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Abstract 

Some non-perturbative aspects of field theories are studied by applying 
lattice gauge theory techniques. 

The low-lying hadronic mass spectrum is calculated numerically using 
quenched lattice quantum chromodynaniics. The results of large numerical 
simulations performed on a distributed array processor are presented and 
analysed. Particular emphasis is stressed upon the understanding of sys-
tematic and statistical errors in the calculation. In addition, the pion decay 
constant and the chiral condensate are evaluated. An attempt is made to 
relate the numerical findings to the experimentally measured quantities. 

A pioneering attempt to understand Yukawa couplings is discussed. A 
toy Fermion-Higgs system is studied numerically on a transputer array. 
Dynamical fermions are included in the investigation of the behaviour of 
the system over a wide range of Yukawa couplings. A phase diagram is 
found for the model which shows evidence of spontaneous chiral symmetry 
breaking transitions. Extensions of the model are discussed together with 
some speculations concerning the behaviour of Yukawa couplings in general. 

The possibility of using the lattice as a model for space-time is inves-
tigated by studying the propagation of particles on a fractal lattice. In 
addition, the use of truncated fractals as novel regulators is studied numer-
ically in the hope that the problem of fermion doubling will be alleviated. 
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Chapter 1 

Threads in a Tapestry 

The theory we now have is an integral work of art: 

the patchwork quilt has become a tapestry. 

S.L. Glashow 1979 

The tapestry is the Standard model of strong, weak and electromagnetic inter-

actions. It suc'èssfully describes particle interactions down to distances as small 

as 10_18  metres and represents a remarkable synthesis of ideas over many years. 

Although it is not the ultimate unified theory, it provides a basis for further de-

velopment. Many aspects of the Standard model are not well understood beyond 

perturbation expansions in powers of small couplings. The work in chapters 2 

and 3 of this thesis, use the non-perturbative techniques of lattice gauge the-

ory to look at some of these aspects. The work in chapter 4 goes beyond the 

Standard model in search of finer threads in the tapestry. 

In this introduction, I will first present a condensed history of the ideas that 

have led to the Standard model. I will then describe the minimal Standard 

model and mention some of the questions that it raises. Following this, there 

will be a description of the techniques used in lattice gauge theory. And finally, 

the structure of the thesis will be outlined. 
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1.1 History of Unification 

The Standard model was woven over many years by many theorists and was 

completed in 1973. In this section, I will attempt to present a historical review 

of the major concepts that led to the Standard model. For explicit references to 

the mentioned work refer to [1,2,3]. 

In 1864, James Clerk Maxwell unified the first threads in the tapestry [4]. In 

writing down the classical field equations describing electric and magnetic fields, 

he succeeded in unifying the two forces and produced the first gauge field the-

ory. Next, there came the development of relativity and quantum mechanics. 

The idea of local symmetry in Einstein's 1916 formulation of general relativity 

gave birth to the idea of gauge symmetries studied by Weyl in 1919. Quantum 

field theory was born in the 1930s from the work of Dirac, Heisenberg and Pauli 

but suffered from the disadvantage of having short-range divergences. A way of 

making sense of these divergences appeared with the development of the renor-

malization program of Feynman, Schwinger, Tomonaga and Dyson in the late 

1940s. This in turn led to the development of quantum electrodynamics (QED); 

the quantum extension of Maxwell's field equations. QED is extremely success-

ful in describing the interaction of electrons with light; its 0(e6 ) prediction of 

the electron magnetic moment agrees with experiment up to at least 10 signif-

icant figures! Amazingly, QED can be completely written down by requesting 

that the theory has U1  gauge symmetry and that it is renormalisable. The re-

quirements of gauge symmetry and of renormalisability put strong constraints 

on the types of possible theory and it is these constraints that have led to the 

Standard model. The gauge concept was generalised to non-Abelian groups by 

Yang, Mills and Shaw in 1954 and laid the way to finding a theory of the strong 

force and to unifying the electromagnetic and weak forces. 

In 1960, Sakurai suggested that the strong interactions should be the result of 

a gauge principle; this idea was not applied until the quark model had been 

accepted. Approximate SU3  flavour symmetry in the hadron mass spectrum, 

led Gell-Mann to postulate the existence of quarks in 1964. Attempts to gauge 

flavour symmetry failed and it was only after the introduction of an extra quan- 
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turn number, called colour, by Greenberg, Han and Nambu in 1964-66, that a 

gauge theory of the strong forces could be written down. The action for quan-

tum chroniodynamics (QCD) was written down in 1973 by Fritsch, Gell-Mann, 

Gross, Leutwyler, Weinberg and Wilczek. The problems still remained of why 

one never observes free quarks and why the quarks inside hadrons appear to 

be free at high energies. These were answered by the discovery of asymptotic 

freedom in 1973 by Gross, Wilczek and Politzer and led to QCD being adopted 

as the theory of the strong force. 

In parallel with the development of QCD, the unification of the weak and the 

electromagnetic forces was being pursued. In 1958, Feynman, Gell-Mann, Mar-

shak and Sudarshan postulated that the weak interaction was of the form V-A; 

the weak force was a chiral theory. Attempts were made to gauge a unified weak 

and electromagnetic theory using such groups as SU2 , SU2  ® SU2  and 5U2  ® U1  

by Georgi, Glashow, Salam and Ward. The idea behind unification was that 

it might lead to a theory of weak forces that would be renormalisable. For the 

weak forces to be weak in such unified models, it was necessary to have massive 

gauge bosons mediating the weak force. Putting in explicit mass terms led to 

non-renormalisable theories and so it was only after the work on spontaneous 

symmetry breaking, performed by Anderson, Brout, Englert, Goldstone, Gural-

nik, Hagen, Higgs, Jona-Lasinio, Nambu and Kibble, that it became possible to 

write down a unified electroweak model. This was done by Weinberg in 1967 

and Salam in 1968 and they conjectured that the unified SU2  0 U1  electroweak 

theory with spontaneously broken gauge symmetry was renormalisable. The 

proof of this was supplied by 't Hooft in 1971. The discovery of neutral currents 

in 1973 led to the Glashow-Salam-Weinberg model being accepted as a model 

of the electroweak interactions. 

Therefore, by the mid 1970s there existed two models which proposed to explain 

three of nature's four forces. Putting these together into a model with SU3  0 
SU2®U1 gauge symmetry gives what is known as the Standard modeL So far, the 

Standard model has not been contradicted by any experimental data. The future 

lies in understanding how the Standard model behaves and in understanding the 

origin of the Standard model. 



1.2 The Standard Model 

In this section, I will describe the main features of the 3-generation minimal 

Standard model. 

1.2.1 Particle Content 

The Standard model (SM) is built on the gauge group G = SU3  0 5U2  ® U1 . 

The gauge bosons transform as the adjoint representations of G. There are 

eight gluons Ga where a = 1, .. . , 8 transforming as (8, 1) o  and they mediate the JA 

strong colour force. The (n, m) denotes the representation of G which is n-

dimensional for SU3 , rn-dimensional for SU2  and has a hypercharge equal to y 

for the U1  group. The weak force is mediated by the gauge bosons W where 

a = 1 7 2,3 and they transform as (1, 3) o . The hypercharge force is mediated by 

B.1  and it transforms as (1, 1). The observed Z and y vector bosons are made 

from linear combinations of W 3  and B and the hypercharge Y is assigned by 

the relation Y = Q - T where Q is the electric charge. 

The leptons consist of the the right-handed singlets e transforming as (1, 1)_i 

and the left-handed doublets L 1  = 
( ii, e)L transforming as (1,2)_1/2. The i can 

be 1, 2 or 3 and it labels the generations. 

The quarks consist of the right-handed singlets UiR  transforming as (3,1) 2/3 , the 

right-handed singlets d.jR transforming as (3,1)-1/3  and the left-handed doublet 

Qi  = (u, d) 2L transforming as (3,2) 1 /6 . 

The minimal SM also contains a spin-0 complex Higgs doublet 4 transforming 

as (1,2)1/2 and its conjugate 0' = ir2 q5 transforming as (1,2)_ 1 /2 . 
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1.2.2 Pure Gauge Sector 

The pure gauge part of the action for gauge bosons 	is given by 

S = f 2g2  

The Tr denotes a trace over the adjoint representation matrices appearing in 

the energy-momentum tensor F. which is defined as 	= [D, D] where D. 

is the covariant derivative 8,, + igATa with the T in the adjoint representation. JA 

In the SM, the sum of the above action with = G13  P, A = Wa and Aa = B 

is taken. Three different values of bare coupling are taken for the g appearing 

in the covariant derivative. 

1.2.3 Matter fields 

The action for the massless fermionic matter fields is given by 

= 	/ 
d'x (4e + TioLi  + 	+ Vioui  + 4bd) 

The D in this expression is the covariant derivative 

D = 0+ igB9 + jglwaT}ov  + igGaT 

The representation matrices T are in the representation of the fields they act 

upon. This action succinctly contains all the matter-gauge interactions in the 

SM and extends the old approach of minimal coupling. 

1.2.4 Mass generation 

Both the weak vector bosons and all the ferrnions apart from the neutrinos, are 

observed to have mass. The process of giving these particles mass in the SM relies 

on introducing a Riggs field. The Riggs field transforms as some representation 

of the gauge group and gauge-invariant combinations of the Riggs field with 
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gauge and matter fields can be constructed. The Higgs potential is so arranged 

that the Higgs field acquires a non-zero Vacuum Expectation Value (EV) and 

hence gauge symmetry is spontaneously broken. The non-zero VEV gives soft-

mass terms to the gauge and matter fields via the gauge-invariant interaction 

terms. By this mechanism, masses can be given to the gauge bosons and to the 

fermions without sacrificing renormalisability. 

In the minimal SM model the action for the Higgs field is given by 

S = fd 4X  ((D,,Ot)(D M O) - V(c5)) 

and the phenomenological potential, chosen to give a non-zero VEV is taken as 

V (0) = 

At the classical level, this gives a VEV of Of O=V2 /2 with v = it//X. Because 

D is the covariant derivative, the VEV is coupled to the gauge fields and at the 

classical level gives the vector bosons a mass of M, = g2v 2 /4. 

Yukawa couplings are used to give the fermions mass. The most general gauge-

invariant Yukawa couplings that can be written down are 

S 
= / 

d 4 	+ g, 1.çbtQ3 + h,ir10'tQ3  + h.c.) 

Note that these are the only terms in the SM which mix fermions from different 

generations. The fermionic masses can be diagonalised by applying biunitary 

transformations '0—+URt,bR + UL'bL to the fermion fields. Doing this introduces a 

3 x 3 unitary mixing matrix into the charged-current interactions known as the 

Kobayashi-Maskawa mixing matrix. 

1.2.5 Questions 

Having described the Standard model, I now wish to mention a few questions it 

poses. Firstly, there is the question of where did all the gauge coupling constants, 

the mixing angles and the Yukawa couplings come from? Secondly, why are 

there 3 repetitions of the first generation? And thirdly, what values should be 

used for \ and 1p. in the Higgs potential? 
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1.3 Lattice Gauge Theory 

The SM has been mostly understood by calculating Feynman diagrams to low 

order in the coupling constants. The resulting perturbative results have been 

remarkably sucessful in fitting the experimental data. However, there are aspects 

of the Standard model that require a non-perturbative understanding. Lattice 

gauge theory is a technique that can be used to study the non-perturbative 

nature of quantum gauge field theories. 

1.3.1 Introduction 

Lattice gauge theory (LGT) was developed by Kenneth Wilson in 1974 in or-

der to study quark confinement in QCD [5]. It allows the tools of condensed 

matter physics to be applied to the study of quantum field theories. The most 

powerful tool that is being used is direct numerical simulation by using Monte-

Carlo techniques. Lattice gauge simulations of non-perturbative field theories 

have the advantage that, in principle, the statistical and systematic errors are 

controllable. 

1.3.2 The Method 

In this section, I will illustrate the salient features of lattice gauge theory by 

focussing on a field theory containing only one real scalar field. 

There are two approaches to LGT. In the Hamiltonian approach only space is 

replaced by a discrete lattice; time remains continuous. The fields at each spatial 

site are evolved through time using the canonical momenta obtained from the 

Hamiltonian. This approach has been superceded by the Euclidean approach 

which I will now discuss. 

All scattering amplitudes in particle physics can be obtained from time-ordered 

expectation values of products of fields and these in turn can be obtained from 
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the action of the model using the functional integral approach [6]. Consider the 

partition functional 

Z[J] = fd[O]exp(ifC[O]+JO) 
	

(1.1) 

This contains all the inforamtion about the system with action S. For example 

the connected 2-point Greens function is given by 

62 in Z = 
6JZ6JY I 

The functional integral is an ill-defined quantity mathematically; to define it one 

has to introduce a short-distance regulator. In lattice gauge theory, this is done 

by replacing the functional integral over fields at all space-time points by the 

product of integrals over fields living on a finite lattice; heuristically, one replaces 

all derivatives by finite-differences and all space-time integrals by sums over the 

lattice. Furthermore, one analytically continues in the time direction t—it with 

the caveat that one will be able to continue back again after calculating some 

quantity; for some quantities it is not necessary to analytically continue 

the result back. The result of these two operations is to transform the partition 

functional into 

Z 101 = Hf 
dqexp (- 
	

+ 	 (1.2) 

This can be rewritten as 

= 
{4} 

which is the partition function for a 4-dimensional statistical mechanical system. 

Because of this analogy, one can then use the following tools of condensed matter 

physics: 

• Low-T expansions These are expansions in powers of a small coupling 

describing spin-wave excitations; the spin-waves are propagating particles 

and the technique is that of the usual Feynman diagrams. 

• High-T expansions These are expansions in powers of inverse couplings. 

• Mean-field theory Away from phase transitions, the fluctuations in the 

fields are small and one can make self-consistent saddle-point approxima-

tions. 
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• Monte-Carlo simulations Computers can be used to simulate the sys-

tem directly by using Monte-Carlo techniques to generate configurations 

with the appropriate Boltzmann distribution. 

• Renormalization Group Close to critical phase transitions, the machin-

ery of the renormalization group can be used to find critical exponents and 

discuss irrelevant operators. 

Equation (1.2) is only an analytically-continued approximation to equation (1.1). 

When is the approximation a good one? To answer this question, it is convenient 

to talk in terms of correlation lengths associated with operators. By inserting 

eigenstates of the Hamiltonian and by using the relation between timeslice op-

erators 

0(t) = e StO(0) e_Ht 

one can show that 

<0 1 T0(t)0(0) I 0> = 	e_E1tII <n 0(0)1 0> 11 2  

In the limit that t—oo one obtains 

<0 I T0(t)0(0) 10 > 	 (1.3) 

where E1  is the energy of the first-excited state and is called the mass gap M. 

The correlation length associated with operator 0 is defined as = 11M and 

defines a characteristic length in the system. If the correlation length is less 

than about 1, the excitations from operator 0 will decay rapidly in propagating 

across the lattice and hence will be very sensitive to the coarse-grained nature of 

the lattice. In this regime, the approximation is not a good one because particle 

propagation is strongly affected by short-distance effects which will be referred 

to as Ultra-Violet Finite Size Effects ( UVFSE). To avoid UVFSE, one should 

tune the bare parameters in the action to values where the correlation length 

diverges. In condensed matter parlance this is known as a critical point and is a 

singularity that separates the system into regions of different behaviour known 

as phases. Two problems occur on approaching a critical transition. Firstly, at 

some stage the correlation length will become as large as the size of the lattice. 
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At this stage, the finite size of the box will cause the system to behave differently 

to that of the system in unbounded space-time; this is known as an Infra-Red 

Finite Size Effect (IRFSE). To combat IRFSE, one should increase the lattice 

size as one approaches the critical transition. The second problem is known as 

critical slowing down. Near a critical transition, long-range order occurs and the 

many degrees of freedom in the system will start to behave cooperatively. To 

simulate such highly-correlated systems numerically requires increasing amounts 

of computer time. 

