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Abstract

This study investigated the use of optical remote sensing for estimating leaf and

canopy scale light use efficiency (LUE) and carbon exchange. In addition, a new

leaf level model capable of predicting dynamic changes in apparent reflectance

due to chlorophyll fluorescence was developed.

A leaf level study was conducted to assess the applicability of passive remote

sensing as a tool to measure the reduction, and the subsequent recovery, of

photosynthetic efficiency during the weeks following transplantation. Spectral

data were collected on newly planted saplings for a period of 8 weeks, as well

as gas exchange measurements of LUE and PAM fluorescence measurements. A

set of spectral indices, including the Photochemical Reflectance Index (PRI),

were calculated from the reflectance measurements. A marked depression in

photosynthetic rate occurred in the weeks after outplanting followed by a gradual

increase, with recovery occurring in the later stages of the experimental period.

As with photosynthetic rate, there was a marked trend in PRI values over the

study period but no trend was observed in chlorophyll based indices. The study

demonstrated that hyperspectral remote sensing has the potential to be a useful

tool in the detection and monitoring of the dynamic effects of transplant shock.
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Relationships between hyperspectral reflectance indices, airborne carbon ex-

change measurements and satellite observations of ground cover were then ex-

plored across a heterogeneous Arctic landscape. Measurements were collected

during August 2008, using the University of Edinburgh’s research aircraft, from

an Arctic forest tundra zone in northern Finland as part of the Arctic Biosphere

Atmosphere Coupling at Multiple Scales (ABACUS) study. Surface fluxes of CO2

were calculated using the eddy covariance method from airborne data that were

collected from the same platform as hyperspectral reflectance measurements. Air-

borne CO2 fluxes were compared to MODIS vegetation indices. In addition, LUE

was estimated from airborne flux data and compared to airborne measurements

of PRI. There were no significant relationships between MODIS vegetation in-

dices and airborne flux observations. There were weak to moderate (R2 = 0.4 in

both cases) correlations between PRI and LUE and between PRI and incident

radiation.

A new coupled physiological radiative transfer model that predicts changes in the

apparent reflectance of a leaf, due to chlorophyll fluorescence, was developed. The

model relates a physically observable quantity, chlorophyll fluorescence, to the sub

leaf level processes that cause the emission. An understanding of the dynamics

of the processes that control fluorescence emission on multiple timescales should

aid in the interpretation of this complex signal. A Markov Chain Monte Carlo

(MCMC) algorithm was used to optimise biochemical model parameters by fitting

model simulations of transient chlorophyll fluorescence to measured reflectance

spectra. The model was then validated against an independent data set. The

model was developed as a precursor to a full canopy scheme. To scale to

the canopy and to use the model on trans-seasonal time scales, the effects of

temperature and photoinhibition on the model biochemistry needs to be taken

into account, and a full canopy radiative transfer scheme, such as FluorMOD,

must be developed.
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1.1 Global biospheric research and remote sens-

ing

Climate change is one of the defining global and political issues of the 21st century.

There is now very strong evidence that greenhouse gas emissions are driving

increases in global temperatures (IPCC, 2007a). In the latest series of reports

the IPCC (2007a) predicted global mean temperature increases of between 1.1 -

6.4 ◦C over the next 90 years. In addition, there is increasing evidence that the

polar regions are particularly sensitive to the changing climate system (IPCC,

2007a). There is an increased drive to understand the connections between the

biosphere and atmosphere in these regions (and globally) because changes in these

ecosystems could result in feed-backs that exacerbate or mitigate future warming

trends (Frank et al., 2010).

The terrestrial biosphere is one of two natural sinks for anthropogenic CO2

emissions, the other is the Earth’s oceans. Photosynthesis is estimated to account

for the uptake of approximately 60 Gt of carbon per year. Ecosystem respiration

is estimated to balance this flux by being a net source of approximately the same

magnitude (IGBP Terrestrial Carbon Working Group, 1998). The feed-backs that

link temperature, precipitation, photosynthesis and respiration are not yet fully

understood at the global scale. It follows that a key objective of present-day

ecological science is to accurately quantify photosynthesis across spatial scales of

varying magnitude (from the canopy to the landscape to the global scale).

Flux tower systems use the eddy covariance technique to measure canopy scale

fluxes of carbon and energy exchange. Flux towers are fitted with micro-

meteorological suites of instrumentation capable of collecting the high frequency

measurements of wind and gas concentrations that are required to calculate near

surface fluxes of energy and carbon. The source region of a flux tower is referred to
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as the footprint. Flux tower footprints are typically on the order of a few hundred

meters. Each flux footprint contributes to a single measurement, usually at a

frequency of a single measurement every 30 minutes. Therefore, taken in isolation,

flux towers do not facilitate spatially-explicit estimates of photosynthesis.

Over the last 30 years the emergence of large-scale multi-disciplinary experiments,

such as the Boreal Ecosystem Atmosphere Study (BOREAS), resulted in signif-

icant new understanding of energy and carbon exchange in Northern latitude

forested regions (Hall, 1999). These studies were interdisciplinary in nature and

combined measurements from flux towers, airborne campaigns, remote sensing

and process-based models in an aim to assess the drivers of carbon and energy

exchange and set a precedent for this type of research. BOREAS has left a

lasting legacy by way of an international network of flux towers (FLUXNET,

http://daac.ornl.gov/FLUXNET/fluxnet.shtml) which have proved invaluable

in validating and calibrating process-based models.

Flux towers and large scale experiments can provide canopy scale and regional

assessments of carbon exchange, however neither of these techniques directly

provide spatially continuous, global estimates of photosynthesis. There are two

main methods used to estimate global scale rates of photosynthesis: i. Dynamic

Global Vegetation Models (DGVMs) and ii. space-borne remote sensing. In

reality the two methods are not independent but intricately connected. DGVMs

often use remote sensing derived data-sets as driving variables and parameter

sets (Sellers et al., 1996; Cramer et al., 1999) and the MOD17 (Running et al.,

1999) algorithm, used by the MODerate resolution Imaging Spectroradiometer

(MODIS) to calculate global rates of photosynthesis from space, is derived from

a simple production efficiency type model (Haxeltine and Prentice, 1996).

The MODIS MOD17 algorithm builds on a significant body of work that dates

back to the early 1970s, when canopy greenness was first observed from space

http://daac.ornl.gov/FLUXNET/fluxnet.shtml
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by the Landsat series of satellites. Landsat-11 was launched by NASA in 1972

to obtain information relating to a variety of Earth surface processes (including

those relating to the geosphere, biosphere and cryosphere) and heralded the birth

of a new type of multidisciplinary science, Earth Observation. As one of the

two instruments (the other being a type of video camera) onboard Landsat-1,

the MultiSpectral Scanner (MSS) was a broadband sensor capable of retrieving

top of atmosphere (TOA) radiance in four bands, two visible and two infra-red.

Rouse et al. (1973) proposed an algebraic combination of the red visible band and

the infrared band to calculate a Spectral Vegetation Index (SVI) which came to

be known as the Normalised Difference Vegetation Index (NDVI). Because green

vegetation strongly absorbs electromagnetic radiation in the visible wavelengths

and reflects and transmits radiation at longer wavelengths a large differential

between the two bands signifies vegetative biomass (Tucker, 1979). NDVI became

firmly established as an indicator of canopy productivity, and was used to estimate

canopy structural parameters such as the fraction of photosynthetically active

radiation absorbed by the canopy (fAPAR) (Myneni and Williams, 1994) and the

Leaf Area Index (LAI).

1.1.1 The light use efficiency model of productivity

The amount of radiation absorbed by a canopy, or Absorbed Photosynthetically

Active Radiation (APAR), is calculated as the product of fAPAR and the incident

photosynthetically active radiation (PAR). The Monteith (1972, 1977) light

use efficiency model is a simple way of calculating the rate of Gross Primary

Productivity (GPP) (or biomass accumulation), where APAR is multiplied by a

constant referred to as light use efficiency (LUE):

1On launch Landsat-1 was originally called the Earth Resources Technology Satellite (ERTS-
1).
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GPP = LUE × APAR (1.1)

This model forms the basis of several remote sensing based approaches to

calculating photosynthesis (Running and Hunt Jr., 1993; Veroustraete et al., 2002)

including the MODIS photosynthesis algorithm, MOD17 (Running et al., 1999).

Although the model facilitates a simple method for estimating photosynthesis

from space (provided fAPAR and PAR can be measured) there is one significant

drawback; rather than being a constant as assumed in the simple linear model,

LUE is inherently variable. LUE is representative of all the physical, biological

and chemical processes that act to reduce the conversion efficiency of light energy

to chemical energy such as reductions in carboxlation capacity caused by drought

and temperature induced stress. Most algorithms to date, including MOD17,

adjust an optimum biome-specific value of LUE by meteorological scalars that

represent sub-optimal environmental conditions. However, because the scalars can

prove difficult to estimate correctly, values of LUE can lead to the overestimation

of GPP by 20-30% (Heinsch et al., 2006).

Recent research (see Grace et al. (2007) and Coops et al. (2010)) has focused

on developing new approaches for directly inferring LUE from remote sensing.

There are two methods of inferring LUE from spectral radiance and reflectance

measurements that have become established in recent years. The first method

relates to a photo-protective process known as the xanthophyll cycle that occurs

as a result of stress and causes subtle spectral changes in the visible wavelengths.

These changes are quantifiable using an SVI known as the Photochemical

Reflectance Index (PRI) (Gamon et al., 1992). The second method relates to

the passive detection of terrestrial chlorophyll fluorescence, a signal that has been

used for over 80 years by plant physiologists (Kautsky and Hirsch, 1931) but has

only recently been retrieved from space (Guanter et al., 2007). Recent work has



CHAPTER 1. Introduction 6

also focused on accurately retrieving PRI from space (Drolet et al., 2005, 2008;

Hilker et al., 2009, 2011). Neither chlorophyll fluorescence or PRI are presently

used to infer LUE in an operational capacity (such as the MOD17 algorithm).

This is because there are still several unanswered scientific questions that relate

to the interpretation of these complex signals. Such questions include:

1. Are these signals limited to detecting reductions in LUE caused by specific

types of stress? Can they be used in variable illumination conditions?

2. The majority of work has been conducted in dense coniferous canopies

(Coops et al., 2010), can these signals be used to detect changes in LUE

across heterogeneous Arctic regions?

3. Can process-based models, such as the Farquhar et al. (1980) carboxylation

model, be linked to radiative transfer models to predict dynamic changes in

these signals at the leaf scale or at the canopy scale?

1.1.2 General aim of the thesis

The general aim of the thesis was to contribute to knowledge gaps in the

interpretation and modelling of physiological remote sensing signals, working

towards the goal of accurately inferring LUE from space.

1.2 Thesis objectives and chapter structure

The thesis is structured around three specific objectives designed to complete the

general aim of the thesis:
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1. Assess the usefulness of physiological remote sensing signals in detecting

reductions in LUE at the leaf scale caused by transplant shock.

2. Relate physiological remote sensing signals to airborne measurements of

carbon fluxes across the Arctic landscape.

3. Develop a leaf level model capable of predicting changes to apparent

reflectance caused by leaf biochemical dynamics.
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In order to complete the stated thesis objectives, a comprehensive literature

review and three main studies were conducted. The first was a leaf level

experiment (chapter 3), the second was a regional scale study that used airborne

data (chapter 4) and the final study involved developing a new model that linked

a process-based approach of photosystem dynamics to a leaf radiative transfer

model (chapter 5). The chapter structure is as follows:

Chapter 1: Introduction

Chapter 2: Literature review A review of the measurement and modelling

techniques used in regards to the optical remote sensing of plant physiology

and light use efficiency.

Chapter 3: Leaf-level experiment. A leaf level study explored the effects

of reductions in photosynthetic efficiency due to an imposed stressor on

apparent reflectance.

Chapter 4: Regional scale photosynthesis efficiency Simple models were

developed between airborne hyperspectral reflectance indices, satellite ob-

servations of land cover and airborne eddy covariance measurements to es-

timate photosynthetic efficiency across in a sub-Arctic region.

Chapter 5: Modelling chlorophyll fluorescence. A leaf level mechanistic

model of the dynamic energy flow through photosystem II was coupled to

a radiative transfer model to predict dynamic changes in fluorescence as a

function of time. The model was inverted using an Markov Chain Monte

Carlo (MCMC) algorithm and is a precursor to a full canopy scheme.

Chapter 6: General conclusions
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2.1 Measurement of physiological reflectance

and radiance signals

2.1.1 Reflectance spectroscopy

A reflectance spectrum, as measured by spectroradiometry, is obtained by taking

the ratio of reflected radiance to incident irradiance in many narrow wavebands

(typically in the visible to near-infrared regions of the electromagnetic spectrum).

Leaf reflectance spectra have an instantly recognisable shape (see figure 2.1) which

is due to strong absorption by plant pigments in the visible regions. Measurements

of leaf reflectance spectra are referred to as apparent reflectance spectra. This is

because the measured signals contain additional radiant flux from sources such

as chlorophyll fluorescence and/or atmospheric scattering.
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Figure 2.1: Example leaf reflectance and chlorophyll absorbance spectra (modelled

using PROSPECT ).
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2.1.2 The Photochemical Reflectance Index

The xanthophyll cycle

Under conditions of strong sunlight, exacerbated by stress, a plant typically ab-

sorbs more energy than can be used in the photosynthetic reactions. Excess

absorbed light energy can damage the photosynthetic apparatus through the for-

mation of highly reactive oxygen states (Triantaphylidès et al., 2008). Early

chlorophyll fluorescence experiments revealed a photoprotective energy dissipation

mechanism, however it was only until relatively recently that the actual mecha-

nism of dissipation, the xanthophyll cycle, was discovered (Demmig-Adams et al.,

1987). Because the mechanism had the effect of reducing (or quenching) the yield

of chlorophyll fluorescence, it was originally referred to as ‘Non-photochemical

quenching of chlorophyll fluorescence’ (NPQ), a term used in chlorophyll fluores-

cence induction studies.

The xanthophyll cycle refers to the enzyme driven conversion of the carotenoid

pigment violaxanthin (vx) to zeaxanthin (zx) via the intermediary pigment

antheraxanthin (ax). Changes in the xanthophyll cycle are driven by a lowering

of pH within the lumen and ultimately result in the dissipation of excess energy

as heat (Demmig-Adams and Adams III, 1996). The exact mechanisms by which

the xanthophyll cycle dissipates the energy are not well understood but there are

two main hypotheses. Firstly zx (and/or ax) acts like a lightning rod causing

energy to be transferred from excited chlorophyll molecules to the carotenoids

themselves and dissipated. Alternatively either zx (and/or ax) cause structural

changes in the excited chlorophyll molecules that induce protonation based heat

loss (Demmig-Adams and Adams III, 1996). In reality it is likely that both

mechanisms contribute to energy dissipation.

Environmental stress such as drought or low temperatures causes a lowering in the
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tolerance of vegetation to excess light levels and an increase in xanthophyll cycle

activity (Adams III et al., 1995). Furthermore increased amounts of zx have been

found in plants that undergo prolonged periods of stress, such as low temperature

conditions during winter (Adams III et al., 1995). Because vx and zx have differing

absorption spectra, changes in the xanthophyll cycle can be detected using optical

remote sensing. The Photochemical Reflectance Index (PRI)(Gamon et al., 1992)

was developed for this purpose.

History and formulation of the Photochemical Reflectance Index

In a pioneering study, Gamon et al. (1990) first measured changes in apparent

leaf reflectance caused by xanthophyll cycle activity by exposing sunflower leaves

to large increases in incident photosynthetically active radiation (PAR). Leaves

were first covered with black cloth overnight and then the covers were removed at

midday and measurements of spectral reflectance and the relative concentrations

of the xanthophyll pigments in the seconds and minutes after the removal were

taken. Gamon et al. (1990) reported a correlation of close to unity (R2 = 0.99)

between xanthophyll cycle activity, quantified as the relative size of xanthophyll

pigments (or the de-epoxidation state, DEPS) and reflectance changes at 531 nm.

Interestingly, in the same study Gamon et al. (1990) also reported changes in

apparent reflectance at 685 nm and 738 nm due to the quenching of chlorophyll

fluorescence. Following this Gamon et al. (1992) formulated the PRI as:

PRI =
ρRef. − ρ531

ρRef. + ρ531

(2.1)

Where ρRef. denotes reflectance at a reference waveband and ρ531 denotes re-

flectance at 531 nm.
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Normalised difference indices, such as the PRI, are designed to increase the

signal-to-noise ratio of spectral observations. By definition, a difference index

is calculated as the difference between a reference band and a detection band.

The detection band is chosen to be most sensitive to the process, in the case of

xanthophyll cycle activity a wavelength of 531 nm, ρ531 is used. The reference

band, ρRef., is chosen to be insensitive to the process in question (the signal) but

sensitive to other processes that may influence the detection band (the noise). By

taking the difference between the reference band and the detection band, changes

in reflectance in the detection band that are not related to the process in question,

such as directional sunlight effects, are largely cancelled out.

As the xanthophyll cycle acts as a photo-protective mechanism to dissipate excess

absorbed light energy, and because a key response to environmental stress is a

reduction in the efficiency of the photosynthetic reactions leading to an excess of

absorbed light energy, the PRI is able to track changes in photosynthetic efficiency

due to stress. In the study in which PRI was first formulated Gamon et al. (1992)

developed empirical models between PRI measurements and measurements of

leaf-level light used efficiency (LUE). Peñuelas et al. (1995) investigated the link

between PRI, gas exchanges measurements and ∆F/F ′

m across a range of species

in laboratory and field studies and found strong functional relationships between

the different parameters of photosynthetic efficiency. Therefore the key finding

of the early leaf level studies (Gamon et al., 1990, 1992, 1993; Peñuelas et al.,

1995) was that there was now a spectral reflectance method for detecting changes

in photosynthetic functionality on short timescales, that was simply not possible

by using chlorophyll-based indices such as the Normalised Difference Vegetation

Index (NDVI).

The xanthophyll cycle is not the only biological process that influences the PRI

signal. On diurnal timescales, PRI is primarily a function of the xanthophyll

cycle, however over longer periods (weeks to months) PRI is a function of the
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xanthophyll cycle and changes in pool sizes of carotenoid and chlorophyll (Filella

et al., 2009). Guo and Trotter (2004) found strong relationships between the

PRI signal and the ratio of carotenoids to chlorophyll, a recent modelling study

confirmed this result (Garrity et al., 2011).

Scaling PRI to the canopy

Gamon et al. (1992) recognised the potential of PRI for use as a canopy scale

indicator of photosynthetic efficiency. Gamon et al. (1997) followed up the

early leaf level work by conducting plot scale measurements of PRI using a

tram system. The first airborne canopy study was conducted by Nichol et al.

(2000), who identified a strong linear relationship between observations of canopy

PRI made using a helicopter mounted spectrometer and eddy covariance tower

based measurements of LUE for coniferous and deciduous species in the Canadian

Boreal forest. Nichol et al. (2002) found a weaker relationship in a similar study

conducted using helicopter measurements of PRI and flux tower estimates of LUE

over Siberia and identified several factors that may act to weaken the PRI-LUE

relationship at the canopy scale including: i. stand structural features such as

low Leaf Area Index (LAI) values; ii. strong understory reflectance signals; iii.

seasonal changes in pigment composition; iv. atmospheric effects.

Space-based observations of PRI

Several studies have attempted to relate Moderate Resolution Imaging Spectro-

radiometer (MODIS) based PRI observations to flux tower derived estimates of

LUE (Rahman et al., 2004; Drolet et al., 2005, 2008; Garbulsky et al., 2008; Go-

erner et al., 2009) with varying degrees of success. The MODIS sensor has a
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spectral band centred at 531 nm which was designed for use in ocean applica-

tions and therefore has a coarse spatial resolution of 1 km2. However, perhaps

the most important limitation identified in the MODIS studies was the extreme

sensitivity of the PRI - LUE relationships to the sensor and solar geometry. As

two consecutive MODIS observations can be at completely different view angles

this proved to be a major issue.

The sensitivity of reflectance measurements to view and sensor geometries is a

generic problem in Earth observation research, and is mathematically formalised

as the bidirectional reflectance distribution function (BRDF). If the BRDF can be

estimated, then observations from different angles can be compared by adjusting

measurements to a standardised geometry. In most cases the BRDF is defined by

the physical directional properties, referred to as the anisotropy, of the surface.

