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Abstract 

The introduction contains a review of published work on the 

oceanic induction problem up to the end of November 1979 and 

concentrates on induction in the ocean by magneto variations, 

although a brief account is also given of dynamo processes. The aim 

of the research was to model the effects of mutual induction between 

- oceanic electric currents and a finitely conducting mantle, since 

previous authors had only considered the simpler case of a 

perfectly conducting mantle. A method for calculating these effects 

is derived in Chapter 2 by considering induction by a vertical 

magnetic dipole at the earth's, surface leading to a generalised form 

of the Hobbs—Price mutual induction kernel. 

A simple uniform earth and a more realistic seven—layered 

- model represent the mantle while considering induction in a 

hemispherical ocean, in Chapters 3 and 4 respectively, where details 

of the calculation of the electromagnetic responses are given. 

Alterations and improvements were made to an existing computer 

program so that Banks' profile could be used to model induction in 

a thin sheet in the shape of the oceans and contour plots of results 

obtained with Banks' model and with the perfect conductor are 

compared in Chapter 5. 

Using a spherical harmonic representation of the Sq inducing 

field, a qualitative comparison is made between the equivalent 

current systems of the modelled results with those computed from 

observatory measurements at different instants of Universal Time. 

The use of Banks' profile did not give a better comparison with the 

observations than the perfectly conducting mantle. The application 

of spherical harmonic analysis to the complete solutions showed that 



the electromagnetic responses to each of the principal Sq, harmonics 

were greater with the finitely conducting mantle than with the 

perfect conductor, while both were greater than the observed 

responses. When the analysis was restricted to using only the 

values at the sites of geomagnetic observatories the coefficients 

of the vertical magnetic field were found to be different from before, 

- while the ratios of internal to external parts were found to be 

smaller. These discrepancies are due to alia,3ing by harmonics 

absent from the analysis and they suggest that the determination of 

the responses based on spherical harmonic analysis of observatory 

measurements must be suspect, which will influence any global 

geoelectric profile determined from these ratios. 

cm 



CHAPTER 1 

INTRODUCTION 

1.1) 	 The idea that temporal variations of the geomagnetic 

field could induce electrical currents in the earth was born in 

1889 9  when Schuster put forward a theory of terrestrial diurnal 

magnetic variations. His separation of the field into parts with 

sources internal and external to the earth was consistent with 

the theory that the internal part was due to electrical currents 

induced by the external part. Further analysis of the daily 

variation resulted in Chapman (1919) proposing that the elect-

rical conductivity structure of the earth could be represented by 

an insulating layer 250 km. thick with an underlying uniform 

sphere of conductivity 0.036 Sm. 1  The work of Chapman and 

Whitehead (1922) demonstrated that the thickness of a uniformly 

conducting sheet at the surface of the earth had considerable 

influence on the conductivity of the central uniform core which 

gave the best fit with observations. The justification for 

proposing such a conducting layer near the surface of the earth 

was that the conductivity of sea water (4 Sn) was known to be 

higher than that of surface rocks, which marked the beginning of 

interest in electromagnetic induction in the oceans. 

Lahiri and Price (1939) developed the theory of induction in 

non-uniform radially symmetric spheres for both periodic and 

aperiodic inducing fields and, in order to explain analyses of 

the daily variation and magnetic storms, they proposed that the 

conductivity of the earth increased rapidly to at least 1 Sm 1  at 

depths of about 700 km and that a better comparison between 

observations and calculations could be obtained by including a 

uniformly conducting shell at the earth's surface which had a 
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vertically integrated conductivity equivalent to 1 km of sea 

water. 

These pioneering studies of geomagnetic induction showed 

that the oceans could exert influence on the global aspects of 

the time-varying geomagnetic field but more recent studies have 

established that the oceans could also be important in more 

- localised studies. 

Interest in the effect of the oceans on geomagnetic varia- 

tions must have been boosted by the work of Parkinson (1959 and 

1962), who discovered high correlations between the changes In 

the vertical and horizontal fields recorded at geomagnetic 

observatories at time intervals in the range of five minutes to 

one hour. By plotting the directions of these changes for a large 

number of equal time intervals on a polar diagram, he demonst- 

rated that the fluctuations tended to lie in a preferred plane 

inclined to the horizontal. These results could be presented in 

an alternative way by means of the 'Parkinson Vector', which 

pointed in the direction of the greatest upward slope of the 

preferred plane, and its length was defined as the ratio of the 

vertical to horizontal variations In the direction of the vector. 

It was observed that at coastal stations the vector was 

often oriented towards the nearest region of deep water and that 

the magnitude was much greater than that obtained at stations 

inland. This effect was initially demonstrated for Australian 

observatories but was later observed to occur world wide, 

particularly in regions where a straight coastline was near deep 

water. It was suggested that this effect could be explained by 

eddy currents induced in the sea, thereby modifying the field 

near the coastline, but analogue studies with a model of the 



earth and its oceans, or terrella, were unable to produce large 

vertical fields near the coasts, from which Parkinson inferred 

that the coast effect might have been due to conductivity 

contrasts between the continental and oceanic mantle (Parkinson, 

1964). 

Schmucker in his array study in the south-west of the U.S.A. 

(Schmucker, 1964 and 1970) detected what can be described as a 

classic coast effect, where the amplitude of the Z variations was 

considerably enhanced near the coast compared with stations 

inland. This effect was observed in both geomagnetic bays and the 

daily variation and was demonstrated by the fact that the length 

of the Parkinson arrows increased near the coast. This phenomenon 

was interpreted by assuming that the induced currents flowed in 

- the ocean on the seaward side, while the currents on the landward 

side were presumed to be flowing at depth in the upper mantle. 

The distance inland, over which it took the enhancement of Z to 

disappear, was used to find the depth to the conducting mantle. 

Coast effects of this type have been observed world wide; in 

South Australia for example (White and Polatajko, 1978). 

Another type of induction anomaly that has been detected is 

the so-called island effect. A simple explanation of this 

phenomenon is that an island which rises from the ocean floor 

causes currents in the ocean to diverge and pass round it on 

either side on account of the contrast in conductivity between 

rocks and sea water. This means that it is possible to detect 

considerable variations in the vertical magnetic field due to the 

fact that the currents are flowing in opposite senses on the 

opposite sides of the island and can cause a reversal of the 

direction of the vertical field across the island. This has been 
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observed In Oahu, Hawaii (Mason, 1963) and Miyake-jima, Japan 

(Honkura, 1972). Techniques have been developed to remove the 

island effect from observations so that the conductivity profile 

of the crust and upper mantle could be determined (Klein and 

Larsen, 1978). 

The island effect can be more complicated when the island is 

close to the continental shelf, where the deep oceans and shallow 

coastal seas can influence the direction of the Parkinson arrow 

at different periods. An array study in the British Isles 

(Edwards, Law and White, 1971) demonstrated that the induction 

vectors on the east coast of Ireland pointed towards the Atlantic 

at a period of 144 minutes but were directed towards the Irish 

Sea at a period of 40 minutes. Work carried out in Sutherland, 

Caithness and the Orkney Islands (Robinson, 1977) demonstrated 

that the directions of the Induction vectors were dictated by the 

local coastline in the period range of 5-30 minutes, while the 

effect of the Atlantic continental shelf dominated at periods in 

the range 30 minutes - 3 hours. 

Interesting results have been obtained from the analysis of 

magnetic data recorded on icebergs (Zhigalov, 1960), when corre-

lations were obtained between the ratio of vertical to horizontal 

geomagnetic variations and the bathymetry. The deep oceans can be 

thought of as being uniform over large horizontal scales, except 

near mid-oceanic ridges, and an iceberg is unlikely to perturb 

the circulation of currents in the ocean In the same manner as an 

island rising from the sea floor. Electromagnetic theory shows 

- 

	

	that the presence of a large uniform highly conducting body, i.e. 

an ocean, causes a reduction In the amplitude of the vertical 

magnetic variations compared with the horizontal variations, and 



the vertical variations are completely cancelled out in the limit 

of infinite frequency or conductivity. It was expected that the 

reduction would increase as the depth of the ocean increased as 

was demonstrated experimentally. 

1.2) 	 Analogue models have been used in electromagnetic 

induction studies to examine situations for which mathematical 

models are either inaccurate or totally lacking and some insight 

into the oceanic induction problem has been gained through this 

approach. The terrella experiments of Parkinson have been men-

tioned breifly in the previous section and they were performed 

on a model in which the oceans were simulated by a thin copper 

sheet surrounding the mantle, which was modelled by an aluminium 

sphere at a depth corresponding to 0.9 earth radii. The inducing 

field was produced by a coil, which was wound in such a way as to 

model the current system of a geomagnetic bay; and the fields 

were measured with the aid of a small search coil. In analogue 

modelling it is vital to ensure that the scaling factors are 

selected in such a way that the model is truly analagous to the 

geophysical situation it is meant to represent. This occurs when 

the following condition is obeyed: 

a 	 -- 

where the primed and unprimed quantities are characteristics of 

the model and geophysical cases respectively. 

Much of the early work in this field has been reviewed by 

Dosso (1973), who refers to models of Iceland, by Hermance 

(1968), and Japan, by Roden (1964), who modelled the respective 

islands - by cutting the appropriately shaped holes in a metal 

sheet. Dosso then compared his own work on modelling the coast 

effect, for the two dimensional situation in which there was a 
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vertical interface between the ocean and the land, with some of 

the early attempts at numerical modelling. The agreement between 

the two approaches was close except near to the coast where the 

measured fields were smaller in magnitude than the numerical 

calculations, which was probably due to the finite dimensions of 

the search coil used to measure the field. 

The work of Launay (1970) was referred to in which the Z/H 

ratio for the Californian and Australian coast effects were 

modelled by two copper sheets; one represented the oceans and the 

other the mantle, which was located at the following depths: 

450-500 km. for Australia and 180-210 km. for California. More 

complicated coastline models were also discussed, e.g. the case 

of a shelving ocean overlying a conducting step. The Californian 

coast effect has also been modelled by Spitta (1977), who chose 

to locate his conductosphere at a depth of 270 km. 

More recently interest has been revived in modelling 

three-dimensional systems, to enable the comparison between field 

observations and analogue measurements to be made; examples of 

this work are Vancouver Island (than and Dosso,1978) and the 

British Isles (Dosso, Nienaber and Hutton, 1978). 

6.3) 	Theoretical studies of the oceanic induction problem have 

been considerably simplified by two assumptions: namely the 

quasi-static approximation and the thin sheet approximation. The 

former is used virtually universally in the field of geomagnetic 

induction, since the periods of interest are considerably longer 

than the time it would take for electromagnetic radiation to 

travel a distance typical of the dimensions of geophysical 

interest. Propagation of the electromagnetic field can be assumed 

to be instantaneous, which is tantamount to ignoring the displa- 



cement current in Maxwell's equations and means that the magnetic 

field obeys the diffusion equation in conductors and Laplace's 

equation in insulators as opposed to the wave equation, which 

governs high frequency electromagnetic phenomena. The thin sheet 

approximation is particularly applicable to the oceanic induc-

tion problem since, for the periods of interest, there is little 

attenuation of the electromagnetic field across 4km., which is a 

typical depth of the oceans, whose horizontal dimensions can be 

three orders of magnitude greater than their vertical dimensions. 

In a uniform conducting half-space, an electromagnetic field is 

attenuated in the following manner: the amplitude of the field 

variations is reduced by a factor l/e as the field penetrates the 

distance of one skin-depth into the conductor, where skin-depth, 

is defined as: 

where 6 is the conductivity of the half-space, Wis the frequency 

of the inducing field and ,M.is the permeability of the medium. 

Inserting the appropriate values shows that the skin-depth 

in sea water is about 80 km. for periods of 24 hours and 15 km. 

at one hour, which implies that the thin sheet approximation 

should be valid for the daily variation and its harmonics since 

the amplitude of the electromagnetic field is practically cons-

tant throughout the depth of the ocean. 

The fact that the conductivity of sea water is generally at 

least two orders of magnitude higher than that of surface rocks 

means that, in the low frequency limit, it should be possible to 

treat the rocks as insulators so that any induced electrical 

currents are constrained to flow in the ocean and that the theory 

of Price (1949) for induction in infinitesimally thin sheets is 
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applicable. 

Price derived the following equation for the problem of 

induction in a thin sheet: 

-p 
	Ze+ 	t) 	(1.3) 

where 	is the vertically integrated conductivity defined as: 

1,p f~(z) dz 	(1.4) (h being the depth of the ocean). 	is 

the current streamline function which defines the current 

density in the following manner: 

= -nxV*f (1.5), 

where n is the outward unit normal. Z and Z are the external and 

internal vertical components of the magnetic field intensity 

(effectively the inducing and induced vertical fields). 

Ashour (1950) developed an integral equation method for 

solving the problem of induction in uniform circular discs and 

surfaces of revolution by an axially-symmetric inducing field, 

which enabled him to make numerical estimates of the time 

constants, which would govern the decay of currents in the ocean. 

If currents were permitted to decay in a circular ocean, of 

radius 5000 km. and depth 4km., their amplitude would be reduced 

by a factor l/e in 5.2 hours, if the conductivity of sea water 

was taken as 4 Sm 

The problem of calculating the initial current induced in a 

perfectly conducting hemispherical thin shell by the instanta-

neous switching off of a uniform magnetic field, directed 

parallel to the plane of the equatorial rim of the shell, was 

examined by Rikitake and Yokoyama (1955). Their approach involved 

making a spherical harmonic expansion of the current function and 

solving for the coefficients, subject to the constraints that the 

total vertical field vanished at the surface of the shell and 



that the current function was zero outwith the shell. To simplify 

the calculation, only twelve coefficients were used in the 

analysis, which was an insufficient number since currents were 

predicted to flow outside the shell and it seemed that the 

convergence of the spherical harmonic series was slow. The 

solution did partially agree with theory in that the total 

vertical field was close to zero at the surface of the shell, but 

it was unlikely that the truncated expansion was accurate in the 

vicinity of the discontinuity in conductivity at the rim of the 

shell. 

Rikitake (1961) examined a similar problem, in which there 

was a concentric perfectly conducting sphere located below the 

hemispherical shell, where the ratio of the radii of the two 

conductors was 0.94. Although the method of analysis used by 

Rikitake in both of these examples was later to be proved wrong 

by Hobbs (1972), it was quite clear that the inclusion of the 

perfectly conducting sphere considerably reduced the current 

function and the induced vertical field. This implied that it was 

essential to consider electromagnetic coupling between the ocean 

and the mantle in attempts to model the effect of the oceans on 

geomagnetic variations. 

Roden (1964) developed a numerical scheme for calculating 

the magnetic field induced in a thin uniform strip, which overlay 

a perfectly conducting half-space and predicted that very large 

fields would be observed close to the edges of the conducting 

strip. Although the method of accounting for the effects of the 

underlying half-space, which simulated the mantle, was later 

shown to be inaccurate, his prediction of the enhancement of the 

magnetic fields near the edge of the sheet was shown to be 
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correct by the work of Parker (1968), who devised an analytic 

scheme for solving the problem of induction in a thin uniform 

strip. Parker came to the conclusion that, in a finitely 

conducting strip, the current density was finite everywhere but 

that the vertical magnetic field had a logarithmic singularity at 

the edges of the strip. 

