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Abstract 

In 1913, the Ford Motor Company successfully introduced the assembly-line 

mass production of motor vehicles. The success of mass production came in the 

concept of interchangeable parts and manufacturing processes. Currently, after 

struggling with "software crisis" in the last decades, the software community is 

trying to imitate the concept of mass production. 

Problems arise from the characteristics of software. Software is a logical rather 

than a physical system element. We develop software products but not manufac-

ture them. However, researchers still believe in the practices used for assembling 

previously existing components into large software systems. 

Before the technique of software components is mature, we believe that the 

software process is another essential topic for "manufacturing software products". 

The steps in the software process must be defined very precisely and carefully. 

Process-centred Software Engineering Environments (PSEEs) are viewed by many 

as a way to assist developers in the execution of their work. Research has produced 

a variety of PSEEs providing support for management and technical activities. 

However, it is hard to say which process is the most appropriate one. 

The Capability Maturity Model for Software (CMM), developed by Software 

Engineering Institute in Carnegie Mellon University, provides software organisa-

tions with guidance on how to gain control of their processes for developing and 

maintaining software. For the last few years, some organisations have successfully 

improved their software process maturity by using the CMM. 

This research builds a PSEE, called SPI (Software Process Improvement) 

PASTA , that models the CMM by using the process notation PASTA (Pro-

cess and Artifact State Machine Transition Abstraction). There are two reasons 

for doing this research. Firstly, we believe that a PSEE must comply with a 

framework of continuous process improvement, such as the CMM, in order to 

improve project management in software organisations. Secondly, in any context 

in which the CMM is applied, a reasonable interpretation of the practices should 

be used. The CMM must be appropriately interpreted for different size projects 

and software organisations. 

The SPI PASTA provides a framework for continuous improvement of the 

process. This framework complies with a supporting knowledge transfer and 



implementation services architecture that makes it possible to achieve higher 

software process maturity. Therefore, the software organisation's productivity 

and quality can be improved over time through consistent gains in the discipline 

achieved by using the SF1 PASTA. Furthermore, by means of a CMM-based 

appraisal method, the state of an organisation applying the SPI PASTA will be 

determined. As a result, the organisation's software process can be continuously 

improved. 
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Chapter 1 

Introduction 

On the 4th June 1996, the maiden flight of the Ariane 5 launcher ended in failure. 

Only 40 seconds after initiation of the flight sequence, at an altitude of about 3700 

in, the launcher veered off its flight path, broke up and exploded. An independent 

Inquiry Board was immediately set up and finally submitted its report[L1096]. 

The report indicated: 

The failure of the Ariane 501 was caused by the complete loss of guid-
ance and attitude information 37 seconds after start of the main en-
gine ignition sequence (30 seconds after lift-off). This loss of inform-
ation was due to specification and design errors in the software of the 
inertial reference system. 

The extensive reviews and tests carried out during the Ariane 5 Devel-
opment Programme did not include adequate analysis and testing of 
the inertial reference system or of the complete flight control system, 
which could have detected the potential failure. 

On the 14th September 1997, Microsoft announced that it would delay until 

spring the release of Windows 98. The product, which features tight integra-

tion with the company's Internet Explorer software, is strategically important. 

Microsoft wants to make Windows 98 a key weapon in its battle with Netscape 

Communications to provide the main software package for using the Internet. 

The company will release Windows 98 in June 1998 rather than in March. Con-

sequently, Wall Street traders pushed Microsoft's stock down 5 percent. 

Software development has been a troublesome technology for a long time. A 

majority of large software projects tend to run late or out of control, or to fail 

to meet their target. The two cases above are good examples where a minor 

mistake could destroy the whole project or cost companies considerable sums. In 

this thesis, we try to help software organisations by building a software process 

framework, called SPI (Software Process Improvement) PASTA , that models the 
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CMM by using the process notation PASTA (Process and Artifact State Machine 

Transition Abstraction). 

1.1 Is software development tricky? 

In the first Industrial Revolution, the process of change from an agrarian, han-

dicraft economy to one dominated by industry and machine manufacture had 

been well prepared for a long time. Towards the end of the nineteenth century, 

the second Industrial Revolution was linked with a sharp increase in scale of 

production and the size of companies. Today, the third Industrial Revolution is 

taking place. Electronic and computer-based technologies rapidly shift the locus 

of economic and industrial power. 

Each Industrial Revolution brings new management theories to the new en-

terprise. For the first and second wave, people took a long time to adjust to the 

new idea. However, for the third wave, it seems that we have not enough time to 

sort out how to enter the digital era, especially in the software industry, a totally 

new industry for human beings. 

Basically, software is a logical rather than a physical system elernent[Pre94]. 

This is the biggest difference between software and traditional mass production 

industries. In the early years, software programmers were viewed as craftsmen. 

They built software products for special customers. However, software systems 

are increasingly big and complex. Software development is not a craft any more. 

It is team work. 

From his study, Jones[Jon96] described how a significant percentage of projects 

are cancelled before completion, fail to deliver expected features, run over budget 

and overshoot schedules. Table 1.1 shows the approximate frequency of various 

kinds of outcomes, based on the overall size of the project being attempted. 

Project Size Expressed in Function Points 
Project Outcome < 100 100-1000 1000-5000 > 5000 

Cancelled 3% 7% 13% 24% 
Late by > 12 months 1% 10% 12% 18% 
Late by > 6 months 9% 24% 35% 37% 

Approximately on-time 72% 53% 37% 20% 
Earlier than expected 15% 6% 3% 1% 

Table 1.1: Software Project Outcome By Size of Project[Jon96] 

Table 1.1 clearly shows that only one fifth of projects, which are larger than 
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5000 function points, are completed on time. This percentage is far less than for 

small projects. From this survey, conclude that we have to gain an understanding 

of the properties of software. What is the main reason for this "software crisis"? 

Kraut and Streeter[KS95b] suggested that uncertainty is one of characteristics 

of software development. They listed the following: 

. Unlike much manufacturing, software development is a nonroutine activity. 

The lifecycle of software development is not clear. The classic "waterfall" 

lifecycle model has been criticised for a long time since real projects rarely 

follow the sequential flow. Booch[Boo96] described real processes as both 

cyclic and opportunistic. This means that a well-managed iterative and 

incremental development life cycle might be a good paradigm for software 

development. 

Uncertainty increases because specifications of the software's functionality 

change over time. 

Bersoff[BHS80] said that no matter where you are in the system life cycle, 

the system will change, and the desire to change it will persist throughout 

the life cycle. Change always happens when software is used by end users 

as this is the time when end users understand software's capabilities and 

limitations. 

Software development is uncertain because specifications for it are invariably 

incomplete. 

The software engineering textbook usually describes how software require-

ments, such as major functions, interfaces and information, must be fully 

understood before successive layers of detail are specified. However, the 

true story is that too few people working on a software project have suf-

ficient knowledge about the domain in which they are working. Analysts 

with varying degrees of domain knowledge interview customers and users. 

The specifications seem to he inevitably incomplete. Even worse, some of 

the users' requirements will not be uncovered until the product is released. 

This is really a nightmare for software developers. 

Software is uncertain because the different subgroups involved in its develop-

ment often have different beliefs about what it should do and how it should 

do it. 

3 



Professionals generally develop their products by using their own methods 

and techniques. They might do a good job; however, without disciplined 

frameworks, the project could become out of control. 

Therefore, software development is very different from traditional industries. 

We can not simply adopt traditional management theories to fit the software 

industry. We have to discover a new method to enter this new digital era. 

1.2 Motivation 

Cusumano[Cus9l] in his book described the concept of the software factory. With 

the increasingly popular Internet, the virtual corporation is becoming reality. 

This effort is building large international systems with multi-national participa-

tion. However, to create these system, it needs a common international frame-

work for specifying the best of practices for software processes, activities, and 

tasks. Without this commitment, developers will struggle with communicating 

each other. 

The effort of software process improvement has been verified to be a good 

solution to resolve the problems[PW96, HIW95, DS97]. With this consensus, 

those multi-national participants may follow the rule to develop software pro-

jects. To run an international software project, Microsoft's secrets[CS95, CS97] 

can provide an effective method for those software organisations. This "synch-

and-stabilise" approach complying with disciplined process will effectively and 

efficiently develop a big software project. 

1.2.1 Software Process Improvement 

In recent years, process modelling has become one of hottest topics in the issue of 

software engineering. Researchers focus on software processes which can effect-

ively combine related staff, resources and activities. As mentioned in Section 1.1, 

the software community faces significant difficulties. Researchers have been trying 

to tackle these problems. Their efforts include object-oriented methodology[BJR97], 

Frameworks [F597], Patterns[GHJV94] and so on. The goal of each effort is to 

provide an effective and efficient method to help the software community com-

plete their mission. However, software projects are not only about technology 

but about management. Methodologies, tools and people all influence software 

development. 

For the last decade, the software community has focused on the area of soft-

ware process improvement, in particular for those who contract to governments. 



An organisation such as NASA has to develop, maintain and manage complex 

flight systems. It is very important to develop a continual process improvement 

approach that allows NASA to fine tune its process for its particular domain. 

As a result, the Software Engineering Laboratory (SEL) was created in 1976 in 

NASA and concentrated on software process improvement for the purpose of un-

derstanding and improving the overall software process and products that were 

being created within the Flight Dynamics Division (FDD)[MPB94]. The SEL's 

recently completed 1996 organisational baseline shows across-the-board improve-

ment in all measurement[PW96]. 

Average mission costs decreased by 15% when compared with the 1993 

baseline, totalling a 60% overall reduction in mission costs since 1985. 

The cost of developing a line of new code has decreased by nearly 35% since 

1993. 

Ground system projects saw a modest 7% reduction in project cycle time, 

while simulators experienced a 20% reduction since 1993. 

Error rates continued to drop, with a 40% reduction in development error 

rates since 1993. This combines with earlier improvement to total an 85% 

drop in development error rates over the past 10 years. 

The impacts of these process changes are evident in the resulting character-

istics of FDD products. This results in a belief that software products can be 

improved by optimising the software engineering process used to develop them. 

In 1987, the Software Engineering Institute (SET) in Carnegie Mellon Uni-

versity released a software process maturity framework and maturity question-

naire to support organisations in improving their software process[PCCW93a, 

KCF96, Pau95]. Four years later, the SET released the Capability Maturity 

Model for Software (SW-CMM or CMM)[PCCW93b, PWG93]. Since then, the 

CMM has become an important guide to help software organisations select process 

improvement strategies. 

The CMM was originally developed to assist the U.S. Department of Defence 

(DoD) in software acquisition. However, the use of the CMM swiftly pervaded the 

wider software engineering community. Not only the DoD contracting community, 

but also commercial organisations adopted the CM1'vl as a framework for their own 

internal improvement initiatives and gained significant benefit from the CMM. 

Ratheon Electronic Systems (RES) began its software improvement activities 

in 1988, driven by compelling business reasons to improve the cost and schedule 
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SEL CMM Level Number of Projects 1 Qualityf Cycle Time 1 
(X factor) 

Productivity 

I 	(Relative) 

1 3 n/a 1.0 n/a 

2 9 890 3.2 1.0 

3 5 411 2.7 0.8 

4 8 205 5.0 2.3 

5 9 126 7.8 2.8 

fIn-Process Defects/Million assembly-equivalent lines of code 	 I  

Table 1.2: Motorola GED Project Performance by SET CMM Level[DS97] 

predictability of its major business areas' software components. These activities, 

guided by the CMM, include[Hal96]: 

to establish a strong and effective software process infrastructure for con-

tinuous improvement and to maintain the team's enthusiasm over time, and 

to measure and analyse process and project data to quantity the benefits 

of software process improvement. 

In eight years, Raytheon has demonstrated significant improvements to its soft-

ware engineering process. During the period, productivity of the development 

staff has increased by a factor of almost 2.8, and predictability of their develop-

ment budget and schedule has been reduced to a range of +/- 3%[HIW95]. 

Motorola[D597] has long been a famous organisation which has adopted the 

CMM as a vehicle for software process improvement. In November 1995, the 

company's Government Electronics Division was independently assessed at SET 

level 4. Table 1.2 summarises the Motorola GED improvement trends for quality, 

cycle time and productivity by SET level. In typical projects on level 4, Motorola 

achieves a 5-fold reduction in product cycle time to accelerate the introduction 

of new products, and a 4-fold reduction in defects and 2.3 time productivity than 

projects on level 2. 

This achievement brought Motorola a remarkable return on investment and 

implied that there is a good business case for those who follow the SET software 

process improvement approach. 

There are other samples from the survey conducted by the SET[CLMZ96, 

CLM+97]. The result of the survey was a mixture, in particular for those organ-

isations which appeared to be of low process maturity. Nevertheless, the benefits 

of adopting the CMM are significant. 

However, some research has different opinions. Fayad[FC96] argued that ad-

opting the CMM recommended practices is not especially easy and smaller or- 
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ganisations cannot afford the two- to three-year duration it normally takes to 

reach CMM level 3. In addition, the CMM is continuously being questioned by 

the software community. One of the common complaints concerning the CMM is 

the organisation of the information contained within the document. References 

to software process practice for a given CMM Key Process Area (KPA) are not 

located in the same section but are dispersed throughout the document. This 

makes the job of reviewing a defined process against the recommendations made 

by the CMM particularly difficult for an organisation trying to improve their 

CMM maturity rating or trying to define a CMM consistent process[AES95]. 

To resolve these arguments, the SEI Software Process Definition Project has 

developed the Software Process Framework (SPF) to support users access to the 

process maturity criteria, or key practices established in the CMM[OR094]. The 

purposes of the SPF are[Gat97]: 

. to present information recommended by the CMM in a format that is con-

venient for software process definition tasks, 

to identify the policies, standards, processes, procedures, training, and tools 

recommended by the CMM, 

to provide checklists for ensuring that process documents are consistent 

with the CMM. 

The SPF comprises a set of templates derived from the CMM and maps all 

CMM KPA specific recommendations. The policies and standards checklists are 

used to verify that policies and standards are in place to guide the use of the pro-

cess. Furthermore, the process checklists are used to review and analyse software 

process documents. However, for software development, the software organisa-

tions have to cover all the software processes which include[Pau97]: 

software technical processes 

software support processes 

software management processes 

organisational processes 

These four processes, shown in Figure 1.1, provide services to and support the 

work required by one another. The main problem is that software organisations 

have to invest in considerable resources to fit the SET's process improvement 

activities. This problem is not only for large organisations but also for small 
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companies which might be dispersed teams connected by the Internet and/or 

intranet. 

SW-CMM 

Software 	 Software 
Technical 	 Management 
Processes 	 Processes 

Software 	 Organisational 
Support 
Processes 	 Processes 

Figure 1.1: The Process Architecture of the CMM 
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Figure 1.2: Trends in the Community Maturity Profile 

However, as Figure 1.2[SEI97] shows, only 16 % of assessed organisations 

(13.9% on Level 3, 2.1% on Level 4 and 0.3% on Level 5) could reach higher than 

maturity Level 3 in 1997. This shows that adopting the CMM recommended prac-

tices is a big challenge for software organisations. The process maturity profile 

surveyed bv the SEI[SE197] showed that the time taken to move from maturity 

level 1 to 2 is 32 months for all organisations and 27 months for organisations 

that began their CMM-based SPI effort in 1992 or later. All groupings exhibit a 



similar pattern for moving from maturity level 1 to 2 and level 2 to 3. This means 

that an organisation might take four or five years to achieve Level 3. CMM-based 

SPI is not a cheap nor a quick solution. 

Diaz and Sligo concluded and found some reasons to explain why in lower 

maturity organisations it is much more difficult to implement software process 

improvements [DS97]: 

Keying process changes to metric analysis data is not addressed until CMM 

levels 4 and 5. Such data is critical to improving the effectiveness of SPI 

efforts. 

. Lower maturity organisations focus on defining their core processes, not on 

improvement. 

Lower maturity organisations are just starting to improve their software 

processes. This requires significant effort, especially in the beginning. 

We are faced with some basic problems in promoting CMM to software organ-

isations. Although the SPF provides a framework to check the processes which 

are used in software organisations, it is still like a roadmap and cannot tell you 

how to design or how to analyse software process documents. There is still a 

gap between the CMM and the SPF. In this thesis, we try to use SPI PASTA to 

assist lower maturity organisations to implement software process improvement. 

By using SPI PASTA, those lower maturity organisations may easily apply key 

practices recommended by the CMM. This will significantly reduce their effort 

and earlier form a base to achieve higher maturity. 

1.2.2 Japan's Software Factory 

In 1913, the Ford Motor Company successfully introduced the assembly-line mass 

production of motor vehicles. The concept of mass production has dominated the 

automotive industry. Mass production methods are based on two general prin-

ciples: the division and specialisation of labour and the use of tools, machinery 

and other equipment in the process combining precision, standardisation, inter-

changeability, synchronisation and continuity. 

In the 1970's several Japanese firms, led by the Toyota Motor Corporation, 

developed radically different approaches to the management of inventories. By 

relying on careful scheduling and the coordination of supplies, just-in-time man-

agement ensured that parts and supplies were available in the right quantity, 

with proper quality, at the exact time they were needed in the manufacturing 
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or assembly process[Mon83]. Since then, the concepts of mass production and 

just-in-time management have influenced the software industry. The idea of the 

"software factory" has been widely discussed in the literature[Man84, TT84]. 

Cusumano[Cus9l] studied some companies, such as IBM, System Development 

Corporation (SDC) and General Telephone and Electric (GTE) which pioneered 

variations of software factory approaches during the 1970's. The common activ-

ities of these companies were incorporated into a standardised set of engineering 

methods, controls and support tools. These standards specified a hierarchical ar-

chitecture for all software systems, a formal engineering process based on a com-

mon life-cycle model, a list of required documents for each phase and a glossary 

of terms and symbols for developing programs. However, most of the compan-

ies abandoned their efforts after a couple of years of operation since information 

technology can not well support the concept of software factory. 

Despite the unsuccessful implementations by American companies, we have to 

ask whether the concepts of "factory" provide solutions to problems in software 

production at all. In industries such as automobile manufacture, the de-skilling or 

routinsation of work, high levels of control over production tasks and work flows, 

division and specialisation of labour, interchangeable parts and automation have 

well been implemented. However, with respect to the software industry, the highly 

skilled programmers, wide variations in project contents and work flows, unclear 

requirements of the customer . ...... were the major obstacles in implementation 

of factory concepts. In his book, Pressman[Pre94] suggested that software is 

developed or engineered rather than manufactured in the classical sense. This 

means that software projects cannot be managed as if they were manufacturing 

projects. Besides, in mass production, the use of interchangeable components 

is necessary and essential. Without standardisation of parts, mass production 

would be impossible to implement. However, some research has recently focused 

on this field: 

• 	Object-Oriented Frameworks 

A framework is a reusable, "semi-complete" application that can 
be specialised to produce custom applications[FS97]. 

Mattsson also defined an object-oriented framework as a (gener-
ative) architecture designed for maximum reuse, represented as a 
collective set of abstract and concrete classes; encapsulated poten-
tial behaviour for subclassed specialisations/11at96J. 

The difference between an object-oriented framework and a class library is 

that an 00 framework is targeted for particular business units and applic- 
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ation domains. A framework contains the basic application structure that 

application programmers previously had to develop on their own. By start-

ing with a business framework, applications can be created more rapidly 

since developers have only to concentrate their development efforts on the 

unique differentiators they need for their customers. 

Research into object-oriented frameworks has boomed since the introduc-

tion of object technology and a matured distributed environment. IBM's 

Commercial Shareable Frameworks initiative[Boh97], also called project San 

Francisco, is trying to build server-side core business process components 

that can be reused as a base for creating applications for specific industry 

domains. San Francisco will restructure the way applications can be built 

and sold by providing about 40% of a typical working application within the 

supported domains. ISVs (Independent Software Vendors) would develop 

the remaining 60% of the application business processes and services on 

top of San Francisco and bundle both the IBM and ISV code into a single 

solution which the ISV will then sell to customers. 

Meanwhile, the Software Engineering Institute (SET) in Carnegie Mellon 

University built the product line systern[BC96, CFM96, WAN], a group 

of products sharing a common, managed set of features satisfying specific 

needs of a selected market or mission. All products in a product line share 

a common architecture[CN96] and control the variability inherent in a fam-

ily of similar systems. The work of the product line system is focused in 

three areas: Domain Engineering, Software Architecture and Reengineer-

ing. Through careful management and engineering, a product line can be 

developed that exploits a common set of assets, ranging from reusable soft-

ware components to work breakdown structures for individual projects. 

Both systems share the same idea of developing a framework or an archi-

tecture with reusable components as a foundation for a specific application 

domain. By implementing a "standardised variety" approach, organisations 

can build a production system that can support the concurrent develop-

ment of software for multiple projects. As in the concept of just-in-time 

management (a close coordination of information and plans with suppliers 

and vendors), project managers focus on domain engineering and receive 

components at the last minute. 

. Distributed and Concurrent Development 

This is another type of just-in-time management. The concept of distrib- 

11 



uted and concurrent development arose because of the Internet. Virtual 

collaboration over the Internet is a new paradigm of software development. 

It enables multiple small teams, geographically distributed, to concurrently 

develop multiple functions for a family of large-scale software systems. Pro-

jects such as the Agile Software Process Model[Aoy93, Aoy90, Aoy97] and 

Fujitsu's Distributed and Concurrent Development Environment[NFK97] 

paid attention to distributed development processes. To implement the 

concept, the Japanese developed a cyclic enaction model in which devel-

opment of each enhancement has to be completed in a fixed time period, 

and iterated over multiple releases. The key point of the model is precisely 

controlling the process over multiple releases, since each process instance 

has to meet an exact development schedule. This is the key concept of 

just-in-time management. 

To implement the concept of just-in-time management, software organisa-

tions can benefit from the use of object-oriented technology. Booch{Boo93] 

gave an object a definition: 

An object has state, behaviour and identity; the structure and 
behaviour of similar objects are defined in their common class; 
the terms instance and object are interchangeable. 

Hence, the features of objects support the ability to create systems com-

posed of independent parts and systems that can be extended without du-

plicating effort. However, if you are going to see the benefits of object-

oriented technology, you have to create a work style that promotes identify-

ing and working on well-defined and manageable system components. This 

is the crucial point which the Japanese software factory focuses on. By 

using components, software engineers can develop and release projects in-

crementally, create subteam structures that encourage parallel work and 

promote reuse opportunities. 

Both approaches have to face crucial problems. Two of the toughest problems 

are domain engineering in frameworks and partition in distributed and concur-

rent development. In the framework approach, the first activity is to define the 

conceptual framework. This activity is based on a functional decomposition. In 

distributed and concurrent development, a good partition might closely coordin-

ate the project manager (vendor) and developers (suppliers) and complete the 

products on time. Consequently, division of the software project into work com-

ponents is a crucial task. 
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By surveying the Japanese software industry, Cusumano[Cus9l] found that 

Japanese software companies attempted the strategic management and integra-

tion of activities required in software production, as well as the achievement of 

planned economies of scope. Cost reduction or productivity gains came from de-

veloping a series of products with one firm which is more efficient than building 

each product from scratch in a separate project, and planned scope economies 

required the deliberate sharing of resources across different projects. To manage 

their projects, Cusumano explained that Japanese software companies focused on 

several common elements[Cus9l]: 

. Commitment to process improvement 

Product-process focus and segmentation 

Tailored and centralised process R&D 

Skill standardisation and leverage 

Dynamic standardisation 

Systematic reusability 

Computer-aided tools and integration 

Incremental product/variety improvement 

From this survey, we can determine some of the key points in the Japanese 

software industry. As in other industries, Japanese software producers first con-

centrated on process and quality control and then on process improvement. The 

managers who established software factories all believed they could improve soft-

ware operations by using an institutionalised software process and quality control. 

In the meantime, the SET's CMM might be viewed as the same issue[PCCW93b]. 

The CMM recommends institutionalising measures and procedures based on his-

torical performance and statistical analysis as part of an organisational culture. 

Japanese software producers developed tailored processes for particular types of 

software products. The Japanese software companies established the organisa-

tion's set of standard software processes with centralised tools and methodology 

above the level of individual projects. The companies tried to establish baselines 

for software developers and product quality through a product focus and a stand-

ard process, as well as training in standard sets of tools. methods and management 

procedures. As a result, the variability of personnel skill does not change the pro-

gress of a project too much, since all activities are controlled by a baseline. This 
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concept was suited to the CMM which, in level 3, integrates the software engin-

eering and management activities into a coherent, defined software process that 

is tailored from the organisation's set of standard software processes. 

1.2.3 Microsoft Secrets 

In their research, Cusumano and Selby [CS95, CS97] described how Microsoft 

uses the "synch-and-stabilise" approach to product development. First, Microsoft 

teams try to understand users' needs and structure those needs into individual 

features. They then assign priorities to these features and allocate them to sub-

projects that break up a development project into three or four milestone periods 

(builds). Microsoft managers also try to fix project resources - limiting developers 

and development time in any one project. The intended shipment date causes 

the whole development team to bound its creativity and effort. 

Figure 1.3 shows that the life cycle contains three phases; planning, devel-

opment and stabilisation. The planning phase takes three to twelve months, 

depending on the features of the project. The development phase takes six to 

twelve months and generally comprises three or four major milestone product re-

leases. The stabilisation phase takes another three to eight months and comprises 

testing, buffer time and preparation for final release. 

In the planning phase, Microsoft tries to use a high-level vision statement and 

outline specification to get projects going, rather than trying to write a complete 

specification at the outset. The program managers then write a functional spe-

cification, outlining the product features in sufficient depth to organise schedules 

and staffing allocations. However, the initial specification does not cover all the 

details as it is just a high-level vision statement. During the development phase, 

the program managers revise the functional specification when they learn more 

about what should be in the product. Of the total project time allocated for 

development and stabilisation, a project will generally spend about two-thirds of 

this time in the development phase and one-third in the stabilisation phase. The 

development phase consists of three or four "milestones" (builds). At these stages, 

program managers can revise their functional specification. In Microsoft, projects 

spend approximately two to four months developing each milestone release. Each 

release includes its own coding, testing, and debugging activities. 

Microsoft also tried to fix shipment date to deliver products on time. Project 

managers schedule backwards from the shipment date and define the dates for the 

intermediate project milestones. Typical desktop applications, such as the next 

release of Office, Word, or Excel, are 12 to 24 months in duration. Microsoft is 
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Figure 1.3: Microsoft's Synch-and-Stabilise Life Cycle[CS95] 
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moving toward alternating 12 and 24 month schedules for applications products, 

with the 12 month projects offering minor feature enhancements and 24 month 

projects offering major feature and architectural changes. As a result, Microsoft 

can ship a product release every 12 months{CS95]. The fixed shipment date keeps 

pressure on developers to cut down on features. However, rushing the shipment 

date generally leads to less time for testing and quality assurance activities at the 

end of the project. 

In addition, the DSDM Consortium in UK suggested the Dynamic Systems 

Development Method (DSDM) as a framework of controls for the development of 

IT systems to tight timescales[DSD97I. The mechanism for handling flexibility 

of requirements in DSDM is the timebox. Each timebox is subdivided into three 

parts: investigation ( a quick pass to see whether the team is taking the right 

direction), refinement (to build on the comments resulting from the review at 

the end of investigation) and finally consolidation to tie lip any loose ends. The 

timebox must have an immovable end date and a prioritised set of requirements 

assigned to it. 

Both cases show an essential concept that Yourdon[You96] argued the concept 

of "good enough" software. He suggested that functionality, quality and schedule 

are the three most important elements of "good enough" in most software today. 

These elements form a triangle and are interconnected. The balance between them 

shifts dynamically during a project. It has to be reevaluated by the customer and 

the project manager. 

1.3 Research focus 

To tackle the previously mentioned problems, my research aims to build a Process-

centred Software Engineering Environment (PSEE) for software process improve-

ment. According to ISO/IEC 15504, the software process is defined as following: 

The process or set of processes used by an organisation or project 
to plan, manage, execute, monitor, control and improve its software 
related activities. [1S096] 

This concept was originally from manufacturing physical products, in partic-

ular the automobile industry. From the beginning, software engineers tried to 

find solutions from industry. Although this is not an easy way to imitate in-

dustries' processes, at least, by following processes, the results can be planned 

and tracked. As a consequence, researchers tried to build an environment which 
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provides computer-based support and guidance for the enactment of software de-

velopment processes. The implementation of PSEEs is increasingly popular in the 

software engineering community. Ben-Shaul and Kaiser[BSK95] define a PSEE 

as: 

PSEEs are systems that support large scale software development by 
providing: (1) mechanisms and notations for explicitly modelling the 
process of development and maintenance of software, including task 
definitions, control integration such as global task ordering and local 
constraints on their activation, tool integration, data modelling and 
integration, and user modelling; and (2) mechanisms for enacting the 
modelled process by the PSEEs process-engine, where forms of enact-
ment include process automation, consistency, monitoring, enforce-
ment and guidance. 

Finkelstein, Kramer and Nuseibeh[FKN94] also suggest a PSEE as: 

A PSEE is centred around an explicit process description, often called 
process model, that is defined using Process Modelling Languages (PMLs). 
These languages offer powerful capability to describe roles, manual and 
automated procedures, interaction among users, process artifacts, and 
constraints. The execution (enactment) of the process model within 
a PSEE provides support to process agents in the execution of their 
work, for example, by offering guidance to them or by automating 
some parts of the process. 

As a consequence, a PSEE might include: 

. a process model 

. a process definition language 

. mechanisms or notations for process enactment 

. tool integration mechanisms 

support for communications 

Moreover, articles were focused on computer-supported cooperative work (CSCW) 

which combines a study of the organisational, psychological, and social aspects 

of people working together with the enabling technologies of groupware[TS96]. 

Bandinelli et al. argued that CSCW and PSEEs basically,  address the same issue, 

i.e., how to support cooperative activities in human-centred process[BNF96]. In 

this research, we do not restrict which environment belongs to CSCW or PSEEs. 

In principle, we are concentrating on supporting cooperative activities in software 

development. 
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Why do software organisations need PSEEs? Firstly, software systems have 

become increasingly more complex and larger in scale during the last decade. It 

results in crucial problems such as: 

. Software organisations require more and more skilled people to develop and 

maintain their product. 

. To manage these various experts, without a disciplined environment would 

be much more difficult. 

As a result, researchers are looking for solutions to these problems. Ebert[Ebe97] 

in his article described that current software engineering practice is based on the 

uniqueness of projects. Knowing that something similar has been done before 

is considered to have no practical impact because some interfaces might differ 

and several environmental flavours could have changed. However, he suggested 

that software engineering should investigate how to copy what is good and use 

what already exists. This is why Gamma et al.[GHJV94] used design patterns to 

record experiences in designing object-oriented software. The goal of their study 

is simple. They would like to capture design experience in a form that people 

can use effectively. Design patterns make it easier to reuse successful designs. 

Expressing proven techniques as design patterns makes them more accessible to 

developers of new systems. If design patterns can help novices to learn by example 

to behave more like experts, why do we bother spending a significant amount of 

time hunting for any solution from scratch? 

Design patterns have modified the ideal of using CASE tools. It is clear 

that simply using CASE tools which support specific activities is not sufficient. 

PSEEs which support software activities through the execution of the model of 

the software process will be a good solution for software development. Such a 

model describes the interaction between software developers and development 

environment, such as the role assigned to perform the activities, the anticipated 

work products needed by and produced by the activities of the process, as well as 

the tools, methods and control points related to the process. As far as developers 

are concerned, PSEEs provide them with an appropriate working context. This 

will result in an environment in which developers can inherit experience abstracted 

froin experts. This can reduce the complexity of software development and the 

requirement for skilled people. 

Secondly. the Internet has become one of the most popular innovations in 

the world. The Internet allows users access to selected information regardless of 

geographical distribution and heterogeneity within the physical computing en- 



vironment. Since it is traditional that a software project might be composed of 

separate teams for requirement analysis, design, coding, testing and maintenance, 

the Internet could allow these teams developing software to be located around the 

world. As a result, the concept of "virtual corporation" is increasingly more es-

sential for the software industry. A "virtual corporation" is a company that relies 

on outsourcing almost every aspect of a software project, from requirement ana-

lysis to maintenance. It is similar to setting up an assembly line around the 

world. We can imagine a scenario where teams in the United States and in India 

electronically collaborate to develop a software project. The States' team works 

on the project during the day and saves the work on a central computer. By 

nightfall, it is daytime in India, and India's team takes over, working with what 

the States' team has developed. The concept results in advantages such as: 

Cost saving: An Indian programmer is much cheaper than his/her American 

counterpart in Silicon Valley but is of similar quality. Since it is impractical 

to hire all skilled people in one geographical area and put them in the one 

physical building, the Internet enables companies to hire software engineers 

in different geographical area. This reduces the cost of hiring qualified 

people. 

Time-to-market saving: The project development is worked on in different 

time zone, shortening the time taking to develop a project. 

Let us go back to Section 1.2. It is clear that the cases of Microsoft's de-

velopment teams and the Japanese software factory have been adopted by these 

concepts. As a consequence, a disciplined environment with geographically dis-

persed teams, connected by the Internet and/or intranet, will be an essential 

feature of PSEEs. 

This research will try to build a PSEE by using the CMM and there are two 

reasons for this. Firstly, we believe that a PSEE must comply with a framework 

of continuous process improvement, such as the CMM, in order to establish a 

disciplined environment. To date, we are not aware of any research building 

an environment for software process improvement. Secondly, in any context in 

which the CMM is applied, a reasonable interpretation of the practices should 

be used. The CMM must be appropriately interpreted for different size projects 

and software organisations. SF1 PASTA adopts the concept of artifact-driven to 

build an environment for software development. In a development project, SPI 

PASTA provides guidance on what sort of product it is necessary to create. 
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In this research, we will concentrate on CMM levels 2 and 3 since the KPAs 

(Key Process Areas) on levels 2 and 3 include all basic processes for software 

development. This research will provide practical guidance on how to introduce 

the CMM into software organisations. We believe this PSEE will help lower 

maturity organisations to easily achieve higher levels of process maturity and 

effectively develop their software products. 

1.4 Contributions 

The main contribution of this research is that SPI PASTA (Software Process 

Improvement PASTA) builds a framework to provide software organisations with 

a defined process recommended by the CMM. This framework may help software 

organisations developing their own software development process to ensure that 

they are consistent with the CMM. Furthermore this framework may be a basis 

to develop large international systems with multi-national participation. With 

commitment to SF1 PASTA, software engineers from different countries can follow 

the same rule to develop the software projects. Moreover, with SF1 PASTA, 

software developers will better recognise what they have to do and accumulate 

the knowledge and experience to improve their software process. This is very 

helpful for new engineers who can use the SF1 PASTA as a training resources in 

order to join the development team as soon as possible. 

1.5 Thesis Organisation 

This thesis describes how to define and model a software process by using a 

modelling notation under the software process improvement architecture. The 

organisation and content of the thesis is as following: 

Chapter 1, Introduction, shows the motivations why we are going to do this 

work, defines the research focus and presents what contributions have been 

done in the thesis. 

Chapter 2, Background, presents related work from several software organ-

isations to set the context for the thesis and explores the standards and 

modelling method we used. These standards contain the CMM which we 

model, MIL-STD-498 providing uniform requirements for software develop-

ment and documentation, which is used as a supplement for the CMM, and 

PASTA being a modelling notation, which we use to model the software 

process. 
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Chapter 3, Process Tailoring, describes the KPAs for process tailoring. This 

will let the software organisation define the most appropriate software pro-

cess for the organisation and the software project. 

Chapter 4, The Processes in the CMM Level 2, consists of the management 

process, focusing on the software project planning and explores software 

management activities before technical processes are implemented, and the 

support process, describing two essential KPAs, Software Quality Assurance 

and Configuration Management, which support implementation of manage-

ment and technical processes. 

