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Abstract 

This thesis investigates the design of fault tolerant and fault secure (FTFS) 

systems within the framework of silicon compilation. Automatic design modi- 

fication is used to introduce FTFS characteristics into a design. A taxonomy 

of FTFS techniques is introduced and is used to identify a number of features 

which an "automatic design for FTFS" system should exhibit. 

A silicon compilation system, Chip Churn 2 (CC2), has been implemented 

and has been used to demonstrate the feasibility of automatic design of FTFS 

systems. The CC2 system provides a design language, simulation facilities and 

a back-end able to produce CMOS VLSI designs. A number of FTFS design 

methods have been implemented within the CC2 environment; these methods 

range from triple modular redundancy to concurrent parity code checking. The 

FTFS design methods can be applied automatically to general designs in order 

to realise them as FTFS systems. 

A number of example designs are presented; these are used to illustrate 

the FTFS modification techniques which have been implemented. Area results 

for CMOS devices are presented; this allows the modification methods to be 

compared. A number of problems arising from the methods are highlighted and 

some solutions suggested. 



Table of Contents 

1. Introduction 14 

1.1 Critical Systems . . . . . . . . . . . . . . . . . . . . . . . . 14 

1.2 Trust . . . .. . . . . . . .. . . . . . . . . .. . . . . . . . . . .. 15 

1.3 VLSI Design . .................... .. ...... 16 

1.4 Rationale . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 

1.5 Chapter Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 

1.5.1 Chapter l . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 

1.5.2 Chapter 2 . . . . . . . . . . . . . . . . . . . .. . . . . . . 19 

1.5.3 Chapter 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 

1.5.4 Chapter 4 . .. . . . . . . . . . . 
... 

. . . . . . . . . . . . 19 

1.5.5 Chapter 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 

1.5.6 Chapter 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 

1.5.7 Chapter 7 . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 

2. Testing and Reliability 21 

2.1 Test and Testability . . . . . . . . . . . . . . . . . . . . . . . . . 21 

2.1.1 What Causes Faults ? . . . . . . . . . . . . . . . . . . . . 21 

2.1.2 The Problem .. .. . . . . . . . . . . . . . . . . . . .. . 22 

1 



Table of Contents 2 

2.1.3 Verification versus Confidence . . . . . . . . . . . . . . . . 24 

2.1.4 Design For Testability . . . . . . . . . . . . . . . . . . . . 24 

2.1.5 Test Patterns and Expected Results . . . . . . . .. . . . 27 

2.1.6 Built In Self-Test (BIST) . . . . . . . . . . . . . . . . . . 28 

2.1.7 Automation . . . . . . . . . . . . . . . . . . . . . . . . . . 29 

2.1.8 Programmable Logic Arrays (PLAs) . . . . . . . . . . . . 29 

2.1.9 Limitations of Static Test Methods . . . . . . . . . . . . . 31 

2.2 Reliability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 

2.2.1 What is required ? . . . . . . . . . . . . . . . . . . . . 32 

2.2.2 Hardware Redundancy . . . . . . . . . . . . . . . . . . . . 33 

2.2.3 Information Redundancy . . . . . . . . . . . . . . . . . . 34 

2.2.4 Codes and Coding . . . . . . . . . . . . . . . . . . . . . . 34 

2.2.5 Totally Self-Checking Checkers . . . . . . . . . . . . . . . 40 

2.2.6 Systemic Approaches . . . . . . . . . . . . . . . . . . . . . 40 

2.2.7 General Approaches . . . . . . . . . . . . . . . . . . . . 40 

2.3 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 

3. Form versus Function 42 

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 

3.1.1 Function (or What It Does) . . . . . . . . . . . . . . . . . 44 

3.1.2 Structure (or How It Does It) . . . . . . . . . . . . . . . . 44 

3.1.3 Purity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 

3.2 Fault Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 

3.3 Classification . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 



Table of Contents 3 

3.3.1 Structure and Function . . . . . . . . . . . . . . . . . . . 47 

3.3.2 Local and Global Modification . . . . . . . . . . . . . . . 48 

3.3.3 Additive and Adaptive Modifications . . . . . . . . . . . . 48 

3.3.4 Time and Area Critical Methods . . . . . . . . . . . . . . 49 

3.3.5 Where to Test . . . . . . . . . . . . . . . . . . . . . . . . 49 

3.4 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 

3.4.1 NMR ............................. 51 

3.4.2 State Coding . . . . . . . . . . . . . . . . . . . . . . . . . 52 

3.4.3 Mixing Functional and Structural Modification . . . . . . 54 

3.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 

4. The Chip Churn Design Tools 57 

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 

4.2 Basics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 

4.3 Chip Churn . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 

4.3.1 Design Representation . . . . . . . . . . . . . . . . . . . . 60 

4.3.2 Validation Tools . . . . . . . . . . . . . . . . . . . . . . 60 

4.3.3 Artwork Generation . . . . . . . . . . . . . . . . . . . . . 62 

4.3.4 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 

4.4 Chip Churn 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 

4.4.1 The CC2 Language . . . . . . . . . . . . . . . . . . . . . . 64 

4.4.2 Other Features . . . . . . . . . . . . . . . . . . . . . . . . 69 

4.4.3 Language Example . . . . . . . . . . . . . . . . . . . . . . 72 

4.4.4 Technology Independent Intermediate Format . .. . . . . 73 



Table of Contents 4 

4.5 Design Validation . . . . . . . . . . . . . . . . . . . . . . . . 75 

4.5.1 Timing Model . . . . . . . . . . . . . . . . . . . . . . . . 76 

4.5.2 Simulation Model . . . . . . . . . . . . . . . . . . . . . . . 77 

4.5.3 Simulator Interfaces . . . . . . . . . . . . . . . . . . . . . 80 

4.6 Artwork Generation . . . . . . . . . . . . . . . . . . . . . . . . 80 

4.6.1 CC2 Optimisations . . . . . . . . . . . . . . . . . . . . . 80 

4.6.2 Function Partitioning . . . . . . . . . . . . . . . . . . . . 83 

4.6.3 CC2 Back-Ends . ... ..... . . ...... ... .... 84 

4.6.4 Elgar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 

4.6.5 Bend . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 

4.6.6 Bes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94 

4.6.7 Example . . . . . . . . . .. . . .. . . . . . .. . . . . . . 94 

4.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96 

5. Modification Techniques 97 

5.1 Functional Modification . . . . . . . . . . . . . . . . . . . . . . . 98 

5.1.1 Links . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 

5.1.2 Functional Fault Security . . . . . . . . . . . . . . . . . . 99 

5.1.3 Functional Fault Tolerance . . . . . . . . . . . . . . . . . 101 

5.1.4 State Variable Tolerance . . . . . . . . . . . . . . . . . . . 101 

5.1.5 Function Overhead . . . . . . . . . . . . . . . . . . . . . . 102 

5.2 Structural Modification . . . . . . . . . . . . . . . . . . . . . . . 102 

5.2.1 Structural Parity . . . . . . . . . . . . . . . . . . . . . . . 104 

5.2.2 NMR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104 



Table of Contents 5 

5.2.3 Lala Scheme . . . . . . . . . . . . . . . . . . . . . . . . . 104 

5.3 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105 

5.3.1 What are the outputs ? . . . . . . . . . . . . . . . . . . 105 

5.3.2 Drain Modification Problems . . . . . . . . . . . .. . . . 107 

5.3.3 Function Inversion . . . . . . . . . . . . . . . . . . . . . . 110 

5.4 Worked Example . . . . . . . . . . . . . . . . . . . . . . . . . . . 111 

5.4.1 The Design . . . . . . . . . . . . . . . . . . . . . . . . . . 111 

5.4.2 Functional Modification . . . . . . . . . . . . . . . . . . . 112 

5.4.3 Functional Security . . . . . . . . . . . . . . . . . . . . . . 116 

5.4.4 Tolerant Modification . . . . . . . . . . . . . . . . . . 119 

5.4.5 State Variable Coding . . . . . . . . . . . . . . . . . . . . 120 

5.5 Structural Modification . . . . . . . . . . . . . . . . . . . . . . . 122 

5.5.1 Structural Parity . . . . . . . . . . . . . . . . . . . . . . . 122 

5.5.2 NMR and the Lala Scheme . . . . . . . . . . . . . . . . . 123 

5.5.3 Alternative Valid Signals . . . . . . . . . . . . . . . . . . 124 

6. Examples 125 

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125 

6.2 8-Bit Adder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126 

6.3 Bitonic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126 

6.4 Euclid's Algorithm. . . . . . . . . .. . . . . . . . . . . . . . . . 128 

6.5 Microprocessor . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130 

6.6 Instruction Format . . . . . . . . . . . . . . . . . . . . . . . . . . 131 

6.7 Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131 



Table of Contents 6 

6.8 Instruction Set . . . . . . . . . . . . . . . . . . . . . . . . . . . 131 

6.9 Micro Instructions . . . . . . . . . . . . . . . . . . . . . . . . . . 134 

6.10 Results . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . 136 

6.10.1 Possible Optimisations . . . . . . . . . . . . . . . . . . . . 137 

6.10.2 General Results . . . . . . . . . . . . . . . . . . . . . . 138 

6.10.3 Fault Coverage . . . . . . . . . . . . . . . . . . . . . . . . 143 

6.10.4 Time Overhead . . . . . . . . . . . . . . . . . . . . . . . . 144 

6.11 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147 

7. Conclusions 148 

7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148 

7.2 The Chip Churns . . . . . . . . . . . . . . .. . . . . . . . . . . . 148 

7.2.1 Language and TIIF . . . . . . . . . . . . . . . . . . . . . 149 

7.2.2 The Back-End .. . . . . .. ... . . .. .. . . .. . . . 152 

7.2.3 Elgar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153 

7.2.4 Floorplanning . . . . . . . . . . . . . . . . . . . . . . . . . 155 

7.3 System Level Design . . . . . . . . . . . . . . . . . . . . . . . . . 156 

7.4 Designer Interaction and Reasoning about Designs . . . . . . . 158 

7.5 Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158 

7.6 Testability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159 

7.7 Design Modification . . . . . . . . . . . . . . . . . . . . . . . . . 160 

7.7.1 Functional Modification . . . . . . . . . . . . . . . . . . . 160 

7.7.2 Structural Modification . . . . . . . . . . . . . . . . . . . 161 

7.7.3 General Problems . . . . . . . . . . . . . . . . . . . . . . 161 



Table of Contents 7 

7.7.4 Other Uses of Automatic Design Modification . . . . . . . 162 

7.8 And Finally ... ......... ......... ...... .. ... 163 

A. Mindless - A Channel Router 171 

A.1 Introduction . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . 171 

A.2 The Mindless Algorithm . . . . . . . . . . . . . . . . . . . . . . . 172 

A.3 Creating Geometry . . . . . . . . . . . . . . . . . . . . . . . . . . 175 

B. Mynimo 176 

B.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176 

B.2 Mynimo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ... 178 

B.2.1 Generating C . . . . . . . . . . . . . . . . . . . . . . . . . 178 

B.2.2 Selecting S . . . . . . . . . . . . . . . . . . . . . . . . . . 179 

B.2.3 Heuristics . . . 
... 179 

B.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181 

C. Wino Arrays 182 

C.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182 

C.2 Features . . . . . . . . . . . . . . 

... 