1.3.3 Gauge fields 

The initial impetus for studying Lattice QCD (LQCD) was the search for a proof 

to show that QCD had confined quarks. Wilson, in 1974, invented LGT as a 

means of doing this and devised a clever scheme for putting gauge fields on a 

lattice in a gauge-invariant way. The scheme was inspired from Mandlestam's 

path-ordered exponential approach. A gauge field A M  can be thought of as 

connection between two space-time points: 

4(z) = Pexp (ig f A M dXM) q(y) 

where P means order the exponentiated A in the order that they occur in the 

path x--+y. On the lattice, this amounts to putting matrices belonging to a 

gauge group on the links of the lattice and then using them to connect matter 

fields on the sites. The gauge links are given by 

UM (x) = exp(igaA(x)) 

A term has to be placed in the action in order to generate the dynamics for 

the gauge links and also must give the continuum pure gauge action as one 

approaches the critical point. The Wilson term is given by 

Sgauge = - 	ReTrUM(x)UV(x+ui)U; 1 (x +I.)U;1 (z) 
9 

This is the simplest term that can be used in the action that gives the cor- 

rect continuum limit. The use of the invariant Haar measure for the gauge links, 
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allowed Wilson to perform strong-coupling expansions in powers of 11g. Observ-

ables known as Wilson loops show area law behaviour implying that the inter-

quark potential grows linearly with quark separation. This indicates that quarks 

are confined in the strong-coupling regime. Unfortunately, this demonstration 

of confinement was not enough to show that QCD has confined quarks; confine-

ment must hold as one decreases the coupling towards the critical transition at 

g = 0. The possibility arises of a phase transition occuring at some intermediate 

value of coupling beyond which, the quarks become deconfined. The study of 

intermediate values of coupling necessitated the use of Monte-Carlo techniques. 

1.3.4 Monte-Carlo Simulations 

To estimate expectation values of an observable 0 by using numerical simulations 

one performs the following procedure. A sequence of field configurations C2  
with i = 1,. . . , N, are generated with a probability distribution cx exp(—S) and 

on each configuration the operator 0 is measured and is denoted by O. The 

expectation value <0 1 0 10 > is given by 

<01010> = lim ->0 	 (1.4) 
i=1 

(1.5) 

The expectation value can then be analytically continued back to Minkowski 

space to give physical results if necessary. 

The sequence C1  is invariably generated by a one-step C--+C, 1  stochastic pro-

cess known as a Markov process; the probability of C1 —*C1+ 1 is denoted by 

p(C—C1+1). Sufficient conditions for a Markov process to generate a distribu-

tion with probability cx exp(—S) are: 

Ergodicity The probability of obtaining any configuration is never zero. 

Detailed Balance The system is reversible in the sense that e 5'p(C—C+i) = 
e_S*+1p(Cj+l 9Ci ) where Si  is the action S for configuration C1 . 

These conditions ensure that the correct fixed point distribution is reached. 
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1.3.5 Fermions 

The study of fermions in LGT is more difficult than the study of scalar and 

gauge fields. This section is devoted to explaining briefly the techniques used to 

study fermions. 

In performing the Wick rotation, the metric changes from the Minkowski met-

ric g, to the Euclidean metric 8, and this in turn causes the Clifford alge-

bra to change. The anti-commutation relations on the Dirac gamma matrices 

change from 	= 2grn, to {y y,} =28w. The gamma matrices become 

representations of a different algebra. A heuristic rule for transforming be-

tween Minkowskian and Euclidean gamma matrices is 7O—Y4  and -y5--+i'y. The 

j are space indices taking values 1, 2 and 3 and the 0 and 4 directions are the 

Minkowskian and Euclidean time directions respectively. The rule has the effect 

that in Euclidean space-time the gamma matrices are all hermitian -y = 

Furthermore, 	i7o yy2 y3  transforms to the hermitian 15 = 71727374. 

The next problem with ferrnions is caused by their anti-commuting nature. To 

describe fermions using the functional integral approach, one has to introduce 

the anti-commuting quantities known as Grassmann variables. These allow for-

mal manipulations to be performed but have the disadvantage of having no 

representations as real numbers 1 . No Monte-Carlo simulations using Grass-

mann variables are possible. To simulate fermions, one has to integrate them 

out of the path integral 

/ 
d[]d[t )bJexp(—Mçb) = detM 

and this leads to having to simulate the fermionic determinant detM. This quan-

tity has the properties of being non-local, non-linear and very time-consuming 

to calculate. If M contains interactions with bosonic fields such as gauge fields, 

then the detM accounts for the effects of the fermions acting back on the bosonic 

fields. In terms of Feynman diagrams, this corresponds to simulating the effects 

of quark loops. The quenched approximation is the approximation in which the 

effects of quark loops are neglected; the determinant is assumed to be constant. 

Unquenched simulations are known as dynamical simulations and consume far 

'except the trivial representation of 0! 
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more computer time. In a dynamical simulation one needs to know the change 

in detM caused by altering some of the bosonic fields and this is given by 

SdetM 
= Tr(M 1 SM) 

detM 

Hence for any change in the bosonic fields one has to calculate the inverse of the 

fermion matrix and this is time-consuming. The work in Chapter 3 uses one of 

the most recent 2  algorithms for simulating dynamical fermions. 

The final and most insurmountable problem with fermions is the notorious dou-

bling problem. In naively transcribing the Dirac operator onto the lattice, 

one goes from describing one species of fermion to describing many species of 

fermions. The lattice is, in some sense, too good a regulator and gives rise to 

- no axial anomaly [71; extra fermionic species appear to cancel what would be an 

anomaly [8,9]. For vector gauge theories there exist the Wilson and the stag-

gered methods of reducing the doubling [10,11]. For chiral gauge theories there 

do not appear to be any well-proven ways of reducing the doubling and no-go 

theorems show that under very mild conditions there will always be doubling 

[12,13,14]. More will be said about doubling in the later chapters. 

1.4 Thesis Morphology 

The rest of this thesis is structured as follows: 

• Chapter 2: Lattice QCD An examination of the coloured threads in 

the tapestry by using quenched lattice QCD in order to find the low-lying 

hadronic mass-spectrum. 

• Chapter 3: Yukawa Couplings Unpicking a few of the weak threads in 

the tapestry and looking at them in more detail. A toy Yukawa-coupled 

Ferinion-Higgs model is studied numerically. 

• Chapter 4: Finer Threads Moving beyond the SM, an attempt is made 

to replace space-time by a discrete fabric. 

2and apparently most efficient 
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Chapter 2 

Lattice QCD 

"It is the mark of a wise man not to demand more 

accuracy than the subject matter allows, for precision 

is not to be sought alike in all discussions" 

Aristoteles 

Quantum chromodynamics (QCD) was discovered in 1973 [15,17,18]. It is a 

renormalisable quantum gauge theory with gauge group SU3  and has three 

colours of quarks transforming in the fundamental representation. The discovery 

of asymptotic freedom [15,16,19,20] led to it been proposed as a theory of the 

strong force. Asymptotic freedom is the property that the running coupling con-

stant decreases with increasing momentum scale; the constituent quarks become 

asymptotically free at high energies. 

QCD provides an elegant description of deep-inelastic lepton-nucleon scattering 

where at such large momentum scales perturbation theory is valid. At lower 

scales, the coupling constant increases and perturbation expansions are no longer 

valid. Such features as confinement, Spontaneous Symmetry Breaking (SSB) 

of the global chiral symmetry and the hadronic mass-spectrum can only be 

answered by non-perturbative techniques. In 1974, Kenneth Wilson proposed 

studying QCD by using the lattice as a gauge-invariant regulator [5]. Since 1974, 

Lattice Quantum chromodynamics (LQCD) has made great progress towards the 

understanding of the non-perturbative nature of QCD. 
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The earliest attempt to use LQCD to predict the low-lying hadron masses was 

in 1981 [21]. In the past 7 years, vast human and computer resources have 

been applied in the hope that LQCD will yield accurate quantitative masses 

which can then be compared with the experimentally measured masses. The 

Edinburgh work [22,23,24,25,26,27,28,29,30] has focussed on trying to decrease 

the statistical and systematic errors inherent in the mass estimates. This chapter 

is organised as follows: 

Introduction - a discussion of the action, its symmetries and how to 

obtain estimates of physical quantities. 

Methodology - the techniques that were used. 

Results - results obtained for masses and f,,. 

Physical Limit - how the results compare with experiment. 

Conclusions 

In this chapter, neither will I review the vast literature on this subject nor will I 

give every detail of the Edinburgh project. Instead, I intend to try and present 

what I consider to be the essential apsects of this work and hope to give some 

guidelines for future simulations. 

2.1 Introduction 

2.1.1 Action 

The action S, that we used, is the sum of a pure-gauge part Sgauge and a fermion 

part 	For the pure-gauge part we took the Wilson action [5] 

S9auge  = -.- 	 ReTrU(x)U(x+fi)Uj(x+I.)UJ(z) 
g 
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The U are SU3  matrices living on the links of the lattice and all colour indices 

are suppressed. For the fermion part we chose the staggered fermion action [31] 

Squark = 

M= m,+ 	 Uj(z 	 (2.1) 

7714 (x) = 11 (-1)"'  

The action S has two bare-parameters g and m. At g = 0 and m = 0, the 

action has an ultra-violet renormalisation group fixed-point. In simpler terms 

this means that the correlation lengths on the lattice will diverge as this point 

is approached i.e. it is a critical point. As explained in Chapter 1, this point is 

the one relevent to the behaviour of the theory in the continuum. What does 

our action look like close to this point? 

As g-0, the U14(z) align to unit matrices because this configuration gives the 

least action. Writing U14 (x) = exp(igA 14 (x)) and expanding in powers of g allows 

us to show that 

Sgcuge 
+ J dz2Tr(F,(z)F1411(z)) 

2g2  
F is defined as F, = [D14 , D11 ] with the covariant derivative expressed as DM  = 
O 4  + igA 14 . Hence the gauge part of the action looks like that of QCD as g-0. 

For the fermion part, it is convenient to define quark fields living on a doubly-

spaced lattice [32,33]: 

qai(z) = 
32 

17 	
11 

The 77 have binary components and label the sites in a binary hypercube contain-

ing 16 sites. The a is a Dirac index and the i is a flavour index running from 1 

to 4. The r are products of Dirac matrices and are defined as = 

The fermion action can be now rewritten as 

Sqwirk = m>(y)(1®1)q(y) 

+ 	(9 1)D14q 

+ 	(9 t14t 5 )Dq 	 (2.2) 
JA 
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Refer to Appendix A for definitions of lattice D and D. The t are flavour 

changing matrices defined as t = 7*; note that all flavour and implicit space-

time indices have been contracted. As the point g = m = 0 is approached, the 

quark fields q become smoother functions of space-time with the result that the 

last line in the above expression becomes irrelevent. This leaves an action that 

looks like a QCD quark action describing four degenerate flavours of quark. 

In numerical work it is useful to define /3 = 61 92 . Hence our action behaves like 

that of 4-quark QCD as /3—oo and m-40. 

2.1.2 Global Continuous Symmetries 

For non-zero g and m, the action has only a global U1  symmetry which is related 

to the conservation of particle number: 

X(x) - e °  (x) 	 (2.3) 

For the special case of m = 0 this vector symmetry is accompanied by a chiral 

U1  symmetry: 

X (x) - eX(z) 	 (2.4) 

The phase factor (x) is defined as e(z) = (_1)21234 .  

Due to the vanishing of the flavour-mixing terms in (2.2), the zero-mass U1  ® U1  

symmetry enlarges to a U4  U4  symmetry as 8-3oo. This has a consequence for 

the mass-spectra of different lattice operators. The spectra of operators with the 

same continuum quantum numbers should become degenerate at large enough 

/3. This effect is known as Flavour Symmetry Restoration (FSR) and is a signal 

that the continuum is being reached. 

The transformation in (2.4) can be used to generate the two useful Ward Iden-

tities (WI): 

---TrG(z,z) = 	 (2.5) 
V 
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Figure 2.1: Parameter Space for LQCD 

TrG(z,z) = m>2 IIG(z,y)11 2 	 (2.6) 

These are obtained from the path-integral identity < 80 - 085 >= 0 with 

the 0 operator taken as yX and ex. They are valid on any configuration with 

quenched or dynamical ferinions. Identity (2.5) was found to hold to 5 significant 

figures on all the Edinburgh data. Identity (2.6) is a relation between the chiral 

condensate < yX > and the pion propagator IG(x, y)11 2 • It was verified on 8 

configurations at /3 = 6.15 up to 5 significant figures accuracy over the whole 

range of masses and at 6 = 6.30 at m = 0. 

From chiral perturbation theory and the PCAC hypothesis, one can derive [34]: 

fM = 	< ex> +0(m2  log m) + 0(m 2 ) 	 ( 2.7) 

We will refer to M = Bm as the PCA C relation and B =< 	> /2f,2, will be 
known as the PCA C slope. The relation will prove useful in obtaining the pion 

decay constant f and in studying IRFSE. 

2.1.3 Scaling and FSE 

'In 

AS K 
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Figure 2.1 shows the bare parameter space for LQCD. As mentioned in Chapter 

1, the correlation length will diverge as the critical point K is approached 

and hence continuum behaviour will be restored at this point. The dotted line 

marked UV in Figure 2.1 depicts the locus = 1 and divides the diagram into 

UVFSE affected and unaffected regions. The dotted line marked JR in Figure 2.1 

depicts the locus = N , where N is the lattice size, and divides the diagram into 

- IRFSE affected and unaffected regions. Region B is the window where IRFSE 

and UVFSE are negligible and is the region where useful lattice work can be 

performed. 

Close to K, perturbation theory is possible and 2-loop calculations for quenched 

QCD [35] predict that the correlation lengths should behave as 

( 8,r2p)  -51/121 	/ 4ir2j3\ 
= c2 	 exp ( 

	
) (i + O(g2 )) 	(2.8) 

33 

The Cj are constants which differ for differing operators i. At large /3, this 

expression, without the O(g 2) term, should be valid and behaviour of this form 

is called Asymptotic Scaling (AS). At smaller /3, one might expect the ratios 

e;/& to be equal to Cj/c, and this behaviour is referred to as scaling. To be 

sure that LQCD is giving continuum results it is necessary to check that AS 

is occuring. In obtaining physical quantities from lattice quantities we will use 

Eqn. (2.8) together with values obtained by matching LQCD string tension 

estimates 10 2 A10  to the experimental value of = 420 MeV. Thus we 

take the physical lattice spacing a to be: 

	

1 (87r2/3)514121 
	
(_ 33  

4.2/3\ 

	

a = - 	 ex 

	

Atat 	33 	p 	
) 	

(2.9) 

with Alat  = 4.2 MeV [36,37]. 

Two limits are involved in obtaining physical results from LQCD. The contin-

uum limit is defined to be the limit obtained by taking m and 3 to point K in 

Figure 2.1. The correlation lengths will go to infinity with the outcome that the 

lattice will behave like a continuum; it will look very fine-grained. The infinite-

volume limit is defined to be the limit obtained by taking the lattice size N to 

infinity. As the correlation lengths become larger, the box size should increase 

to accommodate them. Taking both these limits, in this way, will be referred to 

as taking the physical limit. 
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2.2 Methodology 

In this section, I will review the techniques that were used in the Edinburgh 

project. 

2.2.1 Overview 

Quenched calculations of hadron masses require the following steps: 

The generation of a large ensemble of statistically independent gauge con-

figurations with a probability distribution cc exp(—S gge ). 

The inversion of the large sparse fermion matrix M on each gauge con-

figuration in order to find the quark propagator. 

Quark propagator multiplications in order to obtain meson and baryon 

multiquark propagators. 

Summing of hadron propagators over spatial sites so as to produce zero-

momentum hadron time3lice propagators. 

Summation of the timeslice propagators over the whole ensemble and sub-

sets of the ensemble of configurations resulting in a mean propagator and 

a number of blocked propagators. 

Exponential fits to the mean and blocked propagators, the parameters of 

which, can be used to find means and variances of hadronmasses. 

