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Abstract

The introduction contains a review of published work on the_
oceanic induction problem up to the end of November 1979 and
concentrates on induction in the ocean by magneto variations,
although a brief account is alsc given of dynamo processes, The aim
of the research was to model the effects of mutual induction between
] oceanic electric currents and a finitely conducting mantle, since

previous authors had only considered the simpler case of a
perfectly conducting mantle. A mefhod for calculating these effects
is derived in Chapter 2 by considering induction by a vertical
magnetic dipole at the earth's surface lea@ing to a generalised form
of the Hobbs-Price mutual induction kernel.

A simple uniform earth and a more realistic seven-layered
model represent the méntle while considering inducfion in a
hemispherical ocean, in Chapters 3 and 4 respectively, where details
of the calculation of the electromagnetic responses are given, |
Alterations and improvements were made to an existing computer
program so that Banks' profile could be used to model induction in
a thin sheet in the shape of the oceans and contour plots of results
.obtained wi£h~Banks' model and with the perfect conductor are
- compared in Chapter 5. »

Using a spherical harmonic representation of the Sq inducing
field, a qualitative comparison is made between the equivalent
current systems of the modelled results with those computed from
observatory measurements at different instantsvof Universal Time,
The use of Banks' profile did not give a better comparison with the
observations than the berfectly conducting mantle. The application -

of srhericel harmonic analysis to the complete solutions showed that



the electromagnetic responses to each of the principal Sq harmonics
were greater with the finiteiy conducting mantle than with the
perfect conductor, while both were greater than the observed
responses. When the analysis was restricted to using only the
values at the sites of geomagnetic observatories the'coefficients
of the vertical magnetic field were found to be different from before,
" vhile the ratios of internal to external parts were found to be
smaller. These discrepancies are due to alia_sing by harmonics
absent from the analysis and they suggest that the determination of
the responses based on spherical harmonic analysis of observatory
measurements must be suspect, which will influence any global

geoelectric profile determined from these ratios.



CHAPTER 1
INTRODUCTION

1.1) - The idea that temporal variations of the geomagnetic
field could induce électrical currents in the earth was born in
1889, when Schuster put forward a theory of terrestrial diurnal
magnetic variations. His separation of the field into parts with
sources internal and external to the earth was consistent with
the theory that the internal part was due to electrical currents
induced by the external part. Further analysis of the daily
variation resulted in Chapman (1919) proposing that the elect-
rical conductivity structure of the earthn could be represented by
an insulating layer 250 km. thick with an wunderlying wuniform
sphere of conductivity 0.036 Sﬁ? The work of Chapman and
Whitehead (1922) demonstrated that the thickness sf a uniformly
conductiﬁg sheet at the surface of the earth had considerable
influence on the conductivity of the central uniform core which
gave the best fit‘ with observations. The justification for
proposing such a conducting layer near &he surface of the earth
was that the conductivity of sea water (4 Si') was known to be
higher than that of surface pocks, which marked the beginning of
interest in electrpmagnetic induction in the oceans.

Lahiri and Price (1939) developed the theory of induction in
non—uniform radially symmetric spheres for both periodic and
aperiodic inducing fields and, in order to explain analyses of
the daily variation and magnetic storms, they proposéd that the
conductivity of the earth increased rapidly to at least 1 Sm”! at
depths of about 700 km and that a bétter comparison between
observations and calculations could be obtained by including a

uniformly conducting shell at the earth’s surface which had a



vertically integrated conductivity equivalent to 1 km of sea
water.

These pioneering studies of geomagnetic induction showed
that the oceans could exert influence on the global aspects of
" the time-varying geomagnetic field but more recent studies have
established that the oceans could also be important in more
localised studies.

Interest in the effect of the oceans on geomagnetic varia-
tions must have been boosted by the work of Parkinson (1959 and
1962), who discovered high correlations between the changes in
the vertical ‘and hofizontal fields recorded at geomagnetic
observatories atAtime intervals in the range of five minutes to
one hour. By plotting the directions of these changes for a large
number of equal time.intervals on a polar diagra%, he demonst-
rated tﬁat the fluctuations'tended to lie in a preferred plane
inclined to the horizontal. These results could be presented in
an alternative way 'by means of the ‘Parkinson Vector’, which
pointed in the digection of the greatest upward slope of the
preferred plane, and its length was defined as the fatio of the
vertical to horizontal variations in the direction of the vector.

It was observed that at coastal stations the vector was
often oriented towards the nearest region of deep water and that
the magnitude was much greater than that obtained at stations
inland. This effect was initially demonstrated for Australian
observatories but was later observed to occur world wide,
particularly in regions where a straight coastline was near deep
water. It was suggested that this effect could be explained by
eddy currents induced in the sea, thereby modifying the field

near the coastline, but analogue studies with a model of the



earth and its oceans, or terrella, were unable to produce large
vertical fields near the coasts, from which Parkinson inferred
that the coast effect might have been due to conductivity
contrasts between the continental and oceanic mantle (Parkinson,
1964).

~Schmucker in his array study in the south-west of the U.S.A.
(Schmucker, 1964 and 1970) detected what can be described as a
classic coast effect, where the amplitude of the Z variations was
considerably enhanced near the coast compared with stations
inland. This effect was observed in both geomagnetic bays and the
daily wvariation and wﬁs demonstrated by the fact that the length
of the Parkinson‘arrows increased near the coast. This phenomenon
was interpreted by assuming that the induced currents flowed inl
the ocean on the éea&ard side, while the currents’on the landward
side wefe presumed to be flowing at depth in the upper mantle.
The distance inland, over which it took the enhancement of Z to
disappear, was wused to find the’deﬁth to the.conducting mantle.
Coast effects of this type have been observed world wide; 1in
South Australia for example (White and Polatajko, 1978).

Another type of induction anomaly that has been detected is
the so—called iéland effect. A simple explanation of this
phenomenon is that an island which rises froﬁ the ocean floor
causes currents in the ocean to diverge and pass rouﬁd it on
either side on account of the contrast ih conductivity between
rocks and sea water. This means that it is possible to detect
considerable variations in the vertical magnetic field due to the
fact that the currents are flowing in opposite senses on the
opposite sides of the island and can cause a reversal of the

direction of the vertical field across tiie island. This has been



observea in Oahu, Hawaii (Mason, 1963) and Miyake-jima, Japan
(Honkura, 1972). Techniques have been developed to remove the
island effect from observations so that the conductivity profile
of the crust and upper mantle could be determined (Klein and
Larsen, 1978).

.The island effect can be more complicated when the island is
close to the continental shelf, where the deep oceans and shallow
coastal seas can influence the direction of the. Parkinson arrow
at different periods. An array study in the British Isles
(Edwards, Law and White, 1971) demonstrated that the induction
vectors on the east coast of Ireland pointed towards the Atlantic
at a period of 144 minutes but were directed towards the Irish
Sea at a period of 40 minutes. Work carried out in Sutherland,
Caithness and the Orkney Islands (Robinson, 1977) demonstrated
that the directions of fhe induction vectors were dictated by the
local coastline in the period rénge of 5-30 minutes, while the
effect of the Atlantic continentél shelf dominated at periods in
the range 30 minutes — 3 hours. -

Interesting results have beeq obtained from the analysis of
magnetic data recordéd on ic;bergs (Zhigalov, 1960), when corre-
lations were obtained between thé ratio of vertical to horizontal
geomagnetic variations.and the bathymetry. The deep oceans can be
thought of as being uniform over large horizontal scales, except
near mid-oceanic ridges, and an iceberg is wunlikely to perturb
the circulation of currents in the ocean in the same manner as an
island rising from the sea floor. Electromagnetic theory shows
that the presence of a large uniform highly conducting body, i.e.
an ocean, causes a reduction.in the amplitude of the ve?tical

magnetic - variations compared with the horizontal variations, and



the vertical variations are completely cancelled out in Fhe limit
of infinite frequency or conductivity. It was expected that the
reduction woulq increase as the depth of the ocean increased as
was demonstrated experimentally.

1.2) Analogue models have been used in electromagnetic
induction sfudies to examine situations for which mathematical
models are either inaccurate or totally lacking and some insight
into the océanic induction problem has been gained through this
approach. The terrella experiments of Parkinson have been men-
tioned breifly in the previous section and they were performed
on a model in which the oceans were simulated by a thin copper
sheet surrounding the mantle, which was modelled by an aluminium
sphere at a depth corresponding to 0.9 earth radii. The inducing
field was produced by a coil, which was wound in ;uch a way as to
model tﬁe current systém of a geomagnetic bay, and the fields
were measured with the aid of a small search coil. In analogue
‘modelling it 1is wvital to ensure that the scaling factors are
selected in such a way that the model is truly analagous to the
geophysical situation it is mean; to repreéent. This oécurs when
the following condition is obeyed:

sw(1) =5'w' (1) (1.1)
where the primed and unprimed quantities are characte;istics of
the model and geophysical cases respectiveiy.

Much of the early work in this field has been reviewed by
Dosso (1973), who refers to models of Icela%d, by Hermance
(1968), and Japan, by Roden (1964), who modelled the respective
‘islands by cutting the appropriately shaped holes in a metal
sheet. Dosso then compared his own work on modelling the coast

effect, for the two dimensional situation in which there was a



vertical interface between the ocean and the land, with'some of
the early attempts at numerical modelling. The agreement between
the two approaches was close except near to the coast where thé
measured fields Qere smaller in magnitude than the numerical
calculations, which was probably due to the firite Qimensions of
the search coil used to measure the field.

The work of Launay (1970) was referred to in which the Z/H
ratio for the Californian and Australian coast effects were
modelled by two copper sheets; one represented the oceans and the
other the mantle, ﬁhich was located at the following depths:
450-500 km. for Australia and 180-210 km. for California. More
complicated coastline models were also discussed, e.g. the case
of a shelving ocean overlying a conducting step. The Californian
coast effect has also been modelled by Spitta (1977), who chose
to locate his conductosphere at a depth of 270 km.

More recently interest has been revived in modelling
three-dimensional sysfems, to enable the comparison between fiéld
observations and analogue measurements fo be made; examples of
this work are Vancouver Island (Chan and Dosso0,1978) and the
British Isles (Dosso, Nienaber and Hutton, 1978).

6.3) Theoretical studies.of the oceanic induction problem have
been éonsiderably simplified by two assumptions: namely the -
quasi—-static approximation and the thin shcet approximation. The
former is used virtually universally in thg field of geomagnetic
induction, since the periods of interest are considerably longer
than the time it would take for electromagnetic radiation to
travel a distance Atypical of the dimensions of geophysical
interest. Propagation of the electromagnetic field can be assumed

to be instantaneous, which is tantamount to ignoring the displa-



cement current in Maxwell’s equations and means that the ﬁagnetic
field obeys the diffusion equation in conductors and -Laplace's
equation in insulators as opposed to the wave equation, which
governs high frequency eléctromagnetic phenomena. The thin sheet
approximation is particularly applicable to the oceanic induc-
tion problem since, for the periods of interest, there is 1little
attenuation of the electromagnetic field across 4km., which is a
typical depth of the oceans, whose horizontal dimensions can be
three orders of magnitude greater than their vertical dimensions.
In a uniform conducting half-space, an electromagnetic field is
at;enuated in the following manner: the amplitude of the field
variations is reduced by a factor l/e as the field penetrates the
distance of one skin-depth into the conductor, where skin-depth,
(g), is defined as:

S = (2//mvw)'/l (1.2),

where 6" is the conductivity of the half-space, @Wis the frequency
of the inducing field and/iis the permeability of the medium.

Inserting the appropriate values shows that the skin-depth
in sea water is about 80 km. for periods of 24 hours and 15 km.
at one hour, which implies that 4the thin sﬁeet approximation
should be valid for the daily variation and its harmonics since
the amplitude of the electromagnetic field is practically cons—
tant throughout the depth of tﬁe ocean.

The fact that the conductivity of sea water is generally at
least two orders of magnitude higher than that of surface rocks
means that, in the low frequency limit, it should be possible to
treat the rocks as insulators so that any induced electrical
currents are constrained to flow in the ocean and that the theory

of Price (1949) for induction in infinitesimally thin sheets is



applicable.
Price derived the following equation for the problem of

induction in a thin sheet:

' t
V.V = w<§-§f’ vazh )
wherezbifs the vertically integrated conductivity defined as:

1<P =‘{G(z) dz (1.4) (h being the depth of the ocean). %l is
the cu:rent streamline function which defines the current

density in the following manner:

3 =-axVy .,

where a'is the outward unit normal. z°¢ and'Zi are the external and
internal vertical components of the magnetic field intensity
(effectively the inducing and induced vertical fields).

Ashour (1950) developed an integral equation method for
solving the problem of induction in uniform circular discs and
surfaées' of revolution by an axially-symmetric inducing field,
which enabled him to make numerical estimates of the time
consténté, which would govern the decay of currents in the ocean.
If cufrents wére permitted to decay iﬁ a circular ocean, of
radius 5000 km. and depth 4km., théir amplitude would be reduced
5y a factor l/g in 5.2 hours, if the conductivity of sea water

-1
was taken as 4 Sm .

The problem of calculating the initial current induced in a
perfectly conducting hemispherical thin shell by the instanta-
neous switching off of a wuniform magnetic field, directed
parallel to the pléne of the equatorial rim of the shell, was
examined by Rikitake and Yokcyama (1955). Their approach involved
making a spherical harmonic expansion of the current function and

solving for the coefficients, subject to the constraints that the

total vertical field vanished at the surface of the shell and



that the current function was zero outwith the shell. To éimplify
the calculation, only twelve coefficients were wused in the
analysis, which was an insufficient number since currents weré
predicted to flow outside the shell and it seemed that the
convergence of the spherical harmonic series was slow. The
solution did partially agrée with theory in that the total
vertical field was close to zero at the surface of thé shell, but
it was unlikely that the truncated expansion was accurate in fhe
vicinity of the discontinuity in conductivity at the rim of the
shell.

Rikitake (1961) examined a similar problem, in which there
was a concentric perfectly conducting sphere located below the
hemispherical shell, where the ratio of the radii of the two
conductors was 0.94.'Although the method of anélyéis used by
Rikifake. in both of these examples was later to be proved wrong
by Hobbs (1972), it was quite clear that the inclusion of the
perfectly conducting ‘sphere. considerably reduced the current
function and the induced vertical field; This implied that it was
essential to consider electromagnetic coupling between the ocean
and the mantle in attempts to model the effect of the oceans on
geomagnetic variations.