However PRI is different to other indices (such as the NDVI) in that the biological

processes that PRI quantifies are sensitive to changes in incident light levels. In

effect, the BRDF of PRI is a function of canopy physics and short term changes

in canopy biology.

In part, Drolet et al. (2008) circumvented the view angle issue by partitioning

data into forward-scatter (dark regions of the canopy) and back-scatter (the so

called canopy hot spot) groupings, and found improved relationships with LUE

for back-scatter only observations. However if the use of PRI was to become

operational a more robust method was needed.

Multi-angular measurements of PRI

To infer LUE from space using PRI it is neccessary to disentangle the biological

from the physical view angle effects. One way to separate the biological directional

effects from the physical directional effects is to consider the influence of canopy
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shadow fraction, αs, on reflectance measurements. Hall et al. (2008) used radiative

transfer theory to establish a relationship between shadow fraction and PRI. In

effect, Hall et al. (2008) showed that only a normalised difference index that

was sensitive to physiology driven changes in a particular band would vary as a

function of shadow fraction.

Building upon the previous work of Hall et al. (2008) and empirical canopy

measurements that validated this theory (Hilker et al., 2008), Hall et al. (2011)

proposed that the rate of change of PRI with respect to shadow fraction,

∂PRI/∂αs, should be used to quantify LUE from space rather than PRI alone.

This is because the relationship between ∂PRI/∂αs and LUE is independent of

sun-observer geometries and other non-physiological effects (in contrast to the

relationship between the PRI signal and LUE). Hall et al. (2011) also reiterated

the need for accurate atmospheric correction when deriving estimates of LUE

from space-borne PRI and/or ∂PRI/∂αs observations. Hilker et al. (2011) used

multi-angular satellite data from the CHRIS/PROBA sensor to demonstrate that

∂PRI/∂αs could be used to empirically model LUE from space with a coefficient

of determination of R2 = 0.68.

2.1.3 Passive remote sensing of chlorophyll fluorescence

A similar and complementary avenue of research to PRI is the passive remote

sensing of chlorophyll fluorescence. Chlorophyll fluorescence is often referred to

as the probe of photosynthesis (Bolhar-Nordenkampf et al., 1989; Baker, 2008),

and is measurable using optical remote sensing techniques as well as a suite of

active instruments known as fluorometers.

Chlorophyll fluorescence is the re-emission of absorbed radiation at longer wave-

lengths. Chlorophyll fluorescence occurs when an electron in an electronically
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excited chlorophyll molecule falls to a lower energy state thereby emitting a pho-

ton. Chlorophyll fluorescence competes with photochemistry (the photosynthetic

reactions), constitutive heat dissipation, and regulatory heat dissipation (NPQ)

as an alternate pathway for absorbed light energy. Because the pathways are

in direct competition, there is an intrinsic, biochemical link between chlorophyll

fluorescence and photosynthetic efficiency. Each energy dissipation pathway can

be thought of as a yield, with the sum of all the yields equal to unity. Yields are

properly defined as the ratio of the rate constant of the process of interest (chloro-

phyll fluorescence, heat dissipation, photochemistry) to the sum of all the rate

constants. The rate constants are derived from a system of differential equations,

thereby firmly routing chlorophyll fluorescence theory in quantitative modelling

(Blankenship, 2002). More intuitively, yields can thought of as the probability

that absorbed light will follow a particular pathway.
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Figure 2.2: Chlorophyll fluorescence emission spectra for forward and backward

directional emission
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Figure 2.2 highlights that the chlorophyll emission spectrum of a leaf is char-

acterised by two relatively broad (> 10 nm) peaks, which are centred at ap-

proximately 690 nm and 730 nm and referred to as red and far-red fluorescence

respectively (see figure 2.2). In leaf tissue, the magnitude of the red peak is

reduced by chlorophyll re-absorption (Krause and Weis, 1991) and the ratio be-

tween the two peaks is therefore a function of chlorophyll concentration (Rosema

et al., 1991). Chlorophyll from photosystem II (PSII) contributes exclusively to

the shorter wavelength fluorescence peak, whereas the far-red fluorescence is a

mixture of mostly PSII fluorescence with some PSI fluorescence. The fraction of

far-red fluorescence arsing from PSI is known to increase when temperatures are

sufficiently low (Krause and Weis, 1991).

The efficiency or yield of fluorescence is dependent on a number of factors

including incident light level and stress conditions, such as low temperatures,

but is typically around 3-5% of absorbed radiation. Rapid changes in the kinetics

of chlorophyll fluorescence emission can be stimulated by transferring leaves from

the dark to the light. The curve that results from the kinetics is known as the

Kautsky curve (after Kautsky and Hirsch (1931)) and has been the subject of

considerable study by plant ecophysiologists (see Maxwell and Johnson (2000)

for introduction to techniques). Several parameters that relate to LUE can be

derived from Kautsky kinetics, including the effective quantum yield (also known

as the Genty et al. (1989) parameter), ∆F/F ′

m, using specialist instruments such

as Pulse Amplitude Fluorometers (PAMs).



CHAPTER 2. Measurement and modelling of physiological reflectance 19

The influence of chlorophyll fluorescence on the apparent reflectance

spectrum

At the leaf level chlorophyll fluorescence accounts for approximately 10 - 20% of

the apparent reflectance spectrum, depending on the relative levels of photochem-

ical and non-photochemical quenching and wavelength (Campbell et al., 2008).

Measurements of reflectance spectra alone cannot be used to derive radiometric

estimates of chlorophyll fluorescence. However, reflectance spectra can be used

to measure relative changes in chlorophyll fluorescence by identifying the bands

where the fluorescence signal is expressed and deriving/calculating fluorescence

based SVIs.

Early work by Buschmann and Lichtenhaler (1987) and Lichtenthaler (1989)

established the contribution of chlorophyll fluorescence to apparent leaf reflectance

at far-red and near-infrared wavelengths. In the same study that pioneered the

use of reflectance spectroscopy to measure changes in the xanthophyll cycle,

Gamon et al. (1990) reported changes in leaf reflectance at red (685 nm) and

infrared wavelengths (738 nm) after dark-adapted sunflower leaves were exposed

to high levels of solar irradiation. Gamon et al. (1990) compared these changes

to PAM measurements and found a near identical Kautsky curve trace proving

that spectral reflectance measurements could be used to monitor chlorophyll

fluorescence kinetics. By taking the time difference between a reflectance

spectrum measured at low levels of incident radiation (∼ 10 µmol m−2 s−1) and

a spectrum measured at high levels of incident radiation (∼ 1900 µmol m−2 s−1),

Gamon et al. (1990) was able to elucidate the double peak, Gaussian-like shape

of the chlorophyll fluorescence emission spectrum.

The chlorophyll emission wavelengths overlap with longer wavelength chlorophyll

absorption, leading to the re-absorption of emitted red fluorescence. This

complicates the interpretation of chlorophyll fluorescence and has important
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implications for seasonal and tran-seasonal studies as well as radiative transfer

modelling. Lichtenthaler (1989) identified the effects of changing chlorophyll pool

size on the fluorescence flux and devised a correction factor by taking the ratio

between the two peak values of the chlorophyll emission spectra. Because the

shorter wavelength peak is strongly affected by re-absorption, this ratio correlates

with the total pool size. Gitelson et al. (1999) used this ratio to predict leaf

chlorophyll content with very high levels of accuracy (R2 > 0.95), although these

retrievals were conducted with chlorophyll emission spectra obtained from an

active instrument.

Zarco-Tejada et al. (2000a) measured and modelled (using radiative transfer)

changes in apparent reflectance due to chlorophyll fluorescence at the leaf scale.

This work formulated a number of fluorescence-based reflectance indices and also

utilised a long-pass filter to isolate the fluorescence signal from the reflectance

signal. A companion study then used airborne data to scale apparent reflectance

observations to the canopy scale, by developing relationships between ground-

based measurements of Fv/Fm and airborne measurements of fluorescence-based

spectral reflectance measurements (Zarco-Tejada et al., 2000b).

In addition to fluorescence based indices calculated using reflectance spectra, first

derivative reflectance indices have also been used to calculate vegetation indices to

detect the chlorophyll fluorescence signal (Zarco-Tejada et al., 2003). Reflectance

spectra can also be used to measure changes in the shape of the fluorescence

emission spectrum though the calculation of ‘difference spectra’. Difference

spectra are calculated as the difference between individual spectral measurements

and the resultant residuals (as a function of wavelength) are representative of

the fluorescence contribution to the apparent reflectance. Difference spectra can

either be calculated by measuring apparent reflectance as a function of time

(Gamon et al., 1990) or by using a filter-based system (Zarco-Tejada et al., 2000a;

Campbell et al., 2008). Chlorophyll fluorescence absorption mainly occurs in
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the visible wavelengths (< 700 nm), by filtering an artificial source for these

wavelengths and then remeasuring the same target with an unfiltered source a

difference spectrum is obtained.

In a series of experiments that subjected grapevines to heat and water stress

Dobrowski et al. (2005) analysed the relationships between various fluorescence

based spectral reflectance indices and parameters of photosynthetic efficiency.

This study concluded that although spectral indices could track stress induced

changes in photochemistry there was no single, consistent relationship between

the rate of photosynthesis and fluorescence. Dobrowski et al. (2005) further found

a negative relationship between steady state fluorescence , Ft, and photosynthetic

rate under low light conditions, early in the diurnal cycle. Under warmer

and higher light conditions this relationship reversed and Ft was found to be

positively correlated with photosynthetic rate. The authors hypothesised that

as temperature and light levels increased a shift occurred from photochemical

to non-photochemical quenching accounting for the reversal of the relationship.

Flexas et al. (2000) studied the effects of water stress on Ft using a custom built

fluorimeter and found a marked reduction in Ft under highly irradiated, water

stressed conditions, also signalling an induction of non-photochemical quenching.

In a relatively recent study Campbell et al. (2008) analysed the percentage

contribution of fluorescence to apparent reflectance spectra for maple, corn and

soybean. Campbell et al. (2008) found significant differences between the species,

with the maple leaves emitting significantly more fluorescence than the other two

species.
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The infilling technique

The Fruanhofer infilling technique facilitates the measurement of solar induced

fluorescence in radiometric units, provided that coincident (in time) measurements

of solar irradiance and target (plant matter) radiance can be made. Work

conducted in the mid 1970s by Plascyk and Gabriel (1975); Plascyk (1975)

first developed a helicopter mounted passive instrument capable of retrieving

radiometric solar induced fluorescence by exploiting Fraunhofer lines. Fraunhofer

lines are dark, narrow regions of the solar spectrum caused by the absorption

properties of gases in the Sun and Earth’s atmosphere. Several of these lines,

in particular the solar Hα line centred at 656 nm, and the telluric (Earth based)

lines due to O2 absorption close to 687 nm and 761 nm, occur in the same spectral

region as chlorophyll fluorescence, which in comparison to the Fraunhofer lines is

relatively broad. In effect, the chlorophyll fluorescence emission illuminates the

dark regions and can therefore be retrieved by comparing a measurement of the

dark region without the emission to an infilled measurement. Figure 2.3 presents

a graphical representation of the retrieval technique, as well as the equations that

are used to solve for the infilled radiometric fluorescence flux.

The standard version of the Fraunhofer Line Depth/Discriminator (FLD) algo-

rithm as shown in figure 2.3 assumes constant reflectance, r, and fluorescence, F ,

at the two measured wavelengths. In reality this is often not the case, hence the

development of a number of improved FLD methods. These include the 3FLD

method (Maier et al., 2003) and the iFLD method, which uses linear correction

coefficients to correct for the assumptions in the original algorithm. A compre-

hensive review of the many variants of the FLD algorithm can be found in Meroni

et al. (2009).

There have been several successful applications of the FLD method towards

detecting short term changes in FS driven by physiology at the canopy scale. Moya
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Figure 2.3: Fraunhofer infilling technique. Equations from Meroni et al. (2009).

(2004) used a custom built instrument to detect increases in FS in a herbicide

treated maze canopy, that were concomitant with reductions in photosynthetic

rate and conductance. Perez-Priego et al. (2005) successfully used the infilling

method to detect reductions in Ft of water stressed trees using an above-canopy

mounted spectrometer. In a series of experiments, Damm et al. (2010) measured

Ft and PRI over various crop types as well as measuring carbon exchange using

the eddy covariance technique. Damm et al. (2010) found a strong correlation

between Ft and flux-tower estimates of LUE, after a time-shift correction had
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been applied to account for footprint mismatches between the two system. In

effect the canopy spectrometer was looking at a different footprint to the one

used by the flux system and the time shift correction was used to account for

this discrepancy. The Damm et al. (2010) study highlighted the potential for

the use of Ft in LUE based models. In a novel recent study, Zarco-Tejada et al.

(2012) applied several variants of the infilling algorithm to retrieve chlorophyll

fluorescence using a micro-hyperspectral camera on-board an Unmanned Aerial

Vehicle (UAV).

Fluorescence from space

The FLourescence EXplorer (FLEX) project (Rascher et al., 2008) is a current

proposal for a new space mission submitted to ESA in 2006, which as of November

2010 was moved to Phase-A status. Phase-A/B1 status means that FLEX is one

of two possible missions that will be selected for launch. FLEX has generated a

significant body of work that has significantly advanced the understanding and

interpretation of the Ft signal, including the FluorMOD modelling project and

SEN2FLEX field campaigns.

The first space retrieval of Ft using the FLD method was conducted by Guanter

et al. (2007). Guanter et al. (2007) used data from the MEdium Resolution

Imaging Spectrometer (MERIS), which has a band at 760.6 nm and another at

753.8 nm, to calculate Ft for an area of experimental green vegetation constructed

as part of the SEN2FLEX project. Guanter et al. (2007) measured Ft signals that

were of similar magnitude to ground-based observations, which suggested that the

technique had potential. Joiner et al. (2011) applied the FLD method to data

collected by the Fourier-Transform Spectrometer aboard the GOSAT platform,

and produced both global and seasonal estimates of Ft from space.
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Space estimates of Ft are complicated by atmospheric scattering effects that can

bias the resulting retrievals which are not present in near-surface measurements.

Therefore careful characterisation and correction of the atmospheric state is

needed. Frankenberg et al. (2011a) developed an improved version of the

FLD method using a least-squares method, to separate atmospheric scattering

from fluorescence. Frankenberg et al. (2011b) compared retrievals of Ft from

the improved space-borne retrieval using data from GOSAT to modelled GPP

estimates and found strong, positive relationships.

2.2 Modelling of physiological reflectance and

radiance signals using radiative transfer and

biochemical models

Radiative transfer models complement empirical studies by grounding measurable

quantities in physical theory. In addition, radiative transfer models can be used

to retrieve biophysical parameters such as leaf chlorophyll content through model

inversion. Radiative transfer models simulate remote sensing signals through

the mathematical abstraction of the physical processes that produce such signals.

The processes and mathematical formula that are used to simulate remote sensing

signals depend on the scale of the system. In general most models either simulate

leaf scale signals or canopy scale signals.

Pigments such as chlorophyll absorb electromagnetic radiation in the visible

wavelengths. Therefore pigment pool sizes are typically represented in leaf models

as model parameters. In full canopy simulations structural parameters such as

LAI influence the observable signal and are used as parameters. The process of
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model inversion involves fitting model predictions to measurements in order to

retrieve accurate estimates of model parameters, such as chlorophyll content.

Model calibration, validation and inversion

Model calibration refers to the process of tuning model parameters to match

observed states that are predicted by the model. Model validation refers to the

process of testing (tuned) models with independent data. Both calibration and

validation are important aspects of developing land surface and radiative transfer

models. In classical statistics, parameters of models are considered as fixed point

estimates. This is in contrast to Bayesian statistics, where parameters are assigned

probability distributions. Parameters are often ill-defined and/or unobservable in

complicated models, and as such the Bayesian framework is particularly suited

to ecological modelling (Reichert and Omlin, 1997). This distinction, combined

with computing advances (both in Bayesian algorithms and hardware resources),

means that Bayesian techniques of estimating model uncertainty are increasingly

popular with the ecological modelling community (Quaife et al., 2008; Hill et al.,

2011b; Williams et al., 2005; Malve et al., 2007; Laine, 2008).

Model inversion typically involves using numerical algorithms to find an optimum

set of parameters that best predict measured data. In effect, the aim of model

inversion is to find the optimum calibration. Bayesian methods such as Markov

Chain Monte Carlo, MCMC1, offer arguably more flexibility than traditional least

squares algorithms when dealing with complex models and large parameter spaces.

Data assimilation is the process of using statistical algorithms to fuse data

and model predictions with the aim of improving the predictions (by reducing

error). Although data assimilation is cosmetically similar to inversion, data

1MCMC methods are based on the pioneering work of Metropolis et al. (1953), see Laine
(2008) for some recent ecological applications of MCMC
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assimilation is generally concerned with estimating model states (predicted

quantities that change with time), whereas inversion focuses on retrieving model

parameters. Recent work has used data assimilation methods to combine

remote sensing measurements with process-based models in order to better

constrain model estimates of carbon fluxes (Quaife et al., 2008). Such models

utilise radiative transfer models as the interface between measurements and the

biological processes (states) that give rise to the changes in such signals.

2.2.1 Leaf and canopy radiative transfer models

Leaf radiative transfer models, such as PROSPECT (Jacquemoud and Baret,

1990), are used to simulate the spectral properties of leaves and can be coupled

to canopy radiative transfer models, such as the Scattering by Arbitrary Inclined

Leaves (SAIL) model (Verhoef, 1984) to simulate canopy level reflectance.

2.2.2 PROSPECT

PROSPECT (Jacquemoud and Baret, 1990) was originally designed to model

broad-leaf spectral properties but has also been applied to needleleaf species in

its standard form (Zarco-Tejada et al., 2004) and in a modified form (Moorthy

et al., 2008). PROSPECT is based on the plate theory of radiative transfer

(Allen et al., 1969, 1970) where the leaf is considered as consisting of a number of

horizontal stacked layers. Each layer is then assumed to contain several absorbing

species (chlorophyll, water, other pigments and substances) that absorb light,

and the (non-smooth) plate boundaries are assumed to cause isotropic scattering.

Because the absorbance properties of the individual substances are known apriori,

a number of equations can be derived to solve for the path of light through the

plates in terms of absorbance, transmittance and reflectance.
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2.2.3 Radiative transfer simulations of chlorophyll fluores-

cence

The literature on the radiative transfer modelling of chlorophyll fluorescence is

relatively sparse, however there are at least two models currently in use: i. the

Rosema et al. (1991) model and ii. the flourMOD model (Miller et al., 2005).

Rosema et al. (1991) developed a leaf and canopy level chlorophyll fluorescence

model to simulate laser-induced fluorescence. The model was based on the

Kubelka-Monk system of differential equations which models fluorescence as

upward and downward propagating fluxes. The leaf-level chlorophyll fluorescence

model, fluspect, which is implemented in the SCOPE land-surface scheme (van der

Tol et al., 2009b) is an updated version of the Rosema et al. (1991) model.

The development of the FluorMOD model (Miller et al., 2005) was undertaken

by the European Space Agency (ESA) as a precursor to the FLEX mission. This

work resulted in a leaf model, FluorMODleaf (Pedrós et al., 2010), and a full

canopy model, FluorMOD. FluorMODleaf was largely based on the PROSPECT

(Jacquemoud et al., 2009) model. The key challenge for a fluorescence radiative

transfer model was accurately modelling the effects of re-absorption on the emitted

flux. Like PROSPECT, FluorMODleaf considers the leaf as a stack of plates, each

plate acts like a network both transmitting and absorbing radiation to varying

amounts dependant on the pigment pool concentrations in the plates. From

these plate networks a series of equations can be derived that allows the upward

and downward emitted fluxes of fluorescence to be solved for, as a function of

the incident radiation and a source function representing the quantum yield of

fluorescence (φf ). Pedrós et al. (2010) compared FluorMODleaf to a Kubelka-

Monk type model and found that FluorMODleaf more accurately simulated the

effect of increasing chlorophyll concentration on the emission.

Middleton et al. (2008) compared FluorMOD simulations to observations of
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chlorophyll fluorescence above a corn canopy. The default version of FluorMOD

performed poorly in this study, however when a revised version of FluorMOD was

used good agreement was found between measurements and simulations.

