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"We 're jammin '... I hope you like jaminin' too." 

Bob Marley 



Abstract 

Suspensions of solid particles within a solvent display a variety of interesting rheological be-
haviour. The viscosity can vary with applied stress, resulting in materials which become thin-
ner or thicker as they are driven more strongly. Thickening can become so severe that the flow 
becomes erratic on a macroscopic level, suggesting that the material aquires a solid—like char -
acter, at least transiently. This idea is supported by recent experiments in which initially fluid 
suspensions are transformed into a persisting solid upon shearing. - 

Behaviour reminiscent of this can be observed in granular materials. For example, the flow of 
grain from a hopper under gravity is often halted as 'arches' of force bearing particles form. 
In such a situation, the solidity of the material arises only as a result of applied forces and 
transient flow. 

There has been much speculation regarding the nature of these jamming phenomena, in par-
ticular whether or not there is a link between jamming and the glass transition. In this thesis, 
we present a model in which jamming is treated as a stress induced glass transition. This leads 
to predictions of the rheological behaviour and the structural dynamics in such a scenario. We 
also discuss the link between rheology and the glass transition more generally, arguing that 
common explanations for thickening in dense colloids are unlikely to be complete, as they 
essentially ignore the presence of the glass transition. Finally, we discuss the relevance of 
jamming phenomena to the industrial process of granulation. 
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Chapter 1 

Introduction 

This thesis is concerned with the behaviour of complex fluids under flow, or their rheology. I 

begin by giving a brief introduction to complex fluids, explaining what they are and why they 

are interesting to study. I then introduce the subject of rheology, and conclude the chapter with 

a summary of the thesis. 

1.1 What are complex fluids? 

In atomic and molecular materials (eg, carbon and water respectively) the material is made 

up of a large number of particles (the individual atoms or molecules) interacting with one 

another. The structure of the material is homogeneous on lengthscales much larger than the 

typical atomic lengthscale of angstroms. In a complex fluid, this is not the case: rather, at least 

one component is significantly larger than the atomic lengthscale. For example, in polymer 

solutions, very long molecules are suspended in a liquid of much smaller molecules or atoms. 

Many properties of complex fluids (also known as soft matter) are governed by the behaviour 

of this large component, rather than by behaviour on the atomic scale, and this can give rise 

to rather interesting material properties. Some of the most common complex fluids are briefly 

introduced below. For a more in-depth discussion of complex fluids see, eg [1, 21. 

1 
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1.1.1 Colloids 

In colloidal systems, solid or liquid particles are dispersed within a liquid or gas. There is a 

range of particle sizes, from a few nm up to about ljim, for which particles are regarded as 

colloidal. Particles with sizes in this range are sufficiently large that the background fluid may 

be treated as continuous, whilst they are sufficiently small that Brownian motion is significant. 

This latter condition can be used to set a loose upper bound on the colloidal lengthscale by 

comparing the magnitude of the thermal energy to a typical gravitational potential energy. 

Everyday examples of colloidal systems include blood, milk and paint. 

For a number of years now, physicists have studied model colloids, in which the interactions 

between the particles are well characterised. The simplest model system is the (nearly) hard 

sphere suspension. This is an approximate realisation of an idealised system of spherical par -

ticles which have no interactions, save for an arbitrarily large repulsion upon contact, which 

prevents overlap: an appealing analogy is 'microscopic ping-pong balls'. Computer simula-

tion has demonstrated that the hard sphere system displays a thermodynamic phase transition 

between a disordered fluid and a crystalline solid at a certain particle concentration. Addition-

ally, there is a nonequilibrium transition to an amorphous solid phase which occurs at high 

concentrations - this 'glass' state will be discussed in much more depth later. That colloids 

could mimic a hard sphere system has been demonstrated by comparing the phase behaviour 

of carefully prepared samples with the computer simulations, with great success. More gen-

erally, it is typical for colloidal systems to behave as a fluid (solid) at sufficiently low (high) 

concentrations. 

1.1.2 Polymeric materials 

As mentioned above, in a polymer solution, long chain-like molecules (polymers) are sus-

pended within a molecular liquid. The polymers are made up of many (> 10) momorners 

linked together in chains. As well as in solution, polymers can exist in a solid state (eg, rubber) 

and as a polymeric liquid. Solid polymers are very common in everyday life, for example in 

packaging. Such products are often processed either in a molten form or in solution. 
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1.1.3 Amphiphilic systems 

Amphiphilic systems are composed of surfactant molecules, which have one end (the head) 

which likes to be surrounded by water, whilst the other end, called the tail, does not like to 

be in water - it prefers to be in oil. Because of this property, mixtures of surfactants with 

water/oil can lead to the spontaneous formation of complex structures which allow both ends 

of the molecules to reside within their favoured environment. Surfactants are used in many 

cleaning products to seperate oils from water. 

1.2 Why are complex fluids interesting? 

We are all familiar with the classical separation of matter into solids, liquids and gases. But 

there are, in reality, many materials which do not fit neatly into this classification. Consider 

the simple division between solids and liquids: a typical liquid such as water is easily made to 

flow, whilst solids (for example steel) are not. But what about a material such as toothpaste - 

is this a solid or a liquid? One one hand, toothpaste will flow if one squeezes the tube, but on 

the other hand it will happily sit on the brush, rather like a solid. It is evident then, that some 

materials are not easily categorised as solid or liquid. Complex fluids (of which toothpaste is 

an example) often fit into this category. (In fact, some authors choose this as their definition of 

a complex fluid eg, [1].) Another oft quoted example is that of 'silly putty'. If dropped, this 

material will bounce like a solid rubber ball, but will flow under gravity if left undisturbed on 

a surface for ten minutes or so. This sort of behaviour naturally provokes one's curiosity. 

Another merit of studying complex fluids is that they allow easier study of many-body dy-

namics than atomic or molecular materials [3].  In atomic materials, these processes occur on 

short timescales (- picoseconds) governed by atomic motion: this makes them very difficult to 

study. In complex fluids, the relevant dynamics is that of the large 'structural units' (colloidal 

particles, polymers...). As one might intuitively expect, these larger particles have slower 

dynamics, resulting in typical timescales being of the order of milliseconds or greater. These 

longer timescales are far more accesible to experimental techniques than those associated with 

atomic motion. For example, the process of crystallisation may be studied in colloidal systems 
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using microscopy [4], while such detailed studies of crystallisation in atomic or molecular sys-

tems would prove rather more difficult. Another attribute of complex fluids is that their slower 

dynamics makes it easier to perturb the system from equilibrium, for example by external forc-

ing, and thus to study nonequilibrium situations. We will return to this point in the following 

section. These considerations point towards the fact that complex fluids provide an excellent 

'laboratory' for the study of many-body dynamics. For further discussion of the physics which 

can be gleaned from the study of soft matter, see [3]. 

Finally, it is important to understand the physics of complex fluids because they are ubiquitous 

in industry. For instance shampoos, lubricants, foods and the aforementioned toothpaste are 

all examples of complex fluids. A greater understanding of the fundamental physics of these 

materials allows more efficient processing and the development of improved products. 

1.3 Rheology 

Rheology is the study of how a material deforms under an externally imposed stress, or con-

versely, the study of the stresses which result when a material is deformed in a prescribed 

manner. From the previous section, it is apparent that much of what makes soft matter inter -

esting is its rheology. As a simple probe of rheology, consider the experiment schematically 

represented in Fig. 1.1. Exerting a given force upon each of the parallel plates imposes a cer-

tain shear stress upon the material, which results in its deformation. For a 'normal' solid, such 

as a lump of steel, this deformation is rather boring: a constant shear strain (y), proportional 

to the applied stress, is maintained for as long as the stress is applied (Hookean behaviour). 

(The shear strain is the ratio of the distance moved by one of the plates to the perpendicular 

distance between them.) The ratio of the applied stress to this strain is the the material's shear 

modulus. What about a classic example of a liquid, such as water? Do the same experiment 

and one finds that the shear strain does not approach a constant value. Rather, the shear strain 

continually increases at a rate y  (the shear rate) proportional to the applied stress. In this case, 

the modulus is not a useful quantity: more relevant is the viscosity, defined as the ratio of the 

imposed stress to the shear rate. 
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Force exerted on plate 

Force exerted on plate 

Figure 1.1: Application of shear stress to a material may be performed by enclosing the material between 
two parallel plates, and imposing a given force on the plates. This schematic figure shows a side on view 
of such a setup. In a liquid such as water, this results in 'simple shear flow': the flow velocity varies 
linearly from zero (at the midpoint between the plates) to a maximum velocity (equal to that of the plates 
themselves) adjacent to the boundary plates. The velocity gradient is known as the shear rate y. 

But what about soft matter? in this case, the result often proves to be far from boring. Consider 

shearing a colloidal fluid: as before, application of a given shear stress leads to flow at some 

shear rate. However, unlike the case of water, the shear rate need not be simply proportional 

to the stress. Rather, in some cases one finds a highly nonlinear relationship between the two 

quantities (see, eg, [51) - the viscosity can vary dramatically with the applied stress. A situation 

in which the viscosity increases with stress is known as shear thickening; a decreasing viscosity 

corresponds to shear thinning. Also, some materials can exhibit flows which change in time, 

perhaps chaotically, when subjected to a constant stress (eg, [6]). 

What if our soft material is not a fluid, but rather is a solid, such as a colloidal crystal? If we 

impose a very small stress, then the behaviour will be similar to that of the steel mentioned 

above - a constant shear strain is maintained during the application of stress. However, on 

application of larger (but still rather modest) forces, we can cause the solid to yield and flow. 

Once this 'yield stress' has been exceeded, the material's mechanical response is similar to that 

of a liquid: the viscosity, rather than the elastic modulus, is a meaningful quantity. 'Honorary 
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liquids' created in this way can exhibit similar rheological phenomenology to materials which 

are liquids in their quiescent state. 