Table 2.1 is a summary of the configurations that were generated as part of this 

procedure. The numbers, at each /3 and m, are the number of gauge configura-

tions used in the ensemble. The + and - denote the adoption of periodic and 

antiperiodic spatial boundary conditions for the fermions. The size is the lattice 

size and so, for example, 16 x 24 means 16 sites in the space directions and 24 

sites in the time direction. The number of Monte Carlo sweeps between each 

configuration in each ensemble is shown together with the algorithm chosen to 
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Mass 

m 

Beta 

5.70 	6.00 	6.15 	6.30 

0.50 8- 32- 32+ 32- 

0.16 8- 32- 32+ 32- 

0.09 8- 32- 32+ 32- 

0.04 8- 32- 32+ 32- 

0.01 8- 32- 32+ 32- 

size 16 4  16  3  x 24 16 3  x 24 16 3  x 24 

sweeps 448 224 176 224 

#invert I CG SOR SOR SOR 

Table 2.1: Edinburgh configurations. 

invert the fermion matrix. In addition to these configurations, there were also 

the following items: 

8 configurations at 3 = 5.7 on a 8 x 16 lattice. 

8 configurations at 8 = 6.0 on a 16 4  lattice. 

24 configurations at 8 = 6.15 on a 16 x 24 lattice with antiperiodic spatial 

boundaries for the fermions. 

4 configurations at m = 0.005, 0.003, 0.001 and 3 = 6.15. 

4 configurations at m = 0.0025, 0.0 and /3 = 6.30. 

Items 1 and 2 were early runs on smaller lattices whilst the rest of these items 

were performed in order to try and understand more about IRFSE. Unless stated 

otherwise, the results in the remainder of this chapter derive from the configu-

rations shown in Table 2.1. 

The algorithms were implemented on the DAP ( refer to Appendix B ) in the 

language of DAPFORTRAN with the exception of the fitting routines which 

ran in FORTRAN on a VAX 11/750. Optimisation of the algorithms in order to 
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minimise execution time and minimise memory allocation, is crucial in LQCD 

and is a very important aspect of the work. For brevity's sake, only a sketch of 

this will be given in this thesis but the interested reader is advised to refer to 

[38] for a complete discussion. 

2.2.2 Gauge Configurations 

Metropolis [39], heat-bath [40,41] and more recently overrelaxation [42], are the 

methods used in LQCD to. generate an ensemble of gauge configurations with 

distribution cc exp(—S gauge ). The Edinburgh configurations were made using 

the two .subgroup pseudo-heaibath algorithm [43] with 24-bit real arithmetic. The 

SU3  matrices were scaled by 32000 and stored as two rows of six 16-bit integers. 

The boundaries for the gauge configurations were chosen to be periodic in the 

space directions and Dirichlet in the time direction. Diricblet in time meant 

that the gauge and fermion fields were zero on timeslices 0 and N + 1 where 

Nt  is the lattice size in the time direction. This had the advantage of allowing 

gauge configurations to be extended in the time direction when necessary [26] 

and also the advantage of allowing timeslice propagators to be measured over a 

longer range of times than with periodic boundary conditions. 

2.2.3 Quark Propagators 

To find G(x,y) the following equation has to solved on each gauge configuration: 

MG(z,y) = 5zy 	 (2.10) 

M is the fermion matrix defined in (3.1) . For a 16 lattice this requires the 

inversion of a sparse complex matrix of rank 196608. This is a time-consuming 

problem so the following tricks have to be applied. 

Firstly, one specialises to the simpler problem of solving (2.10) not for all y but 

only for one particular y. This gives information on how quarks propagate from 

'Although we are only attempting to find part of the inverse matrix, in what follows we will 

loosely refer to this procedure as inversion. 
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one source point to all final points. We took y to be at (1,1,1,5) with the hope 

that y4  = 5 was far enough from the Dirichlet boundaries that finite time effects 

became negligible. 

The second trick relies on partitioning the lattice into even and odd sites. Define 

the matrix E = e(x)6 where e(x) = and create the projection 

matrices P4. = (1 + E)/2 and P... = (1 - E)/2. P and P_ project out even 

and odd sites respectively. Left-multiply (b + m)G = S by P_ to give P_G = 

—l1bP+G/m when the source is assumed to be on an even site. Next, left-multiply 

(. + m)G = 6 by P+  to get i/P_C + mPG = S and then use the expression 

for P_G to obtain (_42 +M2 )P+G  = mS. This partitioning has resulted in 

replacing the eqn. (2.10) by the two equations: 

(02 +m2)PG = S 

	

PG=— 	 (2.11) 
M 

These require an inversion of a matrix of half the rank of (2.10) 2  and hence 

there is a considerable saving in computer time. 

The third trick relies on gauge transforming the SU3  matrices to temporal gauge 

i.e. all the U4(z) = 1. The matrix can then be partitioned into time8lice, i.e 

it becomes a block matrix with inter-timeslice blocks being unit matrices. This 

requires less SU3  multiplies and also reduces the amount of data needed to be 

paged into DAP main memory for each inversion and hence results in a speed 

increase. It also has the advantage that the inversions require less main memory 

and hence bigger lattices can be studied. 

Two iterative algorithms were used to invert the Hermitian matrix A = _42+m2 

with the criteria for convergence that the quark propagator became stable and 

that the hadron propagators agreed to 3 significant figures with those on gauge 

configurations which had been randomly gauge-transformed. At 3 = 5.7 the 

Conjugate Gradient (CG) algorithm [44] was used: 

2A11 be it, more poorly conditioned than the original matrix! 



To solve Ax = b when At = A 

initial guess x 0  

Po = ro = b - Ax 0  

loop while (rk,rk) > e for k=O,1,2,... 

ak = (rk , rk ) / (pk , Apk) 

= Xk + akpJ, 

= rk - akApk 

13k = (rk+1,rk+1)/(rk,rk) 

Pk+1 = rj + /3kpk 

end loop 

The algorithm converged smoothly at a rate approximately cc m taking typi-

cally a few hundred iterations for e = 10 -10  at the lower masses. After about 

500 iterations (needed only at m = 0.01 ), the algorithm had to be restarted 

to prevent accumulation of rounding errors from giving inaccurate rk.  Conju-

gate gradient performed well for the 16 lattice at 3 = 5.7 but unfortunately 

suffered from having a high stretch factor of 6. Stretch factor, defined as the 

ratio of compute time plus communication time to the compute time, should be 

close to unity in order to do fast simulations. Large stretch factors imply that 

the computer is spending most of its time communicating data 3  rather than 

performing calculations. For the larger lattices at higher 3 it was necessary to 

find an algorithm with a lower stretch factor than CG and so an iterative block 

Succesive Over-Relaxation (SOR) algorithm was developed: 

To solve (—D2 +M2  )G =S 

initial guess 

loop while (rk,rk) > e for k0,1,2,... 

loop for t0,.. .N 

= (1— #J)G + w(C - D +M2  )-1H  

end loop 

end loop 

'with disks in this case 



The propagator G is partitioned into timeslices and so G refers to the k'th 

iterate of C on timeslice t. Ct is 1/2 on all timeslices apart from the end ones 

where it takes the value 1/4 and F = - Ot-,)E where 1It  is the gauged 

derivative 0  on timeslice i and E is the even/odd matrix defined previously. 

The inversion of C - + m 2  was performed by CG but required typically 

only 8 iterations because of the diagonally-dominant Ct  term. The optimization 

parameter w was tuned for each 3 and m value in order to find the minimum 

number of SOR iterations required for convergence, which were usually about a 

few hundred. The stretch factor for SOR at 3 = 6.0 was as low as 1.02. Both 

the CG and SOR algorithms were implemented using 32-bit real arithmetic. 

2.2.4 Hadron Propagators 

The quark propagator, from source site y, can be used to construct propagators 

y) for local operators which are made from products of the quark field. 

Table 2.2 shows the six operators that were investigated along with their contin-

uum quantum numbers JPC•  Adjacent to the JPC  values are the lowest-energy 

hadrons that are observed experimentally in these channels. 

Operator JPC JPC 

PS CYX 0 ir(140) 0 absent 

SC YX 0 ir(140) 0 S(975) 

PV E 1 11Ex 1-- p(770)  1 A 1 (1270) 

VT E1 77X 1 --  p(770) 1+-  B(1235) 

ALL 

EVEN 

xxx 
(1 + )xxx 

N(940) 

N( 940 ) } 

N(1535) 

N(1535) 

Table 2.2: Hadron Operators. 

The c and 17 are as defined previously; for explicit definitions of the operators 

refer to [45]. Note the degeneracies in the continuum assignments of the meson 

operators i.e. both PS and SC give ir and both PV and VT give p. This is an 
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example of FSR which is described in more detail in the results section of this 

chapter. The degeneracy in the baryon sector is the result of an identity that is 

believed to be valid on all even-sized lattices for all values of /3. 

Integrating out the x and ' and using identities such as (z)Gc(y) = G YX ( with 

t acting only in colour and Dirac space ) gives expressions for the hadron prop-

agators G(z,y) =< O(x)O(y) > in terms of the quark propagator G(z,y). 

For example, 

Gps(x,y) 	 = 

GALL(x, y) = E,b,=1 EA,B,C1 CabcCABCGA(X, y )GbB( z , y)G&(x, y) 

The e is the alternating tensor acting on the colour indices a, b, c and A, B, C. 

Timeslice propagators are then constructed as C.(z 4 -y4 ) = E 1 , 2 , 3 
 G(z, y) 

and represent the propagation of states, with the quantum numbers of the op-

erator, from a point source at time y4  to zero-momentum states at time x 4 . 

Remember that in our case, y4  = 5 and 1 < z4  Nt  and we will set t = X4 - y4. 

As explained in Chapter 1, timeslice propagators decay exponentially and hence 

we can attempt to fit the timeslice propagators to the form: 

N+ 	 N 

C(t) = 
	

Aexp(—M' I t  I) + A(-1)texp(—M I t  I) 

The (N+, N- ) are the number of states in the direct (+) and the oscillating (-) 
channels. Masses of the states are denoted by the M' which are larger for larger 

i; the ground state mass is M 1 . The A are amplitudes for the states and are 

related to hadronic wavefunctions. Oscillating channels are necessary because of 

the use of staggered fermions; they are not present in simulations with Wilson 

fermions. Figure 2.2 shows the oscillating nature in the VT propagator. 

In the continuum limit, the ground states in the (+) and (-) channels give the 

masses and amplitudes for the particles shown in the left and right columns of 

Table 2.2. In order to obtain accurate estimates of the ground state quantities, it 

is necessary to include the i > 1 excited states in the fit because of the following 

reason. The operator at the point source projects onto many states such as 

non-zero momentum states, radially-excited states and non-continuum states. 
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Figure 2.2: The VT timeslice propagator. 
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Figure 2.3: Excited states in a timeslice propagator. 
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At large t, these will have decayed more rapidly than the ground state resulting 

in a propagator containing only the required ground state. However, we can 

only perform fits for 0 < t < N —5 and so the limit t—oo is not available to us. 

If values of t close to 0 are to be used in the fits, then excited states have to be 

taken into account. 

Figure 2.3 shows the effect of non-continuum states on the propagator near t = 0 

at 3 = 6.15 compared to the relatively uncontaminated propagator at 3 = 5.7. 

Our work has used judicious choices of (N+,  N - ) and of the ranges of timeslices 

[imin, tmaz] included in the fits; a rule of thumb being that smaller tmjfl require 

larger N and N. Fits were not performed with t n,,x  > N —5 or with tmin < 0 

because of end-effects becoming large near the Dirichiet boundaries. 

To find optimal fits to the parameters M and A, a program was developed to 

minimise x2  by steepest-descent. Graphical displaying of x2  in parameter space 

was required so that human intuition could be applied in directing the steepest-

descent algorithm away from spurious minima. The software was written in 

FORTRAN and ran on a VAX 11/750. The timeslice propagators were averaged 

over the whole ensemble of configurations to give mean timeslice propagators 

which were then fitted to give values of mean M and A. Estimates of the 

error in M and A were obtained by fitting to blocked propagators obtained by 

summing over subsets of 8 configurations on the 16 x 24 lattices and over subsets 

of,2 configurations on the 16 lattice. 

At /3 = 5.7, fits to timeslices t E [2 ± 1,8] were performed as follows: 

• (N,Nj = (1,0) and (2,0) to the PS propagator. 

• (1,1) fits to SC, PV, VT, ALL and EVEN propagators 

Zero N or N signifies that no fit was made to that channel. The same types 

of fit were also used at the higher /3 except with timeslices t € [5 ± 1,14 ± 1]. In 

addition to these fits, (2,2) fits were performed for ALL and EVEN propagators 

and (2,1) fits were performed for SC, PV and VT propagators at /3 = 6.0 and 

6.3. 
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2.3 Results 

2.3.1 Summary 
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Figure 2.4: Typical results. 

Figure 2.4 shows some typical results obtained at 3 = 6.15. For every value of 3 

and m, the fits produced at least 3 estimates of the pion mass MT , 2 estimates 

of the rho-meson mass M and at least 2 estimates of the nucleon mass MN. 

Rather than present all these numbers, I will display only the ones I consider 

relevant to the discussion. Refer to [28,29,301 for a complete presentation of the 

results. 
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2.3.2 Pion 

Mass Beta 

m 5.70 	6.00 	6.15 	6.30 

0.50 1.661(1) 1.650(1) 1.641(1) 1.636(1) 

1.639(7) 1.658(4) 1.633(5) 1.632(3) 

0.16 1.022(3) 0.972(1) 0.932(3) 0.912(1) 

0.894(260) 0.966(5) 0.916(6) 0.888(4) 

0.09 0.795(5) 0.733(2) 0.682(3) 0.666(5) 

0.794(8) 0.725(6) 0.662(2) 0.642(8) 

0.04 0.550(1) 0.492(2) 0.436(4) 0.437(15) 

0.549(15) 0.488(8) 0.422(4) 0.417(17) 

0.01 0.273(1) 0.247(3) 0.211(5) 0.250(30) 

0.165(78) 1 0.245(13) 1 0.208(3) 1 0.250(26) 

Table 2.3: Pion masses 

Table 2.3 shows the values of M obtained by using the PS operator. The upper 

numbers are from (1,0) fits and the lower ones are from (2,0) fits. The SC 

operator gives similar results; this will be discussed later under the topic of 

FSR. 

Figure 2.5 shows the behaviour of M with m at 3 = 6.15. Note the M = Bm 

behaviour expected from Eqn. (2.7). This behaviour occurs at all 3 and gives 

B equal to 7.44, 5.81, 5.34 and 4.89 at /3 of 5.7, 6.0, 6.15 and 6.30 respectively; 

the systematic plus statistical error in these values is estimated at around 10%. 

Figure 2.shows the PCAC behaviour at /3 = 6.30. Note the non-zero intercept 

at m = 0. At m = 0, the pion is assumed to be the Goldstone boson associated 

with the softly-broken global chiral SU3  colour symmetry and hence is expected 

to have zero mass. In a finite volume, however, degenerate vacuum states can 

tunnel into one another and thus true Spontaneous Symmetry Breaking (SSB) 

does not occur. This failure of SSB manifests itself as a non-zero Goldstone 

boson mass and as a vanishing of the order parameter. The non-zero intercept 

at 8 = 6.3 is, therefore, strong evidence for the IRFSE becoming important. 
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From Table 2.3, the M at m = 0.5 can be seen to be relatively independent of 

/3. This can be understood as a UVFSE. At M11. 1.6, the pion propagator will 

decay so quickly on the lattice that it will hardly feel any gauge links and will 

therefore not be stongly influenced by the gauge sector. The /3-independence at 

large m and the scaling behaviour (i.e. B decreases as /3 increases) at small m, 

cause one to expect an increase in curvature of the PCAC slope as one increases 

/3. This can be seen by comparing Figures 2.5 and 2.6. 