Canopy radiative transfer models contain parameters such as chlorophyll content

and canopy structure that directly affect net rates of photosynthesis and the

surface energy balance. The Soil Canopy, Photochemistry and Energy fluxes

model (SCOPE) model (van der Tol et al., 2009b,a) consists of a physiological leaf

model coupled to a radiative transfer model and is designed to predict chlorophyll

fluorescence as well as a range of other canopy states such as net photosynthesis.

2.2.4 Radiative transfer and biochemical simulations of

PRI

To date, there have been relatively few studies that use radiative transfer

modelling to simulate the PRI signal. This is, at least in part, due to the fact that

the reflectance changes that are quantified by the PRI occur at longer wavelengths

than the changes in the equivalent measurable xanthophyll absorption spectra.

The issue of wavelength shifts between absorption spectra in vitro and spectra

measured in vivo are not unique to xanthophyll pigments. Shifts in the order of

10 nm also occurs with chlorophyll and other carotenoids (Jacquemoud et al.,

1996). Jacquemoud et al. (1996) ascribed the differences as being due to a

combination of solvent effects and the fact that in vivo pigments are usually found

in complex multi-pigment/protein structures. PROSPECT accounts for this by

using empirically obtained specific absorption coefficients (SACs) for mixtures of

pigments and proteins. The newest version of PROSPECT (v5) (Feret et al.,

2008) includes the specific absorption coefficients (SACs) for bulk carotenoids (β-

carotenes, xanthophylls and others), but as of yet, no SACs exists for the relative

contributions of the pigments of the xanthophyll cycle.
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Although there is no explicit radiative transfer model capable of simulating

PRI, a limited number of sensitivity studies have been conducted using canopy

radiative transfer models to assess the effects of extraneous factors on the PRI

signal. Barton and North (2001) used a 1-dimensional ray tracing canopy

radiative transfer model to characterise the effects of canopy architecture and

solar geometry on the PRI signal and found that PRI was particularly sensitive

to LAI. Suárez et al. (2009) coupled PROSPECT 4 with SAIL and a 3D version of

FLIGHT to predict spectral signals over a corn canopy and orchards respectively

and found that the signal was affected by structural parameters such as LAI and

sun-sensor geometry. In a recent study Garrity et al. (2011) compared predictions

made with the latest version of PROSPECT (v5) to measurements of chlorophyll

and carotenoid concentrations and found very strong relationships (R2 > 0.95)

between the ratio carotenoid/chlorophyll pool and modelled PRI.

Over the past 20 or so years several dynamic biochemical models that predict

changes in NPQ and xanthophyll pool sizes as a function of time have been

developed (Sielewiesiuk and Gruszecki, 1991; Porcar-Castell et al., 2006; Ebenhöh

et al., 2011). Although these models typically operate on the scale of the

photosynthetic unit rather than the leaf and calculate dynamics on very short (<

1 second) and short (seconds and minutes) time-scales, they have the potential

to be adapted for the dynamic prediction of PRI providing a suitable radiative

transfer scheme is realised.
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Abstract

Following outplanting, trees undergo a period of stress known as transplant shock.

Tree mortality rates are known to increase during this period; monitoring the ef-

fects of transplant shock is therefore key to improving the future survival rates of

outplanted trees. Leaf reflectance spectra, measured by field spectrometry, can

be used to derive reflectance indices that are related to a number of biophysical

parameters including photosynthetic efficiency and leaf chlorophyll content. Field

spectrometry has the advantage of being non-invasive and relatively cheap and

is therefore a suitable candidate for the monitoring of the effects of transplant

shock. The objective of this study was to assess the applicability of passive re-

mote sensing as a tool to measure the reduction, and the subsequent recovery,

of photosynthetic efficiency during the weeks following transplantation. Spectral

reflectance, gas exchange and chlorophyll fluorescence measurements of Norway

maple (Acer platanoides L.) saplings were collected over an 8 week period, fol-

lowing transplantation from a glasshouse to an outdoor environment. Very low

photosynthetic rates were measured in the week after outplanting. This was

followed by a gradual increase in measured photosynthetic rates, with recovery

occurring several weeks after transplantation. Spectral data were collected on

newly planted saplings in both clear and cloudy conditions, and the relationships

between spectral reflectance indices, photosynthetic light use efficiency (LUE),

and the quantum yield of photosystem II (estimated using the fluorescence param-

eter ∆F/F′

m
) were explored. The Photochemical Reflectance Index was weakly

to moderately correlated with LUE (R2 = 0.22, p < 0.05), ∆F/F′

m
(R2 = 0.35,

p < 0.05) and PPFD (R2 = 0.30, p < 0.05). Several chlorophyll-based spec-

tral indices were moderately correlated with LUE, including ND705 (R2 = 0.45,

p < 0.05). As with LUE, there was a marked trend in PRI values over the

study period but no trend was observed in chlorophyll-based indices. The study

demonstrates that hyperspectral remote sensing, and in particular the PRI, has
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the potential to be a useful tool in the detection and monitoring of the dynamic

effects of transplant shock.

3.1 Introduction

Transplant shock describes the effects of a number of physiological stresses that

occur following “outplanting” (re-planting in a new environment). Transplant

shock is characterised by reduced growth and increased mortality rates. The

effects of transplant shock are most obvious in the days and months after planting,

although reduced growth rates have been recorded several years after outplanting

(Zaczek et al., 1997). During the acclimatisation period stored carbohydrates are

used for new root growth, but if the stored carbohydrates are exhausted then the

tree is at risk of death (Rietveld, 1987). Any number of biotic and abiotic stress

factors can contribute to the overall transplant shock effect, including: differences

in the light environment or in the nutritional status between the nursery and

field, drought stress, frost, mechanical damage or competition with surrounding

vegetation (Close et al., 2004).

Measurements of the effects of transplant shock on outplanted trees fall into

two broad categories: i. morphological and ii. physiological. Morphological

measurements, such as the Tree Planting Index (Zaczek et al., 1997), Transplant

Stress Index (South and Zwolinski, 1997) and the Tree Health Index (Anastasiou

and Brooks, 2003), are based on repeated measures of tree height before, during

and/or after the transplant shock period. Morphological measurements are

simple and cheap, however it is only with physiological measurements that

detailed information about the underlying biological state of the trees can be

obtained. The drawback with physiological measurements is that they can



CHAPTER 3. Remote sensing of transplant shock 34

be time-consuming and difficult to successfully apply and interpret. Examples

of physiological measurements include leaf gas exchange (Close and Beadle,

2003), chlorophyll fluorescence (Close and Beadle, 2003) and leaf nitrogen levels

(Anastasiou and Brooks, 2003).

Optical remote sensing is a passive, non-destructive technique that has the

potential to measure several aspects of the physiological effects of transplant

shock. The physiological application of optical remote sensing is a rapidly

advancing field and cheap, portable commercial systems are now available for

operational use to end-users such as foresters. Leaf-level studies that employ

optical remote sensing typically measure the leaf reflectance spectrum (in the

visible to near-infrared wavelengths), which is the ratio of reflected radiance

to incident irradiance (see figure 3.1). Changes in leaf-level physiology, such

as pigment pool sizes, which may occur during the transplant shock period

directly affect the measured reflectance spectrum. Spectral bands, defined by

their respective wavelengths, that are sensitive to changes in physiology can then

be selected to monitor changes in reflectance due to environmental stressors. The

characteristic ‘red-edge’ feature of a leaf spectrum is visible as a sharp increase in

reflectance between 675 - 750 nm. The red edge is caused by the contrast between

strong chlorophyll absorption in the red region of the spectrum and a lack of

absorption in the adjacent near-infrared region (Myneni et al., 1995). Several

reflectance indices, usually calculated as the ratio and/or differences between two

or more spectral bands, that target the red-edge region of the spectrum have been

developed to estimate leaf chlorophyll content across a range of species (Sims and

Gamon, 2002).

In addition to leaf chlorophyll content, reflectance spectra can also be used to

detect changes in light use efficiency (LUE). LUE is defined as the ratio of

photosynthetic rate to absorbed Photosynthetic Photon Flux Density (PPFD),

and is an indicator of plant health. The Photochemical Reflectance Index (PRI)
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was developed by Gamon et al. (1992, 1993) as a way to measure reversible changes

in carotenoid pigments, known as the xanthophyll cycle. The xanthophyll cycle

is part of a complex system of reactions that acts to dissipate potentially harmful

excess absorbed light energy as heat. PRI has been widely applied in a range of

plant stress studies to gain insight into LUE (Thenot et al., 2002; Meroni et al.,

2008; Sarlikioti et al., 2010; Garrity et al., 2011).

Reflectance spectra can also be used to detect changes in chlorophyll fluorescence,

a process that is referred to as a ‘direct probe’ into the photosynthetic apparatus

(Bolhar-Nordenkampf et al., 1989; Baker, 2008). Chlorophyll fluorescence is

the re-emission of absorbed radiation at longer wavelengths and competes with

photosynthesis and heat dissipation as an alternate pathway for absorbed light

energy. As well as several reflectance indices that have been specifically developed

to measure chlorophyll fluorescence, chlorophyll fluorescence can be measured

in absolute radiometric units using a technique known as Fraunhofer infilling

(see Meroni et al. (2009) for a list of fluorescence indices and a comprehensive

review of the literature). Pulse Amplitude Modulated Fluorometers (PAMs) are

active instruments that detect rapid changes in the chlorophyll fluorescence signal

and can be used to estimate a range of photosynthetic efficiency parameters

which reflect the underlying physiological status of the tree. Close and Beadle

(2003) used PAM data to investigate the effects of photoinhibition on a sample of

transplanted saplings, and found a marked depression in photosynthetic efficiency

in the weeks following planting.

The objective of this study was therefore to investigate the applicability of

using passive remote sensing methods to detect changes in tree physiology

during the transplant shock period. Results are presented from an experiment

conducted under natural light conditions in which the photosynthetic recovery

of transplanted Norway maple (Acer platanoides L.) saplings was investigated
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using a combination of gas exchange, PAM fluorescence and spectroradiometer

measurements.

Figure 3.1: Reflectance spectrum with the first derivative of the reflectance

spectrum shown in the insert.

3.2 Methods

3.2.1 Bedding and experimental design

A population of 100 Norway maple saplings were planted between the 5th and

the 9th June 2008. The saplings were planted on a purpose built plot in a

5 x 20 tree grid formation, at Kings Buildings, University of Edinburgh, UK.

The saplings were 2.5 years old and 1.25 to 1.5 m tall at the time of purchase

and had previously been stored in a glasshouse for 6 weeks until the leaves
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were fully developed. Measurements of leaf reflectance and gas exchange were

collected on 7 days during an 8 week period, from planting until the 5th August

2008. PAM fluorescence measurements were not carried out on 23rd June and

16th July but were carried out on all other measurement days. On the 23rd

June measurements were collected from 1400-1600 local time, on the 5th August

measurements were collected during early morning (0900-0930), midday (1200-

1230) and late afternoon (1530-1600). On all other days measurements were

collected between the hours of 1000 and 1300.

3.2.2 Spectral measurements

Repeated observations were carried out on leaves from a subset of 20 trees.

The 20 trees were located at the southern end of the site, and were chosen for

the homogeneity of the light conditions and for ease of access. An Analytical

Spectral Devices FieldSpec Pro (ASD Inc., Boulder, CO, U.S.A.) was used to

collect spectra in a single sensor biconical configuration. The spectrometer was

used in conjunction with an 8◦ field of view fore-optic. Reflectance spectra were

calculated by normalising leaf spectra to measurements of a calibrated, near-

lambertian reflective standard (Spectralon, Labsphere, North Sutton, NH, U.S.A).

Spectra were collected during both clear sky and cloudy conditions, with each leaf

measurement followed by a measurement of the standard. Each spectrum was an

average of 25 measurements and three spectra were collected per leaf sampled.

Spectra were sampled in the nadir position at a fixed distance from the adaxial

side of the leaf, which resulted in a spot radius of 2.81 cm.
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3.2.3 Leaf gas exchange and PAM fluorescence

An LCPro+ portable photosynthesis system (ADC Bioscientific Ltd., U.K.)

was used to collect measurements of photosynthetic rate at a fixed incident

photosynthetic photon flux density (PPFD) of 870 µmol m−2 s−1. Photosynthetic

light use efficiency (LUE) was calculated as photosynthetic rate / PPFD. The

Quantum yield of Photosystem II, ∆F/F′

m
, was estimated using a Walz Diving

PAM (Heinz Walz GmbH, Effeltrich, Germany) as well as indident PPFD and leaf

temperature. Photosynthesis and PAM fluorescence measurements were collected

from the same leaves as the spectra, as close in time (under 5 minutes) as possible.

A weather station positioned within 500 m of the plot recorded atmospheric

pressure, rainfall, air temperature, wind speed, relative humidity, and short-wave

radiation at 1 minute intervals.

3.2.4 Reflectance processing and statistics

Statistical analysis and data processing were performed using the Python pro-

gramming language. For the purposes of exploring the utility of spectral indices

for monitoring photosynthetic efficiency during the transplant shock period, a

number of spectral reflectance and first derivative indices were calculated (with

the formulations and references listed in table 1). First derivative spectra were

calculated using a Savitzky-Golay filter (Savitzky and Golay, 1964). A per sample

leaf average and standard error was calculated from the repeat spectra. Linear

models were developed between spectral indices and LUE, ∆F/F′

m
, PPFD and

leaf temperature and using the SciPy (Python) statistics library.
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Figure 3.2: Meteorological conditions at the study site during the study period.

Top (a) solar flux and bottom (b) air temperature.

3.3 Results

3.3.1 Meteorological conditions

Time series of half hourly average temperature and half hourly average solar flux

during the experimental study period are shown in figure 3.2. The experimental

period was predominately wet (data not shown) and cloudy. The maximum day

time temperature during the study period was 24.7 ◦C and the minimum night

time temperature was 6.34 ◦C.
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Figure 3.3: Daily distributions of parameters of photosynthetic efficiency and

reflectance indices ie during post-transplant acclimatisation. The median, 25th and

75th percentiles are shown by the middle lines, lower limits and upper limits of the

boxes. The whiskers represent the maximum and minimum value within 1.5 times the

interquartile range, values outside this range are shown as outliers.

3.3.2 Time course of photosynthetic parameters

Daily photosynthetic rate measurements are shown in figure 3.3a. The lowest

value of photosynthetic rate, 0.79 µmol m−2 s−1, was measured at the start of the

sampling period on the 23rd June at 15:26. The maximum value of photosynthetic

rate, 11.56 µmol m−2 s−1, was measured at the end of the sampling period on

the 5th August at 15:26. On the 5th August similar photosynthetic rates were

measured during the early morning and noon periods with median values of

9.80 and 9.82 µmol m−2 s−1 respectively. Reduced photosynthetic rates were
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recorded during the late afternoon period (median value 5.71 µmol m−2 s−1). All

measurements of photosynthetic rate collected during the late afternoon period

on the 5th August were greater in value than the maximum photosynthetic rate

(5.43 µmol m−2 s−1) measured on the 23rd June

The time course of measurements of ∆F/F′

m
are shown in Figure 3.3b. The lowest

value of ∆F/F′

m
, 0.30, was measured on the 23rd July, the lowest daily median

value, 0.43, was measured on the 24th July. The maximum value, 0.70, was

measured on the 25th July and the maximum median value, 0.52, occurred on

the final day of sampling, 5th August during the early morning period. A slight

decrease in ∆F/F′

m
was measured in the noon sampling period on the 5th August,

with a median value of 0.55 in comparison with the early morning median of 0.55.

A subsequent fall in ∆F/F′

m
values was measured in the late afternoon with a

median of 0.52.

3.3.3 Remote sensing of photosynthetic efficiency

Relationships were explored between leaf gas exchange, PAM fluorescence, re-

flectance indices and meteorological conditions to test the applicability of optical

remote sensing for detecting the physiological effects of transplant shock. A suite

of spectral indices sensitive to physiological status were analysed by testing the lin-

ear dependence of said indices with other parameters of photosynthetic efficiency.

These results are summarised in Figure 3.4. A moderate relationship (R2 > 0.4,

p < 0.05) was found between several chlorophyll-based spectral indices, namely

SR705, ND705, mND705, ND705, and LUE. A weak to moderate relationship

was found between PRI and ∆F/F′

m
(R2 = 0.35, p < 0.05) and PRI and PPFD

(R2 = 0.3, p < 0.05). No significant relationship (all p >= 0.05) was found

between any of the spectral indices tested and leaf temperature (figure 3.4b).
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Figure 3.4: Coefficients of determination between a set of spectral reflectance

indices and (a) LUE, (b) ∆F/F′

m
, (c) PPFD and (d) leaf temperature

Figure 3.3c and figure 3.3d shows time courses for PRI and the chlorophyll-based

index, ND705, respectively. The lowest median value of PRI, -0.053, occured

on the 23rd June with the maximum value, 0.047, recorded on the 4th August.

PRI values on the 5th of August are higher in the early morning period when

compared to the noon and late afternoon. There is little change in the median

ND705 medians values over the full time-course of the experiment. However, on

the 5th August the highest ND705 values are recorded during the early morning

period with the lowest values occurring in the late afternoon.

Weak to moderate relationships (0.25 > R2 < 0.4) were found between several
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fluorescence-based indices and LUE (figure 3.4a). A moderate to weak relation-

ship was found between a first derivative index, ZTd2, and PPFD (R2 = 0.28,

p < 0.05).

Figure 3.5: Linear regression models for (a) PRI Vs LUE, (b) PRI Vs ∆F/F′

m
, (c)

PRI Vs PPFD and (d) PRI Vs leaf temperature

3.4 Discussion

This study investigated the applicability of spectral reflectance indices for de-

tecting the physiological effects of transplant shock on Norway maple saplings.

The recovery of photosynthetic efficiency of a sample of saplings following out-

planting was tracked using gas exchange, chlorophyll fluorescence parameters and
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Figure 3.6: Linear regression models for (a) ND705 Vs LUE, (b) ND705 Vs ∆F/F′

m
,

(c) ND705 Vs PPFD and (d) ND705 Vs leaf temperature

hyperspectral reflectance measurements. Linear models were developed between

reflectance indices and parameters of photosynthetic efficiency.

Very low rates of photosynthesis were measured at the beginning of the study

followed by a transient recovery during the following weeks. Reduced photosyn-

thetic rates are a typical symptom of transplant shock (Close et al., 2004), however

reduced rates of photosynthesis can also be caused by sub-optimal environmen-

tal conditions. In particular it has been shown that Norway maple growth may

be limited by extreme temperatures, low precipitation and high soil pH (Nowak

and Rowntree, 1990). Temperatures during the study were within the normal
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range for the time of year and rainfall was plentiful. This suggests that, assum-

ing soil pH was constant during the study, temporal changes to meteorological

conditions were not the limiting factor in relation to measured photosynthetic

rates. Photosynthetic rate is also influenced by leaf growth, and as leaves ma-

ture both photosynthetic rate and leaf chlorophyll content undergo rapid changes

(Dougherty et al., 1979). Although the sapling leaves used in this study were

fully expanded prior to planting, it is possible that some measurements may have

been made on leaves that were close to the end of the developmental maturation

process. It follows that the measured photosynthetic rates at the start of the

study may have been reduced due to a combination of the effects of transplant

shock and leaf growth.

As with LUE, there was a clear increase in PRI values over the study period

(Figure 3.3c) and PRI was found to be weakly to moderately correlated with

LUE and ∆F/F′

m
. This is in agreement with Nakaji et al. (2007) who found

similar correlations (R2 = 0.38) with PRI and LUE under cloudy conditions. The

PRI signal is a function of the changing state of the xanthophyll cycle, which

is a biochemical response to excess light levels brought about by physiological

stress. As transplant shock occurs, in part, due to the acclimatisation of plants

to higher light environments (Close et al., 2004) the correlation found between

PRI and PPFD is to be expected (Figure 3.5c). Moderate correlations were

found with spectral indices designed to measure leaf chlorophyll content, such as

ND705, and LUE. However, unlike LUE and PRI there was no clear trend

in ND705 over the study period. Furthermore there were very weak or no

significant relationships found between ND705 and ∆F/F′

m
and PPFD. It is

thereby proposed that although chlorophyll-based indices can provide a general

indication of photosynthetic efficiency, one must use indices that are sensitive to

more rapid changes in plant biochemistry to capture the dynamic nature of the

effects of transplant shock.
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There was a slight positive trend in ∆F/F′

m
over the study period, however

data were missing in the early part of the study therefore no firm conclusions

can be drawn. Close and Beadle (2003) found a similar trend in pre-dawn

∆F/F′

m
for a sample of Eucalyptus nitens with the main difference being a longer

recovery period (20 to 30 weeks), although the Close and Beadle (2003) study

was conducted under low temperature conditions. In general, similar correlations

were found between chlorophyll fluorescence indices (ztd1, ztd2) and chlorophyll

content indices (ND705, mND705) and parameters of photosynthetic activity

(Figure 3.4). It is well known that fluorescence indices are sensitive to changes

in total chlorophyll content and this could account for the similar relationships

(Meroni et al., 2009). In any case, the relationship between absolute chlorophyll

fluorescence and photosynthetic rate is not simple: under low light conditions

fluorescence may be negatively correlated with photosynthetic rate and under

high light conditions this relationship may reverse (Rosema et al., 1998), hence

care must be taken when interpreting fluorescence-based indices as indicators of

photosynthetic efficiency.

