it is better to concurrently build the software

development plan and ensure that SPI PASTA is appropriately reflected in the

software development plan. Other activities can be started at this KPA, or linked

to relevant P-state such as Organisation Training Program.

Exit Condition: state-of(PDSP) = Established and

state-of(Organisatiom.Process_Definition) = Updated

After completing the P-states, SEPG and managers must check whether the

exit condition has been reached. In addition the PDSP must be completely es-

tablished, and all information performed in the PDSP, such as product measures,

72

File Edit View Go communicator 	 - -
	 Help

LA ac
Bact Forward Reload Home Search Guide 	Print Security Stop

Bookmarks & Location: ttp://inmY. dcn. ed. ac. Uk/home,1(y/P1iSTa/SPIPanta.html

Establish_PDSP 	 g Establish_PD SP

Develop_Software_SuppOr,t_PrOCeSS

Software Support Process [Referenced] 	[Developed Softwer Support Proceos

Deve1op —Software _MaflagemefltJr0CesS

oftwarMangem4tYroCeSs[RefereIdCed] 	Developed] Software aiagement_Ps

Develop_Software_TechnicalYrOCeSS

[vae Technic Process [Rer]1 	[Developed] Software fechnical_rocess.

Develop _OrganlsatlOflai_Process

OrgamsaftontProceoo [Referenced] I [Developed] Organic Gon_Process]

i

- - EstrrnaieSoftwcrzeSsze
- - - CornpreCcrtegarvSize
- - - CnlculcefeSoftwnze&ze
--- Docizment Eshrm2led Si,
--Estimate Effort And Gas
- - - Get Product yMeizso
- - - Cczlculeste Time Require
--- Document Estimrzted Ti
--Estimate Resource
- - Estimate Schedule
—trieritifv Project Risk

hlp:/w.dcs.edcuhome/ky/PASTA/Maps/Esiab. _P2P.ma.

Figure 3.18: The P-State Diagram of the PDSP

73

should be contributed to the Organisation Process Definition key process area as

the historical data for the future projects.

74

Chapter 4

The Processes in the CMM Level

PRINCE process model[PRI97] describes how a project is divided into manage-

able stages enabling efficient control of resources and regular progress monitoring

throughout the project. The various roles and responsibilities for managing a

project are fully described and are adaptable to suit the size and complexity of

the project, and the skills of the organisation. Meanwhile, the purpose of the

ISO 15504 project[Gar98, Kit97] is to provide software organisations pursuing

multiple improvement approaches. This project tries to establish a framework for

understanding the state of the organisation's processes for process improvement.

In the same way as the ISO 15504 project and PRINCE process model, the key

process areas at Level 2 also focus on the software project's concerns related to

establish basic project management controls[Pau97]. To complete the activities

of Level 2, software costs, schedules, and functionality should be well controlled,

software requirements and the work products developed to satisfy them should be

clearly defined, and the relationship with contractors should be established. This

chapter contains two parts, software management process and software support

processes. These processes will help software organisations become disciplined

development teams and effectively control software development.

4.1 The Software Management Process

Software management processes are described on the CMM Level 2 and have

become a basis of software development. Humphrey[Hum88] emphasised that

software management processes must be done before engineering processes, since

without management discipline, the engineering process is sacrificed to schedule

and cost pressures. He did not agree that a Level 1 organisation tries to implement

75

a defined process (Level 3) before it has established a repeatable process (Level

2).

Figure 4.1 shows the framework of software management processes. The Soft-

ware Project Planning key process area concentrating on planning and scheduling

activities is a main part of software management processes. Firstly, the software

project is divided into the work breakdown structure which is based on the alloc-

ated requirements from the Requirement Management key process area. In the

meantime, the activities of tracking the software project are concurrently per-

formed. In addition, software production can also be done by other organisations

working under contract with the project.

Requirement

Management

Software 	 Software
Project 	--- 	Project
Planning 	 Control

Technical 	 Software
Acquisition

Processes 	 Management

Software

Accepted

Figure 4.1: The Framework of the Software Management Processes

76

Processes in the Software Management Process

Figure 4.2 shows the P-state tree of the Software Management Processes. This

P-state consists of five operations: Derive System Requirement, Derive Software

Development Plan, Perform Software Acquisition Plan, Perform Software Project

Control and Establish Commitment. The first four operations belong to the KPAs

of the CMM Level 2. Moreover, these activities should establish the software

project's internal and external commitments.

Develop—Software—Management—Process

Derive_System_Requirement

Derive—Software—Development—Plan

Perform—Software—Acquisition—Management

Perform_Software_Proj ect_Control

Establish—Commitment

Figure 4.2: The P-State Tree of the Software Management Process

Main Roles: The whole Management Group should be involved in developing

software management processes. Furthermore, the software product manager

conducting the technical processes and customers are also involved in performing

activities in the Software Management Process.

Artifact List: The artifact list in this part is the Software Management Process

which consists of five sub-artifacts: System Requirement, Software Development

Plan, Software Acquisition Plan, Software Project Control and Commitment.

The artifacts in the software management process are shown in Figure 4.3.

Information Artifacts: The artifact, PDSP, provides the tailored software

management processes for the management group.

Entrance Condition: state-of(Software_ManagementProcess) = Referenced

Once the need to develop a Software Management Process has been identified,

the process roles start to perform all activities in the management processes.

77

Software—Process—Improvement

Organisation—Process—Focus

Organisation—Process—Definition

PDSP

Software—Management—Process

System—Requirement

Software—Development—Plan

Software—Acquisition—Plan

Software_Proj ect_Plan

Commitment

Software_Support_Process

Software—Technical—Process

Organisational—Process

Figure 4.3: The Artifact Tree of the Software Management Process

78

Activities: Five operations are presented in the P-state diagram of the Soft-

ware Management Process as shown in Figure 4.4. System requirements should

firstly be derived; however, it is not necessary to complete system requirements

prior to the software development plan. Software project control must rely on

the software development plan to track software project performance and take

corrective actions. When the needed acquisition of software and associated work

products is identified, the software acquisition management shall be performed;

otherwise this operation can be omitted. In the former operations, process roles

should establish internal and external commitments to ensure all activities are

reliable.

Exit Condition: state-of (Software_ManagementProcess) =Developed

After completing the P-states, managers must check whether the exit condi-

tion has been reached and the final commitments have been reached.

4.1.1 Requirements Management

The purpose of Requirements Management is to establish and main-
tain a common agreement between the customer and the software pro-
ject regarding the customer's requirements that will be addressed by
the software projectPau97J.

4.1.1.1 System Requirements Allocated to Software

Figure 4.5 presents the architecture of requirements. Originally, a statement of

the customer's needs and expectations for the project is gradually formed and

abstracted. The customer requirements are stated from the customer and end

user perspectives, and are intended to achieve a shared understanding between

the customer and the project, and provide the criteria to determine whether the

products satisfy the customer's needs and expectations. However, if the customer

requirements are not suitable for the project development, it should be elaborated

to a level of detail needed to plan the project's activities and work products and

should be objective and verifiable. The system requirements are abstracted from

the customer requirements and can be divided into two parts, the system require-

ments allocated to software and the system requirements allocated to hardware.

Since the Ci\'IM focuses on the software process, discussion of customer require-

ments centres on those customer requirements to be implemented in software.

The system requirements allocated to software, usually referred to as the 'alloc-

ated requirements" in the CMM, are a primary input to the software development

79

File Edit View Go Communicator 	 Help

Back Forward Reload Home Search Guide 	Print Security Stop

4 Bookmarks 4 Location 	tp //avis dcs ed . ac . uk/hosse/ky/PhSTOi/SPlPastahtml 	 j /

UCLIVC flUUL1LCU flCt4ULI CIA

-Derive_Systern_Requiremei
Derive Software Developrne
-Draft Prolect Mission

. 	.. 	.

System Requir

.

.

;tern

DeriveSystem_Requirement
..
	 .. -Draft Oranisalion And Re

-Draft Schedule And Resos
. 	

ent[?eferencmd] I 	[Derived] Sy
- -Build WDS
- - Esti paste Sof1ir cue Size

. 	

.

. 	S 	 	S
S

Derive. Software Development Plan
. 	-.. 	. 	. 	. 	-

. 	. 	Software DevOlo most 	Plan [Referenced]

. 	. 	 ..

. 	 _. 	_. 	_[ft]_ Software B 	elopment_ Plan 	.

- - - Compare CateSon? Size
- - - calculate Software Size
--- Document Estzracted$u

- - - Get Productivity Mease
--- Calculate Time Re glare
--- Document Estimated Te --DocumentEstimatedTi
- - EstimateResource
- - EstiruateSc)iedeIe
-Identify_ Project Risk
Perform Softw'are Acquusthi' I

Perform Software Project Control

SoftwareTchmci_Process[Referenced] 	_____________________

	

SoftworeDev4opmentjlan [Derived] _[Revised)_Softwarej) 	elopmentPlan

-Manage SupherSeleclior
-Draft Acquisition jlan

- - Deterpure4cgrassiosuliT
--Establish _Re~7uzremeni_

-Draft Software Engineerin

--select co -Select Go ntrszctor
- -EstcwlssContrrwt
-Manage,

..

Management

. 	S

. 	_....,........ • 	..

Perform_SoftwareAcquostionManagement

._
Softwefe Acquisition Management [Rdfrenced)I_I[PefdImed] _Software_Ac_uisilipdManagempuut'

- - EvaluateSuoplier

--Estimate Effort And Cos... .

-- TrackSuppter
chnical Issue

ii

--AcceptAcquired Softwar
Peiform Software ProectC
-Track SDP
-Correct SDP
-Maintain SDP
EsuiblishCommitment

Develop SoftwareTechnw

-....... __ . 	 __ ...

.

. 	S. 	 	S .

Establish. Commitment

Coisumitineri_[Referenced]____[Established]_Commitment Dc_elop Software Requoreir
-Create Requirement Trace

iflJ1
F 	 [http:/Awm,dC$.ed.ac.uk/home/kV/PASTA/OperationForms/Compare Category Sj cBS html 	 ri0 e-

Figure Figure 4.4: The P-State Diagram of the Software Management Process

plan. Software requirements analysis refines the allocated requirements and res-

ults in software requirements which are documented. The system requirements

allocated to hardware are typically done by a system engineering group as part of

the overall system design. SPI PASTA does not focus on this topic for real-time

and control systems. Those who are interested in the system engineering can refer

to the System Engineering CMM (SE-CMM) from the SEI[BKW95].

Customer Requirements

System Requirements

System Requirements

Allocated to Software

System Requirements

Allocated to Hardware

Figure 4.5: The Architecture of Requirements

Requirements Management is the first KPA in the CMM, since the allocated

requirements form the basis for planning, performing and tracking the software

project's plans and activities throughout the software life cycle. All plans and

software work products in the CMM activities must be consistent with the re-

quirements. Researchers [DL95, KS95b] believe that the major causes of software

projects' failure are poor requirements and change management. Therefore, the

CMM focuses on requirements management at the beginning of software process

improvement.

4.1.1.2 Processes in Requirements Management

Figure 4.6 shows the P-state tree of Requirements Management. This P-state

consists of two operations: Derive Allocated Requirement and Derive System

Requirement To Hardware.

Main Roles: The main roles participating in the operations are project man-

agers, software product managers, system engineers and customers who will derive

system requirements allocated to software and hardware.

Derive-System-Requirement

Derive-Allocated-Requirement

Derive_Sys tern_Requirement_To_Hardware

Figure 4.6: The P-State Tree of Requirements Management

Artifact List: The artifact list in the KPA is System Requirement which con-

sists of two sub-artifacts: Allocated Requirements and System Requirements Al-

located to Hardware. The artifacts in this KPA are shown in Figure 4.7.

Information Artifacts: No information artifacts in Requirements Manage-

ment.

Software—Management—Process

System—Requirement

Allocated—Requirement

System—Requirement—To—Hardware

Software_Development_Plan

Software_Acquisition_Management

Software_Proj ect_Control

Commitment

Figure 4.7: The Artifact Tree of Requirements Management

Entrance Condition: st ate-of(System_Requirement) = Referenced

Deriving system requirements is at beginning of the software project. Software or-

ganisations should have their own methodology to derive customer requirements.

Once the customer's statements are collected, the system requirements should be

derived and reviewed.

Activities: Two operations are presented in the P-state diagram of Require-

ment Management as shown in Figure 4.8.

File Edit View Go Communicator 	 Help

Rack Forward Reload Home Search Guide 	Print Security Stop 	 -

4 Bookmarks .t Locationttp //snov des ed ac uk/horne/ky/PASTa/SPIPasta htssl 	 14

- -EstirneleSofiwcveSsze
- - - Compare Cetegorv&z
- - - ctce1ceeSoftwezeSd
--- Document --Document Estimated
--Estimate Effort And
- - - Get Productrretv Mere
- - - Coiculcrte Time Regu.ir
- - -Document Estimated
--Estimate Resource
--Estimate Schedule

Derive_Allocated_Requirement

Allocated_Requsrnient [Referenced] 	[Derived] Allocated Requirement

Derive _System _Requirement_To_1-lardware

[temRequirement T _Hardware [Referenced] I
[[Derived] SystemReq ement_To_Hardware

- -Track Supplier
--Review Tee teal Issue
__ Review Mass eeement In
--Evaluate Suoolter
_4—-1 Arrpnt Smut-pd .Vaftum

-Correct SDP
-Maintain SDP
Establish Commitment

100%
	

cs.ed.ac.uk/home/kV/PASTA/`Maps/Derive-Systp-m-R

Figure 4.8: The P-State Diagram of Requirement Management

The main activities performed in the Requirements Management key process

area are to document the allocated requirements for the software project and

to document changes to the allocated requirements throughout the life cycle.

The CMM recognises that change is an integral part of software activity, which

software organisations usually ignore it. The concept of freezing the specifications

is almost impossible to apply to the software development. Software organisations

must carefully assess the impact of change and make a good decision for the

software development.

Currently, there are some commercial products to manage requirements. In

addition to storing all requirements, these tools also provide a powerful ability

to track changes during the development life cycle. The organisation can choose

which tools they need to derive system requirements, but they will need to link

it into SPI PASTA.

Exit Condition: state-of(SystemRequirement) = Derived

After completing the P-states, managers and customers must check whether

the exit condition has been reached. This means that the system requirements

should be documented and controlled before they are incorporated into the soft-

ware project.

4.1.2 Software Project Planning

The purpose of Software Project Planning is to establish reasonable
plans for building the software product and for managing the software
project[Pau97].

After making an agreement with the customer on the requirements for the

software project, the projects software development plan should be built and

software risks should be analysed. This includes steps to estimate the size of the

software work products and the sources needed, negotiate commitments, produce

a schedule and identify and assess software risks. A good software development

plan is crucial for the success of a software project. However, the quality of a

software development plan generally depends on the quality of the size estimate.

How to appropriately estimate the size of the software work products is becoming

the most essential task in the Software Project Planning key process area.

To build the software development plan, two of the most critical resources

are development staff and time[NAS90]. The project manager is concerned with

how much time will be required to complete the project and what staffing level

will be necessary over the development cycle. However, the degree to which

you can accurately and precisely plan a job depends on what you know about

it. At the earliest, or preproposal stage, you have only a general idea of the

product requirements. To make an accurate estimate, you must start with a

design specification. You then examine and estimate each part of the job. This

estimate requires separate estimates for each software component, each major

document, the test cases, installation planning, file conversion and user training.

Nevertheless, in his book, Pressman[Pre94] described:

Software cost and effort estimation will never be an exact science. Too
many variable - human, technical, environmental, political - can affect
the ultimate cost of software and effort applied to develop it. However,
software project estimation can be transformed from a black art to a
series of systematic steps that provide estimates with acceptable risk.

For years, researchers tried to find an effective method to tackle the estimation

process problem. To date, the estimation process can be classified as either model

based or analogy model. Model based estimation usually uses statistical analysis

to build a model for estimation. Boelnn[Boe8l] introduced a hierarchy of software

estimation models, called COCOMO. Albrecht's function point[AG83] identified

five basic functions that occur frequently in commercial software development.

Putnam[PM92] used the Rayleigh curve to derive his software equation. However,

Vigder and Kark[VK94] found that informal analogy was the most commonly used

estimating method for software organisations. There were two major reasons

given for organisations not using formal models. Firstly, there was a lack of

confidence in the ability of a model to outperform an expert. Secondly, the

historical data is not available. Software managers would like to use "rules-of-

thumb" to estimate their new projects. Nonetheless, a majority of large software

projects tend to run late or overrun their budget, or even to be cancelled.

Most models of software estimation view the estimation process as being a

function computed from a set of cost drivers and in most of the advocated software

estimation techniques, the primary cost driver is assumed to be the software

requirements(as Figure 4.9).

Allocated
	 Software Cost

	 Effort

Requirements 	
Estimation Process 	

Duration

Figure 4.9: Classical view of software estimation process

Consequently, allocated requirements are viewed as constraints which must

be satisfied. The initial requirements analysis, however, inevitably produces a

85

requirements definition that is incomplete and ambiguous and will be changed

significantly throughout development. Furthermore, another problem is that it

is hard to compare one program with another. As programs are increasing their

size and complexity, they are almost impossible to compare in any orderly or

consistent way. One way to address this comparison issue would be to break the

new product into pieces. From this concept, the object-oriented methodology

seems to be a good choice.

4.1.2.1 Size and Effort Measurement

For making a good estimation, partitioning is a crucial point. For making a good

partition, allocated requirements are essential and necessary. In the CMM, a

work breakdown structure (WBS) for the software project will be established at

the beginning of the process. A partition is a set of capabilities that identifies the

boundaries of a subproblem. Project managers coordinate the development of a

set of partitions, planning resources for each individual partition, setting mile-

stone dates, facilitating re-partitioning efforts and assuring the quality of each

partition. Goldberg and Rubin[GR95] in their book suggested Breadth-First arid

Depth-First approaches. A depth-first approach partitions the allocated require-

ments and takes each partition all the way from analysis to implementation and

testing. This approach is suitable for a project whose allocated requirements are

very clear and where each subproject is nearly independent. Since this approach

partitions at the beginning, each partition is totally independent. It might be dif-

ficult to be integrated, since project managers have to partition under an unclear

condition. Moreover, the requirements seem to he frequently changed during the

development period. A breadth-first approach starts with a high-level analysis.

After analysis, the project manger creates partitions for subteams and the par-

titions are fully developed in parallel. A variant of the breadth-first approach

(Figure 4.10) lets developers partition the problem, and do an analysis of each

partition in parallel. When all analyses are completed, they are combined into a

single set of analysis artifacts. Then the problem is repartitioned for development

based on this unified analysis.

This approach is suitable for using object technology and use case driven

development. At the outset of a project, the project manager does preliminary

partitioning from allocated requirements. The first partitioning will be an approx-

imation since the boundaries might need to be reassessed. Requirement analysts

can do analysis in parallel by using the use case model. When all analyses are

completed, the project manager collects all use case models and repartitions them

Do preliminary partitioning

Partition 	 Partition 	 Partition 	 Partition

analysis 	 analysis 	 analysis 	 analysis

Do 	 (Do 	 (Do 	 (Do

analysis) 	analysis) 	' analysis) 	analysis

Completed analysis

Repartition

Design, code 	7 Design, code 	7 Design, code

and test the) 	(and test the) 	and test the

partition 	/ 	\ 	partition 	-" 	\ 	partition

Figure 4.10: Alternative View of Breadth-First Partitioning [GR95]

1l

Phase Percent of Time Schedule Percent of Effort
Requirement Analysis 12 6

Preliminary Design 8 8
Detailed Design 15 16
Implementation 30 40
System Testing 20 20

Acceptance Testing 15 10

Table 4.1: Distribution of Time Schedule and Effort Over Phase in NASA[NAS90]

to subteams.

In addition to partitioning, estimation of schedule for software product devel-

opment and delivery is also a very challenging task. There are many factors that

affect the schedule, and development progress is difficult to measure.

However, for software projects contracted with a government, clients and con-

tractors decide the delivery date during negotiations. To avoid the project running

late the initial estimate is a crucial step, nevertheless, it is the most uncertain

since the allocated requirements are still unclear. As mentioned in Section 1.2.3,

Microsoft roughly divides the life cycle into three phases. It is usual to take one

fourth to one third of a project's schedule for planning. Before the allocated re-

quirements are clearly partitioned, this could be an effective method for schedule

estimation. By monitoring their developed software projects, the Software En-

gineering Laboratory in NASA[NAS90] collected the information of the expected

schedule consumption and effort expenditure in each phase of the life cycle. These

efforts are very helpful for estimating the contract software. In Table 4.1, the re-

quirement analysis and preliminary design needs 20 percent of the time schedule.

This means that the development team can fix 20 percent of the time schedule to

complete its use case models. For those software organisations contracted with a

government, it is relative easier to collect their historical data to establish their

own distribution of time schedule.

After preliminary partition and estimation, making a software development

plan starts with estimating the size of partitioned parts. By estimating the size

of the product you plan to build, you are better able to judge the amount of work

required to build it. Figure 4.11 shows the steps for making a schedule estimation.

For a schedule estimation, first and foremost, a framework for size measure-

ment must be established. Line of code counts can easily be misinterpreted and

misused if the organisation hasn't got a common policy. However, to help organ-

isations obtain clear and consistent reports of software size, the Software Pro-

/ 	LOC Counting

/ Established / 	Conceptual
Design

/ 	Standard

I 	 I

L
ject Estimating

-

tegory Software
Size es

Counted / /~R cording 	
Development --------

	

Program

TimeJ 	

Estimating

Size S 	 Time

/ Plsned 	/---------Schedule
/ 	Task Sequence / 	Estimating
/ 	 /

Establish
Proj ect
Milestones

Items

Tasks

Process Flow

Support

Figure 4.11: The Steps for Making a Schedule Estimate

89

cess Measurement Project at the SET has developed a framework for describing

software size measurements[Par92]. Once you have established the framework for

counting lines of code, you can start estimating the software size. Researchers[Jon9l,

PM92, Hum95] suggest that using size estimating methods can help get a better

quality size estimate.

The Personal Software Process (PSP), developed by Watts Humphrey [Hum95],

is a defined and measured software process designed to be used by an individual

software engineer or small developing team. PSP makes engineers aware of the

processes they use to do their work and the performance of those processes. They

learn to set personal goals for improvement, measure and analyse their work,

and adjust their process to meet their goals. To date, data from the surveys

provides convincing evidence of the benefits of the PSP. In their study, Hayes

and Over[H097] found the following result from using the PSP:

. Effort estimates improved by a factor of 1.75 (median improvement)-

* Size estimates improved by a factor of 2.5 (median improvement).

The tendency to underestimate size and effort was reduced. The number of

overestimates and underestimates were more evenly balanced.

. Product quality, defects found in the product at unit test, improved 2.5

times (median improvement).

Process quality, the percentage of defects found before compile, increased

by 50% (median improvement).

In addition, the survey conducted by Ferguson et a1.[FHK97] also supported

this conclusion.

A critical factor in the PSP is size and effort estimating. The PSP uses the

Proxy-Based Estimating (PROBE) method for size and effort estimating. In-

stead of directly using LOC as the size measure, Humphrey uses a proxy to judge

product size. The properties of the object-oriented methodology are good ex-

amples for a proxy. To use objects as proxies, firstly, organise your historical

object data into categories and size ranges. After grouping these objects into

functional categories, you can make estimates by deciding which functional cat-

egory of object you are considering, then judge how many methods it is likely to

contain, and finally determine where it falls into the size range.

Once the object category has been established, as in Figure 4.12, the next

step will be building a work breakdown structure for the software project. The

90

work breakdown structure (WBS) divides the overall software project into work

packages that represent singular work units that are assignable and for which

accountability can be expected.

After you have subdivided the product into parts, you check to see if you have

historical data on them. If a part does not resemble any element in the category,

you have to reexamine it to see if you have refined it to the proper level. If an

object is at the right level and does not belong to any of the existing categories,

then you estimate its size as the first of a new category. This is an iterative

process and you must finish it completely.

You now have the conceptual design, having named each object and having

determined its category. Next you need to determine new object type and size.

For each new object, you judge how its size compares with those in the database

in its category. On the basis of this judgement, you estimate roughly what the

new object's size will be.

After estimating a software size, you next have to estimate the tinie the work

will take, judge the accuracy of this estimate and generate a schedule. You do

this by relating the time you spent on prior projects to the estimated sizes of the

programs you produced.

From the PSP's description (Figure 4.13), there are three choices for estimating

development time. Firstly, if you do not have at least three historical data points,

you have to calculate historical productivity in LOC per hour. This means that

you divide the total LOC by the total hours to get your average productivity

for the new project. Then, with Choice C, you estimate the time for the new

program by dividing your estimated new program size by your productivity rate

to get your new estimated time.

Secondly, if you just have data on actual development hours and object LOC

for at least three projects and that the actual object LOC and actual development

hours correlate with an r 2 > 0.5. Then, you do the regression calculation for total

actual LOC and actual hours. With Choice B, you will use the regression method

to calculate the estimated development time for the new program.

Thirdly, you have got at least three projects where the object LOC and actual

development time correlate with an r2 > 0.5. Then, with Choice A, you will use

the regression parameters to calculate the estimated development time for the

new program.

Finally, you have to make a good schedule plan.

A good size and effort estimation depends on good historical data collected

from prior projects. Before you collect this useful data, you could make a good

91

Conceptual
Design

Work
Breakdown
Structure

Subdivide the
product into
parts

Compare the 	--------

-/

Object Category Sizei
database parts

Repeat for
all parts

Estimate
the new parts relative

size

Estimate the

product size

Size Estimated

Figure 4.12: The flowchart for estimating software size

92

LOC Size Estimate

Obtain Counted

/ 	

Program 	/----------historical data
Size

/ Time

/ 	

Recording Log

N<

 Are there
sufficient data
for a regression

YES

// Are
here sufficien

estimate data for 	YES

11
a regression

Estimating 	 Estimating 	 Estimating
Choice C 	 Choice B 	NO 	 Choice A

Calculate historical Do the regression

j e 	

Do the regression

productivity in LOC 	 calculation on actual 	 calculation on

per hour 	 object LOC and 	 i estimated object LOC

Calculate the 	 Calculate the 	 Calculate the

hours required 	 time required 	 time required

Calculate the

	

Calculate the 	 Calculate the
shortest and 	 I longest likely times 	 prediction interval i

	
prediction interval

Time Estimate 	 Time Estimate 	 Time Estimate

Figure 4.13: The flowchart for estimating development time

93

Project Type Environment Type Effort Multiplier
Old Old 1.0
Old New 1.4
New Old 1.4
New New 2.3

Table 4.2: Complexity Guideline[NAS9O]

Teams Years of
Application Experience

Effort Multiplier

10 0.5
8 0.6
6 0.8
4 1.0
2 1.4
1 2.6

Table 4.3: Development Team Experience Guideline[NAS9O]

guess. NASA's SEL suggests that the estimates should be adjusted before the

uncertainty proportion is applied. Some factors, such as project type, develop-

rnent environment and development team experience, can affect the estimates.

Table 4.2 presents the recommended percentage adjustment to the effort estim-

ate due to the complexity of the problem.' Table 4.3 presents an adjustment to

the effort estimate for the effect of different team experience levels.2

4.1.2.2 Processes in Software Process Planning

Figure 4.14 shows the P-state tree for Software Process Planning. This P-state

consists of five operations: Draft Project Mission Plan, Draft Organisation And

Responsibility Plan, Draft Software Engineering Activity Plan, Draft Schedule

And Resource Plan and Identify Project Risk.

Main Roles: The main roles participating in the operations are project man-

agers, software product managers, senior managers, SEPG, system engineers,

testing staff and quality assurance staff who will derive the software development

'The project type and environment type is old when the organisation has more than 2 years
experience with it.

2 Average of team member's years of application experience weighted by member's particip-
ation on the team. Application experience is defined as prior work on similar applications and
member's participation is defined as time spent working on the project as a proportion of total
project effort.

94

Derive—Software—Development—Plan

Derive—Project—Mission—Plan

Draft—Organisation—And—Responsibility—Plan

Draft_Software_Engineering_Activity_Plan

Draft—Schedule—And—Resource—Plan

Bui ld_WBS

Estimate_Software_Size

Estimate—Effort—And—Cost

Estimate—Resource

Estimate—Schedule

Identify—Project—Risk

Figure 4.14: The P-State Tree for Software Process Planning

plan for the software project.

Artifact List: The artifact list in the KPA is the Software Development Plan

which consists of four sub-artifacts: Project Mission Plan, Organisation And Re-

sponsibility Plan, Software Engineering Activity Plan and Schedule And Resource

Plan. MIL-STD-498 provides a Software Development Plan description for both

the software acquirer and supplier. Developers can adopt it as a framework com-

plying with the P-state to complete the project's software development plan. The

artifacts in this KPA are shown in Figure 4.15.

Information Artifacts: Two artifacts, Allocated Requirement and PDSP, provide

the information to derive the software development plan. The allocated require-

ment is a primary input to the software development plan. In the meantime,

deriving the software development plan should rely on the project's defined soft-

ware process, if the organisation has established its own project's defined software

process by following SPI PASTA.

Entrance Condition: state-of (Software iDevelopment Plan) = Referenced and

state-of(PDSP) = Established

95

Software_Management_Process

System_Requirement

Software_Development_Plan

Project-Mission-Plan I

Organisation-And-Responsibility-Plan

Software_Engineering_Activity_Plan

Schedule_And_Resource_Plan

Software-Acquisition-Management

Software_Proj ect_Control_j

Commitment

Figure 4.15: The Artifact Tree for Software Process Planning

Developers should ensure that the project's defined software process is ap-

propriately reflected in the software development plan. Once the need to derive

the software development plan has been identified, process roles may perform the

operations.

Activities: Five operations are presented in the P-state diagram for Software

Process Planning as shown in Figure 4.16.

