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Abstract 
 
The ionotropic glutamate AMPA ((R,S)-α-amino-3-hydroxy-5-methyl-4-

isoxazolepropionic acid) receptor mediates the majority of excitatory transmission in 

the CNS.  AMPA receptors play a crucial role in both basal neurotransmission and 

synaptic plasticity events (such as long-term potentiation, LTP).  Compounds that 

‘potentiate’ AMPA receptor function (‘Ampakines’) are known to positively 

modulate glutamatergic AMPA receptor-gated currents, by slowing the deactivation 

and desensitisation rate of the receptors, in the presence of the endogenous agonist 

glutamate.  Ampakines have been shown to facilitate LTP induction, improve 

cognition, and as such have potential in the treatment of conditions such as 

depression and psychoses (schizophrenia).  The main aim of this thesis was to 

investigate the functional actions of two novel Ampakines, Org 26576 and Org 

24448, in the mouse brain.  The studies described in this thesis were designed to 

address this and are outlined as follows: 

 
1.   Characterisation and validation of an in vivo semi-quantitative model 

of [14C]-2-deoxyglucose autoradiography in the C57Bl/6J mouse 
The first study sought to develop and characterise a model of [14C]-2-deoxyglucose 

autoradiography, to allow measurement of regional alterations in local cerebral 

glucose use (LCGU) in the mouse CNS.  Following intraperitoneal injection of [14C]-

2-deoxyglucose in C57Bl/6J mice, the radiolabelled brains were sectioned and 

exposed to x-ray film.  The resultant autoradiograms were semi-quantitatively 

analysed for relative optical densities in predetermined regions of interest. The 

baseline LCGU values in different brain regions were found to be consistent with 

previously published data.  The model was also able to replicate the effects of a well-

characterised compound, the NMDA receptor antagonist MK-801 (0.5 mg/kg), in 

respect to functional cerebral changes. Characteristic effects such as prominent 

increases in LCGU in the limbic system, and decreases in the somatosensory cortex 

were reproduced in the model.  Thus the semi-quantitative [14C]-2-deoxyglucose 

model was reproducible and accurate and thus could be further used to investigate the 

effects of the novel Ampakines, Org 26576 and Org 24448, on cerebral function. 

 X



 

 
2.   Investigation into the effects of acute administration of the novel 

Ampakines Org 26576 and Org 24448 on functional activity in the 
murine cerebrum 

Following the establishment of the methodology, regional alterations in LCGU in 

response to the Ampakines Org 26576 and Org 24448 were investigated using [14C]-

2-deoxyglucose autoradiography.  Both Org 26576 and Org 24448 produced 

regionally selective, dose-dependent increases in LCGU in the mouse cerebrum 

when administered acutely (~1 hr).  The compounds displayed similar yet 

functionally distinct profiles of activation, the highest levels of activation occurred in 

areas of the limbic system (hippocampus), sensory systems, and various nuclei 

(raphe nucleus).  Their effects were blocked by pre-administration of the potent 

selective AMPA receptor antagonist, NBQX (10 mg/kg), which itself had minimal 

effects on LCGU.  These data provide an anatomical basis for the cerebral activation 

induced by these compounds, which are directly AMPA receptor mediated. Areas 

activated also closely correlated with brain regions implicated in various psychiatric 

conditions, and as such is suggestive of a potential therapeutic benefit of these 

compounds in conditions such as depression and schizophrenia. 

 
3.  Investigation into the effects of chronic administration of the novel 

Ampakines Org 26576 and Org 24448 on functional activity, 
neurogenesis and receptor/signalling alterations in the murine 
cerebrum 

Following the demonstration that acute administration of Org 26576 and Org 24448 

displayed regionally selective and dose-dependent alterations in LCGU, the effect of 

chronic administration of the Ampakines Org 26576 and Org 24448 on regional 

functional alterations ([14C]-2-deoxyglucose autoradiography), neurogenesis (BrdU 

labelling), and proteins levels (GluR, MAPK, LynK and CREB) (Western blot 

analysis) were investigated.  Chronic administration (7 and 28 days) of Org 26576 (1 

mg/kg) and Org 24448 (10 mg/kg) induced functional cerebral increases in the 

mouse cerebrum particularly in areas of the mesocorticolimbic system, which were 

not only rapid in onset, with significant effects visible after 7 days administration; 

but importantly were also persistent and long lasting.  Chronic administration of the 
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compounds had no significant effect on the level of neurogenesis or on the levels 

AMPA receptor subunits (GluR1,2,3), and signalling pathways (MAPK/LynK-

CREB pathway), implicated in AMPA/Ampakine signalling, in the murine 

hippocampus.  These data show that the Ampakines Org 26576 and Org 24448 when 

administered chronically can potentiate complex neural networks intimately 

associated with disease states, the effects of which are maintained over prolonged 

periods. There was no evidence that this involved an effect on neurogenesis or the 

MAPK/LynK-CREB signalling pathway. 

 

4.   Modulation of AMPA receptor kinetics by Org 26576 and Org 24448 
influences synaptic plasticity in the murine hippocampus 

The ability of Org 26576 and Org 24448 to modify baseline kinetic properties of 

AMPA receptors and a paradigm of synaptic plasticity, LTP, in the mouse 

hippocampus was investigated using electrophysiology.  Both Org 26576 and Org 

24448 produced dose-dependant increases in fEPSP amplitude without affecting the 

half-width of responses, in acute hippocampal slices.  Concentrations of both 

compounds, equating to functionally active levels witnessed in vivo, potentiated a 

stable form of LTP; whilst higher EC50 concentrations prevented the maintenance of 

LTP.  These results are suggestive that Org 26576 and Org 24448 are effective in 

boosting the neural correlate of cognition, LTP, and may have potential in treating 

cognitive deficits, for example those associated with depression, schizophrenia or 

Alzheimer’s disease. 

 

The data presented in this thesis illustrate that the novel Ampakines Org 26576 and 

Org 24448 centrally modulate brain regions and circuitry intimately associated with 

conditions such as depression and schizophrenia (psychoses), with effects that are 

rapid in onset and persistent over chronic periods of administration.  Specifically 

targeting the glutamatergic system through the use of these compounds may provide 

an innovative approach to treat various conditions that may be partly due to a 

compromise of normal excitatory glutamatergic neurotransmission. 
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Chapter 1 
 

Introduction 



1.1. Glutamate 
 
1.1.1. A historical overview 
Glutamate is the primary excitatory neurotransmitter in the mammalian brain, with 

approximately 60-80% of all neurons receiving a glutamatergic input.  L-glutamate 

was first purported to be a synaptic transmitter in the brain by Hayashi in 1954, who 

discovered that injection of glutamate via an intracerebroventricular or intracarotid 

route produced convulsions in both dogs and monkeys (Hayashi, 1952 & 1954).  

However, for many years its role as a central transmitter was widely contested.  It 

was argued by its detractors that not only was it present at too high a level in the 

brain and its function was not confined to a limited number of synaptic pathways, but 

most importantly it did not fit the stringent and specific criteria at the time used to 

validate a substance, such as acetylcholine, as a transmitter. 

 

General acceptance of its role as a neurotransmitter was not achieved for a further 20 

years, and was mainly due in part to the advent of advanced electrophysiological 

recording techniques and the discovery of specific glutamate antagonists; both of 

which allowed the repudiation of all the theoretical obstacles for its role as a 

transmitter.  Initial experiments by  Watkins, Curtis and colleagues demonstrated that 

experiments with glutamate, and both naturally occurring and artificially synthesised 

analogues such as N-methyl-D-aspartate (NMDA), quisqualic acid and α-amino-3-

hydroxy-5-methylisoxazole-4-propionic acid (AMPA);  resulted in dramatic 

depolarisation of neurones with what appeared to be sub-type specific responses.  

These experiments in turn led to the proposal that a receptor binding site existed for 

glutamate and its analogues (Curtis & Watkins 1960; 1965; Krogsgaard-Larsen et al., 

1960).  At the same time, attention was also being focused on the mechanisms of 

cellular uptake and release of glutamate from nerve terminals (Curtis & Johnston, 

1974), which further established reasonable ‘logistics’ for the role of glutamate in 

synaptic transmission (Watkins, 1972). 

 

The first hint of the existence of multiple excitatory amino acid receptors was 

provided by Hugh McLennan and colleagues when they compared the actions of DL-

homocysteate with glutamate in different regions of the thalamus.  They ascribed the 

1 



regional differences observed in the relative potencies to the possibility of there 

being more than a single glutamate receptor (McLennan et al., 1968; Watkins, 2006).  

Further to this, the Curtis/Johnston team showed that glutamate analogues such as N-

methyl-D-aspartate (NMDA), quisqualate, and kainic acid demonstrated varying 

degrees of potency on a subset of neurones in the spinal cord (McCulloch et al., 

1974); further reinforcing the idea of the existence of distinct glutamate receptor 

subsets.   

 

Further essential evidence was provided by studies carried out at Bristol by Jeffrey 

Watkins, Tim Biscoe and Richard Evans.  Low concentrations of magnesium (0.1-

0.2 mM) added to traditional frog Ringer solution reduced evoked synaptic activity 

in response to a specific subset of amino acids.  NMDA-responses were completely 

abolished, L-glutamate responses were reduced intermediately, whereas kainite and 

quisqualic acid responses remained virtually unchanged.  Work with other 

compounds such as HA-966 and diaminopimelic acid (DAP) replicated the work 

with Mg2+ ions (Evans et al., 1979).  These three compounds seemed to be acting at 

distinct sites to produce near identical effects, further reinforcing the idea of different 

receptors for NMDA and kainite; ultimately leading to an initial classification of 

receptors into NMDA and non-NMDA (Watkins & Evans, 1981).  Non-NMDA 

receptors were further subdivided into quisqualate and kainite, due to the discovery 

of kainite-specific effect in dorsal root C-fibres. 

 

With the advent of specific receptor antagonists, especially D-2-amino-5-

phosphonopentanoate (D-AP5) (Davies et al., 1982; Evans et al., 1982; Perkins et 

al., 1982), further supportive evidence of distinct glutamate receptor in synaptic 

transmission was gathered in the 1980s.  Two additional key studies led to additional 

large changes in the glutamate field.  Firstly, it was observed that AMPA was a more 

potent, selective, quisqualate-like agonist (Krogsgaard-Larsen et al., 1980; Honore et 

al., 1982).  And secondly, L-glutamate and its analogues, specifically quisqualate, 

were observed to be able to stimulate phosphatidylinositol hydrolysis and 

intracellular Ca2+ mobilisation (Sladeczek et al., 1985; Nicoletti et al., 1986).  This 

led not only to the renaming of non-NMDA receptors to AMPA and kainate 
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(Collingridge and Lester, 1989), but also gave rise to a new class of receptors that 

were functionally coupled to G-proteins and second messenger systems, 

subsequently termed the metabotropic glutamate receptors (Watkins, 2000). 
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Fig 1.1.  Diagrammatic representation of the major glutamate receptors at an 
excitatory glutamatergic synapse 
 

Currently therefore, glutamate receptors can be split into two distinct groups: the 

slow acting metabotropic glutamate receptors (mGluRs), which are coupled to 

membrane-bound G-proteins and mediate function through various downstream 

intracellular secondary messenger systems; and the fast-acting ionotrophic glutamate 

receptors (iGluRs) which mediate function via an integrated cationic ion channel 

which primarily gates Na+ influx but also Ca2+ and K+ (efflux) (Fig 1.2.). 
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1.1.2. Glutamate receptor gene families 
With the advent of advanced molecular biology and the application of cDNA cloning 

techniques, glutamate receptors were cloned and expressed in recombinant systems 

in the late 1980’s.  Expression cloning in Xenopus oocytes revealed the cDNA for the 

first glutamate receptor subunit to be identified, which in time was determined to be 

the AMPA receptor subunit GluR1 (Hollmann and Heinemann, 1989).  Based on 

homology cloning for this identified GluR1 subunit the other GluR AMPA subunits 

were quickly identified: GluR2, GluR3 and GluR4 (Keinanen et al., 1990).  In total it 

emerged that NMDA, AMPA, and kainate receptor subunits were encoded by at least 

6 gene families: one family for AMPA receptors, two for kainate, and three for 

NMDA (reviewed Dingledine et al., 1999).  Within these outlined families there is 

considerable preserved homology, ~65-75%.  However between separate families 

there is only 40-50% sequence homology; this nonetheless suggests a common 

evolutionary origin for all the ionotropic glutamate receptor subtypes. Orphan 

subunits, δ1 and δ2, have also been identified (Lomeli et al., 1993).  These are 

distinct structural relatives to the glutamate receptor subtypes sharing only 18-25% 

amino-acid identity.  They do not form functional channels and do not modify the 

function of other subunit combinations, and are still poorly characterised as their 

functional activity and ligand-binding properties have as yet defied analysis 

(reviewed Dingledine et al., 1999). 

 

1.2. AMPA Receptors 
 

AMPA receptors are found in the majority of excitatory synapses and function to 

mediate fast excitatory neurotransmission in the CNS.  Their rapid kinetic properties 

make them ideally suited for this task.  Primarily responsible for gating Na+, they 

generally display an inherent low permeability to Ca2+, ensuring that glutamate- 

activated ionic currents mediated by these channels do not carry sufficient Ca2+ ions 

into cells to initiate biochemical or down-stream processes triggered by increases in 

intracellular calcium levels (Seeburg, 1993). 

4 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fi
g 

1.
2.

  T
he

 d
iv

er
se

 m
ol

ec
ul

ar
 g

en
e 

fa
m

ili
es

 o
f t

he
 g

lu
ta

m
at

e 
re

ce
pt

or
s

An
 o

ve
rv

ie
w

 o
f 

th
e 

cu
rr

en
t 

cl
as

si
fic

at
io

n 
of

 io
no

tro
pi

c 
an

d 
m

et
ab

ot
ro

pi
c 

gl
ut

am
at

e 
re

ce
pt

or
s,

 t
he

ir 
kn

ow
n 

su
bu

ni
ts

, 
an

d 
pr

im
ar

y 
si

gn
al

lin
g 

m
ec

ha
ni

sm
s.

 
 

G
lu

ta
m

at
e 

ac
tiv

at
es

 
bo

th
 

ca
tio

n-
pe

rm
ea

bl
e 

io
no

tro
pi

c 
re

ce
pt

or
s 

an
d 

m
et

ab
ot

ro
pi

c 
re

ce
pt

or
s 

co
up

le
d 

vi
a 

G
-p

ro
te

in
s 

to
 a

ct
iv

at
e 

ph
os

ho
lip

as
e 

C
 (

P
LC

) 
or

 in
hi

bi
t 

ad
en

yl
at

e 
cy

cl
as

e 
(A

C
) 

ac
tiv

ity
.  

G
ro

up
 I 

re
ce

pt
or

s 
al

so
 a

ls
o 

as
so

ci
at

ed
 w

ith
 N

a+
an

d 
K

+
ch

an
ne

ls
 (a

da
pt

ed
 fr

om
 D

in
gl

ed
in

e,
 1

99
9 

an
d 

K
ew

 &
 

K
em

p,
 2

00
5)

.

Io
no

tro
pi

c
(iG

lu
R

s)
M

et
ab

ot
ro

pi
c

(m
G

lu
R

s)

G
lu

ta
m

at
e 

R
ec

ep
to

rs

N
M

D
A

A
M

P
A

K
ai

na
te

C
la

ss
 I

C
la

ss
 II

C
la

ss
 II

I
G

lu
R

1
G

lu
R

2
G

lu
R

3
G

lu
R

4

G
lu

R
5

G
lu

R
6

G
lu

R
7

N
R

3A

N
R

2A
N

R
2B

N
R

2C
N

R
2D

N
R

1

K
A1

K
A2

O
rp

ha
n

m
G

lu
R

1
m

G
lu

R
5

m
G

lu
R

2
m

G
lu

R
3

m
G

lu
R

4
m

G
lu

R
6

m
G

lu
R

7
m

G
lu

R
8

δ1 δ2

C
a2+

N
a+

N
a+

(C
a2+

)
N

a+

(C
a2+

)
↑

P
LC

N
a+ /K

+
C

ha
nn

el
s

G
q/G

11

↓
A

C

G
i/G

0

Fi
g 

1.
2.

  T
he

 d
iv

er
se

 m
ol

ec
ul

ar
 g

en
e 

fa
m

ili
es

 o
f t

he
 g

lu
ta

m
at

e 
re

ce
pt

or
s

An
 o

ve
rv

ie
w

 o
f 

th
e 

cu
rr

en
t 

cl
as

si
fic

at
io

n 
of

 io
no

tro
pi

c 
an

d 
m

et
ab

ot
ro

pi
c 

gl
ut

am
at

e 
re

ce
pt

or
s,

 t
he

ir 
kn

ow
n 

su
bu

ni
ts

, 
an

d 
pr

im
ar

y 
si

gn
al

lin
g 

m
ec

ha
ni

sm
s.

 
 

G
lu

ta
m

at
e 

ac
tiv

at
es

 
bo

th
 

ca
tio

n-
pe

rm
ea

bl
e 

io
no

tro
pi

c 
re

ce
pt

or
s 

an
d 

m
et

ab
ot

ro
pi

c 
re

ce
pt

or
s 

co
up

le
d 

vi
a 

G
-p

ro
te

in
s 

to
 a

ct
iv

at
e 

ph
os

ho
lip

as
e 

C
 (

P
LC

) 
or

 in
hi

bi
t 

ad
en

yl
at

e 
cy

cl
as

e 
(A

C
) 

ac
tiv

ity
.  

G
ro

up
 I 

re
ce

pt
or

s 
al

so
 a

ls
o 

as
so

ci
at

ed
 w

ith
 N

a+
an

d 
K

+
ch

an
ne

ls
 (a

da
pt

ed
 fr

om
 D

in
gl

ed
in

e,
 1

99
9 

an
d 

K
ew

 &
 

K
em

p,
 2

00
5)

.

Io
no

tro
pi

c
(iG

lu
R

s)
M

et
ab

ot
ro

pi
c

(m
G

lu
R

s)

G
lu

ta
m

at
e 

R
ec

ep
to

rs

N
M

D
A

A
M

P
A

K
ai

na
te

C
la

ss
 I

C
la

ss
 II

C
la

ss
 II

I
G

lu
R

1
G

lu
R

2
G

lu
R

3
G

lu
R

4

G
lu

R
5

G
lu

R
6

G
lu

R
7

N
R

3A

N
R

2A
N

R
2B

N
R

2C
N

R
2D

N
R

1

K
A1

K
A2

O
rp

ha
n

m
G

lu
R

1
m

G
lu

R
5

m
G

lu
R

2
m

G
lu

R
3

m
G

lu
R

4
m

G
lu

R
6

m
G

lu
R

7
m

G
lu

R
8

δ1 δ2

C
a2+

N
a+

N
a+

(C
a2+

)
N

a+

(C
a2+

)
↑

P
LC

N
a+ /K

+
C

ha
nn

el
s

G
q/G

11

↓
A

C

G
i/G

0

5 



1.2.1. AMPA receptor subunit transmembrane topology & stoichiometry 
When setting out to determine the transmembrane topology of the glutamate 

receptors, it was initially thought the topology would resemble that of the 4 

transmembrane model of the nicotinic acetylcholine receptors.  In addition to this it 

was further discovered that their N-terminal and agonist-binding domains shared 

amino acid sequence homology with bacterial periplasmic-binding proteins, and 

were thus likely to have a similar structure.  However, against all initial expectations 

the structure elucidated bore a striking similarity to that of K+ channels, in that it had 

a very similar re-entrant (p)loop.  The now widely accepted topology for the AMPA 

receptor subunit, which ranges in size from 102 to 108kDa, is shown in Figure 1.3.  

There are 4 subunits in all, GluR1-4, which share 68-74% sequence identity at the 

protein level.  Each subunit consists of 3 transmembrane domains, M1, M3 and M4, 

and a cytoplasm-facing re-entrant membrane loop, M2.  This M2 region is thought to 

line the complete receptor ion pore, and also contains the ‘Q/R’ editing site, which 

controls key permeation properties of the ion channel.  The N-terminal region (400 

amino-acids), a major determinant of subtype-specific assembly within the iGluR 

gene families, is located extracellularly; whilst the C-terminal region (50-100 amino-

acids in length), which interacts with numerous cytoskeletal proteins and is important 

for receptor trafficking, is found intracellularly.  Notably, the M3-M4 region occurs 

extracellularly as a loop, which is important as it determines the desensitising 

properties of the receptor (Fletcher and Lodge, 1996). The M3-M4 loop also contains 

two key receptor subunit-editing sites the ‘R/G’ site and the ‘flip/flop’ determinant 

region.  The S1 and S2 domains, located on the N-terminal and M3-M4 loop 

respectively, are globular glutamate-binding domains that in native receptors exist as 

a bilobular structure with a cleft available for ligand binding (Armstrong et al., 

1998).   
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The individual subunits, outlined above, were thought to form functional AMPA 

receptors as tetrameric complexes, comprised from pairs of identical heteromeric 

dimers.  This was confirmed by elegant electrophysiological studies in the late 1990s 

(Rosenmund et al., 1998).  However, AMPA receptor subunits (1-4) also have the 

ability to form homomeric channels.  Homomeric assemblies of GluR1/3/4 are 

permeable to Na+, K+ and Ca2+, but the inclusion of GluR2 in heteromeric assemblies 

imparts the Ca2+ impermeability normally associated with the AMPA receptor.  

Indeed, the exact distribution of GluR1-4 is varied throughout the CNS; in the CA1 

pyramidal cells for example AMPA receptors most commonly occur as paired dimers 

of GluR1/2 subunits and GluR2/3 subunits, but in the cerebellum and thalamus 

AMPA receptors are commonly composed of GluR4 subunits in combination with 

GluR2 (Wenthold et al., 1996). There is also evidence for the coexistence of AMPA 

receptors of varying subunit combinations in the same neurones (Dingledine et al., 

1999).  This will be of importance later when considering the actions of AMPA 

modulating compounds in selective areas of the CNS.  AMPA receptors are also 

abundantly expressed in astrocytes, microglia and oligodendrocytes (Janssens and 

Lesage, 2001). 

 

1.2.2. Modifications of AMPA receptor subunits 
Ionotropic glutamate receptor subunits are subject to two main forms of post-

translation modification, specifically alternative splicing and RNA editing, to which 

the high structural and functional diversity of AMPA subunits can be attributed. 

 

All four AMPA subunits GluR1-4 can occur as two alternatively spliced variants 

‘flip’ or ‘flop’, encoded by Exons 14 and 15 (in GluR2) in a 38 amino-acid sequence 

in the M3-M4 extracellular loop. These two versions only differ by 8-11 amino-acids 

(Sommer et al., 1990; Monyer et al., 1991); yet display profoundly disparate effects 

on receptor function, in particular on the rate of onset and recovery from 

desensitisation.  The ‘flip’ isoforms of subunits, which predominate before birth and 

continue to be expressed after birth, desensitise more slowly than the ‘flop’ isoforms, 

hence prolonging synaptic transmission.  ‘Flop’ isoforms however, are low in 

abundance before postnatal day eight, but are upregulated to approximately the same 
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levels as ‘flip’ in the adult.  Receptor composition, i.e. what percentage of receptors 

contains ‘flip’ versus ‘flop’ isoforms of subunits, is a key determinant of the 

sensitivity of receptors to allosteric modulation (Sommer et al., 1990).  Hippocampal 

CA3 pyramidal cells for example express only ‘flip’ subunits, and therefore 

desensitise more slowly.  Other spice variants to be identified in AMPA receptors are 

the C-terminal splice variants in GluR2 and GluR4.  Both subunit C-terminals can be 

spliced into long and short forms, however the effects of these C-terminal splice 

variants are still unknown.  One suggested role is that they possibly bind to different 

intracellular proteins, and thus play a role in receptor targeting and trafficking (Gallo 

et al., 1992; Kohler el al., 1994). 

 

The other form of post-translational modification to which AMPA and kainate, but 

not NMDA, receptors are subjected, is RNA editing.  This is a process in which 

selected adenosines are deaminated to inosines by dsRNA adenosine deaminases 

(Reuter et al., 1995), resulting in single amino-acid exchanges (Seeburg et al., 1996).  

Inosines base pair in a manner identical to guanosines, which results in a change in 

the amino-acid codon.  One key RNA editing site that profoundly affects AMPA 

receptor function is the ‘Q/R’ editing site in the M2 domain of the GluR2 subunit.  In 

the GluR2 primary transcript at the ‘Q/R’ editing site, a glutamine codon (CAG) can 

be edited to an arginine (CIG).  This arginine GluR2 version causes the receptor in 

which it is contained to exhibit low Ca2+ permeability (Hume et al., 1991), low single 

channel conductance (Swanson et al., 1996), and the channel shows an approximate 

linear current-voltage relationship (Verdoon et al., 1991; Hume et al., 1991).  GluR2 

subunits without this arginine substitution form channels with high Ca2+ permeability 

and a double rectifying current-voltage relationship (Hollman et al., 1991).  The vast 

majority of GluR2 subunits in healthy adult animals (> 99%) contain the edited form 

of GluR2, resulting in low Ca2+ conductance (Bruscet et al., 1995). 

 

Another key editing site is found in an Exon in the M3-M4 loop immediately 

preceding the ‘flip/flop’ splice site.  Editing at this so-called ‘R/G’ site in GluR2, 

GluR3, and GluR4, but not GluR1 subunits results in the native arginine codon 

(IGA) being replaced with a glycine codon (AGA).  Receptors containing these 
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edited sites are able to more quickly recover from desensitisation (Lomeli et al., 

1994).  As with ‘Q/R’ editing the majority (80-90%) of subunits are edited to glycine 

in the adult animals.  Agonist EC50, affinity, activation and desensitisation properties 

all vary with alternate splicing and RNA editing among the various subunits, 

providing the CNS with a elegant means of fine tuning excitatory synaptic function 

(Erreger et al., 2004). 

 

Protein phosphorylation also plays a key role in the regulation of neural function.  

AMPA receptors subunits are targets for phosphorylation, and are directly 

phosphorylated on at least 12 distinct sites, by PKA (cAMP-dependent protein 

kinase) (Knapp et al., 1990), CamKII (Ca2+-calmodulin-dependent protein kinase II) 

(McGlade-McCulloh et al., 1993) and PKC (protein kinase C) (Wang et al., 1994a).  

The major sites on GluR1 include Ser831 and Ser845, which are phosphorylated by 

PKC/CamKII and PKA respectively.  Phosphorylation of these sites leads to a 40% 

potentiation of the peak amplitude of whole-cell glutamate-gated-currents, and an 

increase in the open-channel conductance of the receptor (Roche et al., 1996; 

Mammen et al., 1997; Barria et al., 1997).  GluR2 subunits are phosphorylated at 

Ser863 and Ser880 on its C-terminal domain by PKC (Matsuda et al., 1999; Chung 

et al., 2000; McDonald et al., 2001).  Intriguingly Ser880 is located in a PDZ-

consensus domain, which may in turn regulate the interaction of GluR2 with the 

PDZ, and this has been suggested to be important with regard to the regulation of the 

synaptic targeting of AMPA receptors and subsequent synaptic plasticity (see section 

1.6.2.2).  GluR4 is also phosphorylated at Ser830 and Ser842, the function of which 

is unclear (Carvalho et al., 1999).  

 
1.2.3. Ligand-agonist binding core  
The ligand-binding domain of the AMPA receptor subunit occurs as a highly 

conserved amino-acid binding pocket thought to exist in all glutamate receptors (Oh 

et al., 1993 & 1994; Sun et al., 1998).  This pocket is formed from 2 globular 

domains, S1 and S2 (see Fig 1.3.), which are found in the sequence adjacent to the 

M1 domain on the N-terminus and on the M3-M4 extracellular loop respectively.  It 

was initially hypothesised that these two domains formed a bilobular structure in 
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which the two lobes of the binding pocket were in dynamic equilibrium between the 

open and closed states, and that when a ligand bound that this stabilised the closed 

form of this ‘clamshell’ like structure (Sternbach et al., 1994; Kuusinen et al., 1995; 

Tygesen et al., 1995; Ivanovic et al., 1998; Keinanen et al., 1998).  With this 

precisely defined hypothesised topography, Keinanan’s group in 1995 designed a 

water soluble mini-receptor composed of only the agonist binding core from the 

GluR4 subunit (S1 and S2 joined by a peptide linker) (Kuusinen et al., 1995).  The 

isolated domains retained selectivity for AMPA receptor-preferring ligands, which 

bound with a KD’s similar to those established for full-length receptors.  This was 

followed up in 1998 by Armstrong and colleagues when they fashioned a series of rat 

S1-S2 GluR2 constructs, which were not only producible in large quantities in a 

functionally active state, but also enabled precise crystal structural analysis of the 

agonist-binding cores by X-ray diffraction, confirming the suspected two-domain 

globular protein structure (Armstrong et al., 1998).  It was also discovered that the 

ligand-binding pocket appeared to be entirely contained within a single subunit rather 

than at the interface of 2 subunits as in many other receptors.  Further to this it was 

found that the S1-S2 fragment in either the apo or in the ligand-bounded state, 

crystallised into a dimeric arrangement, with the area of the dimer interface 

postulated to be around 1500A2.  These studies (Robert et al., 2001; Sun et al., 2002) 

also allowed the identification of the exact residues in the protein that form hydrogen 

bonds with the ligand that occupies the binding site, and also suggested that indirect 

hydrogen bonding of ligands to residues in S1-S2 via water molecules was important 

in the mechanism of binding.  The residues Pro478, Thr480 Arg481 (all in S1) and 

Ser654, Thr655, and Glu705 (in S2 domain) make direct hydrogen bonds with 

glutamate, while the aromatic side-chain of Tyr450 is also thought to form an 

electron-dense ring structure above the ligand-binding site in GluR2, which is 

important for agonist potency and desensitisation kinetics.  Mutation of Arg481 for 

example to a lysine results in the loss of all function (Kawamoto et al., 1997).  One 

question unresolved however was how the binding of ligand in S1-S2 facilitated 

channel opening.   
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1.2.4. Channel activation 
AMPA receptors activated by their native ligand glutamate, mediate the fast 

components of the excitatory synaptic potential/current.  Channel activation, requires 

at least two molecules of bound agonist (Clements et al., 1998), and induces rapid 

opening of the channel to multiple conductance levels with a high peak open 

probability.  In reality, up to four molecules of agonist can bind and the average 

conductance of the channel depends on the number of binding sites occupied by the 

agonist molecules (Rosenmund et al., 1998).  Further investigation into the novel 

crystallised GluR2 S1-S2 constructs highlighted that they underwent large 

conformational changes upon binding agonists, switching from a relaxed open-cleft 

apo conformation to a constrained closed-cleft conformation with a degree of closure 

in the order of ~21o.  This agonist binding and domain closure is suspected to be a 

two-step procedure, involving both a ‘docking’ and ‘locking’ action.  During docking 

the agonist binds to residues, the arginine side chain (Arg485) on helix D, in S1 (via 

its α-amine and α-carboxyl groups).  Following this, the bilobular structure ‘locks’ 

via the rotation of S2 towards S1 resulting in the closure of the binding cleft.  With 

the agonist partially secured in the binding cleft (S1-bound) the γ-carboxyl group 

makes hydrogen bond contacts with the main-chain peptide bond and the hydroxyl 

group of a conserved threonine side chain in the S2 domain.  This electrostatic 

attraction occurs in all iGluR structures (Mayer, 2006).  A further intriguing feature 

of the glutamate receptor families is how agonist efficacy correlates with the change 

in closure of the clamshell-like domain.  Antagonists for example, cause minimal 

changes in the degree of domain closure, partial agonists have intermediate effects, 

and full agonists induce much larger changes (Armstrong et al., 1998; Armstrong et 

al., 2003; and Erreger et al., 2004).  This is best highlighted by a series of 5-

substituted willardiines that differ in the size of a halide substituent, for which an 

increase in substituent size sterically hinders domain closure in a graded fashion (Jin 

et al., 2003a/b). 

 

This closure of the binding cleft in the S1-S2 dimer was also shown to result in a 

separation between the portions of the receptor coupled to the ion channel by ~8 oA.  

The movement of S2 towards S1 during the transition from the open cleft of the apo 
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state to the closed cleft of the glutamate-bound complex, produces a scissor-like 

outward motion of the linkers connecting the ion-channel transmembrane segments 

to the ligand-binding core (Mayer, 2006).  It has therefore been suggested that this 

direct mechanical coupling of the agonist-induced domain closure to the opening of 

the ion channel is mediated by the physical separation of the ‘linker’ region of the 

protein.  

 

1.2.5. Receptor desensitisation 
One striking feature of AMPA receptor responses is the rapid onset and extent of 

desensitisation induced in response to sustained application of agonist (Mayer and 

Armstrong, 2004; Erreger et al., 2004).  This rapidly induced desensitisation is the 

result of a conformational change intrinsic to the receptor, specifically the 

breakdown of the dimer interface.  Evidence for the role of the stability of the dimer 

interface as the primary determinant of desensitisation is abundant.  Receptor 

mutagenesis studies that attenuated desensitisation resulted in a more stable dimer 

complex, while mutations that disrupted the dimer-interface accelerated the onset and 

extent of desensitisation (Sun et al., 2002).  It is proposed that during desensitisation 

the rearrangement of the dimer interface results in the disengagement of the 

conformation alterations induced by the closure of the agonist binding cleft in 

response to the activation of the channel (Sun et al., 2002).  Cyclothiazide, a potent 

inhibitor of receptor desensitisation, stabilises the formation of dimers in the isolated 

GluR2 binding core, and does so by binding at the base of this interface establishing 

H-bond contacts with the alternatively spliced serine side-chain of the ‘flip’ splice 

variant, effectively ‘gluing’ the subunits together.  Amino-acid substitutions in the 

‘flip/flop’ variants that regulate sensitivity to cyclothiazide lie on the dimer interface 

of the agonist-binding core (Mayer and Armstrong, 2004).  Converting Leu507 in 

GluR3 to a tyrosine residue abolishes desensitisation in GluR3 containing AMPA 

receptors (Stern-Bach et al., 1998).  It is obvious that both activation and 

desensitisation (Fig 1.4.) therefore are highly conserved processes that employ a 

common structural element, namely the dimer interface. 
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1.3. Kainate Receptors 
 

Kainate receptors display a relatively restricted distribution in the CNS, and are 

found primarily in the inner laminae of the neocortex and cingulate cortex, caudate 

putamen, the CA3 of the hippocampus, reticular thalamus and the hypothalamic 

median eminence (Huettner, 2003).  Kainate receptors share ~30-35% sequence 

identity with AMPA and 10-20% with NMDA receptors, and are thought to adopt 

the same membrane topology.  There are a total of 5 subunits that fall into two 

families based on sequence homology and agonist binding properties.  GluR5/6/7 are 

70% identical and are thought to form low affinity receptors, whereas KA1/2, which 

are also 70% identical but share only 40% sequence homology with the kainate GluR 

subunits are thought to form heteromeric high affinity channels (Hollmann and 

Heinemann, 1994). These receptor subunits are capable of forming both function 

homomeric and heteromeric ligand-gated channels, and similarly to AMPA receptors 

are subject to extensive mRNA editing.  This editing regulates key permeation 

properties of the receptor (Sommer et al., 1991), with editing at the Q/R site 

determining single channel conductance and calcium permeability (unedited 

receptors display a higher calcium permeability and a higher unitary conductance).  

GluR6 also displays two additional sites of RNA editing in the first transmembrane 

domain (Kohler et al., 1993).  Whilst AMPA and NMDA receptors are 

predominantly located post-synaptically kainate receptors are also located pre-

synaptically at many synapses where they are thought to possibly modulate 

transmitter release.  They are also thought to play a key role in the formation of 

NMDA receptor-independent LTP, in the mossy fibre pathway in the hippocampus 

(Harris and Cotman, 1986; Marchal and Mulle, 2004)(see section 1.6.2.). 

 

1.4. NMDA Receptors  
 

Ionotropic NMDA receptors in contrast to AMPA receptors mediate the slow 

component of excitatory transmission in the CNS (Coan and Collingridge, 1987).  

These channels are heterogeneously distributed across the CNS with high levels of 

expression in the hippocampus (CA1), thalamus and the cortex.  They display large 
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single channel conductances (40-50pS) and are highly permeable to Ca2+ in addition 

to Na+ and K+.  Six NMDA subunits exist; NR1, NR2A-D and NR3, and display the 

lowest sequence identity of all the glutamate receptors (18% for NR1 and NR2).  

NMDA receptors adopt the same membrane topology as AMPA receptors and form 

tetrameric structures, composed of heteromers of two NR1 subunits and 2 NR2 

subunits (Laube et al., 1998).  The two NR2 subunits need not be identical in the 

assembly, however the kinetic properties of the resultant receptor are highly 

dependent on subunit composition.  For example, deactivation times for receptors are 

determined by the type of NR2 subunit present:  NR2A (50msec) < NR2C (300msec) 

= NR2B (280msec) << NR2D (1.7s) (Vicini et al., 1998).  These ‘modulatory’ NR2 

subunits control other key properties such as glycine sensitivity, single channel 

characteristics and the strength of the Mg2+ block (see below).  The calcium 

conductance of the receptor is controlled by a specific extracellular region (C 

terminal to M3), unique to the NR1 subunit called DRPEER, which acts as a Ca2+
 

binding site and causes a constriction of the channel (Watanabe et al., 2002). 

 

A unique feature of the NMDA receptor is that their activation is not solely reliant on 

the binding of glutamate; a co-agonist, glycine, is also required to bind to elicit 

channel activation.  The NR1 subunit contains the glycine-binding site, whereas NR2 

subunits contain the glutamate-binding site.  In point of fact, the binding of two 

molecules of glycine and two of glutamate are required for full channel activation 

(this also provides further evidence supporting the tetrameric nature of the receptors) 

(Clements et al., 1998). An additional feature, perhaps the most critical, of the 

NMDA receptor is that it contains a voltage-dependent channel-binding site for 

Mg2+.  This physical block renders the channels inactive at rest and is only relieved 

upon depolarisation of the post-synaptic membrane (generally brought about through 

AMPA receptor activation).  This voltage-dependant Mg2+ block, the slow gating of 

the receptors, and their higher Ca2+ permeability are key properties of the receptors 

that make them the ideal candidates as activity ‘coincidence detectors’ in the CNS 

(Section 1.6.2.). 
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1.5. Roles of Glutamate in the CNS 

 

Glutamate is the major excitatory transmitter in the CNS, and as such, plays a crucial 

role in regulating various aspect of normal function.  Glutamate acting through its 

varied receptors, outlined previously in the introduction, regulates normal excitatory 

neurotransmission in the majority of neurones in the CNS, which is imperative for 

routine synaptic function.  It is also critical for in key process known as ‘synaptic 

plasticity’, the ability of neurones to modify the strength of their connections with 

one another.  However, an imbalance in glutamatergic function (over-excitation) can 

have detrimental results, resulting in ‘excitotoxicity’, which can lead to both cell 

damage and death. 

 

1.5.1.  Synaptic neurotransmission  
Synaptic neurotransmission is a tightly regulated operation intimately involving the 

ionotropic receptor subtypes, especially the AMPA and NMDA subtypes.  Glutamate 

is released from vesicles (10-100mM concentration) in pre-synaptic terminals 

following depolarisation of the nerve terminal.  It is released in a quantal manner via 

a Ca2+-dependant mechanism, involving N- and P/Q type voltage-dependant Ca2+ 

channels (Birnbaumer et al., 1994).  Release is stringently controlled by a host of 

presynaptic receptors including; Group II and III mGluR’s, cholinergic, adenosine, 

κ-opioid, GABA-B and cholecystokinin receptors (Nicholls, 1998; Meldrum, 2000); 

with released glutamate activating both post-synaptic AMPA and NMDA receptors, 

and most probably pre-synaptic receptors as well.  Postsynaptic AMPA receptors 

mediate the fast-excitatory (depolarisation) component of neurotransmission, while 

NMDA activation results in slower more prolonged activation.  Both receptors are 

located in the plasma membrane where they are localised to post-synaptic densities.  

Released glutamate is recycled via active uptake from the synaptic cleft via amino 

acid transporters found on both neuronal and glial cells.  It is essential to remove 

glutamate, not only to preserve the integrity of synaptic transmission, but to also 

prevent excitotoxic damage due to elevated levels of glutamate.  Five types of Na+-

dependant glutamate transporters are expressed within the mammalian CNS: GLT, 

GLAST, EEAC1, EEAC3, EEAC5 (Lehre and Danbolt, 1998; Seal and Amara, 
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1999; Levy et al., 1998; Levy, 2002).  GLT and GLAST are expressed 

predominantly in glial cells, while EEAC1, 3, 5 are restricted to neuronal expression.  

Glutamate transporters are highly expressed in the post-synaptic membranes, 

especially in neurones, and in some cases are 15 times more abundant than the 

AMPA receptors.  These transporters utilise the electrochemical gradients of Na+, K+ 

and H+ to facilitate the uptake of glutamate.  It is worthy to note that glutamate can 

also be released by the reverse operation of glutamate transporters (Meldrum, 2000).  

This occurs when the Na+ and K+ gradient across the membrane is reduced during 

instances of cerebral ischaemia for example (Levy et al., 1998).  In total, two thirds 

of total brain energy metabolism is related to the reuptake and recycling of glutamate 

(Shulman et al., 2002), and the process of excitatory synaptic neurotransmission, 

which it facilitates, is fundamental to normal functionality.  

 

1.5.2.  Synaptic plasticity  
Synaptic plasticity in the most basic sense is the ability of the connection, or synapse, 

between two neurones to change in strength. A more ‘philosphophical’ view is that it 

is the ability of neurones to not only effectively convey information to one another, 

but to alter the efficiency with which they do it.  This phenomena can be modified in 

both directions, resulting in either an increase in synaptic strength (a potentiated 

synapse), or a decrease (a depressed synapse).  The flexibility of the system, 

allowing it to be potentiated, depressed and modifed inbetween makes it possible to 

encode vast amount of information in this neural model.  The strength of a synapse is 

also crucially reliant on the number of ion channels and receptors it has (Debanne et 

al., 2003).  AMPA along with NMDA receptors, through their role in 

neurotransmission as outlined above, are also crucial in the manifestation, 

maintenance and modification of synaptic plasticity. 