Due to the prevailing meteorological conditions during the study period (figure

3.2a), there were few opportunities to collect spectra in clear sky conditions,

therefore spectra were collected under both clear and cloudy skies. Measurement

error may be present in the spectra collected under cloudy conditions, which

may have acted to reduce the correlations between spectral indices and LUE.

Firstly, the limitation of the single-beam spectrometer method is that accurate

measurements of reflectance rely on the assumption of identical illumination

conditions between measurements of the leaf and reference panel (Milton et al.,

2009). In practice, this error can be reduced by sampling in optimal low-

cloud conditions and minimising the time lag between target and reference

measurements. In this study, leaf and reference measurements were taken

alternately to reduce the time difference to the order of seconds. A second possible
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source of error occurs due to bidirectional reflectance distribution function

(BRDF) effects. The BRDF describes, mathematically, how observed reflectance

is dependant on the angle of the observer and the direction of the incoming

radiation. Under diffuse light conditions, the BRDF of vegetation is different

to the BRDF of vegetation under clear sky conditions. In particular, measured

reflectance in the visible region of the spectrum increases linearly as the proportion

of diffuse radiation increases (Gilabert and Meliá, 1993). As PRI, and several

other spectral indices, make use of visible bands, the signal may be influenced by

confounding effects under cloudy sky conditions unrelated to xanthophyll cycle

activity.

Relatively few studies have been carried out that explore the use of passive (or

active) remote sensing techniques for detecting the effects of transplant shock and

as such there are several suggestions for further work. Firstly, by their nature,

spectral measurements are indirect. Direct sampling of plant pigments during

the recovery period would be useful in testing the hypothesis that PRI may

be more useful than chlorophyll-based indices in dectecting dynamic changes in

photosynthetic efficiency during the transplant shock period. Secondly, a study

under clear sky conditions or with a dual-beam spectrometer may increase the

measured correlation coefficients. Thirdly, this study concentrated on measuring

the early onset effects of transplant shock. Transplant shock can also cause long

term (seasonal and trans-seasonal) reductions in photosynthetic efficiency due to

water stress (Barton and Walsh, 2000), which may be measurable using phys-

iological remote sensing. In addition, measurements of rates of photosynthesis

prior to outplanting would also be useful as these would demonstrate the initial

decline and recovery more clearly. Nonetheless, the study demonstrated that hy-

perspectral remote sensing has the potential to be a useful tool in the detection

and monitoring of the dynamic effects of transplant shock.
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Table 3.1: Reflectance index reference table. Where ρx is apparent reflectance at x

nm and Dρx is the first derivative spectra with respect to wavelength at x nm.

Shortened name Formula Pigment/process Citation

broadband NDVI ρNIR−ρV is.

ρNIR+ρV is.
chlorophyll Vogelmann et al. (1993)

SR 680 ρ800

ρ680

chlorophyll Sims and Gamon (2002)

SR 705 ρ750

ρ705

chlorophyll Sims and Gamon (2002)

mSR 750 ρ750−ρ445

ρ750+ρ445

chlorophyll Sims and Gamon (2002)

ND 680 ρ800−ρ680

ρ800+ρ680

chlorophyll Sims and Gamon (2002)

ND 705 ρ750−ρ705

ρ750+ρ705

chlorophyll Sims and Gamon (2002)

mND 705 ρ750−ρ705

ρ750+ρ705−2×ρ445

chlorophyll Sims and Gamon (2002)

inverse 1 to 5 1
ρ500,670,530,550,700

chlorophyll Gitelson et al. (2003)

r 750 ρ750−ρ800

((ρ750−ρ695)−1) chlorophyll Gitelson et al. (2003)

PRI ρ531−ρ570

ρ531+ρ570

carotenoids/chlorophyll Gamon et al. (1992)

SIPI ρ800−ρ445

ρ800+ρ680

carotenoids/chlorophyll Peñuelas et al. (1995)

PSRI ρ678−ρ500

ρ750

carotenoids/chlorophyll Merzlyak et al. (1999)

zt 1
ρ2

683

ρ675×ρ690

fluorescence Zarco-Tejada et al. (2000a)

zt 2 ρ750

ρ800

fluorescence Zarco-Tejada et al. (2000a)

zt 3 ρ685

ρ655

fluorescence Zarco-Tejada et al. (2000a)

zt 4 ρ690

ρ655

fluorescence Zarco-Tejada et al. (2000a)

zt 5 ρ680

ρ630

fluorescence Zarco-Tejada et al. (2000b)

zt 6 ρ685

ρ630

fluorescence Zarco-Tejada et al. (2000b)

zt 7 ρ687

ρ800

fluorescence Zarco-Tejada et al. (2000b)

zt 8 ρ690

ρ630

fluorescence Zarco-Tejada et al. (2000b)

zt 9
ρ2

685

ρ675×ρ690

fluorescence Zarco-Tejada et al. (2000a)

zt 10 ρ685

ρ655

fluorescence Zarco-Tejada et al. (2000b)

zt 11
ρ2

683

ρ675×ρ691

fluorescence Zarco-Tejada et al. (2000a)

DPI ρ688×ρ710

ρ2

697

fluorescence Zarco-Tejada et al. (2003)

zt d1 Dρ705

Dρ722

fluorescence Zarco-Tejada et al. (2000b)

zt d2 Dρ730

Dρ706

fluorescence Zarco-Tejada et al. (2000b)

dob 1 ρ690

ρ600

fluorescence Dobrowski et al. (2005)
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Abstract

There is growing evidence that the Arctic is warming at a faster rate than the

rest of the world. Arctic ecosystems are thought to be particularly sensitive

to temperature changes. With regards to the carbon cycle higher temperatures

are expected to lengthen the growing season, although this may be balanced in

part by increased rates of heterotrophic respiration. Airborne measurements were

combined with multi-sensor satellite observations to explore spatial relationships

between carbon exchange and vegetation cover across an Arctic landscape.

Airborne data were collected from the Kevo Natural Park region, Northern

Finland, during August 2008; where a mix of sparse birch forests, mire, small lakes

and pine contribute to a spatially complex and heterogeneous landscape. Surface

fluxes of CO2 were calculated using the eddy covariance method from airborne

data. Airborne CO2 fluxes were compared to MODIS vegetation indices. In

addition, landscape light use efficiency (LUE) was estimated for the birch forests

by combining airborne flux measurements with tower estimates of respiration

and satellite-based estimates of the fraction of absorbed photosynthetically

active radiation (fAPAR). Landscape LUE was compared to coincident airborne

measurements of PRI and NDVI. There were no significant relationships between

MODIS spectral indices and airborne flux observations. There were weak

to moderate (R2 = 0.4 in both cases) correlations found between PRI and

LUE and between PRI and indicident photosynthetically active radiation. In

conclusion, aircraft observations of CO2 fluxes were found to be sensitive to

changes in incident solar radiation across the heterogeneous Arctic landscape,

and hyperspectral reflectance indices such as the PRI were found to have the

potential to quantify this sensitivity.
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4.1 Introduction

There is growing evidence that the Arctic is warming at a faster rate than the

rest of the world (IPCC, 2007b; McBean et al., 2005). The instrumental record

indicates that Arctic regions (above 60◦ N latitude) have warmed at an average

rate of 0.09 ◦C per decade during the 20th century, in comparison with a Northern

Hemisphere rate of 0.06 ◦C per decade (McBean et al., 2005). Rapid warming in

the Arctic is caused by the sensitivity of snow and ice cover to small increases

in temperature, causing changes in local and regional precipitation patterns

(McBean et al., 2005).

Arctic ecosystems are thought to be particularly sensitive to temperature changes.

This is because Arctic species are often highly specialised and in lower latitude

Arctic regions, subtle changes in ecosystem composition may lead to the loss

of some species (Callaghan et al., 1995; IPCC, 2007b). With regards to the

carbon cycle, higher temperatures are expected to lengthen the growing season

(Linderholm, 2006). Although this may be balanced by increased rates of

heterotrophic respiration, as Arctic soils act as significant long-term stores of

organic carbon (Hartley et al., 2008).

Remotely sensed data has the potential to measure changes in Arctic ecosystems

at a range of scales. The Normalised Difference Vegetation Index (NDVI) is a

spectral vegetation index (SVI) that has found widespread application in Arctic

applications (Stow, 2004). NDVI is typically used as an indicator of the amount of

green vegetation and has been used to infer Leaf Area Index (Riedel et al., 2005;

Williams et al., 2008) at smaller scales and changes in productivity at larger

scales (Myneni et al., 1997). Due to the remoteness of the observed regions, a

key challenge in Arctic ecosystems is validating remotely sensed measurements.

Huemmrich et al. (2010) found that significant changes in NDVI could occur
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within species, signalling that care must taken when interpreting changes in NDVI

as indicators of different species.

La Puma et al. (2007) explored the relationships between NDVI and gross

primary productivity (GPP) and between NDVI and ecosystem respiration

(Re) for an Alaskan Arctic ecosystem. An initial analysis revealed strong

relationships between carbon fluxes and NDVI. However after accounting for

seasonal variations, NDVI was found to explain no more than 25% of the variance

in flux measurements. This work suggests that NDVI alone is an inadequate

measure of ecosystem productivity on short timescales.

The Monteith [1972, 1977] light use efficiency (LUE) model is widely used to

predict photosynthesis from optical remote sensing, however Arctic applications

have been limited in number. The model states that photosynthesis can be

calculated as the product of absorbed radiation (APAR) and an efficiency term,

LUE: GPP = APAR × LUE. APAR is estimated as the product of the

fraction of absorbed radiation (fAPAR) and incident photosynthetically active

radiation (quantified as the photosynthetic photon flux density, PPFD). fAPAR

has a near linear relationship with NDVI and so can be derived from remote

sensing observations. LUE is representative of the biophysical processes that

limit photosynthesis, such as drought or temperature induced stress, and can

be estimated from meteorological conditions or flux tower measurements. LUE

can also be inferred from physiological remote sensing observations such as the

Photochemical Reflectance Index (PRI) (Coops et al., 2010). Huemmrich et al.

(2010) developed a LUE based model to predict photosynthesis as a function

of absorbed radiation for Arctic tundra species. Huemmrich et al. (2010) found

significant differences in LUE between species, however a warming treatment did

not cause changes in LUE within species.

Airborne remote sensing observations are typically collected at much higher
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spatial and spectral resolutions than satellite measurements. In addition to

hyperspectral reflectance measurements, it is also possible to measure surface

fluxes of carbon and energy exchange from airborne platforms using the eddy

covariance technique. The key difference between airborne and tower based

eddy covariance measurements is that airborne fluxes are measured across the

landscape, whereas towers are fixed point systems (although the tower footprint

changes as a function of the prevailing wind direction). In theory, this makes

airborne flux measurements particularly useful for characterising fluxes across

spatially heterogenous regions such as the lower latitude Arctic. In reality,

airborne flux measurements are constrained by a minimum averaging length

requirement analogous to the temporal averaging requirement of tower based

data. Minimum averaging lengths are on the order of a few km, depending on

the surface characteristics and the local meteorological conditions. In a recent

study Zulueta et al. (2011) compared satellite observations of NDVI from the

Moderate Resolution Imaging Spectroradiometer (MODIS) sensor to airborne

CO2 flux estimates across the Alaskan Barrow land peninusla, an area populated

by wet sedge tundra species such as Carex aquatilis. Zulueta et al. (2011) found

a correlation of moderate strength (R2 = 0.5) between satellite derived NDVI

observations and CO2 measurements after the data had been filtered for water

pixels.

The objective of this study was to explore spatial relationships between carbon

exchange and optical remote sensing measurements across the Arctic landscape.

The study aimed to test two hypotheses: 1. Relationships exist between MODIS

SVIs and airborne flux observations across a heterogeneous Arctic landscape;

2. Hyperspectral reflectance indices can be used to infer LUE across the same

landscape.
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4.2 Methods

4.2.1 Study design

This study combined data from multiple instruments to assess carbon exchange

across the Arctic landscape. A summary of the data-sets and instrumentation

used is shown in table 4.1. There were two main parts to the study:

Objective 1: Explore the relationships between airborne CO2 flux mea-

surements and spatial measurements of NDVI and EVI observed

by MODIS. To accomplish this task the flux footprint was first estimated

and then the relationships between within footprint EVI/NDVI pixels and

corresponding flux measurements were analysed.

Objective 2: Evaluate the relationships between landscape LUE and

hyperspectral reflectance indices. LUE was calculated for birch dom-

inated land-cover only by combining aircraft measurements of net carbon

fluxes with tower based respiration estimates, and MODIS derived fAPAR.

The relationships between hyperspectral reflectance indices calculated from

airborne measurements and LUE were then analysed.
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Table 4.1: Data and instrumentation used in the study. The following key is used

in the ‘scale’ column: {G = ground, A = airborne, S = satellite, T = flux tower }.

Data-set Scale Platform (instrument) Date collected

Land-cover map S, G IKONOS, ground survey 30-Sep-2007,

2007-2008

EVI, NDVI S MODIS MOD13 27-Jul-2008 to

11-Aug-2008

PRIASD, NDVIASD A Dimona motor glider (2

× ASD FieldSpec)

7-Aug-2008

PPFD A Dimona motor glider

(ASD FieldSpec)

7-Aug-2008

CO2 flux A Dimona motor glider

(BAT probe/IRGA)

7-Aug-2008

Re T Birch flux tower every half hour

4.2.2 Study site

The study site is classed as a sub-Arctic forest tundra zone, although the site

is within the bounds of the Arctic circle. The site is located in the northern

most commune of Finland, Utosjoki, and is part of the Kevo Nature Reserve,

which covers approximately 720 km2 of protected land (Heikkinen et al., 1998).

The local vegetation consists of a patchy mix of sparse, low density polycormic

(multi-stemmed) birch (Betula pubescens) trees, lichen and Vaccinium species

such as bilberry bushes and a limited amount of Scots Pine (Pinus sylvestris

L.). There are also several small lakes and mire areas which contribute to the

complex, heterogeneous nature of the landscape. In the 1960s an outbreak of

Epirrita autumnata L. (Autumnal Moth) larvae defoliated large areas of the

nature reserve. Significant areas of forest are still damaged, as birch in these

areas recover particularly slowly (Heikkinen et al., 1998). The Kevo Sub-Arctic
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Research Station is located within the study area at approximately 69.45◦N,

27.01◦E.

4.2.3 Airborne measurements

An airborne campaign was conducted during August 2008 using the University

of Edinburgh’s research aircraft, as part of the Arctic Biosphere Atmosphere

Coupling at Multiple Scales (ABACUS) project. The ABACUS project was a

large scale experiment that used a variety of techniques to quantify water, carbon

and energy exchange at a range of scales in the Arctic region. The University of

Edinburgh’s research aircraft, a HK-36 TTC ECO Dimona single engine motor

glider (Diamond Aircraft, Austria), was used to collect airborne data on the 7th

August 2008. Eight low level transects (altitude < 70 m) were flown between

10:28 and 11:00 local time in a star-like formation, in an attempt to cover most

of the study site landscape (see figure 4.1). Cloud conditions on the 7th August

were variable, with periods of diffuse sunlight interspersed with high-level, direct

sunlight.

The aircraft carries the bulk of its instrumental payload in two specially designed

under-wing pods. The aircraft is equipped with a variety of instrumentation

including an airborne eddy covariance system, dual-view hyperspectral spectrora-

diometers and a CO2 and H2O profiling system. To estimate surface fluxes using

the eddy covariance method, high frequency (20 Hz) measurements of the scalar

of interest, such as CO2 concentration, are collected in conjunction with high

frequency measurements of wind velocity with respect to the Earth. An Li-7500

(Li-Cor, Lincoln, Nebraska) open-path infra-red gas analyser (IRGA) was used to

collect fast response measurements of CO2 and H2O concentrations (the scalars

of interest). The aircraft uses a Best Air Turbulence (NOAA, USA) probe to

measure wind speed relative to the aircraft, and an RT3003 differential GPS-INS
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Figure 4.1: Flight transects for the 7th August 2008 overlaid onto digital photog-

raphy of the study area collected using the airborne digital photography.

system (Oxford Technical Solutions, UK) is then used to estimate aircraft speed

relative to Earth.

The aircraft also carries two Analytical Spectral Devices FieldSpec Pro spectrom-

eters (ASD Inc., Boulder, CO, USA). These instruments detect electromagnetic

radiation in the wavelength range 350 - 2500 nm with a maximum spectral res-

olution in the visible wavelengths (350 - 700 nm) of 3 nm. The instruments are

arranged in dual-field of view mode. The field-of view for one instrument faces up-

wards/skywards and the other faces the ground. The upward-facing spectrometer

is fitted with a cosine detector and measures solar irradiance.
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Table 4.2: Transect statistics. Mean and standard deviations (in brackets) values

are shown for length, altitude, plane speed relative to the gound and PPFD

marker start

time

end

time

length

(m)

altitude (m) speed (m s−1) PPFD

(µmol m−2 s−1)

41 10:28:55 10:31:57 7980 63.82 (12.96) 43.85 (1.64) 578.75 (47.97)

42 10:33:32 10:36:52 8600 74.60 (26.05) 43.00 (1.90) 819.00 (211.38)

43 10:37:57 10:40:47 7688 64.51 (20.13) 45.22 (2.48) 985.00 (327.54)

44 10:45:02 10:47:37 6313 53.04 (10.74) 40.73 (2.03) 869.77 (332.83)

45 10:50:22 10:52:47 6779 86.29 (38.64) 46.75 (2.27) 641.33 (6.91)

46 10:54:17 10:57:32 7351 85.96 (57.42) 37.70 (1.83) 841.05 (222.64)

47 10:57:52 11:00:32 7259 99.67 (57.87) 45.37 (1.16) 862.56 (281.77)

48 11:01:07 11:03:47 6220 87.11 (35.73) 38.88 (1.39) 875.69 (307.00)

4.2.4 Using MODIS SVIs to infer carbon exchange across

the landscape

Spatial measurements of SVIs made by the MODIS sensor were compared to

airborne CO2 flux measurements from across the landscape. Flux footprints

were calculated using a simple parametrisation (Kljun et al., 2004), and average

MODIS vegetation index values from within the footprints were compared to the

corresponding CO2 flux measurements.

Airborne CO2 flux measurements

Fluxes of CO2 were estimated from the aircraft measurements of wind and

scalar concentrations using the eddy covariance technique. Flux values, Fc,

are estimated as the covariance of high frequency perturbations from the mean

vertical wind velocity component, w′, and the mean scalar concentration, c′:
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Fc = 〈w′c′〉 (4.1)

The main difference between aircraft and tower based eddy covariance systems

is that a spatial averaging window is used to derive the mean values of velocity

and scalars in aircraft systems rather than the temporal windows used in tower

systems.

An ogive analysis was conducted to help to choose an optimum averaging length.

The ogive technique refers to the calculation of the cumulative integral of the

co-spectrum of the vertical velocity and scalar of interest and has been widely

applied in airborne studies (Saucier et al., 1991; Mauder et al., 2007; Desjardins

et al., 1989). A co-spectrum is a representation of flux data in frequency (or

wave-number) space, which is potentially very useful in determining the length

scales that contribute to flux measurements. However co-spectra typically appear

noisy thereby limiting applicability. By taking the cumulative integral of the

co-spectrum from the highest frequency to the lowest frequency the noisy co-

spectrum is used to produce a much clearer plot (figure 4.2) the so-called ogive

integral. The ogive integral, Og, is calculated as follows:

Og(f0) =

f0∫

∞

Co(f) df (4.2)

where f is frequency and Co is the co-spectrum.

