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ABSTRACT  

Sanderson [1]examined the theoretical basis for and the experimentation supporting the predictive smoke 
zone models currently being used in fire engineering design that are cited, in nationally and internationally 
accepted guidance documents, to support the increasing use of performance-based building 
codes/regulations throughout the world. 

This critical examination identified anomalies: 1) between different researcher’s results, when considering 
the same fire environment, and 2) areas where the models used in guidance documents have limited 
empirical support.  The variance between models was examined by the parametric variation of critical data 
input parameters the impact of which indicated that the most recent research produced models that predict a 
lower level of mass smoke flow than the earlier models.  It may be suggested that the more recent research, 
building on previous work, produces models that can be used with a greater level of confidence however 
there is no robust evidence to support this. 

This paper illustrates the variances between the model outputs by means of a case study. 

Currently there is a move towards the use of Computational Fluid Dynamic modelling of fire.  However, 
given the limited validation of these models in the area of smoke movement and the computer time and 
power required to run these models, there is still a place in fire engineering design for the zone model. 

As an increasing number of countries adopt performance building and fire codes/regulations and given the 
consequent need for predictive mass smoke flow models in which regulators, fire engineers and society can 
have confidence, it is concluded that the research supporting zone modelling of fire should be extended.  
This research should be robust and transparent in order to either produce models that are substantially more 
acceptable than those currently being used or to provide more confidence in models.  
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NOMENCLATURE LISTING 

cp 

Specific heat at constant pressure 
(kJ/kgK) δM Total mass smoke flow (kg/s) 

db 

Depth of smoke layer below 
balcony (m) Q  

Convective heat release rate 
(kW) 

g Gravitational force (9.81m/s2) ′Q  
Convective heat release rate 
(kW) 

H Height of opening (m) Qc

Convective heat release rate 
(kW) 

hcomp Height of compartment (m) w Width of opening (m) 

ho Height of opening (m) Y 
Height of rise to smoke to 
underside of smoke layer (m) 

L Width of spill edge (m) y 
Height of rise to smoke to 
underside of smoke layer (m) 

′M  Mass smoke flow (kg/s) z 
Height of rise to smoke to 
underside of smoke layer (m) 

Mv Mass smoke flow (kg/s) zl Limiting flame height (m) 

MB 

Mass smoke flow under a 
balcony(kg/s) zo

Height of virtual origin of 
plume (m) 
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Mw 

 
Mass smoke flow at opening 
(kg/) 

 
Greek

m  Mass smoke flow (kg/s) α Fire growth rate 

mρ  Mass smoke flow equations 1 & 
2 (kg/s) ρ Density of a gas (kg/m3) 

T∞ 
Ambient Temperature equation 1 
(K) Subscripts 

T Absolute temperature (K) o Ambient air 
t Time (s)  

INTRODUCTION  

Traditionally fire safety within buildings, both nationally and internationally, has been implemented within 
a prescriptive regulatory framework.  Within this framework components of buildings are identified and 
standards are prescribed for the identified components. The prescriptive approach has been characterized as 
stifling innovative design; not being cost effective; offering no guidance on the acceptability or 
equivalency; and leading to the construction of some buildings with inappropriate fire safety measures.  
[2], [3]  

The alternative to a prescriptive regulatory framework is to use a holistic approach where “the building is 
considered as a complex system, with the fire safety design just one of the many interrelated sub-systems” 
[2]  The holistic approach to fire safety design requires that the risk be assessed and the protection afforded 
by the fire safety measures analysed.  It deals with the performance of the building in the context in which 
it is utilised. 

Performance-based building codes have been advocated as providing a regulatory framework where 
architects can be allowed to develop and implement innovative designs whilst maintaining an acceptable 
level of fire safety.  It is also suggested that with the greater scientific understanding of fire the current 
level of fire safety may be achieved at reduced costs or a higher level of fire safety provided at the same 
cost. The potential for financial savings whilst achieving regulatory compliance are matters that have a 
clear attraction to building developers [4], [5], [6] All systems for performance-based regulation of fire 
safety rely heavily on the ability to predict the results of various fire scenarios. Where the critical variables 
are simple and known or discernible, the use of predictive models is relatively easy.[7]   However 
predicting the relatively undefined problem of fire safety is more difficult as there is little or no control 
over the potential variables and there may be inadequate understanding of the underlying physical laws.   