. . . . . . . . . . . . . . . . 183 

C.3 Array Composition . . . . . . . . . . . . . . . . . . . . . . . . . . 183 

C.4 Truth Tables ... .... ... ... ..... ... ..... . 184 

C.5 Totally Self-Checking Logic . ........... .. .. . .... 184 

D. Implementation Notes 186 

D.1 Language and Machines . . . . . . . . . . . . . . . . . . . . . 186 

D.2 CC2 compiler options . . . . . . . . . . . . . . . . . . . . . . . 186 



Table of Contents 8 

E. CC2 System Schematic 189 

F. Chip Churn - A PLA Based Silicon Compiler 191 

F.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191 

F.2 System Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . 192 

F.3 Testability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193 

F.4 Example .. . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . 194 

F.5 Current Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194 

F.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197 

G. Cif Plots 198 

H. The CC2 Example Source Descriptions 206 

H.1 The 8-Bit Adder . .... .... ............ . ..... 206 

H.2 The Bitonic Sorter . . . . . . . . . . . . . . . . . . . . . . . . . . 207 

H.3 Euclid Chip . . ... ... ............ . ..... ... . 209 

H.4 Microprocessor . . . . . . . . . . . . . . . . . . . .. . . . . . . . 214 

H.4.1 The Main Design File . . . . . . . . . . . . . . . . . . . . 214 

H.4.2 The PC register description . . . . . . . . . . . . . . . . . 222 

H.4.3 The SP register description . . . . . . . . . . . . . . . . . 224 



List of Figures 

2-1 Codes words as Cube Vertices . . . . . . . . . . . . . . . . . . . . 35 

3-1 A Taxonomy of FTFS Design Methods . . . . . . . . . . . . . .. 47 

3-2 A 111 detector . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 

3-3 A structural modification for parity checking. . . . . . . . . . . . 55 

3-4 A mixed modification for parity checking . . . . . . . . . . . .. . 56 

4-1 Stages in the Design Process . . . . . . . . . . . . . . . . . . . . 59 

4-2 A Chip Churn Description . . . . . . . . . . . . . . . . . . . . . 61 

4-3 A Truth Table File .. . ... .... .... . . .......... 61 

4-4 A CC2 combinatorial function . . . . . . . . . . . . . . . . . . . . 66 

4-5 A CC2 sequential function . . . . . . . . . . . . . . . . . . . . . . 66 

4-6 A parameterised CC2 function . . . . . . . . . . . . . . . . . . . 67 

4-7 A CC2 composition block . . . . . . . . . . . . . . . . . . . . . . 68 

4-8 Use of the Prosaic statement . . . . . . . . . . . . . . . . . . . . 72 

4-9 A CC2 example . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 

4-10 State Tree Mappings to Machine State Vector . . . . . . . . . . . 79 

4-11 Simple Composition example . . . . . . . . . . . . . . . . . . . . 79 

4-12 Function Merging Example . . . . . . . . . . . . . . . . . . . . . 82 

4-13 Building a Liszt graph . . . . . . . . . . . . . . . . . . . . . . . . 89 

9 



List of Figures 10 

4-14 A Simple Liszt Composition - Layout and Graph . . . . . . . . . 90 

4-15 A composition requiring port extension . . . . . . . . . . . . . . 91 

4-16 A CIF Plot of an Eight-bit ripple carry adder . . . . . . . . . . . 95 

5-1 Airlock System . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111 

5-2 CC2 airlock controller . . . . . . . . . . . . . . . . . . . . . . . . 113 

5-3 Airlock System . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114 

5-4 The main composition block after functional parity modification 119 

5-5 General form of structurally modified composition. . . . . . . . . 122 

5-6 The Priority replacement composition for the Parity method. . . 123 

5-7 The -Lala voter/checker composition . . . . . . . . . . . . . . . . . 124 

5-8 The Lala Priority replacement composition . . . . . . . . . . . . . 124 

6-1 A Bitonic Sorting network for 8 input values . . . . . . . . . . . 127 

6-2 Core Machine for Euclid's Algorithm . . . . . . . . . . . . . . . . 129 

6-3 CMP IO signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130 

6-4 The CMP Instruction Format . . . . . . . . . . . . . . . . . . . . 131 

6-5 The CMP Architecture . . . . . . . . . . . . . . . . . . . . . . . . 132 

B-1 Pseudo-Code for S search routine . . . . . . . . . . . . . . . . . 180 

C-1 Wino Array Full Adder . . . . . . . . . . . . . . . . . . . . . . . 
1185 

E-1 The main CC2 System Components . . . . . . . . . . . . . . . . 190 

F-1 A Chip Churn Description . . . . . . . . . . . . . . . . . . . . . . 195 

F-2 A Truth Table File . . . . . . . . . . . . . . . . . . . . . . . . . . 195 

F-3 Plot Of Chip Churn 8 bit ripple carry adder .. .. .. ..... . 196 



List of Figures 11 

G-1 The basic airlock controller device . . . . . . . . .. . . . . . . 199 

G-2 The TMR modified airlock controller device . . . . . . . . . . . . 200 

G-3 The LMR modified airlock controller device . . . . . . . . . . . . 201 

G-4 The Structural Parity modified airlock controller device . . . . . 202 

G-5 The State Variable Encoded airlock controller device . . . . . . . 203 

G-6 The Functional Parity airlock controller device . . . . . . . . . . 204 

G-7 The Functional Tolerance airlock controller device . . . . . . . . 205 



List of Tables 

3-1 "Cheap" code checking . . . . . . . . . . . . . . . . . . . . . . . . 51 

3-2 A simple coding for the FSM of figure 3-2 . . . . . . . . . . . . . 53 

3-3 Fault Tolerant coding of FSM in figure 3-2 . . . . . . . . . . . . 53 

5-1 The Non-concurrent version of the Main Control truth table . . . 117 

5-2 Main Control Truth Table modified for link 1 . . . . . . . . . . . 117 

5-3 Original Door Control Truth Table .. . . . . . . . . . . . . . . . . 118 

5-4 Door Control Truth Table Modified for link 1 . . . . . . . . . . . 118 

5-5 Tolerant Modification of Door Control Truth Table for link 1 . . 121 

5-6 Parity Modified Priority Table . . . . . . . . . . . . . . . . . . . 123 

5-7 Inverted Priority Table . . . . . . . . . . . . . . . . . . . . . . . . 124 

6-1 CMP Instruction Set . . . . . . . . . . . . . . . . . . . . . . . . . 133 

6-2 Microcode Instructions . . . . . . . . . . . . . . . . . . . . . . . 135 

6-3 "Optimised" Euclid Results . . . . . . . . . . . . . . . . . . . . . 137 

6-4 Airlock Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138 

6-5 Adder Results . . . . . . . . . . . . . . . . .. . . . . . . . . . . . 139 

6-6 Bitonic Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139 

6-7 Euclid Results . . . . . . . . . . . . . . . . . . . . . . . . . . 140 

6-8 Processor Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 140 

12 



List of Tables 13 

6-9 IN plane Logical area .. . . . . . . . . . . .. . . . . .. . . . . . 145 

6-10 OUT plane Logical area . . . . .. . . . .. . . . . . . . . . . 14 



Chapter 1 

Introduction 

1.1 Critical Systems 

Integrated circuits have influenced 20th century western civilisation almost as 

much as the harnessing of steam power affected the same civilisation one and a 

half centuries earlier. In the 20 years since their development, ICs have found 

their way into innumerable everyday items and few aspects of modern life have 

escaped the influence of the ubiquitous "micro-chip". It is now quite common for 

highly complex electronic systems to be responsible for the lives or livelihoods 

of large numbers of people. It is clear that such Critical Systems, as they will 

be called here, must be reliable. 

There are many examples of critical systems, for instance: control comput- 

ers for power stations and transport systems, such as air traffic and railways; 

commercial computers controlling on-line services such as share transactions; 

avionics systems which help to control aircraft; and medical systems such as 

pacemakers, patient monitoring equipment and life support machines. In some 

of these applications the size of the system is of secondary importance to safety, 

but in others there must be some trade-off between size and reliability. 

Though reliability is at a premium in critical systems, there are benefits to 

be gained from improving the reliability of many types of device. In fact there 

are commercial benefits to be accrued from improving the reliability of almost 

all electronic systems, from washing machines to mainframe computers. 

14 
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As integrated circuits become smaller and the complexity of VLSI devices 

increases, the trend towards "systems on silicon" accelerates. This is the process 

whereby complete electronic systems, which may once have occupied several 

printed circuit boards (PCBs), are realised as single VLSI chips or small chip 

sets. In applications where size and weight are constrained, critical systems will 

also be translated to silicon and it is therefore important to study the design of 

reliable VLSI devices. 

1.2 Trust 

If a device is to be seen as trustworthy, that is if you are going to ship it in 

a product or rely on it for your life, it must be tested in some way. Such 

"confidence" testing can take many forms, from one-off batch inspection to 

prolonged in situ evaluation. All testing is aimed at deciding whether or not a 

device is working. This thesis seeks to divide testing into two basic types: static 

and dynamic. Static tests are those tests which occur once, or infrequently, and 

do not occur during the normal operation of a device. Dynamic tests can be 

continuous or sporadic but are concurrent with the operation of a device. The 

main interest of this thesis is in dynamic testing. 

The term "reliability" has both quantitative and qualitative connotations 

and it is in the latter sense that it is used in this work. It should be noted that 

reliability is used in a more general sense here to encompass the notion of fault 

security as well as fault tolerance. 

Fault tolerant systems are capable of continuing to operate correctly in the 

presence of certain faults or types of fault. Fault secure systems behave in such 

a way that an external agency can observe whether certain types of fault have 

occurred in the system. This means that either the fault secure system can 

identify and flag faults, or that it behaves in some recognisably illegal way in 

the presence of faults. Thus fault tolerant and fault secure (FTFS) systems 

are reliable in the sense that the former can be relied upon to operate in the 
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presence of some faults, and the latter can be relied upon to indicate that they 

are faulty. 

Though the study of FTFS systems is not restricted to the area of VLSI 

device design, it is to this area that this work has been directed. It will be seen 

later that many of the results of the work can be applied to a wider range of 

implementation styles. 

1.3 VLSI Design 

Designing any type of complex electronic system is a difficult task and there are 

features of designing in silicon which further complicate matters. In particular 

the "manufacture-debug" cycle is slow and expensive. This severely limits the 

number of design iterations which are commercially feasible. The testing of 

VLSI devices can be expensive in time, effort and money. This is because of 

the difficulty of gaining access to the individual components which make up a 

VLSI device. 

Approaches to the problem of managing the complexity of VLSI design are 

as old as the problem itself. The simple expedient of employing structured 

design is now well known and widely used. By using high level languages for 

behavior ! description and abstraction, the VLSI design process can be moved 

away from the consideration of individual device elements such as gates. The 

use of CAD tools is now almost universal and it is generally accepted that the 

design of modern VLSI devices would be impossible without such tools. 

The following list indicates a few of the areas in which computers and CAD 

tools can be of use in the design of VLSI devices. 

Managing the design task. Version and source control etc. 

Synthesis systems such as sticks and mask editors. 

Checking of design and electrical rules etc. 
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Design Verification. 

Design Simulation. 

Testing e.g. test pattern generation, testability analysis etc. 

Computationally expensive tasks such as Pattern Generation for mask 

making. 

Automation, e.g. cell generation, routing, placement etc. 

Abstraction e.g. structured design and high level descriptions. 

Simplification. Reducing the total volume of knowledge required by a 

designer 

As VLSI devices become yet more complex, the sophistication of the CAD 

tools used in their design must also increase. In some senses the "ultimate" CAD 

tool is the silicon compiler. The aim of silicon compilation is no less than the 

complete automation of the design process from specification to implementation. 

Though a silicon compiler could be seen as a black box taking design spec- 

ifications in at one end and producing chips at the other, this view is neither 

realistic nor desirable in the short term. Current silicon compilers cover a range 

of the design tasks but typically do not handle those levels of design below the 

generation of artwork. The question of where certain types of checking are car- 

ried out varies from system to system; it is not unusual for design and electrical 

rule checking to be carried out on mask data for completed designs outwith a 

silicon compiler. 

Most currently available silicon compilers allow some form of manual inter- 

vention; the extent and level of this intervention varies. Designer intervention 

is a two edged sword; many systems could not operate realistically without it, 

but it is a source of potential error with which a system may not be able to 

cope. Manual intervention is used either because a designer can carry out a 
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task better than the automatic system or because a designer "knows more". 

A typical example of superior knowledge is the selective breaking of geometry 

rules in leaf cell design. 

It was claimed earlier that CAD tools could simplify the design task by 

reducing the amount of knowledge required by a designer. If a silicon compiler 

requires no manual intervention and guarantees to produce correct silicon, it 

can remove the need for a designer to acquire knowledge about some aspects of 

the design process. Such completely automatic systems can also provide access 

to VLSI devices for designers with little or no experience of VLSI design. 

It is not only the naive user who can benefit from the inherent knowledge 

built into a silicon compiler. Experienced designers can be exposed to new 

ideas, for instance in design for testability (DFT). 

1.4 Rationale 

The primary object of this study has been the investigation of fault tolerant 

and fault secure system design within the framework of silicon compilation. It 

is only within such a framework that a realistic study of automatic methods 

can be carried out. 

If a silicon compiler is to relieve the designer of some of the burden of 

knowledge, it must itself possess that knowledge which the user lacks. It must 

also be able to apply that knowledge in the design process. The problems 

of obtaining knowledge and encapsulating it within a system are aspects of 

knowledge engineering which are not addressed in this thesis. 

To be able to use knowledge not possessed by a designer, a system must 

either influence the designer, in some sense educate him, or change the char- 

acteristics of the design autonomously. For a completely automatic system, it 

must be the design which is changed, rather than the designer. 
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1.5 Chapter Outline 

1.5.1 Chapterl 

This introductory chapter has sought to show that the design of reliable VLSI 

devices is desirable for both critical systems and more mundane applications. It 

has also been suggested that the silicon compiler represents the most sophisti- 

cated approach to the design of VLSI devices. Therefore it has been decided to 

study the design of FTFS devices within the framework of silicon compilation. 

1.5.2 Chapter 2 

The next chapter will look at the general area of device testing. The object 

of this chapter is to identify existing ideas which would be suitable for auto- 

matic application. Particular note will be made of some schemes suggested for 

designing easily testable or self-testing programmable logic arrays (PLAs). 

1.5.3 Chapter 3 

The work in this chapter is intended to establish a taxonomic framework into 

which existing and suggested FTFS methods can be placed. Such a taxonomy 

provides a structure within which to carry out further investigation. It also 

indicates areas where new methods might most usefully be sought. 

1.5.4 Chapter 4 

Having identified possible methods of producing FTFS systems, and having 

decided to implement those systems automatically, it becomes necessary to 

provide an automatic design environment. Chapter 4 describes Chip Churn 2 

(CC2) which is such an environment. The history of CC2 is described, with 
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particular reference to Chip Churn, its predecessor. The main elements of CC2, 

the language, the simulator and the back-end will be covered. 

1.5.5 Chapter 5 

A number of automatic FTFS methods have been implemented within the CC2 

environment. In this chapter these methods are described and their implemen- 

tation is explained. A worked example of a simple controller design is also 

presented. 

1.5.6 Chapter 6 

This chapter presents a number of example CC2 designs and looks at how 

they can be modified automatically to become FTFS. The examples range in 

complexity from a simple 8 bit adder to a complete microprocessor. The results 

of applying automatic design modifications are presented. 

1.5.7 Chapter 7 

The final chapter highlights the important elements of this work. Many of the 

problems which have been encountered are discussed and ideas for further work 

are suggested. 



Chapter 2 

Testing and Reliability 

In the introduction, it was stated that testing was an essential "confidence 

building" exercise in the design and production of any system. This chapter 

looks at some of the existing methods of carrying out testing. It was established 

in the introduction that this work is directed towards the implementation of 

automatic design of FTFS systems. To this end, this chapter is intended to 

identify those methods which might be applicable in this area. Trends towards 

autonomous test and automatic design for testability are also of interest and 

are therefore mentioned. 

2.1 Test and Testability 

2.1.1 What Causes Faults? 

Broadly speaking there are four types of fault which can occur in VLSI devices; 

some of these faults can also occur in other types of system. The first type 

of fault is the design fault. Design faults can arise from errors in the design 

specification or faulty implementation; this can make them very difficult to 

identify. There should be no design faults in production devices but sometimes 

there are. The second type of fault is the fabrication fault. Fabrication faults 

occur during manufacture and can result from such things as badly aligned 

21 
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or damaged masks. Ideally all fabrication faults would be identified by the 

manufacturer but again not all of them are. The third class of fault is caused 

by fatigue failure; for example, PCB failure due to vibration or damage of a 

VLSI device by metal migration. A manufacturer cannot test for fatigue faults 

as they are not present when a system is "shipped". However, the manufacturer 

should have designed and tested the system so that fatigue faults are unlikely in 

the expected working environment. The final class of faults are transient faults. 

These are faults which cause no permanent damage to a system. Transient faults 

can be the most difficult to find and can be the result of faulty design, such as 

an unstable reset line, or short lived environmental effects such as radioactive 

decay or electro-magnetic pulse (EMP). 

The testing of devices, which will be discussed next, is intended to identify 

the first three classes of fault. These permanent faults should always be identi- 

fiable in a system once they have occurred. There is no sure way of testing for 

transient faults other than by monitoring the actual operation of a device. 

2.1.2 The Problem. 

All testing is designed to answer the question, "Does the device under test 

(DUT) operate as expected ?". As the complexity of the DUT increases, it 

becomes more difficult to give a categorical response to this question. In simple 

devices, exhaustive testing can be employed. In an exhaustive test every possible 

input pattern is supplied to the DUT and its outputs are compared with the 

expected outputs. In sequential logic there is the added problem of having to 

stimulate the DUT in every possible state. With complex devices containing 

sequential logic, it rapidly becomes impractical to rely on exhaustive testing. 

Exhaustive testing effectively answers the question, "Does it work ?". Be- 

yond exhaustive testing, it becomes more common only to answer the question, 

"Can any faults be found ?", the assumption being that it is simpler, or more 

practical, to find faults than it is to prove correctness. In order to be able to 

say whether any faults can be found, it is first necessary to decide which faults 
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are likely to occur and therefore which faults will be sought. In other words it 

is necessary to adopt a fault model. 

Strictly speaking a fault model is not essential and random testing could be 

carried out without one. Random testing [2] means applying randomly selected 

input patterns to the DUT and comparing the outputs with the expected re- 

sponses. However, without a notion of what faults to expect, it is difficult to 

gauge how effective random testing will be for a given DUT. 

To identify faults in a system it must be possible to stimulate a DUT in 

such a way that its response in the presence of a fault differs from its fault free 

response. If such a stimulation is impossible, the fault is undetectable. In effect 

the fault is not a fault at all, in that the DUT performs identically with or 

without it. This may seem paradoxical, but an example can be found in certain 

types of programmable logic array (PLA) where the presence or absence of a 

contact has no effect on the function realised by the PLA. 