So why do complex fluids display rheology which is so different to 'normal' materials? In 

particular, why do, eg, colloidal liquids not simply flow with a constant viscosity; and why are 

colloidal solids easy to 'shear melt'? To answer the first question, consider a fluid in thermal 

equilibrium. In such a system quantities such as the density field fluctuate, with fluctuations 

having a typical lifetime '7, which is fixed by the microscopic dynamics of the fluid. By shearing 

a fluid at shear rate y,  we introduce a characteristic timescale of the flow: r -- 1/j'. If 

the shearing is sufficiently slow, this timescale will be very long compared to the material's 

intrinsic relaxation timescale i - . This means that, over the timescales on which shearing could 

perturb the fluid at a microscopic level, relaxation processes occur many times over. Thus 

the structure and dynamics of the material remain largely unchanged from from that of the 

quiescent state. In molecular fluids such as water, this condition is met at any feasible shear rate, 

due to the fast (picosecond) relaxation processes, and so sheared molecular liquids essentially 

remain in thermodynamic equilibrium: their viscosity, and other properties remain unchanged 

from the equilibrium values. In complex fluids however, typical relaxation times are much 

slower, of the order of milliseconds or longer. Therefore, whilst at low enough shear rates this 

equilibrium condition is met, the fluid may be driven out of equilibrium at easily attainable 

shear rates. In this case, the system has insufficient time to relax in the time taken for the shear 

to alter the material at a microscopic level. The structure and dynamics of the material can 

become altered from that in the unperturbed state, causing properties of the material - such as 

its viscosity - to change. So we see that, as claimed in the previous section, the long relaxation 

times of complex fluids make it much easier for us to drive them out of equilibrium, and thus 

to study nonequilibrium many—body processes. 

We turn now to the second difference which we have identified - why can we easily shear melt 

a colloidal solid, but not a lump of steel? To answer this, we make a simple estimate of the 

shear modulus of these materials which, as mentioned above, is a measure of the stress which 

arises upon a shearing deformation. The modulus is an energy density, and so we consider 

the typical energy per unit volume in each material. In a typical 'hard' solid, the particles are 

joined by strong electronic bonds, with typical energies per atom of the order of electron volts, 
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and the relevant lengthscale is 	10 0 m. For a sheared colloid, entropy is the main source 

of elasticity, and so the energy scale is the thermal energy kT (- 40 eV at room temperature), 

whilst the relevant lengthscale is 10 7m. Thus, a typical shear modulus of a metal is of the 

order 1010  times as large as that of a colloid! This suggests that it is easy to deform a colloidal 

solid to large strains, where at some point it will it yield and flow. In contrast, it is difficult to 

do this with steel. Once the material is flowing, the discussion above regarding the competition 

of timescales again comes into play, bringing with it all that this entails. Therefore, we see that 

both colloidal solids and fluids may easily be driven out of equilibrium and therefore display 

interesting rheology. 

1.4 Thesis summary 

In this thesis, we shall be interested in the rheology of dense colloids. In particular, we investi-

gate the implications of a model in which shear thickening is due to the proximity to the glass 

transition. This model is discussed in the context of recent experiments in which shear thicken-

ing becomes so severe that a fluid is transformed into a solid upon shearing. We are interested 

in whether or not such a 'jammed solid' may be interpreted as a stress induced glass. Aspects 

of these experiments which lie outwith the scope of the simple model are also discussed. 

The rest of this thesis is laid out as follows. In Chapters 2 and 3, background material on the 

subjects of rheology and the glass transition are presented. Following this, Ch. 4 provides 

a technical description of the mode-coupling theory of the glass transition (MCT), which is 

relevant to the work presented in this thesis. 

In Ch. 5, we suggest an explanation of the experiments mentioned above. We also discuss 

their relationship to the industrial process of granulation, and identify the important physical 

quantities involved in this procedure. Following on from this, we argue that the glass transition 

is of relevance to shear thickening. This notion leads to the development, in Ch. 6, of a simple 

model, based upon MCT, of suspension rheology. The results of this model are presented in 

Chapters 7 and 8. In Ch. 9, we discuss these results in the context of experimental results and 

the rest of the thesis. Finally, in Ch. 10 we draw our conclusions and suggest ways in which 

work in this field might proceed. 



Chapter 2 

Rheology 

In this chapter, we shall discuss the rheology of soft matter in more depth: we shall explain 

what it is in general that one would like to achieve, and discuss the relevant phenomenology of 

complex fluid rheology. We begin by introducing various tensors, which provide a framework 

for the quantitative description of stress and deformation. Much of the information in this 

chapter, and more, may be found in Refs. [1, 7, 8, 9]. 

2.1 A tensorial description 

2.1.1 Deformation: the strain and velocity gradient tensors 

In order to characterise deformation in a quantitative manner, we introduce the strain tensor E, 

following Ref. [8]. The strain tensor is defined in the following way: consider a small element, 

at position r, within a material. If the material is then deformed in some manner described by 

E then, under the deformation, r -+ r' E. r, as illustrated in Fig. 2.1. 

Deformations for which det E = 1 preserve a material's volume. These are the strains in which 

we shall be interested, as volumetric strains do not lead to the sorts of interesting behaviour 

which we have been discussing. The reason for this is that, like deformation in 'hard matter', 

these strains deform strong chemical bonds between molecules [8]. The modulus relevant to 

such strains (the bulk modulus) is therefore of the same order as the modulus of 'hard matter', 
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Figure 2.1: A deformation, such as the one illustrated above, may be represented by the strain tensor, 
which is defined in the main text. 

and so these strains lead to the sort of 'boring' response discussed in the Introduction. We shall 

therefore ignore volumetric strains in future discussions. 

For small strains, it is useful to split the strain tensor in the following way: 

= i + e, 	 (2.1) 

where 5 is the second rank identity tensor. Then, the displacement of a material element, 

u r' - r = e - r. If the strain is homogeneous, which we shall assume in the following, this 

is equivalent to e = (Vu)T. 

In a flowing material, we have a time dependent deformation, which we consider to consist 

of a series of infinitesimal strains. In this case, the displacement field u(r) will vary in time: 

in a short time öt the material element at r is displaced by u(r) = v(r)St, where v(r) is the 

velocity field, and so ü = v. 

By considering gradients of the velocity field, we can divide volume preserving deformations 

into extensional and shearing strains. In the former, velocity gradients are parallel to the veloc-

ity itself, whilst in the latter, gradients are perpendicular to the velocity. Mixed flows, contain-

ing both these components, may also occur. The gradient of the velocity field defines the aptly 

named velocity gradient tensor (V v )T = . This object is related to the strain tensor, 

which we must generalise in the case of a flowing material: let the position of the material 

element, present at r(0) at t = 0, evolve in time according to r(t) = E(t, 0) . r(0). Now 

consider the position of a material element at time t + R. We can write this in several ways: 
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by definition of E, we have 

r(t + 5t) = E(t + bt, 0) r(0). 	 (2.2) 

Alternatively, we may write 

r(t + 6t) = r(t) + v(r)6t 
	

(2.3) 

= ( + Kit) . r(t) 	 (2.4) 

= (ö + Kit) . E(t, 0) r(0), 	 (2.5) 

where we have used v = K r. Upon taking the limit it -* 0, comparison of Eqs. 2.2 and 2.5 

shows that 
dE 

KE=— 
== dt 

(2.6) 

This result links the strain and velocity gradient tensors. We now consider how to describe 

the state of stress in a material, using the stress tensor, before linking the state of stress in a 

material to its deformation. 

2.1.2 The stress tensor 

Consider a small cubic material element (Fig. 2.2). The faces of this volume element will 

experience forces from the material on the exterior of the cube: the stress tensor a is defined 

such that the force dF, due to material outwith the cube, on a face with vector area dA = ndA 

(with n the outward unit normal and dA the infinitesimal area of the face) is dF = a. dA. 

Except in unusual cases, the stress tensor is symmetric, as is shown by considering torques on 

an infinitesimal element [8]. 

As mentioned earlier in this chapter, the bulk moduli relevant to volumetric strains in soft ma-

terials are much larger than the moduli of volume preserving deformations. Very large stresses 

are required to produce even a small volume change. In this case, it is a good approximation 

to treat the bulk modulus as infinitly large, expressly forbidding volume changes. This condi-

tion is then enforced by the isotropic pressure p = —(1/3) Tr(a), which simply takes on the 

value necessary to prevent volume changes, and is therefore not an interesting quantity to study. 
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M.  

Figure 2.2: A cubic volume element. The face (shaded) with vector area dA experiences a force dF = 

adA. 

Therefore, we concern ourselves only with determination of the stress tensor up to an additive 

isotropic term. From this, and the symmetry of the stress tensor, one can see that there are 5 

independent numbers which specify the stress tensor: three shear stresses (a12, U13 and 0`23) 

and two normal stress differences, usually chosen as N1 all - 0'22, and N2 E 0-22 - 0`3. 

2.1.3 The constitutive equation 

In complete generality, a material's state of stress is linked to its deformation rate at all earlier 

times, and the present time. We may write this as a functional of the deformation rate: 

a(t) = T[K(t' <_ 01. 	 (2.7) 

It is this relationship, known as the constitutive equation, that rheologists wish to measure, and 

to understand from the microscopic physics. In some cases, a constitutive equation which is lo-

cal in time may provide a suitable description of a material's rheological response, simplifying 

matters somewhat. An example of this situation is the constitutive equation for a Newtonian 

fluid, for which or = i(K + KT), with ri the shear viscosity - a constant property of the ma-

terial. Another simple constitutive equation is that of the ideal Hookean solid: a = GE - ET 

where G is the material's shear modulus [101, again a property of the material. (This is couched 

in terms of the deformation tensor, rather than velocity gradients, but as we have seen, these are 
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related.) These two simple models are the archetypes of a viscous liquid and an elastic solid. 

Upon application of a shear stress, the Newtonian fluid flows at some shear rate determined 

by its viscosity, whilst the Hookean solid develops a fixed shear strain. Many real materials 

are well modelled by these idealised cases, at least in some regime, but outside these cases 

the behaviour is often much richer. Example constitutive equations in more complex models 

(along with examples of the tensors describing stress and deformation) may be found in Refs. 

[7, 8, 9, 101. 

2.1.4 An example: simple shear flow 

In the following discussion of the rheology of complex fluids, we shall be concerned in partic-

ular with simple shear flow. Therefore, we now define this in terms of the tensors introduced 

above. 