Another analytic solution had been obtained by Ashour(1964 3, 

1965), who used the technique of coordinate inversion and the 

solution of dual integral equations to solve the problem attem-

pted by Rikitake and Yokoyama (1955). He demonstrated that the 

current density became infinite at the edge of the shell and that 

the vertical field became infinite on the non conducting side of 

the coastline. The solution of a similar problem, in which the 

inducing field was directed along the symmetry axis of the shell, 

was also presented, and the vertical field was again singular on 

the landward side of the rim. 

Approximate solutions for induction in a uniform finitely 

conducting hemisphere were derived by Doss and Ashour (1971), who 

found that the induced vertical field was enhanced at the 

coastline on both sides of the coast, although it underwent a 

reversal on crossing the coast. The region over which enhancement 

occurred on the landward side was smaller than that found with 

the perfectly conducting shell and the horizontal field was 

enhanced on the seaward side. Further papers by Ashour (1971(b), 

1971(c)) dealt with the cases of induction in thin discs and 

hemispheres, in which the conductivity decreased towards the 

edge. It was discovered that enhancement of the magnetic field 

near the edge was more pronounced at high frequencies and when 

the decrease in conductivity was confined to a region close to 

10 



the edge, corresponding to the continental shelf being near to 

the coastline. A method of calculating the field perturbations 

by an island had been presented, also by Ashour (1971(a)), by 

modelling the island as a circular or elliptical area of small, 

or vanishing, conductivity in a plane uniformly conducting 

infinite sheet. The magnetic fields were expressed in terms of 

contour integrals around the edge of the island but since the 

integrand contained the electrical potential, which was assumed 

to be known, this work could not be regarded as a solution of an 

induction problem, but rather of a current channeling problem. 

The analytic methods of Ashour were only capable of dealing 

with highly symmetric conductors and it was clear that any 

attempt to model the real oceans would have to resort to 

numerical methods on account of the highly assyrnetric distribu-

tion of the oceans over the surface of the earth. In fact 

suitable numerical methods were becoming available at that time. 

A paper by Hobbs (1971) described two algorithms for 

calculating the effects of induction in thin spherical shells, 

of varying conductivity, overlying a perfectly conducting concen-

tric sphere, which were applicable to either high or low 

frequency inducing fields. Only the low frequency method is 

described here, since it forms the basis of the work presented in 

the following chapters. 

This algorithm provides the means for solving Price's 

equation (1.3) for calculating the current streamline function 

induced in a thin sheet when only the primary external field is 

known. Equation (1.3) cannot be solved as it stands because the 

internal magnetic field, Z is itself a function of the current 

streamline functionJ. If the primary inducing field arises from 

11 
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ionospheric currents, the external inducing field Z e  is taken to 

be the sum of the primary vertical field, Zt', and the vertical 

field, Z 
C. 

, due to currents that would be induced in the inner 

perfectly conducting core in the absence of any thin sheet at the 

surface. 

ze = 	+ ZC 	(1.6) 

If the radii of the inner and outer conductors are b and a 

respectively, and if the primary currents are described by a 

single spherical harmonic of unit amplitude and of degree n, then 

= ( 1 -(b/a)
2.4 I

)Z (1.7) 

The first step of the iterative method is to find an approxima-

tion, denoted by f', to the current function by solving equation 

(1.3) but neglecting the term in Z. The current fuction will 

itself produce a vertical magnetic field, Z 5 , which can induce 

further currents in the shell (the self induction effect) and 

will also induce currents in the central core, the vertical field 

of which, Z% would in turn induce more currents in the surface 

shell (the mutual induction effect). A first approximation to the 

internal field could be found by taking the sum of the vertical 

fields due to self and mutual induction: 

zi 
= z + z 

The vertical fields due to self and mutual induction were 

calculated with the aid of surface integral formulae derived by 

Hobbs and Price (1970), the numerical calculation of which was 

based on the method of basic integrals of Price and Wilkins 

(1963). 

By taking Z as a first approximation to the internal field, 

a correction term for the current function, /1,, could be found by 

solving equation (1.3) but this time the term In Z is to be 



neglected. Repetition of this procedure resulted in the genera- 

tion of further correction terms, 	
, 1/,3 , etc., and the complete 

solution to equation (3.1),5b, could be found iteratively, where: 

(1.9) 

and Z' = Z'+ Z 	+ Z+ ....(1.10) 
I 	 3 

For harmonic inducing fields, with frequency W, the calcula-

tions were performed by removing the time dependence from 

equation (1.3) and soving for 	= 1//lw, where 	 = 

Equation (1.9) could then be transformed into the form: 

+ wi +w+ .....)  

Analysis of induction in a uniform spherical shell, for which an 

analytic solution could be fQund, demonstrated that equation 

(1.11) would only be convergent for periods greater than 15 - 20 

hours, depending on the degree of the inducing field. 

Application of the above method to the model of a hemisphe-

rical ocean demonstrated the enhancement of the vertical field 

on either side of the coast. 

Bullard and Parker (1971) reformulated equation (1.3) as an 

integro-differential equation in and solved the problem for the 

case of induction in the real oceans by the diurnal harmonic of 

Sq but, as has already been shown, Prices's iterative method 

could not be used at higher frequencies. However their maps of 

the current function did show how the coastlines distorted the 

current vortices from the shape that would have been expected, 

had the oceans been uniformly distributed over the surface of the 

earth. 

Parkinson (1975) devised an algorithm, which was effectively 

a hybrid of the high and low frquency algorithms of Price, to 

olve 'the high frequency problem of induction in the real oceans 
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by substorms, however his solutions were unsatisfactory on two 

accounts. Firstly the calculations were performed on a coarse 

grid and it was not possible to state if the iterative method of 

solution had converged. Secondly the values of the current 

function on the continents were obtained by an averaging 

process, which had no physical basis, and - resulted in artifi-

cially high current densities around the coastlines. 

Hobbs and Brignall (1976) overcame the problems of diver-

gence at high frequencies by making a M6bius transformation of 

the complex frequency plane and using analytic continuation to 

find a convergent series by transforming equation (1.11). An 

optimal Mbius transformation was found which also resulted in 

the improved convergence of the solutions to low frequency 

problems in addition to obtaining convergence at high frequen-

cies. Application of this method to the model of a hemispherical 

ocean, by using the diurnal. variation and its first seven 

harmonics, showed that the real part of the coast effect 

increased at higher frequencies, while the enhancement of the 

imaginary part decreased. The methods of Price and analytic 

continuation were used to predict the influence of the oceans on 

Sq by Hobbs and Dawes (1979) at frequencies of 1, 2, and 3 

c.pd., but the attempt to compare the calculated internal part 

with that obtained from observatory data was not particularly 

successful. 

Almost contemporary with the work of Hobbs et al., several 

papers were published by Kendall and his co-workers, who adopted 

different approaches for solving the oceanic induction problem. 

An integral equation involving the current density and the vector 

magnetic potential was derived and solutions obtained for 
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axi-symmetric problems, e.g. induction in spherical caps (Hutson, 

Kendall and Malin,1972). The convergence of the iterative method 

of solving the integral equation was improved by • using a 

technique of functional analysis, known as shifting the spectrum, 

(Hutson, Kendall and Maim, 1973) and a research note showing how 

shifting the spectrum of a linear operator and analytic continua-

tion of a serie.s could be related by a mathematical transforma-

tion was published by Kendall (1978). 

An alternative approach to tackling the oceanic induction 

problem was developed in terms of calculating the scalar magnetic 

potential in three regions: above the ocean, in the neighbourhood 

of the land and between the ocean and the underlying conductosp-

here (Hewson-Browne and Kendall, 1978(a)). Analytic solutions 

involving Legendre series were found for the induction problem in 

a perfectly conducting hemispherical shell above a concentric 

perfectly conducting sphere and compared with the results ob-

tained by an approximate numerical method, which showed that the 

two methods were in agreement except near the edge of the shell. 

A suitable edge correction, using the method of matched asymp-

totic expansions, was found (Hewson-Browne and Kendall, 1978(b)) 

and later applied to finitely conducting shells (Hewson-Browne, 

1978). An edge correction for plane sheets has also been derived 

by Quinney (1979). Preliminary solutions, without the use of the 

.edge correction, have been calculated for modelling the effect of 

the oceans on Sq, and although the effect of treating Antarctica 

and Australia as separate land masses altered the flow paterns, 

little i$ovement in the comparison with observatory observations 
1974 

was obtained (Beamish et al., I & II). 
4. 

It should be stated that the oceanic induction problem has 
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received attention from Soviet scientists, but unfortunately not 

all of this work has been translated. Berdichevskiy and Zhdanov 

(1974) developed a formalism for isolating the field perturba-

tions due to conductivity anomalies deep in the earth, provided 

that the normal conductivity profile and surface conductivity 

distribution (i.e. oceanic thin sheet) were known. Falnberg's 

review (1978) contained further details of the Soviet contribu-

tion to this field, which included his own approach where, 

although the method was not completely rigorous, he suggested 

that account should be taken of the earth's sedimentary cover in 

the conductance of the thin shell at the surface. 

- 	6.4) 	The techniques based on the work of Price described above 

are only capable of dealing with induction by the vertical 

component of the time-varying magnetic field in a thin sheet 

which is electrically isolated from any other conductors. Models 

have been studied in which these assumptions have not been made 

but, as yet, only in the case of plane geometry. 

Weidelt (1971) provided an analytic solution of induction in 

two adjacent half-sheets of different conductances, which were 

insulated from an underlying perfectly conducting half-space, for 

the E-polarisation case. In this situation the primary uniform 

horizontal magnetic field is perpendicular to the junction between 

the two sheets and induces a horizontal electric field parallel 

to the strike, and the currents which it drives only give rise to 

the orthogonal horizontal and vertical induced magnetic fields. 

If a non-uniform inducing field had been used, Price's equation 

could still not have been used, since it contains terms involving 

the gradient of the integrated conductivity which is not defined 

at "  the boundary between the two sheets in the model described 
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above. However a suitable boundary condition was found in terms 

of the magnetic vector potential and its first vertical deriva-

tive. The solutions demonstrated that there was a logarithmic 

singularity in the vertical magnetic field at the 

while the horizontal magnetic field remained finite although it 

was discontinuous there. 

A model in which an oceanic strip and a perfectly conducting 

mantle were con
n
ected by a crust of small, but non-zero, conducti-

vity was examined by Brewitt-Taylor (1975), who demonstrated that 

electric currents could be made to flow along the ocean, down 

through the crust, back along the mantle and return upwards into 

the ocean through the crust, for the case of H-polarisation. In 

this situation the inducing magnetic field is parallel to the 

strike, with the result that no induced magnetic field can be 

detected outside the conductor, provided the conductivity struc-

ture is strictly two-dimensional. The numerical solution of a 

related three-dimensional problem demonstrated that it was pos-

sible for the induced horizontal field normal to the coast and 

the vertical field to be large, while the induced horizontal 

field parallel to the coast was small, which was compatible with 

the concept of the Parkinson vector. 

A more rigorous account of self induction effects was taken 

in a later paper (Brewitt-Taylor., 1976), where the horizontal 

magnetic field below the sea floor was calculated and the effect 

of return currents in the mantle was shown to be important 

provided that the width of the ocean was greater than two 

skin-depths in the crust. 

Bailey (1977) used the Wiener-Hopf technique for solving 

mixed boundary value problems to find the effects of H-polarisa- 
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tion in a thin perfectly conducting half-sheet placed on a 

conducting half-space. Since the model was two-dimensional, no 

induced magnetic field could be detected above the surface. 

Solutions were presented for the magnetic field below the sheet, 

for the induced electric fields as well as the amplitude and 

phase of the magnetotelluric response function. Diagrams of the 

induced currents demonstrated how they flowed vertically from the 

thin sheet into the substratum. 

Nicoll and Weaver (1977) obtained the solution for H-polari-

sation in a similar model, which now included a perfectly 

conducting mantle below a poorly conducting crust, also with the 

aid df the Wiener-Hopf technique. 

The Pyrenean induction anomaly was modelled by a conductor 

between the Atlantic Ocean and the Mediterranean Sea, all of 

which were confined to a thin sheet at the surface of a 

two-layered half-space, by Vasseur and Weidelt (1977), who solved 

the problem of induction by solving an integral equation, 

involving Green's functions, over the region of anomalous conduc-

tivity in the thin sheet. 

The E-polarisation counterpart of the problem solved by 

Bailey was published by Fischer, Schnegg and Usadel (1978) by 

numerically solving an integral equation, in the derivation of 

which the terms involving the displacement current had not been 

discarded, so that the method would also be applicable to 

modelling inductive prospecting. 

An integral equation was derived, and solved numerically, by 

Green and Weaver (1978) for dealing with a thin sheet of variable 

conductivity in electrical contact with a conducting half-space. 

This method did not require the surface conductivity to be 
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separated into normal and anomalous parts, as was required by the 

approach of Vasseur and Weidelt, and both E- and H-polarisation 

problems could be tackled. The E-polarisation case was shown to 

be equivalent to the quasi static form of the method of Fischer 

et al. A further application of the Wiener-Hopf method enabled 

Dawson and Weaver (1979) to obtain an analytic solution for 

H-polarisation induction in a more generalised form of the model 

used by Weidelt (1971), where the two 'thin sheets were now 

connected to a conducting half-space. This analytic solution 

could serve as a useful check on numerical schemes such as that 

of Green and Weaver. 

1.5) 	The work cited in the previous sections has been 

concerned with the electric currents that have been induced in an 

ocean, or oceanic model, by a time-varying magnetic field. This 

however is not, the only mechanism by which electrical currents 

can be made to flow in the oceans, since studies have shown that 

it is possible to detect magnetic fields which arise from the 

movement of sea water through the main part of the geomagnetic 

field. Although motionally induced currents are not considered in 

the following chapters, they do merit at least a brie. mention in 

any review of induction in the oceans. An electric field, defined 

by E = V X B , is generated by the motion of the conducting 

seawater, with velocity v, across the main field of the earth, B, 

which is a dynamo process, as opposed to a magnetovariational 

process. Geomagnetic variations are not really important for this 

kind of study since even a magnetic storm, with a typical 

amplitude of a few hundred nanoteslas, is comparatively insigni-

ficant compared with the steady main field, which is of the order 

of 45,000 nT in strength. There are two main categories: tidal 
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effects and wave effects. 

Faraday, the discoverer of electromagnetic Induction, predi-

cted that sea tides could give rise to a motionally induced 

electromotive force which would be detectable across the width of 

the English Channel. This was in fact achieved by Wollaston in 

the middle of the nineteenth century and more recently by Cherry 

and Stovold (1946), who'detected correlations between the tides 

and voltage measurements on cross-channel electric cables. The 

observed potential diff9rence turned out to be smaller than that 

calculated by Barber and Longuet-Higgins (1948), who explained 

the discrepancy by postulating that return currents would flow in 

the sea floor and stated that the magnetic field of these 

pololdal currents would not be detectable ashore. 

A theoretical study of large scale ocean flow by Sanford 

(1971) showed that the effects of mutual induction between the 

motionally induced currents and the mantle became important when 

the skin depth in the mantle was much smaller than the horizontal 

scale of the flow patern, which was in accordance with the 

Larsen's (1968) conclusion that it was necessary to know the 

spatial variability of the tides before they could be used as a 

technique for geomagnetic depth sounding. 