Process roles firstly draft the project mission plan and the organisation and

responsibility plan based on the allocated requirements. Moreover, the software

life cycle must be selected from the project's defined software process. Process

roles build the plan addressing sequencing and interdependencies of software en-

gineering activities. Then process roles perform the activities according to Sec-

tion 4.1.2.1, establishing the work breakdown structure to divide the overall soft-

ware project into work units, estimating the size of each work unit, estimating

the effort and cost for the software project, estimating the project's resources and

establishing the project's schedule. The schedule and resource plan will provide a

basis for the software project. Finally, risks associated with the software project

should be identified. This operation could be linked to Risk Management which

is described it on the Organisational Process, since it belongs to the Integrated

96

File 	Edit 	View 	Go 	Communicator Help

IL
Back 	Forward 	Reload 	Home 	Search Guide 	Print Security 	Stop

4 	Bookmarks A Location 	ttp/Jmridco ed. ac. uk/honis/ky/PASTA/SPIPastahtm1

I
Develop SoftwareManae Derive—Software—Development—Plan

Draft Proj ect_Mission_Plan

•• I Projtdt_MissionjPlan [Referenced] I 	[Draft] rojectJvIssion_Plan

Drft_Organisation And _Responsibility _Plan

Project_Mrs slots Plsr[[DraltCd]
Organisation _And Resonsibthty_Plsn[P eferenced] [Drafted] Orgsnssation And ResponsibthtyPlan

DraftSoftwreEngineerrng_ActivityPlsui

	

Software Engineerinp. Activity. Plan[Referenced] 	J [rdfed]SoftwareEtigjne rinAthvity Plan. H1

Draft Schedule Andjesource_Plan

-i--_SoftwsrtEnglneeringjActivityPlan[Drafted

	

Schedule And Resouce Plsn[Ref erenced] 	 _______

	

Allocated_equsrernent [Derived] 	[Drafted] Schedule ndResourcePlsn

Identify Project Risk

__

	

FRiLkIdentified]Softw 	mareDevelopentPlan

Software_DevelopmertPlan[Referanced]I 	ved] SottwareDevelopment_P1an

tt 	dcs.ed.ac.uk/home/ky/PASTA/OperationForms/Document Estimated Sizel 18 html 	 riO

Figure 4.16: The P-State Diagram for Software Process Planning

Derive Software Developme
-Draft Project Mission Plan
-Draft Orsnisahon And Re.
—Draft Software Engineering
-Draft Schedule And Resou
- -Build WBS
- - Esttmcnte Sofrweze Srre - - - Compwe Cate'orv&ze - - - Calcutale Softwcnse Size
--- Document --Document Esttmcsted Sir
--Estimate Effort And Cost - - - Get ProductsvitvMeesu - - - calculate Time Require
--- Document Estimated Tzn --DocumentEstrmaledTir
--Estimate Resource
- - EstimszteSc/sedute
—Identify Project Risk
Perform Software A cguisitisr
—Draft Acquisition Plan
—Manage Supplier Selection
- - Determine Acquisition Me
- - Estatilislr Requirement
- -A cquire CO TS Product
--select contractor
- -EstcthtisIlContrruct
—Manage Supplier Monitorin
- - Track Supplier
--Review Technical Issue
- -ReviewMncwementlssui
- - Evaluate Supplier
- -A ccept Acquired Software
Perform Software Project C
—Track SDP
—Correct SDP
—Maintain SDP
Establish Commilanent

Develop-SofwwwareTechnic

Develop Software Regutrrmr

97

Software Management key process area in the CMM Level 3. If Risk Management

is not available or if the organisation is still on Level 2, process roles must perform

this operation without risk mitigation strategies.

Exit Condition: st ate-of (Software -Development Ylan) = Derived

After completing the P-states, process roles must check whether the exit con-

dition has been reached.

4.1.3 Software Project Control

The purpose of Software Project Control is to provide adequate visib-
ility into progress of the software project so that appropriate corrective
actions can be taken when the software project's performance deviates
significantly from the piari[Pau97].

4.1.3.1 Management of the Software Project

Without tracking, the software project might become out of control. The activit-

ies of Software Project Control involve tracking and reviewing the software per-

formance and results against the plan and taking corrective action as necessary

based on actual performance and results. Management of the software project

should be based on the software development plan.

Why does the software project have to be tracked? The main reason is soft-

ware estimation. As mentioned in Section 4.1.2, the development team use the

allocated requirements to estimate the software size in order to build the software

development plan. In the very beginning, the development team have only the

allocated requirements that are elaborated from the customer requirements. This

rough requirement is not good for estimating software size. When the develop-

ment team starts to elaborate the software requirements, creating the use case

diagrams and class diagrams, the software effort and cost estimation should be

modified from time to time. Furthermore, any problem happening in the software

development must be detected as soon as possible, otherwise the project cost will

increase.

Currently, project management tools can conveniently support software pro-

ject control. However, Steve McConnell[McC97] suggested creating a project

intranet home page with links to general project information. With regard to

project tracking, the home page might include the following:

Percentage of schedule used (actual)

Percentage of resources used (actual and planned)

98

Percentage of defects found (actual and Planned)

Graphs of actual vs. planned resources and defects

. Current task list

Current defect list

Top 10 risk list

Anonymous feedback bulletin board

This information can be integrated as a part of PSEEs and will provide ap-

propriate visibility into actual progress of the software project.

4.1.3.2 Processes in Software Project Control

Figure 4.17 shows the P-state tree for Software Project Control. This P-state

consists of three operations: Track SDP, Correct SDP and Maintain SDP.

Perform—Software—Project—Control

Track—SDP

Correct—SDP

Maintain—SDP

Figure 4.17: The P-State Tree for Software Project Control

Main Roles: The main roles participating in the operations are project man-

agers, customers and the development group who will develop the software pro-

ject. In principle, project managers should take charge of managing the software

project.

Artifact List: The artifact list in the KPA is the Software Development Plan,

since the plan is the basis for tracking software activities and taking corrective

action.

99

Information Artifacts: The project manager tracks software project perform-

ance against the software development plan. All activities in management and

technical processes will be tracked and the project manager will take corrective

actions from time to time.

Entrance Condition: state-of (Software_DevelopmentYlan) = Derived and state-

of (Software -Technical _Process) = Referenced

When the development group starts to develop the software project according to

the software development plan, software project performance and risks should be

carefully tracked.

Activities: Three operations are presented in the P-state diagram for Software

Project Control as shown in Figure 4.18.

The main activities performed in the Software Project Control key process

area are to track software project performance and results in accordance with the

software development plan. When the software requirements are elaborated from

allocated requirements, the use case diagrams and class diagrams are created by

software analysts. The content and functions of classes are increasingly clear.

Therefore, it is better to re-estimate the software size, effort and costs. As a

result, the computer resources, software engineering facilities and the project's

schedule must make a correction to fit the actual software project development.

These activities should be performed from time to time in order to make a best

estimation for software project. Furthermore, the software development plan

may also be revised to reflect accomplishments, progress, changes and corrective

actions as appropriate.

Exit Condition: state-of (Software -Technical _Process) = Developed

The activities of the Software Project Control key process area must be per-

formed until the software project is completed. This means the software project

should be well controlled during the whole software life cycle.

4.1.4 Software Acquisition Management

The purpose of Software Acquisition Management is to effectively man-
age the acquisition of software from sources external to the software
project [Pau9 7].

This key process area applies to acquisition of software work products for

which there exists a formal agreement between the supplier and the software

100

File Edit View Go Communicator 	 Help

S Back Forward Reload Home Search Guide 	Print Security Stop

4 Bookmarks & Location fthttp//wdcaedaruk/bone/kyfPASTA/SPIPastahtmL 	 J'I

Track SDP

SoftwareDevelopmen _Plan [Derived] 	____ _______
Softwac Technical P ocess [Rdfetehned]. 	j[TrbckecljSoftwar Development_Plan

--Build WBS
--Estimate Software
- - - CompveCateqor
- - - Daicutate Softwcc
--- Document --Document Estimu
- -Estimate Effort A
- - - Get Productir
- - - Galculate Time t
- - - Document Estimc
-- Estimate Resource
-- Estim ate Schedule
_IA,-if, Pi'F -Pid

iT1O.LiCL JUflJULL

- - Determine Acquisition
- -EstcthlishRegurrement
- -A cquire GO TS Product
- -Select contractor
--Establish contract
-Manage Supplier Monitor
-Track Track Saculier
- -Review Technical issue
-

-Revzew mangeenienL Is:

- - Evaluate Supplier
--Accept Acquired So (tam
Perform Software Pro nat
-Track SDP
-Correct SDP
-Maintain SDP
Establish Commilinent

sedac.ulVhome/ky/PASTA/Maps/Petform_ Software _ProjectControlmap 	 i

Figure 4.18: The P-State Diagram for Software Project Control

101

project. The acquired software is delivered to the software project from the

supplier and becomes part of the software products delivered to the project's

customer.

This key process area is not necessary for those organisations which are devel-

oping the software work products by themselves. However, software projects are

increasingly sophisticated and software development costs are becoming a major

trade-off for project managers. As a result, the software community has been

motivated to find more effective and efficient ways to develop software in the last

few years. The use of commercial off-the-shelf (COTS) products as elements of

larger systems is becoming a consensus of reducing development costs. Therefore,

this key process area can be applied not only for outsourcing software projects

but also for acquiring COTS products.

4.1.4.1 Component-Based Software Development

The software community has tried to imitate the concept of mass production for a

long time. Currently, the concept of interchangeable parts, similar to Integrated

Circuit in the microelectronics industry, is emerging in the software industry.

In the last few years, the research of component-based software develop-

mnent has become one of the most important topics in the area of software

engineering[Ber97]. This research focuses on building large software systems

by integrating previously existing software components. Developing component-

based systems is becoming feasible due to the following:

The rapid evolution of the Internet/Intranet is making distributed projects

increasingly viable.

The middleware technology which manages communication and data ex-

change between objects, such as Common Object Request Broker Archi-

tecture (CORBA) from the Object Management Group[OMG97] and Mi-

crosoft's Component Object Model (COM), is emerging and increasingly

mature.

As a result, the software development might move to a large-scale manufactur-

ing and engineering process. Software developers may assemble software products

from purchased fine-grained software components. The COTS-based systems

(CBS)[Car97], conducted by the SET, are focused on improving the technolo-

gies and practices used for assembling previously existing components into large

software systems. The CBS Initiative is developing component-based systems

practices that effectively qualify and integrate COTS components into critical

102

systems within business constraints. The CBS approach relies on the existence

of an inventory of existing software components, the emergence of component

integration technologies such as CORBA and COM, and the development of or-

ganisational capabilities for CBS trade-off analysis and design. This initiative

will result in an innovative software development approach. The roles will be

changed from being a developer and producer of systems to being a consumer

and integrator instead. Figure 4.19 shows a new life cycle for the CBS.

Identification

Qualification

Adaptation

Integration

Upgrade

Figure 4.19: The Life Cycle of COTS-Based Systems

The challenge of a CBS consumer is how to build sufficient flexibility into

procurement and contract documents to allow a variety of creative solutions while

at the same time constraining bidders to selecting appropriate components and

strategies. Software Acquisition Management will be a key role for the success of

the CBS.

4.1.4.2 Software Acquisition Management

As Figure 4.19 shows, the activities of the software acquisition management con-

tain five steps. Firstly, software acquisition management plans which encompass

the total software acquisition effort must be established. This planning should

identify the process for software acquisition management, which involves such

items as early budgetary action, schedule determination, acquisition strategy, risk

identification and software requirement definition. With the acquisition plans,

software managers have to make a crucial decision - make or buy. This decision

should come from analysing the allocated requirements to identify software that

will be acquired. Once the requirements for the acquired software are established,

103

software managers must enter the second step, qualifying the contractors. With

selecting, contracting, tracking and reviewing contractors, project managers have

to ensure the software work products appropriately adhere to the requirements.

Then, project managers conduct acceptance reviews and test and integrate all

software components to make a complete software system. Finally, if necessary,

they make an evolution plan.

However, as outsourcing, especially international outsourcing, becomes more

common, software acquisition management is increasingly complicated. In order

to minimise or eliminate the risk that software contracts will end up in dispute

or in court, Jones[Jon96] gave the software community some recommendations as

follows:

The sizes of software contract deliverables must be determined during ne-

gotiations.

Cost and schedule estimation must be formal and complete.

Creeping user requirements must be dealt with in the contract in a way that

is satisfactory to both parties.

Some form of independent assessment should be included.

Anticipated quality levels should be included in the contract.

Effective software quality control steps must be utilised by the vendor.

4.1.4.3 Processes in Software Acquisition Management

Figure 4.20 shows the P-state tree for Software Acquisition Management. This

P-state consists of three operations: Draft Acquisition Plan, Manage Supplier

Selection and Manage Supplier Monitoring.

Main Roles: The main roles participating in the operations are project man-

agers, software product managers, contract management staff, requirement ana-

lysts and software suppliers who will make the 'make-or-buy" decision.

Artifact List: The artifact list in the KPA is Software Acquisition Management

which consists of three sub-artifacts: the Acquisition plan, Supplier Selection and

Supplier Monitoring. The artifacts in this KPA are shown in Figure 4.7.

104

Perform—Software—Acquisition—management

Draft—Acquisition—Plan

Manage_Supplier_Selection

Determine—Acquisition—Need

Establish_Requirement

Acquire—COTS—Product

Select—Contractor

Establish—Contract

Manage_Supplier_Monitoring

Track—Supplier

Review—Technical—Issue

Review—Management—Issue

Evaluate_Supplier

Accept—Acquired—Software

Figure 4.20: The P-State Tree for Software Acquisition Management

105

Software-Management-Process

[System-Requirement

Software_Development_Plan

Software-Acquisition-Management

Acquisition-Plan

Supplier_Selection

Supplier_Monitoring

Software-Project-Control
1

Commitment

Figure 4.21: The Artifact Tree of Software Acquisition Management

106

Information Artifacts: The artifact, PDSP, as information artifacts provides

a guideline to perform the software acquisition management.

Entrance Condition: st ate- of(Software -Acquisition _Management) = Referenced

The software analysts and managers according to the allocated requirements

make a "make-or-buy" decision. The decision includes what kind of software work

products will be acquired, if the project manager decides to buy software work

products from external suppliers.

Activities: Three operations are presented in the P-state diagram for Software

Acquisition Management as shown in Figure 4.22.

Firstly, managers should draft the software acquisition plan according to SPI

PASTA. The plan with SPI PASTA may be a basis for performing the software

acquisition.

Then the activities will be split into two parts, selecting the supplier and

monitoring the supplier. In the supplier selection, when the acquisition decision

has been made, the managers have to select the acquisition option. In accord-

ance with the characteristics of the software project, the managers should de-

cide to purchase COTS software products, obtain software from a contractor

or other options. Then the organisation should establish the requirements for

the acquired software. These requirements must comply with the allocated re-

quirements referenced to the Requirements Management key process area. If the

managers decide to purchase COTS software products, they need to perform the

"Acquire_COTS_Product" operation and select the COTS products to satisfy the

software project's needs. Otherwise, the managers should evaluate and select soft-

ware contractors. Finally, the agreement must be established with the software

contractors.

In the next step, the software supplier's activities should be monitored. The

managers must review technical and management issues from time to time and

periodically evaluate the performance of the software supplier in order to control

the quality and progress of software products. Finally the organisation conducts

acceptance reviews and tests to verify that the software products match the re-

quirements.

Exit Condition: state-of(SoftwareAcquisition_Management) = Derived

After completing the P-states, managers and customers must check whether

the exit condition has been reached. This means that the acquired software

products are completely satisfied.

107

File Edit View Go Communicator 	 Help

JA— 	 at
N Back Forward Reload Home Search Guide 	Print Security Stop

Bookmarks 	Location 	ttp //mm dc,5.ed.ac.uk/home/ky/PASTA SPIPasta, html

Develop

Draft_Acquisition_Plan

oft',are_ Acquisition _Managment [Referenced] 	 [Drdfted] Acquisition_Plan

- - Egtirnrote Software Size
- - - CornpveCmEeewv&z
- - - Cefcc1rc2eSaftwazeSr

- Document Esttmsntec1
- -EsttmcsteEffortAndO
- - - Get Produc ittv Mesa
- - - Ccrtccrlscte TtmeReeui
--- Docurren7 - -Document Esttmcsted
- - EstUncsleReso&rce
- -Estmcote,checlu1e

-Manase Supplier Selectic
- DeteneAcgu.tsition
- - EstcthttshRegzarement
-Acquire COTS Product
- -SetectContrcoctor
- - EstcthttslsContrcwt
-Manage Supplier Monitos
- - TrSurpter
- -Review Techrncel issue
- -RevewMoncarementin
- -EveiuteSu.pptter
- -AcceptAccc'tred So ftwo
Perform Software Project
-Track SDP
-Correct SDP
-MaintsniSDP
Establish Commihnent

Manage_Supplier_Selection.

Acquisilion Plan Drafted]
Supp]ier_SelecBon .Referenced] 	 [Managedi SuppherSelectaon

Manage _Supplier _Monitoring

Suppher_Selection Managed] 	F[Managed] Suppher_Monstoring

Figure 4.22: The P-State Diagram for Software Acquisition Management

\t I!

108

4.2 The Software Support Process

After developing the software management process, policies for managing a soft-

ware project and procedures to implement those policies should be established.

In the meantime, the software support process should be developed in order to

support the software management process. Software quality assurance will review

the software project's activities and work products in order to provide managers

with appropriate visibility to manage the software project throughout the soft-

ware development life cycle. Configuration management will record and report

the status of project configuration items which are produced from activities of

the software management process and later on the operations throughout the

software development life cycle.

Processes in the Software Support Process

Figure 4.23 shows the P-state tree of the Software Support Process. This P-

state consists of two operations: Perform Configuration Management and Perform

Software Quality Assurance.

Develop_Software_Support_Process

Perform—Configuration—Management

Perform_Software_Quality_Assurance

Figure 4.23: The P-State Tree of the Software Support Process

Main Roles: The main roles participating in the operations are project man-

agers, software product managers, configuration management staff and quality

assurance staff who will develop the software support process.

Artifact List: The artifact list in this part is Software Support Process which

consists of two sub-artifacts: Configuration Management and Software Quality

Assurance. The artifacts in the Software Support Process process are shown in

Figure 4.24.

Information Artifacts: Users developing the software support process should

rely on the project's defined software process.

109

Software _Process—Improvement

:ion—Process—Focus

Organisation—Process—Definition

PDSP

[ftware_Management_Proces S

Software—Support—Process

Configuration—Management

Software_Quality_Assurance

Software—Technical—ProcessJ

I
Organisational—Process

Figure 4.24: The Artifact Tree of the Software Support Process

Entrance Condition: state-of(SoftwareSupport_Process) = Referenced

Developing the software support process should he at the beginning of the software

project. As soon as the project starts, the need of developing the software support

process should also be identified.

Activities: Two operations are presented in the P-state diagram of the Software

Support Process as shown in Figure 4.25. There are no relationships between two

operations. Both operations can be independently performed and should support

the software management process to build a foundation for the software project.

The activities can be performed under the project's defined software process.

However, those organisations which have not reached level 3 or the project's

defined software process is not available should directly perform the activities to

support the software project.

Exit Condition: state-of (Software_SupporLProcess) Developed

After completing the P-states, managers must check whether the exit condition

has been reached. This means that the artifacts have been well performed and

recorded.

110

File Edit View Go Communicator 	 Help

Back Forward Reload Home Search Guide 	Print Security Stop

4 Bookmarks A Location ttp//wnmrdca ed. ac. uk/home/ky/PhSTA/SPIPaota htl _J7

)eveloy Software Support
ER Develop_Software_Support_Process

--ReviewActivst
- -Review Work Product
-Reprot_SQA_Result

Configizatio dManagement

Perform_Configuration_Management

4 anaexnet[tnitia1ed]I 	[Vfi&.d].C.oputàfi

Perform Software. Quality_ Assurance. 	•. 	.. 	.

Software Quality Assurance [Initiated] 	[Reported] Software Quality_Assurance

100% 	.[hftp:/ta\wI.dco ed.ac.uklhome/ky/PASTA/OperationFormo/Verify_CM_systeml20.htrnl

Figure 4.25: 4.25: The P-State Diagram of the Software Support Process

4.2.1 Software Quality Assurance

The purpose of Software Quality Assurance (SQA) is to objectively
review the software project's activities and work products for adherence
to the applicable requirements, process descriptions, standards, and
procedures[Pau97].

4.2.1.1 ISO 9000

ISO 9000 is a series of standards, published by the International Organisation for

Standardisation (ISO), which define a framework of minimum requirements for

the implementation of quality systems.

There are three different ISO 9000 certifications: ISO 9001, 9002 and 9003.

For the software community, the most comprehensive of the standards is ISO 9001,

Quality system - model for quality assurance in design, development, production,

installation and servicing. It applies to industries involved in the design and

development, manufacturing, installation and servicing of products or services.

The core of ISO 9001 lies in Chapter 4, which consists of 20 quality elements.

Since ISO 9001 is a high level standard and created to be used by all kinds of

industries, there is significant room for interpretation in using ISO 9001 in the

111

software industry. Therefore, ISO 9000-3, Guidelines for the application of ISO

9001 to the development, supply and maintenance of software, is created in order

to interpret ISO 9001.

To comply with ISO 9001, first and foremost, the organisation must have a

comprehensive quality policy. ISO 9001 requires a real quality policy that iden-

tifies specific goals and methods. The quality policy has to be clearly described

throughout the organisation. Once this organisation-wide policy is in place, a

well-planned and managed quality system must be defined and documented. ISO

9000-3 characterises this quality system as an integrated process during the entire

life cycle. This quality system based on ISO 9001 and 9000-3 provides an accurate

description of the organisation and advice on the best practice adopted in order

to consistently satisfy customer expectations. Figure 4.26 shows the architecture

of the quality system.

ISO 9001 / 9000-3 ---Quality Policy

Quality System

Quality Manual

Documented

Procedures

Quality Planning

I Documents

I 	And

L Records

Figure 4.26: The Architecture of Software Quality Assurance

The concrete details of a quality system will be contained in a quality manual.

The quality manual is an essential part of the quality system. Such a manual

will require documented procedures. A procedure is a detailed step-by-step set of

instructions describing how a particular quality assurance activity is to be carried

112

out. The procedures must be consistent with the organisation's quality policy and

well documented in the quality manual.

Then, in accordance with the quality system, the quality plan must be estab-

lished by the SQA staff. Each project should have its own quality plan which

addresses appropriate procedures and the specific quality factors that are im-

portant to the customer and the developer. These include scheduling activities,

assigning equipment and resources to the process of performing these activities,

and providing the appropriate training to SQA staff. Once a quality plan is in

place, it acts as a formal contract between the customer and the developer and

as an informal commitment between the development team and SQA staff.

4.2.1.2 ISO 9001 and the CMM

Paulk[Pau94] compared ISO 9001 and the CMM, and pointed out "The biggest

difference between these two documents is the emphasis of the CMM on con-

tinuous process improvement. ISO 9001 addresses the minimum criteria for an

acceptable quality system. It should also be noted that the CMM focuses strictly

on software, while ISO 9001 has a much broader scope: hardware, software, pro-

cessed materials, and services." In spite of the difference, both documents are

driven by similar concerns with quality and process management. There is still a

strong correlation between the two documents.

People will argue whether a level 2 or 3 organisation is considered compliant

with 9001 or which level an ISO 9001-compliant organisation should be at. Paulk

suggested that, given a reasonable implementation of the software process, an

organisation that obtains and retains ISO 9001 certification should be close to

level 2. However, he also described how even a level 3 organisation would need to

ensure that the delivery and installation process described in clause 4.15 of ISO

9001 is adequately addressed and should consider the use of an included software

product, as described in clause 6.8 of ISO 9000-3. This would be comparatively

trivial for a level 3 organisation[Pau94].

However, we believe that the Software Quality Assurance key process area

provides a good opportunity to comply with ISO 9001. To deal with this key

process area, the software organisation should use ISO 9001 as a standard to

guide all activities performed in the key process area. As a result, when the

organisation reaches level 2 of the CM1'vi, it should be benefited to prepare for an

ISO 9001 audit.

113

4.2.1.3 Processes in Software Quality Assurance

Figure 4.27 shows the P-state tree of Software Quality Assurance. This P-state

consists of three operations: Draft SQA Plan, Control SQA Issue and Report

SQA Result.

Perform_Software_Quail ty_As surance

Draft_SQA_Plan

Control—SQA—Issue

Review—Activity

Review—Work—Product

Report_SQA_Resul t

Figure 4.27: The P-State Tree of Software Quality Assurance

Main Roles: The main roles participating in the operations are senior man-

agers who contribute their experiences of SQA, and software quality assurance

staff who will perform the activities of SQA. Although it is not necessary to as-

sign a different group to perform the SQA function, an independent SQA group

is usually needed to ensure objectivity in the SQA reviews.

Artifact List: The artifact list in the KPA is Software Quality Assurance which

consists of three sub-artifacts: SQA Plan, SQA Issue and SQA Result. The

artifacts in this KPA are shown in Figure 4.28.

Information Artifacts: There are no information artifacts in Software Quality

Assurance.

Entrance Condition: st ate- of(Software_QualityAssurance) = Initiated

The activities of Software Quality Assurance should be initiated in the be-

ginning of the software project. The SQA staff, as consultants, must participate

in developing the project's defined software process and deriving the software

development plan, and provide the consultation relying on the standards.

114

Software_Support_Process

Software_Quality_Assurance

SQA_Plan

SQA_Issue

SQA_Result

Configuration—Management

Figure 4.28: The Artifact Tree of Software Quality Assurance

Activities: Three operations are presented in the P-state diagram of Software

Quality Assurance as shown in Figure 4.29.

The preliminary activity performed in the Software Quality Assurance key

process area is drafting the SQA plan. The plan should comply with the organ-

isation's quality policy and quality manual, and document the process for SQA

including procedures performed by the SQA staff, and resources and responsibility

assigned.

In the next step, the SQA staff may review designated software activities

and software work products against the applicable requirements, process descrip-

tions, standards, and procedures. The software activities depend on the project's

defined software process and the software development plan. The software work

products can be reviewed at selected milestones to check whether the customer

requirements are satisfied.

The SQA staff then reports those deviations identified from reviewing software

activities and software work products to the project manager and related software

staff. The project manager and software staff must find a solution to resolve these

deviations. Furthermore, the SQA staff should periodically review these identified

deviations in order to validate them to comply with the standards.

Exit Condition: state-of(Software_QualityAssurance) = Reported

After completing the P-states, managers and the SQA staff must check whether

the exit condition has been reached. This means that the identified deviations

115

File Edit View Go Communicator
	 Help I

zx 4L
Back Forward 	Reload 	Home 	Search Guide 	Print Security 	Stop

Bookmarks & Location:

)evelop..Software_Suui[I Perform—Software—Quality—Assurance

-Build 	Library Syst _CM
-Draft CM Plan

. 	.
. 	. .

Draft_SQA_Flan

. 	.• 	 .
. 	. .

.

.

-Manage Configuration I
-idenCoot'igurrton

- - GontrotGofurathrn
- - Record Gofigurion
-Verify CM _system 	-
PeoSoare_Quall

I 	SoftwareQualityA
...

surance[Inihated]i 	. 	[rafted] SQA_Plan 	.
.

.. •
. 	

-Draft _SQAPlan
-Control SQA_Issue
- - RevewActvdi,
- - Review Wiwk Product

......

.

.
..

COntrol SQ
.
AI

.s
le

SQAPie [Drafed].o

.

nt

.

ro

•

lle

.

d] S

.

QA

.

 js

.

 su

. e
.

.

.

-Reprot_SQA Result

Develirn_SoftwareMan

Derive System Requiren'
_Allocated

.......

.

.
..

-Derive System Require'
Derive Software Develor
-Draft Project Mission]

......

.

. 	. 	. 	•.
. Report _S QA_Result

. 	 . .,
..

u 	[Controlledj 	. 	1• I. 	. 	red SQAR su1t SQAISs 	 [Repot

-Draft Organisation And
-Draft Software Engine.
-Draft Scheduie And Re

-Bu1d 	
-

- -Estirnue&ware&:

-Derive 	Regui.......

- - - Comuwe CrJegory S
--- calculate Saftwcrre

.. --- Document --Document Estime' .
--Estimate Effort And
--- Get Productivity Me

Catcuute Time Re
-Document Estimated

- -

Estimate Resource
- -EstimeteScedu1e
-Idenlify Project Risk

.dcs.ed.ac.uk/home/ky/PASTA/OperationForms/ControI 	L LI 6P '-

Figure 4.29: The P-State Diagram of Software Quality Assurance

116

have been reported to related software staff who will take the steps to resolve

these deviations.

4.2.2 Software Configuration Management

The purpose of Software Configuration Management (SCM) is to es-
tablish and maintain the integrity of the work products of the software
project throughout the software life cycle[Pau97].

4.2.2.1 The Activities of Software Configuration Management

Software configuration management is a set of activities that have been developed

to manage change throughout the software life cycle. In accordance with IEEE

Standard 828-1990, Software Configuration Management Plans, the activities of

software configuration management consist of four functions[1EE90]:

Identification: identify, name, and describe the documented physical and

functional characteristics of the code, specifications, design, and data ele-

ments to be controlled for the project.

Control: request, evaluate, approve or disapprove, and implement changes.

Status accounting: record and report the status of project configuration

items (initial approved version, status of requested changes, implementation

status of approved changes).

Audits and reviews: determine to what extent the actual configuration

item reflects the required physical and functional characteristics.

SCM should be performed by using a "configuration item". A configuration

item is an entity designated for configuration management, which may consist

of multiple related work products [Pau 97]. At the beginning of software develop-

ment, the developers should identify configuration items. Since SCM covers the

entire software life cycle, configuration items could be any sort of work products.

Pressman in his book suggested a list of configuration items as follows[Pre94]:

System Specification

Software Project Plan

• Software Requirements Specification

Executable or "paper" prototype

4. Preliminary User Manual

117

5. Design Specification

Data design description

Architecture design description

Module design descriptions

Interface design descriptions

Object descriptions

Source code listing

• Test Plan and Procedure

Test cases and recorded results

Operation and Installation Manuals

Executable program

Modules - executable code

Linked modules

10. Database description

Schema and file structure

Initial content

As-Built User Manual

Maintenance documents

Software problem reports

Maintenance requests

Engineering change orders

13. Standards and procedures for software engineering

Another essential function is to manage change, including version control and

change control.

Version Control Version control manages different versions of configuration

items created during the software life cycle by using automated tools. These

tools can provide the facilities to reconstruct specific file states, objects and the

entire application.

118

Change Control SCM adopts a baseline as a milestone for software develop-

ment. A baseline represents the assignment of an identifier to a configuration

item and its associated entities. A baseline that is delivered to the customer is

called a "release" [Pau97]. Before a configuration item becomes a baseline, change

may be made informally. However, once a baseline is built, change control will be

necessary and compulsory. Change control is a set of procedures for the control

of change. Any change of configuration items must follow the procedures in order

to unify the version of configuration items.

4.2.2.2 Processes in Software Configuration Management

Figure 4.30 shows the P-state tree of Software Configuration Management. This

P-state consists of four operations: Draft CM Plan, Build CM Library System,

Manage Configuration Item and Verify CM System.

Perform—Configuration—Management

Draft—CM—Plan

Bui ld_CM_Library_Sys tern

Manage_Configuration_I tern

Identify_Configuration_Item

Control—Configuration—Item

Record—Configuration—Item

Verify—CM—System

Figure 4.30: The P-State Tree of Software Configuration Management

Main Roles: The main roles participating in the operations are Configuration

Management Staff who will perform activities of configuration management.

Artifact List: The artifact list in the KPA is Configuration Management which

consists of three sub-artifacts: CM Plan, CM Library System and Configuration

Item. The artifacts in this KPA are shown in Figure 4.31.

119

Information Artifacts: There are no information artifacts in Software Con-

figuration Management.

Software_Support_Process

Configuration—Management

CM—Plan

CM_Library_System

Configuration—Item

Software_Quality_Assurance

Figure 4.31: The Artifact Tree of Software Configuration Management

Entrance Condition: state-of(Configuration_Management) = Initiated

Since the activities of Software Configuration Management are covered throughout

the software life cycle, the activities of Software Configuration Management should

be initiated at the beginning of the software project.

Activities: Four operations are presented in the P-state diagram of Software

Configuration Management as shown in Figure 4.32.

The preliminary activity performed in the Software Configuration Manage-

ment key process area is drafting the SCM plan. The plan should document the

process for SCM including activities performed by the SCM staff, resources and

responsibility assigned and SCM-related activities performed by other staff in the

organisation. In the next step, a software configuration library system must be

established. This library system provides for the storage as well as the record-

ing of changes of configuration items. Currently, commercial SCM tools provide

facilities not only for the storage of configuration items but also for tracing rela-

tionships between versioned configuration items. The SCM staff can easily link

those tools to the P-state of SCM to perform the activities.