Once the simple approaches to testing become inadequate, two characteris- 

tics of a device become important. Those characteristics are controllability and 

observability. These are, respectively, the ability to control what is going on, 

and the ability to observe what is going on. The idea of controllability goes 

beyond a simple ability to control the inputs to a functional unit; in the case of 

sequential logic it is necessary to be able to control the internal state of a unit. 

Controllability and observability are essential in fault identification testing 

because of the need to stimulate identified parts of a device. Take for example 

a DUT in which a fault model allows for a particular gate to have its output 

value stuck at 0. To test whether that fault exists, it is necessary to provide an 

input pattern to the gate which would, under fault free operation, result in a 1 

being output. In other words, it is necessary to control the inputs to the gate 

and observe the outputs from it. If the gate is buried in the middle of a piece 

of complex logic, it will be necessary to guide the required input signal through 

other gates and to observe the output as an effect on other gates. 

Controllability and observability are inherent characteristics of a device and 
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so it is essential that the testability of a device is considered during the design 

process. The need to consider the testability of systems during their design 

has given rise to the ideas which are embodied in the principles of design for 

testability (DFT). 

2.1.3 Verification versus Confidence 

It is possible to identify two separate reasons for testing. The first is verification 

testing which is used to check that a design has been implemented correctly. 

The second is confidence testing which is used to check that a particular instance 

of an implementation does not contain any faults. Confidence testing can be 

carried out once only, for example at the time of manufacture, or sporadically, 

for instance whenever a test program is run. 

As the need for verification testing is transient, verification test measures 

might, in theory, be absent from a production device. In practice it is seldom 

the case that verification and confidence testing are separated. This is because 

of the cost of design effort and fabrication. If the testability features of a design 

are to be discarded, so is the design effort that went into them. Also the cost of 

fabricating the prototypes must be written off; this is because the production 

devices will not be exactly the same as the development devices. The need for 

verification testing of individual functional units should decline as the use of 

verified cell generators and the like becomes more widespread. 

2.1.4 Design For Testability 

There are a number of papers, books and tutorial guides such as [56] and [4], 

which give a general introduction to this area. What follows is a brief outline 

of the main methods suggested for use in DFT. 
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Scan/Set Logic 

The simplest approach to improving the controllability and observability of 

a system is to add test points into the design. Ideally test points would be 

connected directly to the outside world via input/output pads. However, in 

most designs the large number of test points would make it impractical to 

connect directly to pads. In the Scan/Set logic [56] scheme, the test points are 

connected to a shift register on the device itself; this allows test data to be 

shifted in and out serially; thus reducing the number of test pads required. 

Scan Path Logic and LSSD 

The problem of controlling the internal states of sequential logic has already 

been mentioned. The problem can be reduced to one of controlling that part 

of the sequential logic which constitutes its memory. If this memory cannot 

be directly controlled, it is necessary to develop such measures as "homing 

sequences". A homing sequence is a procedure whereby a piece of sequential 

logic can be taken from any state to a known state. Clearly there are simpler 

approaches to the problem, such as incorporating a reset signal which takes the 

machine directly to a known state. However, the best possible control which 

can be obtained is the ability to set the memory elements directly; this allows 

control of the state of the sequential logic. 

Scan Path Logic [15] and Level Sensitive Scan Design (LSSD) [12] approach 

the problem of controllability and observability in essentially the same way. All 

the latches used in a design are of a special type which can be configured to 

work in one of two modes. In the first mode, the latch behaves ordinarily, but 

in the second, it can be used as an element in a shift register. The configuration 

of the latch can be carried out dynamically by the use of control signals. 

If a design is partitioned in such a way that there are latches at the inputs 

and outputs of all the main functional blocks, then the shift register composed 

of all the latches in the device allows the inputs to a block to be controlled, 
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and its outputs observed. In addition, if the latches are used as the memory 

elements of any sequential logic, the state of that logic can be controlled; this 

reduces the testability problem to one of testing combinatorial logic. 

Signature Analysis 

One problem with testing can be the volume of input and output data. To 

reduce the amount of output data that has to be processed, a number of data 

compression techniques have been developed. 

Data compression methods can be seen as mapping between a set of possible 

outputs and a smaller set of check patterns. Because the set of check patterns 

is smaller than the output set, information is lost during the mapping process. 

In effect, each check pattern has more than one output pattern mapped into it; 

this makes it possible for a faulty output to map to the same check pattern as 

its fault free equivalent. Faulty outputs which are mapped to their fault free 

equivalents will not be detected. 

Perhaps the simplest form of data compression is transition counting [23]. 

This involves keeping a running total of the number of times that the output 

stream switches between logic states. 

Signature Analysis [24] was developed as a data compression technique with 

particular application in the testing of PCB systems. The compression principle 

is based on the use of a linear feedback shift register (LFSR). Such shift registers 

can be used as pseudo-random binary sequence (PRBS) generators. With a 

suitable selection of feedback taps, such generators can be made to cycle through 

all possible internal states before repeating themselves. If an output stream is 

EXORed into a LFSR, the sequence of generated states is altered. So, if during 

a test the output stream from a DUT is fed into a LFSR, it will produce, at 

the end of the test, a value in the LFSR which represents a "signature" for the 

output stream under examination. 

Some of the mathematical properties of signature analysis are discussed in 

[14], where it is also compared with transition counting. There are two main 
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points noted in this paper, the first is that signature analysis can detect all 

single bit errors. That is to say, no two output streams which differ in only one 

bit can produce the same signature. The second result quoted in the paper is 

that as the length of the output sequence gets larger, the chance of failing to 

detect a multi-bit error tends towards : 

1 

2n 

where n is the number of registers in the LFSR. 

Syndrome Testable Design 

Another testability method which deserves note is that of syndrome testabil- 

ity [48]. The syndrome of a combinatorial logic function can be obtained by 

counting the number of is present in the output stream produced by an ex- 

haustive test of the function. The advantages of this method are that the test 

patterns are easily generated, the output method is in itself a data compression 

technique, and the expected result of the test can be calculated mathematically 

from the function of the DUT. 

2.1.5 Test Patterns and Expected Results 

Test pattern generation (TPG) for exhaustive testing is straightforward; the 

test set being made up of all the possible inputs to a system. When the aim 

of testing is the identification of faults, TPG is more problematic. The task is 

to derive a set of inputs for a device which will identify a number of possible 

faults. We have already seen that a fault model is essential to establish which 

faults are expected. Once the set of possible faults has been decided upon, the 

TPG problem is one of deciding how to feed the appropriate input patterns to 

those areas of a device where faults might occur, and then to guide the results 

to a point where they can be observed. A number of algorithms such as the 

D-algorithm [45] and PODEM [19] have been used for TPG. 
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The expected results of a test can be derived from simulation or from existing 

versions of a device which are known to contain no faults. Such "known-good" 

devices are often called gold units. 

2.1.6 Built In Self-Test (BIST) 

The use of design for testability measures is intended to produce designs which 

are controllable and observable. Even when this aim is achieved, there are still 

the problems of TPG, the application of the test patterns and the analysis of 

the results. One drawback of scan based systems is that they work serially. 

This can slow down the performance of a test, a test being the application of 

the test patterns and the collection of the output data. It may be possible to 

execute a number of tests on different blocks in parallel and some work, such 

as [8], has attempted to speed up the test process by using such parallel test 

scheduling. 

As we have seen, the primary steps in the testing process are test pattern 

generation, test pattern application and test result evaluation. The object of 

BIST [39],[32] is to move all three of these steps onto the DUT. Most of the 

current BIST techniques adopt a broadly similar approach to the problem and 

what follows is an outline of that approach. 

It would be impractical to carry out automatic TPG (ATPG) "on-chip" if 

that ATPG were based upon some sophisticated algorithm. Consequently a 

return to the use of pseudo-random and exhaustive testing has taken place. As 

we saw earlier, exhaustive testing is impractical for complex devices so for BIST 

methods to employ this kind of testing, complex designs must be partitioned 

into units which can be exhaustively tested in a reasonable amount of time. 

Not all devices are so complex that they need to be partitioned. The work 

presented in [42] used special pads capable of test pattern generation and test 

pattern compaction, in order to carry out autonomous test of complete chips. 

The particular feature of the devices discussed in [42] which make them testable 

in this way is that they are serial. 
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Scan paths can be used to partition a design but they have other uses as 

well. LFSRs can be used for data compression (signature analysis) and as 

PRBS generators. So if a device is partitioned in such a way that its inputs 

come from a set of latches, and its outputs go into a set of latches, it is possible 

to configure the former to be a PRBS generator and the latter to be a signature 

analyser. The Built In Logic Block Observer (BILBO) is an example of this 

type of special register. The PRBS generators in these scan type applications 

differ from the original signature analysis LFSRs in that they compress multi-bit 

streams rather than single bit streams. 

Once a test has been performed, the result needs to be compared with 

the expected result. This comparison can either be done ofd chip, or can be 

hardwired into the device. 

2.1.7 Automation 

Currently, aids to DFT and BIST are more common than completely auto- 

matic approaches. TMEAS [21] and CAMELOT [4] are examples of testability 

measurement programs. These are intended to provide a designer with some 

idea as to how difficult it will be to test a device. To this end they provide 

metrics or scores for parts of a design; these measures reflect the controllabil- 

ity and observability of those parts. There are knowledge based approaches 

to both testability in [1] and BIST in [28] but again, neither are integrated 

into a complete design environment. However the work described in [16] and 

[3] does attempt to automate the process of DFT and BIST within a design 

environment. 

2.1.8 Programmable Logic Arrays (PLAs) 

The PLA is possibly the most widely used and widely studied circuit idiom 

currently available to the VLSI designer. Because PLAs have a very regular 

structure and are straightforward to generate automatically, they have become 
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popular for realising arbitrary logic such as datapath controllers. The regular 

structure of the PLA and its widespread use have led to the development' of 

testability aids directed specifically at the PLA. 

In [9] Cha presented a fault model for PLAs and a TPG method for the 

model'. The design of testable PLAs has been studied in [30] and elsewhere. 

In other work such as [17] and [18] styles of PLA design which have function 

independent tests have been suggested. These projects aim to produce PLAs 

which can be tested by universal test sets, thereby reducing the TPG problem. 

The main technique employed in these papers is the addition of logic which 

allows individual bit and product lines to be stimulated. The product lines are 

controlled by a shift register and simple select lines are used to control the bit 

lines; this allows step by step checking for cross point faults. 

Self-testing of PLAs has also been studied. In [11] the AND and OR planes 

of a PLA are partitioned and each is tested by use of BILBO registers. The 

work in [20] uses the idea of function independent test sets to implement self- 

test. The PLAs are designed so that they can be tested with a very simple 

universal test set; this test set can be generated by extra logic in the PLA. 

Possibly the most interesting work from the FTFS point of view is that 

presented in [31]. This paper presents a collection of methods which can be used 

to create PLAs which carry out concurrent error detection. The main limitation 

of the work presented is that it claims only to work on non-concurrent PLAs. 

Those are PLAs in which any input pattern selects only one product term. 

This is a severe limitation as a large percentage of minimised PLAs will be 

concurrent. However methods are presented in the paper which can be applied 

to concurrent PLAs, in particular the use of two-rail code checkers to check the 

input buffer lines. Two-rail codes will be mentioned later, but the point noted 

in the paper is that the input buffers of a PLA always produce the input signal 

'A version of this TPG method was implemented for the Chip Churn system 
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and its inverse. Therefore if the buffer lines ever had the same value, an error 

would have occurred. 

2.1.9 Limitations of Static Test Methods. 

So far this chapter has shown how the growing complexity of devices has led 

to a need for more sophisticated testing methods. Yet even the most advanced 

BIST techniques are static in the sense that they perform testing outwith the 

normal operation of a device. This means that they can only be used to check a 

device at some point before normal operation begins. In systems which do not 

need to operate continuously, BIST methods could be used during idle cycles. 

Though this would provide a more consistent test coverage, it would still not 

indicate that a device was operating correctly. 

2.2 Reliability 

In the introduction to this thesis, we saw that there was a growing need to study 

the design of reliable VLSI devices. However, the need for reliable electronic 

systems is not new and a large body of work relating to reliability already exists. 

Not all of the methods popular with the implementors of reliable systems are 

applicable to VLSI devices. For instance on-line maintenance would be difficult, 

if not impossible, to implement at the chip level2. What follows is an outline 

of some of the main aspects of reliable system design as they relate to the 

development of reliable VLSI devices. 

2On line maintenance of multi-chip systems is not impossible. 
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2.2.1 What is required ? 

If a device is to be considered trustworthy, it must either be fault tolerant 

or fault secure. If a device is to be fault tolerant it must be able to exhibit 

fault-free behaviour in the presence of a fault. To do this it must either have 

enough duplicate hardware to replace that which is at fault, or it must be able 

to recreate a fault-free behaviour from a faulty one. A fault secure device must 

contain some method of differentiating between faulty and fault-free operation, 

or faulty outputs from it must be easily identified. 

Of the four types of fault described in section 2.1.1, FTFS systems should be 

able to cope with all but design faults and even some of these might be detected. 

Having said that, reasonable care in the fabrication testing of devices should 

eliminate all faults except transient ones and those fatigue failures which occur 

during the normal operation of a device. Confidence or fabrication testing of 

FTFS devices can make use of the concurrent tests being carried out by the 

devices. So FTFS devices can be tested by use of random or selective system 

excitations. 

It is fair to say that it would be impossible to make a completely FTFS 

VLSI device. This is because there are certain types of catastrophic failure 

against which it would be difficult to guard; for instance power failure or static 

discharge which resulted in device destruction. Though they may seem extreme, 

these types of disastrous faults are in some ways more difficult to avoid in VLSI 

devices than in larger systems. The size of VLSI systems makes duplication of 

such things as power supplies more expensive than for larger systems. 

It should also be noted that certain types of technology are susceptible to 

specific failures, for instance CMOS and "latch-up". If a device is to be placed 

in an environment which is hostile to a particular technology, it makes no sense 

to use that technology in the implementation of the device. A change to a less 

vulnerable technology is likely to be more valuable than an investment in FTFS 

techniques for the susceptible technology. 
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A common feature of most FTFS systems is that they should be able to 

identify if a fault has occurred and, in the case of fault tolerant systems, take 

some corrective action. Not all fault tolerant systems are fault secure as certain 

fault tolerant techniques do not rely on fault identification. In the following 

sections a number of FTFS methods will be outlined. 

2.2.2 Hardware Redundancy 

Hardware redundancy is a major technique used in the design of reliable sys- 

tems. The idea of on-line maintenance mentioned earlier is based on an ability 

to remove parts of a system without affecting its operation. This allows faulty 

units to be replaced without having to stop the whole system. To allow this 

kind of flexibility, it is necessary to have at least two working copies of any 

module which might have to be replaced. Still, the results of such efforts can 

be remarkable. The Bell ESS telephone exchange cited in [35] was designed for 

a maximum of 2 hours "down-time" in forty years, and achieved that perfor- 

mance. 

The classic example of hardware duplication is Triple Modular Redundancy 

(TMR); a specific instance of the more general N Modular Redundancy (NMR). 