The models used as predictive tools are risk models with hazard models being a sub part of the risk model.  
The hazard models have received criticism for the inconsistency of results between different models used 
to address the same physical fire environment. [8], [9] Sanderson [10] also identified anomalies in the 
outputs of hazard models used by the regulators in various countries when the different models were 
applied to the same building.   

In a fire it is critical that escape is possible prior to the exit routes being rendered untenable.   
Predominantly, untenability occurs either directly or indirectly due to the production of smoke. In this 
context smoke is taken to be both the particulate and gaseous products of combustion, including any air 
that comprises a large volume of the smoke plume and any subsequent smoke layer.[11],[12], [13]  It can 
be concluded that the validity of the computational deterministic models relating to the production of 
smoke are of prime concern in relation to life safety within buildings. 

AXISYMETRIC FIRE PLUMES 

During the combustion process, materials are heated, usually by adjacent material already involved in the 
combustion process, and hot volatiles are given off.  These volatiles ignite on reaching their flashpoint and 
create, above the fire, a rising column of flames and hot smoky gases.  As a result of this upward 
movement of the products of combustion, air is entrained into the ensuing plume.   

A portion of the oxygen in the entrained air will contribute to the combustion of flammable volatiles within 
the plume, but the majority of the air will be mixed with the hot smoky products of combustion and form a 
large proportion of the plume volume. 
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In the early 1940’s petrol fire plumes rising out of ditches beside airfield runways were used in the UK to 
entrain and remove fog. [14] Sir Geoffrey Taylor using his knowledge of fluid dynamics developed this 
wartime fog clearing system.  Critical to the understanding of fire plumes is an appreciation of the amount 
of air entrained into the rising plume.  According to Nelson [14] the initial work on defining fire plumes 
and the entrainment coefficient was published by Schmidt in 1941 and Taylor’s analysis of this work was 
published as “Dynamics of a Mass of Hot Gas Rising in Air”.   

In 1956 Morton et al [15] published the first major publication of plume theory having a bearing on the 
analysis of accidental fires.  This paper, “Turbulent Gravitational Convection from Maintained and 
Instantaneous Sources” describes the first heat-driven plume equation that included entrainment plume 
velocity and plume temperatures. 

The equation produced by Morton et al described an idealised axisymetric plume, with a ‘top-hat profile. 

 

                                                                              (1) 

 

This equation for axisymetric plumes was subsequently developed by others.   

Zukoski et al [16] carried out several experiments measuring the plume mass flow at various heights and, 
using the ideal plume theory, developed Morton et al’s equation to: 

    

 

                                                                                                   (2) 

This only varies slightly from the theoretical equation however Zukoski et al [16] use α = 0.11 for no 
radiation loss whereas Quintiere and Grove [17] use a value of 0.098 for α which is closer to the value of 
0.093 adopted by Morton et al [15].  

Karlsson and Quintiere [18] state that based on the assumption that the constant ambient air properties are: 
- 

  3 2T 293K, 1.1kg / m , c 1.0kJ /(kgK) and g 9.81m / sp= ρ = = =∞ ∞   

the equation can be expressed as: 

       

(3)  

 

This is the equation for entrainment into an axisymetric plume used in CIBSE Guide E and NFPA 92B.  
Both these guides, based on research by Zukoski et al [19], use an entrainment rate of half that for a fire 
twice the size for a fire against a wall and one quarter that for a fire four times the size for a fire in a corner.  

Heskestad [20], [21], [22], [23], examines Fire Plumes, Flame Height and Air Entrainment and proposes a 
set of equations in relation to the axisymetric plume that limit or remove three of the main assumptions in 
relation to the ‘ideal plume’. 