120

File Edit View Go Communicator 	 Help

Back Forward Reload Home Search Guide 	Print Security Stop

Location ttp//wwdcsedacuk/home/ky/PSTA/SPIPastahtJo1 4 Bookmarks

figuration—Management

ConfigurationIt 	[Managed] 	I I 	C

.dcs.ed.ac.uk/home/ky/PASTA/PStateForms/Perform Software Quality Assurancel 21 html 	l.

Figure 4.32: The P-State Diagram of Software Configuration Management

121

The SCM staff then perform the activities prescribed in the SCM plan, identi-

fying configuration items, following the change control process to control changes

of configuration items, and recording detailed information about configuration

items. Finally, configuration audits should be appropriately performed.

Exit Condition: state-of (Configuration iVlanagement) = Verified

After verifying completeness and correctness of the configuration items, the

exit condition has been reached. However, the activities should be performed until

the software project is completely developed. All configuration items should be

effectively managed throughout the software life cycle.

4.3 Summary

This chapter discussed how to plan and how to control a software project based

on key process areas of the CMM Level 2. We use the incremental and iterative

strategies for software development and suggest T-Iumphrey's Personal Software

Process to plan the software project. The purpose of planning a software project

is to organise work effort, to communicate how work will proceed toward meet-

ing projects goals, and to form a basis to track project's progress. In addition,

the relationship with contractors, if any, is emphasised on software acquisition

management. Two support processes, software quality assurance and software

configuration management, are also described to control the project's quality and

to treat version and change control for the software project. Once these activities

have been completed, the processes for software projects should be institutional-

ised. The experiences of software development can be adopted and repeated. An

effective process will gradually become a disciplined paradigm to improve software

development for software organisations.

122

Chapter 5

The Processes in the CMM Level

The key process areas at Level 3 address both project and organisational issues,

as the organisation establishes an infrastructure that institutionalises effective

software engineering and management processes across all projects[Pau97]. Pro-

cesses established at Level 3 are used to help the software managers and technical

staff perform more effectively. The organisation exploits effective software engin-

eering practices when standardising its software processes. Once the activities

at Level 3 have been completed, an organisation-wide training program should

ensure that the staff and managers have the knowledge and skills required to fulfil

their assigned roles, the software engineering staff should effectively coordinate

and collaborate with other development teams, defects of software work products

should be removed early and efficiently, and project's risk should be under control.

This chapter consists of two parts, software technical processes and organisational

processes. The former focus on the life-cycle of software development, the lat-

ter will support development teams to effectively and efficiently develop software

work products.

5.1 The Software Technical Processes

The purpose of Software Product Engineering is to consistently per-
form a well-defined engineering process that integrates all the technical
activities of the software project to produce correct, consistent software
work products effectively and efficientlylPa07j.

Software engineering includes both management and technical activities. The

SEI separates them into Level 2 and Level 3 of the CMM and focuses on manage-

ment processes before engineering processes. The fundamental reason is that in

123

the absence of management discipline, engineering process is sacrificed to schedule

and cost pressures.

There are some software life cycle models in place, such as the Waterfall

Model, the Spiral Model and so on. It is better that the organisations select

a software life cycle model as part of the organisation's standard software pro-

cess. In his book[Boo96], Booch suggested an iterative and incremental process

for the software development life cycle. An iterative process is one that involves

the successive refinement of a system's architecture, from which we apply the

experience and results of each major release to the next iteration of analysis

and design. The process is incremental in the sense that each pass through an

analysis/design/implementation cycle leads us to gradually refine our strategic

and tactical decisions, extend our scope from an initially skeletal architecture,

and ultimately leads to the final, deliverable software product. In the mean-

time, DSDM[DSD97] also adopts iterative and incremental process as its life

cycle model.

Yet what is the destination for software development? Every iteration and

increment means that the product is refined again and again. Yourdon[You96]

recommended that functionality, quality and schedule are the three most import-

ant elements of software development. He promoted a "good enough software"

idea, meaning that an iterative and incremental process is the trade-off between

functionality, defects and speed of delivery. These is no doubt that some soft-

ware systems, such as nuclear reactor systems, will focus on zero-defect software.

However, for most of the shrink-wrap software, time-to-market would be an essen-

tial point. In the corporate MIS application software industry, the schedule is also

a pressure for the project manager. Booch's macro development process answers

this problem. In the object-oriented process, we start with what we know, devise

a skeletal object-oriented architecture, study the problem some more, improve

upon our architecture, and so on, until we expand to a solution that satisfies

our project's essential minimal characteristics. So, a deadline-based iterative and

incremental process would be a practical one for software development. Booch's

macro process is explicitly iterative and incremental and very close to the spiral

model. The project manager improves the software product by the deadline and

decides the final iteration and increment for releasing the products on time.

As Figure 5.1 shows, Booch's macro process is from conceptualisation to main-

tenance. This is quite similar to the traditional waterfall approach; however

Booch insisted that the macro process is explicitly iterative and incremental, and

it is closer to Boehm's spiral model.

124

Figure 5.1: The Macro Development Process

In this thesis, we use MIL-STD-498 to comply with the CMIVI as the software

engineering processes. MIL-STD-498 adopts the concept of "build" which is a

version of software that meets a specified subset of the requirements that the

completed software will meet, and the period of time during which such a ver-

sion is developed. This concept is similar to Booch's macro process. Each build

incorporates a specified subset of the planned capabilities of the software. The

builds might be prototypes, versions offering partial functionality, or other partial

or complete versions of the software[D0D94]. In addition to "build", MIL-STD-

498 also suggests three basic program strategies: Grand Design, Incremental and

Evolutionary strategies. The grand design strategy is similar to the waterfall life

cycle, but will not be discussed in this thesis. The primary difference between

incremental and evolutionary strategies is whether all requirements are defined

first. The incremental strategy first defines the system requirements, then per-

forms the rest of the development in a sequence of builds, whereas the evolutionary

strategy does not define all requirements first, and the system requirements are

partially defined, then refined in each succeeding build. Both strategies have their

own advantages. As mentioned in Section 1.2.3, because of the "time-to-market"

pressure for Microsoft's products, Microsoft adopts a "synch-and-stabilise" ap-

proach which is similar to the evolutionary strategy. Furthermore, if the software

project must define its requirements for the acquirer before the project is started,

the incremental strategy may be a good choice.

Figure 5.2 shows the software engineering process in MIL-STD-498. This is

split into three phases: Planning, Development and Deployment. Those activities

125

correspond to Section 5 Detailed Requirements in MIL-STD-498.

MIL-STD-498 	 Phases

Section 5

5.9
5.10
5.11

5.12
5.13

SDP

System Requirements Analysis

Work Breakdown Structure

CSCI1 CSC12 CSCh
s-I

- - -
75 'a 'a
-1 -H - -
a a a - CQ

-

a - a a - a a -

5.1
5.2

5.3
5.4

5.5
Requirements

Analysis

5.6
Software

Design

5.7
Software

Implernentatio

5.8
Unit Testing

Integration
Test

Integration
Test

Integration
Test

Figure 5.2: The Software Engineering Process in MIL-STD-498

Planning Phase

The first step of the planning phase is building the software development plan

which we have mentioned in the management processes, and establishing a soft-

ware development environment.

The next step is to define and record the requirements for the system. The

system requirements consist of the allocated requirements and the system re-

126

quirements allocated to hardware. Those activities, mentioned in Section 4.1.1

Requirements Management, will comply with the SDP as a foundation of per-

forming the technical processes.

Development Phase

The development phase is the core of the software life cycle and is described

as the technical processes in the CMM. Before developers perform the technical

processes, the CSCIs must be defined in order to parallel development. MIL-

STD-498 also adopts the "build" concept which splits the development phase

into several builds. Each build consists of four steps, from requirement analysis

to unit testing. At the end of unit testing, all CSCIs should do integration

testing. The results produced during each build may be given to the customers

or the development team for evaluation. This is the time to make decisions to

either go forward or end the development.

Deployment Phase

The first step of the deployment phase is a system qualification test which is

performed to demonstrate to the acquirer that the system requirements have

been met. The next step is to prepare for software use, which includes writing

the software manuals and preparing for software transition.

Processes in the Software Technical Process

Figure 5.3 shows the P-state tree of the Software Technical Processes. This P-

state consists of six operations: Develop Software Requirement, Develop Software

Design, Develop Software Code, Develop Software Test, Develop Operation Doc-

umentation and Perform Software Enhancement. These operations compose of a

complete software life cycle and guide to develop software products.

Main Roles: The whole Development Group should be involved to develop

software technical processes. Furthermore, the configuration management staff

and quality assurance staff should take responsibility for supporting development

of the software technical processes.

Artifact List: The artifact list in the KPA is Software Technical Process which

consists of six sub-artifacts: Software Requirement, Software Design, Software

Code, Software Test, Operation Documentation and Software Enhancement. The

artifacts in this KPA are shown in Figure 5.4.

127

Develop—Software—Technical—Process

Develop_Software_Requirement

Develop—Software—Design

Develop—Software—Code

Develop—Software—Test

Develop_Operation_Documentation

Perform—Software—Enhancement

Figure 5.3: The P-State Tree of the Software Technical Process

Information Artifacts: The artifact, Allocated Requirement, as an informa-

tion artifact provides information for developing the software technical process.

Entrance Condition: st ate-of (Software -Technical _Process) = Referenced

Once the need to develop a Software Technical Process has been identified,

the process roles start to perform all activities in the technical processes.

Activities: Six operations are presented in the P-state diagram of Software

Technical Process as shown in Figure 5.5. The project manager conducts activ-

ities of software engineering by following the program strategy. Moreover, the

development group performs the software technical process according to the soft-

ware development plan. In the meantime, the operation documents should also

be developed. Finally, for both incremental and evolutionary strategies, the soft-

ware products may need to be updated or refined. This decision will be made by

the project manager.

Exit Condition: state-of(Software-Technical -Process) Developed

After completing the P-states, managers must check whether the exit condi-

tion has been reached. This means that the software work products are completely

developed and are satisfactory to customers.

128

Software—Process—Improvement

Organisation—Process—Focus

Organisation—Process—Definitionj

PDSP

Software—Management—Process

Software_Support_Process

Software—Technical—Process

Software—Requirement

Software—Design

Software—Code

Software—Test

Operation—Documentation

Software—Enhancement

[ganisational_Process

Figure 5.4: The Artifact Tree of the Software Technical Process

129

File 	Edit 	View 	Go 	Communicator Help

Back 	Forward 	Reload 	Home 	Search Guide 	Print Securiti, 	Stop

4
	

Bookmarks A Location: ttp://vwv.dcs.ed.ac.uk/home/ky/pAsTA/SPIPa3ta.htxl i1
Develop Software Tec}m Develop—Software—Technical—Process fl I

--Ccrteorze RTM -
-Create 	C ace Diagrr _Use Develop_Software_Requirement
- -ZdsU 	Use Core
--Derietoo Scenczrio

.,
..

- -Est cthUsh Project Pack Software_Managernent_ rocess[Developed] 	[Deve1oied] .Soltw 	eRequirement
--Allocate Use Case•
--Draft CUt Sketch'..
-Create CRC Card ..• 	r 	
Develop Software Design1 	. 	Develop' Software. Deign' 	 . 	.
-Create Class Diaaram - 	-
- -Ident 	Key Class

	

—'-- 	Software_Req 	 ped] ement [Develo 	ePed1 Softw 	e_Desi

	

i 	

..

--Add Interface Class' 	. 	. 	.
Comwlete Class .Soecs fs

-Create Statechart DialSs 	,. 	I
- -Identify State

........
. 	. . 	S 	

5 , 	
. 	. Develop 	Software 	Code 	. 	. 	' 	.''

-
	

Trans
--Identify Esteraat Tran,
-Create InteractonDiae.r —H 	Software_Desig 	[Developed]' 	'I 	I [DeeIopbd] 	of wefeCode, 	.. .
- - Create Sequence Dnz?r 	5 ,
--- ldentsfy Oh ectLzfel
- - -IdentrfiMesscsge

--Create Cotlrthorrrtion D,Software Develop_Software_Test - - - ConvertSequenceDo
- -RefsneCollaboralson --- Test Plan [Referenced]

.

-Create Actvit' Diagram
-Create Implementation I

________________ 	__________
.' ''

	

-'-_. . software_Cod [Developed] eveloped] ?oftw.pre_Test 	. .1
- - Create Coeronen 	Dct
- - Crc ate Deployment Di . 	' 	.' ,.
Develop Software Code, 	1
-Generate_ Body _Structure 	Develop 	Operation 'Documentattoni
—Implement _Source _Code ''' 	s. 	. 	, 	. 	.'
Develop Software Test'' 	. .
-Draft Test Plan

st
. _.

. I . Opdration Docum 	ta.hon[Referenced]I' 	[Develsped]Opera 	n_Docuxflentaton
- - _tmerfomlnTe
- -Perform St
- -Perform A Te

-Perform Sofj

DociunDevelop Operuir Perform . .' 	. 	.. 	' 	'Perform Software Enhancement
Perform Sott nc

Develop Org l Software Enhan 	ment[Referenced] I 	I [Performed]Sott'v 	e Enhancement

Figure 5.5: The P-State Diagram of the Software Technical Process

130

5.1.1 The Unified Modelling Language

In the Software Product Engineering key process area, the activities performed

describe that should "use effective methods to design the software". However, the

problem is what are the effective methods? The software community has debated

about the methodology for a long time. We usually have so many "effective"

methods to develop our software products. Especially as object orientation has

become the mainstream of software development, the 00 methods overlap the

00 concept, but are not identical. This leads to a big problem - communication.

It is difficult to communicate with people when they use different 00 methods.

Now, the debate seems to have ended. The Unified Modelling Language

(UML), which unifies the methods of Grady Booch, James Rumbaugh and Ivar

Jacobson, provides a set of notations for software analysis and design and has

been endorsed by the Object Management Group. We might predict the other

methods will finally be eliminated in the next few years. However, is it really good

for the software community? Basically, most of us will agree so. In this thesis,

SPI PASTA would be built by using 00 methodology. Especially we adopt the

UML as the notation for software analysis and design.

A fundamental change in the UML is that it is a standard modelling lan-

guage rather than a method. The developers of the UML focus on a com-

mon metamodel and a common notation, not on the development process. The

primary idea behind the UML is to provide sufficient semantics and notation to

address a wide variety of contemporary modelling issues in a direct and economical

fashion[BJR97]. With the standard diagrams, a foundation for communication

between individuals is built. It results in better interoperability between tools,

more available developers who are skilled in using that notation, and lower overall

training costs.

The UML basically defines a notation and its semantics. The notation is

the syntax of the UML. It is a representation of a user-level model. Users use

the notation to present all artifacts of a software system and communicate with

other users. The UML also defines a metamodel to provide a single, common and

definitive statement of the syntax and semantics of the elements of the UML.

In terms of the views of a model, the UML defines the following graphical

diagrams:

. use case diagram

. class diagram

. behaviour diagrams:

131

- statechart diagram

- activity diagram

- sequence diagram

- collaboration diagram

implementation diagram

- component diagram

- deployment diagram

In the next two sections, we will briefly introduce these diagrams which are

viewed as a basis in the technical process.

5.1.2 Requirements Analysis

The software requirements cover the software functionality and per-
formance requirements and the interfaces to hardware, other software
components, and other system comnponents[Pau97].

5.1.2.1 The Use Case Model and Use Case Diagram

In software management processes, the allocated requirements are elaborated

from customer requirements to plan the project's activities and work products.

In software technical processes, the software requirements are derived by analys-

ing the allocated requirements. For a long time, particularly in object oriented

methods, use cases have been used to help developers understand requirements.

Jacobson[JGJ97] in his book pointed out that the main purposes of the use case

model are to define "what" the system should do, and to allow the software en-

gineers and the customer to agree on this. A use case is used to define specific

requirements for the behaviour of the system and to drive the rest of the develop-

ment work where the object modelling activities are performed with the use case

model as a starting point.

Jacobson[JEJ95] in his book defined use cases as follows:

A use case is a sequence of transactions in a system whose task is to
yield a result of measurable value to an individual actor of the system.

The use case model is composed of actors and use cases. In the UML, the use

case model can be presented in the use case diagram. As shown in Figure 5.6,

a use case diagram is a graph of actors, a set of use cases, and communication

associations between the actors and the use cases.

132

Check statu

lesPer50n

s / --c-D
Place order

Customer\

CD 	
ng Clerk

Ill order

EII Supervisor

Establish credit

Figure 5.6: The Use Case Diagram[BJR97]

Actors, shown as stick figures in the use case diagram, represent everything

that needs to exchange information with the system [JCJO92]. Alternatively, in

his later book, Jacobson[JEJ95] described that an actor represents a role that

someone or something in the environment can play in relation to the business.

The actor can have various roles with regard to a use case; it might be a person,

an organisation, or even an external system.

A use case, shown as a named oval in the use case diagram, is a coherent

unit of functionality provided by a system or class as manifested by sequences

of messages exchanged among the system and one or more outside interactors

(called actors) together with actions performed by the system[BJR97]. Basically,

the "sequence of messages" are described by using plain or structured English

and viewed as a "scenario" to implement the application.

5.1.2.2 Use Cases for Requirements Capture

The use case model is good at capturing the requirements for a software project.

Developers usually capture a use case by talking to typical users and discuss-

ing the various things they might want to do with the system . However, faced

with a big system, it can often be difficult to come up with a list of use cases.

Software analysts start with the allocated requirements after completing manage-

133

Entry # 	System Specification Text 	Type Build Use Case Name
1 	System Specification Text 	SW 	BI 	Usecasel
2 	System Specification Text 	HW 	B2 	Usecase2

SW: Software, 11W: Hardware

Table 5.1: The Requirements Trace Matrix

ment processes. Unfortunately, allocated requirements usually contain a variety

of information that is not suitable for describing the use cases.

Texel and Williams[TW97] use a Requirements Trace Matrix (RTM) to ex-

tract the allocated requirements. An RTM, shown in Table 5.1, is a matrix that

initially contains the set of requirements for a system. Firstly, Texel and Willi-

ams suggest extracting the "shall" sentences from the allocated requirements and

developing an initial RTM. However, this is not the only rule for developing the

RTM. Requirements can be discovered through discussions with domain experts.

When an initial RTM has been developed, software analysts should categorise

each entry in the RTM according its type. Then, the requirements are prioritised

in order to allocate the use case for the "build". Finally, the RTM is reformatted

into use case diagrams and continually maintained throughout the life cycle of a

project.

The RTM provides a clear vision for developing use cases. The software ana-

lysts may perform software design by using use cases. However, analysts need

more experience to find classes from use cases. For most software engineers, CRC

cards may be a good solution to develop software design.

CRC (Class, Responsibility and Collaborators) cards were invented by Ward

Cunningham and Kent Beck[CB89] as a way to help a group of people agree

on objects that represent the problem. A class represents a collection of similar

objects. A responsibility describes what the object does in the system. Sometimes

a class will not have enough information to complete its responsibility, therefore a

collaboration is needed to comply with other classes that are involved in carrying

out the responsibilities.

For a long time, software analysts have been struggling to find appropriate

classes for an application. CRC cards provide a simple but effective technique

for extracting the allocated requirements in order to find classes. As Figure 5.7

shows, Ambler[Amb95] suggested that the definition of use cases and prototypes

come before a CRC model, which in turn comes before a class diagram. In

Ambler's process, the CRC cards are viewed as a bridge between use cases and

134

class diagrams. In addition to finding classes, the CRC cards are often used to

validate the information gathered by use cases and refine these use cases.

Use Cases

CRC Model 	
Class

Diagram

Prototypes

Figure 5.7: How CRC Modelling Fits In[Amb95]

To comply with the Software Product Engineering key process area, a com-

plete process of requirements engineering should be similar to those in Figure 5.8.

Before using CRC cards, we suggest that allocated requirements may be extracted

and grouped into use cases by using the RTM. Then, as in Ambler's process, the

CRC card team uses CRC cards to find classes. However, this is not the "water-

fall process" in the RTM, use cases and CRC cards. CRC cards might refine use

cases which in turn might redevelop the RTM or even the allocated requirements.

----I Allocated 	I 	I Requirements 	
I Use Cases 	 CRC Model
	 Class

Requirements 	Trace Matrix 	 Diagram

Figure 5.8: The Process of Requirements Engineering

5.1.2.3 Processes in Requirements Analysis

Figure 5.9 shows the P-state tree of Requirements Analysis. This P-state consists

of three operations: Create Requirement Trace Matrix, Create Use Case Diagram

and Create CRC Card.

Main Roles: The main roles participating in the operations are the project

manager and software product managers who conduct the activities, requirement

analysts who perform the activities and the configuration management staff who

manage the configuration items.

Artifact List: The artifact list in this part is Software Requirement which

consists of three sub-artifacts: Requirement Trace Matrix, Use Case Diagram and

CRC Card. The artifacts in the software requirement are shown in Figure 5.10.

135

Develop_So [tware_Requi rement

Create—Requirement—Trace—Matrix

Create—Use—Case—Diagram

Create—CRC—Card

Figure 5.9: The P-State Tree of Requirements Analysis

Information Artifacts: The artifact, Allocated Requirement, as an informa-

tion artifact provides the requirements for software analysis. Software analysts

will analyse these requirements into software requirements.

Entrance Condition: state-of(Software_Management_Process) = Developed

After completing software management processes, the managers and staff can

develop software technical processes. The development group perform the activ-

ities according to the software development plan which is developed in software

management processes.

Activities: Three operations are presented in the P-state diagram of Software

Requirement as shown in Figure 5.11. Software analysts can firstly analyse the

allocated requirements by using the requirement trace matrix. Analysts list the

appropriate sentences and categorise them as a foundation for the use cases.

When the requirement trace matrices are created, analysts can build the use case

diagrams by using CASE tools. Before developing software design, the managers,

analysts and designers may use the CRC cards to discover classes. CRC cards

are the bridge between requirement analysis and software design. Analysts and

designers might take the round-trip between use case diagrams and CRC cards

until use cases are appropriately refined and classes are completely discovered.

Exit Condition: st ate-of (SoftwareRequirement) = Developed

After completing the P-states, managers must check whether the exit condi-

tion has been reached. This means that the software requirements are appropri-

ately analysed.

136

Software—Technical—Process

Software_Requirement

Requirement—Trace—Matrix

Use—Case—Diagram

CRC—Card

Software_Design

Software_Code

Software—Test

Operation—Documentation

Software—Enhancement

Figure 5.10: The Artifact Tree of Requirements Analysis

137

Craete Use _Case _Diagram

I Pe.qurement_Trace 	thx[Cetegonsd] 	[Created] UseCas

File 	Edit 	View Go 	Communicator Help

at
Back Forward Reload 	Home 	Search 	Guide Print 	Security 	Stop

Bookmarks 	L Location: ttp: //ww. dc. ed. ac.uk/homeJky/PSTA/SPIPaata.htrsL

- - CatecrizeRTM
-Create Use Case
--Zrientiñ Use Can
- - Develop Scencvrc
- -EstccllisPrafec
-Allocate Use Cc
- - flrnit (7TH 5Uet

-- £W1I VfSC y L 5

- -ZtlernAttrboteA
- -Ide 	iRelotions/d
--Add Interface Class
- - CoropleteCkssSpe
-Create Statechart Dia
- -ZdentL.iSlode
-- IdentiiI,uerncrITrr
- -IdentExterna(Tr
-Create Interaction Dir
- - CreeteSeQuenceDd
- - -[den ae OiectL
- - - Idertñ,Messrwe
- -

Create Ullrrhr'rndior
- - - Tnjae'rt 	7.,2.CCp

? IP-.oftw.re_Requirem....... .LI 	G5P ,e

Figure 5.11: The P-State Diagram of Software Requirement

138

5.1.3 The Software Design

The software design consists of the software architecture and the de-
tailed software design (and there may be multiple levels of detailed
design). It covers the software components; the internal interfaces
between software components; and the software interfaces to other
software systems, to hardware, and to other system components (for
example, people). The software design is derived from the software
requirements and forms the framework for coding./Pau97J

5.1.3.1 The Visual Modelling Language

The UML is a language for visualising, specifying, constructing and documenting

the artifacts of a software system. It provides multiple perspectives of the software

system under analysis and development. By using its diagrams, a software system

can be completely and consistently presented.

Class Diagrams

Class diagrams, as shown in Figure 5.12, play a very important role in the UML.

They are the bridge between software requirements and software implementation.

The UML defines a very rich set of class diagram features, most of which are

intended to support analysis, design and implementation

Software analysts use CRC cards to find classes, their responsibilities and

collaborations from use cases. This information, collected in the class diagrams,

is the basis for software coding to implement the application. In the UML, a class

diagram is shown as a rectangle including a class name which is documented with

its properties, attributes which are documented by a description of what they

contain, and operations which are services that an instance of the class may

be requested to perform. Additionally, some relationships between classes are

defined in order to capture the coupling in software design. The main one is an

association which is drawn as a solid path connecting two classes. Composition

shows ownership between two classes, which is drawn as a solid filled diamond.

Generalisation is the taxonomic relationship between a more general element and

a more specific element, which is drawn as a solid-line path from the more specific

element to the more general element with a hollow triangle at the end of the path.

Interaction Diagrams

In the UML, class diagrams show the static structure of the system, moreover, in-

teraction diagrams capture the dynamic behaviour of the system. An interaction

139

Order

Customer 	 MdateReceived

name: String 8S ISPrepaid

4address : String 	 umber: String
rice : Money

creditRating()
LdispatchO

CoroorateCustomer I 	I PersonalCustomer

reditRating

Figure 5.12: The Class Diagram

diagram presents the interactions between objects. With regard to a complex sys-

tem, interaction diagrams provide a logic view for the system. This results in an

integrated solution. However, interaction diagrams are less important than class

diagram. In a simple system it might not be necessary to create these diagrams.

The UML defines two kinds of interaction diagrams: sequence diagrams and

collaboration diagrams. Developers do not need to create both diagrams in the

same system. Sequence diagrams show the explicit sequence of messages and

are better for real-time specifications and for complex scenarios. Collaboration

diagrams show the relations among objects and are better for understanding all

of the effects on a given object and for procedural design[BJR97].

Sequence Diagrams Sequence diagrams, as shown in Figure 5.13, show the

details of the interactions between objects. Originally, Jacobson defined the se-

quence diagram for showing how the participating objects realize the use case

through their interaction [JCJO92]. Sequence diagrams provide a complete logic

presentation for the use case scenario. The developers can get a picture of how

sequence progresses over the objects participating in the system.

Within a sequence diagram, objects are represented on the horizontal dimen-

sion with a vertical line which is called the object's "lifeline". The object can be

created or destroyed during the period of time shown on the diagram. The lifeline

represents the existence of the object at this period. The behaviour which the

objects will perform is described on the leftside of the diagram. Furthermore, a

message, being a communication between objects, is shown as an arrow between

140

the lifelines of two objects. The order of these messages is normally shown top to

bottom with sequence numbers on the diagram. Each message also has its own

name.

Comer 	
Cashier ti 	 Withdrawal 	Accont

Customer identify 	
2. Venfy identity

himself

Customer specifies 	 4: Withdraw
money

account and amount
to withdraw

6: Dispense

System withdraws

money from account

Figure 5.13: The Sequence Diagram[JGJ97]

Collaboration Diagrams Collaboration diagrams, as shown in Figure 5.14,

show the relationships among the objects rather than the time frame within

the use case. This is why collaboration diagrams are not suitable for real-time

or concurrent systems. However, the difference between collaboration diagrams

and sequence diagrams might be only the layout of the objects and messages.

Although Jacobson originally did not define the collaboration diagram for the

use case, collaboration diagrams provide a supplement for the class diagrams.

Developers can use collaboration diagrams to get the big picture of the system,

incorporating the message flow of use case scenarios.

A collaboration diagram is a graph of references to objects and links with

message flows attached to its links. The rectangles represent the various objects

within the system and the line linking objects represents the relationship between

them. This layout makes it more difficult to see the sequence between objects,

however, it shows how the objects are linked together and provides a clear picture

to show the relationships among the objects.

141

Bank Customer

6: Dispense

_ 	 2: Verify identity

Lzl~ >
4: Withdraw

CathieLi1 	 Withdrawal

5: Withdraw money

Account

Figure 5.14: The Collaboration Diagram

Statechart Diagrams

Interaction diagrams show the interactions among the objects; however, the in-

ternal behaviour of an object needs another diagram to complement this. A

statechart diagram, as shown in Figure 5.15, is the graph of states and trans-

itions that describes the response of an object of a given class to the receipt of

outside stimuli.

A state, shown as a rectangle with rounded corners, is a condition during the

life of an object. A transition, shown as a solid arrow from one state to another

state, is a relationship between two states. The relationship represents the action

which should be done before entering the second state. Transactions might have

multi target states especially in concurrent systems. However, it is not necessary

to have a statechart diagram for each class diagram. Sometimes a statechart

diagram might be useless; it depends on the complexity of the class.

Activity Diagrams

Since interaction diagrams present the behaviour of several objects within a single

use case, developers cannot recognise a precise definition of the objects' beha-

viour. Fowler[Fow97] in his book suggested that if developers want to look at

the behaviour of a single object across many use cases, they should use a state

diagram, and if developers want to look at behaviour across many use cases or

142

(Timeout 1
dial digit

r(I5see) 	
after (15

	

DialTone 	dial digit 	
Dialing

do/p

 'lift receiver

J tdtal 	

Lla1altoni 	

In

dial 	 [valid]

Invalid r do/play message 	I Idle Connecting

caller hans 	 Usy

	

up/disconnect
Inned 1 	 connect

callee 	callee
ans 	 ngs LIP

[
Talkin

~callee

/enable speech

Figure 5.15: The Statechart Diagram[BJR97]

many threads, they should consider an activity diagram.

An activity diagram, as shown in Figure 5.16, is a special case of a state

diagram. The purpose of this diagram is to focus on flows driven by internal

processing. Basically, it consists of action states and transitions triggered by

completion of the actions in the source states. Action states do not have internal

transitions or outgoing transitions based on explicit events, since statechart dia-

grams present these transitions.

Implementation Diagrams

Implementation diagrams present how the system is implemented. The UML

defines two forms for implementation diagrams. The component diagram shows

the structure of the code itself and the deployment diagram shows the structure

of the run-time system.

Component Diagrams A component diagram shows the dependencies among

software components. Currently, component-based software development, in which

software items can be assembled as hardware, is increasingly presented in the soft-

ware community. With the standards (such as CORBA) published and matured,

the component-based software development will be one of the most important re-

search fields in software engineering. Component diagrams are just used to show

the software components.

143

Find
age

[found

/ Add Water Put Coffee)
	to Reservoir) 	(, 	

Get Cups
in Filter

Put Filter '\ 	
L 	Get Cans

in Machine) 	 I 	 I of Cola

Turn on
Machine__,)

"coffeePotturnOn

Brew Coffee"

tight goes out

Pour Coffee }- 	Drink

Figure 5.16: The Activity Diagram[BJR97]

Deployment Diagrams A deployment diagram is a graph of nodes connected

by communication associations. The node is a run-time physical object which

represents a processing resource. The node may contain component instances

which live or run on the node.

5.1.3.2 Processes in the Software Design

Figure 5.17 shows the P-state tree of Software Design. This P-state consists of five

operations: Create Class Diagram, Create Statechart Diagram, Create Interaction

Diagram, Create Activity Diagram and Create Implementation Diagram.

Main Roles: The main roles participating in the operations are software product

managers who conduct the activities, software designers who perform the activ-

ities, requirement analysts who provide the requirement details to software de-

signers and the configuration management staff who manages the configuration

items.