 
1.5.2.1. Long-term-potentiation (LTP)  
LTP first observed in the rabbit hippocampus by Terje Lømo in 1966 is the most 

studied form of synaptic plasticity, and is entirelly reliant upon the activation of 

glutamatergic receptors.  Lømo observed that a single pulse of electrical stimulation 

to the perforant pathway elicited an excitatory post-synaptic potential (EPSP) in the 
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dentate gyrus of the hippocampus.  When a high-frequency train of stimulation was 

imparted, it produced larger prolonged EPSPs compared to responses elicited by a 

single stimulus: hence LTP (Fig 1.5.) (Lømo, 1966).  The majority of researchers 

regard LTP and its opposing process, long-term-depression (LTD), as the cellular 

basis of learning and memory.  LTP is however not a unitary phenomena, but varies 

depending on which synapse it is being studied, at what time point in development, 

and how it is triggered (Malenka and Bear, 2004). 
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Fig 1.5. A graphical representation of various forms of synaptic plasticity 
Long-term-potentiation (LTP) is induced by tetanic stimulation, typically 100 Hz for 1 
sec. This stimulation paradigm results in an increase in the amplitude of the fEPSP 
response which settles into a new, more elevated level.  A weak tetanic stimulus 
results in a an initial potentiation which decays back to baseline levels after ~20-30 
min: a short-term-potentiation (STP).  Repetive low frequency stimulation, 1 Hz for 
10 min, results in a decrease in the amplitude of the fEPSP response, which settles 
at a lower level, known as long-term-depression (LTD). 
 

LTP as intimated above can be studied at multiple synapses from varied regions of 

the brain, including the cortex and thalamus.  However, it is most frequently studied 

in the hippocampus, a limbic structure located in the medial aspect of the temporal 

lobe, which is implicated as playing a major role in memory storage and the 

emotional aspects of behaviour.  This is because, when experimentally removed and 

sliced the hippocampus provides an ideal model with which to record neuronal 
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activity and investigate synaptic plasticity, due to its 1) highly defined laminated 

structure (Amaral and Witter, 1989), allowing easy and accurate discrimination of 

cell types and subsequent electrode placement, and 2) its excellent mechanical 

stability, allowing prolonged and stable recordings to be attained. 

 

 
 
Fig 1.6.  The laminated structure of the hippocampus 
Input from the perforant pathway (lateral, LPP, and medial, MPP, pathways) 
synapse with the dentate gyrus (DG) granule cells.  Mossy fibres (MF) project from 
the DG to the CA3 pyramidal cells.  Schaffer collateral fibres (SC) run from the CA3 
and synapse with CA1 pyramidal cells.  Commissural fibres (AC) from the opposite 
hemisphere’s CA3 also synapse with the CA1.  The major output of the 
hippocampus is from the CA1 to the entorhinal cortex.  Recordings are traditionally 
obtained from the CA1 stratum radiatum (right-hand electrode) in response to 
stimulation of the SC/AC fibres (left-hand electrode).  An example field excitatory 
post-synaptic potential (fEPSP) is also shown. 
 

Structurally (Fig 1.6.), the hippocampus receives its major input from the entorhinal 

cortex, via the perforant pathway.  Axons arising primarily from layers II and III but 

also IV and V of the entorhinal cortex project to the granule cells of the dentate gyrus 

and the pyramidal cells of the CA3 hippocampal region (from layers II/IV), and to 

the CA1 and subiculum (from layers III/V).  The DG granule cells give rise to the 

mossy fibres that synapse with the pyramidal cells of the CA3 and CA2 regions of 

the hippocampus.  Multiple granule cells are capable of synapsing onto a single CA3 

pyramidal cell (LTP here is NMDA receptor independent, and is thought to involve 

pre-synaptic kainate receptors).  The CA3 pyramidal cells project excitatory 

collaterals, the Schaffer collaterals, to synapse on the pyramidal cells in the CA1 

region.  The hippocampal commissurals are fibres arising from the contralateral 

hemisphere’s CA3 regions that synapse on the CA1 of the opposite side (cross 
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hemispheres) (LTP here is NMDA receptor-dependant). The principle output 

pathways of the hippocampus are the perforant path, the cingulum bundle, and the 

fimbria/fornix, which all arise from field CA1 and the subiculum 

 

LTP in the hippocampus is investigated most commonly in the CA3-CA1 Schaffer 

collateral/commissural pathway, as outlined above.  Here, repetitive stimulation 

results in the coordination of neuronal activity in the Schaffer collateral axons, which 

in turn leads to pre-synaptic neurotransmitter release in a Ca2+-dependant manner.  

Released glutamate activates postsynaptic AMPA receptors, resulting in the initial 

depolarisation of the post-synaptic cell.  The profound voltage-dependent Mg2+ block 

of the NMDA receptor-channel is subsequently relieved following this strong post-

synaptic depolarisation, allowing Ca2+ (and Na+) to flood into the post-synaptic cell 

through the active NMDA receptor.  This rise in intracellular Ca2+ is the critical 

trigger for LTP formation.   

 

Calcium is a crucial mediator of this phenomenon, as manipulation of its levels in the 

postsynaptic cell influences the form of synaptic plasticity induced.  Increases in 

calcium that are NMDA-dependant but do not reach the ‘threshold’ needed to induce 

LTP can generate a short-term potentiation (STP), which decays to baseline levels 

within ~20-30 min.  LTD is also calcium-dependant and results in a long lasting 

decrease in synaptic strength, but is brought about by an alternate distinct stimulation 

paradigm (several minutes of low freq stimulation). 

 

The post-synaptic (intracellular) mechanisms underlying LTP induction are not yet 

fully determined.  What is clear, is that NMDA receptors form large post-synaptic 

complexes of >600 proteins, known as post-synaptic-densities (PSD’s).  These 

complexes work as a ‘hub’, in order to transduce receptor activation into downstream 

signals, which induce and maintain the expression of LTP.  However it is still 

unclear exactly which molecules are mediators and which are modulators of the 

process (reviewed in Malenka and Bear, 2004).  Indeed it seems that there may be 

multiple intracellular cascades that are capable of inducing LTP, but whatever the 

mode of induction certain proteins are required no matter how it is induced.  It is 
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clear that calcium/calmodulin-dependant protein kinase II (CaMKII) is a definite 

mediator of LTP (Lisman et al., 2002), with other molecules such as PKA, PKC, PI3 

kinase, the tyrosine kinase Src, and MAPKs also playing key roles in the formation 

of LTP (Malinow et al., 1989; Sweatt, 2004; Thomas and Huganir, 2004; Man et al., 

2003; Kalia et al, 2004).  These signalling molecules in turn activate key 

transcription factors such as CREB, in addition to immediate early genes such as 

zif268 (Silva et al., 1998; Lynch, 2004).  This in turn, is hypothesised to result in the 

generation of ‘synaptic tags’ (plasticity related proteins), which help to stabilise the 

initial increase in synaptic strength (Frey and Morris, 1998). 

 

The phenomenon of LTP is clinically relevant, as it is believed by many to be the 

major neural substrate underlying learning and memory (cognition) (Lisman, 2000).   

Many clinical conditions including depression, schizophrenia, Alzheimer’s and 

Parkinson’s disease all display cognitive deficiencies, and for that reason compounds 

which have the ability to augment LTP may have potential therapeutic relevance in 

the afore mentioned conditions. 

 

1.5.2.2. The role of AMPA receptor regulation in LTP 

One of the most controversial debates surrounding LTP over the last decade or so 

was if the increases witnessed in synaptic strength were mediated primarily by a pre- 

or post-synaptic mechanism.  The now generally held belief is that the change in 

strength witnessed during LTP is mediated by a post-synaptic modification of AMPA 

receptors.  Indeed, during LTP the AMPA-mediated portion of the EPSC is increased 

to a greater extent than the NMDA component. 

 

The most obvious way of ‘increasing synaptic strength’ post-synaptically is via the 

insertion of extra receptors.  In support of this, AMPA receptors have been shown to 

be rapidly delivered to active synaptic membranes due to repetitive NMDA receptor 

activation (Shi et al., 1999; Song and Huganir, 2002), via activity-dependant changes 

in AMPA receptor trafficking.  Many neurones also have so called ‘silent’ synapses 

that have functional but quiescent NMDA receptors (due to the Mg2+ block), but lack 

any AMPA receptors (Gomperts et al., 1998; Gasparini et al., 2000; Isaac, 2003).  
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AMPA receptors are recruited, trafficked, and inserted into these synapses during 

LTP, and as such, this process may mediate a major component of the potentiation of 

synaptic transmission during LTP.  Another possible way of increasing synaptic 

strength is via direct modification of the biophysical properties of AMPA receptors 

themselves.  Protein phosphorylation of AMPA at Ser 831/835 (especially on GluR1 

subunits) by PKC and CaMKII has been shown to result in increases in single 

channel conductance (Benke et al., 1998; Lee et al., 2003).  Conversely, the cellular 

effects of LTD are associated with a reduction in AMPA receptor numbers at the 

synapse, and also de-phosphorylation of key Ser residues on GluR1.  This however is 

not to say that presynaptic mechanisms don’t contribute at all to the increased 

synaptic fidelity witnessed with LTP.  The roles of retrograde messengers as pre-

synaptic modulators are still being investigated, with attention now focusing on 

molecules such as brain derived neurotrophic factor (BDNF) and cell adhesion 

molecules as potential mediators  (Poo et al., 2001).   

 

As the extent of depolarisation during induction is believed to be the most critical 

factor for the activation of NMDA receptors and hence the overall magnitude of LTP 

induced (Xia and Arai, 2005), modification of AMPA receptor function, either 

directly via changing channel properties, or indirectly by increasing the number of 

functional receptors present, seems to be the simplest way of increasing post-

synaptic depolarisation, ensuring efficient and robust LTP.  Work in this thesis, using 

the hippocampal model outlined above, will attempt to investigate what effects 

modifying AMPA receptor kinetics, through the use of novel ligands targeting the 

AMPA receptor, have on baseline synaptic activity and in an established and 

characterised LTP model; and whether or not these potential effects could in some 

way be of benefit in relevant disease states. 

 

1.5.3. Excitotoxicity  
Glutamate in addition to its positive effects in mediating excitatory 

neurotransmission has an altogether more detrimental role in the CNS.  Excessive 

activation of glutamatergic receptors can also evoke neuronal dysfunction, cellular 

damage and death, a phenomenon that is termed ‘excitotoxicity’.  Lucas and 
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Newhouse first described this process in 1957, when they injected L-glutamate into 

murine eyes, and were surprised to find that it resulted in the destruction of the inner 

layers of the retina.  These findings were replicated, confirmed, and built upon by 

Olney who illustrated that kainate produced brain lesions in immature animals 

lacking a fully developed blood-brain-barrier (Olney, 1969).  In addition to this, 

experiments with NMDA receptor antagonists such as MK-801 demonstrated that by 

blocking glutamatergic receptors, these compounds could be neuroprotective in vivo 

(Simon et al., 1984; Ozyrut et al., 1988).  Further evidence has shown that high-

concentrations of glutamate causes over-activation of glutamate receptors that results 

in both ionic disturbances in cells (neurones) and the activation of Ca2+-mediated 

processes, as outlined above.  Activation of AMPA and NMDA receptors by 

glutamate results in changes in intracellular concentrations of Na+ (Cl-) and Ca2+, and 

the ensuing excitotoxicity can be separated into two distinct phases.  The first is an 

acute phase that is marked by immediate toxic cell swelling due to rapid Na+ (and Cl-

) influx through activated glutamate receptors (AMPA) (Rothman, 1985).  However, 

removal of extracellular Na+ even though it eliminates cell swelling, does not prevent 

cell death (Olney et al., 1986).  Cells undergo a second phase of delayed 

neurodegeneration, which is entirely Ca2+ dependant.   

 
The regulation of Ca2+ levels within neurones is essential to maintaining normal 

functionality, as it plays key roles in diverse processes ranging from regulating 

intracellular signalling cascades, growth and differentiation, synaptic activity 

(exocytosis) to governing membrane excitability.  With this in mind, neurones posses 

specialised homeostatic mechanisms to maintain tight control over cytosolic calcium 

levels via control of influx, efflux, buffering and internal storage.  Schlaepfer and 

Bunge in 1973 were the first to highlight the ‘negative’ role of calcium, specifically 

that degeneration of isolated axons intimately involved extracellular Ca2+ ions.  It 

was further elucidated that excessive Ca2+ influx or release from intracellular stores 

essentially overloads the capacity of the inherent Ca2+-regulating mechanisms 

resulting in inappropriate activation of Ca2+-dependant process that are normally 

dormant or running at low levels.  Over-activation of processes involving proteases, 

lipases, phosphatases, and endonucleases (metabolic derangement) leads to cell 
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structural damage and the formation of oxidative free radicals, such as NO•, which 

eventually lead to cell death (Kristian and Siesjo, 1997).  Ca2+ can therefore in 

addition to regulating key cellular processes, be considered a key mediator of cell 

death.  In glutamate induced excitotoxicity the increased cellular calcium levels are a 

result of increased influx through both AMPA (GluR2 absent) and NMDA receptors, 

activation of voltage-sensitive Ca2+ channels as a result of depolarisation primarily 

by AMPA, and release of Ca2+ from intracellular stores (Choi, 1988).  This 

dysregulation of Ca2+ homeostasis leads to activation of distinct intracellular 

signalling cascades, described above, that eventually results in cell death.  

Excitotoxicity is clinically relevant and a cause of cell death in both acute insults 

such as stroke, hypoxic-ischaemia and trauma, and in chronic neurodegenerative 

diseases such as Alzheimer’s, Parkinson’s and Huntington’s disease.  For example, 

the main phase of the pathogenetic process leading to schizophrenia is the loss of 

synaptic connectivity below critical level, which has been proposed to be partly due 

to excitotoxicity (specifically in oligodendroglia) (Yao & Reddy, 2005). 

 

1.6. Pharmacological Compounds Targeting the AMPA 
Receptor 
 
It is now strikingly obvious that both the AMPA and NMDA ionotropic 

glutamatergic receptors play key roles in neurotransmission, synaptic plasticity and 

even have damaging effects mediated by their ability to induce ‘excitotoxicity’.  

Historically, research into potential clinical targets involving the glutamatergic 

system has focused primarily on the key role of the NMDA receptor in 

neurotransmission.  Studies in the early 1980s demonstrated that NMDA receptor 

antagonists, such as 2-amino-7-phosphonoheptanoic acid, blocked seizures in rodent 

models of epilepsy (Croucher et al., 1982), but more importantly had dramatic 

neuroprotective effects against ischaemic brain injury (stroke) (Simon et al., 1984).  

However, the positive results witnessed in animal models have so far been 

unsuccessfully replicated in clinical trials in patients with ischaemic stroke.  

Although NMDA research is still ardently underway, attention has begun to focus on 

the AMPA receptor as a more viable pharmacological target, for subtle modulation 
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of receptor and therefore cerebral function.  As a result of this, several categories of 

AMPA receptor ligands have been developed; among them are agonists, antagonist 

and modulators. 

 
1.6.1. AMPA receptor agonists 
There is now an abundance of AMPA receptor agonists, and many as is the case with 

AMPA itself, have been derived from classic structure activity studies utilising 

ibotenic acid, quisqualic acid and willardiine.  Glutamate, quisqualate, AMPA and 

ACPA are full agonists, whilst kainate and the 5-substituted willardiine, (S)-5-

flourowillardiine, act as partial agonists at the receptor (Fig 1.7.A).  Competition 

studies utilising [3H]AMPA binding to GluR1/2/3 illustrate a rank potency of 

quisqualate > AMPA = domate > glutamate > kainate for agonists.  An interesting 

feature of AMPA agonists is that they vary dramatically in the amount of receptor 

desensitisation they induce. Glutamate and AMPA induce rapidly desensitising 

responses, whereas the partial agonist kainate shows little desensitisation response.  

Indeed the degree of desensitisation correlates precisely with the degree of 

dimerisation induced between the pairs of subunits within the receptor (reviewed 

Stensbol et al., 2002).  AMPA agonists have little clinical value themselves, yet are 

invaluable tools for helping further elucidate AMPA receptor structure and function, 

as well as helping characterise novel antagonists and modulators. 

 

1.6.2. Competitive AMPA receptor antagonists 
Competitive antagonists are compounds that compete with the native 

neurotransmitter for the same ligand-binding site, effectively blocking agonist 

binding by trapping the ligand-binding domain in a wide-open conformation (Fig 

1.7.B).  The first potentially clinically useful competitive AMPA receptor 

antagonists, the quinoxalinediones, were introduced in 1988 (Drejer and Honore, 

1988).  CNQX and DNQX whilst effective competitive antagonists of AMPA 

receptors also displayed activity at the glycine-binding site of the NMDA receptor 

(Birch et al., 1988), and were therefore deemed not selective enough.  By modifying 
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Fig 1.7.  Chemical structures of key ligands for the glutamatergic AMPA receptor

Ligands include examples of: agonists (A), competitive antagonists (B) and non-competitive antagonists (negative 

GYKI 52466
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allosteric modulators) (C).  
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these initial structures, more potent and selective antagonists were obtained, 

including NBQX, PNQX and YM872.  NBQX showed robust neuroprotection, 

reducing excitotoxic cell death (Sheadown et al., 1990; Gill et al., 1992) and 

anticonvulsant activity (Chapman et al., 1991) in a variety of disease related models.  

Even though it was more selective, it displayed poor water solubility and failed 

clinical trails due to its profound nephrotoxicity (Kohara et al., 1998). 
 

More recently competitive antagonists with improved potency, higher specificity, 

increased water solubility, longer duration of action in vivo, and reduced 

nephrotoxicity have been developed.  Based again around the original 

quinoxalinediones structure, compounds such ZK200775 (Turski et al., 1998), and 

decahydroisoquinoines such as LY293558 (O’Neill et al., 1998), are highly active in 

in vivo models and in the case of ZK200775 have entered clinical trials for the 

treatment of stroke.  SPD502 (NS1209), an isatine oxime modification of the 

classical quinoxalinediones structure, is a further example of a competitive AMPA 

receptor antagonist that is neuroprotective in vivo (Neilsen et al., 1999; McCracken 

et al., 2002). 
 

1.6.3. Non-competitive AMPA receptor antagonists  
A non-competitive antagonist (negative allosteric modulator) is a compound that 

blocks receptor function by binding to sites distinct from the agonist recognition site 

(Fig 1.7.C).  The most extensively studied of these compounds are the 2,3-

benzodiazepines, typified by GYKI 52466 (Solyom and Tarnawa, 2002) and GYKI 

53655 (LY300164).  These compounds are systemically available, and selective for 

AMPA over kainate/NMDA receptors, inhibiting AMPA receptor mediated 

responses in a variety of cell types with low micromolar IC50 potencies.  Use of the 

2,3-benzodiazepines has enabled precise pharmacological separation of AMPA and 

kainate receptor mediated events (Rogawski, 1993).  Quinazolinone derivatives such 

as CP-526,427 have also been shown to be non-competitive AMPA receptor 

antagonists (Chenard et al., 2000), with a binding site distinct from glutamate but 

overlapping with that of the 2,3-benzodiazepines.  YM928 and CP-465,022 are 

further examples of non-competitive AMPA receptor antagonists (Ohno et al., 2003; 

Menitti et al., 2003). 
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1.6.4. AMPA receptor potentiators 

The final group, and most important with regard to this thesis, of AMPA receptor 

ligands to be discussed here are the AMPA receptor potentiators.  AMPA receptor 

potentiators are the common name given to a group of drugs that positively 

allosterically modulate receptor function.  They were developed in the early 1990s, 

and were found to functionally facilitate AMPA receptor kinetics and thus fast 

excitatory transmission.  This in turn led to the unexpected observation that fast 

excitatory transmission in behaving animals can be enhanced without causing 

seizures or excitotoxic damage (Lynch, 2006), and the subsequent inference that 

enhancement of excitatory function could possibly have beneficial therapeutic 

effects.  With this in mind, these allosteric AMPA receptor modulators were 

developed further and have been progressively and extensively investigated over the 

following 15 years. 
 

These compounds function by binding to sites distinct from the agonist recognition 

site, facilitating receptor function in the presence of the native agonist (glutamate).  

These modulators have no direct agonist action themselves, but potentiate function 

by increasing current flux through the activated receptor either by: 1) preventing 

receptor desensitisation, a process by which the receptor ion channel closes although 

glutamate remains tightly bound (a long-lasting agonist-bound non-conducting state); 

2) preventing receptor deactivation, a process by which the ion-conducting pore of 

the receptor closes allowing agonist to dissociate from the ligand binding 

‘clamshell’; 3) a combination of both the afore mentioned mechanisms (Fig 1.8.) 

(Arai et al., 1996b & 2002). 
 

It should also be noted here that determining the mode of action of AMPA receptor 

potentiators, i.e. whether they preferentially effect desensitisation or deactivation, is 

most clearly demonstrated experimentally by electrophysiological means.  

Desensitisation is demonstrated by recording the rapidly diminishing AMPA 

mediated currents from voltage-clamped neurones during sustained application 

(500ms – 1sec) of AMPA agonists (effects on steady-state current).  Deactivation 

kinetics are demonstrated by recording again from voltage-clamped neurones, but 
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this time during very rapid application (1ms) of AMPA agonists (effects on rapidly 

decaying short-lived responses). 
 

To date, through extensive research much has been learnt about the compounds 

binding sites, biophysical actions and influence on cortical networks.  However, 

there is still an absence of information regarding how these compounds alter 

complex functional activity in vivo, i.e. their overall effect on cerebral activation.  In 

this regard, the primary aim of this thesis is to investigate the actions of two novel 

next generation AMPA receptor potentiators, Org 26576 and Org 24448, and attempt 

to determine, and if possible, explain their effects in vivo.  Prior to this however, it is 

essential to examine and understand the evolution of these AMPA receptor 

potentiators from their inception in the early 1990s.  With this in mind, the several 

families of structurally distinct AMPA receptor modulators in existence are outlined 

in detail below. 
 

1.6.4.1. Plant lectins 
The plant lectin concanavalin-A was the first compound identified to exhibit a 

positive modulatory action on AMPA receptors.  The action of lectins on excitatory 

amino-acid responses had previously been studied extensively at the neuromuscular 

junction of crayfish, locusts and stingrays, and had been shown to rapidly reduce 

GluR desensitisation (Stettmeier et al., 1983; Evans and Usherwood, 1985; O’Dell 

and Christensen, 1989).  Mayer and colleagues presented the first evidence for a 

positive effect at mammalian synapses in 1989.  They found that concanavalin-A 

potentiated the peak response to quisqualate (16% increase in peak current), without 

altering overall channel conductance levels; and also maintained the steady-state  

current evoked by 100μM quisqualate by 13-times over control levels (profound 

inhibition of desensitisation) (Mayer et al., 1989).  A further study confirmed that the 

augmentation of the steady state current was not due to a change in channel 

conductance but was a result of an increase in the mean channel burst length of the 

AMPA receptors (Thio et al., 1992). 
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1.6.4.2. Pyrrolidinones  
The interest in lectins as potential AMPA receptor modulators was superseded by the 

discovery that the ‘nootropic’ (Greek: ‘toward the mind’) pyrrolidinones, such as 

piracetam and aniracetam, more therapeutically relevant compounds, were also 

probable AMPA receptor potentiators.  Prior to interest in the pyrrolidinones as 

AMPA receptor modulators, the compounds had been investigated both in animal 

models and in clinical scenarios as cerebral homeostatic normalisers, 

neuroprotectants, cerebral metabolic enhancers, brain integrative agents, and 

cognitive enhancers.  Aniracetam for example reversed the memory impairment in 

rats induced by clonidine, and also attenuated and reversed amnesia in mice and rats 

via various modes of induction (scopolamine, cyclohexamide, ECT) (Lazarova-

Bakarova and Genkova-Papasova, 1989; Martin et al., 1995).  In humans the 

compounds had been shown to improve learning and memory in both aged and 

normal healthy individuals (slow cognitive decline), and importantly they also 

displayed very low toxicity (Lee and Benfield, 1994).  Considered by many as the 

first seminal study into AMPA receptor potentiators, Ito and colleagues in 1990 

examined the actions of aniracetam (N-anisoyl-2-pyrrolidinone or RO135057), in 

both Xenopus oocytes expressing recombinant AMPA receptors, and on native 

AMPA receptors in acute rat hippocampal slices.  They found that aniracetam 

increased AMPA receptor mediated currents in oocytes without affecting 

GABA/Kainate/NMDA receptors, and increased the size of fEPSP’s in slices with no 

overt effects on the resting membrane properties.  Further work by Isaacson and 

Nicoll (1991) confirmed that aniracetam primarily functioned by producing profound 

effects on deactivation by selectively prolonging the time course of fast synaptic 

currents.  These effects were rapid in onset and easily washed out to baseline levels.  

It should also be noted that aniracetam is ‘flop’ isoform selective (Xiao et al., 1991).  

However, due to the fact that these compounds contain an -imide group they display 

very poor blood brain barrier penetration and require large doses to elicit therapeutic 

effects (low potency) when administered peripherally.  The compounds are also very 

rapidly metabolised  (Guenzi and Zanett, 1990). 
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1.6.4.3. Thiazides  
A second ‘group’ of AMPA receptor positive modulators chemically related to 

sulphonamides, was also identified in the early 1990s.  Diazoxide, the prototypic 

thiazide compound (a diuretic), was discovered whist studying its known action of 

activating ATP-sensitive potassium channels.  Diazoxide reversibly increased the 

peak amplitude of EPSCs, prolonged the EPSC decay time constant via a direct 

AMPA receptor mechanism, and was subsequently shown to be an inhibitor of both 

desensitisation and deactivation of AMPA responses.  It was also far more potent 

than previously identified AMPA receptor potentiators (aniracetam) (Tang et al., 

1991; Isaacson and Nicoll, 1991; Yamada and Rothman, 1992).  Cyclothiazide, a 

second-generation compound, is by far the most studied of all the AMPA receptor 

modulators and its characterisation has helped to further understand the precise 

mechanism of AMPA receptor desensitisation (Fig 1.9.A).  Cyclothiazide produces a 

near complete suppression of desensitisation, but has minimal effects on deactivation 

kinetics (Yamada and Tang, 1993; Yamada, 2000).  Investigation by Partin and 

colleagues identified that cyclothiazide completely eliminated desensitisation of 

‘flip’ AMPA receptor isoforms, but only slowed the entry of ‘flop’ isoforms into the 

desensitised state (Partin et al., 1994; Yamada, 2000).  Further studies utilising site-

directed mutagenesis established that a single serine residue, Ser750, in ‘flip’ 

isoforms is necessary and sufficient to account for cyclothiazide’s potent block of 

desensitisation (Partin et al., 1995).  Cyclothiazide, although a potent blocker of 

desensitisation has turned out to be best suited as a pharmacological tool, as it lacks 

good blood-brain-barrier penetration and as such cannot be investigated in in vivo 

models.  IDRA-21, another thiazide derivative, on the other hand displays good 

blood-brain-barrier penetration and has been shown to potentiate AMPA 

transmission in the hippocampus in vivo (Bertolino et al., 1993; Uzunov et al., 1995). 
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Fig 1.9.  Chemical structures of positive allosteric modulators of glutamatergic AMPA receptors

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Positive allosteric modulators include examples of: thiazides (A),  the ‘Ampakine’ family (B), the 
biarylpropylsulfonamides (C), and the novel Org Ampakines Org 24448 and Org 26576 (D).
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Fig 1.9.  Chemical structures of positive allosteric modulators of glutamatergic AMPA receptors

Positive allosteric modulators include examples of: thiazides (A),  the ‘Ampakine’ family (B), the 
biarylpropylsulfonamides (C), and the novel Org Ampakines Org 24448 and Org 26576 (D).
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1.6.4.4. Biarylpropylsulfonamides 
Lilly Neuroscience introduced the newest class of AMPA receptor potentiators in 

2000.  The biarylpropylsulfonamides (Ornstein et al., 2000), of which LY392098 and 

LY404187 are representative examples, are highly selective, very potent potentiators 

of AMPA receptor mediated responses (Fig 1.9.C).  Both compounds show no 

selectivity at kainate, NMDA, and voltage-gated ion channels.  They display good 

blood-brain-barrier penetration (Vandergiff et al., 2001), have an extracellular site of 

action, and increase the potency of the agonist for the receptor ~7-fold (Baumbarger 

et al., 2001a/b).  EC50 values for both compounds are in the range of 0-2μM for 

GluR1-4 subunits, and LY392098 applied for example at 1.7μM in PFC neurones 

increases AMPA receptor currents 31-fold relative to AMPA alone (Baumbarger et 

al., 2001a).  Threshold concentrations for observable effects are in the range of 10-

30nM, making these compounds ~1000 times more potent than cyclothiazide and the 

Ampakine compounds, and as such are termed ‘high impact’ compounds by the 

industry.  The compounds also display differential selectivity, with LY392098 most 

potent on GluR4 whilst LY404187 is most potent on GluR2 (Miu et al., 2001).  

Functionally the biarylpropylsulfonamides have been shown to potentiate responses 

in pre-frontal cortex neurones both in vitro and in vivo (Baumbarger et al., 2001), 

and also in vivo they increase the probability of evoked action potential discharge in 

the hippocampus in response to stimulation of glutamate afferents from the ventral 

subiculum (Kimball et al., 2000). 

 

1.6.4.5. Non-specific AMPA receptor potentiators 
PEPA, 4-[2-(phenylsulphonylamino)ethyl-thio]-2,6-difluorophenoxyacetamide, is a 

sulphonamino compound that also functions as a positive allosteric modulator of the 

AMPA receptor (Fig 1.9.A).  The compound, effective at micromolar concentrations 

(EC50 50μM), has no effects on the deactivation of glutamate induced AMPA 

receptor responses, but potently attenuates the extent of receptor desensitisation, 

displaying a preference for ‘flop’ spice variant subunits, in sharp contrast to 

cyclothiazide, and displays subunit specificity such that is effects are greater on 

GluR3>GluR4>GluR1 subunits (Sekiguchi et al., 1997 & 1998).  S18986, (S)-2,3-

dihydro-[3,4]cyclopentano-1,2,4-benzothiadiazine-1,1-dioxide, is another compound 
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that increases AMPA receptor currents in Xenopus oocytes (EC50 35μM), and 

potentiates fEPSPs in acute rat hippocampal slices (Desos et al., 1996; Lebrun et al., 

2000). 

 

1.6.4.6. Benzoylpiperidines / Benzoylpyrrolidines 
Synthesised and developed by Gary Lynch at the University of California/Cortex 

Pharmaceuticals, this group, termed the ‘Ampakines’, is by far the most common 

and widely used of all the AMPA receptor potentiators, and is typified by the 

prototypic compound CX516 (Fig 1.9.B).  Initially structurally derived from 

aniracetam, compounds such as 1-(1,3-benzodioxol-5-ycarbonyl)-piperidine (BDP) 

and CX516 (BDP-12) display enhanced potency and efficacy, good brain penetration 

and reduced metabolic inactivation (Staubli et al., 1994b).  BDP and CX516 when 

tested in hippocampal slices elicited fEPSP amplitude EC50 values of 1.5 and 0.3mM 

respectively, ~100 times more potent than previously reported with other compounds 

(pyrrolidinones and thiazides) (Yamada, 2000).  CX516 also displays moderate ‘flip’ 

subunit selectivity.  In vivo however, CX516 still exhibits a relatively short half-life 

(~1hr) with blood concentrations peaking around 45min after oral administration 

(Lynch et al., 1998), and still relatively low potency.  Subsequent further structural 

modifications including conformational restriction of the amide with rigidification of 

two rotatable bonds resulted in compounds such as CX554 (BDP-20) and CX614, 

which are a further ten-times more potent (low micromolar) in behavioural tasks 

compared to CX516 (Grove et al., 2000).  Ampakines have been subjected to the 

most intense in vivo and in vitro evaluation in both rodents and humans, and as a 

consequence are arguably the most systematically developed of any all the AMPA 

receptor modulating compounds.  Functionally, the compounds consistently 

potentiate current flow through the active AMPA receptor; enhance synaptic 

transmission (Aria et al, 1994 &1996a/b) and neural activity (Staubli et al., 1994a/b; 

Hampson et al., 1998); modify animal behaviour (Granger et al., 1993; Larson et al., 

1995 & 1996), and augment gene expression (Holst el al., 1998).  There is however 

functional diversity within the group concerning their mode of action and potency.  

CX554 for example has more pronounced effects on receptor desensitisation 

compared to CX516 (Arai et al., 1996a/b), whereas CX614 is equally effective in 
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influencing both aspects of receptor kinetics (Arai et al., 2000).  CX546 on the other 

hand while structurally similar to CX614 massively prolongs response duration but 

minimally effects desensitisation. 

 

1.6.4.7. The Ampakines Org 26576 and Org 24448 
As mentioned previously, the Ampakines that will be investigated in this thesis, Org 

26576 and Org 24448 (Fig 1.9.D), are structurally distinct compounds derived from 

the first generation Ampakine CX516 (Staubli et al., 1994a). These compounds 

display a 10-30 fold greater potency when compared to CX516 in potentiating 

AMPA-mediated electrophysiological responses, with an EC50 of 8-16 μM in rat 

hippocampal primary cultured neurons, and both Org 26576 and Org24448 

demonstrate selectivity for AMPA receptors when tested at 10 μM against >60 

molecular targets including G-Protein Coupled Receptors, ion channels and kinases 

(NovaScreen Biosciences Corporation, Maryland, USA).  Org 26576 and Org 24448 

also display antidepressant actions at 3 & 10 mg/kg respectively in the forced swim 

test, and reduced amphetamine induced locomotor activity at doses as low as 0.1 and 

0.3 mg/kg respectively.  In addition to this, Org 24448 also shows minimum 

effective doses of 0.1, 0.1 mg/kg in an in vivo screen for anti-psychotic activity and 

in models for cognition (delayed matching to position (DMTP) task) respectively, 

compared to 10, 15 mg/kg for CX516 (Cortex Pharmaceuticals, Inc Patent: 

WO9835950, 1998). 

 

1.7. The Clinical Utility of AMPA Receptor Potentiators 
 
To reiterate, >60% of all neurones in the brain, including all cortical pyramidal 

neurones and thalamic relay neurones utilise glutamate as their primary 

neurotransmitter (Javitt, 2004).  As glutamatergic neurotransmission is mediated 

primarily through the ionotropic glutamate receptors, of which the AMPA receptors 

mediate the fast excitatory component, it stands to good reason that these receptors 

are under intense scrutiny as a potential drug development target, a fact highlighted 

by the number of ligands now available for the AMPA receptor (see above). In 

support of this I alluded earlier to the concept that the modulation of fast excitatory 
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transmission could lead possibly to beneficial therapeutic effects, instead of the 

excitotoxic damage and seizure activity commonly associated over-stimulation of 

glutamatergic receptors.  This reasoning has been compounded in recent years by the 

emergence of a large body of evidence implicating glutamate neurotransmission, or 

lack thereof, in the pathophysiology of various neurodegenerative diseases and 

conditions.  Deficiencies in glutamatergic neurotransmission are thought to in part 

contribute to cognitive impairment/deficits, and there is also growing evidence 

suggesting reduced neocortical glutamatergic function and disrupted circuitry 

involving glutamatergic signalling may play a direct role in the pathophysiology of 

conditions such as cognitive dearth, schizophrenia (psychoses) and depression 

(Tamminga, 1999).  AMPA receptor potentiators may be therefore of potential 

clinical value in conditions such as these, and in point of fact there is a large body of 

preliminary evidence supporting this postulation (Li et al., 2001; Marenco et al., 

2002; Coyle et al., 2002). 

  

Ampakines specifically have been shown to be able to facilitate LTP both in vivo and 

in vitro (Bertolino et al., 1993; Staubli et al., 1994 a/b; Arai et al., 1996), and 

improve both rodent and human performance in behavioural models of 

cognition/learning and memory (Staubli et al., 1994; Larson et al., 1995; Zivkovic et 

al., 1995; Hampson et al., 1998; Ingvar et al., 1997; Thompson et al., 1995; Lebrun 

et al., 2000).  AMPA modulators also display significant neuroprotective effects in 

NMDA agonist (ibotenate) lesions in the mouse brain (Dicou et al., 2003), and 

provided functional, neurochemical and histological protection against 6-

hydroxydopamine lesions in the substantia nigra of rats (O’Neill et al., 2004).   They 

also display an antidepressant-like activity profile in animal behavioural models 

predictive of antidepressant action (Li et al., 2001; Knapp et al., 2002), promote 

serotonin release in the pre-frontal cortex (Ge et al., 2001), and have been implicated 

to be of therapeutic benefit in the treatment of schizophrenia (Marenco et al., 2002; 

Coyle et al., 2002).  Interestingly, glutamatergic inputs also regulate neurotrophin 

expression in the cortical telencephalon.  Neurotrophins have been linked with anti-

depressant action (Siuciak et al., 1997; Mackowiack et al., 2002) and Ampakines 

importantly have been shown to increase levels of certain neurotrophins, specifically 
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brain-derived neurotrophic factor (BDNF), in the CNS (Lauterborn et al., 2000 & 

2003; Legutko et al., 2001; Mackowiak et al., 2002).  These compounds are also 

active in behavioural models predictive of potential anti-psychotic action, such as the 

amphetamine-induced locomotion test (Johnson et al., 1999), and in behaviour 

models of anxiety, such as the marble-burying task (Organon personal 

communication). 

 

When considering the actions of drugs which impact on such a pervasive 

neurotransmitter system (glutamate), it is also important to consider the effects of 

functional activation on complex neural networks.  Ampakines have been indicated 

to have greater effects on complex neural pathways as opposed to monosynaptic 

synapse.  This is significant, as many neuropsychiatric and affective disorders, such 

as depression and schizophrenia, are now believed to be due to problems not in 

isolated neurotransmitter systems, but in processing within complex polysynaptic 

networks (‘network’ theory).  It is therefore imperative to examine the effects of 

Ampakines in whole systems with regard to functional activity, to attempt to dissect 

their possible effects in brain regions and circuitry relevant to disease states.  It is 

exactly this point that this thesis will address by combining use of the novel 

Ampakines Org 26576 and Org 24448 with functional brain imaging (see below 

section 1.9.).  

 

Clinically therefore, Ampakines may provide a novel means by which subtle 

modulation of receptor function results in the subsequent enhancement of synaptic 

function improving cognitive output and alleviating deficits in disease states 

associated with deficient glutamatergic neurotransmission, without affecting overall 

basal transmission, or the induction of excitotoxic effects. 

 

1.8. AMPA Receptor Distribution in the CNS 
 

It is essential when considering the effects of drugs, particularly ones that act on 

specific receptors, to identify in the CNS where the compounds are most likely to 

act.  For example in this thesis, where the effect of the Ampakines Org 26576 and 
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Org 24448 will be investigated, it is important to identify the distribution of AMPA 

receptors, to allow any functional changes induced by the Ampakines to be 

correlated with the presence or absence of AMPA receptors. 

 

The exact distribution of AMPA receptors in the CNS was initially characterised in 

the mid-1980s by several groups employing [3H]-AMPA autoradiographic binding 

studies in the rat (Halpain et al., 1984; Rainbow et al., 1984; Monaghan et al., 1984; 

Olsen et al., 1987).  These studies identified that AMPA receptors were 

heterogeneously distributed across the CNS, with binding largely restricted to 

telencephalic structures.   Particularly high levels of binding were evident in the 

hippocampus, cerebral cortex, septum and striatum.  The hippocampus displayed 

regional variations, with the highest levels seen particularly in the CA1 pyramidal 

layer and dentate gyrus molecular layer.  Binding was also high in the CA2 and CA3 

pyramidal layers.   Binding in the cortex was laminar in nature with high levels in the 

inner cortex and lower levels in the middle and deep cortex.  Visual cortex, 

somatosensory cortex, caudate putamen, nucleus accumbens, basal ganglia and the 

amygdala all displayed moderate levels of binding; and low levels were evident in 

the thalamic nuclei, midbrain, hypothalamus, cerebellum, and brain stem.  The 

lowest level of binding was evident in the globus pallidus.  Following the cloning of 

the AMPA receptor subunits, in situ hybridisation for mRNA transcripts and 

immunohistochemistry to detect the protein itself, were used to further investigate 

AMPA distribution in the CNS.  The results of these studies were consistent with the 

findings obtained by ligand-binding, with high levels of immunolabelling detected in 

the hippocampus, septum, cerebral cortex, habenula, amygdala and lower levels in 

the cerebellum (Petralia and Wenthold, 1992; Martin et al., 1993).  There were 

however profound regional differences in the pattern of immunostaining for the 

individual subunits, suggestive that there is a large possible diversity in subunit 

combinations expressed by neurones. 
 

It should also be observed that AMPA receptors are also found on glial cells (Gallo 

and Russell, 1995; Garcia-Barcina and Matute, 1998; Janssens and Lesage, 2001).  A 

recent study demonstrated that mouse hippocampal astrocytes can be categorized 
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into AMPA receptor expressing cells and glutamate transporter cells  (Wallraff et al., 

2004).  Functionally, glia play an essential role as an energetic shuttle between the 

blood supply and neurons (Yoshioka et al., 1996). 

 

1.9. Imaging the Effects of Drugs in the CNS 
 
As described previously, this thesis will investigate how the novel Ampakines Org 

26576 and Org 24448 affect overall functional activity in the CNS.  Traditionally, 

receptors and the actions of pre-clinical drugs on said receptors were, and still are, 

investigated in the CNS using largely indirect pharmacological and molecular 

imaging methodologies such as autoradiographic binding, in situ analysis, and c-fos 

expression studies. 

 
The classical pharmacological technique of autoradiographic binding for example 

utilises radiolabeled ligands to determine the tissue distributions of receptors and the 

action of compounds upon them.  For example, a recent study with the tritiated 

AMPA receptor potentiator LY395153 in 2004 identified that it bound to rat tissue 

sections with 85% specific biding, displaying high levels of binding in the 

hippocampus (CA1 and CA3), and cortex (layers I-III) (Weiss et al., 2004).  Low 

levels of binding were observed in the globus pallidus and geniculate nuclei, results 

which correspond closely with the AMPA receptor distribution outlined above 

(Section 1.8.).   