Chapter 5, The Processes in the CMM Level 3, consists of the technical 

process, describing software engineering activities which we use the UML 

to implement them, and the organisational process, describing four organ-

isational topics which belong to the CMM level 3. 

Chapter 6, Implementation and Assessment, describes how to implement 

the SF1 PASTA and how to assess the processes in order to improve organ-

isation's software process. 

In Chapter 7, Conclusion and future work, finally, we make a conclusion for 

our work and suggest further work to be done in the future. 
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Chapter 2 

Background 

2.1 Related Work 

In this section, we will summarise some related work on the software process im-

provement field. We firstly discuss the infrastructure that guides organisations in 

planning and implementing an effective software process improvement program. 

The Process Improvement Strategy from SEL (Software Engineering Laborat-

ory) in NASA and the SEI's IDEAL (Initiating, Diagnosing, Establishing, Acting 

and Learning) model provide a concept of the life cycle for software process im-

provement. To implement these strategies, secondly, we focus on process-centred 

software development environments. Four projects, the Software Technology for 

the Adaptable, Reliable Systems (STARS) program from DoD in the US, EPOS 

(Expert System for Program and ("og") System Development), SPADE and Oz, 

define the process modelling language to model software processes and build a 

software engineering environment to support an organisation's development prac-

tices. Finally, we will introduce a commercial software development environment, 

Objectory, which defines a process to control software development during the 

software life cycle. 

2.1.1 The Software Process Improvement Programs 

2.1.1.1 SEL Process Improvement Strategy 

The SEL has long been a pioneer for software process improvement because of 

the characteristics of its products. The SEL defined a standard paradigm to 

illustrate its concept of software process improvement. This paradigm is a three-

phase model which includes the following steps[MPB94]: 

1. Understanding: Improve insight into the software process and its products 

by characterising the production environment, including types of software 
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developed, problems defined, process characteristics and product character-

istics. 

Assessing: Measure the impact of available technologies and process change 

on the products generated. Determine which technologies are beneficial and 

appropriate to the particular environment and, more importantly, how the 

technologies (or processes) must be refined to best match the process with 

the environment. 

Packaging: After identifying process improvements, package the techno-

logy for application in the production organisation. This includes the devel-

opment and enhancement of standards, training and development policies. 

In the SEL process improvement paradigm, these steps are addressed iterat-

ively, and form a base for the software process community. 

2.1.1.2 The IDEAL Model 

The IDEAL model[McF96, GM97], developed by the SET in Carnegie Mellon 

University, is an organisational improvement model that serves as a roadmap for 

initiating, planning and implementing software process improvement actions. As 

in the CMM for software, IDEAL provides an approach to continuous improve-

ment by outlining the steps necessary to establish a successful improvement pro-

gram. The model provides a disciplined engineering approach for improvement, 

focuses on managing the improvement program and establishes the foundation 

for a long-term improvement strategy. The IDEAL model is composed of five 

phases: 

Initiating: During the initiating phase, the business reasons for undertak-

ing the effort are clearly articulated. The effort's contributions to business 

goals and objectives are identified, as are its relationships with the organisa-

tion's other work. The support of critical managers is secured, and resources 

are allocated on an order-of-magnitude basis. Finally, an infrastructure for 

managing implementation details is put in place. 

Diagnosing: The diagnosing phase builds upon the initiating phase to de-

velop a more complete understanding of the improvement work. During the 

diagnosing phase, two characterisations of the organisation are developed, 

the current state of the organisation and the desired future state. These or-

ganisational states are used to develop an approach for improving business 

practice. 
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Establishing: The purpose of the establishing phase is to develop a de-

tailed work plan. Priorities are set that reflect the recommendations made 

during the diagnosing phase as well as the organisation's broader operations 

and the constraints of its operating environment. An approach is then de-

veloped that honours and factors in the priorities. Finally, specific actions, 

milestones, deliverables and responsibilities are incorporated into an action 

plan. 

Acting: The activities of the acting phase help an organisation implement 

the work that has been conceptualised and planned in the previous three 

phases. These activities will typically consume more calendar time and 

more resources than all of the other phases combined. 

Learning: The learning phase completes the improvement cycle. One of 

the goals of the IDEAL Model is to continuously improve the ability to 

implement change. In the learning phase, the entire IDEAL experience is 

reviewed to determine what was accomplished, whether the effort accom-

plished the intended goals and how the organisation can implement change 

more effectively and/or efficiently in the future. Records must be kept 

throughout the IDEAL cycle with this phase in mind. 

2.1.2 Process-centred Software Development Environments 

2.1.2.1 STARS 

The STARS program [RE95, KS95a, Uzz96] is sponsored by the Defence Advanced 

Research Projects Agency (DARPA) in the United States. The goal of the STARS 

project is to increase software productivity, reliability and quality by integrating 

support for modern software development processes and reuse concepts within 

software engineering environment technology. 

The STARS program uses a megaprogramming (or product-line) concept [BBB95] 

for software development and life-cycle support characterised by an architecture-

based approach to software engineering with application domains. Basically, 

the STARS program builds a process-centred software engineering environment 

(PSEE) which includes the definition and enactment of disciplined processes 

for the development of applications and the evolution of the product-line as a 

whole. In addition to the PSEE, the crucial feature in the STARS program is 

domain-specific reuse which addresses the systematic creation of domain mod-

els and domain-specific architecture and their use in building applications[BC96, 

CFM96]. 
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To date, there are three STARS Demonstration Projects, one with each of the 

three services (Army, Navy and Air Force), which are currently engaged in ap-

plying the principles of megaprogramming to real systems. The major objectives 

for each of the projects are: 

Apply megaprogramming principles to the development of software for an 

actual DoD application, to establish the credibility of the approach. 

Collect and document experience about the benefits and costs of megapro-

gramming as well as the effectiveness of the specific tools and techniques 

used on the project, to help other organisations plan for and implement 

similar approaches. 

Transition to the Demonstration Project's parent organisation, to establish 

the capability to apply megaprogramming to other applications in their 

product-line. 

2.1.2.2 EPOS 

EPOS[NaC96, Con95, CLM95] is a Software Engineering Environment with em-

phasis on process modeling, software configuration management, and support for 

cooperative work. The rationale for the scientific initiative is to improve software 

quality through better process support for the software production process. 

EPOS defined a reflexive, object-oriented software process modelling language 

called SPELL. By using SPELL, the Planner can execute the task network. In 

addition, EPOS also creates the following meta-process tools to support software 

projects: 

Schema Manager is responsible for textually/ graphically browsing, edit-

ing, defining, analysing, translating and evolving the Process Schema and 

can be used on all the process models. 

Task Network Editor makes it possible to directly manipulate the task 

network before and during execution, and supports features such as add/remove/mo 

Tasks and Products. 

Planner is incrementally invoked by the Process Engine to decompose high-

level tasks into a task network. 

Project Manager is used to start and stop a project and to retrieve useful 

project metrics from the EPOS-database. 
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To perform a successful improvement program, EPOS defined a meta-process 

which consists of four steps: 

Planning and Instantiation: A new project is initiated with a specific project 

context. The Planner will automatically build a task network based on the 

generic process model. The Project Manager will then use the project 

context to retrieve a set of previous similar projects from the Experience 

database. 

Execution and Tracking: The Process Engine interprets the task network 

and enacts the task with sufficient and available resources. 

Packing and Assessment: The current performance progress is compared 

and assessed against previous models, historical profile and experiences of 

the baseline project by the Project Manager. 

Evolving and Learning: Improvement achievements from a completed pro-

ject are generalised, formalised and stored for future use. 

2.1.2.3 SPADE 

The goal of the SPADE project[CNFG96, BNF96, NF95] is to provide a soft-

ware engineering environment to support Software Process Analysis, Design and 

Enactment. The environment is based on a process modeling language, called 

SLANG (SPADE Language), which is a high-level Petri net based formalism. 

SLANG offers features for process modeling, enaction and evolution. In addition, 

it describes interaction with external tools and humans in a uniform style. 

The architecture of SPADE is based on three separate layers: 

Process Enactment Environment (PEE): The main component of the PEE 

is the Process Engine which executes a SLANG process model. 

User Interaction Environment (UIE): The goal of the UIE is to manage the 

interaction between SPADE and its users. Users coordination and interac-

tion is achieved through tools that are integrated into SPADE. 

The SPADE Communication Interface (SCI): The SCI is a filter which al-

lows communication between the PEE and the UIE. 

SPADE-1 is an implementation of the SPADE environment. It supports the 

enaction of SLANG process models. SPADE-1 includes a process interpreter 

which is able to enact process models written in SLANG, a SLANG editor which 
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creates and modifies SLANG process models, a monitor which controls the en-

action state of the process, and an agenda which interacts with process agents. 

SPADE-1 supports tool integration at different granularity levels. In particular, 

it is possible to integrate stand-alone tools. 

2.1.2.4 Oz Project 

Oz[BSK96, BSK95, KDJY97] was developed by the Programming Systems Labor-

atory in Columbia University. It is a multi-site collaborative workflow manage-

ment system (WFMS) that supports interoperability among heterogeneous and 

autonomous processes. The basic idea of the Oz project is that a large software 

project may be decomposed into teams that are each responsible for full develop-

ment of a distinct component of the system, exhibiting intra-group heterogeneity. 

In a multi-team development, it may be desirable to allow teams to use their own 

set of software tools and hardware, their own private files or databases and their 

own development policies and process. Consequently, the development teams 

need to collaborate in order to develop the product. 

The internal architecture of Oz consists of three main runtime computational 

entities: the Environment Server, the Connection Server and the Client. The 

Environment Server is composed of three components: process, transaction and 

data managers. The process manager loads the process model, the transaction 

manager is parameterised by lock tables and concurrency control policies and the 

data manager loads the schema for the product data and process state. The client 

is composed of four major subcomponents: (1) access to information about rules 

and built-in commands, (2) objectbase representation, (3) activity execution, and 

(4) an ad hoc query interface. The Connection Server's main responsibility is to 

establish connections to a local server from local clients, remote clients and remote 

servers. 

A local process in Oz is defined using a rule-based language. Each activity 

is enclosed in a rule with formal typed parameters, and optional condition and 

effects that serve two purposes: to enforce and assert conditions that pertain to 

the activity itself; and to connect to other related activities and specify automa-

tion and/or atomicity requirements across activities. Related activities can be 

invoked automatically as part of either backward chaining to satisfy the predic-

ates in a rule's condition, or forward chaining as a result of the assertions in a 

rule's selected effect. A rule thus defines a process step, and the set of all chains 

emanating from that rule define a task. 
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2.1.2.5 Trillium 

The Trillium Model [Tri94] was developed by Bell Canada to assess the product de-

velopment and support capability of prospective and existing suppliers of telecom-

munications or information technology-based products. In principle, the Trillium 

Model provides key industry practices which can be used to improve an existing 

process or life-cycle. The Trillium Model is mainly based on the CMM version 

1.1 and incorporates international standards, such as ISO 9001, IEEE Software 

Engineering Standards Collection, and so on. However, the big difference is that 

its architecture is based on roadmaps, rather than key process areas. Basically, 

the Trillium Model consists of Capability Areas, Roadmaps and Practices. In the 

top level, eight Capability Areas are defined in the Trillium Model: 

Organisational Process Quality 

Human Resource Development and Management 

Process 

Management 

Quality 

System Development Practices 

Development Environment 

Customer Support 

Each Capability Area incorporates one or more roadmaps. A roadmap is a set 

of related practices that focus on an organisational area or need, or a specific ele-

ment within the product development process. Within a given roadmap, the level 

of the practices is based on their respective degree of maturity. Since these prac-

tices are taken from standards, meeting the requirements of a Trillium practice 

means meeting the requirements of the corresponding referenced standards. 

2.1.2.6 Objectory 

The Objectory Process[0bj97] is a Software Engineering Process which is origin-

ally defined by Jacobson[Jac87]. It provides a disciplined approach to assigning 

tasks and responsibilities within a development organisation. Basically, the pro-

cess description integrates the method description into a framework, stating how 

the work should be carried out as interacting processes within each phase of the 

development. In general, Objectory can be described in two dimensions: 

28 



Along time, the life cycle aspects of the process as it will unroll itself. 

Along process components, which groups activities logically by nature. 

The first dimension represents the dynamic aspect of the process, as it is 

enacted, and is expressed in terms of cycles, phases, iterations, and milestones. 

The software life cycle is broken into cycles, each cycle working on a new 

generation of the product. The Objectory process divides one development cycle 

into four consecutive phases: 

Inception 

Elaboration 

Construction 

Transition 

Each phase is concluded with a well-defined milestone - a point in time at 

which certain critical decisions must be made, and therefore key goals must have 

been achieved. 

The second dimension represents the static aspect of the process: how it is 

described in terms of process components, activities, workflows, and so on. 

The Rational Objectory Process is composed of seven process components, 

four engineering process components: 

Requirement capture 

Analysis & Design 

Implementation 

Test 

and three supporting components: 

Management 

Deployment 

Environment 

Each process component comprises a set of correlated activities. An activity 

describes the tasks done by workers to create or modify artifacts, together with 

the techniques and guidelines to perform these tasks, and possibly including the 

use of tools to automate some of these tasks. 
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2.2 Standards and Modelling Method 

The SET's Capability Maturity Model for Software has popularised the notion 

of measuring the software process maturity of organisations. In addition, some 

efforts have been done in this field. In UK the Central Computer and Telecom-

munications Agency (CCTA) developed PRINCE (Projects in Controlled En-

vironments) which is a project management method covering the organisation, 

management and control of projects[PRI97]. Furthermore, ISO 15504 project is 

currently creating a set of international standards for software process manage-

ment that attempts to harmonise existing approaches. One of the ISO 15504 

objectives is to create a way of measuring process capability, while not using a 

specific approach such as the SET's maturity levels. The approach selected is to 

measure the implementation and institutionalisation of specific processes; a pro-

cess measure rather than an organisation measure. Maturity levels can be viewed 

as sets of process profiles using this approach. During the development of version 

2 of the CMM, one of the technical issues to be decided is whether to re-architect 

the CMM by layering organisational maturity on top of the ISO 15504 process 

capability framework. 

2.2.1 The Capability Maturity Model 

In 1987, the SET released a brief description of the process maturity framework 

and a maturity questionnaire. Originally, the CMM was developed to assist the 

U.S. DoD in software acquisition. After four years, the SET evolved the software 

process maturity framework into the Capability Maturity Model for Software 

(CMM). Then, the SEI released Version 1.1 of the CMM for Software in 1993. 

Since then, the CMM has been widely used by the software engineering com-

munity for appraising software processes and guiding software process improve-

ment. Currently, the SET recognises that the CMM should continue to evolve 

because continuous improvement applies to the CMM, just as it does to the soft-

ware process[PGC96]. The new version would be released consistent with the 

CMM Integration Framework. 

The two documents that provided the foundation for Version 1.1 of the CMM 

are: 

Capability Maturity Model for Software, Version 1.1[PCCW93b], and 

Key Practices of the Capability Maturity Model, Version 1.1[PWG93]. 

The first one contains an introduction to the model, descriptions of the five 
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maturity levels, an operational definition of the CMM and its structure, a dis-

cussion of how organisations can use the maturity model, and some remarks on 

the future directions of the CMM. The second one contains the key practices 

that correspond to the key process areas at each maturity level of the CMM and 

information to help interpret the key practices. 

The CMM is a descriptive model in the sense that it describes essential (or 

key) attributes that would be expected to characterise an organisation at a par-

ticular maturity level. It is a normative model in the sense that the detailed 

practices characterise the normal types of behaviour that would be expected in 

an organisation doing large-scale projects in a government contracting context. 

The intent is that the CMM is at a sufficient level of abstraction that it does 

not unduly constrain how the software process is implemented by an organisa-

tion; it simply describes what the essential attributes of a software process would 

normally be expected to be. 

In any context in which the CMM is applied, a reasonable interpretation 

of the practices should be used. The CMM must be appropriately interpreted, 

using informed professional judgement, when the business environment of the 

organisation differs significantly from that of a large contracting organisation. 

The CMM is not prescriptive; it does not tell an organisation how to improve. 

The CMM describes an organisation at each maturity level without prescribing 

the specific means for getting there. 

The CMM is composed of five maturity levels. With the exception of Level 

1, each maturity level comprises of several key process areas. In Version 1.1, 

there are 18 key process areas. In Version 2, the SET restructures the CM1\/1 in 

particular on Levels 4 and 5. There will be 19 key process areas in new version. 

Each key process area is organised by a set of goals and the key practices that 

accomplish the goals of the key process area. The key practices are belonged 

to common features which contain five sections. The structure of the CMM is 

illustrated in Figure 2.1. 

2.2.1.1 Maturity Levels 

A maturity level is a well-defined evolutionary plateau toward achieving a ma-

ture software process. Each maturity level provides a layer in the foundation for 

continuous process improvement. Maturity levels are a staged architecture. As 

organisations establish and improve the software processes by which they develop 

and maintain their software work products, they progress through levels of ma-

turitv. Achieving each level of the maturity model institutionalises a different 
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CMM Maturity Levels (5) 

Key Process Areas (18) 

Key Practices 

-Commitment to Perform 

-Ability to Perform 

-Activities PerfonTned 

-Measurement and Analysis 

-Verifying Implementation 

Figure 2.1: The CM1\/I Structure 
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component in the software process, resulting in an overall increase in the process 

capability of the organisation. 

The CMM is structured into five maturity levels[PCCW93b], as Figure 2.2: 

Initial: The software process is characterised as ad hoc, and occasionally 

even chaotic. Few processes are defined, and success depends on individual 

effort and heroics. 

Repeatable: Basic project management processes are established to track 

cost, schedule, and functionality. The necessary process discipline is in place 

to repeat earlier successes on projects with similar applications. 

Defined: The software process for both management and engineering activ-

ities is documented, standardised, and integrated into a standard software 

process for the organisation. All projects use an approved, tailored version 

of the organisation's standard software process for developing and main-

taming software. 

Managed: Detailed measures of the software process and product quality 

are collected. Both the software process and products are quantitatively 

understood and controlled. 

Optimising: Continuous process improvement is enabled by quantitative 

feedback from the process and from piloting innovative ideas and technolo-

gies. 

2.2.1.2 Key Process Areas 

As illustrated in Figure 2.2, with the exception of Level 1, each maturity level 

comprises of several key process areas which indicate the areas an organisation 

should focus on to improve its software process. Key process areas are described 

in terms of a set of goals and the key practices. The goals summarise the key 

practices of a key process area and can be used to determine whether an organisa-

tion or project has effectively implemented the key process area. All the goals of a 

key process area must be achieved for the organisation to satisfy that key process 

area. When the goals of a key process area are accomplished on a continuing 

basis across projects, the organisation can be said to have institutionalised the 

process capability characterised by the key process area. 

The key practices describe the infrastructure and activities that contribute 

most to the effective implementation and institutionalisation of the key process 
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Level 5 - Optimizing 

Process change management 
Technology change management 
Defect prevention 

Level 4 - Managed 

Quality management 
Quantitative process management 

Level 3 - Defined 

Peer reviews 
Intergroup coordination 
Software product engineering 
Integrated software management 
Training program 
Software process definition 
Software process focus 

Level 2 - Repeatable 

Software configuration management 
Software quality assurance 
Software subcontract management 
Software project tracking and oversight 
Software project planning 
Requirement management 

L Level 1 - Initial 

Figure 2.2: SEI Capability Maturity Model 
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area. To ensure consistent accomplishment of the goals of a key process area, the 

organisation can establish a documented procedure extracted from key practices 

of the key process area. However, the key practices describe "what" is to be 

done, but they should not be interpreted as mandating "how" the goals should 

be achieved. The key practices should be interpreted rationally to judge whether 

the goals of the key process area are effectively achieved. 

For convenience, each of the key process areas is organised by common fea-

tures. The common features are attributes that indicate whether the implement-

ation and institutionalisation of a key process area is effective, repeatable, and 

lasting. The five common features, followed by their two-letter abbreviations, are 

listed below[PCCW93b]: 

Commitment to Perform (CO): Describes the actions the organisation must 

take to ensure that the process is established and will endure. Includes 

practices on policy and leadership. 

Ability to Perform (AB): Describes the preconditions that must exist in 

the project or organisation to implement the software process competently. 

Includes practices on resources, organisational structure, training, and tools. 

Activities Performed (AC): Describes the roles and procedures necessary 

to implement a key process area. Includes practices on plans, procedures, 

work performed, tracking, and corrective action. 

Measurement and Analysis (ME): Describes the need to measure the process 

and analyse the measurements. Includes examples of measurements. 

Verifying Implementation (VE): Describes the steps to ensure that the activ-

ities are performed in compliance with the process that has been established. 

Includes practices on management reviews and audits. 

However, Bach[Bac94] argued that the SET process maturity model has a 

number of limitations and weaknesses and that it may actually be dangerous in 

some circumstances. Bollinger and McGowan[BM91] also argued that unexpec-

ted problems pop up in the detailed implications of levels 4 and 5. The process-

instrumentation approach causes software processes to fossilise into inflexible con-

figuration. Furthermore, in level 5, the traceback methods seem in the case of 

software to be belated and poorly focused. Humphrey and Curtis[HC91] insisted 

that a defined engineering process cannot overcome the instability created by the 

absence of sound management practices. SF1 PASTA are developed to lay the 

foundation on which effective practices for the higher level are built. 
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2.2.2 Software Life Cycle Processes 

Currently, two standards, MIL-STD-498 and ISO 12207, are widely accepted by 

the software community for software life cycle processes. Both standards offer a 

framework for software life cycle processes from concept through retirement. They 

provide a structure of processes using mutually accepted terminology, rather than 

dictating a particular life cycle model or software development method. In spite 

of the similarity, both standards are very different in their scope. 

2.2.2.1 ISO 12207 

ISO 12207, published in August 1995, was created to establish a common inter-

national framework to acquire, supply, develop, operate and maintain software. 

It is especially suitable for acquisitions because it recognises the distinct roles 

of acquirer and supplier. The standard is intended for two-party use where an 

agreement or contract defines the development, maintenance or operation of a 

software system. 

ISO 12207 consists of three main processes, primary life cycle processes, sup-

porting life cycle processes and organisation life cycle processes. The contents of 

these processes as following: 

Primary Life-Cycle Processes 

Acquisition Process 

Supply Process 

Development Process 

Operation Process 

Maintenance Process 

Supporting Life-Cycle Processes 

Documentation Process 

Configuration Management Process 

Quality Assurance Process 

Verification Process 

Joint Review Process 

Audit Process 
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. Problem Resolution Process 

Organisation Life-Cycle Processes 

Management Process 

Infrastructure Process 

Improvement Process 

Training Process 

These processes would not be fit for any organisation. Consequently, ISO/IEC 

12207 describes how to tailor the standard for an organisation or project. 

2.2.2.2 MIL-STD-498 

MIL-STD-498[D0D94], developed by U.S. DoD, identifies a set of software de-

velopment activities and defines the software products to be generated by those 

activities. This standard is written in terms of Computer Software Configuration 

Items (CSCIs) which is an aggregation of software that satisfies an end use func-

tion and is designated for separate configuration management by the acquirer. 

The MIL-STD-498 package consists of the standard and 22 Data Item Descrip-

tions (DIDs). Basically, Nineteen major software development activities compose 

of the detailed requirements of MIL-STD-498, as following: 

Project planning and oversight 

Establishing a software development environment 

System requirements analysis 

System design 

Software requirements analysis 

Software design 

Software implementation and unit testing 

Unit integration and testing 

CSCI qualification testing 

CSCl/HWCI integration and testing 
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System qualification testing 

Preparing for software use 

Preparing for software transition 

Software configuration management 

Software product evaluation 

Software quality assurance 

Corrective action 

Joint technical and management reviews 

Other activities 

In comparison with ISO 12207, there are no the acquisition process, the supply 

process, the operation process, the maintenance process or the training process 

in MIL-STD-498. However, ten activities, from software requirement analysis to 

preparing for software transition, in MIL-STD-498 correspond to only a single 

process in ISO 12207, the development process. MIL-STD-498 provides more 

detailed requirements for the software development process. 

In addition to the activities and DIDs, MIL-STD-498 also suggests the pro-

gram strategies for the system. These strategies are: 

Grand design: The "grand design" strategy is essentially a "once-through, do-

each-step-once" strategy. 

Incremental: The "Incremental" strategy determines user needs and defines 

the system requirements, then performs the rest of the development in a 

sequence of builds. 

Evolutionary: The "Evolutionary" strategy also develops a system in builds, 

but differs from the Incremental strategy in acknowledging that all require-

ments cannot be defined up front. 

The grand design is similar to the "waterfall" approach with projects seeking 

to "freeze" the specification at the beginning, then developing design, coding, and 

testing. This approach has gradually lost favour, especially in the object-oriented 

field. 

In Incremental and Evolutionary strategies, MIL-STD-498 suggests the concept 

of a build (see Figure 2.3). It means: 
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5.1 
5.2 

5.3 
5.4 

5.5 
Requirements 

Analysis 

5.6 
Software 

Design 

5.7 
Software 

Implementatiot 

5.8 
Unit Testing 

5.9 
5.10 
5.11 	 E 

5.12 
5.13 

/ 
/ / / / 

/ 

A version of software that meets a specified subset of the requirements that 

the completed software will meet. 

The period of time during which such a version is developed. 

MIL-STD-498 	 Phases 

Section 5 

SDP 

System Requirements Analysis 

Work Breakdown Structure 

CSCI1 CSCI2 CSCIi 
H - 

H H 
a a a 

CQ - - - 
- 

CN 

- 
- Cq - 

H 
a 

H 
a 

H 
a 
fQ - 

Integration 
Test 

Integration 
Test 

Integration 
Test 

Figure 2.3: The Software Engineering Process in MIL-STD-498 

Basically, both Incremental and Evolutionary strategies are based on the spiral 

rnodel[Boe88]. The model defines four major activities: 

Planning: determination of objectives, alternatives and constraints, 

Risk analysis: analysis of alternatives and identification /resolution of risks, 
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Engineering: development of the "next-level" product, and 

Customer evaluation: assessment of the results of engineering. 

The spiral model is much more flexible and realistic than the classic "water-

fall" life cycle. Both Incremental and Evolutionary strategies adopt these four 

activities to develop a project. However, there is a difference between Incremental 

and Evolutionary strategies. 

The Incremental strategy is suitable for the concept of the software factory. 

When using the incremental strategy, the system requirements must be available 

and clear, such as bidding for government contracts. Project managers make 

reasonable estimates of schedules and arrange the appropriate resources. Under 

the schedule, the managers can establish three or four builds for the project to 

complete the system. 

The Evolutionary strategy is suitable for highly competitive products like word 

processors and spreadsheets in mass markets. Such highly competitive products 

have the same characteristics. They all have great pressure on time-to-market. If 

you miss your shipment date, you lose the market. Furthermore, at the beginning, 

the managers cannot properly predict the specification of the project. As soon 

as project managers have any kind of specification, they develop the system as 

quickly as possible. 

2.2.3 Process and Artifact State Machine Transition Ab-
straction (PASTA) 

A process is a sequence of decision making activities. Software development 

is a process of making decisions about what programs should implement the 

software requirements and what the required properties of those programs are, 

including properties such as their structure and interfaces. A particular software 

process may be defined as a sequence of decisions made in different states. The 

process modeller may model a methodology by a set of predefined states, i.e., 

it is a prescription for the artifacts to be used, the activities to be performed 

and their sequencing, and the roles that people play. Process modellers provide 

software developers with guidance on what to do next based on the state of the 

development. A software developer using the methodology proceeds by following 

the activities prescribed by the states to produce the prescribed artifacts in the 

prescribed order. 

In this thesis, we use the PASTA model[Lai9l] to define a process for software 

development. The reason we chose the PASTA model is because the CMM model 
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provides a roadmap for software organisations to develop their software projects. 

As a result, there are many difficulties for software organisations using the CMM 

since the CMM contains so many key practices for developing and maintaining 

software. The software development teams are easily confused in this "roadmap". 

We try to use an artifact-driven approach to tackle this problem. Basically, the 

PASTA model uses artifacts, process states and roles to describe the software 

development process. In the PASTA model, artifacts capture the decisions made 

during the software development process. To characterise the state of a software 

development process, the software developer must characterise the state of the 

artifacts produced during the software process. However, merely characterising 

the state of the artifacts is insufficient to describe a complete software process. 

The process modeller must also describe the activities that may be performed on 

artifacts, the conditions under which those activities are performed, and the roles 

of the people who may perform them. As a consequence, it is possible to know 

exactly what the state of completeness of all artifacts is. By modelling the CMM, 

software organisations will clearly get through the maze to the right destination. 

In Figure 2.4, the state model shows two levels. The lower level is based 

on the states of the artifacts produced during the software process; such states 

are called artifact states (A-states). Because A-states alone are insufficient to 

describe the software process completely, descriptions of activities, operations on 

artifacts, analyses that the software developer can perform on artifacts within the 

state, and the roles of the people involved augment them. The augmented states 

in the upper level state model are called process states (P-states). 

state-of 

Figure 2.4: Relationships Defining the Design Model 

PASTA uses tree-diagrams, forms, and state transition diagrams to describe 

process elements. The hierarchy of process states, the hierarchy of artifacts, 
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and the hierarchy of roles are represented using trees. Forms define process, 

artifacts and their states. Moreover, transition diagrams describe the process 

state machines and the artifact state machines. Figure 2.5 shows the different 

types of diagrams that PASTA uses for different process elements. 

Role Definition Form 

Name Role Name 

Activities 

Perform 

Process_I 

Process _2 

P-State Definition Form 

Name Process Name 

Role Rote Name 

Artifact Definition Form 

i 	Name 	Artifact Name 

A-State Machine 	 - - - 

Role Tree 	 : : 
	 Process Tree 	 : 	Artifact Tree 

P-State Diagram 	,' 	 '. 	A-State Diagram 

Process I 

Proce  I SSt pj57;I  

Process 2 

A-State_3 

Figure 2.5: Representation of PASTA elements 

Among these process elements, definition forms act as a key role in process 

modelling. They provide all required information for the process model. PASTA 

adopts a variety of forms to define many of the elements of a process model. 

These forms are described as following: 

. Artifact Definition Form: Defines the artifacts used by a process. 

. P-State Definition Form: Defines a process state. 
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Name Artifact name 
Synopsis Prose description of artifact 
Complexity Either ELEMENTARY or COMPOSITE 
Data Type Data type used to store information about the artifact, 

predefined or user-defined 
Artifact State Machine A list of ordered pairs of states that defines the possible 

state transitions. 
A-State Name For artifacts that are ELEMENTARY, i.e., not decom-

posed into subartifacts, this cell is blank. For composite 
artifacts, a logical function of the states of other arti-
facts. 

Subartifacts  
Sub-artifact Name Synopsis of the sub-artifact. 

Relations  
Relation Name Names of related artifacts. 

Table 2.1: The Artifact Definition Form Template 

Operation Definition Form: Defines an operation that may be performed in 

a P-state. 

Analysis Definition Form: Defines an analysis that may be performed in a 

P-state. 

Relation Definition Form: Defines the relationships between pairs of arti-

facts. Mostly used for situations where the state of one artifact may depend 

on the state of another artifact. 

Role Definition Form: Defines a role used in a process. 

Here, we focus on the artifact and process state definition forms and state dia-

grams because they are central to PASTA models. Furthermore, we also present 

the operation definition form since it describes activities for the process model. 

The Artifact Definition Form 

Table 2.1 shows the Artifact Definition Form used to record information about 

artifacts. An artifact has states, may have subartifacts, and may be related to 

other artifacts. 

The A-State Transition Diagram 

In addition to the tabular description of the A-state machine for each artifact, 

PASTA also shows the machine as a state transition diagram. Figure 2.6 shows 
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the A-state transition diagram. An A-state transition diagram is similar to a 

conventional state transition diagram, where each arc represents the operation 

that causes the A-state change, and the node represents the A-state. 

Figure 2.6: The A-State Transition Diagram 

The Process State Definition Form 

Table 2.2 shows the template for the Process State Definition Form used to record 

information about process states. A P-state may have substates, operations that 

may change artifacts, analyses that provide information about artifacts but do 

not change them, and roles that may perform the operations and analyses. 

The P-State Transition Diagram 

Figure 2.7 shows the P-state transition diagram. The larger rectangles with bold 

names are the sub-states of the P-state. The smaller rectangles at the entrance 

and exit to each substate represent the entry and exit conditions for the substate 

and are called condition boxes. A set of cells divides the condition box. Each 

cell represents one artifact in one A-state. The intersection lines between the 

condition boxes and the P-state box divide the cells into two parts. The parts 

outside of the P-state contain the name of the artifact, and the parts within the 

P-state box represent the A-state of the artifact. Each artifact cell may have more 

than one line connected to it. This means that operations in several different P-

states may change the state of an artifact, thereby affecting the P-state for which 
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Name The name of the state. 
Main Role Names of the roles which are principally concerned with 

activities in this state. 
Synopsis Prose description of process state. 
Entrance Condition Condition required for entry of an activity. The developer 

uses this to determine when a process can enter a partic-
ular P-state. 

Artifact List A list of artifacts upon which work may proceed in the 
P-state. 

Information Artifacts The artifact which holds information required to support 
operations and analyses in this state. 

Activities  
Operations Operation name and description. 
Analyses Analysis name and description. 

Exit Condition Predicated on A-states that determine when the process 
exits the P-state. 

Table 2.2: The Process State Definition Form Template 

the artifact state is a precondition. Also, a single A-state change may result in 

several P-state transitions. 

The Operation Definition Form 

Table 2.3 shows the operation definition form. Operations may change artifacts, 

often resulting in an A-state transition, or may just read them to obtain informa-

tion needed to perform the operation. Each operation has an entry condition and 

an exit condition. The specification of an operation describes how to perform the 

operation and is given in both informal and formal terms. 

In general the definition forms are intended to define the complete semantics of 

the model. The diagrams summarise the forms and act as a visual complement to 

them. Those who prefer visual representations may look at the diagrams first and 

the forms second; those who prefer textual representations may do the reverse. 

Conclusion 

In this section, we described those standards and methods that are used in this 

thesis. An artifact-driven approach is adopted by using PASTA to model the 

CMM. The CMM is a descriptive model in the sense that it describes essential 

attributes that would be expected to characterise an organisation at a particular 
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Figure 2.7: The P-State Transition Diagram 

Name Operation Name 
Synopsis Prose description of operation 
Role List List of roles that may perform the operation 
Operation Type Either Manual or Automated 
Entrance Condition Pre-condition for performing the operation 
Artifact List Artifacts that may be modified by the operation 

Information Artifacts Artifacts that may be read but not changed by the oper-
ation 

Exit Condition Post-condition for the operation 
Informal Specification Prose description of the procedure used to perform the 

operation 
Formal Specification Formal description of the procedure used to perform the 

operation 

Table 2.3: The Operation Definition Form Template 
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maturity level. It does not prescribe any standard or methodology to develop 

software products. As a result, we adopted MIL-STD-498 to define a set of 

software development activities. These efforts will establish a framework to assist 

software organisations to develop their software projects. 
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Chapter 3 

Process Tailoring 

The CMM comprising a set of key practices suitable for use by all potential or-

ganisations and projects would be too general to be easily applied to any one 

organisation. It has long been a criticism that the CMM is only appropriate for 

large defence or avionics environments, and more difficult to apply to small organ-

isations. This is because the CMM covers so many materials during developing 

a software project. As a consequence, by tailoring those key practices presented 

in the CMM, small software organisation would be easier to apply the CMM. 

Paulk[PWG93] suggested that a fundamental concept that supports the ap-

proach taken by the SEI in its process definition work is that processes can be 

developed and maintained in a way similar to the way products are developed 

and maintained. They include: 

requirements that define what process is to be described, 

an architecture and design that provide information on how the process will 

be defined, 

implementation of the process design in a project or organisational situation, 

validation of the process description via measurement, and 

deployment of the process into widespread operation within the organisation 

or project for which the process is intended. 