In simple shear, the fluid flows in in a given direction (which we choose to be the x—direction) 

with a constant velocity gradient in an orthogonal direction (the y—direction). The flow field 

does not vary in the z—direction. Therefore the velocity field is v(t) = 'y(t)y*, with ic a unit 

vector in the x direction. j'(t) is the shear rate. The velocity gradient tensor is 

0 'y (t) 0 

K = 	0 0 0 . 	 (2.8) 

000 

We can use Eq. 2.6 to give the strain tensor as 

170 

E(t, 0) = 	0 1 0 	, 	 (2.9) 

001 

where = f 'y(t')dt', the accumulated shear strain. In steady shear, y(t) is a constant and 

7 = 7t. 

The constitutive equation given above allows us to calculate the stress in a Newtonian fluid 
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undergoing shear flow. This gives 

0 iry 0 

= 'r 0 0 

000 

(2.10) 

For the Newtonian fluid in simple shear, the only stress that develops is a shear stress. In 

complex fluids significant normal stresses can also develop. However, experiments and theory 

often focus upon the relationship between the material's shear stress (simply denoted a) and 

the shear rate - unlike the case in Newtonian fluids, the relationship a(y)  may be significantly 

more complicated than a simple linear function. 

The viscosity is not a useful quantity in the description of the Hookean solid. Using the consti-

tutive equation given above, one can calculate the stress in a Hookean solid undergoing shear 

flow. Doing so, one finds that in order to make this material flow, we would need an ever in-

creasing stress, since the shear stress scales with the shear strain: the viscosity is divergent. A 

more natural way to study the Hookean solid's response to shear is to ask what stress results 

due to a given constant strain, the answer being provided by the material's shear modulus. 

Having introduced the quantities used to describe a material's rheology, we go on now to dis-

cuss the experimental techniques used to measure these quantities, before providing a summary 

of the experimental phenomenology. 

2.2 Experimental techniques 

2.2.1 Basic principles 

In order to investigate the rheology of a complex fluid, one uses a device known as a rheometer. 

This imposes a fixed deformation upon a material, and measures the resulting stresses (or vice—

versa), allowing experimental determination of a material's rheological behaviour. 

We can categorise rheometers depending upon whether they impose shear or extensional flow 

(for fundamental studies, it is generally desirable to impose one or the other, rather than a mixed 

flow, which can be very difficult to analyse). Shear rheometers can be further categorised into 
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those which impose flow through drag, and those which impose flow by setting up a pressure 

gradient. Colloidal rheology, in which we shall be primarily interested, is very often performed 

using drag imposed shear flow, and so we shall concentrate upon this technique. However, 

it is worth bearing in mind that extensional flows can provide information which cannot be 

deduced from results of shear experiments (see [8] for an example). See [10] for details of 

other techniques. 

Drag flows 

In drag flows, the sample is held between two solid surfaces (the plates), which are driven with 

a prescribed force (or with a prescribed relative velocity), creating a flow in the material. If the 

driving force is controlled, then the mean shear stress at the boundary of the material is fixed, 

and the resulting shear rate is measured. If, instead, the velocity is controlled, then this fixes 

the mean shear rate across the sample, and the resulting shear stress is measured. Additionally, 

normal stresses can be measured in some experiments. 

2.2.2 Time dependent shear and viscoelasticity 

The simplest rheometer geometry is that of two parallel sliding plates (illustrated in Ch. 1). 

This set-up has the advantage that (assuming the flow remains homogeneous) it imposes uni-

form simple shear flow, which allows for (relatively) simple analysis. This geometry is com-

monly used to perform experiments with a time—dependent strain. In contrast, steady shear is 

rather problematic, as the plates quickly become displaced far from one another. This problem 

is solved by using rotational devices, described in Sec. 2.2.3. 

Time dependent strain experiments reveal that many complex fluids are viscoelastic - they 

display characteristics of both an elastic solid and a viscous fluid. As an example, consider the 

following experiment: impose a shear deformation 

= 'y00(t - t0 ), 	 (2.11) 

where 0 is the Heaviside step function. This is known as a step—strain. Under such a defor- 



16 
	

CHAPTER 2. RHEOLOGY 

(a) 
Y 

Yo  

(b) 

Cr 

t o 	 t 	 to 	 t 
(c) 

Gy0  

(d) 
CY 

ci0'y0 	
Solid—like 

Fluid—like 

 

to 	 t to 	 t 

Figure 2.3: A step—strain experiment (a), and the resulting stress response in (b) a viscous fluid; (c) an 
elastic solid of modulus C; and (d) solid and fluid like viscoelastic materials, with instantaneous modulus 

G. (defined in main text). 

mation, an ideal Hookean solid with shear modulus G will develop a shear stress or = G'-y as 

soon as the strain is imposed. This stress then remains constant for the duration of the strain. 

In an ideal Newtonian fluid, the shear stress will again rise sharply as the strain is imposed, 

but will instantaneously relax back to zero (formally, the stress is a Dirac—delta function). In a 

viscoelastic material, the stresses which arise are not simply proportional to either the strain or 

strain rate, and so do not show such simple behaviour. Rather, the stress which is created upon 

the step—strain relaxes from its initial value over time. If the stress relaxes back to zero, then 

the material is said to be 'fluidlike', whilst if it does not, the material is 'solidlike'. The stress 

response of fluidlike and solidlike viscoelastic materials, as well as that of the idealised solid 

and liquid, are shown in Fig. 2.3. It should be noted that all real materials are viscoelastic to 

some extent, but this property is only obvious if the time for the stress to decay to its final value 

is comparable to the timescales probed by the experiment. Accordingly, the classification of 

a material as solidlike or fluidlike may depend upon the experiment. For example, a material 

will appear solidlike if an experiment is performed on a timescales shorter than the relaxation 

of the stress, whilst a longer experiment may categorise it as fluidlike (cf the earlier example of 

silly putty). 
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If a step—strain experiment is performed with a sufficiently small strain amplitude, one can 

characterise the results in terms of a linear time—dependent modulus, G(t), defined via a(t) = 

G(t - t 0 )'y0 . (Note that we have also assumed time—translational invarience (Ti'!), which will 

not hold in all situations - see [11] for a formulation without this assumption. Situations in 

which ITT does not hold will be discussed in Sec. 3.4.) G(t) is often written as the product of 

an 'instantaneous modulus' G 0  and a 'memory function' for the stress, 14t). Using G(t) one 

can, at least theoretically, make a distinction between solidlike and fluidlike behaviour which is 

independent of experiment: viz, materials for which 1imt ,0  G(t) = 0 are liquid, whilst those 

for which limt_ G(t) 0 are solid. The question of whether such a distinction is useful - 

ie, whether relaxation times truly diverge - will crop up in a later chapter. 

We can link the response to an arbitary strain to G(t) (provided we remain in the linear response 

regime). Consider decomposing an arbitary strain 'y(t) into a series of strains &y(t'): if we 

remain in the linear regime, we can superpose the effects of strains at all earlier times to give 

o- (t) = E G(t - t')ö'y(t') 	 (2.12) 

which becomes, in the limit 8'y(t') -+ 0, 

t  a(t) = f G(t  - t')'y(t')dt'. 	 (2.13) 

Thus we see that the shear stress due to any linear shear deformation is characterised by the 

function G (t). (In fact, the response to any volume—preserving linear deformation is encom-

passed by G(t) [101.) 

In addition to the step—strain experiment discussed above, there are several other time—dependent 

techniques which probe a material's linear rheological properties. Particularly common is the 

technique of oscillatory shear, whereby a sample is subjected to an oscillatory shear strain 

ly = y0e t. This provides data in the frequency domain in the form of the storage and loss 

moduli G'(w) and G" (w). There quantities are the real (elastic modulus) and imaginary (loss 

modulus) parts of the complex modulus G*  (w) iw f G(t) e tdt, which represents the 

stress response to an oscillatory strain via or = 7oe )tG*( w ). The elastic modulus represents 

the stress which is in phase with the strain (corresponding to storage of energy), whilst the loss 

modulus represents the out—of—phase response, which corresponds to dissipation of energy. 
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Typically, the balance between elastic and viscous behaviour shifts towards a more elastic re-

sponse as frequency is increased, again reflecting the dependence of mechanical response upon 

the timescale probed. 

Having discussed time dependent measurements, we shall turn now to discuss steady shear 

rheology, which is a common probe of a material's nonlinear behaviour. For more on linear 

response, see Refs. [1, 8, 9, 101. 

2.2.3 Steady shear flow 

In order to make measurements in steady shear flow, a rotational device such as a cone-and-

plate or a Coutte rheometer is often used. These are illustrated schematically in Fig. 2.4. In 

these geometries the flow can be made to approach uniform simple shear flow, and so they 

are a practical alternative to the parallel plates in steady shear experiments. Additionally, the 

cone—and—plate device is useful for measuring normal stresses as well as the shear stress. 

To investigate a material's steady shear rheology, one applies a constant shear stress (shear 

rate), to the sample and measures the steady state value of the resulting shear rate (shear 

stress), and normal stresses if possible. By performing steady shear measurements at a range 

of stresses/shear rates, one builds up the material's flow curve a('y). Alternatively, the same 

information may be presented in terms of the shear viscosity ij a/'y, either as a function 

of the applied shear stress, i(a), or as a function of applied shear rate (zy).  (The distinction 

between the two controlled variables may be important, since there need not be a one—to—one 

relationship between the shear stress and the shear rate.) The viscosity in the limit of vanishing 

shear rate is the zero—shear viscosity. 

Results in steady shear can often be linked to those made in time dependent shear experiments. 

In particular, the zero—shear viscosity may be expressed as an integral of the stress relaxation 

function G(t): for a constant (infinitesimal) shear rate, Eq. 2.13 becomes 

00 

U(t) 	I G(t)dt. 	 (2.14) 

Comparison with the definition of the zero—shear viscosity gives 

I00 

G(t)dt. (2.15) 
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Figure 2.4: Schematic pictures of a Coutte (left) and a cone and plate rheometer. In the Coutte cell, the 
sample sits between the rotating inner cylinder and the stationary outer cylinder. In the cone and plate, 
the sample sits between the cone and the plate. In reality, the angle between the cone and plate is much 

smaller than that depicted - about 5 to 100. 