 

In situ hybridisation employs oligonucleotide probes designed specifically against 

the targets of interest (i.e. GluR1-4), which are labelled (radioactively or 

fluorescently) for easy identificaiton.  This methodology allows the pattern of 

expression of receptors, via their RNA message (mRNA), either native or induced by 

drugs, to be identified.  In a similar manner, c-fos expression studies image the 

immediate early gene c-fos as a marker of neuronal activity.  Both these techniques 

are indirect, and even though they provide valuable and undisputable insights into 

understanding receptor distribution and under certain circumstances function, they 

only provide a certain percentage of the overall picture. 
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Fig 1.10.   Representative images of traditional forms of imaging receptor 
distribution 
 
(A) Autoradiograph of the tritiated AMPA ligand Ro48 8587 binding to AMPA 
receptors at the levels of the hippocampus.  (B) Autoradiograph of 35S-labelled 
oligonucleotide probes specific for GluR2 mRNA in a horizontal section of a mouse 
brain (hippocampus is indicated by arrow). 
 

Another issue with the above-described methodologies is that they only allow for the 

identification of specific regional changes in binding/expression.  With investigations 

into compounds that are not specific but affect widespread systems, such as the 

glutamatergic system, it is also essential to attempt to identify changes in complex 

polysynaptic circuitry, to glean some insight into their overall effects. 

 

The [14C]-2-deoxyglucose autoradiographic technique, first introduced by Sokoloff 

in 1977, is a method that affords both a novel and unique way to map complex 

functional neural pathways simultaneously in all anatomical components of the CNS 

(Sokoloff, 1977), in isolated animals or in response to pharmacological intervention.  

The proposed model was based on one key physiological principle: that in normal 

aerobic conditions the brain derives its energy from the catabolism of glucose, 

through a well-defined series of enzymatic reactions (see Methodology).  As function 

is intimately related to energy consumption, by determining glucose utilisation 

within a structure it is possible to accurately estimate the level of functional activity 

within that same structure.  Therefore, this technique not only allows the 

identification of localised changes in cerebral metabolism, but also since alterations 

in glucose use correspond to activity in neuronal pathways it allows the investigator 

insight into activated polysynaptic circuitry in the cerebrum (most commonly used in 

response to drug administration).   
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Indeed the [14C]-2-deoxyglucose autoradiographic technique has been used 

extensively to characterise the circuitry associated with multiple neurotransmitter 

systems in the CNS, primarily through the administration of agonists, antagonists or 

strategically placed lesions to disrupt circuitry.  It is this technique that will be 

employed in this thesis to examine the effects of the novel Ampakines Org 26576 

and Org 24448 on functional activation and circuitry in the mouse cerebrum, which 

will provide valuable insights in addition to techniques such as in situ hybridisation 

and classical autoradiography to hopefully provide a ‘fuller’ picture of how these 

compounds elicit their effect in the CNS. 

 

1.10. Thesis Aims 
 

The specific aims of this thesis were: 
 
1. To establish a mouse model of semi-quantitative [14C]-2-deoxyglucose 

autoradiographic imaging, and to validate this model both by comparison 

with previously published data and through the use of well-characterised 

pharmacological compounds. 

 

2. To determine the anatomical site of action of the novel Ampakines Org 

26576 and Org 24448 utilising the established semi-quantitative [14C]-2-

deoxyglucose autoradiographic imaging technique. 

 

3. To establish that effects with these novel Org Ampakines on cerebral 

activation are indeed directly AMPA receptor mediated effects. 

 

4. To determine the effects of chronic administration of the novel Ampakines 

Org 26576 and Org 24448 on cerebral function utilising the established semi-

quantitative [14C]-2-deoxyglucose autoradiographic imaging technique. 

 

5. To determine the effects of chronic administration of the novel Ampakines 

Org 26576 and Org 24448 on neurogenesis, AMPA receptor expression and 

intracellular signalling in the murine hippocampus. 
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6. To determine the ability of the novel Org Ampakines Org 26576 and Org 

24448 to modify both baseline kinetic properties of AMPA receptors and a 

paradigm of synaptic plasticity, long-term-potentiation (LTP), in the murine 

hippocampus. 
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Chapter 2 
 

Materials and Methods 



2.1. Animals 
 
All procedures were carried out under licence from the Home Office with the 

approval of the University of Edinburgh Ethical Review Panel and were subject to 

the Animal (Scientific Procedures) Act 1986.  Adult male C57Bl/6J mice were 

purchased from Charles Rivers Ltd. (Cambridge, UK), and communally housed on a 

12hr light/dark cycle with free access to food and water. 

 

2.2. [14C]-2-deoxyglucose Autoradiography 
 
2.2.1. Theory 
As mentioned in the introduction, the [14C]-2-deoxyglucose autoradiographic 

technique was first introduced by Sokoloff in 1977, as a method that afforded both a 

novel and unique way to map functional neural pathways simultaneously in all 

anatomical components of the central nervous system.  The proposed model was 

based on one key physiological principle: that in normal aerobic conditions the brain 

derives its energy from the catabolism of glucose, through a well-defined series of 

enzymatic reactions.  As function is intimately related to energy consumption, by 

determining glucose utilisation within a structure it is possible to accurately estimate 

the level of functional activity within that same structure. 

 

The experimental technique purported by Sokoloff is based around the existence of a 

structural analogue of glucose, 2-deoxy-D-glucose.  This analogue differs from native 

glucose in only one way, specifically; the hydroxyl group on the second carbon of 

the glucose atom is substituted with a hydrogen (H) (Fig 2.1.).  This single structural 

difference imparts chemical properties on the molecule making it ideally suited for 

the proposed methodology. 

 

Both glucose and 2-deoxyglucose are transported between the blood and brain tissues 

across the blood brain barrier by the same saturable carrier.  However once in the 

brain tissue, these two molecules are differentially metabolised (Fig 2.2.).  Normal 

glucose is converted by hexokinase into glucose-6-phosphate, which is then acted 

upon by phosphohexose isomerase, isomerising it to fructose-6-phosphate.  This 
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Fig 2.1.  Diagrammatic representation of the cyclic form of glucose (A) and its 
analogue 2-deoxyglucose (B) 
 
The substitution of the hydroxyl group on the second carbon atom with a single 
hydrogen (star) results in a subtle shift of the molecule’s properties, resulting in it 
being unable to be metabolised by phosphohexose isomerase. 
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Fig 2.2.  A schematic representation of the differential metabolism of glucose 
and [14C]-2-deoxyglucose in the brain  
 

C*
P / CP Concentration of [14C]-2-deoxyglucose and 

glucose in arterial plasma. 
C*

E / CE Concentration of [14C]-2-deoxyglucose and 
glucose in the tissue pools that serve as 
substrates for hexokinase. 

C*
M / CM Concentration of [14C]-2-deoxyglucose and 

glucose in tissue 
K*

1/2/3 / K1/2/3 Rate constants for the carrier-mediated transport of [14C]-2-
deoxyglucose and glucose respectively from the plasma to 
the tissue (1) and from the tissue back into the plasma (2), 
and for the rate of phosphorylation by hexokinase (3) 
(Sokoloff et al., 1977). 
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product enters the glycolytic and tri-carboxylic acid pathways to generate energy in 

the form of ATP.  2-deoxyglucose, similarly to glucose, is acted upon by hexokinase 

converting it into 2-deoxyglucose-6-phosphate.  However, unlike normal glucose, 

metabolism stops at this point as 2-deoxyglucose-6-phosphate is not a valid substrate 

for phosphohexose isomerase (due to the lack of the OH group).  This reaction is 

virtually irreversible as 2-deoxyglucose-6-phosphate is also not a substrate for other 

glucose-6-phosphate metabolising enzymes such as glucose-6-phosphatase, 

coincidentally whose enzymatic activity is very low in mammalian brain tissue.  

Thus the 2-deoxyglucose-6-phosphate is essentially trapped, and subsequently 

accumulates in the tissue as it is formed for the duration of the experiment.  By 

substituting the normal C atoms in the glucose molecule with the radioactive β-

emitting 14C atoms, the 2-deoxyglucose-6-phosphate can be visualised once trapped 

by means of autoradiography. 

 

Sokoloff, also in his 1977 paper, proposed a mathematical representation of the 

model known as the ‘operational’ equation, in which he defined the variables to be 

measured and the procedures to be followed for accurate determination of local 

cerebral glucose use (LCGU).  This equation also incorporated all the assumptions 

and known data about the methodology (Fig 2.3.). 
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Fig 2.3.  The operational equation of the [14C]-2-deoxyglucose method 
 
The rate of glucose utilisation (Ri) in any region of cerebral tissue is calculated using 
this equation.  The lumped constant components are as follows: 
 

1/Φ Reciprocal of Φ reflects the level of glucose-6-
phospatase activity. 

λ Represents the ratio of distribution volumes for 
[14C]-2-deoxyglucose and glucose in the tissue. 

V*
m / Vm Ratio of maximal velocities of phosphorylation 

of the [14C]-2-deoxyglucose and glucose by 
hexokinase. 

K*
m / Km Ratio of the Michaelis-Menten constants for [14C]-2-

deoxyglucose and glucose, which represent the kinetic 
properties of the enzyme hexokinase. 
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Briefly, the equation states that if [14C]-2-deoxyglucose is introduced into the blood 

and allowed to circulate for a given time (τ) then the rate of glucose consumption 

(Ri) in any cerebral tissue (i) can be calculated provided that; the total 14C in that 

tissue (Ci*) is measured at time τ, the entire histories of arterial plasma 

concentrations of [14C]-2-deoxyglucose-6-phosphate and glucose from time 0 to time 

τ are determined, and the rate constants k1*, k2*, k3* and the single lumped constant 

are known.  However, the viability of the above model is dependant on some 

additional assumptions/conditions, specifically that: 

 

1. [14C]-2-deoxyglucose is present in tracer amounts. 

2. The arterial plasma glucose concentrations and the rates of consumption 

remain constant throughout the duration of the procedure. 

3. Glucose metabolism is in a steady state for the entire experimental duration. 

  
The dynamic alterations witnessed in glucose utilisation as a result of this procedure 

are thought to primarily reflect neuronal nerve terminal electrical activity (Schwartz 

et al., 1979).  The remainder of the energy consumption is most likely used to 

maintain appropriate ionic gradients and reflect the intimate role of astrocytes in 

cerebral metabolism (which is closely linked to neuronal activation). 

 

2.2.2. [14C]-2-deoxyglucose autoradiography modifications for mouse 
In the standard [14C]-2-deoxyglucose procedure, rats are anaesthetised and have both 

femoral arteries and veins exposed and cannulated.  Their hind limbs are 

immobilised with Plaster of Paris and the animals are allowed to recover for ~2 hr.  

50 μCi of [14C]-2-deoxyglucose is then injected via one of the venous catheters over 

a 30 second period.  14 precisely timed arterial blood samples are taken over the 45 

min experimental period, and are analysed for glucose and 14C content.  This allows 

a full profile of plasma glucose/14C to be constructed across the entire experimental 

period.  Using this data in conjunction with the operation equation allows for 

extremely accurate determination of LCGU. 
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In [14C]-2-deoxyglucose autoradiography in the mouse, also termed ‘semi-

quantitative [14C]-2-deoxyglucose’, only a single terminal torso blood sample is 

taken, as it is exceedingly difficult to acquire several blood samples from a mouse 

without inducing hypoglycaemia due to their overall small circulating blood volume 

(~1.5-2 ml for a 25 g mouse).  As a full profile of glucose/14C is therefore not 

available, it is necessary to introduce a ‘control’ variable to restrict the potential error 

from this semi-quantitative modification (Kelly et al., 2002).  This ‘control’ is 

traditionally a region of cerebral grey matter that is notionally unchanged by all 

experimental interventions.  For the technique to be valid in any given experimental 

setup, a plot of 14C levels in the control region versus the plasma glucose/14C ratio is 

necessary, and should elicit a linear relationship.  This demonstrates that the 

technique is viable and that comparisons made between animals and groups are 

accurate. 

 

2.2.3. [14C]-2-deoxyglucose autoradiography 
LCGU was measured in conscious free-moving mice using an experimental 

procedure previously described by Kelly et al. (2002).  Freely moving mice (~25 g) 

were intraperitoneally injected with 5 µCi of [14C]-2-deoxyglucose (specific activity 

57.2 mCi/mmol, Sigma, UK) dissolved in 0.4 ml Mulgofen-saline (5%) at a constant 

rate over a 10 second period.  Mice were returned to their cages for 44 min 35 s and 

observed.  At the end of this period each mouse was transferred to a perspex chamber 

and briefly anaesthetised in a mixture of 4% halothane in 30% Oxygen / 70% Nitric 

Oxide for 25 s.  At exactly 45 min post-isotope injection the mice were decapitated 

and a terminal blood sample was collected by torso inversion into pre-heparinised 

glass beakers.  This sample was loaded into pre-heparinised 0.5 ml Eppendorf tubes 

and centrifuged at 10,000 rpm for 2 min.  The plasma fraction of the blood was 

carefully drawn off the spun samples, and stored at 4 oC.  This terminal plasma 

sample was used to determine both 14C and glucose concentrations by liquid 

scintillation analysis (20 µL) and semi-automated glucose oxidase assay (Beckman 

Glucose Analyser II, 10 µL) respectively.  The brains were removed rapidly and 

frozen in chilled isopentane (-42 oC) for 5 min.  Frozen brains were stored in 7 ml 

bijou tubes at -20 oC until sectioning (max 1 week).  Serial coronal sections (20 µm 
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thick) were then prepared in a cryostat at -16 oC, sampled every 60 µm through the 

cerebrum (see cutting section 2.5. below for detailed procedure).  Brain sections were 

collected onto heated glass coverslips and dried rapidly on a hotplate at 60oC.  

Coverslips were then mounted onto standard cards sequentially, and autoradiograms 

of these sections were produced by exposing them to 14C-sensitive film (Kodak-

Biomax MR-1 film, Sigma, UK), in light tight X-ray cassettes for exactly 5 days with 

precalibrated methacrylate 14C standards (Amersham, UK).  Films were developed 

using an automatic x-ray film developer. 

 

2.2.4. Densitometric analysis of [14C]-2-deoxyglucose autoradiograms 
Densitometric analysis of the resultant autoradiograms was carried out on an AIS 

Image Analyser (Imaging Research, Canada).  The developed films were placed on a 

stable-intensity light box, and the light intensity was adjusted appropriately to 

provide a blue-red colour when visualised in the transposed colour mode.  A flat-

field correction was carried out to eliminate any background interference, and a 

standard curve (Fig 2.4.) was constructed by measuring the absolute relative optical 

densities (RODs) of known 14C precalibrated methacrylate standards (film 

background intensity was corrected by normalising it to zero nCi/g on the standard 

curve prior to 14C standard reading).  Calibration was adjusted for each film so that 

all measurements made on that particular film fell in the accurate linear middle 

section of the standard curve.  

 

Discrete neuroanatomical regions were assessed, chosen based on pre-determined 

key regions of interest for each study.  Analysis was carried out bilaterally in 6 

continuous sections, resulting in 12 measurements in all.  The size of the sample area 

was determined in advance, in relation to the relative size of the area of interest.  

These pre-determined sample sizes were used throughout the analysis.  Measured 

RODs for these areas were converted into a ‘functional measure’, LCGU (nCi/g), via 

calibration against the above constructed standard curve.  LCGU was estimated as 

the ratio of the 14C concentration in the region of interest to that of a control region 

(cerebellar cortical grey matter):  tissue 14C (nCi/g) in regions of interest vs. tissue 
14C (nCi/g) in the control region.   
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Fig 2.4.  14C standard curve for [14C]-2-deoxyglucose autoradiography 
 
Methacrylate 14C standards of a known concentration of radioactivity (nCi/g) are 
calibrated against their optical densities on exposed film, allowing the accurate 
determination of LCGU in discrete anatomical brain regions. 
 

2.2.5.  Statistical analysis of LCGU data 
All data were analysed for statistical significance by one-way analysis of variance, 

followed by Dunnett’s or Bonferroni’s post-hoc analysis, to correct for multiple 

comparisons between the drug-treated and vehicle control groups. 

 

2.3. Preparation Stages for Investigation of Protein Changes 
 

2.3.1. Saline perfusion 
Animals were deeply anesthetised in a perspex box with 4% halothane in 30% 

Oxygen / 70% Nitric Oxide, and then transferred to a facemask in a fumehood where 

the halothane was reduced to a maintenance level (3%) for the remainder of the 

procedure.  The mask and the animal’s forelimbs were taped firmly in place, so the 

animal’s ventral surface was facing upwards.  An initial incision was made at the 

base of the sternum.  The skin and hair was cut away to expose the diaphragm, which 

was also detached to reveal the chest cavity.  The rib cage was cut away either side 

of the heart and all connective tissue was severed to allow free access the heart.  The 
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heart was immobilised and a butterfly needle (22G) attached to a perfusion pump 

(Harvard Instruments) was inserted at the apex of the left ventricle and advanced into 

the left atrium.  The needle was clamped in place with surgical-clamp scissors, and 

the right atrium was cut to allow for complete perfusion of the circulatory system 

(drainage of blood).  20-25 ml of heparinised ice-cold saline (5000 units/100 ml) at a 

rate of 2.5 ml/min-1 was administered until the perfusate ran clear. The paling of the 

paws (extremities) and organs such as the liver were also used as a reference to 

indicate complete efficient perfusion.  The head of the animal was removed, the brain 

carefully isolated and placed in ice-cold saline. 

 

2.3.2. Micro-dissection and tissue preservation 
The brain was transferred to a dissecting surface; half a Petri dish embedded in ice 

covered with saline-saturated filter paper.  Using a razor blade the brain was initially 

hemi-bisected along its midline.  Half the brain was immediately frozen in chilled 

isopentane (-42oC) for 2.5 min, and placed in storage at -20oC.  The other half of the 

brain was turned so that the medial surface (cut surface) was facing up, and was held 

down with a pair of Graefe forceps whilst another pair was used to peel the neocortex 

off the brain exposing the hippocampus.   Once exposed, the fornix was clipped and 

the ends of one set of forceps were gently worked beneath the fimbria, rolling the 

hippocampus out along its longitudinal axis.  Gently cut away from the brain, the 

dissected hippocampus was placed in a 1.5 ml eppendorf tube, labelled, snap frozen 

in liquid N2, and stored at -80oC for tissue homogenisation and Western blot analysis. 

 

2.3.3. Section preparation and collection 
Hemi-brains were removed from storage at -20 oC, placed in dry ice and transported 

to the cryostat (Bright Instruments Ltd.).  A rotatable cryostat ‘chuck’ was cooled in 

dry ice and OCT embedding compound (Raymond Lamb) was applied to it and 

allowed to partially solidify.  The brain was carefully removed from its tube and 

placed, cerebellum down, into the partially solidified OCT so it lay perpendicular to 

the axis of the chuck.  The OCT was allowed to solidify completely, and further OCT 

was applied up to the level of the cerebellum/cortical boundary.  The chuck was 

fixed in place in the cryostat and allowed to equilibrate to a cutting temperature of     
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-16 oC.  20 µm serial coronal sections were cut using the cyrostat’s anti-roll plate and 

collected onto poly-l-lysine pre-coated glass slides.  Sections were allowed to fully 

adhere, and the slides were stored in plastic slide boxes (VW Inc.) at -20 oC until 

used for immunohistochemistry/morphological analysis. 

 

2.4. Immunohistochemistry 
 
2.4.1 Theory 
Immunohistochemistry (IHC) is a technique combining anatomical, immunological 

and biochemical principles for the localisation of antigens of interest in tissue 

sections using labelled antigen-specific antibodies, which are visualised by markers 

such as enzymes (e.g. peroxidase) or fluorescent dyes.  IHC allows accurate 

visualisation of both the distribution and localisation of cellular components within 

cells and/or tissue, and involves 4 key steps (Fig 2.5.). 

 

2.4.2. General procedure 
Sections were removed from storage at -20 oC and were allowed to air dry at room 

temperature for 1 hr prior to use.  Slides were placed in standard slide racks and 

equilibrated in PBS (1x used throughout) for 5 min.  This was followed by 

dehydration in graded alcohols:  70% (2 min), 90% (2 min) and 100% (2x5 min); and 

the blockage of endogenous peroxidase activity by immersing the sections in 0.5% 

H2O2 in methanol for 30 min.  Subsequent to this, sections were rinsed in running tap 

water for 10 min and again equilibrated in PBS for 5 min at room temperature.  

Antigen unmasking was then carried out by microwaving the sections at 90 oC for 10 

min in citric acid buffer (pH 6.0).  Sections were allowed to cool in the buffer for at 

least 1 hr.  Following 2x5 min rinses in PBS, non-specific binding sites were blocked 

in 0.5% BSA / 10% normal serum made in PBS for 1 hr at room temperature.  The 

block was drained off and replaced with the primary antibody made in the original 

blocking solution, which was incubated overnight at 4 oC.  The following day, 

sections were allowed to rest at room temperature and subjected to 2x10 min washes 

in PBS.  The secondary biotinylated antibody was made up in PBS and placed on the 

sections for 1 hr at room temperature; this was followed by 2x10 min washes in PBS.  
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Fig 2.5.  The ‘ABC’ immunoperoxidase method of immunohistochemistry 
 
The ‘ABC method’ for immunohistochemistry utilises enzyme-conjugated antibodies, 
in the 4 distinct steps above to yield a coloured or luminescent product, which can 
be visualised with a standard light microscope.  This specific reaction was used due 
to its stability, high-sensitivity, and low background staining. 
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The avidin biotinylated horseradish peroxidase solution (Vectastain ABC Elite Kit) 

was made up according to the manufacturers instructions, ~30 min prior to use, and 

applied to the sections for 1 hr at room temperature.  Sections were washed for 2x10 

min in PBS, and developed in diaminobenzidine (DAB) for 5 min.  DAB was 

drained off into a 5% Precept disinfectant solution and sections were washed 

thoroughly in clean running water to remove any remaining DAB.  All sections were 

counterstained briefly with haematoxylin, differentiated in acid alcohol, rinsed in 

Scott’s tap water, dehydrated in graded alcohols, cleared in xylene and mounted in 

DPX mountant.  Negative controls for immunohistochemistry underwent all the 

above steps except the primary antibody was omitted. 

 

2.5. Western Blot Analysis of Protein Levels 
 

2.5.1. Tissue homogenisation 
Hippocampal tissue samples were removed from the -80oC freezer and weighed.  5x 

(wt/vol) of homogenisation buffer of the following composition: 10 mM HEPES 

pH7.9, 1.5 mM MgCl2, 10 mM KCl, 1 mM DTT, 0.1% (wt/vol) NP-40, 1 mM 

PMSF, was added to each sample.  Homogenisation was manually carried out on ice 

in 1ml Dounce tissue homogenisers, employing ten vertical up and down strokes 

with a rotation/grinding motion at the bottom to help break up the tissue.  

Homogenates were left on ice for 20 min, transferred to 1.5 ml Eppendorf tubes and 

spun at 14,000 rpm for 10 min at 4oC.  The supernatant fractions were carefully 

removed, to avoid contamination, placed in clean 0.5 ml eppendorf tubes and stored 

at -80oC. 

 

2.5.2. BCA assay and protein content determination 
The BCA protein assay is a technique used to determine accurate concentrations of 

protein samples.  The assay measures the formation of Cu+1 from Cu+2 by the Biuret 

complex in alkaline solutions of protein.  The BCA reagent forms a complex with the 

reduced Cu+1, which manifests as a purple colour product and has a strong 

absorbance at 562 nm.  The intensity of the colour is directly proportional to the 

protein concentration, allowing accurate concentration determination.  The assay is 
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carried out at 37oC or 60oC, as this increases its sensitivity and helps reduce the 

variation in the response of the assay to protein composition. 

R2 = 0.997
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Fig 2.6.  Bovine serum albumin (BSA) protein standard curve 
 
Increasing concentrations of BSA (μg/ml) directly correlate to increased absorbency 
at 562nm, allowing accurate determination of tissue sample protein concentrations 
by linear regression analysis. 

 

A series of protein standards (10-1000 μg/ml) were prepared in duplicate using 

bovine serum albumin (BSA) of a known concentration by serial dilution.  Protein 

samples were prepared, in triplicate, from the homogenates in a 1:10 or 1:15 dilution 

(in the original extraction buffer), and together with the standards these samples were 

reacted with the BCA reagent at 60oC for 30 min.  The absorbency of all the samples 

was measured on a spectrophotometer at 562 nm, and a graph was constructed for the 

BSA standards (A562 vs. Proteinμg) (Fig 1.6.).  Linear regression analysis was used to 

determine the protein concentrations of the samples from their averaged 

absorbencies. 

 

2.5.3. SDS-PAGE 
Electrophoresis is the migration of charged molecules in solution in response to an 

electric field. In sodium-dodecyl-sulphate polyacrylamide-gel-electrophoresis (SDS-

PAGE), SDS an anionic detergent denatures proteins by surrounding the polypeptide 

backbone and in so doing, confers a negative charge to the polypeptide in proportion 
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to its length.  It is however necessary to break the disulphide bonds in the proteins 

before they adopt the random-coil configuration necessary for separation by size.  

This is achieved by the addition of 2-mercaptoethanol, ensuring therefore that 

migration is determined solely by molecular weight and not overall size of charge. 

 

A Hoefer SE 600 Series Gel Electrophoresis Unit (Amersham, UK) was used for 

SDS-PAGE.  The glass plates were thoroughly cleaned with both water and 70% 

ethanol.  One glass plate was laid on a flat surface, two 1.5 mm spacers were placed 

along its edges and the second glass plate was positioned on top.  This gel sandwich 

was secured with the supplied clamps to finger tightness, ensuring the spacers were 

accurately aligned with the plates.  Two such sandwiches were created and were 

secured in the casting cradle, a tight seal at their bases created to allow effective gel 

casting.  Sample combs were inserted into the assembled plates and a mark was made 

~2 cm below the bottom most edge of the combs.  A 10% polyacrylamide ‘resolving’ 

gel (see appendix for composition) was prepared and slowly pipetted into the 

assembly, up to the level of the mark.  This gel solution was overlaid with 2 ml of 

SDS-saturated water, to prevent the gel drying out, and allowed to set for 45 min.  

Once polymerised, this SDS-overlay was removed by rinsing several times with 

distilled water, the sample comb was inserted, and a 4% polyacrylamide ‘stacking’ 

gel (see appendix for composition) was prepared and pipetted on top of the resolving 

gel up to the top of the glass plates.  This was allowed to set for 30 min. 

 

80 μg of each protein homogenate was made up to a volume of 40 μl with the 

appropriate homogenisation buffer, to which an equal volume of Laemelli sample 

buffer / 2-mercaptoethanol (9:1 ratio) was added to obtain a final sample volume of 

80μl.  The samples were vortexed thoroughly, heated to >95oC for 5 min, to ensure 

full protein denaturation, and briefly spun at 1000 rpm to consolidate the sample. 

 

Once set, the combs were carefully removed from the top of the gel, and the sample 

wells were washed with 1x running buffer to remove any remaining unset gel / 

debris.  The gel sandwiches were attached to the upper buffer chamber, and removed 

from the casting apparatus.  The upper chamber was inserted into the gel tank, along 
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with the cooling apparatus, and each chamber was filled to the appropriate levels 

with 1x running buffer.  Prepared protein samples were carefully pipetted into the 

stacking gel wells using special gel loading tips, along with Kaleidoscope broad 

range colour markers (Biorad) and predetermined molecular weight standards 

(Biorad).  The lid was placed on the assembly, connected to the power supply and 

ran overnight (~15 hr) at 50 mA. 

 

2.5.4. Western blotting 
Western blotting was carried out in a Hoefer Transphor TE42 Electrophoresis Unit 

(Amersham, UK).  Once fully ran out, the gels were removed from the glass plates, 

the stacking gel was cut away using a razor blade.  The correct orientations of the 

gels were recorded by cutting away the top left hand corner.  Gels were then soaked 

in transfer buffer for 5 min.  Four pieces of western blotting paper and four 3 mm 

sponges were also soaked in transfer buffer until saturated, and polyvinylidene 

fluoride (PVDF) membrane of the correct size was soaked in methanol for 2-5 min 

prior to use, to ensure complete membrane activation.  The transfer stacks were 

assembled as outlined in Fig 1.7., so that the protein molecules would migrate from 

the gel toward the PVDF membrane (from cathode (black) to anode (grey)).  Bubbles 

were removed from the assembled sandwich by rolling with a glass pipette.  The 

assembled cassettes were quickly inserted into the transfer tank, to avoid draining the 

sponges, and the transfer buffer level was corrected to fall between the max and min 

buffer lines.  The entire assembly was continually stirred for the duration of the 

transfer.  Transfer was carried out at 4oC at a constant voltage of 75 V for 2 hrs.   

 

Post-transfer, the PVDF membrane now with the transferred, fixed proteins, was 

removed from the transfer sandwich, marked for reference, and placed in 50ml 

centrifuge tubes with the protein side facing inwards.  The membrane was initially 

rinsed in 20 mls 1x PBS/Tween (0.1%) for 10 min, followed by the blocking of non-

specific binding sites in 1xPBS/Tween (0.1%) containing 10% non-fat milk (Marvel) 

for 2 hr at room temperature.  Blots were then incubated with the appropriate primary 

antibodies made in 1x PBS/Tween (0.1%) containing 5% non-fat milk overnight at 

4oC (Table 2.1.).  The following day, blots were rinsed in PBS/Tween (0.1%) for 
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3x10 min, and incubated in the appropriate secondary antibody also made in 5% non-

fat milk in 1x PBS/Tween (0.1%) at room temperature for 2 hr (Table 1.1.).  

Following this, blots were again rinsed in PBS/Tween (0.1%) for 3x10 min.  All 

incubation steps were carried out on a rotary shaker to ensure equal and consistent 

distribution of fluid across the blot’s surface.  Following the final rinse, blots were 

removed from the tubes and place protein-side facing up in a flat dish.  Antibody 

detection was accomplished using ECL (Amersham) pipetted onto the blot’s surface 

for exactly 1 min.  The ECL was drained off on to blotting paper, and the blot was 

wrapped in Clingfilm, secured in a light tight cassette and exposed in safelight 

conditions to ECL-sensitive X-ray film for 2 s - 5 min depending on requirements.  

Exposed film was developed in an automatic x-ray film processor. 
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Fig 2.7.  Western blotting transfer assembly 
 
The transfer sandwich was assembled in a tray containing transfer buffer ~3cm 
deep, in the order illustrated above to ensure correct migration of the proteins from 
the gel to the PVDF membrane.  All components were appropriately pre-soaked, 
and bubbles were removed by gentle rolling with a glass Pasteur pipette. 
 

2.5.5. Coomassie blue staining 
Following protein transfer the gels were checked for correct migration of proteins, 

efficiency of transfer, and correct/equal loading of proteins by coomassie blue 

staining.  Gels were covered in a 0.1% coomassie blue in 50% methanol / 5% acetic 

acid solution for 2 hr on a shaker at room temperature.  Gels were de-stained in a 

40% methanol and 10% glacial acetic acid solution overnight, to allow accurate 

visualisation of protein banding. 
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Primary 
Antibody 

Manufacturer 
Code Dilution Made In Secondary 

Antibody 
Manufacturer 

Code Made In Dilution 

GluR1 Chemicon 
AB1504 1:1000 

GluR2/3 Chemicon 
AB1506 1:1000 

Calbindin Upstate 
AB25085 1:250 

1:1000 
 

ERK Upstate 
06-182 1:1000 1:2500 

P-ERK Upstate 
07-467 1:1000 

P-Lyn-Kinase Santa Cruz 
SC15 1:1000 

1:1000 

Actin Sigma 
A4700 1:1000 

5% Marvel 
PBS/Tween 

HRP-Anti-Rabbit 
 

Amersham Biosciences 
NA934 

5% Marvel 
PBS/Tween 

1:5000 

P-CREB Upstate 
AB3442 1:500 5% Marvel 

TBS/Tween HRP-Anti-Mouse Amersham Biosciences 
NXA931 

5% Marvel 
TBS/Tween 1:1000 
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Table 2.1.  Details of primary and secondary antibodies and relevant solutions used for antigen detection on Western blots 

 



2.5.6. Western blot quantification and statistical analysis 
Developed film was visualised on a light box and bands were semi-quantified by 

measuring their RODs using an AIS Image Analyser (Imaging Research, Canada) 

system.  Antibody bands were quantified in relation to a reference band to control for 

loading, which unless otherwise stated was actin, and each blot was repeated at least 

once to ensure validity.  Data were analysed for statistical significance by one-way 

analysis of variance, followed by Dunnett’s or Bonferroni’s post-hoc analysis, to 

correct for multiple comparisons between the drug-treated and vehicle control 

groups. 

 

2.6. Extracellular Field Electrophysiology 
 
Simply, electrophysiology is the study of the electrical properties of both cells and 

tissues.  It involves both measuring the voltage differences across cell membranes, 

and investigating how the flow of electrical current across membranes is regulated.  

Extracelluar field electrophysiology is the study of the collective activity of a many 

cells in a certain area, hence ‘field’.  The simulateneous activation of many neurones 

(induced in this thesis by a ‘stimulating’ electrode) induces synaptic transmission and 

the generatation of a field potential, which is detected through the use of a 

‘recording’ electrode placed in a selected area of interest.  Extracellular field 

electrophysiology is most commonly carried out in vitro in specially prepared brain 

slices of the tissue of interest.  Acute brain slices from the hippocampus were utilised 

in this thesis.  

 
2.6.1. Solution preparation 
The composition of artificial cerebrospinal fluid (aCSF) for recording extracellular 

electrophysiological responses was obtained from Arai et al. (2004), and is shown in 

Table 2.2.  The solution in which the hippocampal slices were cut was modified by 

altering the MgSO4
 concentration to 2.5 mM.  The high Mg2+ content of the cutting 

solution helped prevent excitotoxic cell death from excess glutamate released during 

tissue sectioning, through the blockade of NMDA receptors. 
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Reagent F.W Supplier (mM) 

NaCl 58.44 Fisher (UK) 
S/3160/60 124 

KCl 74.56 Fisher (UK) 
P/4280/53 3 

NaHCO3 84.01 Fisher (UK) 
S/4240/53 26 

NaH2PO4 156.01 BDH (UK) 
30716 1.25 

CaCl2 110.98 Fisher (UK) 
SH3028901 3.4 

MgSO4 246.48 Fisher (UK) 
M/1050/53 1.3 (2.5)

 
 
 
 
 
 
 
 
 
 
  

 
D-Glucose 180.16 Fisher (UK) 

G/0450/53 10 

pH 7.4 

 
 
 
Table 2.2. Composition of the extracellular artificial cerebrospinal fluid (aCSF) 
 
The concentration of MgSO4 in the aCSF was raised to 2.5 mM during the cutting of 
acute hippocampal slices to help prevent excitotoxic cell death. 
 

2.6.2. Acute hippocampal slice preparation 
Mice were deeply anaesthetised in 4% halothane in 30% Oxygen / 70% Nitric Oxide.  

They were decapitated at the level of the brainstem with ‘standard pattern surgical 

scissors’ (FST 14000-16, Germany).  The skin and hair were subsequently removed 

with ‘iris scissors’ (FST 14060-09, Germany) to reveal the skull.  Using the iris 

scissors the skull was removed, initially by an incision from the top of the brainstem 

along the midline of the skull in a posterior to anterior direction in the superior aspect 

to the point where the cerebellum joins the main cortical body.  This section of skull 

was carefully peeled away using ‘Graefe forceps’ (FST 11052-10, Germany), whilst 

also taking care to cut away the meninges to prevent damage to the brain.  Following 

this, a further incision was made along the midline of the skull in the superior aspect 

up to the level of the olfactory bulbs.  The remaining skull was peeled away, and the 

brain was levered out of the remaining cranium using a small flat weighing spatula, 
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into ice-cold (<4 oC) carbogenated (95%O2/5% CO2 (BOC gas, UK)) cutting aCSF.  

The brain was allowed to cool for 30 s; this not only helped to slow the metabolism 

of the tissue, minimising damage due to anoxia, but also helped ‘firm’ the brain for 

sectioning.   

 
The isolated brain was then placed on a cold, wet, flat absorbent surface (aCSF 

soaked filter paper on a circular glass plate) for dissection.  An initial cut (1) was 

made diagonally through the rostro-caudal extent of one hemisphere using a sharp 

razor blade to provide a smooth fixing surface.  The cerebellum was sectioned away 

at the hindbrain junction (2) with a coronal cut, followed similarly by the frontal 

cortex (3).  The lateral surface of the remaining hemisphere was then cut away to 

provide an initial cutting surface for the vibroslicer (Fig 2.8.).  

 

 

 

 

 

 

Fig 2.8.  Diagram highlighting the procedure for the preparation of the tissue 
block for vibrotome sectioning  
 
This dissected tissue block was mounted in place against a silicone rubber block on a 

Teflon block using cyanoacrylate glue.  This block was subsequently secured in 

place in a Camden Instruments Vibroslicer (Campden Instruments, Loughborough, 

UK).  The cutting chamber was filled with ice-cold carbogenated cutting aCSF for 

the entire slicing procedure.  400 μm sagittal brain slices were prepared and the 

hippocampi roughly dissected out using an artists No. 2 paintbrush and spring-loaded 

dissecting scissors.  After dissection, the slices were carefully picked up on a large 

flat spatula and transferred to a holding chamber (Fig 2.9.) containing continually 

carbogenated aCSF at room temperature.  Slices were incubated for at least 1hr prior 

to recording.   
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 (A) (B)
 
 
 
 
 
 
Fig 2.9.  A pictorial representation of the slice holder and slice chamber 
 
The slice holder (A) was comprised of 1cm long cut cylindrical segments of a plastic 
5ml syringe super-glued together over a taut nylon grid.  The holder was wedged in 
place in a 250 ml beaker (B) against a segment cut from a 50 ml syringe.  The aCSF 
was constantly carbogenated. 
 
2.6.3. Recording electrode preparation 
Extracellular recording electrodes were pulled on a PP83 vertical puller (Narishige, 

Japan), using a two-stage pull (Stage 1 – 11.2; Stage 2 – 10.0), from filamented 

borosilicate capillary glass of 1.5mm external diameter (Intrafil 01-019-06, UK).  

Electrodes (~2 μm tip diameter) had a final tip resistance of 2-5 MΩ, and were filled 

with recording aCSF prior to use. 

 

2.6.4. Electrophysiological recording 
A single slice was transferred from the holding chamber to the submerged recording 

chamber (well volume 1.5 ml) (Madison et al., 1991).  The submerged recoding 

chamber was made from a machined perspex block (Fig 2.10.).  The aCSF entered 

the block at the base where it travelled through small diameter glass tubing through a 

heated reservoir of distilled water, entering the recording chamber through small 

diameter plastic tubing into an initial bubble trap.  Two strips of silicone rubber ran 

along the sides of the bath upon which fine permeable plastic netting was superglued 

in place.  This acted as a platform upon which the slice sat.  The slice was held in 

place using a U-shaped platinum weight (400 μm thickness), across which, fine 

elasticated nylon threads were superglued to form a mesh, effectively immobilising 

the slice.  This U-shaped holder was held in place with fine platinum weights at each 
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corner, and the aCSF level was controlled via a suction tube, connected to a vacuum 

pump, placed in the rear well of the chamber.  Altering the level of this suction 

device allowed not only flow of aCSF across both surfaces of the slice (hence 

‘submerged’), but also removed and circulated new gassed aCSF in a continual 

unidirectional manner via the gravity-fed perfusion system.  Flow rate was restricted 

by narrowed silicone tubing of a specific length, and was subsequently consistently 

maintained at ~2.5-3 ml/min-1.  Temperature was maintained at 33.5oC ± 0.5oC using 

a thermostatic controller.  An Ag/AgCl2 earth-electrode was also placed in the rear 

well and earthed through the head stage of the recording electrode.  Illumination of 

the slice was provided by a fibre-optic light-source.  The recording chamber, 

perfusion system, electrodes and micromanipulators were all situated on a 

pressurised air table, surrounded by a Faraday cage, to help reduce external 

vibrations and electrical interference (‘noise’). 

 

 

1 

2
3 4

5 

Distilled Water Filled Reservoir

 

Fig 2.10.  The submerged recording chamber utilised for extracellular 
electrophysiological field recordings 
 
Carbogenated aCSF entered via the gravity fed perfusion system (1) into the 
reservoir with distilled water where it was heated to 33.5oC, under thermostatic 
control (5).  aCSF entered the bath in the front chamber (2) where it flowed towards 
the rear chamber (4) over the slice which was placed and secured on the nylon 
mesh (3).  The level of aCSF and was controlled by means of a suction device 
placed in the rear chamber. 
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The filled glass-recording electrode was mounted on a 0.1 mV head stage, which was 

fixed to a micromanipulator (Narishige, Japan), with the tip of the chlorided silver 

wire in contact with the recording solution.  This was visually lowered toward the 

slice using the gross control mechanisms.  The twisted insulated bipolar stainless 

steel stimulating electrode was also positioned over the slice and visually lowered 

into place above the slice.  The slice was then visualised with a Leica Optical 

Microscope, and both recording and stimulating electrodes were finely positioned, 

using the fine controls of the micromanipulators, in the stratum radiatum of the CA1 

field of the hippocampus, allowing recording of field Excitatory Post Synaptic 

Potentials (fEPSP’s) in response to activation of the Schaffer-commissural fibres. 