As Figure 3.1 shows, using the analogy of product development, a framework 

for software process development and maintenance has evolved that translates 

these concepts into ones which are more specific to the process development dis-

cipline. 

SPI PASTA (Software Process Improvement PASTA) provides a process-

centred software engineering environment mainly based on the CMM Version 
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Figure 3.1: Process Definition Life Cycle 

2.0 Draft C[Pau97]. The fundamental task to implement SPI PASTA is tailoring 

software processes to fit the software projects. Figure 3.2 shows the tailoring 

framework of SPI PASTA. However, the CMM is not only the process require-

ment at the starting point. We have to use other software processes and product 

standards to comply with the CMM. Since the CMM doesn't indicate whether the 

software organisation has the right process, these standards, such as ISO 12207, 

MIL-STD-498, ISO 9001 and so on, will give the organisation a good guide to 

complete its work. 

The software organisations may view SPI PASTA as their organisation's stand-

ard software process which establishes a consistent way of performing the software 

activities across the organisation. 

3.1 The Relevant Activities and Products in the 
CMM Levels 2 and 3 

The SPI PASTA focuses on the CMM Levels 2 and 3. Before we go through the 

SPI PASTA, It is better to recognise the relevant activities and products in the 

CMM Levels 2 and 3. Figure 3.3 shows a framework of activities and products 

in the CMM Levels 2 and 3. 

The SET defined the CMM, which is a framework describing the key elements 
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of an effective software process. The SET suggested that a software process can be 

defined as a set of activities, methods, practices and transformations that people 

use to develop and maintain software and the associated products (e.g., project 

plans, design documents, code, test cases and user manuals). As a consequence, 

the CMM provides software organisations with guidance on how to gain control of 

their processes for developing and maintaining software and how to evolve toward 

a culture of software engineering and management excellence. 

A fundamental concept of process definition in the CMM is the organisation's 

standard software process. An organisation's standard software process is the 

operational definition of the basic process that guides the establishment of a 

common software process across the software projects in the organisation. It 

describes the fundamental software process elements that each software project 

is expected to incorporate into its defined software process. 

The primary purpose of the standard software process is to support the sharing 

of software process assets and experiences across the organisation. The organisa-

tion's standard software process covers the entire software process, including: 

. software technical processes, 

. software management processes, 

. software support processes, and 

organisational processes. 

The organisation's standard software process given in SPI PASTA provides a 

general but not exhaustive definition which can be modified by an organisation. 

The project's defined software process is developed by tailoring the organisation's 

standard software process to fit the specific characteristics of the project. It is a 

well-characterised and understood software process, described in terms of software 

standards, procedures, tools and methods. 

However, the description of the project's defined software process will usually 

not be specific enough to be performed directly. It does not specify the indi-

vidual who will assume the roles, the specific software work products that will be 

created, nor the schedule for performing the tasks and activities. The project's 

software development plan provides the bridge between the project's defined soft-

ware process (what will be done and how it will be done) and the specifics of how 

the project will be performed (e.g., which individuals will produce which software 

work products according to what schedule). The combination of the project's 

52 



defined software process and its software development plan makes it possible to 

actually perform the process. 

For completely establishing the project's software development plan, the sys-

tem requirements allocated to software, simply as the "allocated requirements" 

in the CMM, must be a primary input to the software development plan. The 

allocated requirements are a subset of the system requirements which are an 

elaboration of the customer requirements to a level of detail needed to plan the 

project's activities and work products. 

Once the software development plan has been established, the software engin-

eering group can start analysing and elaborating the allocated requirements to 

complete the software requirements. The software requirements are the technical 

requirements for the software project and cover the software functions and per-

formance and the interfaces to hardware, other software components and other 

system components. The software requirements form the basis for the software 

design, coding, testing, documentation, delivery, support and maintenance. 

In addition to the artifacts and activities described above, some support ar-

tifacts have to be established. The software supplier management plan identifies 

acquisition needs for the software project. Software to be acquired falls into two 

main categories. Firstly, some components of the project's software products 

may be acquired externally rather than being developed by the software project. 

Secondly, the software tools in the software engineering environment must be 

acquired. 

The purpose of software quality assurance is to ensure that software project's 

activities and work products comply with the applicable requirement, process 

descriptions, standards and procedures. The purpose of software configuration 

management is to establish and maintain the integrity of the products of the 

software project throughout the project's software life cycle. 

The purpose of an organisation training program is to develop the skills and 

knowledge of individuals so they can perform their roles effectively and efficiently. 

The purpose of peer reviews is to remove defects from the software work products 

early and efficiently. The purpose of software risk management is to identify and 

mitigate software risks throughout the life cycle of a software product. 

3.2 Organisation Process Focus 

The purpose of Organisation Process Focus is to establish and main-
tain an understanding of the organisation's software processes and co-
ordinate the organisation's software process improvement activities[Pau97]. 
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3.2.1 The Software Process Improvement Plan 

Software process improvement is a lion-stop business. SEL[MPB94] reported some 

attributes of the development organisation were an increasingly significant driver 

for the overall definition of process change. These attributes include the types 

of software being developed, goals of the organisation, development constraints, 

environment characteristics, and organisational structure. This means software 

organisations have to establish a baseline understanding of the software process, 

products, and goals. This is the purpose of Organisation Process Focus. 

Currently, two famous examples for software process improvement are 

NASA's SEL process improvement paradigm and the SEI's IDEAL model. Fig-

ure 3.4 shows the SEL process improvement paradigm that includes three phases, 

Understanding, Assessing and Packaging. This paradigm starts with improving 

insight into the software process and its products, then measuring the impact of 

available technologies and process change on the products generated, and finally 

implementing the technology for application. In the SEL process improvement 

paradigm, these steps are addressed sequentially, and iteratively, for as long as 

process and product improvement remains a goal within the organisation. 

Understanding I 	'H 	Assessing 	 Packaging 

Figure 3.4: The SEL Process Improvement paradigm 

Figure 3.5 shows the phases of the SET's IDEAL model. Each phase includes 

activities arid resources needed for a successful process improvement effort. Unlike 

the SEL, the IDEAL model starts with building an infrastructure for managing 

implementation details, and securing the support and resources from the top 

level of the organisation. After the Initiating phase, software organisations have 

to develop a more complete understanding of the improvement work. Then, a 

detailed plan for doing the work is developed and implemented. Finally, the 

entire IDEAL experience has to be reviewed to determine whether the effort 

accomplished the intended goals, arid how the organisation can implement change 

more effectively and efficiently in the future. 

Both strategies give us an idea of Total Quality Management on software 

process improvement. The idea is not fixed by any standard and must be en-

compassed by the whole organisation. One of the most important ingredients 
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Initiating 	 Diagnosing 	Establishing 	.. 	Acting 	 Learning 

Figure 3.5: The IDEAL Model for Software Process Improvement 

in Organisation Process Focus is to check necessary competencies and commit-

ments. It must ensure that ability to perform is put aside to make sure that 

implementation works and that people are committed to the solution. 

3.2.2 Processes in Software Process Improvement 

The tree-diagrams present the hierarchy of artifacts, roles and process states. By 

expanding the P-state tree diagram, users can see the relationship between P-state 

and easily recognise all relevant operations. Figure 3.6 shows the P-state tree of 

Software Process Improvement which describes the relations of Sub-P-State.This 

is the highest level in the model. From the beginning, an understanding of or-

ganisation's software processes must be established. The organisation's software 

process assets are then built by a software engineering process group (SEPG). 

Finally, the set of standard software processes is tailored by the software projects 

and support groups to create their defined software processes. Figure 3.7 shows 

the processes of developing software process improvement. 

The processes of developing software process improvement start at Organisa-

tion Process Focus described in the CMM Level 3. The SET emphasised that 

a repeatable process (Level 2) must be finished before implementing a defined 

process (Level 3). However, we believe that the organisation's standard soft-

ware process should be established as soon as software process improvement is 

developing. Each project needs its defined software process to guide all activit-

ies. Without a defined software process, the software development plan is hardly 

complete and management processes could be in jeopardy. 

In the rest of the thesis, we use the following template to describe each KPA: 

. Main Roles: A list of roles of people who are allowed to perform this 

operation. 

. Entrance Conditions: Conditions required for entry of an activity. 

. Artifact List: A list of artifacts upon which work may proceed in the 

P-state. 
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. Information Artifacts: The artifacts which hold information required to 

support operations. 

Activities: A list of operations that developers may perform. 

Exit Condition: Conditions required for exit of an activity. 

This is a P-State style template and corresponds to the P-State diagram to 

show the relevant information for the KPAs. 

Develop_So ftware_Proces s_Improvement 

Organisation—Process—Focus I  

Establ±sh_Organ±sation_Process_Defiflitiofl 

Establish_PDSP 

Figure 3.6: The P-State Tree of Software Process Improvement 

3.2.3 Processes in Organisation Process Focus 

The first step in developing software process improvement is to establish and 

maintain an understanding of the organisation's software process. Figure 3.8 

shows the P-state tree of Organisation Process Focus. It describes the relationship 

between P-states and operations in this KPA. 

Main Roles: The main roles participating in the operations are senior man-

agers and SEPG who establish the policy for the organisations. 

Artifact List: The artifact in this KPA is the Software Process Focus which 

includes three sub-artifacts, Process Improvement Plan, Action Plan and Software 

Process Definition as shown in Figure 3.9. 

Entrance Condition: st ate- of (Organisation -Process _Focus) = Referenced 

Once the need to establish and maintain an understanding of the organisa-

tion's software process is referenced, the processes of Organisation Process Focus 

are started. Firstly, developers must check the artifact list to survey the re-

lationship between operations and artifacts. To do so, developers can use the 

artifact tree and link to artifacts forms which list the details of the artifact (See 

Appendix). 
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Figure 3.8: The P-State Tree of Organisation Process Focus 

Software_Process_Improvement 

Organisation—Process—Focus 

Proces s_Improvement_Plan 

Action—Plan 

Software—Process—Asset 

Organisation—Process—Definition 

PDSP 

Figure 3.9: The Artifact Tree of Organisation Process Focus 

58 



Activities: Two operations are presented in the P-state diagram of Organisa-

tion Process Focus as shown in Figure 3.10. Before performing Organisation 

Software Focus, the software process improvement plan must be established. The 

SPI PASTA model might be a software process improvement plan, since it doc-

uments the process for software process improvement. The SF1 PASTA can be 

tailored in order to align with the organisation's strategic business objectives. 

Figure 3.10: The P-State Diagram of Organisation Process Focus 

In the next step, the activities performed in Software Organisation Focus 

are included in the Sub-P-State, Perform _Organisation -Process Yocus. When the 
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process improvement plan is drafted, developers can go down to the next layer to 

perform Organisation Process Focus. This P-state consists of five operations: Ap-

praise Organisation Process, Draft Action Plan, Implement Action Plan, Deploy 

Software Process Asset and Evaluate Software Process Asset. After appraising 

the organisation's software process to identify strengths and weaknesses, SEPG 

and senior managers should establish action plans to address the findings of the 

software process appraisals. Then, in accordance with the priority of the recom-

mendations from the software process appraisal, SEPG implements the software 

process action plan across the organisation and deploys the organisation's soft-

ware process assets. Finally, SEPG should conduct the evaluation of the action 

plan and derive lessons learned from these operations. In SPI PASTA, all P-states 

and operations have their own P-state and operations forms (See Appendix) de-

scribing the relevant activities and conditions. Developers can easily refer to these 

forms to perform those activities. 

Exit Condition: state-of (Organisat ion Yrocess_Focus) = Established 

After completing the P-states, SEPG must check whether the exit condition 

has been reached. 

3.3 Organisation Process Definition 

The purpose of Organisation Process Definition is to establish and 
maintain a usable set of software process assets that help to ensure con-
sistent process performance across the organisation and that provide 
a basis for cumulative, long-term benefits to the organisationlPau97J. 

Organisation Process Definition is the action of the Organisation Process Fo-

cus key process area. It involves establishing and maintaining the organisation's 

software process assets, including 

. the organisation's set of standard software processes, 

. descriptions of software life cycle models approved for use by the projects, 

guidelines for tailoring the organisation's set of standard software processes, 

. the organisation's software measurement database, and 

the organisation's library of software process-related documentation 
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However, the SET does not prescribe what kind of models or processes may 

be organisation's software process assets. Those assets are chosen by project 

managers or senior managers in an organisation. 

As Figure 3.11 shows, the Organisation Process Definition key process area 

provides a base to establish process commonality across the organisation's pro-

jects. The activities managing the organisation's software process assets are in the 

Organisation Process Focus key process area. Once the software process assets 

are established, the project managers can use them in developing, maintaining 

and implementing their project's defined software process. 

Organisation Process Focus 

Organisation's Software Process Assets 

Descriptions Guidelines for 	 Organisation's Organisation's 

of software tailoring the 	 software process library of 

life cycle organisations 	 Database software 

models standard process- 

software process related 
documentation 

Organisation's Set of Standard Software Process 

Process Tailoring 
Process Flow 

Project's Defined Software Process Support 

Figure 3.11: The Framework of the Organisation's Standard Software Assets 

3.3.1 Organisation's Software Process Assets 

Organisation's Standard Software Process 

An organisation's standard software process is the operational definition 

of the basic process that guides the establishment of a common software 

process across the software projects in the organisation[PWG+93]. It con-

tains process elements that may be interconnected according to one or more 

software process architectures that describes the relationships among these 

process elements. SPI PASTA provides this software process architecture 
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that describes the ordering, interfaces, interdependencies and other relation-

ships between the software process elements of the organisation's standard 

software process. Each artifact is a software process element which is a 

constituent element of a software process description. These artifacts are 

incorporated into the relevant P-State performed by appropriate roles. 

. Software Life Cycle Model 

Software life cycle models partition the life of the software product into 

phases that guide the project through the major steps of identifying cus-

tomer needs, developing, testing, installing, operating and retiring the soft-

ware pro duct [Pau97]. Software organisations have their software life cycle 

model, such as a waterfall model, a spiral model and so on. Furthermore, 

the standards have been published to support software development, such 

as ISO/lEG 12207, MIL-STD-498, IEEE-STD-1074, etc. These models or 

standards suggest activities, tasks and products for developing software 

projects. The CMM does not prescribe software organisations to use any 

standard or model. This task must be done in the Organisation Process 

Definition key process area. SPI PASTA uses MIL-STD-498 as its software 

life cycle model. MIL-STD-498 was developed by the US DoD and well 

incorporated into the CMM. It has been modelled as SPI PASTA in man-

agement processes and technical processes. Each Data Item Description 

(DID) has been deployed at the appropriate key practice. However, this 

standard has to be tailored again to fit specific software projects. The pro-

ject manager must decide which DID is really appropriate for the project. 

Tailoring Guidelines 

Tailoring guidelines are used by software projects and support groups to 

tailor the organisation's set of standard software processes to fit their specific 

needs[Pau97]. Since the organisation's standard software process defines 

common processes for all projects, a tailoring guideline must be built in 

order to tailor SPI PASTA to fit the projects. Ginsberg[GQ95] suggested 

that some areas, such as the organisational structure, customers relation-

ships and requirements, business goals and so on, are essential for tailoring 

the organisation's standard software process. With regard to DIDs, it is 

not necessary that every project needs all DIDs defined in MIL-STD-498. 

Tailoring guidelines have to give project managers a trade-off to select the 

appropriate process items for their projects. 

Organisation's Software Measurement Database 
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The organisation's software measurement database is used to collect and 

make available measures and data on the software processes used in the or-

ganisation and on the resulting work products, especially the measures relat-

ing to the organisation's set of standard software processes[Pau97]. In SF1 

PASTA, we adopt Humphrey's Proxy-based Estimating (PROBE) [Hum95] 

to assist project managers with establishing a plan for building the software 

product. This work may generate useful data for software organisations. 

SF1 PASTA does not prescribe a typical database for storing this data. 

Software organisations may use any commercial database to define their 

database scheme to store all information from software process improve-

ment. This database will be viewed as an organisation's software measure-

ment database. 

. Process-related Documentation 

The organisation's library of software process-related documentation is used 

to collect, store and make available process documentation that is poten-

tially useful to current and future projects[Pau97]. The process-related 

documentation, such as software development plans, software test plans, 

training records and so on, might be a pilot process item for software or-

ganisations. In particular, it helps future project managers to manage their 

projects. Without an appropriate library of software process-related doc-

umentation, the development team may take much time to figure out the 

relevant documents. 

3.3.2 Processes in Organisation Process Definition 

Figure 3.12 shows the P-state tree of Organisation Process Definition. This 

P-state consists of five operations: Establish SSSP (Set of Standard Software 

Processes), Approve Software life cycle, Establish Tailoring Guideline, Establish 

Software Measurement Database and Establish Process-related Documentation. 

Main Roles: The main roles participating in the operations are senior man-

agers, SEPG, project managers and software product managers who will establish 

the software process assets for the organisation. 

Artifact List: The artifact list in the KPA is Organisation Process Defini-

tion which consists of five sub-artifacts: SSSP, Software Life Cycle, Tailoring 

Guideline, Software Measurement Database and Process-related Documentation. 

The artifacts in this KPA are shown in Figure 3.13. 
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Establish_Organisatiofl_PrOCeSs_DefinitiOfl 

Establish_SSSP 

I Approve_Software_Life_Cycle  I 

Establish_Tailoring_Guideline 

Establish—Software—Measurement—Database 

Establish_LOC_Counting_Standard 

Establish—Object—Size—Category 

Establish_Productivity_Measure 

Establish_Quality_Measure 

Establish—Process-related—Documentation 

Figure 3.12: The P-State Tree of Organisation Process Definition 

Information Artifacts: The artifact, Organisation Process Focus, as an in-

formation artifact give the information to manage those artifacts. 

Entrance Condition: state-of (Organisation -Pro cess_Focus) = Established and 

st ate- of(Organisation -Process _Definition) = Referenced 

Firstly, the need to perform Organisation Process Definition must be iden-

tified. Then, the activities of Organisation Process Focus should be completed. 

Once the two conditions are satisfied, developers may enter the Organisation 

Process Definition process. 

Activities: Five operations are presented in the P-state diagram of Organisa-

tion Process Definition as shown in Figure 3.14. These operations do not have 

relationship between them. This means each operation can be independently 

performed by developers. 

Firstly, SPI PASTA can be viewed as the organisation's set of standard soft-

ware processes for software organisations, since it has tailored the software pro-

cesses and decomposed each standard software process into constituent process 

elements (artifacts). The SEPG and managers can use SPI PASTA to specify 

64 



Software—Process—Improvement 

Organisation—Process—Focus 

Organisation—Process—Definition 

SS5P 

Software—Life—Cycle 

Tailoring_Guideline 

Software—Measurement—Database 

LOC_Count ing_Standard 

Obj ect_Size_Category 

Productivity_Measure 

Quality_Measure 

Process-related_Documentation 

PDSP 

Figure 3.13: The Artifact Tree of Organisation Process Definition 
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the critical attributes and relationships from artifacts and P-states for the or-

ganisation. Moreover, this operation must confirm that all process elements and 

processes adhere to the organisation's policies and strategies. This set of stand-

ard software processes will be tailored by the project managers to fit the software 

projects' need in the Integrated Software Management key process area. Fur-

thermore, with Organisation Process Focus, the organisation's set of standard 

software processes should be checked periodically and receive feedback from the 

active project managers. 

Secondly, since the CMM does not prescribe a specific life cycle model, the 

SEPG and managers must select the most appropriate life cycle model for the 

organisation. MIL-STD-498 adopts three prograin strategies, grand design, in-

cremental and evolutionary for developing software. In addition, iterative and 

spiral models are also very popular life cycle models. 

Thirdly, SPI PASTA is described at a general level that might not be directly 

usable by a project. In this operation, the SEPG and managers have to build 

a tailoring guideline providing the criteria and procedures for selecting artifacts 

and P-states. The project managers can adhere to the guideline tailoring SPI 

PASTA to accommodate the project's characteristic and needs. 

Fourthly, historical data is the most essential information for estimating soft-

ware size, effort and cost. Humphrey in his book[Hum95] designed templates 

to collect software measures. These measures have to be stored in the software 

measurement database as the historical data for next estimation. In addition to 

the time and defect record, SEPG and managers must build the LOG counting 

standard and object size category in order to estimate the productivity. 

Finally, SEPG and managers must design a library to collect process-related 

documentation. These documents can be reused in future projects 

Exit Condition: state-of(OrganisationProcess_Deflnition) = Established 

After completing the P-states, SEPG and managers must check whether the 

exit condition has been reached. 

3.4 Integrated Software Management 

The purpose of Integrated Software Management is to proactively man-
age the software project according to an integrated, coherent, and 
defined software process that is tailored from the organisation's set 
of standard software processes[Pau97]. 
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As Figure 3.18 shows, the main activity in the Integrated Software Manage-

ment key process area is tailoring the project's defined software process from 

the organisation's standard software process. Moreover, the implementation and 

management of the activities of the project's defined software process is primarily 

described in the software development plan. 

Organisation's Software Process Assets 
Process Flow 
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Figure 3.15: The Framework of the Project's Defined Software Process 
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3.4.1 The Project's Defined Software Process 

The project's defined software process (PDSP) is a well-characterised and un-

derstood software process, described in terms of software standards, procedures, 

tools and methods. The PDSP provides the basis for planning, performing and 

improving the activities of the managers and technical staff performing the pro-

ject's tasks and activities. 

In the CMM[PWG93], the work to be performed is broken down into tasks. 

Within the context of process definition, a task is a well-defined component of a 

defined process. In SPI PASTA, tasks are described as the P-state of a process 

which is the completeness of the process. Tasks can be divided into activities 

which are steps taken or functions performed toward achieving some objective. 

Operation forms provide a complete description for these activities. The results 

of P-states and operations primarily consist of artifacts, called software work 

products in the CMM. Artifacts can be anything created in the software process, 

which include process descriptions, plans, procedures, computer programs and 

associated documentation. 

3.4.2 Process Tailoring 

Since the PDSP is tailored to fit the specific characteristics of the project, the 

project manager must carefully decide what artifacts are essential for the project. 

A set of tailoring guidelines must be established in the Organisation Process 

Definition key process area. Ginsberg[GQ95] suggested that the organisation's 

tailoring guidelines must be developed and applied in a manner that will preserve 

the benefits of having common practices based on the organisation's standard 

software process. Moreover, the guidelines must grant projects the flexibility to 

operate efficiently, while also preserving the maximum amount of commonality 

possible. 

SPI PASTA is built assuming a full development life cycle. We do not suppose 

all organisations can fit this model. For example, it is not necessary to adopt the 

Software Acquisition Management key process area for all projects. Furthermore, 

the artifacts from MIL-STD-498's DIDs, such as System/ Subsystem Design De-

scription (SSDD), Software Design Description (SDD), Interface Design Descrip-

tion (IDD), may be tailored to one description. The SEPG and managers have 

to depend on features of the project and the culture of the organisation to tailor 

these artifacts. 
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3.4.3 The Software Development Plan 

MIL-STD-498[D0D94] defines the Software Development Plan (SDP) as a de-

veloper's plans for conducting a software development effort. Moreover it provides 

the acquirer insight into, and a tool for monitoring, the processes to be followed 

for software development, the methods to be used, the approach to be followed 

for each activity, and project schedules, organisation and resources. NASA's 

SEL[NAS90] suggests that the SDP provides a disciplined approach to organising 

and managing the software project. A successful plan serves as 

. a structured checklist of important questions, 

. consistent documentation for project organisation, 

. a baseline reference with which to compare actual project performance and 

experiences, and 

. a detailed clarification of the management approach to be used. 

The description of the PDSP will usually not be specific enough to be per-

formed directly. It describes "what" the project will be performed rather than 

"how" the project will be performed. It does not specify the individual who will 

assume the roles, the specific artifacts that will be created, nor the schedule for 

performing the tasks and activities. The SDP should be living documents that 

represent how the project work will be performed. 

The SDP might be either a single document or a collection of plans collectively 

referred to as a software development plan. The typical SDP is composed of a 

project mission plan, an organisation and responsibility plan, a software engin-

eering activity plan, a schedule and resource plan, a configuration management 

plan and so on. The combination of the PDSP and its software development plan 

makes it possible to actually perform the process. 

3.4.4 Processes in the PDSP 

We use the title "Processes in the PDSP" instead of "Processes in Integrated 

Software Management", because the main activity in Integrated Software Man-

agement is to establish the PDSP. There are other activities in the Integrated 

Software Management key process area such as risk management. We would like 

to focus on establishing the PDSP and split risk management as an operation 

in the organisational processes. Therefore, in this P-state, the entire software 

processes must be tailored to fit the project. 
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Figure 3.16 shows the P-state tree of PDSP. This P-state consists of four 

operations: Develop Software Support Process, Develop Software Management 

Process, Develop Software Technical Process and Develop Organisational Process. 

Main Roles: The main roles participating in the operations are senior man-

agers, SEPG, project managers and software product managers who will develop 

defined software processes for the projects. 

Establish—PDSP 

Develop_Software_Support_Process 

Develop_Software_Management_Process 

Develop—Software—Technical—Process 

I Develop_Organisational_Process 	I 

Figure 3.16: The P-State Tree of the PDSP 

Artifact List: The artifact list in the KPA is the PDSP which consists of four 

sub-artifacts: Software Support Process, Software Management Process, Software 

Technical Process and Organisational Process. The artifacts in this KPA are 

shown in Figure 3.17. 

Information Artifacts: The artifact, Organisation Process definition, provides 

organisation's standard software processes, selected software life cycle models, 

tailoring guideline, the software measurement and process-related documentation 

to perform the project's defined software process. 

Entrance Condition: state-of(OrganisationJrocessDefinition) = Established 

and state-of(PDSP) = Referenced 

In addition, the need to perform the PDSP must be identified, the activities of 

Organisation Process Definition should first be completed. Once two conditions 

are satisfied, developers may enter the Project's Defined Software Process. 
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Organisation_Process_Focus 

Organisation—Process—Definition 

PDSP 

Software_Support_Process 

Software_Management_Process 

Software—Technical—Process 

organisational—Process 

Figure 3.17: The Artifact Tree of the PDSP 

Activities: Four operations are presented in the P-state diagram of the PDSP 

as shown in Figure 3.18. These operations cover the entire software processes. 

However, as Hurnphrey[Hum88] mentioned, it is better to focus on management 

processes before engineering processes. 

To tailor the PDSP for the entire software process, SEPG and managers should 

first select a software life cycle model appropriate to the scope, magnitude and 

complexity of the project from those available from the organisation. Then, SEPG 

and managers tailor SPI PASTA according to the tailoring guideline. Unfit ar-

tifacts and P-states may be disabled and all activities in the P-state should be 

carefully checked. In the meantime, it is better to concurrently build the software 

development plan and ensure that SPI PASTA is appropriately reflected in the 

software development plan. Other activities can be started at this KPA, or linked 

to relevant P-state such as Organisation Training Program. 

Exit Condition: state-of(PDSP) = Established and 

state-of(Organisatiom.Process_Definition) = Updated 

After completing the P-states, SEPG and managers must check whether the 

exit condition has been reached. In addition the PDSP must be completely es-

tablished, and all information performed in the PDSP, such as product measures, 
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should be contributed to the Organisation Process Definition key process area as 

the historical data for the future projects. 
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Chapter 4 

The Processes in the CMM Level 

PRINCE process model[PRI97] describes how a project is divided into manage-

able stages enabling efficient control of resources and regular progress monitoring 

throughout the project. The various roles and responsibilities for managing a 

project are fully described and are adaptable to suit the size and complexity of 

the project, and the skills of the organisation. Meanwhile, the purpose of the 

ISO 15504 project[Gar98, Kit97] is to provide software organisations pursuing 

multiple improvement approaches. This project tries to establish a framework for 

understanding the state of the organisation's processes for process improvement. 

In the same way as the ISO 15504 project and PRINCE process model, the key 

process areas at Level 2 also focus on the software project's concerns related to 

establish basic project management controls[Pau97]. To complete the activities 

of Level 2, software costs, schedules, and functionality should be well controlled, 

software requirements and the work products developed to satisfy them should be 

clearly defined, and the relationship with contractors should be established. This 

chapter contains two parts, software management process and software support 

processes. These processes will help software organisations become disciplined 

development teams and effectively control software development. 

4.1 The Software Management Process 

Software management processes are described on the CMM Level 2 and have 

become a basis of software development. Humphrey[Hum88] emphasised that 

software management processes must be done before engineering processes, since 

without management discipline, the engineering process is sacrificed to schedule 

and cost pressures. He did not agree that a Level 1 organisation tries to implement 
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a defined process (Level 3) before it has established a repeatable process (Level 

2). 

Figure 4.1 shows the framework of software management processes. The Soft-

ware Project Planning key process area concentrating on planning and scheduling 

activities is a main part of software management processes. Firstly, the software 

project is divided into the work breakdown structure which is based on the alloc-

ated requirements from the Requirement Management key process area. In the 

meantime, the activities of tracking the software project are concurrently per-

formed. In addition, software production can also be done by other organisations 

working under contract with the project. 

Requirement 

Management 

Software 	 Software 
Project 	--- 	Project 
Planning 	 Control 

Technical 	 Software  
Acquisition 

Processes 	 Management 

Software 

Accepted 

Figure 4.1: The Framework of the Software Management Processes 
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Processes in the Software Management Process 

Figure 4.2 shows the P-state tree of the Software Management Processes. This 

P-state consists of five operations: Derive System Requirement, Derive Software 

Development Plan, Perform Software Acquisition Plan, Perform Software Project 

Control and Establish Commitment. The first four operations belong to the KPAs 

of the CMM Level 2. Moreover, these activities should establish the software 

project's internal and external commitments. 

Develop—Software—Management—Process 

Derive_System_Requirement 

Derive—Software—Development—Plan 

Perform—Software—Acquisition—Management 

Perform_Software_Proj ect_Control 

Establish—Commitment 

Figure 4.2: The P-State Tree of the Software Management Process 

Main Roles: The whole Management Group should be involved in developing 

software management processes. Furthermore, the software product manager 

conducting the technical processes and customers are also involved in performing 

activities in the Software Management Process. 

Artifact List: The artifact list in this part is the Software Management Process 

which consists of five sub-artifacts: System Requirement, Software Development 

Plan, Software Acquisition Plan, Software Project Control and Commitment. 

The artifacts in the software management process are shown in Figure 4.3. 

Information Artifacts: The artifact, PDSP, provides the tailored software 

management processes for the management group. 

Entrance Condition: state-of(Software_ManagementProcess) = Referenced 

Once the need to develop a Software Management Process has been identified, 

the process roles start to perform all activities in the management processes. 
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Figure 4.3: The Artifact Tree of the Software Management Process 
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Activities: Five operations are presented in the P-state diagram of the Soft-

ware Management Process as shown in Figure 4.4. System requirements should 

firstly be derived; however, it is not necessary to complete system requirements 

prior to the software development plan. Software project control must rely on 

the software development plan to track software project performance and take 

corrective actions. When the needed acquisition of software and associated work 

products is identified, the software acquisition management shall be performed; 

otherwise this operation can be omitted. In the former operations, process roles 

should establish internal and external commitments to ensure all activities are 

reliable. 

Exit Condition: state-of (Software_ManagementProcess) =Developed 

After completing the P-states, managers must check whether the exit condi-

tion has been reached and the final commitments have been reached. 

4.1.1 Requirements Management 

The purpose of Requirements Management is to establish and main-
tain a common agreement between the customer and the software pro-
ject regarding the customer's requirements that will be addressed by 
the software projectPau97J. 

4.1.1.1 System Requirements Allocated to Software 

Figure 4.5 presents the architecture of requirements. Originally, a statement of 

the customer's needs and expectations for the project is gradually formed and 

abstracted. The customer requirements are stated from the customer and end 

user perspectives, and are intended to achieve a shared understanding between 

the customer and the project, and provide the criteria to determine whether the 

products satisfy the customer's needs and expectations. However, if the customer 

requirements are not suitable for the project development, it should be elaborated 

to a level of detail needed to plan the project's activities and work products and 

should be objective and verifiable. The system requirements are abstracted from 

the customer requirements and can be divided into two parts, the system require-

ments allocated to software and the system requirements allocated to hardware. 

Since the Ci\'IM focuses on the software process, discussion of customer require-

ments centres on those customer requirements to be implemented in software. 

The system requirements allocated to software, usually referred to as the 'alloc-

ated requirements" in the CMM, are a primary input to the software development 
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plan. Software requirements analysis refines the allocated requirements and res-

ults in software requirements which are documented. The system requirements 

allocated to hardware are typically done by a system engineering group as part of 

the overall system design. SPI PASTA does not focus on this topic for real-time 

and control systems. Those who are interested in the system engineering can refer 

to the System Engineering CMM (SE-CMM) from the SEI[BKW95]. 

Customer Requirements 

System Requirements 

System Requirements 

Allocated to Software 

System Requirements 

Allocated to Hardware 

Figure 4.5: The Architecture of Requirements 

Requirements Management is the first KPA in the CMM, since the allocated 

requirements form the basis for planning, performing and tracking the software 

project's plans and activities throughout the software life cycle. All plans and 

software work products in the CMM activities must be consistent with the re-

quirements. Researchers [DL95, KS95b] believe that the major causes of software 

projects' failure are poor requirements and change management. Therefore, the 

CMM focuses on requirements management at the beginning of software process 

improvement. 

4.1.1.2 Processes in Requirements Management 

Figure 4.6 shows the P-state tree of Requirements Management. This P-state 

consists of two operations: Derive Allocated Requirement and Derive System 



Requirement To Hardware. 

Main Roles: The main roles participating in the operations are project man-

agers, software product managers, system engineers and customers who will derive 

system requirements allocated to software and hardware. 

Derive-System-Requirement 

Derive-Allocated-Requirement 

Derive_Sys tern_Requirement_To_Hardware 

Figure 4.6: The P-State Tree of Requirements Management 

Artifact List: The artifact list in the KPA is System Requirement which con-

sists of two sub-artifacts: Allocated Requirements and System Requirements Al-

located to Hardware. The artifacts in this KPA are shown in Figure 4.7. 

Information Artifacts: No information artifacts in Requirements Manage-

ment. 

Software—Management—Process 

System—Requirement 

Allocated—Requirement 

System—Requirement—To—Hardware 

Software_Development_Plan 

Software_Acquisition_Management 

Software_Proj ect_Control 

Commitment 

Figure 4.7: The Artifact Tree of Requirements Management 



Entrance Condition: st ate-of(System_Requirement) = Referenced 

Deriving system requirements is at beginning of the software project. Software or-

ganisations should have their own methodology to derive customer requirements. 

Once the customer's statements are collected, the system requirements should be 

derived and reviewed. 

Activities: Two operations are presented in the P-state diagram of Require-

ment Management as shown in Figure 4.8. 
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The main activities performed in the Requirements Management key process 



area are to document the allocated requirements for the software project and 

to document changes to the allocated requirements throughout the life cycle. 

The CMM recognises that change is an integral part of software activity, which 

software organisations usually ignore it. The concept of freezing the specifications 

is almost impossible to apply to the software development. Software organisations 

must carefully assess the impact of change and make a good decision for the 

software development. 

Currently, there are some commercial products to manage requirements. In 

addition to storing all requirements, these tools also provide a powerful ability 

to track changes during the development life cycle. The organisation can choose 

which tools they need to derive system requirements, but they will need to link 

it into SPI PASTA. 

Exit Condition: state-of(SystemRequirement) = Derived 

After completing the P-states, managers and customers must check whether 

the exit condition has been reached. This means that the system requirements 

should be documented and controlled before they are incorporated into the soft-

ware project. 

4.1.2 Software Project Planning 

The purpose of Software Project Planning is to establish reasonable 
plans for building the software product and for managing the software 
project[Pau97]. 