Roden (1964) developed a numerical scheme for calculating
the magnetic field induced in a thin uniform strip, which overlay
a perféctly conducting halfi-space and predicted that very large
fields would be observed close to the edges of the conducting
strip. Although the methéd of accounting for the effects of the
underlying half-space, which simulated the mantle, was later
shown to be inaccurate, his prediction of the enhancement of tﬂe

magnetic fields near the edge of the sheet was shown to be



correct by the work of Parker (1968), who devised an analytic
scheme for solving the problem of induction in a thin uniform
étrip. Parker came to the conclusion that, in a finitely
c§nducting strip, the current density was finite everywhere but
that the vertical magnetic'field had a logarithmic singularify at
the edges of the strip;

Another analytic solution had been obtained by Ashour(1964,
1965), who used the technique of coordinate inversion and the
solution of dual integral equations to solve the problem attem-
pted by Rikitake and Yokoyama (1955). He demonstrated that the
current density became infinite at the edge of the shell and that
the vertical field became infinite on the non conducting side 6f
the coastline. The solution of a similar problem, in which the
inducing field was directed.along the symmetry aiis of the shell,
was also presented, and the vertical field was again singular on
the landward side of the rim.

Approximate solutions for induction in a unifofm finitely
conducting hemisphere were derived by Déss and Ashour (1971), who
found that the induced vertical field was enhanced at the
coastline on both sides of the coést, although it underwent a
reversal on crossing the coast. The region over which enhancement
occurred on the landward side was smaller than that found with

the perfectly conducting shell and the horizontal field was

enhanced on the seaward side. Further papers by Ashour (1971(b), -

1971(c)) dealt with the cases of induction in thin discs and
hemispheres, in which the conductivity decreased towards the
edge. It was discovered that enhancement of the magnetic field
near the edge was more pronouqced at high frequencies and when

the decrease in conductivity was confined to a region close to

10



the edge, corresponding to the continental shelf being near to
the coastline. A method of calculating the field perturbations
by an island had been presented, also by Ashour (1971(a)), b§
mﬁdelling the island as a éircular or elliptical area of small,
or vanishing, conductivity in a plane uniformly conducting
infinite sheet. The magnetic fields were expressed in terms of
contour integrals around the edge of the island but since the
integrand contained the electrical potential, which was assumed
to be known, this work could not be regarded as a solution of an
induction problem, but rather of a current channeling problem.
The analytic methods of Ashour were only capable of dealing
with highly symmetric conductors and it was clear that any

attempt to model the real oceans would have to resort to

‘numerical methods on account of the highly assymetric distribu-

tion of the oceans over the surface Qf the earth. In fact
suitable numerical methods were becoming available at that time.

A paper by Hobbs (1971) described two algorithms for
calculating the effects of induction iﬁ thin spherical shells,
of varying conductivity, overlying é perfectly conducting concen-—
~tric spheré, which were appliéable to either high br low
frequency inducing fields.v Only the 1low frequency method is
described here, since it forms the basis of the work presented in
the following chapters. |

This algorithm provides the means for solving Price’s
equation (1.3) for calculating the current streamline function
induced in a thin sheet when only the primary external field is
known. Equation (1.3) cannot be solved as it stands because the
internal magnetic field, Zi, is itself a function of the current

streamline function\#. If the primary inducing field arises from

11



ionospheric currents, the external inducing field z€ is taken to
be the sum of the primary vertical field, ZP, and the vertical
field, A , due to currents that would be induced in the innef
perfectly conducting core in the absence of any thin sheet at the
surface.

z¢ = 2% + z¢ (1.6)
If the radii of the inner and outer conductors are b and a
respectively, and if the primary currents are described by a
single spherical harmonic of unit amplitude and of degree n, then

z€ = (1 -(b/a)"")zZ" (1.7)
The first step of the iterative meth;d is to find an approxima-
tion, denoted by %;, to the current function by solving equation
(1.3) but neglecting the term in Zi. The current fuction 7@ will
itself produce a vertical magnetic field, Zs, ﬁhich can induce
further "currents in the shell (the self induction effect) and
will also induce currents in the central core, the Qertical field
of which, Z"; would in turn ipduce more currents in the surface
shell (the mutual induction effect). A first approximation to the
internal fieid could be found by taking the sum of the vertical
fields due to self and mutualnindhction:
z°= 25 +2"™ (1.8) |
The vertical fields due. to self and mnutual induction were
calculated with the ajd of sufface integral formulae defived by
Hobbs and Price (1970), the numerical calculation of which was
based on the method of basic integrals of Price and Wilkins
(1963).

By taking Zf as a first approximation to the internal field,

a correcticn term for the current function,fﬁ, could be found by

solving equation (1.3) but this time the term in 2€ is to be

12



neglected. Repefition of this procedure resulted in the‘genera-
tion of further correction terms, %1, %3’ etc., and the complete
solution to equation (3.1),%, could be found iteratively, where;
)&=~/fa+\{/‘+\h+ e (1.9)

and z' = z‘;+ z: + z;+ ceee(1.10)

For hafmonic inducing fields, with frequency w, the calcula-

tions were performed by removing the time dependence from
equation (1.3) and soving for % = \///w, where (,Jw¢n = %’L .
Equation (1.9) could then be transformed into the form:
Y=w(4+ wy{-ﬁ-w"ffj ceess) (1.11)
Analysis of induction in a uniform sbherical shell, for which an
analytic solution could be found, demonstrated that equation
(1.11) would only be convergent for periods greater than 15 - 20
hours, depending on the degree of the inducing field.

Application of the above method to the model of a hemisphe-
rical oéean demonstrated the enhancement of the vertical field
dn either side of the coast. |

Bullard and Parker (1971) reformulated equation (1.3) as an

13

integro-differential equation in % and solved the problem for the -

case of induction in the real oceans by the diurnal harmonic of
Sq but, 'as has already Been shown, Prices’s iterative method
could not be used at higher fréquencies. However their maps of
the current function did show how the coastlines distorted the
current vortices from the shape that would have been expected,
had the oceans been uniformly distributed over the surface of the
earth.

Parkinson (1975) devised an algorithm, which was effectively
a hybrid of the high and low féhuency algorithms of Price, to

solve ‘the high frequency problem of induction in the real oceans



by substorms, however his solutions were unsatisfactorf on two
accounts. Firstly the calculations were performed on a coarse
grid and it was not possible to state if the iterative method of
solution had converged. Secondly the values of the current
function on the continents were obtained by an averaging
process, which had no physical basis; and ‘resulted in artifi-
.cially high current densities around the coastlines.

Hobbs and Brignall (1976) overcame the problems of diver-
gence at high frequencies by making a Mobius transformation of
the complex frequency plane and using analytic continuation to
find a convergent series by transforming equation (l.11). An
optimal Mobius transformation was found which also resulted in

the improved convergence of the solutions to low frequency

problems in addition'to obtaining convergence at high frequen-

cies. Application of this method to the model of a hemispherical
ocean, by wusing the diurnal variation and its first secven
harmonics, showed that the real part of the coast effect
increased at higher frequencies, while ‘the enhancement of the
imaginary part decreased. The methods of Price and analytic
continuatioﬁ were used to predict the influence of the oceans on
Sq by Hobbs and Dawes (1979) at frequencies of 1, 2, and 3
c.p.d;, but the attempt to compare the calculated internal part
with that obtained from observatory data was not particularly
successful.

Almost contemporary with the work of Hobbs et al., several
papers were published by Kendall and his co-workers, who adopted
different approaches for solving the oceanic induction problem.
An integral equation involving the current density and the vector

magnetic potential was derived and solutions obtained for

N
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axi-symmetric problems, e.g. induction in spherical caps (Hutson,
Kendall and Malin,1972). The convergence of the iterative method
of solving the integral equation was improved by .using a
téchnique of functional analysis, known as shifting the spectrum,
(Hutson, Kendall and Malin, 1973) and a research note showing how
shifting the spectrum of a linear operator and analytic continua-
tion of a series could be related by a mathematical transforma-
tion was published by Kendall (1978).

An alternative approach to tackling the oceanic induction
problem was developed in terms of calculating the scalar magnetic
potential in three regions: above the ocean, in the neighbourhood
of the land and between the ocean and the underlying conduthSp—
here (Hewson—-Browne and Kendall, 1978(a)). Analytic solutions
involving Legendre series were found for the indﬁction problem in
a perfeétly conducting hemispherical shell above a concentric
perfectly conducting sphere and compared with ‘the results ob-
tained by an approximate numerical method, which showed that the
_two methods were in agreement except near the edge of the shell.
A suitable edge corréction, using the method of matched asymp—
totic expansions, was found (Hewson-Browne and Kendall, 1978(b))
. and later applied to finitely canducting shells (Hewson—Browne,
1978); An edge correction for plane sheets has also been derived
by Quinney (1979). Preliminary solutions, without the use of the
--edge correction, have been calculated for modelling the gffect of
the oceans on S8q, and although the effect of treating Antarctica
and Australia as separate land masses altered the flow paterns,
little ig%ovement in the comparison with observatory observations
was obtained (Beamish et al.?:z & 1I1).

It should be stated that the oceanic induction probiem has

15



received attention from Soviet scientists, but upfortunafely not
ali of this work has been translated. Berdichevskiy and Zhdanov
(1974) developed a formalism for isolating the field perturba;
tions due to conductivity anomalies deep in the earth, provided
that the normal conductivity profile and surface conductivity
distribution (i.e. oceanic thin sheet) were known. Fainberg’s
review (1978) contained further details of the Soviet contribu-
>tion to this field, which included his own approach where,
although the method was not completely rigorous, he suggested
that account should be taken of the earth’s sedimentary cover in

the conductance of the thin shell at the surface.

6.4) The techniques based on the work of Price described above

are only capable of dealing with induction by the vertical
component of the time-varying magnetic field in a thin sheet
which is® electrically isolated from any other conductors. Models
have been studied in which these assuniptions have not been made
but, as yet, only in the case of plane geometry.

Weidelt (1971) provided an analytic splution of induction in
two adjacent half-sheets of different conductances, which were
insulated from an underlying perfectly conducting half-space, for
the E-polarisation case. in this situation the primary uniform
horizontal magnetic field is perpendicular to the junction betwé%
the two sheets and induces a horizontal electric field parallel
to the strike, and the currents which it drives only give rise to
the orthogonal horizontal and vertical induced magnetic fields.
If a non-uniform inducing field had béen used, Price’s equation
could still not have been used, since it contains terms involving
the gradient of the‘integrated.conductivity_which is not defined

at ~ the boundary between the two sheets in the model described
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above. However a suitable boundary condition was found in terms
of the magnetic vector potential and its first vertica1> deriva-
tive. The solutions demonstrated that there was a logarithmic
singularity in the vertical magnetic field at the junctoy.. ,
while the horizontal magnetic field remained finite although it
waé discontinuous there.

A model in which an oceanic strip and a perfectly condQcting
mantle were coﬁ?cted by a crust of small, but non-zero, conducti-
vity was examined by Brewitt—-Taylor (1975), who demonstrated that
electric currents could be made to flow along the ocean, down
through the crust, back along the mantle and return upwards into
the ocean through the crﬁst, for the case of H-polarisation. In

this situation the inducing magnetic field is parallel to the

strike, with the result that no induced magnetic field can be

detected outside the conductor, provided the conductivity struc—

ture is strictly two-dimensional. The numerical solution of a

related three-dimensional problem demonstrated that it was pos-
sible for the induced horizontal field hormal to the coast' and
the vertical field to be 1large, while the induced horizontal
field parallgl to the coast was small, which}was compatible with
the concept of the Parkinson vector.

'A more rigorous account of self induction effects was taken
in a 1later paper (Brewitt-~Taylor, 1976), where the horizontal
magnetic field below the sea floor was calculated and the effect
of return currents in the mantle was shown to be important
provided that the width of the ocean was greater .than two
skin~depths in the crust.

Bailey'(1977) used the Wiener—-Hopf technique for solving

mixed boundary value problems to find the effects of H-polarisa-
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tion in a thin perfectly conducting half-sheet plaéed on a
conducting half-~space., Since the model was two-dimensional, no
induced magnetic field could be detected above the surface;
Sblutions were presented for the magnetic field below the sheet,
for the induced electric fields as well as the amplitude and
phase of the magnetotelluric response function. Diagrams of the
induced currents demonstrated how they flowed vertically from the
thin sheet into the substratum.

Nicoll and Weaver (1977) obtained the solution for H-polari-
sation in a similar model, which now included a perfectly
conducting mantle below a poorly conducting crust, also with the
aid of the Wiener—Hopf technique.

The Pyrenean induction anomaly was modelled by a conductor
between the Atlantic Ocean and the Mediterranean Sea, all of
which were confined to a thin sheet at the surface of a
two—layered half-~space, by Vasseur and Weidelt (1977), who solved
the problem of induction by solving an integral equation,
involving Green’s functions, over the région of anomalous conduc-
tivity in the thin sheet. l

The E-polarisation counterpaft of the problem solved by
Bailey was published by fischer, Schnegg and Usadel (1978) by
numerically solving an integral equation, in the derivation of
which the terms involving the displacement current had not been
discarded, so that the method would also be applicable to
modelling inductive prospecting.

An integral equation was derived, and solved numerically, by
Green and Weaver (1978) for dealing with a thin sheet of variable
conductivity in electrical contact with a conducting half-space.

This method did not require the surface conductivity to be
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separated into normal - and anomalous parts, as was:required by the
approach of Vasseur and Weidelt, and both E- and H-polarisation
problems could be tackled. The E-polarisation case was shown to
be equivalent to the quasi static form of the method of Fischer
et al. A further application of the Wiener-Hopf method enabled
Dawson and Weaver (1979) to obtain an analytic solution for
H—pélarisation induction in a more géneralised form of the model
'used by Weidelt (1971), where the two "thin sheets were now
connected to a conducting half-space. This analytic solution
could serve as a useful check on numerical schemes such as that
of Green and Weaver.

1.5) The work cited in the previous sections has been
concerned with the electric currents that have been induced in an
ocean, oOr oceanic model, by a time-varying magnetic field. This
"however 'is not. the only mechanism by which electrical currents
can be made to flow in the oceans, since studies have shown that
it is poséible to detect magnetic fields which arise from the
movemen£ of séaFQater through the main ?art of the geomagnetic
field. Although motionally induced currents are not considered in
the following chapters, they do merit at least a briei mention in
any review of induction in tﬁe oceans. Aﬁ electric field, defined
by E = vx B, is generated by the motion of the conducting
seawater, with velocity v, acr&ss the main field of the earth, B,
which is a dynamo process, as opposed to a magnetovariational
process. Geomagnetic variations are not really important for this
kind of study since even a magnetic storm, with a typical
amplitude of a few hundred nanoteslas, is éomparatively insigni-
ficant compared with the steady main field, which is of the order

of 45,000 nT in strength. There are two main categories: tidal
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effects and wave effects.

Faraday, the discoverer of eiectromagnetic induction, predi-
cted that sea tides could give rise to a motionally induced
electromotive force which would be detectable across the width of
the English Channel. This was in fact achieved by Wollaston in

the middle of the nineteenth century and more recently by Cherry

20

and Stovold (1946), who detected correlations between the tides '

-and voltage measurements on cross—channel electric cables. The
observed potential diffgrence turned out to be smaller than that
calculated by Barber and Longuet-Higgins (1948), who explained
thé discrepancy by postulating that return currents would flow in
the sea floor and stated that the magnetic field of these
poloidal currents would not be detectable ashore.