2.3.3 Rho meson 

Mass 

m 

Beta 

5.70 	6.00 	6.15 	6.30 

0.50 1.930(9) 1.806(60) 1.796(11) 1.789(20) 

0.16 1.558(3) 1.104(37) 0.996(22) 0.969(8) 

0.09 1.471(27) 0.862(54) 0.744(13) 0.715(10) 

0.04 1.242(75) 0.648(65) 0.529(7) 0.491(26) 

0.01 1.055(7) 0.352(82) 0.334(119) 0.337(46) 

0.00 0.999 0.363 0.307 0.294 

Table 2.4: Rho-meson masses M. 

Table 2.4 shows the minimum values of M obtained from the (1,1) and (2,1) 

fits to the PV and VT channels. The m = 0.00 row is M extrapolated to zero 

mass, obtained by fitting the M to the expression sinhM = Cm + D; the errors 

are estimated at around 10%. Figure 2.7 displays these results. 

2.3.4 Nucleon 

Table 2.5 shows the (1,1) mass-fits to the nucleon mass MN; the upper figures 

are from the ALL operator and the lower figures are from the EVEN operator. 

As Figure 2.8 shows, the nucleon signal is noisy and it is this that leads to the 
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large errors on the quoted masses. In order to obtain more accurate masses, (2,1) 

and (2,2) fits were performed to the nucleons as described in the last section. 

It appears that the ALL and EVEN local operators project a weak and noisy 

nucleon signal. The /3 = 6.15 results appear to be the least noisy and it is perhaps 

no coincidence that only at /3 = 6.15 did we use periodic spatial boundary 

conditions for the quarks. On lattices with antiperiodic spatial boundaries, 

momentum values can only be 7r/N, 3ir/N,. . . , 2ir - ir/N whereas with periodic 

boundaries they can only be 0, 27r/N,.. . , 27r - 27r/N. This has the result that 

in trying to project a zero-momentum state on an antiperiodic lattice will result 

in projecting states with all the momenta 7r/N, 37r/N,. . . , 27r - -7r/N: 

= 1_i cot () 

for antiperiodic p = ir/N, 3ir/N,.. . , 2ir - -7r/N. It is no wonder that we found 

0.51 

0.26 

0.00 
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Mass Beta 

m 5.70 	6.00 	6.15 	6.30 

0.50 3.042(44) 2.909(11) 2.797(12) 2.909(11) 

3.040(11) 2.922(6) 2.807(5) 2.894(11) 

0.16 2.703(70) 2.174(143) 1.654(13) 2.072(41) 

2.550(165) 2.168(41) 1.635(11) 2.041(118) 

0.09 2.627(104) 1.797(209) 1.248(9) 1.708(143) 

2.543(263) 1.727(93) 1.230(6) 1.735(193) 

0.04 2.368(274) 1.055(146) 0.864(23) 1.304(99) 

2.448(4) 1.314(152) 0.863(10) 1.254(206) 

0.01 no fit 1.332(255) 0.511(67) 1.099(764) 

2.359(89) 1.418(341) 0.576(19) 1.486(344) 

Table 2.5: ALL and EVEN nucleon masses MN. 

noisy signals because we were attempting to measure the propagator for a crowd 

of nucleons with all values of momentum and this does not give a single mass 

eigenstate. At large enough times, then only the lowest energy state would 

persist (presumably the momentum ir/N state ), unfortunately on a finite lattice 

we are not allowed the luxury of having large enough times. 

Evidence for this explanation can be seen in Figure 2.9 by observing how much 

noisier the antiperiodic signal is compared to the periodic one. Further evidence 

for the existence of a superposition of momentum states is provided by the 

fact that the periodic masses are less than the antiperiodic masses; one expects 

higher momentum states to be more massive. Mesons do not suffer from these 

problems because they consist of an even number of quark fields and hence feel 

only periodic boundary conditions regardless of the boundary conditions on the 

quark fields. 

It has been suggested ' that the local-in-time to the non-local-in-time nucleon 

propagator costs no more inversions yet appears to give cleaner signals than the 

ALL and EVEN propagators [46]. It should be adopted in future work. 

41n conversation with Greg Kilcup. 
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In the limit of an infinite number of configurations and on lattices with reflection 

symmetry, the mean EVEN and ALL propagators should be identical [47]. Our 

data on a finite number of configurations does not contradict this identity within 

statistical errors; for example, compare the EVEN and ALL masses in Table 2.5. 

2.3.5 Mass Ratios 

Mass Mir/Mp MN/M,, 

0.50 0.925(6) 1.589(13) 

0.16 0.900(21) 1.606(45) 

0.09 0.866(14) 1.610(33) 

0.04 0.780(10) 1.595(18) 

0.01 0.545(47) 1.508(107) 

Table 2.6: Mass ratios at 3 = 6.15. 

Table 2.6 shows the ratios of hadron masses at 3 = 6.15 with periodic boundary 

conditions. The MN,  M and M, are from EVEN (1,1), VT (1,1) and PS (2,0) 

fits respectively. 

Fitting MN and M, to the form sinhM = Cm + D and then extrapolating to 

m = 0 gives a value of MN/M, = 1.50(9). 

Figure 2.10 shows a plot of the ratios. Point A is the heavy-quark limit where 

MN = 3m and M,, = M11. = 2m and point B is from the experimental values 

MN = 940MeV, M = 770MeV and M,,. = 140MeV. It can be seen that our data 

is between A and B and is heading towards B at lower quark masses. Even at 

m = 0.01 the MIF/MP  ratio is not close to that at point B; lower quark masses 

are needed in LQCD simulations. In addition to this problem, the ratio MN/MA  

has not dropped below the heavy-quark value of 1.50 even when extrapolated to 

m = 0. This problem is present in LQCD calculations performed throughout the 

world and indicates that we are not simulating in a light-quark regime. Recent 

calculations with dynamical ferinions indicate that it may not be just a problem 

caused by the quenched approximation [48]. The large error in the ratio MN/MP  
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Figure 2.10: The Edinburgh Plot at /3 = 6.15. 

comes mainly from the error in the values of MN and hence it is of importance 

to find a good nucleon propagator. 

I omit including ratio results at other 8 values on the grounds that I do not 

believe the estimates obtained for MN,  because of the arguments discussed pre-

viously and because of the fact that masses greater than about 1.5 are too big 

to be physically meaningful; the nucleons have masses approaching the scale of 

the ultra-violet cutoff and hence measure UVFSE rather than physics. 
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2.3.6 Pion Decay Constant 

The pion decay constant f, is derived from the data by using the relation (2.7) 

and thus requires knowledge of the chiral condensate < >. At m = 0 

the condensate vanishes in finite-volume systems; true SSB requires taking an 

infinite-volume limit. To find f, it is necessary to know the condensate at small 

m and this therefore requires a careful extrapolation. Careless extrapolation 

would give vanishingly small values of the condensate because of the above-

mentioned effect. Instead, one should measure the condensate on larger and 

larger lattices in order to find the infinite-volume envelope and then one should 

extrapolate this to the small m [49]. Having only one size of lattice at each 8, 

we have not been able to follow this procedure and therefore our condensate 

extrapolations may be too small. 

Figure 2.11: Three chiral condensates. 

It is convenient to define the three types of condensate A,B and C; these give 

the results shown in Figure 2.11. The condensates are defined as: 

<XX>A = TrG(y,y) 

<XX>B = 
2Ar7n 

A VA 
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I 
<XX>C = 

Type A is the direct definition obtained by integrating out the ferrnions in the 

path-integral. By using WI (2.6), it can be written as <x >= E t  Cps(t) and 

so it can be extracted from the PS timeslice data. Furthermore, if Cps(t) can 

be parameterized as Cps(t) = Aexp(-M11. I t  ) then condensate A becomes 

equal to 2Am/M,, which is defined to be condensate B. Condensate C is de-

fined as the extrapolated version of condensate A which, by applying the Ward 

identities (2.5) and (2.6), can be written as < 7X >= m Et  Cps(t) - Cgc(t) and 

hence can be easily found from the timeslice PS and SC data. Condensate C 

is expected to have a constant region for not too small m where its value gives 

the correct physical condensate. Unfortunately this does not appear to be the 

case and this suggests that perhaps we should look at smaller m on much bigger 

lattices. Condensates A and B were fitted to A + Bm + Cm' over the range 

0.01 < m < 0.16 ( shown as solid lines in Figure 2.11 ) and gave similar m = 0 

extrapolations. Extrapolation to m = 0 for type B gives the values 0.375, 0.036, 

0.016 and 0.000 for /3 of 5.7, 6.0, 6.15, 6.30; we estimate errors to be of the order 

of 20%. 

Mass 

m 

Beta 

5.70 	6.00 	6.15 	6.30 

0.50 1.616(36) 1.288(8) 1.185(27) 1.142(15) 

0.16 2.366(38) 1.033(17) 0.690(13) 0.586(18) 

0.09 2.672(42) 0.806(20) 0.455(11) 0.376(18) 

0.04 3.264(94) 0.639(29) 0.300(11) 0.243(20) 

0.01 	1 5.543(6) 1 0.651(37) 1 0.260(13) 1 0.199(39) 

Table 2.7: (1,0) Pion amplitudes A. 

Taking the condensate as type B gives f = m2A/M. Using the (1,0) data 

shown in Table 2.7 and the (1,0) data in Table 2.3 and by fixing the physical 

scale by setting the physical pion mass to 140 MeV, gives the results shown in 

Table 2.8. These values should be compared to the experimentailly observed 

value of 93 MeV. 
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Mass Beta 

m 5.70 	6.00 	6.15 	6.30 

0.16 118 MeV 118 MeV 114 MeV 112 MeV 

0.09 109 MeV 115 MeV 112 MeV 109 MeV 

0.04 110 MeV 110 MeV 111 MeV 107 MeV 

0.01 1 120 MeV 1 144 MeV 1 121 MeV 182 MeV 

Table 2.8: f from (1,0) fits. 

An alternative, and more recent way of finding f,r  is by using the relation f1 = 
J< X x > 12B where B is the PCAC slope. This method avoids using A, which, 

because of the exponential nature of the fits, is prone to large error. Using the 

extrapolated values for condensate B and using the PCAC slopes previously 

quoted, gives values for f,, of 203(30) MeV, 100(15) MeV and 81(12) MeV at 

/3 = 5.7,6.0 and 6.15 with the scale set by (2.9). 

2.4 Physical Limit 

Physical QCD results are only obtained in the infinite-volume continuum limit 

of LQCD. Are we approaching this limit ? Furthermore, do our results give 

physical values that agree with the experimentally measured values? Finally, 

how can we overcome the UVFSE and IRFSE responsible for systematic errors 

in LQCD simulations? 

2.4.1 Flavour Symmetry Restoration 

As mentioned previously, the U1  ® U1  symmetry enlarges to a U4  ® U4  symmetry 

as g—O with the result that the spectra for some non-identical operators become 

degenerate. This is known as Flavour Symmetry Restoration. Figure 2.12 shows 

how the Ml+  masses, obtained from fits to the PS and SC propagators, become 
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degenerate as j3 goes from 5.7 upto 6.15. Figure 2.13 shows the same behaviour 

in the PV and VT sectors. The results indicate that FSR is starting to occur at 

/3 6.0. For lower values of 8 the results are not showing the expected 4-flavour 

continuum behaviour. 

2.4.2 Asymptotic Scaling 

Figure 2.14: Physical Predictions. 

Figure 2.14 shows the physical results obtained from the lattice data. The 2-loop 

lattice spacing a with A10  = 4.2 MeV, has been used to set the physical scale. 

The dashed lines show the experimentally expected values for these quantities. 

From this diagram, one could conclude that the lattice is giving predictions that 

are starting to look physical. Table 2.9 shows the numerical results. 

In our range of /3, the 2-loop a changes by a factor of 2. The physical value 



Beta a Rho Mass < TX >' f 

5.70 0.154 fm 1280(128) MeV 491(32) MeV 203(30) MeV 

6.00 0.110 fm 650(65) MeV 312(21) MeV 100(15) MeV 

6.15 0.093 fm 650(65) MeV 280(19) MeV 81(12) MeV 

6.30 0.078 fm 743(74) MeV - - 

Expt. - 770 MeV 225 MeV 93 MeV 

Table 2.9: Physical results. 

of the PCAC slope, obtained from B by multiplying by a and by the anomalous 

dimension factor a4/hl  where a = 9/2ir/3 [51], changes from 5.8(6) GeV to 7.2(7) 

GeV and hence is relatively constant by comparison. 

2.4.3 Avoiding FSE 

In performing a LQCD simulation at some /3 value, one has to choose a suitable 

lattice size and a suitable range of quark masses such that UVFSE and IRFSE 

do not dominate. 

A self-consistent criterion for avoiding IRFSE has been given [50]: 

ir 
m>> 

Nt N.3 <Zx >Im 
This criterion works yet has the disadvantage that it gives only a rough definition 

of the value of m where IRFSE become important. 

Rather than considering m, consider instead M1 .. This is the inverse of a cor- 

relation length 	rather than a bare-parameter in the action, and hence can 

be compared with lattice sizes to find the regions of UVFSE and IRFSE. When 

< 1, the pion propagator will diminish by at least a factor of e 1  per lattice 

spacing and hence will be very sensitive to the discreteness of the lattice; = 1 

will be taken as the minimum value of before UVFSE become important. 

When ~! N, the pion propagator will diminish less than e 1  in going from 
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one side of the lattice to the other side and hence will know about being in a 

finite volume; = N will be taken as the maximum value of before IRFSE 

become important. To convert these constraints on M, into constraints on m 

we will make use of the PCAC relation M = Bm together with the fact that 

physical B is approximately 7 GeV. These give the following criteria: 

M_ = 0.0059 4111 (Aj0ta) 1 N 2  

m0  = 0.66a4 ' 11 (A jat a) 

m = 0.00061a4/11 (Ag a)' 

IRFSE occur when m < m_, UVFSE occur when m > m and the optimal 

m = m 0  gives physical pion masses of 770 MeV; the IRFSE bound was checked 

by using the results of the very low mass runs at /3 = 6.15 and 6.30. Ideally, 

simulations should run at m = m0  with lattices large enough that m_ < m < m 
for QCD to be simulated with negligible finite-size effects. 

For free fermion propagation at /3 = oo, the pion mass can be calculated analyt-

ically to be M = 2sinh 1 m. Applying the above FSE criteria on M11, one then 

obtains m_ 112N and m 1/2; these are not what one expects from the 

above expressions for m_ and m+. The reason that the criteria fail at very large 

/3 comes about from the increasing curvature in the PCAC slope with increasing 

3. We expect the /3 = oo results to be upper bounds on m+ and m_ and expect 

the above criteria to be valid until these bounds are reached. 

Figure 2.15 shows the criteria for N = 24 and also shows crosses where we ran 

simulations. Requesting that m = m0  = m_ requires that N = 56 at /3 = 6.3; 

this is the smallest lattice that can be used at this beta if one does not wish to 

have to extrapolate data to small m and if one does not wish to have IRFSE. 

2.5 Conclusions 

The work can be concluded as follows: 
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• The results look qualitatively correct. The mass-spectrum is in the correct 

order M,1. < M, < MN. The SSB looks to be behaving well i.e. the PCAC 

relation holds, there exists a non-zero condensate, and f, is at the correct 

scale. Flavour Symmetry Restoration is occurring for /3 ~: 6. 

• Quantitatively the mass-ratios appear to be close to the heavy-quark regime. 

Simulations with smaller m are required with possibly the inclusion of dy-

namical ferniions. 

• Smaller m require the use of larger lattices and therefore necessitate the 

use of computers with large amounts of memory. 

• Asymptotic scaling looks to be starting but runs at larger /3 are necessary 

to confirm this. 

• The use of lower m and larger ,3 will cause simulations to run much slower 

because of critical slowing down. MCRG techniques, more efficient algo-

rithms and faster computers will have to be used. 
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Chapter 3 

Yukawa Interactions. 

I fellowed sleep who kissed me in the brain, 

Let fall the tear of time; the sleeper's eye, 

Shifting to light, turned on me like a moon. 

So, planing-heeled, I flew along my man 

And dropped on dreaming and the upward sky. 