After making an agreement with the customer on the requirements for the 

software project, the projects software development plan should be built and 

software risks should be analysed. This includes steps to estimate the size of the 

software work products and the sources needed, negotiate commitments, produce 

a schedule and identify and assess software risks. A good software development 

plan is crucial for the success of a software project. However, the quality of a 

software development plan generally depends on the quality of the size estimate. 

How to appropriately estimate the size of the software work products is becoming 

the most essential task in the Software Project Planning key process area. 

To build the software development plan, two of the most critical resources 

are development staff and time[NAS90]. The project manager is concerned with 

how much time will be required to complete the project and what staffing level 

will be necessary over the development cycle. However, the degree to which 

you can accurately and precisely plan a job depends on what you know about 



it. At the earliest, or preproposal stage, you have only a general idea of the 

product requirements. To make an accurate estimate, you must start with a 

design specification. You then examine and estimate each part of the job. This 

estimate requires separate estimates for each software component, each major 

document, the test cases, installation planning, file conversion and user training. 

Nevertheless, in his book, Pressman[Pre94] described: 

Software cost and effort estimation will never be an exact science. Too 
many variable - human, technical, environmental, political - can affect 
the ultimate cost of software and effort applied to develop it. However, 
software project estimation can be transformed from a black art to a 
series of systematic steps that provide estimates with acceptable risk. 

For years, researchers tried to find an effective method to tackle the estimation 

process problem. To date, the estimation process can be classified as either model 

based or analogy model. Model based estimation usually uses statistical analysis 

to build a model for estimation. Boelnn[Boe8l] introduced a hierarchy of software 

estimation models, called COCOMO. Albrecht's function point[AG83] identified 

five basic functions that occur frequently in commercial software development. 

Putnam[PM92] used the Rayleigh curve to derive his software equation. However, 

Vigder and Kark[VK94] found that informal analogy was the most commonly used 

estimating method for software organisations. There were two major reasons 

given for organisations not using formal models. Firstly, there was a lack of 

confidence in the ability of a model to outperform an expert. Secondly, the 

historical data is not available. Software managers would like to use "rules-of-

thumb" to estimate their new projects. Nonetheless, a majority of large software 

projects tend to run late or overrun their budget, or even to be cancelled. 

Most models of software estimation view the estimation process as being a 

function computed from a set of cost drivers and in most of the advocated software 

estimation techniques, the primary cost driver is assumed to be the software 

requirements(as Figure 4.9). 

Allocated 
	 Software Cost 

	 Effort 

Requirements 	
Estimation Process 	

Duration 

Figure 4.9: Classical view of software estimation process 

Consequently, allocated requirements are viewed as constraints which must 

be satisfied. The initial requirements analysis, however, inevitably produces a 
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requirements definition that is incomplete and ambiguous and will be changed 

significantly throughout development. Furthermore, another problem is that it 

is hard to compare one program with another. As programs are increasing their 

size and complexity, they are almost impossible to compare in any orderly or 

consistent way. One way to address this comparison issue would be to break the 

new product into pieces. From this concept, the object-oriented methodology 

seems to be a good choice. 

4.1.2.1 Size and Effort Measurement 

For making a good estimation, partitioning is a crucial point. For making a good 

partition, allocated requirements are essential and necessary. In the CMM, a 

work breakdown structure (WBS) for the software project will be established at 

the beginning of the process. A partition is a set of capabilities that identifies the 

boundaries of a subproblem. Project managers coordinate the development of a 

set of partitions, planning resources for each individual partition, setting mile-

stone dates, facilitating re-partitioning efforts and assuring the quality of each 

partition. Goldberg and Rubin[GR95] in their book suggested Breadth-First arid 

Depth-First approaches. A depth-first approach partitions the allocated require-

ments and takes each partition all the way from analysis to implementation and 

testing. This approach is suitable for a project whose allocated requirements are 

very clear and where each subproject is nearly independent. Since this approach 

partitions at the beginning, each partition is totally independent. It might be dif-

ficult to be integrated, since project managers have to partition under an unclear 

condition. Moreover, the requirements seem to he frequently changed during the 

development period. A breadth-first approach starts with a high-level analysis. 

After analysis, the project manger creates partitions for subteams and the par-

titions are fully developed in parallel. A variant of the breadth-first approach 

(Figure 4.10) lets developers partition the problem, and do an analysis of each 

partition in parallel. When all analyses are completed, they are combined into a 

single set of analysis artifacts. Then the problem is repartitioned for development 

based on this unified analysis. 

This approach is suitable for using object technology and use case driven 

development. At the outset of a project, the project manager does preliminary 

partitioning from allocated requirements. The first partitioning will be an approx-

imation since the boundaries might need to be reassessed. Requirement analysts 

can do analysis in parallel by using the use case model. When all analyses are 

completed, the project manager collects all use case models and repartitions them 



Do preliminary partitioning 

Partition 	 Partition 	 Partition 	 Partition 

analysis 	 analysis 	 analysis 	 analysis 

Do 	 ( Do 	 ( Do 	 ( Do 

analysis ) 	analysis ) 	' analysis ) 	analysis 

Completed analysis 

Repartition 

Design, code 	7 Design, code 	7 Design, code 

and test the 	) 	( 	and test the 	) 	and test the 

partition 	/ 	\ 	partition 	-" 	\ 	partition 

Figure 4.10: Alternative View of Breadth-First Partitioning [GR95] 
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Phase Percent of Time Schedule Percent of Effort 
Requirement Analysis 12 6 

Preliminary Design 8 8 
Detailed Design 15 16 
Implementation 30 40 
System Testing 20 20 

Acceptance Testing 15 10 

Table 4.1: Distribution of Time Schedule and Effort Over Phase in NASA[NAS90] 

to subteams. 

In addition to partitioning, estimation of schedule for software product devel-

opment and delivery is also a very challenging task. There are many factors that 

affect the schedule, and development progress is difficult to measure. 

However, for software projects contracted with a government, clients and con-

tractors decide the delivery date during negotiations. To avoid the project running 

late the initial estimate is a crucial step, nevertheless, it is the most uncertain 

since the allocated requirements are still unclear. As mentioned in Section 1.2.3, 

Microsoft roughly divides the life cycle into three phases. It is usual to take one 

fourth to one third of a project's schedule for planning. Before the allocated re-

quirements are clearly partitioned, this could be an effective method for schedule 

estimation. By monitoring their developed software projects, the Software En-

gineering Laboratory in NASA[NAS90] collected the information of the expected 

schedule consumption and effort expenditure in each phase of the life cycle. These 

efforts are very helpful for estimating the contract software. In Table 4.1, the re-

quirement analysis and preliminary design needs 20 percent of the time schedule. 

This means that the development team can fix 20 percent of the time schedule to 

complete its use case models. For those software organisations contracted with a 

government, it is relative easier to collect their historical data to establish their 

own distribution of time schedule. 

After preliminary partition and estimation, making a software development 

plan starts with estimating the size of partitioned parts. By estimating the size 

of the product you plan to build, you are better able to judge the amount of work 

required to build it. Figure 4.11 shows the steps for making a schedule estimation. 

For a schedule estimation, first and foremost, a framework for size measure-

ment must be established. Line of code counts can easily be misinterpreted and 

misused if the organisation hasn't got a common policy. However, to help organ-

isations obtain clear and consistent reports of software size, the Software Pro- 
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cess Measurement Project at the SET has developed a framework for describing 

software size measurements[Par92]. Once you have established the framework for 

counting lines of code, you can start estimating the software size. Researchers[Jon9l, 

PM92, Hum95] suggest that using size estimating methods can help get a better 

quality size estimate. 

The Personal Software Process (PSP), developed by Watts Humphrey [Hum95], 

is a defined and measured software process designed to be used by an individual 

software engineer or small developing team. PSP makes engineers aware of the 

processes they use to do their work and the performance of those processes. They 

learn to set personal goals for improvement, measure and analyse their work, 

and adjust their process to meet their goals. To date, data from the surveys 

provides convincing evidence of the benefits of the PSP. In their study, Hayes 

and Over[H097] found the following result from using the PSP: 

. Effort estimates improved by a factor of 1.75 (median improvement)-

* Size estimates improved by a factor of 2.5 (median improvement). 

The tendency to underestimate size and effort was reduced. The number of 

overestimates and underestimates were more evenly balanced. 

. Product quality, defects found in the product at unit test, improved 2.5 

times (median improvement). 

Process quality, the percentage of defects found before compile, increased 

by 50% (median improvement). 

In addition, the survey conducted by Ferguson et a1.[FHK97] also supported 

this conclusion. 

A critical factor in the PSP is size and effort estimating. The PSP uses the 

Proxy-Based Estimating (PROBE) method for size and effort estimating. In-

stead of directly using LOC as the size measure, Humphrey uses a proxy to judge 

product size. The properties of the object-oriented methodology are good ex-

amples for a proxy. To use objects as proxies, firstly, organise your historical 

object data into categories and size ranges. After grouping these objects into 

functional categories, you can make estimates by deciding which functional cat-

egory of object you are considering, then judge how many methods it is likely to 

contain, and finally determine where it falls into the size range. 

Once the object category has been established, as in Figure 4.12, the next 

step will be building a work breakdown structure for the software project. The 
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work breakdown structure (WBS) divides the overall software project into work 

packages that represent singular work units that are assignable and for which 

accountability can be expected. 

After you have subdivided the product into parts, you check to see if you have 

historical data on them. If a part does not resemble any element in the category, 

you have to reexamine it to see if you have refined it to the proper level. If an 

object is at the right level and does not belong to any of the existing categories, 

then you estimate its size as the first of a new category. This is an iterative 

process and you must finish it completely. 

You now have the conceptual design, having named each object and having 

determined its category. Next you need to determine new object type and size. 

For each new object, you judge how its size compares with those in the database 

in its category. On the basis of this judgement, you estimate roughly what the 

new object's size will be. 

After estimating a software size, you next have to estimate the tinie the work 

will take, judge the accuracy of this estimate and generate a schedule. You do 

this by relating the time you spent on prior projects to the estimated sizes of the 

programs you produced. 

From the PSP's description (Figure 4.13), there are three choices for estimating 

development time. Firstly, if you do not have at least three historical data points, 

you have to calculate historical productivity in LOC per hour. This means that 

you divide the total LOC by the total hours to get your average productivity 

for the new project. Then, with Choice C, you estimate the time for the new 

program by dividing your estimated new program size by your productivity rate 

to get your new estimated time. 

Secondly, if you just have data on actual development hours and object LOC 

for at least three projects and that the actual object LOC and actual development 

hours correlate with an r 2  > 0.5. Then, you do the regression calculation for total 

actual LOC and actual hours. With Choice B, you will use the regression method 

to calculate the estimated development time for the new program. 

Thirdly, you have got at least three projects where the object LOC and actual 

development time correlate with an r2  > 0.5. Then, with Choice A, you will use 

the regression parameters to calculate the estimated development time for the 

new program. 

Finally, you have to make a good schedule plan. 

A good size and effort estimation depends on good historical data collected 

from prior projects. Before you collect this useful data, you could make a good 
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Figure 4.12: The flowchart for estimating software size 
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Project Type Environment Type Effort Multiplier 
Old Old 1.0 
Old New 1.4 
New Old 1.4 
New New 2.3 

Table 4.2: Complexity Guideline[NAS9O] 

Teams Years of 
Application Experience  

Effort Multiplier 

10 0.5 
8 0.6 
6 0.8 
4 1.0 
2 1.4 
1 2.6 

Table 4.3: Development Team Experience Guideline[NAS9O] 

guess. NASA's SEL suggests that the estimates should be adjusted before the 

uncertainty proportion is applied. Some factors, such as project type, develop-

rnent environment and development team experience, can affect the estimates. 

Table 4.2 presents the recommended percentage adjustment to the effort estim-

ate due to the complexity of the problem.' Table 4.3 presents an adjustment to 

the effort estimate for the effect of different team experience levels.2  

4.1.2.2 Processes in Software Process Planning 

Figure 4.14 shows the P-state tree for Software Process Planning. This P-state 

consists of five operations: Draft Project Mission Plan, Draft Organisation And 

Responsibility Plan, Draft Software Engineering Activity Plan, Draft Schedule 

And Resource Plan and Identify Project Risk. 

Main Roles: The main roles participating in the operations are project man-

agers, software product managers, senior managers, SEPG, system engineers, 

testing staff and quality assurance staff who will derive the software development 

'The project type and environment type is old when the organisation has more than 2 years 
experience with it. 

2 Average of team member's years of application experience weighted by member's particip-
ation on the team. Application experience is defined as prior work on similar applications and 
member's participation is defined as time spent working on the project as a proportion of total 
project effort. 
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Identify—Project—Risk 

Figure 4.14: The P-State Tree for Software Process Planning 

plan for the software project. 

Artifact List: The artifact list in the KPA is the Software Development Plan 

which consists of four sub-artifacts: Project Mission Plan, Organisation And Re-

sponsibility Plan, Software Engineering Activity Plan and Schedule And Resource 

Plan. MIL-STD-498 provides a Software Development Plan description for both 

the software acquirer and supplier. Developers can adopt it as a framework com-

plying with the P-state to complete the project's software development plan. The 

artifacts in this KPA are shown in Figure 4.15. 

Information Artifacts: Two artifacts, Allocated Requirement and PDSP, provide 

the information to derive the software development plan. The allocated require-

ment is a primary input to the software development plan. In the meantime, 

deriving the software development plan should rely on the project's defined soft-

ware process, if the organisation has established its own project's defined software 

process by following SPI PASTA. 

Entrance Condition: state-of (Software iDevelopment Plan) = Referenced and 

state-of(PDSP) = Established 

95 



Software_Management_Process 

System_Requirement 

Software_Development_Plan 

Project-Mission-Plan I 

Organisation-And-Responsibility-Plan 

Software_Engineering_Activity_Plan 

Schedule_And_Resource_Plan 

Software-Acquisition-Management 

Software_Proj ect_Control_j 

Commitment 

Figure 4.15: The Artifact Tree for Software Process Planning 

Developers should ensure that the project's defined software process is ap-

propriately reflected in the software development plan. Once the need to derive 

the software development plan has been identified, process roles may perform the 

operations. 

Activities: Five operations are presented in the P-state diagram for Software 

Process Planning as shown in Figure 4.16. 

Process roles firstly draft the project mission plan and the organisation and 

responsibility plan based on the allocated requirements. Moreover, the software 

life cycle must be selected from the project's defined software process. Process 

roles build the plan addressing sequencing and interdependencies of software en-

gineering activities. Then process roles perform the activities according to Sec-

tion 4.1.2.1, establishing the work breakdown structure to divide the overall soft-

ware project into work units, estimating the size of each work unit, estimating 

the effort and cost for the software project, estimating the project's resources and 

establishing the project's schedule. The schedule and resource plan will provide a 

basis for the software project. Finally, risks associated with the software project 

should be identified. This operation could be linked to Risk Management which 

is described it on the Organisational Process, since it belongs to the Integrated 
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Software Management key process area in the CMM Level 3. If Risk Management 

is not available or if the organisation is still on Level 2, process roles must perform 

this operation without risk mitigation strategies. 

Exit Condition: st ate-of (Software -Development Ylan) = Derived 

After completing the P-states, process roles must check whether the exit con-

dition has been reached. 

4.1.3 Software Project Control 

The purpose of Software Project Control is to provide adequate visib-
ility into progress of the software project so that appropriate corrective 
actions can be taken when the software project's performance deviates 
significantly from the piari[Pau97]. 

4.1.3.1 Management of the Software Project 

Without tracking, the software project might become out of control. The activit-

ies of Software Project Control involve tracking and reviewing the software per-

formance and results against the plan and taking corrective action as necessary 

based on actual performance and results. Management of the software project 

should be based on the software development plan. 

Why does the software project have to be tracked? The main reason is soft-

ware estimation. As mentioned in Section 4.1.2, the development team use the 

allocated requirements to estimate the software size in order to build the software 

development plan. In the very beginning, the development team have only the 

allocated requirements that are elaborated from the customer requirements. This 

rough requirement is not good for estimating software size. When the develop-

ment team starts to elaborate the software requirements, creating the use case 

diagrams and class diagrams, the software effort and cost estimation should be 

modified from time to time. Furthermore, any problem happening in the software 

development must be detected as soon as possible, otherwise the project cost will 

increase. 

Currently, project management tools can conveniently support software pro-

ject control. However, Steve McConnell[McC97] suggested creating a project 

intranet home page with links to general project information. With regard to 

project tracking, the home page might include the following: 

Percentage of schedule used (actual) 

Percentage of resources used (actual and planned) 
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Percentage of defects found (actual and Planned) 

Graphs of actual vs. planned resources and defects 

. Current task list 

Current defect list 

Top 10 risk list 

Anonymous feedback bulletin board 

This information can be integrated as a part of PSEEs and will provide ap-

propriate visibility into actual progress of the software project. 

4.1.3.2 Processes in Software Project Control 

Figure 4.17 shows the P-state tree for Software Project Control. This P-state 

consists of three operations: Track SDP, Correct SDP and Maintain SDP. 

Perform—Software—Project—Control 

Track—SDP 

Correct—SDP 

Maintain—SDP 

Figure 4.17: The P-State Tree for Software Project Control 

Main Roles: The main roles participating in the operations are project man-

agers, customers and the development group who will develop the software pro-

ject. In principle, project managers should take charge of managing the software 

project. 

Artifact List: The artifact list in the KPA is the Software Development Plan, 

since the plan is the basis for tracking software activities and taking corrective 

action. 

99 



Information Artifacts: The project manager tracks software project perform-

ance against the software development plan. All activities in management and 

technical processes will be tracked and the project manager will take corrective 

actions from time to time. 

Entrance Condition: state-of (Software_DevelopmentYlan) = Derived and state-

of (Software -Technical _Process) = Referenced 

When the development group starts to develop the software project according to 

the software development plan, software project performance and risks should be 

carefully tracked. 

Activities: Three operations are presented in the P-state diagram for Software 

Project Control as shown in Figure 4.18. 

The main activities performed in the Software Project Control key process 

area are to track software project performance and results in accordance with the 

software development plan. When the software requirements are elaborated from 

allocated requirements, the use case diagrams and class diagrams are created by 

software analysts. The content and functions of classes are increasingly clear. 

Therefore, it is better to re-estimate the software size, effort and costs. As a 

result, the computer resources, software engineering facilities and the project's 

schedule must make a correction to fit the actual software project development. 

These activities should be performed from time to time in order to make a best 

estimation for software project. Furthermore, the software development plan 

may also be revised to reflect accomplishments, progress, changes and corrective 

actions as appropriate. 

Exit Condition: state-of (Software -Technical _Process) = Developed 

The activities of the Software Project Control key process area must be per-

formed until the software project is completed. This means the software project 

should be well controlled during the whole software life cycle. 

4.1.4 Software Acquisition Management 

The purpose of Software Acquisition Management is to effectively man-
age the acquisition of software from sources external to the software 
project [Pau9 7]. 

This key process area applies to acquisition of software work products for 

which there exists a formal agreement between the supplier and the software 
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project. The acquired software is delivered to the software project from the 

supplier and becomes part of the software products delivered to the project's 

customer. 

This key process area is not necessary for those organisations which are devel-

oping the software work products by themselves. However, software projects are 

increasingly sophisticated and software development costs are becoming a major 

trade-off for project managers. As a result, the software community has been 

motivated to find more effective and efficient ways to develop software in the last 

few years. The use of commercial off-the-shelf (COTS) products as elements of 

larger systems is becoming a consensus of reducing development costs. Therefore, 

this key process area can be applied not only for outsourcing software projects 

but also for acquiring COTS products. 

4.1.4.1 Component-Based Software Development 

The software community has tried to imitate the concept of mass production for a 

long time. Currently, the concept of interchangeable parts, similar to Integrated 

Circuit in the microelectronics industry, is emerging in the software industry. 

In the last few years, the research of component-based software develop-

mnent has become one of the most important topics in the area of software 

engineering[Ber97]. This research focuses on building large software systems 

by integrating previously existing software components. Developing component-

based systems is becoming feasible due to the following: 

The rapid evolution of the Internet/Intranet is making distributed projects 

increasingly viable. 

The middleware technology which manages communication and data ex-

change between objects, such as Common Object Request Broker Archi-

tecture (CORBA) from the Object Management Group[OMG97] and Mi-

crosoft's Component Object Model (COM), is emerging and increasingly 

mature. 

As a result, the software development might move to a large-scale manufactur-

ing and engineering process. Software developers may assemble software products 

from purchased fine-grained software components. The COTS-based systems 

(CBS)[Car97], conducted by the SET, are focused on improving the technolo-

gies and practices used for assembling previously existing components into large 

software systems. The CBS Initiative is developing component-based systems 

practices that effectively qualify and integrate COTS components into critical 
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systems within business constraints. The CBS approach relies on the existence 

of an inventory of existing software components, the emergence of component 

integration technologies such as CORBA and COM, and the development of or-

ganisational capabilities for CBS trade-off analysis and design. This initiative 

will result in an innovative software development approach. The roles will be 

changed from being a developer and producer of systems to being a consumer 

and integrator instead. Figure 4.19 shows a new life cycle for the CBS. 

Identification 

Qualification 

Adaptation 

Integration 

Upgrade 

Figure 4.19: The Life Cycle of COTS-Based Systems 

The challenge of a CBS consumer is how to build sufficient flexibility into 

procurement and contract documents to allow a variety of creative solutions while 

at the same time constraining bidders to selecting appropriate components and 

strategies. Software Acquisition Management will be a key role for the success of 

the CBS. 

4.1.4.2 Software Acquisition Management 

As Figure 4.19 shows, the activities of the software acquisition management con-

tain five steps. Firstly, software acquisition management plans which encompass 

the total software acquisition effort must be established. This planning should 

identify the process for software acquisition management, which involves such 

items as early budgetary action, schedule determination, acquisition strategy, risk 

identification and software requirement definition. With the acquisition plans, 

software managers have to make a crucial decision - make or buy. This decision 

should come from analysing the allocated requirements to identify software that 

will be acquired. Once the requirements for the acquired software are established, 
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software managers must enter the second step, qualifying the contractors. With 

selecting, contracting, tracking and reviewing contractors, project managers have 

to ensure the software work products appropriately adhere to the requirements. 

Then, project managers conduct acceptance reviews and test and integrate all 

software components to make a complete software system. Finally, if necessary, 

they make an evolution plan. 

However, as outsourcing, especially international outsourcing, becomes more 

common, software acquisition management is increasingly complicated. In order 

to minimise or eliminate the risk that software contracts will end up in dispute 

or in court, Jones[Jon96] gave the software community some recommendations as 

follows: 

The sizes of software contract deliverables must be determined during ne-

gotiations. 

Cost and schedule estimation must be formal and complete. 

Creeping user requirements must be dealt with in the contract in a way that 

is satisfactory to both parties. 

Some form of independent assessment should be included. 

Anticipated quality levels should be included in the contract. 

Effective software quality control steps must be utilised by the vendor. 

4.1.4.3 Processes in Software Acquisition Management 

Figure 4.20 shows the P-state tree for Software Acquisition Management. This 

P-state consists of three operations: Draft Acquisition Plan, Manage Supplier 

Selection and Manage Supplier Monitoring. 

Main Roles: The main roles participating in the operations are project man-

agers, software product managers, contract management staff, requirement ana-

lysts and software suppliers who will make the 'make-or-buy" decision. 

Artifact List: The artifact list in the KPA is Software Acquisition Management 

which consists of three sub-artifacts: the Acquisition plan, Supplier Selection and 

Supplier Monitoring. The artifacts in this KPA are shown in Figure 4.7. 
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Figure 4.20: The P-State Tree for Software Acquisition Management 
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Figure 4.21: The Artifact Tree of Software Acquisition Management 

106 



Information Artifacts: The artifact, PDSP, as information artifacts provides 

a guideline to perform the software acquisition management. 

Entrance Condition: st ate- of(Software -Acquisition _Management) = Referenced 

The software analysts and managers according to the allocated requirements 

make a "make-or-buy" decision. The decision includes what kind of software work 

products will be acquired, if the project manager decides to buy software work 

products from external suppliers. 

Activities: Three operations are presented in the P-state diagram for Software 

Acquisition Management as shown in Figure 4.22. 

Firstly, managers should draft the software acquisition plan according to SPI 

PASTA. The plan with SPI PASTA may be a basis for performing the software 

acquisition. 

Then the activities will be split into two parts, selecting the supplier and 

monitoring the supplier. In the supplier selection, when the acquisition decision 

has been made, the managers have to select the acquisition option. In accord-

ance with the characteristics of the software project, the managers should de-

cide to purchase COTS software products, obtain software from a contractor 

or other options. Then the organisation should establish the requirements for 

the acquired software. These requirements must comply with the allocated re-

quirements referenced to the Requirements Management key process area. If the 

managers decide to purchase COTS software products, they need to perform the 

"Acquire_COTS_Product" operation and select the COTS products to satisfy the 

software project's needs. Otherwise, the managers should evaluate and select soft-

ware contractors. Finally, the agreement must be established with the software 

contractors. 

In the next step, the software supplier's activities should be monitored. The 

managers must review technical and management issues from time to time and 

periodically evaluate the performance of the software supplier in order to control 

the quality and progress of software products. Finally the organisation conducts 

acceptance reviews and tests to verify that the software products match the re-

quirements. 

Exit Condition: state-of(SoftwareAcquisition_Management) = Derived 

After completing the P-states, managers and customers must check whether 

the exit condition has been reached. This means that the acquired software 

products are completely satisfied. 
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4.2 The Software Support Process 

After developing the software management process, policies for managing a soft-

ware project and procedures to implement those policies should be established. 

In the meantime, the software support process should be developed in order to 

support the software management process. Software quality assurance will review 

the software project's activities and work products in order to provide managers 

with appropriate visibility to manage the software project throughout the soft-

ware development life cycle. Configuration management will record and report 

the status of project configuration items which are produced from activities of 

the software management process and later on the operations throughout the 

software development life cycle. 

Processes in the Software Support Process 

Figure 4.23 shows the P-state tree of the Software Support Process. This P-

state consists of two operations: Perform Configuration Management and Perform 

Software Quality Assurance. 

Develop_Software_Support_Process 

Perform—Configuration—Management 

Perform_Software_Quality_Assurance 

Figure 4.23: The P-State Tree of the Software Support Process 

Main Roles: The main roles participating in the operations are project man-

agers, software product managers, configuration management staff and quality 

assurance staff who will develop the software support process. 

Artifact List: The artifact list in this part is Software Support Process which 

consists of two sub-artifacts: Configuration Management and Software Quality 

Assurance. The artifacts in the Software Support Process process are shown in 

Figure 4.24. 

Information Artifacts: Users developing the software support process should 

rely on the project's defined software process. 
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Figure 4.24: The Artifact Tree of the Software Support Process 

Entrance Condition: state-of(SoftwareSupport_Process) = Referenced 

Developing the software support process should he at the beginning of the software 

project. As soon as the project starts, the need of developing the software support 

process should also be identified. 

Activities: Two operations are presented in the P-state diagram of the Software 

Support Process as shown in Figure 4.25. There are no relationships between two 

operations. Both operations can be independently performed and should support 

the software management process to build a foundation for the software project. 

The activities can be performed under the project's defined software process. 

However, those organisations which have not reached level 3 or the project's 

defined software process is not available should directly perform the activities to 

support the software project. 

Exit Condition: state-of (Software_SupporLProcess) Developed 

After completing the P-states, managers must check whether the exit condition 

has been reached. This means that the artifacts have been well performed and 

recorded. 

110 



File Edit View Go Communicator 	 Help 

Back Forward Reload Home Search Guide 	Print Security Stop 

4 Bookmarks A Location ttp//wnmrdca ed. ac.  uk/home/ky/PhSTA/SPIPaota  htl _J7 

)eveloy Software Support 
ER Develop_Software_Support_Process 

--ReviewActivst 
- -Review Work Product 
-Reprot_SQA_Result 

Configizatio dManagement 

Perform_Configuration_Management 

4 anaexnet[tnitia1ed]I 	[Vfi&.d].C.oputàfi 

Perform Software. Quality_ Assurance. 	•. 	.. 	. 

Software Quality Assurance [Initiated] 	[Reported] Software Quality_Assurance 

100% 	.[hftp:/ta\wI.dco ed.ac.uklhome/ky/PASTA/OperationFormo/Verify_CM_systeml20.htrnl 

Figure 4.25: 4.25: The P-State Diagram of the Software Support Process 

4.2.1 Software Quality Assurance 

The purpose of Software Quality Assurance (SQA) is to objectively 
review the software project's activities and work products for adherence 
to the applicable requirements, process descriptions, standards, and 
procedures[Pau97]. 

4.2.1.1 ISO 9000 

ISO 9000 is a series of standards, published by the International Organisation for 

Standardisation (ISO), which define a framework of minimum requirements for 

the implementation of quality systems. 

There are three different ISO 9000 certifications: ISO 9001, 9002 and 9003. 

For the software community, the most comprehensive of the standards is ISO 9001, 

Quality system - model for quality assurance in design, development, production, 

installation and servicing. It applies to industries involved in the design and 

development, manufacturing, installation and servicing of products or services. 

The core of ISO 9001 lies in Chapter 4, which consists of 20 quality elements. 

Since ISO 9001 is a high level standard and created to be used by all kinds of 

industries, there is significant room for interpretation in using ISO 9001 in the 
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software industry. Therefore, ISO 9000-3, Guidelines for the application of ISO 

9001 to the development, supply and maintenance of software, is created in order 

to interpret ISO 9001. 

To comply with ISO 9001, first and foremost, the organisation must have a 

comprehensive quality policy. ISO 9001 requires a real quality policy that iden-

tifies specific goals and methods. The quality policy has to be clearly described 

throughout the organisation. Once this organisation-wide policy is in place, a 

well-planned and managed quality system must be defined and documented. ISO 

9000-3 characterises this quality system as an integrated process during the entire 

life cycle. This quality system based on ISO 9001 and 9000-3 provides an accurate 

description of the organisation and advice on the best practice adopted in order 

to consistently satisfy customer expectations. Figure 4.26 shows the architecture 

of the quality system. 

ISO 9001 / 9000-3 ---Quality Policy 

Quality System 

Quality Manual 

Documented 

Procedures 

Quality Planning 

I Documents 

I 	And 

L Records 

Figure 4.26: The Architecture of Software Quality Assurance 

The concrete details of a quality system will be contained in a quality manual. 

The quality manual is an essential part of the quality system. Such a manual 

will require documented procedures. A procedure is a detailed step-by-step set of 

instructions describing how a particular quality assurance activity is to be carried 
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out. The procedures must be consistent with the organisation's quality policy and 

well documented in the quality manual. 

Then, in accordance with the quality system, the quality plan must be estab-

lished by the SQA staff. Each project should have its own quality plan which 

addresses appropriate procedures and the specific quality factors that are im-

portant to the customer and the developer. These include scheduling activities, 

assigning equipment and resources to the process of performing these activities, 

and providing the appropriate training to SQA staff. Once a quality plan is in 

place, it acts as a formal contract between the customer and the developer and 

as an informal commitment between the development team and SQA staff. 

4.2.1.2 ISO 9001 and the CMM 

Paulk[Pau94] compared ISO 9001 and the CMM, and pointed out "The biggest 

difference between these two documents is the emphasis of the CMM on con-

tinuous process improvement. ISO 9001 addresses the minimum criteria for an 

acceptable quality system. It should also be noted that the CMM focuses strictly 

on software, while ISO 9001 has a much broader scope: hardware, software, pro-

cessed materials, and services." In spite of the difference, both documents are 

driven by similar concerns with quality and process management. There is still a 

strong correlation between the two documents. 

People will argue whether a level 2 or 3 organisation is considered compliant 

with 9001 or which level an ISO 9001-compliant organisation should be at. Paulk 

suggested that, given a reasonable implementation of the software process, an 

organisation that obtains and retains ISO 9001 certification should be close to 

level 2. However, he also described how even a level 3 organisation would need to 

ensure that the delivery and installation process described in clause 4.15 of ISO 

9001 is adequately addressed and should consider the use of an included software 

product, as described in clause 6.8 of ISO 9000-3. This would be comparatively 

trivial for a level 3 organisation[Pau94]. 

However, we believe that the Software Quality Assurance key process area 

provides a good opportunity to comply with ISO 9001. To deal with this key 

process area, the software organisation should use ISO 9001 as a standard to 

guide all activities performed in the key process area. As a result, when the 

organisation reaches level 2 of the CM1'vi, it should be benefited to prepare for an 

ISO 9001 audit. 
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4.2.1.3 Processes in Software Quality Assurance 

Figure 4.27 shows the P-state tree of Software Quality Assurance. This P-state 

consists of three operations: Draft SQA Plan, Control SQA Issue and Report 

SQA Result. 

Perform_Software_Quail ty_As surance 

Draft_SQA_Plan 

Control—SQA—Issue 

Review—Activity 

Review—Work—Product 

Report_SQA_Resul t 

Figure 4.27: The P-State Tree of Software Quality Assurance 

Main Roles: The main roles participating in the operations are senior man-

agers who contribute their experiences of SQA, and software quality assurance 

staff who will perform the activities of SQA. Although it is not necessary to as-

sign a different group to perform the SQA function, an independent SQA group 

is usually needed to ensure objectivity in the SQA reviews. 

Artifact List: The artifact list in the KPA is Software Quality Assurance which 

consists of three sub-artifacts: SQA Plan, SQA Issue and SQA Result. The 

artifacts in this KPA are shown in Figure 4.28. 

Information Artifacts: There are no information artifacts in Software Quality 

Assurance. 

Entrance Condition: st ate- of(Software_QualityAssurance) = Initiated 

The activities of Software Quality Assurance should be initiated in the be-

ginning of the software project. The SQA staff, as consultants, must participate 

in developing the project's defined software process and deriving the software 

development plan, and provide the consultation relying on the standards. 
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Software_Support_Process 

Software_Quality_Assurance 

SQA_Plan 

SQA_Issue 

SQA_Result 

Configuration—Management 

Figure 4.28: The Artifact Tree of Software Quality Assurance 

Activities: Three operations are presented in the P-state diagram of Software 

Quality Assurance as shown in Figure 4.29. 

The preliminary activity performed in the Software Quality Assurance key 

process area is drafting the SQA plan. The plan should comply with the organ-

isation's quality policy and quality manual, and document the process for SQA 

including procedures performed by the SQA staff, and resources and responsibility 

assigned. 

In the next step, the SQA staff may review designated software activities 

and software work products against the applicable requirements, process descrip-

tions, standards, and procedures. The software activities depend on the project's 

defined software process and the software development plan. The software work 

products can be reviewed at selected milestones to check whether the customer 

requirements are satisfied. 

The SQA staff then reports those deviations identified from reviewing software 

activities and software work products to the project manager and related software 

staff. The project manager and software staff must find a solution to resolve these 

deviations. Furthermore, the SQA staff should periodically review these identified 

deviations in order to validate them to comply with the standards. 

Exit Condition: state-of(Software_QualityAssurance) = Reported 

After completing the P-states, managers and the SQA staff must check whether 

the exit condition has been reached. This means that the identified deviations 
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Figure 4.29: The P-State Diagram of Software Quality Assurance 
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have been reported to related software staff who will take the steps to resolve 

these deviations. 

4.2.2 Software Configuration Management 

The purpose of Software Configuration Management (SCM) is to es-
tablish and maintain the integrity of the work products of the software 
project throughout the software life cycle[Pau97]. 

4.2.2.1 The Activities of Software Configuration Management 

Software configuration management is a set of activities that have been developed 

to manage change throughout the software life cycle. In accordance with IEEE 

Standard 828-1990, Software Configuration Management Plans, the activities of 

software configuration management consist of four functions[1EE90]: 

Identification: identify, name, and describe the documented physical and 

functional characteristics of the code, specifications, design, and data ele-

ments to be controlled for the project. 