1
1 52 3g
3 3m 0.20 Q z               

c Tp

⎛ ⎞ρ⎜ ⎟∞= ⎜ ⎟ρ ⎜ ⎟∞⎝ ⎠

1
1 52 3g
3 3m 0.21 Q z

c Tp

⎛ ⎞ρ⎜ ⎟∞= ⎜ ⎟ρ ⎜ ⎟∞⎝ ⎠

    

1 5
3 3m 0.071Q z=
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In relaxing the point source assumption as the origin of the plume he introduces the concept of a ‘virtual 
origin’ at some height zo above or below the actual fire taking into account that some of the plume 
properties are dependant on the convective energy release rate. A Gaussian profile replaces the ‘top hat’ 
profile across the plume for velocity and temperature. The Boussinesq approximation is removed to take 
account of large density differences.  The concept of the plume density being approximately equal to 
ambient air density is removed. 

Heskested produced the equations: - 

For entrainment in the far field and, 

(4) 

 

 

For entrainment in the near field. 

 

(5) 

 

 

 

Thomas et al [24] carried out research into venting fires in single compartment structures following the fire 
in the Jaguar Motors Plant in England.  This work produced two equations - one for small fires and one for 
large fires. 

The flow of hot gases into the smoke layer at ceiling level for small fire is based on the work by Yih (1952) 
and follows the theory put forward by Morton et al [15] that the fire is regarded as a plume of hot gases 
which behaves as though it originated from a point source located below the fire. 

 

The expression produced for small fires, near field was: - 

(6) 

 

Thomas et al [24] found that an adequate theoretical description of entrainment into large fires could not be 
produced.  They therefore relied on empirical data produced by Rouse, H et al [25]; Ricou and Spalding 
[26] and Rasbash et al [27] to produce the expression: -  

 

                                                                      (7) 

The effect of the fuel flow, RAf was found to be negligible [28] and dropped and substituting for other 
variables reduces the equation to:  

M = 0.188PY 3/2                      (8) 

1/2ρ(3/2) oM = 0.096P y ρ g + RA  ρ o fρ

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎝ ⎠

( ) ( )
1 25 5
3 33 3m = 0.071Q z z 1 0.026Q z z        c o o

≥

⎡ ⎤−
⎢ ⎥

− × + −⎢ ⎥
⎢ ⎥
⎣ ⎦

for z z1

0.0054Q zcm =
2
50.166Q zc o

⎛ ⎞
⎜ ⎟

+⎜ ⎟
⎜ ⎟
⎝ ⎠

z < z1

1
3Q g 5 / 3cM 0.153 rc bC Tc p o

      
⎡ ⎤
⎢ ⎥= ρ
⎢ ⎥ρ
⎢ ⎥⎣ ⎦
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Variables substituted:  

1.22kg/m3 at 17OC for density of ambient air (ρo) 

290 K for absolute temperature of ambient air (To)  

1100 K for absolute temperature of flames in smoke plume (T) 

9.81 m/s2 for acceleration due to gravity  

Hansell [28] hypothesized, based on experimental work by Zukoski [19], that in order to take account of 
the geometric and positional variances influencing the fire plume development that this equation should 
have correction factors applied. 

(a) Very large spaces (high Ceilings) 

 Cω =1.0, Cs = 1.0, Cj = 1.0 ⇒ 0.19PY3/2                             (9) 

(b) Very large space/room (low ceilings) 

 Cω =1.1, Cs = 1.0, Cj = 1.0 ⇒ 0.21PY3/2                          (10) 

 (c) Smaller rooms 

 Cω =1.28, Cs = 1.0, Cj = 1.4 ⇒ 0.39PY3/2                         (11) 

Where  Cω is the plume tilt correction factor; Cs is the wall proximity correction factor and Cj is the wall 
jet correction factor. 