 

2.6.5. Data acquisition and analysis 
An axoclamp 2A amplifier (Axon Instruments, CA, USA) was used to amplify the 

signals and to inject depolarising current pulses, through the stimulating electrode.  A 

calibration pulse of 0.5mV was recorded prior to the stimulation pulse and used to 

determine the amplitude of responses achieved. All data were filtered and digitised 

using an analogue-to-digital converter (1401 Plus, CED), and the timings of all these 

events was controlled through a computer-linked interface using the Signal data 

acquisition and analysis system (Ver. 2.15 CED, Cambridge, UK).  Extracellular 

field recordings were visualised during the course of the experiments both on a 

standard oscilloscope and via Signal on the computer monitor.  Data were stored via 

Signal on the computer hard disk, and intermittently backed up onto flash disk.  Data 

were analysed off-line using Signal, Microsoft Excel and SigmaPlot/Stat. All data 

were analysed for statistical significance by paired student’s t-tests with the relevant 

control responses; significance was set at P<0.05. 
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Chapter 3 
 

Characterisation and validation of an in 

vivo semi-quantitative model of  
[14C]-2-deoxyglucose autoradiography in 

the C57Bl/6J mouse 

 



3.1. Introduction 
 

The [14C]-2-deoxyglucose technique has been used extensively since its inception in 1977 

(see Methodology 2.2.1.).  Proposed initially in the rat, the methodology has been used 

extensively to map profiles of activation in response to pharmacological intervention, as 

well as physiological and pathological states in rodents and higher mammals.  Diverse 

phenomena ranging from the areas of the brain displaying altered function following 

cortical/hippocampal lesions (Reinstein et al., 1979), to the effects of psychotropic 

compounds such as cocaine, PCP, and ecstasy on central cerebral function have been 

investigated (Sharkey et al., 1991; Meibach et al., 1979).  Though it has been employed 

extensively in rats, the technique has limited use in other rodents such as the mouse, due to 

what is viewed by many as a ‘compromisation’ of the original model purported by 

Sokoloff.  Indeed, papers began appearing in the literature as early as 1980 regarding 

possible modifications of the methodology, such as intraperitoneal versus intravenous 

administration of the [14C]-2-deoxyglucose (Meibach et al., 1980), to allow the technique 

to be successfully translated into mice.  With advances in molecular biology, particularly 

with the generation of transgenic and knockout mice, offering novel avenues for 

investigation, the use of mice as opposed to rats has been the focus in recent years as an 

experimental tool.  As a consequence of this, various groups have recently used both semi-

quantitative and fully quantitative models of mouse [14C]-2-deoxyglucose to investigate 

functional alterations in glucose use in response to neuropharmacological agents, such as 

ketamine and MK-801, in normal and transgenic animals (Miyamoto et al., 2000; Kelly et 

al., 2002; Duncan et al., 2002).  These models have proved successful and have elicited 

responses similar to those witnessed in the rat model.   

 

3.1.1.   Aims 
The primary aim of this study was to establish an accurate and reproducible model of 

functional [14C]-2-deoxyglucose autoradiographic imaging in the mouse.  In addition to 

this, it was aimed to further characterise and validate this model with the well-researched 

compounds (+)-5-methyl-10,11-dihydro-5Hdibenz[a,d]cyclohepten-5,10-imine maleate 

(MK-801), an NMDA receptor antagonist, and the prototypic Ampakine CX516.  As this 

was a new investigation of Org 26576 and Org 24448 in the mouse, a pilot study was also 
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carried out utilising a single dose of Org 24448 and Org 26576 to determine whether at 

these doses, regional alterations in LCGU could be detected and the variability of this 

response. 

 
 
3.2.  Materials and Methods 
 

3.2.1.  Animals 
C57Bl/6J mice (25g) were communally housed on a 12hr light/dark cycle for 1 week prior 

to experimentation with free access to food and water.  On the day of experimentation 

mice were separated into individual cages in the procedure room and allowed to 

acclimatise to their new environment for 30 min.  All experiments were controlled as 

stringently as possible for weight, light and sound conditions, and circadian timings to 

ensure equal distribution of variables across the treatment groups. 

 

3.2.2. Drug administration and the [14C]-2-deoxyglucose procedure 
Vehicle (5% Mulgofen-Saline (EL-719, GAF Ltd. Manchester, UK)), the NMDA receptor 

antagonist MK-801 (0.5 mg/kg), the Ampakine CX516 (30 & 100 mg/kg), Org 26576 (3 

mg/kg) and Org 24448 (10 mg/kg) were administered intraperitoneally (0.2 ml total 

volume) 10 min prior to the [14C]-2-deoxyglucose pulse.  5 μCi [14C]-2-deoxyglucose 

(specific activity 57.2 mCi/mmol, Sigma, UK) dissolved in 0.4 ml vehicle was 

administered via intraperitoneal injection over a 10 s period in the contra-lateral side of the 

abdomen to which the drug was injected.  The detailed autoradiographic experimental 

procedure is outlined in section 2.2.3.   Standard autoradiographs were prepared and 

LCGU was determined in pre-determined areas of interest as described in section 2.2.4. 

 

3.2.3.  Statistical analysis 
Generated LCGU data were analysed for statistical significance by comparison to vehicle 

treated groups by one-way analysis of variance, followed either by a Dunnett’s post-hoc 

analysis or post-hoc student’s t-test with an appropriate level of Bonferroni’s correction.  
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3.3  Results 
 
3.3.1 [14C]-2-deoxyglucose technique in mouse: control treatment 
 
The aim of the first part of this study was to establish baseline values for cerebral activity 

(LCGU) in C57/Bl6J mice, as no previous data for this strain of mice was available; and 

subsequently compare these values with the previously published work in MF1 mice by 

Kelly et al. (2002).  To this end, mice were intraperitoneally injected with Mulgofen-

Saline (5%) (0.2 ml bolus), 10 min prior to administration of the 5 μCi [14C]-2-

deoxyglucose. 

 
3.3.1.1 Behavioural and baseline physiological parameters 
 Prior to the experimental procedure mice were generally ambulatory in their cages, 

displaying normal exploratory behaviour punctuated with periods of intermittent 

grooming.  Following intraperitoneal injection of saline mice exhibited no obvious or 

abnormal changes in behaviour, as expected.  Following intraperitoneal injection of 5 μCi 

[14C]-2-deoxyglucose the mice displayed a period of quiet inactivity in which they hid 

under the closed portion of the cage.  Ten minutes post-injection however, their behaviour 

returned to normal, as outlined above, for the remainder of the experimental period.  This 

transient lull in activity was probably a result of shock induced by the intraperitoneal 

injection. 

 
The baseline physiological parameters: mean terminal plasma glucose and terminal 14C 

concentrations (mM and nCi/g respectively), for both saline-injected C57l/6J mice and 

saline-injected WT (MF1) mice (Kelly et al., 2002) are presented in Table 3.1.  The values 

for both terminal glucose and 14C concentrations are broadly similar.  However, the 

C57Bl/6J display slightly elevated values in comparison to the MF1 mice.  In individual 

animals, 14C levels in the cerebellar cortex, the ‘control’ region, correlated well with the 

individual plasma 14C/glucose ratios, eliciting a linear relationship (Fig 3.1.).   

 
3.3.1.2 LCGU and comparison with Kelly et al. (2002) 
The effects of saline administration on LCGU compared with the published effects in 

Kelly et al. (2002) are presented in Table 3.2.  LCGU data in saline treated C57Bl/6J mice 
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  C57Bl/6J Kelly MF1 

 Saline (n=6) Saline (n=7) 

 
Terminal plasma glucose (mM) 

 
10.9 ± 0.75 

 
8.7 ± 0.88 

Terminal plasma 14C (nCi/g) 38.8 ± 5.04 
 

28.9 ± 4.4 
 

 
 

 
 
 
 
 
 
 

 
Table 3.1.  Baseline physiological parameters for saline intraperitoneally 
injected C57Bl/6J mice compared with saline injected MF1 mice (Kelly et al., 
2002) 
 
Terminal plasma glucose concentrations (mM), and terminal plasma 14C 
concentrations (nCi/g) are shown in summary.  Values for C57Bl/6J mice are higher 
than for MF1 mice.  Data are presented as mean ± S.D. 
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Fig 3.1.  Cerebellar cortex 14C concentration and its relationship with the 
terminal plasma 14C/glucose ratio for saline injected C57Bl/6J mice 
 
The relationship is suggestive that higher brain levels of 14C, as measured in the 
cerebellar cortex, correspond in a linear fashion with an increased terminal blood 
levels, as related in the 14C/glucose ratio.  
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Ratio of tissue 14C in regions of 
interest to that in the cerebellar cortex 

Brain Region C57Bl/6J 
Saline (n=6) 

Kelly MF1 
Saline (n=7) 

   
Inferior colliculus 2.95 ± 0.24 2.77 ± 0.07 
Cochlear nucleus 1.98 ± 0.08          - 
Superior olivary body 1.74 ± 0.05 1.52 ± 0.05 
Somatosensory cortex (IV) 1.65 ± 0.04 1.51 ± 0.05 
Cerebellar nucleus 1.63 ± 0.02          - 
Auditory cortex (IV) 1.58 ± 0.03          -  
Superior colliculus 1.49 ± 0.04 1.38 ± 0.05 
Medial geniculate body 1.45 ± 0.03 1.31 ± 0.05 
Red nucleus 1.34 ± 0.03          - 
Caudate nucleus 1.32 ± 0.02 1.31 ± 0.05 
Hippocampus - str.mol. 1.30 ± 0.04 1.24 ± 0.06 
Inferior olivary body 1.28 ± 0.03          - 
Substantia nigra pars compacta 1.24 ± 0.03 1.17 ± 0.05 
Cerebellar cortex      1.00      1.00 
Dentate gyrus - str.mol. 0.73 ± 0.03 0.79 ± 0.03 
Substantia nigra pars reticulata 0.79 ± 0.03 0.79 ± 0.03 
   

 
 
Table 3.2.  LCGU data in C57Bl/6J mice following intraperitoneal injection of 
Mulgofen-Saline (5%) compared to saline-injected MF1 mice (Kelly et al., 2002)  
 
LCGU in C57Bl/6J mice is on the whole higher than that displayed by MF1 mice.  
However, the hierarchy of brain region functional activation is well preserved and 
comparable between both groups.  Data are presented as mean ratio of tissue 14C 
(nCi/g) in the regions of interest to tissue 14C levels in the cerebellar cortex (nCi/g) ± 
S.D. 
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(C) Thalamus
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(B) Caudate Nucleus
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(A) Pre-Frontal Cortex
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-1.82mm

(E) Hippocampus – Medial Geniculates
-3.08mm

(F) Cerebellum
-6.64mm

Fig 3.2.  Schematic illustrations of six classical levels sampled throughout the mouse cerebrum (with 
Bregma coordinates), and their corresponding representative [14C]-2-deoxyglucose autoradiograms 

Abbreviations: Fr – frontal cortex, S1 – somatosensory cortex, Cg – cingulate cortex, C – caudate nucleus, AV –
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is broadly comparable to the data obtained by Kelly for saline treated MF1 mice in 

the 16 regions examined (Fig 3.2. – example autoradiograms).  The LCGU values 

obtained for C57Bl/6J mice are on the whole higher than Kelly’s, however the 

hierarchy of brain regions is well preserved.  Areas such as the dentate gyrus, known 

to display low levels of LCGU, and cortical areas, such as the auditory and 

somatosensory cortex, known to have higher levels of glucose use, all correlate well 

between both experimental groups. 

 

3.3.2 Validation and investigation with MK-801 and CX516 
 
The effects of two well-characterised drugs, MK-801, an NMDA receptor antagonist, 

and CX516, the prototypic Ampakine, on LCGU in the mouse brain were examined.  

This enabled further validation and characterisation of this mouse semi-quantitative 

[14C]-2-deoxyglucose autoradiographic model.   

 
3.3.2.1 Behavioural and baseline physiological parameters 
All mice intraperitoneally injected with either MK-801 (0.5 mg/kg) or CX516 (100 

mg/kg) displayed profound and overt behavioural changes.  MK-801 (0.5 mg/kg) 

treated mice exhibited notably increased motor activity and excitability, with 

repetitive movements of the head and a side-to-side swaying gait.  CX516 (100 

mg/kg) treated mice on the other hand, displayed sedative-like effects, characterised 

by a total lack of activity.  None of the mice intraperitoneally injected with saline or 

CX516 (30 mg/kg) displayed any abnormal or overt changes in behaviour, remaining 

alert and lively for the duration of the experimental period. 

 

Mean terminal plasma 14C and glucose concentrations for all groups did not differ 

from the mean plasma 14C and glucose concentrations for the vehicle mice, with one 

exception.  The mean terminal glucose concentration for the MK-801 (0.5 mg/kg) 

treated mice was significantly elevated when compared with the saline injected mice 

(Fig 3.3.).  This elevated glucose, which is characteristic of MK-801 administration, 

was due most probably to the increased motor activity and excitability induced by the 

compound.  Mean 14C levels in the cerebellar cortex did not differ significantly 

between the four treatment groups (Fig 3.4.A).  In individual animals 14C levels in
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 C

 Vehicle MK-801 CX516 CX516 

 Saline 
(n=9) 

0.5 mg/kg 
(n=6) 

30 mg/kg 
(n=5) 

100 mg/kg 
(n=6) 

Plasma 14C (nCi/g) 54.2 ± 14.1 52.5 ± 11.1 44.3 ± 11.3 70.1± 18.6 

Plasma glucose (mM) 8.6 ± 1.8 11.4 ± 1.2** 9.4 ± 1.5 9.1 ± 2.8 

 
Fig 3.3. Baseline physiological parameters in C57Bl/6J mice following 
intraperitoneal injection of vehicle (Mulgofen-Saline), MK-801 (0.5 mg/kg) or 
CX516 (30 & 100 mg/kg)  
 
Terminal plasma glucose concentrations (mM) (A), and terminal plasma 14C 
concentrations (nCi/g) (B) are shown separately and in summary (C).  There was no 
significant difference between either the terminal plasma 14C and glucose 
concentrations in all 4-treatment groups, with one exception.  Plasma glucose was 
significantly elevated in mice receiving MK-801 (0.5 mg/kg).  Data are expressed as 
mean ± S.D.  *P<0.05, **P<0.01 for statistical comparison between vehicle and drug 
treated groups (One-way ANOVA, with Dunnett’s post-hoc analysis for multiple 
comparisons). 
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Vehicle 
MK-801 (0.5mg/kg) 
CX516 (30mg/kg) 
CX516 (100mg/kg) 

 
Fig 3.4.  Cerebellar cortex 14C concentration and its relationship with the 
terminal plasma 14C/glucose ratio for vehicle (Mulgofen-Saline), MK-801 (0.5 
mg/kg) or CX516 (30 & 100 mg/kg) treated C57BL/6J mice 
 
Cerebellar cortex 14C concentrations (A) for all drug treatments did not differ 
significantly from vehicle-treated mice.  The ‘control’ relationship (B) was similar 
between vehicle, MK-801 (0.5 mg/kg) and CX516 (30 mg/kg) groups.  The 
relationship was dramatically altered however with CX516 (100 mg/kg) treatment, to 
such an extent to indicate non-conformity and invalidate the cerebellar cortex as an 
appropriate ‘control’ region for this dose of CX516.  Data are expressed as mean ± 
S.D (One-way ANOVA, with Dunnett’s post-hoc analysis for multiple comparisons). 
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the cerebellar cortex grey matter correlated well with individual plasma 14C/glucose 

ratios irrespective of drug treatment, again with one exception (Fig 3.4.B).  Mice 

treated with CX516 (100 mg/kg) did not exhibit the expected linear relationship 

between 14C (nCi/g) in regions of interest vs. 14C (nCi/g) in the control region.  This 

data is indicative that MK-801 (0.5 mg/kg) and CX516 (30 mg/kg) did not alter 

glucose utilisation in the cerebellar cortex, justifying it as an appropriate reference 

region to control for the semi-quantitative effects with these compounds.   

 
3.3.2.2 Effect of the NMDA receptor antagonist MK-801 on LCGU 
MK-801 (0.5 mg/kg) elicited widespread alterations in LCGU compared with of 

saline (Table 3.3.).  Of the 29 brain regions measured, 24 exhibited significant 

heterogeneous increases in LCGU, mainly in areas associated with the limbic system, 

such as the hippocampus, mamillary body, fornix and the thalamic nuclei (Fig 3.5.).  

LCGU was significantly decreased in one area, the sensory motor cortex.  Only three 

areas, specifically the medial geniculate bodies, lateral habenula nucleus and the 

inferior colliculus exhibited no significant changes in LCGU with MK-801 when 

compared with saline administration (Fig 3.6. – example autoradiographs). 

 
3.3.2.3 Effect of the prototypic Ampakine CX516 on LCGU 
CX516 (30 mg/kg) evoked significant changes in LCGU in only 3 of the 29 areas 

investigated; specifically, the caudate nucleus, cingulate cortex, and the red nucleus 

(Table 3.3.).  CX516 (100 mg/kg) also elicited minimal changes in LCGU compared 

to vehicle.  When normalised to the ‘control’ region, LCGU significantly differed 

from LCGU in vehicle animals in only 7 of the 29 areas measured (Fig 3.6.).  

Significant increases were evident in the anteroventral thalamus, cochlear nucleus, 

hypothalamus, mamillary body, lateral habenular nucleus and the parasubiculum.  

One significant decrease in LCGU was evident in the sensory motor cortex with 

CX516 (100 mg/kg) administration.  It was also noted that the autoradiograms 

displayed a ‘washed out’ appearance, indicative of decreased glucose use throughout 

the cerebrum. 
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 Ratio of tissue 14C in regions of interest to that in 
the cerebellar cortex 
 

Brain Region Vehicle 
Saline 

MK-801 
0.5mg/kg 

CX516 
30mg/kg 

CX516 
100mg/kg 

     
Anteroventral thalamic nuc. 1.41 ± 0.22 2.63 ± 0.26*** 1.55 ± 0.03 1.74 ± 0.14* 
Auditory cortex 1.74 ± 0.14 2.08 ± 0.20* 1.70 ± 0.08 1.77 ± 0.26 
Caudate nucleus 1.42 ± 0.07 1.95 ± 0.13*** 1.36 ± 0.08 1.36 ± 0.06 
Cerebellar cortex 1.00 1.00 1.00 1.00 
Cerebellar nucleus 1.77 ± 0.08 1.96 ± 0.10** 1.88 ± 0.07* 1.84 ± 0.09 
Cingulate cortex 1.45 ± 0.07 2.07 ± 0.18*** 1.33 ± 0.06* 1.43 ± 0.07 
Cochlear nucleus 2.06 ± 0.13 2.45 ± 0.22** 2.00 ± 0.11 2.42 ± 0.12** 
Corpus callosum 0.68 ± 0.08 0.84 ± 0.07* 0.61 ± 0.08 0.69 ± 0.06 
Dentate gyrus 0.71 ± 0.07 0.99 ± 0.06*** 0.65 ± 0.08 0.79 ± 0.03 
Entorhinal cortex 1.08 ± 0.09 2.41 ± 0.34*** 1.03 1.11 ± 0.11 
Fornix 1.08 ± 0.08 2.20 ± 0.22*** 0.99 ± 0.05 1.16 ± 0.11 
Hippocampus - str.mol  1.30 ± 0.08 2.23 ± 0.16*** 1.20 ± 0.08 1.24 ± 0.11 
Hypothalamus 0.75 ± 0.07 0.94 ± 0.07** 0.69 ± 0.06 0.88 ± 0.06** 
Inferior colliculus 2.61 ± 0.24 2.52 ± 0.09 2.35 ± 0.03 2.83 ± 0.17 
Inferior olivary body 1.40 ± 0.15 1.85 ± 0.19** 1.64 ± 0.04 1.53 ± 0.09 
Interpenduncular nucleus 1.86 ± 0.03 2.43 ± 0.34** 1.72 ± 0.08 2.03 ± 0.12 
Laterodorsal thalamic nuc. 1.65 ± 0.10 2.22 ± 0.19*** 1.65 ± 0.03 1.57 ± 0.13 
Mamillary body 2.00 ± 0.13 3.70 ± 0.32*** 2.01 ± 0.15 2.30 ± 0.22* 
Medial geniculate body 1.57 ± 0.11 1.57 ± 0.11 1.47 ± 0.06 1.62 ± 0.12 
Med. lat. habenular nuc. 1.10 ± 0.13 1.25 ± 0.15 1.05 ± 0.07 1.29 ± 0.08* 
Parasubiculum 1.04 ± 0.05 1.90 ± 0.25** 1.05 1.15 ± 0.05* 
Presubiculum 1.44 ± 0.08 2.93 ± 0.26*** 1.51 1.46 ± 0.08 
Red nucleus 1.41 ± 0.09 1.79 ± 0.16** 1.29 ± 0.04* 1.44 ±0.08 
Substantia nigra pars comp. 1.30 ± 0.07 1.73 ± 0.13*** 1.27 ± 0.06 1.24 ± 0.11 
Substantia nigra pars retic. 0.80 ± 0.07 1.15 ± 0.12*** 0.75 ± 0.07 0.91 ± 0.08 
Somatosensory cortex 1.86 ± 0.12 1.42 ± 0.12*** 1.91 ± 0.15 1.69 ± 0.10* 
Subiculum 1.18 ± 0.06 1.75 ± 015*** 1.15 1.13 ± 0.04 
Superior colliculus 1.47 ± 0.11 1.74 ± 0.1** 1.40 ± 0.09 1.36 ± 0.06 
Superior olivary body 1.86 ± 0.2 2.32 ± 0.27* 1.64 ± 0.05 1.89 ± 0.14 
     

Table 3.2.  LCGU data in C57Bl/6J mice following intraperitoneal injection of 
vehicle (Mulgofen-Saline), MK-801 (0.5 mg/kg) or CX516 (30 & 100 mg/kg)  
 
MK-801 (0.5 mg/kg) had profound effects on LCGU in the mouse cerebrum 
especially in areas of the limbic system and hippocampus.  CX516 (30 and 100 
mg/kg) had minimal significant effects on LCGU.  Data are presented as mean ratio 
of tissue 14C (nCi/g) in the regions of interest to tissue 14C in the cerebellar cortex 
(nCi/g) ± S.D.  *P<0.05, **P<0.01, ***P<0.001 for statistical comparison between 
vehicle and drug treated groups (One-way ANOVA, with Dunnett’s post-hoc analysis 
for multiple comparisons). 
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Fig 3.5.  Effects of MK-801 (0.5 mg/kg) and CX516 (30 & 100 mg/kg) on the 
hippocampus (A) and the somatosensory cortex (B), compared to vehicle 
treatment 
 
MK-801 (0.5 mg/kg) treatment produces significant increases in LCGU in the 
hippocampus, but results in a significant decrease in glucose use in the 
somatosensory cortex.  Data are presented as mean ± SEM. *P<0.05 (One-way 
ANOVA, with Dunnett’s post-hoc analysis for multiple comparisons). 
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Fig 3.6.  Representative autoradiograms illustrating changes in LCGU in specific brain regions in response to administration of 
MK-801, a potent selective NMDA receptor antagonist, and CX516, the prototypic Ampakine

MK-801 (0.5 mg/kg) administration results in increases, decreases and no changes in local cerebral glucose use in discrete brain areas 
when compared to the administration of vehicle.  Increases in LCGU are observable in areas such as the hippocampus (H) and Fornix (F); a 
prominent decrease is evident in the somatosensory cortex (S1); and areas such as the medial geniculate bodies (MG) are unchanged.  
CX516 (30 mg/kg) administration resulted in minimum changes in LCGU; decreases were evident in the cingulate cortex (Cg1) and the red 
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nucleus (R ).  CX516 (100 mg/kg) administration resulted in  a ‘washed out’ appearance in the autoradiograms, with what appeared to be 
profoundly decreased glucose utilisation across the cerebrum.  However, when normalised to the control region, LCGU was increased in 
areas such as the medial habenula nucleus (MHb) and hypothalamus (Hy), with decreases in areas such as the somatosensory cortex (S1), 
when compared to vehicle administration.
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3.3.3. Pilot study of Org 26576 and Org 24448 on functional 
activity 

 
Having established the accuracy and reproducibility of a semi-quantitative mouse 

model of [14C]-2-deoxyglucose, the model was utilised to examine the effects of the 

novel Ampakines Org 26576 and Org 24448 on cerebral function. 

 
3.3.3.1 Behavioural and baseline physiological parameters 
All mice treated with vehicle, Org 26576 (3 mg/kg) and Org 24448 (10 mg/kg) 

displayed no abnormal changes in behaviour.  The mean terminal plasma 14C and 

glucose concentrations in Org 26576 (3 mg/kg) and Org 24448 (10 mg/kg) treated 

mice did not differ significantly from mean terminal plasma 14C and glucose 

concentrations for the saline treated group (Fig 3.7.).  Mean 14C levels in the 

cerebellar cortex did not differ significantly in the three groups (Fig 3.8.A), and in 

individual animals 14C levels in the cerebellar cortex grey matter correlated well with 

individual plasma 14C/glucose ratios, irrespective of treatment (Fig 3.8.B). 

 
3.3.3.2 Regional alterations in LCGU 
LCGU in Org 26576 (3 mg/kg) treated mice did not in general differ significantly 

from LCGU in the vehicle treated animals (Tables 3.4-3.6.).  Of the 44 brain regions 

analysed LCGU was significantly increased in only three regions, specifically:  the 

substantia nigra pars reticulata, the caudate nucleus, and the inferior colliculus.  

However mice treated with Org 24448 (10 mg/kg) displayed widespread 

homogeneous increases in LCGU compared with vehicle treated mice (Tables 3.4.-

3.6.).  LCGU was significantly increased in 34 discrete anatomical brain regions of 

the 44 investigated.  The most notable changes were witnessed in the primary 

auditory and visual systems, components of the limbic system, and to a lesser extent 

the hippocampus and its associated regions.  No significant decreases in LCGU were 

witnessed with either compound. 
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 C  
 Vehicle Org 26576 Org 24448 

 Saline 
(n=5) 

3 mg/kg 
(n=6) 

10 mg/kg 
(n=6) 

Plasma 14C (nCi/g) 55.0 ± 12.3 55.4 ± 8.7 59.2 ± 13.4 

Plasma glucose (mM) 9.5 ± 1.0 9.5 ± 2.2 9.3 ± 1.4 

 
 
Fig 3.7.  Baseline physiological parameters in C57Bl/6J mice following 
intraperitoneal injection of vehicle (Mulgofen-Saline), Org 26576 (3 mg/kg) or 
Org 24448 (10 mg/kg) 
 
Terminal plasma glucose concentrations (mM) (A), and terminal plasma 14C 
concentrations (nCi/g) (B) are shown separately and in summary (C).  There was no 
significant difference between either the terminal plasma 14C and glucose 
concentrations in all 4-treatment groups.  Data are expressed as mean ± S.D (One-
way ANOVA, with Dunnett’s post-hoc analysis for multiple comparisons). 
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Fig 3.8.  Cerebellar cortex 14C concentration and its relationship with the 
terminal plasma 14C/glucose ratio for vehicle (Mulgofen-Saline), Org 26576 (3 
mg/kg) or Org 24448 (10 mg/kg) treated C57Bl/6J mice 
 
Cerebellar cortex 14C concentrations (A) for both drug treatments did not differ 
significantly from vehicle-treated mice.  The ‘control’ relationship (B) was similar 
between vehicle, Org 26576 (3 mg/kg) and Org 24448 (10 mg/kg) groups.  Data are 
expressed as mean ± S.D (One-way ANOVA, with Dunnett’s post-hoc analysis for 
multiple comparisons). 
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Ratio of tissue 14C (nCi/g) in regions of interest to that in the cerebellar cortex 

 
Brain Region 

 Vehicle 
(Mul-Saline) 

Org 24448 
(10 mg/kg) 

Org 26576 
(3 mg/kg) 

    
Medial lateral habenular 1.54 ± 0.07 1.77 ± 0.14* 1.68 ± 0.19 
Fasciculus retroflexus 1.45 ± 0.07 1.87 ± 0.08*** 1.45 ± 0.08 
Interpenduncular nucleus 1.68 ± 0.10 1.92 ± 0.11** 1.72 ± 0.15 
Substantia nigra pars compacta 1.23 ± 0.06 1.40 ± 0.05** 1.32 ± 0.12 
Substantia nigra pars reticulata 0.70 ± 0.04 0.82 ± 0.05** 0.84 ± 0.12* 
Globus pallidus 0.99 ± 0.04 1.14 ± 0.09** 1.03 ± 0.06 
Median forebrain bundle 1.25 ± 0.04 1.64 ± 0.11*** 1.34 ± 0.12 
Hypothalamus 0.70 ± 0.07 0.79 ± 0.05* 0.77 ± 0.11 
Nucleus accumbens 0.89 ± 0.12 1.20 ± 0.06*** 0.94 ± 0.10 
Raphe nucleus 1.21 ± 0.04 1.40 ± 0.03*** 1.27 ± 0.06 
Amygdala 0.93 ± 0.04 1.47 ± 0.04*** 1.02 ± 0.10 
Caudate nucleus 1.35 ± 0.08 1.50 ± 0.07* 1.50 ± 0.11* 
Anteroventral thalamic nucleus 1.61 ± 0.08 1.82 ± 0.08** 1.73 ± 0.11 
Laterodorsal thalamic nucleus 1.55 ± 0.06 1.81 ± 0.18* 1.64 ± 0.13 
Ventral tegmental area 1.25 ± 0.03 1.35 ± 0.07* 1.21 ± 0.05 
Cingulate cortex 1.39 ± 0.09 1.58 ± 0.10* 1.50 ± 0.18 
Fornix 1.01 ± 0.09 1.15 ± 0.09* 1.11 ± 0.16 
Mamillary body 1.91 ± 0.17 2.08 ± 0.14 1.87 ± 0.17 
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Table 3.4.  Effects of Org 26576 (3 mg/kg) and Org 24448 (10 mg/kg) on LCGU in components of the limbic system 
 
Data are presented as mean ratio of tissue 14C (nCi/g) in the regions of interest to tissue 14C in the cerebellar cortex (nCi/g) ± S.D.  *P<0.05, 
**P<0.01, ***P<0.001, for statistical comparison between vehicle and drug treated groups (One-way ANOVA, with Dunnett’s post-hoc analysis 
for multiple comparisons). 

 



 
  

Ratio of tissue 14C (nCi/g) in regions of interest to that in the cerebellar cortex 

 
Brain Region 

 Vehicle 
(Mul-Saline) 

Org 24448 
(10mg/kg) 

Org 26576 
(3mg/kg) 

    
Primary Auditory System

 
 
 
 
 
 
     

    
Auditory cortex 1.68 ± 0.09 2.01 ± 0.14** 1.76 ± 0.15 
Medial geniculate body 1.38 ± 0.06 1.78 ± 0.10*** 1.45 ± 0.11 
Inferior colliculus 2.43 ± 0.04 2.95 ± 0.12*** 2.71 ± 0.19* 
Lateral lemniscus 1.37 ± 0.03 1.71 ± 0.07*** 1.42 ± 0.12 
Superior olivary body 1.85 ± 0.09 2.05 ± 0.06** 1.73 ± 0.16 
Cochlear nucleus 1.95 ± 0.06 2.30 ± 0.13*** 2.06 ± 0.19 
    
Primary Visual System
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Superior colliculus 1.31 ± 0.09 1.45 ± 0.04* 1.38 ± 0.15 
Lateral geniculate body 1.35 ± 0.05 1.55 ± 0.07*** 1.45 ± 0.08 
Visual cortex 1.64 ± 0.03 1.65 ± 0.05 1.69 ± 0.06 
    

 
 
 
 
 
 
Fig 3.5.  Effects of Org 26576 and Org 24448 on LCGU in the primary auditory and visual systems 
 
Data are presented as mean ratio of tissue 14C (nCi/g) in the regions of interest to tissue 14C in the cerebellar cortex (nCi/g) ± S.D.  *P<0.05, 
**P<0.01, ***P<0.001, for statistical comparison between vehicle and drug treated groups (One-way ANOVA, with Dunnett’s post-hoc analysis 
for multiple comparisons). 

 



 
Ratio of tissue 14C (nCi/g) in regions of interest to that in the cerebellar cortex 

 
Brain Region 

 Vehicle 
(Mul-Saline) 

Org 24448 
(10mg/kg) 

Org 26576 
(3mg/kg) 

    
Hippocampus

 
 
 

 
 

   
    
Subiculum 1.15 ± 0.06 1.21 ± 0.13 1.19 ± 0.07 
Parasubiculum 1.01 ± 0.05 1.09 ± 0.10 1.01 ± 0.07 
Presubiculum 1.42 ± 0.08 1.51 ± 0.11 1.44 ± 0.03 
Hippocampus - str.molecularae 1.27 ± 0.06 1.37 ± 0.07* 1.24 ± 0.17 
Dentate gyrus - str.molecularae 0.66 ± 0.07 0.81± 0.04** 0.75 ± 0.09 
Medial septum 1.07 ± 0.07 1.31 ± 0.01*** 1.10 ± 0.03 
Dentate gyrus - dorsal 1.02 ± 0.06 1.08 ± 0.03 1.12 ± 0.10 
Hippocampus - CA1 0.76 ± 0.03  0.76 ± 0.03 0.78 ± 0.02 
Hippocampus - CA3 0.84 ± 0.02 0.94 ± 0.01*** 0.86 ± 0.05 
Entorhinal cortex 1.07 ± 0.01 1.11 ± 0.07 1.00 ± 0.06 
    
Functionally Distinct Regions
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Red nucleus 1.28 ± 0.07 1.44 ± 0.06**  1.32 ± 0.09 
Inferior olivary body 1.35 ±0.08 1.66 ± 0.06* 1.32 ± 0.19 
Somatosensory cortex 1.82±0.08 2.02 ± 0.11* 1.97 ± 0.18 
Corpus callosum 0.67 ±0.03 0.71 ± 0.03** 0.75 ± 0.10 
Cerebellar cortex 1.00 1.00  1.00 
Cerebellar nucleus 1.79 ± 0.06 2.01 ± 0.08** 1.69 ± 0.11 
    

 

 

 

 

 

 

Fig 3.6.   Effects of Org 26576 and Org 24448 on LCGU in the hippocampus (associated areas) and functionally distinct regions 
Data are presented as mean ratio of tissue 14C (nCi/g) in the regions of interest to tissue 14C in the cerebellar cortex (nCi/g) ± S.D.  *P<0.05, 
**P<0.01, ***P<0.001, for statistical comparison between vehicle and drug treated groups (One-way ANOVA, with Dunnett’s post-hoc analysis 
for multiple comparisons). 

 



3.4. Discussion  
 

These results demonstrate that the semi-quantitative model of in vivo [14C]-2-

deoxyglucose autoradiography in C57Bl/6J mice is both accurate and reproducible.  

Baseline values obtained are consistently in line with previously published data, and 

most importantly are reproducible.  The model is also able to accurately replicate the 

effects of a well-characterised compound, the NMDA receptor antagonist MK-801, in 

respect to functional cerebral changes, and will be predicatively useful in 

investigating the effects of novel Ampakines, Org 26576 and Org 2448, on cerebral 

function. 

 

3.4.1. Justification for and establishing a semi-quantitative model of 
[14C]-2-deoxyglucose in the mouse 

Application of the [14C]-2-deoxyglucose autoradiographic procedure in the mouse 

was first outlined by Nowaczyk and Des Rosier in 1981.  They established that values 

for LCGU in mice were on the whole, lower than previously observed in the rat, and 

widely varied across the cerebrum, with the highest levels of utilisation in areas 

involved sensory function, such as hearing, sight and movement.  

 

The technique employed in this thesis, based on Kelly’s protocol (Kelly et al., 2002), 

varies in two respects from the methodology outlined by Nowaczyk and Des Rosier.  

Specifically, (1) the [14C]-2-deoxyglucose pulse was administered intraperitoneally 

instead of via the standard intravenous route, and (2) a single terminal torso blood 

sample was taken as an alternative to the 14 timed arterial samples throughout the 

extent of the experimental period.  Kelly introduced these modifications to avoid the 

stress of major surgery and constant blood sampling.  They also allowed the animals 

to undergo the procedure in their ‘natural’ state, fully conscious and freely moving. 

As a result of these modifications LCGU cannot be measured fully-quantitatively 

(μmol/100 g/min), and therefore the data generated is not as precise but does provide 

robust reliable data, which is highly comparable to the rat. 
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As outlined previously, the introduction of modifications such as these to Sokoloff’s 

original technique in the early 1980’s was the subject of much debate and conjecture.  

Meibach and colleagues in 1980 were the first to introduce the administration of the 

[14C]-2-deoxyglucose via an intraperitoneal route as opposed to intravenous.  They 

reported that whole brain uptake of [14C]-2-deoxyglucose at maximal levels of 

incorporation was the same for both intravenously and intraperitoneally injected 

animals, and that autoradiograms and their subsequent analysis were indistinguishable 

and highly correlated.  Conversely, Kelly and McCulloch in 1983 reported that 

intraperitoneal administration resulted in increased levels of un-phosphorylated [14C]-

2-deoxyglucose in the brain, what they termed ‘a potential source of error’.  Kelly et 

al., (2002) however discovered that the rate of uptake of [14C]-2-deoxyglucose in the 

mouse after intraperitoneal administration was more rapid than described in the rat by 

Kelly and McCulloch (1983) such that the residual 14C in cerebellar cortex at the time 

of sacrifice was <~10% of the total 14C in the region (Kelly et al., 2002).  Kelly also 

argued that this factor, compounded by the fact that there were no significant inter-

group differences in terminal plasma glucose, 14C levels, and cerebellar cortex 14C 

levels, results in a technique which does indeed provide a valid estimation of glucose 

use. 

 

Adding further to the controversy surrounding the validity of these semi-quantitative 

modifications, Kelly and McCulloch also alleged that semi-quantitative analysis, i.e. 

the use of optical density ratios, did not yield a constant optical density ratio but was 

in fact dependant upon the exposure time in the preparation of the autoradiograms 

and the absolute amounts of 14C from which the concentration ratio was devised 

(Kelly and McCulloch, 1983b).  One caveat to their criticism however was that 

‘…rigorous control of the exposure period and the amount of [14C]-2-deoxyglucose 

administered to each animal might circumvent the difficulties raised by the non-

linearity of the relationship between optical density and 14C-concentrations in cerebral 

tissue’.  This was further supported by Sharpe who reported that optical density ratios 

were linearly related to LCGU within a given animal (Sharp et al., 1983), and by 

Mitchell and Crossman, who argued that this error could be circumvented by ensuring 
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that films were not approaching saturation when developed (Mitchell and Crossman, 

1984).  

 

Simple intraperitoneal injections of saline prior to [14C]-2-deoxyglucose in our hands 

resulted in no obvious or abnormal changes in behaviour in all mice, eliciting mean 

terminal plasma glucose and terminal plasma 14C levels comparable to Kelly’s, even 

if they do appear upon initial inspection to be elevated.  In individual animals 14C 

levels in the cerebellar cortex grey matter correlated well with individual plasma 
14C/glucose ratios, and LCGU in the saline treated C57Bl/6J mice were broadly 

comparable to the data obtained by Kelly for saline treated MF1 mice.  Values 

obtained for the C57Bl/6J mice are generally higher, but the hierarchy of brain 

regions is well preserved, and the errors are comparable in size.  The elevations 

witnessed with the C57Bl/6J mice could be the result of a number of factors, for 

example the lack of animal handling and in vivo experimental experience at this stage, 

resulting in possible increased stress on the mice.  The use of a varied stock of [14C]-

2-deoxyglucose isotope compared with Kelly may also have had an effect.  These 

factors may have also been compounded by the fact that there are well-documented 

strain differences in relation to cerebrovascular structure and metabolism, with regard 

to MF1 mice, which may conceivably account for the differences in LGCU witnessed 

between the two groups (Kelly et al., 2001).  Overall however, the data is indicative 

that the semi-quantitative [14C]-2-deoxyglucose technique carried out here is both 

accurate, and fully in line with previously published data. 

 

3.4.2. Model validation with MK-801 and investigation with CX516 

MK-801 is a potent selective and non-competitive NMDA receptor antagonist, first 

identified as such by Wong and colleagues in the mid-eighties (Wong et al., 1986), 

which acts by specifically binding to a site located within the NMDA associated ion 

channel preventing the associated calcium influx.  Investigated initially as an 

effective anti-ischaemic agent in several animal models, the central metabolic effects 

of MK-801 have been extensively characterised both in mice (Kelly et al., 2002) and 

in rats (Kurumanji et al., 1989) utilising both semi and fully quantitative [14C]-2-

deoxyglucose autoradiography. 
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MK-801 produces activation resulting in marked heterogeneous and highly 

characteristic changes in cerebral function.  It is useful as a validation tool as it 

induces a broad spectrum of effects on LCGU, ranging from no effects in some 

regions to increases and even decreases in others.  Effects reported previously in the 

literature include decreases in LCGU primarily in the inferior colliculus and 

somatosensory cortex, while prominent increases are evident in major components of 

the limbic system such as the thalamus, hippocampus, mamillary body, 

interpenduncular nucleus, and cingulate cortex.  Other discrete areas displaying 

characteristic increases in LCGU include the substantia nigra, cerebellar nuclei, 

sensory systems, and the fornix, a myelinated fibre tract. 

 
The results of application of MK-801 (0.5 mg/kg) in this semi-quantitative model of 

2-deoxyglucose correlated closely with the characteristic responses outlined above.  

Significant activation was witnessed across the limbic system, LCGU was depressed 

in the somatosensory cortex, and both the lateral habenula and medial geniculates 

displayed no alteration in LCGU when compared to vehicle.  One exception was that 

the inferior colliculus remained unchanged instead of demonstrating a depression in 

LCGU.  Another notable ‘irregularity’ was the significant increase in terminal 

glucose levels witnessed in MK-801 treated mice.  This was most probably due to the 

general increased metabolic excitability induced by MK-801 coupled with the fact 

that the mice were freely moving and active.  The control relationship however was 

unaffected by this aberration.  The ability of this semi-quantitative model of 2-

deoxyglucose imaging in the mouse to accurately reflect the characteristic 

quantitative effects obtained in rats as demonstrated here, has also been verified 

recently with other compounds such as PCP in both rat quantitative and semi-

quantitative [14C]-2-deoxyglucose (Cochran et al., 2005). 