Further work with submarine cables was done by Richards 

(1977), who detected the Sq harmonics with frequencies of 1, 2, 3 

and 4 c.p.d. in addition to three tidal dynamo harmonics with 

frequencies .928, 1.896 and 1.932 c.p.d. in his signals. The 

assumption that any night time contribution to the lunar daily 

geomagnetic variation must have had an oceanic, rather than 

Ionospheric, origin has formed the basis of a technique for 

separating this geomagnetic variation into parts with oceanic, 
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essentially tidal, and ionospheric sources (Maim, 1977). 

The initial work on the magnetic field produced by waves was 

mainly concerned with wind driven surface waves, but larger scale 

and deeper phenomena have also been studied. Fraser (1965) 

studied the effect of waves with a magnetometer mounted on the 

sea floor at a depth of 120 feet. By using the shallow water 

approximation, the Biot-Savart Law and the power spectrum of the 

waves, it was possible to obtain a close correlation between the 

observed and calculated magnetic spectra in the frequency range 

.05-.15 Hz. In the work of Weaver (1965) the magnetic fields were 

calculated with the use of an assumed velocity potential, which 

was more direct than the approach of Fraser. It was demonstrated 

that wave amplitude and wavelength were important variables in 

the analysis and that the effects of wind generated waves and 

swell could be comparable. 

The effects of longer period (1-30 minutes) internal waves 

were found to be less significant than surface waves by Beal and 

Weaver (1970), while Larsen (1971) restated the dependence on 

frequency and wavenumber in addition to self induction in the 

ocean and mutual induction in the mantle in his study of long and 

intermediate period water waves. 

While operating a magnetometer on the sea floor, Cox et al. 

(1978) detected a signal which was not correlated with the fields 

measured at a nearby land site, but which seemed to be correlated 

with the surface waves with periods twice that of the anomalous 

signal. They proposed that the mechanism for this was due to 

non-linear interactions between surface waves, travelling in 

opposite directions, resulting in motion across geomagnetic field 

lines. Such a process has also been suggested to be responsible 
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for the generation of microseisms. 

Semerskiy et al. (1978) have examined the possibility of 

detecting the wave generated magnetic field with a magnetometer 

towed by a ship, which involved taking the velocity of the 

magnetometer into account. 
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Chapter Two 

The Method for Dealing with a Finitely Conducting Mantle. 

2.1) 	All of the work, refered to in the introduction, on the 

solution of the oceanic induction problem in spherical geometry 

has been done by using a perfectly conducting shell to model the 

highly conducting regions of the mantle. (Rikitake,Ashour,Bullard 

& Parker,Hobbs,Kendall et al.) The reason for this choice of 

conductosphere is because it is easy to deal with, mathematica- 

lly. However, 	since much effort has been used to make models 

more realistic, by using a surface conductivity distribution 

resembling the real oceans, it seems reasonable that an attempt 

should be made to use a conductosphere which is more representa-

tive of the earth's conductivity. 

The perfectly conducting shell is easy to deal with because 

of the special electromagnetic boundary conditions, which have 

to be satisfied at its surface: the tangential electric field 

and the normal magnetic field must vanish. Consequently any 

a 
magnetic field induced in a perfect conductor must be exactly 180 

out of phase with the inducing field, whereas with a finite 

conductor the boundary conditions only demand continuity of the 

above mentioned fields across an interface and there is a 

quadrature, or out-of-phase, component of the induced magnetic 

field. The response of a perfect conductor can be assigned a 

purely real value, which is known analytically, while that of a 

finite conductor is complex And has to be calculated numerica-

lly, except for a few special cases, for each frequency used 

for general conductivity distributions. 

Analysis of results shows that the internal contribution 

due to induction in the conductosphere alone is greater than the 
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oceanic part, which emphasises the need to use a. realistic inner 

conductor , especially when a comparison between modelling and 

observations is to be made. As an example, the ratio of internal 

to external parts, defined at the surface of the earth (r=a), for 

a perfect conductor of radius b and an inducing field of degree n 

2M4 I 
has the value n/(n+1) (b/a .) 	. For a second order harmonic and 

if (b/a)0.9, this ratio has the value of 0.393. If a thin 

surface sheet with integrated conductivity of 16,000 S (correspo-

nding to an ocean 4 km deep) is added to the model then the ratio 

of internal to external parts can still be found analytically 

(Hobbs, 1971, eqn.18) and has the following value: (.511,14.9 ° ) 

in terms of amplitude and phase and (.494,.131) in terms of real 

and imaginary parts. 

Bullard and Parker actually suggested a method for dealing 

with a finitely conducting mantle (Bullard & Parker, p718) but 

they excused themselves for not using it by stating that it was 

mathematically rather involved. However their suggested method 

is the approach the author has elected to pursue and the 

following text should demonstrate the simplicity of the method. 

2.2) 	The Hobbs-Price surface integrals were originally 

derived by taking an implicit spherical harmonic expansion of 

the current streamline function and using potential theory 	and 

well known series of Legendre polynomials. The author however 

found it instructive to think in terms of a system equivalent to 

a current streamline function, namely a surface distribution of 
114-1 

radially oriented magnetic dipoles (Stratton,237-8). The approach 

used was to find the vertical magnetic field at the surface of 

the conductosphere, as a function of colatitude, due to a 

magnetic dipole at the surface of the earth and to perform 
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spherical harmonic analysis to find the source harmonics in this 

inducing field. The justification for this is that the theory for 

induction in a radially symmetric earth by an inducing field, 

which can be represented by a series of spherical harmonic terms, 

is well known (Rikitake, 1966,pl28-9). 

It is instructive to demonstrate that a current streamline 

function 'jJr(9,q) and a surface distribution of vertical magnetic 

dipoles, with surface density m(&,), give rise to the same 

magnetic field when the functions m and frare identical. 

Initially consider the scalar magnetic potential at a point 

P(r, 9,6) due to an elemental area dS of a dipole distribution of 

density m at the point Q(r',91,01)  (see Fig. 2.1) so that the 

potential at p is 

dcQ: 	ni(r',Q',')dS cos/RZ and B —VS2, (2.1). ,  

22 	 2 	Z 	2 

Where cosA(= (r - r' -R )/2r'R , R 	r +r' -2rr'cos 

and cose= cos 9 cos9' + sin0 sinO' cos(4). 	 (2.2) 

Therefore dS?. (/m/47T) (rcos&_r)/(r2+rt_2rr cos  O) )1'2 	(2.3) 

Accordingly the potential at the point P(r,0,0) due to a surface 

distribution of radial dipoles of moment density m(O',')/unit 

area over the spherical shell r=a is given by: 
2 r 

9= (Aa/ 1ITr)ii Cr cos-a) sin9' m (0 1 , 1 ) dO'do' 	(2.4) 
 (rt*a2 _2racos(9)'a 

00 

It is instructive to consider the case of a uniform 	dipole 

density distribution to demonstrate the relation between a dipole 

distribution and an equivalent current function. In this case let 

M0 1 ,0 1 ) = m0  (a constant ) and by spherical symmetrySa is 

independent ofO and . Without loss of generality take P on the 

axis 0=0, so thate=0'. Therefore by eqn. (2.4) 

= (/.a2'2 m /4 ) f(rcosO' -a) sine' dO' 	(2.5) 
j (ptal....jy.aco59I)1z. 
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'/2 
substituting u 	(r2  + a -2ar cose') yields: 

r-aJ 

= ( /U0 m0 / 14r)f 1 -((rt - a1 )/u2 ) du 	= (pmJ14r) I o ,ra 

The introduction of the Heaviside unit step function defined as 

H(x) = Ii , x>O 	leads to the following expression for the 
Lo 	xO 

potential: 	 _/4rn.,H(a_r) 	(2.6) 

This special case demonstrates that the magnitude of the 

discontinuity in the potential across the dipole layer at any 

point is given by the product of the permeability constant and 

the density of the distribution at that point, which is also the 

case if one is considering the potential due to a current 

function, where = 1//s (S2_) (Price, 1949, eqn 8). 

It is of greater interest to examine the magnetic fields 

of the dipole distribution rather than the potential, since the 

field is a directly measureable quantity. Only the vertical field 

(Z) will be considered here, where Z 

Accordingly the vertical field at the point P can be found 

by performing differentiation under the integral sign in eqn. 

(2. 14), but care must be taken if the point P should lie on the 

surface r=a when the kernel of the surface integral tends to a 

limit of order 1/01'as (9-40. In this case the resulting integral 

would not be uniformly convergent when 9'=9 and g$'= and the 

differentiation under the integral sign would be an invalid 

operation. 

Convergence can be secured with the aid of the example of 

the uniform dipole distribution, where (2.14) can be rewritten as: 

(/1a/14Tr)J/m(9 1 b) f(r,9, ~ ,a,9', 1 )d9 1 d' 	(2.7) 

where m has been replaced by m 	the dipole density at the 

point P and f is the integrand (excluding the factor m(Q', ') 
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in eqn. (2. 1 ). Subtracting this result from the general form of 

eqn. (2.I) yields S(r,&,)+4Qm(9,4')H(a–r) = 
IT 

- m(,)} f(r,O4,a,',4') de'd' 	(2.8) 

Differentiation under the integral sign is now permitted because 

the difference term removes the singularity at =9 and 5'=çó. 

Strictly speaking care is needed in dealing with the derivative 

of the Heaviside function at r=a otherwise a term involving the 

Dirac delta function arises but this can be prevented if the 

vertical field at r=a is redefined as Z 	lim )SL- On this 
r-a. Tr 

basis Z(r=a) 

a /47r)J I[ m(e,-  m ( 9,)} lim 	f(r,9,,a,9', 1 ) do' d' 

= 	 - m(&,)} (1+sir0/2) sin&' dO'd' 
o a 	 s a3  5Lk 

2W,r  

= _ernrffm (',') (1+sin0/2) sin d'd' + (po /L7Ta)m(9,4) 
' a3  s L ,t cf- 

00 	 (2.9) 

This final expression is equivalent to the self induction surface 

integral (Hobbs & Price, 1970, eqn. 66) as can be seen by 

substituting ifr. for rn(',#') and tfor  m (9, q5) provided allowance 

is made for the use of S.I. units and an outward vertical field 

in this presentation. It is straightforward to demonstrate that 

the limit of the derivative is the same when r—a from both 

outside and inside the shell as is required by the continuity of 

the vertical field across a dipole sheet, or equivalent current 

sheet. 

The vertical field can be found at any point not on the 

dipole shell by differentiating (2. 14) directly since the problem 

with uniform convergence does not arise when r a. In particular 

the vertical field at a point on a shell of radius b ( b a) can 

be given by: 
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Z(b,e,4 	(/AIIr) (_3ab_abcoO +2(a+ b  )cosO )m(' ,') dS' 

	

if 	(- i-b2  _aa-bcosG) /2  
(2.9a) 

=/fz (O,b) m(9' ,' )dS' It now becomes possible to derive the 

kernel of the mutual induction integral, by using the results of 

the method of images, which is easily applied to problems of 

perfect conductivity. The currents induced in a perfectly 

conducting shell (radius=b), by a magnetic dipole of strength m 

(at r=a), give rise to the same magnetic field as an image 

dipole, of strength -(b/a), at a radius of b 2  /a (Bonnevier, 

Bostrom & Rostoker,1970). 

The mutual induction integral gives the induced vertical 

field at a surface (r=a) and can be found from eqn. (2.94) by 

substituting a for b, since it is the field at the surface which 

is of interest, and b /a for a, since the sources are now 

situated at this depth. It is also necessary to multiply by a 

3 
factor of -(b/a), the comparative strength of the image dipoles. 

In this case 

R(a1  +b -2abcos 
Q)/9 

(b/a2 +a'-2b2  cos 

	

  +/a+a2)cose and-3ab-abcos 	Z  

Z(O,b)---*Z(O,a)= _(6/14 7r) (-3a bt +2(a4+b*)  cos  O_a2 	coO) 

( 
a 	b -za2bcose 	

2 10) 

This is just _(//44') times the kernel in the expression for 
'A 

in the original paper (Hobbs & Price, 1970, eqn.91). 

It is easy to find the mutual induction kernel in the case 

of a perfect conductor, because there is only a single image 

dipole, but the situation is not so simple in the case of a 

finitely conducting mantle. There is in fact a theory of complex 

images for the case of induction in a plane earth (Weaver, 1971 & 

Thomson & Weaver, 1975) but this involves making certain 



approximations and no attempt was made to apply the theory in 

spherical geometry and an alternative approach was used. 

Using the properties of the magnetic dipole provides a 

simple method of deriving the surface integral kernels for 

finding the vertical field due to self and mutual induction and 

the scalar magnetic potential but the method is not so suitable 

for finding some other kernels. Examples of the latter kind are 

the equivalent current system integral kernel (Hobbs and Dawes, 

1979, eqn. 28) and the kernel for finding the current function 

giving rise to a known vertical field (Hobbs & Price, eqn.63), 

which is used in the high frequency iterative method. 

Henceforth the angular argument in the kernel Z(e,b) is 

defined as the angle subtended at the centre of the earth by 

radii passing through the source and observation points, which 

also applies to all other kernels used. Since this is the only 

angle to appear in the expression 	for 2, it is possible to 

rewrite it as the infinite sum of Legendre polynomials: 

Z(O,b) 
=EaP  (cos  O) 	

(2.11). The coefficients acan be 

found by using the orthogonal properties of Legendre polynomials: 

(cos 0) P (cos (9) sinO dO = 2/(2n+1 ) 	(2.12) 

where 9  is the Kronecker delta symbol. 

Once the coefficients have been found, the response can be 

determined for each harmonic, and the induced vertical field can 

be expressed as an infinite Legendre series. 	There are no 

problems with convergence in the case when b4 a. 

This approach is similar to that used by Ducruix, Courtillot 

and Le Mouel (1977), who drew comparisons between results 

obtained from modelling induction due to the equatorial electro-

jet, in both plane and spherical geometries. The electrojet, in 
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the spherical case, was modelled by a line current at a height of 

100 km. above the equator, passing half-way round the earth, and 

with return currents following the meridian over the North Pole 

at the same height. This system of line currents, enclosing 	a 

quarter of a spherical shell, is of course equivalent to a 

uniform distribution of radial magnetic dipoles (or a magnetic 

double layer, in the authors' terminology ) over the same quarter 

spherical surface. 

The inducing magnetic potential at a point is then defined 

in terms of the solid angle subtended by the current loop at 

that point, which can be expressed as an infinite series of 

spherical harmonics. 

The disadvantage of this approach is that by concentrating 

on the structure of the complete source, which is implicitly 

done in using the solid angle relation, it is necessary to 

consider all spherical harmonics, zonal, tesseral and sectoral, 
1 

in the series, which involves finding (n+1)-1 coefficients for 

an nth. order analysis, although the symmetry of this electrojet 

model would actually reduce this number. It is necessary to 

calculate the effects of mutual induction after each iteration 

in the Price scheme for solving the thin sheet induction 

problem. If the approach of Ducruix et al. had been used, it 

would have been necessary to find the spherical harmonic 

coefficients of the solid angle subtended by a non-uniform 

source, the current streamline function, after each iteration, 

which would have involved considerable computation. Alternatively 

by concentrating on the field of a single dipole, it is only 

necessary to use zonal harmonics in the spherical harmonic 

analysis, because of the axial symmetry, therefore after 
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synthesising the mutual induction kernel, the basic integrals 

only need to be calculated once and, having been stored, can be 

used during every iteration. 