Hansell [19] states that the above hypothesis is based on the assumption that the effects of aerodynamic 
disturbance, wall proximity wall jet and wall convection that had been validated for small fires, can equally 
apply to large fire plumes. 

Equations 8, 9, 10 and 11 are used in BR 368 for entrainment into plumes above large fires. 

SPILL PLUMES 

A calculation method devised by Morgan and Marshall [29] was revised by Morgan [30], with reference to 
the horizontal flow of smoke towards the opening and by Morgan and Hansell [31] to extend the methods 
applicability to include adhered spill plumes.  This is known as the BRE Spill Plume method 

The BRE Spill Plume Calculation is a complicated method but as stated by Morgan et al [32] is suitable for 
all geometric configurations where the mass flow of smoke in a large volume space is being considered for 
a fire originating in an adjacent room.  Sanderson [1] questioned the validity of this statement. 

Given the complexity of the BRE Spill Plume Method, a number of simplified spill plume equations have 
been developed. The currently available simplified spill plume equations generally assume that the spill 
plume is generated from a virtual line source, having no width, located some distance below the spill edge.  

Using a relationship developed by Lee and Emmons [33] to determine the distance of the virtual plume 
source beneath the spill edge Thomas [34] developed the single line equation: - 

 

(12) 

 

 

 

Where  

 

( ) ( )
1 2

2 3 0.22 z 2gQL 3M 0.58 z 1v cT L

⎛ ⎞ ⎛ ⎞+ Δ
⎜ ⎟= ρ + Δ +⎜ ⎟⎜ ⎟⎜ ⎟ρ ⎝ ⎠⎝ ⎠

MBΔ = D +b 1
3CQ
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Poreh et al [35], assuming that the volumetric flow of the ambient air per unit length of the plume in the far 
field is a function of the buoyant flux per unit length and the distance from the virtual source, deduced a 
relationship between the mass flow rate for a line plume and the convective heat output of the gases.  
Incorporating work done by Lee and Emmons 1961  and Marshall and Harrison 1996 Poreh et al produced 
the equation for free spill plumes: - 

(13) 

 

 

Thomas et al [36] provided the following simplified spill plume equation that is only applicable to free spill 
plumes rising into large area smoke reservoirs. 

(14) 

Taking an empirically derived relationship, inherent in Poreh et al’s spill plume equation [35], Thomas et al 
produced equation 15, which is taken as a suitable alternative to equation 14 [36]. 

(15) 

Thomas et al [36] also proposed that the volume of air entrained into the free ends of the spill plume can be 
quantified as: 

  

(16) 

The results of equations 15 and 16 can then be combined to give the mass flow of gases for a free spill 
plume, including entrainment at the free ends of the plume. 

The BRE Spill Plume and equations 12, 13, 15 and 16 are used in BR 368, which is referenced in the UK 
Building Regulations. 

By correlating the empirical data produced by Morgan and Marshall [29], [37] and assuming that 
ρ≈ρ1≈1.25, Law [38] further simplified the spill plume formula to:  

(17) 

A variant on this equation, equation 18 below that is used in CIBSE Guide E, CIBSE TM19 and 
NFPA92B. 

1
Mb3M Q C z dv b 1

3CQ

⎛ ⎞
⎜ ⎟
⎜ ⎟= + +⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

1
3M 1.2M 0.16zQ 0.0027QB′ ′ ′ ′= + +

1
3M 1.4M 0.16zQ 0.0014QB′ ′ ′ ′= + +

1
Q 3M 0.09z
L

⎛ ⎞δ = ⎜ ⎟
⎝ ⎠

1
2 3M 0.34(QL ) (d 0.15H)v 1= +

1 2
3 3M 0.36Q l (z 0.25h)v p c b= +
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(18) 

Harrison [39], using 1/10th scale modelling, produced a simplified spill plume equation to predict the mass 
flow rate of gases due to a free spill plume, including entrainment of air into the ends of the plume:   

(19) 

This empirical correlation only applies to a flow which is channelled, where the width of the compartment 
opening is the same as that at the spill edge and where the approach flow is under a flat ceiling or a deep 
downstand at the spill edge.   