A theoretical study of large scale ocean flow by Sanford
(1971) showed that the effects of mutual induction between the
motionally induced currents and the mantle became important when
the skin dépth'inithgyﬁantle was much smaller than the horizontai
scale of the flow patern, which was in accordance with the
Larsen’s (1968) conclusion that it was necessary to know the
spatial variabilify of the tides before they could be used as a
technique for geomagnetic deéth sounding.

Further work with submarine cables “was done by Richards
(1977), who detected the Sq harmonics with frequencies of 1, 2, 3

and 4 c.p;d. in addition to three tidal dynamo harmonics with

frequencies .928, 1.896 and 1.932 c.p.d. in his signals. The

assumption that any night time contribution to the 1lunar daily

geomagnetic variation must have had an oceanic, rather than

ionospheric, origin has formed the basis of a technique for .

separating this geomagnetic variation into parts with oceanic,



essentially tidal, and ionospheric sources (Malin, 1977)..

The initial work on the magnetic field produced by waves was
mainly concerned with wind driven surface waves, but larger scale
and deeper phenomena have also been studied. Fraser (1965)
studied the effect of waves with a magnetometer mounted on the
sea floor at a depth of lZQ feet. By wusing the shallow watef
approximation, the Biot-Savart Law and the power spectrum of the
waves, it was possible to obtain a close correlation between the
observed and calculated magnetic spectra in the frequency range
«05-.15 Hz. In the work of Weaver (1965) the magnetic fields were
calculated with the use of an assumed velocity potential, which
was more direct than the approach of Fraser. It was demonstrated
that wave amplitude and wavelength were important variables in
the analysis and that the effects of wind generated waves and
swell could be comparable.

The effects of longer period (1-30 minutes) internal waves

were found to be less significant than surface waves by Beal and

Weaver (1970), while Larsen (1971) restated the dependence on .

frequency. and wavenumber in addition to self induction in the
ocean and mut9a1 induction in the mantle in his study of long and
ihtermediate périod water waves.

ﬁhile operating a magnetometer on the sea floor, Cox et al.
(1978) detected a signal which was not corrclated with the fields
measured at a nearby land site, but which seemed to be correlated
with the surface waves with periods twice that of the anomalous
signal. They proposed that the mechanism for this was due to
non-linear interactions between surface waves, travelling in
opposite directions, resulting in motion across geomagnetic field

lines. Such a process has also been suggested to be responsible
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for the generation of microseisms.

Semerskiy et al. (1978) have examined the possibilitf of
detecting the wave generated magnetic field with a magnetometer
towed by a ship, which involved taking the velocity of the

magnetometer into account.
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Chapter Two
The Method for Dealing with a Finitely Conducting Mantlé.
2.1). All of the work, refered to in the introduction, on the
solution of the oceanic induction problem in spherical geometry
has been done by using a perfectly conducting shell to model the
highlf conducting regions §f the mantle. (Rikitake,Ashour,Bullard
§ Parker ,Hobbs,Kendall et al.) The reason for this choice of
conductosphere is because it is easy to deal with, mathematica-
lly. However, singe much effort has been used to make models
more realistic, by using a surface conductivity distribution
resembling the real oceans, it seems reasonable that an attempt
should be made to use a conductosphere which is more representa-
tive of the earth’s conductivity.

The perfectly conducting shell is easy to deal with because
of the . special electromagnetic boundary conditions, which have
to be satisfied at its surface: the tangential electric field
and the normal magnetic field -must vanish. Consequently any
magnetic field induced in a perfect conductor must be exactly 1800

out of phase with the inducing field, whereas with a finite
conductor the boundary conditioﬁs only demana continuity of the
above mentioned fields across an interface and there is a
duadrature, orl out—éf-phase, éomponent of the induced ﬁaénetic
field. The response of a perfect conductor can be assigned a
purely real value, which is known analytically, while that of a
finite conductor is complex and has to be calculated numerica-
11y, except for a few special cases, for each frequency used

for general conductivity distributions.
' Analysis of results shows that the internal contribution

due to indvction in the conductosphere alone is greater than the



oceanic part, which emphasises tﬁe need to use a.realistic inner
conductor , especially when a comparison between modeliing and
observations is to be made. As an example, the ratio of internal
to external parts, defined at the surface of the earth (r=a), for
a perfect conductor of radius b and an inducing field of degree n
has the value n/(mt+l) (b/a;ﬁ‘i. For a second order harmonic and
if (b/a)=0.9, this ratio has the value of 0.393. If a thin
surface sheet with integrated conductivity of 16,000 S (correspo-
nding to an ocean 4 km deep) is added to the model then tﬁe ratio
of internal to external parts can still be found analytically
(Hobbs, 1971, eqn.18) and has the following value: (.511,14.90)
in terms of amplitude and phase and (.494,.131) in terms of real
and imaginary parts.

Bullard'and Parker actually suggested a method for dealing
with a finitely conducting mantle (Bullard & Parker, p718) but
they excused themselves for not ﬁsing it bybstating that it was
mathematically rather involved. However their suggested method
is the approach the author has elected to pursue and the
following text should demonstrate the simplicity of the method.
2.2) The Hobbs-Price surface iﬁtegrals were originally
derived by taking an implicit'spherical harmwonic expansion of
the current streamline function and using potential theory and
well known series of Legendre polynomials. The author however
found it instructive to think in terms of a system equivalent to
a current streamline function, namely a surface distribution of
radially oriented magnetic dipoles (Strattogfg37—8). The approach

A
used was to find the vertical magnetic field at the surface of
the conductosphere, as a function of colatitude, due to a

magnetic dipole at the surface of the earth and to perform
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spherical harmonic analysis to find the source harmonics in this
inducing field. The justification for this is that the theory for
induction in a radially symmetric earth by an inducing field,
which can be represented by a series of spherical harmonic terms,
is well known (Rikitake, 1966,p128-9).

It is instructive to demonstrate that a currént 'streamline
function ’1!/’(945) and a surface distribution of vertical magnetic
dipoles, w_ith surface density m(8, 95). give rise to the same
magnetic field when the functions m and ‘u#are identical.

Initially consider the scalar magnetic potential at a point
P(r, 9,95) due to an elemental area dS of a dipole distribution of
density m at the point Q(r',0',4') (see Fig. 2.1) so that the
potential at P is
afl= pm(r',0",¢1)dS cosX /R and B ==V (2.1).

4T
Where cosX= (rP= rt —R*)/2r'R , R° = rF+r' =2rr'cos O
and cosQ=z cos® cosé' + sinb sind' cos($-4'). ' (2.2)
Therefore d& = (4o m/HTT) (reos@-r') /(" +r'" =2rr'cos o)*? (2.3)
Accordingly the potential at the point P(r,8,¢) due to a surface
distribution of radial dipoles of moment density m(8',¢')/unit
area over thé spherical shell r=a is given by:

i

QP= (Moa/tm) | [ (r cos@-a) sing' m (8',¢') do'dg'  (2.4)
(r* +a*-2racos@)*

It is instructive to consider the case of a uniform dipole
density distribution to demonstrate the relation between a dipole
distribution and an equivalent current function. In this case let
m(O'.qS') = m, (a constant ) and by spherical symmetryﬂo is
independent of & and q! Without loss of generality take P on the
axis é:o, so that®=6'. Therefore by eqn. (2.4)

T

SZ(r,e,¢) = (/l.a7'2 m /4 ) [(rcos®' -a) sing' de' (2.5)
(r*+ a*-2racos o %
o
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Yz
substituting u = (r* + a° -2ar cos8') yields:
fr-a

Sl(r.G,gﬁ)v: (M,m,/ur)[ 1 -{(r"- )W) du = (/J,,m,,/l&r) 0 ,rra

: r.d -4 °r<a,

The introduction of the Heaviside unit step function defined as

H(x) = [1 , x>0 " leads to the following expression for the
0 X< O

potential: Si(r,6,4) = -M,m, H(a-r) (2.6)

This special case demonstrates that the magnitude of the
discontinuity in the potential across the dipole layer at any
point is given by the product of the permeability constant and
the density of the distribution at that point, which is also the
case if one 1is considering the potential due to a current
-function, where y}(d'¢5 = 14MD(QL—J2Q (Price, 1949, eqn 8).

It is of greater interest to examine the magnetic fields

of the dipole distribution rather than the potential, since the

field is a directly measureable quantity. Only the vertical field
D8

dr

Accordingly the vertical field at the point P can be found

(Z) will be considered here, where Z =-

by performing differentiation under the integral sign in eqn.
(2.4), but care must be taken if the point P should 1lie on the
surface r=a when the kernel of the surface integral tends to a
limit of order 1/Cf as ©— 0. In this case the resulting integral
would not be uniformly convergent when &'=6 and = ¢ and the
differentiation under the integral sign would be an invalid
operation.

Convergence can be secured with the aid of the example of
the uniform dipole distribu%}on, where (2.4) can be rewritten as:

: 27 T

-m(9,¢)/uoH(a—r‘) = (ﬂoal/uﬁ)//m(9,¢) f‘(r,9.¢.a.9',¢')d9'd¢' (2.7
where m, has been replaceg %y m (9,¢), the dipole density at the

point P and f is the integrand (excluding the factor m(9',¢ Yy )
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in egn. (2.4). Subtracting this result from the general form of
eqn. (2.4) yiflds‘Q(r,9,¢)+/gm(9.¢)H(a-r) =

(4, & /urr)f/T{rm(Q',w) - m(9,4)} £(r,6,¢,a,0",¢4') do'd¢'  (2.8)
Differentiazign under the integral sign is now permitted because
the difference term removes the singularity at #'=€ and g1=46.
Strictly speaking care is needed in dealing with the derivative
of the Heaviside function at r=a otherwise a term involving the

Dirac delta function arises but this can be prevented if the

vertical field at r=za is redefined as Z = lim —zék On this
red r-4a or
basis Z(r=a) =
k2 ,)
- - ar ¢y - im 9. t oAt 1Ak
(8 /Lm[ (n(6',¢') = m (0,9} lim & £(r,0.6,2,0 4" as'ag
= ~(u g/ [[(n(@1 41y - m(o,$)) (1+sin0/2) sinb' ¢o'ag’
e % 8a3 sin? Gr

zr»‘,r

-(/u, a /&F)ffm (CANAD (1+sin2@/2) sinB'dO'd¢' + (/“o/uﬂa)m(9,¢)
gadsin®ofn
(2.9)

This final expression is equivalent to the self induction surface
integral (Hobbs & Price, 1970, eqgn. 66) as can be seen by
substituting V‘fdr m(9'.¢') and frfor m (8,$) provided allowance
is made for the use of S.I. units and an outward vertical field
in this presentation. It is straightforward to demonstrate that
the limit of the derivative is the same when r -—a from both
outside and inside the shgll as is required by the continuity of
the vertical field across a dipole sheet, or equivalent current
sheet.

The vertical field can be found at any point not on the
dipole shell by differentiating (2.4) directly since the problem
with uniform convergence does not arise when rf a. In particular
the vertical field at a point on a shell of radius b ( b# a) can

be given by:
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27 1.
Z(b,0,$)= (M /UT) j[ (-3ab-abcos @ +2(a*+ b Yeos®@ )m(8',¢') dS!'

(3> ¢+ b* -22bcos @)%2
5% (2.92)

2
:/f;c (0,b) m(8',4')dS' It now becomes possible to derive the
kgr;el of the mutual induction integral, by using the results of
the method of images, which is easily applied to problems of
perfect conductivity. The currents induced in a perfectly
conducting shell (radius=b), by a magnetic dipole of strength m
(at r=a), give rise to the same magnetic field as an image
dipole, of strength —(b/a)g, at a radius of b° /a (Bonnevier,
Bostrom & Rostoker,1970).

The mutual induction integral gives the induced vertical
field at a surface (r=a) and can be found from eqn. (2.99 by

|

substituting a for b, since it is the field at the surface which
is of interest, and b /a for a, since the sources are now
situated at this depth. It is also necessary to multiply by a
factor of —(b/a)s, the comparative strength of the image dipoles.
In this case
R=(a' +b -2abcos O )I/L—> (b*/a +a" -2b cos @)
_3ab-abcos @+2(a +b )cos@— =3b -b cos @+2(b*/a" +a*)cos® and

Z.(0,b)—Z (0,a)= —(15/1(4”) (=32 b +2(a" +b Ycos@-2' b cose)
(at +b* -2a%b cos® )72

(2.10)
This is Jjust -.(/4., /UT) times the kernel in the expression for 2—‘?
in the original paper (Hobbs & Price, 1970, egn.91).

It is easy to find the mutual induction kernel in the case
of a perfect conductor, because there is only a single image
dipole, but the situation is not so simple in the case of a
finitely conducting mantle. There is in fact a theory of complex

images for the case of induction in a plane earth (Weaver, 1971 &

Thomson & Weaver, 1975) but this involves making certain
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approximations and no attempt was made to apply the theory in
spherical geometry and an alternative approach was used.

Using the properties of the magnetic dipole provides a
simple method of deriving the surface integral kernels for
finding the vertical field due to self and mutual induction and
the scalar magnetic potential but the method is not so suitable
for finding some other kernels. Examples of the latter kind are
the equivalent current system integral kernel (Hobbs and Dawes,
1979, eqh. 28) and the kernel for finding the current function
giving rise to a known vertical field (Hobbs & Price, egn.63),
which is used in the high frequency iterative method.

Henceforth the angular argument in the kernel Zc(O,b) is
defined as the angle subtgnded_ at the centre of the earth by
radii passing through the source and observation points, which
also applies to all other kernels used. Since this 1is the only
angle to appear in the expression for Z, it 1is possible to
rewrite it as the infinite sum of Legendre polynomials:

@

Z.(0,b) = z:anﬁ‘(cos<3) (2.11). The coefficients a can be

ns1 R
found by using the orthogonal properties of Legendre polynomials:

R 4
j P, (cos ©) P, (cos ©) sin®d® = 2/(2n+1 ) (2.12)
o
where § is the Kronecker delta symbol.

Once the coefficients have been found, the response can be
determined for each harmonic, and the induced vertical field can
be expressed as an infinite Legendre series. There are no
problems with convergence in the case when b< a.

This approach is similar to that used by Ducruix, Courtillot
and Le Mouel (1977), who drew comparisons between results

obtained from modelling induction due to the equatorial electro-

jet, in both plane and spherical geometries. The electrojet, in

r
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the spherical case, was modelled by a line current at a height of
100 km. above the equator, passing half-way round the earth, and

. with return currents following the meridian over the North Pole
at the same height. This system of line currents, enclosing a
quarter of a spherical shell, is of course equivalent to a
uniform distribution of raeial magnetic dipoles (or a ﬁagnetic
double layer, in the autﬁors’ terminology ) over the same quarter
spherical serface.

The inducing magnetic potential at a point is then defined
in terms of the solid angle subtended by the current loop at
that point, which can be expressed as an infinite series of
spherical harmonics.