Artifact List: The artifact list in this part is Software Design consists of five

sub-artifacts: Class Diagram, Statechart Diagram, Interaction Diagram, Activity

144

Develop_Software_Design

Create—Class—Diagram

Create_Statechart_Diagram

Create—Interaction—Diagram

Create_Sequence_Diagram

Create—Collaboration—Diagram

Create—Activity—Diagram

Create—Implementation—Diagram

Create_Component_Diagram

Create_Depi oyment_Diagram

Figure 5.17: The P-State Tree of the Software Design

145

Diagram and Implementation Diagram. The artifacts in the software requirement

are shown in Figure 5.18.

Information Artifacts: The artifact, Software Requirement, as an information

artifact provides the details for software design. This could be use case diagrams

or CRC cards. Software designers create the diagrams according to use case

diagram and CRC cards.

Entrance Condition: state-of (Software Requirement) = Developed

After creating use case diagrams and CRC cards, the software designers can

develop the software design.

Activities: Five operations are presented in the P-state diagram of Software

Design as shown in Figure 5.19. Use case diagrams and CRC cards, created in

software requirement analysis, provide the details of classes for software designers.

Therefore, class diagrams should be created first. Furthermore, statechart dia-

grams present the behaviour of an object of a given class. Normally, a statechart

diagram is attached to a class.

The other diagrams can be independently created. For example, software

designers may decide what kind of interaction diagrams will be used, sequence

diagrams or collaboration diagrams. This decision relies on the characteristic of

the software project. If designers want to look at behaviour across many use

cases, they may create activity diagrams. If the project is split into components,

designers may need component diagrams. Furthermore, if the project will be run

in different types of machines, deployment diagrams should be created during the

software design.

Exit Condition: st ate-of (Software Design) = Developed

After completing the P-states, product managers must check whether the

exit condition has been reached. This means that the relevant diagrams are

appropriately created.

5.1.4 Software Implementation

When the software design is completed, a detailed design representation of soft-

ware should be translated into a programming language realisation. Since soft-

ware implementation begins after the software design has been defined, the source

code should be directly generated from the software design.

146

Software—Technical—Process

Software—Requirement]

Software—Design

Class_Diagram

Statechart_Diagram

Interaction—Diagram

Sequence—Diagram

Collaboration—Diagram

Activity—Diagram

Implementation_Diagram

Component_Diagram

Deployment_Diagram

Software—Code

Software—Test

Operation—Documentation

Software—Enhancement

Figure 5.18: The Artifact Tree of the Software Design

147

File 	Edit 	View 	Go 	Communicator Help

L3 11
Back 	Forward 	Reload 	Home 	Search Guide 	Print Security 	Stop

4 	Bookmarks 	Location ttp //wwwdca ed as uk/home/ky/PASTA/SPlPaatahtm]-

Create Class_Diagram

—Perform Software Test
- —Perf 	1nte.rcfton 7
--Perform System Test
- - Px,rfnn,,Arrontnnrp

— LAcLUCC IL CLIILLII £ I Ut

—Build Training Record
P erf arm Risk M anacean
—Draft Risk Manaeme
—Identify Risk
—Anlwp Ttitk

Iterate—Or—Refine

. . 	
.. CRC .CardftCreatedj . 	. Ii 	[ereatd1Class_Diaram1

Create_Statechart_Diagram

Class Diagram[Created] . 	1 [Created],Statech 	Diagram . .

Create_Interactlon_DlagraITL

[Created] mt actionjliagram 	I 	InteractionDiagr [Rterencd]

Create_Actwity_Diagrlun

	

Açtivity_ agrm[F.eferenced]. . 	.[Created]A.c ity Diagram . .

Create—Implementation—Diagram

I Implementation iagram[Referenced) I I [Created] Implement ation._Diagram J

100% 	:/Vnww.dcs.ed.ac.ukJhOmefKy/PASTAfMapsiDeVe lop _Software DeSi9fl.maP

Figure 5.19: The P-State Diagram of the Software Design

148

For the last two decades, the software community has been faced with main-

taining aging software systems that are constructed to run on a variety of hard-

ware types and programmed in obsolete languages. Particularly, those systems

were developed with poor design, unstructured programming methods, poor code

quality and poor documentation. As a result, the task of software maintenance

becomes more complex and more expensive. Furthermore, every aspect of com-

puting changes rapidly so that software maintenance is increasingly essential for

the software organisations. Therefore, for the sake of maintenance, software im-

plementation is not only coding. The research of reverse engineering provides a

foundation for software implementation. If it is necessary for identifying software

artifacts, discovering their relationships and generating abstractions in the future,

why software organisations do not firstly focus on these topics?

Currently, some software organisation define their own coding standards to fa-

cilitate the maintenance, portability, and reuse of programming language. These

standards are based on proven software engineering principles that lead to code

that is easy to understand, maintain and enhance. Furthermore, following a

common set of coding standards results in greater consistency, making the devel-

opment team significantly more productive.

In addition, CASE tools are concentrating on code generation. Case tools usu-

ally generate source code from a software design model. They produce a code ar-

chitecture by using properties such as the class model's attributes, operations and

so on. As a result, the code architecture complying with the organisation's cod-

ing standard can lead to software implementation which is much more controlled

and productive. Moreover, as project parameters change or new requirements are

added, reverse engineering tools can extract data and design information from an

existing program. This can reduce a significant maintenance effort.

5.1.4.1 Processes in Software Implementation

Figure 5.20 shows the P-state tree of Software Implementation. This P-state

consists of two operations: Generate Body Structure and Implement Source Code.

Main Roles: The main roles participating in the operations are software pro-

grammers who perform the activities and configuration management staff who

manage the configuration items.

Artifact List: The artifact list in this part is Software Code which consists of

two sub-artifacts: Body Structure Code and Source Code. The artifacts in the

149

Develop—Software—Code

Generate—Body—Structure—Code

Implement—Source—Code

Figure 5.20: The P-State Tree of Software Implementation

software implementation are shown in Figure 5.21.

Information Artifacts: The artifact, Software Design, as an information ar-

tifact provides the details for programming source codes. Software programmers

will rely on them to perform the activities.

Entrance Condition: state-of(Software_Design) = Developed

After completing software design, the programmers can develop source codes. In

this thesis, programmers will use class diagrams and related UML diagrams as a

foundation to develop source codes.

Activities: Two operations are presented in the P-state diagram of Software

Implementation as shown in Figure 5.22. Software programmers can firstly gener-

ate the body structure code of class diagrams by using CASE tools or depending

on the coding standards. As the basic structures are built, programmers may

develop source codes for each class according to statechart diagrams, behaviour

diagrams and implementation diagrams. This step will not complete until all

source codes are developed.

Exit Condition: state-of(Software_Code) = Developed

After completing the P-states, programmers must check whether the exit con-

dition has been reached. This means that the software codes are completely

developed.

5.1.5 Software Testing

MIL-STD-498 separates software testing into three phases: unit testing, integra-

tion testing and system testing.

150

Software—Technical—Process

Software_Requirement

Software—Design

Software—Code

Body_Structure_Code

Source—Code

Software—Test

Operation—Documentation

Software—Enhancement

Figure 5.21: The Artifact Tree of Software Implementation

151

File Edit View Go communicator 	 Help

BacK Forward Reload Home Search Guide 	Print Security Stop

j Bookmarks A Location:

DcvaiopSoftware Code NJIDevelop_Software_C ode

-Perform So!

Enha.nc

Generate Body Structure Code
--Perform In e................. . 	. - 	 . . .
- -Perform
--Perform_Ae

oftwe Desi [DeVeloped] 	.I[0 	ted]Body_tructureCode
DevelopOper 	. 	..
Perform Soft o 	

Develon Oranisationa1

Perfonn_ Organisation _Trai 	I 	. 	..
• o .. . 	

Implement Class Method
-Draft Tra ing. Plan 	 S 	 . 	. 	 •.

-Identify Training Need
--Ic1entOrcrtsonaf 	

Body .SttDctur :.Code[Geflerated]J [. [Inipleented]SoyrceCode - -DetermrnePro,ectNer 	 .
P1r1 To Mti,l 	 .

cW \1 II

Figure 5.22: The P-State Diagram of Software Implementation

Unit testing is normally considered an adjunct to the software implementation.

In 00 methods, unit testing concerns classes, which implies that unit testing in

00 systems must be carried out at a higher level. Before performing unit testing,

the developers should establish test cases, test procedures and test data for testing

the software corresponding to each software unit. When software implementation

is completed in each build, developers begin to perform unit testing in accordance

with the unit test case and procedure.

The purpose of integration testing is to test whether different units that have

been developed are working together properly. As we mentioned in Section 4.1.2,

the software project is split into several partitions in order to be concurrently

developed. Integration testing is normally performed at the end of software im-

plementation. It may include the testing of use cases, subsystems and the entire

system. Once all partitions of the software project have been completed and

unit testing for each partition has also been performed, developers should take

integration test procedures. Moreover, an organisation could use "incremental"

or "evolutionary" development strategy. In incremental strategy, developers per-

form the software project in a sequence of builds. Therefore, integration testing

will not be complete until the final build. However, in evolutionary strategy, the

customer requirements are partially defined up front, then are refined in each

152

succeeding build. Thus, integration testing could be performed in each build,

since the project could be completed in every build. Furthermore, both software

components developed internal to the software project and software components

obtained externally to the software project must be appropriately integrated.

System testing is a series of different tests whose primary purpose is to fully

exercise the computer-based system. Pressman[Pre94] in his book suggested the

types of system tests as follows:

Recovery Testing Recovery testing is a system test that forces the software

to fail in a verity of ways and verifies that recovery is properly performed.

Security Testing Security testing attempts to verify that protection mechan-

isms built into system will protect it from improper penetration.

Stress Testing Stress testing executes a system in a manner that demands

resources in abnormal quantity, frequency, or volume.

Performance Testing Performance testing is designed to test the run-time

performance of software within the context of an integrated system.

Furthermore, MIL-STD-498 defines three step for system testing: CSCI qual-

ification testing, CSCl/HWCI integration and testing, and system qualification

testing. Since we are focusing on software development, CSCl/FIWCI integration

and testing is beyond the topic of this thesis. Therefore, CSCI qualification test-

ing and system qualification testing could be combined together to demonstrate

to the customer that customers' requirements have been met. The system test-

ing in the CMM concentrates on validating the software satisfies the allocated

requirements.

Finally, acceptance testing is performed to demonstrate to the customer that

the software system satisfies the customer requirements for the software project.

5.1.5.1 Processes in Software Testing

Figure 5.23 shows the P-state tree of Software Testing. This P-state consists

of two operations: Draft Test Plan and Perform Software Test which contains

three activities: Perform Integration Test, Perform System Test and Perform

Acceptance Test.

Main Roles: The main roles participating in the operations are the project

manager and software product managers who conduct the activities, the testing

153

Develop—Software—Test

Draft—Test—Plan

Perform—Software—Test

Perform—Integration—Test

Perform_System_Test

Perform—Acceptance—Test

Figure 5.23: The P-State Tree of Software Testing

staff who perform the activities, the configuration management staff who manage

the configuration items, and customers who are involved in testing activities to

provide their opinions.

Artifact List: The artifact list in this part is Software Test which consists of

four sub-artifacts: Test Plan, Integration Test, System Test and Acceptance Test.

The artifacts in the software Testing are shown in Figure 5.24.

Information Artifacts: The artifact, System Requirement, as an informa-

tion artifact that provides the details for software testing. This is because sys-

tem requirements are abstracted from customer requirements, and software work

products must be tested to satisfy the customer's need.

Entrance Condition: state-of(Test_Plan) = Referenced or state-of (Software-Code) are_Code)

Developed

When the need to draft the software test plan has been identified, the testing

staff should take the responsibility to develop the test plan. Furthermore, after

developing software codes, the testing staff will perform software tests according

to the test plan.

154

Software—Technical—Process

Software_Requirement

Software—Design

Software—Code

Software—Test

Test—Plan

Integration—Test

System—Test

Acceptance—Test

Operation—Documentation

Software—Enhancement

Figure 5.24: The Artifact Tree of Software Testing

155

Activities: Two operations are presented in the P-state diagram of Software

Testing as shown in Figure 5.25. Firstly the testing staff should draft the software

test plan. This plan might be drafted as part of the software development plan.

In the meantime, the software codes should be developed when the testing staff

perform the activities of software test. The testing activities contain integration

test, system test and acceptance test. The testing staff must test the software

work products step by step. Finally the software system will be demonstrated to

the customers to ensure that the system satisfies the customer requirements.

File Edit View Go Communicator 	 I-len:

Back Forward Reload Home Search Guide 	Print Securitl, Stop

Bookmarks 4 Location:ttp.//vw.dcs.ed.ac.uk/home/ky/PASTh/SPIPaatahtsa1 j /

iiD evelop_Software_Test
—Implement Source Code
Deveiop_Saftware Test
—Draft Test Plan
—Perform Software Test
- - PerformloterrcaEicnTe
--Perform System Test

P.orfnnn Arnc.ntanrp 7'..
Software Cod EL

Test Pln

Test

Draft—Test—Plan

oped] 	 . . 	.
nced.] 	I 	[Drafted] Test Plan

Perform Software Test

rafted] •. 	.1 .. 	{Peormed] ofare.Tet I.

Figure 5.25: The P-State Diagram of Software Testing

Exit Condition: state-of(SoftwareTest) = Developed

After completing the P-states, process roles must check whether the exit condi-

tion has been reached. This means that the software work products are completely

tested and satisfy the customer's need.

5.2 The Organisational Process

The Organisational Process consists of four artifacts: Organisation Training Pro-

gram, Risk Management, Project Interface Coordination and Peer Reviews. All

artifacts except risk management are the KPAs of the CMM level 3. Risk man-

agement is described in Activities 6 and 7 of the Integrated Software Management

156

key process area. The reason we put risk management in the organisational pro-

cess is that organisations need special efforts to manage software project risks.

Moreover, the primary purpose of the Integrated Software Management key pro-

cess area is to tailor the project's defined software process. It is better to make a

clear vision for developers.

At level 3, improvement efforts are coordinated and focused at the organisa-

tional level. These artifacts will provide the necessary activities to direct the

software technical process.

Processes in the Organisational Process

Figure 5.26 shows the P-state tree of the Organisational Process. This P-state

consists of four operations: Perform Organisation Training Program, Perform

Risk Management, Perform Project Interface Coordination and Perform Peer

Reviews.

I Develop_Organisational_Process

Perform—Organisation—Training—Program

I Perform_Risk_Management

Perform_Proj ect_Interface_Coord.ination

Perform—Peer—Review

Figure 5.26: The P-State Tree of the Organisational Process

Main Roles: The main roles participating in the operations are project man-

agers, software product managers, training staff and reviewers who will derive the

organisational process.

Artifact List: The artifact list in this part is Organisational Process which

consists of four sub-artifacts: Organisation Training Program, Risk Management,

Project Interface Coordination and Peer Reviews. The artifacts in the organisa-

tional process are shown in Figure 5.27.

Information Artifacts: Users developing the organisational process should

rely on the project's defined software process.

157

Software—Process—Improvement I

Organisation _Process _Focus

Organisation—Process—Definition

PDSP

I Software _Management _Process
Software_Support_Process

Software—Technical_Process

Organisational—Process

Organisation_Training_Progralfl

Risk Management

Project_Interface_Coordination

Peer—Reviews

Figure 5.27: The Artifact Tree of the Organisational Process

158

Entrance Condition: state-of(OrganisationaLProcess) = Referenced

After developing the software management process, the basic project management

practices have been established. Complying with the technical process, the need

to develop the organisational process should be identified.

Activities: Four operations are presented in the P-state diagram of the Or-

ganisational Process as shown in Figure 5.28. There are no relationships between

these operations, therefore these operations can be independently performed. The

project's defined software process defines the processes for performing these op-

erations. All activities should be performed when the project's defined software

process has been developed and throughout the whole development life cycle.

Exit Condition: state-of(OrganisationalYrocess) = Developed

After completing the P-states, managers must check whether the exit condi-

tion has been reached. This means that the artifacts have been well performed

and recorded.

5.2.1 Organisation Training Program

The purpose of the Organisation Training Program key process area is
to develop the skills and knowledge of people so they can perform their
software roles effectively and efflciently/Fau97J.

5.2.1.1 Organisation Training Program in the CMM

Training is one of the most important aspects of improving a software organisa-

tion. The quality of the software engineering workforce is a direct function of

the quality of software engineering training. Consequently, the SET developed

the KPA in the CMM. Furthermore, in order to continuously develop the hu-

man assets of a software organisation, the SEI also developed People CMM (P-

CMM)[CHM95]. The P-CMM provides guidance on how to develop an organisa-

tion whose practices continuously improve the capability of its workforce. This

effort primarily focuses on the training program.

However, both models' training efforts become focused upon the entire or-

ganisation at maturity level 3. It is curious that the topic of a training program

doesn't show up until level 3. Carpenter and Hallrnan[CH95] pointed out that

at level 3 improvement efforts are coordinated and focused at the organisational

level, and are no longer a loose collection of bottom-up improvement efforts.

In order to perform the training program, Mead et al[MTC96] suggested that

organisations should have some key practices. These practices include:

159

File 	Edit 	View 	Go 	Communicator 	 Help

Sack 	Forward 	Reload 	Home 	Search 	Guide 	Print 	Security 	Stop

Bookmarks 	L Location:

- -- Convert Segoence Doa

ttp://vwv.dcs.ed.ac.uk/hoTfte/ky/PASTA/SPIPa3ta.htiftl 	 _j f

Develop Organisational Process - 	 - - - -Refine cotk&borcrtson
-Create _Activity _Diagram
-Create _Implementation_Il
- - CreceteComponentDw

.
. 	.

. 	..
.

- - Crete Deployment Di I
Perform_Organisation_Training_Program

.
. . 	. 	.

Develop Software Code
-Generate Body File
-Implement Class Method
Develop Software Test

-Perform Software Test

. 	. 	. 	.
I Organisation Tr

. 	 .
g_Progm[Referenced] 	{rfosthed] Organisalion_

.
'raining. Progxam

-Draft Test Plan
.

	

.

	

.
. 	. 	I..

	

. Perform_Risk_Management 	. . ,. 	. 	•'. .

	

.

	

I 	Psk_Manage4ient [Referenced 	 I 	Risk Mands.ement

- -PerformIcgrtionTe
--Perform System Test
--Perform Acceotccnce Te
Develop _Operation Docun'
Pert arm_S oftware_Enhanc

Develop Organisational

PerfonnOramsaUonTrsi
. 	.• 	S S 	 . 	•. 	...

Perform 	
.

PerformProject jnterfaceCoorthnation
S,

..

	

Project _Interface Coordination[Rdferencedj 	. . IPerformed] Proj.ctJntf ce_Coordination

-Identify Training Need
-Draft Training Plan

- - Ill ntrfy Orwsntionat
- - Detervwse Proiect Neel vee
-Build Trainino Matealal
-Execute Training Progra
-Build _Training_Record
Perform Risk Management
-Draft Risk Management

.
.
. 	•. 	•..
. 	,. 	.. 	55 	. 	. 	s

	

.Peifo.rm 	Peer Review 	. 	. .
- 	-

. 	. 	 ..

	

Peer Reviews [Referenced] 	 I 	I 	 [Performec 	Peer ReviewsI

-Idenlify Risk
-Analyze Risk
-Mitigate F.isk
Perform Project Interface
Perform Peer Review
-Draft Peer Review Plan
-Conduct Peer Review
-Record Peer Reviews D

Iterate-Or-Refine

Review 	

......

Figure 5.28: The P-State Diagram of the Organisational Process

160

. a defined process for software engineering education,

. a formal needs analysis activity,

availability of a wide variety of courses from different sources, and

training by a local, respected organisation.

Among these practices, the CMM and the P-CMM provide a guideline to

develop a training process for software organisations. Moreover, the identification

of training needs is primarily based on the skills needed for the organisation's set of

standard software processes, as described in the Organisation Process Definition

key process area. The specific training needs are identified by software projects, as

described in the Integrated Software Management key process area. Furthermore,

the organisations should have courses available from a wide variety of sources,

such as in-house instructors, training vendors and universities. Although some

experts[BCKM97, PDHT97] did not satisfy with the quality of academic software

engineering education, training by a respected organisation, such as a university,

is an effective practice for software organisations.

In addition to the above practices, the creation of a training plan is also an

essential element within the training process of a software organisation. Without

a good training plan, the training program would not be effectively performed.

Carpenter and Hallman suggested the following information should be included

in the training plan[CH95]:

Scope of the Training Plan

Responsibility for the Plan

Training Objectives

Technical Strengths and Weaknesses of the Software Organisation

Software Engineering Curriculum

Course Development and Acquisition Process

Estimated Training Costs

Student Selection and Enrolment Procedures

Course Delivery Standards

Training Evaluation and Tracking Procedures

161

These items cover the necessary information for the organisational training

program and provide a foundation to complete the training process.

5.2.1.2 Processes in the Organisation Training Program

Figure 5.29 shows the P-state tree of the Organisation Training Program. This

P-state consists of five operations: Draft Training Plan, Identify Training Need,

Build Training Material, Execute Training Program and Build Training Record.

Perform_Organi sat ion_Training_Program

Draft—Training—Plan

Identify_Training_Need

Ident i fy_Organi sat ± onal_Need

Determine—Project—Need

Build_Training_Material

Execute_Training_Program

Build_Training_Record

Figure 5.29: The P-State Tree of the Organisation Training Program

Main Roles: The main roles participating in the operations are project man-

agers and the training staff who will derive the organisation training program.

Artifact List: The artifact list in this KPA is the Organisation Training Pro-

gram which consists of five sub-artifacts: Training Plan, Training Need, Training

Material, Training Program and Training Record. The artifacts in the Organisa-

tion Training Program are shown in Figure 5.30.

Information Artifacts: The project's defined software processes provide a

guideline for performing the activities of the organisation training program.

Entrance Condition: st ate- of(Organisation_TrainingYrogram) = Referenced

162

Organisational-Process

Organi sat ion_Training_Program

Training_Plan

Training_Need

Organisation-Need

Project-Need

Training Material

Training_Program

Training_Record

Risk-Management

Project_Interface_Coordination

Peer-Review

Figure 5.30: The Artifact Tree of the Organisation Training Program

163

Performing the organisation training program should start at early stage of the

software project. From tailoring the project's defined software process to per-

forming the software technical process, all activities need the trained people to

perform them.

Activities: Five operations are presented in the P-state diagram of the Or-

ganisation Training Program as shown in Figure 5.31. First and foremost the

software organisations must create the organisation training plan. An organisa-

tion training plan documents the objectives of the training program, the training

need of the organisation and procedures for carrying out training activities. The

training needs should then be analysed. This is the most critical part of the

training activities. The training needs consist of two parts, organisational needs

and project needs. The organisational training needs may contain process tailor-

ing, software management, software engineering, and so on. Moreover, different

projects might need some special training needs. The managers and training staff

should identify these training needs for each software project.

After identifying training needs, the training staff may establish training ma-

terials that address the needs of the organisation. The typical training material

is training courses. The training courses may have different types, formal or in-

formal, external or internal; it depends on the organisation condition. In the next

step, the managers and training staff should select the people who will receive the

training, and conduct the training. Finally, the training records must be kept as

a reference to assign people an appropriate job.

Exit Condition: state-of(OrganisationTrainingPrograrn) = Performed

After completing the P-states, the managers and training staff must check

whether the exit condition has been reached. This means that the training pro-

gram has appropriately been performed and all training records have also been

kept.

5.2.2 Risk Management

5.2.2.1 Risk Management in the CMM

The SEI did not define Risk Management as a KPA in the CMM but it is currently

a KPA in the Systems Engineering CMM, and the Software Acquisition CMM.

The topic of risk management is primarily defined in the Integrated Software

Management key process area of the CMM. However, a disciplined and systematic

method of managing software development risk is necessary and feasible to control

164

File 	Edit 	View 	Go 	Communicator Help

Back 	Forward 	Reload Home 	Search Guide Print 	Security Stop

4 	BookmarksLocation jhttp//wvdcedaruk/bomeJk1/PASTA/SPIPaatahtmL J7(

--Creee_SeQuence_Dir Perform Organisation Training Program - -IdtsfvObjectLsfelsi ---Id - - 	-
- - - ldentifvMessrge
- - Cree!eCollcthorrsftonD
- - - Converf Sequence DrrtI
- - -tQtrne (o

ADiau -Create cth,ft 	
'Draft_Training_Plan

-Create Imple
--Crecte Com 	'
--Crecrte Deet 	,Traanjng_P1ai [Referenced]' ' 	'I I .

	[Draftedi Training_Plan

Develop Software Code
-Generate Body File
-Implement Class Method 	,, '' ' . .' '' 	' , . . ' ' '
Develop Software Test
-Draft Test Plan 	.'. ..
-Perform Software_Test 	 	Identify_Training_Need '
- - PerformZntegratonTe
--Perform Sristem Test
--Fe, formAcceptnceTe 	 Traimng_PIau [Drafted] 	 [Ident''ed1 Tarnmg_Need
Deveiop_Operaon_Da cum
Perform Software Enhanc

ion Organisational

nn Orsanisation Trail111 I ' ' . ' . 	. 	' j' ' . '
Build_Training_Material

ft Training Plan
infv Trairdnv, Need
entfIv Orzanisatzonal 	I —H Training_N eed'[lderitified]' . , ' ' ' 	I ' ' ' . [!] Tr-Mata

d Training Material
cute_Traanano_Proerai
d Training Record
em Risk
ft_ Risk _Manaeement . 	.. 	' 	.. 	' 	' , 	Execute Training Program
,iffy Risk
de Risk
iq ate Risk -- .Training_Mat rial.[Btiilt]' 	, . 	' 	1' 	' 	'[Executed] T aining,ProgramJ---1

_Project em 	Interface
em Peer Review
ft Peer Review Plan
rduct Peer Review A
ord Peer Reviews I)

Build 'Training Need
te Or Refine

Tr-immg_Progr r.rainang_Record I an [Executedj 	I 	 [Br.nit]

lOUT 	hftp /Avuw dcc ed ac uKJhome/kr/PASTA/Operat;onForms/nall/Ze_RIsk77 html

Figure 5.31: The P-State Diagram of the Organisation Training Program

165

the quality, cost and schedule of software products. Therefore, we separate this

KPA into two parts: one is in Section 3.4 describing the project's defined software

process and another is risk management.

In the last few years, the SET has made a big effort to study risk management

both of software development and software acquisition. To date, the SEI defined

three groups of practices to support software risk management[HH96]:

Software Risk Evaluation (SRE): The SRE practice is a formal method for

identifying, analysing, communicating, and mitigating software technical

risk. It is used by decision makers for evaluating the technical risks asso-

ciated with a software-intensive program or project. The SRE has to be

conducted at major milestones early and periodically in the development

or acquisition life cycle. This practice consists of primary and support

functions. Primary functions are Detection, Specification, Assessment, and

Consolidation. Support functions are Planning and Coordination, Verifica-

tion, and Training and Communication [SJ94].

Continuous Risk Management (CRM): The CRM practice is a principle-

based practice for managing project risks and opportunities throughout the

lifetime of the project. These principles are composed of three groups: core,

sustaining and defining. The core principle focuses on creating an open com-

munication environment in the organisation. The sustaining principles focus

on how project risk management is conducted on a daily basis. The defining

principles focus on how project staff members identify risks, and the extent

to which staff and management are ready to address uncertainty[HH96].

Team Risk Management (TRM): The TRM practice defines the organisa-

tional structure and operational activities for collectively managing risks

throughout all phases of the life cycle of a software-dependent develop-

ment program such that all individuals within the organisations, groups,

departments, and agencies directly involved in the program are participating

team members. Team risk management practices bring together individuals

within and between organisations to form working teams[HGD+94].

Basically, these practices are based on the risk management paradigm, which

depicts the different activities involved in the management of risk associated with

software development. The paradigm, being a circular form with communication

at the centre, is a model of how the different elements of software risk management

interact and a framework for describing how software risk management can be

166

implemented. These elements include identification, analysis, planning, tracking,

control and communication as follows[Sco92]:

Identification: Risk identification is the first element in the risk management

paradigm. Identification highlights risks before they become problems and

adversely affect a project. Without identification, risk management cannot

be effectively performed. Consequently, the SET developed a method, the

Risk Taxonomy, to identify risks[CKM93]. The taxonomy is organised

into three major classes: Product Engineering, Development Environment

and Program Constraints. With the taxonomy-based questionnaire, experts

may follow the life cycle of software development and elicit risks potentially

affecting the software product.

Analysis: Risk analysis is the conversion of risk data into risk management

information. Sometimes this step can be combined with identification. Risk

analysis sifts the known risks, and places the information to allow a manager

to make decisions. Therefore, providing a quantitative analysis of risks

might be a good solution to analyse risks for managers.

Planning: Risk planning develops actions to address individual risks, prior-

itising risk actions, and orchestrating the total risk management plan.

Tracking: Tracking consists of monitoring the status of risks and the ac-

tions taken to improve them. Appropriate risk metrics are identified and

monitored to enable the evaluation of the status of risks themselves as well

as of risk mitigation plans.

Control: Risk management should meld into program management and

relies on program management processes to control the risk action plans,

correct for variations from the plans, respond to triggering events, and im-

prove the risk management process.

Communication: Risk communication lies at the centre of the model to

emphasise both its pervasiveness and its criticality. Without effective com-

munication, no risk management approach can be viable. In order to be ana-

lysed and managed correctly, risks must be communicated to and between

the appropriate organisational levels. This includes levels within the de-

velopment project and organisation, within the customer organisation, and

across that threshold between the developer and the customer.

167

5.2.2.2 Processes in Risk Management

Figure 5.32 shows the P-state tree of Risk Management. This P-state consists of

four operations: Draft Risk Management Plan, Identify risk, Analyse Risk and

Mitigate Risk.

Perform—Risk—Management

Draft—Risk—Management—Plan

Identify—Risk

Analyse—Risk

Mitigate—Risk

Figure 5.32: The P-State Tree of Risk Management

Main Roles: The main roles participating in the operations are project man-

agers, software product managers and system engineers who will manage project

risk.

Artifact List: The artifact list in this KPA is Risk Management which consists

of two sub-artifacts: Risk Management Plan and Project Risk. The artifacts in

risk management are shown in Figure 5.33.

Information Artifacts: All system development efforts have inherent risks.

Managers should identify risks from the software management process and soft-

ware technical process.

Entrance Condition: state-of(RiskivIanagement) = Referenced

When the need to manage project risks is identified, managers perform the activ-

ities of risk management. This need may be identified by the project's defined

software process.

:

Organisational-Process

Organisatioxl_Trainizlg_PrOgralTL

Risk-Management

Risk-Management-Plan

Project-Risk

Project_Interface_Coordination

Peer-Review

Figure 5.33: The Artifact Tree of Risk Management

Activities: Four operations are presented in the P-state diagram of Risk Man-

agement as shown in Figure 5.34. First, managers should develop a plan for activ-

ities of risk management. The plan is a basis to guide the activities managing

project risks. The risk management plan can be part of the software development

plan or a project risk management plan. Project risks should then be effectively

identified. Since risk management covers throughout the software development

life cycle, it is better to use a risk identification method. SEI's Risk Taxonomy

may be a good method to be used to help identify possible problems. However,

the software organisation can also define its own risk identification method. After

identifying project risks, the identified risks should be documented and listed.