An alternative approach to the problem of solving the 

problem of induction in a finitely conducting spherical earth by 

an arbitrary inducing field has been used by Mareschal and 

Kisabeth (1977) to model the mid-latitude effect of substorms. 

This method involved expressing the induced field as an infinite 

series involving the inducing field and its derivatives, but the 

authors stated that the method was not suitable for high-lati-

tude studies and that the truncation of the series after only 

two terms was valid only for high frequency inducing fields. 

With these reservations in mind, it did not seem that this 

approach was suitable for solving a global problem associated 

with the diurnal geomagnetic vaiation and its harmonics. 

2.3) 	
1
Calculation of the Legendre Coefficients. 

1) Semi-analytic Method. 

The Legendre coefficients a can be found by integration: 
Tr 

a, = 2n+1 J Z(O,b) P(cos9) sin &d9 (2.13) t• 	0 

Since Z(,b)  is a rather involved algebraic function of cos9 

which does not seem to have any obvious relation to the 

generating function for Legendre polynomials, the first attempt 

to calculate the coefficients involved solving the integral of 

the product of Z(O,b)  with a single power of cos 9, rather than 

with a Legendre polynomial, which is a finite sum of powers of 

Cos 0. 

These integrals could be solved in three parts since the 

numerator of Z ( (9,b) involves three different powers of cos6' 

(namely 0,1,2).Taking the integral of the mth power of cosO 
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divided by the denominator of Z defines the following integrals: 

fo I = cos 0 sinOd9 (2.14)  
Pfl 	

(at +b_2abcos9)5h. 

	

2 	1. 

Redefining a +b =c and 2abd yields: 

I 
I = I cos 

M
OsinO d 9 fJo  (C_cfcos)W2 

and changing the variable to tc-dcosO gives: 
tcL 

: 	

fl.  
=1 fC— ! '  dt = 1 	(-1) t

Pt-5/2 
 c dt 

j 572 

c4J 	c-a 

Ij
y2 , 

cTi e following back substitutions are now made: 
i 

• 	 n.e 

c±d(a±b) , d=2ab, ca+b 2 , then 

2fl3 	21%-3 	 z 
=1 	'(m(-1) (a+b) -(a-b) 	(a 

	

') 	
1 +b ) 	(2.15) 

	

rA  (2aby"1  L.V 	fl - 3/L 

Adding together the three terms from the numerator of Z yields: 

fz (e,b) cos0sinO dO = (-3abI+2(a2 +b1 )I 1  abIm+2)  =b (2.16) 

andjZ(Ob)P , (cos9)sinO do =b (2.17) 

where P,(cosO) 	g<cosk9 (2.18) 

Only the alternate coefficients g have non-zero values, 

depeiiding on the parity of the polynomial and they can be 

calculated recursively from the expanded form of the Legendre 

polynomial: 

I 
%(z)=(2n)!z)(2n)! (z -n(n-1)z + n(n-1)(n-2)(n--3) z

'i_ 
 +...) (2.19) 

2v(V)1 	 2. 4-. (rt - 1)(vi - ) 

1%c 
(Cradshteyn & Ryzhik), where g = (2n)! (2.20) 

ii
' 	2"(vt!) 

and g-(n-k)(n-k-1) g 
n-k 

 (2.21) 
n-k-i 	•  

These calculations were perf4ned by computer 	but the 

attempt to resynthesise Z • ( 9 ,b) up to order 20 for the case 



b/a=0.875 was not very successful, which was probably due to 

careless programming when calculating the expressions given in 

eqn. (2.15). This could have been overcome by using double 

precision and taking care to avoid subtracting similarly 	sized 

quantities, but it was decided to resort to other methods. 

11) 	Full Numerical Method. 

It is possible to generate Legendre polynomials by using 

one of the many recurrence relations e.g. 

(n+1)P, 1 (cos9) -(2n+1)cosOP(cosO) +nP,(cos)=0 (2.22) 

or P 41 (cos) = ((2n+1) cos& P,,(cos9)-nP 1 (cos&))/(n+1) 	(2.23) 

Although the right hand side involves a subtraction, which 

is often the source of numerical instability, analysis shows 

that this recurrence relation is numerically stable (N.P.L., 

Modern Computing Methods,p.149), which makes it easy to calculate 

the Legendre coefficients numerically. 

A step length of 71/1024 was used in calculating the first 

fifty Legendre coefficients using Simpson's rule, which was a 

sufficiently finepartitioi, since there was excellent agreement 

between the original function and the sum of the first fifty 

terms for the case b/a 0.875. 

It -  should be stressed that it was essential to calculate 

the integrals in the angular domain, e.g. as 
tin- 

/ Z(,b) P,(cosQ) sinOd6' , rather than, having made a change of 
Jo 	 1 

variable to tcos9, as fz(t,b)P(t) dt, since the sin0 term is 
fcos 

necessary to remove the sharp peak that occurs in Z(O,b) at 

small angles, which would otherwise make it more difficult to 

obtain an accurate value of the integral numerically. 

Although the numerical method gave excellent results, 	it 

would -have --been necessary - ----to --rerun the program each time a 



different size of conductosphere 	was used; It was therefore 

still desirable to find an analytic expression. 

111) 	Full Analytic Method. 

This method makes use of the addition theorem of spherical 
1'i .11, 

harmonics 	(Hochstadt,p 149). If (0,A)  and (9' ,A') are the 
4 

coordinates of two points on the surface of a sphere 	and the 

radii passing through them subtend an angle S at the centre then: 

cosO= cos9cos9' +sinsin'cos(A-W) 	(2.24) 

and 	P(cosQ) P(cos9)P,(cos9') + 

2 \(n-m)! P(cos0)P(cos')cos m(A-A') (2.25) 

+ 
M1 

It is also helpful to use some of the analytic results from 

Hobbs and Price 	(1970), derived for the case of a current 

function represented by a single s face 	harmonic, of degree 

n, P(cos8)cosm,\, at the surface ra. The currents induced in a 

perfectly conducting shell, at radius b, give rise to a magnetic 
ra 

field, which at the surface has a vertical component given by 

2"i NA 

Z.:1 n.(n+ 1 ) (b/a) 	P(cosO)cos mA 	(2.26) 

(Hobbs & Price 1970,eqn. (1) & 	(18), the factor 4 7f, which 

appears in the original paper, is replaced by,M 0  when S.I. units 

are used ). 

Because of the boundary conditions which apply to perfect 

conductors, 'the Induced field must be equal and opposite to the 

inducing field at the radius r=b, while its value is reduced by 

an upward continuation factor of (b/a) ' at 'the surface r=a. 

Therefore If the Inducing field at r=b ,due to a unit 

radial dipole at r=a, is given by: 

Z(b,O) = 	aP, , (cos9) 	(2.26a),. 

then the induced field at the surface of the earth will have the 



i +2. 

value -(b/a) 	aP(cosO), which is equivalent to the mutual 

induction kernel K(0).  The vertical field at the 	surface due 

to mutual induction is given by integrating the product of the 

mutual induction kernel with the current streamline function 

(or equivalently, the magnetic dipole distribution ) over the 

surface of the earth. 

PK rh 	
dS = Z, 	(2.27) 

If the current function is given by one harmonic, 

P(cos )cos mA , then: 

-Z =q,n(n+1) (b/af' 1 P (Cos e')Cos mi\' (2.28) , 

(2i+J ) 

Substituting the series for K1(e)  into equation (2.27) yields: 

	

_JJZat(b/a) 	(cosE)P(cosO')cos m' dS = Z (2.29) 

By using the addition theorem (eqn. 2.25), expanding 

cos 	m(A - A' )=Cos 	cos mA '+sin mA sin mA' and using the 

orthogonality of spherical harmonics, it is possible to reduce 

the left hand side of eqn. 2.29 to: 

-a(b/a 	2(n-m)! P(cose) cos mAffrm(cos9asinOId# 
rL 	

in 	2'(fl*l)I 	 j 
focosmX' dA' 	

0 

)142. 

Hence 41 aa (b/a) 	1 P'(cos9)cos mA ZM(9,A)  (2.30) 

Substituting for Z and solving for a yields: 

a, 	J,n(n+1) (b/a 1  (2.31) 
4- 7T a 

This defines the Legendre coefficients of the vertical inducing 

field at the surface cif the conductosphere and the numerically 

determined values were in excellent agreement with the analyti-

cally derived values. 

2.4) 	Calculating the Mutual Induction Kernel. 
Pl42. 

Allowing for the upward continuation factor of (b/a) and 

using the values obtained fora, the mutual induction kernel for 



the perfect conductor can be written as: 	
3 

K(9) =_n(n+1)(b/a)"t P,(cos9) (2.32). 

This can be shown to reduce to eqn.2.10 by using the methods of 

Hobbs & Price (1970). 

Equation (2.32) incorporates the response of the conductos-

phere , which, for a perfect conductor, is given by n/(n+1). If 

the response of a general conductor is denoted by: i/e , then 

the mutual induction kernel can be written as: 

1 
K () =j (n+1) (b/a) 	i/e, P4 (cos&) (2.33) 

The only problem remaining is to calculate the response, 

i 1 /e, for a finite conductivity distribution. 

It was not strictly essential to 	calculate the Legendre 

coefficients of equation (2.26a) since it would have been 

possible to derive the mutual induction kernel for a finite 

conductor from the series form of the kernel for the perfect 

conductor by substituting i,/e,for  n/(n+1). However the calcula-

tions presented here outline the actual approach used by the 

author and show an interesting link between the approaches of 

Hobbs and Price and Ducruix •et al. to solving induction problems 

with inducing fields for which a suitable current streamline 

function can be found as a source. The calculations of Legendre 

coefficients might also be of use if a Green's function approach 

were to be used to solve the oceanic induction problem. It would 

also be required to find the source terms in the expansion of the 

field of a horizontal electric dipole in the more general problem 

in which the oceans were in contact with the mantle. 



CHAPTER THREE 

THE UNIFORM FINITELY CONDUCTING SPHERE 

3.1) 	Why a uniform sphere ? 

Although the ultimate aim was to solve the oceanic 

induction problem with a general conductosphere, albeit with the 

constraint that the conductivity distribution was a function of 

radius only, the first finitely conducting model for the mantle 

that the author chose to examine was the uniform sphere. The 

main justification for this was that this is one of the few 

models for which analytic solutions of the induction problem 

exist (Hobbs,1975). 

The solution forthe field involves modified spherical 

Bessel functions of the first kind, usually denoted by 1#1+4 t4 

where n denotes the order of the inducing field. It was more 

convenient to use a response function, i.e. the ratio of 

internal to external parts, rather than the magnetic fields 

themselves and this ratio can be found by applying the standard 

electromagnetic boundary conditions at the surface 	of the 

sphere. If the relative permeability of the sphere is taken as 

unity (as is usually the case in global induction studies), the 

ratio of internal to external parts, defined at the surface of 

the conductosphere (r=b) is given by: 

iJe 	nil -(2n+1) I .1.,(kb) 	(3.1) 
2. 

L kb 	1kb) 

where k=i ,,4 0  we- (3.2), 

is the permeability of free space,G'is the conductivity of the 

sphere and W  is the frequency of the inducing field. 

Since it was the author's intention to compare the results 

obtained with 	finitely and perfectly conducting mantles, the 

37 



38 

radius b was taken 	to be 0.875 earth radii, a radius used by 

Ashour (1971c), and the value of 	the finite conductivity was 

chosen as 1 Sm 1  . This value is approximately the appropriate 

conductivity at .875 earth radii in some global conductivity 

estimates (Banks 1972). 

3.1) 	Equation 3.1 shows that the ratio of internal to 

external parts involves the ratio of two Bessel functions, for 

which Rikitake gave the first three terms of a series expansion. 

It was possible that three terms might not have given sufficient 

accuracy for high orders, so it was necessary to calculate the 

Bessel functions themselves. 

It is convenient to make the following definition 

f Vt-(z) =fETi 	W. 

The modified spherical Bessel 	functions obey the following 

recurrence relation (Abramowitz & Stegn): 

f 1  (z)-f(z) (2n+1) z_'f(z) (3.3) 

It would 	therefore be possible in theory to generate all the 

higher order Bessel functions for any argument given that: 

f0 (z) =sinh z 	(3.4) 
2 

and 	f(z) - sinh z + cosh z (3.5) 
z' 

The recurrence relation is numerically unstable for forward 

recur .sion, since any round-off error can be considered as 

contaminati-on by modified spherical Bessel functions of the third 

kind, K 4  ,(z), which increase rapidly with increasing order and 

obey a recurrence relation similar to (3.3) 

It can be seen from tables that, for real arguments, the 

functions 	f,, decrease monotonically as the order n increases. 

This makes it possible to calculate the functions by assuming 

that f100 0, expressing the recurrence relation as a tn-diagonal 
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matrix and 	solving the system of equations for f 1  up to 

subject to the boundary values f 0  and f 100 . 

The 99x99 matrix has leading diagonal elements given by 

(2n+1)/z, while the elements on the upper and lower diagonals 

are given by +1 and -1 respectively. The elements of the right 

hand side are all zero except for f0 (z) in 'the first row. The 

solution of a tn-diagonal system of equations can be solved 

simply and accurately by computer and a trial run using real 

arguments was successful in reproducing a table of modified 
Iq 65, 

spherical Bessel functions (Abramowitz & Stegcin,p473) 	up to 
4 

order n=50, thereby ensuring the accuracy and stability of this 

method of calculation. 

The ratios of internal to external parts, calculated for 

three periods (24, 12, 8 hours), are presented in Figure 3.1) 

along with the frequency independent response of a perfect 

conductor. The imaginary parts decrease :  and the real parts 

increase as the frequency increases, as expected, because an 

increase in frequency can be thought of as being equivalent to an 

increase in conductivity. These two quantities appear as the 

product (rw in the induction equations. 

3.3) 	Calculation of the Mutual Induction Kernel. 

Once the response of the conductosphere has been found, the 

mutual induction kernel can be calculated from .eqn. (2.33): 

K,(0) =(1)a (b/a) 	(i/e) P(cose) 

In this case the term i . /e
fl. 

involves the ratio of two Bessel 
v  

functions and the series bears a 	resemblance to a series, 

involving the ratio of two Hankel 	functions, for a radio 

frequency problem (Sommerfeld,p282), for 	which there is a 

complicated analytic method, due to Watson (1918), for finding 
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the limit. Since the radius of the conductosphere has been taken 

here to be .875 earth radii, the terms (b/a) ensure the rapid 

convergence of the series for 

The kernels, calculated from 50 terms, for 24, 12, and 8 

hourly, variations are shown in Figure 3.2), together with the 

kernel for the perfect conductor with the same radius. Again the 

graph for the perfectly conducting case can be seen to act as the 

limit of the finitely conducting cases as the frequency of the 

inducing field increases. 

3.4) 	Numerical Integration of the Mutual Induction Kernel. 