The disadvantage of tﬁis approach is ehat by concentrating
on the structure of the complete source, which is implicitly
done in using the solid angle relation, it is necessary to
consider all spherical harmonics, zonal, tesseral and sectoral,
in the series, which involves finding (n+1;;1 coefficients for
an nth. order analysis, although the symmetry of this electrojet
model would actually reduce thie number. It is necessary to
calcelate the effects of mutual induction after each iteration
in the Price scheme for :solving the thin sheet induction
problem. If the approach Qf Ducruix et al. had been wused, it
would have been necessary to find the spherical harmonic
coefficients of the solid angle subtended by a non-uniform
source, the current streamline function, after each iteration,
which would heve involved considerable computation. Alternatively
by concentrating on the field of a single dipole, it is only

necessary to use zonal harmonics in thé spherical harmonic

analysis, because of the axial symmetry, therefore after
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synthesising the mutual induction kernel, the basic infegrals
only need to be calculated once and, having been stored, can be
used during every iteration.

An alternative approach to the problem of solving the
problem of induction in a finitely conducting épherical earth by
an arbitrary inducing field has been used by Mareschal and
Kiéabetﬁ' (1977) 'to’médel the mid—l&fitude effect of substorms.
This method involved expressing the induced field as an infinite
series involving the inducing field and its derivatives, but the
authors stated that the method was not suitable for high-lati-
tude studies and that the truncation of the series after only
two terms was valid only for high frequency inducing fields.
With these reservations in mind, it did not seem that this
approach was suitable for solving a global problém associated
with the diurnal geomagnetic vaiiation and its harmonics.

2.3) "Calculation of the Legendre Coefficients.

1) Semi-analytic Method.
The Legendre coefficients a, can be foﬁnd by integration:

w

a, = 2ntl j‘Zc(ﬁ,b) P, (cos®) sin® de (2.13)
n o

Since Z,(0,b) is a rather involved algebraic function of cosd ,
which does not seem to. have any obvious relation to the
generéting function for Legendre polynomials, the first attempt
to calculate the coefficients involved solving the integral of
the product of Z (0,b) with a single power of cos &, rather than
with a Legendre polynomial, which is a finite sum of powers of
cos 0.

These integrals could be solved in three parts since the
numerator of Z_(#,b) involves three different powers of cosé@

(namely 0,1,2).Taking the integral of the mth power of cos®



divided by the denominator of Z. defines the following integrals:

cos™@ sin® d6  (2.14)
(a1 + b*~22bcos )R

Redefining a +b =c and 2ab=d yields:

T
Im=f cos ©sin d
o (C-dcoso)¥>

and changing the variable to t=c-dcosf gives:
Ced ctd

Im =1 (C"t)m dt =1_ 2( )( 1)"' n-sp m—ndt
'd—m?x 15 ‘ qm - n

¢-d ced ed

=1 (-1) [ Jc The following back substitutions are now made:
4"\11 z n-34

nzo d

ctd=(atb) , d=2ab, c=a +b , then

I =1 B (-1 (arby - (amb) T (AR HE ) (2.15)
= m - a -\a= a .
" (2aby Z(“) n-3/z |

n=o

Adding together the three terms from the numerator of Z, yields:
T

IZC (9,b) cos @ sing do = (-3abIm+2(a2 +b>)I_ . -abl

el ms2) =b, (2.16)

(4 w
and /z (6,b)B, (cosh)sing do =zgkb (2.17)
K=0
where P (cos@) —Zg cos 9 (2.18)
k>0
Only the alternate coefficients gk have non-zero values,

depending on the parity of the polynomial and they can be

calculated recursively from the expapded form of the Legendre

polynomial:

P, (2)=(20)! (2" -n(n-1)2+ n(n-1)(n=2)(n=3) 7z *+...)  (2.19)
2"(n)? 2(2n-1) 2.4 (2n-1(2n-3)

,1965
(Gradshteyn & Ryzhik), where g = (2n)! (2.20)
2"nt)*
and 8 =-(n~k)(n-k-1) 8, (2 21)
(k+2)(2n-x-1)

These calculations were perfq\'{ned by computer but the

attempt to resynthesise Z_ ( 6,b) up to order 20 for the case
<
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b/a=0.875 was not very successful, which was probably due to
careless programming when calculating the expressions given in
eqn. (2.15). This could havé been overcome by using double
precision and taking care to avoid subtracting similarly sized
quantities, but it was decided to resort to other methods.

11) Full Numerical Method. \

It is possible to generate Legeﬁdre polynomials by using
one of the many recurrence relations e.g.

(nt1)P,,,(cos®) =(2n+l1)coshP, (cosd) +nB,, (cos®)=0 (2.22)
or P (cosf) = ((2n+l) cos® Pn(coso)—nP;l(cos&))/(n+1) (2.23)

Although the right hand side involves a subtraction, which
is often the source of numerical instability, analysis shows
that this recurrence relation is numerically stable (N.P.L.,
Modern Computing Methods,p.l149), which makes it easy to calculate

the Legendre coefficients numerically.

A step length of /1024 was used in calculating the first
fifty Legendre coefficients wusing Simpson’s rule, which was a
sufficiently fine“pértition, since there was excellent agreement
between the . original function and the sum of the first fifty
terms for the case b/a =0.875.

It - should be stressed that it was essential to calculate
the integrals in the angular domain, e.g. as

" .
jnqge,b) P, (cos6) sinfd® , rather than, having made a change of
4]

+1
variable to t=cosf, as %St,b)Pn(t) dt, since the sinf term is
A

1 arcos

necessary to remove the sharp peak that occurs in %SG,b) at
small angles, which would otherwise ﬁake it more difficult to
obtain an accurate value of the integral numericélly.

Althpggh the.nuﬁe;ical mg;hod gave excgllent results, it

-would -have -been--necessary - -to --rerun the program each time a



different size of conductosphere was used; it-was gherefore
still desirable to find an analytic expression.
111) Full Analytic Method.

This method makes use of the addition theorem of spherical
harmonics (Hochstadt?;}49). If (O,A) and (§°,)) are the
coordinates of two points on the surface of a sphere and the
radii passing through them subtend an angle O at the centre then:

cosbd = cosfcos®’ +sinfsing’ cos(A-A") (2.24)

and Pn(COSO) =P, (cosf)P, (cosg’) + | |

"2 W(n—m)! P:(COSQ)RT(COSD')COS n(A-A") (2.25)

(n+m)!
m=1

It is also helpful to use some of the analytic results from
Hobbs and Price (1970), derived for the case of a current
function represented by a single suwface .’ harmonic, of degree
n, Rr(COSG)cosmA, at the surface r=a. The currents induced in a
pérfectly conducting shell, at radius b, give rise to a magnetic
field, which at the surfac;:ahas é vertical component given by :
Z .=, n(n+l) (o/ay Py (cosf)cos mA  (2.26) |

an+na '
(Hobbs & Price 1970)eqn. (1) & (18), the factor 47 , which
appeﬁré in the original paper, is replaced by M, when S.I. wunits
are used ). ‘

Because bf the boundary condi;iqns which apply to perfect
conductors, ‘-the induced field must be equal and oppésite to the
inducing field at the radius r=b, while its value is reduced by
an upward continuation factor of (b/a)n+lat ‘the surface r=a.

Therefore if the inducing field ét r=b ,due to a unit
radial dipole at r=a, is giyen by:

z,(b,0) = )a P (cos®)  (2.26a),

then the induced field at the surface of the earth will have the



n+2
value -{Z(b/a) anPn(cose), which is equivalent to the mutual

induction kernel Km(e). The vertical field at the surface due
to mutual induction is given by integrating the product of the
mutual induction kernel with the current streamline function

(or equivalently, the magnetic dipole distribution ) over the
surface of the earth. .

HKm(O)\j/dS =z, (2.27)

If the current function is given bybone harmonic,

P:(cose')cos mA’, then:

-2, =n(ntl) (b/a)"" B (cos’ Jcos mA'  (2.28)

(2ne41)d

Substituting the series for K, (@) into equation (2.27) yields:
"ﬁ;hg(b/a;d %(cos@)ﬁ?(coss')cos nN dS =z, (2.29)

By using the addition theorem (eqn. 2.25), expanding

cos m(A =A‘)=cos mA cos mA ‘+sin mA sin QA' and using the
o;thogonélity of spherical harmonics, it is possible to reduce

the left hand side of eqn. 2.29 to:

T

+2 z
—-a (b/af 2(n—m) ! R:(COSQ) cos mA[ff(cosB'% a sinf’de’
" 2R (n+m)
(7]

A fcos1 m\” dA’
A .

Hehc§‘4ﬁ5 q‘(b/afd' 1 R?(coéP)éos mA= ZMQZA) (2.30)

2n+1

Substituting for Z, and solving for a, yields:

a, = n(ntl) (b/a)  (2.31)
41 a3

This defines the Legendre coefficients of the vertical inducing

field at the surface-'of the conductosphere and tbe numerically
determined values were in excellent agreement with the analyti-~
cally derived values.
2.4) Calculating the Mutual Induction Kernel.

2

n+
Allowing for the upward continuation factor of (b/a) and

using the values obtained for,an, the mutual induction kernel for



the perrect conductor can be written as:
2n+t
KM(Q) zﬁ%ih(n+l)(b/a) Pn(cose) (2.32).
This can be shown to reduce to eqn.2.10 by using the methods of
Hobbs & Price (1970).

Equation (2.32) incorporates the response of the conductos—
phere , which, for a perfect conductor, is given by .n/(n+1). If
the response of a general conductor is denoted by: in/eu » then
the mutual induction kernel can be written as:

KW;(G) 4HPZRn+1) (b/a) 1n/en P, (cos®) (2.33)
The only problem remaining is to calculate the response,
i /e,, for a finite conductivity distribution.

It was not strictly essential to calculate the Legendre
coefficients of equation (2.26a) since it would have been
possible to derive the mutual induction kernel for a finite
- conductor from the series form of the kernel for the perfect
conductor by substituting in/enfor n/(n+l). However the calcula-
tions presented here outline the actual approach used by tﬂe
author and show an interesting link between the approaches of‘
Hobbs and Price and Ducruix et al. to éolving induction problems
with inducing fields for which a suitable current streamline
funcéion can be found as a source. The calculations of Legendre
coeffic1ents might also be of use if a Green é funcﬁionv appfoach
were to be used to solve the oceanic induction problem. It would
_ also be required to find the source terms in the expansion of the
field of a horizontal electric dipole in the more general problem

in which the oceans were in contact with the mantle.



CHAPTER THREE
THE UNIFORM FINITELY CONDUCTING SPHERE
3.1)f Why a uniform sphere ?

Although the wultimate aim was to solve the oceanic
induction problem with a general conductosphere, albeit with the
constraint that the conductivity distribution was a function of
radius only, the‘first finitely conduéting moéel for the.mantle
that the author chose to examine was the uniform sphere. The
main justification for this was that this is one of the few
models for which analytic solutions of the induction problem
exist (Hobbs,1975).

The solution for "the field involves modified spherical
Bessel functions of the first kind, usually denoted by Inﬂéz),
where n denotes the order of the inducing field.' It was ‘more
convenient to use ~a response function, i.e. the ratio of
internal to external parts, rather than the magnetic fields
themselves and this ratio can be found by applying the standard
electfomagnetic boundary conditions af the surface of the
sphere. If the relative permeability of the sphefe is taken as
unity (as is usually the case in élobal induction studies), the
ratio of internal to external parts, defined at the surface of
tﬁéAconductosﬁﬁere (r=B) is given by:

in/ew=__3_ 1 -(2n+1) Im@ﬂkb) (3.1)

nel Kb L (k)

where k?=iﬁwcoe’(3.2),
M. 1s the permeability of free space,G is the conductiﬁity of the
sphere and w is the frequency of the inducing field.
Since it was the authorfs intention to compare the results

. obtained with finitely and perfectly conducting mantles, the

37



radius b was taken to be 0.875 earth radii, a radius used by
Ashour (197Xk), and the value of the finite conductivity was
chosen as 1 Sm!. This value is approximately the appropriate
conductivity at .875 earth radii in some global conductivity
estimates (Banks 1972).
3.1) Equation 3.1 shows that the ratio of internal to
external parts involves the ratio of two Bessel functions, for
which Rikitake gave the first three terms of a series expansion.
It was possible that three terms might not have given sufficient
accuracy for high orders, so it was necessary to calculate the
_Bessel functions themselves.

It is convenient to make the following definition :

£,(z) =EI“&(Z)°

The modified spherical Bessel functions obey the following
. 1965

recurrence relation (Abramowitz & Steg&qm):
- = - '

f“ﬂ(z) §H1(z)‘ (2n+1) z '£,(2) (3.3)

It would therefore be possible in theory to generate all the

higher order Bessel functions for any argument given that:

fo(z) =gsinh z (3.4)
=
and fl(z) == sinh z + cosh z (3.5)
z* Z

The recurrence relation is numerically unstable for forward
recur_sion, since any round-off error can be considered as
contaminati-on by modified spherical Bessel functions of the third
kind, Kn{éz), which increase rapidly with increasing order' and

obey a recurrence relation similar to (3.3)
It can be seen from tables that, for real arguments, 'the
functions f, decrease monotonically as the order n increases.

This makes it possible to calculate the functions by assuming

that §00=0, expressing the recurrence relation as a tri-diagonal
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matrix and solving the systembof equations for fI up to qu
subject to the boundary values f_ and flOO'

The 99x99 matrix has leading diagonal elements given by
(2n+1)/z, while the elements on the upper and lower diagon#ls
are given by +l and -1 respectively. The elements of the right
hand side are all zero except for fo(z) in the first row. | The

" solution of a tri-diagonal system of eqﬁations can be solved
simply and accurately by computer and a trial run wusing real
arguments was successful in reproducing a table of modified
spherical Bessel functions (Abramowitz & Stegu;:gz73) up to
order n=50, thereby ensuring the accuracy and stability of this
method of calculation.

The ratios of internal to external parts, calculated for
three periods (24, 12, 8 hours), are presented in Figure 3.1)

along with the frequency independent response of a perfect

conductor. The imaginary parts decrease, and the real parts

increase as the frequency increases, as expected, because an.

increase in frequency can be thought of as being equivalent to an

increase in conductivity. These two quantities appear as the
product G'w in the induction equ#tions.
3.3) Calculation of the Mutual Induction Kernel.
Once the response of the conductosphere has been found, the

mutual induction kernel can be calculated from .eqn. (2.33):

K,,‘_(e) =4%Z(n+1; (b/a):‘mﬂ (in/en) P, (cos®)

In this case the term in/e involves the ratio of two Bessel

n
functions and the series bears a resemblance to a series,
involving the ratio of two Hankel functions, for a radio
frequency problem (Sommerfeld,p282), for which there is a

complicated analytic method, due to Watson (1918), for finding
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the limit. Since the radius of the conductosphere has been taken
here to be .875 earth radii, the terms (b/a;uulensure the rapid
convergence of the series for Km(e).

The kernels, calculated from 50 terms, for 24, 12, and 8
hourly . variations are shown in Figure 3.2), together with the
kernel for the perfect conductor with the same radius. Again the
graph for the perfectly conducting case can be seen to act as the

limit of the finitely conducting cases as the frequency of the
inducing field increases.
3.4) Numerical Integration of the Mutual Induction Kernel.