Figure 4.2 shows the ogive integrals for the transects flown on the 7th August 2008.

On figure 4.2 the x-axis is reversed so that larger wavenumbers, which represent

smaller turbulent eddies, are closer to the origin. At large wavenumbers (close to

10−1) the gradient of the ogive integral is close to zero. A region of maximum
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gradient occurs at mid size wavenumbers, whereas at lower wavenumbers the

gradient of the integral is also expected to be close to zero. To choose a suitable

flux averaging length, a cut off point (vertical lines on figure 4.2) is selected that

occurs as the gradient re-approaches zero at lower wavenumbers. This ensure

that the flux method adequately samples larger turbulent eddies. On some of the

ogive integrals (Figure 4.2, Marker number = 42) the gradient of the curve does

not re-approach zero. This may be indicative of under-sampling of the turbulent

spectrum leading to less reliable flux estimates (Foken et al., 2006).
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Figure 4.2: Ogive integrals for the cospectrum of CO2 concentration and vertical

wind speed calculated using airborne measurements. Each subplot represent the

integrated contributions for a single transect for the full range of spatial scales. Thick

black vertical lines are at 2.5 km.
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To compare remote sensing observations to airborne flux measurements it was

necessary to estimate the geographical source region of the flux. The footprint

function, F∗, is formulated as an up-wind probability distribution as a function

of distance from the instrument. Peak probability values typically appear a

few hundred meters up-wind from the measurement system (dependant on the

surface roughness and meteorological conditions). Lagrangian stochastic models

can be used to simulate F∗, however these are computationally expensive. The

Kljun et al. (2004) parametrisation was developed as a simplified functional

approximation using output from a set of Lagrangian model simulations and

has been previously applied in airborne eddy covariance studies (Kirby et al.,

2008; Zulueta et al., 2011). Estimates of footprints derived from the Kljun et al.

(2004) parametrisation are referred to as F̂∗ (see 4.3 for an example F̂∗ footprint

distribution) and were used the estimate flux footprints in this study.

F̂∗ is calculated as a function of the standard deviation of the vertical wind

velocity, σw, friction velocity, u∗, aircraft height, zm, the Monin-Obuhov length,

L, and the roughness length, z0. A single roughness length was used, z0, based

on the dominant land-cover type, birch, and the other parameters were estimated

using meteorological observations.

Table 4.3: Footprint model parameters

parameter symbol unit value

P.B.L. height h m dependant on transect

friction velocity u∗ m s−1 dependant on transect

roughness length z0 m 0.1

standard deviation of

vertical wind speed

w
′

m s−1 dependant on transect
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Figure 4.3: Example of a flux footprint calculated using the Kljun et al. (2004)

Parametrisation using the parameters shown in the figure.

MODIS images

MODIS gridded and subsetted EVI and NDVI SVI data products (MOD 13,

collection 5) were downloaded for a 20 km square area surrounding the study

site from the ORNL DAAC website (Oak Ridge National Laboratory Distributed

Active Archive Center (ORNL DAAC), 2010). In addition to the SVI products,

SVI quality and pixel reliability data were also downloaded. Reflectance data from

MODIS bands centred at blue (469 nm), red (645 nm) and near-infrared (858 nm)

wavelengths are used to calculate SVIs, based on the following equations (Huete

et al., 1999):
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NDV I =
ρnir − ρred

ρnir + ρred

(4.3)

EV I = 2 ·
ρnir − ρred

L + ρnir + C1ρnir + C2ρblue

(4.4)

Where ρ can be either top-of-atmosphere or ground reflectance, L is a vegetation

canopy adjustment factor and C1 and C2 are aerosol correction weights. The SVIs

are processed as 16 day products; the SVI products used in this analysis had the

datenumber 209 (referring to the period starting on the 27th July, day 209, and

ending on the 11th August 2008) The spatial resolution of the SVI products is

250 m and the projection is sinusoidal. Only pixels that were flagged as ‘good

quality’ in the MOD 13 pixel reliability product were used for further analysis.

MODIS linear models

Linear models were developed between mean weighted footprint MODIS SVIs,

SVIMODIS, and airborne CO22 flux measurements. SVIMODIS values were

estimated for each separate airborne flux measurement. The weights were derived

using the flux footprint function, F̂∗. From F̂∗, the up-wind distance from which

95% of the flux originates was estimated. Using the 95 % limit of each F̂∗, a

flux footprint box was then defined with the window extrema acting as the cross-

wind limits. SVI pixels that fell within this box formed an SVI flux footprint

distribution (Figure 4.4). F̂∗ was also used to derive the individual upwind

weighting for each SVI value, wi, and the mean SVIs are calculated as:
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SV IMODIS =

n∑
i=1

wiSV Ii

n∑
i=1

wi

(4.5)

Figure 4.4: MODIS EVI image with flux footprints for a single transect with a 2 km

averaging window shown as magenta polygons. Each subplot represents a single flux

measurement and associated footprint area. Inset histograms show EVI distributions

within the footprint box, where N is the number of pixels per footprint.

4.2.5 Predicting LUE across the landscape

LUE was calculated by combining aircraft and tower flux observations and MODIS

satellite measurements for birch forest regions only. This was principally because

birch was the dominant land cover type. The relationships between birch LUE
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and airborne hyperspectral SVIs were then explored. The response of airborne

CO2 fluxes and hyperspectral SVIs to changes in PPFD levels were also analysed.

Land-cover classification

A very high resolution (4 m2) landcover classification map (figure 4.5) was derived

using IKONOS satellite imagery acquired on the 30th September 2007. The land-

cover map classified the surface into 5 categories: i. mire ii. birch iii. coniferous

forest iv. bare ground and v. water. The map was made using a maximum

likelihood classification algorithm (ENVI v4.4) trained using ground vegetation

surveys, with an estimated classification accuracy against the survey data of 96%.
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Figure 4.5: Land-cover classification derived from IKONOS hyperspectral satellite

imagery and ground survey data.



CHAPTER 4. Landscape scale remote sensing of light use efficiency 67

Hyperspectral reflectance measurements

Along transect incident photosynthetic photon flux density (PPFD) was estimated

by integrating the solar irradiance measured by the upwards facing spectrometer

across the photosynthetically active wavelengths. Reflectance spectra were

calculated by normalising measurements of radiance collected by the downward

facing radiometer by measurements of solar irradiance collected by the upward

facing radiometer. The hyperspectral reflectance spectrum were used to calculate

along transect NDVI (referred to as NDVIASD) as well as along transect values of

the Photochemical Reflectance Index (PRI, referred to as PRIASD), according to:

NDV IASD =
ρ830 − ρ660

ρ830 + ρ660

(4.6)

PRIASD =
ρ531 − ρ570

ρ531 + ρ570

(4.7)

where ρx is reflectance at x nm.

The spectral indices were also calculated for the downward pointing spectrometer

only. This is because during some of the transects rapid changes in illumination

conditions saturated the upward pointing spectrometer, resulting in spurious

reflectance spectra. By design, a normalised difference index corrects for changes

in illumination by incorporating a reference band, hence PRIASD and NDVIASD

should theoretically be effective for radiance based data. The saturation at high

irradiances also had the effect of rendering some of the high PPFD measurements

inaccurate.

The downward pointing spectrometer footprint is typically located directly un-

derneath the aircraft, in contrast to the up-wind footprints of the eddy covariance
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system. When stationary the spectrometer footprint is circular. An altitude of 40

m with a field of view of 25◦ results in a footprint diameter of approximately 17

m (see figure 4.6 for a graphical comparison of spectrometer and flux footprints).

Because the aircraft is not stationary the circular footprint becomes elongated

into an ellipse. This was calculated from the aircraft speed and the spectrometer

integration time. In addition, the true footprint location also depends on the

aircraft pitch and roll.

Figure 4.6: Diagram of ASD spectrometer and flux footprints (not to scale).

Although there is some overlap between the two footprints, the ASD spectrometer

and the eddy covariance systems are essentially measuring different areas.

Once the footprints were known, the land-cover types inside the footprints were

used to assign land-cover classes to each spectrometer measurement based on

the dominant footprint type. The relationships between incident PPFD and

PRIASD and PPFD and NDVIASD were explored by calculating coefficients of

determination and developing linear models.
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Light Use Efficiency models

LUE was estimated for the birch land cover class by combining airborne flux

estimates with hyperspectral radiometer measurements of PPFD, MODIS SVIs,

and a simple temperature-based respiration model:

LUE =
−1 × (Fc − Re)

fAPAR × PPFD
(4.8)

The mean footprint EVIMODIS was used as a surrogate for fAPAR (fAPAR =

EV I). This is because the MODIS fAPAR product is at a coarser resolution (1

km) than the MODIS EVI product (250 m). Ecosystem respiration was estimated

using data collected during August 2008 from a birch stand flux tower system

(located at 69.491◦N, 27.234◦E). An empirical relationship described in van Gorsel

et al. (2009) was used to estimate day time respiration from night time flux and

temperature observations. The relationships between LUE and hyperspectral

SVIs that were coincident in time and dominated by the birch landcover class

were analysed by calculating coefficients of determination and developing linear

models.

In addition to the birch site, there was also a flux tower measuring surface

carbon and energy exchange at a wetland site during the study period (located

at 69.494◦N, 27.230◦E).
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Figure 4.7: Birch and wetland tower and airborne CO2 fluxes for 07/08/2008 where

airborne CO2 fluxes were calculated using a 2500 m averaging window.

4.3 Results

4.3.1 CO2 fluxes across the landscape

From 11:00 am to 11:30 am CO2 fluxes of -9.54 µmol m−2 s−1 and -4.09

µmol m−2 s−1 were measured at the birch and wetland tower sites respectively.

Most of the fluxes measured by the aircraft were within a similar range, 0 - 15

µmol m−2 s−1, to the fluxes observed by the stationary towers (figure 4.7). With

regards to the airborne flux measurements, there were a limited number (de-

pending on the step size) of extreme flux values (< -20 µmol m−2 s−1 or > 0

µmol m−2 s−1 ).
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4.3.2 Relationships between MODIS SVIs and CO2 fluxes

The mean and variance were calculated for EVI and NDVI images after masking

for pure water pixels (water-dominated pixels were defined as EVI < 0.003 and

NDVI < 0.019). The mean and variance pixel values for the water masked EVI

image were calculated as 0.36 and 0.01 respectively. The mean and variance

pixel values for the water masked NDVI image were calculated as 0.68 and 0.01

respectively. Whilst the EVI distribution demonstrated mainly positive skew with

a slight negative skew, the NDVI distribution was strongly negatively skewed

(data not shown).

Linear models were developed between MODIS SVIs and airborne CO2 flux

measurements (figure 4.8). All CO2 flux values were calculated using a 4 km

averaging window with a 2.5 km step size. There was no significant relationship

between EVIMODIS and CO2 flux values, there was also no significant relationship

between NDVIMODIS and CO2 flux values. Linear models were also developed

between average PPFD values (calculated as mean values per 4 km flux window)

measured by the upwards pointing radiometer and airborne flux measurements

(figure 4.9). There was also no significant relationship between PPFD and CO2

flux values.

4.3.3 Estimating LUE across the landscape

Airborne hyperspectral measurements

Hyperspectral data from a single transect is plotted in figure 4.10 to highlight

features that are typical within the range of observations. Figure 4.10 shows

along transect SVIs calculated from the downward pointing radiometer as well

as PPFD calculated from the upward pointing radiometer for a single transect
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Figure 4.8: Average MODIS SVIs per flux footprint versus airborne CO2 fluxes

calculated using a 2500 m averaging window. Left: NDVIMODIS versus CO2 flux,

right: EVIMODIS versus CO2 flux. Standard error bars shown on MODIS SVIs.

(marker number 47). Figure 4.10 also shows the land-cover type within the

spectrometer footprint and the closest (by distance) MODIS NDVI pixel value

to the spectral measurements for the same transect. MODIS NDVI values are

generally greater in value across transect number 47 in comparison to NDVIASD.

For transect number 47, NDVIASD values range from less than 0 to 0.77, whereas

MODIS NDVI measurements have a much narrower range, from 0.68 to 0.81.

PPFD values were variable along the transect, high values were measured mid-

way through the measurement period which corresponded to periods of direct

sunlight. Low PRIASD values were coincident with high PPFD values, whereas

the highest PRIASD values occurred coincidentally with low NDVIASD values.

Along transect NDVIASD did not appear to change with PPFD. Although birch

was the dominant along transect land-cover class, the other landcover classes were

highly variable during the length of the transect.
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Figure 4.9: PPFD, with standard error bars, versus airborne CO2 flux measurements

calculated using a 2500 m averaging window.

Inferring LUE using hyperspectral SVIs

Figure 4.11 shows relationships between SVIs measured by the downward pointing

spectrometer and LUE and between the same SVIs and PPFD. These measure-

ments were filtered to exclude measurements that were not dominated by birch

(measurements where birch cover was < 50 % were excluded from further analy-

sis). There was a weak to moderate relationship between PRIASD and LUE (R2 =

0.4, p < 0.05). A similar relationship was found between PRIASD and PPFD (R2

= 0.4, p < 0.05). There was no significant relationship (p > 0.05) found between

either NDVIASD and LUE or between NDVIASD and PPFD.

4.4 Discussion

Remote sensing derived SVIs are important indicators of ecosystem productivity.

However, our results show that under variable illumination conditions broadband

SVIs, such as the MODIS NDVI and EVI products, are inadequate predictors of
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Figure 4.10: Land cover classification and hyperspectral measurements along a

particular transect (marker number 47). From top to bottom: fractional land cover in

ASD field of view, NDVIASD and MODIS NDVI, incident PPFD and bottom, PRIASD.

CO2 exchange across the Arctic landscape. In addition, airborne hyperspectral

SVIs such as the PRI were found to have the potential to measure landscape scale

changes in LUE.

Although no significant relationships were found between satellite SVIs and

CO2 flux observations, moderate relationships were found between airborne PRI

measurements and landscape LUE; and between airborne PRI measurements and

PPFD. This suggests two things. Firstly SVIs alone cannot be used to infer
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Figure 4.11: Relationships and linear models between airborne hyperspectral SVIs

and LUE and between airborne hyperspectral SVIs and PPFD. Top left: PRIASD

versus LUE, top right: PRIASD versus PPFD, bottom left: NDVIASD versus LUE,

bottom right: NDVIASD versus PPFD.

carbon fluxes across the Arctic landscape in changing light conditions. Secondly,

airborne flux measurements can be used to detect changes in net carbon fluxes

across the landscape on short time scales due to rapidly changing illumination

conditions. In agreement with this study, Desjardins et al. (2006) found that

the relationship between airborne CO2 flux measurements and NDVI degraded

during changeable light conditions for measurements collected over an agricultural

region. On the second point, Mauder et al. (2007) conducted an innovative

experiment by measuring airborne fluxes during a solar eclipse event. Mauder

et al. (2007) found a significant decrease in CO2 flux observations during and

immediately after the eclipse, consistent with a decrease in photosynthetic activity
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driven by a fall in PPFD. Zulueta et al. (2011) recently used MODIS NDVI

observations to upscale airborne flux measurements across the Alaskan Arctic

landscape. Because no significant relationships were found between satellite SVIs

and flux observations this approach was not feasible with the data presented

in this study. It is therefore hypothesised that changing light conditions drive

changes in photosynthetic activity across the landscape on short time scales. It

follows that to use SVIs to predict net carbon fluxes in changing illumination

conditions it is necessary to use an LUE based model.

In this study hyperspectral measurements from a relatively small footprint

spectrometer (∼30 m) were compared to 2.5 km averaged flux values over

a particularly heterogeneous landscape. In addition, relationships between a

relatively coarse spatial resolution satellite sensor (MODIS) and airborne flux and

hyperspectral measurements were explored, therefore understanding the issue of

spatial scale is key to the study. MODIS observations present near unrivalled

spatial and temporal coverage. However, coarse resolution satellite pixels miss

many fine resolution features present in heterogeneous environments. Such an

effect is clear when comparing airborne along-transect NDVI observations to

satellite observations (see figure 4.10). One obvious solution is to use higher

resolution imagery from a different satellite sensor, though for a variety of reasons

(temporal or spatial coverage, cost and time constraints) this may not always

be possible. With the increasing use of coarse resolution Earth observation

data the question of scale and information loss is a key issue in landscape scale

studies. Recent innovative work by Stoy et al. (2009) used information theory to

quantify optimum remote sensing pixel sizes across Arctic regions, whereas Hill

et al. (2011a) proposed a data assimilation approach for quantifying non-linear

information loss.

The flux averaging window length is key to producing accurate flux measurements,

and is also of paramount importance when comparing flux measurements to
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remote sensing land surface observations. If the averaging length is too short

then measurements are likely to underestimate flux contributions from mesoscale

structures (Desjardins et al., 2006). In contrast, large averaging lengths will

result in large flux footprints and information is invariably lost in a heterogeneous

landscape such as Kevo. In theory, it is possible to estimate the full range of

wavelengths of turbulent structures that contribute to the flux measurements from

the flux cospectrum (Desjardins et al., 1989). This approach was used to help to

determine an optimum size of 2.5 km. Although the majority of flux contributions

were accounted for by the 2.5 km windows, it is clear from the Ogive plots (figure

4.2) that there are particular transects (such as marker numbers 42 and 45) with

flux losses. For several European sites Gioli et al. (2004) found optimal windows

of 3 - 4.5 km using this method. Other studies, particularly those which relate

flux measurements to remote sensing observations (Hutjes et al., 2010; Chen et al.,

1999), used lower averaging lengths (∼ 2 km).

Although the requirement for a minimum averaging length restricts the spatial

resolution of airborne flux observations, several studies have used innovative

methods to estimate fluxes from specific land cover types based on airborne

flux observations and (remote sensing derived) land cover maps (Chen et al.,

1999; Ogunjemiyo et al., 2003; Kirby et al., 2008; Hutjes et al., 2010). These

methods typically solve systems of linear equations based upon individual flux

measurements and the types of ground cover present in estimated flux footprints.

The solutions to the systems of equations are estimates of fluxes for each land-

cover type. Because of the heterogenous illumination conditions, and the observed

vegetation response, a simple linear unmixing approach was not possible for this

particular data-set, however it may be possible to combine an LUE based approach

with such an analysis. In a similar approach to the one proposed, Maselli et al.

(2010) used a process-based ecosystem model to predict carbon fluxes across the
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landscape and found that these predictions compared favourably with aircraft

flux observations.

Systematic error was not quantified for the flux measurements due to the lack of

a wind tunnel calibration. The wind perturbation, w′, is estimated relative to the

Earth by removing the aircraft speed, calculated from the INS system, from wind

measurements made relative to the aircraft using the BAT probe. The accurate

calculation of winds relies on an ideal flow model over the BAT probe, in reality

there are deviations from this model caused by the shape of the aircraft and the

position of the probe (under the wing). Both the fuselage and the wing itself will

cause deviations in the airflow around the probe. At present the error related

to these factors is unknown, however a full wind tunnel calibration for the BAT

probe is due to be conducted in 2012.

4.4.1 Future work

A new hyperspectral imaging system fitted to the University of Edinburgh’s

research aircraft will enable spatially explicit measurements of vegetation indices,

from within flux footprints, to be collected during the 2012 season. Improved

calibration of the eddy covariance flux measuring equipment will lead to more

robust airborne flux measurements with associated error estimates.

Future work should concentrate on developing a remote sensing LUE-based

approach which combines a measure of greenness, such as NDVI, with a PRI based

LUE estimate. Such an approach would facilitate spatial estimates of carbon

exchange across the landscape in variable illumination conditions. Improved

airborne eddy covariance measurements could be used to calibrate and validate

an LUE-based model.
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4.4.2 Conclusions

Aircraft observations of CO2 fluxes were found to be sensitive to changes in

incident solar radiation across the heterogenous Arctic landscape. PRI was also

found to be sensitive to changes in incident solar radiation, which suggests that

PRI has the potential to quantify the sensitivity of landscape scale carbon fluxes

to incident radiation. No significant relationships were found between MODIS

SVIs and airborne CO2 flux measurements, most likely due to changing light

conditions eliciting a photosynthetic response. PRI was found to be correlated

with LUE. This correlation was probably due to the biological response of the

PRI signal to changing illumination conditions, as a significant relationship was

also found between PRI and PPFD.
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Abstract

Chlorophyll fluorescence is often referred to as the ‘probe’ of photosynthesis, and

the promise is that new space-borne remote sensing observations of chlorophyll

fluorescence will help to constrain global estimates of terrestrial photosynthesis.