D. Thomas 

The ElectroWeak (EW) model was proposed by [52,53,54] as a theory capable of 

describing the weak and electromagnetic forces. It became a serious candidate 

when it had been proved to be a renormalisable theory [55,56]. The low-energy 

limit of the EW model is the Fermi theory of weak interactions [57,58] which 

describes fl-decay. 

The 3-generation EW model has been very successful in predicting the existence 

of the charmed quark, in predicting the existence of the massive W and Z vector 

bosons and in describing lepton-lepton scattering. All the particles expected in 

the 3-generation EW model have been observed experimentally except for two. 

The EW model predicts the existence of a Higgs boson and the existence of the 

top quark. Neither of these particles have been observed yet and therefore their 

future observation will provide a crucial test of the EW model. Both the SSC 

and the LEP2 projects are attempting to search for these particles. 

Masses and mixing-angles in the 3-generation EW model are determined by 
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17 parameters which are presumed to be the consequences of a unified theory 

acting at much smaller distance scales. How the model behaves for differing 

values of the bare couplings is not well understood beyond perturbation theory. 

Understanding of this can lead to relationships between observable quantities. 

For example, recent studies of Gauge-Higgs (Gil) models predict that either the 

Higgs mass is less than 8.5 ± 0.3 times the mass of the W boson or that, if it 

is larger than this, new physics will occur [59,60,61]. Such predictions define 

regions of experimental interest and are therefore of value to experimentalists. 

On a more fundamental note, the EW model is poorly understood and therefore 

deserves theoretical study. The origin of the phenomenological )j term, the 

ad hoc nature of the Yukawa couplings and the number of generations, are all 

questions that need answering. To answer such questions, two approaches are 

possible. One can develop more fundamental models such as GUTS, SUSY 

GUTS and string models in the hope that these will explain the EW model. 

Alternatively, one can attempt to understand the EW model by studying its 

dynamics; maybe the dynamics constrain the model to behave only in certain 

ways. A thorough study of this requires knowledge of the behaviour of the EW 

model for all values of bare couplings and not just a perturbative understanding 

in the region of small couplings. Such non-perturbative studies necessitate the 

use of lattice techniques. 

In this chapter, I will present a preliminary study of a toy model that hopefully 

catches some of the features of the Fermion-Higgs sector of the EW model. The 

chapter is structured as follows: 

. Motivation Reasons for studying Fermion-Higgs (FH) systems. 

• Toy Model A description of our toy model. 

• Method How we studied the model. 

• Results The results that the model produced. 

• Conclusions and extended models which should be investigated. 

• Speculations A few open questions. 
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Only recently, have people been investigating Yukawa-coupled FH systems using 

lattice techniques [62,63,64,65]; in what follows I wish to convey some of the 

excitement that can be found in what is becoming an active field. 

3.1 Motivation 

Why should we study Yukawa-coupled FH systems? 

3.1.1 Effective Potential 

In 1973, the effective potential formalism was developed for studying actions 

involving Higgs particles [66]. Consider the general action that describes a 

Fermion-Gauge-Higgs (FGH) system having a Lagrangian given by: 

= 0) 2 bb+yFM'cb+--F F 

D denotes the covariant derivative 0+ igA. M is a generic Yukawa interaction 

and is a Hermitian matrix of the form M = A + i75 B where A and B are linear 

functions of qS. The gauge fields A and the fermions and T can be integrated 

out to leave an effective action T[q5] that depends solely on the Higgs fields 4: 

exp(ir[qS] + i L JqS) = f d[A, , 4b]exp(iS + i f JO) 

The effective action can be written as a momentum expansion about the space-

time independent background field 4o: 

= 	Veii(cbo) + / d44(0,M 2 Z(4 0) +... 	(3.1) 

V,1 is known as the effective potential and is obtained by an expansion in terms 

of n-loop Feynman diagrams. The minima of Vi,, are believed to give the vacuum 

states of the theory. The 1-loop contribution to V,, ff  comes from diagrams such 

as those shown in Figure 3.1. 
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Figure 3.1: 1-loop contributions to V,j(qo). 

These can be summed into the following closed form [66]: 

= m 2 A 4  
4! 

1 	3A2 
04 +642 {(m2 + 52)2log(1  +)+ .m22  - 

— 62 Tr [(y2mmt) 2  log(y2mmt)] 	 (3.2) 

This gives the Mexican hat potentials' shown in Figure 3.2. 

This is what is known perturbatively about FGH systems and it is used to place 

upper-bounds on the mass of the top quark by requiring that V,1 be bounded 

from below. For measured fermion masses, the Yukawa part of Eqn. (3.2) is 

small; this is used as an argument that the effect of Yukawa couplings need 

only be considered for very massive fermions. What is not known, however, 

is the range of Tn, A, g and y over which this technique works. Furthermore, 

there is very little understanding of the Z(qS o ) term and higher terms in the 

momentum expansion; they are basically neglected. Doubts such as these can 

only be answered by doing non-perturbative calculations involving sums over all 

the Feynman diagrams; to do this we require lattice techniques. 

3.1.2 Triviality 

The running-coupling constant A, in pure A4 theories and in GH theories, in- 

creases at increasing momentum scale. The renorinaiised A defines the ratio of 

'Sometimes bibulously referred to as wine bottle potentials. 
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Figure 3.2: The Effective Potential. 

the Higgs mass to the W-boson mass: MH/Mw cx IV'X. As the momentum scale 

is increased, in a theory with a finite UV cut-off A, there will thus come a point 

when MH = A. If the Riggs mass is above this scale, then it becomes no longer 

sensible to use the theory; the theory must be viewed as being only a low-energy 

effective theory [67]. This is the current view of the electroweak model. 

This can be viewed another way by seeing that these theories become trivial 

when A-3oo and therefore, for them to be meaningful, they have to be viewed 

as effective theories with finite A [68]. Trivial theories are ones where the renor-

malised couplings vanish as the cut-off is removed. 

The most compelling evidence for the effective nature of the EW model comes 

from the work of [59,60,61]. A simulation of an 0(4) 4 model was performed 

on a 12 4  lattice, with both the Riggs mass M 1- and the Riggs VEV v been 

measured over a wide range of K and A values. The ratio R = MH/v is shown 

in Figure 33 2  For any Mif  value, R is bounded from above by the A = oo 

result with the largest bound occuring when Mif  is the largest. With the caveat 

2With kind permission from Anna Hasenfratz 
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that the largest meaningful Mif is when MH = A, one obtains the inequality 

MH/v < 2.7 ± 0.1; for larger MH one expects to see new physics. Treating the 

gauge interaction perturbatively, one can find v in terms of the W boson mass 

Mw; M = g2 v 2 /4. Taking g2  = 0.4, one obtains the bound MH/Mw :5 8.5(3). 

I .  
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Figure 3.3: Mff/v ratios. 

These arguments appear to work for 4 models and Gauge-Higgs models but do 

they work for Ferrnion-Gauge-Higgs models? Might not the fermions rescue the 

model from triviality? Even if triviality persists, the fermions may have a large 

effect on the mass bound of MH/Mw  and so should be included. 

3.1.3 Fermion Doubling 

In attempting to study fermions using lattices, one always has the problem 

of fermion doubling; transcription of the continuum Dirac operator into a dis- 

cretized Dirac operator leads to more than one pole in the fermion propagator. 

In vector theories, such as QCD, where the right and left components of the 
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2.5 

2.0 

1.5 



fermion transform as the same representation of the gauge group, there are two 

ways commonly used to get rid of the extra poles. One can add the Wilson term 

rD2 çb which breaks chiral symmetry, becomes irrelevent in the continuum limit 

and gives the doubled species masses O(r/a) where a is the lattice spacing. Or 

one can use the staggered formulation which diagonalizes M [691 and projects 

out only one-quarter of the remaining fermions, thus leaving 4 poles which are 

intepreted as 4 degenerate flavours of fermions. 

In chiral theories, such as the EW model, the right and left components trans-

form as different representations of the gauge group and getting rid of doubles 

becomes a major problem. The Wilson term, if used in a chiral theory, explicitly 

breaks chiral symmetry which in turn explicitly breaks gauge symmetry. The 

Slavnov-Taylor identities will then no longer be valid and the renormalisability 

of the model becomes an open question; this is not a desirable feature of a theory. 

The staggered formulation also cannot be used for chiral theories because the 

Kawamoto-Smit projection no longer works on the gauged part of the derivative; 

the 757A,A diagonalizes to a -fr,, matrix rather than to the required unit matrix. 

Jan Smit has proposed a way that might work in decoupling the doubles in a 

chiral fermion gauge theory [70,71]. It amounts to adding Yukawa and Yukawa-

Wilson terms to the naive fermionic action: 

S - S + Y(x)çb(x)b(x) + Yw(x)(x)D 2 b(y) 

The 0 is a Higgs field transforming as the adjoint of the gauge group and is in-

tended to have a VEV that gives the fermion species mass in a chirally-invariant 

way. By varying the Yukawa Y and Yukawa-Wilson Yw couplings it is hoped 

that one could.be  left with a low Riggs VEV, a low-mass single species of fermion 

and infinite-mass decoupled doubles [72]. 

To be able to implement this procedure it is necessary to understand how non-

perturbative Yukawa couplings behave and in particular how large Y and Yw feed 

back onto the Riggs sector; if at large Y the VEV vanishes, then the procedure 

could be destined to fail. 
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3.2 Toy Model 

Having discussed the lofty motivation for studying FH systems, I will now de-

scribe the toy model that we studied. Even though there are no gauge fields in 

our model, I will use the language of Gauge-Higgs models; for example, strictly 

speaking, coulomb phase should be referred to as symmetric phase. 

3.2.1 Action 

Hybrid Monte-Carlo techniques [74] were used to simulate the action for a 2- 

component radially-fixed çt model interacting with two species of naive fermions: 

S = 

	

+ + 	 (3.3) 
ON 	

Y 

with the fermion matrix M y  defined as 

	

M y  = I 	+ -I.) + 

	

+ 	 - 	 (3.4) 
2 JA 

Both M and Mt  were included in the action because of the possibility that 

detM may be complex. 

Rather than use the radially non-fixed model containing a A(t - 1)2 + Oto 

term, we have specialised to the A = cc case where = e 9  and 4 = e 9 . 

The model contains two bare-parameters: K the hopping parameter and Y the 

Yukawa coupling. We were interested in finding the phase-diagram in (K, Y) 

space. No gauge fields are included and no Yukawa-Wilson term has been added. 
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3.2.2 Symmetries 

The action in (3.3), posesses the global continuous symmetry SU(2) v  ® U(1)v ® 

U(1) A . 

The SU(2) v  symmetry arises from the unitary transformations which mix the 

L and R components of fermion 1 into the R and L components of fermion 2. It 

is a relabelling symmetry which does not involve the Higgs fields. 

The U(1)v  symmetry is the usual number conservation symmetry for fermions: 

—4 e'8 ç& 

—+ be °  

where 9 is the global phase angle. 

The U(1)A symmetry is an axial symmetry involving the Higgs fields: 

e 2"çb 

Ot —4 q t e+21a 

701)  —4 e a15 &( 1 ) 

(1) --4 

—4 eab(2) 

2) 
--4 
	

(3.5) 

The Higgs part has the symmetry of a 4-dimensional 0(2) spin-system and 

therefore the Higgs fields may have aligned, disordered or anti-aligned phases. 

In the ordered phases, the symmetry is spontaneously broken and hence in these 

phases there is spontaneously broken chiral symmetry. Spontaneous breaking of 

chiral symmetry can lead to mass generation for the fermions. 
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3.2.3 Observables 

To look at the phase diagram, we took expectation values of the three observ-

ables: 

P = Tr(MMt) -' 

Q = _2 + gN_ E cos(o,+,a  — 0--)  

	

- 	2 	

2 

 + 	( Sflo=) 2 	(3.6) 
N 

	

R2 - 	( cos9 

The total number of lattice sites is denoted by N. 

Q and R2  are measures of the alignment of the angles 9 and range over [0,1]. 

For perfectly aligned, disordered and anti-aligned phases, Q is 1.0, 0.5 and 0.0 

and it has been used in previous simulations [73]; it corresponds to the scalar 

part of the action S. R2  was used as an alternative to Q and takes the value of 

1.0 for perfectly aligned phases and 0.0 for perfectly disordered and anti-aligned 

phases; it is the squared length of the vector sum of the 0(2) spins. 

P was used to examine the fermion sector. It was chosen instead of the conden-

sate TrM, because it has the advantage of being a real rather than a complex 

quantity. 

In addition to these observables, we looked at the expectation of 

CV = 16N(Q— < Q 
>)2 

where < ... > means the expectation over the ensemble of configurations. CV is 

a specific heat for the Higgs fields and was useful in looking at phase transitions. 

3.3 Method 

The method was as follows: 



Generate a configuration, at some (K, Y) value, with probability x exp(—S) 

using the Hybrid Monte-Carlo (HMC) algorithm. 

Measure the observables F, Q, R2  and Q2  on this configuration. 

Repeat steps 1 and 2 roughly 2000 times. 

Average the observables over the configurations in order to find the expec-

tation values <P>,< Q >,<R2 > and <CV>. 

Perform steps 1-4 over a whole range of (K, Y) values in parallel. 

Observe the variations in the expectations over the range of (K, Y). 

3.3.1 Algorithm 

The algorithm used to generate the configurations was Hybrid Monte-Carlo [74]. 

The ferinions are replaced by bosonic pseudo-fermions x having the pseudo-

fermionic action SPF  defined as the bosonic part of S in Eqn. (3.3) plus the 

pseudo-fermionic part xt(MtM) 1 x. The algorithm is as follows: 

Initialisation Make pseudo-feriuions x by multiplying gaussian noise by 
Mt. Find z = (MtM)_ 1 x, used in SPF,  by least-norms conjugate gradient 

[75]. Measure observable P = liz 112. Generate Higgs momenta ir from 

gaussian noise. Calculate the old Hamiltonian H01d = ir2  + 5PF• 

Molecular Dynamics Evolve the Higgs system through phase-space de-

terministically by using the equations of motion from the Hamiltonian 

HPF = .2 + SPF• Use the leapfrog method to time step ST upto a total 

time r. Hold x constant and update z = (MtM)_ 1x  each timestep by 

using a conjugate gradient algorithm. 

Accept/Reject test Measure and record the new observables. Calculate 

the new Hamiltonian and compare it with the old one; accept the new 

fields with probability min(l,exp(H, - H01d)). 
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The fermion inversions were performed by the CG algorithm described in Chap-

ter 1. The CG algorithm was terminated whenever the number of iterations 

reached 1000 or whenever the residual e = rt r/N dropped below a preset tol-

erance. The absolute error ( i.e. e calculated exactly from r = b - Ax ) was 

then calculated and checked against the preset tolerance. If it was larger than 

the tolerance, the algorithm was restarted, otherwise the algorithm terminated.. 

The preset tolerance was found by requiring constant results; as the tolerance 

is decreased there comes a point where the results become independent of the 

tolerance. Typically the tolerance that was used was about 10_12.  For each CG 

inversion in the molecular dynamics steps, the initial guess x was chosen by a 

predictor method using the x calculated in the previous steps. The order of the 

predictor could be varied and on each run was chosen to be optimal. 

Periodic boundaries in all directions were used for the Higgs fields. For the 

pseudo-fermions, periodic boundaries were all also tried but it was found that 

periodic-in-space antiperiodic-in-time boundaries enabled fermion inversions to 

be performed in the region of small Y and hence these were adopted for all 

the runs. 

3.3.2 Implementation 

The algorithm was implemented in OCCAM2 on a Computing Surface made of 

103 T800 floating point transputer chips. Refer to Appendix B for hardware 

details. Identical copies of the algorithm were placed on 102 of the transputers 

and the 103rd transputer was used as a controller/data-logger. The transputers 

were connected as shown in Figure 3.4; we were using an OCCAM2 farm with 

asynchronous eggs. A calculating speed of roughly 100 Mflops was achieved. 

'in this regime there appears to be a zero-mode! 
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Figure 3.4: The Egg Farm. 