The method of caiculating z, (8) = me(G)qldS involves
assuming that ¢ is fairly constant over a- 5°x5° tesseral element
and numerically evaluating the integral of Km(e) over each
tesseral element, which is the method of basic ihtegrals (Price
& Wilkiﬁs,1963). Originally the basic integrals were evaluated
by Gaussian integration over the tesseral element and taking
successively finer partitions wuntil a certain accuracy was
obtained (Hobbs,1971). This was a simple procedure in the case of

the mutual induction kernel for the perfect conductor, because
the .kernel was defined as an explicit function of the angle 6
(eqn. 2.10) but in the case of the finite conductor it was
néceésafy to calculate the values of the kernel at 1/8
intervals so that the values at the Gaussian integration points
could be féund by cubic interpolation. The basic integrals for
the poles could be célculated analytically in the perfectly
conducting case but it was easier to use interpolation followed
by Romberg integration with the sum of the series for the

finitely conducting conductosphere.

It was possible to check the calculation of the basic
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Figure 3.2 _

Mutual Induction Kernels of the Uniform Conductosphere yith a
Conductivity of 1 Sﬁ1and Radius 0,875 Earth Radii at Periods of
24, 12 and 8 hours for Comparison with a Perfect Conductor of the

. same size,
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integrals by calculating the vertical field due to mutual
induction by a current streamline function consisting of a
single spherical harmonic. Obviously the induced field should
only be represented by the same harmoﬁic and it can be shown
that the ratio of the induced vertical field to the current
streamline function is given by:
Z/% ,(n+1) (b/a) in/en (3.6)
Q 1n+q

. The fact that the calculated and predicted values always
agreed to within 0.57, demonstrated that the mutual induction
kerngl for this particular conductosphere is a suitable function
to have its basic integrals calculated in this way on a 5° grid.

3.5) Discussion of Results.

It was decided to adapt an existing program for solving the

41

induction problem in a thin hemispherical shell, in which the

conductaﬁce decreased towards the edge, with an underlying
perfectly conducting mantle for use with the wuniform finitely
conducting mantle. This generally involved altering somelof the
subroutines to deal with complex ngmbers, as opposed to real
numbers, which arose as a result of the complex response of the
finitely conducting mantle. The configgratipn qf. the - hemigphe—
rical shell and the conductosphere is shown in Figure (3.3a) and
fﬁe colatitudinal.variation of the conductance of the shell is
shown in Figure (3.3b).

The real and imaginary parts of the current function, total
vertical field, external and internal vertical fields are prese-
nted in Figures (3.4a-3.41) for three inducing fields at periods
of 24 and 12 hours, for ﬁodels with either a perfectly or

finitely conducting mantle. The main difference between the

solutions obtained with the different mantles is that there is a



Figure 3.3a
Configuration of the Conductosphere and the Thin Hermispherical

Shell,

Figure 3.51)

Conductance of the Thin Hemispherical Shell.
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Figures 3.4a 1o 3.41.

Solutions of the current function, total, external and internal
magnetic fieldé obtained in the cases of a Hemispherical Ocean
overlying Finitely and Perfectly Conducting Mantles, for different

inducing fields at periods of 24 and 12 hours.,
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small quadrature component of the external vertical field in the
finitely conducting case which arises from the complex response
of this mantle to the primary inducing~field. The other differe-
nces bétween the two models are not very distinct because a
conductivity of 1 Sﬁlis very close to perfect conductivity at the
frequencies under consideration, but the imaginary part of the
current function is smaller, while the.reél part is larger, in
the finitely conducting case. These differenceé can be seen to
decrease at the higher frequency, although this effectvis more
noticable in the real bart. The calculations were performed on a
5o grid in both cases.

The accuracy of the solutions was poorer near the edge of

42

the hemisphere when an inducing field with a period of 12 hours

was used. This was overcome by.the use of an improvement scheme
whereby vthe residual, obtained after substituting the current
function and the internal vertical field into the original
differential equatio;, was used as an inducing field to palculate
correction terms fqr the -.current function in the vicinity of. the
edge of the hemispherical shell. The corrections were added to
the current function directly, without using analytic continua-
tion, whi¢h was the.method originally used for calculating the
solutions of low frequency problems, and the process could be
repeated if necessary. Although the changes to the current
function were small, it was possible to obtain‘ a significant
improvement in the accuracy near the edge but it was not entirely
clear why adding the corrections in a manner only suitable at low
frequencies could improve the solution of a high frequency
problem.

It is possible that because the corrections were confined to



a small region near the coast, they could be represeﬁted by
harmonics of high degree. The equation (Hobbs, 1971, éqn. 20)
defining the limiting frequency, below which it is possible to
use thé low frequency summation, can be used to show that the
maximum usable frequency is greater for high order induging
fields, like those arising from the correction terms, than for

the low order induéing fields, e.g. the priméry inducing field.
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CHAPTER 4

BANKS ° CONDUCTIVITY MODEL
4,1) Details of the Model:
| After examining the results obtained by wusing the finite
conductor (with € =1 S/m) it was decided to wuse a conductivity
distribution proposed by Banks (19%2) to represent the earth.
This mbdel was the outcome of the analysis of the estimates of
the earth’s response to a Pf inducing field in the . frequency

in the literdture
range 0.01 - 1 c.p.d., from all sources available at that time.

It is possible, in ‘theory, to calculate the conductivity
distribution of a radially symmetric earth, provided the
response is known over all frequencies, subject to certain

restrictions (Bailey,1970).

Geomagnetic variations with this spatiai structure and
frequency band are generally associated with the ring current
and the longer period variations are known to penetrate deeper
into the earth than the harmonics of Sq, which are studied in
this work, although Banks claimed that‘his model also fitted Sq
observations. "It is therefore quite probable that some of the
deeper structure in this model has no effect on the daily
variétion and dits harmonics, with the result that it is the
upper layers which are particqlarly of interest. Banks’ model was
chosen in preference to that of Parker (1971) basically for the
reason that the former had lower .conductivities near the surface
of the earth and was expected to produce a more convergent
mutual induction kernel. It should be stressed that the
assumption of a radially symmetric earth is least realistic
close to the surface because of the difference in the thickne-

sses of oceanic and continental cruste.
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‘ The model is basically a seven layer model (éee Figure 4.1)
with the main feature being an increase in conductivity to 2 Sm'
at a depth of 500 - 600 km., which accounts for the fact that
values around 0.9 earth radii have been chosen for the radius of
the perfect conductor, in earlier attempts to model the highly
con&ucting mantle.

Banks, however, did not include a conducting surface sheet,
to model the oéeans, as had been done by eérlier workers in this
field - (Chapman & Whitehead, Lahiri & Price, et al.), so it was
decided to see Qhat effect would arise from the inclusion of an
oceanic sheet.

4,2) Calculation of the Response:

Banks only gave the response, i, /en_, for the three

principal Sq harmonics, which meant the author had to geneféte
up to order n=200

the ratios of internal to external partsAin order to calculate

the mutual induction kernels. The published ratios however

served as a check on the method of calculation used.

Since Banks’ model is a layered model, it was possible to
calculate the response analytically, because, in any 1ayer; the
solution to the radial part of the induction.equations could be
given by a linear combination of two spherical Bessel functions.
The functions Kndéz) would then be present,l except at the
innermost layer where they would have a singularity at the

centre of the earth, and the coefficients of the Bessel

functions could be found by satisfying the boundary conditions-

at the interfaces between layers. Banks described a matrix
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method for calculating the response of a layered spherical earth

in an earlier paper (Banks,1969), which was based on a method

originally derived for calculating the dispersion of seismic



Figure 4.1

Banks! Conducting HModel
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surface waves, but 1t was suspected that this .method Qould be
troublesome to use at high orders. In this method the- boundary
conditions at each boundary are expressed in matrix form, the
elements of which ?are defined in terms of Bessel functions,
and Dbecause of the numerical instability of the recurrence
relations for some of these functions, a considerable amount of
computation, using the method described in chapter 3, wouid have
beep necessary before this method of calculating the response
could be wused. It should. be stated that the modulus of the
arguments of the Bessel functions wused in global induction
studies can quite often be relatively large (sometimes of the
order of 100) and it would probably have been acceptable to have
used certain asymptotic expansions (Watson:?ﬁépter 7), but since
it was hoped to model general conductivit& distributions
ultimateiy, it was decided to resort to numerical methods.

It is undesirable to solve the radial induction equation
numerically, since the sharp. attenuation of the magnetic field
with depth makes it necessary to.’ use.a very short step size, bgt
by expressing thé ratio of internal to external parts as a
function of the solution Qf ;he radial differential equation,
and performing the appropriate substitutions, it is possible to
derive a differential -equation for calculating the fésponse'
directly. This has been done by Eckhardt (1963) and results in

the following first order, mnon—linear, ordinary ’differentiél

equation:

2 ) S
ds, = -k r(ntl) S, - n] -(2n+1) 5 (4.1)
dar @n+1)n n+i r

. a . -
where Sh=in/eh, k =—igw6, n is the order of the inducing field

and r 1s the distance from the centre of the earth. It is
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interesting to mnote that the conductivity only appeéré in the
first term on the right hand side of eqn. (4.1), while the
second term introduces the appropriate upward and downward
continuation factors for dealing with currents at depth, even if
the structure contains any insulating layers. A similar equation
for calculating the impedance of a plane éarth, with léyers of
con;inuously. varying conductivity, has been giVen’by Abramovici
& Chlamtac (1978).

Eckhardt discussed the solution space of the equation in the
original paper, but it is sufficient to state here that there
are two possible initial conditions which can be used, when
solving the equation numerically. It is possible to initialise

the value of S, to 'n/(ntl), corresponding to a perfect

-

conductor, or zero, corresponding to a perfect insulator, at any

.depth, below which one would expect the electromagnetic field to
have penetrated, which is less restrictive than the initial
condition wused in thg propagator matrix method (Banks, 1969).
" The quartic Runge—Kutta method (Starﬁ;;? 265) was chosen as a
suitable ' way of finding the numerical solution, since analysis
shows that Runge-Kutta methods are generally stable provided
“the 'step increment is below a cfifiéal value. By using both
'poséibié initial conditions (i.e. S, =n/(ntl), and S, =0), it was

possible to- check the accuracy of the numgrigal scheme by
comparing the values obtained for Sn' a;' ﬁhe surface of the
- conducting sphere. The step length was decreased until both
solutions coincided and any ) further ‘reduction provided no
further change in the solution, although the perfectly conduc-

ting initial condition generally 1ed to a stable solution more

quickly. Another check on the aécuracy was made by solﬁing the
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equation for the uniform sphere wused in Chapter 3.and the
excellent agreement between the numerical and analytic solutions
gave assurance. of the accuracy of the numerical solution. Thé
responses for the principal Sq harmonics,P;,P; and P: , Wwith
periods of 24, 12 and 8 hours respectively, were the same as
those given by Banks for his model, even although the conducti-
vities ;nd iayer “thickﬁesses for this work had oﬁly been read

-from the graph in the original paper (Banks 1972, Figure 10). It
is hardly surprising that it was necessary to use a smaller step

length when the response was being calculated at higher

frequencies.

The ratios of internal to external parts, defined at the

surface of the coﬁductosphere, for Banks’ conductivity structure

are shown in Figure (4.2) for periods of 24, 12 and 8 hours and
are compared with the response of a perfect conductor.The
behaviour of the lower order responses is best shown by ‘plotting
them on a 1linear scale, while the higher order responses are
better displayed on a logarithmic sca}e'where the imaginary par;s
are greater than the real parts. AtAhigh orders both the real and
imaginary parts 1increase as the frequency increases, which
differs from the uniforml? conducting case where the imaginary
part'decreased at shorter periods. This is because the conducti-
vity increases with depth in Banks’ model and since the electro-
magnetic field cannot penetrate as deeply at shorter periods, a
smaller avegage é;nduétivify is being ‘sampled’ giving fise to a
larger imaginary part of the response at high orders. The
imaginary parts do. decrease with increasing frequency at low
orders.

With the aim of ensuring the convergence of the mutual
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Figure 4.2a
\
Responses of Banks'! Conductivity Distribution in comparison with a

perfect conductor on a Linear Scale.

Figure 4.2b (overleaf)
Responses of Banks' conductivity distribution in comparison with a

perfect conductor on a Logarithmic Scale.
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induction kernel, the author elected to scale down the.Banks'
conductivity model so that the radius of the conductosphere was
.99 earth  radii. This step ensured that the higher order termé
iﬁ eqn. (2.33) were damped out by the factor (b/a;n+: although
the effect on the low order terms was small. This step was
equivalent to assigning an insulating layer to the top 1% (or 64
km.) of the earth and if this step had not been, taken, it would
have been necessary to postulate a thin insulating sheet beneath
the ocean, since this approach to the oceanic induction problem
cannot coﬁe with the flow of electric current between the mantle
and the oceans.

4.3) Calculation of the Kernels.

Having calculated the responses, the mutual induction
kernel was calculatéd, for a.period of 24 houré, as for the
uniform 'sphere but it was necessary to use a higher number of
terms in the expansion because the convergence was slower on
account of the 1larger radius of the conductosphere (.99 earth
radii, as opposed.to .875). It is strictly not sufficient to
assume that convergence has 6ccured once the individual terms
have reached a small value, but for the 24 hour variation it was
found that the in-phase part of the kernel had reached a
limiting value after 200 terms, but. the quadrature partvhad still
not converged. This was because the imaginary part of the ratio
of internal to external parts exceeds the real part at high
orders.

It was simplest to check for convergence by examining the

value of K (6) when  0=0, since for zero angular separation,
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P, (cos®)=l. This fact ensures that the set of partial sums

approaches the 1limit monotonically as the successive terms are



added, whereas it approaches the 1limit in an oscillatorf manner
when 6=180° , because Pn(—1)=(—l)n. Because the amplitude of the
mutual induction kernels is large at small angles and small a£
the antipodal point, the effect of truncating the series is to
produce a large absolute error, but small percentage error, near
6=0°and vice versa near 9==180iThis >effect could easily be
demonstrated by truncating the series for a perfect conductor,

for which the limit is known analytically.

It was possible to check the convergence of the series when

o o
©=0 and ©=180 by wusing techniques to accelerate the
[
convergence. This was done in the case of ©=180 by using the
: C 105,

Euler &ransformation (N.P'L'?P124)’ in wﬁich an alternating
series can be converted into a more rapidly convergent series
involving successive finite differences of the driginal series.
The Euler transformation could not be used directly in the case
of 9=03 since the terms were all of the same sign, but it is
possible to convert a series of positive terms into an
alternating series by applying Van Wyﬁgaarden's transformation
(N.P.L.,pl26), and having done thié, Euler’s transformation was
used.,

The technique of using a combination of the two transforma-
tions was checked by comparing the analytic value of K,(0) for a
perfect conductor of radius b, given by 2(b/(1—ﬁ)f taking the

earth’s radius as unity, with the answer obtained by the double

transformation of the first 200 terms of the origindl series.’