In calculating the mass flow of smoke under the balcony Harrison derived, from results of modelling using 
Fire Dynamics Simulator (FDS), the equation: - 

(20) 

 

However Harrison and Spearpoint [40] revert to the more often used Mb
 = 2Mw for this value.  

DESIGN FIRES 

Design fires are either steady state or growing fires. 

Following experimentation Hinkley [41] proposed a steady state design fire size of 5MW for sprinkler 
controlled retail premises, where the sprinklers are standard response (RTI > 50 m1/2s1/2)  and this is used in 
NFPA 92B, CIBSE Guide E and BR 368.  For fast response sprinklers 2.5MW has been proposed [42]. 
[43]However, this has not been universally accepted [44] 

Growing fires are generally based on an αt2 fire growth with the value of α being determined by the time 
taken for the fire to grow to 1000kW.   The fire size that is then used for design purposes is that where 
growth is stopped by some form of intervention. (e.g. sprinkler actuation.) 

In AS 1668.3 a polynomial variant of αt2 is used to more appropriately model the initial growth phase. [45] 
The fire growth is taken to an intervention point and then equation 7, excluding the fuel flow rate, is used 
to determine the mass smoke flow. 

CASE STUDY 

For the case study BR 368, NFPA 92B, and AS 1668.3 were used.  Additionally, as it involves the most 
recent research, the method proposed by Harrison is used. [40] 

The building to be examined in the case study is Centre West, East Kilbride. Centre West Shopping Centre 
has approximately 40 units trading on a two-storey mall that connects to the west side of the existing Plaza 
development.  There is a mezzanine level above the northern section of the level 1 Food Court.  The 
mezzanine level overlooks a three-storey void but is only accessible from the Food Court Level.  There is a 
large shop unit at the west end of the mall. There is car parking at ground, first, second and third floor 
levels and at intermediate levels. 

The shop units are separated from each other by fire resisting construction but the frontages onto the mall 
are of non-fire resisting glazing.  The food court is open to the mall on both the first floor and mezzanine 
levels and the seating areas extend beyond the fire separating walls between the shop units.    

All the shop units are provided with a life safety sprinkler system designed and installed in compliance 
with BS 5306 Part 2 1990.  The sprinkler heads are quick response heads with a response time index (RTI)  
of <50m1/2s1/2 designed to contain the fire size to 2.5MW.  In line with the requirements of the Technical 

1 2
3 3M 0.20Q W z 0.0017Q 1.5Mp b= + +

0.92 h Mh comp woM 0.89b w wo o

− ⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟=
⎜ ⎟⎜ ⎟

⎝ ⎠ ⎝ ⎠
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Standards for Compliance with the Building Standards (Scotland) Regulations 1990, 5th amendment, no 
sprinklers are provided in the mall as the mall height is greater than 10m.  

The smoke control system is designed to maintain the smoke layer height 3.7m above the finished floor 
level of the first floor balcony. Channelling screens are provided to the underside of the Upper Retail Mall 
floor slab. These are positioned so that no channel width will be greater than 17m. They are positioned 
2.25m above finished floor level in the Lower Retail Mall, 

Shop front treatment is provided to any shop that opens onto two smoke zones in order to prevent smoke 
flowing into more than one zone.  

This has been achieved by making the shop unit frontage which faces onto one of the zones 30 minutes fire 
resistant, or by providing a deep downstand or smoke curtain on the shop front to channel smoke flow from 
the shop. 

The mass smoke flow in the large shop unit was calculated using the axisymmetric calculation appropriate 
to the guidance being considered and the flow of smoke into the atrium space was calculated using the spill 
plume calculation.  

METHOD USED IN CENTRE WEST 

The smoke control system was designed using, in the main, the guidance of BR 368.  However, the fire 
engineering consultants stated that the spill plume from the underside of the balcony to the upper edge of 
the balcony edge safety barriers was an adhered plume and above that to the smoke layer the plume was 
adhered.  This meant that the plume temperature was higher than it would have been if the plume had been 
treated as a free spill plume throughout its height of rise to the smoke layer. 