Numerical simulations of chlorophyll fluorescence are important as they provide a

link between the complicated underlying physiology and the physically observable

signal. A coupled physiological-radiative transfer model is presented that predicts

changes in the apparent reflectance of a leaf, due to chlorophyll fluorescence, that

occur on a timescale of seconds to minutes. The biochemical model is based on

a relatively detailed model of the dynamics of the fate of absorbed light energy

through photosystem II. The radiative transfer component is derived from em-

pirically obtained fluorescence excitation-emission matrices and the PROSPECT

leaf model. A Markov Chain Monte Carlo (MCMC) algorithm was used to op-

timise biochemical model parameters by fitting model simulations of transient

chlorophyll fluorescence to measured reflectance spectra. The model successfully

simulated the transient fluorescence decay curve and reproduced yield estimates

for photochemical and non-photochemical quenching when validated against an

independent data-set. The biochemical model is driven solely by incident radia-

tion, to scale to the canopy and to use the model on trans-seasonal time scales

the effects of temperature and photo-inhibition must be taken into account.
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5.1 Introduction

Accurately measuring terrestrial photosynthesis from space is a key objective of

present day Earth observation science. This is because the terrestrial biosphere

is one of two natural sinks for anthropogenic CO2 emissions (the other being

the oceans). Chlorophyll fluorescence is often referred to as the probe of

photosynthesis (Bolhar-Nordenkampf et al., 1989; Baker, 2008) and as it is now

possible to measure terrestrial chlorophyll fluorescence from space. The promise

is that these new space observations will help to constrain global estimates of

photosynthesis (Joiner et al., 2011; Guanter et al., 2007; Frankenberg et al.,

2011a). However, there is no single, ubiquitous relationship between chlorophyll

fluorescence and the rate of photosynthesis which limits the applicability of simple

empirical approaches.

The relationship between chlorophyll fluorescence and photosynthesis is affected

by any number of factors including time of day, light intensity, temperature and

water availability (Rosema et al., 1998). Mechanistic models offer an alternative

approach to purely empirical methods, and may go some way to explaining the

variability of chlorophyll fluorescence under natural conditions. This is because

mechanistic models aim to simulate fluorescence by modelling the physiological

and physical processes that give rise to the emission. It follows that through the

inversion of such a model it may be possible to use measurements of fluorescence

to estimate the physiological state of the canopy, including processes such as the

electron transfer rate (ETR) that directly affect the rate of photosynthesis. To

simulate remote sensing observations of chlorophyll fluorescence it is necessary

to include a representation of the dynamic biochemistry that causes the initial

emission and a representation of the radiative transfer processes that transmit

the signal from the site of the emission (the photosystems) to the observer (the

spectrometer).
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Chlorophyll fluorescence occurs when an electron in an electronically excited

chlorophyll molecule falls to a lower energy state, thereby emitting a photon.

Chlorophyll fluorescence competes with photochemistry (the photosynthetic re-

actions), constitutive heat dissipation, and regulatory heat dissipation (which is

also referred to as non-photochemical quenching, NPQ) as an alternate path-

way for absorbed light energy (see figure 5.1). Because the pathways are in direct

competition, there is an intrinsic biochemical link between an observable quantity,

chlorophyll fluorescence and photosynthesis. Each energy dissipation pathway can

be thought of as a yield, with the sum of all the yields equal to unity. Yields are

properly defined as the ratio of the rate constant of the process of interest (chloro-

phyll fluorescence, heat dissipation, photochemistry) to the sum of all the rate

constants (Blankenship, 2002). More intuitively, yields can be thought of as the

probability that absorbed light will follow a particular pathway.

A suite of active instrumentation can be used to measure relative changes in

fluorescence kinetics. These instruments are used by plant physiologists to

compute a range of photosynthetic parameters that relate to the rate constants of

energy dissipation. Such measurements can also be used to validate and calibrate

kinetic models of photosystem II (PSII). Porcar-Castell et al. (2006) developed

a mechanistic model of PSII that is able to predict the photochemical, non-

photochemical and fluorescence yields and ETR. ETR is generally assumed to

be in equilibrium in canopy carbon assimilation models, however the reality is

that changing light conditions can have a significant effect on net carbon uptake

(Rascher and Nedbal, 2006). Therefore the inclusion of dynamic representations of

light energy dissipation in land surface vegetation schemes may improve estimates

of carbon exchange.

Passive remote sensing studies have focused mainly on retrieving the steady-state

chlorophyll fluorescence signal, Ft (Meroni et al., 2009). Ft can be calculated

directly in absolute radiometric units, using the Fraunhofer Line Discriminator
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(FLD) technique (Plascyk, 1975; Plascyk and Gabriel, 1975), which exploits ‘dark’

spectral lines in the Sun’s and/or Earth’s atmosphere. The effects of chlorophyll

fluorescence on the apparent reflectance spectra (the ratio of reflected radiance to

incident irradiance) of leaves can also be estimated using any number of reflectance

indices (Meroni et al., 2009). In separate studies Gamon et al. (1990), Zarco-

Tejada et al. (2000a), Campbell et al. (2008) measured the dynamic changes in

apparent reflectance due to chlorophyll fluorescence over a timescale of seconds to

minutes, and showed that apparent reflectance measurements can be used to study

the same phenomena as pulse amplitutde fluorometer (PAM) measurements.

Significant progress has been made in attempting to model the radiative transfer

of the chlorophyll fluorescence signal, as observed by passive sensors. Rosema

et al. (1991) developed a leaf and canopy level chlorophyll fluorescence model

to simulate laser-induced fluorescence. The model was based on the Kubelka-

Monk system of differential equations which model fluorescence as upward and

downward fluxes and are solved numerically. The FluorMOD project (Miller

et al., 2005) was undertaken by the European Space Agency (ESA) to develop

a full canopy model of chlorophyll fluorescence, as a precursor to a satellite

mission. This work resulted in a leaf and canopy radiative transfer model based on

PROSPECT (leaf) (Jacquemoud and Baret, 1990) and SAIL (canopy) (Verhoef,

1984) respectively. Middleton et al. (2008) found good agreement between

canopy scale observations of chlorophyll fluorescence and an improved version of

FluorMOD for a corn canopy. The Soil Canopy Observation, Photochemistry

and Energy fluxes (SCOPE) model (van der Tol et al., 2009b) consists of a

physiological leaf model coupled to a modified version of the FluorMOD radiative

transfer model and is designed to predict the steady state chlorophyll fluorescence

signal, as well as a range of other canopy states such as net photosynthesis, at

sub-hourly time-scales.

In this study a coupled biochemical radiative transfer model is presented that
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predicts the leaf-level superposition of chlorophyll fluorescence on the apparent

reflectance spectrum. The model works on time-scales of seconds to minutes and

is based on two sub-models, a dynamic model of PSII (Porcar-Castell et al., 2006)

and a radiative transfer model based on PROSPECT (Jacquemoud and Baret,

1990). A Bayesian approach is used to calibrate the model, as this provides

a rigorous framework for the incorporation of prior parameter knowledge and

posterior estimates of parameter distributions and model error. The model is

validated against an independent data-set and recommendations for scaling the

model to the canopy are made.

5.2 Methods

5.2.1 Coupled biochemical radiative transfer model de-

scription

Figure 5.1: Flowchart for the combined predictive modelling and parameter

estimation process.

The modelling scheme in this study consists of a biochemical model coupled
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to a leaf radiative transfer model. The yield of chlorophyll fluorescence, φf , is

predicted by the biochemical model, and is also an input for the leaf radiative

transfer model, providing the direct interface between the two sub-models.

Model parameters are calibrated by fitting measured data to a time series

of simulated apparent reflectance values, in the form of a fluorescence-based

reflectance index. A Bayesian optimisation algorithm, adaptive Markov Chain

Monte Carlo (MCMC), was used (Laine, 2008) to estimate parameter values

as this allows for the incorporation of prior parameter knowledge and rigorous

prediction of model error. The optimised model was then validated against an

independent data set.

Biochemical model

The biochemical leaf model is designed to simulate the dynamics of energy

flow through PSII at the timescale of seconds to minutes and is based on the

Porcar-Castell et al. (2006) model. A graphical representation of the biochemical

model is presented in figure 5.2. The model is driven by incident radiation

alone (quantified as photosynthetic photon flux density, (PPFD)), and predicts

a number of parameters related to chlorophyll fluorescence, including φf , φNPQ

and φp. The model is based on the lake model assumption of PSII, which permits

energy transfer between a set number, N , of PSII units. Each PSII is assumed

to contain a set number of chlorophyll, xanthophyll, quinone and plastoquinone

molecules (which are grouped together as plastoquinone-equivalent molecules).

To estimate φf , the ratio of the rate constant of fluorescence to the other rate

constants is taken:
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Figure 5.2: Diagram of the biochemical modelling scheme. Absorption of light

energy causes excitation of chlorophyll molecules, the excited energy is then used

in one of the four pathways (φp, φN , φF , φD). The photochemical, φp, and NPQ

pathways, φN , are modulated by two dynamic processes, plastoquinone reduction and

the xanthophyll cycle, that are represented in the biochemical model as differential

equations.

φf =
kF

kF + kD + kNE + kP Q
(5.1)

Where kF , kD, kN , kP are the rate constants of fluorescence, constitutive heat

dissipation, non-photochemical quenching and photochemistry respectively. In

equation 5.1, the rate constants, kn and kp, are adjusted from optimal values by

E and Q. E and Q are referred to as quenching coefficients and are the dynamic

core of the model. E is equal to the fraction of the xanthophyll molecules that have

been converted to zeaxanthin and is therefore representative of the efficiency of
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non photochemical quenching (NPQ). Q is equal to the fraction of plastoquinone-

equivalent molecules that are in the oxidised state, and is representative of the

efficiency of photochemical quenching. The number of chlorophyll molecules in

an excited state, Chlon, is solved for using a mass balance assumption:

˙Chlon = c− kF ×Chlon − kD ×Chlon − kN ×Chlon ×E − kD ×Chlon ×Q (5.2)

The rate of light capture, c, is calculated as:

c = PPFD × α × chloff (5.3)

where α is an empirical absorption parameter that represents the physical

absorption properties of the leaf. ˙Chlon occurs at a much faster rate than other

processes in the model and is therefore assumed to be in equilibrium ( ˙Chlon = 0):

Chlon =
c

Kf × Chlon + Kd × Chlon + kn × Chlon × Zx + kp × Chlon × PQox

(5.4)

If the total concentrations of xanthophyll molecules and quinone-equivalents are

assumed to be in equilibrium and initial pool sizes of vx, zx, PQox and PQred are

estimated then it is possible to model the time-dependant behaviour of Q and E

by coupled differential equations, using building and relaxation rate constants. Q

is calculated as:
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˙PQred. = Chlon × kp × PQox − krelax
pq × PQred. (5.5)

Q =
PQox

PQox + PQred

(5.6)

The second term of equation 5.5 is the rate of quinone-equivalent reduction and is

determined by the rate constant of photochemistry, kp, and the number of excited

chlorophyll molecules. The third term is the rate of re-oxidation (relaxation) of

this pool, and is controlled by a rate constant, krelax
pq , and the size of the reduced

quinone-equivalent pool. E is calculated as:

żx = kbuild
npq × vx − krelax

npq × zx (5.7)

E =
zx

vx + zx

(5.8)

The second term of equation 5.7 represents the conversion of vx to zx (the rate

of the building of NPQ) and is determined by the size of the vx pool, a rate

constant, kbuild
npq . The third term of equation 5.7 represents the re-conversion of zx

to vx and is controlled by the size of the zx pool and a rate constant, krelax
npq . The

intermediary carotenoid pigment antheraxanthin is excluded from the system to

reduce complexity. Equation 5.7 was solved analytically, whereas the solution to

equation 5.5 was obtained using a forward difference approximation.

Leaf radiative transfer model

The model predicts apparent reflectance, ρa, as a function of wavelength, λ:
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ρa (λ) = ρ (λ) + Fr (λ, φf , Nλ) (5.9)

where λ is wavelength in nm, ρ(λ) is the intrinsic leaf reflectance as modelled

by PROSPECT and Fr is the fluorescence contribution to apparent reflectance.

Fr is dependant on the yield of fluorescence, φf , which is predicted by the

biochemical model (equation 5.1). Fr is calculated by multiplying a reference

Excitation-Fluorescence matrix, Mij, by incident radiation, N(λ)1 and summing

across fluorescence absorbance wavelengths and finally normalising by incident

radiation:

πFr =
φf

0.02
×

750 nm∑
i=400 nm

N(λ) × Mij

750 nm∑
i=400 nm

N(λ)

(5.10)

In this study the Mij matrix supplied with the SCOPE model code was used as

well as a modelled N(λ) spectrum. As the EF matrix was empirically obtained

for a plant with an φf = 0.02, the corrective factor,
φf

0.02
, is needed to predict Fr

as a function of φf .

5.2.2 Experimental procedure and leaf measurements

Measurements were collected on lettuce (Lactuca sativa L.) seedlings during

August and September 2010. Prior to measurements, the seedlings were dark

adapted, using leaf hoods, for 2 hours. The seedlings were then moved into an

1Where PPFD =

750 nm∫

450 nm

N dλ.
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full sunlight outdoor environment, placed in a non-reflective horizontal holder and

the hoods were removed. Upon removal of the hoods contiguous measurements of

reflectance spectra were immediately collected. An Ocean Optics (Ocean Optics,

USA) USB 2000 spectrometer was used to collect spectra at a frequency of > 1

hz. The USB 2000 measures spectra at 1 nm full width half maximum resolution

in the wavelength range 340 to 1021 nm. Reflectance spectra were calculated

by normalising leaf spectra to measurements of a calibrated, near-lambertian

reflective standard (Spectralon, Labsphere, North Sutton, NH, U.S.A). Spectra

were sampled in the nadir position at a fixed distance from the adaxial side of

the leaf, which resulted in a spot radius of less than 3 cm.

To reduce the dimensionality of the data, and to simplify the optimisation, a

reflectance index, R680, that is known to be sensitive to changes in chlorophyll

fluorescence (see figure 5.3 and Zarco-Tejada et al. (2000b)) was calculated using

the following formula:

R680 =
ρ680

ρ630

(5.11)

Where ρλ is reflectance at λ nm. The difference between a time-series of measured

and simulated reflectance index values was used to optimise the model using an

adaptive MCMC algorithm.

5.2.3 Calibration using the MCMC method

Bayesian methods, such as the Markov Chain Monte Carlo (MCMC) algorithm are

attractive for two main reasons. Firstly they facilite the use of prior information,

such as previously measured parameter values, in the calibration procedure and
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Figure 5.3: Modelled reflectance spectrum with and without fluorescence contribu-

tion. The spectral vegetation index, R680/R630, is shown in the insert.

secondly because they provide estimates of error for both optimised parameters

and model predictions.

MCMC methods have received significant attention in recent years and a brief

introduction is provided here (for more information on the foundations of the

method and for some recent applications see Laine (2008)). The MCMC

algorithm generates an iterative chain of guesses for each parameter based on

prior information, referred to as priors, the algorithm converges when the chains

becomes stationary. The stationary chains represent the posterior distributions of

the parameters, by taking the mean (or other statistic) of the chain the ‘best guess’

for each parameter can be estimated. In addition, the posterior distributions also

provide error estimates of the parameters and can be combined with knowledge

of model error to calculate predictive error. In this study, Gaussian distributions

were used for priors.
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Figure 5.4: Spectra utilised in the radiative transfer model; the vertical grey lines

show the wavelengths of the reflectance index used in the MCMC optimisation.

Top: chlorophyll fluorescence emission spectra for adaxial and abaxial sides of a

leaf. These spectra are scaled using the fluorescence yield parameter, φf , to predict

leaf-level chlorophyll fluorescence. Bottom: PROSPECT specific absorbtion spectra.

PROSPECT uses combinations of these spectra to predict leaf reflectance, apparent

reflectance is then predicted by combining prediction of leaf level fluorescence with

PROSPECT predictions of leaf level reflectance.

Validation data-set

Data from three Alder (Alnus glutinosa L.) trees were used to validate the model.

This was supplied by Porcar-Castell (personal communication) and consisted

of portable chlorophyll fluorometer (FMS-2, Hansatech Ltd) measurements of

the photochemical, φp, and non-photochemical quenching, φn, yields, after dark

adapted leaves were exposed to simulated sunlight. After 400 seconds of exposure
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the light was switched off, therefore the ability of the model to simulate the

recovery from high levels of NPQ could also be tested.

5.3 Results

Figure 5.5: Top: Modelled and measured reflectance indices. Squares represent

measured reflectance index values after a dark adapted leaf has been exposed to

strong sunlight. The shaded regions represent two different predictions of error, the

dark line is the best guess modelled prediction calculated using the posterior parameter

distributions. Bottom: simulated biochemical yields for the optimised parameters.
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5.3.1 Coupled biochemical radiative transfer model eval-

uation

The coupled model successfully reproduced the transient behaviour of the

fluorescence-based reflectance index, R680, over a timescale of seconds to min-

utes, on exposure of a leaf to full sunlight, post dark-adaption. Figure 5.5 shows

the measured and modelled behaviour of the reflectance index during the first

few minutes of the transient period. The shaded region represents predictions of

error, which is a combination of the posterior parameter error predictions and

uncertainties related to the predictive model. The dark line that runs through

the shaded error region is the best model prediction, it is calculated by taking the

mean of the posterior parameter distributions (figure 5.6).

The model simulated the response of a dark-adapted leaf to high light conditions

(> 2000 µmol m−2 s−1), whereby under such conditions NPQ is expected to

dominate at steady state. As the leaves were dark adapted prior to the

measurements, it was possible to derive estimates of initial conditions. After

substantial dark adaption it is assumed that reversible NPQ, E, fully relaxes

hence vx = total number of xanthophylls and zx = 0. It is also assumed that all

reaction centres are open therefore Q is equal to unity, and PQox = total number

of quinone equivalents and PQred = 0. As well as the transient reflectance index

behaviour, figure 5.5 also shows the modelled yields for the same model run. The

NPQ yield slowly climbs from an initial value of 0 to a steady state yield of over

0.7. The photochemical yield rapidly falls from an initial value of greater than

0.8 to a steady state value of less than 0.05.

If a model is over-parametrised it may be possible to accurately reproduce a

measurement, such as R680, with an unrealistic set of parameters. By validating

the optimised model with independent measurements of different model states it

is possible to reduce this risk. Figure 5.8 shows predictions of modelled yields,



CHAPTER 5. Modelling leaf level chlorophyll fluorescence 96

φfd, φn, φp, based on the optimised parameters with yield measurements of Alder

leaves. At 400 seconds the light was switched off, this enables the model to be

tested for recovery behaviour. The model was able to reproduce the behaviour

of the yields and produces good estimates of the steady state yields. However,

there are some noticeable discrepancies between data and model predictions in

the transient yields. The model overestimates the combined heat and fluorescence

yields, φfd, and slightly underestimates the NPQ yield, φn.

5.3.2 Parameter estimation and validation

Figure 5.6: Prior (dotted lines) and posterior (solid lines) biochemical parameter

distributions.

As the intrinsic leaf reflectance, ρl, was assumed to remain constant on the

timescale of a model run, PROSPECT parameters were estimated prior to

optimisation by adjusting model parameters to fit an example lettuce spectrum.
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Figure 5.7: Posterior parameter correlations. Notice a relatively strong correlation

between two NPQ parameters, kN and kb
npq.

The number of layers parameter was set at 3, chlorophyll content at 36.5 µg cm−2,

carotenoid content at 9 µg cm−2, water content at 1e-3 cm, and dry matter at 0

µg cm−2.

Posterior parameter statistics are shown in table 5.1 and distributions are plotted

in figure 5.6. Prior information was available for the number of chlorophyll,

xanthophyll and plastoquinone equivalent molecules as well as the rate constant of

photochemistry, kp, and the rate constant of NPQ, kp (Porcar-Castell et al., 2006).