Thus, materials which have the quality of being solid, as defined in terms of stress relaxation, 

are also seen to have a divergent zero—shear viscosity. This fits with our intuitive idea of a solid 

mechanical response. 

2.2.4 Experimental difficulties 

Lest we give the impression that experimental rheology is a straightforward task, we briefly 

outline some difficulties which may occur. One of the most common difficulties faced by 

rheologists is 'wall—slip' - the slippage of the sample against the rheometer plates. If wall—

slip occurs, the shear rate in the sample will be (perhaps significantly) less than that which is 

apparent. This is often a problem in concentrated suspensions, in which the flow may be erratic. 

Another problem which is common in concentrated colloids is that of accurately determining 

the volume fraction of experimental samples. This is a problem, not just in rheology, but with 

any experiment using these systems. However, as we shall see, the rheological properties of 

suspensions can be extremely sensitive to volume fraction, and so this difficulty is especially 

pertinent to rheology. 

A final complication is that samples may not remain homogeneous when sheared: rather, the 
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system can undergo a separation into two nonequilibrium 'phases' [12]. Whilst this should 

not be regarded as a 'problem', but rather as an interesting phenomenon in its own right, it 

nontheless makes the analysis of experimental data rather more difficult than it might at first 

appear. We shall not concern ourselves further with the difficulties faced by experimentalists, 

but it is worth bearing in mind that such difficulties do exist. For further details regarding 

experimental rheology, see eg, [10]. 

2.3 Phenomenology of complex fluid rheology 

In this section, we describe several phenomena which are of interest: much of what we discuss 

regards hard sphere colloids, as these systems are of primary importance in this thesis. A review 

of hard sphere colloids from 1996 [13] provides a useful survey of the literature available at 

the time, and is a good starting point for the newcomer to this subject. 

2.3.1 Linear rheology of hard sphere colloids 

In hard sphere colloids, the zero—shear viscosity is observed to strongly increase with the con-

centration (this is usually expressed in terms of the volume fraction 0 = 47ra3 p13, where p is 

the number density and a is the particle radius). Dilute suspensions have a viscosity close to that 

of the solvent, as calculated by Einstein [14, 15] and Batchelor [16].  In contrast, concentrated 

suspensions exhibit large viscosities - eg, close to the onset of crystallisation, the viscosity of a 

hard sphere suspension is 50 times that of the solvent. Experiments suggest that the viscosity 

may diverge at some volume fraction in the region of 60% [17, 18, 19, 20, 21, 22]. However, 

other experiments suggest differing values for this volume fraction, possibly indicative of dif-

ficulties in accurately measuring volume fractions and verifying whether particles truly behave 

as hard spheres [18].  Note that, for 0 > 0.494, the equillibrium state is (either partly or wholly) 

a crystalline solid, whose zero—shear viscosity would be divergent: viscosity measurements in 

this regime are performed not upon the equilibrium state, but upon metastable fluid samples. 

The strong increase in viscosity is associated with the slow—down of structural relaxation as 

the glass transition is approached: this is the subject of the following chapter, and so we shall 
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not go into the underlying causes of this behaviour. However, there is a range of complex fluids 

(known as 'soft glassy materials' [23]) which exhibit similar rheological behaviour, attributed 

to the presence in all these materials of slow structural relaxations. We now give a brief survey 

of these generic features. 

2.3.2 Soft glassy materials 

Many soft materials appear to have an infinite zero—shear viscosity (they are solid by our earlier 

definition), but yield and flow upon the imposition of a shear stress exceeding their yield stress 

Ol
y  [

9]. The low shear behaviour of such materials is typically described by the expression 

a=ay +'y1 ; l>p>O. 	 (2.16) 

This describes either a Herschel—Bulkley fluid, or a power—law fluid if a?,, = 0. This suggests 

that the presence of a flow has the effect of speeding up the material's relaxation processes 

from the rate in the unsheared, quiescent state, lowering the viscosity. 

The definition of a solid as a material with an infinite zero—shear viscosity is not wholly sat-

isfactory, since this does not imply the existence of a finite elastic modulus (which is another 

way in which one might define the onset of solid behaviour) [11]. A material subjected to a 

stress below its yield stress may 'creep' forever with an ever—decreasing shear rate whose time 

integral diverges: thus the steady state shear rate is zero (and the material has infinite viscosity), 

whilst the steady state strain is infinite (resulting in zero elastic modulus). 

In addition to this yielding behaviour, the linear viscoelastic spectrum of soft materials is in-

triguing. The loss modulus G" (w) often appears to be constant or increasing as the frequency 

is lowered [24, 25, 26, 27], in contrast to the requirement, from linear response theory, that 

G" (w) is an odd function [9].  This behaviour has been interpreted as an effect of aging - the 

system's relaxation processes become ever slower as the age of the system increases. Thus 

measurements at decreasing frequencies, which require the system to be increasingly old, re-

veal relaxation processes on longer and longer timescales. A model (the soft glassy rheology 

(SGR) model) which reproduces much of the phenomenology of such materials has been de-

veloped [11, 23, 28]. We will discuss aging, which is associated with the glass transition, in 

the following chapter. 
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2.3.3 Thinning, thickening and jamming 

If the viscosity of a fluid increases with increasing shear stress, the material is said to be shear 

thickening, whilst a decreasing viscosity is referred to as shear thinning (thus the power law and 

Herschel—Bulldey fluids are shear thinning at low shear rates). Thinning and thickening occur 

in a range of complex fluids [1], but for brevity we will concentrate upon colloidal suspensions. 

Before we go on to discuss this subject, it will be useful to introduce the Peclet number, a 

dimensionless group obtained by taking the ratio of a material's diffusive relaxation time to the 

timescale of the shearing. Taking the diffusive relaxation time as that in a dilute system gives 

the Peclet number as [1] 
6ray 

Pe 
- kT 

(2.17) 

where 9 is the solvent viscosity, a is the particle radius and kT sets the thermal energy. Thus, 

in a dilute system, for Peclet numbers much less than unity, the Brownian diffusive dynamics 

dominate and shear is a perturbation, whilst for Peclet numbers much larger than unity, the sus-

pension properties are largely governed by the shearing motion. In a concentrated suspension, 

the dynamics do not correspond to a simple diffusion process: in this case, one can define the 

Peclet number in a variety of ways [1, 13, 29]. 

A number of experiments have been performed in order to elucidate the behaviour of suspen-

sions of well—characterised particles in steady shear flow, eg [5, 30, 31, 32, 33]. 'Stokesian 

dynamics' simulations have also played an important role [34, 35, 36, 37, 381. At low volume 

fractions, suspensions generally behave as a Newtonian fluid. At higher volume fractions, hard 

sphere suspensions can show shear thinning in a range of shear rates, with thickening occuring 

at higher shear rates [31, 32]. This scenario is generally in agreement with the simulations, 

which (for 0 = 0.45 for example) predict shear thinning at Peclet numbers of order unity, with 

thickening at Pe of order 100 [35]. 

The nature of the thickening depends upon the concentration. Moderately concentrated colloids 

show gradual thickening whilst in very concentrated samples the thickening can become very 

pronounced: indeed, the shear rate can show a region where it decreases as the shear stress is 

increased [30, 331! This is illustrated by the experimental data shown in Fig. 2.5. In controlled 
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Figure 2.5: Experimental data from Ref. [30], showing strong shear thickening in controlled stress rheom-
etry of concentrated hard sphere colloids. In the most concentrated samples, beyond a certain stress, 
the shear rate appears rather erratic. Where more than a single value of shear rate is indicated for a 
single stress, the upper shear rate is that measured upon initially increasing the stress, and the lower is 
the value measured upon subsequently decreasing the stress. Note that, in this diagram, the axes are 
interchanged with respect to later figures of this type. 

shear rate experiments, this can lead to a discontinuous jump in the measured viscosity. In the 

strongly shear—thickened state, researchers observe that the flow becomes very erratic [30, 32, 

33], and that samples can fracture. This seems to suggest the continual formation and breakup 

of some load—bearing structure within the thickening suspension, strongly resisting the flow. 

Also, the origin of the thickening may change with concentration: in the most concentrated 

systems, the large stresses generated by shearing appears to arise from elasticity, rather than 

from a dissipative process [32]. This situation is reversed at lower concentrations. 

Common explanations for thickening 

There are two commonly cited explanations for thickening: these are 'hydrodynamic cluster-

ing' [35] and an 'order—disorder transition' [39, 40]. In the latter scenario, the increase in 

viscosity is due to a loss of order in the flow. It is known that there is a regime of shear rate for 

which the particles become arranged into flowing layers [35, 41] which are disrupted at higher 

shear rates. The loss of order in the flow is then supposed to result in the observed thickening, 
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as particles are no longer able to easily flow past one another, as they can in the layered flow. 

However, in recent years, evidence has been presented which suggest that shear thickening 

need not be accompanied by an order—disorder transition. Radiation scattering experiments 

have found thickening which does not consistently coincide with a loss of order [31, 41]. Opti-

cal measurements suggest that the thickening is due to an increase in that portion of the stress 

mediated by hydrodynamic interactions between the particles. This, it is claimed, is not con-

sistent with the order—disorder transition scenario [31]. Simulations paint a similar picture 

[35]. However, at least in some cases, there appears to be a correlation between a transition 

to disorder and shear thickening [42], and some authors remain unconvinced by the evidence 

against the order—disorder scenario: it has been argued that scattering may not resolve weak 

order present in layered states, and that the optical measurements in fact do not preclude the 

relevance of an order—disorder transition [43]. 