This approach was used in comparison with the other methods where those methods also included 
calculation for an adhered plume. 

Results 

The outputs from the application of the different methods for the production of axisymmetric and spill 
plume mass flow are shown in Tables 1 and 2. 

It should be noted that only the BRE Spill Plume and CIBSE TM19 includes the adhered plume rise of 1.6 
metres in the calculation.  Applied to the other methods, this would s decrease the mass smoke flow.  

 

Table 1. Spill Plume Mass Smoke Flow Predictions 

Method BRE Spill 
Plume 

CIBSE 
TM19 NFPA 92B Thomas 87 Thomas et 

al 98 Harrison 

Mass Smoke 
Flow 122 kgs-1 135 kgs-1 166 kgs-1 129 kgs-1 93 kgs-1 100 kgs-1 

 

Table 2. Axisymetric Plume Mass Smoke Flow Predictions 

Method BR 368 CIBSE TM19 NFPA 92B AS 1668.3 

Mass Smoke Flow 9.84 kgs-1 8.79 kgs-1 10.5 kgs-1 5.7 kgs-1 

 

The outputs characterize the variance between the methods when applied in practice.  As would be 
expected there is very good correlation between the spill plume predicted mass flow using the BRE Spill 
Plume and Thomas 87. 

The AS1668: 3 method for axisymmetric plumes for the large shop unit shows the impact of the lower heat 
release rate which can be considered as providing a reduced safety margin. 
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There is significant variance between the predictions of different models being used to predict the mass 
flow of smoke.  This uncertainty exists whether the model is simple or complex.  The level of complexity 
of the BRE Spill Plume calculation could, to some, infer a greater level of accuracy.  

The use of Computational Fluid Dynamic models is increasing as they are seen as having a greater level of 
accuracy particularly when analysing smoke flows in complex geometries.  However, the data input 
demands, computer time and memory required are significant.  Further the uncertainties associated with the 
input assumptions and problems with validation are inherently the same as for zone models. [46]. [47]  

The need to provide engineers and regulators with predictive models that they can, within the constraints of 
experimental uncertainty; use with confidence is not currently met. 

CONCLUSION 

It is therefore concluded that zone models continue to provide a useful tool for informing fire engineering 
analysis and decision making 

Therefore further experimental analysis of smoke flows by scale modelling and full size modelling, 
supported by the use of validated computational fluid dynamics modelling is required.  Harrison [39] is 
undertaking this research at the University of Canterbury in New Zealand.  

The scale modelling experiments should take account of the various geometrical features and other factors 
that will influence the extent of entrainment into the plume.  The following factors derived from the 
research by Sanderson [1] should be taken into account in future research: 

 The entrainment into the axisymetric plume taking account of fire size in relation to the enclosure 
in which it is located, including wall/corner proximity and flow of air around the fire; 

 The effect on the mass flow of smoke when the width and height of the opening is varied; 

 The influence on the mass flow of smoke as it spreads under a balcony both where there are, and 
where there are no, channelling screens; 

 The variance in entrainment as smoke flows under balconies of varying width; 

 The impact of downstands at the opening from the room of fire origin and at balcony spill edge; 

 The size of the fire being considered. 

To ensure robustness and reproducibility the scale experiments should be repeated ‘blind’.  Subsequently 
full scale modelling should be carried out to determine any scale anomalies.  

Appraisal of the scale experimental results by CFD modelling may be difficult as the scale models 
currently used have their derivation in the appraisal of zone models dealing with fire on a macro scale 
whereas CFD models deal with fire on a micro scale.  However, comparison of the CFD modelling of the 
full scale results, separately and by those having no knowledge of the results of the full scale tests, would 
provide further information regarding the appropriateness of the use of CFD models in the prediction of 
mass smoke flow. 
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