From the list of risks, managers analyse risks and determine their priority. In

accordance with the risk priority, managers should mitigate the project risks by

using the documented risk mitigation strategies in the risk management plan.

The activities of risk management will be performed iteratively until the project

is completed.

Exit Condition: st ate- of (Risk i\/Ianagement) = Performed

After completing the P-states, the managers must check whether the exit con-

dition has been reached. This means that the project risks have been mitigated.

169

File 	Edit 	View 	Go 	Communicator Help

4 	 LA-
Back 	Forward 	Reload 	Home 	Search Guide Print 	Security 	Stop

Bookmarks 	L Location: 	ttp://ww.dc3.edac.uk/home/ky/PASTA/SPIPasta.htm1 J

— — —
converseQoence_DiII Perform Risk Management

---Rpfnw 	ibthürc.e'nn - -

- - Crerrte Deploymeot Drr

''••
.

Risk_Manag

Draft _Risk _Management_Plan

.
Develop Software Code
-Generate Body File
-Implement Class Method
Develop Software Test
-Draft Test Plan
-Perform Software Test

.
ept [Raferenced] 	 RiskM agement_Plan

.. 	.'' '. 	.'.
.

— — PertorrilntegrcafronTe
.

. 	. 	. 	. 	F. 	-. 	.., 	.

. Identity_Risk.
I

—H_RoskManag4ent_Plan [Drafted] I 	1 	[Idenillied] Project Risk

- -Perform System Test
--Perform-Acceptance Te .
Develop Operadon_Docum
Perform Software Enhancr

Develop Oraxusationa1

Perform Organisation Traii , 	. 	.'.. 	, 	. 	. 	 .
-Draft_Trsne Plan
-Identify Training Need

, '.' 	.. 	.'
. 	. 	. 	., • 	S

. 	,
Analyze Risk

. '
'

, --'- 	Prpjett Risk 1Identifid] 	 Project_Risk,

— — IdeorVfy Orq,czsisonrzt
--DetermraeP oectNee
-Build TraJnin 	Mateijal
-Execute Training Proera
-Build TraininLRecord

-. 	, 	. S
. 	'. -Draft Fisk Monacement

Perform Risk Management.......

-Identify Fisk
-Analyze Risk

mate Risk
Perform Proiect Interface

	

. 5 	.' 	s

	

."..' 	•. • 	, 	
5 5 	 . 	.

	

. 	. 	. 5
Mitigate_Ri'sk

	

. 	. 	. 	' 	'.
'Project Risk [Analyzed] '[ffidJ Project 	.

Perform Peer Review

-Record Peer Reviews I).

-Draft_Peer Review Plan
-Conduct Peer Review A

Iterate-Or-Refine

Review

L.. 	.ac.uk'homa/KfiPA.IA.

Figure 5.34: The P-State Diagram of Risk Management

170

5.2.3 Project Interface Coordination

The purpose of Project Interface Coordination is to ensure that soft-
ware managers and staff effectively communicate, coordinate, and col-
laborate with other functions in the organisation to satisfy the custom-
er's needs[Pau97].

5.2.3.1 Project Interface Coordination in the CMM

Developing a large complex software project must involve the efforts of many

engineers with expertise from different areas. In order to structurally tackle the

problem, as mentioned in Section 4.1.2, the software project is divided into many

partitions. Different teams work concurrently on these partitions, which later

on merge together to build the complete system. These teams could belong to

line organisations, matrix organisations, integrated product teams, etc, since the

type of organisational structure is not limited by the CMM. However, a wave of

virtual enterprises is emerging. Engineers will work at different locations all over

the world and complete the project together.

One of the biggest hurdles in developing a large software project is coordina-

tion of the activities of different teams. This is especially true of concurrent de-

velopment. Maurer suggested that a project coordination support system should

consist of four components[Mau96]:

A project repository stores all information on the project.

A project planning component allows users to plan and schedule activities,

determines dependencies between information items, and supports resource

allocation.

A project execution component handles the worklists of the users, supports

task execution, and is responsible for constraint and change management.

A project control component supports the monitoring of the project.

Moreover, a common interface, Web browsers, should be used to integrate all

components.

Clearly, the CMM covers these components and creates this KPA to co-

ordinate the project's teams. Furthermore, the SET is now developing an in-

tegrated product development (IPD) framework which is a systematic approach

to product development that achieves a timely collaboration of necessary dis-

ciplines throughout the product life cycle to better satisfy customer needs. It

171

typically involves a teaming of the functional disciplines to integrate and concur-

rently apply all necessary processes to produce an effective and efficient product

that satisfies the customer's needs.

5.2.3.2 Processes in Project Interface Coordination

Figure 5.35 shows the P-state tree of Project Interface Coordination. This P-state

consists of two operations: Draft Coordination Plan and Perform Coordination

Activity.

Perform_Proj ect_Interface_Coordination

Draft—Coordination—Plan

Perform—Coordination—Activity

Figure 5.35: The P-State Tree of Project Interface Coordination

Main Roles: The main roles participating in the operations are the manage-

merit group and development group since the activities of project interface co-

ordination involve all of the project's staff.

Artifact List: The artifact list in this KPA is Project Interface Coordination

which consists of two sub-artifacts: Coordination Plan and Coordination Activity.

The artifacts in Project Interface Coordination are shown in Figure 5.36.

Information Artifacts: The activities of software development should be co-

ordinated between the software engineering groups. The software management

process and the software technical process provide necessary information to sup-

port coordination.

Entrance Condition: st ate- of(Project -Interface -Co ordination) = Referenced

When the need to perform project interface coordination is identified, managers

and staff in different groups should actively coordinate with each other. This

need may be identified by the project's defined software process.

172

Organisational-Process

Organisation-Training_Progr7am:]

Risk-Management

Project-Interface-Coordination

Coordination-Plan

Coordination-Activity

Peer Re

Figure 5.36: The Artifact Tree of Project Interface Coordination

Activities: Two operations are presented in the P-state diagram of Project In-

terface Coordination as shown in Figure 5.37. First, managers should develop a

plan of activities for project interface coordination. The plan is a basis to guide

the activities managing project interface coordination. In the next step, man-

agers and software staff evolve an understanding of the customer requirements.

The allocated requirements are then appropriately partitioned. All development

groups should be carefully coordinated during the software management process

and technical process. Each group must ensure that work products meet the

needs of the receiving group and all system problems are effectively resolved.

Exit Condition: state-of(ProjectJnterface_Coordination) = Performed

After completing the P-states, the managers and staff must check whether the

exit condition has been reached. This means that the work products are properly

delivered between development groups.

5.2.4 Peer Reviews

The purpose of Peer Reviews is to remove defects from the software
work products early and efficiently. An important corollary is to de-
velop a better understanding of the software work products and the
process that produced them so that defects can be prevented[Pau97].

173

File 	Edit 	View 	Go 	Communicator Help

Back 	Forward 	Reload Home 	Search Guide 	Print Security 	Stop

4 	Bookmarks Jj Location:

Perform_Project_Interface—Coordination)eveloPOranisational_Ig

JJ1 O.LL 11 OLILJLIX rLcALi

—Identify Trainins Need
- - !denrffv Orsrzfioncd
--Determine Project NeIiI 	 I 	Draft Coordination Plan

—Build TrainingMateria1
—Execute Trainine Prosu
—Build Training Recordent

	

Projectliitrfaieddor4sâtion[Referdnced] 	[é] Cbidination_Plan
Perform Risk Risk Managemesr • 	.• S 	 •.
—Draft Risk Managem
—Identify Risk 	
—Analyze, Risk 	 0

	 •. 	 .. 	
.. 	

—Mitip,ate Risk 	• 	.
Perform Project _Interface 	Peiiorni Coordination. Activity
—Draft Coordination Plan 	so -
—Perform Coordination Ac
Perform Peer Review 	. 	. . 	Coordination P en[Drafted] . 	

., . [Pdrformed] Coot aon.Activity
—Draft _Peer Review 	
—Conduct Peer Review A

Poor 	 T'

100% 	1 	 .

Figure 5.37: The P-State Diagram of Project Interface Coordination

5.2.4.1 Peer Reviews in the CMM

The underlying concept of peer reviews is that a small group of peers can detect

more defects than the same number of people working alone. However, this key

process area is quite different from the Software Project Control and the Software

Quality Assurance key process areas. Software Project Control focuses on track-

ing software activities based on the software development plan. Software Quality

Assurance concentrates on objectively reviewing the software project's activities

and work products. Traditionally Software Quality Assurance is performed by an

SQA group that is independent of the software project in order to keep objectiv-

ity. A risk is a potential problem. The purpose of risk management is to prevent

the risk from becoming a problem or limit its impact if it does. Software testing

is performed to demonstrate to the customer that the software system satisfies

the customer requirements for the software project.

Defects inevitably occur through the software development life cycle and the

later these defects are detected, the higher the cost of their repair. Peer reviews

are used to detect the defects in software work products as early as possible. Per-

forming peer reviews should involve a methodical examination of software work

products by the producers' peers to identify defects. One of peer reviews meth-

ods is inspections. Inspections were first performed by Fagan at IBM. Fagan

174

defined a set of inspection process steps[Fag76]: Overview, Preparation, Inspec-

tion, Rework and Follow-up. Ebenau and Strauss[ES94] adopted this process and

developed a wider inspection process for improving the quality of a variety of

products. Ebenau's inspection process is defined as follows:

Planning: During the planning stage, the necessary materials are collected

and the inspection team is organised.

Overview: A presentation explaining the material's functions and rela-

tionships should be held.

Preparation: Preparation is an individual exercise performed by all the

inspectors to allow them to become thoroughly familiar with the materials

so that they can better find defects.

Inspection: All inspectors formally examine distributed materials agree-

ment on the inspection defect list.

Rework: During rework, all defects should be revised.

Follow-up: After the defects have been resolved, the inspectors follow-up

to verify the defect resolution.

Basically, this key process area follows these steps to perform reviews. The

specific software work products that will undergo a peer review are identified

in the project's defined software process, which may include the software devel-

opment plan, software estimates, requirements, design and codes. To effectively

perform peer reviews, the successful completion of the peer review should be used

as an exit criterion for the task associated with developing and maintaining the

software work product.

5.2.4.2 Processes in Peer Reviews

Figure 5.38 shows the P-state tree of Peer Reviews. This P-state consists of three

operations: Draft Peer Review Plan, Conduct Peer Review Activity and Record

Peer Review Data.

Main Roles: The main roles participating in the operations are software product

managers and reviewers who will conduct peer review activities.

Artifact List: The artifact list in this KPA is Peer Reviews which consists of

three sub-artifacts: Peer Review Plan, Peer Review Activity and Peer Review

Data. The artifacts in peer reviews are shown in Figure 5.39.

175

Perform—Peer—Review

Draft—Peer—Review—Plan

Conduct—Peer—Review—Activity

Record—Peer—Review—Data

Figure 5.38: The P-State Tree of Peer Reviews

Information Artifacts: The project's defined software processes provides a

guideline to perform the activities of peer reviews.

Entrance Condition: state-of(Peer_Reviews) = Referenced

When the need to perform peer reviews is identified, managers should conduct

the activities of peer reviews. This need may be identified by the project's defined

software process and defined in the software development plan.

Activities: Three operations are presented in the P-state diagram of Peer Re-

views as shown in Figure 5.40. Firstly, managers should develop a plan for activ-

ities of peer reviews. The plan is a basis to guide the activities to perform peer

reviews and is typically included in the project's software development plan. Any

rework resulting from the peer reviews should be planned as part of the software

development effort. This planning typically includes the specific software work

products that will undergo peer review and those who will be invited to particip-

ate in the peer review of each software work product. In the next step, reviewers

conduct the activities of peer reviews in accordance with the peer review plan.

Reviewers should study the material to be reviewed and use the appropriate re-

view checklists to help find defects. After identifying defects in software work

products, the identified defects have to be corrected. Reviewers may conduct re-

reviews as necessary in order to verify the identified defects are corrected. Finally,

data on the activities of peer reviews should be recorded for future reference and

analysis.

Exit Condition: state-of(Peer...Reviews) = Performed

After completing the P-states, the managers must check whether the exit

condition has been reached. This means that most of the defects of software work

176

Organisational—Process

Organisation_Training_PrOgralUJ

Risk—Management

Project—Interface—Coordination

Peer—Review

Peer_Review_Plan

Peer_Review_Activity

Peer_Review_Data

Figure 5.39: The Artifact Tree of Peer Reviews

177

File Edit View Go Communicator 	 Help

*1
Back Forward Reload Home Search Guide 	Print Security Stop

Bookmarks A Location: 	I/simm. dcs. ed. ac. uklhome/ky/PaSTaISPIPasta. htmL

--re/cern /, eaieucm / C

- -Perform_Svscem_Test 	Perform_Peer_Review.
--PerfornAccepteiiceTe

-Conduct Peer Re
-Record Peer Revi

Iterate Or Refine

Drafted-Peer-Review-Plan

Peer_F ewes Plan [Rerenced] 	 Peer Rew Plan

Conduct_ Peet _Review_Activity

---- 	Peer_Revie i_Plan[Drafted] 	j [Conducted] Peer eview Activity

Record Peer Rev iew_Data.

-'•- Peer_Review_ ctivlty [Conducted] 	F[Recorded] Peer_ Review Data

100% 	11httP:/Aw/w.dCS
	 StateForms/Perform_Organisation_Traifling_Programli 	 '.-

Figure 5.40: The P-State Diagram of Peer Reviews

178

products have been identified and removed and relevant data is appropriately

recorded.

5.3 Summary

This chapter discussed how to develop software work products. We use MIL-

STD-498 to comply with the CMM as software engineering processes. In the

meantime, the UML is adopted at software requirement analysis and software

design stages. With these standards, the software organisations exploit effective

software engineering practices to develop their products. In addition, an appro-

priate training program is performed to ensure all staff can play their software

roles. The communication between development teams is effectively conducted

to share system-level requirements, objectives and issues. Furthermore, the soft-

ware work products are reviewed by other team members in order to remove

defects early and project's risk will be under control. Once these activities have

been completed, both software engineering and management activities are stable

and repeatable. Consequently, software organisations will develop their products

under a common, organisation-wide understanding of the activities, roles, and

responsibilities.

179

Chapter 6

Implementation and Assessment

SPI PASTA is an artifact-driveri framework of controls for the development of

software systems. It is independent of any particular set of tools and techniques

and can be used with object-oriented methods, such as the UML. SPI PASTA is

not a standard or a procedure. It does not provide a detailed step-by-step set

of instructions describing how a particular software activity is to be carried out.

However, SPI PASTA can provide insight into what artifacts should be developed

at a particular time and provide guidance on what activities should be performed

for the artifact. SPI PASTA consists of advice on best practice. The advice

is the organisation's software process assets. It is expected that information in

SPI PASTA will usually be followed by software developers. Furthermore, SPI

PASTA can be sufficiently flexible to allow for the adaption of existing scenarios.

For example, Objectory may be adapted in the P-state of software analysis and

design. With connecting to CASE tools, the Objectory process presents experts'

advice for software development.

6.1 Implementation of SPI PASTA

Widespread use of Internet/Intranet is giving an opportunity for collaborative ap-

plications that link users from a distributed environment. Using the WWW, users

have an interface that can access information anywhere on the Internet/ Intranet.

SPI PASTA adopts the WWW as communication infrastructure making distrib-

uted projects feasible. SPI PASTA presents a unifying process model which guides

the development of software projects. Without the process model, development

team members have no common framework in which to interpret the activities

and artifacts generated by these activities.

SPI PASTA consists of three parts, Artifacts, P-states and Roles. The artifacts

specify the set of interrelated work products generated by following the P-states.

180

The P-states are integrated with a permissive ordering of activities, a set of tools

and historical experiences to offer developers complete solutions to their software

development. In addition to specifying artifacts and activities, the SPI PASTA

also specifies the roles played by people involved in the software projects. As with

artifacts and activities, different processes will specify different roles.

SPI PASTA defines a strategy for defining what the artifact will be produced

for a given project. It provides a baseline for communication between and across

team members, and between differing levels of management. On the technical

side, SPI PASTA provides guidance on how to decide what sort of artifact it is

necessary to control. From the management point of view, the project manager

should firstly organise the development team. Then he/she points out the tasks

and responsibility to all team members by using SPI PASTA.

Figure 6.1 shows the homepage of SPI PASTA that is split into two frames.

Role tree, artifact tree and P-state tree are listed on the left-hand side. Users

can extend any tree and see the relationship between items. Each item is linked

to its definition form. The action frame, located on the right-hand side, provides

an area for definition forms and diagrams.

The following example represents related activities to develop the software

management process. Five P-states (as Figure 6.2) are listed on the P-state dia-

gram of Develop_Software_Management_Process. There is a relationship between

Derive -Software -Development _PIan and Perform Software_Project_Control. This

means Software Project Control must be performed after completing the soft-

ware development plan. There is no relationship among other P-states. SPI

PASTA permits a parallel process since the model provides processes for different

development team members concurrently and independently. Therefore, system

requirements, the software development plan and acquisition management might

be developed concurrently. Each rectangle consists of the sub-P-states, entrance

conditions and exit conditions. The entrance condition decides which P-state can

be performed. Such as Derive_Software_Development_Plan, once two entrance

conditions have been satisfied, users may go down to next layer, the P-state dia-

gram of Derive _Software_Development_Plan. Before entering to next step, Users

may click the entrance condition to fetch the A-state diagram (as Figure 6.3. The

operation between two states can be connected to operation definition form as a

guide in completing the software artifacts.

Furthermore, users may check the details presented at P-state definition form.

P-state tree can link to the definition form, moreover the title of P-state diagram

may also connect to the form. From the definition form, users should collect

181

File 	Edit 	View 	Go 	Communicator 	 Help

IL
Back 	Forward 	Reload 	Home 	Search 	Guide 	Print 	Security 	Stop

Bookmarks .JL Location http://svo.dco.edacok/hume/ky/PASTA/SPIPaota.htnnl

SF! Trees Software Process Improvement (SPI) PASTA

Artifact Tree
PState Tree
Role Tree Welcome to SF! PASTA.

ome H . '" ."

This is a prototype model for supporting software process improvement. I use
the process notation, PASTA, to mode! the SE!'s Capability Maturity Mode! for
Software (CMM). This prototype model focuses on the Key Process Areas in the
CMM Levels 2 and 3.

This model should be used as part of the organization's program for the
continuous improvement of the software product development. The users might
tailor the model to fit their organisations. However, the best way is to follow
process state diagrams to complete their operations.

Please click trees to link required notations.

Or, click here to start software process improvement.

C/J S I would liketo say thanks for Dr. Rob Pooley and Mr. Robert Lot who have, shaped
my ideas on software pro cess improvement and Dr. C. H. Chien who wrote the
PASTA editor.

S P1 	'PASTA is a Registered Trademark of ISPC.
**CMM is a service mark of Carnegie Mellon University.

Figure 6.1: The Homepage of SPI PASTA

182

related information, such as what is the purpose of the P-state, who will perform

these activities, what are the artifacts operated on for this P-state, the condition

required for entry into this P-state and so on. In this example, the project's

defined software process should be in place. When the need to derive the software

development plan has been identified, users may perform next steps.

EN Nieticape SPiPasta ;iz i 	 l_i3sC corsh 	.s 	/
Help File Fdit View Go CoamujicAor

Back 	Forward 	Reload 	Home 	Search 	Guide 	Print 	Security 	Stop

[. 	Bookmarks 	4 Location: ttpJ/www.dcs.ed.ac..uk/bome/ky/PISTh/SPIPa3ta.htis1

Develop Software Manage

Derive System Requirement
-Derive Allocated Requirem
-Derive System Requirema
Derive Software D evelopine

. 	,

.
SysteinRequir

. 	...

. tern_Requirement

........
Derive_system_Requirement

.

. 	 .

-Draft Project Mission Play
-Draft 0ranisation And Re
-Draft Software Enejneerin
-Draft Schedule And Reso:

. 	.
ent [Referenced]. 	I. 	[Denved] Sy

- -Bufk'WBS
- - Eelfoote Softwwe Size

Develop_Software_Mana gem ent_Process

...

. 	
.

..

. 	S

Derive Software Development Plan

	

. 	-. -

	

Software DevOlo ment Plan [Referenced]
. 	.-. PDSP [AVailCbl] [D,erive].SoftwareD 	elopinent Plan 	.

- - - Compc'zeCetegorvSsze
- - - Cszsculizte Soft we Size
- - -Docurient_Est rioted_Si

- - - Get Pro ducts vstv Mecrsss
---CcziculoteTsrneRegiare
- - -DocumentftstsmiztedT

--Estimete Effort And

- -Estunrte Resource
- -EstsmrJeSctedu1e
-Identify Project Risk
Perform Software Acquisitio

Perform Software Project Control
.. 	I 	- 	

. 	S . .

	

SOftware Tclinicd Process [Referenced] 	__________________

	

SoftwareDev4lopmentPlan [Derived] 	[Revised] 	oftware_D ielop ment Plan

-Draft_Acquicthon Plan
-Manage Supplier Selecrion
- -Determine Acgsssstzon 11

COTS Product __

--select contractor
--Estb1ish Controvt
-Manage Supplier Monitor'
--TsrckSuoptzer

.

Perform_Software_Acquistion_Management

	

. Software Acquisitioh Management [ROffrenced]I 	I[Peformed] Software Ac uisitionManagement
-. 	.

- -Evrnlucete Supplier ________________________________

--Accept Acquired Softwen.
Perform Software Protect _C
-Track SDP
-Correct SDP
-Maintain SDP
Establish Commitment

Develop Software Technic

..

.

Establish Commitment

I 	Com 	[eferenced] 	I 	 [Established Commitment Requirement Trace, mitinen
Develop Software Requirem
-Create, Requirement

S . 	. 	 . 	

. ...

. 	...

1.. :e..ac.uths.afA...............ms/Corn........................ ..::]

Figure 6.2: The P-State Diagram of Software Management Process

Users may click the rectangle of Derive_Software_Development_Plan to enter

the sub-P-state (as Figure 6.4). Five operations stand on the P-state diagram and

four of them are connected together. There is a sequence among them. Drafting

the project mission plan defines the system overview. Drafting the organisation

183

Referenced 	(Derive—Software—Development—Plan]

[Review] 	Software—Development—Plan—Den

Figure 6.3: The A-State Diagram of Software Development Plan

and responsibility plan describes the organisational structure to be used on the

project, and the authority and responsibility of each organisation for carrying

out required activities. Drafting the software engineering activities defines the

software development process to be used. Drafting the schedule and resource plan

identifies the activity procedure and the resources to be applied to the project.

The first three activities are operations that will be connected to the definition

form. The definition form defines required information for users. The users may

rely on the procedures to perform activities to complete the artifact. If necessary,

the users can link to the artifact definition form to get required information about

the artifact and even the sample unified by the organisation.

To draft the schedule and resource plan is a crucial task for software develop-

ment. In the beginning of the project, the allocated requirements are not clear

enough. The analysts have to build the work breakdown structure to estimate

the software size in order to estimate the required effort and cost. Finally, the

resources and schedule are defined and allocated. We have already defined op-

erations for each activity. Users can find out the operation definition form and

related artifact to perform drafting the schedule and resource plan.

Then, users should identify the project risk. This activity might perform

anytime during deriving the software development plan.

Finally, all activities will be terminated until the exit condition of

Derive -Software -Development -Plan has been satisfied. The exit condition of the

primary P-states will be linked to the goals of related KPA. This is because the

assessment of the CMM depends on the goals and KPAs. Once the related goals

are reached, the exit condition of the P-state is satisfied.

Since SPI PASTA adopts MIL-STD-498 as a standard for the activities of

software product engineering, we appropriately link these activities and data item

descriptions to the P-state forms (See Table 6.1). Users may follow these activities

184

Help I File 	Edit 	View 	Go 	Communicator

Back Forward 	Reload 	Home 	Search Guide 	Print Security 	Stop

Bookmarks 	L Location 	ttp//amdca. ed. acuk/hoaeSyfPaSTA/sPIPaat&htiu1

)eve1ov Software ManaenhI Derive_Software_Development_Plan

—Draft 	 Plan _Project _Mission

....

. 	. 	. Project Mission

—Draft 	And Re. .-.
Draft Project Mission Plan

,.
Plan [Referenced] 	. 	[Draft] ProjectJYl

... 	..
solon_Plan

—Draft Software Engineerine
—Draft Schedule And Rceoui
- -BuildWBS
- -Estsrnde Software Size, 	,..
- - - CornprareCategoiy_Ssze

Draft
.... 	

.-- 	Project 	Mission. P-la 	[Drafted]......

	

_ __. 	. 	
. 	 _
[Dred]Qrganisahon.And R.esponsibility_Plap

	

Organisation _And Res onsibi[ity_Plan[Referchcpd] 	eft

- - - Cedcale.Ie Software Size
- - - Docoment Esttmafed Siz
- - Estsmcote Effort And Cost
- - - Get Protocttvstv Meceru,
- - - Calculate Time Required
---Document Estsrncrtecl Tin

- - EstimioteScliedule
-IdenljfPro tect Risk
Perform_ Software 	cgulsslsor _A

- - Estima!e Resource
.

	

.

. 	I 	•Diaft Software Engineering Activity. Plan 	.
I

- Orgnsatio.n
 T

And _P jeoponsibthty Pln[Dra
-
ed]

ar _e__
.
_
E_n_g_in_e ringActivityPlanPlan[Reerenc

	

_

Software Engine 	Activity
	

ware—Engine

—Draft Acquisition Plan
—Manage Supplier Selection
--Deterrsne Acquisition Ne
- - Establish Recarement
--Acgare COTS Produ
--select contractor
- -Estcthlis,* Contract
-Manage Supplier Monotorin

.
.

. 	- 	. 	. 	.

And Resouce
Allocated_equsreisient

oftw.3re - 8ngincering_Acfivit,,7_Plan[,Draftedl.

.

I Draft Schedule And Resource Plan
. 	. 	. 	. 	-

afted

	

Plan[Referenced]

[Derived] I 	[Drafted] Schedule_

.

.• 	-

.
ndResource_Plan

- Track Supplier
--Review Tecalcczl Issue
- -Review Mcnncrqement Zsno
--Evalucste Supplier Schedule
--A ccept Acquired Software

-Track SDP
—Correct SDP
-Maintain SDP
Eotabhsh_Commitiosent

Develop _Software _Tethrno

. - 	 •.
. 	S 	

Identity_Project_Rok

[Risk _Identified] So 	are_Development_Plan

Sàftware Developftieit Plan [Referenced]1 . 	[Derfved] Software Development Plan..
- 	.. 	. 	_ 	_. 	 . Develon Software Rearnreme

hltp 	dCs.ed.ac.uk/home/ky/PASTA/OperationForms/Document Estimated Si slit html 	 3)

Figure 6.4: The P-State Diagram of Software Development Plan

185

Activities in MIL-STD-498 [P-State Forms in SPI PASTA

5.1 Project planning and oversight Derive Software Development Plan

5.2 Establishing a software
development environment

Derive Software Development Plan

5.3 System requirements analysis Derive System Requirement
5.4 System design Derive System Requirement

5.5 Software requirements analysis Develop Software Requirement

5.6 Software design Develop Software Design
5.7 Software implementation and unit testing Develop Software Code
5.8 Unit integration and testing Perform Integration Test
5.9 CSCI qualification testing Perform Integration Test
5.10 CSCl/HWCI integration and testing Perform Integration Test

5.11 System qualification testing Perform System Test
5.12 Preparing for software use Develop Operation Documentation
5.13 Preparing for software transition Develop Operation Documentation
5.14 Software configuration management Perform Configuration Management
5.15 Software product evaluation Perform Acceptance Test
5.16 Software quality assurance Perform Software Quality Assurance

5.17 Corrective action Perform Peer Reviews
5.18 Joint technical and management reviews Perform Peer Reviews

Table 6.1: Mapping the Activities of MIL-STD-498 to P-State Forms of SPI
PASTA

and link the relevant data item description. When these data item descriptions

are completed, they will be viewed as the artifact for assessing the maturity level.

6.2 Assessment of SPI PASTA

6.2.1 The CMM Appraisal Framework

Assessment is one of the most essential issues in the CMM. Without assessing

the defined software process, we do not know whether it will go to the right

destination. In order to assess the software process performed in SPI PASTA, we

must firstly study the appraisal method in the CMM.

The CMM appraisal framework (CAF), developed by SET, is a framework for

developing, defining, and using appraisal methods based on the CMM. The CAF

provides a framework for rating the process maturity of an organisation against

a generally accepted reference model through the use of an appraisal method.

However, the CAF is not an appraisal method and does not directly assess the

software process performed in the software organisation. The CAF identifies the

requirements and desired characteristics of a CMM-based appraisal method in

186

order to improve consistency and reliability of methods and their results. Together

the CMM and the CAF describe "what" must be accomplished by CAF compliant

appraisal methods. The appraisal methods themselves detail "how" to transform

an organisation's software process data into information of value to meeting an

organisation's business needs[MB95].

Currently, the SET has published two CAF-compliant methods: software pro-

cess assessment and software capability evaluation.

Software process assessments are used to determine the state of an

organisation's current software process, to determine the high-priority soft-

ware process-related issues facing an organisation, and to obtain the or-

ganisational support for software process improvement. The CMM-Based

Appraisal for Internal Process Improvement (CBA IPI), developed by the

SET, is intended to be a diagnostic tool that enables an organisation to gain

insight into its software development capability by identifying strengths

and weaknesses of its current processes, to relate these strengths and weak-

nesses to the CMM, to prioritise software improvement plans, and to focus

on software improvements that are most beneficial, given its current level

of maturity and the business goals[DM96].

Software capability evaluations (SCE) are used to gain insight into the

software process capability of a supplier organisation and is intended to help

decision makers make better acquisition decisions, improve subcontractor

performance, and provide insight to a purchasing organisation. SCE version

3.0, published by the SET, provides a CAF-compliant method for evaluating

the software process of an organisation[BP96].

The basic difference between an assessment and an evaluation is that an assess-

ment is an appraisal that an organisation does to and for itself, and an evaluation

is an appraisal where an external group comes into an organisation and looks at

the organisation's process capability in order to make a decision regarding future

business [DM96]

The concept of building SF1 PASTA is software process improvement. As a

result, to assess SF1 PASTA is an activity which gains insight into its software

development capability by identifying strengths and weaknesses of its processes.

With the CBA IPI, the status of each process in SF1 PASTA will be assessed.

SEPG and managers can recognise the strengths and weaknesses of the process

and build an action plan for the process improvement program.

187

Before discussing software process assessment, we need to know the rating

system in the CAF. Fundamentally, the assessment is rated by relying on the

CMM structure (as Figure 6.5). Each maturity level is decomposed into several

KPAs that indicate the areas an organisation should focus on to improve its

software process. Each KPA identifies a cluster of related activities that achieve

a set of goals considered important for enhancing process capability. Therefore,

satisfaction of a key process area depends on satisfaction of the goals. This

satisfaction can involve implementation of the key practices that map to that

goal or implementation of an alternative set of practices that achieve the goal.

When the assessment team members examine a specific key process area in SPI

PASTA, all of the goals for the specific KPA must he satisfied in order for the

KPA to he satisfied.

Figure 6.5: The CMM Structure

It is not necessary to assess all KPAs in SPI PASTA, since some KPAs, such

as Software Acquisition Management, are not applicable in the software project.