3.3.3 Checks 

In any lattice calculation, it is of utmost importance to check that the algorithm 

has been implemented correctly. This was even more imperative in our case 

because of the exploratory nature of our model. The checks that we performed 

were as follows: 

Symmetries of the Action The action SPF  should be real and should 

be invariant under U(1)A transformations of the 0 and X. It was verified 

to be so up to 8 significant figures. 

Constant Hamiltonian In the limit of Sr—'O the Hamiltonian H in the 

molecular dynamics steps should be a constant of the motion. This was 

found to be happening. 
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Insensitivity to Sr and r HMC is designed to give expectations and 

variances that are independent of the molecular dynamics parameters Sr 

and r. Over a range of 0.5 < r < 2 and 0.01 < Sr < 0.5 this was found to 

be so. 

11Y2  expansions As shown in Appendix C, the ferinionic determinant 

can be expanded in powers of 11Y 2 . For K = 0, this predicts that at large 

Y, the expectation of Q should be < Q >= 0.5+0.5Y 2 . This was verified 

by using Y ranging from 5 up to 12. 

One-loop Y expansions The ferniionic determinant can be expanded 

in powers of Y as shown in Appendix C. The sums 1,, 12 ,13  are infra-

red divergent and therefore diverge on lattices where zero-momentum can 

occur. Hence, with periodic boundaries, it is necessary to add a mass term 

mi,b to the action in order to be able to check the simulation against 

computer generated 11,12, 13  results. This was done for K = 0 and 0.1 < 

m < 1.0 and it was found that values of < Q > agreed for Y less than 

about 0.1. For the periodic in space but antiperiodic in time boundaries, 

no infra-red regulator is required in calculating the analytic expression. 

Results agreed for K = 0 and Y < 0.1. 

d = 4 XY model For Y = 0 the model becomes a d = 4 XY model with 

non-interacting free ferrnions and hence the Riggs results can be checked 

against the known results for the d = 4 XY model [73,76]. As K increases 

this model goes from a Coulomb phase to a Riggs phase with a 2nd order 

transition at K = 0.15(1). Our results agreed with this behaviour. 

3.4 Results 

Each of the runs went as follows. First, the algorithm ran for 100 HMC iterations 

with r = 0.5 and Sr = 0.1 in order to allow the system to equilibrate with its 

value of (K,Y). From then on, r was set to 1.0. The next 72 iterations were 

used for autotuning; the order for the inversion predictor and Sr were chosen 

so as to give the maximum rate. Rate is defined as the ratio of r to CPU time 

multiplied by the acceptance probability; it is a measure of the speed at which 
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phase-space is being traversed. The system was then allowed to iterate up to a 

maximum of 2000 iterations with the minimum number of iterations being 800 

and typical number of iterations being roughly 1500. Expectation values were 

taken after the 300th iteration; the value of 300 was chosen after noting the 

constancy of results obtained with differing numbers of starting iterations. 

The above procedure required typically 8 hours of CPU time and 102 (K, Y) 

values were run simultaneously thus exploiting the parallelism available on the 

machine. This machine gun approach for scanning parameter space worked very 

well and enabled us to map out the phase diagram of the model easily. 

Figures 3.5, 3.6, 3.7 and 3.8 show contour plots of the expectation values of 

the observables Q, R2 , P and CV, obtained on a 44  lattice from 420 (K, Y) 

points evenly distributed throughout the shown region. Closely-spaced contours 

indicate regions of rapid change in the observables and hence are expected to be 

seen in the region of phase transitions. Note the dashed lines marking the steep 

parts of the diagram; these are phase transition lines which separate (K, Y) 

space into regions of different phases. 

Figure 3.5 has contours labelled in units of 0.01 and spaced in units of 0.05. 

Point A, is the 2nd order phase transition for the d = 4 XY-model [73,76]. The 

fermions appear to induce the Higgs fields into an aligned Higgs phase. For 

large Y, the fermions acquire a large mass and therefore they no longer affect 

the Higgs fields; the ferrnions decouple at Y = oo. For values of K below that 

at point A, this causes the appearance of the two phase transition lines A-B and 

C-D. The line A-B looks to be the stronger transition but is hard to investigate 

because it lies in an area of the diagram that is heavily infra-red affected. Line 

C-D is the decoupling transition and is well described by the expression 

K+ = K 

where Kc  is the value of K at point A. This expression is what one expects from 

the 1/Y 2  expansion if one drops terms of 0(11Y 4 ) as shown in Appendix C. 

It is remarkable that the 1/Y 2  expansion works so well down to the value of 

Y = 2.44 seen at point C. 

Figure 3.6 has contours labelled in units of 0.01 and spaced in units of 0.10. The 

67 



11  

0-15 

0•1 

&05 

U 	.1 	2 	3 	4 
Y 

Figure 3.5: Contour plot of < Q>. 



MI 

0 	 I 	2. 	3 	4 
SI, 

Figure 3.6: Contour plot of < R2  >. 
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Figure 3.8: Contour plot of < CV >. 
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observable < R 2  > behaves in a similar way to the observable < Q>. 

Figure 3.7 has contours labelled in units of 0.01 and spaced in units of 0.20. 

<F> is strongly affected in the region of line A-B and less so in the region of 

line C-D; the dashed lines have been marked on from those found in Figure 3.5. 

Figure 3.8 has contours labelled in units of 0.0001 and spaced in units of 0.0002. 

The specific heat capacity < CV > takes its largest values in the region of the 

phase-transition lines A-B and C-D. By estimating the positions of maxima in 

< CV >, we find (K, Y) values of (0.15±0.01,0), (0, 0.64±0.1) and (0,2.44±0.1) 

for points A,B and C. 

To find points A,B and C more accurately and to determine the order of the 

phase-transitions we performed two runs on a 6 4  lattice. The results for the 

Y = 0 and the K = 0 runs are shown in Figures 3.9 and 3.10. On the 6 4  lattice, 

A was at (0.16 ± 0.01, 0), B was at (0, 0.68 ± 0.1) and C was at (0, 2.48 ± 0.1). 

Within errors, these are the same as the values found on the 44  lattice. 

Figure 3.11 shows the evolution of Q, R 2  and P with the number of iterations. 

By looking at similar plots, and not observing a 2-state behaviour, we conclude 

that there is no evidence for points B and C being strongly first-order transitions. 

3.5 Conclusions 

A toy model with a scalar hopping parameter K and a Yukawa coupling Y, has 

regions in (K, Y) space where the Riggs fields are aligned and regions where the 

Riggs fields are not aligned. The model posseses a U1  global chiral symmetry 

associated with the alignment of the Riggs fields. Separating the regions are 

phase-transition lines; the phase transitions do not appear to be strongly first-

order transitions. The fermions have the effect of aligning the Riggs fields when 

Y is large enough but at too large a Y the fermions appear to decouple giving 

rise to a decoupling transition. The decoupling transition is well described by 

the 0(11Y 2 ) expansion. At small Y the fermions are heavily infra-red affected. 
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Figure 3.9: Y = 0 results on a 6 lattice. 
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Open questions relating to this toy model are: 

Are there 4 such that detM is complex? 

Are phase-transition lines A-B and C-D part of the same line? 

What happens to A-B and C-D on much larger lattices? 

In addition to answering these questions, more extended models should be in-

vestigated. For example: 

• Models that are not radially-fixed. 

• Models which include the Yukawa-Wilson term. 

• Fermion-Gauge-Higgs models. 

In studying all these models, one would develop a far better understanding of 

the Electroweak model and of how it behaved dynamically. The toy model study 

used about 300 hours of run-time on 103 T800 boards and in so doing, performed 

an estimated number of about 1014 floating-point calculations. 

3.6 Speculations 

In this section, I wish to present a few personal speculations inspired by studying 

the toy model. The speculations raise some interesting questions for which I 

know no answers. 

3.6.1 Complex Determinant 

Conjecture 1 There exist some 0 for which detM is complex, where M is 

defined as the fermion matrix occuring in Eqn. (Y.S). 
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It is this conjecture that necessitated the use of M and Mt  in the toy model. 

The conventional proof of the reality of the ferxnionic determinant fails in the 

case of Yukawa couplings to complex Higgs fields. For M = + m, where m is 

the fermion mass, the conventional proof goes as follows: 

(detM)* = det(1t + mt) 

= det(— + m) 

= det75(—J/+m)75 

= det( + m) 

= detM 

For Yukawa couplings, m is replaced by YO and the property that m t = m no 

longer works in general. This property is needed in going from line 1 to line 2 in 

the above proof and hence the reality proof fails in the case of Yukawa couplings. 

Using the 11Y 2  expansion, one can show that detM is real up to 0(1/Y 6 ) for 

all 4) and that it is real to all orders in 11Y 2  for 4) = e'9  with O = a.x + b and 

a, b E R. 

Complex measures are not easy to generate using Monte-Carlo techniques and so, 

if detM is complex, simulation of single-species Yukawa models may be difficult. 

3.6.2 Singular fermions 

Conjecture 2 In the infinite-volume limit, the pha3e-transition line A-B will 

move in towards the Y = 0 line. 

This conjecture is not supported by comparing the results for point B on the 44 

and 6 4  lattices. For such small lattices, however, infra-red effects may be very 

dominant; work on much larger lattices needs to be performed. 

Perturbation theory in Y provides a hint that something very singular may be 

occuring at Y = 0. As shown in Appendix C, the fermion determinant can be 
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written in terms of a sum over 2n-legged fermion bubble diagrams where n 

1 7  2 1 . .. , oo is the number of 0 and Ot legs connected to the bubble. The 2n-

legged bubble is the Q(Y 2- ) term in the expansion and has 2n fermion momenta 

in its denominator. The fermion momenta can be zero and this leads to infra-red 

divergences. Note how the higher-order terms in the Y expansion have stronger 

infra-red divergences. This doesnt look like a feature one would expect to see in 

a convergent series. 

Problems with convergence also can be seen in the effective potential formalism. 

The fermion bubbles summed to give Veji produce a logarithmic singularity in 

the coupling constant. However, the singularity can be shown to be illusory; it 

is eaten by the renormalization counterterms. The Z term also has infra-red 

divergences all be it, less severe than those in Vejj. Unlike V 1  however, it 

is not obvious how to construct counterterms that will make Z both infra-red 

and ultra-violet convergent . Hence a singularity at Y = 0 may appear in the 

effective potential formalism. 

3.6.3 A New Mexican Hat 

In this subsection, I will discuss recent results found by my collaborator using 

the code that we wrote for the toy model [771. Recent work has been focussed 

upon understanding the radially-free model. The action for this model is given 

by: 

S = —K 1: (40-1A + 'OXtO-_A) 

+4• 
+ 	 +2)Mj2) 	 (3.7) 

with M defined as previously. The 0 are no longer constrained to unit radius 

but are of the form q6 = re'6 . The effective fermion action Se/f  for this model 

has an extra term arising from the radial degrees of freedom: 

VRM = - 4log(Y4) 

"Private communication with S. Coleman 
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This has been named the Ring-Mould potential . Together with only a conven-

tional mass term m2qtq5  this potential can produce a minimum in the potential 

away from Oto = 0; a term is no longer needed in order to produce a 

non-zero VEV 

Figure 3.12 shows the results obtained on the line K = 0 for this model. Note 

how < E çbt q /N > increases with Y and how at large Y, it approaches the value 

of 5. This is what one expects from the VEV being caused by the Ring-Mould 

potential. Neglecting space-time variations in 0 gives: 

f drr2 exp(—r 2  + 4logr 2 ) 

fdrexp(—r 2 +4logr2 ) 

5' 
=i5 	 (3.8) 

Because of the existence of the RM-potential in Yukawa-coupled FH systems, 

it could be that the )04  term is no longer a necessary part of the electroweak 

model. Furthermore, the Higgs VEV would no longer be arbitrary but would be 

related to the number of fermionic species in the model. 

"Named not after a tropical disease but after an instrument used to make cakes. 
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Figure 3.12: Radially-free results on a 6 4  lattice. 
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Chapter 4 

Finer Threads. 

The myriad confusion of thin waves 

and the fine partings of the foam 

became in desperation an infinity of lines 

spewed out over the sea as from silkworms. 

Y. Mishima 

What is the fabric of space-time ? The usual assumption is that space-time 

is a smooth manifold. However, might not space-time be a more fundamental 

topological structure of which the smooth manifold is only a low-energy limit? 

Both the theory of quantum gravity and string theory require sums to be per-

formed over all possible topologies of manifolds. In quantum gravity, the un-

boundedness of the Einstein curvature term in the continuum Euclidean action 

signals violent fluctuations in the manifold at distances close to the Planck scale 

of-1.7 x iO' metres; space-time is expected to be a foam at these scales [78]. In 

summing over all possible topologies, why should there be a restriction to only 

those structures that are smooth manifolds ? 

Lattices can be used to generate the topologies of smooth manifolds by acting as 

discrete approximations to smooth surfaces. In quantum gravity, the technique 

of Regge calculus uses simplicial lattices in order to perform the sum over all 

topologies of manifold. However, lattices can include richer topological struc-

tures than those found in smooth manifolds. For example, consider the lattice 
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Figure 4.1: A Lattice Topology. 

shown in Figure 4.1; it changes from a 1-dimensional structure on the left into a 

2-dimensional structure on the right. The lattice may play a more fundamental 

role than just being a type of ultra-violet regulator. 

In using lattices rather than smooth manifolds, one loses the ability to use the 

tools of differential calculus; discrete structures are hard to study mathemati-

cally. For this reason, .1 have only looked at a class of lattices known as regular 

fractals [81,82]. Fractals have the virtue that they are self-similar under dilata-

tions which therefore allows decimation to be performed exactly [83]. Decimation 

is the technique whereby sites on smaller scales are removed leaving only sites 

on a lattice with larger spacing; in the case of regular fractals, the lattice with a 

larger spacing has the same topology as the original lattice and so the procedure 

can be repeated ad infinitum. 

The structure of this chapter is as follows: 

Discrete Language A physicists view of the mathematical techniques 

that can be used to describe lattice structures. 

Scalar Propagation Using the techniques of the previous section, the 

propagator for the Klein-Gordon equation is examined on a 1-dimensional 
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chain and on a Sierpinski gasket. 

3. Fermion Propagation Staggered fermions are investigated on 2-dimensional 

truncated fractals with a view to eliminating fermion doubling. 

4.1 Discrete Language. 

Functions defined on lattices can be described by an area of mathematics known 

as cell-complex cohomology [84]. Cell-complex cohomology is analogous to de 

Rham cohomology which decribes the behaviour of differential forms [85]. Dif-

ferential forms are anti&ymmetric tensor fields defined on smooth compact man-

ifolds. The field equations of physics are defined on smooth manifolds and can 

be rewritten into equations containing 'differential forms [86,87]. These can then 

be mapped into the analogous equations in cell-complex cohomology and hence 

the field equations of physics can be transcribed onto lattice structures. 

This section describes the language of cell-complex cohomology which will then 

be used in the next section. No attempt is given to review the more familiar de 

Rham cohomology. The approach in this section is that of a pragmatic physicist 

rather than that of an algebraic topologist; more detailed mathematics is to be 

found in [84,88,80]. 

4.1.1 Cell-complex 

Definition 1 A finite cell-complex K, of dimension D, is the set of oriented 

p-cells {c o
, CI, 

 ... , cr,} such that c, E K implies that its boundary Oc E K and 

such that c, = c, implies that 8c = Oc,. 

For an example consider a two-dimensional square lattice. This is a cell-complex 

with D=2 and with co , c1  and c2  being the sites, unit links and unit squares 

respectively; it is referred to as a cubic cell-complex. The two-dimensional tri-

angular lattice is another example and is referred to as a simplicial cell-complex; 
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the triangular plaquettes are known as simplices. Cell-complexes K approxi-

mate manifolds M in the limit that the plaquettes become vanishingly small 

providing that they have the same topology as the manifolds. 

4.1.2 Incidence functions 

The topological structure of a cell-complex is contained in its incidence functions. 

The incidence function I(c, cp+i)  is defined as: 

±1 ifcEOc ~1  
I(cp,cp+i) 

= j 	otherwise 

The sign is ±1 depending upon the orientation in which c9  is included in c. 