This was done for the case of b=.99 earth radii, which gave good
agreement between the two answers, despite the fact that this
kernel had a very sharp spike at 6=0. Since the response of a

finite conductor is smaller than that of a perfect conductor
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with the same radius, the kernels.of the finite conductor were
better behaved and this type of analysis showed that even the
direct sum of the first 200 terms of the imaginary part was noﬁ
very different from that obtained by the double transformation.

The basic integrals were therefore calculated.in the same
manner as for the uniform sphere and the accuracy of the
numerical integration was 'cﬁecked by calculating the induced
-field due to induction by a current function consisting of a
single harmonié. Although the real part of the induced field
contained only the same harmonic (with the predicted amplitude),
the values of the imaginary part were accurate near the equator
and at mid-latitudes, but were progressively inaccurate towards
the poles. This was the case at a period of 24 hours; higher
periods were even less accurate in both real and imaginary
parts. Several tests were done to try to rectify this.

Initially it was suspected that the inaccuracy might have
arisen from the fact that the values of the kernel, for use in
the Gaussian integration scheme were obtained by interpolating a
truncated series, but the same fault was observed while making
the same test on a perfect conductor of radius .97 earth radii,
whose mutual induction kernel is known in clcsed form. Next it
was éuspected that the calculation of the basic integrals, for
points near the pole, was suspect. The reason for this was that
fhe Gaussian inteération érocedure was continued until the
difference between successive values was less than a specified
amount and since the area of a tesseral element is proportional
to the sine of its colatitude, it seemed possible that if the
absolute values of some of the basic integrals were smaller than

the specified accuracy in the program, then the correct value
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would never be obtained. However using smaller accuracies and
ﬁsing the sine of the colatitude as a weight factor had no
effect on the test._ |
As a further check on the evaluation of the basic integrals
for small angﬁlar separations, it was decided Fo'calculate the
induced vertical field for a single harmonic in the following
way:
- %A=\[Km(6) W-¢) ds. This was permissible because the current
function is only wuniquely determined to within an arbitrary
constant and the effect of subtracting 4&, where A is the point
at which the field is to be calculated, is to place less
emphasis on tﬁe basic iﬁtegralsvat nearby points, at 'which the
kernel 1is large. This method gave the same inaccurate result as
the original form of the test:
z, = fxm'(e)xpds.
~The author was therefore forced to  the conclusion that

kernels with "~ such sharp peaks near 6=0 were just not suitable

L4 o
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functions to have their basic integrals calculated on a 5 x5

gria.' It was undésirable to 'switch to using a smaller grid,
since it was hoped to apply this ﬁethod of dealing with finite
conductivity to a program-for modelling the effect of the real
oceans on a Sox50grid. It seemed possible that this problem could
be overcom; by éubtracting a known analytic function from thg
kernel for 'Banks; conductivif} model, so as to reduce the spike.
The basic 1integrals of the residual could then be calculated in
-the normal fashion and the analytic function (say the mutual
induction kernel .of a perfect conductor of suitable radius )

could be treated by. using the methods of Hobbs (1971) for

///~/—//////ff55tiQ§\ the singularity in the self induction kermnel. This



would have involved a considerable amount of work but after
considering the type of problem to which the method was intended
to be applied, it was considered unnecessary to attempt it.

Both'the progr;m for the oceanic induction problem and the
test of the accuracy of the basic integrals were designed for .
calculations on a 5°x50grid, on which terms of order greater than
abéut, 35 have little meaning. Consider the test for calculating
.the field induced by an arbitrary current function, with a well
defined longitudinal variation (say cosA), on a 5°x50grid,
which comprises 37 different colatitudes and 72 separate longi-
tudes over the whole globe. Neglecting the poles, where the
induced field must vanish, leaves 35 points at which the current
function and the induced field are to.bg specified and these 35
values can be uniquely defined by a series of 35 harmonics, P: to
P;, + It did not make sense to consider any harmonics of order
higher than 35 on a 5°%x5° grid and it seemed better to take only
35 terms in the expansion for the mutual induction kernel,
rather than take more while striving for better convergence.
This was done for all three periods considered and the accuracy
test for the low order harmonics was passed, although some of
the polar values were 1 - 2% high.

it seemed that’including high order terms in a sharply
peaked kernel added numericél “noise’ to the result of the
sur face integration, which was akin to the problem of aliasing
in data analysis.
~4.4) | Discussion of Results.

Results obtained by using Banks’ conductivity profile are
compared with those calculated with the perfectly conducting

mantle (of radius .875 earth radii) using the same hemispherical



Figure 4.3
Mutual Induction Kernels for Banks' Model at periods of 24, 12 and
8 hours in comparison with that of a perfect conductor of Radius

009 EBarth Radii.
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ocean as described in Chapter 3. There are now two factors which
influence the comparison between the two sets of solutions: the
difference in conductivity and the difference in the radii of thé
conductospheres. Thé effect of the increased radius seems to be
the dominant effect since .there is a greater reduction of the
primary field by the finitely conducting mantle, as can be seen
in the graphs of the external field. This causes a decrease in
both the real and imaginary parts of the current function and a
corresponding decrease in the coast effect (as can be seen in the
graphs of the total field). The differences between the two
models are now more apparent at higher frequencies, which is the
reverse of the situation when the uniformly conducting mantle was

used.
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Figure 4.4a - 4,41

Solutions of the Cufrent Function, Total, External and Internsl
Vertical Magnetic Fields obtained in the cases of a Hemispherical
vOceanonerlying Banks' Model and a perfect conductor at periods ofb,a

24 and 12 hours.
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CHAPTER 5

5.1) Modelling with the Real Oceans and Banks’ Conductivity.

It was decided to make alterations to an existing computer

program for solving the oceanic induction problem, with a thin

" surface integrated conductivity resembling the distribution of
fhe deép oceans over the globé; so that the ﬁerfectl& conducting
:maﬁtle could be replaced by Banks’ conductivity distribution.
‘The results of using the original program to model the influence
of the oceans on Sq have been presented in a paper by Hobbs and
Dawes (1979) and, as with the hemispherical modelling program,
it was necessary to make changes to deal with-a complex
equation, at each stage of the Price iterative scheme, instead
of a real equation. However further changes were essential
because, having swigched to solving for real and imaginary
parts, éhe program now took approximately twice as long to run,
so it was desifable to make the program more efficient. It had
been possible to run‘the program.for,inductioﬁ in a-hemiéphe-
rical shell on the relatively slow I.C.L. 4-75 machine, since
the axi-symmetry of the model reduced the amount of neceséary
computatiop, but it was essential to switch to the faster I.C.L.
2980 computer to deal with the bésically two-diﬁensional problem

of induction in the real oceans. In the hemispherical case it

was dhly required to find the current function on a meridian,

since the symmetry ensured that the longitudinal dependence of
the solution was the same as that of the inducing field, and
this was done by taking a finite difference approximation of the

differential equation on a 5° grid. This involved reducing the

problem to a tri-diagonal matrix equation, which could be solved .

exactly and directly. The known longitudinal dependence also
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ensured that all the vertical .fields, calculated by surface
integrals, needed only to be evaluated on a single meridian.
The finite difference approximation on a 5°%x5° grid for the

real ocean distribution involved 1406 oceanic grid points

56

arranged in 76 rows ,with all the points in any given row having

the same colatitude, thereforé it had been decided to solve the
resulting matrix equation by a block iterative scheme. It also
became necessary to calculate the vertical magnetic fields on
all the meridians, which increased this part of the calculation
72-fold.

It was also thought that much time was being used in
reading the basic integrals from sequential character files, so
it was decided to reruﬁ the programs for calculating the basic
inﬁegrals to enable ghem to be stored on direct 'access files, as
had beeﬁ the case while solving the hemispherical problems on
the 4-75,

It was also desirable to try to improve the accuracy of the
solutions obtained, since some of the contour diagrams of the
vértical fields showed some unexpected kinks, especially at
higher frequencies (Hobbs & Dawes 1979, Figures 4 & 5). The
accuracy parameter uéed in their papervwaé based on a sample of
tweﬁty mid-oceanic grid point; Qhere the accuracy was defined as
the residual of the finite difference approximation divided by
fhe 'inducing field, at that grid point, expressed as a
percentage. It was possible to print out the accuracy parameter
for the entire grid, where it could be seen that this definition
of accuracy showed’ the solution became progressively less
accurate on aﬁproaching the nodes of the inducing field, but it

was quite noticable that the final solution was less accurate in



tﬁe Pacific than elsewhere. It was suspected that this'was due
to the fact that, in the block iterative scheme, the successive
approximations of ;he current function were calculated over the
bﬁlk of the Pacific, Atlantic and Indian Oceans prior to finding
them in the Southern Ocean, which 1linked the other three.
Altering the order of the block iterative scﬁeme Qade little
difference to the accuracy parameter of the final solution,
although it was reduced from 1.097% to 0.92% for a P; inducing
field with a period of 24 hours, the largest inaccuracies were
hardly diminished.

However, by examining the extent to which each current
function satisfied the partial differential equation after each
step of the Price iterative method, it could'bé"seen that the
inaccuracy of the final solution in the Pacific ﬁas due to the
propagation of the inaccuracies from each iteration. This effect

could have been overcome simply by increasing the number of
iterations in the block iterative scheme but this would have
resulted in. considerably longer run fimes, therefore it was
decided to try to accelerate the convergence of the iterations.

The program had originally been written to use successive
overrelaxation (S.0.R.) to accelerate the convergencé but the
solution was found to be unstable after a few iterations. If %;

-is the solution .obtained after the ith iteration and %g, is the
result obtained from.the next application of the block iterative
scbeﬁe, ‘then the result after i+l full iteratibns, 3 , is

L+

defined as:
x * )
\ku: w ¢£+1 + ,(1"*» %,,; (5.1) . .
where @ is the acceleration parameter, or overrelaxation factor.

This procedure is usually presented in terms of matrices
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7
(Young3A1p73) but it is not universally appicable, since there

are restrictions on the properties of the matrix operator which

contains the finite difference approximation of the partial
’ 1971 1968 2
differential equation (Young, p395 & Westlake, p82). Aitken’s O
A 2
1968

method (Westlake,4p83) was used in an attempt to accelerate the

convergence but it vproved unsuccessful , presumébly because tﬁe
block .iterative scheﬁe did not have linear convergence. An
attempt to program the conjugate gradient method (Szidarovsky &
Yakowitz}?§b207), in which it was necessary to calculate the
transpose of.the finite difference scheme, also proved to be
abortive.

The block iterative scheme used, in which maximum wuse was
made of any new values, was similar to the Gauss—Séidel method
of solving systems of linear equations (Westlage,ﬁ%g p55), the
convergeﬁce of which relies on the magnitude of the eigenvalues
of the matrix being small. If the dominant eigenvalues comprise
a compex-conjugate pair, ﬁhen the ;onvérgence can Be rather
erratic although this can be overcome by using the . so ,cailed
back-and-forth Gauss—Seidel method (Westlake516%p56). In_- this
method the calculations of alternate iterations a}e made in
reverse order and the iteration matrix for the double iteration
hés only real eigenvélueél It was decided to apply this ideal to
the block iterative method, in which the order of the blocks was
reversed on alternate iterations, and although thisv did not
bring about any improvement directly, it did give a stable
solution when S.0.R. was used after each double iteration. It
was later found that even faster convergence was obtained by
using two similar iterations, as opposed to reverséd iterations,

between each application of S.0.R. Although an exhaustive ana-
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lysis was not made, the best acceleration parametef, “9%"

seeméd to be given by the formula:

Wopt = 2/(1+V(1—/3)), where M was the ratio of successive norms
(Westlake, p62), defined in terms of single iterations rather

than double ones.

This removed most of ;he anomalous kinks from the graphs of
the vertical magnetic field and considerably improved the
;ccuracy parameter for the same number of iterations (forty
double iterations with S.0.R. as opposed to eighty single ones).
For a P; inducing field with a period of 24 hours and still using
a perfect conductor to simulate the mantle, ﬁhe use of the above
method improved the sample accuracy parameter ‘from 1.09%2 to
0.26%.. The improvement brought .about by using S.0.R.is shown in
Figure 5.1, where the real part of the internal ~vertical field
is plotted for a Pi inducing field with a period of 8 hours. The
improvement is most easily seen in the Pacific at the equator
and at the Antarctic coast. )

5.2) Potential Integréls.

Before ﬁ;ééénting the results obtained, it is convenient to

~_describe the metﬁod of calculating the iﬁdugéd_scalar maénétic
potential, which can be numefically differentiated to yield the

inducéd horizontal magnetic fields. Surface integral formulae
—~- for calculating- the potential from- the current function were
presented by Hobbs and Price (1970), where it was necessary to
perform the calculation in two parts. The potential due to self
induction could be calculated from equation (56), while the
potential due__to _mutual _induction,_in a_perfect_conductor, was

defined in equation (95). Of course, just as when calculating

the induced vertical magnetic field, only the method of



Figure 5.1a
An example of the Internal Vertical Magnetic Field obtained without

using S.0.R.

Figure 5.1b (overleaf)

The same solution obtained after using S.0.R.
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calculating the scalar potential due to mutual‘inductioh needs
to be altered when dealing with a finite conductor.

A comparison between equations (17) and (18) (Hobbs &
Pfice,1970) shows that the coefficients in the series for the
potential due to mutual induction are the same as those for the
vertical magnetic field except for a factor =-a/(mtl). Although
these equations were derived for a perfectly conducting conduc—
tosphere, this ratio of the coefficients is independent of the
nature of the conductivity. Substituting the above factor into
equation (2.33) yields the series form of the kernel for
calculating the induced potential:

K, (0) = ~(fe/ria™) Y (nt1) (b/a) =P, (cos&)  (5.2)
This function is sho;; in Figure (5.2) for periods of 24, 12 and 8
hours together with the kernel for a perfect " conductor with
radius 0.9 earth radii. (the earth’s radius is téken as unity
and the factor Ho/4TT is neglected.) It can be seen that the
potential kernel is much 1less sharply spiked than the correspon-
ding vertical field'kernel, on account of the fact that a factor
(nt+l) appears in the coefficieﬂts as opposed to (n+1; . This
ensured that the basic integrals could be calculated accurately.
5.3) . Discussion of—Resulgs.

The solutions obtained with Banks’ conductivity profile for
the principal Sq harmonics are presented for comparison with the
- solutions for the model with the perfectly conducting mantle in
Figures (5.3a-5.5n). The following functions are plotted: the
real and imaginary parts of the current function and of the

due only to self and mutual iwduction
internal magnetic fieldA(denoted by PSR, PSI, ZR and ZI respecti-
vely), the real part of the total vertical field (ZRT), and the

real and imaginary parts of the internal magnetic potential (POTR



Figure 5,2
Potential Kernels for Banks' Model together with that of a

perfect conductor of Radius 0.9 Earth Radii.
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and POTI). Each solution obtained with the perfectly conducting
mantle is presented immediately after the corresponding solution
in which Banks’ conductivity was used. In the captions the order
and degree of the hérmonic are given by the two numbers following
the ‘P’, the period in hours by the two numbers following the ‘H’
and the ‘C’ or ‘S’ denotes that either a sine or cosine
loﬁgitudinal dependence is being considered.