Therefore, the CAF defines rating values as following[MB95]:

A KPA or goal is satisfied if this aspect of the CMM is implemented

and institutionalised either as defined in the CMM, or with an adequate

alternative.

A KPA or goal is unsatisfied if there are significant weaknesses in the

appraised entity's implementation or institutionalisation of this aspect of

the CMM, as defined, and no adequate alternative is in place.

A KPA or goal is not applicable if the KPA is not applicable in the

organisation's environment.

A KPA or goal is not rated if the associated appraisal findings do not meet

coverage criteria or if this aspect of the CMM falls outside the scope of the

appraisal.

In this rating system, in addition to not applicable and not rate, KPAs and

goals only have two choices, satisfied or unsatisfied. Kitson[Kit961 described that

the CMM is a staged model. Overall process capability of the organisational

unit assessed is a roll-up of individual KPA ratings. If one goal of the KPA is

unsatisfied, this KPA will be unsatisfied and the organisational unit assessed will

fail to reach this level's capability.

If we contrast ISO 15504, Kitson[Kit96] described it a continuous model. In

ISO 15504, process capability is measured on a process-by-process basis. The

approach to rating used in the ISO 15504 product set is use a four-point ordinal

rating scale of adequacy for each process. This scale, different to the CMM's,

includes Not adequate (N), Partially adequate (P), Largely adequate (L) and

Fully adequate (F). An actual process capability level rating shall be determined

for each process instance assessed by aggregating the generic practice adequacy

ratings within each capability level. For each process instance, the actual process

capability level ratings shall describes, for each capability level, the proportion

of generic practices that were rated at each point on the generic practice ad-

equacy scale in a clear and unambiguous way[SPI95]. Consequently, the process

capability level rating can be represented as the following vector:

[% Fully, % Largely, % Partially, % Not Adequate]

The concept of ISO 15504's rating system is more flexible than CAF's. It

provides a range idea to show how well the process is rather than just "on or off".

For example, to complete the goal 2 in the Software Project Planning key process

area, "Estimates of the software project's planning parameters are established and

maintained," five key practices, AC.06, AC.07, AC.08, AC.10, AC.15 (Activities

performed), must be satisfied. The appraisal team might assess the goal 2 for

X project and make a rating such as AC.06 and AC.07 are largely adequate,

AC.08 and AC.10 are partially adequate, AC.15 is fully adequate and none of key

practices are not adequate. As a result, one of key practices is fully adequate -

189

20%, two of them are largely adequate - 40%, two of them are partially adequate

- 40% and none of them are not adequacy. The adequacy rating of goal 2 can be

represented as a vector in the form:

PP-GO-02 = [20%, 40%, 40%, 0]

In some circumstances it can even assign a weighting to the four points on the

adequacy scale, for example 100% for fully adequacy, 75% for largely adequacy,

25% for partially adequacy and 0% for not adequacy. Any derived rating may be

represented as a single value rather than as a vector. Therefore, the above vector

should be calculated as following:

20% * 100% + 40% * 75% + 40% * 25% + 0 * 0 = 60%

This value might give the project manager a clear vision to show the project's

condition. Furthermore, the appraisal team may point out the strengths and

weaknesses of each key practice. The project manager can make a correction for

the project in accordance with the assessment results.

In SPI PASTA, we adopted the SET's rating system. However, users may

change this rating system to ISO's if they prefer value presentation.

6.2.2 Software Process Assessment

An assessment method should contain three phases of appraisal execution. The

first phase includes the activities necessary to plan and prepare for the assessment.

The second phase consists of on-site activities for conducting assessment. The

final phase is to report the results. All activities performed for assessment are

shown in Figure 6.6.

6.2.2.1 Plan and Prepare for Assessment

The first phase, planning and preparation for assessment, is the key to success of

assessment. As shown in Figure 6.6, this phase consists of analysing requirements,

selecting and preparing the assessment team, selecting and preparing participants

and developing the assessment plan.

Analyse Requirements Analysing the requirements for a particular assess-

ment includes development of assessment goals, constraints and scope. The scope

of assessment consists of the MINI scope and organisational scope. To assess a

project, it may include one or more KPAs within the CMM. Then the appraised

entity should be defined. An appraised entity might be any portion of an organ-

isation, such as an organisation unit, a specific project and so on.

190

Plan and
Prepare

Analyse

Requirements

Select and Develop Select and
Assessment Prepare

Prepare Team Plan 	 Participants

Conduct 	 Colic
Assessment 	 Reco

[Con

Mak

Jud

---------------1

Report 	 Report
Results 	 Assessment

Results

Preserve
Records

and
Data

lidate

ta

ating

ents

Figure 6.6: Activity Diagram for Assessment

191

Select and Prepare Team This activity includes selection and preparation of

the assessment team. It contains identifying the assessment team leader, selecting

each of the team members, and providing the team with training and orientation

needed to prepare for the assessment.

Select and Prepare Participants Participants are those who provide the

assessment team with data concerning the appraised entity's software process.

The participants should be appropriately oriented in the assessment process to

comply with the assessment team.

Develop Assessment Plan In the end of Phase one, an assessment plan should

be developed. It will guide and define execution of the assessment. The assess-

ment plan should include information on the following item[MB95]:

. Identifies the assessment goals.

. Identifies the assessment scope.

. Identifies the assessment activities.

. Provides a schedule for the activities.

Identifies the people, resources and budget required to perform the activit-

ies.

. Identifies the assessment outputs and their anticipated use.

Identifies anticipated follow-on activities.

. Documents any planned tailoring of the assessment method and associated

trade-offs.

. Identifies risks associated with assessment execution.

6.2.2.2 Conduct Assessment

The second phase, conducting the assessment, shown in Figure 6.6, consists of

collecting and recording information on the software process of the project, con-

solidating information collected, and making rating judgements.

192

Collect and Record Data Information about the organisation's software pro-

cesses can be collected from four categories: instruments, presentations, inter-

views and documents. Data collection using instruments includes such activities

as administering questionnaires and surveys and gathering their responses. Data

collection using presentations can involve presentations by the assessment team

or the assessment participants that include interaction between the two. Data

collection through interviews involves assessment team members asking questions

and engaging in discussions with assessment participants and recording their re-

sponses. Data collection using documents involves reviewing a lasting repres-

entation of information. Documents may exist in various hardcopy or electronic

forms.

Consolidate Data Consolidation is the decision making activity in the iterat-

ive information gathering and decision making process. During consolidation, the

assessment team organises the information obtained from data gathering sessions

and combines it into a manageable summary of data. Then the assessment team

validates the information to ensure that they accurately reflect the practices of

the appraised entity.

Make Rating Judgements Goals and KPAs are two components of the CMM

that can be rated. Maturity level ratings depend exclusively on the ratings of

KPAs and KPA ratings depend on the ratings of the goals. The assessment team

must come to consensus on the ratings which it provides to an appraised entity.

Without this procedure, the rating could not be counted as a valid one.

6.2.2.3 Report Results

The final phase, Reporting results, shown in Figure 6.6, consists of reporting

assessment results and preserving records.

Report Assessment Results Strengths and weaknesses of appraised entity

are presented for each KPA within the assessment scope. These results will guide

the areas in which an organisation focuses its software process improvement ef-

forts.

Preserve Records Assessment records should be preserved for conducting a

subsequent assessment.

193

6.2.3 Assessing SPI PASTA

Table 6.2 and 6.31 show that the key practices map to goals of KPAs at Level

2 and 3. Both tables provide a foundation to assess the development processes

by assessment team. All goals within the assessment scope must be rated. Since

each goal has its own key practices, to satisfy a goal, its key practices should be

completely performed.

In SPI PASTA, we have allocated related key practices to the operation defin-

ition forms. For example, the goals of the Software Project Planning key process

area are linked to the P-state diagram of Derive Software Development Plan.

Users check the exit condition with call goals of the KPA (as Figure 6.7). Then

they can concentrate on one goal by calling all related key practices (as Fig-

ure 6.8). Each key practice has its own selection menu. This selection menu

has been defined to four grades, Satisfied, Unsatisfied, Not Applicable and Not

Rated. Users can select the appropriate value for each key practice and click

the "Assess" button, then data will be collected by assigned person (such as the

project manager). The development team may use the data to check whether the

goal is satisfied or how good key practices are performed.

Assessing SPI PASTA is not necessary to organise an assessment team. It will

depend on what the purpose is. For the purpose of software process improvement

inside organisation, the development team may perform assessment for its own

software project. The project manager may assign one or two members as assess-

ment team to trace all key practices of project's defined software process. This

team can follow the assessment procedures to record strengths and weaknesses of

the software process. This will be the basis to improve SPI PASTA.

6.2.4 Post Action

We would not say that SPI PASTA can well fit any type of software project.

After all, a real-time system is quite different from a business information system.

SPI PASTA need to be tailored in order to comply with the features of software

projects. However, it does not mean that applying a tailored process can develop a

good software product. Process modification can take place at any time during the

software development period. It could be viewed as part of a process improvement

effort. As mentioned in assessing SPI PASTA, users assess the key practices in

order to decide project's maturity. In the meantime, they will comment the

strength and weakness of the project, such as why a P-state or an operation

'CO: Commitment to perform, AB: Ability to perform, AC: Activities performed, ME:
Measurement and analysis, VE: Verifying implementation

194

KPAs Goal [Key Practices

Requirements
Management

1 CO.01, AB.01, AB.02, AB.03, AB.04, AC.01, ME.01,
 VE.01, VE.02, VE.03, VE.04

2 AC.02, AC.03
3 AC.04

Software Project
Planning

1 CO.01, AB.01, AB.02, AB.03, AB.04, AC.01, ME.01,
 VE.01, VE.02, VE.03, VE.04

2 AC.06, AC.07, AC.08, AC.10, AC.15
___ 3 AC.12, AC.13

4 AC.02, AC.03, AC.04, AC.05, AC.09, AC.11, AC.14

Software Project
Control

1 CO.01, AB.01, AB.02, AB.03, AB.04, AC.01, ME.01,
 VE.01, VE.02, VE.03, VE.04

2 AC03, AC.04, AC.05, AC.07, AC.13
3 AC.02, AC.06, AC.08, AC.09, ACiD
4 AC.11, AC.12

Software Acquisition
Management

1 CO.01, AB.01, AB.02, AB.03, AB.04, AC.01, ME.01,
 VE.01, VE.02, VE.03, VE.04

2 AC.02, AC.04, AC.05
3 AC.03, AC.06
4 AC.07, AC.08, AC.09, ACiD, AC.11, AC.12

Software Quality
Assurance

1 CO.01, AB.01, AB.02, AB.03, AB.04, AC.01, ME.01,
 VE.01, VE.02, VE.03, VE.04

2 AC.02, AC.04
3 AC.03, AC.04
4 AC.04, AC.05

Software Configuration
Management

1 CO.01, AB.01, AB.02, AB.03, AB.04, AC.01, IVIE.01,
 VE.01, VE.02, VE.03, VE.04

2 AC.03, AC.09
3 AC.02, AC.06, AC.07, AC.08, AC.09
4 AC.04, AC.05, AC.07, AC.09

Table 6.2: Mapping the Key Practices to Goals at Level 2

195

KPAs Goal Key Practices

Organisation
Process Focus

1 CO.01, CO.02, AB.01, AB.02, AB.03, AB.04, AC.01,
 ME.01, VE.01, VE.02, VE.03,

2 AC.02
3 AC.03, AC.04, AC.05, AC.06

Organisation
Process Definition

1 CO.01, CO.02, AB.01, AB.02, AB.03, AB.04, AC.01,
 ME.01, VE.01, VE.02, VE.03,

2 AC.02
3 AC.03, AC.04, AC.05, AC.06

Organisation
Training Program

1

CO.01, CO.02, AB.01, AB.02, AB.03, AB.04, AC.01,
ME.01, VE.01, VE.02, VE.03,

2 AC.02, AC.04, AC.05, AC.06
3 AC.03, AC.05

Integrated Software
\'Ianagement

1 CO.01, AB.01, AB.02, AB.03, AB.04, AC.01, ME.01,
 VE.01, VE.02, VE.03, VE.04

2 AC.02, AC.03
3 AC.04, AC.05, AC.08
4 j AC.06, AC.07

Software Product
Engineering

1 CO.01, AB.01 AB.02, AB.03, AB.04, AC.01, ME.01
 VE.01, VE.02, VE.03, VE.04

2 AC.02, AC.03, AC.04, AC.05, AC.09
3 AC.02.AC.06, AC.07, AC.08
4 AC.09, AC.10.AC.11, AC.12

Project Interface
Coordination

1 COOl, AB.01, AB.02, AB.03, AB.04, AC.01, ME.01,
 VE.01, VE.02, VE.03, VE.04

2 AC.02, AC03, AC.04, AC.05
3 AC.03, AC.06, AC.07

Peer Reviews 1 CO.01, AB.01, AB.02, AB.03, AB.04, AC.01, 1VIE.01,
VE.01, VE.02, VE.03, VE.04

2 AC.02, AC.03, AC.05
3 AC.04, AC.05

Table 6.3: Mapping the Key Practices to Goals at Level 3

196

File Edit View Go Communicator 	 Help

Back Forward Reload Home Search Guide 	Print Security Stop

Bookmarks 4 Location. sttp //srnnu. dco, od on. uome/ky/PAOTA/CMtt/npp/5pp.htrel

Software Project Planning

§ I 	 Goals Assessment

[EP-GO.01 The activities for planning the software project are institutionalized
to support a repeatable process.

Satisfied 	
Dl

[EP.GO-02 Estimates of the software projects planning parameters are
established and maintained. { 	Unsatisfied 	1

00.03 F Commitments for the software project are established and
maintained.

[Applicable D

FERGO.04 The plan for controlling the software project is established and
maintained. 1

jAssessi [keset

1OU 	 iLri0\tII

Figure 6.7: The Assessment of Software Project Planning

can not be appropriately performed. The project manager should rely on these

comments to modify SPI PASTA. This effort could be done after developing the

project. It is viewed as the organisation's software process assets to contribute

to future software projects. Moreover, this effort could happen during developing

the software project. It could be that the process might not be performed as

expected or some critical facilities force process changes.

in environments ranging from the individual PC to global distributed systems.

197

File Edit View Go Communicator 	 Help

Back Forward Reload Home Search Guide 	Print Security Stop

Bookmarks .L Location ttp: //wdca.edacuk/home/ky/P1STh/CN01/opp/ppgo04.hta1

PP.GO.04 The plan for controlling the software project is established and
maintained.

F-§ -1 Activities performed Assessment

FERAC-02 Establish and maintain a work breakdown structure for the Satisfied

.AC.03

software project.

F Coordinate software project planning with overall project

p-

planning throughout the project's software life cycle. riatisfie*l 	ci

1

P. AC.04
F

the project's software life cycle. Satisfied IF
C-05 PP.AC.05

Establish and maintain definitions of measures used to Establish
control the software project. (t Applicabi ___tJ

FERAC-09 Establish and maintain the plan for the software
engineering facilities needed by the software project. ~E N=

-

FERAC. 11 Identify and analyze software project risks. [isfied 	ci

PP.AC.14
Establish and maintain the project's software development
plan.

Satisfied 	i
I _______________

100% 	.1 	 ki

Figure 6.8: The Assessment of Establishing the Software Development Plan

198

Chapter 7

Conclusions and future work

7.1 Conclusions

This thesis has explored a variety of issues in process modelling for software devel-

opment under the capability maturity model. The CMM focuses on the software

process that can have an effect on the effectiveness of people in doing their work

and the adoption of effective technologies, all of which will help the organisation

attain its business objectives. However, many of limitations and weaknesses in

the CMM have long been evident. Consequently, only 16% of assessed organisa-

tions have reached higher than maturity Level 3 for ten years. One of weaknesses

in the CMM is that the CMM is actually a descriptive model in the sense that

it describes essential attributes that would be expected to characterise an organ-

isation at a particular maturity level. This means that the CMM describes what

a process should address rather than how it should be implemented. As a result,

there are many difficulties for software organisations using the CMM since the

CMM contains so many key practices for developing and maintaining software. In

spite of supplementary works, such as the Software Process Framework and the

Trillium model, software organisations still have difficulty to follow the CMM.

In this thesis, an artifact-driven approach has been developed to support the

definition of software processes. It corresponds to the CMM's KPAs complying

with the relevant standards to develop software projects. The goal of this research

is to provide a model to guide a continuous improvement program. Since the

CMM is a descriptive model that does not specify how software development

should be implemented, some standards and methodology, such as the UML,

ISO 9001 and so on, had to be added in software processes. SPI PASTA has

been developed from artifact and process views to help users develop software

work products. We believe there are several reasons for using graphical process

notations to model the software process:

199

The software development activities are increasingly complex and inter-

woven. It is hard to handle a software project as a single person. Clearly,

the software process should be recognised by all interested parties which

may be a project manager, requirement analysts, designers, quality assur-

ance staff and so on. A unified process model provides a common language

to these process roles. This will lead to a significant progress for software

development.

SF1 PASTA provides a framework in terms of artifacts which can integrate

standards, CASE tools, and relevant activities to apply the CMM's KPAs.

Software organisations may then more easily develop their software projects

in correspondence with the CMM.

An experience of the software development efforts can be recorded by the

process notations. This will form a foundation of the organisation's software

process assets in order to improve organisation's software process.

The process modelling clearly presents what software process information

and where the resources developers need to follow and apply. This will be

helpful for those who just join the development team to avoid chaos in the

beginning.

In chapter 3 we firstly addressed how to establish the organisation's set of

standard software processes which covers the entire software process. We started

out by selecting software life cycle, establishing the tailoring guidelines and cre-

ating the organisation's software measurement database. These activities form a

foundation to establish the project's defined software process which is practically

relied on to develop a software project.

Developing the software management processes is described in section 4.1.

The most important task in the software management processes is to establish

the software development plan. The software development team relies on the

software development plan to perform and track software activities, communicate

status and take corrective action. The allocated requirements should be derived

in order to form the basis for planning, performing and tracking the software pro-

ject's plans and activities. The software may be acquired from different sources,

such as COTS products, external contractors and so on. Software acquisition

management defines approaches to manage these sources. However, SF1 PASTA

does not focus on the topic for real-time and control systems. Currently, the

system requirements allocated to hardware are not discussed in SF1 PASTA.

200

Two support processes, software quality assurance and software configuration

management, are described in section 4.2. The software project must be conduc-

ted under quality control. These activities ensure the software project will keep

its pace on the right way. In the meantime, changes of software work products

should be well controlled, especially in the complex and distributed environment.

In section 5.1 we addressed the technical processes. Since SPI PASTA adopted

00 methodology, with MIL-STD-498 standard, the software work products are

partitioned into several CSCIs and may be developed in several builds. The

technical processes provide the guideline to conduct these activities throughout

the software life cycle.

Several organisational processes are described in section 5.2. Relevant training

should be organised in order to allow staff to perform those activities during

software development. Furthermore, the potential problems must be discovered as

early as possible and a solution found to tackle them. Software risk management

defines the approach to identify, analyse and eliminate those software risks. Since

developing a software project needs different roles to perform relevant activities,

project coordination issues should receive appropriate attention. All groups of the

software project must communicate well to ensure that everyone involved in the

software project is appropriately aware of his/her status. Moreover, the activities

to identify defects of software work products are performed by the developers'

peers.

Finally, we addressed an appraisal method to assess SPI PASTA. By way of

assessing each key practice, the goals of KPAs will be appropriately achieved and

SPI PASTA will be increasingly improved.

7.2 Future Work

As we have mentioned in previous chapters, the CMM contains too much in-

formation for developing and maintaining software. People developing software

products consistent with the CMM need a framework which helps them to analyse

and implement these process information. In this thesis, we addressed a software

process improvement issue by modelling the CMM's level 2 and 3. We believe

that the key process areas described in the CMM's level 2 and 3 are the major

barrier for software organisation. As a result, an infrastructure has been built to

help software developers handle software processes.

In the future, some technical problems, such as tree navigation, might be

modified in order to run smoothly. Some processes, such as 00 testing strategies,

201

should be completely developed by the software organisation to comply with the

whole processes. Moreover, SPI PASTA should be expanded into the key pro-

cess areas at level 4 and 5. These areas focus on establishing a quantitative

understanding of both the software process and the software work products being

built, and implementing continual and measurable software process improvement.

These processes must base on the infrastructure defined at level 2 and 3 and soft-

ware organisations need time to build this infrastructure. Furthermore, the SET

has developed a number of other CMMs, such as the System Engineering CMM

(SE-CMM), the People CMM (P-CMM) and the Software Acquisition CMM (SA-

CMM). The SET is developing an integrated framework for describing the current

and intended relationships of existing and potential maturity models. Ideally the

various CMMs should work together harmoniously for the benefit of organisations

needing to efficiently apply more than one CMM to improve their product qual-

ity and productivity. However, we believe it will be helpful by using artifact and

process abstraction to integrate CMMs. Consequently, the process of developing

the real-time and control systems should be included in SPI PASTA in the future.

Finally, a measure of the actual results achieved by following a process should

be appropriately collected and controlled. The common software measures for the

organisation are comprised of process and product measures that summarise the

software process performance achieved by the projects. In order to achieve this

goal, the relevant tools must be integrated with SPI PASTA. This will provide a

seamless connection between software processes and tools. With this integrated

process environment, developers do their job by following SPI PASTA and the

common data will be automatically collected by those tools. Once this step is

achieved, it will be much easier to reach the final destination of software process

improvement.

202

List of Figures

1.1 The Process Architecture of the CMM8

1.2 Trends in the Community Maturity Profile8

1.3 Microsoft's Synch-and-Stabilise Life Cycle[CS95]15

2.1 The CMM Structure 32

2.2 SET Capability Maturity Model 34

2.3 The Software Engineering Process in MIL-STD-498 39

2.4 Relationships Defining the Design Model 41

2.5 Representation of PASTA elements 42

2.6 The A-State Transition Diagram44

2.7 The P-State Transition Diagram46

3.1 Process Definition Life Cycle49

3.2 A Tailoring Framework 50

3.3 The Relevant Activities and Products in the CMM Levels 2 and 3 51

3.4 The SEL Process Improvement paradigm54

3.5 The IDEAL Model for Software Process Improvement55

3.6 The P-State Tree of Software Process Improvement 56

3.7 The P-State Diagram of Software Process Improvement57

3.8 The P-State Tree of Organisation Process Focus58

3.9 The Artifact Tree of Organisation Process Focus58

3.10 The P-State Diagram of Organisation Process Focus59

3.11 The Framework of the Organisation's Standard Software Assets 61

3.12 The P-State Tree of Organisation Process Definition64

3.13 The Artifact Tree of Organisation Process Definition 65

3.14 The P-State Diagram of Organisation Process Definition 66

3.15 The Framework of the Project's Defined Software Process68

3.16 The P-State Tree of the PDSP71

3.17 The Artifact Tree of the PDSP 72

3.18 The P-State Diagram of the PDSP 73

203

4.1 The Framework of the Software Management Processes76

4.2 The P-State Tree of the Software Management Process 77

4.3 The Artifact Tree of the Software Management Process78

4.4 The P-State Diagram of the Software Management Process . . 80

4.5 The Architecture of Requirements81

4.6 The P-State Tree of Requirements Management 82

4.7 The Artifact Tree of Requirements Management82

4.8 The P-State Diagram of Requirement Management 83

4.9 Classical view of software estimation process 85

4.10 Alternative View of Breadth-First Partitioning [GR95] 87

4.11 The Steps for Making a Schedule Estimate 89

4.12 The flowchart for estimating software size92

4.13 The flowchart for estimating development time93

4.14 The P-State Tree for Software Process Planning 95

4.15 The Artifact Tree for Software Process Planning96

4.16 The P-State Diagram for Software Process Planning97

4.17 The P-State Tree for Software Project Control99

4.18 The P-State Diagram for Software Project Control 101

4.19 The Life Cycle of COTS-Based Systems 103

4.20 The P-State Tree for Software Acquisition Management105

4.21 The Artifact Tree of Software Acquisition Management 106

4.22 The P-State Diagram for Software Acquisition Management 	. 108

4.23 The P-State Tree of the Software Support Process109

4.24 The Artifact Tree of the Software Support Process110

4.25 The P-State Diagram of the Software Support Process 111

4.26 The Architecture of Software Quality Assurance 112

4.27 The P-State Tree of Software Quality Assurance114

4.28 The Artifact Tree of Software Quality Assurance115

4.29 The P-State Diagram of Software Quality Assurance 116

4.30 The P-State Tree of Software Configuration Management119

4.31 The Artifact Tree of Software Configuration Management120

4.32 The P-State Diagram of Software Configuration Management. 121

5.1 The Macro Development Process125

5.2 The Software Engineering Process in MIL-STD-498126

5.3 The P-State Tree of the Software Technical Process128

5.4 The Artifact Tree of the Software Technical Process129

5.5 The P-State Diagram of the Software Technical Process130

204

5.6 The Use Case Diagram[BJR97] 133

5.7 How CRC Modelling Fits In[Amb95] 135

5.8 The Process of Requirements Engineering 135

5.9 The P-State Tree of Requirements Analysis136

5.10 The Artifact Tree of Requirements Analysis 137

5.11 The P-State Diagram of Software Requirement138

5.12 The Class Diagram 140

5.13 The Sequence Diagram[JGJ97]141

5.14 The Collaboration Diagram 142

5.15 The Statechart Diagram[BJR97] 143

5.16 The Activity Diagram[BJR97] 144

5.17 The P-State Tree of the Software Design 145

5.18 The Artifact Tree of the Software Design 147

5.19 The P-State Diagram of the Software Design148

5.20 The P-State Tree of Software Implementation 150

5.21 The Artifact Tree of Software Implementation 151

5.22 The P-State Diagram of Software Implementation152

5.23 The P-State Tree of Software Testing 154

5.24 The Artifact Tree of Software Testing155

5.25 The P-State Diagram of Software Testing156

5.26 The P-State Tree of the Organisational Process 157

5.27 The Artifact Tree of the Organisational Process 158

5.28 The P-State Diagram of the Organisational Process 160

5.29 The P-State Tree of the Organisation Training Program162

5.30 The Artifact Tree of the Organisation Training Program 163

5.31 The P-State Diagram of the Organisation Training Program 	. . 	165

5.32 The P-State Tree of Risk Management 168

5.33 The Artifact Tree of Risk Management 169

5.34 The P-State Diagram of Risk Management170

5.35 The P-State Tree of Project Interface Coordination 172

5.36 The Artifact Tree of Project Interface Coordination 173

5.37 The P-State Diagram of Project Interface Coordination174

5.38 The P-State Tree of Peer Reviews 176

5.39 The Artifact Tree of Peer Reviews177

5.40 The P-State Diagram of Peer Reviews 178

	

6.1 	The Homepage of SPI PASTA182

	

6.2 	The P-State Diagram of Software Management Process183

205

6.3 The A-State Diagram of Software Development Plan 184

6.4 The P-State Diagram of Software Development Plan 185

6.5 The CMM Structure 188

6.6 Activity Diagram for Assessment 191

6.7 The Assessment of Software Project Planning 197

6.8 The Assessment of Establishing the Software Development Plan 198

206

List of Tables

1.1 Software Project Outcome By Size of Project[Jon96]2

1.2 Motorola GED Project Performance by SET CMM Level[DS97] . . 	6

2.1 	The Artifact Definition Form Template43

2.2 	The Process State Definition Form Template45

2.3 	The Operation Definition Form Template46

4.1 	Distribution of Time Schedule and Effort Over Phase in NASA[NAS90] 88

4.2 	Complexity Guideline[NAS9O]94

4.3 Development Team Experience Guideline[NAS90]94

5.1 	The Requirements Trace Matrix134

6.1 	Mapping the Activities of MIL-STD-498 to P-State Forms of SF1

PASTA.................................186

6.2 	Mapping the Key Practices to Goals at Level 2195

6.3 	Mapping the Key Practices to Goals at Level 3196

207

Bibliography

[AES95] 	Paul G. Arnold, William H. Ett, and S. Wayne Sherer. Software

Process Framework: Tool to Determine Consistency With the CMM.

Software Technology Conference, Salt Lake City, UT, April 1995.

[AG83] 	A. J. Albrecht and J. E. Gaffney. Software Function, Source Lines

of Code, and Development Effort Prediction. IEEE Transaction on

Software Engineering, pages 639-648, November 1983.

[Amb95] 	Scott Ambler. The Object Primer. SIGS Books, New York,, 1995.

[Aoy90] 	M Aoyama. Distributed Concurrent Development of Software Sys-

tem: An Object-Oriented Process Model. Proc. Compsac, IEEE CS

Press, pages 330-337, 1990.

[Aoy93] 	M Aoyama. Concurrent-Development Process Model. IEEE SOFT-

WARE, pages 46-55, July 1993.

[Aoy97] 	M Aoyama. Agile Software Process Model. COMPSAC'97, The

Twenty-first Annual International Computer Software & Applica-

tions Conference, Washington D.C., pages 454-459, August 1997.

[Bac94] 	James Bach. The Immaturity of the CMM. American Programmer,

September 1994.

[BBB95] 	David Bristow, Brian Bulat, and Roger Burton. Product-Line Pro-

cess Development. Software Technology Conference, Salt Lake City,

UT, April 1995.

[BC96] 	Lisa Brownsword and Paul Clements. A Case Study in Successful

Product Line Development. Technical Report, SEI-96- TR-01 6, SEL

Carnegie Mellon University, Pittsburgh, PA, October 1996.

[BCKM97] Kathy Beckman, Neal Coulter, Soheil Khajenoori, and Nancy R.

Mead. Collaborations: Closing the Industry-Academia Gap. IEEE

SOFTWARE, pages 49-57, November 1997.

208

[Ber97] 	Klaus Berg. Component-Based Development: No Silver Bullet. Ob-

ject Magazine, March 1997.

[BHS80] 	E. H. Bersoff, V. D. Henderson, and S. G. Siegel. Software Config-

uration Management. Prentice-Hall, 1980.

[BJR97] 	Grady Booch, Ivar Jacobson, and James Rumbaugh. 	The

Unified Modelling Language. Documentation Set Version 1. 1,

http://www.ro,tz*onal.com/, Rational Software Corporation, £A,

USA, September 1997.

[BK W95] 	Roger Bate, Dorothy Kuhn, and Curt Wells. A Systems Engin-

eering Capability Maturity Model, Version 1.1. Maturity Model,

CMU/SEI-95-MM-003, SEI, Carnegie Mellon University, Pitts-

burgh, PA, November 1995.

[BM91] 	Terry B. Bollinger and Clement McGowan. A Critical Look at Soft-

ware Capability Evaluations. IEEE SOFTWARE, pages 25-41, July

1991.

[BNF96] 	Sergio Bandinelli, Elisahetta Di Nitto, and Alfonso Fuggetta. Sup-

porting cooperation in the SPADE-1 Environment. IEEE Transac-

tions on Software Engineering, 22(12), December 1996.

[Boe8l] 	Barry W. Boehm. Software Engineering Economics. Prentice-Hall,

1981.

[Boe88] 	B. Boehm. A Spiral Model for Software Development and Enhance-

ment. Computer, 21(5):61-72, May 1988.

[Boh97] 	Kathy Bohrer. 	Middleware Isolates Business Logic. 	Object

Magazine, November 1997.

[Boo93] 	G. Booch. Object-Oriented Analysis and Design with Application.

The Benjamin-Cummings Publishing Company, Inc., second edition,

1993.

[Boo96] 	G. Booch. Object Solutions, Managing the Object-oriented Project.

Addison-Wesley Publishing Company, Inc., 1996.