Gaussian priors were used to constrain these parameters. The rate constants of

fluorescence and basal heat dissipation, kf and kd were not optimised, using values

from Porcar-Castell et al. (2006). The validation data-set was used to guess first

approximations for the relaxation and building rate constants, krelax
pq , kbuild

npq ,krelax
npq

and priors were assigned based on these initial guesses. The model converged to
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narrow, posterior distributions for each of the parameters. The rate constant for

the building of NPQ, kbuild
npq , was estimated to be an order of magnitude greater

than the rate constant for the relaxation of NPQ, krelax
npq . The posterior mean

value for kN was almost twice that of the prior mean. There was little change

between the prior and posterior distributions of the pigment pool parameters.

Correlations between biochemical parameters are shown as scatter plots in

Figure 5.7. Correlated parameters can be an indication of deficiencies in the

mathematical formulation of a model, as correlation implies a certain level of

parameter redundancy. With the exception of the NPQ parameters KN and

kbuild
npq there are no significant correlations between any of the parameters.

Figure 5.8: Time-series of biochemical model yields for the validation data set.

Where black squares are measured data points and thick lines are the optimised

modelled predictions.
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Figure 5.9: Time-series of the simulated and measured two peak reflectance index,

R690/R735. This relfectance index is used to quantify the change of shape in the

chlorophyll emission spectrum, the model is significantly different to the measured

data during the first few seconds.

5.4 Discussion

The object of this study was to develop a leaf scale coupled biochemical radiative

transfer model of chlorophyll fluorescence. The coupled model presented in this

study was used to simulate the effects of dynamic changes in leaf reflectance

due to chlorophyll fluorescence. By coupling a mechanistic representation of the

energy flow through PSII to a radiative transfer model, changes to the reflectance

index, R680, were simulated on exposure of a dark adapted leaf to full sunlight

conditions.

The modelled reflectance index curve (figure 5.5) rises from a minimum initial

condition to a maximum value and then decays over a period of minutes to the

steady state. The decay curve is referred to as the ‘Kautsky curve’ in the plant
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physiological literature. By optimising the model parameters the biochemical

model that best simulated the decay was found. The effect of the slow decay

of chlorophyll fluorescence on apparent reflectance has been measured previously

using hyperspectral remote sensing at the leaf scale (Gamon et al., 1990; Zarco-

Tejada et al., 2000a; Campbell et al., 2008). The decay is controlled by a

number of competing processes that act to quench the fluorescence signal over

time. By mathematically modelling these processes, it is possible to simulate the

fluorescence signal based on an understanding of leaf biochemistry. Our work

builds on previous studies by linking a biochemical model to radiative transfer

theory.

Although the model accurately captures the general behaviour of the fluorescence

transient, including the steady state reflectance index level, there is some misfit

during the first 20 seconds. During this period the model underestimates the

magnitude of R680 (figure 5.5). This model misfit could either be caused by the

biochemical model or the radiative transfer model. The biochemical model is

based on the lake model assumption, which assumes perfect connectivity between

PSII units. In reality PSII units are probably only partially connected, a decrease

in connectivity would lead to an increase in fluorescence yield (Porcar-Castell,

personal communication).

The excitation-emission matrix is used to convert incident radiation to emitted

fluorescence. In this study a single, empirically excitation-emission matrix

obtained under steady-state conditions was used to simulate transient chlorophyll

fluorescence. This matrix is the source of potential errors. Firstly, a matrix

obtained for one particular species, may not be viable for other species as different

species have different emission spectra Campbell et al. (2008). Secondly, by using

a single matrix to calculate fluorescence emission, it is assumed that the shape

of the chlorophyll fluorescence emission remains constant. In reality the shape of

the chlorophyll emission spectra is known to change during the transient phase
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(Buschmann and Lichtenhaler, 1987). The shape of the emission spectra consists

of two main Gaussian like peaks, one short wavelength peak (centred close to 690

nm) and one long wavelength peak (centred close to 730 nm) (see figure 5.4).

The short peak2 is due to emission from PSII whereas the longer wavelength

peak is due mainly to PSII with some emission from PSI. During the transient

phase the emission from PSI is known to be variable, in addition it has also

been suggested that fluorescence due to re-absorption is higher during steady

state conditions than at the maximum fluorescence level. Both of these factors

may lead to a change in shape of the fluorescence emission spectra (Buschmann

and Lichtenhaler, 1987). Because the shorter wavelength chlorophyll emission

spectra and the chlorophyll absorption wavelengths overlap, some of the emitted

fluorescence is re-absorbed and then re-emitted.

Chlorophyll re-absorption of emitted fluorescence is an important phenomena

that affects not only the shape of the emission spectrum but also the positions

of the peak values. It follows that changes in chlorophyll pool sizes will affect

chlorophyll emission spectra through re-absorption. Using an empirical matrix

neglects this effect and assumes a fixed chlorophyll concentration. The change

in shape of the emission spectra during the transient phase can be quantified

with the reflectance index R690/R735. When this index is plotted for modelled

and measured reflectance spectra there is a clear difference between simulated

and measured results during the first 20 seconds (figure 5.9). This suggests that

a change in the shape of the chlorophyll emission spectra is at least partially

responsible for the early model-simulation misfit.

MCMC optimisation was used to find a realistic set of parameters that best

reproduced the measured reflectance index signal. For the sake of simplicity

the optimisation was limited to one type of measurement, a fluorescence based

2The short wavelength actually consists of two smaller peaks, both due to PSII emission
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reflectance index. However this approach has a serious limitation, the model

is somewhat over-parametrised. This means that there are more parameters

than can be feasibly estimated using the observed data, due to the complexity

of the modelled system. The MCMC method offers a solution to this problem

by allowing the incorporation of prior knowledge, and is therefore particularly

suited to over parametrised models (Reichert and Omlin, 1997). It is often

the case that models with numerous parameters can also contain correlated

parameters, correlations between parameters can lead to unrealistic posterior

parameter estimates. The rate parameters kbuild
npq and krelax

npq were found to be

correlated which is due to the mathematical formulation of the model as both

parameters occur in the same equation (equation 5.7).

The biochemical model used in this study contains a simplified, mechanistic

representation of the xanthophyll cycle (equation 5.7). The xanthophyll cycle

refers to the enzyme driven conversion of the carotenoid pigments violaxanthin,

vx, and zeaxanthin, zx, via an intermediary pigment antheraxanthin. The model

solves for the relative proportions of violaxanthin, vx, and zeaxanthin, zx but

does not include antheraxanthin. This has the effect of reducing the size of

the parameter space, but means that the model is not a true, mechanistic

representation of the xanthophyll cycle. In this model the proportion of zx is

assumed to be equivalent to the efficiency of NPQ. Ebenhöh et al. (2011) used

the same assumption as a basis for a slightly more detailed mechanistic model of

NPQ. However results from Ebenhöh et al. (2011) suggested that this assumption

is unrealistic, and that NPQ tends to saturate with relatively low proportions of

zx.

5.4.1 Future work

There are three main ways in which the model can be developed:
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1. Extend the model to predict the Photochemical Reflectance Index (PRI)

(Gamon et al., 1992, 1993).

2. Scale the model from the leaf to the canopy.

3. Increase the number of shared parameters (model coupling) between the

biochemical sub-model and the radiative transfer sub-model.

Because the xanthophyll cycle involves a change in concentrations of light

absorbing pigment pools, it also triggers a change in leaf reflectance. PRI was

developed by Gamon et al. (1992, 1993) as a way to measure changes in leaf

reflectance, at 531 nm, due to the xanthophyll cycle. PRI has had widespread use

in the remote sensing community at a range of scales (see Garbulsky et al. (2010)

for a review of applications), although as far as the author is aware, there are no

mechanistic models designed to predict PRI. Although a coupled model of NPQ

and leaf radiative transfer was presented, the model cannot in its present state

be used to simulate PRI. To predict PRI, a representation of the changes in leaf

reflectance due to zx must be made. Modelling the radiative transfer effects that

produce the observed PRI signal is complicated by the fact that xanthophylls

(or any pigment) have a different absorbance spectra in vivo in comparison to

in vitro. The latest version of PROSPECT (v5) solves this problem by using

an inversion technique to tease apart the relative contributions of leaf absorbers

such as chlorophyll and bulk carotenoids (Feret et al., 2008). Such a technique

could potentially be adapted to estimate the affect of relative proportions of zx

and vx on the leaf reflectance spectrum, providing adequate data exists (or can

be measured) to perform the inversion, enabling the simulation of PRI.

The coupled model is designed to simulate changes in leaf reflectance but

cannot be used to model effects of chlorophyll fluorescence on canopy reflectance.

FluorMOD was developed as a canopy radiative transfer model capable of
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predicting canopy chlorophyll and replacement with the full canopy model is a

relatively simple task (although rigorous validation would be needed).

The current model cannot be used on timescales longer than a few minutes as

it does not include the effects of temperature on slow NPQ. Slow NPQ occurs

on the timescales of hours to days and is often referred to as photo-inhibition.

Although an explicit formulation of slow NPQ/photo-inhibition was not included

in the current model, Porcar-Castell (personal communication) is currently

developing and testing such a model. SCOPE (van der Tol et al., 2009a,b) is

a full canopy model capable of simulating canopy chlorophyll fluorescence on

seasonal timescales. SCOPE includes the effects of temperature by calculating a

photosystem deactivation term which is used to scale chlorophyll fluorescence from

an a-priori maximum value. Although our model uses a more explicit formulation

of the xanthophyll cycle, the effects of temperature on NPQ could be simulated

by using a similar mechanism to SCOPE. Canopy instrumentation such as the

MONI-PAM (Heinz Walz GmbH, Effeltrich, Germany) (Porcar-Castell et al.,

2008) and above canopy hyperspectral radiometers will provide seasonal data-sets

that are invaluable in validating both the leaf biochemistry and the fluorescence

predictions.

Further improvements to the model could be achieved by increasing the level of

coupling between the biochemical and radiative transfer models. The coupling

between the biochemical and radiative transfer models was achieved by using

a predicted state from the biochemical model, φf , as an input to the radiative

transfer model. A future aim is to increase the level of coupling (number of

shared parameters) between the two models. This could be achieved by linking

the pigment size parameters in the biochemical model to the PROSPECT input

parameter concentrations. Not only would this reduce the parameter space but

it would also enable the prediction of the longer term (weeks to seasonal) effects

of changes in pigment pool sizes on leaf reflectance.
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5.4.2 Conclusions

The dynamic changes in leaf apparent reflectance on short time-scales due to the

effects of chlorophyll fluorescence were successfully simulated. This study was

designed as a precursor to a trans-seasonal full canopy scheme. To scale the

biochemical model to the canopy, two main issues need to be addressed. Firstly

the effects of temperature and photo-inhibition on leaf biochemistry need to be

accounted for, and secondly the dynamic changes in leaf pigment pools need to be

modelled on longer timescales and fully coupled to a full canopy radiative transfer

model, such as FluorMOD.
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Table 5.1: Prior and posterior parameter values for the biochemical sub-model. kf

and kD were not optimised.

Name Definition Prior mean Prior SD Posterior

mean

Posterior

SD

kP rate constant for

photochemistry

4.94e9 2.6e8 4.96e9 2.5e8

kN rate constant for

NPQ

2.92e9 1.2e8 3.88e9 7.49e7

kD rate constant for

non-basal heat

6.03e8 n/a n/a n/a

kF rate constant for

fluorescence

6.7e7 n/a n/a n/a

krelax
pq rate constant for

PQ relaxation

(re-oxidation)

1.5 0.05 1.5 0.05

kbuild
npq rate constant for

NPQ building

0.011 1e-3 0.016 4.8e-4

krelax
npq rate constant for

NPQ relaxation

4e-3 1e-6 4e-3 1.08e-6

Chltot number of

chlorophyll

a and b in

population

1.035e6 1e3 1.035e6 1.03e3

xantot number of

Vx and Zx in

population

5000 100 4.98e3 90.23

PQtot number of

PQequiv in

population

1.1e5 100 1.1e5 9.36e3



Chapter 6

General conclusions

The general aim of the thesis was to contribute to knowledge gaps in the

interpretation and modelling of physiological remote sensing, working towards

the goal of accurately inferring light use efficiency (LUE) from space. A detailed

literature review and three original studies were conducted in order to address

each question in turn. The leaf level experimental study (chapter 3) adds to the

increasing evidence of the usefulness of physiological remote sensing signals in

detecting a range of different stress effects. The airborne study highlights the

potential for combining multi-scale and multi-instrument physiological remote

sensing measurements in complex, heterogeneous landscapes to infer LUE. The

final study presented a new paradigm for the modelling of optical signals,

linking the leaf scale physics of radiative transfer to the sub-leaf scale biology

of photosystem II.

The results presented in chapter 3 show how hyperspectral reflectance indices

can be used to track the reduction and subsequent recovery of photosynthetic

efficiency in saplings due to transplant shock. Post-transplantation, outplanted

trees undergo a period of stress which results in increased mortality rates. Field

107



CHAPTER 6. General conclusions 108

spectrometers are non-invasive and relatively cheap and therefore have practical

potential for the detection of transplant shock effects, provided suitable algorithms

are developed and validated. Hyperspectral reflectance, PAM fluorescence and gas

exchange measurements were collected from a sample of transplanted trees over

an 8 week period. The PRI was found to track the reduction and subsequent

recovery in photosynthetic rate over the study period (Figure 3.3).

Although there was a clear trend in PRI over the duration of the study period,

the coefficients of determination that were calculated between PRI and the other

indicators of photosynthetic efficiency were not particularly strong (R2 = 0.22

for PRI and LUE, and R2 = 0.34 for PRI and ∆F/F ′

m). This was probably

caused by measurement error introduced due to the prevailing meteorological

conditions during the study period. There were few opportunities to collect

spectra under clear sky conditions, therefore spectra were collected in cloudy

and clear conditions. Cloud is known to reduce the accuracy of single beam

spectrometer systems where leaf measurements are compared to a calibrated

standard under the assumption of identical illumination conditions (Milton et al.,

2009). Measurements during clear sky conditions and/or using a dual beam

system would probably increase the strength of the statistical correlations between

the various photosynthetic parameters. In conclusion, physiological reflectance

measurements can be used to track reductions in photosynthetic rates caused by

transplant shock, however the accuracy of the measurements is impeded by using

a single beam spectrometer in cloudy conditions.

The results presented in the second study (chapter 4) were from an airborne

campaign conducted as part of the large scale ABACUS experiment. A mixture

of satellite data and airborne hyperspectral and eddy covariance measurements

were collected using the Edinburgh School of GeoSciences research aircraft. Air-

borne measurements of CO2 fluxes were compared to MODIS vegetation indices

and landscape LUE was estimated for birch forests by combining airborne flux
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measurements with tower estimates of respiration and satellite-based estimates of

fAPAR. In a recent study Zulueta et al. (2011) found moderate relationships be-

tween NDVI calculated from MODIS measurements and airborne eddy covariance

measurements. This was not the case for this data-set, most likely due to chang-

ing light conditions during the measurement period driving changes in carbon

exchange across the landscape. There were weak to moderate (R2 = 0.4 in both

cases) correlations found between PRI and LUE and between PRI and PPFD.

The GeoSciences research aircraft has recently been fitted with a hyperspectral

imaging system, this has the potential to enable spatial estimates of LUE across

the landscape from the actual footprint of the airborne eddy covariance estimates.

In conclusion, we found that aircraft observations of CO2 fluxes are sensitive to

incoming solar radiation across the heterogeneous Arctic landscape, and that

hyperspectral reflectance indices such as the PRI have the potential to quantify

this sensitivity.

A new coupled model was presented in chapter 5 that linked sub-leaf scale

biological processes to a radiative transfer model in order to predict the effects

of chlorophyll fluorescence emission on the apparent reflectance spectrum. The

model was based on two preexisting models: a model of the dynamics of energy

flow through photosystem II developed by Porcar-Castell et al. (2006) and the

PROSPECT leaf model (Jacquemoud and Baret, 1990). A Bayesian calibration

algorithm was used to optimise the model parameters and predict model error.

The coupled model was able to predict the effects of photochemical and non-

photochemical quenching on the fluorescence emission on the timescale of seconds

to minutes and was validated against an independent data-set.

The model presented in chapter 5 was developed as a precursor to a full canopy

scheme. At present there are perhaps only two other models that link radiative

transfer estimates of chlorophyll fluorescence to physiology, the first being the
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SCOPE model (van der Tol et al., 2009b) and the second being an unpublished

model developed by Magnani (2009) and described in Dayyoub (2011). There are

two ways in which the model could be extended. The first is to develop a full

canopy scheme and the second is to model the PRI signal. A full canopy radiative

transfer model capable of predicting chlorophyll fluorescence has already been

developed by the FluorMOD project (Miller et al., 2005). The challenge here

is extending the biochemical model to work on seasonal time-scales, although

Porcar-Castell (personal communication) is already working on such a model.

Any full canopy scheme would need rigorous validation. Excitingly, this data is

already available, as above canopy hyperspectral radiometer measurements and

PAM data have been collected at a Swedish research station for the past two

seasons (2010, 2011) at a frequency of one measurement per five minutes.

Modelling the PRI signal is, in theory at least, a relatively simple extension to

the model presented. The pool sizes of zeaxanthin, zx, and violaxanthin, vx, are

state variables in the biochemical model, however they are not represented in

PROSPECT. The radiative transfer is complicated by the fact that xanthophylls

(or any pigment) have a different absorbance spectra in vivo in comparison to in

vitro. An inversion process could possibly be used to tease apart the contribution

to the reflectance spectrum of the relative sizes of the xanthophyll pools at

different stages of the cycle. In the newest version of PROSPECT (v5) Feret et al.

(2008) used such a technique to derive the specific absorbance coefficients for bulk

chlorophyll (and the other absorbing materials represented in PROSPECT) from

a calibration data-set. It is these coefficients that are re-used when PROSPECT

is run in forward mode. In conclusion, a new modelling approach enabled the

prediction of the leaf level effects of chlorophyll fluorescence on the apparent

reflectance spectrum driven by the dynamics of PSII.
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.2 Model code

The following Matlab code was written for the simulations in chapter 5.

The code calls the PROSPECT leaf model which can be downloaded from:

http://teledetection.ipgp.jussieu.fr/prosail/

..1 Biochemical leaf model code

function out = fmod biochem ( ppfd , param vec , . . .

t max , t imestep )

% Vers ion

% update o f FMOD EXPERIMENTAL

% l a r g e l y based on

% [ Porcar−Cas t e l l ,2005 ,FCB, Dyanamics o f energy f l ow . . . ]

%

%

debug = f a l s e ;

i f nargin < 4

t imestep = 0 . 0 2 ;

end

i f nargin < 4

t max = 30 ;

end

pp fd t s = ppfd ∗ t imestep ;

% c l a s s i c ra t e cons tan t s

kP ts = param vec (1 ) ∗ t imestep ;

http://teledetection.ipgp.jussieu.fr/prosail/
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kF ts = param vec (2 ) ∗ t imestep ;

kD ts = param vec (3 ) ∗ t imestep ;

kN ts = param vec (4 ) ∗ t imestep ;

% d i f f e r e n t i a l equa t ion ra t e cons tan t s

k pq r t s = param vec (5 ) ∗ t imestep ;

k npqb ts = param vec (6 ) ∗ t imestep ;

k npqr t s = param vec (7 ) ∗ t imestep ;

% Model s to i chometry

c h l t o t = param vec ( 8 ) ;

xan tot = param vec ( 9 ) ;

PQ tot = param vec ( 1 0 ) ;

% pH fun c t i o na l parameters => c o r r e l a t e d wi th d i f f .