Differences between the current functions and potentials fop
each of thé two models can be seen quite easily, although they
are not always so readily observed in the maps of the vertical
fields at 24 énd 12 hour periods. A detailed comparison of the
two models is given in Chapter 6 but it is worthwhile to make a
brief comment on the differences between the current functions.
For thg low frequency inducing field, 1 c.p.d., the strength of
the imaginary part of the current function is always greater than
the real part and replacing the perfectly conducting mantle by
Banks’ model results in an increase in the in;phase component and
a decrease in the quadrature component. The real part exceeds the
the imaginary part at higher frequencies and both real and
imaginary parts are reduced when the finitely 6onductiﬁg mantle

is used.



Figures 5.3a - 5.3n

Contour Plots of current functions, Internal and Total Vertical
ngnetic Fields and Scalar.potentials obtained using a ﬁodel of the
real oceans to‘compare the effects of using Banks' Model and using
a perfect conductér of Radius 0.9 Earth Radii. The period Bf the

Inducing Field is 24 hours.

Contour Interval of the Current Functions is 500A

Contour Interval of the Magnetic Fields is 0.25 n7T

’
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Figures 5.4a - 5.4n

As for TFigures 5.3a = 5.3n but at a period of 12 hours.
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Figures 5.5a - 5.5n

As for Figures 5.3a ~ 5.3n but at a period of 8 hours.
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CHAPTER SIX
Modelling Sq.
6.1) introduction.

An attempt had been made by Hobbs and Dawes (1979) to model
the effect of the oceans on the Sq magnetovariational field,
usihgllan inducing field which was synthesised from the 16 major
harmonics from - the analysis of 8q during the International
Geophysical Year (I.G.Y.) by Malin and Gupta (1977). The compa-
rison between the internal part deduced by Malin and Gupta and
the numerical model obtained by Hobbs and Dawes, &ho used a
perfectly conducting shell at 0.9 earth radii, was far from
satisfactory, therefore it was decided to discover whether any
improvement could be obtained by using a finitely conducting
mantle. '

The‘ method of comparison wused by Hobbs and Dawes involved

examining the equivalent current system which, although it has

little physical significance, is a simple way of representing

the internal and external current systems in a two dimensional

manner. It is conventional to consider the equivalent current
system to be located at the surface of the earth, even although
the currents which comprise» the Sq dynamo exist in the
ionosphere and some of the induced currents flow at depth in the
mantle. The definition of equivalent current system is simply the
current streamline function at the surface of the earth which

gives rise to a known magnetic field at the surface; it is usual
{

to define separate equivalent current systems for the internal
and external fields.

The work of Hobbs and Dawes demomnstrated that their calcu-
internal

lated strength of the equivalent current system generally ex-
A
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ceeded that obtained by Malin and Gupta, who used spherical
harmonic analysis to separate the Sq field into internal and
external parts.

6.2) Calculation of the Equivalent Current System.

The equivalent current system calculated by Hobbs and Dawes
to represent the induced currents éonsisted of ?hrée parts.
Firstly tﬁere was the current sf:eamline fuhction,%(oceanic),
whichldescribed the currents which‘ ﬁad‘ been calculated to be
flowing in the éceans. Secondly there was a component which gave
rise tq a magnetic field equivalent to that which arose from the
reduction of the primary field by the conductosphere, denoted by
%; This partvwould»ig fact have begn the equivalent current -
system. for the case of indﬁétion in thé cdndUctospﬁeré in the
absence of the thin oceanic sheet and | had a magnitude,

proportional to the inducing field, given by:

J = a(2nt1) (b/a)mgf;(&l)
wih+1) Mo

This was the case for a perfectly conducting mantle but it could
be reduced to the following form for the more general case of a
finitely conducting mantle:

2n+l
%,='a(2n+1) (ip/en) (b/a) (6.2)

n‘L
The third component represented the effect of mutual

induction between the currents in the ocean and the conductosp-

here, denoted by %1(mutua1). For a single harmonic, of degree n,
2n+1

%'(mutual) was defined as =(b/a) %(oceanic) for a perfectly

conducting mantle and a new surface integral formula was derived

to calculate %(umtual) for a general oceanic current function

(Hobbs & Dawes,eqn. 28).

Hb(mutual) = -1 b(a+—b4) . (oceanic) dS (6.3)
# | |33+ b2 Beus )



The kernel of this surface integral expression waé obtained by
using the methods of Hobbs and Price (1970) to find the limit of
the following series:

K, (0) = ~(1/4ma®) Z(2n+1)(b/a)lnuP,\(cose). (6.4)

This expression redgé;s to»phg following form in the case of
finitely coﬁducting mantle:

K (6) = —(1/4rra‘)Z(zn+1)(n+1>(in/en) (b/a) P (cos). (6.5)
E‘l —‘;1———
n

The equivalent current kernels for Banks’ conduétivity
model, obtained by taking the first 35 terms of the series, are
shown in the usual way along with the analytic form for the
pérfeéé conductor of radius 0.9 in Figure (6.1).

It can be seen that the values of these kernels are
relatively small, when compared with the corresponding kernels
for the vertical field and scalar potential due to mutual
induction, which means that thevbasic integrals can be calcu-
lated accurately. It is quite possible that fhe difficulties
encountered in Chapter 4 with slowly convergent mutual induction
kernels could be overcome by using the equivalent current
surface integral to reduce the current function by the amount
required by mutual induction and by using the self induction
integral to find the vertical field due to self and‘mutual
induction in.a single célcﬁlation. This couid élso render- the
sgrféce integral for finding the potential due to mutual
induction redundant, and would therefore reduce the quota
required wﬁen running the programs on the I.C.L. 2980 machine.
The equivalent curreﬁt system kernel is much better behaved than

the mutual induction vertical field kernel because the factors



Figure 6.1
© Equivalent Current Kernels for Banks' Model for comparison-with a

perfect conductor of Radius 0,9 Earth Radii.
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involving only the order (n) in the Legendre coefficient tend to
a limit of 2n as opposed to nq as n tends to infinity.
Equivalent Current System for Sq.

In Hobbs and Dawes (1979) the Sq inducing field was
synthesised from the sixteen external coefficients, with the
largest amplitudes, from the analysis of Malin and‘Gupta (1977),
where originally 39 coéfficients up to fourth order had been
used. Graphs of the real and imaginary parts of the vertical
magnetic field, after the effect of induction in the conductosp-

here alone had been considered, showed that this restriction to

only 16 coeficients was not serious, although the fields for

periods of 12 and 8 hours were very regular since the harmonics
choéen had the same longitudinal variation in each case. The
same 16 coefficients were taken in the attempt to model Sq with
Banks’ conductivity and are presented in Table (6.1).

The equivalent current systems are presented in Figures
(6.2a-6.2r) at six different instants of Universal Time at four
hourly intervals (4hU.T. to 24hU.T.) for three separate cases:
modelling with Banks’ conductivity, modelling with the petfect
conductor and the 39 internal coefficients of Malin and Gupta.

Hobbs and Dawes demonstrated that the results of the model
could give the right magnitude for the current vortices at 16h
U.T. but the calculated values at 20hU.T. were too large, which
also seems to be the case when modelling with Banks’ coqducti-
vity. The calculated vortices appear to have the same magnitude
as those of Malin and Gupta at 4, 8, 16 and 24 hours U.T. but
are too strong at 12 and 20 hoursAU.T. It can also be seen that
tﬁe strength of the vortices predicted by using Banks’ model are

stronger than those obtained with a perfect conductor of radius



EXTERNAL COEFFICIENIS FOR SQ HARMONICS.

Values in nanoteslas as in Hobbs and Dawes (197%).

n m Period Re(cos) Im(cos) Re(sin) Im(sin)
1 1 24 0.49 2.96 -4.73 0. 93
2 0 24 -0.17 4,30 0.00 0.00
2 1 24 11.72 0.53 -1.29 9.72
3 0 24 1.30 -~ =-2.27 0.00 " 0.00
4 1 24 -2.57 0.51 -0.35 -2.33
2 2 12 1.00 -2.07 2.03 0.69

3 2 12 -5.23 -1.74 2.13 -5.09
3 3 8 -1.39 0.67 -0.61 -1.04
4 3 8 1.65 1.52 -1.68 1.60

Table 64



Figures 6.2a - 6.2r
Equivalent Current Systems obtained with Banks! Model and a
perfect conductor for compariéon with those computed by Malin and

Gupta at 4,8,12,16,20 and 24 hours U.T.

Contour Interval is 20K&
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0.9 earth radii at'8, 12, 20 and 24 hours U.T. This is in spite
of the fact that some of the current streamline' functions for
individual harmonics, as shoﬁn in chapter 5, were smaller in
strength when Banks’ conductivity replaced the perfect conductor

to simulate the mantle, which suggests that induction in the

conductosphere is the dominant process as opposed to oceanic
induction.
One criticism of comparing the observed and calculated

equivalent current systems is that ‘the one synthesised from
Malin’s 39 coefficients only contains terms up to fourth order,
while the calculated systems must contain higher order harmo-
nics, which are present because the complexity of the oceanic

distribution introduces harmonics not present in the source field
into the solution. However filtering the calculated equivalent
current _ systems did not bring about any significant improvement

in the comparison between modelling and observations.

Although the comparisons between the equivalent current
systems seemed to be far from favourable, this analysis is
rather subjective and it was decided to examine a more

quantitative analysis.
6.4) Spherical Harmonic Ana}ysis.

It was decided to do sphgrical' harmonic analysis on the
solutions so that it would be possible to calculate the ratio of
internal to external parts of the magnetic potential. Since the
equivalent current system is a way of representing the complete
induced currents, its real and imaginary parts were subjected to
spherical harmonic analysis at each period and the coefficients
were converted from current streamline units to potential wunits

by multiplying by a factor n/(2n+l). The external part was taken

g



as the appropriate coefficient from the analysis of Malin and
Gupta so that the ratio could be taken. |

The spherical harmonic analysis was formulated as a least
squares problem, which was not strictly necessary since the
orthogonality of associated Legendre functions is practically
obeyed even when the numerical surface integrétions were
performed on a SOXSOgrid. It was possible to make the analysis
up to sixth-order (a maximum of 49 coefficients, including a
monopole) and the off diagonal terms of the normal equations
matrix were always at least two orders of magnitude smaller than
the diagonal terms. The least squares matrix approach was chosen
forvthe analysis on the,5°x50grid since it was hoped that the
program could easily be converted for making the analysis using
data only from the locations of geomagnetic observatories, when
it would no longer be possible to use orthogonality on account
of the irregular distribution.

The results of the spherical harmonic analysis for the three
principal Sq harmonics are presented in Table (6.2), in terms of
amplitude and phase, for modelling with both the perfect
conductor and Banks’ conductivity distribution together with the
observed values from Banks (1972). The responses obtained with

the conductospherevalone are also. presented since they were

known analytically and served as a check on the spherical
harmonic analysis. There are two responses given for each
harmonic in the - cases of the models with the real oceanic
distribution, because it is to be expected that a harmonic with
a cqsine longitudinal dependence would have a different response
from the equivalént harmonic which varied as the siﬁe- of the

longitude due to the fact that the oceans are not distributed



RATIOS OF INTERNAL TO EXTERNAL PARTS.

Inner conductor

Real Oceans

Uniform

4 km. ocean

.511,

. 649,

.723,

542,

14.9 .

16.7

16.2

15.1

1 km.

.406,

Uniform

ocean

7.1

.418,

16.8

L4465, 25.3

433, 13.9

only - added
Perfect conductor
P, 24 hr .393, O. 431, 16.2
(456, 6.5
P, 12 hr .359, O.° .529, 15.5
.480, 20.5
P, 8 hr .310, 0. .559, 16.5
550, 17.4
Banks’ conductivity
P, 24 hr .398, 7.8 J462, 14.8
J449, 8.1
P; 12 hr .422, 12.7  .559, 12.2
' 545, 15.1
P: 8 hr .384, 16.4  .599, 13.9
.598, 14.3
Banks’ observations
P, 24 hr .376, 12.4
P, 12 hr .442, 14.6
P> 8 hr .433, 15.3

Table’

6.2

. 665,

.733,

14.4

14.4

. 506,

.536,

18. 4

23.6



about the surface of the earth in a symmetric manner.

It can be seen that the addition of the 6ceanic sheet
caused a substgntiai increase in the amplitude of the ratio of
internal to external parts for both the perfectly ana finitely
conducting mantles, but the phases were smaller in the finitely
conducting case, with only one exception, giving. a better
agreement with the observed phases. Since neither model was in
good agreement with the amplitude observations, which were always

on the high side, it was Qecided to examine the extent to which
the response of the real oceanic distribution differed from that
of a uniform shell representing an ocean 4km. deep. By examining
the first three columns of Table (6.2) it can be seen that the
amplitudes of the responses obtained by modelling with a real
oceanic distribution fall roughly mid-way between those obtained
with the conductosphere alone and with the uniform ocean plus
the conductosphere. In order to achieve amplitudes which are
comparable with the observations it was necessary to reduce the
depth of the uniform ocean to the order of 1 km., in agreement
with the work of Chapman and Whi tehead (1922) and Jady (1974).
6.5) Possible Explanations for the Lack of Agreement Between
Calculations and Observations.

Both of the methods employed in the previous section for
comparing the results of modelling with observations showed that
the amplitudesof the calculated responses were too high and it
is essential to try to explain this state of affairs.

Since it has been shown that it is the field induced in the
conductosphere that is the predominant fraction of the internal
field, if is possible that the cdmbination of Banks’ model with

the oceanic sheet 1is too ~ highly conducting. Banks’ model was



proposed as a radially symmetric model of the whole earth and it
is probably unreasonable to expect to get a befter comparison
between calculations and observations simply by adding the
equivalent of 4 km. of highly conducting ocean at the surface of
the earth.

The surface éonductivity in Banks’ model was giﬁen as 0.01
Sﬁ? and although this is lbw by some geophysical standards, even
lower conductivities have been proposed for some parts of the
earth’s crust (Jones and Hutton, 1979). However since roughly 707%
of the earth is covered by the oceans, it 1is really the
conductivity of the oceanic crust and upper mantle which is of
interest here, but according to Cox (1978), suboceanic conducti-
vities are ﬁot at all well established. The author has been
unable to trace any global conductivity profile more recent than
Banks’ 1972 model and, althougb regional studies often indicate
the existence of more highly resistive zones, it is dangerous to
assume that these are representative of the earth as a.whole. On
the basié of the results pesented in the previous section, the
author would recommend that the surface conductivities be
reduced, perhaps by an order of magnitude, in any future attempts
to model the oceanic induction problem.