The hydrodynamic clustering scenario is more widely accepted, but a detailed picture of this 

scenario is still emerging [44]. The idea is that clusters, roughly at 45° to the flow direction, 

form when the system is strongly sheared [36, 37, 45]. The particles in these clusters are driven 

close together, leading to strong hydrodynamic lubrication forces which resist the relative mo-

tion of particles in close proximity. The formation of these clusters is supposed to lead to the 

observed rise in viscosity. In recent work it has been suggested that, in hard spheres, the onset of 

thickening is related to the formation of a contact network between particle surfaces [44]. The 

network arises when the flow is sufficiently fast that the relaxation of an interparticle contact 

is slower than the characteristic shearing timescale. This signals the important role of particle 

surfaces in colloid rheology. This point is backed up by simulations of hard spheres without 

polymer coatings or Brownian motion [36, 37], in which there appears to be no steady—state 

flow. Gaps between particles collapse, giving rise to enormous lubrication forces and causing 

the simulations to fail. This suggests the possibility that the system becomes 'jammed' into 

a solidlike state. This singularity may be resolved by modelling the polymer coatings, or by 

including Brownian motion in the simulations. 
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2.3.4 Shear banding and rheochaos 

In extreme cases of shear thinning and thickening, it is possible that the flow curve becomes 

nonmonotonic [30, 33, 46, 471: a schematic flowcurve of a shear thinning material with this 

property is sketched in Fig. 2.6. The portion of this flow curve with negative slope is mechan-

ically unstable - small inhomogeneities in the shear rate tend to grow. This may be illustrated 

by considering a simple application of the Navier—Stokes equations [48].  This means that ma-

terials with such a flow curve, subjected to a shear rate in the range 'Yi < 'y < ' cannot 

indefinitely sustain homogeneous flow. In practice, the material will typically separate into two 

(or more) 'bands' [49, 50], which correspond to stable states. Different types of banding are 

possible [51]: the coexisting bands will have equal shear rate, or equal shear stress depending 

upon their orientation. 

For brevity, we consider only the case represented in Fig. 2.6, in which the bands have differing 

values of the shear rate and equal shear stresses. The average of the shear rate across these 

bands must, of course, correspond to that applied to the system (assuming that the shear rate 

is the controlled variable). As the applied shear rate is increased beyond 'y1, one then finds a 

plateau in the shear stress [50],  as the system balances the proportion of the two states to satisfy 

the imposed shear rate. (Actually, the system may separate at shear rates lower than 'j'i.  The 

'selected stress' at which banding occurs is a subject of theoretical interest [52].) Whichever 

form of banding takes place, one does not expect to observe a flow curve such as that of 

Fig. 2.6: such a curve represents underlying constitutive behaviour, rather than the measured 

macroscopic behaviour. Note that banding is also reported in shear thickening systems [53], 

suggesting an underlying 'S'—shaped flow curve. There is a large body of theoretical work 

on inhomogeneous flows (see eg [51, 52, 54, 55, 56]),  some of which takes advantage of the 

analogies with thermodynamic phase transitions. 

In recent years, there have been reports of oscillatory, and possibly chaotic, variations in the 

viscosity of systems under steady applied stress or shear rate in the vicinity of the banding—

instability [57, 58, 59, 60].  The presence of macroscopic choas in a viscoelastic material at 

low Reynolds numbers has been termed rheochaos [61]. One explanation for such behaviour 

might be that the system has banded, and that the position of the interface between bands does 
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Figure 2.6: The flow curve of an extremely shear thinning material. The portion of the curve with negative 
slope is unstable, and so this is not the flow curve which is measured. Rather, an applied shear rate 
fi < < y2 causes the system to 'shear—band': one way in which this can occur (illustrated by the 
arrows) is for the system to split into states on the stable part of the flowcurve which have equal shear 
stresses, but differing shear rates. 

not reach a steady state. An alternative is that the temporal oscillations could occur without 

spatial inhomogeneities: this possibility has been investigated in some simple shear thickening 

models [61, 62, 63]. Fluidity models [54, 64], in which the relaxation time (of a Maxwell 

model) evolves in time according to some specified dynamics, might offer another avenue of 

study. These approaches are in keeping with the idea that systems displaying such oscillations 

must have some relevant timescale which is much longer than the others in the system (an 

example of such a long relaxation timescale might be the time to equilibrate the distribution of 

chain lengths in wormlike micelles). The study of this subject is in its infancy, but promises to 

be of much interest [65, 66]. 



Chapter 3 

The Glass Transition 

We begin this chapter with a rather rough definition of the glass transition. This will be followed 

by an introduction to the way in which we describe the microscopic dynamics of the liquid 

state, since this is central to descriptions of the glass transition. We shall then discuss the 

glass transition in more depth. The chapter concludes with a discussion of some recent ideas 

regarding links between the glass transition and some other (seemingly quite different) physical 

situations. 

Before we begin however, the reader should be aware that this chapter is in no way a com-

plete description of the subject. For a more complete introduction to the physics of glasses, 

the reader is directed to other sources: Refs. [1, 67, 68, 69] provide useful starting points. In 

particular, we shall say nothing of thermodynamic aspects of the glass transition. The thermo-

dynamic viewpoint is that there is, lurking beneath experimental obserations, a thermodynamic 

singularity of some kind, perhaps a second-order phase transition to a thermodynamic glass 

state. Although interesting, this viewpoint is not particularly relevant to the current work, and 

so we do not go into any detail. 

3.1 A working definition 

As a liquid is cooled, typically one expects that, at some temperature, the material undergoes a 

first order phase transition into a crystalline solid state. However, crystallisation takes time, and 

27 
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so it is often possible to supercool a liquid without undergoing such a phase transition'. In this 

situation, we may continue cooling without the equilibrium transition intervening. Upon doing 

so, a wide range of liquids are observed to become more and more viscous as they become 

colder. This effect becomes considerably more pronounced as the temperature is decreased: 

the (zero-shear) viscosity may increase through several orders of magnitude upon a relatively 

modest alteration of temperature. At some point, the material barely flows under a modest 

stress (eg, that provided by gravity), if indeed it flows at all. The material now appears more 

like a solid than it does a liquid. However, its microscopic structure is disordered, like that of 

the higher temperature (unambiguously liquid) state [70] (we provide a quantitative measure 

of structure in Sec. 3.2 below). We call this low—temperature state the glass. 

This is obviously rather imprecise: how viscous does the material need to be for it to be classed 

as a glass rather than a liquid? This can be quantified by choosing an arbitary value of the 

zero—shear viscosity at which one declares the material to be a glass: a typical value is of the 

order 1012  Pas. Making such a declaration may be of practical use, but is not of much help in 

pinning down the nature of the transition. 

i€1 I 

The above describes, crudely, the glass transition in a wide range of liquids. However in 

colloidal systems, which are of prime importance in this thesis, the role of temperature is, 

to a variable extent, reduced. Consider a system of hard spheres, for which there are no direct 

interactions between particles, except for an infinite repulsion upon contact. In this case, there 

is no potential energy scale with which to compare the thermal energy, and so the temperature is 

irrelevant (beyond setting a timescale, via the typical velocity of a particle with kinetic energy 

kT). In this case, the glass transition (as well as equilibrium phase behaviour) is governed 

solely by the density of the system: beyond a volume fraction 0.58, the system appears to 

be in a glassy state [71]. 

Interactions in colloidal systems are often represented by hard-core repulsion, either with or 

without some additional finite potential at larger separations. If the additional potential is 

'But note that the phenomena described here need not occur at temperatures below the melting point [68]. 
Despite this, the terminology of 'supercooled liquids' is invariably used. 
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negligible, then the physics is controlled solely by the volume fraction, whilst if it is non-

negligible, the temperature plays a part. The above discussion regarding the viscosity of the 

system upon altering the temperature also holds, appropriately altered, in the concentration 

dependent case. 

3.2 Liquid state dynamics 

In order to improve upon the rough definition given above, we need to provide an introduction 

to the microscopic dynamics of the liquid state, as this subject is intimately related to the glass 

transition. For a more complete introduction to this subject, see a suitable monograph such as 

that by Hansen and McDonald [72]. Alternatively, for a specific account of the dynamics of 

colloidal suspensions, see [73]. 

3.2.1 Microscopic density fields 

We begin by defining the microscopic number density at position r and time t as 

	

p(r,t) =ö(r—r), 	 (3.1) 

where the sum is over all particles in the system, and ri is the position of particle i (with a 

suppressed time argument). We can also introduce microscopic density fields for quantities 

such as the current density 

j(r,t) = 	vö(r - r2 ), 	 (3.2) 

where v2  is the velocity of particle i. We can decompose such densities into Fourier compo-

nents. The Fourier transformed number density is 

p(q,t) = 	_ iq.r*(t) 	 (3.3) 
i 

and the transformed current is 

_iq "i(t) j(q, t) = 	y. 	 (3.4) 
2 
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These quantities are referred to as the density and current fluctuations at wavevector q and time 

t. Such fluctuations will appear frequently within various correlation functions, which are now 

introduced. 

3.2.2 Correlation functions 

Consider two (often complex) variables A and B which are useful in the description of a many—

body system. Possible examples include the number and current densities at given point in a 

fluid, and the magnetisation at some point in a spin system. From these quantities we form a 

correlation function (or correlator) 

AB (t, t') = (A(t + t)B*(t)), 	 (3.5) 

where the angled brackets represent an equilibrium statistical average. This quantity tells us 

how strongly the value of the variable A at time t + t' is correlated with the value of B at time t. 

If A and B are the same variable then 4 is an autocorrelator. If the two quantities are measured 

at the same time (ie, t' = 0), 0 is an equal—time correlator. Correlation functions between 

quantities measured at different times are often referred to as time correlations functions. In 

the main, correlations decrease with t': this is intuitively sensible. For example, consider the 

velocity autocorrelator of a chosen colloidal particle. If it has a certain velocity at a given 

time, then a sufficiently short time later it will have a similar velocity. In contrast, a few days 

later, the velocity will be completely uncorrelated from the initial value. The time on which 

correlation becomes lost provides a measure of typical relaxation times. 

In many situations, a many—body system will have time translational invarience (1'TI) and the 

origin of the time t is immaterial. In such cases, time correlation functions have a single time 

argument and equal—time correlators are time—independent. In some situations, discussed in 

Sec. 3.4, this is not the case. 
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3.2.3 Density correlators 

Taking the equal—time autocorrelator of density fluctuations (divided by the total number of 

particles in the system) gives the static structure factor 

S(q) = 	(p(q,t)p(—q,t)). 	 (3.6) 

Here, by ascribing S(q) no time—dependence, we have assumed TTI: if this is not applicable, 

the thermal average may vary in time. This quantity provides a description of the time-averaged 

structure in a liquid and is essentially the Fourier transform of the well-known pair distribution 

function g(r) [72]. 