Control: request, evaluate, approve or disapprove, and implement changes. 

Status accounting: record and report the status of project configuration 

items (initial approved version, status of requested changes, implementation 

status of approved changes). 

Audits and reviews: determine to what extent the actual configuration 

item reflects the required physical and functional characteristics. 

SCM should be performed by using a "configuration item". A configuration 

item is an entity designated for configuration management, which may consist 

of multiple related work products [Pau 97]. At the beginning of software develop-

ment, the developers should identify configuration items. Since SCM covers the 

entire software life cycle, configuration items could be any sort of work products. 

Pressman in his book suggested a list of configuration items as follows[Pre94]: 

System Specification 

Software Project Plan 

• Software Requirements Specification 

Executable or "paper" prototype 

4. Preliminary User Manual 
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5. Design Specification 

Data design description 

Architecture design description 

Module design descriptions 

Interface design descriptions 

Object descriptions 

Source code listing 

• Test Plan and Procedure 

Test cases and recorded results 

Operation and Installation Manuals 

Executable program 

Modules - executable code 

Linked modules 

10. Database description 

Schema and file structure 

Initial content 

As-Built User Manual 

Maintenance documents 

Software problem reports 

Maintenance requests 

Engineering change orders 

13. Standards and procedures for software engineering 

Another essential function is to manage change, including version control and 

change control. 

Version Control Version control manages different versions of configuration 

items created during the software life cycle by using automated tools. These 

tools can provide the facilities to reconstruct specific file states, objects and the 

entire application. 
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Change Control SCM adopts a baseline as a milestone for software develop-

ment. A baseline represents the assignment of an identifier to a configuration 

item and its associated entities. A baseline that is delivered to the customer is 

called a "release" [Pau97]. Before a configuration item becomes a baseline, change 

may be made informally. However, once a baseline is built, change control will be 

necessary and compulsory. Change control is a set of procedures for the control 

of change. Any change of configuration items must follow the procedures in order 

to unify the version of configuration items. 

4.2.2.2 Processes in Software Configuration Management 

Figure 4.30 shows the P-state tree of Software Configuration Management. This 

P-state consists of four operations: Draft CM Plan, Build CM Library System, 

Manage Configuration Item and Verify CM System. 

Perform—Configuration—Management 

Draft—CM—Plan 

Bui ld_CM_Library_Sys tern 

Manage_Configuration_I tern 

Identify_Configuration_Item 

Control—Configuration—Item 

Record—Configuration—Item 

Verify—CM—System 

Figure 4.30: The P-State Tree of Software Configuration Management 

Main Roles: The main roles participating in the operations are Configuration 

Management Staff who will perform activities of configuration management. 

Artifact List: The artifact list in the KPA is Configuration Management which 

consists of three sub-artifacts: CM Plan, CM Library System and Configuration 

Item. The artifacts in this KPA are shown in Figure 4.31. 
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Information Artifacts: There are no information artifacts in Software Con-

figuration Management. 

Software_Support_Process 

Configuration—Management 

CM—Plan 

CM_Library_System 

Configuration—Item 

Software_Quality_Assurance 

Figure 4.31: The Artifact Tree of Software Configuration Management 

Entrance Condition: state-of(Configuration_Management) = Initiated 

Since the activities of Software Configuration Management are covered throughout 

the software life cycle, the activities of Software Configuration Management should 

be initiated at the beginning of the software project. 

Activities: Four operations are presented in the P-state diagram of Software 

Configuration Management as shown in Figure 4.32. 

The preliminary activity performed in the Software Configuration Manage-

ment key process area is drafting the SCM plan. The plan should document the 

process for SCM including activities performed by the SCM staff, resources and 

responsibility assigned and SCM-related activities performed by other staff in the 

organisation. In the next step, a software configuration library system must be 

established. This library system provides for the storage as well as the record-

ing of changes of configuration items. Currently, commercial SCM tools provide 

facilities not only for the storage of configuration items but also for tracing rela-

tionships between versioned configuration items. The SCM staff can easily link 

those tools to the P-state of SCM to perform the activities. 
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The SCM staff then perform the activities prescribed in the SCM plan, identi-

fying configuration items, following the change control process to control changes 

of configuration items, and recording detailed information about configuration 

items. Finally, configuration audits should be appropriately performed. 

Exit Condition: state-of (Configuration iVlanagement) = Verified 

After verifying completeness and correctness of the configuration items, the 

exit condition has been reached. However, the activities should be performed until 

the software project is completely developed. All configuration items should be 

effectively managed throughout the software life cycle. 

4.3 Summary 

This chapter discussed how to plan and how to control a software project based 

on key process areas of the CMM Level 2. We use the incremental and iterative 

strategies for software development and suggest T-Iumphrey's Personal Software 

Process to plan the software project. The purpose of planning a software project 

is to organise work effort, to communicate how work will proceed toward meet-

ing projects goals, and to form a basis to track project's progress. In addition, 

the relationship with contractors, if any, is emphasised on software acquisition 

management. Two support processes, software quality assurance and software 

configuration management, are also described to control the project's quality and 

to treat version and change control for the software project. Once these activities 

have been completed, the processes for software projects should be institutional-

ised. The experiences of software development can be adopted and repeated. An 

effective process will gradually become a disciplined paradigm to improve software 

development for software organisations. 
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Chapter 5 

The Processes in the CMM Level 

The key process areas at Level 3 address both project and organisational issues, 

as the organisation establishes an infrastructure that institutionalises effective 

software engineering and management processes across all projects[Pau97]. Pro-

cesses established at Level 3 are used to help the software managers and technical 

staff perform more effectively. The organisation exploits effective software engin-

eering practices when standardising its software processes. Once the activities 

at Level 3 have been completed, an organisation-wide training program should 

ensure that the staff and managers have the knowledge and skills required to fulfil 

their assigned roles, the software engineering staff should effectively coordinate 

and collaborate with other development teams, defects of software work products 

should be removed early and efficiently, and project's risk should be under control. 

This chapter consists of two parts, software technical processes and organisational 

processes. The former focus on the life-cycle of software development, the lat-

ter will support development teams to effectively and efficiently develop software 

work products. 

5.1 The Software Technical Processes 

The purpose of Software Product Engineering is to consistently per-
form a well-defined engineering process that integrates all the technical 
activities of the software project to produce correct, consistent software 
work products effectively and efficientlylPa07j. 

Software engineering includes both management and technical activities. The 

SEI separates them into Level 2 and Level 3 of the CMM and focuses on manage-

ment processes before engineering processes. The fundamental reason is that in 
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the absence of management discipline, engineering process is sacrificed to schedule 

and cost pressures. 

There are some software life cycle models in place, such as the Waterfall 

Model, the Spiral Model and so on. It is better that the organisations select 

a software life cycle model as part of the organisation's standard software pro- 

cess. In his book[Boo96], Booch suggested an iterative and incremental process 

for the software development life cycle. An iterative process is one that involves 

the successive refinement of a system's architecture, from which we apply the 

experience and results of each major release to the next iteration of analysis 

and design. The process is incremental in the sense that each pass through an 

analysis/design/implementation cycle leads us to gradually refine our strategic 

and tactical decisions, extend our scope from an initially skeletal architecture, 

and ultimately leads to the final, deliverable software product. In the mean-

time, DSDM[DSD97] also adopts iterative and incremental process as its life 

cycle model. 

Yet what is the destination for software development? Every iteration and 

increment means that the product is refined again and again. Yourdon[You96] 

recommended that functionality, quality and schedule are the three most import-

ant elements of software development. He promoted a "good enough software" 

idea, meaning that an iterative and incremental process is the trade-off between 

functionality, defects and speed of delivery. These is no doubt that some soft- 

ware systems, such as nuclear reactor systems, will focus on zero-defect software. 

However, for most of the shrink-wrap software, time-to-market would be an essen-

tial point. In the corporate MIS application software industry, the schedule is also 

a pressure for the project manager. Booch's macro development process answers 

this problem. In the object-oriented process, we start with what we know, devise 

a skeletal object-oriented architecture, study the problem some more, improve 

upon our architecture, and so on, until we expand to a solution that satisfies 

our project's essential minimal characteristics. So, a deadline-based iterative and 

incremental process would be a practical one for software development. Booch's 

macro process is explicitly iterative and incremental and very close to the spiral 

model. The project manager improves the software product by the deadline and 

decides the final iteration and increment for releasing the products on time. 

As Figure 5.1 shows, Booch's macro process is from conceptualisation to main-

tenance. This is quite similar to the traditional waterfall approach; however 

Booch insisted that the macro process is explicitly iterative and incremental, and 

it is closer to Boehm's spiral model. 
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Figure 5.1: The Macro Development Process 

In this thesis, we use MIL-STD-498 to comply with the CMIVI as the software 

engineering processes. MIL-STD-498 adopts the concept of "build" which is a 

version of software that meets a specified subset of the requirements that the 

completed software will meet, and the period of time during which such a ver-

sion is developed. This concept is similar to Booch's macro process. Each build 

incorporates a specified subset of the planned capabilities of the software. The 

builds might be prototypes, versions offering partial functionality, or other partial 

or complete versions of the software[D0D94]. In addition to "build", MIL-STD-

498 also suggests three basic program strategies: Grand Design, Incremental and 

Evolutionary strategies. The grand design strategy is similar to the waterfall life 

cycle, but will not be discussed in this thesis. The primary difference between 

incremental and evolutionary strategies is whether all requirements are defined 

first. The incremental strategy first defines the system requirements, then per-

forms the rest of the development in a sequence of builds, whereas the evolutionary 

strategy does not define all requirements first, and the system requirements are 

partially defined, then refined in each succeeding build. Both strategies have their 

own advantages. As mentioned in Section 1.2.3, because of the "time-to-market" 

pressure for Microsoft's products, Microsoft adopts a "synch-and-stabilise" ap-

proach which is similar to the evolutionary strategy. Furthermore, if the software 

project must define its requirements for the acquirer before the project is started, 

the incremental strategy may be a good choice. 

Figure 5.2 shows the software engineering process in MIL-STD-498. This is 

split into three phases: Planning, Development and Deployment. Those activities 
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correspond to Section 5 Detailed Requirements in MIL-STD-498. 

MIL-STD-498 	 Phases 

Section 5 

5.9 
5.10 
5.11 

5.12 
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Work Breakdown Structure 
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- - - 
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-1 -H - - 
a a a - CQ 

- 

a - a a - a a - 

5.1 
5.2 

5.3 
5.4 

5.5 
Requirements 

Analysis 

5.6 
Software 

Design 

5.7 
Software 

Implernentatio 

5.8 
Unit Testing 

Integration 
Test 

Integration 
Test 

Integration 
Test 

Figure 5.2: The Software Engineering Process in MIL-STD-498 

Planning Phase 

The first step of the planning phase is building the software development plan 

which we have mentioned in the management processes, and establishing a soft-

ware development environment. 

The next step is to define and record the requirements for the system. The 

system requirements consist of the allocated requirements and the system re- 

126 



quirements allocated to hardware. Those activities, mentioned in Section 4.1.1 

Requirements Management, will comply with the SDP as a foundation of per-

forming the technical processes. 

Development Phase 

The development phase is the core of the software life cycle and is described 

as the technical processes in the CMM. Before developers perform the technical 

processes, the CSCIs must be defined in order to parallel development. MIL-

STD-498 also adopts the "build" concept which splits the development phase 

into several builds. Each build consists of four steps, from requirement analysis 

to unit testing. At the end of unit testing, all CSCIs should do integration 

testing. The results produced during each build may be given to the customers 

or the development team for evaluation. This is the time to make decisions to 

either go forward or end the development. 

Deployment Phase 

The first step of the deployment phase is a system qualification test which is 

performed to demonstrate to the acquirer that the system requirements have 

been met. The next step is to prepare for software use, which includes writing 

the software manuals and preparing for software transition. 

Processes in the Software Technical Process 

Figure 5.3 shows the P-state tree of the Software Technical Processes. This P-

state consists of six operations: Develop Software Requirement, Develop Software 

Design, Develop Software Code, Develop Software Test, Develop Operation Doc-

umentation and Perform Software Enhancement. These operations compose of a 

complete software life cycle and guide to develop software products. 

Main Roles: The whole Development Group should be involved to develop 

software technical processes. Furthermore, the configuration management staff 

and quality assurance staff should take responsibility for supporting development 

of the software technical processes. 

Artifact List: The artifact list in the KPA is Software Technical Process which 

consists of six sub-artifacts: Software Requirement, Software Design, Software 

Code, Software Test, Operation Documentation and Software Enhancement. The 

artifacts in this KPA are shown in Figure 5.4. 
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Develop—Software—Technical—Process 

Develop_Software_Requirement 

Develop—Software—Design 

Develop—Software—Code 

Develop—Software—Test 

Develop_Operation_Documentation 

Perform—Software—Enhancement 

Figure 5.3: The P-State Tree of the Software Technical Process 

Information Artifacts: The artifact, Allocated Requirement, as an informa-

tion artifact provides information for developing the software technical process. 

Entrance Condition: st ate-of (Software -Technical _Process) = Referenced 

Once the need to develop a Software Technical Process has been identified, 

the process roles start to perform all activities in the technical processes. 

Activities: Six operations are presented in the P-state diagram of Software 

Technical Process as shown in Figure 5.5. The project manager conducts activ-

ities of software engineering by following the program strategy. Moreover, the 

development group performs the software technical process according to the soft-

ware development plan. In the meantime, the operation documents should also 

be developed. Finally, for both incremental and evolutionary strategies, the soft-

ware products may need to be updated or refined. This decision will be made by 

the project manager. 

Exit Condition: state-of(Software-Technical -Process)  Developed 

After completing the P-states, managers must check whether the exit condi-

tion has been reached. This means that the software work products are completely 

developed and are satisfactory to customers. 
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Figure 5.4: The Artifact Tree of the Software Technical Process 
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5.1.1 The Unified Modelling Language 

In the Software Product Engineering key process area, the activities performed 

describe that should "use effective methods to design the software". However, the 

problem is what are the effective methods? The software community has debated 

about the methodology for a long time. We usually have so many "effective" 

methods to develop our software products. Especially as object orientation has 

become the mainstream of software development, the 00 methods overlap the 

00 concept, but are not identical. This leads to a big problem - communication. 

It is difficult to communicate with people when they use different 00 methods. 

Now, the debate seems to have ended. The Unified Modelling Language 

(UML), which unifies the methods of Grady Booch, James Rumbaugh and Ivar 

Jacobson, provides a set of notations for software analysis and design and has 

been endorsed by the Object Management Group. We might predict the other 

methods will finally be eliminated in the next few years. However, is it really good 

for the software community? Basically, most of us will agree so. In this thesis, 

SPI PASTA would be built by using 00 methodology. Especially we adopt the 

UML as the notation for software analysis and design. 

A fundamental change in the UML is that it is a standard modelling lan-

guage rather than a method. The developers of the UML focus on a com-

mon metamodel and a common notation, not on the development process. The 

primary idea behind the UML is to provide sufficient semantics and notation to 

address a wide variety of contemporary modelling issues in a direct and economical 

fashion[BJR97]. With the standard diagrams, a foundation for communication 

between individuals is built. It results in better interoperability between tools, 

more available developers who are skilled in using that notation, and lower overall 

training costs. 

The UML basically defines a notation and its semantics. The notation is 

the syntax of the UML. It is a representation of a user-level model. Users use 

the notation to present all artifacts of a software system and communicate with 

other users. The UML also defines a metamodel to provide a single, common and 

definitive statement of the syntax and semantics of the elements of the UML. 

In terms of the views of a model, the UML defines the following graphical 

diagrams: 

. use case diagram 

. class diagram 

. behaviour diagrams: 
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- statechart diagram 

- activity diagram 

- sequence diagram 

- collaboration diagram 

implementation diagram 

- component diagram 

- deployment diagram 

In the next two sections, we will briefly introduce these diagrams which are 

viewed as a basis in the technical process. 

5.1.2 Requirements Analysis 

The software requirements cover the software functionality and per-
formance requirements and the interfaces to hardware, other software 
components, and other system comnponents[Pau97]. 

5.1.2.1 The Use Case Model and Use Case Diagram 

In software management processes, the allocated requirements are elaborated 

from customer requirements to plan the project's activities and work products. 

In software technical processes, the software requirements are derived by analys-

ing the allocated requirements. For a long time, particularly in object oriented 

methods, use cases have been used to help developers understand requirements. 

Jacobson[JGJ97] in his book pointed out that the main purposes of the use case 

model are to define "what" the system should do, and to allow the software en-

gineers and the customer to agree on this. A use case is used to define specific 

requirements for the behaviour of the system and to drive the rest of the develop-

ment work where the object modelling activities are performed with the use case 

model as a starting point. 

Jacobson[JEJ95] in his book defined use cases as follows: 

A use case is a sequence of transactions in a system whose task is to 
yield a result of measurable value to an individual actor of the system. 

The use case model is composed of actors and use cases. In the UML, the use 

case model can be presented in the use case diagram. As shown in Figure 5.6, 

a use case diagram is a graph of actors, a set of use cases, and communication 

associations between the actors and the use cases. 
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Figure 5.6: The Use Case Diagram[BJR97] 

Actors, shown as stick figures in the use case diagram, represent everything 

that needs to exchange information with the system [JCJO92]. Alternatively, in 

his later book, Jacobson[JEJ95] described that an actor represents a role that 

someone or something in the environment can play in relation to the business. 

The actor can have various roles with regard to a use case; it might be a person, 

an organisation, or even an external system. 

A use case, shown as a named oval in the use case diagram, is a coherent 

unit of functionality provided by a system or class as manifested by sequences 

of messages exchanged among the system and one or more outside interactors 

(called actors) together with actions performed by the system[BJR97]. Basically, 

the "sequence of messages" are described by using plain or structured English 

and viewed as a "scenario" to implement the application. 

5.1.2.2 Use Cases for Requirements Capture 

The use case model is good at capturing the requirements for a software project. 

Developers usually capture a use case by talking to typical users and discuss-

ing the various things they might want to do with the system . However, faced 

with a big system, it can often be difficult to come up with a list of use cases. 

Software analysts start with the allocated requirements after completing manage- 
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Entry # 	System Specification Text 	Type Build Use Case Name 
1 	System Specification Text 	SW 	BI 	Usecasel 
2 	System Specification Text 	HW 	B2 	Usecase2 

SW: Software, 11W: Hardware 

Table 5.1: The Requirements Trace Matrix 

ment processes. Unfortunately, allocated requirements usually contain a variety 

of information that is not suitable for describing the use cases. 

Texel and Williams[TW97] use a Requirements Trace Matrix (RTM) to ex-

tract the allocated requirements. An RTM, shown in Table 5.1, is a matrix that 

initially contains the set of requirements for a system. Firstly, Texel and Willi-

ams suggest extracting the "shall" sentences from the allocated requirements and 

developing an initial RTM. However, this is not the only rule for developing the 

RTM. Requirements can be discovered through discussions with domain experts. 

When an initial RTM has been developed, software analysts should categorise 

each entry in the RTM according its type. Then, the requirements are prioritised 

in order to allocate the use case for the "build". Finally, the RTM is reformatted 

into use case diagrams and continually maintained throughout the life cycle of a 

project. 

The RTM provides a clear vision for developing use cases. The software ana-

lysts may perform software design by using use cases. However, analysts need 

more experience to find classes from use cases. For most software engineers, CRC 

cards may be a good solution to develop software design. 

CRC (Class, Responsibility and Collaborators) cards were invented by Ward 

Cunningham and Kent Beck[CB89] as a way to help a group of people agree 

on objects that represent the problem. A class represents a collection of similar 

objects. A responsibility describes what the object does in the system. Sometimes 

a class will not have enough information to complete its responsibility, therefore a 

collaboration is needed to comply with other classes that are involved in carrying 

out the responsibilities. 

For a long time, software analysts have been struggling to find appropriate 

classes for an application. CRC cards provide a simple but effective technique 

for extracting the allocated requirements in order to find classes. As Figure 5.7 

shows, Ambler[Amb95] suggested that the definition of use cases and prototypes 

come before a CRC model, which in turn comes before a class diagram. In 

Ambler's process, the CRC cards are viewed as a bridge between use cases and 
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class diagrams. In addition to finding classes, the CRC cards are often used to 

validate the information gathered by use cases and refine these use cases. 

Use Cases 

CRC Model 	
Class 

 
Diagram 

Prototypes 

Figure 5.7: How CRC Modelling Fits In[Amb95] 

To comply with the Software Product Engineering key process area, a com-

plete process of requirements engineering should be similar to those in Figure 5.8. 

Before using CRC cards, we suggest that allocated requirements may be extracted 

and grouped into use cases by using the RTM. Then, as in Ambler's process, the 

CRC card team uses CRC cards to find classes. However, this is not the "water-

fall process" in the RTM, use cases and CRC cards. CRC cards might refine use 

cases which in turn might redevelop the RTM or even the allocated requirements. 

----I Allocated 	I 	I Requirements 	
I Use Cases 	 CRC Model 
	 Class 

Requirements 	Trace Matrix 	 Diagram 

Figure 5.8: The Process of Requirements Engineering 

5.1.2.3 Processes in Requirements Analysis 

Figure 5.9 shows the P-state tree of Requirements Analysis. This P-state consists 

of three operations: Create Requirement Trace Matrix, Create Use Case Diagram 

and Create CRC Card. 

Main Roles: The main roles participating in the operations are the project 

manager and software product managers who conduct the activities, requirement 

analysts who perform the activities and the configuration management staff who 

manage the configuration items. 

Artifact List: The artifact list in this part is Software Requirement which 

consists of three sub-artifacts: Requirement Trace Matrix, Use Case Diagram and 

CRC Card. The artifacts in the software requirement are shown in Figure 5.10. 

135 



Develop_So [ tware_Requi rement 

Create—Requirement—Trace—Matrix 

Create—Use—Case—Diagram 

Create—CRC—Card 

Figure 5.9: The P-State Tree of Requirements Analysis 

Information Artifacts: The artifact, Allocated Requirement, as an informa-

tion artifact provides the requirements for software analysis. Software analysts 

will analyse these requirements into software requirements. 

Entrance Condition: state-of(Software_Management_Process) = Developed 

After completing software management processes, the managers and staff can 

develop software technical processes. The development group perform the activ-

ities according to the software development plan which is developed in software 

management processes. 

Activities: Three operations are presented in the P-state diagram of Software 

Requirement as shown in Figure 5.11. Software analysts can firstly analyse the 

allocated requirements by using the requirement trace matrix. Analysts list the 

appropriate sentences and categorise them as a foundation for the use cases. 

When the requirement trace matrices are created, analysts can build the use case 

diagrams by using CASE tools. Before developing software design, the managers, 

analysts and designers may use the CRC cards to discover classes. CRC cards 

are the bridge between requirement analysis and software design. Analysts and 

designers might take the round-trip between use case diagrams and CRC cards 

until use cases are appropriately refined and classes are completely discovered. 

Exit Condition: st ate-of (SoftwareRequirement) = Developed 

After completing the P-states, managers must check whether the exit condi-

tion has been reached. This means that the software requirements are appropri-

ately analysed. 
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Figure 5.10: The Artifact Tree of Requirements Analysis 
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5.1.3 The Software Design 

The software design consists of the software architecture and the de-
tailed software design (and there may be multiple levels of detailed 
design). It covers the software components; the internal interfaces 
between software components; and the software interfaces to other 
software systems, to hardware, and to other system components (for 
example, people). The software design is derived from the software 
requirements and forms the framework for coding./Pau97J 

5.1.3.1 The Visual Modelling Language 

The UML is a language for visualising, specifying, constructing and documenting 

the artifacts of a software system. It provides multiple perspectives of the software 

system under analysis and development. By using its diagrams, a software system 

can be completely and consistently presented. 

Class Diagrams 

Class diagrams, as shown in Figure 5.12, play a very important role in the UML. 

They are the bridge between software requirements and software implementation. 

The UML defines a very rich set of class diagram features, most of which are 

intended to support analysis, design and implementation 

Software analysts use CRC cards to find classes, their responsibilities and 

collaborations from use cases. This information, collected in the class diagrams, 

is the basis for software coding to implement the application. In the UML, a class 

diagram is shown as a rectangle including a class name which is documented with 

its properties, attributes which are documented by a description of what they 

contain, and operations which are services that an instance of the class may 

be requested to perform. Additionally, some relationships between classes are 

defined in order to capture the coupling in software design. The main one is an 

association which is drawn as a solid path connecting two classes. Composition 

shows ownership between two classes, which is drawn as a solid filled diamond. 

Generalisation is the taxonomic relationship between a more general element and 

a more specific element, which is drawn as a solid-line path from the more specific 

element to the more general element with a hollow triangle at the end of the path. 

Interaction Diagrams 

In the UML, class diagrams show the static structure of the system, moreover, in-

teraction diagrams capture the dynamic behaviour of the system. An interaction 
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Figure 5.12: The Class Diagram 

diagram presents the interactions between objects. With regard to a complex sys-

tem, interaction diagrams provide a logic view for the system. This results in an 

integrated solution. However, interaction diagrams are less important than class 

diagram. In a simple system it might not be necessary to create these diagrams. 

The UML defines two kinds of interaction diagrams: sequence diagrams and 

collaboration diagrams. Developers do not need to create both diagrams in the 

same system. Sequence diagrams show the explicit sequence of messages and 

are better for real-time specifications and for complex scenarios. Collaboration 

diagrams show the relations among objects and are better for understanding all 

of the effects on a given object and for procedural design[BJR97]. 

Sequence Diagrams Sequence diagrams, as shown in Figure 5.13, show the 

details of the interactions between objects. Originally, Jacobson defined the se-

quence diagram for showing how the participating objects realize the use case 

through their interaction [JCJO92]. Sequence diagrams provide a complete logic 

presentation for the use case scenario. The developers can get a picture of how 

sequence progresses over the objects participating in the system. 

Within a sequence diagram, objects are represented on the horizontal dimen-

sion with a vertical line which is called the object's "lifeline". The object can be 

created or destroyed during the period of time shown on the diagram. The lifeline 

represents the existence of the object at this period. The behaviour which the 

objects will perform is described on the leftside of the diagram. Furthermore, a 

message, being a communication between objects, is shown as an arrow between 
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the lifelines of two objects. The order of these messages is normally shown top to 

bottom with sequence numbers on the diagram. Each message also has its own 

name. 

Comer 	
Cashier ti 	 Withdrawal 	Accont 

Customer identify 	
2. Venfy identity 

himself 

Customer specifies 	 4: Withdraw 
money 

account and amount 
to withdraw 

6: Dispense 

System withdraws 

money from account 

Figure 5.13: The Sequence Diagram[JGJ97] 

Collaboration Diagrams Collaboration diagrams, as shown in Figure 5.14, 

show the relationships among the objects rather than the time frame within 

the use case. This is why collaboration diagrams are not suitable for real-time 

or concurrent systems. However, the difference between collaboration diagrams 

and sequence diagrams might be only the layout of the objects and messages. 

Although Jacobson originally did not define the collaboration diagram for the 

use case, collaboration diagrams provide a supplement for the class diagrams. 

Developers can use collaboration diagrams to get the big picture of the system, 

incorporating the message flow of use case scenarios. 

A collaboration diagram is a graph of references to objects and links with 

message flows attached to its links. The rectangles represent the various objects 

within the system and the line linking objects represents the relationship between 

them. This layout makes it more difficult to see the sequence between objects, 

however, it shows how the objects are linked together and provides a clear picture 

to show the relationships among the objects. 
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Figure 5.14: The Collaboration Diagram 

Statechart Diagrams 

Interaction diagrams show the interactions among the objects; however, the in-

ternal behaviour of an object needs another diagram to complement this. A 

statechart diagram, as shown in Figure 5.15, is the graph of states and trans-

itions that describes the response of an object of a given class to the receipt of 

outside stimuli. 

A state, shown as a rectangle with rounded corners, is a condition during the 

life of an object. A transition, shown as a solid arrow from one state to another 

state, is a relationship between two states. The relationship represents the action 

which should be done before entering the second state. Transactions might have 

multi target states especially in concurrent systems. However, it is not necessary 

to have a statechart diagram for each class diagram. Sometimes a statechart 

diagram might be useless; it depends on the complexity of the class. 

Activity Diagrams 

Since interaction diagrams present the behaviour of several objects within a single 

use case, developers cannot recognise a precise definition of the objects' beha-

viour. Fowler[Fow97] in his book suggested that if developers want to look at 

the behaviour of a single object across many use cases, they should use a state 

diagram, and if developers want to look at behaviour across many use cases or 
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Figure 5.15: The Statechart Diagram[BJR97] 

many threads, they should consider an activity diagram. 

An activity diagram, as shown in Figure 5.16, is a special case of a state 

diagram. The purpose of this diagram is to focus on flows driven by internal 

processing. Basically, it consists of action states and transitions triggered by 

completion of the actions in the source states. Action states do not have internal 

transitions or outgoing transitions based on explicit events, since statechart dia-

grams present these transitions. 

Implementation Diagrams 

Implementation diagrams present how the system is implemented. The UML 

defines two forms for implementation diagrams. The component diagram shows 

the structure of the code itself and the deployment diagram shows the structure 

of the run-time system. 

Component Diagrams A component diagram shows the dependencies among 

software components. Currently, component-based software development, in which 

software items can be assembled as hardware, is increasingly presented in the soft-

ware community. With the standards (such as CORBA) published and matured, 

the component-based software development will be one of the most important re-

search fields in software engineering. Component diagrams are just used to show 

the software components. 
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Figure 5.16: The Activity Diagram[BJR97] 

Deployment Diagrams A deployment diagram is a graph of nodes connected 

by communication associations. The node is a run-time physical object which 

represents a processing resource. The node may contain component instances 

which live or run on the node. 

5.1.3.2 Processes in the Software Design 

Figure 5.17 shows the P-state tree of Software Design. This P-state consists of five 

operations: Create Class Diagram, Create Statechart Diagram, Create Interaction 

Diagram, Create Activity Diagram and Create Implementation Diagram. 

Main Roles: The main roles participating in the operations are software product 

managers who conduct the activities, software designers who perform the activ-

ities, requirement analysts who provide the requirement details to software de-

signers and the configuration management staff who manages the configuration 

items. 

Artifact List: The artifact list in this part is Software Design consists of five 

sub-artifacts: Class Diagram, Statechart Diagram, Interaction Diagram, Activity 
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Figure 5.17: The P-State Tree of the Software Design 
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Diagram and Implementation Diagram. The artifacts in the software requirement 

are shown in Figure 5.18. 

Information Artifacts: The artifact, Software Requirement, as an information 

artifact provides the details for software design. This could be use case diagrams 

or CRC cards. Software designers create the diagrams according to use case 

diagram and CRC cards. 

Entrance Condition: state-of (Software Requirement) = Developed 

After creating use case diagrams and CRC cards, the software designers can 

develop the software design. 

Activities: Five operations are presented in the P-state diagram of Software 

Design as shown in Figure 5.19. Use case diagrams and CRC cards, created in 

software requirement analysis, provide the details of classes for software designers. 

Therefore, class diagrams should be created first. Furthermore, statechart dia-

grams present the behaviour of an object of a given class. Normally, a statechart 

diagram is attached to a class. 

The other diagrams can be independently created. For example, software 

designers may decide what kind of interaction diagrams will be used, sequence 

diagrams or collaboration diagrams. This decision relies on the characteristic of 

the software project. If designers want to look at behaviour across many use 

cases, they may create activity diagrams. If the project is split into components, 

designers may need component diagrams. Furthermore, if the project will be run 

in different types of machines, deployment diagrams should be created during the 

software design. 

Exit Condition: st ate-of (Software Design) = Developed 

After completing the P-states, product managers must check whether the 

exit condition has been reached. This means that the relevant diagrams are 

appropriately created. 

5.1.4 Software Implementation 

When the software design is completed, a detailed design representation of soft-

ware should be translated into a programming language realisation. Since soft-

ware implementation begins after the software design has been defined, the source 

code should be directly generated from the software design. 
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For the last two decades, the software community has been faced with main-

taining aging software systems that are constructed to run on a variety of hard-

ware types and programmed in obsolete languages. Particularly, those systems 

were developed with poor design, unstructured programming methods, poor code 

quality and poor documentation. As a result, the task of software maintenance 

becomes more complex and more expensive. Furthermore, every aspect of com-

puting changes rapidly so that software maintenance is increasingly essential for 

the software organisations. Therefore, for the sake of maintenance, software im-

plementation is not only coding. The research of reverse engineering provides a 

foundation for software implementation. If it is necessary for identifying software 

artifacts, discovering their relationships and generating abstractions in the future, 

why software organisations do not firstly focus on these topics? 

Currently, some software organisation define their own coding standards to fa-

cilitate the maintenance, portability, and reuse of programming language. These 

standards are based on proven software engineering principles that lead to code 

that is easy to understand, maintain and enhance. Furthermore, following a 

common set of coding standards results in greater consistency, making the devel-

opment team significantly more productive. 

In addition, CASE tools are concentrating on code generation. Case tools usu-

ally generate source code from a software design model. They produce a code ar-

chitecture by using properties such as the class model's attributes, operations and 

so on. As a result, the code architecture complying with the organisation's cod-

ing standard can lead to software implementation which is much more controlled 

and productive. Moreover, as project parameters change or new requirements are 

added, reverse engineering tools can extract data and design information from an 

existing program. This can reduce a significant maintenance effort. 

5.1.4.1 Processes in Software Implementation 

Figure 5.20 shows the P-state tree of Software Implementation. This P-state 

consists of two operations: Generate Body Structure and Implement Source Code. 

Main Roles: The main roles participating in the operations are software pro-

grammers who perform the activities and configuration management staff who 

manage the configuration items. 

Artifact List: The artifact list in this part is Software Code which consists of 

two sub-artifacts: Body Structure Code and Source Code. The artifacts in the 
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Develop—Software—Code 

Generate—Body—Structure—Code 

Implement—Source—Code 

Figure 5.20: The P-State Tree of Software Implementation 

software implementation are shown in Figure 5.21. 

Information Artifacts: The artifact, Software Design, as an information ar-

tifact provides the details for programming source codes. Software programmers 

will rely on them to perform the activities. 

Entrance Condition: state-of(Software_Design) = Developed 

After completing software design, the programmers can develop source codes. In 

this thesis, programmers will use class diagrams and related UML diagrams as a 

foundation to develop source codes. 

Activities: Two operations are presented in the P-state diagram of Software 

Implementation as shown in Figure 5.22. Software programmers can firstly gener-

ate the body structure code of class diagrams by using CASE tools or depending 

on the coding standards. As the basic structures are built, programmers may 

develop source codes for each class according to statechart diagrams, behaviour 

diagrams and implementation diagrams. This step will not complete until all 

source codes are developed. 

Exit Condition: state-of(Software_Code) = Developed 

After completing the P-states, programmers must check whether the exit con-

dition has been reached. This means that the software codes are completely 

developed. 

5.1.5 Software Testing 

MIL-STD-498 separates software testing into three phases: unit testing, integra-

tion testing and system testing. 
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Figure 5.21: The Artifact Tree of Software Implementation 

151 



File Edit View Go communicator 	 Help 

BacK Forward Reload Home Search Guide 	Print Security Stop 

j Bookmarks A Location: 

DcvaiopSoftware Code NJIDevelop_Software_C ode 

-Perform So!

Enha.nc 

Generate Body Structure Code 
--Perform In e................. . 	. - 	 . . . 
- -Perform 
--Perform_Ae

oftwe Desi [DeVeloped] 	.I[0 	ted]Body_tructureCode 
DevelopOper 	. 	..
Perform Soft o 	 . . 	 . 	. 	. 

Develon Oranisationa1 

Perfonn_ Organisation _Trai 	I 	. 	.. 
• o ..  . 	