The method of calculating Z () = IKM(e) i.Ji dS involves 

assuming that 0 is fairly constant over a 5 0 x5 0  tesseral element 

and numerically evaluating the integral of K(6)  over each 

tesseral element, which is the method of basic integrals (Price 

& Wilkins,1963). Originally the basic integrals were evaluated 

by Gaussian integration over the tesseral element and taking 

successively finer partitions until a certain accuracy was 

obtained (Hobbs,1971). This was a simple procedure in the case of 

the mutual induction kernel for the perfect conductor, because 

the kernel was defined as an explicit function of the angle 8 

(eqn. 2.10) 	but in the case of the finite conductor it was 

necessary to calculate 	the values of the kernel at 1/8 0  

intervals so that the values at the Gaussian integration points 

could be found by cubic interpolation. The basic integrals for 

the poles could be calculated analytically in the perfectly 

conducting case but it was easier to use interpolation followed 

by Romberg integration with the sum of the series for the 

finitely conducting conductosphere. 

It 	was possible to check the calculation of the basic 
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Figure 3.3 

Mutual Induction Kernels of the Uniform Conductosphere with a 

Conductivity of 1 Sm 1 and Radius 0.875 Earth Radii at Periods of 

24, 12 and 8 hours for Comparison with a Perfect Conductor of the 

- same size. 
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integrals by 	calculating the vertical field due to mutual 

induction by a current streamline function consisting of a 

single spherical harmonic. Obviously the induced field should 

only be represented by the same harmonic and it can be shown 

that the ratio of the induced vertical field to the current 

streamline function is given by: 

Z/ = /1.(n+1) (b/a) I /e, (3.6) 
q(+i) 

The fact that the calculated and predicted values always 

agreed to 	within 0.5, demonstrated that the mutual induction 

kernel for this particular conductosphere is a suitable function 

to have its basic integrals calculated In this way on a 5 grid. 

3.5) Discussion of Results. 

It was decided to adapt an existing program for solving the 

induction problem in a thin hemispherical shell, in which the 

conductance decreased towards the edge, with an underlying 

perfectly conducting mantle for use with the uniform finitely 

conducting mantle. This generally involved altering some of the 

subroutines to deal with complex numbers, as opposed to real 

numbers, which arose as a result of the complex response of the 

finitely conducting mantle. The configuration of the hemisphe-

rical shell and the conductosphere is shown in Figure (3.3a) and 

the colatitudinal variation of the conductance of the shell is 

shown in Figure (3..3b). 

The real and imaginary parts of the current function, total 

vertical field, external and internal vertical fields are prese-

nted in Figures (3.4a-3.41) for three inducing fields at periods 

of 24 and 12 hours, for models with either a perfectly or 

finitely conducting mantle. The main difference between the 

solutions obtained with the different mantles is that there is a 



Figure 3.a 

Configuration of the Conductosphere and the Thin Hermispherical 

Shell. 

Figure 3.5b 

Conductance of the Thin Hemispherical Shell. 
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Figures 3.4a to' 3.41 ,  

Solutions of the current function, total, external and internal 

magnetic fields obtained in the cases of a Hemispherical Ocean 

overlying Finitely and Perfectly Conducting Mantles, for different 

inducing fields at periods of 24 and 12 hours. 
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small quadrature component of the external vertical field in the 

finitely conducting case which arises from the complex response 

of this mantle to the primary inducing field. The other differe-

nces between the two models are not very distinct because a 

conductivity of 1 Sm ' is very close to perfect conductivity at the 

frequencies under consideration, but the imaginary part of the 

current function is smaller, while the real part is larger, in 

the finitely conducting case. These differences can be seen to 

decrease at the higher frequency, although this effect is more 

noticable in the real part. The calculations were performed on a 

50 
grid in both cases. 

The accuracy of the solutions was poorer near the edge of 

the hemisphere when an inducing field with a period of 12 hours 

was used. This was overcome by the use of an improvement scheme 

whereby the residual, obtained after substituting the current 

function and the internal vertical field into the original 

differential equation, was used as an inducing field to calculate 

correction terms for the current function in the vicinity of the 

edge of the hemispherical shell. The corrections were added to 

the current function directly, without using analytic continua-

tion, which was the method originally used for calculating the 

solutions of low frequency problems, and the process could be 

repeated if necessary. Although the changes to the current 

function were small, it was possible to obtain a significant 

improvement in the accuracy near the edge but it was not entirely 

clear why adding the corrections in a manner only suitable at low 

frequencies could improve the solution of a high frequency 

problem. 

It is possible that because the corrections were confined to 
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a small region near the coast, they could be represented by 

harmonics of high degree. The equation (Hobbs, 1971, eqn. 20) 

defining the limiting frequency, below which it is possible to 

use the low frequency summation, can be used to show that the 

maximum usable frequency is greater for high order inducing 

fields, like those arising from the correction terms, than for 

the low order inducing fields, e.g. the primary inducing field. 
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CHAPTER 4 

BANKS' CONDUCTIVITY MODEL 

4.1) 	Details of the Model: 

After examining the results obtained by using the finite 

conductor (with 61 S/rn) it was decided to use a conductivity 

distribution proposed by Banks (1972) to represent the earth. 

This model was the outcome of the analysis of the estimates of 

the earth's response to a P' inducing field in the frequency 
vt the 1,terature 

range 0.01 - 1 c.p.d., from all sources available at that time. 

It is possible, in 'theory, to calculate 	the conductivity 

distribution of a radially symmetric 	earth, provided the 

response is known over all frequencies, subject 	to certain 

restrictions (Bailey,1970). 

Geomagnetic variations with this spatial structure and 

frequency band are generally associated with the ring current 

and the longer period variations are known to penetrate deeper 

into the earth than the harmonics of Sq, which are studied in 

this work, although Banks claimed that his model also fitted Sq 

observations. It is therefore quite probable that some of the 

deeper structure in this model has no effect on the daily 

variation and its harmonics, with the result that it is the 

upper layers which are particularly of interest Banks' model was 

chosen in preference to that of Parker (1971) basically for the 

reason that the former had lower conductivities near the surface 

of the earth and was expected to, produce a more convergent 

mutual induction kernel. It should be stressed that the 

assumption of a radially symmetric earth is least realistic 

close to the surface because of the difference in the thickne-

sses of oceanic and continental crust. 
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The model is basically a seven layer model (see Figure 4.1) 

with the main feature being an increase in conductivity to 2 Sm' 

at a depth of 500 - 600 km., which accounts for the fact that 

values around 0.9 earth radii have been chosen for the radius of 

the perfect conductor, in earlier attempts to model the highly 

conducting mantle. 

Banks, however, did not include a conducting surface sheet, 

to model the oceans, as had been done by earlier workers in this 

field 	(Chapman & Whitehead, Lahiri & Price, et al.), so it was 

decided to see what effect would arise from the inclusion of an 

oceanic sheet. 

4.2) 	Calculation of the Response: 

Banks 	only gave the response, i, /e , for the three 

principal Sq harmonics, which meant the author had to generate 
*p - o ordar yloo 

the ratios of internal to external parts in order to calculate 

the mutual induction kernels. The published ratios however 

served as a check on the method of calculation used. 

Since Banks' model is a layered model, it was possible to 

calculate the response analytically, because, in any layer, the 

solution to the radial part of the induction equations could be 

given by a linear combination of two spherical Bessel functions. 

The functions K,.(z) would then be present, except at the 

innermost 	layer where they would have a singularity at the 

centre of the earth, 	and the coefficients of the Bessel 

functions could be found by satisfying the boundary conditions. 

at the interfaces between layers. Banks described a matrix 

method for calculating the response of a layered spherical earth 

In an earlier paper (Banks,1969), which was based on a method 

originally derived for calculating the dispersion of seismic 
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Figure 4.1 

Banks' Conducting Model 
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surface waves, but it was suspected that this method would be 

troublesome to use at high orders. In this method the boundary 

conditions at each boundary are expressed in matrix form, the 

elements of which are' defined in terms of Bessel • functions, 

and because of the numerical instability of the recurrence 

relations for some of these functions, a considerable amount of 

computation, using the method described in chapter 3, would have 

been necessary before this method of calculating the response 

could be used. It should be stated that the modulus of the 

arguments of the Bessel functions used in global induction 

studies can quite often be relatively large (sometimes of the 

order of 100) and it would probably have been acceptable to have 
1q2.2., 

used certain asymptotic expansions (Watson,chapter 7), but since 
A 

it was hoped to model general conductivity distributions 

ultimately, it was decided to resort to numerical methods. 

It is undesirable to solve the radial induction equation 

numerically, since the sharp attenuation of the magnetic field 

with depth makes it necessary to use a ve-ry short step size, but 

by expressing the ratio of internal to external parts as a 

function of the solution of the radial 	differential equation, 

and performing the appropriate substitutions, it is possible to 

derive a differential equation for calculating the 	response 

directly. This has been done by Eckhardt (1963) and results in 

the following first order, non-linear, ordinary differential 

equation: 
2 

dS = -k r(n+1){S-n] -(2n+1) S 	(4.1) 

8r 	(r.t1)rL 	r 4 1j 	r 

where Si/e, k=-i11tw5, n is the order of the inducing field 

and r is the distance 	from the centre of the earth. It is 



interesting to note that the conductivity only appears in the 

first term on the right hand side of eqn. (4.1), while the 

second term introduces the appropriate upward and downward 

continuation factors for dealing with currents at depth, even if 

the structure contains any insulating layers. A similar equation 

for calculating the impedance of a plane earth, with layers of 

continuously varying conductivity, has been given by Abramovici 

& Chlamtac (1978). 

Eckhardt discussed the solution space of the equation in the 

original paper, but it is sufficient to state here that there 

are two possible initial conditions which can be used, when 

solving the equation numerically. It is possible to initialise 

the value of S. to n/(n+1), corresponding to a perfect 

conductor, or zero, corresponding to a perfect insulator, at any 

depth, below which one would expect the electromagnetic field to 

have penetrated, which is less restrictive than the initial 

condition used in the propagator matrix method (Banks, 1969). 
jq: o 

The quartic,Runge—Kutta method (Stark,p. 265) was chosen as a 
I' 

suitable way of finding the numerical solution, since analysis 

shows that Runge—Kutta methods are generally stable provided 

the step increment is below a critical value. By using both 

possible initial conditions (i.e. S n/(n+1), and S.  =0), it was 

possible to' check the accuracy of the numerical scheme by 

comparing the values obtained for S 	at the surface of the 

conducting sphere. 	The step length was decreased until both 

solutions coincided and any 	further reduction provided no 

further change in the solution, although the perfectly conduc- 

ting initial condition generally led to a stable solution more 

quickly. Another check on the accuracy was made by solving the 
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equation for the uniform sphere used in Chapter 3 and the 

excellent agreement between the numerical and analytic solutions 

gave assurance. of the accuracy of the numerical solution. The 

responses for the principal Sq harmonics,P,P and P , with 

periods of 24, 12 and 8 hours respectively, were the same as 

those given by Banks for his model, even although the conducti-

vities and layer thicknesses for this work had only been read 

from the graph in the original paper (Banks 1972, Figure 10). It 

is hardly surprising that it was necessary to use a smaller step 

length when the response was being calculated at higher 

frequencies. 

The ratios of internal to external parts, defined at the 

surface of the conductosphere, for Banks' conductivity structure 

are shown in Figure (4.2) for periods of 24, 12 and 8 hours and 

are compared with the response of a perfect conductor.The 

behaviour of the lower order responses is best shown by plotting 

them on a linear scale, while the higher order responses are 

better displayed on a logarithmic scale where the imaginary parts 

are greater than the real parts. At high orders both the real and 

imaginary parts increase as the frequency increases, which 

differs from the uniformly conducting case where the imaginary 

part decreased at shorter periods. This is because the conducti-

vity increases with depth in.Ba.nks' model and since the electro-

magnetic field cannot penetrate as deeply at shorter periods, a 

smaller average conductivity is being 'sampled' giving rise to a 

larger imaginary part of the response at high orders. The 

imaginary parts do decrease with increasing frequenèy at low 

orders. . . . . . 

With the 	aim of ensuring the convergence of the mutual 

48 



Figure 4.2a 

Responses of Banks' Conductivity Distribution in comparison with a 

perfect conductor on a Linear Scale. 

Figure 4,2b (overleaf) 

Responses of Banks' conductivity distribution in comparison with a 

perfect conductor on a Logarithmic Scale. 
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induction kernel, the author elected to scale down the Banks' 

conductivity model so that the radius of the conductosphere was 

.99 earth radii. This step ensured that the higher order terms 

in eqn. (2.33) were damped out by the factor (b/a) , although 

the effect on the low order terms was small. This step was 

equivalent to assigning an insulating layer to the top 1% (or 64 

km.) of the earth and if this step had not been, taken, it would 

have been necessary to postulate a thin insulating sheet beneath 

the ocean, since this approach to the oceanic induction problem 

'cannot cope with the flow of electric current between the mantle 

and the oceans. 

4.3) 	Calculation of the Kernels. 

Having calculated the responses, the mutual induction 

kernel was calculated, for a period of 24 hours, as for the 

uniform sphere but it was necessary to use a higher number of 

terms in the expansion because the convergence was slower on 

account of the larger radius of the conductosphere (.99 earth 

radii, as opposed to .875). It is strictly not sufficient to 

assume that convergence has occured once the individual terms 

have reached a small value, but for the 24 hour variation it was 

found that the in—phase part of the kernel had reached a 

limiting value after 200 terms, but. the quadrature part had still 

not converged. This was because the imaginary part of the ratio 

of internal to external parts exceeds the real part at high 

orders. 

It was simplest to check for convergence by examining the 

value of Km(6)  when 0=0; since for zero angular separation, 

P,.(cos&)1. This fact 	ensures that the set of partial sums 

approaches the limit monotonically as the successive terms are 



added, whereas it approaches the limit in an oscillatory manner 

when 0=1800 
, because P(-1)=(-1).  Because the amplitude of the 

mutual induction kernels is large at small angles and small at 

the antipodal point, the effect of truncating the series is to 

produce a large absolute error, but small percentage error, near 

0 	 - 

9 0
0 
 and vice versa near 0 180.This effect could 	easily be 

demonstrated by truncating the series for a perfect conductor, 

for which the limit is known analytically. 

It was possible to check the convergence of the series when 

0 	 0 

e=o and 	0=180 	by using techniques to accelerate the 

convergence. This 	was done in the case of 0=180by using the 

Euler transformation 	(N.P.L.,p124), in which an alternating 
4 

series can be converted into a more rapidly convergent series 

involving successive finite differences of the original series. 

The Euler transformation could not be used directly in the case 

of 6=0 0  since the terms were all of the same sign, but it is 

possible to convert a series of positive terms into an 

alternating series by applying Van Wyngaarden's transformation 

(N.P.L.,p126), and having done this, Euler's transformation was 

used. 

The technique of using a combination of the two transforma-

tions was checked by comparing the analytic value of K(0) for a 

perfect conductor of radius b, given by 2(b/(1-l)) 3  taking the 

earth's radius as unity, with the answer obtained by the double 

transformation of the first 200 terms of the original series. 