Examples of incidence functions are shown in Figure 4.2. 

I(c.0 c)= -4-1 ICc0,c1= -1 

Figure 4.2: Examples of Incidence functions. 

Incidence functions satisfy the following identity 

>1(cp_i,cp)I(cp,cp+i) = 0 
	

(4.1) 
C, 

which is true for all cell-complexes. 
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4.1.3 Cochains 

Functions can be defined on p-cells and are called p-cochains f(c). For example, 

in lattice gauge theory, functions of fields on the sites, links and plaquettes 

are respectively 0-cochains, 1-cochains and 2-cochains. Operators which act on 

cochains can be defined. 

The boundary operator d is defined as: 

df(c,) = >21(cp,cp+i)f(cp+i) 
Cp+ 1 

It converts a p-cochain into a (p+1)-cochain and is local in the sense that only 

the c +1  which include c, in their boundaries contribute. Note that df(cD) = 0 

because there are no (D+1)-cells. 

The coboundary operator d is defined as: 

f(c) = 	I(c, c,)f(cp_i) 
Cp_l 

It converts a p-cochain into a (p-1)-cochain and is local in the sense that only the 

c which are included in the boundary of c1, contribute. Note that if (co) = 0 

because there are no (-1)-cells. 

Both the boundary and coboundary operators satisfy the cocycle conditions that 

& = 0 and j2  = 0; these are consequences of identity (4.1). 

4.1.4 Transcription 

Cell-complex cohomology is analogous to de Rhaxn cohomology [80,89]. The 

complex K is analogous to the manifold M, the p-cochain is analogous to the 

p-form, the boundary operator d is analogous to the exterior derivative d and 

the coboundary operator d is analogous to the derivative S = **. The cocycle 

conditions are equivalent to the statements that V.(V x A) = 0 and V x V0 = 0. 

In the limit that the cell-complex approximates the manifold, the analogous 

quantities become identical as can be shown using the Whitney mapping [80]. 

85 



Using these analogies we can transcribe equations written in terms of de Rham 

cohomology into equations written in terms of cell-complex cohomology and 

hence we can start to investigate the equations on cell-complexes. This is not the 

only possible transcription but it has the merit that it is geometrically appealing. 

The Laplacian 82  becomes dS + Sd in the language of forms and maps p-forms 

into p-forms. The Hodge-de Rham equation is defined as: 

(dS+Sd)w = 0 

It is a rewriting of Laplace's equation in a way which is independent of the 

particular metric on the manifold. Similarly, the Klein-Gordon equation (_52 + 

m2 )çb = 0 can be written as 

(dS+Sd—m 2 )w = 0 

and transcribes to the cell-complex equation 

(d1+.1d_m2 )w = 0 

This can be expressed in terms of the incidence functions as 

I(c_i,)I(c,,_i,c,)(c,)+ E  I(c,c, i )I(c,,c +j)w(c,) 	m(c') (42) 
C,,Cp...l 	 C,,Cp+l 

and hence the Klein-Gordon equation can be transcribed onto cell-complexes 

once the incidence functions are known. 

Fermions are described in a metric-independent way by the use of the Dirac-

Kabler equation [90,91]. The Dirac equation (7O + m)ib = 0 can be thought 

of as being one column in the matrix equation 

(78M+m)'I' = 0 

In 4 dimensions, T is a 4 x 4 matrix and it can be expanded as the sum over 5 

antisymmetric tensor fields w as 

'P = W 1 + Wp7p + Wp,7w + 	+ 

Viewing the w as 0,1,2,3 and 4-forms, the Dirac equation becomes an equation 

that mixes forms: 

(d+S+m)i.,=0 



This is the Dirac-Kabler equation. Notice how left-multiplying by (d + S - m) 

gives the Klein-Gordon equation previously discussed; this is what one expects 

of a Dirac operator. The Dirac-Kahier equation transcribes to the cell-complex 

equation: 

(d++m) = 0 
	

(4.3) 

The w is the sum of 0, 1, . . . , D-cochains which become mixed when the Dirac-

Kahler operator is applied. On cubic complexes, if the p-cochains are thought 

of as functions living on the sites in the centre of the p-cells, one finds that the 

Dirac'-Kahler equation is equivalent to the staggered formulation of free fermions 

[89]. 

4.2 Scalar Propagation 

The propagators of classical field equations were first investigated on fractal lat-

tices in 1986 by [92,93,94]. The massless Klein-Gordon equation on an arbritary 

metric was found to give Euclidean and Minkowskian fixed-point metrics. In 

this section, we will examine the massive Klein-Gordon equation on two types 

of cell-complex KC  and K5. KC is the 1-dimensional lattice chain shown in 

Figure 4.3 and K5  is the Sierpinski gasket shown in Figure 4.4. The chain was 

looked at for the sake of comparison purposes. 

4.2.1 Klein-Gordon equation 

We are interested in looking at the Klein-Gordon propagator G and how it 

behaves on KC  and K5 . The propagator equation is similar to Eqn. (4.2) but 

involves a source term S(c,): 

I(c_i ,c.)I(c.,,_ 1 ,c,)G(c,) + 
C,,Cp_j 

I(c9,c+j)I(c,,c1)G(c,) - 
c,,cp+1 

m2w(c) = 
	

(4.4) 

87 



E C 
S• 

A 
• I S * S • 

a 
S 

C 

Figure 4.3: The chain K. 

/ 
C 

b--------- - 

/------ 

'V 
D 	f 	E 

>\ 

>\ 
Figure 4.4: The Sierpinski Gasket K5 . 

J:] 



In what follows, I will specialize to the case p = 0 with the observation that 

the p > 0 cases can be obtained from the p = 0 equation by repeated left-

multiplications with the boundary operator. The source term is equal to 1 on 

the source site and zero on all other sites. 

On K, Eqn. (4.4) gives the expressions: 

Gb+G+(m2 -2)GA = 1 

Gc+GA+(m2 -2)Gb = 0 

GA+GB+(m2 -2)G = 0 

(4.5) 

The source has been placed on site A ( refer to Fig. 4.3) and G. denotes the 

propagator from the source site A to the site x. 

Likewise, on K5, Eqn. (4.4) gives the expressions: 

Gb+Gc +Gd+Ge +(m2 -4)GA1 

Gb+G+GB+Gc+(m2 -4)G=0 

G 0 +GC +GA+Gc+(m2 -4)Gb=0 

G0 +Gb+GA+GB+(m2 -4)GC =0 

G,+G+GA+GE+(m2 -4)Gd=0 

Gf+Gd+GA+GD+(m2 -4)G=0 

G e +Gd+GE+GD+(m2 4)Gf =0 

(4.6) 

The source has been placed on site A ( refer to Fig. 4.4). 

4.2.2 Decimation 

Referring to Figures 4.3 and 4.4, the propagators to the sites labelled by low-

ercase letters may be eliminated by using the equations (4.5) and (4.6). The 

resulting equations describe propagators on lattices of twice the original spac-

ing. On both KC and K5, the new propagator equations happen to be of the 
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same form as the propagator equations on the smaller lattices and so the pro-

cedure can be repeated indefinitely. This decimation technique can be used to 

study the propagators. 

On K, the new equations become: 

GB + G + (f (M') - 2)GA = 9(m 2 ) 

GE+GA+(f(m2)-2)Gc = 0 

GA + GD + (f(m2) - 2)GB = 0 

(4.7) 

And the functions f and g are found to be 

f(z) = z(4+z) 

	

g(z) = 2+z 	 (4.8) 

The new equations are of the same form as the original equations (4.5) but have 

a new mass m 2-f(m 2 ) and a new source term 6—g(m 2 )8. 

Exactly the same behaviour occurs for K5 except that one finds f and g to be 

1(z) = z(5+z) 

	

g(z) = (2+z)i 	1 	 (4.9) 
\z+6) 

Note how the functions in (4.8) and (4.9) are quite similar. 

4.2.3 Exact RG 

The decimation procedure has resulted in performing an exact Renormalisation 

Group (RG) transformation. We have transformed equations describing physics 

on length scale L into equations describing physics on length scale 2L. The 

procedure is exact; no truncations or approximations have been used. Renor-

maiisation group transformations are associated with Ward identities, resulting 

from symmetries under dilatations, known as the Callan-Symanzik RG equations 

[95,96]. 
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With our discrete transformation, we obtain the discrete RG equation: 

G2(m 2 ) = g(m2 )G(f(m 2 )) 	 (4.10) 

The G(z) denote propagators to a lattice site distance rx away from the source 

for the Klein-Gordon equation (4.4) defined on a lattice with spacing 1 and hav -

ing a mass of m = The RG equation is obtained by mapping the new 

propagator equations describing propagation to sites 2z into the old equations. 

Function f is a mass renormalisation and function g is a wavefunction renor-

malisation. Equation (4.10) relates the behaviour of the propagator on different 

length scales and so provides information about the overall form of the propa-

gator. 

By applying the identity in (4.10) repeatedly, it is possible to relate propagators 

on scales of 1--+2--+2' ... with masses evolving as m2 f 1 (m 2 )-3f 2 (m 2 )... and 

thus it becomes interesting to find where the masses evolve to under the repeated 

mapping m 2 —+f 1 (m 2 ). The masses will evolve to the fixed-point z = z  given 

by z* = f(z) [97]. Figure 4.5 shows f(z) for K. The intersections of the dashed 

and solid lines are at the points z = f(z). The only non-negative fixed-point is 

at f = 0. Figure 4.6 shows f(z) for K5 and once again the only non-negative 

fixed-point is at f = 0. Hence the fractal gasket has no fixed-points in addition 

to that of the trivial fixed-point found for the chain. 

4.2.4 Propagator 

The RG equation gives information about the propagator. If we assume that 

the propagator has the exponential form 

G(z) = a(z)exp(b(z)x) 

we can use the RG equation over all x values in order to try to find a(z) and 

b( z). 

For K, this gives 

a(z) = 	
1 
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Figure 4.5: Mass-renormalization for the chain K. 
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b(z) = sinh' 29 
These give the complete solution to the Klein-Gordon propagator on a 1-dimensional 

chain as can be shown by Fourier-expanding C and looking at poles in momen-

tum space in the conventional manner. It is interesting to see that two quite 

different approaches can be used to find the propagator on the chain. 

Unfortunately, finding a(z) and b(z) for the K5  seems very difficult. No closed 

form solutions, such as those found for K, appear to exist. If it were possible 

to find a and b, then one would know the behaviour of a propagator on a fractal 

structure. Such knowledge would be of use in the study of fractons which are 

believed to be special excitations occurring in amorphous materials [98,99]. 

4.2.5 Conclusions 

In studying the Klein-Gordon propagator on KC  and K5 , I conclude that: 

• Decimation is a powerful tool on fractal lattices and can give exact RG 

transformations. 

The Sierpinski gasket has no additional mass fixed-points to those seen on 

the chain. 

• In principle, decimation results can be used to find the propagator but in 

practice, this involves the difficult task of finding closed forms that satisfy 

the RG equation and hence it has not been possible to find the explicit 

form for the propagator on the Sierpinski gasket. 

4.3 Fermion Propagation 

This section examines the behaviour of fermions moving over fractal space-times. 

Study of the Dirac-Kahier equation, using the decimation techniques of the 

last section, proved to be much harder than the study of the Klein-Gordon 
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equation. Rather than pursue this, an attempt was made to use truncated 

fractals as alternative ultra-violet regulators, with the hope that the notorious 

fermion doubling problem might not occur on such structures. This resulted in a 

numerical study of free staggered fermion propagation on a set of 2-dimensional 

Sierpinski carpets. This section is structured as follows: 

DK fermions The problems with decimating DK fermions. 

Motivation The motivation behind using truncated fractals as regulators. 

Weaving Carpets Construction of Sierpinski carpets. 

Propagators Finding propagators on the carpets. 

Doubling Is there fermion doubling on the carpets? 

Conclusions Should we use Sierpinski carpets in lattice simulations. 

4.3.1 DK fermions 

The Dirac-Kahler equation (4.3) acts on a sum over all cochains and mixes 

them together. Writing w= wo + Wi + w2 with w denoting the p-cochain, 

one can rewrite the DK equation (4.3) in 2-dimensions as 

cwj+mwo = 0 

dwo+dw2+rnwi = 0 

= 0 	 (4.11) 

Hence it can be seen that the DK equation mixes functions of sites, links 

and plaquettes. Decimation removes a subset of the cell-complex and 

removes sites, links and plaquettes 1  with the result that the p-cochains on 

the larger lattice are sums over the p = 0, 1, and 2-cochains on the smaller 

lattice. The mixing of cochains, results in the decimated DK equation 

being not of the same form as the DK equation; it involves terms such as 1d 
and dd. The failure of the equation to map onto itself under decimations, 

'Known in fractal jargon as a irema 

95 



stops one from being able to decimate repeatedly as is possible with the 

Klein-Gordon equation. 

By eliminating the w0  and W2  in Eqn. (4.11), the equation can be rewritten 

as 

(_&I_c?d+m2)wj = 0 

WO = -- 
m 

dw 1  
W2 = -- 

In 

This bears more than a passing resemblence to Eqn. (2.11) in Chap-

ter 2; as mentioned previously DK fermions are equivalent to free stag-

gered fernions. This has reduced the problem to that of finding the w; 

once these are known, the w0  and a2  can be found from them. As can be 

seen, the w 1  are the solutions of the Klein-Gordon equation investigated 

in the previous section. Unfortunately, the explicit solution to the KG 

propagator equation could not be found on KC  as mentioned in the last 

section. 

These problems make the study of fermions on fractals very difficult. In 

what follows, we will turn our attention instead, to looking at the use of 

fractals as regulators rather than as fundamental models of space-time. 

4.3.2 Motivation 

Consider an amorphous solid such as an epoxy resin [99]. The molecules 

inside it are clustered randomly with big clusters having smaller clusters 

inside them. The self-similarity of such amorphous solids has led people to 

use fractal models to describe them [98]. Fractals appear to capture some of 

the features of random structures. In lattice gauge theory, there have been 

proposals that the use of random lattices rather than cubic lattices can 

eliminate the problem of fermion doubling [100,101,102,103,104,105,106,107]. 

In what follows, I attempt to use a class of regular fractals as controllable 

approximations to random lattices and will address the question of fermion 

doubling on such structures. 

Fractals have the advantage over random lattices in that they can be tuned 
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to have different Hausdorif-Besicovitch (JIB) dimensions, lacunarity 2,  ho-

mogeneity etc. [108]. Numerical studies of Ising models on Sierpinski 

carpets give critical exponents that suggest that fractals may be used as 

extrapolations to non-integer dimensions [108,109,110,111,112,113]. 

I have generated 36 types of Sierpinski carpet, embedded in a 64 x 64 

lattice, with JIB dimensions ranging from values of 1.602 to 1.995. On each 

of these, I have then numerically calculated 3 types of staggered fermion 

propagator for a range of bare fermion masses. The existence of fermion 

doubling is then investigated by looking at the chiral condensate and at the 

degeneracy in different momentum channels. The hope behind this work, 

was that doubling might not exist on fractals in the same way that it might 

not exist on random lattices, in which case one might be able to tune the 

dimension of the fractal to 2 and obtain a translationally-invariant lattice 

regulator on which there was no doubling. 

4.3.3 Weaving Carpets 

The Sierpinski carpet is a square version of the more familiar Sierpinski 

gasket shown in Figure 4.4. To construct an n-level truncated carpet, the 

following procedure was used: 

Take a square and divide it into a grid of b2  smaller squares. 

Divide each smaller square into a grid of c2  smaller sub-squares. 

Remove tremas consisting of the central 12  sub-squares from each 

small square. 

Taking the new square as each of the sub-squares, repeat steps 1, 2 

and 3 n—i times. 

The b, c and 1 are integers which are varied to give different types of carpet 

denoted by (b, c, 1). The JIB dimension of the carpet (b, c, 1) is given by 

dHB - 
- 

log(b2(c2 - 12 )) 

 log(bc) 

To achieve almost translationally-invariant lattices with dHB = 2 - , one 

can keep c and 1 constant and let b—oo. 
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Figure 4.7: The (1, 3, 1) Sierpinski lattice. 