The basic principle of NMR systems is to have n copies of each function and to 

"vote" on the result. An NMR system can tolerate m faults where 

n m<--1 2 

This is because there must always be a majority decision on the fault free output. 

Typically in NMR systems n is odd thus avoiding the possibility of a tied vote. 

An NMR system in which n = 2 would be fault secure to single faults. 

It should be noted that modular redundancy carries a reliability overhead 

in that there are n times as many components that might fail. So, for instance, 

the 2MR fault secure system would have a mean time to failure (MTF) of about 

half that of the equivalent simplex system. There is also a question of faults in 
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the voting mechanism - the precautions of having duplicate hardware will come 

to naught if there is a single voter and it fails. 

There are many flavours of hardware redundancy systems and not all of them 

keep duplicate hardware working in parallel. It is possible to keep redundant 

modules as "spares" to be switched in if the main unit fails. Systems which 

adopt this approach rely on error detection mechanisms to identify when a 

unit has failed and should be switched out. Voting is, conceptually at least, 

the simplest form of error detection but in the absence of operating duplicate 

hardware, other mechanisms have to be adopted. Some of these mechanisms 

will be discussed in the following section. 

2.2.3 Information Redundancy 

Probably the most widely used example of information redundancy is the error 

detecting/ correcting code. These codes have been used extensively to cope with 

data transmission through a noisy communications channel. As their name 

suggests, these codes are designed to deal with errors rather than faults, i.e. 

they deal with the effect of a fault rather than the fault itself. 

Error detecting/ correcting codes are not new to the field of VLSI devices. 

Such codes have been widely used to improve the reliability of memory devices 

such as RAMS. The simplest error detection code is probably the single parity 

bit. Effectively the modulo 2 sum of the bits in a code words, single bit parity 

is able to detect all odd bit errors which might occur in a code word. 

2.2.4 Codes and Coding 

Before going on to talk about specific codes, it might be worth looking at codes 

in general. 

'This is for even parity, odd parity is the inverse of this. 
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Figure 2-1: Codes words as Cube Vertices 

Background 
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Any sequence of binary digits can be viewed as a code word. For a sequence 

of m bits there are 2m possible bit patterns and so the same number of code 

words. An n bit code can be seen as a set of co-ordinates for a vertex of an 

n-dimensional unit cube. Figure 2-1 illustrates this idea for a 3 bit code. Any 

error in the transmission of a code word will change the vertex to which the code 

refers. An m bit error will move a vertex by m edges, so if two code words map 

to vertices m edges apart, such an error might transform one into the other. 

The minimum number of edges between two vertices represents the number of 

bits by which the two corresponding code words differ. This value is known as 

the Hamming Distance. 

The basic principle of error detection coding is to choose a set of code words 

which are greater than a certain distance apart. For instance if a code is to 

be able to detect all single bit errors, none of the code words can represent 

adjacent vertices. Choosing a subset of the vertices of the n-cube creates a 

complimentary set of vertices which represent invalid code words. 

Error correction codes work on the principle of chosing vertices (code words) 

so that no error could move a valid vertex closer to another valid vertex than it 
was to the original. In other words, if n bit error correction is required, vertices 
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should be m edges apart where 

m>2n+1 
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In this way any error of n bits or less will leave the resulting code word closer 

to its original vertex than it is to any other valid code vertex. 

Other forms of error detection, such as those designed to detect specific 

types of error, work by selecting vertices so that any error of the given type will 

transform a valid vertex to an invalid one. For instance parity codes can detect 

all odd bit errors because they represent only even (or only odd) vertices and 

it is impossible to find a path with an odd number of edges between two such 

vertices. 

Separable and Non-Separable Codes 

In general, information which has to be coded is already itself a binary code; 

in this situation there are two approaches to the encoding process. The first 

approach adds information to the existing code, for instance a parity bit. The 

added information increases the Hamming distance of the original code to give 

it error detection/correction properties. The alternative approach is to map 

the existing code words into a new set of code words which may not have any 

bit patterns in common with the original set. The first of these approaches 

yields separable codes, so called because the check bits are separable from the 

information bits. The second method produces non-separable codes. Once a 

separable code has been checked, it can be translated back to the source code 

simply by stripping off the check bits. Non-separable codes have to be mapped 

back into the source code. This means that the checker /translator for a non- 

separable code must contain knowledge of the information being transmitted 

whereas that for a separable code need only know about the coding method 

used. 

To illustrate this point consider the transmission of the information {(00),(10), 

(01),(11)}. If coded using an even parity bit the transmission code would 
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be {(000),(101),(011),(110)}. All that the checker/translator would need to 

know was that the last bit of the message should be the modulo 2 sum of 

the other bits, and that the actual message was all the bits but the last one. 

On the other hand, if a 1-of-4 code was used, the transmission code would be 

{(1000),(0100),(0010),(0001)}. In this case the checker/ translator would need 

to know that it should only expect one 1 in any message. It would also have to 

know how to map the received code word back into the information bits. 

Because non-separable codes require information about what is being sent, 

they are seldom used in transmission applications. They are usually used in 

systems where code translation is unnecessary, for instance for internal bus 

communication on VLSI devices. 

Parity 

In its simplest form, parity coding uses vertices a minimum of 2 edges apart. 

This allows the detection of all odd bit errors. The appeal of parity coding is its 

extreme simplicity and low overhead. Any set of code words with a Hamming 

distance of one can have that distance extended to two by the addition of a 

single extra parity bit. 

The main drawback of parity coding is the low error coverage it provides. 

If the number of erroneous bits in a code word were random, parity would 

detect only about half of the corrupted transmissions. It is possible to improve 

the error coverage of parity codes by adopting group parity. In this scheme 

collections of bits in a source code are each given their own check bit. This 

increases the overhead of the code but also its error detection ability. 

Hamming Codes 

In order to be able to correct single bit errors a code must have a Hamming 

distance of at least three. Though it is relatively straightforward to generate 

non-separable codes with this property, some algorithm must be sought to gen- 

erate suitable separable codes. Hamming codes [22] use just such an algorithm. 
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In a Hamming code the check bits occupy those bit positions which are a 

power of two, i.e. 1,2,4,8,16, etc. Each of these check bits is a parity bit for 

a collection of other bits, including check bits, in the code word. Though this 

may seem unnecessarily complicated, the checking procedure for the code makes 

error location very simple. The check procedure works by building up a second 

binary number by examining the check bits in the transmitted code. If a check 

bit is correct, a 0 is placed in this secondary number whereas an error causes 

a 1 to be used, these bits are arranged from right to left and eventually yield 

an n bit binary number where n is the number of check bits in the code. When 

this number is finished, it represents the binary value of the bit position which 

is in error. If the value is zero, there is no error. 

Residue Codes 

Residue codes are a class of separable codes in which the check bits are composed 

of the modulo n remainder of the number represented by the source code word. 

Residue codes have attracted particular attention because if n is chosen such 

that 

n=21-1 wherel>2 

then a checker for the code can be implemented by a tree of -bit adders with 

end-around carry. Residue codes with this property are called low-cost residue 

codes and the typical value of n is 3. 

Berger Codes 

Berger codes are separable codes in which the check bits are the inverse of the 

number of is in the source code word. For example, the check bits for the code 

word (1000101) would be the inverse of (011) that is (100). Berger codes have 

the property that they can detect all unidirectional errors in a code word, that 

is errors which only change is to Os or Os to is but not both. The calculation 

of Berger codes in straightforward. 
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N-of-M Codes 

N-of-M codes are a class of non-separable codes in which the code word length 

is m and the number of is in a code word is always n. N-of-M codes are a 

particular instance of unordered codes. These are codes in which no code word 

contains a set of ones which are a subset of the ones in another code word. This 

gives them the property that they can detect all unidirectional errors. 

Serial and Parallel Codes 

Many codes, particularly those inherited from the field of data communications, 

are easily checked by serial mechanisms. Little, if anything, is ever said about 

the difficulty and expense of code checking in parallel. Checking with trees of 

checkers such as EXOR gates for parity, or adders for low-cost residue codes, is 

not truly parallel and incurs a heavy cost for long code words. 

Omissions 

Certain types of codes have been omitted from this discussion because they 

do not map easily into the sorts of applications envisaged here. Most notable 

among these omissions is the class of block codes. For this type of code check 

bits are calculated for blocks of code words, something not often required within 

VLSI devices. 

Another class of codes which have not been explicitly discussed are those 

codes which preserve their check bit integrity under simple arithmetic opera- 

tions. These types of code can be used in arithmetic chips but their use was 

considered too limited for application to more general systems. This does not 

mean that no codes of this type have been considered, rather that they were 

not considered for this property alone. 

I 
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2.2.5 Totally Self-Checking Checkers 
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The aim of totally self-checking logic is to produce outputs which can easily be 

identified as correct or faulty. In [35] Lala devotes an entire section to the design 

of TSCCs for different types of codes. Totally self-checking checkers (TSCCs) 

produce outputs in the form of two-rail or 1-of-2 codes; thus their only valid 

outputs are 10 and 01. This makes them able to detect stuck-at faults. The 

simplest form of TSCC checks 1-of-2 codes; thus allowing TSCCs to be used 

on the product of TSCCs. The following logic equations describe just such a 

TSCC : 

co = (xoy1) + (yoxi) 

cl = (xo.xl) + (YO-Y1) 

Here co and cl are the two-rail code and (xo,xl) and (yo,yi) are the two input 

codes. This checker is totally self-checking for all unidirectional faults. 

2.2.6 Systemic Approaches 

Hardware redundancy and localised checking can be applied at the level of 

individual function blocks in a design. An alternative approach to designing 

FTFS devices is to work at the systems level where architectural choices can 

be made. The design of FTFS systems for particular types of architecture, 

such as systolic arrays, has been studied; as has the design of fault tolerant 

microprocessors, as in [13]. Unfortunately these methods represent an ad hoc 

approach to the problem which it would be difficult to incorporate in a general 

automatic system. For this reason these methods are not considered here. 

2.2.7 General Approaches 

Though there is no lack of material which relates to the systemic design of FTFS 

systems, and particular techniques also abound, little work has been carried out 

on the automatic implementation of FTFS techniques. This does not mean that 
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methods suitable for automatic application have not been suggested as such. 

In [49] and [51] the application of low-cost residue codes is suggested as just 

such an automatic method, and in [50] a manual implementation of the ideas 

is presented. We have already seen that low cost residue codes are attractive 

because of the straightforward checking logic they require; another advantage 

is the predetermined nature of the check bits. 

2.3 Conclusions 

We have seen that redundant hardware can be used to duplicate function in 

order to provide FTFS systems and that redundant information in the form 

of coding can be used to detect and correct errors. How then can these tech- 

niques be applied automatically to implement FTFS systems? The next chapter 

presents a taxonomy for automatic techniques and suggests some examples of 

FTFS techniques which might be applied automatically. 
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Form versus Function 

3.1 Introduction 

It has already been established that the aim of this thesis is to study the au- 

tomatic design of FTFS systems. Design modification has been identified as 

a mechanism by which FTFS features can be introduced into a design. This 

chapter is intended to establish a framework in which to study FTFS system 

design methods; to this end a classification of design modification techniques is 

presented. 

Three general terms will now be defined; though some people might disagree 

with these definitions, they are made at this point to clarify their use in the 

following discussion. These definitions are : 

Behaviour The behaviour of a system is the way in which it responds to 

stimulation. In simple 10 terms, it is the pattern of outputs produced 

by inputs to the system. For instance the behaviour of a five input AND 

gate is that it produces a 1 at the output if and only if all of its inputs 

are 1. 

Function The function of a system is the method by which it achieves its 

behaviour. So the behaviour of a five input AND gate might be achieved 

by a single complex gate or as a cascade of two input AND gates. 

Structure The structure of a system is the way in which the function is im- 

plemented. 

42 
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The term design modification is used here to describe a process of changing 

a design specification so as to modify the characteristics of the design without 

modifying its behaviour. It should be differentiated from the more widely used 

term design transformation. Design transformation takes a design specification 

between description levels, for instance in transforming a structural specification 

to an artwork layout. 

This chapter suggests that there are essentially two types of design modifi- 

cation. These are structural modifications, which change the form or structure, 

and functional modifications which change the function of a design. Hence a 

functional design modification takes a functional design description and pro- 

duces another, different functional description. Similarly structural modifica- 

tion effects changes in the structural description or at the structural level of a 

design. Though a functional modification may imply a change in the structure 

of a design, it is not at the structural level that the change originates. 

For a simple example of modification, we move away from the field of FTFS 

systems for a moment. Consider a design consisting of a single two input AND 

gate which must be modified to AND together three signals. The modification 

could be achieved either by designing a three input AND gate or by using two 

of the original AND gates cascaded together. The first of these modifications 

represents a functional change because the design remains one consisting of a 

single functional unit, whereas the second change is structural because the new 

design consists of two functional units rather than one. 

As another example consider a two-bit ripple carry adder made up of two 

full adders. These full adders will communicate by means of a ripple carry 

signal. If the adders were modified to use a two rail code for the carry signal, 

the behaviour of the design would not be affected but the function and structure 

would. 



Chapter 3. Form versus Function 44 

3.1.1 Function (or What It Does) 

The most attractive feature of functional modification is that its results are 

independent of any implementation. That is to say that the FTFS character- 

istics of a modified design will be present in any successful implementation of 

the design. This feature makes it possible to carry out technology independent 

functional modification. However, if the modification process is to be indepen- 

dent in this way, it cannot make use of technology dependent information such 

as technology specific fault models. Nor can it use any special structures which 

might be particularly attractive in a specific technology. The necessity of a fault 

model will be discussed later. 

3.1.2 Structure (or How It Does It) 

Structural modification involves either adding structures which enhance the 

FTFS characteristics of a design, or changing existing structures to exhibit 

such features. Because structural modification may be tied to a particular 

implementation technology, it can take into account fault models and structures 

specific to that technology'. 

3.1.3 Purity 

For simplicity the two preceding sections describe somewhat "pure" implemen- 

tations of the relevant modification techniques. There is no need for functional 

modification to be implementation independent just as there is no need for 

structural modification to be implementation dependent. Having said that, im- 

plementation independence is a valuable goal and is worth pursuing at least as 

far as a study of its feasibility. Because the biggest single drawback of tech- 

nology independence is that it denies access to specific fault models, the next 

section looks at the possible alternatives to using such fault models. 

'For example the EXOR PLA buffers of section 6.10.2 
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3.2 Fault Models 

The concept of fault tolerance and fault security is intimately connected with the 

basic notion of what constitutes a fault. Therefore it is impossible to consider 

FTFS design without recourse to some notion of fault or error. Placed in 

this situation, a general system can adopt a number of approaches. Firstly a 

fault model which is so general that it could be applied to almost all target 

technologies could be chosen. Probably the most widely adopted technology 

independent fault model is the Single Stuck At Fault (SSAF) model. This 

assumes that any faulty system contains at most one fault and that the fault 

manifests itself as a single signal being stuck at a given value. 

The use of fault models is essentially an exercise in a priori reasoning, in that 

it seeks to predict effect (errors) from cause (faults). An alternative approach is 

that already taken by error detection/ correction schemes. In this approach, the 

errors are considered rather than the faults. This does not preclude an attempt 

to characterise the errors but such a characterisation is not a prerequisite of the 

approach. 