We can also calculate time correlations of density fluctuations: these are expressed by 

q (t) = 	
1

(p(q,t)p(—q,0)) 	 (3.7) 
NS(q) 

which is normalised such that q (0) = 1. We have again assumed Tn. This quantity is the 

normalised intermediate scattering function, but is known loosely as a density correlator. It 

can be measured in radiation scattering experiments, as can S(q) [73]. 

This quantity describes the correlation between the density fluctuation at wavevector q with 

itself at a later time. In order to get a feel for what this means, consider a small region of volume 

V '.- 
13 within a bulk fluid. At any instant in time, the density in this region will be the mean 

number density in the system, plus some temporal fluctuation about this mean due to thermal 

motion. The Fourier decomposition of this fluctuation will be dominated by modes with lI 
2r/l, and therefore its decay is largely encompassed by the decay of fluctuations at 

these wavevectors. This is essentially the information contained within the density correlator 

q q  (t). So, in short, q5q (t) describes the relaxation of fluctuations on lengthscales I 	2r/q. 

An example calculation: density correlators in dilute systems 

In order to make things more concrete, we perform a simple calculation of the density correlator 

in a dilute colloidal system. For the sake of simplicity, we consider the coarse grained local 

number density, denoted n(r, t). This quantity is not the microscopic density used earlier, as 
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it does not resolve individual particles: rather it is the number density familiar from classical 

Navier-Stokes fluid mechanics. However, at sufficiently small wavevectors, the two coincide. 

In a dilute colloidal system, interactions are negligible, and the density obeys a simple diffusion 

equation [2]: 

On(r,t) = DV
2n(r,t), 	 (3.8) 

at 

where the constant is the Stokes-Einstein diffusion coefficient, D = 
kT  with i the solvent 

shear viscosity and a the particle radius. Fourier transforming and solving leads to n(q, t) = 

n(q, O)e_2Dt.  Forming the density correlator, we have that q(t) = e 2 Dt. The system 

'loses memory' of density fluctuations at wavevector q on a timescale r - 11Dq2 . With the 

general meaning of the density correlators given a little earlier, this tells us that fluctuations of 

size I take a time r 12 /D to decay. The fact that longer wavelength fluctuations take longer 

to decay is a consequence of particle conservation: in order to relax a fluctuation, particles 

must be diffusively transported over distances of order the fluctuation size. 

Density correlators in concentrated systems 

This exponential form has been verified in dilute colloids [74]. In more concentrated colloids 

however, interactions between the particles cause this simple argument to fail: the dynamics 

are not simply diffusive [73],  and the density correlators obtain a complicated dependence upon 

both q and t. A typical density correlator in a dense liquid is shown in Fig. 3.1. It consists of 

an early time relaxation from unity (known as the 8-relaxation), followed by a later relaxation 

(the y-relaxation) towards zero. In a dense system, the time taken for the structural relaxation 

- that is, the time for the system to relax a fluctuation - can become much longer than the 

'bare' relaxation time found in dilute systems. Physically, the two relaxation processes can 

be heuristically understood within the cage picture of a dense liquid, schematically illustrated 

in Fig. 3.2. The 6 relaxation corresponds to a particle moving within a cage formed by its 

neighbours, whilst the c relaxation corresponds to escape from the cage. In contrast to the 

situation in dilute colloids, the calculation of a density correlator in a dense suspension is a 

difficult task: this is the subject of Chapter 4. 
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Figure 3.1: A typical density correlator in a dense liquid: the two—stage relaxation process is evident. 
The time has been scaled by a characteristic microscopic timescale. 

3.3 The nature of the glass transition 

Having described it in rough terms, we now begin to explore more precise descriptions of the 

glass transition. 

3.3.1 The idealised glass transition 

As mentioned above, close to the glass transition the zero—shear viscosity can increase through 

several orders of magnitude due to a modest alteration in temperature or volume fraction. This 

is illustrated in Fig. 3.3, which shows the zero—shear viscosity vs. volume fraction for a hard 

sphere colloid system. This suggests there might in fact be a divergence of the viscosity at some 

point, thus identifying the transition in a concrete manner: viz, at the transition, the viscosity 

diverges. 

Note that it is important that we specify the zero—shear, viscosity if we are to define the glass 

transition in this manner. This is because a material whose zero— shear viscosity is diver- 

gent may have a finite viscosity at nonzero shear rates (Sec. 2.3.2). Therefore, an experiment 
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Figure 3.2: The 'cage picture' of a dense liquid. Consider any particle in a dense liquid, such as the dark 

shaded one shown here. The chosen particle is surrounded by a 'cage' of its neighbours, which tend to 

hinder its motion. The chosen particle itself plays a part in the caging of neighbouring particles. The fi 
relaxation corresponds to a particle moving within its cage, whilst the a relaxation is related to a particle 

escaping from its cage, due to the cooperative motion of many particles. For example, here our shaded 

particle can only escape from the cage if, eg, the adjacent shaded particle moves out of its way. In turn, 

this particle can only move if one of its adjacent particles can move... 
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Figure 3.3: The relative viscosity (lJr 	11/118, with ij the solvent 	viscosity) as a function of volume 

fraction for a colloidal hard sphere system. The freezing concentration of hard spheres is shown as the 
dashed vertical line. Data is shown for particles of three different radii: 301nm[D]and[o]; 500nm[x]; and 

240nm[Aj. The vertical dashed line represents the concentration Wf = 0.494 at which, in equilibrium, 

crystals first appear. Recall from Ch. 2 that viscosity measurements at concentrations above this point 
are carried out on a metastable fluid, rather than on the equilibrium state. From [18]. 
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which aims to ascertain whether or not a sample is a glass or a liquid, by measuring the vis-

cosity, must be performed at very small (in principle, infinitesimal) shear rate, and is thus a 

formidable task. This difficulty suggests that we search for a description of the glass transi-

tion which does not involve external forcing. This can be done by consideration of a liquid's 

internal dynamics: measurements of the dynamics and viscometry of systems approaching a 

glass transition shows that as the viscosity of a liquid increases, so does the structural relax-

ation timescale [17].  As with the variation in viscosity, the increase in relaxation time with 

the relevant control parameter can become very pronounced, perhaps suggesting a divergence. 

Thus another possible definition of the glass transition may be proposed in these terms: viz., 

in a glass, density correlators do not decay to zero in any finite time. Such a transition implies 

that the microscopic structure of the material is fixed when it is quenched into the glassy state: 

particles are unable to escape from their cage of nearest neighbours. The loss of diffusion over 

long distances within the material means that it is unable to sample phase space adequately, 

and is thus unable to reach the equilibrium state: it is said to be nonergodic. 

The divergence of the structural relaxation timescale and the zero—shear viscosity may coincide 

[17, 73, 75]. The transition defined via the divergence of either of these quantities is referred 

to as an idealised glass transition. This is in keeping with our common experience that a glass 

has the character of a solid (although recall from Ch. 2 that a divergent viscosity does not 

necessarily imply a finite elastic modulus), and is therefore an appealingly simple idea. 

So, does the idea of a divergence at the glass transition stand up to scrutiny? At least in molec- 

ular glasses, the answer appears to be that it does not [1]. However, for colloidal systems, in 

which we are interested, an ideal glass transition may well occur: light scattering experiments 

on hard-sphere systems show an apparent arrest of the structural relaxation at a volume fraction 

0.58 [71, 76, 77, 781. Measurements of the zero—shear viscosity in these systems suggest 

the existence of a divergence at a similar concentration (see Fig. 3.3) [18, 79],  although other 

experiments suggest a divergence closer to the random close packing limit [19, 21, 22]. (Ran- 

dom close packing is the supposed maximum volume fraction possible for an non—crystalline 

packing of spheres: cbRCP 0.64.) These two groups of experiments were performed using 

different experimental systems, that are nontheless both supposed to represent a hard—sphere 

suspension. As mentioned in Ch. 2, there are various possible reasons for the discrepancy [18]. 
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3.3.2 Relaxation and experimental timescales 

There is an obvious difficulty in verifying the existence of an idealised glass transition. Con-

sider measuring q5q  (t) in a dense colloidal sample, and noting that the correlation functions do 

not decay on some timescale (defined by the patience of the experimentalist!) long compared 

with the bare dynamics of the system: one concludes that the system is in a glassy state. But 

a more patient experimentalist might wait for a little longer, and detect a relaxation at some 

point after his colleague has departed. So one experimentalist claims the system is a glass, the 

other claims it is liquid. This example points towards the fact that it is not possible to find, 

experimentally, that a timescale has actually diverged. (Of course, one can infer a divergence 

by fitting a plot of relaxation time vs. concentration to a suitable functional form.) Rather, one 

can say only that the relaxation timescale exceeds that of the experiment. This then, allows us 

to define the glass transition in another manner; we can say that a system is, or is not, a glass 

on the longest timescale probed by the experiment. From this point of view, there is no sharp 

transition, rather there is a continuum of behaviour dependent on the experimental timescales. 

This is related to our discussion of the time—dependent modulus G(t) in Ch. 2: a viscoelastic 

material appears solidlike if one probes it on sufficiently short timescales, whilst it is liquidlike 

on longer timescales. In an ideal glass state, G(t) will not relax to zero in any finite time. 

There are further consequences if the experimental timescale is defined by the rate at which a 

control parameter is altered. For example, consider measuring the properties of a liquid as it 

is cooled. Doing so, one notices that (for example) the specific heat has a notable change in 

functional form at some temperature [69]. However, repeat the experiment at a lower cooling 

rate (thus probing longer timescales) and it is found that the liquidlike behaviour persists for 

lower temperatures. This is because the point at which the system 'falls out of equilibrium' 

and behaves in a glassy manner depends upon the timescale that we probe. Again, the point at 

which glassy behaviour begins depends upon the timescale probed, but it also introduces history 

dependent behaviour: the material's behaviour now depends not only upon its temperature, but 

also upon the manner in which that temperature was reached. The phenomenon of aging is a 

particularly interesting example of history dependent behaviour, and will be discussed in the 

following section. 
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3.4 Aging 

Under 'normal' conditions (including, but not restricted to, thermal equilibrium), materials 

are time translationally invarient (Ti'!): measured quantities do not depend upon the time at 

which the experiment is performed. However, in other situations, this is no longer true: in both 

conventional glasses and the soft glassy materials discussed in Sec. 2.3.2, the dynamics and 

mechanical properties change in time. This is known as aging. 