This was done for the case of b=.99 earth radii, which gave good 

agreement between the two answers, despite the fact that this 

kernel had -a very sharp spike at 0 =0: Since the response of a 

finite conductor is smaller than that of a perfect conductor 
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with the same radius, the kernels of the finite, conductor were 

better behaved and this type of analysis showed that even the 

direct sum of the first 200 terms of the imaginary part was not 

very different from that obtained by the double transformation. 

The basic integrals were therefore calculated in the same 

manner as for the uniform sphere and the accuracy of the 

numerical integration was 'checked by calculating the induced 

field due to induction by a current function consisting of a 

single harmonic. Although the real part of the induced field 

contained only the same harmonic (with the predicted amplitude), 

the values of the imaginary part were accurate near the equator 

and at mid—latitudes, but were progressively inaccurate towards 

the poles. This was the case at a period of 24 hours; higher 

periods were even less accurate in both real and imaginary 

parts. Several tests were done to try to rectify this. 

Initially it was suspected that the inaccuracy might have 

arisen from the fact that the values of the kernel, for use in 

the Gaussian integration scheme were obtained by interpolating a 

truncated series, but the same fault was observed while making 

the same test on a perfect conductor of radius .97 earth radii, 

whose mutual induction kernel is known in cicsed form. Next it 

was suspected that the calculation of the basic integrals, for 

points near the, pole, was suspect. The reason for this was that 

the Gaussian integration procedure was continued until the 

difference between successive values was less than a specified 

amount and since the area of a tesseral element is proportional 

to the sine of its colatitude, it seemed possible that if the 

absolute values of some of the basic integrals were smaller than 

the specified accuracy in the program, then the correct value 

00(i 

 
Ze 

9A I 
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would never be obtained. However using smaller accuracies and 

using the sine of the colatitude as a weight factor had no 

effect on the test. 

As a further check on the evaluation of the basic integrals 

for small angular separations, it was decided to calculate the 

induced vertical field for a single harmonic in the following 

way: 

ZA =JKm(&) (tA) dS. This was permissible because the current 

function is only uniquely determined to within an arbitrary 

constant and the effect of subtracting 	, where A is the point 

at which 	the field is to be calculated, is to place less 

emphasis on the basic integrals at nearby points, at which the 

kernel is large. This method gave the same inaccurate result as 

the original form of the test: 

Z, = J'K(0)c/idS. 
The author was therefore forced to 	the conclusion that 

kernels with such sharp peaks near O=O ° were just not suitable 

functions to have their basic integrals calculated on a 	5°  x5°  

grid. It was undesirable to switch to using a smaller grid, 

since it was hoped to apply this method of dealing with finite 

conductivity to a program for modelling the effect of the real 

0 	0 

oceans on a 5 x5 grid. It seemed possible that this problem could 

be overcome by subtracting a known analytic function from the 

kernel for Banks' conductivity model, so as to reduce the spike. 

The basic integrals of the residual could then be calculated in 

the normal fashion and the analytic function (say the mutual 

induction kernel of a perfect conductor of suitable radius ) 

could be treated by. using the methods of Hobbs (1971) for 

the singularity in the 	self induction kernel. This 
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would have involved a considerable amount of work but after 

considering the type of problem to which the method was intended 

to be applied, it was considered unnecessary to attempt it. 

Both the program for the oceanic induction problem and the 

test of the accuracy of the basic integrals were designed for 

0 	0 

calculations on a 5 x5 grid, on which terms of order greater than 

about 35 have little meaning. Consider the test for calculating 

the field induced by an arbitrary current function, with a well 

defined longitudinal variation (say cos'\), on a 5 ° x5grid, 

which comprises 37 different colatitudes and 72 separate longi-

tudes over the whole globe. Neglecting the poles, where the 

induced field must vanish, leaves 35 points at which the current 

function and the induced fie Ld are to. be specified and, these 35 

values can be uniquely defined by a series of 35 harmonics, P 1' to 

• It did not make sense to consider any harmonics of order 

higher than 35 on a 5
0 
 x5

0 
 grid and it seemed better to take only 

35 terms in the expansion for the mutual induction kernel, 

rather than take more while striving for better convergence. 

This was done for all three periods considered and the accuracy 

test for the low order harmonics was passed, although some of 

the polar values were 1 - 2% high. 

It seemed that including high order terms in 	a sharply 

peaked kernel added numerical 'noise' to the result of the 

surface integration, which was akin to the problem of aliasing 

in data analysis. 

- 4.4) 	Discussion of Results. 

Results obtained by using Banks' conductivity profile are 

compared with those calculated with the perfectly conducting 

mantle (of radius .875 earth radii) using the same hemispherical 
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Figure 4.3 

Mutual Induction Kernels for Banks' Model at periods of 24, 12 and 

8 hours in comparison with that of a perfect conductor of Radius 

0.9 Earth Radii, 
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ocean as described in Chapter 3. There are now two factors which 

influence the comparison between the two sets of solutions: the 

difference in conductivity and the difference in the radii of the 

conductospheres. The effect of the increased radius seems to be 

the dominant effect since there is a greater reduction of the 

primary field by the finitely conducting mantle, as can be seen 

in the graphs of the external field. This caiisesa decrease in 

both the real and imaginary parts of the current function and a 

corresponding decrease in the coast effect (as can be seen in the 

graphs of the total field). The differences between the two 

models are now more apparent at higher frequencies, which is the 

reverse of the situation when the uniformly conducting mantle was 

used. 



Figure 4.4a - 4.41 

Solutions of the Current Function, Total, External and Internal 

Vertical Magnetic Fields obtained in the cases of a Hemispherical 

Ocean overlying Banks' Nodel and a perfect conductor at periods of 

24 and 12 hours. 
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CHAPTER 5 

5.1) Modelling with the Real Oceans and Banks' Conductivity. 

It was decided to make alterations to an existing computer 

program for solving the oceanic induction problem, with a thin 

surface integrated conductivity resembling the distribution of 

the deep oceans over the globe, so that the perfectly conducting 

mantle could be replaced by Banks' conductivity distribution. 

The results of using the original program to model the influence 

of the oceans on Sq have been presented in a paper by Hobbs and 

Dawes (1979) and, as with the hemispherical modelling program, 

it was necessary to make changes to deal with a complex 

equation, at each stage of the Price iterative scheme, instead 

of a real equation. However further changes were essential 

-  because, having switched to solving for real and imaginary 

parts, the program now took approximately twice as long to run, 

so it was desirable to make the program more efficient. It had 

been possible to run the program for induction in a hemisphe-

rical shell on the relatively slow I.C.L. 4-75 machine, since 

the axi-symmetry of the model reduced the amount of necessary 

computation, but it was essential to switch to the faster I.C.L. 

2980 computer to deal with the basically two-dimensional problem 

of induction in the real oceans. In the hemispherical case it 

was only required to find the current function on a meridian, 

since the symmetry ensured that the longitudinal dependence of 

the solution was the same as that of the inducing field, and 

this was done by taking a finite difference approximation of the 

differential equation on a 5 0  grid. This involved reducing the 

problem to a tn-diagonal matrix equation, which could be solved 

exactly and directly. The known longitudinal dependence also 
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ensured that all the vertical 	fields, calculated by surface 

integrals, needed only to be evaluated on a single meridian. 

The finite difference approximation on a 5 0 x5 °  grid for the 

real ocean distribution involved 1406 oceanic grid points 

arranged in 76 rows with all the points in any given row having 

the same colatitude, therefore it had been decided to solve the 

resulting matrix equation by a block iterative scheme. It also 

became necessary to calculate the vertical magnetic fields on 

all the meridians, which increased this part of the calculation 

72—fold. 

It was also thought 	that much time was being used in 

reading the basic integrals from sequential character files, so 

it was decided to rerun the programs for calculating the basic 

-  integrals to enable them to be stored on direct access files, as 

had been the case while solving the hemispherical problems on 

the 4-75. 

It was also desirable to try to improve the accuracy of the 

solutions obtained, since some of the contour diagrams of the 

vertical fields showed some unexpected kinks, especially at 

higher frequencies (Hobbs & Dawes 1979, Figures 4 & 5). The 

accuracy parameter used in their paper was based on a sample of 

twenty mid—oceanic grid points where the accuracy was defined as 

the residual of the finite difference approximation divided by 

the inducing field, at that grid point, expressed as a 

percentage. It was possible to print out the accuracy parameter 

for the entire grid, where it could be seen that this definition 

of accuracy •showed *  the solution became progressively less 

accurate on approaching the nodes of the inducing field, but it 

was quite noticable that the final solution was less accurate in 



the Pacific than elsewhere. It was suspected that this was due 

to the fact that, in the block iterative scheme, the successive 

approximations of the current function were calculated over the 

bulk of the Pacific, Atlantic and Indian Oceans prior to finding 

them in the Southern Ocean, which linked the other three. 

Altering the order of the block iterative scheme made little 

difference to the accuracy parameter of the final solution, 

although it was reduced from 1.09% to 0.92% for a P. inducing 

field with a period of 24 hours, the largest inaccuracies were 

hardly diminished. 

However, by examining 	the extent to which each current 

function satisfied the partial differential equation after each 

step of the Price iterative method, it could beseen that the 

inaccuracy of the final solution in the Pacific was due to the 

propagation of the inaccuracies from each iteration. This effect 

could have been overcome simply by increasing the number of 

iterations in the block iterative scheme but this would have 

resulted in considerably longer run times, therefore it was 

decided to try to accelerate the convergence of the iterations. 

The program had, originally been written to use successive 

overrelaxation (S.O.R.) to accelerate the convergence but the 

solution was found to be unstable after a few iterations. If 

is the solution obtained after the ith iteration and Ib is the 

result obtained from the next application of the block iterative 

scheme, then the result after 1+1 full iterations, '. , is 

defined as: 

+ (1-) 	(5.1) 

where & is the acceleration parameter, or overrelaxation factor. 

This procedure is usually presented in terms of matrices 
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(Young 1 p73) but it is not universally appicable, since there 

are restrictions on the properties of the matrix operator which 

contains the finite difference approximation of the partial 
iqe 

differential equation (Young, 395 & Westlake, p82). Aitken's 
4 	 1 

method (Westlake, p83) was used in an attempt to accelerate the 
4 .  

convergence but it proved unsuccessful, presumably because the 

block iterative scheme did 	not have linear convergence. An 

attempt to program the conjugate gradient method (Szidarovsky & 

1? S 
Yakowitz,'p207), in which it was necessary to calculate the 

transpose of the finite difference scheme, also proved to be 

abortive. 

The block iterative scheme used, in which maximum use was 

made of any new values, was similar to the Gaüss-Seidel method 

of solving systems of linear equations (Westlake, 116F, p55), the 

convergence of which relies on the magnitude of the eigenvalues 

of the matrix being small. If the dominant eigenvalues comprise 

a compex-conjugate pair, then the convergence can be rather 

erratic although this can be overcome by using the so called 

V 6 
back-and-forth Gauss-Seidel method (Westlake, p56). In this 

A 

method the calculations of alternate iterations are made in 

reverse order and the iteration matrix for the double iteration 

has only real eigenvalues. It was decided to apply this idea to 

the block iterative method, in which the order of the blocks was 

reversed on alternate iterations, and although this did not 

bring about any improvement directly, it did give a stable 

solution when S.O.R. was used after each double iteration. It 

was later found that even faster convergence was obtained by 

using two similar iterations, as opposed to reversed iterations, 

between each application of S.O.R. Although an exhaustive ana- 
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lysis was not made, the best acceleration parameter, (A)opt, 

seemed to be given by the formula: 

Wopt = 2/(14(1-7)), where ,M was the ratio of successive norms 

(Westlake, p62), defined in terms of single iterations rather 

than double ones. 

This removed most of the anomalous kinks from the graphs of 

the vertical magnetic field and considerably improved the 

accuracy parameter for the same number of iterations (forty 

double iterations with S.0.R. as opposed to eighty single ones). 

For a P inducing field with a period of 24 hours and still using 

a perfect conductor to simulate the mantle, the use of the above 

method improved the sample accuracy parameter from 1.09%  to 

0.26%. The improvement brought about by using S.0.R.is shown in 

Figure 5.1, where the real part of the internal vertical field 

is plotted for a P inducing field with a period of 8 hours. The 

improvement is most easily seen in the Pacific at the equator 

and at the Antarctic coast. 

5.2) 	Potential Integrals. 

Before presenting the results obtained, it is convenient to 

-- describe the method of calculating the induced scalar magnetic 

potential, which can be numerically differentiated to yield the 

induced horizontal magnetic fields. Surface integral formulae 

for calculating- the potential from- -the current function were 

presented by Hobbs and Price (1970), where it was necessary to 

perform the calculation in two parts. The potential due to self 

induction could be calculated from equation (56), while the 

potential duetp.jnutual ..induction 	.a..perfect cDnductor, was 

defined in equation (95). Of course, just as when calculating 

the induced vertical magnetic 	field, only the method of 



Figure 5.1a 

An example of the Internal Vertical Magnetic Field obtained without 

using S.O.R. 

Figure 5.1b (overleaf) 

The same solution obtained after using S.O.R. 
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calculating the scalar potential due to mutual induction needs 

to be altered when dealing with a finite conductor. 

A comparison between equations (17) and (18) (Hobbs & 

Price,1970) shows that the coefficients in the series for the 

potential due to mutual induction are the same as those for the 

vertical magnetic field except for a factor -a/(n+1). Although 

these equations were derived for a perfectly conducting conduc-

tosphere, this ratio of the coefficients is independent of the 

nature of the conductivity. Substituting the above factor into 

equation (2.33) yields the series form of the kernel for 

calculating the induced potential: 

•1.1.( 

Pot 
	= —(/ 4o/41fa2- ) 	 n+1) (b/ a) 	P,, (cos e) 	(5.2) 

Pt 

This function is shown in Figure (5.2) for periods of 24, 12 and 8 

hours together with the kernel for a perfect conductor with 

radius 0.9 earth radii. (the earth's radius is taken as unity 

and the factor ,1C/411  is neglected.) It can be seen that the 

potential kernel is much less sharply spiked than the correspon-

ding vertical field kernel, on account of the fact that a factor 
2 

(n+1) appears in the coefficients as opposed to (n-I-i) . This 

ensured that the basic integrals could be calculated accurately. 

5.3) Discussion of Results. 

The solutions obtained with Banks' conductivity profile for 

the principal Sq harmonics are presented for comparison with the 

solutions for the model with the perfectly conducting mantle in 

Figures (5.3a-5.5n). The following functions are plotted: the 

real and imaginary parts of the current function and of the 
to .set± aL 	 tto 

internal magnetic field (denoted by PSR, PSI, ZR and zi respecti- 

vely), the real part of the total vertical field (ZRT), and the 

real and imaginary parts of the internal magnetic potential (POTR 



Figure 5.2 

Potential Kernels for Banks' Model together with that of a 

perfect conductor of Radius 0.9 Earth Radii. 
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and POTI). Each solution obtained with the perfectly conducting 

mantle Is presented immediately after the corresponding solution 

in which Banks' conductivity was used. In the captions the order 

and degree of the harmonic are given by the two numbers following 

the 'P', the period in hours by the two numbers following the 'H' 

and the 'C' or 'S' denotes that either a sine or cosine 

longitudinal dependence is being considered. 

Differences between the current functions and potentials for 

each of the two models can be seen quite easily, although they 

are not always so readily observed in the maps of the vertical 

fields at 24 and 12 hour periods. A detailed comparison of the 

two models is given in Chapter 6 but it is worthwhile to make a 

brief comment on the differences between the current functions. 