 
The action of CX516 was also investigated in this study along side that of MK-801, to 

validate the use of this methodology with Ampakines prior to application of the novel 

compounds Org 26576 and Org 24448.  CX516 is considered the prototypic 

Ampakine compound, and has well demonstrated effects in rodent models of 

cognition / learning and memory and LTP (Staubli et al., 1994 a/b; Larson et al., 
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1995).  However in this study, CX516 at both concentrations studied (30, 100 mg/kg) 

had minimal effects on LCGU.  CX516 (30 mg/kg) had minimal effects on LCGU 

with changes observed in only three areas.  LCGU was decreased in the cingulate 

cortex and red nucleus, and increased in the cerebellar nucleus.  This limited response 

may be due to that fact that CX516 is a first generation Ampakine, and as such, is of 

low potency and is metabolised and cleared quickly in rodents, subsequently 

restricting its effects.  CX516 (100 mg/kg) on the other hand had unexpected effects 

in this model.  CX516 (100 mg/kg) treatment resulted in alteration in LCGU in only 

seven regions.  LCGU was increased in various limbic structures such as the 

anteroventral thalamus, mamillary body, and in other ‘sensory’ structures such as the 

cochlear nucleus and the somatosensory cortex.  Furthermore, the resultant 

autoradiograms appeared ‘washed out’ in appearance and the terminal plasma 14C 

levels in the cerebellar cortex failed to correspond in a linear fashion to the terminal 

plasma 14C/glucose ratio, hence essentially ‘invalidating’ the methodology for this 

dosage of CX516.  This lack of linearity is due to the elevated levels of terminal 

plasma 14C, which in turn resulted in elevations in the plasma 14C/glucose ratio 

resulting in a rightward shift in the control plot.  This elevated terminal plasma 14C 

correlates well with the ‘washed out’ appearance of the autoradiograms as essentially 

less 14C has effectively made its way across the blood brain barrier, hence the 

elevated plasma levels.  We are effectively witnessing a ‘deficiency’ of sorts in 14C 

transport into the cerebrum with this high dosage of CX516, or possibly an increased 

rate of conversion of 2-deoxyglucose-6-phosphate to 2-deoxyglucose and retrograde 

transport from the brain to plasma. 

 
It is also worthy to note that the vehicle data and errors for LCGU from this 

validation study, were near identical to the LCGU data obtained for the saline 

injections in the first part of the study, further validating the reproducibility and 

consistency of this methodology. 

 

3.4.3. Org 24448 and Org 26576 pilot study 
A pilot study was carried out with the novel Ampakines Org 24448 and Org 26576 to 

investigate the validity of studying the effects these compounds in this model, and 
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also to determine an accurate dosing regime and group sizes for a future full dose-

response study. 

 

Pilot doses for Org 24448 (10 mg/kg) and Org 26576 (3 mg/kg) were chosen based 

on effective concentrations in behavioural models predictive of antidepressant action 

and antipsychotic activity (personal communication Organon).  Both compounds 

produced significant increases in LCGU in the mouse cerebrum, Org 24448 more so 

than Org 26576.  Org 24448 increased LCGU across the mouse cerebrum particularly 

in the limbic and auditory systems.  Considering Ampakines are of potential 

significance in treating cognition, depression and other affective disorders, the 

observed limbic system involvement is of great potential importance.  In contrast, Org 

26576 (3 mg/kg) administration resulted in only 3 significant increases in LCGU, yet 

did display general increases in other areas which did not reach significance due to 

large standard deviations within the data set.  This once again raises the issue of 

accurate dosing, and the importance of the group sizes being sufficiently large enough 

to provide adequate power in a full dose-response study to accurately resolve the true 

effects of Ampakine drug application. 

 

n 8σ2

e2= = 8(0.055)2

(0.065)2
= 5.7n 8σ2

e2= = 8(0.055)2

(0.065)2
= 5.7 

 
 
Fig 3.9.  Group size power calculation 
 
To determine an accurate group size for a full dose response study, a post-hoc 
power analysis is need.  To accurately determine a significant 5% difference change 
over baseline (vehicle) with 95% power, an n of 5.7 subjects per treatment group is 
needed.  e = acceptable sampling error (5% in this case of 1.3 = 0.065), σ =standard 
deviation of the sample (0.055), n = the sample size needed to detect a significant 
difference.  These values and the subsequent calculations carried out upon them 
were obtained from the variation witnessed between the vehicle and  the average 
change in Org 26576 and Org 24448 data obtained from the pilot study outlined 
above.  
 
3.4.4. Summary 
In conclusion, the semi-quantitative [14C]-2-deoxyglucose model established here in 

C57Bl/6J mice has been shown to be both consistent and reproducible, as it correlates 

well with previously published work.  It is also accurate, clearly replicating the 
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classical effects of the NMDA receptor antagonist MK-801 on cerebral function, and 

will be predicatively useful in investigating the effects of the novel Ampakines, Org 

26576 and Org 24448, on local cerebral function. 
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Chapter 4 
 

Investigation into the effects of acute 
administration of the novel Ampakines Org 
26576 and Org 24448 on functional activity 

in the murine cerebrum 
 



4.1. Introduction 
 

AMPA receptor potentiators enhance synaptic transmission, by modulating 

desensitisation and/or deactivation of ionotropic AMPA channels, without directly 

binding to the glutamate agonist-binding site (see section 1.7.4.).  The ‘Ampakines’ 

class of compounds originated with the development of CX516 in the early 1990s, 

and as such it is one of the most extensively investigated compounds in its series.  

Initial experiments with CX516 determined that it did indeed positively modify 

AMPA receptor kinetics, specifically resulting in a four-fold slowing of deactivation 

with little effect on desensitisation, and facilitated LTP in vitro (Staubli et al., 

1994b).  Importantly it was also subsequently established that the compound 

displayed a lower threshold for effects on complex neural pathways as opposed to 

simple monosynaptic transmission (Arai et al., 1996).  Clinically CX516 improved 

memory encoding in behavioural assessments in rodents (Staubli et al., 1994b; 

Hampson et al., 1998), and improved aspects of memory in humans (Ingvar et al., 

1997).  CX516 has also been investigated as a potential treatment for schizophrenia, 

both in combination with clozapine and as a single treatment, with promising results 

(Goff et al., 2001; Marenco et al., 2002).   

 

Org 26576 and Org 24448, the two Ampakine compounds to be investigated in this 

thesis, are structurally derived from CX516, and have also been shown to have 

diverse effects both in vivo and in vitro.  The compounds increase AMPA currents, 

are affective in behavioural models of depression and psychoses, induce 5-HT 

release in the prefrontal cortex (Ge et al., 2001), and are effective in a model 

predictive of positive cognitive effects (DMTP: delayed-matching-to-position task).  

However, despite the overall wealth of knowledge on these compounds, little is 

know about their precise anatomical location of action in vivo. 

 
4.1.1. Aims 

The primary aim of this study was to identify the discrete neuroanatomical basis of 

the action of the novel Ampakines Org 26576 and Org 24448 in the murine 

cerebrum, to provide insight in to their potential therapeutic relevance, utilising the 
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established and validated semi-quantitative [14C]-2-deoxyglucose autoradiographic 

methodology (Chapter 3).  In order to define whether the effects of Org 26576 and 

Org 24448 were AMPA receptor mediated, changes in LGCU induced by the 

Ampakines were also assessed in the presence of pre-administered 2,3-Dioxo-6-

nitro-1,2,3,4-tetrahydrobenzo[f]quinoxaline-7-sulfonamide (NBQX), a selective 

potent AMPA receptor antagonist. 

 

 

4.2. Materials and Methods 
 
4.2.1. Animals 

C57Bl/6J mice (25 g) were communally housed on a 12hr light/dark cycle for 1 week 

prior to experimentation with free access to food and water.  On the day of 

experimentation mice were separated into individual cages in the procedure room 

and allowed to acclimatise to their new environment for 30 min.  All experiments 

carried out were controlled as stringently as possible for weight, light and sound 

conditions, and circadian timings to ensure equal distribution of variables across the 

treatment groups.   

 
4.2.2. Drug preparation, administration and the [14C]-2-deoxyglucose 

autoradiographic procedure 
The novel Ampakines Org 26576 and Org 24448, and the AMPA receptor antagonist 

NBQX, were made up as stock solutions prior to the beginning of the study, 

aliquoted, and stored at -20oC.  On the day of experimentation the required volume 

was defrosted and made up to the final appropriate dosage in a 0.2 ml bolus per 

mouse.  Org 26576 (0.1, 1, 10 mg/kg) and Org 24448 (3, 10, 30 mg/kg) or vehicle 

(5% Mulgofen-Saline) was administered intraperitoneally ten minutes prior to the 

administration of the 5 μCi [14C]-2-deoxyglucose pulse (doses were chosen on the 

data produced in the pilot study).  All drugs/vehicle were administered in the contra-

lateral side of the abdomen to the [14C]-2-deoxyglucose injections.  A separate group 

of mice were treated with the AMPA receptor antagonist NBQX.  NBQX (10mg/kg) 

was injected either alone or 10 minutes prior to Org 26576 (10 mg/kg i.p.), Org 

24448 (10 mg/kg i.p.) or vehicle (5% Mulgofen-Saline i.p.).  The detailed 
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autoradiographic experimental procedure is outlined in section 2.2.3.   Standard 

autoradiographs were prepared and LCGU was determined in pre-determined areas 

of interest as described in section 2.2.4. 

 
4.2.3. Statistical analysis 
All data were analysed for statistical significance by one-way analysis of variance, 

followed by Dunnett’s post-hoc analysis, to correct for multiple comparisons 

between the drug-treated and control groups. 
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4.3. Results 
 
4.3.1.  Org 26576 and Org 24448 dose-response relationship 
 
4.3.1.1. Effect of Org 26576 and Org 24448 on behavioural and 

baseline physiological parameters 

Org 26576 (0.1, 1, 10 mg/kg) and Org 24448 (3, 10, 30 mg/kg) resulted in alterations 

in the overt behaviour of the mice only at the highest dose. Vehicle (Mulgofen-

saline), Org 26576 (0.1, 1 mg/kg) or Org 24448 (3, 10 mg/kg) treated mice did not 

exhibit changes in their behaviour, as defined using a gross qualitative behavioural 

analysis.  They remained fully conscious, lively and alert throughout the 

experimental period.  However, administration of Org 26576 at 10 mg/kg or Org 

24448 at 30 mg/kg was associated with changes in the overt behaviour of mice post-

injection.  Initially the behaviour of the mice appeared normal post-drug injection for 

approximately 10 min. However this was followed by a prolonged period of 

inactivity, immediately following the [14C]-2-deoxyglucose injection, lasting for the 

remainder of the experiment, during which the mice were quietly hunched in the 

closed portion of the cage.  Despite this lassitude the mice displayed intermittent 

grooming behaviour, were alert and responsive to stimuli. 

 

Org 26576 and Org 24448 treatment at all doses had no significant effect on the 

mean terminal plasma 14C and glucose concentrations as compared to the relevant 

vehicle treated groups (Fig 4.1.).  Mean 14C levels in the cerebellar cortex did not 

differ significantly between the four groups (Fig 4.2.A-4.3.A).  In individual mice, 
14C levels in the cerebellar cortex correlated well with the individual plasma 
14C/glucose ratios, irrespective of drug treatment (Fig 4.2.B-4.3.B).  This data 

indicated that Org 26576 and Org 24448 treatment did not alter glucose utilisation 

significantly in the cerebellar cortex, authenticating its use as the control reference 

region.  
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 A

 
Org 26576 

 Vehicle 
(n = 7) 

0.1 mg/kg 
(n = 5) 

1.0 mg/kg 
(n = 7) 

10 mg/kg 
(n = 6) 

Terminal Plasma Glucose (mM) 11.1 ± 1 11.2 ± 1.3 11.3 ± 0.6 10.0 ± 1.3 

Terminal Plasma 14C (nCi/g) 56.8 ± 9.8 60.8 ± 13 61.5 ± 16 65.0 ± 10 

 
 
 
 
 B

 
Org 24448 

 Vehicle 
(n = 5) 

3 mg/kg 
(n = 6) 

10 mg/kg 
(n = 6) 

30 mg/kg 
(n = 6) 

Terminal Plasma Glucose (mM) 11.2 ± 1.2 10.9 ± 1.4 10.4 ± 2.2 9.6 ± 1.9 

Terminal Plasma 14C (nCi/g) 57 ± 13.8 59 ± 11.9 70 ± 5.6 67 ± 12 

 
 
 
Fig 4.1.  Baseline physiological parameters for (A) Org 26576 (0.1, 1, 10 mg/kg) 
and (B) Org 24448 (3, 10, 30 mg/kg) treated C57Bl/6J mice and their respective 
vehicle treated groups 
 
Terminal plasma glucose concentrations (mM) and terminal plasma 14C 
concentrations (nCi/g) for Org 26576 (A) and Org 24448 (B) treated mice are shown.  
There were no significant differences between all drug treatments in comparison to 
their relevant vehicle groups, for either terminal plasma glucose or 14C levels.  Data 
are presented as mean ± S.D (One-way ANOVA with Dunnett’s correction for 
multiple comparisons). 
 
 

 

 97



 
 A
 

0

100

200

300

Vehicle Org 26576 Org 26576 Org 26576

C
er

eb
el

la
r C

or
te

x 
14

C
 (n

C
i/g

)

 1mg/kg 10mg/kg 
 

0.1mg/kg

 
 B
 

0

100

200

300

400

0 2 4 6 8 1

Plasma 14C / Glucose Ratio
(nCi/mM)

C
er

eb
el

la
r C

or
te

x
14

C
 (n

C
i/g

) C
on

ce
nt

ra
tio

n

Vehicle 
Org 26576 - 0.1mg/kg 
Org 26576 - 1mg/kg 
Org 26576 - 10mg/kg 

0

 
 

Fig 4.2.  Cerebellar cortex 14C concentration and its relationship with the 
terminal plasma 14C/glucose ratio for vehicle (Mulgofen-Saline) and Org 26576 
(0.1, 1, 10 mg/kg) treated C57Bl/6J mice 
 
Cerebellar cortex 14C concentrations (A) for all drug treatments did not differ 
significantly from vehicle-treated mice.  The ‘control’ relationship (B) was similar 
between vehicle, and all doses of Org 26576.  Data are expressed as mean ± SEM 
(One-way ANOVA, with Dunnett’s post-hoc analysis for multiple comparisons). 
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Fig 4.3.  Cerebellar cortex 14C concentration and its relationship with the 
terminal plasma 14C/glucose ratio for vehicle (Mulgofen-Saline) and Org 24448 
(3, 10, 30 mg/kg) treated C57Bl/6J mice 
 
Cerebellar cortex 14C concentrations (A) for all drug treatments did not differ 
significantly from vehicle-treated mice.  The ‘control’ relationship (B) was similar 
between vehicle, and all doses of Org 24448.  Data are expressed as mean ± SEM 
(One-way ANOVA, with Dunnett’s post-hoc analysis for multiple comparisons).
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4.3.1.2. Effects of Org 26576 and Org 24448 on LCGU  
Alterations in LCGU following treatment with Org 26576 (0.1, 1, 10 mg/kg) and Org 

24448 (3, 10, 30 mg/kg) are presented in Tables 4.1., 4.2. & 4.3..  Both Ampakines 

induced marked dose-dependent increases in LCGU, with no reductions in LCGU 

observed in any of the 43 regions analysed after either drug treatment at all doses. 

 

Org 26576 elicited a dose-dependent increase in LCGU in specific brain regions.  In 

all 43 regions examined, there were no significant alterations in LCGU in mice 

treated with Org 26576 at 0.1 mg/kg as compared to vehicle treated animals.  

However, treatment with Org 26576 (1 mg/kg) produced significant increases in 

LCGU in 9 of the 43 anatomical areas examined, including the dentate gyrus, CA3, 

and several regions of the limbic system (Fig 4.4.).  Org 26576 (10 mg/kg) produced 

significant increases in glucose use in 39 of the 43 anatomical areas examined.  

Increases were widespread but prominent in the auditory, visual, hippocampal and 

limbic systems. 

 

Similarly Org 24448 demonstrated a dose-dependent increase in LCGU in specific 

brain regions.   Org 24448 (3 mg/kg) elicited changes in LCGU in only 4 specific 

areas of the 43 measured, specifically; the raphe nucleus, the lateral habenula nucleus 

(Fig 4.4.), the median forebrain bundle, and the CA1 field of the hippocampus.  Org 

24448 (10 mg/kg) produced further significant increases in LCGU, with 31 out of the 

43 discrete anatomical areas now reaching significance.  Again, notable changes 

were witnessed in the auditory, visual, hippocampal and limbic systems.  

Administration of Org 24448 (30 mg/kg) elicited significant changes in LCGU in 34 

of the 43 anatomical areas measured.  This response (30 mg/kg) was very similar to 

the response seen with 10 mg/kg, with further activation in certain specific areas 

such as the anteroventral thalamus, substantia nigra pars compacta and reticulata, and 

parts of the subicular complex.  LCGU in other areas such as the amygdala, caudate, 

fornix, and globus pallidus was unaffected at all administered doses of Org 24448. 
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Ratio of tissue 14C (nCi/g) in regions of interest to that in the cerebellar cortex 

 Org 26576 Org 24448 

Brain Region Vehicle 
(n=7) 

0.1 mg/kg 
(n=7) 

1 mg/kg 
(n=5) 

10 mg/kg 
(n=6) 

Vehicle 
(n=5) 

3 mg/kg 
(n=6) 

10 mg/kg 
(n=6) 

30 mg/kg 
(n=6) 

         
Amygdala 1.10  ±  0.03 1.08  ±  0.02 1.10  ±  0.03 1.13  ±  0.04 1.08  ±  0.05 1.12  ±  0.04 1.12  ±  0.05 1.07  ±  0.05 
Anteroventral thalamus 1.93  ±  0.04 1.97  ±  0.11 2.11  ±  0.06** 2.18  ±  0.07** 1.96  ±  0.05 2.01  ±  0.12 2.12  ±  0.06* 2.15  ±  0.08** 
Caudate nucleus 1.49  ±  0.07 1.43  ±  0.08 1.50  ±  0.05 1.56  ±  0.08 1.49  ±  0.10 1.45  ±  0.06 1.49  ±  0.07 1.42  ±  0.04 
Cingulate cortex 1.45  ±  0.06 1.42  ±  0.10 1.59  ±  0.02* 1.58  ±  0.09** 1.45  ±  0.05 1.45  ±  0.05 1.59  ±  0.05** 1.55  ±  0.04** 
Fornix 1.08  ±  0.06 1.04  ±  0.03 1.15  ±  0.11 1.34  ±  0.11** 1.08  ±  0.01 1.11  ±  0.06 1.13  ±  0.03 1.14  ±  0.06 
Fasciculus retroflexus 1.53  ±  0.06 1.53  ±  0.05 1.58  ±  0.04 2.02  ±  0.09** 1.58  ±  0.05 1.68  ±  0.10 1.76  ±  0.04** 1.80  ±  0.08** 
Globus pallidus 1.07  ±  0.07 1.08  ±  0.04 1.15  ±  0.05 1.21  ±  0.06** 1.10  ±  0.03 1.09  ±  0.08 1.14  ±  0.04 1.11  ±  0.05 
Hypothalamus 0.71  ±  0.05 0.73  ±  0.04 0.78  ±  0.06 0.87  ±  0.05** 0.71  ±  0.03 0.74  ±  0.04 0.81  ±  0.03 0.84  ±  0.02** 
Interpenduncular nucleus 1.74  ±  0.06 1.69  ±  0.04 1.80  ±  0.01 2.03  ±  0.08** 1.72  ±  0.03 1.74  ±  0.04 2.00  ±  0.10** 2.13  ±  0.05** 
Laterodorsal thalamus 1.60  ±  0.05 1.60  ±  0.03 1.77  ±  0.07** 1.89  ±  0.09** 1.63  ±  0.07 1.67  ±  0.10 1.78  ±  0.06* 1.77  ±  0.07* 
Mamillary body 1.82  ±  0.03 1.85  ±  0.07 1.90  ±  0.09 2.11  ±  0.10** 1.76  ±  0.04 1.80  ±  0.08 1.99  ±  0.04** 2.06  ±  0.10** 
Median forebrain bundle 1.20  ±  0.07 1.21  ±  0.03 1.31  ±  0.02** 1.31  ±  0.05** 1.20  ±  0.04 1.39  ±  0.03** 1.39  ±  0.03** 1.37  ±  0.02** 
Medial lateral habenula 1.65  ±  0.03 1.65  ±  0.11 1.75  ±  0.09 1.84  ±  0.07** 1.61  ±  0.06 1.80  ±  0.01** 1.79  ±  0.04** 1.82  ±  0.05** 
Nucleus accumbens 1.05  ±  0.04 1.04  ±  0.06 1.12  ±  0.04 1.16  ±  0.07** 1.04  ±  0.05 1.09  ±  0.03 1.15  ±  0.04** 1.15  ±  0.05** 
Raphe nucleus 1.27  ±  0.08 1.27  ±  0.07 1.33  ±  0.06 1.45  ±  0.04** 1.24  ±  0.05 1.35  ±  0.03** 1.40  ±  0.06** 1.49  ±  0.07** 
SN pars compacta 1.28  ±  0.08 1.27  ±  0.04 1.35  ±  0.04 1.58  ±  0.09** 1.35  ±  0.06 1.41  ±  0.07 1.38  ±  0.02 1.48  ±  0.05** 
SN pars reticulata 0.84  ±  0.06 0.86  ±  0.08 0.87  ±  0.01 1.04  ±  0.06** 0.88  ±  0.05 0.89  ±  0.03 0.94  ±  0.02* 0.98  ±  0.03** 
Ventral tegmental area 1.17  ±  0.07 1.12  ±  0.02 1.16  ±  0.04 1.47  ±  0.06** 1.16  ±  0.06 1.20  ±  0.08 1.19  ±  0.06 1.22  ±  0.07 
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Table 4.1.  Effects of Org 26576 and Org 24448 on LCGU in key components of the limbic system   
 
Data are presented as mean ratio of tissue 14C (nCi/g) in the regions of interest to tissue 14C in the cerebellar cortex (nCi/g) ± S.D.  
*P<0.05, **P<0.01, ***P<0.001, for statistical comparison between vehicle and drug treated groups (One-way ANOVA, with Dunnett’s 
post-hoc analysis for multiple comparisons). 
 

  



 
 

 
Ratio of tissue 14C (nCi/g) in regions of interest to that in the cerebellar cortex 

 Org 26576 Org 24448 

Brain Region Vehicle 
(n=7) 

0.1 mg/kg 
(n=7) 

1 mg/kg 
(n=5) 

10 mg/kg 
(n=6) 

Vehicle 
(n=5) 

3 mg/kg 
(n=6) 

10 mg/kg 
(n=6) 

30 mg/kg 
(n=6) 

         
Primary Auditory System         
         
Auditory cortex (IV) 1.87  ±  0.07 1.83  ±  0.05 1.88  ±  0.03 2.02  ±  0.14* 1.86  ±  0.08 1.83  ±  0.03 2.03  ±  0.10** 2.08  ±  0.07** 
Medial geniculate body 1.55  ±  0.04 1.47  ±  0.08 1.53  ±  0.04 1.83  ±  0.07** 1.52  ±  0.06 1.51  ±  0.09 1.78  ±  0.04** 1.76  ±  0.04** 
Inferior colliculus 2.49  ±  0.14 2.45  ±  0.08 2.51  ±  0.08 2.72  ±  0.09** 2.54  ±  0.06 2.51  ±  0.11 2.77  ±  0.06** 2.88  ±  0.09** 
Lateral lemniscus 1.49  ±  0.10 1.49  ±  0.06 1.49  ±  0.07 1.79  ±  0.07** 1.46  ±  0.03 1.48  ±  0.06 1.69  ±  0.06** 1.77  ±  0.06** 
Superior olivary body 1.82  ±  0.08 1.80  ±  0.12 1.90  ±  0.03 2.14  ±  0.11** 1.83  ±  0.09 1.93  ±  0.04 2.10  ±  0.05** 2.18  ±  0.08** 
Cochlear nucleus 1.97  ±  0.08 1.95  ±  0.06 2.10  ±  0.11* 2.31  ±  0.07** 2.05  ±  0.03 2.05  ±  0.03 2.28  ±  0.07** 2.40  ±  0.13** 
         
Primary Visual System
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Superior colliculus 1.36  ±  0.03 1.33  ±  0.11 1.38  ±  0.07 1.51  ±  0.07** 1.32  ±  0.08 1.36  ±  0.02 1.44  ±  0.04** 1.51  ±  0.06** 
Lateral geniculate body 1.50  ±  0.06 1.48  ±  0.07 1.51  ±  0.08 1.78  ±  0.09** 1.44  ±  0.04 1.49  ±  0.09 1.58  ±  0.04* 1.56  ±  0.09* 
Visual cortex (IV) 1.69  ±  0.06 1.73  ±  0.04 1.80  ±  0.07** 1.80  ±  0.02** 1.68  ±  0.09 1.69  ±  0.09 1.82  ±  0.05* 1.86  ±  0.06** 
         

 
Table 4.2.  Effects of Org 26576 and Org 24448 on LCGU in the primary auditory and visual systems 
 
Data are presented as mean ratio of tissue 14C (nCi/g) in the regions of interest to tissue 14C in the cerebellar cortex (nCi/g) ± S.D.  
*P<0.05, **P<0.01, ***P<0.001, for statistical comparison between vehicle and drug treated groups (One-way ANOVA, with Dunnett’s 
post-hoc analysis for multiple comparisons). 
 
 

  



 
Ratio of tissue 14C (nCi/g) in regions of interest to that in the cerebellar cortex 

 Org 26576 Org 24448 

Brain Region Vehicle 
(n=7) 

0.1 mg/kg 
(n=7) 

1 mg/kg 
(n=5) 

10 mg/kg 
(n=6) 

Vehicle 
(n=5) 

3 mg/kg 
(n=6) 

10 mg/kg 
(n=6) 

30 mg/kg 
(n=6) 

         
Hippocampus 

        
         
Subiculum 1.13  ±  0.07 1.14  ±  0.07 1.23  ±  0.05* 1.31  ±  0.05** 1.16  ±  0.05 1.16  ±  0.02 1.21  ±  0.03 1.21  ±  0.03 
Parasubiculum 0.99  ±  0.05 1.09  ±  0.07 1.10  ±  0.08 1.21  ±  0.03** 1.00  ±  0.05 1.04  ±  0.03 1.12  ±  0.07** 1.14  ±  0.03** 
Presubiculum 1.47  ±  0.08 1.52  ±  0.07 1.54  ±  0.07 1.66  ±  0.08** 1.49  ±  0.03 1.51  ±  0.03 1.54  ±  0.03 1.62  ±  0.04** 
Hippocampus - str.mol. 1.37  ±  0.04 1.40  ±  0.03 1.39  ±  0.02 1.56  ±  0.03** 1.38  ±  0.04 1.41  ±  0.04 1.55  ±  0.05** 1.52  ±  0.05** 
Dentate gyrus - str.mol. 0.71  ±  0.03 0.74  ±  0.04 0.76  ±  0.03 0.82  ±  0.04** 0.72  ±  0.02 0.73  ±  0.02 0.92  ±  0.02** 0.94  ±  0.03** 
Medial septum 1.16  ±  0.07 1.13  ±  0.10 1.24  ±  0.08 1.28  ±  0.08* 1.12  ±  0.07 1.13  ±  0.06 1.19  ±  0.05 1.17  ±  0.05 
Dentate gyrus (dorsal) 1.05  ±  0.03 1.05  ±  0.03 1.16  ±  0.04** 1.17  ±  0.07** 1.07  ±  0.03 1.06  ±  0.02 1.23  ±  0.03** 1.21  ±  0.02** 
Hippocampus - CA1 0.81  ±  0.03 0.84  ±  0.04 0.84  ±  0.05 0.97  ±  0.03** 0.78  ±  0.04 0.90  ±  0.05** 0.97  ±  0.03** 0.99  ±  0.04** 
Hippocampus - CA3 0.96  ±  0.06 0.96  ±  0.04 1.13  ±  0.03** 1.13  ±  0.04** 1.02  ±  0.03 1.05  ±  0.02 1.15  ±  0.02** 1.13  ±  0.05** 
Entorhinal cortex 0.99  ±  0.05 0.99  ±  0.05 1.03  ±  0.03 1.12  ±  0.04** 1.00  ±  0.02 1.02  ±  0.03 1.06  ±  0.05* 1.07  ±  0.04* 
         
Functionally Distinct
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Red nucleus 1.50  ±  0.06 1.45  ±  0.03 1.45  ±  0.05 1.59  ±  0.06* 1.46  ±  0.05 1.47  ±  0.05 1.54  ±  0.03 1.61  ±  0.07** 
Inferior olivary body 1.45  ±  0.05 1.43  ±  0.07 1.51  ±  0.07 1.70  ±  0.06** 1.44  ±  0.03 1.49  ±  0.04 1.66  ±  0.02** 1.74  ±  0.06** 
Somatosensory cortex (IV) 1.96  ±  0.10 1.93  ±  0.11 2.04  ±  0.05 1.98  ±  0.06 2.05  ±  0.06 2.00  ±  0.07 2.03  ±  0.03 2.03  ±  0.07 
Corpus callosum 0.64  ±  0.03 0.68  ±  0.03 0.67  ±  0.03 0.81  ±  0.04** 0.66  ±  0.03 0.67  ±  0.03 0.77  ±  0.02** 0.74  ±  0.04** 
Cerebellar cortex 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 
Cerebellar nucleus 1.87  ±  0.06 1.83  ±  0.03 1.90  ±  0.05 2.22  ±  0.07** 1.91  ±  0.08 1.95  ±  0.09 2.08 ±  0.07* 2.17  ±  0.10** 
         

 
Table 4.3.  Effects of Org 26576 and Org 24448 on LCGU in the hippocampus (+ associated areas) and functionally distinct brain 
regions  
 

  

Data are presented as mean ratio of tissue 14C (nCi/g) in the regions of interest to tissue 14C in the cerebellar cortex (nCi/g) ± S.D.  
*P<0.05, **P<0.01, ***P<0.001, for statistical comparison between vehicle and drug treated groups (One-way ANOVA, with Dunnett’s 
post-hoc analysis for multiple comparisons). 
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Fig 4.4.  Representative [14C]-2-deoxyglucose autoradiograms illustrating changes in 
LCGU in response to Org Ampakines and NBQX 
 
Org 26576 (1 mg/kg) produces increases in LCGU in the laterodorsal thalamus (A)ii compared 
with vehicle administration (A)i.  Other notable increases in LCGU are observable in the d
gyrus (DG), and the CA3 field of the hippocampus.  Org 24448 (3 mg/kg) results in an increase 
in LCGU in the medial lateral habenula (B)ii compared to vehicle administration (B)i.  NBQX 
(10mg/kg) administration alone results in decreased LCGU in the auditory cortex (IV) (C)ii wh
compared to vehicle administration (C)i.  
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4.3.2.  AMPA receptor antagonist pre-treated mice 
NBQX, an AMPA receptor antagonist, was employed to determine if the effects on 

LCGU by Org 26576 and Org 24448 were directly AMPA receptor mediated.  

NBQX was administered at 10 mg/kg, while Org 26576 and Org 24448 were also 

both administered at 10mg/kg, as these doses elicited a robust response in LCGU 

(see previous).  Previous studies indicated that at 10 mg/kg, NBQX was 

pharmacologically effective with minimal significant effects on glucose use (Brown 

and McCulloch, 1994), and confirmed that the timings utilised in this study were 

ample to allow effective blood-brain-barrier penetration and AMPA receptor 

blockade. 

 

4.3.2.1. Effects of the NBQX on behavioural and baseline 
physiological parameters 

Mice receiving Vehicle-Vehicle, NBQX-Org 26576 or NBQX-Org 24448 did not 

exhibit any overt or abnormal changes in their behaviour throughout the duration of 

the experiment.  However, mice receiving NBQX followed by vehicle, after the 

initial injection displayed a lethargy that was evident for the remaining duration of 

the experiment.  Even though these mice were quiet and sedentary, they were 

cognisant and responsive to stimuli. 
 

The mean terminal plasma 14C and glucose concentrations in NBQX-vehicle, 

NBQX-Org 26576 and NBQX-Org 24448 treated mice did not differ significantly 

from mean terminal plasma 14C and glucose concentrations for the vehicle-vehicle 

treated group (Table 4.4.).  Mean 14C levels in cerebellar cortex did not differ 

significantly in the four treatment groups.  In individual animals 14C levels in the 

cerebellar cortex correlated well with individual plasma 14C/glucose ratios, 

irrespective of drug treatment (Fig 4.5.). 
 

4.3.2.2. Effects of NBQX pre-treatment on LCGU 
The effects of pre-treatment with the AMPA receptor antagonist NBQX on LCGU in 

freely moving conscious mice are presented in Table 4.5.  Mice treated with NBQX 

(10 mg/kg) then vehicle produced significant alterations in LCGU in only 5 of the 43 

anatomical areas examined as compared to vehicle-vehicle treated mice.  Decreases 
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 NBQX 
Vehicle 

NBQX (10 mg/kg) Pre-treatment 

 Drug 
Vehicle 
(n = 5) 

Drug 
Vehicle 
(n = 5) 

Org 26576 
(10 mg/kg) 

(n = 6) 

Org 24448 
(10 mg/kg) 

(n = 6) 

Terminal Plasma Glucose (mM) 11.4 ± 1.3 10.6 ± 1.7 11.5 ± 1.3  11.7 ± 0.9 

Terminal Plasma 14C (nCi/g) 62.3 ± 17.4 71.6 ± 18.1  58.2 ± 17.2 63.5 ± 6.0 

 
 
Table 4.4.  Baseline physiological parameters for Vehicle-Vehicle (Mulgofen-
Saline), NBQX-Vehicle, NBQX-Org 26576 and NBQX-Org 24448 treated 
C57Bl/6J mice 
 
Terminal plasma glucose concentrations (mM) and terminal plasma 14C 
concentrations (nCi/g) for Vehicle-Vehicle, NBQX-Vehicle, NBQX-Org 26576 and 
NBQX-Org 24448 treated mice are shown.  There were no significant differences 
between all treatment combinations when compared, for either terminal plasma 
glucose or 14C levels.  Data are presented as mean ± S.D (One-way ANOVA with 
Dunnett’s correction for multiple comparisons). 
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Fig 4.5.  Cerebellar cortex 14C concentration and its relationship with the 
terminal plasma 14C/glucose ratio for Vehicle-Vehicle (Mulgofen-Saline), 
NBQX-Vehicle, NBQX-Org 26576 and NBQX-Org 24448 treated C57Bl/6J mice 
 
Cerebellar cortex 14C concentrations (A) for all drug treatments did not differ 
significantly from vehicle-vehicle treated mice.  The ‘control’ relationship (B) was 
similar between all treatment combinations.  Data are expressed as mean ± SEM 
(One-way ANOVA, with Dunnett’s post-hoc analysis for multiple comparisons). 
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in LCGU were prominent in the auditory cortex (IV), visual cortex (IV), laterodorsal 

thalamus, presubiculum and subiculum.   

 

The marked alterations in LCGU in a number of brain regions produced with Org 

26576 and Org 24448 were markedly ameliorated by pre-treatment with NBQX (Fig 

4.6.). In mice pre-treated with NBQX (10 mg/kg) then Org 26576 (10 mg/kg) only 4 

changes in LCGU were found when compared with NBQX (10 mg/kg) alone treated 

mice.  Increases in LCGU were evident in the auditory and visual cortices (IV) and 

in the inferior olivary body.  One significant decrease in LCGU was observed in the 

cochlear nucleus.   

 

Similarly, mice pre-treated with NBQX (10 mg/kg) then Org 24448 (10 mg/kg) 

displayed only 3 significant changes in LCGU as compared to NBQX alone treated 

mice.  Increases were evident in the auditory cortex (IV) and the interpenduncular 

nucleus, while one decrease was observed in the substantia nigra pars compacta 

region.  
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Ratio of tissue 14C (nCi/g) in regions of interest to that in the cerebellar cortex 

Brain Region Vehicle 
+ Vehicle (n=5) 

NBQX 
+ Vehicle (n=5) 

NBQX 
+ Org 26576 (n=6) 

NBQX 
+ Org 24448 (n=6) 

     
Anteroventral Thalamus 2.00 ± 0.09 1.92 ± 0.02 1.91 ± 0.08 α 2.00 ± 0.07 β 
Cingulate cortex 1.47 ± 0.07 1.42 ± 0.02 1.43 ± 0.06 α 1.45 ± 0.08 β 
Interpenduncular nucleus 1.75 ± 0.06 1.79 ± 0.03 1.76 ± 0.04 α 1.89 ± 0.07 β 
Laterodorsal thalamus 1.61 ± 0.05 1.48 ± 0.08 1.55 ± 0.08 α 1.58 ± 0.08 β 
Medial Lateral Habenula 1.63 ± 0.05 1.60 ± 0.06 1.60 ± 0.05 α 1.61 ± 0.04 β 
Raphe Nucleus 1.30 ± 0.03 1.30 ± 0.03 1.32 ± 0.06 α 1.31 ± 0.05 β 
SN pars compacta 1.34 ± 0.04 1.33 ± 0.02 1.29 ± 0.07 α 1.26 ± 0.03 β 
Auditory cortex (IV) 1.85 ± 0.09 1.68 ± 0.05 * 1.83 ± 0.03 α + 1.85 ± 0.03 β + 
Cochlear nucleus 2.00 ± 0.05 2.05 ± 0.09 1.95 ± 0.05 α 2.07 ± 0.05 β 
Visual cortex (IV) 1.75 ± 0.02 1.59 ± 0.01 *** 1.71 ± 0.04 α ++ 1.66 ± 0.09 β 
Subiculum 1.21 ± 0.03 1.14 ± 0.02 * 1.18 ± 0.02 α 1.15 ± 0.05 β 
Parasubiculum 1.02 ± 0.01 1.01 ± 0.03 0.99 ± 0.02 α 0.97 ± 0.01 β 
Presubiculum 1.53 ± 0.02 1.48 ± 0.03 1.44 ± 0.03 α 1.45 ± 0.04 β 
Hippocampus - str. mol. 1.36 ± 0.01 1.38 ± 0.02 1.38 ± 0.02 α 1.36 ± 0.03 β 
Dentate gyrus - str. mol. 0.70 ± 0.00 0.70 ± 0.03 1.71 ± 0.02 α 0.68 ± 0.02 β  
Inferior olivary body 1.46 ± 0.04 1.44 ± 0.03 1.25 ± 0.05 α 1.48 ± 0.03 β 
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Table 4.5. Effects of the AMPA receptor antagonist NBQX on LCGUαβ alone, and administered prior to Org 26576 (10 mg/kg) and 
Org 24448 (10 mg/kg) 
 
Data are presented as mean ratio of tissue 14C (nCi/g) in the regions of interest to tissue 14C in the cerebellar cortex (nCi/g) ± S.D.  One-
way ANOVA, followed by post-hoc student’s t-test with Bonferroni correction for multiple comparisons between groups (correction factor of 
5).  ***P<0.001, **P<0.01, *P<0.05, for comparison between NBQX pre-treatment and vehicle treated mice. ++P<0.01, +P<0.05, for the 
comparison between NBQX-26576α/24448β treatment group with their respective Org 26756 (10mg/kg) and Org 24448 (10mg/kg) alone 
treatment groups. 
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Fig 4.6.  Effects of NBQX (10 mg/kg) administration prior to Org (10 mg/kg) or 
Org 24448 (10 mg/kg) on LCGU in C57Bl/6J mice 
 
NBQX, an AMPA receptor antagonist, ameliorates the effects of both Org 26576 (A) 
and Org 24448 (B) on LCGU in the CA3 and CA1 sub-fields of the hippocampus 
respectively.  Data are presented as mean ± SEM. **P<0.01 (One-way ANOVA, with 
Dunnett’s post-hoc analysis for multiple comparisons). 
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4.4. Discussion 
 

The aim of this study was to identify the discrete anatomical circuitry influenced by 

the two novel Ampakines Org 26576 and Org 24448 to investigate their potential 

therapeutic relevance. The results indicate that both Org 26576 and Org 24448 

produce regionally selective, dose-dependent, AMPA receptor mediated increases in 

LCGU in the mouse cerebrum, with effects indicative of potential therapeutic 

application in the treatment depression, schizophrenia (psychoses), and associated 

cognitive deficits. 

 

4.4.1. Org 26576 and Org 24448 produce specific effects on LCGU 
The present study demonstrates that Org 26576 and Org 24448 exhibit a clear dose-

dependent effect, with specific actions on glucose utilisation at low doses and 

increasing cerebrum wide activation at higher doses.  Further to this Org 26576 and 

Org 24448 both demonstrate differing patterns of anatomical activation at low doses.  

Whereas Org 24448 (3 mg/kg) resulted in increased glucose use in the raphe nucleus, 

medial lateral habenula, CA1 and median forebrain bundle, Org 26576 (1 mg/kg) 

treatment brought about activation of the DG, CA3, subiculum, anteroventral and 

laterodorsal thalamus, the median forebrain bundle, cingulate and visual (IV) cortices 

and the cochlear nucleus (minor sensory activation).  One report in the literature 

utilising fully-quantitative [14C]-2-deoxyglucose autoradiography in the rat, with the 

structurally distinct biarylpropylsulfonamide AMPA receptor potentiator, LY404187, 

displayed broadly similar changes in LCGU at a similar dose range to those 

described in this study (Fowler et al., 2004).  Interestingly, no significant effect on 

LCGU by LY404187 was observed at the higher dose of test compound, suggesting a 

narrow dose range to elicit alterations in LCGU.  In contrast, this bell-shaped dose 

response was not observed with either Org 26576 or Org 24448.  A further study 

examined the effects of LY404187 in anesthetised rats on BOLD levels in an fMRI 

study, and discovered that LY404187 produced increases in BOLD most notably in 

the habenula, hippocampus and the colliculus regions (Jones et al., 2005).   A recent 

study also demonstrated differential effects of two Ampakines (CX546 and CX516) 

in specific brain regions (hippocampus and thalamus) on electrophysiological 

synaptic responses (Xia et al., 2004). This was suggested to be due to regional 
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differences in GluR subunits.  The differential responses in LCGU between Org 

26576 and Org 24448 at low dose in this study may be due to a similar differential 

action on specific GluR subunits.  This specificity may be lost however with higher 

doses of the Org compounds, resulting in the robust global activation of AMPA 

receptors, and hence the similar cerebrum-wide activation observed by both Org 

26576 and Org 24448.   