If it were possible to formulate a general implementation independent fault 

model, what advantage would be gained by using it? Primarily, fault models are 

used to predict what errors or kinds of errors might occur. This allows a system 

to use those methods best able to detect or correct the relevant types of errors. 

For instance Lala [35] cites work by Mak which indicates that faults in PLAs will 

only ever produce uni-directional errors. If this is known, then a code capable 

of detecting all uni-directional errors (e.g. Berger Codes) could be employed. 

Against the use of a general fault model is a doubt over whether it would be 

realistic to apply such a model to any specific implementation technology. If 
such a model predicted errors which were in fact unlikely, it would be valueless. 

It should be noted that a fault model is not, in itself, a FTFS method, rather 

it can be used as a guide to the types of errors to expect. So if a fault model, 
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general or otherwise, is not available, what can be used to direct the choice 

of FTFS techniques? Firstly there are methods which use a notion of fault so 

general as to require almost no reasoning about errors. NMR techniques fall 

into this category; the notion encapsulated by them is that a fault has occurred 

when the outputs from a block do not agree with those of the majority of its 

functionally equivalent modules. A second approach is to reason generally about 

errors; for instance it might be decided to treat all errors as being equally likely. 

Once general decisions about errors have been made, an FTFS method can be 

chosen which provides the greatest error coverage for an acceptable cost. 

This section has illustrated that though a fault model can be a useful tool 

in deciding on a FTFS method, it is not an indispensable tool. There are 

methods so general that they require little or no reasoning about errors, and 

assumptions about the likelihood of errors can be made in the absence of a 

fault model. Consequently it is not unreasonable to adopt an implementation 

independent approach to design modification as long as enough care is exercised 

in the choice of an FTFS scheme. 

3.3 Classification 

To allow a structured evaluation of FTFS methods, this section presents a 

classification of such methods. To allow the comparison of FTFS devices with 

each other and with non-FTFS equivalents, two overhead measures are also 

suggested. 

The first measure is that of area overhead. This is the difference in device 

size (or active area) between a FTFS device and its non-FTFS equivalent. The 

second measure is time overhead which is the difference in speed between equiv- 

alent FTFS and non-FTFS devices. In applications where the operating speed 

of a device is fixed, the time overhead can be used to measure the increase in 

speed needed for a FTFS device to operate at the same "global" speed as a 

non-FTFS equivalent. 
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Figure 3-1: A Taxonomy of FTFS Design Methods 

The following classification is not rigorous in the sense that a method might 

belong to two classes in the same level of the taxonomy. Though structured as 

a number of levels or layers, the classification at one level does not necessarily 

constrain the classification at a lower level. However, there are certain mutually 

exclusive classes. 

3.3.1 Structure and Function 

We have already seen that a design can be modified at either the structural 

or functional level. This essential dichotomy in modification techniques gives 

rise to the two primary classes of the taxonomy presented here and outlined in 

figure 3-1. 
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3.3.2 Local and Global Modification 

The scope of modification changes can be viewed a little like the scope of changes 

which might be made to a software program. In this analogy, the procedures of 

the language are replaced by the functional units of a design. Local modifications 

affect only the procedure or block on which they act whereas global modifications 

affect the whole program or design. Local modifications should be transparent 

to all the units which use signals from the modified block. 

The analogy goes further in that the advantages of local modification of a 

program are like those of local modification of a design. Notably, the modifica- 

tion is self-contained and can be used again if the procedure or block is re-used. 

Global modifications are generally less "portable" and may have to be carried 

out again even if some of the same blocks or procedures are involved. 

The concurrent test structures for PLAs discussed in the last chapter are 

an example of local modification. Global changes to a design might include 

re-coding the communication codes on an internal bus, in which case all the 

blocks using the bus would have to be modified. 

3.3.3 Additive and Adaptive Modifications 

All the work in this thesis assumes that the starting point of any automatic 

design approach is some form of specification supplied by a user. This means 

that when the modification process begins, some form of structural or functional 

information has already been supplied. Typically this information takes the 

form of relationships defined between units in the design. For instance unit A 

connects to unit B by a signal called RESET. Automatic design modification 

can either add to the existing design units or adapt them. This gives rise to the 

classes of additive and adaptive modification. 

As an example consider a scheme to use a parity code to check the outputs 

of a PLA. The generation of the parity bit could be carried out by the PLA, 

in effect the generation function would be added to the PLA. A parity code 
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checker could then be added to the design. Alternatively, it might be decided 

to adapt the function the PLA to use an n-of-m code for its outputs. The 

essential difference between additive and adaptive methods is that the first 

leaves the original function or structure essentially intact, whereas the second 

may completely change either. 

3.3.4 Time and Area Critical Methods 

At this point redundancy rears its head again, here in relation to time and area. 

In general, FTFS methods can make use of redundant time or redundant area 

to achieve their effect, that is they introduce area or time which might not be 

required by a non-FTFS device. The two classes of time critical and area critical 

modifications cover these methods and are the least rigid of those in this taxon- 

omy. The main reason for laxity of these classes is that the same modification 

method might fall into different classes if applied to different designs. The main 

object of these classes is to identify the modified feature which is incurring the 

critical overhead. For instance if a chip must perform at high speed, the area 

overhead of a modification might be less important than the time overhead. 

Alternatively, in an application for which size was more important than speed, 

time might be sacrificed to achieve area reductions. 

3.3.5 Where to Test 

The majority of FTFS methods involve some form of concurrent testing or 

checking. The last three classes presented are intended to identify the site of 

that testing or checking. If we consider a system which consists of only three 

components, a source, a drain and a communication channel, we can see the 

three possible test sites. In test at source (TAS) methods, signal checking is 

carried out at the signal source. In test at destination or test at drain (TAD) 

methods, checking is carried out at the signal drain. In test in between (TIB) 

methods signals are checked "in transit" between source and drain; this means 

they will be checked either by or on the communications channel. 
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TAS 

The main advantages of TAS methods are: firstly, that signals used by a num- 

ber of drains need only be checked once; secondly, any check bits generated for 

separable codes do not need to be communicated to the drain, as their function 

has been served at the source. Finally, groups of signals which do not neces- 

sarily share the same drain can be checked together. The main disadvantage of 

TAS methods is that they do not allow a system to detect transmission errors; 

transmission errors being errors which arise during the transmission of a signal. 

TAD 

The main attraction of TAD methods is that they can detect transmission errors 

as well as errors originating at the source of the signal. However, TAD methods 

incur extra communication costs because of the need to transmit check bits. 

TAD methods can also incur extra check costs if a signal is used by a number 

of drains; in which case the signal is checked at each drain. There is also an 

overhead incurred by the fact that check bits can only be calculated on those 

groups of signals which have a common drain or drains2. 

One advantage of TAD methods is the possibility that checking might be 

carried out more cheaply at the destination. As an example of this consider the 

transmission of a 1-of-3 code between two PLAs. The receiving PLA could be 

coded as in table 3-1 to generate an OK signal for each valid 1-of-3 code. This 

check would require only an extra output column for the drain PLA whereas a 

TAS method would require an extra functional block for checking. 

2It would be possible to calculate check bits for each group of signals which share a 

drain. This might give multiple error coverage because signals might be in more than 

one group. There would be an additional overhead for the extra check bits 
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S1 S2 S3 OK 
1 0 0 1 

0 1 0 1 

0 0 1 1 

Table 3-1: "Cheap" code checking 

TIB 

TIB methods allow for the detection of some transmission errors and can be 

used to check groups of signals which might not share either source or drain. 

An example of a TIB method might be a bus "watch-dog" which enforced a 

particular coding scheme on an internal bus. In general, coding can only be 

carried out on signals which share a source; as it is only in these cases that the 

check bits can be calculated in advance. 

Having suggested this taxonomic approach to the investigation, the following 

section looks at a number of FTFS methods; these methods can be used to 

illustrate the classification which has been presented. 

3.4 Examples 

3.4.1 NMR 

Of the methods introduced in the previous chapter, none is more clearly a form 

of structural modification than NMR. Where then does it fit into the other 

classes? First of all it is essentially a local modification. It might be argued 

that NMR at the board level, such as that required for on-line maintenance, was 

a global modification, however the size of the duplicated module is irrelevant 

because the changes made affect only the duplicated module and should be 

transparent outside it. NMR is an additive method as it need not change the 

basic function of the duplicated unit. In most applications NMR would be an 
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Figure 3-2: A 111 detector 

area critical method as the only time overhead incurred is that introduced by the 

voting unit. NMR systems are primarily TAS systems though duplication of the 

voting mechanism at a number of drains could make a particular implementation 

TAD. 

3.4.2 State Coding 

There is no outstanding example of functional modification suggested in the 

previous chapter. This is because coding techniques are not in themselves com- 

plete FTFS methods, rather they are building blocks for those methods. This 

being the case, it is necessary to suggest a method in order to demonstrate 

functional modification. An example from the literature can be found in [47]. 

In this paper a method of implementing fault tolerant finite state machines 

(FSMs) is suggested. This method is based on the principle of using state vari- 

ables coded to have a Hamming distance of 3. This allows the resulting FSM 

to be made tolerant to any single bit error in the state variable. In effect the 

correct state transition for each state is coded along with the correct transition 

for all those invalid code words at a distance one from the correct state. This 

method is illustrated by table 3-2 and table 3-3 which are alternative codings 

for the FSM of figure 3-2. In L. JtJ e 3-2 the state variable coding is A = 00, 

B = 01 and C = 10; in CoJ e. 3-3 the coding is A = 00000, B = 11100 and 

C = 00111. It will be noted that this method is only tolerant to single errors 

in the state signals and if there were a large number of additional outputs, the 

total fault coverage would be low. 
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In State In State Out Out 
0 xx 00 0 

1 00 01 0 

1 01 10 0 

1 10 10 1 

Table 3-2: A simple coding for the FSM of figure 3-2 

In State In State Out Out 
0 aacaooc 00000 0 

00000 11100 0 

1 10000 11100 0 

1 01000 11100 0 

1 00100 11100 0 

1 00010 11100 0 

1 00001 11100 0 

11100 00111 0 

1 01100 00111 0 

1 10100 00111 0 

1 11000 00111 0 

1 11110 00111 0 

1 11101 00111 0 

00111 11100 1 

1 10111 11100 1 

1 01111 11100 1 

1 00011 11100 1 

1 00101 11100 1 

00110 11100 1 
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Table 3-3: Fault Tolerant coding of FSM in figure 3-2 
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To implement this technique in an existing FSM would require a functional 

modification of the machine. This would give rise to a different structure for 

the FSM but the fault tolerance would be the result of a functional rather than 

purely structural change. Once again this type of modification would have only 

local effects and would be transparent to any blocks using signals from the 

FSM. This method is adaptive but what is not clear is whether it is time or 

area critical. If the FSM were realised as a PLA, then the change in coding 

would be likely to increase the size of the PLA, which would in turn affect the 

speed. This might have design level ramifications if the FSM were already the 

limiting factor on the speed of the device. Another implementation dependent 

classification would be that of the site of the checking. If a PLA is viewed 

as a single unit, then the method is TAS, but if the AND and OR planes are 

considered separately, then the method is TAD as the actual fault tolerance 

arises from the new AND plane coding. 

3.4.3 Mixing Functional and Structural Modification 

So far in this discussion no mention has been made of modification methods 

which have aspects of both functional and structural modification. This is not 

because such methods do not exist, but rather to simplify the demonstration of 

the taxonomy presented. However, it is now appropriate to look at an example 

of such a mixed method. No new example will be introduced, instead the simple 

parity coding example introduced in section 3.3.3 will be examined again. In this 

example an "expected" parity bit is generated and compared with the calculated 

parity bit from an added parity generator. It would be possible to realise this 

scheme in a structural, additive manner by employing three extra function 

blocks. Figure 3-3 shows such a modified system where X is the original block. 

To this has been added a parity generator, a comparator and a parity predictor. 

The predictor takes the same inputs as the block X but outputs only the parity 

bit which is to be expected. 

The problem with this purely structural approach is the overhead incurred 
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Inputs 

X 

Outputs 

Parity Generator 

Expected 
Parity 

Generator 

Parity Bit 

Comparator -OK signal 

Figure 3-3: A structural modification for parity checking. 

by having the parity predictor. If an automatic system had no way of chang- 

ing the function of the block X, this would be the only way of achieving this 

particular modification. However, if the system could modify the function of 

X, it would be able to add the parity prediction function to it, resulting in a 

system such as that shown in figure 3-4. This modification technique contains 

a functional element, in the modification of X, and a structural element, in the 

addition of the parity generator and checker. Whether or not the mixed ap- 

proach used less area than the purely structural approach would depend on the 

implementation technology, but if PLAs were being used, the second approach 

might be expected to be smaller. 
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Inputs 

X + Parity Logic 

Outputs 

Parity Generator 

Parity Bit 

Comparator k---OK signal 

Figure 3-4: A mixed modification for parity checking. 

3.5 Conclusions 

The classification presented in this chapter is intended to provide a framework 

in which to study automatic FTFS systems. In the next chapter a design 

environment in which this work can be carried out is described. 



Chapter 4 

The Chip Churn Design Tools 

4.1 Introduction 

So far this thesis has only discussed existing and possible FTFS techniques; if 
the automatic use of these methods is to be evaluated, an environment in which 

that evaluation can take place must be established. In the introduction silicon 

compilation was identified as the "ultimate" automatic VLSI CAD tool and so 

silicon compilation has been chosen as the framework for this investigation. The 

work presented in this chapter forms the practical foundation for the evaluation 

of automatically applied FTFS techniques. 

Once silicon compilation has been identified as the required design environ- 

ment, a suitable system has to be found. At the time this work began there 

was no complete silicon compiler available to the author which fulfilled the re- 

quirements of automatic design modification. Therefore it was necessary to 

create such a system. In view of the effort available, it was clear that a highly 

sophisticated silicon compiler was not feasible. For this reason the main sys- 

tem discussed in this chapter was developed to provide the minimum support 

necessary to carry out the automatic modification of designs. The system also 

provides the facilities necessary to compare alternative modification methods. 

57 
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4.2 Basics 

In the introductory chapter some of the areas in which CAD tools have been 

used to help the VLSI designer were pointed out. Before going on to study 

the Chip Churn design tools, we must establish which design tasks the CAD 

system is going to tackle; to this end we begin by looking at the basic steps in 

the design process as outlined in figure 4-1. 

Not all of the eight steps suggested in figure 4-1 can currently be automated, 

and few systems attempt a unified approach to more than three or four of the 

steps. It has already been said that the design effort for the proposed system 

was limited, so what is the minimum set of tools that a silicon compiler should 

provide? 

First of all, any automatic design system must provide some mechanism 

for representing a design. This design representation can be anything from 

a high level language description to a leaf cell net list. Once a system has 

"captured" a design it should provide the user with a method of checking that 
the design formalisation conforms to the design specification. Finally a system 

should provide tools to help implement the specified design. Thus the three 

components which represent the minimum requirements for an automatic silicon 

compilation system are : 

A Method of Design Representation. 