0. 
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Figure 4.8: The (1,4,2) Sierpinski lattice. 
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Figure 4.9: The (2,4,2) Sierpinski lattice. 
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Figure 4.10: The (16,4,2) Sierpinski lattice. 
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To make a lattice out of a truncated carpet, lattice sites were placed in the 

centres of the smallest squares and were then joined to neighbouring sites 

by lattice links. The lattices were embedded in a lattice of size 64 x 64 

with the truncation level n taken to be as large as possible for each choice 

of (b,c,l). 

b c 1 dHB  b c 1 dHB 

5 11 3 1.981 1 3 1 1.893 

1 4 2 1.792 2 4 2 1.862 

1 5 3 1.723 1 6 2 1.934 

1 6 4 1.672 1 7 3 1.896 

1 7 5 1.633 1 8 2 1.969 

1 8 4 1.862 ,  1 8 6 1.602 

2 3 1 1.934 21 3 1 1.972 

16 4 2 1.931 12 5 3 1.891 

12 5 1 1.990 10 6 4 1.856 

10 6 2 1.971 9 7 5 1.828 

9 7 3 1.951 9 7 1 1.995 

8 8 6 1.801 8 8 4 1.931 

8 8 2 1.984 7 9 7 1.776 

7 9 5 1.911 7 9 3 1.972 

7 9 1 1.997 6 10. 8 1.750 

6 10 6 1.891 6 10 4 1.957 

6 10 2 1.990 5 11 9 1.724 

5 11 7 1.870 1 5 11 5 1.942 

Table 4.1: Sierpinski carpets that were used. 

Table 4.1 shows the carpets that were generated along with their associated 

HB dimensions. Figures 4.7, 4.8, 4.9 and 4.10 show some of the lattices; 

they can be regarded as regular square lattices that have had holes cut 

into them. 

'The number of big holes, roughly speaking! 
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4.3.4 Propagators 

How do free fermions behave on these bizarre types of lattice? To answer 

this question, the 2-point Greens function for free staggered fermions was 

calculated numerically using a conjugate gradient algorithm. The fermion 

matrix M can be written as 

= m5 + 	 - 

with the B,,, being binary "gauge" links; they are 0 or 1 depending on 

whether a link is present at that point on the lattice. The matrix has 

chirality y 5M = —M-y 5  when m = 0, hermiticity M = 75 Mt-15  and a 

remnant of translational invariance TM = MT with T being a translation 

operator. For example, the (16,4,2) carpet shown in Figure 4.10 has a 

remnant translational symmetry under shifts of 4 lattice units. Because 

full translational symmetry is no longer present on the carpets, momentum 

eigenstates are no longer Hamiltonian eigenstates and hence the concept 

of a dispersion relation becomes meaningless. The dispersion relation is 

a key ingredient in the no-go theorem for putting fermions on the lattice 

[8,9,12,13,14,7] and therefore fermions on fractal carpets may be able to 

avoid doubling. 

In finding the propagators G from the equations MG = b, three types of 

source b were used: 

bpt  = 8z=32 8t=O 

bo = 

b,, = 	e'St=o  

The z and 2 refer to the space and time directions shown in Figure 4.7. 

The first type of source bpt  is the usual point source. The other two sources 

b0  and b are sources which project only 0 and ir momentum states. The 

equations were solved using a conjugate gradient algorithm implemented 

on the ICL DAP; periodic boundary conditions were adopted in both the 

space and time directions. 

Table 4.2 shows the number of iterations required for convergence for some 

of the carpets using source b t ; the squared residual was required to be less 

103 



mass 

In 

carpet 

- cub 	(1,4,2) 	(2,4,2) 	(16,4,2) 

0.500 106 98 96 84 

0.100 275 336 249 129 

0.080 295 389 265 131 

0.050 337 502 304 131 

0.040 346 545 324 134 

0.030 369 608 334 132 

0.020 380 696 363 133 

0.010 424 735 390 134 

0.005 454 809 412 134 

0.001 543 869 380 132 

Table 4.2: Convergence of CG algorithm. 

than 10-70.  Runs were also performed on regular cubic lattices both with 

periodic and antiperiodic boundaries and are denoted by + cub and - cub. 

On average, 3 minutes of DAP time was required for a run at one mass 

value for all 3 sources on one carpet. 

The resulting G were summed over final sites to give the following timeslice 

propagators: 

.M00(t) = 
z 

M.- W = 

Mo. (i) = 

M(i) = 
W 

The (z, t) denote the position of the final sites. The propagator M(t) 

represents the propagation of a momentum p state from the source to a 

momentum p' state at time t. In addition to these propagators, there was 

the site-to-site propagator G(x, t) = (M'b)(,). 
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4.3.5 Doubling 

Following the work with naive fermions on random lattices [104], two tests 

were used to look for the absence of doubling. In the 2-dimensional ran-

dom lattice work it is claimed that the random lattice dynamically induces 

the spontaneous breakdown of chiral symmetry [104]. The three doubled 

species acquire masses of 0(1/a), where a is the lattice spacing, and de-

couple from the model. Associated with the chiral SSB is the existence 

of a pseudo-Goldstone boson with mass and this also decouples 

leaving a model containing just a single species of fermion. Evidence for 

this claim comes from noticing an enhancement in the chiral condensate at 

small masses and from noticing the suppression of momentum ir/a propa-

gators. Does the same behaviour manifest itself on fractal carpets? 

mass 

m 

carpet 

-cub 	+cub 	(1,4,2) 	(2,4,2) 	(16,4,2) 

0.500 0.508 0.508 0.518 0.518 0.518 

0.100 0.212 0.212 0.178 0.172 0.172 

0.080 0.180 0.182 0.146 0.139 0.139 

0.050 0.126 0.133 0.096 0.088 0.088 

0.040 0.104 0.117 0.079 0.071 0.071 

0.030 0.081 0.103 0.061 0.053 0.053 

0.020 0.055 0.096 0.042 0.036 0.036 

0.010 0.028 0.122 0.024 0.018 0.018 

0.005 0.014 0.207 0.016 0.009 0.009 

0.001 1 0.003 1 0.979 	1 0.005 	1 0.002 	1 0.002 

Table 4.3: Chiral Condensates. 

Table 4.3 shows the chiral condensates < TO > found on some of the 

carpets. It is obtained by using the expression <i& >= G(32, 0) where 

(32, 0) is the position of the source site. Notice the way in which the con-

densates on the fractals all decrease with decreasing m. This implies that 

the zero-mode which exists on the periodic regular cubic lattice is absent 

on the carpets. The condensates are shown in Figures 4.11, 4.12 and 4.13. 
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There appears to be no enhancement of the condensates on the carpets 

compared to the condensates on the regular cubic lattice. Furthermore, 

no enhancement was seen on any of the 36 fractal carpets. 

If the non-zero momentum fermion species were to become heavier than the 

zero-momentum species then one would expect the M timeslice propaga-

tor to decay faster in time than the M00  propagator; the two propagators 

would not be identical. On all 36 fractal carpets at all m values and for all 

times t, we found that M00  and M agreed to 7 significant figures accu-

racy. The M00  and M,0  propagators for the (1,4,2) carpet with m = 0.080 

are shown in Figures 4.14 and 4.15. The dashed line is that obtained for 

M00  at m = 0.080 on the regular cubic lattice with antiperiodic boundary 

conditions. 

4.3.6 Conclusions 

The study of Dirac-Kabler fermions on non-truncated fractals looks to 

be far more difficult than the study of bosons on such structures. The 

decimation procedure does not map the DK equation back into itself and 

hence cannot be used iteratively to study the fermions. 

The behaviour of fermions observed on random lattices does not occur on 

truncated Sierpinski carpets; doubling still seems to occur on truncated 

fractals. Because of this, truncated fractals appear to be of no use as 

regulators in lattice gauge theory. 
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Figure 4.11: Chiral condensate on a (1,4,2) carpet and regular lattices. 
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Figure 4.12: Chiral condensate on a (2,4,2) carpet. 
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Figure 4.13: Chiral condensate on a (16,4,2) carpet. 
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Appendix A 

Notation. 

A.1 Indices 

Repeated indices are contracted. 

Unmentioned indices are often suppressed. 

A.2 Lattice Derivatives 

[D] 	= 	(u(z)8,+11 - 

1D21 	
4 

= ! 
l4J 	

(UM (x)U,4(x + 2)8, +2  + U,1(x - fL)U'(y)S y ,Z_ 2A - 2) I 	zy  
4 

D2 = 
 ED 2 

The free fermion derivative 0 is defined as D with all gauge links U = 1. 

A.3 Gamma Matrices 

The gamma matrices used in lattice simulations satisfy the anti-commutation 

relation {-y-y,} = 2S, and are defined to be hermitian = -yt. The ma-

trix is defined as 75 = 71727374 and is also hermitian 7s = 'Vi. 
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A.4 Miscellaneous 

Hermitian conjugation f is the product of the operations of complex con-

jugation * and the transposition of indices. Unless otherwise stated, all 

indices are transposed including space-time ones. 

The symbols z and y will frequently be used to label the space-time 4-

tuples (z 1 , x 2 ,x3 ,x4) and (y1,y2,y3,y4)  and Greek indices will often be 

used to label the directions 1, 2, 3 and 4. 

x I denotes the absolute value of x and 11 x  112 denotes x t x . 
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Appendix B 

Array Processors. 

The test of a first-rate intelligence 

is the ability to hold two opposite ideas 

in mind at the same time and still retain 

the ability to function. 

F. Scott Fitzgerald 

To perform numerical simulations of field theory systems one needs to use 

computers with first-rate intelligence. Conventional single processor sys-

tems are not fast enough to solve such computationally-intensive problems. 

In the development of multi-protessor systems, two approaches have been 

taken. The first involves pipelining the problem and then using vector 

processors to solve the problem. The second approach relies on having an 

array of connected processing elements (PE) over which the problem can 

be distributed. Two types of array processor have been used at Edinburgh 

for solving field theory problems. In this appendix, I will briefly describe 

both types of computer. 

B.1 Distributed Array Processor. 

The I.C.L. Distributed Array Processor (ICL DAP) consists of a 64 x 

64 array of bit-serial PEs each having 4096 bits of memory as shown in 

Figure A.l. Each PE performs the same task but on a seperate piece 

of data 1  where the data are bits in the 4096 bit planes. The machine 

'Single Instruction Multiple Data (SIMD) 
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Figure B.l: ICL Distributed Array Processor. 

acts like an active memory unit and is hosted by an ICL 2976 mainframe. 

Data is normally paged to and from the DAP by the use of COMMON 

blocks. However at Edinburgh, the ERCC 2  developed fast asynchronous 

paging software at the request of the physics department. Maximum data 

transfer rates of 250 Kbaud could be achieved. The DAP is programmed in 

a language known as DAP FORTRAN which has commands for operating 

on 64 x 64 arrays. Typical speeds for the DAP are around 20 Mflops. 

B.2 Transputer Array. 

With the advent of VLSI technology it became possible to put a whole 

computer on one integrated circuit; such an object is known as a iransputer 

and the INMOS T800 floating-point transputer is shown in Figure A.2. 

2 Edinburgh Regional Computing Centre 
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The T800 has a 64 bit floating-point unit capable of 1.2 million floating- 
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Figure B.2: The INMOS T800 transputer. 

point multiplies per second. In addition, it has four hard links capable of 

transferring data at a rate of 20 Mbaud. 

Taking a T800 and 4 Mbytes of memory makes the powerful PE used in the 

Meiko Computing Surface. Computing Surfaces are reconfigurable arrays 

of such PEs and are therefore flexible MIMD array processors. Each PE 

in the surface performs its own instructions on its own data. The speed of 

just one PE is about 1.5 Mflop. The Edinburgh Concurrent Supercomputer 

is a Computing Surface which contains over 100 PEs connected in user 

domains. The largest domain, that was used in Chapter 3 of this thesis, 

contained 103 PEs. A concurrent program language called OCCAM2 is 

used to program the transputers. 

'Multiple Instruction Multiple Data 
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Appendix C 

Fermion Determinant. 

C.1 Definitions. 

Consider the action S = Sb + Sf with S&  being a purely bosonic part and 

Sj having the form Mb with the fermion matrix M being, in general, 

a function of the boson fields. Integrating out the & and T in the path-

integral, introduces the factor detM which is, in general, a non-linear non-

local functional of the bosonic fields. This can be rewritten as an effective 

action Se11 defined by: 

detM = e_S!11 

Applying the matrix identity indetA = TrinA allows one to write: 

Self = —TrinM 

The mM can be expanded in a perturbation series in order to give explicit 

terms in the effective action. 

In the next sections, we will apply this procedure to the action defined by: 

Sb = —2Kcos(9 + -9) 

s1 = 	+ 
M = + m + Yexp(iO'y s ) 

For m = 0, this is the action of the toy model discussed in Chapter 3. Note 

that M has been written symbolically; the derivative is a lattice derivative. 

In this 2-species model, the effective action 	is the sum of Sq f  and eff 
S:1, where Se,, = —lndetM. 
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C.2 Large  

For the m = 0 case, an expansion of Se/f in powers of 1/Y can be obtained 

as follows: 

Se/f = —Tr1n(+ Ye ° ') 

= —Trin (Yem  (i + 

' e 
= —TrinY - Trin(1 + -y-#) 

(C.1) 

The expansion ln(1 + x) = X - x 2 /2 +... can now be applied and gives: 

S2f)f = — 8NlnY+-- Y2 

--cos(9+ - 8) + 0(1/Y 4 ) 
Y 

The first line in this expression is a constant and therefore has no effect on 

the boson dynamics. The second line is of the same form as the K term 

in Sb  and, so to 0(1/Y 2 ), one can think of the fermions as causing the 

bosons to have an effective K equal to K + 1/Y 2 . 

C.3 Small Y 

Denoting the free fermion matrix by M0  = + m, one obtains: 

S.-/f = —Tr1n(+ m + Ye °") 

= —TrinMo (1 + M 1 Ye 07 ) 

The log can now be expanded in powers of Y which corresponds to the 

Feynman diagram expansion shown in Figure A.1. Summing 1- and 2-

legged diagrams gives the expression: 

= —8mYI 1  cos elf 	

+4Y 2  16m 212 (x + y) cos(9 + O) 
0 ,14 

+4Y 2  E 13(z 
- 

y) cos(9 - O) + 0(Y 3 ) 
0,14 
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Figure C.1: Small Y expansion. 

where the loop integrals I are defined as: 

'1 
- - T(p) 

cos(q.z) 
12(Z) = N2T(pTp_ q) 

13(z) = 1 
	cos(q.z) sin(p) sin(p - 

N 2 p,q, 	T(p)T(p - q) 

T(p) = m2 + sin 2 p 
JA 

The integrals can be performed numerically and depend on the choice of 

boundary condition. With periodic boundary conditions I, 12,13 diverge 

at m = 0. 

The effect of Se,, on the observables has now to be calculated. It is 

convenient to consider the partition function 

Z = f d[6]et 
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Once this is known, expectation values can then be obtained from it. For 

example, 

1 	1 81n  

	

= + 16N OK 	
(C.2) 

To find Z, one must perform summations over the angle variables 9. This 

is possible when either the angles are small or when the parameters in the 

action are small. In the small angle case one uses the fact that 

eT cos  O ati eKe_K921'2 

and then one can carry out the gaussian integrals in 9. For the small 

parameter case, the exponential is expanded as e 5  = 1 - S + 52 /2! - 

S13! +... and then integrals are performed over the resulting products 

of sine and cosine functions. Upto 0(K 3 ) and 0(Y 3 ) terms, and omitting 

the KY 2  and K 2 Y 2  terms, one obtains after expanding to S: 

z 
1 - 2Y 2 13(0) + 16Nm2Y 2I (21r)N = 

+128Nm2 KY 2I - 2NKY 2  

+4NK2  

For K = 0, this gives the expression: 

<Q> = 

As explained in Chapter 3, this expression is of use in checking the algo-

rithm. 
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