 

4.4.2. AMPA receptor distribution 
Extensive autoradiographic binding studies with [3H]-AMPA (Rainbow et al., 1984; 

Monaghan et al., 1984) and in situ analysis for AMPA receptor subunits (van den Pol 

et al., 1994; Young et al., 1995; Tomiyama, 1997) in the rat and human brain have 

shown that AMPA receptor isoforms are distributed heterogeneously across the 

cerebrum, with high levels of expression in areas such as the hippocampus 

(especially in the CA1 and CA3 sub-fields), the subiculum, septum, striatum and in 

superficial cortical layers.  The thalamus and hypothalamus display low uniform 

levels of expression, whilst areas such as the habenula and the dorsal raphe nucleus 

exhibit moderate levels of AMPA receptor expression (for specifics see section 

1.2.6.).  Examined in the context of the present study Org 24448 (3mg/kg) therefore 

produces activation in areas that both have high levels of AMPA receptors, e.g. the 

CA1 field of the hippocampus, as well as areas with moderate-low levels of 

expression such as the habenula/raphe.  Similarly Org 26575 (1mg/kg) exhibits 

activation in areas with high AMPA receptor densities, CA3 and cortical areas, but 

also exhibits activation in the thalamus, which has low levels of expression.  Hence 

the activation of the various brain regions with Org 24448 and Org 26576 does not 

correspond fully to areas know to classically exhibit AMPA receptors.  It is likely 

therefore that the magnitude of changes observed within different brain regions by 

the Ampakines Org 24448 and Org 26576 may be due to secondary circuitry 

(polysynaptic) activation.   
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4.4.3. The effects of Org 26576 and Org 24448 on LCGU are AMPA 
receptor mediated 

The above-described pattern of glucose use induced with these novel Ampakines is 

distinctly unlike the patterns of activation seen with other drugs that impinge upon 

normal glutamatergic transmission such as the NMDA receptor antagonist MK-801 

(Kelly et al., 2002) or metabotropic glutamate receptor agonists (Kurumanji et al., 

1989).  It is also dissimilar to studies in which AMPA stimulation is amplified, 

(Browne et al., 1998) through intra-cerebral AMPA infusion, but is broadly similar 

to the cerebral activation induced by the LY biarylsulphonamide AMPA receptor 

potentiators (Fowler et al., 2004; Jones et al., 2005).  Further to this, NBQX, a 

specific AMPA receptor antagonist with 30-50 fold higher selectivity for AMPA 

over kainate receptors has been investigated comprehensively in previous [14C]-2-

deoxyglucose imaging studies (Brown and McCulloch, 1994).  In the rat model, 

NBQX produces reductions (no increases) in LCGU in the primary auditory areas, 

various limbic structures and the thalamic nuclei.  These previously described effects 

are comparable to that observed in this study with 10mg/kg i.p. NBQX treatment of 

mice.  Here NBQX produced significant reductions in LCGU in only 5 of the 43 

areas examined, specifically the visual and auditory cortices, the laterodorsal 

thalamus and parts of the subicular complex.  NBQX pre-administered prior to Org 

24448 and Org 26576 (10 mg/kg) blocked the effects of these novel Ampakines on 

LCGU confirming that the effects on LCGU observed with Org 24448 and Org 

26576 are indeed directly AMPA receptor mediated changes.  It should also be noted 

that NBQX was administered at a much lower dose than that previously reported to 

induce hypothermia.  A previous study (Nurse & Corbett, 1996) indicated a 90 

mg/kg dose of NBQX would induce hypothermia in the order of 1-1.5 oC 

approximately 2hrs post administration.  However in this study, the combination of 

low dose and shortened time course ensured that any possible drug-induced 

hypothermia would have no discernable effect on the experimental outcome. 

 

4.4.4. Functional implications  
The glutamatergic system is possibly the best classified/studied of all the excitatory 

amino acid systems in the brain, and as a consequence of this, there is now a large 
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body of evidence implicating glutamate in the pathophysiology of various 

neurodegenerative diseases and conditions such as cognition, learning and memory 

impairment, depression and neuropsychoses such as schizophrenia.   

 

With the first true description of AMPA receptor potentiators in the literature (Ito et 

al., 1990) attention initially focused on the role of these drugs specifically as 

‘cognitive enhancers’.  The hippocampus and various associated cortical regions 

have been identified as key areas in the formation of memory (Manns et al., 2003).  

The Ampakines utilised in this study, Org 26576 and Org 24448 both produce 

activation of the hippocampus (CA3 and CA1 respectively), and various cortical 

areas including the cingulate and visual cortices, suggesting that these compounds 

have the ability to activate brain areas involved in memory formation and storage. 

This data taken in conjunction with the proven ability of Ampakines to augment 

synaptic transmission through the facilitation of long-term potentiation (LTP) 

(Staubli et al., 1994 a/b), currently the leading candidate for memory storage 

(Lisman, 2001), may provide a role for these compounds in the treatment of mild 

cognitive impairments (MCI) associated with various conditions such as Alzheimer’s 

disease, depression, psychoses and ADHD. 

 

Depression is commonly associated with cognitive dysfunction that can be observed 

as impaired learning and memory (Knapp et al., 2002).  As a result of this there is 

growing evidence that Ampakines may be of therapeutic usefulness in treating 

depression (Ge et al., 2001; Li et al., 2001; Knapp et al., 2002).  The brain circuitry 

involved in the modulation of depression is well characterised through human brain 

imaging studies; major areas involved include the locus coreuleus and the raphe 

nucleus, the origins of the noradrenergic and serotonergic afferents in the brain 

respectively, the habenula, hippocampus and prefrontal cortical areas (Paul and 

Skolnick, 2004).  Results in this study with Org 24448 (3 mg/kg) demonstrate 

activation of a number of these areas including the raphe nucleus, lateral habenula, 

and the hippocampus, suggesting that this compound activates areas associated with 

depression circuitry in the brain.   Although data is unavailable for the locus 

coreuleus, limited by the power of resolution provided by [14C]-2-deoxyglucose 
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imaging in the mouse, work by Fowler et al. (2004), in rats, identified an increase in 

LCGU in this discrete region after acute treatment with the AMPA receptor 

potentiator LY404187. Moreover, Ampakines have been demonstrated to modulate 

serotonin within the frontal cortex, mediated through a 5-HT1a mechanism (Ge et al., 

2001). Furthermore it has been demonstrated that both in vivo and in vitro positive 

modulation of the AMPA receptor increases BDNF gene expression in neurones 

(Legutko et al., 2001; Mackowiak et al., 2002) and neurogenesis in a dose-dependant 

manner (Bai et al., 2003), while Ampakines such as CX516, CX546 and CX614, 

have the ability to modulate the in vivo and in vitro levels of BDNF expression in the 

hippocampus (Lauterborn et al., 2000; Lauterborn et al., 2003), most likely via the 

Lyn-mediated-MAPK activation pathway (Hayashi et al., 1999).  This lends further 

support to the use of such compounds as possibly efficacious in the treatment of 

depression as neurotrophins such as BDNF have the ability to modify synaptic 

transmission and connectivity (plasticity) (Schinder and Poo, 2000) and are major 

mediators of anti-depressant effects (Santarelli et al., 2003; Duman, 2004; 

Hashimoto et al., 2004).  Depression is also thought to be associated with 

compromised cell turnover in the dentate gyrus of the hippocampus. 

 

Schizophrenia is associated with neuronal dysregulation and there is now an 

extensive body of evidence implicating glutamatergic abnormalities in this disorder 

(Tamminga et al., 2000).  Moreover, hypoactive glutamatergic influence in key brain 

regions, as a result of abnormal expression of all three families of ionotropic 

glutamate receptors, have been proposed to underlie the psychiatric disturbances 

witnessed in schizophrenia and related disorders (Hess et al., 2003).  Indeed, PET 

scanning (Tamminga et al., 2000) and expression studies (Meador-Woodruff et al., 

2001) in schizophrenic patients have identified key brain areas with compromised 

glutamatergic transmission, including limbic circuitry such as the striatum, thalamus 

and hippocampus, and associated efferent pathways and target areas such as the 

cingulate cortex.  Previous studies are suggestive that Ampakines may be useful in 

effecting depressed cerebral activity associated with schizophrenia (Palmer et al., 

1997; Hess et al., 2003). The selective anatomical activation patterns observed in the 

mouse brain in this study, lends further support to this concept.  Treatment with both 
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Org 26576 and Org 24448, especially Org 26576 (1mg/kg), elicited specific 

increases in glucose use in brain regions associated with schizophrenia such as the 

hippocampus, cingulate cortex and various thalamic regions.  Ampakines therefore 

may potentially facilitate glutamatergic transmission/activation in these ‘deficient’ 

areas and subsequently counter the neurotransmitter imbalance to alleviate the 

symptoms of schizophrenia.  Previous studies investigating the acute effects of 

psychoactive compounds in rat brain have demonstrated alterations in LCGU in 

particular brain regions characteristic of the compound class. For example, following 

acute administration of the antipsychotic compounds haloperidol, clozapine, 

olanzapine and the novel antipsychotic compound asensapine, an increase in LCGU 

within the lateral habenula is observed (McCulloch et al., 1980; Room et al., 1991; 

Duncan et al., 2003).  This increase in glucose use within the lateral habenula was 

also observed in this study following acute administration of Org 26576 or Org 

24448.  However, in contrast, these antipsychotic compounds also reduced levels of 

LCGU within the thalamus, an effect not observed following acute administration of 

the Ampakines used in this study.  It is likely that these differences reflect the 

different pharmacological actions of the compounds and subsequent effects on 

extended neuronal circuitry.   

 

4.4.5. Summary 
The results of the present study demonstrate that both Org 26576 and Org 24448 

produce dose-dependent AMPA receptor mediated changes in LCGU in the mouse 

cerebrum with specific but distinct regional activation.  In conclusion, these data 

provide an anatomical basis for the cerebral activation induced by these compounds, 

and are suggestive of a potential therapeutic benefit for conditions implicated with an 

associated glutamatergic hypofunction, such as depression and schizophrenia, or 

cognitive deficits. 
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Chapter 5 
 

Investigation into the effects of chronic 
administration of the novel Ampakines Org 
26576 and Org 24448 on functional activity, 

neurogenesis and receptor/signalling 
alterations in the murine cerebrum 

 



5.1. Introduction 
 

Current treatments for conditions such as depression and schizophrenia, whilst 

effective in treating and controlling the symptoms of these diseases are not without 

their limitations.  Major drawbacks can include prolonged times of onset of 

therapeutic effects, 6-8 weeks for example with most anti-depressants (Tamminga et 

al., 2002), dramatic side effects, such as tardive dyskinesia with anti-psychotics, and 

overall treatment efficacy can be poor with relapses commonplace (Nestler et al., 

2002; Zajecka, 2003).  Having proven the ability of the novel Org Ampakines to 

modulate central cerebral function in areas associated with cognition, depression and 

psychoses in an acute paradigm (Chapter 3) it is essential to investigate their more 

long-term ‘chronic’ functional effects to establish if any changes witnessed are 

similar both in magnitude and locality in comparison to the acute effects; and 

whether or not the onset of these effects are rapid, but more importantly maintained 

over time. 

 
In addition to overall functional changes it is imperative to try and understand the 

underlying ‘structural’ correlates to these functional changes, and attempt to dissect 

the down-stream consequences of cerebral activation.  Indeed, AMPA receptor-

potentiating compounds when administered systemically have been shown to 

increase levels of brain-derived neurotrophic factor (BDNF) (Legutko et al., 2001; 

Mackowiak et al., 2002), activate ERK/CREB second messenger systems (Hayashi 

et al., 1999), and engender neurogenesis in vivo (Bai et al., 2003). These ‘structural’ 

effects are produced by traditional antidepressants, and are often implicated and 

linked to their antidepressant properties (Warner-Schmidt & Duman, 2006).  It is still 

a mater of conjecture however if Ampakines produce their effects through a specific 

delineated structural pathway or via a potential novel mechanism.    

 
5.1.1. Aims 
The aim of the current study was to investigate the effects of chronic administration 

of the novel Ampakines Org 26576 and Org 24448 in the mouse cerebrum.  

Functional activity was assayed using semi-quantitative [14C]-2-deoxyglucose 

autoradiography.  ‘Structural alterations’ were investigated, specifically in the 
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hippocampus, by examining the ability of chronic Ampakine administration to 

modify the number of proliferating dentate gyrus cells, and Western blot analysis, to 

investigate the effects of chronic administration on total AMPA GluR levels and 

down-stream signalling components implicated in AMPA/Ampakine function. 

 
 
5.2. Materials and Methods 
  
5.2.1. Chronic drug administration  
 

 

 

 

 

 

 

 

 

 

 
Fig 5.1.  Experimental design for studying the effects of chronic 
administration of the Ampakines Org 26576 and Org 24448 
 

The experimental study design is outlined above.  The Ampakines Org 26576 and 

Org 24448 were made up as stock solutions prior to the beginning of the study, 

aliquoted, and stored at -20oC until used.  Each day the required volume of 

compound was defrosted and made up to the final appropriate dosage in a 0.2ml 

bolus per mouse.  C57Bl/6J mice were evenly distributed across treatment groups by 

weight, and were intraperitoneally injected twice daily, 8hrs part, in opposing sides 

of the abdomen with either vehicle (Mulgofen-saline), Org 26576 (1 mg/kg) or Org 

24448 (10 mg/kg).  Injections were intermittently checked for correct peritoneal 

placement, by insertion of needle and drawing back on the syringe.  If air was drawn 

into the syringe the needle was deemed to be correctly placed.  Animals in Group 1 

received injections of Vehicle, Org 26576 and Org 24448 for 7 full days, whilst 
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animals in Group 2 received injections for a full 28 days (n=~8 for each treatment 

and time point).  This experimental design was carried out in duplicate to allow 

investigation of two distinct endpoints: 1) functional investigation using [14C]-2-

deoxyglucose autoradiography, and 2) investigation into structure (neurogenesis) and 

signalling using immunohistochemistry and Western blot analysis (Fig 5.1.). 

 

5.2.2. [14C]-2-deoxyglucose autoradiographic procedure 
After either 7 or 28 days of vehicle, Org 26576 or Org 24448 treatment, the mice 

were subjected to [14C]-2-deoxyglucose autoradiography to examine the functional 

consequences of chronic administration on cerebral activity.  The morning following 

the final drug injection (a 24 hr ‘washout’ period) mice were separated into 

individual cages in the procedure room and allowed to acclimatise to their new 

environment for 30 min.   The procedure was carried out the next morning to ensure 

any effects witnessed were chronic effects and not residual acute drug effects.  5 μCi 

[14C]-2-deoxyglucose was administered intraperitoneally in a 0.4 ml bolus over a 

10sec period.  The detailed autoradiographic experimental procedure is outlined in 

section 2.2.3.   Standard autoradiographs were prepared and LCGU was determined 

in pre-determined areas of interest as described in section 2.2.4.  All experiments 

were controlled as stringently as possible for light and sound conditions, and 

circadian timings to ensure equal distribution of variables across the treatment groups 

 
5.2.3. BrdU administration and immunohistochemistry 
After either 7 or 28 days of vehicle, Org 26576, or Org 24448 treatment mice were 

intraperitoneally injected with (+)5-Bromo-2’-deoxyuridine (BrdU) (75 mg/kg), a 

base analogue of thymidine that incorporates itself into a proliferating cell’s DNA 

during S phase and can subsequently be detected by immunohistochemistry 

(Nakagawa et al., 2002).  Following the BrdU injection (12 hrs after the last drug 

injection), mice were allowed to survive for a further 24 hrs to allow full cellular 

incorporation of the BrdU (at least 3 mammalian cell cycles) after which they were 

transcardially perfused with 0.9% heparinised saline as described in section 2.3.  The 

brains when removed were initially hemi-transected along their midline and half the 

brain underwent micro-dissection as outlined in section 2.4.  The other half was post-

fixed in 4% paraformaldehyde in 50 mM phosphate buffer solution for 24 hrs, 
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cryoprotected in 30% sucrose in 50 mM phosphate buffer solution for 24hrs, frozen 

in chilled isopentane (-42 oC) for 5 min and stored in 7 ml bijou tubes at –20 oC for 

sectioning.  20 μm cryostat sections were prepared and retained on poly-l-lysine 

coated slides as detailed in Section 2.5. for BrdU-immunohistochemistry.  

Immunohistochemistry was performed as described in section 2.6.2. using a mouse 

monoclonal anti-BrdU antibody (1:100 - Sigma Aldrich, UK). 

 
5.2.4. Quantification of BrdU positive nuclei 
The number of BrdU-positive cells in three serial sections per animal of the 

hippocampus at the level of the medial lateral habenula (Bregma: -1.82 mm) were 

counted in a blinded-randomised manner.  A modified version of the optical 

fractionator method for unbiased stereological analysis of the total number of BrdU-

positive cells in the hippocampal subdivision was utilized as previously reported 

(West et al., 1991).  A cell was counted as being in the subgranular zone (SGZ) of 

the dentate gyrus if it was touching or in the SGZ (Fig 5.2.); cells located 2 or more 

cells away from the SGZ were classified as hilar.  All BrdU-positive cells were 

counted through a 100x objective light microscope, throughout the rostrocaudal 

extent of the hippocampal granule cell layer. 

 
 
 
 
 
 
 
 
 
 
 
 
Fig 5.2.  BrdU-positive immunostaining in the dentate gyrus 
 
Large darkly stained cluster of BrdU-positive nuclei (arrow) in the subgranular zone 
of the dentate gyrus (x200), and shown enlarged (inset x400). 
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5.2.5. Protein analysis 
Dissected hippocampi from vehicle, Org 26576 and Org 24448 treated mice for 7 or 

28-days were homogenised/purified as described in section 2.7.1.  Exact protein 

concentrations for the homogenates were determined using a BCA assay (section 

2.7.2.).  For each sample (n=~8) 80 μg protein was separated by SDS-PAGE 

electrophoresis (section 2.7.3.), and underwent Western blotting (section 2.7.4.).  

Levels of receptors (i.e. GluR’s) and signalling molecules (i.e. CREB) were 

determined by immuno-blotting with antigen-specific antibodies as described in 

section 2.6.2. 

 

5.2.6. Statistical analysis 
All data obtained were analysed for statistical significance by one-way analysis of 

variance, followed by Dunnett’s post-hoc analysis, to correct for multiple 

comparisons between the drug-treated and control groups. 

 121



5.3. Results 
 
5.3.1. Functional consequences of chronic administration of Org 

26576 and Org 24448 
 
5.3.1.1. Effect of Org 26576 and Org 24448 administration on 

behavioural and baseline physiological parameters 
Treatment with Org 26576 (1 mg/kg) and Org 24448 (10 mg/kg) for 7 and 28 days 

resulted in no alterations in the overt behaviour of the mice.  Mice received injections 

twice daily and were at all times alert and active displaying normal circadian, 

exploratory and grooming behaviour.  On the day of [14C]-2-deoxyglucose 

autoradiography mice were separated into individual cages. Immediately following 

the [14C]-2-deoxyglucose injection mice displayed a period of inactivity during 

which they remained quietly hunched in the closed portion of the cage.  This 

lassitude lasted only briefly however, approximately ten minutes, after which the 

mice displayed normal behavioural activity for the remainder of the experimental 

period. 

 

Org 26576 (1 mg/kg) and Org 24448 (10 mg/kg) administration had no significant 

effect on the mean terminal plasma 14C and glucose concentrations as compared to 

the relevant vehicle treated groups for both the 7 and 28 day treatment time points 

(Fig 5.3.).  Mean 14C levels in the cerebellar cortex did not differ significantly 

between the vehicle and drug groups, and in individual mice, 14C levels in the 

cerebellar cortex correlated well with the individual plasma 14C/glucose ratios, 

irrespective of drug treatment or time point (Fig 5.4. & 5.5.).  This data is suggestive 

that chronic injection of Org 26576 (1 mg/kg) and Org 24448 (10 mg/kg) did not 

alter glucose utilisation significantly in the cerebellar cortex over prolonged periods 

of time, verifying its use as the control reference region in this study. 
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A

 
7 Day Administration 

 Vehicle 
(n=7) 

Org 26576 
1 mg/kg 

(n=7) 

Org 24448 
10 mg/kg 

(n=6) 

Terminal Plasma Glucose (mM) 9.87 ± 1.61 9.44 ± 2.07 10.40 ± 1.07 

Terminal Plasma 14C (nCi/g) 39.33 ± 11.43 43.61 ± 8.12 40.69 ± 5.28 

 
 
 
 
 
B

 
28 Day Administration 

 Vehicle 
(n=7) 

Org 26576 
1 mg/kg 

(n=5) 

Org 24448 
10 mg/kg 

(n=7) 

Terminal Plasma Glucose (mM) 10.99 ± 1.32 10.19 ± 1.2 10.2 ± 1.74 

Terminal Plasma 14C (nCi/g) 44.88 ± 13.02 46.05 ± 8.41 32.73 ± 6.05 

 
 
 
Fig 5.3.  Baseline physiological parameters for chronically administered Org 
26576 (1 mg/kg), Org 24448 (10 mg/kg), and vehicle in C57Bl/6J mice  
 
Terminal plasma glucose concentrations (mM) and terminal plasma 14C 
concentrations (nCi/g) for Vehicle, Org 26576 (1 mg/kg) and Org 24448 (10 mg/kg) 
treated mice are shown for 7 days (A) and 28 days (B).  There were no significant 
differences between all drug treatments in comparison to the relevant vehicle group, 
for either terminal plasma glucose or 14C levels.  Data are presented as mean ± S.D 
(One-way ANOVA with Dunnett’s correction for multiple comparisons). 
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Fig 5.4.  Cerebellar cortex 14C concentration and its relationship with the 
terminal plasma 14C/glucose ratio for vehicle (Mulgofen-Saline), Org 26576 (1 
mg/kg) and Org 24448 (10 mg/kg), 7 day treated C57Bl/6J mice 
 
Cerebellar cortex 14C concentrations (A) for all drug treatments did not differ 
significantly from vehicle-treated mice.  The ‘control’ relationship (B) was similar 
between vehicle, Org 26576 (1 mg/kg) and Org 24448 (10 mg/kg).  Data are 
expressed as mean ± SEM (One-way ANOVA, with Dunnett’s post-hoc analysis for 
multiple comparisons). 
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Fig 5.5.  Cerebellar cortex 14C concentration and its relationship with the 
terminal plasma 14C / glucose ratio for vehicle (Mulgofen-Saline), Org 26576 (1 
mg/kg) and Org 24448 (10 mg/kg), 28 day treated C57Bl/6J mice 
 
Cerebellar cortex 14C concentrations (A) for all drug treatments did not differ 
significantly from vehicle-treated mice.  The ‘control’ relationship (B) was similar 
between vehicle, Org 26576 (1 mg/kg) and Org 24448 (10 mg/kg).  Data are 
expressed as mean ± SEM (One-way ANOVA, with Dunnett’s post-hoc analysis for 
multiple comparisons). 
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5.3.1.2 Effects of 7-day administration of Org 26576 (1mg/kg) and 
Org 24448 (10mg/kg) on LCGU 

Alterations in glucose utilisation associated with chronic 7 day administration of Org 

26576 (1 mg/kg) and Org 24448 (10 mg/kg) are presented in Tables 5.1. , 5.2., and 

5.3.  Both Ampakines induced significant marked increases in LCGU across the 

cerebrum, with no reductions in LCGU observed in any of the 44 regions analysed 

when compared to the relevant vehicle treated groups. 

 

7-day treatment with Org 26576 (1 mg/kg) produced significant increases in LCGU 

in 34 of the 44 anatomical areas examined.  The greatest increases were witnessed in 

the hippocampus (stratum molecularae & CA1) and associated structures (subicular 

complex), the thalamus (anteroventral and laterodorsal components) and its 

associated target areas (cingulate cortex), the white matter tracts (fornix, MFB) and 

several key neurotransmitter ‘regions’ such as the raphe nucleus, medial septum, 

substantia nigra and nucleus accumbens.  No significant alterations in LCGU were 

seen in areas such as the amygdala, hypothalamus, caudate nucleus, entorhinal 

cortex, corpus callosum and somatosensory cortex. 

 

Similarly, 7-day treatment with Org 24448 (10 mg/kg) produced significant increases 

in LCGU in 34 of the 44 anatomical areas examined.  Prominent increases in LCGU 

were witnessed primarily in the hippocampus and all its subfields and associated 

structures (entorhinal cortex, subicular complex), in the thalamus, MFB, medial 

septum and nucleus accumbens.  Other significant increases were observable in the 

raphe nucleus, cingulate cortex, fornix and substantia nigra.   Similarly to Org 26576 

no changes were seen in the amygdala, hypothalamus, corpus callosum and 

somatosensory cortex. 

 

5.3.1.3 Effects of 28-day administration of Org 26576 (1mg/kg) and 
Org 24448 (10mg/kg) on LCGU 

Alterations in LCGU associated with chronic 28 day administration of Org 26576 (1  

mg/kg) and Org 24448 (10 mg/kg) are presented in Tables 5.1. , 5.2. and 5.3.  Both 

Ampakines induced significant marked increases in LCGU across the cerebrum, with 
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Ratio of tissue 14C (nCi/g) in regions of interest to that in the cerebellar cortex 

 7 Days Administration 28 Days Administration 

Brain Region Vehicle Org 26576 
1 mg/kg 

Org 24448 
10 mg/kg Vehicle Org 26576 

1 mg/kg 
Org 24448 
10 mg/kg 

       
Amygdala 0.85 ± 0.04 0.88 ± 0.05 0.89 ± 0.06 0.80 ± 0.04 0.85 ± 0.05 0.84 ± 0.04 
Anteroventral thalamus 1.94 ± 0.07 2.31 ± 0.13*** 2.29 ± 0.13*** 2.09 ± 0.10 2.25 ± 0.10* 2.28 ± 0.12** 
Caudate nucleus 1.46 ± 0.02 1.50 ± 0.07 1.57 ± 0.06** 1.40 ± 0.06 1.53 ± 0.04** 1.47 ± 0.06 
Cingulate cortex 1.43 ± 0.08 1.59 ± 0.09* 1.60 ± 0.08** 1.45 ± 0.06 1.59 ± 0.06** 1.55 ± 0.07* 
Fornix 1.12 ± 0.03 1.31 ± 0.05*** 1.27 ± 0.05*** 1.28 ± 0.05 1.33 ± 0.06 1.45 ± 0.07*** 
Fasciculus retroflexus 1.55 ± 0.06 1.72 ± 0.05*** 1.71 ± 0.05** 1.55 ± 0.10 1.73 ± 0.17 1.87 ± 0.13*** 
Globus pallidus 1.05 ± 0.03 1.14 ± 0.04** 1.15 ± 0.04** 1.07 ± 0.04 1.19 ± 0.04*** 1.14 ± 0.05* 
Hypothalamus 0.74 ± 0.03 0.72 ± 0.02 0.74 ± 0.03 0.75 ± 0.04 0.75 ± 0.01 0.78 ± 0.03 
Interpenduncular nucleus 1.73 ± 0.06 1.82 ± 0.05* 1.85 ± 0.04** 1.75 ± 0.02 2.03 ± 0.06*** 2.00 ± 0.10*** 
Laterodorsal thalamus 1.60 ± 0.05 1.91 ± 0.08*** 1.86 ± 0.08*** 1.74 ± 0.08 1.90 ± 0.08* 1.91 ± 0.11* 
Mamillary body 1.86 ± 0.16 2.02 ± 0.05 2.00 ± 0.05 1.85 ± 0.06 2.03 ± 0.07** 2.16 ± 0.13*** 
Median forebrain bundle 1.13 ± 0.08 1.34 ± 0.03*** 1.30 ± 0.06** 1.20 ± 0.04 1.35 ± 0.07** 1.30 ± 0.05** 
Medial lateral habenula 1.58 ± 0.06 1.71 ± 0.04** 1.71 ± 0.05** 1.55 ± 0.03 1.75 ± 0.04*** 1.76 ± 0.06*** 
Nucleus accumbens 1.00 ± 0.04 1.11 ± 0.04*** 1.15 ± 0.04*** 0.98 ± 0.03 1.04 ± 0.03* 1.09 ± 0.04*** 
Raphe nucleus 1.26 ± 0.04 1.44 ± 0.08*** 1.42 ± 0.04*** 1.34 ± 0.03 1.42 ± 0.05* 1.54 ± 0.06*** 
SN pars compacta 1.30 ± 0.04 1.45 ± 0.07** 1.43 ± 0.05*** 1.32 ± 0.06 1.46 ± 0.05** 1.47 ± 0.06** 
SN pars reticulata 0.81 ± 0.03 0.89 ± 0.04** 0.88 ± 0.04** 0.84 ± 0.03 0.91 ± 0.02** 0.92 ± 0.04** 
Ventral tegmental area 1.18 ± 0.02 1.30 ± 0.05*** 1.27 ± 0.04*** 1.19 ± 0.04 1.38 ± 0.05*** 1.32 ± 0.03*** 
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Table 5.1.  Effects of chronic administration (7 and 28 days) of the Ampakines Org 26576 (1 mg/kg) and Org 24448 (10 mg/kg) on 
LCGU in key components of the limbic system 
 
Data are presented as mean ratio of tissue 14C (nCi/g) in the regions of interest to tissue 14C in the cerebellar cortex (nCi/g) ± S.D.  
*P<0.05, **P<0.01, ***P<0.001, for statistical comparison between vehicle and drug treated groups (One-way ANOVA, with Dunnett’s 
post-hoc analysis for multiple comparisons). 

  



 
Ratio of tissue 14C (nCi/g) in regions of interest to that in the cerebellar cortex 

 7 Days Administration 28 Days Administration 

Brain Region Vehicle Org 26576 
1 mg/kg 

Org 24448 
10 mg/kg Vehicle Org 26576 

1 mg/kg 
Org 24448 
10 mg/kg 

       
Primary Auditory System       
       
Auditory cortex (IV) 1.84 ± 0.03 1.94 ± 0.05** 1.99 ± 0.08** 1.77 ± 0.05 1.99 ± 0.03*** 2.06 ± 0.09*** 
Cochlear nucleus 1.87 ± 0.06 2.11 ± 0.13** 2.08 ± 0.08*** 1.83 ± 0.06 1.95 ± 0.04** 2.04 ± 0.10** 
Inferior colliculus 2.45 ± 0.12 2.53 ± 0.11 2.51 ± 0.08 2.21 ± 0.10 2.42 ± 0.05** 2.45 ± 0.08*** 
Lateral lemniscus 1.42 ± 0.13 1.62 ± 0.10 1.55 ± 0.04 1.31 ± 0.11 1.39 ± 0.08 1.44 ± 0.07 
Medial geniculate body 1.53 ± 0.11 1.66 ± 0.10 1.63 ± 0.04 1.51 ± 0.07 1.63 ± 0.08* 1.73 ± 0.07*** 
Superior olives 1.72 ± 0.09 1.81 ± 0.10 1.79 ± 0.03 1.54 ± 0.09 1.83 ± 0.15** 1.88 ± 0.08*** 
       
Primary Visual System
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Lateral geniculate body 1.45 ± 0.06 1.70 ± 0.07*** 1.63 ± 0.11** 1.55 ± 0.07 1.61 ± 0.05 1.64 ± 0.09 
Superior colliculus 1.37 ± 0.05 1.48 ± 0.03** 1.54 ± 0.05*** 1.42 ± 0.07 1.45 ± 0.06 1.50 ± 0.08 
Visual cortex (IV) 1.62 ± 0.03 1.83 ± 0.07*** 1.85 ± 0.05*** 1.64 ± 0.06 1.77 ± 0.02** 1.86 ± 0.07*** 
        

 

Table 5.2.  Effects of chronic administration (7 and 28 days) of the Ampakines Org 26576 (1 mg/kg) and Org 24448 (10 mg/kg) on 
LCGU in the primary auditory and visual systems 
 
Data are presented as mean ratio of tissue 14C (nCi/g) in the regions of interest to tissue 14C in the cerebellar cortex (nCi/g) ± S.D.  
*P<0.05, **P<0.01, ***P<0.001, for statistical comparison between vehicle and drug treated groups (One-way ANOVA, with Dunnett’s 
post-hoc analysis for multiple comparisons). 

  



 
Ratio of tissue 14C (nCi/g) in regions of interest to that in the cerebellar cortex 

 7 Days Administration 28 Days Administration 

Brain Region Vehicle Org 26576 
1 mg/kg 

Org 24448 
10 mg/kg Vehicle Org 26576 

1 mg/kg 
Org 24448 
10 mg/kg 

       
Hippocampus       
       
Dentate gyrus (dorsal) 1.02 ± 0.05 1.14 ± 0.05** 1.17 ± 0.05*** 1.02 ± 0.03 1.23 ± 0.03*** 1.13 ± 0.04*** 
Dentate gyrus – str. mol. 0.72 ± 0.04 0.78 ± 0.02* 0.83 ± 0.04*** 0.77 ± 0.04 0.87 ± 0.04** 0.87 ± 0.02*** 
Entorhinal cortex 1.01 ± 0.04 1.06 ± 0.03 1.15 ± 0.05*** 1.02 ± 0.03 1.14 ± 0.01*** 1.14 ± 0.03*** 
Hippocampus – str. mol. 1.34 ± 0.05 1.58 ± 0.05*** 1.53 ± 0.03*** 1.37 ± 0.03 1.54 ± 0.02*** 1.61 ± 0.03*** 
Hippocampus – CA1 0.78 ± 0.05 0.91 ± 0.03*** 0.91 ± 0.05*** 0.82 ± 0.02 0.93 ± 0.02*** 0.89 ± 0.03*** 
Hippocampus – CA3 0.97 ± 0.03 1.07 ± 0.04*** 1.13 ± 0.04*** 1.03 ± 0.03 1.15 ± 0.03*** 1.13 ± 0.02*** 
Medial septum 1.11 ± 0.08 1.26 ± 0.06** 1.29 ± 0.05*** 1.15 ± 0.08 1.23 ± 0.03 1.23 ± 0.05 
Parasubiculum 1.03 ± 0.05 1.24 ± 0.06*** 1.22 ± 0.03*** 1.20 ± 0.05 1.29 ± 0.02** 1.34 ± 0.04*** 
Presubiculum 1.54 ± 0.04 1.71 ± 0.08*** 1.72 ± 0.08*** 1.59 ± 0.05 1.72 ± 0.04*** 1.72 ± 0.06*** 
Subiculum 1.19 ± 0.05 1.48 ± 0.06*** 1.48 ± 0.05*** 1.38 ± 0.06 1.40 ± 0.05 1.54 ± 0.03*** 
        
Functionally Distinct
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Cerebellar cortex       1.00       1.00 1.00       1.00       1.00       1.00 
Cerebellar nucleus 1.88 ± 0.03 1.97 ± 0.08 1.98 ± 0.07* 1.81 ± 0.04 1.99 ± 0.07*** 1.99 ± 0.10** 
Corpus callosum 0.66 ± 0.02 0.64 ± 0.02 0.67 ± 0.03 0.66 ± 0.04 0.68 ± 0.02 0.67 ± 0.03 
Inferior olives 1.41 ± 0.04 1.64 ± 0.03*** 1.57 ± 0.04*** 1.51 ± 0.01 1.67 ± 0.03*** 1.74 ± 0.05*** 
Red nucleus 1.46 ± 0.05 1.58 ± 0.06** 1.61 ± 0.04*** 1.53 ± 0.04 1.55 ± 0.06 1.55 ± 0.03 
Somatosensory cortex 2.00 ± 0.06 1.98 ± 0.07 2.05 ± 0.08 1.91 ± 0.05 2.00 ± 0.01** 1.98 ± 0.07 
       

 

Table 5.3.  Effects of chronic administration (7 and 28 days) of the Ampakines Org 26576 (1 mg/kg) and Org 24448 (10 mg/kg) on 
LCGU in the hippocampus (+ associated areas) and functionally distinct brain regions 

  

Data are presented as mean ratio of tissue 14C (nCi/g) in the regions of interest to tissue 14C in the cerebellar cortex (nCi/g) ± S.D.  
*P<0.05, **P<0.01, ***P<0.001, for statistical comparison between vehicle and drug treated groups (One-way ANOVA, with Dunnett’s 
post-hoc analysis for multiple comparisons). 

 



no reductions in LCGU observed in any of the 44 regions analysed when compared 

to the relevant vehicle treated groups. 

 

28-day treatment with Org 26576 (1 mg/kg) produced significant increases in LCGU 

in 31 of the 44 anatomical areas examined.  The largest increases were evident in the 

hippocampus (dentate gyrus, CA1, CA3), and primary components of the 

mesocorticolimbic system such as the ventral tegmental area, interpenduncular 

nucleus, mamillary body, fasciculus retroflexus and the median forebrain bundle.  

Other significant increases were witnessed in the globus pallidus and substantia 

nigra.  No significant alterations in LCGU were seen in areas such as the 

hypothalamus, corpus callosum, somatosensory cortex and surprisingly the fornix, 

which displayed significant large increases in LCGU after 7-day administration. 

 

28-day treatment with Org 24448 (1 mg/kg) produced significant increases in LCGU 

in 35 of the 44 anatomical areas examined.  Similarly, 28-day treatment with Org 

24448 resulted in a response of similar magnitude to that witnessed with 7-day 

administration, but with a distinct shift in the profile of areas activated. Areas 

displaying the greatest activation now included the FR, mamillary bodies, raphe 

nucleus, superior & inferior olives and the molecular layer of the hippocampus.  

Other significant increases were evident in the fornix, dentate gyrus, nucleus 

accumbens, substantia nigra, ventral tegmental area, and interpenduncular nucleus.  

No changes in LCGU were seen in the caudate nucleus, hypothalamus, corpus 

callosum and somatosensory cortex. 

 

5.3.2. Structural consequences of chronic administration of Org 
26576 and Org 24448 

 
5.3.2.1. BrdU immunostaining and quantification 
The number of newly born cells in the adult mouse dentate gyrus was determined by 

immunohistochemical detection of BrdU within the nuclei of dividing cells.  Mice 

were treated with Org 26576 Org 24448 or vehicle for 7 or 28 days, after which 

BrdU was injected one day prior to termination.  This methodology allows the 

detection of overall levels of proliferating cells (neurogenesis) to be examined in 
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response to drug/vehicle administration.  Immunostaining was initially optimised, 

with several pre-treatments, such as trypsin, 1M HCl and citric acid buffer (pH 6.0) 

applications being trialled to determine optimal staining. 

 

Treatment with both Org 26576 and Org 24448 for 7 and 28 days resulted in no 

significant changes in the level of BrdU staining in the dentate gyrus when compared 

to control treatment (Fig 5.6. & 5.7.).  In 7 day treated mice the average number of 

BrdU-positive cells in the dentate gyrus of vehicle treated mice was 20.9 ± 1.5 cells, 

20.4 ± 0.97 for Org 26576 treated mice, and 22.1 ± 1.89 cells for Org 24448 treated 

mice.  In 28 day treated mice the number of BrdU-positive cells in the dentate gyrus 

of vehicle treated mice was 15.1 ± 1 cells, 12.77 ± 1.37 cells for Org 26576 treated 

mice, and 14.6 ± 1.79 cells for Org 24448 treated mice.   BrdU-positive nuclei of 

proliferating cells were localised predominantly in the subgranular zone (border 

between granule cell layer and hilus) in both chronically Ampakine treated and 

control mice.  Cells frequently appeared as clusters of two or more cells, and were 

darkly stained with variable shapes and sizes.  No differences in cell morphology 

were evident between chronically treated Ampakine and vehicle treated control mice.  

 

5.3.2.2. Hippocampal protein levels 
GluR1 and GluR2/3 were detected as a single protein band of approximately 

108KDa.  GluR4 was not investigated due to the reported low expression in the 

hippocampus.  In response to both 7 and 28 days treatment with both Ampakines no 

significant changes in the overall levels of GluR1, 2/3 receptor subtypes were 

determined as compared to vehicle controls (Fig 5.8. & 5.9.). 

 

Downstream intracellular signalling components, all of which have been previously 

implicated or associated in AMPA and/or Ampakine function were also investigated 

in the hippocampus of mice treated chronically with both Ampakines (Fig 5.10.).  

CREB, cAMP-response-binding protein, is a transcription factor intimately 

associated with learning and memory, and ultimately the downstream correlate of 

BDNF and ERK/Lyn-kinase activation. P-CREB levels were investigated in this 
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Fig 5.6.  BrdU immunostaining in the mouse hippocampus following 7 days 
administration of vehicle, Org 26576 (1 mg/kg) and Org 24448 (10 mg/kg) 
 
Representative examples of BrdU immunostaining are shown (A) with the quantified 
data (B).  7 day administration of both Org 26576 (1 mg/kg) and Org 24448 (10 
mg/kg) resulted in no significant alterations in the level of neurogenesis, investigated 
by BrdU immunostaining, when compared to chronically treated vehicle mice.  Data 
are expressed as mean ± SEM (One-way ANOVA.) SGZ - subgranular zone; GC - 
granule cell layer. 
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Fig 5.7.  BrdU immunostaining in the mouse hippocampus following 28 days 
administration of vehicle, Org 26576 (1 mg/kg) and Org 24448 (10 mg/kg) 
 
Representative examples of BrdU immunostaining are shown (A) with the quantified 
data (B).  28 day administration of both Org 26576 (1 mg/kg) and Org 24448 (10 
mg/kg) resulted in no significant alterations in the level of neurogenesis, investigated 
by BrdU immunostaining, when compared to chronically treated vehicle mice.  Data 
are expressed as mean ± SEM (One-way ANOVA). 
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study, and no significant differences in protein levels were detected with any chronic 

application of Ampakines when compared to vehicle controls.   

 

ERK’s, are ~42kDa serine/threonine protein kinases, often termed MAPKinases, 

which transduce a large variety of extracellular signals leading in turn to a wide 

range of cellular responses including importantly growth and differentiation, induced 

by growth factors such as BDNF, which as outlined previously is intimately 

implicated in Ampakine and antidepressant function.  Both native ERK and activated 

phosphorylated ERK (P-ERK) were detected in the hippocampi after chronic 

treatment with either vehicle or both Ampakines.  No significant differences were 

detected in the levels of either after 7 and 28-days treatment with Org 26756 or Org 

24448.   

 

Lyn-kinase, an Src-family protein tyrosine kinase, which is functionally induced by 

AMPA receptor activation, and subsequently can in turn induce further BDNF 

production and ERK activation was also detected in the hippocampus of chronically 

treated mice.  As with ERK, no significant differences in the levels of Lyn-kinase 

were detected at any time point with any Ampakine treatment.  The effects of chronic 

administration of Org 26576 and Org 24448 were also investigated on levels of 

calbindin, a 28kDA vitamin D-dependent calcium-binding protein, an indicator of 

increased levels of Ca2+ influx into cells.  Similarly to the other signalling molecules 

investigated, no significant changes in levels of calbindin were detected between 

chronic treatments.   