In order to study aging, one must be able to obtain a reproducible starting state, from which 

the evolution of the system can be monitored: the production of such a state is referred to as 

sample preparation. We denote the time at which the sample is prepared as to. The experiment 

begins at a time to + t, where t is the waiting time, defining the age of the sample. In many 

materials, as we have discussed, temperature plays an important role: in these systems, sample 

preparation consists of a quench from some high temperature to a low temperature glassy state. 

In hard sphere colloids, the obvious analogue of this would be a concentration quench, but 

this is not practical. Rather, one makes use of the fact that strong shearing reverses aging - a 

sample, prepared at some point in the past, may be 'rejuvenated' by shearing at a high shear 

rate: it behaves as if it was created at the time the shearing is ceased, rather than at the true 

(earlier) preparation time [80]. Thus, to may be chosen as the time at which an initial strong 

shearing is stopped. 

With the ability to create a reproducible starting point, one can perform the relevant experi-

ments upon the system, after the desired waiting time. The internal dynamics may be studied 

by radiation scattering [80, 811, in which case one finds that the relaxation of correlations be-

comes slower as the waiting time is increased. Rheological measurements [81] show that the 

systems also tends to become 'stiffer' with increasing waiting time - hardly surprising, given 

the association between slow dynamics and rheological response discussed in Sec. 3.3.1. Re-

laxation times typically go as a positive power of the waiting time: r t. The exponent p is 

system dependent, typically less than unity. Note that such aging scenarios suggest that, in the 

limit of long waiting times, relaxation times grow without bound, in keeping with the idea of 

the ideal glass transition. 

Both the SGR [11, 23, 28],  and the fluidity [64] approaches mentioned in Ch. 2 have been 
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used to study aging theoretically. Of particular interest to us is.the rejuventing effect of flow 

upon soft matter: the relaxation dynamics tends to speed up in a flowing system [82], a point 

to which we shall return in Chapter 6. This effect is present in both the fluidity model and the 

SGR model. The resulting competition between glassy dynamics and flow is key to much of the 

interesting rheology of soft glassy materials. Refs. [9, 831 provide good starting points for the 

reader interested in the competition between glassy dynamics and flow—induced rejuvenation 

in soft matter. 

Looking slightly further afield, similar physics appears outwith soft matter: in driven spin—

glass models [84], there is an interplay between the intrinsic dynamics and external driving 

which is reminiscent of that between shearing and glassiness in sheared glasses (although its 

precise nature may differ between different systems: compare the 'shear thinning exponents' 

in the spin—glass model [84] with those of [29] which models sheared colloids). 

We shall say no more here on the subject of aging - the work presented in this thesis is unsuit-

able for the description of aging effects, and so it is not directly relevant. 

3.5 Jamming and the glass transition 

In 1998, Cates and co-workers [85] discussed the notion of jamming under external stress in 

dense suspensions and granular materials. We have seen in Ch. 2 that colloidal suspensions can 

show discontinuous shear thickening, whereby the material shows an abrupt change in mechan-

ical response at some applied stress/shear rate. Simulations investigating this phenomenon, 

performed in the absence of Brownian motion [36, 371, suggested a catastrophic jamming up 

of the system, possibly leading to a static, jammed state. Motivated by these simulations, Cates 

et al considered the mechanical properties of a jammed system of particles. They argued that 

idealised jammed materials - that is, materials whose solidity arises as the result of some ap-

plied stress - have unique mechanical properties. In particular, such materials can statically 

support a macroscopic stress in one direction (the direction of the load which resulted in the 

solidity in the first place), whilst small loads in a different direction result in the catastrophic 

failure of the material. The reason for this highly nonlinear response is that the structure of 
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the material adapts to support an initially imposed stress. If a different stress is then applied, 

the material's structure is completely incapable of supporting this structure, leading to failure. 

(Note however that, in time, the material may be able to adapt to support this new load, causing 

it to re-jam.) This property was described as fragility. For an example of such a response, con-

sider a simple bucket of sand. Upon filling a bucket with sand, the material adopts a structure 

which allows it to support the weight of the higher grains. If the bucket is then tilted, altering 

the direction of gravity in the reference frame of the bucket, the sand then flows like a liquid, 

since its structure is not 'designed' to deal with the new stress field. However, stand on a bucket 

of sand and it will support your weight - not a property of a bucket of water. 

Liu and Nagel [86] then suggested that the notion of jammed states could be generalised. 

They conjectured that the jamming transition discussed above, and the glass transition, are 

two specific limits of a generic nonequilibrium fluid—solid transition. Other examples might be 

gelation in colloid-polymer mixtures [87] 2  or the solidification as the shear stress on a flowing 

material is decreased below its yield stress [88]. 

Whilst Liu and Nagel referred quite generally to this postulated class of transitions as 'jamming 

transitions', we will reserve this name for transitions which occur under external forcing, a 
la Cates et al. Of course, in a sense the conventional glass transition occurs under external 

forcing, since there is an externally controlled isotropic pressure. Therefore, one should be 

slightly more specific: we will regard transitions as jamming transitions if they occur due to an 

applied deviatoric stress, in keeping with the spirit of Ref. [85]. The question then, is whether 

jamming transitions, gelation and the glass transition (and others) can be shown to have a 

common description. An obvious analogy may be made with equilibrium phase transitions, for 

which seemingly very different phenomena can be shown to display universal behaviour. 

Liu and Nagel's conjecture has been the subject of much interest. Trappe and co—workers 

[88] studied fluid—solid transitions in an attractive colloidal system. By increasing the density 

or attraction strength, or by lowering an applied stress, they induced transitions from a fluid 

to a solid. They found that signatures of a solid state, such as the appearance of an elastic 

2 Gelation is an attraction mediated transition from an ergodic fluid to a nonergodic low-density gel structure. 
Similiarly to the glass transition, this is a many-body phenomenon: the bonds which form between particles are not 
so large that bonds are irreversible, but the fact that there are many bonds causes structural arrest. 
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modulus, appeared with similar functional forms regardless of the way in which the transition 

was induced. Other work [87] examines the link between the glass transition and gelation using 

the mode—coupling theory described in Ch. 4. 

3.5.1 Colloidal jamming 

In this thesis, we are primarily interested in the link between jamming (as defined above) and 

the glass transition. In order to elucidate the link between jamming, which is most easily 

observed in granulars, and the glass transition which appears in microscopic thermal systems, 

the most profitable system to study would seem to be colloids. These combine the particulate 

nature of powders and grains with the thermal properties of atomic and molecular systems. By 

varying the size of the particles in a suspension, from radii a - mm -* 100m, one can 

span the gap between conventional thermodynamic systems and granular materials. By doing 

so, one might hope to answer questions such as whether materials may jam in the presence 

of significant Brownian motion: from the viewpoint of Liu and Nagel, such a jammed state 

would resemble a glass, albeit one which is anisotropic. An alternative would be that sufficient 

Brownian motion precludes the formation of a static jammed state, possibly resulting in the 

discontinuous thickening observed in dense colloids. 

Bertrand and coworkers have observed jamming in suspensions of irregular particles (mean ra-

dius a 3im) [42]. They found that, whilst moderately concentrated samples shear thickened, 

denser samples were transformed from a liquid "into a persisting paste by moderate shearing". 

We shall discuss some interpretations of these experiments in Ch. 5. For now we note that such 

behaviour seems unlikely to be explained by hydrodynamic explanations for shear thickening 

(see Sec. 2.3.3), since in the resulting solid state there is no large scale flow. (One could con-

ceive of a situation in which interparticle gaps close with an ever—decreasing rate, maintaining 

a constant hydrodynamic stress, but this seems somewhat far—fetched.) 

Experiments have also been performed upon suspensions of smaller particles (a = 300 - 

—1000nm) [89] in narrowing channel flow. These particles will be affected by Brownian 

motion to a greater extent, and so one might imagine that the tendency to jam will be decreased. 

Indeed, no transition from a flowing to a statically jammed state is found in these experiments. 
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However transient jamming is observed - the flow noticeably slows, then speeds up in a stick—

slip like motion. This work seems related to the deformation of geological structures [90]. 

These intriguing studies suggest links between the flows of colloids, and those in granular 

materials. The question of whether jamming, such as that found by Bertrand et a!, can be 

treated as a generalisation of the glass transition is a major theme of the work presented in this 

thesis. We return to interpretations of these experiments in Ch. 5. In the following chapter, 

we provide a technical introduction to a succesful theory of the glass transition, the mode—

coupling theory. Firstly though, we briefly discuss an industrial situation in which jamming 

appears particularly relevant. 

Granulation 

Jamming may have some bearing upon the industrial process of high shear granulation. This 

refers to the formation of macroscopic granules from the mixture of fine powder with a fluid, 

known as the binder. By mixing the two together (in apparatus not unlike an oversized food 

blender) one creates a pasty mixture, out of which individual granules form. 

It seems that the physics of jamming is relevant to this process: suspensions used in some 

granulation processes can show jamming behaviour - suspensions of zeolite (used as a wa-

ter softener in washing powder) particles (radius a 1pm) within a binder exhibit similar 

bistability to that observed by Bertrand [91]. Squashing the material between two plates may 

transform fluid samples into a dry, brittle solid. Upon vibration, the material is returned to its 

original state. 

Since these materials are capable of such jamming, it is tempting to associate the formation 

of granules from a strongly sheared paste with the fracture observed in strongly sheared dense 

colloids: viz, fracture, as a result of jamming, results in solid lumps of material, ie, granules. 