Implement Class Method 	. 	. .. . . . 
-Draft Tra ing. Plan 	 ...... . 	 . 	. . . S 	 . 	. 	 •. 	. 	. 	. . 	. 	. . 	. 	. 

-Identify Training Need 	. 	. .. . . . 	. . . . . 	. 	.. 	. 	. . 	. 	. 	. 
--Ic1entOrcrtsonaf 	

Body .SttDctur :.Code[Geflerated]J [. [Inipleented]SoyrceCode - -DetermrnePro,ectNer 	 . 
P1r1 To Mti,l 	 . 

cW \1 II 

Figure 5.22: The P-State Diagram of Software Implementation 

Unit testing is normally considered an adjunct to the software implementation. 

In 00 methods, unit testing concerns classes, which implies that unit testing in 

00 systems must be carried out at a higher level. Before performing unit testing, 

the developers should establish test cases, test procedures and test data for testing 

the software corresponding to each software unit. When software implementation 

is completed in each build, developers begin to perform unit testing in accordance 

with the unit test case and procedure. 

The purpose of integration testing is to test whether different units that have 

been developed are working together properly. As we mentioned in Section 4.1.2, 

the software project is split into several partitions in order to be concurrently 

developed. Integration testing is normally performed at the end of software im-

plementation. It may include the testing of use cases, subsystems and the entire 

system. Once all partitions of the software project have been completed and 

unit testing for each partition has also been performed, developers should take 

integration test procedures. Moreover, an organisation could use "incremental" 

or "evolutionary" development strategy. In incremental strategy, developers per-

form the software project in a sequence of builds. Therefore, integration testing 

will not be complete until the final build. However, in evolutionary strategy, the 

customer requirements are partially defined up front, then are refined in each 
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succeeding build. Thus, integration testing could be performed in each build, 

since the project could be completed in every build. Furthermore, both software 

components developed internal to the software project and software components 

obtained externally to the software project must be appropriately integrated. 

System testing is a series of different tests whose primary purpose is to fully 

exercise the computer-based system. Pressman[Pre94] in his book suggested the 

types of system tests as follows: 

Recovery Testing Recovery testing is a system test that forces the software 

to fail in a verity of ways and verifies that recovery is properly performed. 

Security Testing Security testing attempts to verify that protection mechan-

isms built into system will protect it from improper penetration. 

Stress Testing Stress testing executes a system in a manner that demands 

resources in abnormal quantity, frequency, or volume. 

Performance Testing Performance testing is designed to test the run-time 

performance of software within the context of an integrated system. 

Furthermore, MIL-STD-498 defines three step for system testing: CSCI qual-

ification testing, CSCl/HWCI integration and testing, and system qualification 

testing. Since we are focusing on software development, CSCl/FIWCI integration 

and testing is beyond the topic of this thesis. Therefore, CSCI qualification test-

ing and system qualification testing could be combined together to demonstrate 

to the customer that customers' requirements have been met. The system test-

ing in the CMM concentrates on validating the software satisfies the allocated 

requirements. 

Finally, acceptance testing is performed to demonstrate to the customer that 

the software system satisfies the customer requirements for the software project. 

5.1.5.1 Processes in Software Testing 

Figure 5.23 shows the P-state tree of Software Testing. This P-state consists 

of two operations: Draft Test Plan and Perform Software Test which contains 

three activities: Perform Integration Test, Perform System Test and Perform 

Acceptance Test. 

Main Roles: The main roles participating in the operations are the project 

manager and software product managers who conduct the activities, the testing 
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Develop—Software—Test 

Draft—Test—Plan 

Perform—Software—Test 

Perform—Integration—Test 

Perform_System_Test 

Perform—Acceptance—Test 

Figure 5.23: The P-State Tree of Software Testing 

staff who perform the activities, the configuration management staff who manage 

the configuration items, and customers who are involved in testing activities to 

provide their opinions. 

Artifact List: The artifact list in this part is Software Test which consists of 

four sub-artifacts: Test Plan, Integration Test, System Test and Acceptance Test. 

The artifacts in the software Testing are shown in Figure 5.24. 

Information Artifacts: The artifact, System Requirement, as an informa-

tion artifact that provides the details for software testing. This is because sys-

tem requirements are abstracted from customer requirements, and software work 

products must be tested to satisfy the customer's need. 

Entrance Condition: state-of(Test_Plan) = Referenced or state-of (Software-Code) are_Code) 

Developed 

When the need to draft the software test plan has been identified, the testing 

staff should take the responsibility to develop the test plan. Furthermore, after 

developing software codes, the testing staff will perform software tests according 

to the test plan. 
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Figure 5.24: The Artifact Tree of Software Testing 
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Activities: Two operations are presented in the P-state diagram of Software 

Testing as shown in Figure 5.25. Firstly the testing staff should draft the software 

test plan. This plan might be drafted as part of the software development plan. 

In the meantime, the software codes should be developed when the testing staff 

perform the activities of software test. The testing activities contain integration 

test, system test and acceptance test. The testing staff must test the software 

work products step by step. Finally the software system will be demonstrated to 

the customers to ensure that the system satisfies the customer requirements. 
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Figure 5.25: The P-State Diagram of Software Testing 

Exit Condition: state-of(SoftwareTest) = Developed 

After completing the P-states, process roles must check whether the exit condi-

tion has been reached. This means that the software work products are completely 

tested and satisfy the customer's need. 

5.2 The Organisational Process 

The Organisational Process consists of four artifacts: Organisation Training Pro-

gram, Risk Management, Project Interface Coordination and Peer Reviews. All 

artifacts except risk management are the KPAs of the CMM level 3. Risk man-

agement is described in Activities 6 and 7 of the Integrated Software Management 
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key process area. The reason we put risk management in the organisational pro-

cess is that organisations need special efforts to manage software project risks. 

Moreover, the primary purpose of the Integrated Software Management key pro-

cess area is to tailor the project's defined software process. It is better to make a 

clear vision for developers. 

At level 3, improvement efforts are coordinated and focused at the organisa-

tional level. These artifacts will provide the necessary activities to direct the 

software technical process. 

Processes in the Organisational Process 

Figure 5.26 shows the P-state tree of the Organisational Process. This P-state 

consists of four operations: Perform Organisation Training Program, Perform 

Risk Management, Perform Project Interface Coordination and Perform Peer 

Reviews. 

I Develop_Organisational_Process 

Perform—Organisation—Training—Program 

I Perform_Risk_Management 

Perform_Proj ect_Interface_Coord.ination 

Perform—Peer—Review 

Figure 5.26: The P-State Tree of the Organisational Process 

Main Roles: The main roles participating in the operations are project man-

agers, software product managers, training staff and reviewers who will derive the 

organisational process. 

Artifact List: The artifact list in this part is Organisational Process which 

consists of four sub-artifacts: Organisation Training Program, Risk Management, 

Project Interface Coordination and Peer Reviews. The artifacts in the organisa-

tional process are shown in Figure 5.27. 

Information Artifacts: Users developing the organisational process should 

rely on the project's defined software process. 
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Figure 5.27: The Artifact Tree of the Organisational Process 
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Entrance Condition: state-of(OrganisationaLProcess) = Referenced 

After developing the software management process, the basic project management 

practices have been established. Complying with the technical process, the need 

to develop the organisational process should be identified. 

Activities: Four operations are presented in the P-state diagram of the Or-

ganisational Process as shown in Figure 5.28. There are no relationships between 

these operations, therefore these operations can be independently performed. The 

project's defined software process defines the processes for performing these op-

erations. All activities should be performed when the project's defined software 

process has been developed and throughout the whole development life cycle. 

Exit Condition: state-of(OrganisationalYrocess) = Developed 

After completing the P-states, managers must check whether the exit condi-

tion has been reached. This means that the artifacts have been well performed 

and recorded. 

5.2.1 Organisation Training Program 

The purpose of the Organisation Training Program key process area is 
to develop the skills and knowledge of people so they can perform their 
software roles effectively and efflciently/Fau97J. 

5.2.1.1 Organisation Training Program in the CMM 

Training is one of the most important aspects of improving a software organisa-

tion. The quality of the software engineering workforce is a direct function of 

the quality of software engineering training. Consequently, the SET developed 

the KPA in the CMM. Furthermore, in order to continuously develop the hu-

man assets of a software organisation, the SEI also developed People CMM (P-

CMM)[CHM95]. The P-CMM provides guidance on how to develop an organisa-

tion whose practices continuously improve the capability of its workforce. This 

effort primarily focuses on the training program. 

However, both models' training efforts become focused upon the entire or-

ganisation at maturity level 3. It is curious that the topic of a training program 

doesn't show up until level 3. Carpenter and Hallrnan[CH95] pointed out that 

at level 3 improvement efforts are coordinated and focused at the organisational 

level, and are no longer a loose collection of bottom-up improvement efforts. 

In order to perform the training program, Mead et al[MTC96] suggested that 

organisations should have some key practices. These practices include: 

159 



File 	Edit 	View 	Go 	Communicator 	 Help 

Sack 	Forward 	Reload 	Home 	Search 	Guide 	Print 	Security 	Stop 

Bookmarks 	L Location: 

- -- Convert Segoence Doa 

ttp://vwv.dcs.ed.ac.uk/hoTfte/ky/PASTA/SPIPa3ta.htiftl 	 _j f 

Develop Organisational Process - 	 - - - -Refine cotk&borcrtson 
-Create _Activity _Diagram 
-Create _Implementation_Il 
- - CreceteComponentDw 

. 
. 	. 

. 	.. 
. . 	. 	. 	. 

- - Crete Deployment Di I 
Perform_Organisation_Training_Program 

. 	...... 	. 	.. . 
. . 	. 	. 

Develop Software Code 
-Generate Body File 
-Implement Class Method 
Develop Software Test 

-Perform Software Test 

. 	. 	. 	. 
I Organisation Tr 

. 	 . 
g_Progm[Referenced] 	{rfosthed] Organisalion_ 

. 
'raining. Progxam 

-Draft Test Plan  
. 	. 	. 	. 	. 	. 	. 	. 	. 	. 	. 	....... 	. 	. 	. 	. 	. 	. 	. 	. 	. 	. 	. 	. 

	

. 	. 	. 	. 	. 	. 	. 	. 	. 	. 	. 	. 	. 	 . 	.. 	. 	. 	. 

	

. 	. 	 . 	 .. 	. 	. 	. 	. 	. 	. 	. 	. 	. 	. 	. 	. 	. 
. 	. 	I.. 	. 	. 	. 	. 	. 	 . 	. 	. 	. 	. 	. 

	

. 	. 	.. . . . Perform_Risk_Management 	. . ,. 	. 	•'. . 

	

. 	. 	. 	. 	. 	. 	. 	.. 	. 	. 	. 	. 	. 	. 	. 	. 	. 	. 	. 	. 	. 

	

I 	Psk_Manage4ient [Referenced 	 I 	Risk Mands.ement 

- -PerformIcgrtionTe 
--Perform System Test 
--Perform Acceotccnce Te 
Develop _Operation Docun' 
Pert arm_S oftware_Enhanc 

Develop Organisational 

PerfonnOramsaUonTrsi 
. 	.• 	. 	.. 	. 	. 	. 	.. 	.. 	. 	S S 	 . 	•. 	... 

Perform 	
. . . 	. 	. 	. 	. 	. 	.. 

PerformProject jnterfaceCoorthnation 
S . 	.. 	...... 	. 	. 	. 	..... 	. 	. 	. 	. 	., 	.. 	.... 

.. 	. 	.. . . . . 	. 	. 	.. . . . 

	

Project _Interface Coordination[Rdferencedj 	. . IPerformed] Proj.ctJntf ce_Coordination 

-Identify Training Need  
-Draft Training Plan 

- - Ill ntrfy Orwsntionat 
- - Detervwse Proiect Neel vee 
-Build Trainino Matealal 
-Execute Training Progra 
-Build _Training_Record 
Perform Risk Management 
-Draft Risk Management 

. 	. 	... 	. 	. 	. 	. 	.. 	. 	. 	.. 
. 	... 	. 	. 	. 	. 	. 	. 	. 	. 	. 	. 	. 	. 	. 	. 	. 	. 	. 	. 	.. 	. 	. 	. 	... 	. 	. 	. 	.. 	. 	. 	. 	. 	. 	. 
. 	. 	....... 	. 	. 	. 	. 	. 	. 	. 	. 	. 	.. 	. 	. 	. 	... 	•. 	•.. 
. 	. 	. 	. 	. 	. 	. 	. 	. 	. 	. 	... 	. 	.. 	.. 	. 	,. 	.. 	55 	. 	. 	s  

	

. . 	. 	. 	. .Peifo.rm 	Peer Review 	. 	. . 
- 	- 

. 	. 	 .. 

	

Peer Reviews [Referenced] 	 I 	I 	 [Performec 	Peer ReviewsI 

-Idenlify Risk 
-Analyze Risk 
-Mitigate F.isk 
Perform Project Interface 
Perform Peer Review 
-Draft Peer Review Plan 
-Conduct Peer Review 
-Record Peer Reviews D 

Iterate-Or-Refine 

Review 	

...... 

Figure 5.28: The P-State Diagram of the Organisational Process 

160 



. a defined process for software engineering education, 

. a formal needs analysis activity, 

availability of a wide variety of courses from different sources, and 

training by a local, respected organisation. 

Among these practices, the CMM and the P-CMM provide a guideline to 

develop a training process for software organisations. Moreover, the identification 

of training needs is primarily based on the skills needed for the organisation's set of 

standard software processes, as described in the Organisation Process Definition 

key process area. The specific training needs are identified by software projects, as 

described in the Integrated Software Management key process area. Furthermore, 

the organisations should have courses available from a wide variety of sources, 

such as in-house instructors, training vendors and universities. Although some 

experts[BCKM97, PDHT97] did not satisfy with the quality of academic software 

engineering education, training by a respected organisation, such as a university, 

is an effective practice for software organisations. 

In addition to the above practices, the creation of a training plan is also an 

essential element within the training process of a software organisation. Without 

a good training plan, the training program would not be effectively performed. 

Carpenter and Hallman suggested the following information should be included 

in the training plan[CH95]: 

Scope of the Training Plan 

Responsibility for the Plan 

Training Objectives 

Technical Strengths and Weaknesses of the Software Organisation 

Software Engineering Curriculum 

Course Development and Acquisition Process 

Estimated Training Costs 

Student Selection and Enrolment Procedures 

Course Delivery Standards 

Training Evaluation and Tracking Procedures 
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These items cover the necessary information for the organisational training 

program and provide a foundation to complete the training process. 

5.2.1.2 Processes in the Organisation Training Program 

Figure 5.29 shows the P-state tree of the Organisation Training Program. This 

P-state consists of five operations: Draft Training Plan, Identify Training Need, 

Build Training Material, Execute Training Program and Build Training Record. 

Perform_Organi sat ion_Training_Program 

Draft—Training—Plan 

Identify_Training_Need 

Ident i fy_Organi sat ± onal_Need 

Determine—Project—Need 

Build_Training_Material 

Execute_Training_Program 

Build_Training_Record 

Figure 5.29: The P-State Tree of the Organisation Training Program 

Main Roles: The main roles participating in the operations are project man-

agers and the training staff who will derive the organisation training program. 

Artifact List: The artifact list in this KPA is the Organisation Training Pro-

gram which consists of five sub-artifacts: Training Plan, Training Need, Training 

Material, Training Program and Training Record. The artifacts in the Organisa-

tion Training Program are shown in Figure 5.30. 

Information Artifacts: The project's defined software processes provide a 

guideline for performing the activities of the organisation training program. 

Entrance Condition: st ate- of(Organisation_TrainingYrogram) = Referenced 
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Figure 5.30: The Artifact Tree of the Organisation Training Program 
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Performing the organisation training program should start at early stage of the 

software project. From tailoring the project's defined software process to per-

forming the software technical process, all activities need the trained people to 

perform them. 

Activities: Five operations are presented in the P-state diagram of the Or-

ganisation Training Program as shown in Figure 5.31. First and foremost the 

software organisations must create the organisation training plan. An organisa-

tion training plan documents the objectives of the training program, the training 

need of the organisation and procedures for carrying out training activities. The 

training needs should then be analysed. This is the most critical part of the 

training activities. The training needs consist of two parts, organisational needs 

and project needs. The organisational training needs may contain process tailor-

ing, software management, software engineering, and so on. Moreover, different 

projects might need some special training needs. The managers and training staff 

should identify these training needs for each software project. 

After identifying training needs, the training staff may establish training ma-

terials that address the needs of the organisation. The typical training material 

is training courses. The training courses may have different types, formal or in-

formal, external or internal; it depends on the organisation condition. In the next 

step, the managers and training staff should select the people who will receive the 

training, and conduct the training. Finally, the training records must be kept as 

a reference to assign people an appropriate job. 

Exit Condition: state-of(OrganisationTrainingPrograrn) = Performed 

After completing the P-states, the managers and training staff must check 

whether the exit condition has been reached. This means that the training pro-

gram has appropriately been performed and all training records have also been 

kept. 

5.2.2 Risk Management 

5.2.2.1 Risk Management in the CMM 

The SEI did not define Risk Management as a KPA in the CMM but it is currently 

a KPA in the Systems Engineering CMM, and the Software Acquisition CMM. 

The topic of risk management is primarily defined in the Integrated Software 

Management key process area of the CMM. However, a disciplined and systematic 

method of managing software development risk is necessary and feasible to control 
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the quality, cost and schedule of software products. Therefore, we separate this 

KPA into two parts: one is in Section 3.4 describing the project's defined software 

process and another is risk management. 

In the last few years, the SET has made a big effort to study risk management 

both of software development and software acquisition. To date, the SEI defined 

three groups of practices to support software risk management[HH96]: 

Software Risk Evaluation (SRE): The SRE practice is a formal method for 

identifying, analysing, communicating, and mitigating software technical 

risk. It is used by decision makers for evaluating the technical risks asso-

ciated with a software-intensive program or project. The SRE has to be 

conducted at major milestones early and periodically in the development 

or acquisition life cycle. This practice consists of primary and support 

functions. Primary functions are Detection, Specification, Assessment, and 

Consolidation. Support functions are Planning and Coordination, Verifica-

tion, and Training and Communication [SJ94]. 

Continuous Risk Management (CRM): The CRM practice is a principle-

based practice for managing project risks and opportunities throughout the 

lifetime of the project. These principles are composed of three groups: core, 

sustaining and defining. The core principle focuses on creating an open com-

munication environment in the organisation. The sustaining principles focus 

on how project risk management is conducted on a daily basis. The defining 

principles focus on how project staff members identify risks, and the extent 

to which staff and management are ready to address uncertainty[HH96]. 

Team Risk Management (TRM): The TRM practice defines the organisa-

tional structure and operational activities for collectively managing risks 

throughout all phases of the life cycle of a software-dependent develop-

ment program such that all individuals within the organisations, groups, 

departments, and agencies directly involved in the program are participating 

team members. Team risk management practices bring together individuals 

within and between organisations to form working teams[HGD+94]. 

Basically, these practices are based on the risk management paradigm, which 

depicts the different activities involved in the management of risk associated with 

software development. The paradigm, being a circular form with communication 

at the centre, is a model of how the different elements of software risk management 

interact and a framework for describing how software risk management can be 
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implemented. These elements include identification, analysis, planning, tracking, 

control and communication as follows[Sco92]: 

Identification: Risk identification is the first element in the risk management 

paradigm. Identification highlights risks before they become problems and 

adversely affect a project. Without identification, risk management cannot 

be effectively performed. Consequently, the SET developed a method, the 

Risk Taxonomy, to identify risks[CKM93]. The taxonomy is organised 

into three major classes: Product Engineering, Development Environment 

and Program Constraints. With the taxonomy-based questionnaire, experts 

may follow the life cycle of software development and elicit risks potentially 

affecting the software product. 

Analysis: Risk analysis is the conversion of risk data into risk management 

information. Sometimes this step can be combined with identification. Risk 

analysis sifts the known risks, and places the information to allow a manager 

to make decisions. Therefore, providing a quantitative analysis of risks 

might be a good solution to analyse risks for managers. 

Planning: Risk planning develops actions to address individual risks, prior-

itising risk actions, and orchestrating the total risk management plan. 

Tracking: Tracking consists of monitoring the status of risks and the ac-

tions taken to improve them. Appropriate risk metrics are identified and 

monitored to enable the evaluation of the status of risks themselves as well 

as of risk mitigation plans. 

Control: Risk management should meld into program management and 

relies on program management processes to control the risk action plans, 

correct for variations from the plans, respond to triggering events, and im-

prove the risk management process. 

Communication: Risk communication lies at the centre of the model to 

emphasise both its pervasiveness and its criticality. Without effective com-

munication, no risk management approach can be viable. In order to be ana-

lysed and managed correctly, risks must be communicated to and between 

the appropriate organisational levels. This includes levels within the de-

velopment project and organisation, within the customer organisation, and 

across that threshold between the developer and the customer. 
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5.2.2.2 Processes in Risk Management 

Figure 5.32 shows the P-state tree of Risk Management. This P-state consists of 

four operations: Draft Risk Management Plan, Identify risk, Analyse Risk and 

Mitigate Risk. 

Perform—Risk—Management 

Draft—Risk—Management—Plan 

Identify—Risk 

Analyse—Risk 

Mitigate—Risk 

Figure 5.32: The P-State Tree of Risk Management 

Main Roles: The main roles participating in the operations are project man-

agers, software product managers and system engineers who will manage project 

risk. 

Artifact List: The artifact list in this KPA is Risk Management which consists 

of two sub-artifacts: Risk Management Plan and Project Risk. The artifacts in 

risk management are shown in Figure 5.33. 

Information Artifacts: All system development efforts have inherent risks. 

Managers should identify risks from the software management process and soft-

ware technical process. 

Entrance Condition: state-of( RiskivIanagement) = Referenced 

When the need to manage project risks is identified, managers perform the activ-

ities of risk management. This need may be identified by the project's defined 

software process. 
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Organisational-Process 

Organisatioxl_Trainizlg_PrOgralTL 

Risk-Management 

Risk-Management-Plan 

Project-Risk 

Project_Interface_Coordination 

Peer-Review 

Figure 5.33: The Artifact Tree of Risk Management 

Activities: Four operations are presented in the P-state diagram of Risk Man-

agement as shown in Figure 5.34. First, managers should develop a plan for activ-

ities of risk management. The plan is a basis to guide the activities managing 

project risks. The risk management plan can be part of the software development 

plan or a project risk management plan. Project risks should then be effectively 

identified. Since risk management covers throughout the software development 

life cycle, it is better to use a risk identification method. SEI's Risk Taxonomy 

may be a good method to be used to help identify possible problems. However, 

the software organisation can also define its own risk identification method. After 

identifying project risks, the identified risks should be documented and listed. 

From the list of risks, managers analyse risks and determine their priority. In 

accordance with the risk priority, managers should mitigate the project risks by 

using the documented risk mitigation strategies in the risk management plan. 

The activities of risk management will be performed iteratively until the project 

is completed. 

Exit Condition: st ate- of (Risk i\/Ianagement) = Performed 

After completing the P-states, the managers must check whether the exit con-

dition has been reached. This means that the project risks have been mitigated. 
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5.2.3 Project Interface Coordination 

The purpose of Project Interface Coordination is to ensure that soft-
ware managers and staff effectively communicate, coordinate, and col-
laborate with other functions in the organisation to satisfy the custom-
er's needs[Pau97]. 

5.2.3.1 Project Interface Coordination in the CMM 

Developing a large complex software project must involve the efforts of many 

engineers with expertise from different areas. In order to structurally tackle the 

problem, as mentioned in Section 4.1.2, the software project is divided into many 

partitions. Different teams work concurrently on these partitions, which later 

on merge together to build the complete system. These teams could belong to 

line organisations, matrix organisations, integrated product teams, etc, since the 

type of organisational structure is not limited by the CMM. However, a wave of 

virtual enterprises is emerging. Engineers will work at different locations all over 

the world and complete the project together. 

One of the biggest hurdles in developing a large software project is coordina-

tion of the activities of different teams. This is especially true of concurrent de-

velopment. Maurer suggested that a project coordination support system should 

consist of four components[Mau96]: 

A project repository stores all information on the project. 

A project planning component allows users to plan and schedule activities, 

determines dependencies between information items, and supports resource 

allocation. 

A project execution component handles the worklists of the users, supports 

task execution, and is responsible for constraint and change management. 

A project control component supports the monitoring of the project. 

Moreover, a common interface, Web browsers, should be used to integrate all 

components. 

Clearly, the CMM covers these components and creates this KPA to co-

ordinate the project's teams. Furthermore, the SET is now developing an in-

tegrated product development (IPD) framework which is a systematic approach 

to product development that achieves a timely collaboration of necessary dis-

ciplines throughout the product life cycle to better satisfy customer needs. It 
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typically involves a teaming of the functional disciplines to integrate and concur-

rently apply all necessary processes to produce an effective and efficient product 

that satisfies the customer's needs. 

5.2.3.2 Processes in Project Interface Coordination 

Figure 5.35 shows the P-state tree of Project Interface Coordination. This P-state 

consists of two operations: Draft Coordination Plan and Perform Coordination 

Activity. 

Perform_Proj ect_Interface_Coordination 

Draft—Coordination—Plan 

Perform—Coordination—Activity 

Figure 5.35: The P-State Tree of Project Interface Coordination 

Main Roles: The main roles participating in the operations are the manage-

merit group and development group since the activities of project interface co-

ordination involve all of the project's staff. 

Artifact List: The artifact list in this KPA is Project Interface Coordination 

which consists of two sub-artifacts: Coordination Plan and Coordination Activity. 

The artifacts in Project Interface Coordination are shown in Figure 5.36. 

Information Artifacts: The activities of software development should be co-

ordinated between the software engineering groups. The software management 

process and the software technical process provide necessary information to sup-

port coordination. 

Entrance Condition: st ate- of(Project -Interface -Co ordination) = Referenced 

When the need to perform project interface coordination is identified, managers 

and staff in different groups should actively coordinate with each other. This 

need may be identified by the project's defined software process. 
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Organisational-Process 

Organisation-Training_Progr7am:] 

Risk-Management 

Project-Interface-Coordination 

Coordination-Plan 

Coordination-Activity 

Peer Re 

Figure 5.36: The Artifact Tree of Project Interface Coordination 

Activities: Two operations are presented in the P-state diagram of Project In-

terface Coordination as shown in Figure 5.37. First, managers should develop a 

plan of activities for project interface coordination. The plan is a basis to guide 

the activities managing project interface coordination. In the next step, man-

agers and software staff evolve an understanding of the customer requirements. 

The allocated requirements are then appropriately partitioned. All development 

groups should be carefully coordinated during the software management process 

and technical process. Each group must ensure that work products meet the 

needs of the receiving group and all system problems are effectively resolved. 

Exit Condition: state-of(ProjectJnterface_Coordination) = Performed 

After completing the P-states, the managers and staff must check whether the 

exit condition has been reached. This means that the work products are properly 

delivered between development groups. 

5.2.4 Peer Reviews 

The purpose of Peer Reviews is to remove defects from the software 
work products early and efficiently. An important corollary is to de-
velop a better understanding of the software work products and the 
process that produced them so that defects can be prevented[Pau97]. 
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Figure 5.37: The P-State Diagram of Project Interface Coordination 

5.2.4.1 Peer Reviews in the CMM 

The underlying concept of peer reviews is that a small group of peers can detect 

more defects than the same number of people working alone. However, this key 

process area is quite different from the Software Project Control and the Software 

Quality Assurance key process areas. Software Project Control focuses on track-

ing software activities based on the software development plan. Software Quality 

Assurance concentrates on objectively reviewing the software project's activities 

and work products. Traditionally Software Quality Assurance is performed by an 

SQA group that is independent of the software project in order to keep objectiv-

ity. A risk is a potential problem. The purpose of risk management is to prevent 

the risk from becoming a problem or limit its impact if it does. Software testing 

is performed to demonstrate to the customer that the software system satisfies 

the customer requirements for the software project. 

Defects inevitably occur through the software development life cycle and the 

later these defects are detected, the higher the cost of their repair. Peer reviews 

are used to detect the defects in software work products as early as possible. Per-

forming peer reviews should involve a methodical examination of software work 

products by the producers' peers to identify defects. One of peer reviews meth-

ods is inspections. Inspections were first performed by Fagan at IBM. Fagan 
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defined a set of inspection process steps[Fag76]: Overview, Preparation, Inspec-

tion, Rework and Follow-up. Ebenau and Strauss[ES94] adopted this process and 

developed a wider inspection process for improving the quality of a variety of 

products. Ebenau's inspection process is defined as follows: 

Planning: During the planning stage, the necessary materials are collected 

and the inspection team is organised. 

Overview: A presentation explaining the material's functions and rela-

tionships should be held. 

Preparation: Preparation is an individual exercise performed by all the 

inspectors to allow them to become thoroughly familiar with the materials 

so that they can better find defects. 

Inspection: All inspectors formally examine distributed materials agree-

ment on the inspection defect list. 

Rework: During rework, all defects should be revised. 

Follow-up: After the defects have been resolved, the inspectors follow-up 

to verify the defect resolution. 

Basically, this key process area follows these steps to perform reviews. The 

specific software work products that will undergo a peer review are identified 

in the project's defined software process, which may include the software devel-

opment plan, software estimates, requirements, design and codes. To effectively 

perform peer reviews, the successful completion of the peer review should be used 

as an exit criterion for the task associated with developing and maintaining the 

software work product. 

5.2.4.2 Processes in Peer Reviews 

Figure 5.38 shows the P-state tree of Peer Reviews. This P-state consists of three 

operations: Draft Peer Review Plan, Conduct Peer Review Activity and Record 

Peer Review Data. 

Main Roles: The main roles participating in the operations are software product 

managers and reviewers who will conduct peer review activities. 

Artifact List: The artifact list in this KPA is Peer Reviews which consists of 

three sub-artifacts: Peer Review Plan, Peer Review Activity and Peer Review 

Data. The artifacts in peer reviews are shown in Figure 5.39. 
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Perform—Peer—Review 

Draft—Peer—Review—Plan 

Conduct—Peer—Review—Activity 

Record—Peer—Review—Data 

Figure 5.38: The P-State Tree of Peer Reviews 

Information Artifacts: The project's defined software processes provides a 

guideline to perform the activities of peer reviews. 

Entrance Condition: state-of(Peer_Reviews) = Referenced 

When the need to perform peer reviews is identified, managers should conduct 

the activities of peer reviews. This need may be identified by the project's defined 

software process and defined in the software development plan. 

Activities: Three operations are presented in the P-state diagram of Peer Re-

views as shown in Figure 5.40. Firstly, managers should develop a plan for activ-

ities of peer reviews. The plan is a basis to guide the activities to perform peer 

reviews and is typically included in the project's software development plan. Any 

rework resulting from the peer reviews should be planned as part of the software 

development effort. This planning typically includes the specific software work 

products that will undergo peer review and those who will be invited to particip-

ate in the peer review of each software work product. In the next step, reviewers 

conduct the activities of peer reviews in accordance with the peer review plan. 

Reviewers should study the material to be reviewed and use the appropriate re-

view checklists to help find defects. After identifying defects in software work 

products, the identified defects have to be corrected. Reviewers may conduct re-

reviews as necessary in order to verify the identified defects are corrected. Finally, 

data on the activities of peer reviews should be recorded for future reference and 

analysis. 

Exit Condition: state-of(Peer...Reviews) = Performed 

After completing the P-states, the managers must check whether the exit 

condition has been reached. This means that most of the defects of software work 
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Figure 5.39: The Artifact Tree of Peer Reviews 
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products have been identified and removed and relevant data is appropriately 

recorded. 

5.3 Summary 

This chapter discussed how to develop software work products. We use MIL-

STD-498 to comply with the CMM as software engineering processes. In the 

meantime, the UML is adopted at software requirement analysis and software 

design stages. With these standards, the software organisations exploit effective 

software engineering practices to develop their products. In addition, an appro-

priate training program is performed to ensure all staff can play their software 

roles. The communication between development teams is effectively conducted 

to share system-level requirements, objectives and issues. Furthermore, the soft-

ware work products are reviewed by other team members in order to remove 

defects early and project's risk will be under control. Once these activities have 

been completed, both software engineering and management activities are stable 

and repeatable. Consequently, software organisations will develop their products 

under a common, organisation-wide understanding of the activities, roles, and 

responsibilities. 
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Chapter 6 

Implementation and Assessment 

SPI PASTA is an artifact-driveri framework of controls for the development of 

software systems. It is independent of any particular set of tools and techniques 

and can be used with object-oriented methods, such as the UML. SPI PASTA is 

not a standard or a procedure. It does not provide a detailed step-by-step set 

of instructions describing how a particular software activity is to be carried out. 

However, SPI PASTA can provide insight into what artifacts should be developed 

at a particular time and provide guidance on what activities should be performed 

for the artifact. SPI PASTA consists of advice on best practice. The advice 

is the organisation's software process assets. It is expected that information in 

SPI PASTA will usually be followed by software developers. Furthermore, SPI 

PASTA can be sufficiently flexible to allow for the adaption of existing scenarios. 

For example, Objectory may be adapted in the P-state of software analysis and 

design. With connecting to CASE tools, the Objectory process presents experts' 

advice for software development. 

6.1 Implementation of SPI PASTA 

Widespread use of Internet/Intranet is giving an opportunity for collaborative ap-

plications that link users from a distributed environment. Using the WWW, users 

have an interface that can access information anywhere on the Internet/ Intranet. 

SPI PASTA adopts the WWW as communication infrastructure making distrib-

uted projects feasible. SPI PASTA presents a unifying process model which guides 

the development of software projects. Without the process model, development 

team members have no common framework in which to interpret the activities 

and artifacts generated by these activities. 

SPI PASTA consists of three parts, Artifacts, P-states and Roles. The artifacts 

specify the set of interrelated work products generated by following the P-states. 
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The P-states are integrated with a permissive ordering of activities, a set of tools 

and historical experiences to offer developers complete solutions to their software 

development. In addition to specifying artifacts and activities, the SPI PASTA 

also specifies the roles played by people involved in the software projects. As with 

artifacts and activities, different processes will specify different roles. 

SPI PASTA defines a strategy for defining what the artifact will be produced 

for a given project. It provides a baseline for communication between and across 

team members, and between differing levels of management. On the technical 

side, SPI PASTA provides guidance on how to decide what sort of artifact it is 

necessary to control. From the management point of view, the project manager 

should firstly organise the development team. Then he/she points out the tasks 

and responsibility to all team members by using SPI PASTA. 

Figure 6.1 shows the homepage of SPI PASTA that is split into two frames. 

Role tree, artifact tree and P-state tree are listed on the left-hand side. Users 

can extend any tree and see the relationship between items. Each item is linked 

to its definition form. The action frame, located on the right-hand side, provides 

an area for definition forms and diagrams. 

The following example represents related activities to develop the software 

management process. Five P-states (as Figure 6.2) are listed on the P-state dia-

gram of Develop_Software_Management_Process. There is a relationship between 

Derive -Software -Development _PIan and Perform Software_Project_Control. This 

means Software Project Control must be performed after completing the soft-

ware development plan. There is no relationship among other P-states. SPI 

PASTA permits a parallel process since the model provides processes for different 

development team members concurrently and independently. Therefore, system 

requirements, the software development plan and acquisition management might 

be developed concurrently. Each rectangle consists of the sub-P-states, entrance 

conditions and exit conditions. The entrance condition decides which P-state can 

be performed. Such as Derive_Software_Development_Plan, once two entrance 

conditions have been satisfied, users may go down to next layer, the P-state dia-

gram of Derive _Software_Development_Plan. Before entering to next step, Users 

may click the entrance condition to fetch the A-state diagram (as Figure 6.3. The 

operation between two states can be connected to operation definition form as a 

guide in completing the software artifacts. 