Design validation tools. 

Tools for creating implementations, e.g. artwork generation tools. 

It might be argued that design validation tools are not essential for the inves- 

tigation being carried out here. However, some method of comparing designs is 

required in order to check that a modified design has the same behaviour as its 

unmodified equivalent. Simulation provides the simplest method for carrying 
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Idea 

Design 

Formalisation 
(Description) 

Validation 

Implementation 

Testing 

Production 

Refinement/ 
Correction 

Figure 4-1: Stages in the Design Process 
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out such a comparison. Having established these three basic components, the 

following sections will discuss how they are provided by the Chip Churn tools. 

4.3 Chip Churn 

Before looking in detail at Chip Churn 2 (CC2), it is necessary to say a little 

about Chip Churn, the system from which CC2 was developed. None of the 

original Chip Churn code survives in CC2, but many of the ideas used in it 

were important in the development of the later system. A paper giving more 

details of Chip Churn can be found in appendix F. What follows are some of 

the pertinent points covered in the paper. 

4.3.1 Design Representation 

The Chip Churn design language takes the form of a text description of a number 

of interconnected blocks. The interconnection between blocks is indicated by 

signal names and the functions of the blocks are represented by truth tables. 

The truth tables are kept in files separate from the design description. This 

simplifies the interface to the existing design tools used for artwork generation in 

Chip Churn. Figure 4-2 gives an example of a Chip Churn design specification, 

in this case the design is for an eight bit ripple carry adder. Figure 4-3 shows 

the truth table which describes the function of the full adder block called adder. 

4.3.2 Validation Tools 

The word validation has been used rather than verification because the latter 

has become associated with a number of formal methods aimed at proving a 

design correct. Chip Churn is provided with a simulator and so makes no 

claims to provide formal proof. 
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Chip_Churn (Adder); {Create adder.cif} 
{All text between curly braces is ignored} 
{These two lines define primary 10 signals} 
inputs : reset,a_in [0..7],b-in [0..7],c_in; 

outputs: res [0..7],c_out; 

{This line defines the blocks to be used in the design.} 
blocks : adder (addmin:file;4:in;2:out); 

{This section indicates where each block is used and } 
{how it connects to other blocks. } 

connections : 

adder (reset,a_in [01,b-in [0],c_in,res [0],rip [0]), 
adder (reset,a_in [1] ,b_in [1] ,rip [0] ,res [1] ,rip [11). 
adder (reset,a_in [21,b-in [2],rip [1],res [2],rip [2]), 
adder (reset,a_in [3] ,b_in [3] ,rip [2] ,res [3] ,rip [31). 
adder (reset,a_in [4] ,b_in [4] ,rip [3] ,res [4] ,rip [41). 
adder (reset,a_in [b] ,b_in [b] ,rip [4] ,res [b] ,rip [51). 
adder (reset,a_in [6] ,b_in [6] ,rip [b] ,res [6] ,rip [61), 
adder (reset,a_in [7] ,b_in [7] ,rip [6] ,res [71,c-out); 

End-Churn 

Figure 4-2: A Chip Churn Description 

IN reset,a,b,cin 
1 x x x 0 0 
0 0 0 0 0 0 
0 0 1 0 1 0 
0 1 0 0 1 0 
0 1 1 0 0 1 

0 0 0 1 1 0 
0 0 1 1 0 1 

0 1 0 1 0 1 

0 1 1 1 1 1 

OUT out,cout 

Figure 4-3: A Truth Table File 
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4.3.3 Artwork Generation 

Chip Churn was never intended to support any implementation technology other 

than NMOS VLSI devices. For this reason no comment will be made at this 

point about other approaches to creating an implementation. 

Though collected under a single heading in the earlier discussion, artwork 

generation encompasses a number of distinct tasks. The most important of 

these tasks present some of the fundamentally difficult problems associated with 

silicon compilation. Module generation, floorplanning, utility routing (power, 

ground, clocks etc) and signal routing all pose problems which are difficult to 

solve optimally. However, by adopting a few simple techniques a number of 

these problems can be alleviated. All of the function blocks in a Chip Churn 

device are realised as PLAs. This is because the truth tables which make up 

the functional information are easily translated into PLAs. 

The simplest method of automatic floorplanning is to use a target architec- 

ture, that is to use the same floorplan style for all designs. The target architec- 

ture chosen for Chip Churn is based on a central wiring-channel with the PLAs 

arranged on either side of it. This type of floorplan was used in the FIRST [5] 

silicon compiler. 

Once a channel based architecture has been adopted, floorplanning becomes 

a matter of deciding which PLAs go in which row, utility routing is straight- 

forward and all the signal routing can be carried out by a channel router. The 

routing of primary 10 signals is simplified by the use of PLAs which have their 

10 ports on either the top or the bottom. 

In the FIRST silicon compiler, function blocks of a similar size were collected 

together on the same side of the channel in an attempt to reduce chip area. In 

Chip Churn the placement of PLAs is dependent on the ordering within the 

language description. This feature allows the designer some control over the 

final floorplan, and is sometimes necessary because of limitations in the channel 

router used by Chip Churn. 
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Chip Churn uses the ILAP [26] design tools to produce a geometric descrip- 

tion in the form of CIF [40] for NMOS devices. A number of devices have been 

designed with Chip Churn and two of these have been fabricated. Both of the 

fabricated devices performed according to their functional specification. Un- 

fortunately both of the designs had to be submitted for fabrication before the 

Chip Churn simulator was available. Consequently neither design was validated 

and both contained functional design errors. In one device the connectivity had 

been incorrectly specified, and in the other there was an error in the truth table 

of one function. The first of these errors was catastrophic, in that little could 

be salvaged from the device. The second error was minor and did not affect the 

performance of most of the device. 

4.3.4 Problems 

During the development and use of Chip Churn, a number of problems became 

apparent. Some of these problems were : 

Language Hierarchy. The Chip Churn design language is not hierarchical. 

Architectural Limitations. Large, complex chips tend to be long and thin. 

Incompatible Design Tools. Too many different kinds of interface between 

ILAP utilities. 

Data Structure problems, lack of a single central data structure and an 

inflexibility in the existing data structures. 

Technology Dependence (NMOS). 

Dependence on a particular circuit idiom, i.e. the PLA. 

These problems had a major effect on the development of CC2, in fact 

they prompted that development. The following section describes CC2 in more 

detail. 
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4.4 Chip Churn 2 

Chip Churn demonstrated that viable silicon compilation tools could be devel- 

oped using relatively simple techniques. CC2 provides the same three basic 

components, a design formalism, a validation system and implementation tools, 

but at a rather more sophisticated level. The following sections describe the 

CC2 system in more detail. To help identify how the numerous components 

interact, a schematic overview of the CC2 system is provided in appendix E. 

4.4.1 The CC2 Language 

There are essentially two types of design description available to a CAD system. 

The first of these is the schematic or graphical representation and the second 

is the textual description. It was decided to use a text based language for de- 

sign capture in CC2 for a number of reasons. Firstly, the description of text 

languages is well understood and parser generator tools are available. Though 

general schematic capture systems also exist, none were available to the author 

at the start of this work. Other important reasons for choosing a textual de- 

scription are that text can be stored directly on most computer systems, it does 

not require special graphics hardware, and it can be used as the static storage 

medium for designs. The last of these points is important because it means 

that a modified design can be stored as a CC2 language description. 

The importance of functional and structural design modification has already 

been discussed and as the CC2 system is intended to support research in this 

area, it is essential that it should contain both structural and functional in- 

formation about a design. However, this basic requirement can be extended. 

It has already been seen that some of the FTFS methods proposed have both 

structural and functional components, so it would be advantageous for the CC2 

system to keep its structural and functional information in close association. 
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This is in preference to having functional information transformed into struc- 

tural information during the implementation or solidification process. 

The Chip Churn design language is essentially structural but with sufficient 

reference to function to allow for design simulation. CC2 advances this idea by 

incorporating the functional information within the language without discarding 

the essential structural information. 

The concepts of structured programming and hierarchical design are now 

well known. The advantages of the styles were sufficiently desirable that it 

was thought essential that the CC2 language should provide facilities for the 

hierarchical description of designs. Though a formalised grammar for the CC2 

language exists, it would be as well to explain the main features of the language 

in a less formal way here. 

The CC2 language describes designs as collections of interconnected blocks. 

Two types of block are provided, function blocks and composition blocks. These 

are explained in the following sections. 

Function Blocks 

The function blocks in a CC2 description are intended to correspond to the 

leaf cells and low level function modules of a design. The CC2 language has no 

functional primitives such as AND, OR, NOT etc. Instead it uses a function 

description based on truth tables. This notation was chosen in preference to an 

equation based representation because it is easier to parse and store. Alternative 

notations such as those used in the PLAYER system [33] and in [41] are also 

possible. Both present more verbose descriptions, in the second case based on 

a programming language. Such linguistically inclined possibilities were rejected 

in favour of compactness and simplicity. Figure 4-4 shows an example of a 

simple function block specification. The function of figure 4-4 effectively says : 

IF a = 0 THEN c 0 
IF b = 0 THEN c 0 

IF a= 1 AND b= 1 THEN c := 1 
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function and-gate (inputs: a.b; outputs: c); 
type = async; 
Ox -> 0; 
X0 -> 0; 
11 -> 1; 

end 

Figure 4-4: A CC2 combinatorial function 

function R_S_Flip_Flop (inputs: r.s; outputs: q.q_bar); 
type = sync; 
states : been_set.been_reset; 
been-set 01 been-set 10; 
been-set 10 been-reset 01; 
been-reset 10 been-reset 01; 
been-reset 01 been-set 10; 

end ; 

Figure 4-5: A CC2 sequential function 

with the x's in the description standing for "don't care". 
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Both synchronous and asynchronous logic can be represented in a CC2 de- 

sign, and the type statement is used to indicate which of these is being used. 

The timing model used by the CC2 simulator will be described later. As well as 

combinatorial logic of which figure 4-4 is an example, CC2 also has a notation 

for sequential logic or FSMs and figure 4-5 shows an example of this. 

If design modification is to be carried out, information about the function of 

individual blocks is essential. However, CC2 can be used as a straightforward 

silicon compiler when the functional information is used only for simulation and 

module generation. Chip Churn has a facility which allows customised leaf cells 

to be included in a design; however, such designs cannot be simulated directly. 

CC2 is provided with a mechanism for using custom logic, or library parts as 

they are called here. The function of such logic can be expressed in the usual 

CC2 function notation, or an external program routine can be provided by the 
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function multi_nand <no_in> (inputs: in [i..no_in]; 
outputs: out); 

type = sync; 
[multinandroutine] 

end ; 

Figure 4-6: A parameterised CC2 function 

user to be called by the simulator. Because the use of external program routines 

robs the CC2 system of information it would usually use for module generation, 

it is always necessary to use library cells for functions specified in this way'. 

Because the library parts of a design will be implementation dependent, they 

are implemented through use of the prosaic statement which will be discussed 

later. 

CC2 function blocks can also be parameterised but when they are, the func- 

tion specification must be in the form of an external program routine. This is a 

somewhat arbitrary restriction based on the difficulty of parameterising truth 
tables. Figure 4-6 gives an example which uses both function parameterisation 

and an external program routine. If the external routine name contains char- 

acters which are not allowed in CC2 names, then the name can be enclosed in 

quotes (" ") as in figure 4-8. 

Composition Blocks 

Composition blocks provide a way of collecting together groups of other blocks. 

Both function and composition blocks can be used in composition blocks. Con- 

nectivity within a composition block is indicated by the use of named signals 

'If external program functions were specified in a language which could be inter- 

preted (e.g. LISP) it might be possible to derive functional information from user 

supplied code. 
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composition exor_gate (inputs: a,b; outputs: c); 
and (a,inv (b)) -> int_one; 
and (inv (a),b) -> int_two; 
or (int_one,int_two) -> c; 

end ; 

Figure 4-7: A CC2 composition block 
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analogous to variables in a software programming language. Input and Output 

signals are defined in the block header but internal signals need not be pre- 

declared. Figure 4-7 shows a simple combination of function blocks. This 

example demonstrates that blocks can be instanced as arguments to instances 

of other blocks. In fact the functional part of the specification could have been 

expressed as : 

or (and (a,inv (b)),and (inv (a),b)) -> c; 

Though the ability to instance blocks as arguments is provided in the language, 

the feature is implemented at the parser level where flattening of the description 

takes place. At that stage, internal signals are created to provide the required 

connectivity. Blocks with multiple outputs can also be used as arguments, in 

which case the output signals are substituted in order into the instancing block. 

So the statement 

block_x (sig [1],block_y (sig [3..4]),sig [2]) -> out; 

is equivalent to 

block_y (sig [3],sig [4]) -> sum,carry,check; 

block_x (sig [1],sum,carry,check,sig [2]) -> out; 

and more importantly, it is in this second form that the construct is stored by 

the CC2 system. 



Chapter 4. The Chip Churn Design Tools 69 

4.4.2 Other Features 

There are a number of other features of the CC2 language, some of which are 
important and some of which are provided as a convenience for the user. Briefly 

these features are : 

Block Ordering 

The CC2 parser enforces simple scoping rules so a block can not be instanced 

until it has been declared. This simplifies some of the error checking at the 

parser stage and provides a simple mechanism for preventing recursive compo- 

sition descriptions. 

Include 

Source text may be included in a CC2 description by using lines of the following 
type : 

include "source file name"; 

Included files may not themselves contain include statements. The include 
statement is not permitted within a block definition. 

End Of File 

All CC2 source files must end with the statement 

End_Of_File. 

Name Vectors 

Signal names may take the form : 

sig [1..5] , vals [0..6] , bus [1] , bus (21, bus [3], ... 
Vector bounds must be non-negative integers. This is another feature provided 

at the parser level where expansion of names is carried out. 
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Bi-directional Ports 

Any signal name which appears in both the input and output list of a block 

header is treated as a bi-directional signal. Bi-directional signals can be used 

for either input or output. 

State Variable Coding 

Figure 4-5 contained the definition of two states, been-set and been-reset. If 

the function were realised as a FSM then state variables would be required for 

each state. If no state variable is defined, CC2 will generate one automatically, 

but any number of state variables can be defined with missing ones generated 

by the CC2 system. For instance the statement 

states : setup,one,found,cycle; 

would result in the values (00),(01),(10) and (11) being assigned to the respec- 

tive states, whereas the statement 

states : setup (100),one,found,cycle (010); 

would result in the values (100),(001),(011) and (010) being used. Statements 

of the form 

states : setup (1),one,found,cycle (0); 

states : setup (1000),one,found,cycle (000); 

states : setup (100),one,found,cycle (100); 

are faulted; in the first case because the state variable is not long enough to 

encode all the states and in the second case because state variables of different 

lengths are used. The third example is faulted because it uses the same coding 

for different states; in other words, multiple names for the same" stated are not 

allowed. 
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Many sophisticated techniques have been suggested for the optimal assign- 

ment of state variables, but the CC2 allocation is a straightforward number 

based approach. Integration of a more advanced assignment method would be 

trivial but the implementation of such a method was not considered sufficiently 

important for the work undertaken here. 