[BP96] 	P. Byrnes and M. Phillips. Software Capability Evaluation Version

3.0 Method Description. Technical Report, SEI-96-TR-002, SEI,

Carnegie Mellon University, Pittsburgh, PA, April 1996.

209

[BSK95] 	Israel Z. Ben-Shaul and G. E. Kaiser. An Interoperability Model for

Process-Centered Software Engineering Environments and its Im-

plementation in Oz. Columbia University Department of Computer

Science, CUCS-034-95, December 1995.

[BSK96] 	Israel Z. Ben-Shaul and G. E. Kaiser. Integrating Groupware Activ-

ities into Workflow Management Systems. 7th Israeli Conference

on Computer Based Systems and Software Engineering, Tel Aviv,

Israel, pages 140-149, June 1996.

[Car97] 	David Carney. Assembling Large System from COTS Components:

Opportunities, Cautions, and Complexities. SEI Monographs on

COTS, SEL Carnegie Mellon University, Pittsburgh, PA, June 1997.

[CB89] 	Ward Cunningham and Kent Beck. A Laboratory For Teaching

Object-Oriented Thinking . Proceedings of the OOPSLA '89 Con-

ference, ACM SIGPLAN Notices, New Orleans, Louisiana, 24(10),

October 1989.

[CFM+96] Sholom Cohen, Seymour Friedman, Lorraine Martin, Tom Royer,

Nancy Solderitsch, and Robert Webster. Concept of Operations for

the ESC Product Line Approach. Technical Report, SEI-96-TR-018,

SEI, Carnegie Mellon University, Pittsburgh, PA, September 1996.

[CH95] 	Maribeth B. Carpenter and Harvey K. Hallman. 	Training

Guidelines: Creating a Training Plan for a Software Organization.

Technical Report, SEI-95- TR- 007, SEI, Carnegie Mellon University,

Pittsburgh, PA, September 1995.

[CHM95] 	Bill Curtis, William E. Hefley, and Sally Miller. People Capability

Maturity Model . Maturity Model, CMU/SEI-95-MM-02, Software

Engineering Institute, Carnegie Mellon University, Pittsburgh, Pa.,

September 1995.

[CKM93] Marvin J. Carr, Suresh L. Konda, Ira Monarch, F. Carol Ulrich,

and Clay F. Walker. Taxonomy-Based Risk Identification. Technical

Report, SEI-93-TR-6, SEI, Carnegie Mellon University, Pittsburgh,

PA, June 1993.

[CLM95] Reidar Conradi, Jens-Otto Larsen, Nguyen Ngoc Minh, Bjrn P.

Munch, and Per H. Westby. Integrated Product and Process Man-

210

agement in EPOS. Journal of Integrated CAE (special issue on

Integrated Product and Process Modelling), 1995.

[CLM97] A. Christie, L. Levine, E. J. Morris, B. Riddle, and D. Zubrow.

Software Process Automation: Interviews, Survey, and Workshop

Results. Technical Report, SEI-97- TR-008, SEI, Carnegie Mellon

University, Pittsburgh, PA, October 1997.

[CLMZ96] A. Christie, L. Levine, E. J. Morris, and D. Zubrow. Software Pro-

cess Automation: Experiences from the Trenches. Technical Report,

SEI-96-TR-013, SEI, Carnegie Mellon University, Pittsburgh, PA,

July 1996.

[CN96] 	P. C. Clements and L. M. Northrop. Software Architecture: An Ex-

ecutive Overview. Technical Report, SEI-96-TR-003, SEL Carnegie

Mellon University, Pittsburgh, PA, February 1996.

[CNFG96] Gianpaolo Cugola, Elisabetta Di Nitto, Alfonso Fuggetta, and Carlo

Ghezzi. A framework for formalizing inconsistencies and deviations

in human-centered systems. ACM Transaction on Software Engin-

eering and Methodology, 5(3), July 1996.

[Con95] 	Reidar Conradi. PSEE Architecture: EPOS Process Models and

Tools. Workshop on Process- centered Software Engineering Envir-

onment Architecture, Milano, March 1995.

[CS95] 	Michael A. Cusumano and R. W. Selby. Microsoft Secrets. The Free

Press, New York, U.S., 1995.

[CS97] 	Michael A. Cusumano and R. W. Selby. How Microsoft Builds Soft-

ware. Communications of the ACM, 40(6):30-40, June 1997.

[Cus91] 	Michael A. Cusumano. Japan's Software Factories. Oxford Uni-

versity Press, 1991.

[DL95] 	Alan M. Davis and Dean A. Leffingwell. 	Using Require-

ments Management to Speed Delivery of High Quality Applic-

ations. Technical Report 0001, Rational Software Corporation,

http://www.rational.com, 1995.

[DM96] 	D. K. Dunaway and S. Masters. CMM-Based Appraisal for Internal

Process Improvement(CBA IPI) : Method Description. Technical

211

Report, SEI-96-TR-007, SEI, Carnegie Mellon University, Pitts-

burgh, PA, April 1996.

[D0D94] 	DOD. Software Development and Documentation. MIL-STD-98,

Department of Defense, U.S., December 1994.

[DS97] 	Michael Diaz and Joseph Sligo. How Software Process Improve-

ment Helped Motorola. IEEE SOFTWARE, pages 75-81, Septem-

ber 1997.

[DSD97] 	DSDM. DSDM, The Dynamic Systems Development Method. The

DSDM Consortium, http://www.dsdm.org/, 1997.

[Ebe97] 	Christof Ebert. The Road to Maturity: Navigating Between Craft

and Science. IEEE SOFTWARE, pages 77-82, November 1997.

[ES94] 	R. G. Ebenau and S. H. Strauss. Software Inspection Process.

McGraw-Hill, Inc., 1994.

[Fag76] 	M. E. Fagan. Design and Code Inspections to Reduce Errors in

Program Development. IBM Systems Journal, 15(3), 1976.

[FC96] 	Mohamed E. Fayad and Marshall Cline. Managing Object-Oriented

Softwrae Development. IEEE COMPUTER, pages 26-31, Septem-

ber 1996.

[FHK97] Pat Ferguson, Watts S. Humphrey, Soheil Khajenoori, Susan Macke,

and Annette Matvya. Results of Applying the Personal Software

Process. IEEE SOFTWARE, pages 24-31, May 1997.

[FKN94] 	A. Finkelstein, J. Kramer, and B. Nuseibeh. Software Process Mod-

elling and Technology. Research Studies Press LTD, 1994.

[Fow97] 	Martin Fowler. UML Distilled, Applying the Standard Object Mod-

elling Language. Addison-Wesley, 1997.

[FS97] 	M. E. Fayad and D. C. Schmidt. Object-Oriented Application

Frameworks. Communications of the ACM, 40(10), October 1997.

[Gar98] 	Suzie Garcia. Evolving Improvement Paradigms: Capability Ma-

turity Models & ISO/IEC 15504 (PDTR). Software Process Im-

provement and Practice, volume 8, issue 1, Wile y/Gaulthier- Villars,

1998.

212

[Gat97] 	Linda Parker Gates. How to Use the Software Process Framework

Special Report, SEI-97-SR-009, SEL Carnegie Mellon University,

Pittsburgh, PA, October 1997.

[GHJV94] E. Gamma, R. Help, R. Johnson, and J. Vlissides. Design Pat-

terns: Elements of Reusable Object-Oriented Software. Addison-

Wesley Professional Computing Series, 1994.

[GM97] 	Jennifer Gremba and Chuck Myers. The IDEAL Model: A Practical

Guide for Improvement . Bridge, Issue three, the Software Engin-

eering Institute (SEI) publication, 1997.

[GQ95] 	M. P. Ginsberg and L. H. Quinn. Process Tailoring and the Software

Capability Maturity Model. Technical Report, SEI-94-TR-024, SEI,

Carnegie Mellon University, Pittsburgh, PA, November 1995.

[GR95] 	Adele Goldberg and Kenneth S. Rubin. Succeeding with Objects.

Addison-Wesley Publishing Company, 1995.

[Ha196] 	Thomas J. Haley. Software Process Improvement At Raytheon.

IEEE SOFTWARE, pages 33-41, NOVEMBER 1996.

[HC91] 	Watts S. Humphrey and Bill Curtis. Comments on 'A Critical Look'.

IEEE SOFTWARE, pages 42-46, July 1991.

[HGD94] Ronald P. Higuera, David P. Gluch, Audrey J. Dorofee, Richard L.

Murphy, Julie A. Walker, and Ray C. Williams. An Introduction

to Team Risk Management (Version 1.0) . Technical Report, SEI-

9-TR-001, SEI, Carnegie Mellon University, Pittsburgh, PA, May

1994.

[HH96] 	Ronald P. Higuera and Yacov Y. Haimes. Software Risk Manage-

ment. Technical Report, SEI-96- TR-012, SEI, Carnegie Mellon Uni-

versity, Pittsburgh, PA, June 1996.

[HIW95] T. Haley, B. Ireland, E. Wojtaszek, D. Nash, and R. Dion. Raytheon

Electronic Systems Experience in Software Process Improvement

Technical Report, SEI- 95- TR- 017, SEI, Carnegie Mellon University,

Pittsburgh, PA, November 1995.

[H097] 	Will Hayes and James W. Over. The Personal Software Process

(PSP): An Empirical Study of the Impact of PSP on Individual

213

Engineers. Technical Report, SEI-97-TR-001, SEL Carnegie Mellon

University, Pittsburgh, PA, December 1997.

[Hum88] 	W. S. Humphrey. Characterizing the Software Process. IEEE SOFT-

WARE, 5(2):73-79, March 1988.

[Hum95] 	W. S. Humphrey. A Discipline for Software Engineering. Addison-

Wesley Publishing Company, 1995.

[1EE90] 	IEEE. IEEE Standard for Software Configuration Management

Plans, IEEE 828-1990. The Institute of Electrical and Electronics

Engineers, Inc., September 1990.

[1S096] 	ISO/1EC15504-9. Information Technology - Software Process As-

sessment Part 9: Vocabulary. ISO/IEC JTC1/SC7 Ni 609, 1996.

[Jac87] 	Ivar Jacobson. Object-oriented Development in an Industrial Envir-

onment. Proceedings of OOPSLA '87, Orlando, FL, pages 183-191,

1987.

[JCJ092] 	Ivar Jacobson, M. Christerson, P. Jonsson, and G. Overgaard.

Object-Oriented Software Engineering, A Use Case Driven Ap-

proach. Addison-Wesley, 1992.

[JEJ95] 	Ivar Jacobson, M. Ericsson, and A. Jacobson. The Object Advantage,

Business Process Reengineering with Object Technology. Addison-

Wesley, 1995.

[JGJ97] 	Ivar Jacobson, M. L. Griss, and P. Jonsson. Software Reuse, Archi-

tecture, Process and Orhanisation for Business Success. Addison-

Wesley, 1997.

[Jon9l] 	Capers Jones. Applied Software Management: Assuring Productivity

and Quality. McGraw-Hill, New York, 1991.

[Jon96] 	Capers Jones. 	Conflict and Litigation Between Software

Clients and Developers. 	Software Productivity Research,

Inc. One New England Executive Park Burlington, MA,

http://www.spr.com/ht,ml/resources.hti-n, March 1996.

[KCF96] Mike Konrad, Mary Beth Chrissis, Jack Ferguson, Suzanne Garcia,

Bill Hefley, Dave Kitson, and Mark C. Paulk. Capability Maturity

214

Modeling at SET. Software Process - Improvement and Practice,

2:21-34, 1996.

[KDJY97] Gail E. Kaiser, Stephen E. Dossick, Wenyu Jiang, and

Jack Jingshuang Yang. An Architecture for WWW-based Hyper-

code Environments. 1997 International Conference on Software En-

gineering: Pulling Together, Boston MA, May 1997.

[Kit96] 	D. H. Kitson. Relating the SPICE Framework and the SET Approach

to Software Process Assessment. The Fifth European Conference on

Software Quality, Dublin, Ireland, September 1996.

[Kit97] 	David H. Kitson. An Emerging International Standard for Software

Process Assessment. Proceedings of the Third International Software

Engineering Standards Symposium and Forum, IEEE Computer So-

ciety, Walnut Creek, CA, June 1997.

[KS95a] 	Carol Klingler and Dan Schwarting. A Practical Approach to Pro-

cess Definition. Software Technology Conference, Salt Lake City,

UT, April 1995.

[KS95b] 	R. E. Kraut and L. A. Streeter. Coordination in Software Develop-

ment. Communications of the ACM, 38(3), March 1995.

[Lai9l] 	Robert. C. T. Lai. Process Definition and Process Modeling Meth-

ods. Technical Report, Software Productivity Consortium, SPC-

91084-N, September 1991.

[L1096] 	J. L. LIONS. 	Ariane 501 - Presentation of Inquiry

Board report. 	Nr 33-96, European Space Agency,

http://www.esrz'n-esa.z*tltz*dclPresslpress96b.html, July 1996.

[Man84] 	J. H. Manley. CASE: Foundation for Software Factories. COM-

PCON Proceedings, IEEE, pages 84-91, September 1984.

[Mat96] 	M. Mattsson. Object-Oriented Frameworks - A survey of methodo-

logical issues. Licentiate Thesis,LU-CS-TR: 96-167, Department of

Computer Science, Lund University, 1996.

[JVIau96] 	Frank Maurer. Computer Support in Project Coordination. Pro-

ceedingd of the Workshops on Enabling Technologies: Infrastructure

for Collaborative Enterprises (WET ICE 96), Stanford University,

California, USA, June 1996.

215

[MB95] 	Steve Masters and Carol Bothwell. CMM Appraisal Framework,

Version 1.0. Technical Report, SEI-95-TR -001, SEI, Carnegie Mel-

lon University, Pittsburgh, PA, February 1995.

[McC97] 	Steve McConnell. Tool Support for Project Tracking. IEEE SOFT-

WARE, pages 119-120, September 1997.

[McF96] 	Bob McFeeley. IDEAL: A User's Guide for Software Process Im-

provement. CM U/SEI- 96-HB- 001, Software Engineering Institute,

Carnegie Mellon University, Feburary 1996.

[Mon83] 	Yasuhiro Monden. Toyota production system : practical approach to

production management. Industrial Engineering and Management

Press, Institute of Industrial Engineers,, 1983.

[MPB94] 	Frank McGarry, Gerald Page, and Victor Basili. Software Pro-

cess Improvement in the NASA Software Engineering Laboratory.

Technical Report, SEI-94-TR-022, SEL Carnegie Mellon University,

Pittsburgh, PA, December 1994.

[MTC96] 	Nancy Mead, Lawrence Tobin, and Suzanne Couturiaux. Best Train-

ing Practices Within the Software Engineering Industry. Technical

Report, SEI-96-TR-03, SEI, Carnegie Mellon University, Pitts-

burgh, PA, November 1996.

[NaC96] 	Minh N. Nguyen and Alf Inge Wang andReidar Conradi. Total

Software Process Model Evolution in EPOS. 4th ICSP, Brigthon,

UK, December 1996.

[NAS90] 	NASA. Manager's Handbook for Software Development, Revision 1.

Software Engineering Laboratory Series SEL-84-101, NASA, U.S.,

November 1990.

[NF95] 	E. Di Nitto and A. Fuggetta. Integrating process technology and

CSCW. Proceedings of IV European Workshop on Software Process

Technology, Leiden, The Nederland, April 1995.

[NFK97] K. Nakamura, Y. Fujii, Y. Kiyokane, M. Nakamura, K. Hinenoya,

Yeo Hua Peck, and C. Siow. Distributed and Concurrent Develop-

ment Environment via Sharing Design Information. COMPSAC'97,

216

The Twenty-first Annual International Computer Software €4 Ap-

plications Conference, Washington D.C., pages 274--279, August

1997.

[0bj97] 	Objectory. Rational Objectory Process - Introduction 4.1. Rational

Software Corporation, http://www.rational.com, July 1997.

[0MG97] 	0MG. The Common Object Request Broker: Architecture and Spe-

cification (CORBA 2.1 /IIOP). http://www.orng.org/, Object Man-

agement Group, Framingham, MA U.S.A., August 1997.

[0R094] 	T. G. Olson, N. R. Reizer, and J. W. Over. A Software Pro-

cess Framework for the SEI Capability Maturity Model. Handbook,

SEI-9-HB-001, SEI, Carnegie Mellon University, Pittsburgh, PA,

September 1994.

[Par92] 	Robert E. Park. Software Size Measurement: A Framework for

counting Source Statements . Technical Report, L1MU/SEI-92-TR-

0, Software Engineering Institute, Carnegie Mellon University,

Pittsburgh, Pa., September 1992.

[Pau94] 	Mark C. Paulk. A Comparision of ISO 9001 and the Capability

Maturity Model for Software. Technical Report, SEI-9- TR-012,

SEI, Carnegie Mellon University, Pittsburgh, PA, July 1994.

[Pau95] 	Mark C. Paulk. The Rational Planning of (Software) Projects. Pro-

ceedings of the First World Congress for Software Quality, San Fran-

cisco, CA, June 1995.

[Pau97] 	Mark C. Paulk. Capability Maturity Model for Software, Version 2.0,

Draft C. http://www.sei.cmu.edu/technology/cmm/, SEI, Carnegie

Mellon University, Pittsburgh, PA, September 1997.

[PCCW93a] Mark C. Paulk, Bill Curtis, Mary Beth Chrissis, and Charles V.

Weber. Capability Maturity Model, Version 1.1. IEEE SOFT-

WARE, 10(4):18-27, July 1993.

[PCCW93b] Mark C. Paulk, Bill Curtis, Mary Beth Chrissis, and Charles V.

Weber. Capability Maturity Model for Software, Version I.I. Tech-

nical Report, CMU/SEI-98-TR-024, SEI, Carnegie Mellon Uni-

versity, Pittsburgh, PA, February 1993.

217

[PDHT97] Gerald M. Powell, Jorge L. Diaz-Herrera, and Dennis J. Turner.

Achieving Synergy in Collaborative Education. IEEE SOFTWARE,

pages 58-65, November 1997.

[PGC96] 	Mark C. Paulk, S. M. Garcia, and Mary Beth Chrissis. The Continu-

ing Improvement of the CMM: Version 2. Fifth European Conference

on Software Quality, Dublin, Ireland, September 1996.

[PM92] 	Lawrence H. Putnam and Ware Myers. Measures for Excellence: Re-

liable Software on Time, within Budget. Yourdon Press, Englewood

Cliffs, NY, 1992.

[Pre94] 	R. S. Pressman. Software Engineering, A Practitioner's Approach.

McGraw-Hill Book Company Europe, Berkshire, England, third edi-

tion, 1994.

[PR197] PRINCE. 	PRINCE, Projects in Controlled En-

vironments. 	The Official PRINCE Home Page,

http://www. ccta.gov. uk/prince/prince. htm, February 1997.

[PW96] 	Rose Pajerski and Sharon Waligora. The Improvement Cycle: Ana-

lyzing Our Experience. Twenty-First Annual Software Engineering

Workshop, NASA Goddard Space Flight Center, Maryland, USA,

December 1996.

[PWG93] Mark C. Paulk, Charles V. Weber, Suzanne M. Garcia, Mary Beth

Chrissis, and Marilyn W. Bush. Key Practices of the Capability Ma-

turity Model, Version 1.1. Technical Report, CMU/SEI-93-TR-05,

SEI, Carnegie Mellon University, Pittsburgh, PA, February 1993.

[RE95] 	Richard Randall and William Ett. Using Process to Integrate Soft-

ware Engineering Environments. Software Technology Conference,

Salt Lake City, UT, April 1995.

[Sco92] 	Roger L. Van Scoy. Software Development Risk: Opportunity, Not

Problem. Technical Report, SEI-92-TR-30, SEI, Carnegie Mellon

University, Pittsburgh, PA, September 1992.

[SE197] 	SEI. Semi-Annual Process Maturity Profile of the Software Com-

munity Report. http://www.sei.cmu.edu/technology/measurement/,

SEI, Carnegie Mellon University, Pittsburgh, PA, May 1997.

218

[SJ94] 	F. Sisti and S. Joseph. Software Risk Evaluation Method Version 1.0.

Technical Report, SEI-9-TR-019, SEL Carnegie Mellon University,

Pittsburgh, PA, December 1994.

[SP195] 	SPICE. Software Process Assessment Part 4: Guide To Conducting

Assessments, Versionl.0. ISO/IEC JTC1/SC7 N91R, 1995.

[Tri94] 	Trillium. 	Model for Telecom Product Development & Sup-

port Process Capability. Bell Canada, Internet Edition, Release

3.0, http://ricis. cl. uh. edu/proces&maturity/download. html, Decem-

ber 1994.

[TS96] 	Scott R. Tilley and Dennis B. Smith. Coming Attractions in

Program Understanding. Technical Report, SEI-96-TR-019, SEL

Carnegie Mellon University, Pittsburgh, PA, December 1996.

[TT84] 	D. Tajima and T.Matsubara. Inside the Japanese Software Factory.

Computer, 17(3):34-43, March 1984.

[TW97] 	P. P. Texel and C. B. Williams. Use Cases Combined with Booch,

OMT, UML. Prentice Hall PTR, 1997.

[Uzz96] 	Lyn Uzzle. SEEWeb: A Software Engineering Environment Inform-

ation Interface Based on World Wide Web Technology. Software

Technology Conference (STC '96), Salt Lake City, UT, April 1996.

[VK94] 	M. R. Vigder and A. W. Kark. Software Cost Estimation and Con-

trol. Institute for Information Technology, National Research Coun-

cil of Canada, February 1994.

[Wit96] 	James Withey. Investment Analysis of Software Assets for Product

Lines. Technical Report, SEI-96- TR-01 0, SEI, Carnegie Mellon Uni-

versity, Pittsburgh, PA, November 1996.

[You96] 	E. Yourdon. Rise 4 Resurrection of the American Programmer.

PTR Prentice-Hall, Inc., 1996.

219

Appendix A

P-state Definition Forms

SPI PASTA has created more than 700 files which are interrelated with each

other. Most of them are definition forms that describes required information to

perform relevant activities. Among these files, the most important one is the

P-state definition form which describes the artifacts process roles and relevant

operations. All information can be found or connected in this form. Since it is

impossible to present all files in this thesis, we would like to only list P-state

definition forms. These forms are organised by alphabet. Readers can easily look

for what they need and comply with SPI PASTA on the Web

(http://www.dcs.ed.ac.uk/home/ky/PASTA/SPIPasta.htmnl).

220

Process State Definition Form

Name Control_SQA_Issue

Synopsis Objectively control the SQA issues which include software activities
and software work products.

Main Role Quality_Assurance_Staff

Entrance
Condition

state-of(S QA_Plan)=Drafted

Artifact List SQA_Issue
Information
Artifacts

SQA_Plan

Operation List

Name Review—Activity

Synopsis Objectively review designated software activities against the
applicable requirements, process descriptions, standards, and
procedures

Name Review _Work _Product

Synopsis Objectively review designated software work products against the
applicable_ requirements _and _standards.

Exit Condition state-of(S QA_Issue)=Controlled

Informal
Specification

QA.AC.03
QA.AC.04

Formal
Specification

Process State Definition Form

Name Create—Class—Diagram

Synopsis A class is drawn as a solid-outline rectangular box with three
compartments, with the class name in the top compartment, a list of
attributes in the middle compartment, and a list of operations in the
bottom compartment.

The activity to create a class diagram is associated with the use case
model. From use case model, we collect the same structure,
behaviour and relationship to create the class.

Main Role Software _Designer, Requirement—Analyst,
Software_Product_Manager

Entrance
Condition

state-of(CRC_Card)=Created

Artifact List Class Diagram
Information
Artifacts

CRC—Card, Use—Case—Diagram

Operation List

Name Identify—Key—Class
Synopsis The key classes are identified from Use Case diagrams and CRC

cards.

Name Identify_Attribute_ And _Operation

Synopsis Identify attributes and operations of the Class.

Name Identify—Relationship

Synopsis Identify the relationship between the Classes.

Name Add _Interface _Class
Synopsis Add the GUI Classes to the model.

Name Complete—Class—Specification

Synopsis Complete all descriptions of the Class Specification.

Exit Condition state-of(Class_Diagram)=Created

Informal Reviewing the software requirements to ensure that issues affecting
Specification the software design are identified and resolved.

Adhering to applicable software design criteria and standards.

Developing the software architecture early, within the constraints of
the software life cycle and technology being used.

Reviewing and getting agreement with affected parties on the
software architecture, to ensure that architecture issues affecting the
detailed software design are identified and resolved.

Basing the detailed software design on the software architecture and
the software requirements.

Documenting the software design.

Tracing the software design to the software requirements and
documenting the traceability.

Placing the traceability documentation for the software design under
version control and change control.

Formal
Specification

Process State Definition Form
Name Create_Collaboration_Diagram
Synopsis Create the collaboration diagram to offer another dynamic view of

the syste.
Main Role Software—Designer, Requirement—Analyst,

Software _Product _Manager
Entrance

Condition
state-of(Sequence_Diagram)=Created

Artifact List Collaboration _Diagram
Information
Artifacts

Sequence—Diagram, Use_Case_Diagram

Operation List

Name Convert—Sequence—Diagram
Synopsis Use CASE tools to convert the sequence diagram to the

collaboration diagram.

Name Refine_Collaboration_Diagram
Synopsis Refine the converted collaboration diagram to complete design.
Exit Condition state-of(Collaboration_Diagram)=Created
Informal

Specification
Formal

Specification

Process State Definition Form
Name Create—Implementation—Diagram
Synopsis Create the implementation diagrams which include component

diagrams _and _deployment _diagrams.
Main Role Software _Designer, Requirement—Analyst,

Software_Product_Manager
Entrance

Condition
state-of(Implementation_Diagram) =Referenced

Artifact List Implementation—Diagram
Information
Artifacts

Operation List

Name Create_Component_Diagram
Synopsis Create the component diagram to show the dependencies among

software components.

Name Create_Deployment_Diagram
Synopsis Create the deployment diagram to show the configuration of run-

time processing elements.
Exit Condition state-of(Irnplementation_Diagram)=Created
Informal

Specification
Formal

Specification

Process State Definition Form
Name Create _Interaction _Diagram
Synopsis Create the interaction diagram which includes the sequence diagram

and _the _collaboration _diagram.
Main Role Software _Designer, Requirement—Analyst,

Software_Product_Manager
Entrance

Condition
state-of(Interaction_Diagram)Referenced

Artifact List Interaction _Diagram
Information
Artifacts

Use—Case—Diagram

Sub-P-State List

Name Create—Sequence—Diagram
Synopsis Create the sequence diagram to offer the dynamic view for the

system.

Name Create _Collaboration _Diagram
Synopsis Create the collaboration diagram to offer another dynamic view of

the syste.
Exit Condition state-of(Interaction_Diagram)=Created
Informal

Specification
Formal
Specification

Process State Definition Form
Name Create—Requirement _Trace _Matrix
Synopsis Create the Requirement Trace Matrix to handle the allocated

requirement.
Main Role Customer, Requirement—Analyst, Software _Product _Manager

Entrance
Condition

state-of(Alloc ate d_Requirement)=Derived

Artifact List Requirement _Trace _Matrix
Information
Artifacts

Allocated—Requirement

Operation List

Name Extract _Allocated _Requirement
Synopsis Produce an initial RTM that contains the entire set of sentence from

the allocated requirement.

Name Categorize RTM
Synopsis Categorize each entry in the RTM according to its type.
Exit Condition state-of(Requirement_ Trace _Matrix)=Categorized
Informal

Specification
Formal

Specification

Process State Definition Form
Name Create—Sequence—Diagram
Synopsis Create the sequence diagram to offer the dynamic view for the

system.
Main Role Software—Designer, Requirement—Analyst,

Software _Product _Manager
Entrance

Condition
state-of(Sequence_Diagram)=Referenced and state-

of(Use_Case_Diagrarn)=Created
Artifact List Sequence—Diagram
Information
Artifacts

Use—Case—Diagram

Operation List

Name Identify_Object_Lifeline
Synopsis Identify the object lifeline as completely as possible.

Name Identify_Message
Synopsis Identify the messages from the lifeline of one object to the lifeline of

another object.
Exit Condition state-of(Sequence_Diagram)=Created
Informal
Specification
Formal
Specification

Process State Definition Form
Name Create _Statechart-Diagram
Synopsis Determine whether or not a Class has to create a statechart diagram,

then, create a statechart diagram to present the individual behaviour
of the class.

Main Role Software _Designer, Requirement—Analyst,
Software_Product_Manager

Entrance
Condition

state-of(Class_Diagram)=Created

Artifact List Statechart_Diagram
Information
Artifacts

Class—Diagram, Use_Case_Diagram

Operation List

Name Identify—State
Synopsis A state is a condition during the life of an object or an interaction

during which it satisfies some condition, performs some action, or
waits for some event.

Name Identify_Internal_Transition
Synopsis Examine all possible transitions within the state.

Name Identify—External—Transition
Synopsis Examine all possible transitions of states within the Class.
Exit Condition state-of(Statechart_Diagram)=Created
Informal
Specification
Formal

Specification

Process State Definition Form
Name Create _Use _Case _Diagram
Synopsis Create the use case diagram to present the allocated requirement.
Main Role Customer, Requirement—Analyst, Software _Product _Manager
Entrance

Condition
state-of(Requirement_Trace_Matrix)Categorized

Artifact List Use_Case_Diagram
Information
Artifacts

Requirement—Trace—Matrix, Allocated—Requirement

Operation List

Name Identify—Use—Case
Synopsis Extract the software requirements from the RTM and reformat these

requirements into Use Case format.

Name Develop—Scenario
Synopsis Develop scenario to provide the operational concept behind a use

case.

Name Establish—Project—Package
Synopsis Establish an initial Package which is a collection of logically related

classes.

Name Allocate _Use _Case
Synopsis The purpose of assigning Use Cases to Packages is to allocate the

responsibility for Use Case development to a Package.

Name Draft _GUI_Sketch
Synopsis To provide a draft of the GUI for the system, as envisioned during

the development of the scenarios.
Exit Condition state-of(Use_Case_Diagram)=Created
Informal

Specification
Formal
Specification

10

Process State Definition Form

Name Derive _Software _Development _Plan

Synopsis There are two levels for deriving the software development plan:
The low level for estimating and planning a software project is
described in the Software Project Planning key process area in the
CMM.
The high level for managing the software development plan is
described in the Integrated Software Process key process area.

Main Role Senior—Manager, Quality_Assurance_Staff, SEPG, Testing_Staff,
System_Engineer, Software _Product _Manager, Project—Manager

Entrance state-of(Software_Development_Pl an)=Referenced and state-
Condition of(PDSP)=Established

Artifact List Software_Development_Plan

Information Allocated—Requirement, PDSP
Artifacts

Sub-P-State List

Name Draft _Schedule _And _Resource _Plan

Synopsis Establish the software engineering resources needed by the project
and the projects software schedule.

Operation List

Name Draft _Project—Mission _Plan

Synopsis Draft the project mission plan with those affected on the project
mission plan.

Name Draft _Organisation_And_Responsibility_Plan

Synopsis Draft the organisation and responsibility plan with those affected on
the plan.

Name Draft_Software_Engineering_Activity_Plan

Synopsis Drafting the softwrae enginnering activity plan means selecting
software life cycle models for use in the organisation.

Name Identify—Project—Risk

Synopsis Identify and analyze software project risks.