For the low frequency inducing field, 1 c.p.d., the strength of 

the imaginary part of the current function is always greater than 

the real part and replacing the perfectly conducting mantle by 

Banks' model results in an increase in the in—phase component and 

a decrease in the quadrature component. The real part exceeds the 

the imaginary part at higher frequencies and both real and 

imaginary parts are reduced when the finitely conducting mantle 

is used. 



Figures 5.3a - 5.3n 

Contour Plots of current functions, Internal and Total Vertical 

Magnetic Fields and Scalar potentials obtained using a Model of the 

real oceans to compare the effects of using Banks' Model and using 

a perfect conductor of Radius 0.9 Earth Radii. The period of the 

Inducing Field is 24 hours. 

Contour Interval of the Current Functions is 500A 

Contour Interval of the Magnetic Fields is 0.25 uT 
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Figures 5.4a - 5.4n 

As for Figures 5.3a - 5.3n but at a period of 12 hours. 
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Figures 5.5a - 5.5n 

As for Pigures 5c3a - 5.3n but at a period of 8 hours. 
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CHAPTER SIX 

Modelling Sq. 

6.1) 	Introduction. 

An attempt had been made by Hobbs and Dawes (197) to model 

the effect of the oceans on the Sq magnetovariational field, 

using an inducing field which was synthesised from the 16 major 

harmonics from the analysis of Sq during the International 

Geophysical Year (I.G.Y.) by Malin and Gupta (1977). The compa-

rison between the internal part deduced by Malin and Gupta and 

the numerical model obtained by Hobbs and Dawes, who used a 

perfectly conducting shell at 0.9 earth radii, was far from 

satisfactory, therefore it was decided to discover whether any 

improvement could be obtained by using a finitely conducting 

mantle. 

The method of comparison used by Hobbs and Dawes involved 

examining the equivalent current system which, although it has 

little physical significance, is a simple way of representing 

the internal and external current systems in a two dimensional 

manner. It is conventional to consider the equivalent current 

system to be located at the surface of the earth, even although 

the currents which comprise the Sq dynamo exist in the 

ionosphere and some of the induced currents flow at depth in the 

mantle. The definition of equivalent current system is simply the 

current streamline function at the surface of the earth which 

gives rise to a known magnetic field at the surface; it is usual 

to define separate equivalent current systems for the internal 

and external fields. 

The work of Hobbs and Dawes demonstrated that their caicu- 
tr,at 

lated strength of the equivalent current system generally ex- 
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ceeded that obtained by 	Malin and Gupta, who used spherical 

harmonic analysis to separate the Sq field into internal and 

external parts. 

6.2) 	Calculation of the Equivalent Current System. 

The equivalent current system calculated by Hobbs and Dawes 

to represent the induced currents consisted of three parts. 

Firstly there was the current streamline function, '(oceanic), 

which described the currents which had been calculated to be 

flowing in the oceans. Secondly there was a component which gave 

rise to a magnetic field equivalent to that which arose from the 

reduction of the primary field by the conductosphere, denoted by 

This part would in fact have been the equivalent current 

system for the case of induction in the con ductosphere in the 

absence of the thin oceanic sheet and had a magnitude, 

proportional to the inducing field, given by: 
21t4L 

a(2n+1) (b/a) e(6.1) 

This was the case for a perfectly conducting mantle but it could 

be reduced to the following form for the more general case of a 

finitely conducting mantle: 

I 
4/='a(2n+1) (i./e . ) (b/a) 	(6.2) 

The third component represented the 	effect of mutual 

induction between the currents in the ocean and the conductosp-

here, denoted by L'(mutual). For a single harmonic, of degree n, 

2rL4-1 
(mutual) was defined as -(b/a) 	,b( ocean ic ) for a perfectly 

conducting mantle and a new surface integral formula was derived 

to calculate 11(mutual) for a general oceanic current function 

(Hobbs & Dawes,eqn. 28). 

(mutual) = -1 J'f_b(a - b4 ) 	l./1(oceanic) dS (6.3) 

jj
a(a+ + b+2a'coser 



The kernel of this surface integral expression was obtained by 

using the methods of Hobbs and Price (1970) to find the limit of 

the following series: 

= -(1/4,7a1 ) E(2n+1)(b/a) 	P 1 (cos(9). (6.4) 

This expression reduces to the following form in the case of 

finitely conducting mantle: 

2 Pt +1 

K (e) = -( 1/4 1Ta1 )V'(2n+1)(n+1)(i,/e,i ) (b/a) P(cose). 	•(6.5) 
I__i 	n 

The equivalent current kernels for Banks' conductivity 

model, obtained by taking the first 35 terms of the series, are 

shown in the usual way along with the analytic form for the 

perfect conductor of radius 0.9 in Figure (6.1). 

It can be seen that the values of these kernels are 

relatively small, when compared with the corresponding kernels 

for the vertical field and scalar potential due to mutual 

induction, which means that the basic integrals can be calcu-

lated accurately. It is quite possible that the difficulties 

encountered in Chapter 4 with slowly convergent mutual induction 

kernels could be overcome by using the equivalent current 

surface integral to reduce the current function by the amount 

required by mutual induction and by using the self induction 

integral to find the vertical field due to self and mutual 

induction in a single calculation. This could also render the 

surface 	integral for finding the potential due to mutual 

induction redundant, 	and would therefore reduce the quota 

required when running the programs on the I.C.L. 2980 machine. 

The equivalent current system kernel is much better behaved than 

the mutual induction vertical field kernel because the factors 



Figure 6.1 

Equivalent Current Kernels for Banks' Model for comparison with a 

perfect conductor of Radius 0.9 Earth Radii. 
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involving only the order (n) in the Legendre coefficient tend to 

a limit of 2n as opposed to n2  as n tends to infinity. 

6.3) Equivalent Current System for Sq. 

In Hobbs and Dawes (1979) the Sq inducing field was 

synthesised from the sixteen, external coefficients, with the 

largest amplitudes, from the analysis of Malin and Gupta (1977), 

where originally 39 coefficients up to fourth order had been 

used. Graphs of the real and imaginary parts of the vertical 

magnetic field, after the effect of induction in the conductosp-

here alone had been considered, showed that this restriction to 

only 16 coeficients was not serious, although the fields for 

periods of 12 and 8 hours were very regular since the harmonics 

chosen had the same longitudinal variation in each case. The 

same 16 coefficients were taken in the attempt to model Sq with 

Banks' conductivity and are presented in Table (6.1). 

The equivalent current systems are presented in Figures 

(6.2a-6.2r) 	at ' Six different instants of Universal Time at four 

hourly intervals (4kU.T. to 24U.T.) for three separate cases: 

modelling with Banks' conductivity, modelling with the perfect 

conductor and the 39 internal coefficients of Malin and Gupta. 

Hobbs and Dawes demonstrated that the results of the model 

could give the right magnitude for the current vortices at 161-, 

U.T. but the calculated values at 20kU.T. were too large, which 

also seems to be the case when modelling with Banks' conducti-

vity. The calculated vortices appear to have the same magnitude 

as those of Malin and Gupta at 4, 8, 16 and 24 hours U.T. but 

are too strong at 12 and 20 hours U.T. It can also be seen that 

the strength of the vortices predicted by using Banks' model are 

stronger than those obtained with a perfect conductor of radius 



EXTERNAL COEFFICIENTS FOR SQ HARMONICS. 

Values in nanoteslas as in Hobbs and Dawes (1979). 

n in Period Re(cos) Iin(cos) Re(sin) Im(sin) 

1 1 24 0.49 2.96 -4.73 0.93 

2 0 24 -0.17 4.30 0.00 0.00 

2 1 24 11.72 0.53 -1.29 9.72 

3 0 24 1.30 -2.27 0.00 0.00 

4 1 24 -2.57 0.51 -0.35 -2.33 

2 2 12 1.00 -2.07 2.03 0.69 

3 2 12 -5.23 -1.74 2.13 -5.09 

3 3 8 -1.39 0.67 -0.61 -1.04 

4 3 8 1.65 1.52 -1.68 1.60 

Table 6.1 



Pigures 6.2a - 6,2r 

Equivalent Current Systems obtained with Banks' Model and a. 

perfect conductor for comparison with those computed by Malin and 

Gupta at 4,802 2 16,20 and 24 hours U.T. 

Contour Interval is 20KA. 
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0.9 earth radii at 8, 12, 20 and 24 hours U.T. This is in spite 

of the fact that some of the current streamline functions for 

individual harmonics, as shown in chapter 5, were smaller in 

strength when Banks' conductivity replaced the perfect conductor 

to simulate the mantle, which suggests that induction in the 

conductosphere is the dominant process as opposed to oceanic 

induction. 

One criticism of comparing the observed and 	calculated 

equivalent current systems is that the one synthesised from 

Mali's 39 coefficients only contains terms up to fourth order, 

while the calculated systems must contain higher order harmo-

nics, which are present because the complexity of the oceanic 

distribution introduces harmonics not present in the source field 

into the solution. .However filtering the calculated equivalent 

current systems did not bring about any significant improvement 

in the comparison between modelling and observations. 

Although the comparisons 	between the equivalent current 

systems seemed to be far from 	favourable, this analysis is 

rather subjective and it was decided 	to examine a more 

quantitative analysis. 

6.4) 	Spherical Harmonic Analysis. 

It was decided to do spherical harmonic analysis on the 

solutions so that it would be possible to calculate the ratio of 

internal to external parts of the magnetic potential. Since the 

equivalent current system is a way of representing the complete 

induced currents, its real and imaginary parts were subjected to 

spherical harmonic analysis at each period and the coefficients 

were converted from current streamline units to potential units 

by multiplying by a factor n/(2n+l). The external part was taken 



as the appropriate coefficient from the analysis of Malin and 

Gupta so that the ratio could be taken. 

The spherical harmonic analysis was formulated as a least 

squares problem, which was not strictly necessary since the 

orthogonality of associated Legendre functions is practically 

obeyed even when the numerical surface integrations were 

0 0 

performed on a 5 x5 grid. It was possible to make the analysis 

up to sixth-order (a maximum of 49 coefficients, including a 

monopole) and the off diagonal terms of the normal equations 

matrix were always at least two orders of magnitude smaller than 

the diagonal terms. The least squares matrix approach was chosen 

for the analysis on the .5
0 
 x5

0 
 grid since it was hoped that the 

program could easily be converted for making the analysis using 

data only from the locations of geomagnetic observatories, when 

it would no longer be possible to use orthogonality on account 

of the irregular distribution. 

The results of the spherical harmonic analysis for the three 

principal Sq harmonics are presented in Table (6.2), in terms of 

amplitude and phase, for modelling with both the perfect 

conductor and Banks' conductivity distribution together with the 

observed values from Banks (1972). The responses obtained with 

the conductosphere alone are also. presented since they were 

known analytically and served as a check on the spherical 

harmonic analysis. There are two responses given for each 

harmonic in the cases of the models with the real oceanic 

distribution, because it is to be expected that a harmonic with 

a cosine longitudinal dependence would have a different response 

from the equivalent harmonic which varied as the sine of the 

longitude due to the fact that the oceans are not distributed 

UI 



RATIOS OF INTERNAL TO EXTERNAL PARTS. 

Inner conductor 	Real Oceans 	Uniform 	Uniform 

only 	 added 	4 km. ocean 1 km. ocean 

Perfect conductor 

	

24 hr .393, 0. 	.431, 16.2 	.511 9  14.9 	.406, 7.1 

.456, 6.5 

	

12 hr .359, 0. 	.529, 15.5 	.649 30  16.7 	.418, 16.8 

.480, 20.5 

P 	8 hr .310, 0. 	.559, 16.5 	.723, 16.2 	.445, 25.3 

.550, 17.4 

Banks' conductivity 

24 hr .398, 7.8 .462 2  14.8 	.542, 	15.1 

.449, 8.1 

P 
2. 

12 hr .422, 12.7 .559, 12.2 	.665, 	14.4 

.545, 15.1 

P 8 hr .384, 16.4 
P+ 

.599, 13.9 	.733 2 	14.4 

.598, 14.3 

Banks' observations 

24 hr .376, 12.4 

12 hr .442, 14.6 

8 hr .433, 15.3 

Table ° G.2. 

.433, 13.9 

.506, 18.4 

.536, 23.6 



about the surface of the earth in a symmetric manner. 

It can be seen that the addition of the oceanic 	sheet 

caused a substantial increase in the amplitude of the ratio of 

Internal to external parts for both the perfectly and finitely 

conducting mantles, but the phases were smaller in the finitely 

conducting case, with only one exception, giving a better 

agreement with the observed phases. Since neither model was in 

good agreement with the amplitude observations, which were always 

on the high side, it was decided to examine the extent to which 

the response of the real oceanic distribution differed from that 

of a uniform shell representing an ocean 4km. deep. By examining 

-. 	the first three columns of Table (6.2) it can be seen that the 

amplitudes of the responses obtained by modelling with a real 

oceanic distribution fall roughly mid-way between those obtained 

with the conductosphere alone and with the uniform ocean plus 

the conductosphere. In order to achieve amplitudes which are 

comparable with the observations it was necessary to reduce the 

depth of the uniform ocean to the order of 1 km., in agreement 

with the work of Chapman and Whitehead (1922) and Jady (1974). 

6.5) 	Possible Explanations for the Lack of Agreement Between 

Calculations and Observations. 

Both of the methods employed in the previous section for 

comparing the results of modelling with observations showed that 

the amplitudesof the calculated responses were too high and it 

is essential to try to explain this state of affairs. 

Since it has been shown that it is the field induced in the 

conductosphere that is the predominant fraction of the internal 

field, it is possible that the combination of Banks' model with 

the oceanic sheet is too highly conducting. Banks' model was 



proposed as a radially symmetric model of the whole earth and it 

is probably unreasonable to expect to get a better comparison 

between calculations and observations simply by adding the 

equivalent of 4 km. of highly conducting ocean at the surface of 

the earth. 

The surface conductivity in Banks' model was given as 0.01 

-1 
Sm, and although this is low by some geophysical standards, even 

lower conductivities have been proposed for some parts of the 

earth's crust (Jones and Hutton, 1979). However since roughly 70% 

of the earth is covered by the oceans, it is really the 

conductivity of the oceanic crust and upper mantle which is of 

interest here, but according to Cox (1978), suboceanic conducti-

vities are not at all well established. The author has been 

unable to trace any global conductivity profile more recent than 

Banks' 1972 model and, although regional studies often indicate 

the existence of more highly resistive zones, it is dangerous to 

assume that these are representative of the earth as a.whole. On 

the basis of the results pesented in the previous section, the 

author would recommend that the surface conductivities be 

reduced, perhaps by an order of magnitude, in any future attempts 

to model the oceanic induction problem. 

The problem of near surface conductivities is even more 

important when the validity of having the oceans decoupled from 

the mantle is questioned. In order to be able to use Price's 

equation for induction in a thin sheet and the surface integral 

formulae, it is essential to inhibit any flow of electrical 

current between the oceans and the mantle. This implies that the 

induction is driven only by the vertical component of the 

magnetic field, which is a process called unimodal induction. Any 



complete solution of the oceanic induction problem must allow 

for bimodal induction, when currents can flow between the oceans 

and the mantle and the horizontal fields aquire a new importa-

nce, however it would be necessary to adapt the work of Vasseur 

and Weidelt (1977) or Dawson and Weaver (1979) for use in 

spherical geometry before it would be possible to predict the 

effect of bimodal induction. 