Furthermore, users may check the details presented at P-state definition form. 

P-state tree can link to the definition form, moreover the title of P-state diagram 

may also connect to the form. From the definition form, users should collect 
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related information, such as what is the purpose of the P-state, who will perform 

these activities, what are the artifacts operated on for this P-state, the condition 

required for entry into this P-state and so on. In this example, the project's 

defined software process should be in place. When the need to derive the software 

development plan has been identified, users may perform next steps. 
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Figure 6.2: The P-State Diagram of Software Management Process 

Users may click the rectangle of Derive_Software_Development_Plan to enter 

the sub-P-state (as Figure 6.4). Five operations stand on the P-state diagram and 

four of them are connected together. There is a sequence among them. Drafting 

the project mission plan defines the system overview. Drafting the organisation 
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[Review] 	Software—Development—Plan—Den 

Figure 6.3: The A-State Diagram of Software Development Plan 

and responsibility plan describes the organisational structure to be used on the 

project, and the authority and responsibility of each organisation for carrying 

out required activities. Drafting the software engineering activities defines the 

software development process to be used. Drafting the schedule and resource plan 

identifies the activity procedure and the resources to be applied to the project. 

The first three activities are operations that will be connected to the definition 

form. The definition form defines required information for users. The users may 

rely on the procedures to perform activities to complete the artifact. If necessary, 

the users can link to the artifact definition form to get required information about 

the artifact and even the sample unified by the organisation. 

To draft the schedule and resource plan is a crucial task for software develop-

ment. In the beginning of the project, the allocated requirements are not clear 

enough. The analysts have to build the work breakdown structure to estimate 

the software size in order to estimate the required effort and cost. Finally, the 

resources and schedule are defined and allocated. We have already defined op-

erations for each activity. Users can find out the operation definition form and 

related artifact to perform drafting the schedule and resource plan. 

Then, users should identify the project risk. This activity might perform 

anytime during deriving the software development plan. 

Finally, all activities will be terminated until the exit condition of 

Derive -Software -Development -Plan has been satisfied. The exit condition of the 

primary P-states will be linked to the goals of related KPA. This is because the 

assessment of the CMM depends on the goals and KPAs. Once the related goals 

are reached, the exit condition of the P-state is satisfied. 

Since SPI PASTA adopts MIL-STD-498 as a standard for the activities of 

software product engineering, we appropriately link these activities and data item 

descriptions to the P-state forms (See Table 6.1). Users may follow these activities 
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Figure 6.4: The P-State Diagram of Software Development Plan 

185 



Activities in MIL-STD-498 [P-State Forms in SPI PASTA 

5.1 Project planning and oversight Derive Software Development Plan 

5.2 Establishing a software 
development environment 

Derive Software Development Plan 

5.3 System requirements analysis Derive System Requirement 
5.4 System design Derive System Requirement 

5.5 Software requirements analysis Develop Software Requirement 

5.6 Software design Develop Software Design 
5.7 Software implementation and unit testing Develop Software Code 
5.8 Unit integration and testing Perform Integration Test 
5.9 CSCI qualification testing Perform Integration Test 
5.10 CSCl/HWCI integration and testing Perform Integration Test 

5.11 System qualification testing Perform System Test 
5.12 Preparing for software use Develop Operation Documentation 
5.13 Preparing for software transition Develop Operation Documentation 
5.14 Software configuration management Perform Configuration Management 
5.15 Software product evaluation Perform Acceptance Test 
5.16 Software quality assurance Perform Software Quality Assurance 

5.17 Corrective action Perform Peer Reviews 
5.18 Joint technical and management reviews Perform Peer Reviews 

Table 6.1: Mapping the Activities of MIL-STD-498 to P-State Forms of SPI 
PASTA 

and link the relevant data item description. When these data item descriptions 

are completed, they will be viewed as the artifact for assessing the maturity level. 

6.2 Assessment of SPI PASTA 

6.2.1 The CMM Appraisal Framework 

Assessment is one of the most essential issues in the CMM. Without assessing 

the defined software process, we do not know whether it will go to the right 

destination. In order to assess the software process performed in SPI PASTA, we 

must firstly study the appraisal method in the CMM. 

The CMM appraisal framework (CAF), developed by SET, is a framework for 

developing, defining, and using appraisal methods based on the CMM. The CAF 

provides a framework for rating the process maturity of an organisation against 

a generally accepted reference model through the use of an appraisal method. 

However, the CAF is not an appraisal method and does not directly assess the 

software process performed in the software organisation. The CAF identifies the 

requirements and desired characteristics of a CMM-based appraisal method in 
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order to improve consistency and reliability of methods and their results. Together 

the CMM and the CAF describe "what" must be accomplished by CAF compliant 

appraisal methods. The appraisal methods themselves detail "how" to transform 

an organisation's software process data into information of value to meeting an 

organisation's business needs[MB95]. 

Currently, the SET has published two CAF-compliant methods: software pro-

cess assessment and software capability evaluation. 

Software process assessments are used to determine the state of an 

organisation's current software process, to determine the high-priority soft-

ware process-related issues facing an organisation, and to obtain the or-

ganisational support for software process improvement. The CMM-Based 

Appraisal for Internal Process Improvement (CBA IPI), developed by the 

SET, is intended to be a diagnostic tool that enables an organisation to gain 

insight into its software development capability by identifying strengths 

and weaknesses of its current processes, to relate these strengths and weak-

nesses to the CMM, to prioritise software improvement plans, and to focus 

on software improvements that are most beneficial, given its current level 

of maturity and the business goals[DM96]. 

Software capability evaluations (SCE) are used to gain insight into the 

software process capability of a supplier organisation and is intended to help 

decision makers make better acquisition decisions, improve subcontractor 

performance, and provide insight to a purchasing organisation. SCE version 

3.0, published by the SET, provides a CAF-compliant method for evaluating 

the software process of an organisation[BP96]. 

The basic difference between an assessment and an evaluation is that an assess-

ment is an appraisal that an organisation does to and for itself, and an evaluation 

is an appraisal where an external group comes into an organisation and looks at 

the organisation's process capability in order to make a decision regarding future 

business [DM96] 

The concept of building SF1 PASTA is software process improvement. As a 

result, to assess SF1 PASTA is an activity which gains insight into its software 

development capability by identifying strengths and weaknesses of its processes. 

With the CBA IPI, the status of each process in SF1 PASTA will be assessed. 

SEPG and managers can recognise the strengths and weaknesses of the process 

and build an action plan for the process improvement program. 
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Before discussing software process assessment, we need to know the rating 

system in the CAF. Fundamentally, the assessment is rated by relying on the 

CMM structure (as Figure 6.5). Each maturity level is decomposed into several 

KPAs that indicate the areas an organisation should focus on to improve its 

software process. Each KPA identifies a cluster of related activities that achieve 

a set of goals considered important for enhancing process capability. Therefore, 

satisfaction of a key process area depends on satisfaction of the goals. This 

satisfaction can involve implementation of the key practices that map to that 

goal or implementation of an alternative set of practices that achieve the goal. 

When the assessment team members examine a specific key process area in SPI 

PASTA, all of the goals for the specific KPA must he satisfied in order for the 

KPA to he satisfied. 

Figure 6.5: The CMM Structure 

It is not necessary to assess all KPAs in SPI PASTA, since some KPAs, such 

as Software Acquisition Management, are not applicable in the software project. 

Therefore, the CAF defines rating values as following[MB95]: 

A KPA or goal is satisfied if this aspect of the CMM is implemented 

and institutionalised either as defined in the CMM, or with an adequate 

alternative. 

A KPA or goal is unsatisfied if there are significant weaknesses in the 



appraised entity's implementation or institutionalisation of this aspect of 

the CMM, as defined, and no adequate alternative is in place. 

A KPA or goal is not applicable if the KPA is not applicable in the 

organisation's environment. 

A KPA or goal is not rated if the associated appraisal findings do not meet 

coverage criteria or if this aspect of the CMM falls outside the scope of the 

appraisal. 

In this rating system, in addition to not applicable and not rate, KPAs and 

goals only have two choices, satisfied or unsatisfied. Kitson[Kit961 described that 

the CMM is a staged model. Overall process capability of the organisational 

unit assessed is a roll-up of individual KPA ratings. If one goal of the KPA is 

unsatisfied, this KPA will be unsatisfied and the organisational unit assessed will 

fail to reach this level's capability. 

If we contrast ISO 15504, Kitson[Kit96] described it a continuous model. In 

ISO 15504, process capability is measured on a process-by-process basis. The 

approach to rating used in the ISO 15504 product set is use a four-point ordinal 

rating scale of adequacy for each process. This scale, different to the CMM's, 

includes Not adequate (N), Partially adequate (P), Largely adequate (L) and 

Fully adequate (F). An actual process capability level rating shall be determined 

for each process instance assessed by aggregating the generic practice adequacy 

ratings within each capability level. For each process instance, the actual process 

capability level ratings shall describes, for each capability level, the proportion 

of generic practices that were rated at each point on the generic practice ad-

equacy scale in a clear and unambiguous way[SPI95]. Consequently, the process 

capability level rating can be represented as the following vector: 

[% Fully, % Largely, % Partially, % Not Adequate] 

The concept of ISO 15504's rating system is more flexible than CAF's. It 

provides a range idea to show how well the process is rather than just "on or off". 

For example, to complete the goal 2 in the Software Project Planning key process 

area, "Estimates of the software project's planning parameters are established and 

maintained," five key practices, AC.06, AC.07, AC.08, AC.10, AC.15 (Activities 

performed), must be satisfied. The appraisal team might assess the goal 2 for 

X project and make a rating such as AC.06 and AC.07 are largely adequate, 

AC.08 and AC.10 are partially adequate, AC.15 is fully adequate and none of key 

practices are not adequate. As a result, one of key practices is fully adequate - 
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20%, two of them are largely adequate - 40%, two of them are partially adequate 

- 40% and none of them are not adequacy. The adequacy rating of goal 2 can be 

represented as a vector in the form: 

PP-GO-02 = [20%, 40%, 40%, 0] 

In some circumstances it can even assign a weighting to the four points on the 

adequacy scale, for example 100% for fully adequacy, 75% for largely adequacy, 

25% for partially adequacy and 0% for not adequacy. Any derived rating may be 

represented as a single value rather than as a vector. Therefore, the above vector 

should be calculated as following: 

20% * 100% + 40% * 75% + 40% * 25% + 0 * 0 = 60% 

This value might give the project manager a clear vision to show the project's 

condition. Furthermore, the appraisal team may point out the strengths and 

weaknesses of each key practice. The project manager can make a correction for 

the project in accordance with the assessment results. 

In SPI PASTA, we adopted the SET's rating system. However, users may 

change this rating system to ISO's if they prefer value presentation. 

6.2.2 Software Process Assessment 

An assessment method should contain three phases of appraisal execution. The 

first phase includes the activities necessary to plan and prepare for the assessment. 

The second phase consists of on-site activities for conducting assessment. The 

final phase is to report the results. All activities performed for assessment are 

shown in Figure 6.6. 

6.2.2.1 Plan and Prepare for Assessment 

The first phase, planning and preparation for assessment, is the key to success of 

assessment. As shown in Figure 6.6, this phase consists of analysing requirements, 

selecting and preparing the assessment team, selecting and preparing participants 

and developing the assessment plan. 

Analyse Requirements Analysing the requirements for a particular assess-

ment includes development of assessment goals, constraints and scope. The scope 

of assessment consists of the MINI scope and organisational scope. To assess a 

project, it may include one or more KPAs within the CMM. Then the appraised 

entity should be defined. An appraised entity might be any portion of an organ-

isation, such as an organisation unit, a specific project and so on. 
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Figure 6.6: Activity Diagram for Assessment 
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Select and Prepare Team This activity includes selection and preparation of 

the assessment team. It contains identifying the assessment team leader, selecting 

each of the team members, and providing the team with training and orientation 

needed to prepare for the assessment. 

Select and Prepare Participants Participants are those who provide the 

assessment team with data concerning the appraised entity's software process. 

The participants should be appropriately oriented in the assessment process to 

comply with the assessment team. 

Develop Assessment Plan In the end of Phase one, an assessment plan should 

be developed. It will guide and define execution of the assessment. The assess-

ment plan should include information on the following item[MB95]: 

. Identifies the assessment goals. 

. Identifies the assessment scope. 

. Identifies the assessment activities. 

. Provides a schedule for the activities. 

Identifies the people, resources and budget required to perform the activit-

ies. 

. Identifies the assessment outputs and their anticipated use. 

Identifies anticipated follow-on activities. 

. Documents any planned tailoring of the assessment method and associated 

trade-offs. 

. Identifies risks associated with assessment execution. 

6.2.2.2 Conduct Assessment 

The second phase, conducting the assessment, shown in Figure 6.6, consists of 

collecting and recording information on the software process of the project, con-

solidating information collected, and making rating judgements. 
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Collect and Record Data Information about the organisation's software pro-

cesses can be collected from four categories: instruments, presentations, inter-

views and documents. Data collection using instruments includes such activities 

as administering questionnaires and surveys and gathering their responses. Data 

collection using presentations can involve presentations by the assessment team 

or the assessment participants that include interaction between the two. Data 

collection through interviews involves assessment team members asking questions 

and engaging in discussions with assessment participants and recording their re-

sponses. Data collection using documents involves reviewing a lasting repres-

entation of information. Documents may exist in various hardcopy or electronic 

forms. 

Consolidate Data Consolidation is the decision making activity in the iterat-

ive information gathering and decision making process. During consolidation, the 

assessment team organises the information obtained from data gathering sessions 

and combines it into a manageable summary of data. Then the assessment team 

validates the information to ensure that they accurately reflect the practices of 

the appraised entity. 

Make Rating Judgements Goals and KPAs are two components of the CMM 

that can be rated. Maturity level ratings depend exclusively on the ratings of 

KPAs and KPA ratings depend on the ratings of the goals. The assessment team 

must come to consensus on the ratings which it provides to an appraised entity. 

Without this procedure, the rating could not be counted as a valid one. 

6.2.2.3 Report Results 

The final phase, Reporting results, shown in Figure 6.6, consists of reporting 

assessment results and preserving records. 

Report Assessment Results Strengths and weaknesses of appraised entity 

are presented for each KPA within the assessment scope. These results will guide 

the areas in which an organisation focuses its software process improvement ef-

forts. 

Preserve Records Assessment records should be preserved for conducting a 

subsequent assessment. 
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6.2.3 Assessing SPI PASTA 

Table 6.2 and 6.31  show that the key practices map to goals of KPAs at Level 

2 and 3. Both tables provide a foundation to assess the development processes 

by assessment team. All goals within the assessment scope must be rated. Since 

each goal has its own key practices, to satisfy a goal, its key practices should be 

completely performed. 

In SPI PASTA, we have allocated related key practices to the operation defin-

ition forms. For example, the goals of the Software Project Planning key process 

area are linked to the P-state diagram of Derive Software Development Plan. 

Users check the exit condition with call goals of the KPA (as Figure 6.7). Then 

they can concentrate on one goal by calling all related key practices (as Fig-

ure 6.8). Each key practice has its own selection menu. This selection menu 

has been defined to four grades, Satisfied, Unsatisfied, Not Applicable and Not 

Rated. Users can select the appropriate value for each key practice and click 

the "Assess" button, then data will be collected by assigned person (such as the 

project manager). The development team may use the data to check whether the 

goal is satisfied or how good key practices are performed. 

Assessing SPI PASTA is not necessary to organise an assessment team. It will 

depend on what the purpose is. For the purpose of software process improvement 

inside organisation, the development team may perform assessment for its own 

software project. The project manager may assign one or two members as assess-

ment team to trace all key practices of project's defined software process. This 

team can follow the assessment procedures to record strengths and weaknesses of 

the software process. This will be the basis to improve SPI PASTA. 

6.2.4 Post Action 

We would not say that SPI PASTA can well fit any type of software project. 

After all, a real-time system is quite different from a business information system. 

SPI PASTA need to be tailored in order to comply with the features of software 

projects. However, it does not mean that applying a tailored process can develop a 

good software product. Process modification can take place at any time during the 

software development period. It could be viewed as part of a process improvement 

effort. As mentioned in assessing SPI PASTA, users assess the key practices in 

order to decide project's maturity. In the meantime, they will comment the 

strength and weakness of the project, such as why a P-state or an operation 

'CO: Commitment to perform, AB: Ability to perform, AC: Activities performed, ME: 
Measurement and analysis, VE: Verifying implementation 
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KPAs Goal [Key Practices 

Requirements 
Management 

1 CO.01, AB.01, AB.02, AB.03, AB.04, AC.01, ME.01, 
 VE.01, VE.02, VE.03, VE.04 

2 AC.02, AC.03 
3 AC.04 

Software Project 
Planning 

1 CO.01, AB.01, AB.02, AB.03, AB.04, AC.01, ME.01, 
 VE.01, VE.02, VE.03, VE.04 

2 AC.06, AC.07, AC.08, AC.10, AC.15 
___ 3 AC.12, AC.13 

4 AC.02, AC.03, AC.04, AC.05, AC.09, AC.11, AC.14 

Software Project 
Control 

1 CO.01, AB.01, AB.02, AB.03, AB.04, AC.01, ME.01, 
 VE.01, VE.02, VE.03, VE.04 

2 AC03, AC.04, AC.05, AC.07, AC.13 
3 AC.02, AC.06, AC.08, AC.09, ACiD 
4 AC.11, AC.12 

Software Acquisition 
Management 

1 CO.01, AB.01, AB.02, AB.03, AB.04, AC.01, ME.01, 
 VE.01, VE.02, VE.03, VE.04 

2 AC.02, AC.04, AC.05 
3 AC.03, AC.06 
4 AC.07, AC.08, AC.09, ACiD, AC.11, AC.12 

Software Quality 
Assurance 

1 CO.01, AB.01, AB.02, AB.03, AB.04, AC.01, ME.01, 
 VE.01, VE.02, VE.03, VE.04 

2 AC.02, AC.04 
3 AC.03, AC.04 
4 AC.04, AC.05 

Software Configuration 
Management 

1 CO.01, AB.01, AB.02, AB.03, AB.04, AC.01, IVIE.01, 
 VE.01, VE.02, VE.03, VE.04 

2 AC.03, AC.09 
3 AC.02, AC.06, AC.07, AC.08, AC.09 
4 AC.04, AC.05, AC.07, AC.09 

Table 6.2: Mapping the Key Practices to Goals at Level 2 
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KPAs Goal Key Practices 

Organisation 
Process Focus 

1 CO.01, CO.02, AB.01, AB.02, AB.03, AB.04, AC.01, 
 ME.01, VE.01, VE.02, VE.03, 

2 AC.02 
3 AC.03, AC.04, AC.05, AC.06 

Organisation 
Process Definition 

1 CO.01, CO.02, AB.01, AB.02, AB.03, AB.04, AC.01, 
 ME.01, VE.01, VE.02, VE.03, 

2 AC.02 
3 AC.03, AC.04, AC.05, AC.06 

Organisation 
Training Program 

1 
_____ 

CO.01, CO.02, AB.01, AB.02, AB.03, AB.04, AC.01, 
ME.01, VE.01, VE.02, VE.03, 

2 AC.02, AC.04, AC.05, AC.06 
3 AC.03, AC.05 

Integrated Software 
\'Ianagement 

1 CO.01, AB.01, AB.02, AB.03, AB.04, AC.01, ME.01, 
 VE.01, VE.02, VE.03, VE.04 

2 AC.02, AC.03 
3 AC.04, AC.05, AC.08 
4 j AC.06, AC.07 

Software Product 
Engineering 

1 CO.01, AB.01 AB.02, AB.03, AB.04, AC.01, ME.01 
 VE.01, VE.02, VE.03, VE.04 

2 AC.02, AC.03, AC.04, AC.05, AC.09 
3 AC.02.AC.06, AC.07, AC.08 
4 AC.09, AC.10.AC.11, AC.12 

Project Interface 
Coordination 

1 COOl, AB.01, AB.02, AB.03, AB.04, AC.01, ME.01, 
 VE.01, VE.02, VE.03, VE.04 

2 AC.02, AC03, AC.04, AC.05 
3 AC.03, AC.06, AC.07 

Peer Reviews 1 CO.01, AB.01, AB.02, AB.03, AB.04, AC.01, 1VIE.01, 
VE.01, VE.02, VE.03, VE.04 

2 AC.02, AC.03, AC.05 
3 AC.04, AC.05 

Table 6.3: Mapping the Key Practices to Goals at Level 3 
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FERGO.04 The plan for controlling the software project is established and 
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Figure 6.7: The Assessment of Software Project Planning 

can not be appropriately performed. The project manager should rely on these 

comments to modify SPI PASTA. This effort could be done after developing the 

project. It is viewed as the organisation's software process assets to contribute 

to future software projects. Moreover, this effort could happen during developing 

the software project. It could be that the process might not be performed as 

expected or some critical facilities force process changes. 

in environments ranging from the individual PC to global distributed systems. 
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Figure 6.8: The Assessment of Establishing the Software Development Plan 

198 



Chapter 7 

Conclusions and future work 

7.1 Conclusions 

This thesis has explored a variety of issues in process modelling for software devel-

opment under the capability maturity model. The CMM focuses on the software 

process that can have an effect on the effectiveness of people in doing their work 

and the adoption of effective technologies, all of which will help the organisation 

attain its business objectives. However, many of limitations and weaknesses in 

the CMM have long been evident. Consequently, only 16% of assessed organisa-

tions have reached higher than maturity Level 3 for ten years. One of weaknesses 

in the CMM is that the CMM is actually a descriptive model in the sense that 

it describes essential attributes that would be expected to characterise an organ-

isation at a particular maturity level. This means that the CMM describes what 

a process should address rather than how it should be implemented. As a result, 

there are many difficulties for software organisations using the CMM since the 

CMM contains so many key practices for developing and maintaining software. In 

spite of supplementary works, such as the Software Process Framework and the 

Trillium model, software organisations still have difficulty to follow the CMM. 

In this thesis, an artifact-driven approach has been developed to support the 

definition of software processes. It corresponds to the CMM's KPAs complying 

with the relevant standards to develop software projects. The goal of this research 

is to provide a model to guide a continuous improvement program. Since the 

CMM is a descriptive model that does not specify how software development 

should be implemented, some standards and methodology, such as the UML, 

ISO 9001 and so on, had to be added in software processes. SPI PASTA has 

been developed from artifact and process views to help users develop software 

work products. We believe there are several reasons for using graphical process 

notations to model the software process: 
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The software development activities are increasingly complex and inter-

woven. It is hard to handle a software project as a single person. Clearly, 

the software process should be recognised by all interested parties which 

may be a project manager, requirement analysts, designers, quality assur-

ance staff and so on. A unified process model provides a common language 

to these process roles. This will lead to a significant progress for software 

development. 

SF1 PASTA provides a framework in terms of artifacts which can integrate 

standards, CASE tools, and relevant activities to apply the CMM's KPAs. 

Software organisations may then more easily develop their software projects 

in correspondence with the CMM. 

An experience of the software development efforts can be recorded by the 

process notations. This will form a foundation of the organisation's software 

process assets in order to improve organisation's software process. 

The process modelling clearly presents what software process information 

and where the resources developers need to follow and apply. This will be 

helpful for those who just join the development team to avoid chaos in the 

beginning. 

In chapter 3 we firstly addressed how to establish the organisation's set of 

standard software processes which covers the entire software process. We started 

out by selecting software life cycle, establishing the tailoring guidelines and cre-

ating the organisation's software measurement database. These activities form a 

foundation to establish the project's defined software process which is practically 

relied on to develop a software project. 

Developing the software management processes is described in section 4.1. 

The most important task in the software management processes is to establish 

the software development plan. The software development team relies on the 

software development plan to perform and track software activities, communicate 

status and take corrective action. The allocated requirements should be derived 

in order to form the basis for planning, performing and tracking the software pro-

ject's plans and activities. The software may be acquired from different sources, 

such as COTS products, external contractors and so on. Software acquisition 

management defines approaches to manage these sources. However, SF1 PASTA 

does not focus on the topic for real-time and control systems. Currently, the 

system requirements allocated to hardware are not discussed in SF1 PASTA. 

200 



Two support processes, software quality assurance and software configuration 

management, are described in section 4.2. The software project must be conduc-

ted under quality control. These activities ensure the software project will keep 

its pace on the right way. In the meantime, changes of software work products 

should be well controlled, especially in the complex and distributed environment. 

In section 5.1 we addressed the technical processes. Since SPI PASTA adopted 

00 methodology, with MIL-STD-498 standard, the software work products are 

partitioned into several CSCIs and may be developed in several builds. The 

technical processes provide the guideline to conduct these activities throughout 

the software life cycle. 

Several organisational processes are described in section 5.2. Relevant training 

should be organised in order to allow staff to perform those activities during 

software development. Furthermore, the potential problems must be discovered as 

early as possible and a solution found to tackle them. Software risk management 

defines the approach to identify, analyse and eliminate those software risks. Since 

developing a software project needs different roles to perform relevant activities, 

project coordination issues should receive appropriate attention. All groups of the 

software project must communicate well to ensure that everyone involved in the 

software project is appropriately aware of his/her status. Moreover, the activities 

to identify defects of software work products are performed by the developers' 

peers. 

Finally, we addressed an appraisal method to assess SPI PASTA. By way of 

assessing each key practice, the goals of KPAs will be appropriately achieved and 

SPI PASTA will be increasingly improved. 

7.2 Future Work 

As we have mentioned in previous chapters, the CMM contains too much in-

formation for developing and maintaining software. People developing software 

products consistent with the CMM need a framework which helps them to analyse 

and implement these process information. In this thesis, we addressed a software 

process improvement issue by modelling the CMM's level 2 and 3. We believe 

that the key process areas described in the CMM's level 2 and 3 are the major 

barrier for software organisation. As a result, an infrastructure has been built to 

help software developers handle software processes. 

In the future, some technical problems, such as tree navigation, might be 

modified in order to run smoothly. Some processes, such as 00 testing strategies, 
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should be completely developed by the software organisation to comply with the 

whole processes. Moreover, SPI PASTA should be expanded into the key pro-

cess areas at level 4 and 5. These areas focus on establishing a quantitative 

understanding of both the software process and the software work products being 

built, and implementing continual and measurable software process improvement. 

These processes must base on the infrastructure defined at level 2 and 3 and soft-

ware organisations need time to build this infrastructure. Furthermore, the SET 

has developed a number of other CMMs, such as the System Engineering CMM 

(SE-CMM), the People CMM (P-CMM) and the Software Acquisition CMM (SA-

CMM). The SET is developing an integrated framework for describing the current 

and intended relationships of existing and potential maturity models. Ideally the 

various CMMs should work together harmoniously for the benefit of organisations 

needing to efficiently apply more than one CMM to improve their product qual-

ity and productivity. However, we believe it will be helpful by using artifact and 

process abstraction to integrate CMMs. Consequently, the process of developing 

the real-time and control systems should be included in SPI PASTA in the future. 

Finally, a measure of the actual results achieved by following a process should 

be appropriately collected and controlled. The common software measures for the 

organisation are comprised of process and product measures that summarise the 

software process performance achieved by the projects. In order to achieve this 

goal, the relevant tools must be integrated with SPI PASTA. This will provide a 

seamless connection between software processes and tools. With this integrated 

process environment, developers do their job by following SPI PASTA and the 

common data will be automatically collected by those tools. Once this step is 

achieved, it will be much easier to reach the final destination of software process 

improvement. 
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Appendix A 

P-state Definition Forms 

SPI PASTA has created more than 700 files which are interrelated with each 

other. Most of them are definition forms that describes required information to 

perform relevant activities. Among these files, the most important one is the 

P-state definition form which describes the artifacts process roles and relevant 

operations. All information can be found or connected in this form. Since it is 

impossible to present all files in this thesis, we would like to only list P-state 

definition forms. These forms are organised by alphabet. Readers can easily look 

for what they need and comply with SPI PASTA on the Web 

(http://www.dcs.ed.ac.uk/home/ky/PASTA/SPIPasta.htmnl).  
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Process State Definition Form 

Name Control_SQA_Issue 

Synopsis Objectively control the SQA issues which include software activities 
and software work products. 

Main Role Quality_Assurance_Staff 

Entrance 
Condition 

state-of(S QA_Plan)=Drafted 

Artifact List SQA_Issue 
Information 
Artifacts 

SQA_Plan 

Operation List 

Name Review—Activity 

Synopsis Objectively review designated software activities against the 
applicable requirements, process descriptions, standards, and 
procedures 

Name Review _Work _Product 

Synopsis Objectively review designated software work products against the 
applicable_  requirements _and _standards. 

Exit Condition state-of(S QA_Issue)=Controlled 

Informal 
Specification 

QA.AC.03 
QA.AC.04 

Formal 
Specification 



Process State Definition Form 

Name Create—Class—Diagram 

Synopsis A class is drawn as a solid-outline rectangular box with three 
compartments, with the class name in the top compartment, a list of 
attributes in the middle compartment, and a list of operations in the 
bottom compartment. 

The activity to create a class diagram is associated with the use case 
model. From use case model, we collect the same structure, 
behaviour and relationship to create the class. 

Main Role Software _Designer, Requirement—Analyst, 
Software_Product_Manager 

Entrance 
Condition 

state-of(CRC_Card)=Created 

Artifact List Class Diagram 
Information 
Artifacts 

CRC—Card, Use—Case—Diagram 

Operation List 

Name Identify—Key—Class 
Synopsis The key classes are identified from Use Case diagrams and CRC 

cards. 

Name Identify_Attribute_ And _Operation 

Synopsis Identify attributes and operations of the Class. 

Name Identify—Relationship 

Synopsis Identify the relationship between the Classes. 

Name Add _Interface _Class 
Synopsis Add the GUI Classes to the model. 

Name Complete—Class—Specification 

Synopsis Complete all descriptions of the Class Specification. 

Exit Condition state-of(Class_Diagram)=Created 



Informal Reviewing the software requirements to ensure that issues affecting 
Specification the software design are identified and resolved. 

Adhering to applicable software design criteria and standards. 

Developing the software architecture early, within the constraints of 
the software life cycle and technology being used. 

Reviewing and getting agreement with affected parties on the 
software architecture, to ensure that architecture issues affecting the 
detailed software design are identified and resolved. 

Basing the detailed software design on the software architecture and 
the software requirements. 

Documenting the software design. 

Tracing the software design to the software requirements and 
documenting the traceability. 

Placing the traceability documentation for the software design under 
version control and change control. 

Formal 
Specification 



Process State Definition Form 
Name Create_Collaboration_Diagram 
Synopsis Create the collaboration diagram to offer another dynamic view of 

the syste. 
Main Role Software—Designer, Requirement—Analyst, 

Software _Product _Manager 
Entrance 

Condition 
state-of(Sequence_Diagram)=Created 

Artifact List Collaboration _Diagram 
Information 
Artifacts 

Sequence—Diagram, Use_Case_Diagram 

Operation List 

Name Convert—Sequence—Diagram 
Synopsis Use CASE tools to convert the sequence diagram to the 

collaboration diagram. 

Name Refine_Collaboration_Diagram 
Synopsis Refine the converted collaboration diagram to complete design. 
Exit Condition state-of(Collaboration_Diagram)=Created 
Informal 

Specification 
Formal 

Specification 



Process State Definition Form 
Name Create—Implementation—Diagram 
Synopsis Create the implementation diagrams which include component 

diagrams _and _deployment _diagrams. 
Main Role Software _Designer, Requirement—Analyst, 

Software_Product_Manager 
Entrance 

Condition 
state-of(Implementation_Diagram) =Referenced 

Artifact List Implementation—Diagram 
Information 
Artifacts 

Operation List 

Name Create_Component_Diagram 
Synopsis Create the component diagram to show the dependencies among 

software components. 

Name Create_Deployment_Diagram 
Synopsis Create the deployment diagram to show the configuration of run-

time processing elements. 
Exit Condition state-of(Irnplementation_Diagram)=Created 
Informal 

Specification 
Formal 

Specification 



Process State Definition Form 
Name Create _Interaction _Diagram 
Synopsis Create the interaction diagram which includes the sequence diagram 

and _the _collaboration _diagram. 
Main Role Software _Designer, Requirement—Analyst, 

Software_Product_Manager 
Entrance 

Condition 
state-of(Interaction_Diagram)Referenced 

Artifact List Interaction _Diagram 
Information 
Artifacts 

Use—Case—Diagram 

Sub-P-State List 

Name Create—Sequence—Diagram 
Synopsis Create the sequence diagram to offer the dynamic view for the 

system. 

Name Create _Collaboration _Diagram 
Synopsis Create the collaboration diagram to offer another dynamic view of 

the syste. 
Exit Condition state-of(Interaction_Diagram)=Created 
Informal 

Specification 
Formal 
Specification 



Process State Definition Form 
Name Create—Requirement _Trace _Matrix 
Synopsis Create the Requirement Trace Matrix to handle the allocated 

requirement. 
Main Role Customer, Requirement—Analyst, Software _Product _Manager 

Entrance 
Condition 

state-of(Alloc ate d_Requirement)=Derived 

Artifact List Requirement _Trace _Matrix 
Information 
Artifacts 

Allocated—Requirement 

Operation List 

Name Extract _Allocated _Requirement 
Synopsis Produce an initial RTM that contains the entire set of sentence from 

the allocated requirement. 

Name Categorize RTM 
Synopsis Categorize each entry in the RTM according to its type. 
Exit Condition state-of(Requirement_  Trace _Matrix)=Categorized 
Informal 

Specification 
Formal 

Specification 



Process State Definition Form 
Name Create—Sequence—Diagram 
Synopsis Create the sequence diagram to offer the dynamic view for the 

system. 
Main Role Software—Designer, Requirement—Analyst, 

Software _Product _Manager 
Entrance 

Condition 
state-of(Sequence_Diagram)=Referenced and state-

of(Use_Case_Diagrarn)=Created 
Artifact List Sequence—Diagram 
Information 
Artifacts 

Use—Case—Diagram 

Operation List 

Name Identify_Object_Lifeline 
Synopsis Identify the object lifeline as completely as possible. 

Name Identify_Message 
Synopsis Identify the messages from the lifeline of one object to the lifeline of 

another object. 
Exit Condition state-of(Sequence_Diagram)=Created 
Informal 
Specification 
Formal 
Specification 



Process State Definition Form 
Name Create _Statechart-Diagram 
Synopsis Determine whether or not a Class has to create a statechart diagram, 

then, create a statechart diagram to present the individual behaviour 
of the class. 

Main Role Software _Designer, Requirement—Analyst, 
Software_Product_Manager 

Entrance 
Condition 

state-of(Class_Diagram)=Created 

Artifact List Statechart_Diagram 
Information 
Artifacts 

Class—Diagram, Use_Case_Diagram 

Operation List 

Name Identify—State 
Synopsis A state is a condition during the life of an object or an interaction 

during which it satisfies some condition, performs some action, or 
waits for some event. 

Name Identify_Internal_Transition 
Synopsis Examine all possible transitions within the state. 

Name Identify—External—Transition 
Synopsis Examine all possible transitions of states within the Class. 
Exit Condition state-of(Statechart_Diagram)=Created 
Informal 
Specification 
Formal 

Specification 



Process State Definition Form 
Name Create _Use _Case _Diagram 
Synopsis Create the use case diagram to present the allocated requirement. 
Main Role Customer, Requirement—Analyst, Software _Product _Manager 
Entrance 

Condition 
state-of(Requirement_Trace_Matrix)Categorized 

Artifact List Use_Case_Diagram 
Information 
Artifacts 

Requirement—Trace—Matrix, Allocated—Requirement 

Operation List 

Name Identify—Use—Case 
Synopsis Extract the software requirements from the RTM and reformat these 

requirements into Use Case format. 

Name Develop—Scenario 
Synopsis Develop scenario to provide the operational concept behind a use 

case. 