% eq . parameters PQ reox lim = 5000 % upper l im i t

% of pH s c a l e f ac to r , sˆ−1

PQ reox lim = param vec (11) ∗ t imestep ;

% ’ f i x ed ’ parameters

c h l a b s e = 0 . 0 5 ; % e f f i c i e n c y o f energy capture

ac = 3 .8 e−20; % e f f e c t i v e absorp . area o f c h l .

conv f a c t o r = 6.023 e17 ; % umoles to a b s o l u t e un i t s

%% i n i t i a l c ond i t i on s => i n c l ude in parameters v e c t o r

% Dark adapted i n i t i a l c ond i t i on s

i n con = dark con ( PQ tot , xan tot ) ;

PQ on ts = in con ( 1 ) ;
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PQ of f t s = in con ( 2 ) ;

PQ ox ts = in con ( 3 ) ;

NPQ on ts = in con ( 4 ) ;

vx t s = in con ( 5 ) ;

z x t s = in con ( 6 ) ;

% loop v a r i a b l e s

t s i = 1 ∗ t imestep ;

t s = t s i ;

i = 1 ;

% ana l y t i c a l s o l u t i o n to xan t hophy l l c y c l e

vx i = in con ( 5 ) ;

z x i = in con ( 6 ) ;

k npqb = param vec ( 6 ) ;

k npqr = param vec ( 7 ) ;

% output , to do => s t a t e s i z e f o r matlab i n t e r p r e t e r

t im e a l l = [ 0 ] ;

[ ch l on , c ] = ca lc ch l ON ( ch l t o t , ch l ab s e , ppfd ts , . . .

ac , conv fac to r , kF ts , kD ts , . . .

kN ts , kP ts , PQ ox ts , NPQ on ts ) ;

c h l o n t s = ch l on ∗ t imestep ;

% 0 = f u l l y ox id i s ed , 1 = f u l l y reduced

PQ ox = [1 − PQ on ts / PQ tot ] ;

% 0 = no NPQ, 1 = f u l l NPQ

NPQ on = [ zx t s / xan tot ] ;
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yF a l l = [ ( kF ts ∗ c h l o n t s ) / ( c ∗ t imestep ) ] ;

yN a l l = [ ( kN ts∗ NPQ on ts ∗ c h l o n t s ) / ( c ∗ t imestep ) ] ;

yP a l l = [ ( kP ts∗ PQ ox ts ∗ c h l o n t s ) / ( c ∗ t imestep ) ] ;

yD a l l = [ ( kD ts ∗ c h l o n t s ) / ( c ∗ t imestep ) ] ;

while t s <= t max

% steady s t a t e ra t e o f e x c i t a t i o n

[ ch l on , c ] = ca lc ch l ON ( ch l t o t , ch l ab s e , ppfd ts , . . .

ac , conv fac to r , kF ts , kD ts , . . .

kN ts , kP ts , PQ ox ts , NPQ on ts ) ;

c h l o n t s = ch l on ∗ t imestep ;

% pH r e l a t e d to the re−ox i da t i on ra t e o f the PQ poo l

PQ reox = k pq r t s ∗ PQ on ts ;

% v i o l a x an t h i n to zeaxanth in convers ion , NPQ formation

z x t s = z x an a l y t i c a l ( vx i , zx i , k npqb , k npqr , t s ) ;

% f r a c t i o n o f reduced PQ poo l

dot PQ = ( ch l o n t s ∗ kP ts / t imestep ∗ PQ ox ts ) . . .

− ( k pq r t s ∗ PQ on ts ) ;

PQ on ts = PQ on ts + dot PQ ;

PQ of f t s = PQ tot − PQ on ts ; % Q in porcar−c a s t e l l
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%==== DEBUG DEBUG DEBUG ====%

i f debug ;

disp ( [ ’pH s c a l e f a c t o r : ’ num2str( pH s c a l e f a c t o r ) ] )

%i f t s > .05

% return

%end

end

%==== DEBUG DEBUG DEBUG ====%

% catch e r ro r s

i f PQ on ts < 0

PQ on ts = 0 ;

e l s e i f PQ on ts > PQ tot

PQ on ts = PQ tot ;

end

i f z x t s < 0

zx t s = 0 ;

e l s e i f z x t s > xan tot

z x t s = xan tot ;

end

vx t s = xan tot − z x t s ;

% number o f o x i d i s e d ( open ) PQs

PQ ox ts = 1 − PQ on ts / PQ tot ; % or PQ o f f t s / PQ tot
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% s t a t e o f the NPQ poo l ( f r a c t i o n i f NPQ ac t i v e )

NPQ on ts = zx t s / xan tot ;

% ca l c u l a t e y i e l d s

yF = ( kF ts ∗ c h l o n t s ) / ( c ∗ t imestep ) ;

yN = ( kN ts∗ NPQ on ts ∗ c h l o n t s ) / ( c ∗ t imestep ) ;

yP = ( kP ts∗ PQ ox ts ∗ c h l o n t s ) / ( c ∗ t imestep ) ;

yD = ( kD ts ∗ c h l o n t s ) / ( c ∗ t imestep ) ;

% output

PQ ox = [ PQ ox ; PQ ox ts ] ;

NPQ on = [NPQ on ; NPQ on ts ] ;

t im e a l l = [ t im e a l l ; t s ] ;

yF a l l = [ yF a l l ; yF ] ;

yN a l l = [ yN a l l ; yN ] ;

yP a l l = [ yP a l l ; yP ] ;

yD a l l = [ yD a l l ; yD ] ;

% index ing and t imes t ep

i = i + 1 ;

t s = t s + t s i ;

end

out = [ t ime a l l , PQ ox , NPQ on , yF a l l , yN al l , yP a l l , . . .

yD a l l ] ;
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%============== end o f main ==================%

end

%%======== dark cond i t i on s ============%

function i n i t c o n = dark con ( PQ tot , xan tot )

%% i n i t i a l c ond i t i on s

% i n i t i a l c ond i t i on s => dark adapted

PQ on i = 0 ;

PQ o f f i = PQ tot ;

PQ ox i = 1 − PQ on i / PQ tot ;

NPQ on i = 0 ;

vx i = xan tot ;

z x i = 0 ;

i n i t c o n = [ PQ on i , PQ of f i , PQ ox i , NPQ on i , vx i , z x i ] ;

end

%% =========== l i g h t ab sorp t i on ra t e ==========%

function [ ch l on , c ] = ca lc ch l ON (TOTchl , ch l ab s e , ppfd , . . .

ac , conv fac to r , kF , . . .

kD,kN, kP , PQ ox ,NPQ on)

% l i g h t a b so r b t i on ra t e

c = l i g h t a b s r a t e (TOTchl , ch l ab s e , ppfd , ac , c onv f a c t o r ) ;

% number o f c h l o r o p h y l l in e x c i t e d s t a t e

ch l on = c / (kF + kD + kN ∗ NPQ on + kP ∗ PQ ox ) ;

end
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function c = l i g h t a b s r a t e (TOTchl , c h l a b s e , ppfd , ac , . . .

c onv f a c t o r )

% Ligh t ab so r b t i on ra t e by c h l o r o p h y l l a and b

c = TOTchl ∗ c h l a b s e ∗ ppfd ∗ ac ∗ conv f a c t o r ;

end

%% ====== so l u t i o n to the xan t hophy l l c y c l e ====== %%

function z x t s = z x an a l y t i c a l ( vx i , zx i , k npqb , k npqr , t )

% Ana l y t i c a l s o l u t i o n to r e v e r s i b l e r eac t i on

%

% V <−> Z

%

z x t s = ( z x i ∗ exp(−(k npqb + k npqr ) ∗ t ) ) + . . .

( ( k npqb / ( k npqb + k npqr ) ) ∗ . . .

( vx i + z x i ) ∗ . . .

(1 − exp(−(k npqb + k npqr ) ∗ t ) ) ) ;

end
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..2 Radiative transfer leaf model code

function [ r i nd ex i , r index , x , yF ] = FmodProspect ( params , . . .

ts max , . . .

t imestep , . . .

i n i t r i n d e x )

%

% coup led b iochemica l−ph y s i c a l model to p r e d i c t

% f l u o r e s c en c e index us ing emp i r i ca l matrix from SCOPE.

%

% References

%

% Mi l l e r e t a l , 2005 , Development o f a Vegeta t ion

% Canopy Model , r epor t

%

% Porcar−Cas t e l l , 2006 , Dynamics o f the energy

% f l ow through photosystem I I under changing l i g h t

% cond i t i on s : a model approach , FPB(33)

%

% van der Tol , 2009 , An i n t e g r a t e d model , B iogeosc i ences

%

p h i f r e f = 0 . 0 2 ; % CHECK THIS

% s e t t i n g s

addpath . . /PROSPECT 5B MATLAB/

verbose = f a l s e ;

% ca l c u l a t e r e f l e c t a n c e index f o r i n i t i a l c ond i t i on s ?

i f nargin < 4 ;
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i n i t r i n d e x = f a l s e ;

end

% params

wav vnir = 350 : 1000 ;

%% 1. LOAD DATA

% load i r rad iance , mode l led (MODTRAN) or measured

rad = load ( ’ solar rad dummy . txt ’ ) ;

wav E = rad ( : , 1 ) ;

E = rad ( : , 2 ) ;

N = E2N(E, wav E ) ; % conver t uni t s , FluorMOD repor t pp 72

% load emp i r i ca l f l u o r e s c en c e matrix

[ Mf emp , Mb emp ] = load empiricalMAC ( ) ;

%% 2. CALL CASTELL LEAF MODEL

% Mi l l e r , 2005 , eq [ 3 . 5 . 8 ]

ppfd = PAR N(N, wav E ) ;

% Cal l b i o l o g i c a l model

out = fmod biochem ( ppfd , params , ts max , t imestep ) ;

% out = [ t ime a l l , PQ ox , NPQ on , yF a l l , yN a l l , . . .

% yP a l l , yD a l l ] ;

yF = out ( : , 4 ) ;

yN = out ( : , 5 ) ;
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yP = out ( : , 6 ) ;

yD = out ( : , 7 ) ;

%% 3. CALL PROSPECT 5B

% prospec t parameters and data

Nlayer = params ( 1 2 ) ;

Cab = params ( 1 3 ) ;

Cw = params ( 1 4 ) ;

Cm = params ( 1 5 ) ;

Car = params ( 1 6 ) ;

Cbrown = params ( 1 7 ) ;

% Cal l PROSPECT

LRT = prospect 5B ( Nlayer , Cab , Car , Cbrown ,Cw,Cm) ;

r e f l = LRT( : , 2 ) ;

tran = LRT( : , 3 ) ;

wl = LRT( : , 1 ) ;

%% 3. CALCULATE WHITE LIGHT FLUORESCENCE

wav emiss = 640 : 850 ;

wav absorb = 400 : 750 ;

% re f l e c t an c e , where wav E == wav N

I j b = wh i t e f l u o r (N, Mb emp , wav absorb , wav E ) ;

% transmiss ion



145

%I j f = wh i t e f l u o r (N, Mf emp , wav absorb , wav N ) ;

%% 4. CALCULATE APPARENT REFLECTANCE

% ( r e f l e c t a n c e + f l u o r e s c en c e )

% VECTORIZE, i f more speed needed

r e f l r e s c a l e = zeros ( s ize ( wav vnir ) ) ;

r e f l r e s c a l e ( : ) = nan ;

wl = LRT( : , 1 ) ;

r e f l r e s c a l e ( wav vnir >=400 & wav vnir <=851) = . . .

r e f l (wl>= 400 & wl<=851);

plot ( wl )

r index = [ ] ;

% loop over each t imes t ep / f y i e l d va lue .

for i = 1 : length (yF)

ph i f = yF( i ) ;

% sca l e f l u o r e s c en c e from max to r e a l i s e d

F r e f l = ( ph i f / p h i f r e f ∗ I j b ) / pi ;

F r e f l r e s c a l e = zeros ( s ize ( wav vnir ) ) ;

F r e f l r e s c a l e ( wav vnir >=640 & wav vnir <=850) = F r e f l ;

% ca l c u l a t e apparent r e f l e c t a n c e and r e f l e c t a n c e index

app r e f l = r e f l r e s c a l e + F r e f l r e s c a l e ;
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r idx = r e f l e c t a n c e i n d e x ( app r e f l , wav vnir ) ;

% output

r index = [ r index ; r idx ] ;

end

%p l o t ( a p p r e f l )

%ho ld on

%p l o t ( r e f l r e s c a l e , ’ r ’ )

%xl im ( [ 0 , 2 00 ] )

%% STUFF FOR OPTIMISATION

% in t e r p to 1 second f o r op t im i sa t i on

x = out ( : , 1 ) ;

r i n d e x i = interp1 (x , r index , [ 1 : ts max ] ) ;

r i n d e x i = [ r i ndex i ’ ] ;

% ca l c u l t e r e f l e c t a n c e index f o r i n i t i a l c ond i t i on s ??

i f i n i t r i n d e x ;

r i n d e x i = [ r index ( 1 ) ; r i n d e x i ] ;

end

% remove f i r s t t h r e e seconds worth o f data because

% we have p r i o r knowledge o f m i s f i t

%r i n d e x i ( 1 : 3 ) = nan ;
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%%%%%%%%%%%%%%% END OF MAIN %%%%%%%%%%%%%%%%%%%%%%%%%%%

end

function ppfd = PAR N(N, wav N)

% in t e g r a t e PAR over 400 − 750 nm

% Mi l l e r , 2005 , eq [ 3 . 5 . 8 ]

wlow = find (wav N==400);

whigh = find (wav N==750);

ppfd = nansum(N(wlow : whigh ) ) ∗ 10ˆ6 ;

end

function r index = r e f l e c t a n c e i n d e x ( rho , wav vnir )

% non v e c t o r i s e d

r index = rho ( wav vnir == 680) . / . . .

rho ( wav vnir == 630 ) ;

end

function N = E2N(E, wav E)

% equat ion 3 . 5 . 7 from FlourMOD report , 2005

% conver t from W/m2/nm to mol photons /m2/s/um

Na = 6.02214 e23 ;

hc = 6.6208 e−34 ∗ 2.99797 e8 ;

N = zeros ( s ize (E ) ) ;

% loop over wave l eng ths

for i = 1 : length (wav E)
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lambda = wav E( i ) ∗ 10ˆ−9;

N( i ) = E( i ) / Na ∗ lambda / hc ;

end

end

function I j = wh i t e f l u o r (N, Mij , wav absorb , wav N)

% equat ion 3 . 5 . 6 from FlourMOD report , 2005

% whi te l i g h t i n t e g r a t i o n

f w av s t a r t i d x = find (wav N==wav absorb ( 1 ) ) ;

f wav end idx = find (wav N==wav absorb (end ) ) ;

N f = N( f wav s t a r t i d x : f wav end idx ) ’ ;

N f i j = repmat ( N f , 2 1 1 , 1 ) ;

I j = nansum( N f i j .∗ Mij , 2) . / nansum( N f i j , 2 ) ;

end

function [Mf , Mb] = load empiricalMAC ( )

% load emp i r i ca l f matrix data on Mac

Mfa f i l e = ’FdN 3 . 0 . dat ’ ; % Fluorescence f i l e

Mba f i l e = ’FuN 3 . 0 . dat ’ ; % Fluorescence f i l e

Mfa = load ( M f a f i l e ) ;
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Mba = load ( Mba f i l e ) ;

Mf = Mfa ’ ; % Fluorescence matrix Mf

Mb = Mba ’ ;

end

function [Mf , Mb] = l o ad emp i r i c a l ( )

% load emp i r i ca l f matrix data

path input = ’ /home/ s0793962 /paper3/ code/SCOPE/data/ input / ’ ;

M f a f i l e = ’FdN 3 . 0 . dat ’ ; % Fluorescence f i l e

Mba f i l e = ’FuN 3 . 0 . dat ’ ; % Fluorescence f i l e

Mfa = load ( [ path input , ’ f l uo rmat r i x / ’ , M f a f i l e ] ) ;

Mba = load ( [ path input , ’ f l uo rmat r i x / ’ , Mba f i l e ] ) ;

Mf = Mfa ’ ; % Fluorescence matrix Mf

Mb = Mba ’ ;

end
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Porcar-Castell, A., Bäck, J., Juurola, E. and Hari, P. (2006). Dynamics of the

energy flow through photosystem ii under changing light conditions: a model

approach. Functional Plant Biology , 33, 229–239.

Porcar-Castell, A., Pfündel, E., Korhonen, J.F.J. and Juurola, E. (2008). A new

monitoring pam fluorometer (moni-pam) to study the short- and long-term

acclimation of photosystem ii in field conditions. Photosynthesis Research, 96,

173–179.

Quaife, T., Lewis, P., Kauwe, M.D., Williams, M., Law, B.E., Disney, M. and

Bowyer, P. (2008). Assimilating canopy reflectance data into an ecosystem

model with an ensemble kalman filter. Remote Sensing of Environment , 112,

1347–1364, remote Sensing Data Assimilation Special Issue.

Rahman, A., Cordova, V., Gamon, J., Schmid, H. and Sims, D. (2004). Potential

of modis ocean bands for estimating co2 flux from terrestrial vegetation: A

novel approach. Geophys. Res. Lett., 31, L10503.

Rascher, U. and Nedbal, L. (2006). Dynamics of photosynthesis in fluctuating

light. Current Opinion in Plant Biology , 9, 671–678.

Rascher, U., Gioli, B. and Miglietta, F. (2008). Flex fluorescence explorer: A

remote sensing approach to quantify spatio-temporal variations of photosyn-

thetic efficiency from space. In J. Allen, E. Gantt, J. Golbeck and B. Osmond,

eds., Photosynthesis. Energy from the Sun, 1388–1390, Springer Netherlands.



BIBLIOGRAPHY 165

Reichert, P. and Omlin, M. (1997). On the usefulness of overparameterized

ecological models. Ecological Modelling , 95, 289–299.

Riedel, S.M., Epstein, H.E. and Walker, D.A. (2005). Biotic controls over

spectral reflectance of arctic tundra vegetation. International Journal of Remote

Sensing , 26, 2391–2405.

Rietveld, R. (1987). Transplanting shock in bareroot conifer seedlings. National

Nursery Proceedings - 1987 , 6, 49–71.

Rosema, A., Verhoef, W., Schroote, J. and Snel, J. (1991). Simulating fluorescence

light-canopy interaction in support of laser-induced fluorescence measurements.

Remote Sensing of Environment , 37, 117–130.

Rosema, A., Snel, J., Zahn, H., Buurmeijer, W. and Hove, L.V. (1998). The

relation between laser-induced chlorophyll fluorescence and photosynthesis.

Remote Sensing of Environment , 65, 143–154.

Rouse, J.W., Haas, R.H., Schell, J.A. and Deering, D.W. (1973). Monitoring

vegetation systems in the Great Plains with ERTS. In Proceedings of the Third

ERTS Symposium, vol. 1, 309–317, NASA.

Running, S. and Hunt Jr., E. (1993). Generalization of a forest ecosystem process

model for other biomes, BIOME-BGC, and an application for global-scale

models . Academic Press, Inc. New York.

Running, S., Nemani, R., Glassy, J. and Thornton, P. (1999). Modis daily pho-

tosynthesis (psn) and annual net primary production (npp) product (mod17)

algorithm theoretical basis document. Tech. Rep. 3.

Sarlikioti, V., Driever, S. and Marcelis, L. (2010). Photochemical reflectance index

as a mean of monitoring early water stress. Annals of Applied Biology , 157,

81–89.



BIBLIOGRAPHY 166

Saucier, A., Duncan, M. and Austin, G. (1991). Mean flux estimation and

cospectra of airborne carbon dioxide and water vapour eddy flux measurements

in the planetary surface layer. Boundary-Layer Meteorology , 55, 227–254.

Savitzky, A. and Golay, M.J.E. (1964). Smoothing and differentiation of data by

simplified least squares procedures. Analytical Chemistry , 36, 1627–1639.

Sellers, P., Randall, D., Collatz, G., Berry, J., Field, C., Dazlich, D., Zhang, C.,

Collelo, G. and Bounoua, L. (1996). A revised land surface parameterization

(sib2) for atmospheric gcms. part i: Model formulation. Journal of Climate, 9,

676–705.

Sielewiesiuk, J. and Gruszecki, W.I. (1991). A simple model describing the kinetics

of the xanthophyll cycle. Biophysical Chemistry , 41, 125–129.

Sims, D. and Gamon, J. (2002). Relationships between leaf pigment content

and spectral reflectance across a wide range of species, leaf structures and

developmental stages. Remote Sensing of Environment , 81, 337–354.

South, D.B. and Zwolinski, J.B. (1997). Transplant stress index: A pro-

posed method of quantifying planting check. New Forests , 13, 315–328,

10.1023/A:1006546627342.

Stow, D. (2004). Remote sensing of vegetation and land-cover change in arctic

tundra ecosystems. Remote Sensing of Environment , 89, 281–308.

Stoy, P., Williams, M., Spadavecchia, L., Bell, R., Prieto-Blanco, A., Evans, J.

and van Wijk, M. (2009). Using information theory to determine optimum pixel

size and shape for ecological studies: Aggregating land surface characteristics

in arctic ecosystems. Ecosystems , 12, 574–589, 10.1007/s10021-009-9243-7.
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