A possible defect of the model used is that the calcula- 

0 	0 
tions were 	performed on a 5 x5 grid. Examination of the 

accuracy parameter over the entire grid demonstrated that a grid 

interval of 5 0  could yield an accurate solution of the finite 

-  difference equations for tesseral and sectoral harmonic inducing 

fields, but the accuracy was poorer when the Inducing field was a 

zonal harmonic. This was largely because a zonal harmonic 

inducing field tends to produce a large global circulation of 

current and a finite difference scheme with only one grid point 

between Tierra del Fuego and Antarctica is obviously too coarse 

to cope with a large circum-global flow. Global ciculation 

current is less pronouced when the inducing field is a tesseral 

or sectoral harmonic, as opposed to zonal, because the primary 

magnetic flux through the near-spherical cap of Antarctica is 

almost zero, and in accordance with Faraday's Law, there can only 

be a very small net circulation of current around this particular 

land mass. 

An additional obvious defect of the model is that there are 

only two separate land masses: Antarctica and the rest of the 

world, which may force unrealistic constraints on the circula-

tion of current. However the preliminary results of Beamish et 

al. (1979) demonstrated that, although separating Australia from 



South-East Asia changed some of the flow patterns, the compa-

rison between their calculations and observatory measurements 

was not improved by the modification. 

One factor that deserves a special examination is the 

extent to which the distribution of geomagnetic observatories 

affects the separation of the field into its internal 	and 

external parts, as performed by Malin and Gupta. This method of 

analysis is now quite standard, the details of which can be found 

in Maim (1973). 

It was decided that it would be instructive to compare the 

results of making a spherical harmonic analysis of the solutions, 

obtained for the effect of the oceans on Sq, using all of the 

0 

points on the 5 	grid with the results from an analysis which 

used only the values at the positions of geomagnetic observato-

ries. The spherical harmonic analysis presented at the beginning 

of this chapter was performed on the equivalent current system, 

at all grid points, to determine the internal coefficients, but 

the analysis of Hahn and Gupta required the analysis of both the 

vertical and horizontal magnetic fields, which do not vary as 

smoothly as the equivalent current system does. Programs were 

developed for the analysis of the vertical and horizontal fields 

using the entire solution and using only data from the positions 

of geomagnetic observatories, which were found by a form of 

interpolation of the full solution on the 5
0 
 grid. Since 

significant differences were found between the two different 

analyses of the vertical field, the complete field separation was 

not attempted because it was expected that any discrepancy 

between the analyses of the vertical field would be carried over 

into the field separation. It should be stressed that Hahn 

/1 



stated that the contribution of the vertical field analysis (Z 

analysis) to the internal and external coefficients was always 

greater than the contribution of the horizontal field analysis 

(X+Y analysis) (Malin, 1973, p.572). 

Both analyses were made on the total vertical field predi-

cted for Sq by using the model with the perfectly conducting 

mantle at periods of 24, 12 and 8 hours. The analysis using the 

complete grid involved the calculation of 49 coefficients (up to 

order 6), where the monopole term was included to ensure that it 

was small, while the analysis based on the observatory distribu-

tion used only the coefficients published by Malin and Gupta for 

each separate period. 

Malin and Gupta used data from 108 geomagnetic observatories 

but in this work the author used only the geographic coordinates 

of the 100 observatories used, and published, by Malin in his 

earlier work on geomagnetic tides, Hahn (1973), however it is 

unlikely that the exclusion of the extra observatories would 

have made any significant difference since most of them were in 

areas which had a high density of observatories, e.g. Japan, 

India and the western equatorial coast of South America. The 

locations of the 100 observatories are superimposed on the model 

of the oceans in Figure (6.3) 

The values of the vertical field at the observatory sites 

were found by using a finite difference approximation of the 

two-dimensional Taylor series of the field about the grid point 

nearest each observatory. If the coordinates of the observatory 

were (+f,\+S), then: Z(&+E,A+) = 

Z(6 31 A) + )z +gz + 1/2!(1 	+2 	+[~ ) +....... (6.6) 
2& 	2A 	 e 	At 



Figure 6.3 

Distribution of Geomagnetic Observatories. 
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By truncating the Taylor series after the second order terms, it 

was possible to write the finite difference scheme in terms of 

the value at the grid point (,A), closest to the observatory, 

and the values at the 8 next nearest grid points surrounding it. 

Trials with synthetic data showed that little improvement was 

brought about by using a third order Taylor series approximation, 

which involved the use of only 4 extra grid points, which brought 

the total required to 13. 

The results of the two different analyses are presented in 

Tables (6.3a - 6.3c), where the real and imaginary parts from the 

analysis of the full 5 grid are shown first, followed by the 

real nd imaginary par±sof the. equtvalent coefficient derived 

from the analysis based on the geomagnetic observatories. In the 

later case, each coefficient is immediately followed by its 

respective standard deviation, as defined in equation (25) 

(Malin, 1973): 

std. dev. = (QW r /(NM)) (6.7) 

where Q is the sum of the squares of the residuals from the least 

squares fit, W. is the appropriate diagonal term of the inverse 

of the normal equtions matrix, N is the number of data points 

(100) and N is the number of coefficients being fitted. Although 

only the harmonics whose coefficients were determined by Maim 

ad9ipta have been shown, it should be stated that eight and 

seven other coefficients had either a real or imaginary part 

greater than unity for periods of 24 and 12 hours respectively, 

in the sixth order analysis involving the entire grid. 

It can be seen that some of the coefficients from the two 

analyses are in better agreement than others, while some of the 

coefficients from the observatory analysis have standard devia- 

I., 



Spherical Harmonic Analysis of the Total Vertical Field 

Period = 24 hours 

Harmonic 
0 

5 Analysis Observatory Analysis 

Real Imag real std. dev. 	imag std. dev. 

P '  0.01 . 0.26 0.41 0.31 -0.47 0.50 

i 
P %  c -0.22 -2.01 -0.11 0.32 -3.80 0.53 

S 3.44 -0.40 5.49 0.37 -4.14 0.60 

P' 0.53 -5.57 -1.10 0.43 -6.23 0.70 

c -14.68 -2.48 -12.89 0.36 3.24 0.60 

P s 2.05 -12.41 -3.72 . 0.48 -9.13 0.79 

2. 
P c 0.14 0.21 -3.03 0.45 -1.91 0.74 

s -0.56 0.26 -0.67 0.46 1.64 0.76 

P -2.70 2.67 -2.29 0.57 3.92 0.94 

-0.06 1.01 -0.03 0.40 -1.50 0.66 

P 3  s -0.62 0.34 1.69 0.52 -2.14 0.87 

P 0.14 1.22 1.83 0.48 2.34 0.79 

1.01 1.54 1.98 0.52 -1.01 0.86 

c 5.46 1.57 3.38 0.54 0.45 0.90 

S -0.08 5.02 1.56 0.61 5.78 1.00 

Thble 	3. 



Spherical Harmonic Analysis of the Total Vertical Field 

Period = 12 hours 

Harmonic 5 Analysis Observatory Analysis 

Real Imag real std. dev. imag std. dev. 

P 0.02 0.04 1.54 0.46 2.51 0.46 

S 0.03 -0.11 -1.56 0.53 -1.36 0.53 

P c 0.35 -0.74 -3.55 0.52 -3.60 0.52 

i -0.09 -0.33 0.79 0.68 0.42 0.68 

P c -2.10 2.23 1.12 0.65 5.21 0.65 

S -2.13 -1.34 -1.84 0.66 -0.25 0.66 

P c -0.24 0.02 1.47 0.56 2.60 0.56 

j -0.08 -0.06 -0.94 0.73 -0.41 0.73 

P 
IL 

C 9.83 4.68 3.86 0.71 -3.96 0.71 

P 2. s -5.75 8.56 0.48 0.75 8.56 0.75 

C -0.20 -0.43 1.91 0.79 0.81 0.79 

s 0.40 0.44 0.77 0.75 -0.11 0.75 

C -1.16 -1.24 0.59 0.66 3.44 0.66 

S 1.36 -0.64 0.38 0.77 -0.50 0.77 

Table 6.3 b 



Period = 8 hours 

Harmonic 5° Analysis Observatory Analysis 

Real Imag real std. dev. imag std. dev. 

P2 c -0.24 0.42 1.54 0.47 0.03 0.32 

$ -0.17 0.02 -0.53 0.48 1.86 0.33 

C 3.11 -0.37 0.60 0.50 -0.04 0.34 

0.59 2.28 1.60 0.50 -0.06 0.34 

P C 0.16 0.05 -0.33 0.44 0.12 0.30 

P ,s -0.09 -0.02 1.90 0.49 -0.66 0.33 

c -1.64 -2.11 1.47 0.56 2.60 0.56 

s 2.28 -1.50 1.07 0.39 -1.37 0.26 

PI C -0.15 0.22 1.21 0.58 -0.43 0.39 

S -0.52 -0.25 -2.01 0.54 -1.24 0.37 

Ya6Je 	.3 C 



tions which are comparable, or even greater than, the magnitude 

of the estimates, with the result that little physical signifi-

cance should be placed on these values. It is more instructive to 

examine the principal harmonics for each period; P, P and P at 

periods of 24, 12 and & hours respectively, when the standard 

deviations are substantially smaller than the estimates. The real 

parts of the cosine component and the Imaginary parts of the 

sine component of the P i  harmonic were in reasonable agreement 

(to within 75% approximately) and although the other pairs agreed 

roughly in magnitude, they had opposite signs. In the case of the 

semi-diurnal harmonic, P, only the imaginary parts of the sine 

components agreed, while the estimates of the imaginary parts of 

the cosine component agreed in magnitude but not in sign. There 

was no agreement between its other coefficients. The real and 

imaginary parts of the P harmonic with a sine longitudinal 

dependence were in agreement while those of the cosine component 

had opposite sign. 

The coefficients obtained from the analysis using all the 

2522 grid points can be taken as correct because the orthogona-

lity of the associated Legendre functions is preserved even on a 

50 
 grid, at least up to sixth order, and the values of the 

estimates did not depend on which harmonics were being used in 

the analysis. The situation is quite different when the observa-

tory analysis is made, since it is necessary to reduce the 

number of coefficients to be calculated in order to find a stable 

estimate with a relatively small standard deviation. However the 

above comparisons show that use of the least squares procedure 

can still give estimates which are incorrect. 

Assuming that the results of the modelling are a correct 



representation of the effect of the oceans on Sq, then the above 

comparisons show that any spherical harmonic analysis based on 

observations at geomagnetic observatories would not yield the 

correct separation of the internal and external parts. This can 

be said, even although only the Z analysis has been performed, 

because the coefficients of the vertical field contribute more to 

the internal and external coefficients than the horizontal 

coefficients. On this basis alone, it is not surprising that the 

comparison between equivalent current systems derived from calcu-

lations and observations is poor. 

It was later decided to examine how the ratios of internal 

- to external parts, derived from the equivalent current system and 

the known external coefficients, depended on which type of 

analysis was used in their determination. The responses obtained 

from spherical harmonic analysis using all of the 
50 
 grid points 

has been shown and the observatory analysis was also attempted, 

using the sate *  interpolation scheme to calculate the equivalent 

current system at the observatories as had been used to find the 

vertical fields. The same harmonics were kept in the observatory 

analysis of the equivalent current system as had been used for Z 

and the ratios of internal to external parts for the principal Sq 

harmonics are shown in Table (6.4), along with the respective 

ratios obtained from the analysis of the complete function, in 

terms of amplitude and phase. 

The main difference between the two analyses is that the 

amplitudes obtained from the observatory analysis are always 

smaller than the corresponding amplitudes derived from the full 

analysis. This is observed in the two models considered, with 

either a perfectly or finitely conducting mantle, and although 



Perfect conductor Full Analysis Observatory Analysis 

24 hr .431, 16.2 .416, 9.9 

.456 9  6.5 .419, 0.6 

P3  12 hr .529, 15.5 .372 9, 8.0 

.480, 20.5 .395 1.8 

3 
P4  8 hr .559, 16.5 .421, 10.8 

.550, 17.4 .346 8.2 

Banks' conductivity 

2. 
24 hr .462, 14.8 .438 3, 10.5 

.449, 8.1 .408 10  6.6 

12 hr .559, 12.2 .441, 12.8 

.545, 15.1 .426, 10.5 

P 8 hr .599, 13.9 .536, 18.7 
4- 

.598, 14.3 .459 3, 20.1. 

Table 	'-1- 



there are also large differences between the phases, the observa-

tory analysis produces larger phases for the model with Banks' 

conductivity profile than for the model with the perfect conduc-

tor, which is generally the opposite of what is found from the 

analysis of the whole grid. The similarity in the amplitude and 

phase of the sine and cosine components of each harmonic, which 

is observable in the results from the full analysis, is no longer 

as close, which tends to suggest that any difference observed in 

the responses of these components is due to the distribution of 

observatories to a greater extent than it is to the surface 

conductivity distribution. 

It should be stated that when synthetic data, containing 

only a few known spherical harmonics, were subjected to the 

observatory analysis, it was possible to obtain the correct 

coefficients, including zero where appropriate, provided all of 

the harmonics that were known to be present were included in the 

analysis. This, together with the above observations, bears out 

the work of Lowes (1978), who stated that the presence of higher 

order harmonics, not included in an analysis, results in errors 

in the estimates of the coefficients and that it is impossible to 

predict the magnitude of the errors by any 'internal goodness of 

fit'. This is analagous to the problem of leakage, or aliasing in 

the one-dimensional problem of time series analysis, where it is 

essential to filter out all frequencies higher than half the 

sampling frequency. 

The large number and regular spacing of the grid points 

ensured that the analysis using all of the data was not subject 

to the problem of leakage and, as has already been stated, the 

values of the coefficients obtained did not depend on which other 
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harmonics were present in the analysis. It was possible to check 

this by the alternative means of surface integral filtering. 

By constructing surface integral kernels of the form: 

Kç (ke) = 1 /4IrYj 2n+1 ) P, (cos &) 	(6.8) 

where k= 4,5 or 6, and calculating the basic integrals, it was 

possible to do low-pass filtering on any function defined on a 5 °  

grid by evaluting the surface integral of the product of the 

function with the filter kernel at each grid point. The value of 

the cut-off depended on the value chosen for k. The fact that 

this method gave the same result as the resynthesis of the 

function after spherical harmonic analysis, up to the appropriate 

order, had been done was further evidence that no leakage 

occurred. 

The surface integral filter used much more c.p.u. time on 

the computer than spherical harmonic analysis, therefore it was 

not used once it was discovered that it was not necessary to do 

any filtering before calculating the coefficients, as is the 

practice in time series analysis. The analogy with some methods 

of time series analysis can be continued by way of the fact that 

the calculation of the type of surface integral in this work is 

the convolution of two functions over the surface of a sphere 

(e.g. the convolution of a current function with a mutual 

induction kernel) while spherical harmonic analysis is an 

operation in the spatial frequency domain. 
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