The SET instruction 

Because of the notation chosen for FSMs in the CC2 language, a mechanism is 

provided which allows specific events to send the machine from any state to a 

known state. This feature is provided by the set instruction. This allows the 

following function fragment 

one : lxxx -> start : 0; 
two : lxxx -> start : 0; 

three : lxxx -> start : 0; 
four : lxxx -> start : 0; 

to replaced by the single statement2 

set : lxxx to start : 0; 

Prosaic 

CC2 makes use of a prosaic statement something akin to the pragma statement 

in ADA. The prosaic statement can be used to indicate certain types of imple- 

mentation dependent information to the CC2 system. For instance the CC2 

code in figure 4-8 illustrates three uses of the prosaic statement. 

The first prosaic statement identifies a file which contains one or more li- 

braries in which leaf cells have been defined. The second prosaic statement 

identifies a library called cell lib in which a leaf cell called block-x can be 

2 This assumes that there are only the four named states in the FSM. 
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prosaic inherit "lib.file"; 
function block_x (inputs: a.b; outputs: out); 

prosaic lib "cell lib"; 
prosaic sim "long 5"; 
type = async; 
["block x sim"] ; 

end; 

Figure 4-8: Use of the Prosaic statement 

found. The final statement indicates to the simulation program generator how 

many state bits the program routine block x sim should be given (i.e. 5). 

Libraries 

Access to libraries through use of the prosaic statement, as demonstrated in the 

previous section, is a feature implemented not by CC2 but by the current 

technology specific back-end. These libraries correspond to Elgar libraries which 

will be discussed in section 4.6.4. 

Pad-Up 

The pad up statement identifies the composition block which will be the object 

of the design. It is for this block that geometry will be generated. It is also this 

block which will be the subject of design modification. 

Comments 

All text contained within curly braces, { and }, is treated as comment and is 

ignored by the parser. 

4.4.3 Language Example 

To demonstrate a complete CC2 description we shall return to the Chip Churn 

example of an eight bit ripple carry adder given earlier. Figure 4-9 shows the 
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source text for such an adder. For the purposes of this example, the adder 

has been built from a combination of single functional modules (state-adder) 

and composition blocks (rand-adder). 

A number of features described above are demonstrated by the example. The 

two files "cmoslib.cc2" and "genlib.cc2" are assumed to contain the definitions 

of the function blocks used in the composition of rand-adder. The definition 

of rand-adder also demonstrates how parameterised functions are instanced, 

mnand being a multiple input nand gate. The number of parameters is specified 

in the call so that instances of multi-parameter blocks are not ambiguous. For 

example if a block was defined with the following header 

function block_x <as.bs> (inputs: sig [1..as],check [bs..0]; 
outputs: out); 

then in an instance of the form 

block_x (in [1..10]) -> out; 

it would not be clear how many of the input signals were sig's and how many 

were check's. 

4.4.4 Technology Independent Intermediate Format 

There are advantages to keeping a VLSI CAD system independent of any specific 

implementation technology; the main one being portability. With this in mind, 

the CC2 language is parsed into a Technology Independent Intermediate Format 

(TIIF). The parsing of the language is carried out by a parser automatically 

generated from a grammar description by APG [37]. APG is a parser generator 

tool similar to Yacc [27] and Lex [36]. Use of a parser generator greatly simplifies 

the development of languages by allowing rapid implementation of grammar 

definitions. 

The TIIF data structure reflects the structural and functional information 

presented in the CC2 language; in fact it retains sufficient information about 
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include "cmoslib.cc2"; 

include "genlib.cc2"; 

function state-adder (inputs: a,b,c_in ; outputs: sum,c_out); 
{ A simple full adder as a function block } 

type = sync ; 

100 -> 10 ; 010 -> 10 ; 110 -> 01 ; 001 -> 10 

101 -> 01 ; 011 -> 01 ; 111 -> 11 

end {of state adder) ; 

composition rand_adder (inputs: a,b,c_in ; outputs: sum,c_out); 
{ A Random logic full adder } 

exor (exor (a,b),c_in) -> sum 

mnand <3> (nand (a,b),nand (a,c_in),nand (b,c_in)) -> c_out 
end {of rand adder}; 

composition eight-bit-adder (inputs: a [0..7],b [0..7],c-in 

outputs: out [0..7],c_out); 

{ An 8 bit adder made up of half PLAs } 
{ and half random logic adders ) 
state-adder (a [01.b [01.c-in) -> out [0] ,rip [11; 
rand_adder (a [1] ,b [1] ,rip [1]) -> out [1] ,rip [21; 
state-adder (a [21.b [2] ,rip [2]) -> out [2] ,rip [31; 
rand_adder (a [3] ,b [3] ,rip [3]) -> out [3] ,rip [41; 
state-adder (a [41.b [4] ,rip [4]) -> out [4] ,rip [51; 
rand_adder (a [51.b [b] ,rip [5]) -> out [b] ,rip [61; 
state-adder (a [61.b [6] ,rip [6]) -> out [6] ,rip [71; 
rand_adder (a [7],b [7],rip [7]) -> out [7],c_out; 

end {of eight bit adder}; 

pad-up eight-bit-adder; 

end-of-file. 

Figure 4-9: A CC2 example 
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a CC2 design to recreate a CC2 language description. The CC2 language de- 

scription is the only static storage medium provided for TIIF data. 

It has already been mentioned that the TIIF data structure keeps the func- 

tion information about blocks in the form of truth tables. For composition 

blocks, instance and connectivity information is represented symbolically, that 

is blocks and signals are referenced by name rather than pointer. This simplifies 

design modification but can make some operations slow. As a compromise, in- 

stance information also has a pointer field which may or may not be instantiated 

at any given time. 

4.5 Design Validation 

The choice of the word validation was explained in an earlier section, and it is 

used again here because CC2 makes no attempt to formally prove the correct- 

ness of a design. As with Chip Churn, CC2 provides the user with a simulator to 

help with design validation. The CC2 simulator is radically different from that 

used by Chip Churn because the latter is an interactive program, whereas CC2 

simulations are carried out by high level language programs generated from the 

design description. This approach was adopted because it offers a number of 

practical advantages over the alternative method. 

Because a CC2 user can specify the function of a block by providing an 

external program routine, it is necessary for the simulator to be able to 

execute such routines. In the environment in which CC2 was developed, 

this was impossible without compiling the external routines with the sim- 

ulation codes. 

Being an interactive program, the Chip Churn simulator could only be 

driven by a human operator through a simple command language. As 

3Use of an interpretable language such as LISP would remove this restriction. 
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the complexity of designs increased, it became apparent that this level 

of interaction was inadequate for many designs. The program generation 

approach allows the user to write code which can be used to drive the 

simulation. 

Program generation allows for the direct compilation of simulation code; 

thus speeding up program execution. 

4.5.1 Timing Model 

It was said earlier that both synchronous and asynchronous logic could be used 

in CC2 designs. In this section the way in which the simulator treats these two 

types of logic will be outlined. 

The specification of timing and the manipulation of timing information is 

difficult; as such a general treatment of the problem was considered to be beyond 

the scope of this work. Therefore the CC2 simulator has a very simple timing 

model. Synchronous logic is considered to have its inputs latched for a period X 

and its outputs latched for a period Y, where X and Y are mutually exclusive. 

For the purposes of simulation, asynchronous logic is treated as if it were able 

to propagate its results in the period between the start of Y and the start of X. 

Feedback loops between asynchronous logic blocks are not permitted in current 

CC2 designs. 

Though designs produced automatically by the CC2 system will conform 

to the timing restrictions outlined above, there is a difficulty associated with 

enforcing these restrictions on library parts supplied by a user. At present the 

CC2 system lacks the temporal reasoning capabilities to enforce such timing 

restrictions, a situation which could only be resolved by the addition of explicit 

timing information to the CC2 system. Without being able to enforce the 

restrictions, no guarantee can be made as to the legitimacy of simulation results 

for designs containing user supplied circuit modules. 
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4.5.2 Simulation Model 

The CC2 simulator operates at the functional level and the functional primitives 

are the function blocks of the design. The function simulator is based on a PLA 

simulator and as such it makes certain assumptions about the outputs from a 

function. In particular it is assumed that the default value for outputs is 0. 

Only 3 logic levels are supported and those are 1, 0 and U, the last of these 

being for undefined signals. 

The simulator has a notion of a machine cycle which is the complete oper- 

ation of the system clock phases. This means that once in every machine cycle 

the existing inputs to a block are examined and its results are evaluated. 

When simulating sequential logic, the question of where to keep the machine 

states arises. If the simulation program is a flattened representation of the 

design, then each block instance has a corresponding routine and the state 

information can be kept there. There are a number of problems with this 

flattened approach. First of all, it is difficult to get access to state information 

if it is being held locally in a routine. Such access may be required during the 

simulation process to help the user understand or influence what is going on. 

Secondly, the flattening of a large design can lead to large simulation programs. 

One approach to the first of the above problems is to hold all the state 

data globally, rather than in the individual routines. There are two arguments 

against this approach. The first is that it does not solve the problem of poten- 

tially large simulation programs. The second objection is somewhat pragmatic 

and arises from a limitation present in the high level language compiler used 

for CC2 simulation programs; the compiler cannot cope with programs which 

use large amounts of static storage space. 

To solve the program size problem, Genesis, the CC2 simulation generator 

program, generates a single routine for each block defined in the design descrip- 

tion. When these routines are called, they are passed information about the 

inputs, outputs and state values with which they have to work. Space for signal 

and state information is allocated dynamically in the form of an array called 



Chapter 4. The Chip Churn Design Tools 78 

the machine state vector. Pointers to the machine state vector are kept in a 

dynamic data structure called a state tree. Each composition block is passed a 

branch of the state tree, with the top level block being passed the root. Each 

composition block routine contains a number of procedure calls, one for each 

block instanced in the composition. Each of these calls is passed a branch or 

leaf of the state tree. The function block routines are each passed a leaf of 

the state tree. These leaves take the form of state vectors which are arrays of 

pointers to slots in the machine state vector. Pointers are used in preference 

to array indices because they provide a faster access mechanism. Each state 

vector has slots allocated for the inputs and the outputs of the function. Fig- 

ure 4-10 shows how this tree structure works for the simple composition block 

in figure 4-11. The state tree is in some senses a flattened representation of the 

design. 

In the CC2 simulator there are in fact two machine state vectors, one for 

the last state of the machine, and one for the new state. The state tree also has 

two sets of state vectors for each function routine but these have been omitted 

from figure 4-10 for reasons of clarity. 

The difference between synchronous and asynchronous logic is achieved by 

reading and writing function signals from and to different machine state vectors. 

In any machine cycle, synchronous logic blocks read their inputs from the last 

machine state vector and write their outputs into the new machine state vector. 

On the other hand asynchronous logic does both its reading and writing to the 

new machine state vector. There are two important consequences of this use of 

the new machine state vector. Firstly the new and old machine state vectors 

must contain the same state values at the start of each machine cycle. That 

is to say, that the results of the last machine cycle simulation must be written 

into both the new and old machine state vectors before the next machine cycle 

simulation begins. The second consequence is that the result of simulating asyn- 

chronous logic is dependent on the order in which the asynchronous logic blocks 

are evaluated. Code exists to order asynchronous logic and detect feedbacks in 

that logic. 



Chapter 4. The Chip Churn Design Tools 79 

Machine State Vector 
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Figure 4-10: State Tree Mappings to Machine State Vector 

composition comp (inputs: in [1..4]; outputs: out [1..2]); 
and (in [2..1]) -> out [11; 
or (in [3.. 4]) -> out [21; 

end; 
composition block_x (inputs: a,b,c,d,e,f; 

outputs: g,h,i); 
and (a,b) -> g; 
comp (c,d,e,f) -> h,i; 

end; 

h 

Figure 4-11: Simple Composition example 
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The function simulator uses logical operations on bit patterns, these opera- 

tions being coded directly into routines. When the function of a block has been 

specified as an external routine, a call to that routine replaces the machine 

generated function code. 

4.5.3 Simulator Interfaces 

It has already been pointed out that the interactive interface to the Chip Churn 

simulator was not flexible enough to allow user specified programs to drive a 

simulation. Because the lowest level interface to the CC2 simulator is a set of 

routine calls, this is no longer a problem. That is not to say that an interactive 

interface is of no use, and one has been written. However, little effort has been 

expended on the provision of sophisticated user interfaces because of the ease 

with which the simulator can be incorporated into a user's own programs. 

The basic interface routines provided by the CC2 simulation programs allow 

for the generation of state trees and for single machine cycle simulation. Code 

which allows the user to interpret the values in the machine state vector as 

signals is also provided. All the code necessary to simulate all the blocks in 

a CC2 design is present in the single simulation program. This removes the 

need for multiple simulation programs and allows the user to switch attention 

between blocks in a simulation within the same program. 

4.6 Artwork Generation 

4.6.1 CC2 Optimisations 

There are three CC2 facilities which can be used to help reduce the area used 

in a design. These are truth table minimisation, function merging and function 

partitioning. 
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Table Minimisation 

CC2 is provided with a truth table minimisation system based on the Quine- 

McCluskey method [38]. More details of the specific algorithm used are given 

in appendix B. 

Function Merging 

The CC2 merging facility is provided primarily to improve physical layout. 

Within the target architecture of the current CC2 back-end, a single row in a 

design is as tall as its tallest member; so if there is one tall block and many 

short blocks a great deal of space can be wasted. Thus it is desirable that all 

blocks should be of approximately the same height. This in turn means that 

the functions in the design should have approximately the the same number of 

rows in their truth tables. 

There are essentially two types of function merging which can be carried 

out. The simplest merging method is to add two functions together so that the 

result is effectively two independent functions realised by the same block. This 

method is straightforward to implement and can be carried out on independent 

functions; some area saving might also result if the two merged functions share 

a number of inputs4. The second type of merging can only be carried out on 

two blocks which are logically connected. In the second type of merging, the 

functions are changed to eliminate the communication between the blocks. If 
we take the example of the design in figure 4-12, either of the merge methods 

could be used to merge the blocks a and b. If the first method were used, the 

block c would result. If the second method were used, the block d would result. 

In the second case there would be a net reduction in the number of signals being 

passed round the design. 

"Outputs should never be directly shared between CC2 blocks as the wired OR 

construct is discouraged. 
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function a (inputs: i [1..2]; outputs: o); 
type = sync; 
10 -> 1; 01 -> 1; 

end; 
function b (inputs: i [1..2]; outputs: o); 

type = sync; 
11 -> 1; 00 -> 1; 

end; 
function c (inputs: i [1..4]; outputs: o [1..21): 

type = sync; 
lOxx -> 10; Olxx -> 10; 

xxii -> 01; xxOO -> 01; 

d ; en 
function d (inputs: i [1..3]; outputs: o); 

type = sync; 
101 -> 1; 011 -> 1; 
110 -> 1; 000 -> 1; 

end; 
composition des (inputs: i [1..3];outputs: out); 

b (a (i [1..2]).i [3]) -> out; 
end; 

Figure 4-12: Function Merging Example 
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Only the first type of function merging has currently been implemented 

in the CC2 system. This is because there are temporal effects on a design 

when two synchronous logic blocks are merged. It is not possible to merge 

blocks of differing types (i.e. synchronous and asynchronous) and the merging 

of asynchronous blocks which communicate could result in feedbacks which 

should be avoided. 