 

Protein loading was assessed by examining the levels of the ‘housekeeping’ protein 

actin, and by coomassie blue staining of the transferred gels (section 2.7.5.).  No 

significant differences in the levels of actin were detected between the control and 

Ampakine treated hippocampal samples at either 7 or 28 days.  Coomassie blue 

staining of the gels also confirmed equal loading of the samples. 
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 Org  
 
 
 
 
 
 
 
 
Fig 5.8.  Western blot and quantification of GluR1 protein levels 
 
Levels of GluR1 in the mouse hippocampus are unchanged following 7-day (A) and 28-day (B) administration of Org 26576 (1 mg/kg) and 
Org 24448 (10 mg/kg) compared to vehicle controls.  Results are shown as both a graph of quantitative data derived from optical density 
measurements of the western blot, and representative western blots bands for each treatment. Data are expressed as mean ± SEM. 
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Fig 5.9.  Western blot and quantification of GluR2/3 protein levels 
 
Levels of GluR1 in the mouse hippocampus are unchanged following 7-day (A) and 28-day (B) administration of Org 26576 (1 mg/kg) and 
Org 24448 (10 mg/kg) compared to vehicle controls.  Results are shown as both a graph of quantitative data derived from optical density 
measurements of the western blot, and representative western blots bands for each treatment.  Data are expressed as mean ± SEM. 
 

V 

GluR2/3 

Actin 

Org 
24448 26576 

Org Org Org 

108KDa

43KDa 

V 
Org 

24448 26576 
Org Org 

26576 V 24448 V 26576 24448 

GluR2/3 

Actin 

 



 
 
 
 
 
 
 A B 
 
 

Org  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig 5.10.  Western blots of proteins implicated in AMPA receptor / Ampakine 
signalling in the murine hippocampus 
 
Representative protein bands are shown for P-CREB, the MAPKinases (ERK1-2 & 
phosphorylated forms), P-LynKinase, calbindin and actin (loading control) following 
either 7 day (A) or 28 day (B) chronic administration of vehicle, Org 26576 (1 mg/kg) 
or Org 24448 (10 mg/kg).  No changes were discernable following treatment with 
either drug at either time point when compared to the vehicle controls. 
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5.4. Discussion 
 
The aim of this study was to investigate the effects of chronic administration (7 and 

28 days) of the novel Ampakines Org 26576 and Org 24448 in the mouse cerebrum, 

on distinct functional and structural endpoints.  The results are indicative that both 

Org 26576 and Org 24448 administered chronically induce functional cerebral 

increases, particularly in areas of the limbic system, which are not only rapid in 

onset, with significant effects visible after 7 days administration; but importantly are 

persistent.  However, although highly functionally active, chronic administration of 

these Ampakines had no significant effect on the level of neurogenesis or on the 

levels of key proteins and signalling pathways implicated in AMPA/Ampakine 

signalling, in the murine hippocampus.   

 

5.4.1. Effects of chronic administration of Org 26576 and Org 24448 on 
functional activity in the mouse cerebrum  

Both Org 26576 and 24448 following 7 days chronic administration induced 

increases in LCGU that were foremost evident in key components of the limbic 

system, especially the hippocampus, and areas associated with the mesocorticolimbic 

system; including the nucleus accumbens, medial septum and substantia nigra.  Both 

compounds while producing similar overall responses in distinct brain regions 

displayed a differing overall hierarchy of responses in comparison to each other 

(Table 5.4. & 5.5.).  These results are comparable to the acute effects witnessed in 

Chapter 4, but with recruitment of distinct new regions.  Treatment for 28 days with 

both compounds resulted in a shift in the profile of activation compared to 7 days 

with more key limbic (mesocorticolimbic) structures, such as the VTA, 

interpenduncular nucleus, and mamillary bodies as well as key neurotransmitter areas 

such as the substantia nigra and raphe nucleus (in the case of Org 24448) displaying 

pronounced activation.  The overall magnitude of response was similar between 7-

day and 28-day Org 24448 and Org 26576 treated mice. 
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 >20% ↑ in LCGU >15% ↑ in LCGU >10% ↑ in LCGU >5% ↑ in LCGU <5%↑ in LCGU 

 

7 Days

 

 

 
 

 
Subiculum 
Parasubiculum 
 
 
 
 
 
 
 

 
AV thalamus 
LD thalamus 
CA1 
Hippocampus (mol.) 
Fornix  / MFB 
Raphe nucleus 
Lateral geniculate body 
Inferior olives 
 

 
DG (dorsal) / CA3 
FR / VTA 
Medial septum 
SN pars ret. & comp. 
Nucleus accumbens 
Cingulate cortex 
Visual cortex (IV) 
Lateral lemniscus 
Cochlear nucleus 
Presubiculum 
 

 
Medial geniculate body 
Mamillary body 
Globus pallidus 
Superior colliculus 
MLH 
Red nucleus 
DG (mol.) 
Superior olives 
Interpenduncular 
nucleus 
Auditory cortex (IV) 

 
Entorhinal cortex 
Cerebellar nucleus 
Inferior colliculus 
Caudate nucleus 
Amygdala 
Cerebellar cortex 
Somatosensory cortex 
Corpus callosum 

 
28 Days

 

 

 

 

 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

 
DG (dorsal) 
Superior olives 
VTA 
Interpenduncular 
nucleus 

 
DG (mol) / CA1 / CA3 
Hippocampus (mol.) 
MFB / FR / MLH 
SN pars comp. 
Globus pallidus 
Mamillary body 
Caudate nucleus 
Cingulate cortex 
Auditory cortex (IV) 
Entorhinal cortex 
Inferior olives 
Cerebellar nucleus 
 

 
Inferior colliculus 
LD thalamus 
AV thalamus 
SN pars ret. 
Visual cortex (IV) 
Medial geniculate body 
Presubiculum 
Parasubiculum 
Medial septum 
Lateral lemniscus 
Cochlear nucleus 
Raphe nucleus 
Amygdala 
Nucleus accumbens 

 
Somatosensory cortex 
Lateral geniculate body 
Fornix 
Corpus callosum 
Subiculum 
Superior colliculus 
Red nucleus 
Hypothalamus 
Cerebellar cortex 

 

 

 

 

 

 

 

 

 

Table 5.4.  Hierarchical comparison of the overall effects on LCGU of Org 26576 (1 mg/kg) administration following 7 and 28-
days chronic administration compared to vehicle treated controls 
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 >20% ↑ in LCGU >15% ↑ in LCGU >10% ↑ in LCGU >5% ↑ in LCGU <5%↑in LCGU 

 

7 Days
 

  

 
Subiculum 
Parasubiculum 
 
 
 
 

 
AV thalamus 
LD thalamus 
CA3 / CA1 / DG (all) 
Hippocampus (mol.) 
MFB 
Medial septum 
Nucleus accumbens 
 
 

 
Visual cortex (IV) 
Fornix / FR 
Entorhinal cortex 
Raphe nucleus 
Superior colliculus 
Cingulate cortex 
Lateral geniculate body 
Presubiculum 
Cochlear nucleus 
Inferior olives 
SN pars comp. 
Red nucleus 
 

 
Globus pallidus 
SN pars ret. 
Lateral lemniscus 
MLH 
Auditory cortex (IV) 
Mamillary body 
Caudate nucleus 
VTA 
Interpenduncular 
nucleus 
Medial geniculate body 
Cerebellar nucleus 
 

 
Amygdala 
Cerebellar cortex 
Corpus callosum 
Hypothalamus 
Somatosensory cortex 
Inferior colliculus 
Superior olives 

 
28 Days

 

 

 

 

 

 

  
FR 
Superior olives 
 

 
Hippocampus (mol.) 
Raphe nucleus 
Mamillary body 
Auditory cortex (IV) 
Medial geniculate body 
Inferior olives 
 

 
Para/Subiculum 
DG (all) / CA3 
LD thalamus 
Fornix / MLH 
VTA 
Interpenduncular 
nucleus 
SN pars retc. & comp 
Nucleus accumbens 
Visual cortex (IV) 
Entorhinal cortex 
Cochlear nucleus 
Inferior colliculus 
Lateral lemniscus 
Cerebellar nucleus 

 
CA1 
AV thalamus 
Presubiculum 
MFB 
Medial septum 
Globus pallidus 
Cingulate cortex 
Lateral geniculate body 
Caudate nucleus 
Superior colliculus 
Amygdala 

 
Cerebellar cortex 
Corpus callosum 
Hypothalamus 
Somatosensory cortex 
Red nucleus 
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Table 5.5.  Hierarchical comparison of the overall effects on LCGU of Org 24448 (10 mg/kg) administration following 7 and 28-
days chronic administration compared to vehicle treated controls 

  



5.4.2. The mesocorticolimbic system 
The major effects on functional activity witnessed with chronic Org administration 

were localised mainly in the limbic system.  Composed primarily of the cingulate 

gyrus, hippocampus, thalamus (anterior portion) hypothalamus (mamillary bodies), 

amygdala, basal ganglia and various fibre tracts (MFB/fornix) connecting cortical 

and ganglia components, the limbic system appears to be predominantly responsible 

for our emotional life and has a key role in affective and cognitive functioning.  An 

extension of this ‘basic’ limbic system is the mesocorticolimbic system.  This 

extended circuitry chiefly involves dopaminergic projections from the VTA in the 

midbrain into the limbic system to areas such as the nucleus accumbens, septal 

nucleus and various cortical regions.  It is commonly known as the 

reward/reinforcement pathway and is traditionally studied in association with 

addiction  (Koob & Nestler, 1997).  The nucleus accumbens located in the ventral 

forebrain, ventral and medial to the caudate, as stated above, is one of the primary 

terminal projection sites of VTA dopaminergic cell bodies.  This key region has been 

postulated to serve as a gate or filter for information concerned with affect and with 

certain types of memory projections from the hippocampus to other parts of the brain 

(frontal cortex and hypothalamus), with dopaminergic projections modulating the 

flow of neural activity through this filter network (Carlsson et al., 2000; Zmarowski 

et al., 2005).  The mesocorticolimbic system does not exist in isolation; at each level 

it has critical connections to other brain regions, in particular the basal ganglia 

(substantia nigra) and other limbic structures (illustrated in Fig 5.11.).  Chronic 

administration of Org 26576 and Org 24448 resulted in activation not only of key 

components the limbic system, but also of this ‘extended’ circuitry.  Areas including 

the VTA, nucleus accumbens, medial septum and associated areas such as the 

substantia nigra all exhibited significant activation which was not witnessed with 

simple acute administration.  These effects are important as not only do they show 

‘potentiation’ of the functional response from acute to chronic administration, but 

also the areas activated such as the VTA and nucleus accumbens have been 

implicated as important brain regions in conditions such as depression and 

psychoses, previously described briefly in Chapter 4. 
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5.4.3. Functional effects and current theories 
The brain circuitry involved in depression as outlined in Chapter 4 is extensively 

characterised.  Modern antidepressants (second generation SSRI’s) however, are no 

more therapeutically effective than the compounds that were serendipitously 

discovered decades ago such as iproniazid and imipramine.  In point of fact, 

electroconvulsive shock therapy is still the most effective treatment for depression.  

All currently available treatments of depression restore the compromised activity of 

(corticolimbic) monoaminergic pathways (Delgado, 2000), and over the past decade 

or so it has become the enshrined view that the proprietary cause of depression is a 

chemical imbalance specifically in this monoaminergic system (Manji et al., 2003).  

The monoamine/chemical hypothesis states specifically that mood disorders are 

caused by a deficiency in serotonin and/or noradrenaline at functionally important 

receptor sites, causing structural and/or functional changes in the brain.  There is 

mounting evidence however against this rigid, narrow and entrenched viewpoint 

(Nestler et al., 2002).   

 

Results in this study with chronic administration of both Org 26576 and Org 24448 

demonstrate that these novel Ampakines have effects not only in specific, 

predominantly limbic, brain regions linked with depression but these effects are also 

rapid in onset, in contrast to current antidepressants, and persist over prolonged 

periods.  Indeed specific effects are seen in the 1) hippocampus, the area thought to 

mediate the large cognitive component of depression, and an area that brain imaging 

studies have shown to display abnormalities in blood flow and related measures 

(Mayberg, 2003), 2) striatum (nucleus accumbens), the area implicated in mediating 

anxiety decreased motivation and anhedonia, 3) components of the hypothalamus 

(mamillary bodies), implicated in the neurovegatitive symptoms of depression 

(appetite, energy, sleep and sex), and 4) raphe nucleus/habenula, areas involved in 

the monoaminergic signalling.  All these brain areas operate not only individually but 

in a series of highly interacting parallel circuits, perhaps suggestive of the existence 

of a depression ‘neural circuitry’.   
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The evidence presented above, lends support to a new theory of depression that is 

garnering increased support.  First postulated by Nestler et al. in 2002, the network 

hypothesis (or systems dysregulation theory) is based on the principle role of the 

nervous system to store and process information and not the chemical balance of 

signalling molecules (see Castrén, 2005).  Therefore it asserts that mood disorders 

reflect problems not in individual isolated monoaminergic pathways but in 

information processing within neural networks in the brain.  Therefore, problems in 

activity dependant neuronal communication may underlie depression and 

antidepressants, and treatments that alleviate depression may function by improving 

information processing in these affected neural circuits.  It is complementary to the 

chemical hypothesis.  As highlighted above, these novel Ampakines, affect discrete 

mesocorticolimbic neuronal circuitry intimately associated with affective mood 

disorders and are thus likely to be eliciting their effects through modulation of this 

‘neural’ circuitry via adaptive chemical changes, i.e. glutamatergic signalling 

resulting in an up-modulation of activity, and/or molecular changes restoring the 

compromised functionality and re-establishing a normal mood state.   

 

Depressive states are often comorbid with other psychiatric disorders such as 

schizophrenia, and chronic depression can eventually evolve into psychosis.  

Schizophrenia, the typical psychosis, is a chronic disorder that develops over time, 

and is characterised by failures in nearly all aspects of higher-order behaviour: 

disruption of information processing and sensory perception, abnormal mood and 

affect, profound cognitive impairment and movement abnormalities.  Current 

understanding dictates that with such a multifactorial heterogeneous disorder/failure 

of normal behaviour the condition must at least involve areas of the brain such as the 

frontal cortical systems, limbic system, basal ganglia and thalamus: incidentally all 

of which are components displaying activation by chronic Org 26576 and Org 24448 

treatment.  Schizophrenia is also considered by many as the best established of the 

potential therapeutic targets for glutamatergic intervention.  As such, Org 24448 is 

currently in clinical trails for the treatment of psychosis. 
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The dopaminergic hypothesis is still considered by many as the leading causative 

theory on the pathophysiology of schizophrenia (Carlsson, 1995): specifically that 

schizophrenia primarily stems from excessive mid-brain dopaminergic 

neurotransmission.  As a result of this, all current treatments are anti-dopaminergic, 

which essentially prevent relapses in schizophrenia whilst managing symptoms with 

varying degrees of success.  This theory is supported mainly by indirect 

pharmacological techniques and brain imaging (PET) (Hietala et al., 1994; Dao-

Costellana et al., 1997).  In view of the close interaction between neurotransmitters 

in the brain it is highly unlikely that dopamine is the only neurotransmitter to exhibit 

dysfunction (Carlsson et al., 2000).  The elevated dopaminergic activity in 

schizophrenia could possibly be a compensatory response to a functional failure in an 

alternate neurotransmitter system.  There is an increasing awareness that to move the 

status of schizophrenia treatment forward, truly novel therapeutic options, such as 

Ampakines, must be considered and that the rationale behind this rigid ‘dopamine’ 

hypothesis must be questioned. 

 

The major competing causative theory is based around the role of reduced 

neocortical glutamatergic functionality in schizophrenia (Goff & Coyle, 2001; Javitt, 

2004; Tuominen et al., 2005).  Evidence for this is abundant: decreases in, 

concentrations of glutamate in the cerebrospinal fluid (Kim et al., 1980); 

concentrations of glutamate in the cortex and hippocampus (Tsai et al., 1995); levels 

of AMPA and kainate binding in the hippocampus (Kerwin et al., 1988 & 1990); 

mRNA levels encoding AMPA subunits and protein levels in the hippocampus, para-

hippocampus, and thalamus are all well documented in schizophrenic patients 

(Eastwood et al., 1995 & 1997; Meador-Woodruff & Healy, 2000; Meador-

Woodruff et al., 2001).  The most prominent changes are in nuclei with reciprocal 

connection to limbic regions, as would be expected.  It is also well known 

neuroanatomically, that glutamatergic neurones influence dopaminergic 

neurotransmission.  Indeed reciprocal connections between corticocortical, 

corticolimbic and corticothalamic projections are exclusively glutamatergic, and 

dysfunction of glutamatergic neuronal systems is not inconsistent with the dopamine 

hypothesis of schizophrenia as reciprocal synaptic connections exist between 
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forebrain dopaminergic connections and glutamatergic systems (Carlsson and 

Carlsson, 1990).  In point of fact glutamatergic neurones can control dopaminergic 

neurones both directly (excitatory) or via GABA-interneurones (inhibitory).  

Therefore dysregulation of one system would be expected to alter function in the 

other, and by enhancing function in one system, by Ampakine treatment, it may be 

possible to restore some level of function in the other.  It should also be noted that 

typical antipsychotics and clozapine, which are currently in use, are also indicated to 

enhance glutamatergic neurotransmission. 

 

From a therapeutic standpoint, research has focused on the role of disrupted NMDA 

receptor function as an ideal mechanism to underlie/underpin the profound 

behavioural abnormalities witnessed in schizophrenia.  Indeed administration of 

psychomimetic agents (PCP / ketamine) to normal patients results in the production 

of profound schizophrenia like effects (Pearlson, 1981; Krystal et al., 1994; Olney et 

al., 1999), and aberrant behaviour in animals (Freed et al., 1980).  The AMPA 

receptor however, as it is an excitatory ion channel that feeds directly into NMDA 

receptors, could possibly indirectly enhance NMDA function and thus be 

therapeutically effective in schizophrenia.  CX516 for example, synergistically 

blocked methamphetamine induced rearing behaviour in rats when added to 

clozapine and to conventional antipsychotic agents (this effect is believed to be 

predictive of antipsychotic efficacy) (Hess et al., 2003).  In human trials, CX516 was 

added to clozapine again in a placebo-controlled 4–week trial (Goff et al., 2001).  

The drug combination was well tolerated without any notable side effects, and results 

illustrated significant improvements in tests of attention, memory and distractibility.  

The novel Ampakines examined in this study, activate key regions associated with 

schizophrenia and quite readily support this alternative glutamatergic hypothesis 

while still incorporating elements of the dopaminergic hypothesis by 

synergistically/polysynaptically activating dopaminergic areas such as the VTA and 

substantia nigra.  This leads further support to the concept of a ‘brain network’ 

treatment for CNS disorders rather than the precise targeting of a specific 

neurotransmitter pathway.  
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5.4.4. Structural effects and protein levels implicated in Ampakine 
function 

Prolonged depression in humans can result in an ~19% decrease in hippocampal 

volume (Bremner et al., 2000), and there is a persistence in this hippocampal atrophy 

post-depression, possibly indicative of neuronal loss (Sapolsky, 2000).  Neurogenesis 

is a natural process in which neural stem cells proliferate and produce new neurones 

in the adult dentate gyrus of the hippocampus.  ‘Classical’ antidepressants such as 

SSRIs and tri-cyclic’s have been shown to be able to increase neurogenesis in the 

hippocampus (Duman et al., 1997).  This drug-induced cell proliferation requires 

repeated drug administration and is solely confined to the hippocampus. Increased 

serotonergic neurotransmission has also been shown to be able to promote 

hippocampal neurogenesis (Jacobs et al., 2000).  Santarelli’s group at Columbia 

recently intimated that neurogenesis might play a crucial role in the mechanism of 

anti-depressant drug action.  Specifically they suggest that neuronal proliferation 

may be required for the clinical mood elevating effect of certain antidepressants 

(Santarelli et al., 2003).  Indeed, chronic administration of the biarylsulphonamide 

AMPA potentiator LY451646 was shown to be able to increase progenitor cell 

proliferation (by ~45%) in the dentate gyrus of the hippocampus in a dose-dependent 

manner (Bai et al., 2003).  However, in the study outlined in this thesis, both Org 

26576 and Org 24448 did not modify neurogenesis in any way following prolonged 

chronic administration for one and four weeks, even though they exhibited profound 

functional effects in key brain regions implicated in depression (raphe nucleus, 

hippocampus, cortex).    In addition, the levels of dividing cells in the subgranular 

zone of the hippocampus were broadly in line with previous reports of ~4500 cells 

per bilateral mouse dentate gyrus (Nakagawa et al., 2002) for control treated animals.  

No differences were witnessed in the spatial distribution or morphology of dividing 

cells.   

 

Much of the current research into AMPA receptor potentiating compounds has 

focused on the role of neurotrophins such as BDNF, as downstream mediators of 

their effects.  BDNF is abundantly expressed across the central nervous system 

(Conner et al., 1997) with particularly high expression in the dentate gyrus of the 

 147



hippocampus, and has been implicated in brain development, neurogenesis, synaptic 

transmission and learning and memory (functional roles in which Ampakines have 

also been implicated).  As with neurogenesis, traditional antidepressant treatment 

increases the levels of brain BDNF, mRNA and protein, in the rodent hippocampus 

and cortex (Duman et al., 1997), and there is evidence to suggest antidepressants 

increase BDNF in humans as well (Shimizu et al., 2003; Aydemir et al., 2005); 

BDNF has also been shown to promote cell proliferation (neurogenesis), survival 

and/or differentiation both in vivo and in vitro (Pencea et al., 2001).  Relevant to the 

studies described within this thesis, BDNF also has been show to regulate the 

expression of AMPA receptor subunits and AMPA receptor associated PDZ proteins 

which in turn regulate AMPA receptor trafficking and stability in neurones (Jourdi et 

al., 2003); and likewise, there is strong evidence for powerful effects of BDNF in the 

mesocorticolimbic system (VTA-NAc pathway) (Horger et al., 1999). The so-called 

‘neurotrophin’ hypothesis states that repetitive neuronal activity enhances 

expression, secretion and or action of neurotrophins at the synapse to modify 

synaptic transmission and connectivity possibly in this case via reciprocal actions 

between BNDF and AMPA receptors.  This provides convenient connection between 

neuronal activity and synaptic plasticity (Schinder and Poo, 2000).  In fact, 

exogenous application of BDNF results in antidepressant effects, and increases in 

BDNF are observable in chronic antidepressant treated mice/humans (Siuciak et al., 

1997; Mackowiack et al., 2002).  BDNF has also demonstrated the ability to promote 

the function, sprouting and re-growth of 5-HT containing neurones in the brains of 

adult rats.  Compounds therefore which can potentially up-regulate BDNF could in 

essence promote monoamine-containing neurone growth and function in a ‘deficient’ 

system (Altar, 1999). 

 

Specifically with Ampakines however, the evidence pertaining to functional BDNF 

involvement is limited. CX546 (250 μM) increases BDNF expression (mRNA), in a 

refractory manner, in vitro by 5.5 fold, but in vivo (40 mg/kg) only produces slight 

increases in BDNF cRNA (Lauterborn et al., 2000 & 2003).  Also, excessively high 

concentrations of the currently available CX compounds are required to induce 

BDNF expression levels, and the supporting evidence indicate that the magnitude of 
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BDNF protein changes are marginal.  Org 24448 has virtually no effects on BDNF 

induction (translation or protein) in in vitro studies carried out so far.  The 

biarylpropylsulfonamides (LY451645) on the other hand increase both BDNF 

mRNA (25 fold) and protein (7 fold) levels in vitro and in vivo (Legutko and 

Scholnick, 2001; Mackowiack et al., 2002), and concomitantly actively increase 

progenitor cell proliferation in the rat hippocampus (Bai et al., 2003).  It is entirely 

feasible that the AMPA-BDNF-neurogenetic pathway plays a role in the 

functionality of biarylpropylsulfonamides, but is unaffected by benzodithiazide 

compounds such as Org 26576 and Org 24448, as demonstrated in this study. 

 

These ‘structural’ phenomena highlighted above are all tightly regulated by 

interactions with a series of intracellular signals and transcription factors.  The 

mitogen-activated-protein-kinases, ERK1/2 for example, play a major role in the 

modulation of neuronal growth and differentiation (neurogenesis) and have also been 

implicated in AMPA receptor functioning and signalling in vitro, as is Lyn kinase.  

BDNF expression is also regulated by Lyn-mediated activation of MAPK in response 

to AMPA receptor signalling (Hayashi et al., 1999).  CX516 for example has been 

shown to activate ERK1/2 pathways in the CA1 region of the hippocampus 

specifically via the AMPA receptor (as NMDA blockage has no effects) (Bahr et al., 

2002).  Another signalling correlate common in AMPA/ERK function is the cAMP-

response-element-binding protein (CREB), which has also been implicated as 

playing a major role in the aetiology of depression and psychoses. CREB mRNA is 

induced by antidepressants (Thome et al., 2000; Duman et al., 2000 & 2002), and 

overall levels of CREB and phosphorylated-CREB are reduced in post-mortem brain 

tissue of depressed and psychotic patients (Dowlatshahi et al., 1998).  Moreover, 

CREB activates the production of BDNF, which is discussed above.  In addition to 

examining the effects of chronic administration of Org Ampakines on these 

‘downstream’ effectors of AMPA, the levels of AMPA receptors was also 

investigated, as there is evidence from in vitro studies that prolonged Ampakine 

application results in degradation/internalisation of AMPA receptors due to over-

stimulation (Jourdi et al., 2005a/b).  However, in this study no changes were 

witnessed both in receptor protein levels (GluR1-2-3) and in downstream signalling 
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molecules such as P-CREB, Lyn-Kinase, Calbindin and the MAPKinaes, ERK1-2, 

with 7 or 28 days Ampakine treatment.  

 
5.4.5. Technical considerations 
The reason no significant effects on structural correlates were seen with chronic 

novel Org administration is not easily explained.  The functional effects witnessed 

may be purely due to kinetic effects of the compounds on the target AMPA 

receptors.  AMPA receptors are known to undergo rapid desensitisation and rapid 

recycling in the membrane, and glutamate itself has a relatively low affinity for 

AMPA receptors.  Ampakines themselves also have a very fast on/off rate in relation 

to the receptor, and therefore the functional LCGU changes witnessed may be due to 

constant low level ‘priming’ of the AMPA receptor increasing functional activity and 

may not be accompanied by changes in gross down-stream signalling / protein levels.  

However appealing this concept is it is highly unlikely.  A more parsimonious 

explanation as to why no effects on neurogenesis or protein levels are seen is the 

validity of the dosing regime.  We know however that both Org 26576 and Org 

24448 exhibit good blood-brain-brain penetration and that the doses chosen have 

profound functional effects (LCGU) in the CNS.  This study also specifically 

investigated the ability of the novel Ampakines to promote total cell differentiation 

after a prolonged period of drug administration.  An alternative to this would be to 

examine the ability of the drugs to promote the survival of newly born cells by 

administering an initial BrdU injection followed by chronic administration of the 

compounds.  The drugs therefore may stabilise the long-term survival of newly born 

cells, not promote their proliferating numbers.  This would require further 

investigation. 

 

As far as the neutrality of the results with regard to protein levels, again there are 

several feasible explanations.  The time points chosen in this study for example may 

not be appropriate to pick up changes in signalling molecules.  Changes in ERK and 

P-CREB may in reality occur within a few days of administration (acute phase) and 

may therefore be overlooked.  In addition, the sampling of tissue, i.e. whole 

hippocampi, may not be sufficient to identify discrete, possibly regional changes, 

especially in GluR levels.  The overall levels of receptors may not be changing as 
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witnessed, but their dynamics may be changing with respect to cycling within the 

cell membrane, which unfortunately cannot be identified with the current assay.  

Examining the receptors, for example, in both the membranous and cytosolic protein 

fractions could allow the discrimination of any discrete changes.  It may also be the 

case that proteins, other than those investigated in this thesis, could play a role in 

Ampakine function.  It would be highly instructional for example to investigate 

AMPA interaction protein such as GRIP/ABP/PICK, intracellular proteins which 

play key roles in AMPA receptor cycling and cellular targeting, to help to further 

understand AMPA receptor subunit movements in response to Ampakine treatment 

(Dong et al., 1997; Srivastava et al., 1998; Dev et al., 1999).  Modulatory protein 

such as stargazin (Letts et al., 1998), a natural AMPA receptor potentiator 

(Yamazaki et al., 2004; Priel et al., 2005), and interactions with G-proteins could be 

investigated; as AMPA receptor signalling in some neurones has been reported to 

involve a G-protein coupled to protein kinase cascades (e.g. Ras, Raf ) (Wang & 

Durkin, 1995). 

 

5.4.6. Summary 
 
The present study is the first to demonstrate that chronic administration of both Org 

26576 and Org 24448 results in rapid and prolonged increases in functional activity 

in key regions of the mouse cerebrum.  Chronic administration resulted in activation 

of brain regions previously witnessed in the acute study with recruitment of extra 

regions including several brain stem and forebrain nuclei such as the ventral 

tegmental area of Tsai (VTA), nucleus accumbens, prefrontal cortex, and septum.  

These regions are implicated with key CNS dysfunctions such as depression and 

psychoses and are intimately interlinked in complex neural networks, lending support 

to the concept of neural-networks as relevant targets for disease intervention.  

Chronic administration of the novel Org compounds in no way effected hippocampal 

neurogenesis, or associated receptor/signalling proteins, suggesting that these novel 

Ampakines elicit their effects in a neurogenetic independent manner. 
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Chapter 6 
 

Modulation of AMPA receptor kinetics by 
Org 26576 and Org 24448 influences 

synaptic plasticity in the murine 
hippocampus 

 



6.1. Introduction 
 
The hippocampus is a key part of the limbic system, and therefore plays an important 

role in the emotional aspects of behaviour. Additionally, it is recognised as a crucial 

neural component in the formation and storage of memory.  It is however extremely 

susceptible to various neurodegenerative pathologies, and as such, ‘cognitive’ 

deficiencies are often associated with ‘affective’ conditions such as depression, 

various psychosis, Alzheimer’s and Parkinson’s disease.  This thesis has previously 

illustrated that both acute and chronic administration of the novel Ampakines Org 

26576 and Org 24448, induce profound functional increases in activity, which are 

especially evident/prominent in key components of the hippocampal architecture. 

 

AMPA receptors, which are abundantly expressed in the hippocampus, play a crucial 

role in the induction and stabilisation of long term-potentiation (LTP), currently the 

leading experimental mechanism to explain the process of memory formation (see 

section 1.6.2.2.).  This phenomenon has been studied extensively using the 

hippocampus as a model due to its precisely organised structure and the ease with 

which defined pathways can be stimulated.  It is proposed that positive modulation of 

AMPA receptors, facilitates LTP induction and consequently enhancement of 

memory function/formation.  Indeed, CX516 and CX546, two first generation 

Ampakines, have been shown to potentiate LTP both in hippocampal slices in vitro 

and in freely moving conscious animals in vivo (Staubli et al., 1994a/b).  In 

conjunction with this, Ampakines also facilitate memory formation in animal 

behavioural models, such as the Morris water maze and can reverse pre-existing 

memory impairments (Sekiguchi et al., 2001).  This in turn, leads to the proposition 

that AMPA receptor potentiators could be of potentially therapeutic relevance, as 

‘cognitive enhancers’, treating the memory impairments in conditions associated 

with a cognitive deficit. 

 
6.1.1. Aims 
The aim of the current study was to establish if the novel Ampakines Org 26576 and 

Org 24448 affected AMPA receptor function in acute mouse hippocampal slices; and 

more importantly, whether this resulted in changes in the magnitude of LTP. 
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6.2. Materials and Methods 
 
6.2.1. Animals and slice preparation 
C57Bl/6J male mice (8-10 weeks old) were communally housed on a 12 hr light/dark 

cycle for 1 week prior to experimentation with free access to food and water.  On the 

day of experimentation a single mouse was isolated, weighed and halothane 

anaesthetised.  Acute hippocampal brain slices were prepared as previously described 

(Section 2.8.2.). 

 

6.2.2. Electrophysiological recordings 
After 60 minutes in the holding chamber, slices were transferred into the submerged 

slice recording chamber and extracellular recordings were made from the CA1 

subfield of stratum radiatum as previously described (Section 2.8.4.).  Evoked 

responses (see below) were amplified, filtered, digitised, and the resultant data was 

stored and analysed as previously described on a personal computer using Signal 

data acquisition and analysis program (Section 2.8.5.).  

 

6.2.3. Stimulation protocols 
Baseline synaptic responses were generated by stimulation of the Schaffer 

collateral/commissural afferents every 20 s.  In all experiments the input-output 

relation of the synaptic response was first established to determine the maximum 

fEPSP amplitude attainable without a population spike component.  The stimulation 

was adjusted to obtain 35% of this maximum fEPSP amplitude and remained fixed 

thereafter.  For basic dose-response effects on amplitude, a stable baseline was 

established for at least 10 min, and the perfusion line was then switched to aCSF 

containing Org 26576 or Org 24448 at the test concentration.   For LTP experiments 

slices were disinhibited with the addition of 10 μM Bicuculine, a specific GABAA 

antagonist, and were also subjected to a CA3/CA1 cut to remove CA3 input and 

prevent orthodromic epileptiform activity.  The stimulus intensity was again set to 

obtain 35% of the maximum EPSP amplitude, and a stable non-drug baseline was 

obtained for at least 10 min.  Following this, the perfusion system was switched to 

aCSF containing the appropriate concentration of Org compound and a stable 

baseline in the presence of drug was obtained for a further 10 min (the stimulus 
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intensity was not decreased to bring the response amplitude back down to pre-drug 

levels), as this would have reduced the population of activated nerve fibres.  LTP 

was induced using standard high frequency stimulation (HFS), consisting of four 

stimulation trains separated by 20 s intervals.  Each train consisted of 25 pulses at a 

frequency of 100 Hz and was delivered at the same intensity as that used to evoke 

baseline responses.  Following HFS, fEPSPs were recorded every 20 s. 
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6.3. Results 
 
6.3.1. Effects of the Ampakine CX516 on fEPSP kinetics 
The effects of CX516 on fEPSP amplitude are shown in Fig 6.1.B-D.  CX516 (1 

mM) had pronounced effects on both amplitude and half-width, increasing each by 

45.17 ± 3.2% (SEM, n = 4) and 39 ± 2.6% respectively.  The effects of CX516 were 

relatively rapid in onset (maximal effect within 15 min) and were quickly reversed 

during washout with normal aCSF to pre-drug baseline levels (Fig 6.1.A). 

 
6.3.2. Effects of the novel Ampakines Org 26576 and Org 24448 on 

baseline fEPSP responses in acute hippocampal slices 
The two novel Ampakines Org 26576 and Org 24448 increased fEPSP amplitude 

(Figures 6.2. & 6.3.). Org 26576 (Fig 6.2.) increased fEPSP amplitude in a classical 

dose-dependent manner, over a two log unit concentration range, from 3 μM (4.1 ± 

0.35% increase in amplitude) to 300 μM (38.99 ± 0.17% increase).  Org 26576 had 

no effect on the half-width of the response.  Similarly, Org 24448 caused an increase 

in fEPSP amplitude over a wide concentration range (Fig 6.3.).  At 3 μM, fEPSP 

amplitude was increased by 8.46 ± 0.17%, while the largest increase in amplitude, 

143 ± 5.28%, was elicited by 1mM Org 24448.  Org 24448 at all concentrations 

tested had no effect on the fEPSP half-width. 

 

Comparing the two compounds, Org 26576 elicited an increase in fEPSP amplitude 

that did not exceed 38% over a lower more ‘compact’ dose range with an EC50 for 

amplitude of 20 μM; whilst Org 24448 produced a large increase in amplitude (140% 

maximum increase) over a much wider dose range, with an EC50 of 225 μM.  The 

onset of drug action was rapid for both compounds with a maximum response 

obtained within ~10 min; reversal of drug action to pre-drug response levels was also 

fast, in a manner similar to CX516.  Addition of CNQX (20 μM), a specific AMPA 

receptor antagonist, to the aCSF, in the presence of either Org 26576 or Org 24448, 

resulted in the total block of the fEPSP (Fig 6.4.A.).   
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Fig 6.1.  Effects of the prototypic Ampakine CX516 on fEPSP kinetics 
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1mM CX516 application resulted in an average increase in amplitude of 45.17% ± 3.2, and an average increase in half-
width of 39% ± 2.6 (n=4).   CX516 (1 mM) has rapid effects on amplitude and equally is rapidly washed off to baseline 
levels.  Representative traces of the baseline fEPSP (B) and subsequent ‘enhancement’ with addition of 1 mM CX-516 
(C) are also shown.  The responses are shown in overlay (D) (The dotted line is representative of the ‘stretched’ 
baseline response to the corresponding amplitude increase witnessed with 1 mM CX516, the effects on half-width is 
clearly visible).   Scale bar = 0.2 mV by 5 msec. 
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Fig 6.2.  Dose-response effects of Org 26576 on fEPSP amplitude 
 
Increasing concentrations of Org 26576 induce dose-dependant increases in fEPSP amplitude, with a maximal increase 
in amplitude of ~38% in response to 300 μM Org 26576 (A).  EC50 for amplitude response = 20 μM.  No effects on fEPSP 
half-width were witnessed at any concentration.  Data are presented as average ± SEM (n=3 per concentration). 
Representative traces of the effect of Org 26576 at 10 μM (B) 30 μM (C) and 300 μM (D) are shown superimposed over 
their corresponding baseline responses (The dotted line in (D) is representative of the ‘stretched’ baseline response to 
the corresponding amplitude increase witnessed with 300 μM Org 26576).  Scale bar = 0.25 mV by 5 msec.  
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Fig 6.3.  Dose-response effects of Org 24448 on fEPSP amplitude 
 
Increasing concentrations of Org 24448 induce dose-dependant increases in fEPSP amplitude, with a maximal increase 
in amplitude of ~140% in response to 1 mM Org 24448 (A) .  EC50 for amplitude response = 225 μM.  No effects on 
fEPSP half-width were witnessed at any concentration.  Data are presented as average ± SEM (n=3 per concentration). 
Representative traces of the effect of Org 24448 at 3 μM (B) 250 μM (C) and 1 mM (D) are shown superimposed over 
their corresponding baseline responses (The dotted line in (D) is representative of the ‘stretched’ baseline response to 
the corresponding amplitude increase witnessed with 1 mM Org 24448).  Scale bar = 0.25 mV by 5 msec.  

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

i ii iii

Fig 6.4.  Effects of the AMPA receptor antagonist, CNQX, on the fEPSP response 
 
Addition of 20 μM CNQX to the perfusing aCSF completely blocks the fEPSP response in both Org 26576 and Org 
24448 drug-treated (A) and LTP induced (B) acute hippocampal slices.  Data are presented as average ± SEM (n=6) 
for Org treated slices, and a representative trace is shown for the effects on LTP.  Representative traces of fEPSP 
responses are shown individually before (i) and after (ii) CNQX administration; and in overlay (iii).  Scale bar = 0.2 mV 
by 5 msec. 
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6.3.3. Stable LTP induced by high-frequency-stimulation (HFS) 
Long-term-potentiation (LTP) was induced in the disinhibited hippocampal slice 

using a HFS paradigm (Fig 6.5.).  Having established a stable baseline response for 

at least 10 min, HFS induced an immediate potentiation of the fEPSP.  This ‘post-

tetanic peak’ was evident as a 125% increase in fEPSP amplitude.  This initial 

potentiation of fEPSP amplitude decayed rapidly from this peak over the following 

10 min, and eventually stabilised for the remainder of the experiment at 

approximately 55% above the initial baseline.  This degree of LTP was not only 

consistent, as attested by the small standard error of the potentiation, but was also not 

the maximum potentiation attainable.  If at 60 min post-induction, a further two 

trains of 25 pulses at 100Hz pulses were given, the level of LTP could be raised even 

further (~80%) above baseline.  This result is important, as it highlights the fact that 

the response studied here had not reached a ceiling and could be up and down 

regulated by drugs.  Addition of CNQX (20 μM) when a stable level of LTP had 

been achieved resulted in the abolition of the entire fEPSP (Fig 6.4.B.). 

 

6.3.4. Effects of ‘physiologically relevant’ concentrations of Org 26576 
and Org 24448 on LTP 

Concentrations of Org 26576 and Org 24448 that corresponded to in vivo doses used 

previously in the 2-deoxyglucose studies, and had previously been measured in blood 

samples / microdialysis studies from intraperitoneally injected animals (Organon - 

personal communication) were chosen to be tested the LTP model.   

 

Both Org 26576 (3 μM) and Org 24448 (10 μM) significantly potentiated the initial 

post-tetanic peak following HFS, to ~175% over baseline (Figures 6.6. & 6.10.).  Org 

26576 (3 μM) increased the stable level of LTP from 55% to 90% over baseline for 

the duration of the experimental period, effectively facilitating the maximal level of 

LTP attained. Org 24448 (10 μM) on the other hand, after the initial enhancement of 

the post-tetanic peak, displayed a decrement in the response amplitude which 

eventually stabilised at control levels ~20 min post-potentiation.  It is also interesting 

to note that LTP induced in the presence of Org 24448 (10 μM) resulted in an 

obvious modification of the fEPSP waveform in the post-tetanic phase (Fig 6.7.).  
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Fig 6.4.  Stable LTP induced by HFS in acute hippocampal slices   
 
A ‘classical’ stable model of LTP induced by HFS was achieved by bath saturation with 10 μM bicuculline, a GABAA 
receptor antagonist, and by cutting to remove input from the CA3 to prevent isotonic epileptiform activity (A).  Data are 
presented as average ± SEM (n=8).  Representative traces of fEPSP responses are shown individually prior to (B), 
immediately after (C), and 60min post-LTP induction (D).  Responses prior to LTP and 60min post-LTP are also 
shown in overlay (E).  The response is clearly still potentiated 60min post-induction.   Scale bar = 0.2 mV by 5 msec. 
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This was manifested as epileptiform-like activity accompanied by a positive-going 

late component of the fEPSP that would correspond to a hyperpolarisation in an 

intracellular recording.  This was unexpected, as great care had been taken to sever 

the CA3 input to prevent isotonic epileptiform activity that might be expected 

following disinhibition of the slices; the implication of this observation is that this 

aberrant activity originated in area CA1 itself as a result of exposure to Org 24448, 

because no ‘spiking activity’ was seen in control or Org 26576-treated slices (Fig 

6.7.). 