Name Establish—Project—Package 
Synopsis Establish an initial Package which is a collection of logically related 

classes. 

Name Allocate _Use _Case 
Synopsis The purpose of assigning Use Cases to Packages is to allocate the 

responsibility for Use Case development to a Package. 

Name Draft _GUI_Sketch 
Synopsis To provide a draft of the GUI for the system, as envisioned during 

the development of the scenarios. 
Exit Condition state-of(Use_Case_Diagram)=Created 
Informal 

Specification 
Formal 
Specification 
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Process State Definition Form 

Name Derive _Software _Development _Plan 

Synopsis There are two levels for deriving the software development plan: 
The low level for estimating and planning a software project is 
described in the Software Project Planning key process area in the 
CMM. 
The high level for managing the software development plan is 
described in the Integrated Software Process key process area. 

Main Role Senior—Manager, Quality_Assurance_Staff, SEPG, Testing_Staff, 
System_Engineer, Software _Product _Manager, Project—Manager 

Entrance state-of(Software_Development_Pl an)=Referenced and state- 
Condition of(PDSP)=Established 

Artifact List Software_Development_Plan 

Information Allocated—Requirement, PDSP 
Artifacts 

Sub-P-State List 

Name Draft _Schedule _And _Resource _Plan 

Synopsis Establish the software engineering resources needed by the project 
and the projects software schedule. 

Operation List 

Name Draft _Project—Mission _Plan 

Synopsis Draft the project mission plan with those affected on the project 
mission plan. 

Name Draft _Organisation_And_Responsibility_Plan 

Synopsis Draft the organisation and responsibility plan with those affected on 
the plan. 

Name Draft_Software_Engineering_Activity_Plan 

Synopsis Drafting  the softwrae enginnering activity plan means selecting 
software life cycle models for use in the organisation. 

Name Identify—Project—Risk 

Synopsis Identify and analyze software project risks. 

Exit Condition state-of(Software_Development_Plan)=Derived 

Informal IM.AC.03 
Specification PP.AC. 14 

PP.AC.15 
Project planning and oversight in MIL-STD-498 
Establishing a software development environment in MIL-STD-498 

Formal 
Specification 
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Process State Definition Form 

Name Derive—System—Requirement 

Synopsis This phase is to produce a complete system requirements for the 
software project. The starting point is usually from a set of customer 
requirements that describe the project or problem. 

Main Role Customer, System—Engineer, Software—Product—Manager, 

Project_Manager 

Entrance 
Condition 

state-of(System_Requirement)=Referenced 

Artifact List System—Requirement 

Information 
Artifacts 

Operation List 

Name Derive _Allocated _Requirement 

Synopsis This document is produced by the software engineering team as the 
key 	the _product _of 	_requirements _definition. 

Name Derive_System_Requirement_To_Hardware 

Synopsis This document is produced by the system engineering team as the 
key 	the _product _of_ 	_requirements _definition. 

Exit Condition state-of(System_Requirement)=Derived 

Informal 
Specification 

System requirements analysis in MIL-STD-498 
System design in MIL-STD-498 

Formal 
Specification 
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Process State Definition Form 

Name Develop_Organisational_Process 

Synopsis Develop Organisational Process to provide the ability to control the 
software project. 

Main Role Reviewer, Training—Staff, Software—Product—Manager, 
Project_Manager 

Entrance 
Condition 

state-of(Organisational_Process)=Referenced 

Artifact List Organisational Process 
Information 
Artifacts 

PDSP 

Sub-P-State List 

Name Perform—OrganisationTraining_Program 

Synopsis Perform the organisation training program to develop the skill and 
knowledge of the development team. 

Name Perform_Risk_Management 
Synopsis Software risk management involves identifying risks, analyzing their 

likelihood and potential impact, determining and evaluating risk 
contingencies, tracking risks, and proactively manageing the risks. 

Name Perform_Project_Interface_Coordination 

Synopsis The purpose of Project Interface Coordination is to ensure that 
software managers and staff effectively communicate, coordinate, 
and collaborate with other functions in the organisation to staisfy the 
customer's needs. 

Name Perform _Peer _Review 

Synopsis Perform the activities for peer reviews. 
Exit Condition state-of(Organisational_Process)=Developed 

Informal 
Specification 
Formal 

Specification 
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Process State Definition Form 
Name Develop_Software_Code 
Synopsis Develop and maintain the software code. 
Main Role Software—Programmer, Configuration—Management—Staff 
Entrance 

Condition 
state-of(Software_Design)=Developed 

Artifact List Software Code 
Information 

Artifacts 
Software—Design 

Operation List 

Name Generate_Body_Structure_code 
Synopsis Use the CASE tools to generate the body structure of a the Class. 

Name Implement _Source _Code 
Synopsis Implement the class method by using behaviour diagrams. 
Exit Condition state-of(S oftware_Code)=Developed 
Informal 

Specification 
PE.AC.05 
Establish _Productivity—Measure 
Establish_Quality_Measure 
Software implementation and unit testing in MIL-STD-498 

Formal 
Specification 
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Process State Definition Form 

Name Develop—Software—Design 

Synopsis Develop the software design to form the framework for coding. 

Main Role Software _Designer, Requirement _Analyst, 
Software_Product_Manager, Configuration_Management_Staff 

Entrance 
Condition 

state-of(Software_Requirement)=Developed 

Artifact List Software—Design 
Information 
Artifacts 

Software—Requirement 

Sub-P-State List 

Name Create—Class—Diagram 
Synopsis A class is drawn as a solid-outline rectangular box with three 

compartments, with the class name in the top compartment, a list of 
attributes in the middle compartment, and a list of operations in the 
bottom compartment. 

The activity to create a class diagram is associated with the use case 
model. From use case model, we collect the same structure, 
behaviour and relationship to create the class. 

Name Create _S tatechart_Diagram 

Synopsis Determine whether or not a Class has to create a statechart diagram, 
then, create a statechart diagram to present the individual behaviour 
of the class. 

Name Create _Interaction _Diagram 
Synopsis Create the interaction diagram which includes the sequence diagram 

and the collaboration diagram. 

Name Create—Implementation—Diagram 

Synopsis Create the implementation diagrams which include component 
diagrams _and _deployment _diagrams. 

Operation List 

Name Create—Activity—Diagram 

Synopsis Create the activity diagram to depict the execution steps to be 
performed by a method. 

Exit Condition state-of(Software_Design)=Developed 

Informal 
Specification 

PE.AC.04 
Software design in MIL-STD-498 

Formal 
Specification 
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Process State Definition Form 

Name Develop_Software_ manage ment_Process 

Synopsis Develop Software Management Processes to effectively and 
effeciently_  control _the _software _project. 

Main Role Management—Group, Customer, Software_Product_Manager 

Entrance 
Condition 

state-of(Software_Management_Process)Referenced 

Artifact List Software_Management_Process 

Information 
Artifacts 

PDSP 

Sub-P-State List 

Name Derive_System_Requirement 

Synopsis This phase is to produce a complete system requirements for the 
software project. The starting point is usually from a set of customer 
requirements that describe the project or problem. 

Name 
Synopsis 

Derive 
_ 

Software _Development _Plan 
There are two levels for deriving the software development plan: 
The low level for estimating and planning a software project is 
described in the Software Project Planning key process area in the 
CMM. 
The high level for managing the software development plan is 
described in the Integrated Software Process key process area. 

Name Perform_Software_Acquisition_Management 

Synopsis Perform Software Acquisition Management to manage the 
acquisition of software from sources external to the software project. 

Name Perform _Software _Project—Control 

Synopsis Track software project performance against the software 
development plan, and take corrective actions. 

Operation List 

Name Establish Commitment 
Synopsis Establish the software projects commitments. 

Exit Condition state-of(Software_Management_Process)=Developed 

Informal 
Specification 
Formal 

Specification 
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Process State Definition Form 

Name Develop—Software _Process _Improvement 

Synopsis Developing Software Process Improvement is trying to develop a 
framework that describes the necessary roles, activities, and 
resources needed for a successful process improvement effort. 

Main Role Development—Team 
Entrance 
Condition 

state-of(Software_Process_Improvement)=Initiated 

Artifact List Software _Process _Improvement 

Information 
Artifacts 

Sub-P-State List 

Name Establish—Organisation _Process _Focus 

Synopsis The purpose of Organisation Process Focus is to establish and 
maintain an understanding of the organisation's software processes 
and coordinate the organisation's software process improvement 
activities. 

Name Establish—Organisation _Process _Definition 

Synopsis Establish a usable set of software process assets that improve 
process performance across the organisation and that provide a basis 
for cumulative, long-term benefits to the organisation. 

Name Establish_PDSP 
Synopsis Establish the projects defined software process tailoring from the 

organisation's set of standard software process. 
The main tasks establishing projects defined software process are to 
model the software processes by using PASTA. 

Operation List 

Name Iterate _Or_Refine 

Synopsis 

Name Review 
Synopsis 
Exit Condition 
Informal 
Specification 
Formal 

Specification 
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Process State Definition Form 

Name Develop—Software—Requirement 
Synopsis Develop and maintain the software requirements. 

Main Role Requirement—Analyst, Software—Product—Manager, 
Configuration_Management_Staff, Project—Manager 

Entrance 
Condition 

state-of(Software_Management_Process)=Developed 

Artifact List Software—Requirement 

Information 
Artifacts 

Allocated_Requirement 

Sub-P-State List 

Name Create—Requirement _Trace _Matrix 

Synopsis Create the Requirement Trace Matrix to handle the allocated 
requirement. 

Name Create _Use _Case _Diagram 

Synopsis Create the use case diagram to present the allocated requirement. 

Operation List 

Name 
Synopsis 

Create _ CRC _Card 
Create CRC cards to assist analysts and customers in mapping the 

collaborations among classes, defined by the responsibilities each has 
in_  the _system _being _modelled. 

Exit Condition state-of(Software_Requirement)=Developed 

Informal 
Specification 

PE.AC.02 
PE.AC.03 
Software requirement analysis in MIL-STD-498 

Formal 
Specification 
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Process State Definition Form 

Name Develop—Software—Support—Process 

Synopsis Develop Software Support Process to support the software project 
management. 

Main Role Quality—Assurance—Staff, Software—Product—Manager, 
Configuration_Management_Staff, Project_Manager 

Entrance state-of(Software_Support_Process)=Referenced 
Condition 
Artifact List Software_Support_Process 

Information PDSP 
Artifacts 

Sub-P-State List 

Name Perform_Configuration_Management 

Synopsis This process involves: 
-Identifying the configuration of the software at given points in 

time. 
-Controlling changes to configuration items. 
-Building software work products from the software configuration 

library. 
-Maintaining the integrity of software baselines throughout the 

software life cycle. 

Name Perform_Software_Quality_Assurance 

Synopsis This process involves: 
-reviewing the software activities and work products against the 

applicable requirements, process descriptions, standards, and 
procedures. 
-identifying and documenting noncompliance issues. 
-providing feedback to project staff and managers. 
-ensuring _that _noncompliance _issues are addressed. 

Exit Condition state-of(S oftware_Support_Process)=Developed 

Informal 
Specification 
Formal 

Specification 
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Process State Definition Form 

Name Develop—Software _Technical _Process 

Synopsis Develop the software technical process to perform the engineering 
tasks to specify, design, build, deliver, and maintain the software 
using the project's defined software process in order to verify and 
validate that the software products satisfy their requirements. 

Main Role Development _Group, Quality_Assurance_Staff, 
Configuration_Management_Staff 

Entrance Condition state-of(Software_Technical_Process)=Referenced 

Artifact List Software _Technical _Process 
Information Artifacts Allocated—Requirement 

Sub-P-State List 

Name Develop—Software—Requirement 

Synopsis Develop and maintain the software requirements. 

Name Develop—Software—Design 
Synopsis Develop the software design to form the framework for coding. 

Name Develop_Software_Code 
Synopsis Develop and maintain the software code. 

Name Develop_Software_Test 
Synopsis Develop the software test to validate that the system satisfies its 

requirements. 

Operation List 

Name Develop_Operation_Documentation 
Synopsis Develop the documentation that will be used to install, operate, and 

maintain the software. 

Name Perform _Software _Enhancement 

Synopsis Maintain the software to correct problems, adapt to new operating 
environment, 	the software. _or_enhance 

Exit Condition state-of(S oftware_Technical_Process)=Developed 

Informal The technical software engineering tasks include: 
Specification - eliciting and analyzing the customer requirements and system 

requirements allocated to software, 
- developing the software requirements, 
- designing the software, 
- coding the software, 
- integrating the software, 
- testing the software to verify that it satisfies its requirement, 
- preparing documentation to support installation, operation, and 
maintenance of the software, 
- delivering the software to the customer, 
- supporting the operation and use of the software, and 
- maintaining the software. 

Formal Specification 
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Process State Definition Form 
Name Develop_Software_Test 
Synopsis Develop the software test to validate that the system satisfies its 

requirements. 
Main Role Customer, Testing_Staff, Software—Product—Manager, 

Configuration_Management_Staff, Project Manager 
Entrance 

Condition 
state-of(S oftware_Code)=Developed 

Artifact List Software Test 
Information 
Artifacts 

System—Requirement 

Sub-P-State List 

Name Perform _Software Jest 
Synopsis Perform the software test to validate that the system satisfies its 

requirements. 

Operation List 

Name Draft _Test _Plan 
Synopsis Draft the test plans to be followed while testing the end-to-end 

functionality of the _completed _system. 
Exit Condition state-of(S oftware_Test)=Developed 
Informal 

Specification 
Establish—Quality—Measure 

Formal 
Specification 
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Process State Definition Form 
Name Draft _Schedule _And _Resource _Plan 
Synopsis Establish the software engineering resources needed by the project 

and the project's software schedule. 
Main Role Requirement _Analyst, Software—Product—Manager, 

Project Manager 
Entrance 

Condition 
________________ 

state-of(Schedule_ And _Resource_Plan)=Referenced and state-
of(Allocated_Requirement)=Derived or state-
of(Software_Engineering_Activity_Plan)Drafted 

Artifact List Schedule _And _Resource _Plan 
Information 
Artifacts 

Object—Size—Category, Allocated_Requirement, Use_Case_Diagram 

Sub-P-State List 

Name Estimate _Software -Size 
Synopsis Estimate the size of all major software work products. 

Name Estimate_Effort_And_Cost 
Synopsis Estimate the effort and cost for the software project. 

Operation List 

Name Build_WBS 
Synopsis Establish and maintain a work breakdown structure for the software 

project. 

Name Estimate Resource 
Synopsis Estimate the software engineering resource needed by the software 

project. 

Name Estimate Schedule 
Synopsis Establish the project's software schedule. 
Exit Condition state-of(Schedule_  And _Resource _Plan)=Drafted 
Informal 

Specification 
Formal 

Specification 
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Process State Definition Form 
Name Establish—Organisation _Process _Definition 

Synopsis Establish a usable set of software process assets that improve 
process performance across the organisation and that provide a basis 
for cumulative, long-term benefits to the organisation. 

Main Role Senior—Manager, SEPG, Software—Product—Manager, 
Project—Manager 

Entrance 
Condition 

state-of(Organisaation_process_Definition)=Referenced 

Artifact List Organisation_Process_Definition 
Information 
Artifacts 

Organisation—Process—Focus 

Sub-P-State List L 
Name Establish _Software.  Measurement _Database 

Synopsis Establish and maintain the organisation's software measurement 
database. 

Operation List 

Name Establish_SSSP 
Synopsis Establish and maintain the organisation's set of standard software 

processes. 

Name Approve _Software _Life—Cycle 
Synopsis Establish and maintain the descriptions of the software life cycles 

approved for use in the organisation. 

Name Establish_Tailoring_Guideline 
Synopsis Establish and maintain the tailoring guidelines for the organisation's 

standard software process family. 

Name Establish _Process-related _Documentation 
Synopsis Establish and maintain the organisation's library of software process-

related documentation. 
Exit Condition state-of(Organisation_ Process _Definition)=Established 

Informal 
Specification 
Formal 

Specification 
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Process State Definition Form 
Name Establish_Organisation_ Process _Focus 
Synopsis The purpose of Organisation Process Focus is to establish and 

maintain an understanding of the organisation's software processes 
and coordinate the organisations software process improvement 
activities. 

Main Role Senior_Manager, SEPG 
Entrance 

Condition 
state-of(Organisation_Process_Focus)=Referenced 

Artifact List Organisation _Process _Focus 
Information 
Artifacts 

Sub-P-State List 

Name Perform—Organisation _Process _Focus 
Synopsis Perform the activities for software process improvement. 

Operation List 

Name Draft _Process_Improvement_Plan 
Synopsis Draft a software process improvement plan to manage the activities 

of organisation process focus. 
Exit Condition state-of(Organisation_  Process _Focus)=Established 
Informal 

Specification 
Formal 
Specification 
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Process State Definition Form 
Name Establish_PDSP 
Synopsis Establish the project's defined software process tailoring from the 

organisation's set of standard software process. 
The main tasks establishing project's defined software process are to 
model the software processes by using PASTA. 

Main Role Senior—Manager, SEPG, Software—Product—Manager, 
Project—Manager 

Entrance state-of(PDSP)=Referenced and state- 
Condition of(Organisation_Software_Process)=Established 
Artifact List Organisational—Process, Software—Support—Process, 

Software_Management_Process, Software_Technical_Process 
Information Organisation—Process—Definition 
Artifacts 

Sub-P-State List 

Name Develop—Software—Support—Process 
Synopsis Develop Software Support Process to support the software project 

management. 

Name Develop_Software_Management_Process 
Synopsis Develop Software Management Processes to effectively and 

effeciently_control the software project. 

Name Develop—Software _Technical _Process 
Synopsis Develop the software technical process to perform the engineering 

tasks to specify, design, build, deliver, and maintain the software 
using the project's defined software process in order to verify and 
validate that the software products satisfy their requirements. 

Name Develop_Organisational_Process 
Synopsis Develop Organisational Process to provide the ability to control the 

software project. 
Exit Condition state-of(PDSP)=Established and state-of(S SS P)=Updated 
Informal IM.AC,02 

Specification IM.AC.03 
IM.AC.08 

Formal 
Specification 
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Process State Definition Form 
Name Establish_Productivity_Measure 
Synopsis Establish the productivity measure to estimate the development time 

for each project task. 
Main Role Software _Product _Manager, Project—Manager 
Entrance 

Condition 
state-of(Software_Technical_Process)=Referenced 

Artifact List Productivity—Measure 
Information 
Artifacts 

Project—Plan—Summary, Time_Recording_Log, 
Size_Estimating_Template 

Operation List 

Name Build _Time _Recording_Log 
Synopsis { Build the time recording log and calculate development time. 

Name Build _Size _Estimating—Template 
Synopsis Build the size estimating template to guide the size estimating 

process and to hold the estimate data. 

Name Build_Project_Plan_Summary 
Synopsis Build the project plan summary to hold the estimated and actual 

project data in a convenient and readily retrievable form. 
Exit Condition state-of(Productivity_Measure)=Established 
Informal 

Specification 
Formal 

Specification 
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Process State Definition Form 
Name Establish_Quality_Measure 
Synopsis Establish the quality measure to improve developer's quality 
Main Role Software _Product _Manager, Project Manager 
Entrance 

Condition 
state-of(Software_Technical_Process)Referenced 

Artifact List Quality_Measure 
Information 
Artifacts 

Defect—Recording—log 

Operation List 

Name Build _Defect _Recording—Log 
Synopsis Build the defect recording log to hold the data on each defect as you 

find and correct. 
Exit Condition state-of(Quality_Measure)=Established 
Informal 

Specification 
Formal 

Specification 
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Process State Definition Form 
Name Establish _Software _Measurement _Database 
Synopsis Establish and maintain the organisation's software measurement 

database. 
Main Role SEPG, Software _Product _Manager, Project—Manager 
Entrance 

Condition 
state-of(Software_Measurement_Database)=Referenced 

Artifact List Software—Measurement—Database 
Information 
Artifacts 

Sub-P-State List 

Name Establish_Productivity_Measure 
Synopsis Establish the productivity measure to estimate the development time 

for each project task. 

Name Establish—Quality—Measure 
Synopsis Establish the quality measure to improve developers quality 

Operation List 

Name Establish LOC Counting—Standard 
Synopsis Establish the LOC counting standard to count the program size. 

Name Establish_Object_Size_Category 
Synopsis Establish object size categories to give organisation a feamework for 

judging the size of the new objects in the planned product. 
Exit Condition state-of(Software_  Measurement _Database)=Established 
Informal 

Specification 
PD.AC.05 

Formal 
Specification 
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Process State Definition Form 
Name Estimate_Effort_And_Cost 
Synopsis Estimate the effort and cost for the software project. 
Main Role Requirement _Analyst, Software—Product—Manager, 

Project Manager 
Entrance 
Condition 

state-of(Software_S ize)=Estimated 

Artifact List Effort _And _Cost 
Information 
Artifacts 

Project—Plan—Summary, Software—Size 

Operation List 

Name Get_Productivity_Measure 
Synopsis Get the developers productivity to estimate ptoject's effort and 

costs. 

Name Calculate_Time_Required 
Synopsis Calculate required effort and costs from estimated program size and 

developer's productivity. 

Name Document_Estimated_Time 
Synopsis Document the estimated time in the software measurement database. 
Exit Condition 
_______________ 

state-of(Effort_And_Cost)=Estimated and state-
of(Project_Plan_Summary)=Updated 

Informal 
Specification 

PP.AC.05 
PP.AC.07 

Formal 
Specification 
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Process State Definition Form 
Name Estimate _Software _Size 
Synopsis Estimate the size of all major software work products. 
Main Role Requirement—Analyst, Software—Product—Manager, 

Project—Manager 
Entrance 

Condition 
________________ 

(state-of(Allocated_Requirement)=Derived or state-
of(Use_Case_Diagram)=Created) and state- 
of(Obj ect_Category_Size)=Defined 

Artifact List Software Size 
Information 

Artifacts 
Allocated—Requirement, Class_Diagram 

Operation List 

Name Compare—Category—Size 
Synopsis Estimate the new object size by comparing the object category size. 

Name Calculate _Software _Size 
Synopsis  Use the PROBE method to calculate the software size. 

Name Document—Estimated—Size 
Synopsis Document the software size data to make regression analysis. 
Exit Condition state-of(S oftware_Size)=Documented 
Informal 

Specification 
PP.AC.05 
PP.AC.06 

Formal 
Specification 
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Process State Definition Form 
Name Identify—Training—Need 
Synopsis Identify the training needs which include the organisational needs 

and the project needs. 
Main Role Training—Staff, Software_Product_Manager, Project Manager 
Entrance 

Condition 
state-of(Training_Plan)=Drafted 

Artifact List Training—Need 
Information 
Artifacts 

SSSP, PDSP 

Operation List 

Name Identify—Organisational Need 
Synopsis Identify the strategic software training needs of the organisation. 

Name Determine—Project—Need 
Synopsis Determine the organisational training support needed to address the 

specific training needs of software projects and support groups. 
Exit Condition state-of(Training_Need)=Identified 
Informal 

Specification 
Formal 

Specification 

31 



Process State Definition Form 
Name Manage_Configuration_Item 
Synopsis The configuration items have been identified, controlled and 

recorded. 
Main Role Configuration—Management—Staff 
Entrance 

Condition 
state-of(CM_Library_System)=Built 

Artifact List Configuration—Item 
Information 
Artifacts 

CM—Plan 

Operation List 

Name Identify—Configuration—Item 
Synopsis Identify the configuration items that will be placed under software 

configuration management. 

Name Control_Configuration_Item 
Synopsis Control changes to the content of configuration items. 

Name Record_Configuration_Item 
Synopsis Establish records describing configuration items. 
Exit Condition state-of(Configuration_Item)=Managed 
Informal 

Specification 
Formal 

Specification 
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Process State Definition Form 
Name Manage_Supplier_Monitoring 
Synopsis Monitor the software suppliers performance and results to ensure 

that the software satisfies its requirements. 
Main Role Quality—Assurance—Staff, Contract_Management_Staff, 

Software _Product _Manager, Project—Manager 
Entrance 

Condition 
state-of(S upplier_Selection)=Managed 

Artifact List Supplier_Monitoring 
Information 
Artifacts 

Acquisition—Plan 

Operation List 

Name Track—Supplier 
Synopsis Track the software suppliers performance against the supplier 

agreement. 

Name Review _Technical _Issue 
Synopsis Review technical issues with the software supplier. 

Name Review_Management_Issue 
Synopsis Review management issues with the software supplier. 

Name Evaluate Supplier 
Synopsis Periodically evaluate the performance of the software supplier. 

Name Accept_Acquired_Software 
Synopsis Conduct acceptance reviews and tests for the acquired software and 

associated work products prior to them being accepted. 
Exit Condition state-of(Supplier_Monitoring)=Managed 
Informal 

Specification 
Formal 

Specification 
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Process State Definition Form 

Name Manage_Supplier_Selection 

Synopsis Select software suppliers and establish the agreements with the 
software suppliers. 

Main Role Requirement _Analyst, Contract—Management—Staff, 
Software_Product_Manager, Project—Manager 

Entrance 
Condition 

state-of(Supplier_Selection)=Referenced and state-
of(Acguisition_Plan)=Drafted 

Artifact List Supplier—Selection 

Information 
Artifacts 

Acquisition—Plan 

Operation List 

Name Determine_Acquisition_Need 

Synopsis Determine the software acquisition needs for the software project. 

Name Establish—Requirement 

Synopsis Establish the requirements for the acquired software. 

Name Acquire _COTS _Product 

Synopsis Select off-the-self software products to satisfy the software projects 
needs. 

Name Select Contractor 

Synopsis Select software contractors based on an evaluation of their ability to 
meet the specified software requiremet. 

Name Establish Contract 

Synopsis Establish an agreement with the software supplier as the basis for 
managing _the _contractual _relationship. 

Exit Condition state-of(S upplier_Selection)=Managed 

Informal 
Specification 
Formal 

Specification 
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Process _State _Definition _Form 
Name Perform—ConfigurationManagement 
Synopsis This process involves: 

-Identifying the configuration of the software at given points in 
time. 
-Controlling changes to configuration items. 
-Building software work products from the software configuration 

library. 
-Maintaining the integrity of software baselines throughout the 

software life cycle. 
Main Role Configuration_Management_Staff 
Entrance state-of(Configuration_Management)=Initiated 

Condition 
Artifact List Configuration—Management 
Information 
Artifacts 

Sub-P-State List 

Name Manage_Configuration_Item 
Synopsis The configuration items have been identified, controlled and 

recorded. 

Operation List 

Name Draft _CM_Plan 
Synopsis Establish the plan for performing software configuration 

management. 

Name Build _CM_Library—System 
Synopsis Build a software configuration library system for the software 

baselines. 

Name Verify—CM—system 
Synopsis Verify the status of software configuration management activities 

and contents. 
Exit Condition state-of(Configuration_Management)=Verified 
Informal Software configuration management in MIL-STD-498 
Specification 
Formal 

Specification 
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Process State Definition Form 

Name Perform—Organisation _Process _Focus 

Synopsis Perform the activities for software process improvement. 

Main Role Senior_Manager, SEPG 
Entrance 
Condition 

state-of(Process_Improvement_Plan)=Drafted 

Artifact List Organisation _Process _Focus 

Information 
Artifacts 

Process—Improvement—Plan 

Operation List 

Name Appraise _Software _Process 

Synopsis Appraise the organisation's software processes to identify strengths 
and weaknesses periodically and as needed. 

Name Draft _Action _Plan 

Synopsis Draft an action plan to address the findings of the software process 
appraisals. 

Name Implement _Action _Plan 

Synopsis Coordinate implementation of software process action plans across 
the organisation. 

Name Deploy_Software_Process_Asset 

Synopsis Coordinate the deployment of the organisation's software process 
assets. 

Name Evaluate _Software _Process _Asset 

Synopsis Review and evaluate the organisation's software process assets. 

Exit Condition state-of(Organisation_  Process _Focus)=Performed 

Informal 
Specification 
Formal 

Specification 
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Process State Definition Form 

Name Perform _Organisation Training_Program 

Synopsis Perform the organisation training program to develop the skill and 
knowledge of the _development _team. 

Main Role Training_Staff, Project—Manager 

Entrance 
Condition 

state-of(Organisation_Training_Program)Referenced 

Artifact List Organisation_Training_Program 

Information 
Artifacts 

PDSP 

Sub-P-State List 

Name Identify_Training_Need 

Synopsis Identify the training needs which include the organisational needs 
and the project needs. 

Operation List 

Name Draft _Training—Plan 
Synopsis Draft the training plan for organisational software training. 

Name Build_Training_Material 

Synopsis Establish and maintain software training materials that address the 
needs of the organisation. 

Name Execute—Training—Program 

Synopsis  Train people in the software skill needed to perform their their roles. 

Name Build _Training _Record 
Synopsis Establish and maintain training records for the organisation. 

Exit Condition state-of(Organisation_Training_Program)=Performed 

Informal 
Specification 
Formal 

Specification 
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Process State Definition Form 

Name Perform _Peer _Review 
Synopsis Perform the activities for peer reviews. 

Main Role Reviewer, Software _Product _Manager, Project—Manager 

Entrance 
Condition 

state -.of(Peer_Reviews)=Referenced 

Artifact List Peer Reviews 
Information 
Artifacts 

PDSP 

Operation List 

Name Draft _Peer _Review _Plan 

Synopsis Draft the peer review plan to conduct the peer reviews activities. 

Name Conduct_Peer_Review_Activity 

Synopsis Conduct and implement peer review activities. 

Name Record _Peer _Reviews _Data 

Synopsis Record data on the preparation, conduct, and results of the peer 
reviews of the software work products. 

Exit Condition state-of(Peer_Review)=Perforrned 

Informal 
Specification 

Establish—Quality—Measure 
Joint technical and management reviews in MIL-STD-498 
Corrective _action _in_MIL-STD-498 

Formal 
Specification 
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Process State Definition Form 

Name Perform_Project_Interface_Coordination 

Synopsis The purpose of Project Interface Coordination is to ensure that 
software managers and staff effectively communicate, coordinate, 
and collaborate with other functions in the organisation to staisfy the 
customer's needs. 

Main Role Development—Group, Management—Group 

Entrance 
Condition 

state-of(Project_Interface_Coorclination)=Referenced 

Artifact List Project_ Interface _Coordination 

Information 
Artifacts 

Software—Management—Process, Software—Technical—Process 

Operation List 

Name Draft.  Coordination _Plan 

Synopsis Draft a coordination plan to conduct the activities of project 
interface coordination. 

Name Perform—Coordination—Activity 

Synopsis Perform related activities of project interface coordination. 

Exit Condition state-of(Project_ Interface _Coordination)=Performed 

Informal 
Specification 
Formal 

Specification 
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Process State Definition Form 

Name Perform _Risk _Management 

Synopsis Software risk management involves identifying risks, analyzing their 
likelihood and potential impact, determining and evaluating risk 
contingencies, tracking risks, and proactively manageing the risks. 

Main Role System—Engineer, Software _Product _Manager, Project—Manager 

Entrance 
Condition 

state-of(Risk_Management)=Referenced 

Artifact List Risk_Management 

Information 
Artifacts 

Software_Management_Process, Software—Technical—Process 

Operation List 

Name 
Synopsis 

Draft 
_ 

Risk _Management_Plan 
Draft a risk management plan to conduct the activities of the 

software risk management. 

Name Identify—Risk 

Synopsis Identify and document software project risks. 

Name Analyze—Risk 
Synopsis Analyze identified software project risks to determine risk exposure 

and priority. 

Name Mitigate _Risk 
Synopsis Mitigate the software project risk. 
Exit Condition state-of(Risk_Management)=Performed 

Informal 
Specification 
Formal 

Specification 
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Process State Definition Form 

Name Perform _Software _Acquisition—Management 

Synopsis Perform Software Acquisition Management to manage the 
acquisition of software from sources external to the software project. 

Main Role Software—Supplier, Requirement—Analyst, 
Contract—Management—Staff, Software—Product—Manager, 
Project—Manager 

Entrance 
Condition 

state-of(Software_Acquisition_Management)=Referenced 

Artifact List Software _Acquisition _Management 

Information 
Artifacts 

PDSP 

Sub-P-State List 

Name Manage—Supplier _Selection 
Synopsis Select software suppliers and establish the agreements with the 

software suppliers. 

Name Manage_Supplier_Monitoring 
Synopsis Monitor the software suppliers performance and results to ensure 

that the software satisfies its requirements. 

Operation List 

Name Draft_Acquisition_Plan 

Synopsis Establish the acquisition plan for managing the acquisition of 
software. 

Exit Condition state-of(Software_Acquisition_Management)=Performed 

Informal 
Specification 
Formal 

Specification 
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Process State Definition Form 

Name Perform_Software_Project_Control 

Synopsis Track software project performance against the software 
development plan, and take corrective actions. 

Main Role Development—Group, Customer, Project—Manager 

Entrance 
Condition 

state-of(Software_Development_Plan)=Derived and state-
of(Software_  Technical _Process)=Referenced 

Artifact List Software_Development_Plan 
Information 
Artifacts 

Software—Management—Process, Software—Technical—Process 

Operation List 

Name Track SDP 
Synopsis Actual performance and results of the software project are tracked 

against the software develpment plan. These issues include the size 
of software work products, software costs and efforts, critical 
computer resources, software engineering facilities, the schedule, 
risks, commitments, and project reviews. 

Name Correct SDP 
Synopsis Take corrective action as necessary when actual accomplishments 

and progress differ significantly from that planned. 

Name Maintain—SDP 

Synopsis Revise the software development plan to reflect accomplishments, 
progress, changes, and corrective actions as appropriate. 

Exit Condition state-of(Software_Development_Pl an) =Rev ised 

Informal 
Specification 
Formal 

Specification 
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Process State Definition Form 

Name Perform _Software—Quality _Assurance 

Synopsis This process involves: 
-reviewing the software activities and work products against the 

applicable requirements, process descriptions, standards, and 
procedures. 
-identifying and documenting noncompliance issues. 
-providing feedback to project staff and managers. 
-ensuring that noncompliance issues are addressed. 

Main Role Senior _Manager, Quality_Assurance_Staff 

Entrance 
Condition 

state-of(Software_Quality_Assuranced)=Initiated 

Artifact List Software_Quality_Assurance 

Information 
Artifacts 

Sub-P-State List 

Name Control_SQA_Issue 
Synopsis Objectively control the SQA issues which include software activities 

and software work products. 

Operation List 

Name Draft_SQA_Plan 
Synopsis Draft the plan for software quality assurance in the early stage of the 

overall project planning. 

Name Reprot_SQA_Result 
Synopsis Report the results of the software quality assurance activities and 

address noncompliance issues. 
Exit Condition state-of(Software_Quality_Assurance)=Reported 

Informal 
Specification 

Software quality assurance in MIL-STD-498 

Formal 
Specification 
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Process State Definition Form 

Name Perform _Software _Test 

Synopsis Perform the software test to validate that the system satisfies its 
requirements. 

Main Role Customer, Requirement _Analyst, Testing_Staff, 
Software_Product _Manager, Project-Manager 

Entrance 
Condition 

state- of(Test_Pl an)=Drafted and state-
of(Software_Code)=Developed 

Artifact List Software—Test 

Information 
Artifacts 

Test—Plan 

Operation List 

Name Perform_Integration_Test 

Synopsis Perform integration test to ensure that the software components 
interact correctly when combined. 

Name Perform_System_Test 

Synopsis Perform system test to validate the software satisfies the allocated 
requirements. 

Name Perform—Acceptance—Test 

Synopsis Perform acceptance test to demonstarte to the customer that the 
software system satisfies the customer requirements for the software 
project. 

Exit Condition state-of(Software_Test)Performed 

Informal 
Specification 

Establish—Quality—Measure 

Formal 
Specification 
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