The current CC2 merging system is completely automatic but can be con- 

trolled manually in two ways. The system uses a number of parameters to 

decide whether two functions can be merged. These parameters are derived 

automatically from the design but can be set by the user. The second manual 

intervention method allows the user to specify which blocks in the design will 

be merged. 

4.6.2 Function Partitioning 

Most of the work which has been published on the subject of PLA partitioning 

[101, has been aimed at the structural minimisation of the area required to 

realise a function. The partitioning implemented, so far, in CC2 is intended 

to help alleviate the logic minimisation problem by breaking up large functions 

into smaller ones. To this end, a function is broken down into smaller functions, 

one for each of its outputs. Once a function has been broken up and minimised, 

it can be merged by the merging software. This system is not ideal but it has 

proved useful on a number of designs. In theory, the breaking up of a block and 

its subsequent re-merging might help to redistribute the function in a design. 

However, it seems unlikely that this automatic functional clustering will be as 

effective as that introduced by a competent designer. 

All three types of optimisation are optional, in the case of minimisation 

because it can take a long time and in the case of the other two, because they do 

not necessarily improve design layout. Both partitioning and merging produce 

radical changes in a design and not all designs which have been minimised can 

be dumped back to a CC2 language description. 
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4.6.3 CC2 Back-Ends 

Much has been made of the possibilities of technology and implementation 

independence, and little of what has been explained of CC2 up to now has been 

dependent on either technology or implementation. However, if modification 

methods are to be compared, the only realistic comparison which can be made 

is between implementations of FTFS and non-FTFS devices. For this reason it is 

necessary to provide the "implementation tools" mentioned in the introduction 

to this chapter. 

The CC2 system has been structured in such a way as to allow any number 

of technology and implementation dependent back-ends. For the basic CC2 

system a back-end must be able to realise arbitrary truth tables as synchronous 

or asynchronous logic; and be able to compose these elements into complete 

systems. If the CC2 system were restricted to using library parts, the need to 

realise arbitrary logic would not exist; however, the types of design modification 

which could be carried out would also be severely restricted. 

Chip Churn demonstrated that by adopting simple approaches to artwork 

generation, worthwhile automatic VLSI design tools could be created. In the 

PLA a circuit idiom has been found which can realise the arbitrary functions re- 

quired by the CC2 system. Unfortunately the PLA is essentially a synchronous 

device and so a complementary asynchronous idiom had to be found. There 

were a number of candidates for this role, the two most interesting being the 

Weinberger array [55] and the CMOS function arrays of [54] and [52]. CMOS 

was adopted as the technology of choice because of its dominance over NMOS 

in the VLSI field. 

The original Weinberger arrays had been designed to use an NMOS technol- 

ogy so some effort was required to modify the style for CMOS. The final imple- 

mentation of the CMOS Weinberger array was based on the Domino Logic prin- 

ciple of [34]. The Weinberger DomINO or Wino array architecture is described 

more fully in appendix C; here a totally self-checking (TSC) implementation 
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of truth tables is also mentioned. The Wino array was chosen over the CMOS 

function array because it presented a less complex implementation task. 

Having established and implemented two mechanisms for realising arbitrary 

truth tables for CC2, the problems of floorplanning and routing still remained. 

Target architectures still present the simplest solution to the first of these prob- 

lems but the single channel architecture of Chip Churn had proved limiting. A 

hierarchical use of single channel modules had been suggested for the FIRST 

system but this presented a more complex wiring problem than was thought 

approachable in the basic CC2 system. Consequently a multiple channel archi- 

tecture was adopted for CC2. With this approach there are any number of rows 

of functions, with a channel between each. 

The addition of extra rows and channels introduces the problem of how to 

arrange routing between blocks which do not share a common channel. This 

problem is mitigated by the use of blocks which have all their I/O ports on both 

sides of the cell but feed-throughs still have to be used in some instances. At 

this level of detail it is necessary to introduce the Elgar system. 

4.6.4 Elgar 

Many of the problems encountered during the development of Chip Churn arose 

as a result of the large number of incompatible data structures used by the ILAP 

tools. Each type of cell generator or router has its own particular format for the 

specification of port locations, widths, layers etc. To overcome these problems 

the Elgar system was developed to provide a consistent interface between low 

level design tools. 

Elgar is a composition system, that is to say it is a set of design tools 

intended to allow the composition of low level leaf cells into functional modules 

and complete chips. This makes the system ideal for use in module generators 

and the like, as is demonstrated by the PLA generator used by CC2 which does 

all its compositions through the Elgar system. 
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In describing the Elgar system, a bottom-up approach will be taken, that is, 

we shall look first at the lowest level of geometric design primitives, and work 

our way up to the highest level operations. We start therefore at the FLAP 

level. 

FLAP 

The lowest level of the Elgar system is required to generate artwork information 

in the form of CIF. The existing ILAP system provided a useful reference point 

for this level of tools. In fact the FLAP system is currently just a series of routine 

calls which have ultimate recourse to the ILAP system. The FLAP system 

provides a set of high level language routines which generate CIF. Routines are 

provided for the generation of wires, transistors, contacts etc. The two features 

provided by FLAP but not ILAP are the ability to nest symbol definitions and 

a feature which allows the generation of an ILAP program in addition to the 

CIF description. This last feature allows access to other design tools outwith 

the CC2 system. 

Elgar and QV 

The creation of leaf cells is a topic in its own right and was not considered 

within the scope of this work. However, QV [29], a mask level editor, has been 

interfaced to the Elgar system to allow the design of leaf cells. 

Ports and Cells 

The Elgar system views all objects as named cells. Cells are rectangular blocks 

with a number of ports associated with the sides. Each port identifies a wire 

which carries a signal into or out of the cell. Each port has a name, a location, 

a width, a layer, a type and a net. Nets are a mechanism for associating a 

number of ports which might not have the same name. Connectivity between 
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cells can be indicated by port net, port name or port location. The sides of a 

cell are identified by the directions North, South, East and West. 

Libraries 

Elgar cells can be collected into libraries and any number of libraries can be 

created. Cells within a library can be accessed by name. Libraries are used by 

many of the higher level functions as a simple way of passing groups of cells 

between applications. A typical example of this is where a module generator is 

passed a library of parts. Different modules can then be generated by the same 

routine, simply by passing it a different library of cells. 

In section 4.4.2 the prosaic interface to the Elgar library system was intro- 

duced. This allows the user to specify a library cell which can be used to realise 

a function. To simplify the provision of such library parts by the user, the Elgar 

system has an interpreter for ILAP and FLAP code. This removes the need for 

the user to compile the library definitions in with the CC2 code. 

Composition 

The whole point of the Elgar system is to simplify the job of composing cells 

together. To this end the system provides a compose operator. This takes 

two cells and returns a new cell which is formed by abutting the first two cells 

together in either the horizontal or vertical direction. 

A problem arises during compositions if the ports on adjacent sides of the 

two cells do not directly connect. There are a number of possible ways to tackle 

this problem. The simplest method would be to reject all such compositions as 

faulty. Though this is straightforward, it would place very strict limits on the 

types of cells which could be composed. A second, more flexible approach is to 

perform some form of automatic routing between cells if necessary. Some form 

of geometric modification such as stretching or shrinking could be carried out 

on cells; this idea was suggested for the Silver system [46]. This last alternative, 
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while being very powerful, was beyond the scope of the work presented here. 

Consequently, the Elgar system uses automatic routing to match the ports of 

abutting cells. 

Three types of composition arise from the routing approach. The first is 

simple abutment which takes place when port locations, layers etc match. The 

next method provides river routing between cells where the port connectivity 

is planar. Finally channel routing can be carried out between sets of ports 

which have aplanar connectivity. Changes of layer between ports are carried 

out automatically. The performance of routing between cells can be suppressed 

by the user. 

The channel router used by Chip Churn was grid based and was unable 

to cope with many types of cyclic constraint. For this reason a new, gridless 

channel router was developed for Elgar. Details of this channel router can be 

found in appendix A. 

If there are ports on one side of a channel which do not connect to anything 

else in the channel, they are routed to appear at both ends of the channel. The 

user can suppress this feature or choose a single end on which the unused port 

will appear. 

Multiple Compositions 

One limitation of simple two-cell compositions is the proliferation of cell names 

that result. Though this may seem trivial at first, it has proved to be a very 

real problem in practical systems. As a result Elgar provides two methods of 

composing together many cells simultaneously. The first method allows com- 

positions to be expressed in the form of text strings; the second method allows 

an applications program to build up a graph of cell compositions which can all 

be carried out at once. 
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start comp graph (elgar ver,part lib) 
start branch (elgar hor) 

define node ("a") 
define node ("b") 

end branch 
define node ("c") 
start branch (elgar hor) 

define node ("d") 
start branch (elgar ver) 

define node ("e") 
define node ("f") 
define node 

end branch 
("g") 

define node ("h") 
define node ("i") 

end branch 
define node ("j ") 

end graph 

Figure 4-13: Building a Liszt graph 

Liszt 
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The Liszt system allows an Elgar user to construct a composition graph in which 

the nodes are cells and the arcs are composition operations. Composition graphs 

take the form of trees with branches of either horizontal or vertical compositions. 

Because Liszt graphs are acyclic (by construction) there is a clear order in 

which the composition operations can be applied. This means that the will be 

no cyclic constraints during placement and channel allocation. Composition of 

Liszt graphs can be done by a simple recursive descent of the graph structure. 

In the current version of the graph composition software, the Liszt graph is 

scanned to add routing cells before the final composition is carried out. 

Figure 4-13 shows a program segment which builds a Liszt graph and fig- 

ure 4-14 is a diagram of the resulting graph and its layout. 

It can be seen from figure 4-13 that it is possible to nest branch definitions; 

there is no limit to the depth to which this nesting can be taken. Because the 
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Figure 4-14: A Simple Liszt Composition - Layout and Graph 
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---------------------------------- ---------------------------------------- 

1 
1 

Ports on this side 
a will have to be 

extended to 
this side 

--------------------------------- ----------------------------------------- 

a : Ports in this area belong to the channel between the composed blocks. 

Figure 4-15: A composition requiring port extension 
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Elgar system only deals with rectangular objects, it is sometimes necessary to 

extend the ports on those sides of blocks which do not correspond to the bound- 

aries of the composition block. Figure 4-15 shows an example of this situation 

in a horizontal composition; the same thing can happen in vertical compositions. 

This port extension is done automatically within the Elgar system. 

During compositions, cells are instanced by name. There are three special 

characters which can be prepended to a cell name to carry out transformations. 

These characters are : 

m' : Each of these symbols in front of a cell name implies a 90° anticlockwise 

rotation. 

!' : This symbol implies a reflection in the Y axis (i.e. of the x co-ordinates). 

_' : This symbol implies a reflection in the X axis (i.e. of they co-ordinates). 

4.6.5 Bend 

Bend is the CMOS back-end for CC2 and as such it provides the interface 

between the TIIF data structure and the Elgar system. Once a composition 
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block has been identified for solidification, it is passed to the Bend system 

where the following steps are carried out. 

1. Module Generation. This stage creates the geometry for the functional 

modules used in a design. During module generation, two libraries are 

constructed. The first of these is the archetype library in which there is 

a single example of each function used in the design. Generation of the 

archetype library involves the generation of PLAs, Wino arrays and the 

location of leaf cells in libraries. 

Once the archetype library is complete, a second "working" library is 

created. The working library contains a cell for each individual instance 

of a function in a design. It is at the working library generation stage 

that the connectivity of the CC2 design is embedded in the Elgar data 

structure. The working library will eventually contain all of the wiring 

and utility cells required in the final composition of the design. 

To simplify the routing problem, certain restrictions are placed on the 

form of functional modules used by Bend. In particular, the I/O ports on 

the modules must appear on both the north and south faces of the modules 

in the same order, although the location is not important. In addition, 

all the utility signals, power, ground, clocks etc, must be present on both 

the east and west sides of the modules, again in the same order. 

2. Floorplanning. This stage creates the rows of function modules and carries 

out the routing between them. There are a number of steps involved in 

this process; these are : 

(a) Build Liszt: A Liszt graph is created in which a number of horizontal 

rows are composed vertically. The horizontal rows are made up of the 

cells in a design, divided up on the basis of the pattern of connectivity 

on the east and west sides of the cells. In this way all the cells with 

the same utility signals are collected in the same row. Ordering of 
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the blocks is done in an attempt to locate connected blocks in close 

proximity to each other. 

(b) Aspect Ratioing : In an attempt to achieve an approximately square 

aspect ratio for the design, the (F)loorplan (OP)timiser (Fop) system 

takes the Liszt graph and breaks up the horizontal rows. Once Fop 

has broken up the original rows, alternative rows in the tree have 

their order reversed. This helps maintain the locality of connectivity 

achieved by the ordering of the original Liszt tree. 

Manual intervention is provided at the Fop stage to allow user inter- 

action with the floorplanning. This intervention can take two forms; 

the user may specify an ideal length which Fop will try and use as 

the x dimension in the layout, or the user may specify the complete 

floorplan. Complete floorplans are specified as lists of named cells, 

each list corresponding to one row in the finished design. These floor- 

plan lists can be entered interactively or can be read from a file. The 

output from Fop is a Liszt composition graph. 

(c) Minimise Port information : The Liszt graph produced by Fop can 

contain more port information than is required by the Elgar system. 

Because all of the cells have ports on both sides, not all of the ports 

may be needed to achieve minimum connectivity. There is also the 

problem of connecting modules which do not share a common chan- 

nel. To solve these two problems unnecessary ports are hidden and 

feed-throughs are introduced where they are required. The final job 

done at this stage is to identify primary I/O signals (that is signals 

connected to pads) which will not have a port located on the bound- 

ary of the composition cell. These nets are assigned single ports in 

channels; this will result in their being routed to the ends of the 

channels and hence the edges of the composition cell. 

(d) Place and Route : The Liszt graph containing feed-throughs and the 

minimised connectivity information is passed directly to the Elgar 

composition system where the placement and routing is done auto- 
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matically. Because the graph composition system is predictable, this 

automatic place and route results in the multi-channel architecture 

used by Bend. 

3. Utility Routing : This process is straightforward as all the utility signals 

are present on the east and west sides of the main design composition cell. 

4. Pad Placement : A simple pad placement system is called to put the pads 

on the design. 

4.6.6 Bes 

Earlier it was claimed that one advantage of implementation dependence was 

the availability of certain structures which might be of use in FTFS devices. 

If such structures are to be available to the CC2 system, it is desirable to 

standardise the interface between the modification routines and any particu- 

lar back-end. The Back End Server (Bes) provides such an interface to the 

technology dependent information. 

Bes is a set of routine calls which a technology back-end is expected to 

provide for the modification software. A typical application of Bes is to provide 

the name of library cells or cell generators which can be used to generate check 

logic gates such as parity checkers. 

4.6.7 Example 

As an example of the sort of layout produced for CC2 by Bend and Elgar, 

figure 4-16 shows a design for the eight bit ripple carry adder example of fig- 

ure 4-9. 
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