Exit Condition state-of(Software_Development_Plan)=Derived

Informal IM.AC.03
Specification PP.AC. 14

PP.AC.15
Project planning and oversight in MIL-STD-498
Establishing a software development environment in MIL-STD-498

Formal
Specification

11

Process State Definition Form

Name Derive—System—Requirement

Synopsis This phase is to produce a complete system requirements for the
software project. The starting point is usually from a set of customer
requirements that describe the project or problem.

Main Role Customer, System—Engineer, Software—Product—Manager,

Project_Manager

Entrance
Condition

state-of(System_Requirement)=Referenced

Artifact List System—Requirement

Information
Artifacts

Operation List

Name Derive _Allocated _Requirement

Synopsis This document is produced by the software engineering team as the
key 	the _product _of 	_requirements _definition.

Name Derive_System_Requirement_To_Hardware

Synopsis This document is produced by the system engineering team as the
key 	the _product _of_ 	_requirements _definition.

Exit Condition state-of(System_Requirement)=Derived

Informal
Specification

System requirements analysis in MIL-STD-498
System design in MIL-STD-498

Formal
Specification

12

Process State Definition Form

Name Develop_Organisational_Process

Synopsis Develop Organisational Process to provide the ability to control the
software project.

Main Role Reviewer, Training—Staff, Software—Product—Manager,
Project_Manager

Entrance
Condition

state-of(Organisational_Process)=Referenced

Artifact List Organisational Process
Information
Artifacts

PDSP

Sub-P-State List

Name Perform—OrganisationTraining_Program

Synopsis Perform the organisation training program to develop the skill and
knowledge of the development team.

Name Perform_Risk_Management
Synopsis Software risk management involves identifying risks, analyzing their

likelihood and potential impact, determining and evaluating risk
contingencies, tracking risks, and proactively manageing the risks.

Name Perform_Project_Interface_Coordination

Synopsis The purpose of Project Interface Coordination is to ensure that
software managers and staff effectively communicate, coordinate,
and collaborate with other functions in the organisation to staisfy the
customer's needs.

Name Perform _Peer _Review

Synopsis Perform the activities for peer reviews.
Exit Condition state-of(Organisational_Process)=Developed

Informal
Specification
Formal

Specification

13

Process State Definition Form
Name Develop_Software_Code
Synopsis Develop and maintain the software code.
Main Role Software—Programmer, Configuration—Management—Staff
Entrance

Condition
state-of(Software_Design)=Developed

Artifact List Software Code
Information

Artifacts
Software—Design

Operation List

Name Generate_Body_Structure_code
Synopsis Use the CASE tools to generate the body structure of a the Class.

Name Implement _Source _Code
Synopsis Implement the class method by using behaviour diagrams.
Exit Condition state-of(S oftware_Code)=Developed
Informal

Specification
PE.AC.05
Establish _Productivity—Measure
Establish_Quality_Measure
Software implementation and unit testing in MIL-STD-498

Formal
Specification

14

Process State Definition Form

Name Develop—Software—Design

Synopsis Develop the software design to form the framework for coding.

Main Role Software _Designer, Requirement _Analyst,
Software_Product_Manager, Configuration_Management_Staff

Entrance
Condition

state-of(Software_Requirement)=Developed

Artifact List Software—Design
Information
Artifacts

Software—Requirement

Sub-P-State List

Name Create—Class—Diagram
Synopsis A class is drawn as a solid-outline rectangular box with three

compartments, with the class name in the top compartment, a list of
attributes in the middle compartment, and a list of operations in the
bottom compartment.

The activity to create a class diagram is associated with the use case
model. From use case model, we collect the same structure,
behaviour and relationship to create the class.

Name Create _S tatechart_Diagram

Synopsis Determine whether or not a Class has to create a statechart diagram,
then, create a statechart diagram to present the individual behaviour
of the class.

Name Create _Interaction _Diagram
Synopsis Create the interaction diagram which includes the sequence diagram

and the collaboration diagram.

Name Create—Implementation—Diagram

Synopsis Create the implementation diagrams which include component
diagrams _and _deployment _diagrams.

Operation List

Name Create—Activity—Diagram

Synopsis Create the activity diagram to depict the execution steps to be
performed by a method.

Exit Condition state-of(Software_Design)=Developed

Informal
Specification

PE.AC.04
Software design in MIL-STD-498

Formal
Specification

15

Process State Definition Form

Name Develop_Software_ manage ment_Process

Synopsis Develop Software Management Processes to effectively and
effeciently_ control _the _software _project.

Main Role Management—Group, Customer, Software_Product_Manager

Entrance
Condition

state-of(Software_Management_Process)Referenced

Artifact List Software_Management_Process

Information
Artifacts

PDSP

Sub-P-State List

Name Derive_System_Requirement

Synopsis This phase is to produce a complete system requirements for the
software project. The starting point is usually from a set of customer
requirements that describe the project or problem.

Name
Synopsis

Derive
_

Software _Development _Plan
There are two levels for deriving the software development plan:
The low level for estimating and planning a software project is
described in the Software Project Planning key process area in the
CMM.
The high level for managing the software development plan is
described in the Integrated Software Process key process area.

Name Perform_Software_Acquisition_Management

Synopsis Perform Software Acquisition Management to manage the
acquisition of software from sources external to the software project.

Name Perform _Software _Project—Control

Synopsis Track software project performance against the software
development plan, and take corrective actions.

Operation List

Name Establish Commitment
Synopsis Establish the software projects commitments.

Exit Condition state-of(Software_Management_Process)=Developed

Informal
Specification
Formal

Specification

16

Process State Definition Form

Name Develop—Software _Process _Improvement

Synopsis Developing Software Process Improvement is trying to develop a
framework that describes the necessary roles, activities, and
resources needed for a successful process improvement effort.

Main Role Development—Team
Entrance
Condition

state-of(Software_Process_Improvement)=Initiated

Artifact List Software _Process _Improvement

Information
Artifacts

Sub-P-State List

Name Establish—Organisation _Process _Focus

Synopsis The purpose of Organisation Process Focus is to establish and
maintain an understanding of the organisation's software processes
and coordinate the organisation's software process improvement
activities.

Name Establish—Organisation _Process _Definition

Synopsis Establish a usable set of software process assets that improve
process performance across the organisation and that provide a basis
for cumulative, long-term benefits to the organisation.

Name Establish_PDSP
Synopsis Establish the projects defined software process tailoring from the

organisation's set of standard software process.
The main tasks establishing projects defined software process are to
model the software processes by using PASTA.

Operation List

Name Iterate _Or_Refine

Synopsis

Name Review
Synopsis
Exit Condition
Informal
Specification
Formal

Specification

17

Process State Definition Form

Name Develop—Software—Requirement
Synopsis Develop and maintain the software requirements.

Main Role Requirement—Analyst, Software—Product—Manager,
Configuration_Management_Staff, Project—Manager

Entrance
Condition

state-of(Software_Management_Process)=Developed

Artifact List Software—Requirement

Information
Artifacts

Allocated_Requirement

Sub-P-State List

Name Create—Requirement _Trace _Matrix

Synopsis Create the Requirement Trace Matrix to handle the allocated
requirement.

Name Create _Use _Case _Diagram

Synopsis Create the use case diagram to present the allocated requirement.

Operation List

Name
Synopsis

Create _ CRC _Card
Create CRC cards to assist analysts and customers in mapping the

collaborations among classes, defined by the responsibilities each has
in_ the _system _being _modelled.

Exit Condition state-of(Software_Requirement)=Developed

Informal
Specification

PE.AC.02
PE.AC.03
Software requirement analysis in MIL-STD-498

Formal
Specification

18

Process State Definition Form

Name Develop—Software—Support—Process

Synopsis Develop Software Support Process to support the software project
management.

Main Role Quality—Assurance—Staff, Software—Product—Manager,
Configuration_Management_Staff, Project_Manager

Entrance state-of(Software_Support_Process)=Referenced
Condition
Artifact List Software_Support_Process

Information PDSP
Artifacts

Sub-P-State List

Name Perform_Configuration_Management

Synopsis This process involves:
-Identifying the configuration of the software at given points in

time.
-Controlling changes to configuration items.
-Building software work products from the software configuration

library.
-Maintaining the integrity of software baselines throughout the

software life cycle.

Name Perform_Software_Quality_Assurance

Synopsis This process involves:
-reviewing the software activities and work products against the

applicable requirements, process descriptions, standards, and
procedures.
-identifying and documenting noncompliance issues.
-providing feedback to project staff and managers.
-ensuring _that _noncompliance _issues are addressed.

Exit Condition state-of(S oftware_Support_Process)=Developed

Informal
Specification
Formal

Specification

19

Process State Definition Form

Name Develop—Software _Technical _Process

Synopsis Develop the software technical process to perform the engineering
tasks to specify, design, build, deliver, and maintain the software
using the project's defined software process in order to verify and
validate that the software products satisfy their requirements.

Main Role Development _Group, Quality_Assurance_Staff,
Configuration_Management_Staff

Entrance Condition state-of(Software_Technical_Process)=Referenced

Artifact List Software _Technical _Process
Information Artifacts Allocated—Requirement

Sub-P-State List

Name Develop—Software—Requirement

Synopsis Develop and maintain the software requirements.

Name Develop—Software—Design
Synopsis Develop the software design to form the framework for coding.

Name Develop_Software_Code
Synopsis Develop and maintain the software code.

Name Develop_Software_Test
Synopsis Develop the software test to validate that the system satisfies its

requirements.

Operation List

Name Develop_Operation_Documentation
Synopsis Develop the documentation that will be used to install, operate, and

maintain the software.

Name Perform _Software _Enhancement

Synopsis Maintain the software to correct problems, adapt to new operating
environment, 	the software. _or_enhance

Exit Condition state-of(S oftware_Technical_Process)=Developed

Informal The technical software engineering tasks include:
Specification - eliciting and analyzing the customer requirements and system

requirements allocated to software,
- developing the software requirements,
- designing the software,
- coding the software,
- integrating the software,
- testing the software to verify that it satisfies its requirement,
- preparing documentation to support installation, operation, and
maintenance of the software,
- delivering the software to the customer,
- supporting the operation and use of the software, and
- maintaining the software.

Formal Specification

20

Process State Definition Form
Name Develop_Software_Test
Synopsis Develop the software test to validate that the system satisfies its

requirements.
Main Role Customer, Testing_Staff, Software—Product—Manager,

Configuration_Management_Staff, Project Manager
Entrance

Condition
state-of(S oftware_Code)=Developed

Artifact List Software Test
Information
Artifacts

System—Requirement

Sub-P-State List

Name Perform _Software Jest
Synopsis Perform the software test to validate that the system satisfies its

requirements.

Operation List

Name Draft _Test _Plan
Synopsis Draft the test plans to be followed while testing the end-to-end

functionality of the _completed _system.
Exit Condition state-of(S oftware_Test)=Developed
Informal

Specification
Establish—Quality—Measure

Formal
Specification

21

Process State Definition Form
Name Draft _Schedule _And _Resource _Plan
Synopsis Establish the software engineering resources needed by the project

and the project's software schedule.
Main Role Requirement _Analyst, Software—Product—Manager,

Project Manager
Entrance

Condition

state-of(Schedule_ And _Resource_Plan)=Referenced and state-
of(Allocated_Requirement)=Derived or state-
of(Software_Engineering_Activity_Plan)Drafted

Artifact List Schedule _And _Resource _Plan
Information
Artifacts

Object—Size—Category, Allocated_Requirement, Use_Case_Diagram

Sub-P-State List

Name Estimate _Software -Size
Synopsis Estimate the size of all major software work products.

Name Estimate_Effort_And_Cost
Synopsis Estimate the effort and cost for the software project.

Operation List

Name Build_WBS
Synopsis Establish and maintain a work breakdown structure for the software

project.

Name Estimate Resource
Synopsis Estimate the software engineering resource needed by the software

project.

Name Estimate Schedule
Synopsis Establish the project's software schedule.
Exit Condition state-of(Schedule_ And _Resource _Plan)=Drafted
Informal

Specification
Formal

Specification

22

Process State Definition Form
Name Establish—Organisation _Process _Definition

Synopsis Establish a usable set of software process assets that improve
process performance across the organisation and that provide a basis
for cumulative, long-term benefits to the organisation.

Main Role Senior—Manager, SEPG, Software—Product—Manager,
Project—Manager

Entrance
Condition

state-of(Organisaation_process_Definition)=Referenced

Artifact List Organisation_Process_Definition
Information
Artifacts

Organisation—Process—Focus

Sub-P-State List L
Name Establish _Software. Measurement _Database

Synopsis Establish and maintain the organisation's software measurement
database.

Operation List

Name Establish_SSSP
Synopsis Establish and maintain the organisation's set of standard software

processes.

Name Approve _Software _Life—Cycle
Synopsis Establish and maintain the descriptions of the software life cycles

approved for use in the organisation.

Name Establish_Tailoring_Guideline
Synopsis Establish and maintain the tailoring guidelines for the organisation's

standard software process family.

Name Establish _Process-related _Documentation
Synopsis Establish and maintain the organisation's library of software process-

related documentation.
Exit Condition state-of(Organisation_ Process _Definition)=Established

Informal
Specification
Formal

Specification

23

Process State Definition Form
Name Establish_Organisation_ Process _Focus
Synopsis The purpose of Organisation Process Focus is to establish and

maintain an understanding of the organisation's software processes
and coordinate the organisations software process improvement
activities.

Main Role Senior_Manager, SEPG
Entrance

Condition
state-of(Organisation_Process_Focus)=Referenced

Artifact List Organisation _Process _Focus
Information
Artifacts

Sub-P-State List

Name Perform—Organisation _Process _Focus
Synopsis Perform the activities for software process improvement.

Operation List

Name Draft _Process_Improvement_Plan
Synopsis Draft a software process improvement plan to manage the activities

of organisation process focus.
Exit Condition state-of(Organisation_ Process _Focus)=Established
Informal

Specification
Formal
Specification

24

Process State Definition Form
Name Establish_PDSP
Synopsis Establish the project's defined software process tailoring from the

organisation's set of standard software process.
The main tasks establishing project's defined software process are to
model the software processes by using PASTA.

Main Role Senior—Manager, SEPG, Software—Product—Manager,
Project—Manager

Entrance state-of(PDSP)=Referenced and state-
Condition of(Organisation_Software_Process)=Established
Artifact List Organisational—Process, Software—Support—Process,

Software_Management_Process, Software_Technical_Process
Information Organisation—Process—Definition
Artifacts

Sub-P-State List

Name Develop—Software—Support—Process
Synopsis Develop Software Support Process to support the software project

management.

Name Develop_Software_Management_Process
Synopsis Develop Software Management Processes to effectively and

effeciently_control the software project.

Name Develop—Software _Technical _Process
Synopsis Develop the software technical process to perform the engineering

tasks to specify, design, build, deliver, and maintain the software
using the project's defined software process in order to verify and
validate that the software products satisfy their requirements.

Name Develop_Organisational_Process
Synopsis Develop Organisational Process to provide the ability to control the

software project.
Exit Condition state-of(PDSP)=Established and state-of(S SS P)=Updated
Informal IM.AC,02

Specification IM.AC.03
IM.AC.08

Formal
Specification

25

Process State Definition Form
Name Establish_Productivity_Measure
Synopsis Establish the productivity measure to estimate the development time

for each project task.
Main Role Software _Product _Manager, Project—Manager
Entrance

Condition
state-of(Software_Technical_Process)=Referenced

Artifact List Productivity—Measure
Information
Artifacts

Project—Plan—Summary, Time_Recording_Log,
Size_Estimating_Template

Operation List

Name Build _Time _Recording_Log
Synopsis { Build the time recording log and calculate development time.

Name Build _Size _Estimating—Template
Synopsis Build the size estimating template to guide the size estimating

process and to hold the estimate data.

Name Build_Project_Plan_Summary
Synopsis Build the project plan summary to hold the estimated and actual

project data in a convenient and readily retrievable form.
Exit Condition state-of(Productivity_Measure)=Established
Informal

Specification
Formal

Specification

26

Process State Definition Form
Name Establish_Quality_Measure
Synopsis Establish the quality measure to improve developer's quality
Main Role Software _Product _Manager, Project Manager
Entrance

Condition
state-of(Software_Technical_Process)Referenced

Artifact List Quality_Measure
Information
Artifacts

Defect—Recording—log

Operation List

Name Build _Defect _Recording—Log
Synopsis Build the defect recording log to hold the data on each defect as you

find and correct.
Exit Condition state-of(Quality_Measure)=Established
Informal

Specification
Formal

Specification

27

Process State Definition Form
Name Establish _Software _Measurement _Database
Synopsis Establish and maintain the organisation's software measurement

database.
Main Role SEPG, Software _Product _Manager, Project—Manager
Entrance

Condition
state-of(Software_Measurement_Database)=Referenced

Artifact List Software—Measurement—Database
Information
Artifacts

Sub-P-State List

Name Establish_Productivity_Measure
Synopsis Establish the productivity measure to estimate the development time

for each project task.

Name Establish—Quality—Measure
Synopsis Establish the quality measure to improve developers quality

Operation List

Name Establish LOC Counting—Standard
Synopsis Establish the LOC counting standard to count the program size.

Name Establish_Object_Size_Category
Synopsis Establish object size categories to give organisation a feamework for

judging the size of the new objects in the planned product.
Exit Condition state-of(Software_ Measurement _Database)=Established
Informal

Specification
PD.AC.05

Formal
Specification

28

Process State Definition Form
Name Estimate_Effort_And_Cost
Synopsis Estimate the effort and cost for the software project.
Main Role Requirement _Analyst, Software—Product—Manager,

Project Manager
Entrance
Condition

state-of(Software_S ize)=Estimated

Artifact List Effort _And _Cost
Information
Artifacts

Project—Plan—Summary, Software—Size

Operation List

Name Get_Productivity_Measure
Synopsis Get the developers productivity to estimate ptoject's effort and

costs.

Name Calculate_Time_Required
Synopsis Calculate required effort and costs from estimated program size and

developer's productivity.

Name Document_Estimated_Time
Synopsis Document the estimated time in the software measurement database.
Exit Condition

state-of(Effort_And_Cost)=Estimated and state-
of(Project_Plan_Summary)=Updated

Informal
Specification

PP.AC.05
PP.AC.07

Formal
Specification

29

Process State Definition Form
Name Estimate _Software _Size
Synopsis Estimate the size of all major software work products.
Main Role Requirement—Analyst, Software—Product—Manager,

Project—Manager
Entrance

Condition

(state-of(Allocated_Requirement)=Derived or state-
of(Use_Case_Diagram)=Created) and state-
of(Obj ect_Category_Size)=Defined

Artifact List Software Size
Information

Artifacts
Allocated—Requirement, Class_Diagram

Operation List

Name Compare—Category—Size
Synopsis Estimate the new object size by comparing the object category size.

Name Calculate _Software _Size
Synopsis Use the PROBE method to calculate the software size.

Name Document—Estimated—Size
Synopsis Document the software size data to make regression analysis.
Exit Condition state-of(S oftware_Size)=Documented
Informal

Specification
PP.AC.05
PP.AC.06

Formal
Specification

30

Process State Definition Form
Name Identify—Training—Need
Synopsis Identify the training needs which include the organisational needs

and the project needs.
Main Role Training—Staff, Software_Product_Manager, Project Manager
Entrance

Condition
state-of(Training_Plan)=Drafted

Artifact List Training—Need
Information
Artifacts

SSSP, PDSP

Operation List

Name Identify—Organisational Need
Synopsis Identify the strategic software training needs of the organisation.

Name Determine—Project—Need
Synopsis Determine the organisational training support needed to address the

specific training needs of software projects and support groups.
Exit Condition state-of(Training_Need)=Identified
Informal

Specification
Formal

Specification

31

Process State Definition Form
Name Manage_Configuration_Item
Synopsis The configuration items have been identified, controlled and

recorded.
Main Role Configuration—Management—Staff
Entrance

Condition
state-of(CM_Library_System)=Built

Artifact List Configuration—Item
Information
Artifacts

CM—Plan

Operation List

Name Identify—Configuration—Item
Synopsis Identify the configuration items that will be placed under software

configuration management.

Name Control_Configuration_Item
Synopsis Control changes to the content of configuration items.

Name Record_Configuration_Item
Synopsis Establish records describing configuration items.
Exit Condition state-of(Configuration_Item)=Managed
Informal

Specification
Formal

Specification

32

Process State Definition Form
Name Manage_Supplier_Monitoring
Synopsis Monitor the software suppliers performance and results to ensure

that the software satisfies its requirements.
Main Role Quality—Assurance—Staff, Contract_Management_Staff,

Software _Product _Manager, Project—Manager
Entrance

Condition
state-of(S upplier_Selection)=Managed

Artifact List Supplier_Monitoring
Information
Artifacts

Acquisition—Plan

Operation List

Name Track—Supplier
Synopsis Track the software suppliers performance against the supplier

agreement.

Name Review _Technical _Issue
Synopsis Review technical issues with the software supplier.

Name Review_Management_Issue
Synopsis Review management issues with the software supplier.

Name Evaluate Supplier
Synopsis Periodically evaluate the performance of the software supplier.

Name Accept_Acquired_Software
Synopsis Conduct acceptance reviews and tests for the acquired software and

associated work products prior to them being accepted.
Exit Condition state-of(Supplier_Monitoring)=Managed
Informal

Specification
Formal

Specification

33

Process State Definition Form

Name Manage_Supplier_Selection

Synopsis Select software suppliers and establish the agreements with the
software suppliers.

Main Role Requirement _Analyst, Contract—Management—Staff,
Software_Product_Manager, Project—Manager

Entrance
Condition

state-of(Supplier_Selection)=Referenced and state-
of(Acguisition_Plan)=Drafted

Artifact List Supplier—Selection

Information
Artifacts

Acquisition—Plan

Operation List

Name Determine_Acquisition_Need

Synopsis Determine the software acquisition needs for the software project.

Name Establish—Requirement

Synopsis Establish the requirements for the acquired software.

Name Acquire _COTS _Product

Synopsis Select off-the-self software products to satisfy the software projects
needs.

Name Select Contractor

Synopsis Select software contractors based on an evaluation of their ability to
meet the specified software requiremet.

Name Establish Contract

Synopsis Establish an agreement with the software supplier as the basis for
managing _the _contractual _relationship.

Exit Condition state-of(S upplier_Selection)=Managed

Informal
Specification
Formal

Specification

34

Process _State _Definition _Form
Name Perform—ConfigurationManagement
Synopsis This process involves:

-Identifying the configuration of the software at given points in
time.
-Controlling changes to configuration items.
-Building software work products from the software configuration

library.
-Maintaining the integrity of software baselines throughout the

software life cycle.
Main Role Configuration_Management_Staff
Entrance state-of(Configuration_Management)=Initiated

Condition
Artifact List Configuration—Management
Information
Artifacts

Sub-P-State List

Name Manage_Configuration_Item
Synopsis The configuration items have been identified, controlled and

recorded.

Operation List

Name Draft _CM_Plan
Synopsis Establish the plan for performing software configuration

management.

Name Build _CM_Library—System
Synopsis Build a software configuration library system for the software

baselines.

Name Verify—CM—system
Synopsis Verify the status of software configuration management activities

and contents.
Exit Condition state-of(Configuration_Management)=Verified
Informal Software configuration management in MIL-STD-498
Specification
Formal

Specification

35

Process State Definition Form

Name Perform—Organisation _Process _Focus

Synopsis Perform the activities for software process improvement.

Main Role Senior_Manager, SEPG
Entrance
Condition

state-of(Process_Improvement_Plan)=Drafted

Artifact List Organisation _Process _Focus

Information
Artifacts

Process—Improvement—Plan

Operation List

Name Appraise _Software _Process

Synopsis Appraise the organisation's software processes to identify strengths
and weaknesses periodically and as needed.

Name Draft _Action _Plan

Synopsis Draft an action plan to address the findings of the software process
appraisals.

Name Implement _Action _Plan

Synopsis Coordinate implementation of software process action plans across
the organisation.

Name Deploy_Software_Process_Asset

Synopsis Coordinate the deployment of the organisation's software process
assets.

Name Evaluate _Software _Process _Asset

Synopsis Review and evaluate the organisation's software process assets.

Exit Condition state-of(Organisation_ Process _Focus)=Performed

Informal
Specification
Formal

Specification

36

Process State Definition Form

Name Perform _Organisation Training_Program

Synopsis Perform the organisation training program to develop the skill and
knowledge of the _development _team.

Main Role Training_Staff, Project—Manager

Entrance
Condition

state-of(Organisation_Training_Program)Referenced

Artifact List Organisation_Training_Program

Information
Artifacts

PDSP

Sub-P-State List

Name Identify_Training_Need

Synopsis Identify the training needs which include the organisational needs
and the project needs.

Operation List

Name Draft _Training—Plan
Synopsis Draft the training plan for organisational software training.

Name Build_Training_Material

Synopsis Establish and maintain software training materials that address the
needs of the organisation.

Name Execute—Training—Program

Synopsis Train people in the software skill needed to perform their their roles.

Name Build _Training _Record
Synopsis Establish and maintain training records for the organisation.

Exit Condition state-of(Organisation_Training_Program)=Performed

Informal
Specification
Formal

Specification

37

Process State Definition Form

Name Perform _Peer _Review
Synopsis Perform the activities for peer reviews.

Main Role Reviewer, Software _Product _Manager, Project—Manager

Entrance
Condition

state -.of(Peer_Reviews)=Referenced

Artifact List Peer Reviews
Information
Artifacts

PDSP

Operation List

Name Draft _Peer _Review _Plan

Synopsis Draft the peer review plan to conduct the peer reviews activities.

Name Conduct_Peer_Review_Activity

Synopsis Conduct and implement peer review activities.

Name Record _Peer _Reviews _Data

Synopsis Record data on the preparation, conduct, and results of the peer
reviews of the software work products.

Exit Condition state-of(Peer_Review)=Perforrned

Informal
Specification

Establish—Quality—Measure
Joint technical and management reviews in MIL-STD-498
Corrective _action _in_MIL-STD-498

Formal
Specification

38

Process State Definition Form

Name Perform_Project_Interface_Coordination

Synopsis The purpose of Project Interface Coordination is to ensure that
software managers and staff effectively communicate, coordinate,
and collaborate with other functions in the organisation to staisfy the
customer's needs.

Main Role Development—Group, Management—Group

Entrance
Condition

state-of(Project_Interface_Coorclination)=Referenced

Artifact List Project_ Interface _Coordination

Information
Artifacts

Software—Management—Process, Software—Technical—Process

Operation List

Name Draft. Coordination _Plan

Synopsis Draft a coordination plan to conduct the activities of project
interface coordination.

Name Perform—Coordination—Activity

Synopsis Perform related activities of project interface coordination.

Exit Condition state-of(Project_ Interface _Coordination)=Performed

Informal
Specification
Formal

Specification

39

Process State Definition Form

Name Perform _Risk _Management

Synopsis Software risk management involves identifying risks, analyzing their
likelihood and potential impact, determining and evaluating risk
contingencies, tracking risks, and proactively manageing the risks.

Main Role System—Engineer, Software _Product _Manager, Project—Manager

Entrance
Condition

state-of(Risk_Management)=Referenced

Artifact List Risk_Management

Information
Artifacts

Software_Management_Process, Software—Technical—Process

Operation List

Name
Synopsis

Draft
_

Risk _Management_Plan
Draft a risk management plan to conduct the activities of the

software risk management.

Name Identify—Risk

Synopsis Identify and document software project risks.

Name Analyze—Risk
Synopsis Analyze identified software project risks to determine risk exposure

and priority.

Name Mitigate _Risk
Synopsis Mitigate the software project risk.
Exit Condition state-of(Risk_Management)=Performed

Informal
Specification
Formal

Specification

40

Process State Definition Form

Name Perform _Software _Acquisition—Management

Synopsis Perform Software Acquisition Management to manage the
acquisition of software from sources external to the software project.

Main Role Software—Supplier, Requirement—Analyst,
Contract—Management—Staff, Software—Product—Manager,
Project—Manager

Entrance
Condition

state-of(Software_Acquisition_Management)=Referenced

Artifact List Software _Acquisition _Management

Information
Artifacts

PDSP

Sub-P-State List

Name Manage—Supplier _Selection
Synopsis Select software suppliers and establish the agreements with the

software suppliers.

Name Manage_Supplier_Monitoring
Synopsis Monitor the software suppliers performance and results to ensure

that the software satisfies its requirements.

Operation List

Name Draft_Acquisition_Plan

Synopsis Establish the acquisition plan for managing the acquisition of
software.

Exit Condition state-of(Software_Acquisition_Management)=Performed

Informal
Specification
Formal

Specification

41

Process State Definition Form

Name Perform_Software_Project_Control

Synopsis Track software project performance against the software
development plan, and take corrective actions.

Main Role Development—Group, Customer, Project—Manager

Entrance
Condition

state-of(Software_Development_Plan)=Derived and state-
of(Software_ Technical _Process)=Referenced

Artifact List Software_Development_Plan
Information
Artifacts

Software—Management—Process, Software—Technical—Process

Operation List

Name Track SDP
Synopsis Actual performance and results of the software project are tracked

against the software develpment plan. These issues include the size
of software work products, software costs and efforts, critical
computer resources, software engineering facilities, the schedule,
risks, commitments, and project reviews.

Name Correct SDP
Synopsis Take corrective action as necessary when actual accomplishments

and progress differ significantly from that planned.

Name Maintain—SDP

Synopsis Revise the software development plan to reflect accomplishments,
progress, changes, and corrective actions as appropriate.

Exit Condition state-of(Software_Development_Pl an) =Rev ised

Informal
Specification
Formal

Specification

42

Process State Definition Form

Name Perform _Software—Quality _Assurance

Synopsis This process involves:
-reviewing the software activities and work products against the

applicable requirements, process descriptions, standards, and
procedures.
-identifying and documenting noncompliance issues.
-providing feedback to project staff and managers.
-ensuring that noncompliance issues are addressed.

Main Role Senior _Manager, Quality_Assurance_Staff

Entrance
Condition

state-of(Software_Quality_Assuranced)=Initiated

Artifact List Software_Quality_Assurance

Information
Artifacts

Sub-P-State List

Name Control_SQA_Issue
Synopsis Objectively control the SQA issues which include software activities

and software work products.

Operation List

Name Draft_SQA_Plan
Synopsis Draft the plan for software quality assurance in the early stage of the

overall project planning.

Name Reprot_SQA_Result
Synopsis Report the results of the software quality assurance activities and

address noncompliance issues.
Exit Condition state-of(Software_Quality_Assurance)=Reported

Informal
Specification

Software quality assurance in MIL-STD-498

Formal
Specification

43

Process State Definition Form

Name Perform _Software _Test

Synopsis Perform the software test to validate that the system satisfies its
requirements.

Main Role Customer, Requirement _Analyst, Testing_Staff,
Software_Product _Manager, Project-Manager

Entrance
Condition

state- of(Test_Pl an)=Drafted and state-
of(Software_Code)=Developed

Artifact List Software—Test

Information
Artifacts

Test—Plan

Operation List

Name Perform_Integration_Test

Synopsis Perform integration test to ensure that the software components
interact correctly when combined.

Name Perform_System_Test

Synopsis Perform system test to validate the software satisfies the allocated
requirements.

Name Perform—Acceptance—Test

Synopsis Perform acceptance test to demonstarte to the customer that the
software system satisfies the customer requirements for the software
project.

Exit Condition state-of(Software_Test)Performed

Informal
Specification

Establish—Quality—Measure

Formal
Specification

44