 

6.3.5. Effects of EC50 concentrations of Org 26576 and Org 24448 on 
LTP 

The EC50 concentrations of Org 26576 and Org 24448, for effects on fEPSP 

amplitude were 20μM and 225μM, and this concentration for each compound was 

investigated for action on LTP. 

 

Neither compound had any significant effect on the initial post-tetanic peak although 

both had dramatic and unexpected actions on LTP (Fig 6.8.). Unlike ‘physiological’ 

concentrations, both compounds to differing degrees ‘inhibited’ LTP formation.  Org 

26576 (20 μM) reduced the stable level of LTP from 55% to 25% over baseline for 

the duration of the experimental period, the response stabilising at this lower level 

~30 min post-potentiation.  Org 24448 (225 μM) on the other hand, after the initial 

post-tetanic peak, caused a rapid decrement in response, which continued to decay 

for the remainder of the experimental period until it eventually reached the pre-HFS 

baseline amplitude at 60 min post-potentiation. LTP induced in the presence of Org 

24448 (225 μM) resulted in the same obvious modification of the fEPSP waveform 

immediately post-potentiation in a manner similar to that seen with  ‘physiological’ 

concentrations of Org 24448 (Fig 6.9.).  No such ‘spiking activity’ was seen in 

control solutions or in Org 26576 (20 μM) treated slices. 
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Fig 6.6.  Effects of physiologically active concentrations of Org 26576 and Org 24448 on LTP 
 
3 μM Org 26576 results in both a pronounced increase in the immediate post-tetanic potentiation (B) and an ~50% 
increase in the stable ‘ceiling’ of induced LTP 60 min post potentiation (D) when compared to control responses (red 
circles).  This potentiation is significantly greater than control from 7 min post-potentiation.  10 μM Org 24448 (yellow 
triangles) application results in a similar increase in the post-tetanic peak (B); but unlike Org 26576 the response 
amplitude gradually decayed to control LTP levels by 11 min post-potentiation.  Data are presented as average ± SEM 
(n=3/4 for each compound, with interleaved controls). 
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 Org 24448 (10μM) Org 26576 (3 μM)
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Fig 6.7.  Representative traces from LTP experiments with the addition of ‘physiologically active# 
concentrations of both Org 24448 and Org 26576

Representative fEPSPs recorded during the baseline drug response (A) (average of 10 traces), immediately 
(B), 30min (C ) and 60min (D) post-induction of LTP (raw).  Traces (A) and (D) are also shown in overlay (E).  
Note the pronounced ‘epileptiform’ activity induced post-HFS with Org 24448 (10 μM) even with a prior 
CA1/CA3 cut, followed by hyperpolarisation.   Scale for both Org 24448 and Org 26576 traces = 0.5 mV by 5
msec.
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Fig 6.7.  Representative traces from LTP experiments with the addition of ‘physiologically active# 
concentrations of both Org 24448 and Org 26576

Representative fEPSPs recorded during the baseline drug response (A) (average of 10 traces), immediately 
(B), 30min (C ) and 60min (D) post-induction of LTP (raw).  Traces (A) and (D) are also shown in overlay (E).  
Note the pronounced ‘epileptiform’ activity induced post-HFS with Org 24448 (10 μM) even with a prior 
CA1/CA3 cut, followed by hyperpolarisation.   Scale for both Org 24448 and Org 26576 traces = 0.5 mV by 5
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Fig 6.8.  Effects of EC50 (amplitude) concentrations of Org 26576 and Org 24448 on LTP 
 
Both compounds elicit an immediate post-tetanic potentiation (B) of a comparable size to that of the control (red circles). 
However, whereas the control LTP stabilises ~10 min post induction and is stable for the following 50 min, both Org 
26576 (blue squares) and Org 24448 (yellow triangles) exhibit a pronounced decrement in response amplitude over the 
experimental time-course, which is significant for Org 24448 12 min post-potentiation, and Org 26576 30 min post-
potentiation.  The response amplitude for Org 24448 decays to baseline by 60 min post-potentiation, whilst Org 26576 is 
stably potentiated after 60 min but at a lower level compared with controls.  Data are presented as average ± SEM 
(n=3/4 for each compound, with interleaved controls). 
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Fig 6.9.  Representative traces from LTP experiments with the addition of EC50 concentrations of both Org 
24448 and Org 26576

Representative fEPSPs recorded during the baseline drug response (A) (average of 10 traces), immediately (B), 30 min 
(C ) and 60 min (D) post-induction of LTP (raw).  Traces (A) and (D) are also shown in overlay (E).   The ‘epileptiform’ 
activity induced post-HFS with Org 24448 (225 μM) is even more pronounce at this higher concentration, and is again 
followed by a pronounced hyperpolarisation.  Scale for Org 26576 = 0.25 mV by 5 msec; Org 24448 (A,C,D,E) = 0.20 
mV by 5 msec: (B) = 0.5 mV by 5 msec.
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Fig 6.9.  Representative traces from LTP experiments with the addition of EC50 concentrations of both Org 
24448 and Org 26576

Representative fEPSPs recorded during the baseline drug response (A) (average of 10 traces), immediately (B), 30 min 
(C ) and 60 min (D) post-induction of LTP (raw).  Traces (A) and (D) are also shown in overlay (E).   The ‘epileptiform’ 
activity induced post-HFS with Org 24448 (225 μM) is even more pronounce at this higher concentration, and is again 
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followed by a pronounced hyperpolarisation.  Scale for Org 26576 = 0.25 mV by 5 msec; Org 24448 (A,C,D,E) = 0.20 
mV by 5 msec: (B) = 0.5 mV by 5 msec.
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Fig 6.10.  Effect of physiological (A) and EC50 (B) concentrations of Org 26576 and Org 24448 on the initial 
post-tetanic peak

Physiological concentrations of both Org 24448 (10 μM) and Org 26576 (3 μM) significantly increased the size of the 
immediate post-tetanic peak (Paired students t-test, Org 24448 P=0.007; Org 26576 P=0.035). EC50 concentrations of 
both compounds (225 μM and 25 μM respectively) had no significant effect on the post-tetanic peak.  Data are 
presented as average ± SD.

B

167

 



6.4.  Discussion 
 
The primary aim of this study was to characterise the effects of the novel Ampakines 

Org 26576 and Org 24448 on AMPA receptor-mediated synaptic responses using 

extracellular field recordings from acute hippocampal slices.  A further aim was to 

determine whether these compounds were able to modify LTP, a much-studied form 

of synaptic plasticity.  The results presented here clearly demonstrate that both 

compounds increase the strength of excitatory synaptic transmission, as measured by 

fEPSP amplitude, directly via the AMPA receptor, without effecting fEPSP half-

width.  Physiologically relevant concentrations of the compounds potentiated a stable 

form of classical LTP, whilst EC50 concentrations had the effect of preventing the 

maintenance of LTP, resulting in less marked potentiation that was characterised by a 

time-dependent decline (particularly in the case of Org 24448).  

 

6.4.1. CX516, Org 26576 and Org 24448 modify extracellular field 
excitatory post-synaptic potentials 

The use of Ampakines in electrophysiological studies to assess their effects on 

unpotentiated synaptic responses, deactivation/desensitisation kinetics, and models of 

synaptic plasticity such as LTP and LTD, are well documented in the literature.  As 

early as 1990 Ito and colleagues showed that aniracetam, an early AMPA receptor 

potentiator, acted by selectively enhancing AMPA-receptor-mediated responses, in 

both Xenopus oocytes injected with AMPA receptor mRNA and hippocampal CA1 

pyramidal cells.  The prototypic Ampakine, CX516, has been examined extensively 

in electrophysiological studies and its effects on extracellular field recordings are well 

documented.  CX516 (1 mM) was utilised in this study as a positive control and was 

found to produce rapid effects on fEPSPs, which were fully reversible, with maximal 

increases in amplitude of 45% and half-width of 39%.  Previous reported effects for 1 

mM CX516 on fEPSP amplitudes in acute rat hippocampal slices include increases of 

43% and ~50%, and for half-width reported values range from ~30% to 44% (Arai et 

al., 1996 & 2002 & 2004).  The results obtained in this study are comparable with 

these values, highlighting the validity of the acute mouse hippocampal slice model 

utilised in these experiments, and allowing subsequent comparison between published 

work and results obtained with Org 26576 and Org 24448. 
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The present study also demonstrates that Org 26576 and Org 24448 exhibit a clear 

dose-dependent effect on the amplitude but not on half-width of evoked fEPSP 

responses.  Org 26576 produced a maximal increases in amplitude of 38% (300 μM) 

with an EC50 concentration of 20 μM with a significant increase seen at 

concentrations as low as 3 μM.  Org 24448 produced a maximal increase in amplitude 

of 140% (1 mM) with an EC50 concentration of 225 μM and with significant 

increases in amplitudes seen with concentrations as low as 3 μM.  The increases in 

fEPSP amplitude induced by these novel Org compounds were directly AMPA 

mediated as they could be eliminated by blockade of the receptor with the specific 

AMPA antagonist CNQX.  These results are interesting as both Org compounds 

specifically affect the amplitude of the response without affecting the half-width.  

This is unusual as most previous reports investigating ampakine actions on fEPSPs 

show modification of both amplitude and half-width.  CX516, for example, on 

average increases amplitude consistently between 43 to 50% and half-width by 30% 

to 45% (Arai and Lynch, 1998; Black et al., 2000; Lin et al., 2002; Arai et al., 2004), 

whilst CX546 has an opposite effect, increasing amplitude by only 28% but half-

width by an impressive 115% (Arai et al., 2002).  This difference in effect on the 

unpotentiated fEPSP may reflect more complex effects on synaptic plasticity.  CX516 

for example, can promote short-term-potentiation (STP) into LTP, whilst CX546 can 

both promote STP into LTP and raise the maximum level of LTP induced.  This 

difference could be in part due to their differential effects on baseline kinetics.  

 

6.4.2.  Cognition and synaptic plasticity 
Cognition can be defined as the mental process of knowing, including aspects such as 

awareness, perception and judgement.  The neuroanatomical basis of 

memory/cognition is thought to include vital brain areas such as the hippocampus and 

associated cortical regions, which are important in the encoding, storage, 

consolidation and retrieval of memories.  Coincidentally these ‘key’ areas also exhibit 

pronounced activation by Org 26576 and Org 24448 following both acute and chronic 

administration in functional studies (Chapters 4&5).   
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6.4.2.1. LTP 
Long-term-potentiation (see Introduction 1.5.2.), a form of synaptic plasticity, has 

gained ascendancy as the pre-eminent model for investigating the molecular 

mechanism of memory.  Ionotropic glutamate receptors (AMPA and NMDA) play a 

pivotal role in the induction and maintenance of LTP, and as such, the process is 

potentially highly modifiable by compounds, such as ampakines, that modulate 

receptor kinetics.  Indeed intra-hippocampal injection of the AMPA receptor 

antagonist LY326325 reduces functional activity in the hippocampus (<LCGU) and 

impairs memory in spatial learning and retention behavioural tests (Micheau et al., 

2004).  Arai (Arai et al., 1992) was the first to show that ampakines could effectively 

enhance and stabilise LTP under less than optimum conditions, findings that were 

replicated with various other drugs (IDRA-21, BDP and CX546) both in vivo and in 

vitro (Arai et al., 1996).  In concurrence with this, Ampakines have also been shown 

to effectively enhance various forms of memory in behavioural paradigms involving 

both animals and humans.  High-frequency-stimulation (HFS)-induced LTP in the 

disinhibited acute mouse hippocampal slice was established in this study as a model 

system and a stable potentiation ~60% above baseline was observed.  Other 

stimulation protocols had been investigated, including theta-burst stimulation (Arai et 

al., 2004), a paradigm based on a naturally occurring stimulation pattern occurring at 

theta frequency in vivo during learning.  However, due to the high quality of the 

slices, and thus preservation of inhibitory inputs, and the fact that younger mice have 

a greater innate inhibitory tone, it was difficult to establish a stable model of LTP 

using theta-burst stimulation.  A ‘classical’ response was obtained by isolating the 

excitatory pathway by inhibiting the feed-forward inhibitory GABAergic 

interneurones, which are concomitantly stimulated with the excitatory pathways 

during HFS, and provide an inhibitory ‘clamp’ on potentiation.   
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6.4.2.2. Org 26576 and Org 24448 bidirectionaly modify LTP 

Even though Org 26576 (3 μM) and Org 24448 (10 μM) at ‘physiological’ 

concentrations had minimal effects on unpotentiated baseline fEPSP amplitude (5% 

and 17% increases in amplitude respectively), both produced observable effects on 

LTP.  Furthermore, both potentiated the immediate-post tetanic peak. Org 26576 

increased the stable level of LTP by 63% whilst Org 24448 only transiently enhanced 

LTP and was indistinguishable from control 20 min post-potentiation.  The converse 

effect was witnessed with pharmacological EC50 concentrations of Org compounds.  

Org 26576 (20 μM) reduced the stable level of LTP by ~30% but did not completely 

abolish the potentiation, as was the case with Org 24448 (225 μM) over the course of 

the 1 hr experimental period.   

 

The extent of depolarisation during induction is believed to be the most critical factor 

for the activation of NMDA receptors and hence the overall magnitude of LTP (Xia et 

al., 2005). As the AMPA receptor is the key component contributing to the initial 

depolarisation, it can be assumed therefore with low physiological doses of Org 

26576 and Org 24448 there is essentially a ‘priming’ of the AMPA receptor, 

enhancing current flow. This in turn produces a larger and faster depolarisation, 

which has concomitant effects on relief from the Mg2+ block of the NMDA receptor, 

resulting in a greater overall potentiation.  It seems that Org 24448 may exhibit this 

transiently, as manifested by the immediate enhancement of the post-tetanic peak, but 

the overall level of enhanced depolarisation may not be sufficient (reach a sufficient 

threshold) to result in stable long-lasting enhanced potentiation.  Neurones are also 

capable of modulating synaptic strength by regulating the number of receptors at the 

synapse, and increased AMPA receptor trafficking and recruitment to activated 

synapses is also believed to be a key factor in the induction and maintenance of LTP 

(see Introduction 1.5.3.).  The higher (EC50) concentrations of Org 26576 and Org 

24448 may have the effect of over-stimulating the AMPA receptors, resulting in a 

blockage of the recruitment of extra-synaptic AMPA receptors to the stimulated 

synapse, a reduction in the response amplitude, and ultimately as a result of this a 

lack of stable enhanced potentiation.  Another possible explanation is that trafficking 

of extra AMPA receptors isn’t inhibited, but that receptors at the active post-synaptic 
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site are being internalised, due to over-activation caused by the high ampakine 

concentrations, more rapidly than they are being inserted, resulting in an overall 

decrease in AMPA receptor levels.  This concept is supported indirectly by recent in 

vitro studies from Julie Lauterborn’s lab (Jourdi et al., 2005a/b), in which cultured 

hippocampal slices subjected to chronic treatment with ampakines (CX614) at 

relatively low concentrations (50 μM) exhibited decreased receptor responses to 

synaptic stimulation, an effect which reflected reduced AMPA receptor surface 

expression due to calpain-dependent proteolysis of SAP97 and GRIP1; two key 

AMPA receptor interacting proteins responsible for anchoring the receptor in the 

membrane. 

 

An unexpected consequence of Org 24448 on synaptic transmission in the LTP 

model was the manifestation of pronounced epileptiform-like activity accompanied 

by hyperpolarisation in the late phase of the fEPSPs.  Without further 

experimentation the exact cause of this cannot be accurately determined, but a 

number of reasons may be hypothesised.  Epileptiform activity is largely mediated by 

a synchronous synaptic activation of cells in local cortical circuits (CA1 in this case), 

and is presumably associated with a large release of glutamate, which occurs 

following HFS.  With the combination of the local GABAergic system blocked by 

bicuculline (GABAA antagonist) and a CA3 cut to prevent feed-forward epileptiform 

activity into the CA1, Org 24448 which has pronounced effects on the fEPSPs even 

at low doses, could be causing hyperexcitability in the CA1 which manifest as this 

localised epileptiform activity.  This reasoning is supported by the fact that the effect 

is more pronounced with higher concentrations of Org 24448 (Higher concentrations 

= greater activation = enhanced excitability).   

 

This epileptiform activity could also possibly be due to drug stimulation of any 

residual direct perforant pathway input into the CA1, or by non-specific drug effects 

on various channels/receptors in the CA1 field.  T-type calcium channels 

(CaV3.1/3.3), which are abundantly expressed in the brain especially the 

hippocampus, are involved in pacemaking and the controlling of repetitive neuronal 

firing (Catterall et al., 2005).  Non-specific effects of the drugs increasing T-channel 
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bursting activity could produce epileptiform activity in the CA1 (Czapinski et al., 

2005).  A combination of hyperexcitability induced by Org 24448 and a lack of 

inhibitory input resulting in a block of after-hyperpolarisations mediated by Ca2+-

activated K+ channels (via direct channel block) could also result in localised 

epileptiform activity.  M-type K+ channels (KV7.2/7.4) which determine sub-

threshold excitability of neurones are also highly prevalent in the hippocampus, and 

blockage of M-current can also result in epileptiform activity (Pena and Alavez-

Perez, 2006). 

 

6.4.3.  Future experimental approaches 
Electrophysiologically there is great scope for further experimentation with these 

novel ampakines to investigate their mode of action.  Basic work investigating the 

compounds effects in two-electrode voltage-clamp recordings from Xenopus oocytes 

with homomeric and heteromeric combinations of expressed AMPA receptors would 

help determine subunit/receptor combination specificity, which would be highly 

informative especially in terms of selective drug targeting for specific brain regions.  

Outside-out voltage-clamp patch experiments with rapid (1ms) and prolonged 

exposure to glutamate in combination with Org 26576 and Org 24448 would also 

help delineate any differential effects on desensitisation/deactivation kinetics the 

compounds may exhibit.   

 

With respect to synaptic plasticity, specifically LTP, the effects of the compounds in 

more physiologically relevant forms, such as theta burst stimulation induced LTP, 

would also be informative.  More importantly, testing the compounds in a model of 

compromised functionality (representative of a disease state), such as the aged APOE 

mouse, which have age-dependent deficits in LTP accompanied by observable 

behavioural dearth, would prove invaluable in establishing potential therapeutic 

efficacy in models of actual disease states.  An alternative approach to recording 

monosynaptic responses is to examine ampakine effect in polysynaptic circuits 

(stimulate DG CA3 CA1 record), as it has been previously shown that AMPA 

receptor modulators have a greater influence on synaptic transmission after long 

chains of connections (Servio et al., 1996); and this approach is also functionally 
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more relevant in terms of whole brain physiology.  It would also be worthwhile 

investigating the effects of the compounds on LTD, the opposing process to LTP, and 

if possible investigate the effects of the compounds on AMPA receptor trafficking 

and recycling in real-time, possibly via GFP tagging of AMPA receptors (Doherty et 

al., 1997). 

 

6.4.4.  Summary 
This is the first electrophysiological study to investigate these novel Org ampakines 

and it has been demonstrated that not only do they enhance the unpotentiated fEPSP 

but also they bi-directionally modify LTP in a manner that is concentration 

dependent.  Both Org 26576 and Org 24448 produced dose-dependent increases in 

fEPSP amplitude without having any effect on the half-width of responses, and 

physiological concentrations of both drugs potentiated a stable form of LTP, with Org 

26576 producing a greater more stable potentiation.  These results are suggestive that 

these novel ampakines are effective in boosting the neural correlate of cognition, 

LTP, and as such will be predictably effective in treating cognitive aspects of 

conditions such as depression, schizophrenia, Alzheimer’s and Parkinson’s diseases. 
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Chapter 7 
 

General Discussion 

 



Evidence in the literature has implicated AMPA receptor potentiating compounds as 

prospective therapeutic agents in the treatment of neurological disorders such as 

depression, psychoses and cognitive impairment.  The data presented in this thesis, 

investigating the functional effects of the novel Ampakines Org 26576 and Org 

24448, provides the first substantive indication of their anatomical basis of action in 

the CNS following both acute and chronic administration, and highlights their ability 

to positively modulate AMPA receptor kinetics in the hippocampus.  The 

experiments successfully address all the aims laid out in the Introduction (see section 

1.10.), and are supportive of a potential role of these compounds in the treatment of 

the various conditions outlined above. 

 

7.1. Summary of findings 
 
A semi-quantitative [14C]-2-deoxyglucose autoradiographic model for investigating 

cerebral function was successfully established in C57Bl/6J mice.  The model was 

subsequently shown to be both consistent with previously published data (Kelly et al., 

2002) and reliably reproducible.  The NMDA receptor antagonist, MK-801 (0.5 

mg/kg), when investigated in the model produced ‘classical’ effects on cerebral 

function, providing further validation.  The prototypic Ampakine CX516, when 

trialled at two doses (30 & 100 mg/kg) had minimal effects of cerebral function, with 

the higher dose seemingly inducing a catatonic state in the mice.  Finally, a pilot 

study with the Ampakines Org 26576 and Org 24448 at selected trial doses produced 

significant increases in overall cerebral function, especially in areas associated with 

the limbic system.  Overall, these studies established a semi-quantitative [14C]-2-

deoxyglucose autoradiographic model in mice, validated it with known 

pharmacological compounds, and proved its potential usefulness in investigating the 

central actions of the Ampakines Org 26576 and Org 24448.    

 

The central actions of the Ampakines Org 26576 and Org 24448 were fully and 

successfully investigated in the murine CNS using the previously established semi-

quantitative [14C]-2-deoxyglucose model.  Acute administration of both Org 26576 

and Org 24448 produced dose-dependant effects on LCGU, displaying restricted 
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regional effects at low doses with increasing cerebrum wide activation at higher 

doses.  The greatest levels of activation were observed in components of the limbic 

and sensory systems with specific effects at low doses in the dentate gyrus, CA3, 

subiculum, anteroventral and laterodorsal thalamus, the median forebrain bundle, 

cingulate and visual (IV) cortices and the cochlear nucleus (minor sensory activation) 

with Org 26576 (1 mg/kg); and the raphe nucleus, medial lateral habenula, CA1 and 

medial forebrain bundle with Org 24448 (3 mg/kg).  Pre-administration of the 

AMPA receptor antagonist, NBQX, blocked the effects of these novel Ampakines on 

cerebral activation.  This study provides the first evidence for the neuroanatomical 

basis of action of these compounds and established that the effects they induce are 

indeed directly AMPA receptor mediated. 

 

The effects of chronic administration of both Org 26576 and Org 24448 for both 7 

and 28 days on cerebral function and structure/signalling were also successfully 

investigated in the mouse cerebrum.  Both Org 26576 and Org 24448 administered 

chronically induced functional cerebral increases in LCGU in the mouse cerebrum, 

with activation of brain regions previously witnessed in the acute study and 

recruitment of extra regions including several brain stem and forebrain nuclei such as 

the ventral tegmental area of Tsai (VTA), nucleus accumbens, and septum.  The 

effects were rapid in onset and also persistent for the entire 28-day treatment regime.  

Contrarily, chronic administration of both Org 26576 and Org 24448 produced no 

effects on hippocampal neurogenesis, or associated receptor/signalling proteins, 

suggesting that these novel Ampakines elicit their effects possibly in a neurogenetic 

independent manner.  This study provides the first evidence for the neuroanatomical 

basis of action of these compounds when administered chronically, and is of 

importance when considering their prospective role as salutary agents, which would 

have to be taken over prolonged periods of time. 

 

The kinetic actions of Org 26576 and Org 24448 were successfully investigated 

through the utilisation of extracellular field electrophysiology in the CA1 subfield of 

acute hippocampal slices.  Both compounds produced dose-dependant increases in 

fEPSP amplitude without having any effect on the half-width of responses.  A stable 
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reproducible model of LTP was established in disinhibited slices using HFS, and 

physiological concentrations of both drugs potentiated a stable form of LTP, with 

Org 26576 producing a greater more stable potentiation.  These results provide the 

first evidence of the ability of Org 26576 and Org 24448 to affect baseline 

electrophysiological responses in monosynaptic circuits, and enhance the neural 

correlate of cognition, LTP. 

 

7.2. Key points and therapeutic implications 
 
The data presented in this thesis, not only provide an anatomical basis for the 

cerebral activation induced by these compounds, but also go some way to help 

explain their selectivity and action.  Ampakines display subunit selectivity and as 

AMPA receptor stoichiometry itself is so varied across the brain, the compounds are 

thought to possibly act in a regionally selective manner.  There is evidence 

supporting this postulation.  For example, different Ampakines display varying 

potencies in different areas of the brain (hippocampus vs. thalamus) (Xia et al., 

2005), and within the hippocampus Ampakines have differing effects across sub-

populations of cells (Xia and Arai, 2005).  Data from this thesis also supports this 

idea, as behaviourally effective doses of Org 26576 and Org 24448 show restricted 

regional effects on global metabolic activity, and the distinct drugs also induce 

differing patterns and hierarchies of cerebral activation.  The compounds also display 

a classical dose-response effect in relation to their effect, as opposed to the 

biarylsulphonamides compounds, conceivably allowing their effects to be titrated to 

obtain a desired level of cerebral activation.  Work in both acute and chronic 

paradigms in this thesis has also shown that the compounds also display a very rapid 

onset of effect, which is undiminished in intensity following prolonged 

administration.  Indeed the response even shows a degree of plasticity over time, 

switching in activation profiles between one and four weeks.  The cerebral activation 

induced both acutely and chronically is also supportive that these compounds may 

play a role in various neurological, psychiatric or neurocognitive disorders.   

 

Cognition and the enhancement of memory processes are regarded as the classical 

areas of application for these compounds.  Studies in monkeys, rodents and humans 
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have shown improvements in the retention of memory, and the acceleration of the 

acquisition of new memories.  Cognitive aspects of schizophrenia have also been 

positively treated (Johnson et al., 1999; Goff et al., 2001), and there is much scope to 

treat other conditions such as Alzheimer’s and depression, which display a cognitive 

deficit component, as well as natural age-related memory deficits.  Cognitive dearth 

during sleep deprivation was also restored through the use of Ampakines (see CX717 

study below).  In this thesis both Org 26576 and Org 24448 displayed the ability to 

enhance AMPA receptor kinetics promoting LTP, the neural correlate of memory, in 

a monosynaptic circuit, the first evidence of their ability to do this.  In a recent study 

by Gary Lynch and colleagues, naturally impaired LTP in middle-aged rats was 

recovered to normal levels by treatment with the Ampakine CX614 (Rex et al., 

2005); further proving the ability of Ampakines to have relevant effects in a truly 

‘deficient’ functional model.  There is however still much to be determined in 

advance of these compounds being marketed as agents to improve deficits in normal 

cognitive functioning.  Varying Ampakine compounds have contrary effects on the 

biophysics of the AMPA receptor response, i.e. effects on duration versus amplitude 

of fEPSPs, and this greatly impacts on their ability to modulate LTP.  Further work is 

needed to understand these diverse modes of actions and their effects on LTP, to 

allow the future development of the compounds as memory enhancing drugs (Lynch, 

2006). 

 

The exact aetiology of the psychosis schizophrenia is still unclear, but as mentioned 

previously, research has focused upon excess dopaminergic tone as the primary 

instigator of the adverse effects witnessed in the condition.  It is however becoming 

clearer that excess dopamine alone cannot account for all the manifestations of the 

condition, especially the cognitive and negative symptoms.  In addition to this, many 

of the current dopamine antagonist treatments in use result in a hypodopaminergia 

which is in some cases as debilitating as the positive symptoms of the disease.  

Similarly, depression is now increasingly being examined as a complex failure of 

possibly multiple neurotransmitter systems, not just serotonin.  This commonality 

between depression and schizophrenia, evident in the brain regions and signalling 

cascades involved, lends further support to the so-called ‘network’ theory proposed 
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in Chapter 5.  This theory suggests that elaborate brain networks (multiple 

transmitters) work together to generate complex behaviours, and failures in this 

system, such as excess dopamine or loss of serotonergic tone in isolated areas, result 

in disrupted information processing within these neural networks.  Ampakines exert 

their greatest influence in polysynaptic circuitry as opposed to monosynaptic ones 

(highlighted by their ability to modulate complex networks in both the acute and 

chronic [14C]-2-deoxyglucose studies in relevant areas), and as a result can 

selectively facilitate the assembly of cortical networks needed to respond to the 

present behavioural demands.  In concert with other regulatory networks that are in 

play, the compounds can therefore differentially regulate conditions to restore 

normality or boost deficient function in a particular area displaying failure.  

Deadwyler’s group in 2005 exhibited this in sleep deprived monkeys, in which 

CX717 increased cortical activity in depressed areas whilst decreasing it in 

hyperactive regions, ultimately restoring normality (Porrino et al., 2005).  AMPA 

receptor potentiators can also modulate the release of other neurotransmitters, such 

as serotonin, acetylcholine and dopamine (Ge et al., 1999; Murray et al., 2003), 

lending further support to this hypothesis. 

 

Compounds such as CX717 are also being clinically trialled in attention-

deficit/hyperactivity disorder (ADHD) sufferers and as treatments for sleep 

deprivation.  In an adult ADHD phase IIa clinical trail in March 2006, CX717 was 

trialled at 200/800 mg twice daily in a crossover study, and was found to 

significantly reduce hyperactivity and to a lesser extent, inattentiveness.  These 

results were comparable if not better than those obtained with ‘Strattera’, a 

norepinephrine reuptake inhibitor medication currently marked by Lilly for ADHD.  

In another phase IIa clinical trial, the effects on sleep deprivation were investigated.  

CX717 was found to promote wakefulness, and improved performances on test of 

attention, delayed recall and visual processing, in sleep-deprived individuals.  Other 

groups have also begun to investigate the potential of these potentiators as 

neuroprotectants.  Compounds such as CX614 have been shown to be able to block 

excitotoxic brain lesions (Dicou et al., 2003); and in a model of Parkinson’s disease 
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(6-hydroxydopamine lesions) biarylpropylsulfonamides have prevented cell loss and 

promote growth/repair of existing cells (GAP-43 staining) (O’Neill et al., 2004). 

 
Following the introduction of Ampakines there was controversy about whether 

therapeutic positive modulation of AMPA receptor function would result in 

ultimately positive or negative effects.  Due to the imperative role glutamate and its 

receptors play in manifestation of excitotoxicity (see section 1.6.1.) many believed 

that over stimulation of AMPA receptors with potentiators could result in 

neurotoxicity/degeneration or epileptic activity due to hyper-excitable cells, as 

apposed to positive enhancement of AMPAergic synaptic transmission.  This 

concern arose primarily due to the findings that intraventricular injections of 

cyclothiazide were lethal or caused seizures, and intracerebral injections resulted in 

necrotic parenchymal lesions (Taylor et al., 1996).  Administered in vitro in 

combination with agonists, cyclothiazide also proved toxic to cultured hippocampal 

neurones and glia (May and Robison, 1993; David et al., 1996).  However 

cyclothiazide seems to be the exception to the rule. Overt toxicity phenomena such 

as seizures, tremor and hyperactivity have not been witnessed with BCP, IDRA-21, 

and CX516 in either rodents or humans via multiple routes of administration with 

therapeutically relevant doses; and exposure of cultured hippocampal slices to 

excessively high concentrations of Ampakines (CX516 1-3 mM) does not produce 

cell death (Lauterborn et al., 2003).  In addition the compounds seen to be well 

tolerated in humans (Ingvar et al., 1997), and in recent phase IIa clinical trials carried 

out by Cortex Pharmaceuticals with the Ampakine CX717, drug tolerability was 

good with no serious adverse effects reported: no changes in blood pressure, heart 

rate or temperature, and no clinically significant ECG changes were observed 

(Cortex online presentation).  The novel Ampakines Org 26576 and Org 24448 were 

well tolerated by the mice in all the studies outlined in this thesis, with no 

detrimental side effects observed. 

 

As Ampakines have no agonist action of their own, and only have subtle effects (as 

witnessed in behaviour) on AMPA receptor function, they merely enhance natural 

AMPAergic synaptic transmission, instead of resulting in continual, and potentially 
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toxic, stimulation.  It has also been proposed that drugs that effect deactivation 

preferentially over desensitisation, as is the case with the Ampakines, have reduced 

potential toxic effects (Lees, 2000).   

 

7.3. Future directions 
 
Despite all we now know about AMPA receptor potentiators, their pharmacology, 

toxicology, metabolism and effects both in vitro and in vivo, there is still much to 

explain.  How exactly they exert their effects is still altogether unresolved.  Do they 

purely influence receptor kinetics, or is their action due in some part to downstream 

and secondary signalling cascades?  The role of molecules such as BDNF in their 

mode of action is still controversial and as yet unresolved. 
 

One possible avenue of investigation may be the further use of non-invasive 

modalities such as functional magnetic resonance imaging (fMRI), to more precisely 

image the effects of these Ampakines in animal models.  In a manner similar to 

[14C]-2-deoxyglucose imaging, fMRI examines what is known as the BOLD contrast 

(the innate magnetic difference between oxy-haemoglobin and deoxy-haemoglobin) 

in the CNS, as a functional correlate of neuronal activity.  This technique has already 

proved useful in investigating the effects of the AMPA receptor potentiation 

LY404187 in the CNS of rats (Jones et al., 2005), and the results correlated well with 

the previous [14C]-2-deoxyglucose imaging work carried out in conscious animals 

(Fowler et al., 2004).  The benefit of fMRI, is that it is translatable between 

preclinical and clinical studies, and as such may be useful in further delineating the 

function consequences of these Ampakines in man.  

 

Neurones don’t exist in isolation, and it is highly unlikely that Ampakines act upon 

neurones alone.  Astrocytes, for example, provide both physical and functional 

support for neurones, acting as an ‘energetic couple’, shutting glucose and lactate 

between neurones and blood vessels in response to synaptic activity (Pellerin & 

Magistretti, 2004).  They also play a key role in synaptic transmission, preserving 

fidelity, through the reuptake of glutamate by reuptake-transporters.  Intriguingly, a 
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recent study by Pierre Magistretti’s group, found that CX546 promoted enhancement 

of function in cortical and hippocampal astrocytes following glutamate exposure 

(Pellerin & Magistretti, 2005).  It has been suggested that boosting the 

neuroenergetics of astrocytes (increasing the availability of lactate to neurones) may 

represent a valuable approach to improving both cognition and neuroprotection 

(Sapolsky, 2003).  It remains to be determined to what extent astrocytes and their 

modification by Ampakines could play in these processes. 

 

As with other promising drug targets the role of ‘vectorisation’ is often postulated as 

a possible avenue for investigation.  Specifically, designing specific AMPA receptor 

potentiators to selectively target sub-populations of AMPA receptors possessing 

particular subunit compositions; hopefully therefore, achieving drug delivery in a 

regionally selective fashion. In support of this for example, a recent study examining 

the role of AMPA receptors in depression has attributed the effects of chronic 

antidepressant treatment to an observed higher expression of GluR1 receptor 

subunits (Tan et al., 2006).  By designing potentiators that ‘mimic’ these effects it 

could be possible to replicate the effects of antidepressant via this distinctly AMPA 

mechanism.  Vectorisation however, is a concept that has been postulated repeatedly 

over the years for other receptor targets with little tangible success.  Indeed, the 

concept of selective drug targeting would require further in depth analysis and 

determination of the exact distribution and stoichiometry of AMPA receptors across 

the entire cerebrum, in addition to the design of new sub-type selective ligands.   

 

There is however much scope for advancement of Ampakines with further 

electrophysiological investigation (see discussion Chapter 6 section 6.4.3.). Possibly 

twinned with molecular studies, electrophysiology would help us to better understand 

how these compounds at a molecular level interact and function with the AMPA 

receptor.  In support of this, in a seminal paper in 2005 Jin and colleagues studied co-

crystal structures of the GluR2 ligand-binding core in complex with the Ampakine 

CX614 and aniracetam, and as a result of this helped resolve, in a molecular sense, 

how these compounds elicit their biological effects (Jin et al., 2005).  Structure-

function studies exploiting these new structural insights, could lead to the design of 
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more potent specific ligands with even greater functional activity.   It is worth noting 

here that with further appreciation of how these compounds function, care needs to 

be taken to ensure that any new ligands are not too effective; ultimately resulting in 

over-potentiation, tipping the balance in favour of excitotoxicity (and seizure 

activity) with a loss of positive functional effects. 

 

Studies in this thesis have look at functional changes induced by the novel Org 

compounds in normal healthy animals.  To obtain a true measure of the compound’s 

potential therapeutic usefulness they must be trialled in models either relating to 

disease states or displaying a deficiency of some sort, be it compromised behaviour 

or cognitive impairment for example.  Transgenic mice, such as the GluR1 knockout 

or ApoE knockout mice, would be ideal in this regard as they both display clear 

cognitive dearth. A combination of functional imaging coupled with behavioural 

testing, as established by Magistretti (Ros et al., 2006), could also prove useful in 

further investigating the ability of Ampakines to modulate function, but also help 

define the brain areas involved. 

 

7.4. Conclusion 
 

The data presented in this thesis provide the first evidence for the functional activity 

induced by the novel Org Ampakines Org 26576 and Org 24448 in the mouse 

cerebrum, and underscore their potential therapeutic relevance in an array of 

neurological, psychiatric and neurocognitive disorders. 
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Appendix: Solutions and recipes 
 
 Poly-L-lysine Slides 

 
Slides were placed in racks and soaked in poly-L-Lysine (0.1% P8920 Sigma, 

UK) for 5 minutes.  Slides were then dried overnight at room temperature or in an 

oven at 60 oC for 2 hours.  The poly-L-Lysine is reusable several times when store 

in a sealed container at 4 oC (~1000 slides). 

 
 10x Phosphate Buffer (PB) 

 
2.57 g of NaH2PO4  and 11.95 g of Na2HPO4 were dissolved and made up 

to 1 L with distilled water.  The solution when mixing does not need to be heated.  

For Phosphate Buffered Saline (PBS) add 86.67 g NaCl and pH to 7.4.  Filter for 

purity. 

 
 Paraformaldehyde Fixative 4% (PAM)  

 
40 g of paraformaldehyde (weighed in the fumehood) was added to 900 ml of 1 x 

PB  which had been heated to 60-65 oC.  The temperature was maintained 

between 60 and 65 oC until the paraformaldehyde dissolved.  The solution was 

allowed to cool, made up to 1 L with PB and filtered for purity. 

 
 Citric Acid Buffer 

 
2.1 g of citric acid was dissolved in 1 L of distilled water.  The pH was adjusted to 

6.0 by the addition of 1 M NaOH. 

 
 Acrylamide Gel Solutions (To make 2 gels for a large Hoefer gel system): 

 
 
 

Resolving Gel 
(10 %) 

Stacking Gel 
(4 %) 

   
Distilled Water 28.35 ml 12.2 ml 
1.5mM Tris pH 8.8 17.5 ml - 
0.5mM Tris pH 6.8 - 5 ml 
10% SDS 700 μl 200 μl 
30% Acrylamide 23.1 ml 2.6 ml 
10% APS 350 μl 100 μl 
TEMED 35 μl 20 μl 
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 10x SDS-PAGE Running Buffer 
 

30 g of Tris-Base, 144 g of glycine, and 10 g of SDS were fully dissolved in and 

made up to 1 L with distilled water.  The final solution was adjusted to pH 8.3. 

 
 Western Transfer Buffer 

 
16.66 g of Tris-Base and 79.2 g of glycine were fully dissolved in and made up to 

4.4 L with distilled water.  Immediately prior to use 1.1 L of methanol was added 

to the solution, to give a final volume of 5.5 L. 
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Abbreviations 
 
aCSF   Artificial cerebrospinal fluid 

AMPA   α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid 

AMPAR  AMPA receptor 

ATP   Adenosine tri-phosphate 

BDP (1-BCP)  1-(1,3-benzodioxol-5-ylcarbonyl)piperidine 

BDP-5   1-(1,3-benzodioxol-5-ylcarbonyl)-1,2,3,6-tetrahydropyridine 

BDNF   Brain-derived neurotrophic factor 

BrdU   (+) 5-Bromo-2’-deoxyuridine 

BSA   Bovine serum albumin 

Ca2+   Calcium ions 

cAMP   Cyclic adenosine mono-phosphate 

CNS   Central nervous system 

CNQX   6-cyano-7-nitroquinoxaline-2,3-dione 

CREB   cAMP response element-binding protein 

CX516 (BDP-12) 1-(quinoxaline-6-ylcarbonyl)piperidine 

CX546   1-(1,4-benzodioxan-6-ylcarbonyl)piperidine 

CX614 2H,3H,6aH-pyrrolidino[2”,1”-3’,2’]1.3-oxazino[6’,5’-

5,4]benzo[e]1,4-dioxan 10-one 

DAB   Diaminobenzine 

ECL   Enhanced chemiluminescence 

EPSC   Excitatory postsynaptic current 

EPSP   Excitatory postsynaptic potential 

ERK   Extracellular signal-regulated kinase 

fEPSP   Field excitatory postsynaptic potential 

GRIP1   Glutamate receptor interacting protein 1 

HEK   Human embryonic kidney 

HFS   High-frequency-stimulation 

IDRA-21  7-chloro-3-methyl-3,4-dihydro-2H-1,2,4-benzothiadiazine 

IgG   Immunoglobulin G 

IHC   Immunohistochemistry 

LCGU   Local cerebral glucose utilisation 

LTD   Long-term depression 
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LTP   Long-term potentiation 

Mg2+   Magnesium ions 

MK-801  Dizocilpine malonate 

mRNA   Messenger ribonucleic acid 

NBQX   6-nitro7-sulfamoylbenzo(f)quinoxaline-2,3-dione 

NMDA  N-methyl-D-aspartate 

OCT   Optimal cutting temperature embedding medium 

PBS   Phosphate buffered saline 

PET   Positron emission tomography 

PSD-95  Post-synaptic density protein 95 

PVDF   Polyvinylidine fluoride 

ROD   Relative optical density  

SAP97   Synapse-associated protein 97 

SDS-PAGE  Sodium dodecyl sulphate polyacrylamide gel electrophoresis 

SEM   Standard error of the mean 

SGZ   Subgranular zone of the dentate gyrus 

SSRI   Serotonin selective reuptake inhibitor 

STP   Short-term potentiation 

TBS   Tris buffered saline 

WT   Wild type 

[14C]-2-DG  [14C]-2-deoxyglucose 
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