The problem of near surface conductivities 1is even more
important when the validity of having the oceans decoupled from
the mantle is questioned. In order to be able to use Price’s
equation for induction in a thin sheet and the surface integral
formulae, it is essential to inhibit any flow of electrical
current between the oceans apd the mantle. This implies that the
induction is driven only by the vertical component of the

magnetic field, which is a prbcess called unimodal induction. Any



complete solution of the oceanic induction problem must allow
for bimodal induction, when currents can flow bet@een the oceans
and the mantle and the horizontal fields aquire a new importa-
nce, however it would be necessary to adapt the work of Vasseur
and Weidelt (1977) or Dawson and Weaver (1979) for use in
spherical geometry before it would be possible to. predict the
effect of bimodal inductidn.

A possible defect of the model used is that the calcula-
tions were performed on a 50 x50 grid. Examination of the
accuracy parameter over the entire grid demonstrated that a grid
interval of 5° could yield an accurate solution of the finite
difference equations for tesseral and sectoral harmonic inducing
fields, but the accuracy was poorer when the inducing field was a
zonal harmonic. This was largely because a . zonal harmonic
inducing field tends to produce a large global circulation of
current and a finite difference scheme with only one grid point
between Tierra del Fuego and Antarctica is obviously too coarse
to cope with a large circum—global flow. Global ciculation
current is less pronouced when the inducing fiéld is a tesseral
or sectoral harmonic, as opposed to zonal, because the primary
magnetic flux through the near-spherical éap of Antarctica is
almost zero, and in accordance with Faraday’s Law, there can only
be a very small net circulation of current around this particular
land mass.

An additional obvious defect of the model is that there are
only two separate land masées: Antarctica and the rest of the
world, which may forcg unrealistic constraints on the circula-
tion of curfent. However the preliminary results of Beamish et

al. (1979) demonstrated that, although separating Australia from
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South—-East Asia changed some of the flow patterns, the compa-
rison between their calculations and observatory measurements
was not improved by the modification.

One factor that deserves a special examination is the
extent to which the distribution of geomagnetic observatories
affects the separation of the field into its internal and
external parts, as performed by Malin and Gupta. This method of
analysis is now quite standard, the details of which can be found
in Malin (1973).

It was decided that it would be instructive to compare the
results of making a spherical harmonic analysis of the solutions,
obtained for the effect of the oceans on Sq, using all of the
points on the 50. grid with the results from an analysis which
used only the values at the positions of geomagrnetic observato-
ries. The spherical harmonic analysis presented at the beginning
of thié chapter was performed on the equivalent current system,
at all grid points, to determine the interﬁal coefficients, but
the analysis of Malin and Gupta required the analysis of both the
vertical and horizontal magnetic fields, which do not vary as
smoothly as the equivalent current system does. Programs were
developed for the analysis éf the vertical and horizontal fields
using the entire solution and using only data from the positions
of geomagnetic observatories, which  were found by a form of
interpolation of the full ~solution on the 50 grid. Since
significant differences were found between the two different
analyses of the vertical field, the complete field separation was
nét attempted because it was expected that any discrepancy
between the analyses of the vertical field would be carried .over

into the field separation. It should be stressed that Malin

LS



stated that the contributioﬁ of the vertical field analysis (Z
analysis) to the internal and external éoefficieﬁts was always
greater than the contribution of the horizontal field analysis
(X+Y analysis) (Malin, 1973, p.572).

Both analyses were made on the total vertical field predi-
cted for Sq by using the model with the perfectiy conducting
mantle at periods of 24, 12 and 8 hours. The analysis using the
complete grid involved the calculation of 49 coefficients (up to
order 6), where the ﬁonopole term was inclgded to ensure that it
was small, while the analysis based on the observatory distribu-
tion wused only the coefficients published by Malin and Gupta for
each separate period. ' '

Malin and Gupta used data from 108 geomagnetic observatories
but in this work the author used only the geographic coordinates
of the .100 observatories used, and published, by Malin in his
earlier work on geomagnetic tides, Malin (1973), however it is
unlikely that the exclusion of the extra observatories would
have made any significant differgnce since most of them were in
areas which had a high density of observatories, e.g. Japan,
India and the western equatorial coast of South America. The
locations of the 100 observatories are superimposed on the model
of the oceans in Figure (6.3)

The values of the vertical field at the observatory sites
were found by using a finite difference approximation of the
two-dimensional Taylor series of the field about the grid point
nearest. each observatory. If the coordinates of the observatory
were 09+E,X+5), then: Z(6+{,X+S) =

2(8,A) +, 32 +53Z + 1/21(2¥2 42682 +522) +....0. (6.6)
oA

o6 2e* 0A QAT



Figure 6.3

Distribution of Geomagnetic Observatories.
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By truncating 'the Taylor series after the second order terms, it
was possible to write-the'finitg difference scheme in terms of
the value at the grid point (8,A), closest to the observatory;
and the values at the 8 next nearest grid points surrounding it.
Trials with synthetic data showed that little improvement was
brought about by using a third order Taylor series épproximation,
‘which involved the use of.only 4 extra grid points, which brought
the total required té 13,

The results of the two different analyses are presented in
Tables (6.3a — 6.3c), where the real and imaginary parts from the

analysis of the full 5 grid are shown first, followed by the

»

-real and imaginary parts of the. equivalent. coefficient decived - = " :

from thé analysis based on the geomagnetic observatories. In the
later case, each coefficient is immediately followed by its
respective standard deviation, - as defined in equation (25)
(Malin,1973): _

m )

where Q is the sum of the squares of the residuals from the least

m

n is the appropriaté diagonal term of the inverse

squares fit, W
of the normal equtions matrix, N is the number of data points
(100) and M is the number of coefficients being fitted. Although
only the harmonics whose coefficients were determined by Malin
~and __Gupta have been shown, it should be stated that eight And
seven other coefficients had either a real or imaginary part
greater thanx wunity for periods of 24 and 12 hours respectively,
in the sixth order analysis involving the entire grid.

_ It can be seen that some of the coefficients from the two

analyses are in better agreement than others, while some of the

coefficients from the observatory analysis have standard devia-



Spherical Harmonic Analysis of the Total Vertical Field

Period = 24 hours

Harmonic SOAhalysis Observatory Analysis
Real Imag real std. dev. imag std. dev.
p; 0.01  0.26  0.41  0.31  =0.47 0.50
P, ¢ -0.22 =-2.01 -0.11  0.32  -3.80 0.53
Py § 3.4 =0.40  5.49  0.37  -h.14  0.60
) 3¢ 0.53 =5.57 =1.10  0.43  =6.23 0.70
P, < ~-14.68 -2.48 -12.89  0.36 3.24  0.60
P, s 2.05 -12.41 ~-3.72. 0.48 =9.13 0.79
P, ¢  0.14 0.21 =3.03  0.45 -1.91 0.74
P, s 0.56  0.26° -0.67  0.46 1.64 0.76
P, -2.70  2.67 -2.29  0.57  3.92 0.9
P, ¢ -0.06 1.0 =-0.03  0.40 -1.50 0.66
P, s -0.62  0.34  1.69  0.52  -2.14 0.87
P, < 0.14 1,22  1.83  0.48 2,34  0.79
P, s 1.0l 1.5  1.98  0.52  -1.01  0.86
P, ¢ 5.46  1.57  3.38 0.5 0.45 0.90
P, § -0.08 5.02 1.5 0.6  5.78 1.00

Table 6.37a



Spherical Harmonic Analysis of the Total Vertical Field

Period = 12 hours

rd

Harmonic 50Ana1ysis Observatory Analysis
Real Imag real std. dev. imag std. dev.

P, « 0.02  0.04 1.5  0.46 2.51  0.46

P, s  0.03 =~0.11 =-1.56 0.53 -1.36 0.53

P, < 0.35 -0.74 -3.55  0.52  -3.60 0.52

Pr s  -0.09 =-0.33 0.79  0.68 0.42  0.68

P2 ¢ 2,10 2.23 1.12  0.65  5.21 0.65

P, ¢ -2.13 -1.34 -1.84  0.66  -0.25 0.66
¢ 0.2 0.02  1.47  0.56 2.60 0.56

P, s -0.08 -0.06 =0.94  0.73  =-0.41 0.73

Py ¢ 9.83  4.68 3.8  0.71  -3.96 0.71

P} s -5.75 8.56 0.48  0.75 8.56 0.75

P} ¢ -0.20 -0.43 1.91 0.79 0.81 .0.79

P} 0.40  0.44  0.77  0.75  -0.11  0.75

P, ¢ ~-l.16 ~-1.24  0.59  0.66 3.44  0.66

P, S 1.36  -0.64 0.38 0.77 -0.50 0.77

Table 6.3 b °
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Period = 8 hours

Harmonic 5°Analysis Observatory Aﬁalysis
Real Imég real std. dev. imag std. dev.
P, ¢ =0.24  0.42  1.54  0.47 0.03  0.32
P, s -0.17 0.02 =-0.53  0.48 1.86 0.33
P} ¢ 3.11 -0.37 0.60 0.50 -0.04 0.34
Py s 0. 59 2.28 1.60 0.50 -0.06 0.34
P, 0.16  0.05 -0.33 0. 44 0.12 0.30
P, s -0.09 -0.02 1.90  0.49 0.66  0.33
P, < -l.64 -2.11 1.47  0.56 2.60 0.56
P, s 2,28 -1.50 1.07  0.39  -1.37 0.26
pf ¢ -0.15 0.22 1.2l 0.5  -0.43 0.39
PZ s -0.52 -0.25 -2.01 0.54 -1.24 0.37

Table 6.3 ¢



tions which afe comparable, or even greater than, the magnitude
of the estimates, with the result that little ph&sical’ signifi-
cance should be'placed on these values. It is more instructive to
examine the principal harmonics for each period; P:, P; and P: at
periods of 24, 12 and 8 hours respectively, when the standard
deviations are substantially smaller than the estimates. The real
parts of the cosine coﬁponent and the imaginary parts of the
-~ sine component of the P: harmonic were in reasonable agreement
(to within 757 approximately) and although the other pairs agreed
roughly in magnitude, they had opposite signs. In the case of the
semi—~diurnal harmonic, P;, only the imaginary parts of the sine
components agreed, while the estimates of the imaginary parts of
the cosine component agreed in magnitude but not in sign. There
was no agreement between its other coefficients. The real and
imaginary parts of the P: harmonic with a sine longitudinal
dependence were in agreement while those of the cosine component
had opposite sign.

The coefficients obtained from the analysis wusing all the
2522 grid points can be taken as correct because the orthogona-
lity of the associated Legendre functions is preserved even on a
5° grid, at least up to sixth order, and the values of the
estimates did not depend on which harmonics were being wused in
the analysis. The situation is quite different when the observa-
tory analysis is made, since it is necessary to reduce the
number of coefficients to be caiculated in order to find a stéble
estimate with a relatively small standard deviation. However the
above comparisons show that use of the leastvsquares procedure

can still give estimates which are incorrect.

Assuming that the results of the mecdelling are a correct

=



representation of the effect of the oceans on Sq, then the above
comparisons show that any spherical harmonic anaiysis based on
observations aé geomagnetic observatories would not yield the
correct separation of the internal and external parts. This can
be said, even although only the Z analysis has been performed,
because the coefficients of the vertical field contfibute more to
the internal and external coefficients than the horizontal
coefficients. On this basis alone, it is not surprising that the
comparison between equivalent current systems derived from calcu-
lations and observations is boor.

It was later decided to examine how the ratios of internal
to external parts, derived from the equivalent current system and
the known external coefficients, depended on which type of
anaiysis was used in their determination. The responses obtained
from spherical harmonic analysis using all of the 5 grid points
has been shown and the observatory analysis was also attempted,
using the same'interpolation scheme to calculate the equivalent
current system at the observatories as had been used to find the
vertical fields. The same harmonics were kept in the observatory
analysis of the equivalent current system as had been used for 2
and the ratios of internal to external parts for the principal Sq
harmonics are shown in Table (6.4), along with the respective
ratios obtained from -the analysis of the complete function, in
terms of amplitude and phase.

The main difference between tﬁe two analyses is that the
amplitudes obtained from the observatory analysis are always
smaller than the corresponding amplitudes derived from the full
analysis. This is observed in the two models considered, with

either a perfectly or finitely conducting mantle, and although
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Perfect conductor Full Analysis Observatory Analysis

P, 24 hr 431, 16.2 416, 9.9
456, 6.5 419, 0.6
P, 12hr .529, 15.5 .372, 8.0
.480, 20.5 .395 1.8
P, 8hr .559, 16.5 421, 10.8
.550, 17.4 346 8.2
Banks’ conductivity
P. 24 hr 462, 14.8 .438, 10.5
449, 8.1 408, 6.6
P, 12 hr 559, 12.2 J441, 12.8
| .545, 15.1 426, 10.5
P, 8hr .599, 13.9 .536, 18.7
.598, 14.3 (459, 20.1.

Table 6.4



there are also large differences between the phases, the observa-
tory analysis produces larger phases for the modél with Banks’
conductivity profile than for the model with the perfect conduc-
tor, which is generally the opposite of what is found frgm the
analysis of the whole grid. The similarity in the amplitude and
phase of the sine and cosine components of each harﬁonic, which
is observable in the resulfs from the full analysis, is no longer
as close, which tends to suggest that any difference observed in
the responses of these components is due to the distribution of
observatories to a greater extent than it is to the surface
conductivity distribution.

It should be stated that when .synthetic data, containing
only a few known spherical harmonics, were subjected to the
observatory analysis, it was possible to obtain the correct
coefficients, including =zero where appropriate, provided all of
the harmonics that were known to be present we?e included in the
analysis. This, together with the above observations, béars out
the work of Lowes (1978), who stated that the presence of higher
order harmonics, not included in an analysis, results in errors
in the estimates of the coefficients and that it is impossible to
predict the magnitude of the errors by any ‘internal goodness of
fit’. This is analagoué to the problem of leakage, or aliasing in
the one~dimensional problem of time series analysis, where it is
essential to filter out all frequencies higher than half the
sampling frequency.

The large number and regular spacing of the grid points
ensured that the apalysis using all of the data was not subject
to the problem of leakage and, as has already been stated, the

values of the coefficients obtained did not depend on which other
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harmonics were present in the analysis. It was possible to check
this by the alternative means of surface integral filtering.
By constructing surface integral kernels of the form:

K
Kf(k,e) = 1/477'2(2n+1) P, (cos©) (6.8)

wit
where k= 4,5 or 6, and calculating the basic integrals, it was
possible to do low-pass filtering on any function défined onas’

.grid by evaluting the 'surface integral of the product of the

function with the filter kernel at each grid point. The value of

the cut-off depended on the value chosen for k. The fact that

this method gave the same result as the resynthesis of the

function after spherical harmonic analysis, up to the appropriate

order, had been done was further evidence that no 1leakage

occurred.

The surface integral filter used much more .c.p.u. time on
the computer than spherical harmonic analysis, therefore it was
not used once it was discovered that it was not necessary to do
any filtering before calculating the coefficients, as is the
practice in time series analysis. The analogy with some methods
pf time series analysis can be continued by way of the fact that
the calculation of the type of surface integral in this work is
the convolution of two functions over the surface of a sphere
(e.g. the convolution of a current function wiﬁh a mutual
induction kernel) while spherical harmonic analysis is an

operation in the spatial frequency domain.
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