Once the stress is removed, the granules might either remain in the solid, jammed state or they 

could relax back into a fluid state (in Ch. 5 we discuss some criteria for the jammed state to 

persist). This suggests a scenario in which the granules can be either in a wet, fluid state or in a 

dry jammed state. As granules may grow via collision and coalesence [92], the difference may 

be crucial. If colliding granules are in a jammed state, they will not coalesce. In contrast if 
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one of them is in a fluid state, it can melt its jammed neighbour, and then coalesce with it [91]. 

Therefore, the ability to understand, and therefore control jamming might have an important 

part to play in improving granulation processes. We discuss ideas relevant to this process in 

Ch. 5. 



Chapter 4 

The Mode Coupling Theory of the 

Glass Transition 

This chapter introduces the reader to the mode-coupling theory of the glass transition (MCT). 

We begin by defining the relevant quantities and introducing the equations which govern these 
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to suggest ways in which to simplify them. 

4.1 Dynamical variables and correlations 

We define the state of a classical dynamical system of N particles in terms of a phase space 

vector 

r=(ql) q2, ... qaN,pl,p2, ... p3N). 	 (4.1) 

Here the {qj} and the {pj} are the usual 3N coordinates and 3N momenta required in a Hamil-

tonian description [93]. Thus any dynamical variable Ai is specified by r: Ai = A i (r). 

The evolution of the system is governed by 

r= {r, H}, 	 (4.2) 

45 
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where the braces { , } indicate a Poisson bracket, I' = 11K, and H is the Hamiltonian of the dt 

system. (More generally, a quantity u with explicit time dependence evolves according to 

it = {u,H}+ .) 

We now define the Liouville operator iC = { , H}, which results in 

= iJT, 	 (4.3) 

which is formally solved by 

r(t) = e tF(0). 	 (4.4) 

Now, the dynamical properties {A} are a function (solely) of 1' and so evolve in time in a 

similar way: the value of a dynamical variable A i  at time t is 

A2(t) = e tA j. 	 (4.5) 

The absence of a time argument signals a quantity evaluated at t = 0. 

It will help us to regard the dynamical variables A 2  as vectors in a Hubert space: their complex 

conjugates A play the role of the dual vectors. The scalar product (A i  (t), A(t')) between 

two 'vectors' is defined by means of a correlation function: (A i  (t), A* (t')) 	(A(t)A(t')) 

where the angled brackets denote an average over the phase space probability distribution. 

Thus two uncorrelated variables are 'orthogonal'. Recall from Sec. 3.2.2 that the correlation 

function between two variables A 2  and A 3  is defined as qjj  (t) 	(A 2  (t) A), where we have 

assumed T1'I. In terms of the Hilbert space notation, the correlation is the scalar product çbj 

(A i  (t),A). 

We now define a projection operator P. which projects an arbitary Hubert space vector B onto 

the subspace spanned by a chosen set of variables {A 2 }. We define 

PB(B, At) .x'.A 	 (4.6) 

where A is a column vector containing the elements of {A 2 }, At  is its Hermitian conjugate, 

and the matrix X = ( A, At).  We also define 0 	1 - P which projects onto the subspace 

orthogonal to that spanned by the {Ai l. In matrix notation, the correlation functions q  (t) are 
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the elements of the correlation matrix (t) = (A (t), At).  Via formalism based on these pro-

jection operators, one can derive formal equations of motion for the evolution of the {A 2 }, and 

for the correlations between them: these equations are derived in Appendix A. The evolution 

of the dynamical variables is governed by a generalised Langevin equation 

A = in - A(t) + F(t) - 	dt'M(t') . A(t - t'). 	 (4.7) 

The frequency matrix 11 is defined by in 	(i1A,At) x'; F(t) 	eLtQiA1A  is the 

random force; and M(t) (F, e_2tFt) x' is the matrix of memory functions. The 

memory functions are so called since they parameterise the way in which the system's state 

at a given time is affected by past states - ie, they describe memory effects in the system. A 

similar equation to Eq. 4.7 governs the correlation functions (see Appendix A for a derivation) 

(t) = 
t 

i. 	- fon 
	
dt'(t') . (t - t'). 	 (4.8) 

In this equation, the random force term does not appear because it is uncorrelated with the slow 

variables {Ai }.  In frequency space, this becomes 

(zI+1+IL(z)).'(z)+=0, 	 (4.9) 

where the Laplace transform of an arbitary function f (t) is 

L[f(t)] 	f(z) 	if dte t f(t), 	 (4.10) 

and I is the identity matrix. 

These equations are simply formal restatements of Eq. 4.5. In order to profit from the for-

malism, for a given physical problem we must make a suitable choice of the set {A 2 }: if we 

choose these variables such that they evolve on a slower timescale than all other variables in 

the problem, then the equations simplify considerably. A simple example of such a separation 

of timescales is the diffusion of a colloidal particle in a molecular solvent: in this problem, the 

position and momentum of the colloidal particle are, to a good approximation, constant on the 

timescale of the molecular motion. Therefore, they constitute a set of 'slow variables'. 

If we can choose a set of variables in this way, all the variables orthogonal to the subspace 

spanned by {A 2 } are regarded as 'fast'. The fluctuating force F(t) resides in this fast subspace 
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and so arises from the quickly fluctuating variables. This is the sense in which it is a random 

force acting upon A: it fluctuates quickly, even on timescales such that A is approximately 

constant - this is reminiscent of the random force acting upon a colloidal particle in a solvent. 

Therefore, correlations of F (that is, the elements of n should be short—lived on timescales 

relevant to the slow variables. If we assume a perfect separation of timescales (a Markovian 

approximation), we can take F to be S—correlated in time. This reduces the integral over M 

in Eq. 4.7 to an instantaneous friction term, resulting in a form rather similar to the Langevin 

equation of Brownian motion [94]. 

For the Markovian assumption to be useful, we should ideally include within the set {A 2 } 

all slowly fluctuating variables - if we do not, the memory functions will have slowly vary-

ing components, and the Markovian assumption will fail. However, if we assume that the 

components of A are slow, products of slow modes A A 3  also seem likely to contain a slow 

component. This may not be catastrophic if the variables of interest do not couple strongly to 

these nonlinear variables. But, close to the glass transition (as well as close to phase transitions, 

the situation for which mode—coupling was originally developed) such nonlinear fluctuations 

do matter, and hence we must go beyond the Markovian approximation. The mode—coupling 

theory is a way in which one can include coupling to these nonlinear fluctuations. 

4.2 Applying the formalism to supercooled liquids 

We now apply the Zwanzig—Mori formalism to the study of supercooled liquids. We shall be 

interested in calculating density correlators since (Ch. 3) they are experimentally accessible, 

and show a characteristic change in the vicinity of the glass transition. They may also be 

regarded as slow, since they obey a local conservation law (this was illustrated in Sec. 3.2.3). 

Thus, one of our slow variables shall be the density fluctuations P 
_iq.ri 

These are coupled, through the equation of continuity, to the longitudinal current (density). 

The equation of continuity is OPrt)  + V . j (r, t) = 0 which becomes, in Fourier space, .Cp q  = 

qjq, where the longitudinal current is q = jq. Because of this coupling, we include 

the longitudinal currents in our set of slow variables. In contrast, transverse currents are not 

coupled to density fluctuations and so we do not include them in the set. 
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With this choice of slow variables, we have 

(4.11) 
\ q 

We now evaluate the various matrices arising in Eq. 4.9 when it is applied to this situation. 

Many of the matrix elements will turn out to be zero (from symmetry considerations, vari-

ables of opposite parity under time—reversal are orthogonal, due to the fact that averages are 

invariant under time—reversal). The only nonzero elements of the static correlation matrix X are 

the diagonal elements. These are given by the static correlation between density fluctuations 

(PqPW = N—'-'(q); and longitudinal currents (jqj) = N(v) = NkT/m, where m is the 

particle mass. In the final equality, classical equipartition of energy has been used to write the 

mean square velocity in terms of the thermal energy. The frequency matrix 1 is also deter-

mined by static correlations. It contains only off—diagonal elements. The nonzero elements are 

12 = q and P21 = qkT/mS(q). 

The only nonzero memory function is the element M22 . This is, in the time domain, the random 

force correlator 

M22 (t) Mq(t) = 	
( NiT) 	

(4.12) 

The matrix equation for the correlations now becomes 

/ z 	q 	

) ( 	

W. pj(z) 

) 	
N 
 ( 

S(q) 	0 
(\ kTg 

mS(q) Z + Iq (z) 	(z) 	(z) 	= - 	0 	kT/m) 	
(4.13) 

where an obvious notation has been used to denote the elements of 4. Solving this simple 

matrix equation, we find that the density—density correlations obey 

—1 
q5q (z) 	pp (z)/NS(q) = 

z 	
(4.14) 

— 

z+M(z) 

where and we have defined the correlator such that it is unity at t = 0. Expressed 

in the time domain, this equation becomes 

q (t) + 1lq5q (t) + f Mq (t - t' ) q q (t' ) = 0. 	 (4.15) 
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This equation is the basis for the mode—coupling description of the glass transition. It is solved, 

by approximating the random force correlator (or memory function) Mq  (t) in a way which has 

became known as the mode—coupling approximation. We now discuss this approximation in 

the context of the glass transition. 

4.3 The mode coupling approximation 

The mode—coupling approximation reduces the memory function to a somewhat more tractable 

form, whilst attempting to account for the nonlinear coupling between variables ignored by the 

Markovian approximation. As we shall not require it in this thesis, we do not go through 

the mathematical derivation in detail, instead referring the interested reader to Refs. [95, 96]. 

However, the theoretical models which we shall discuss are extensions to 'schematic MCT 

models', which are themselves simplifications of the full theory. Therefore, we shall explain 

the basic procedure, employing physical insight where possible. 

As discussed in the previous section, the fluctuating forces can aquire a slow component, even 

although they are orthogonal to the 'slow subspace', through nonlinear coupling between slow 

variables. This can result in their correlations (the memory function) decaying on timescales 

comparable to those of the slow variables, rather than the much faster decay assumed in the 

Markovian approach. In order to capture this slow decay, one approximates the fluctuating 

forces by their projections onto the simplest nonlinear variables - that between density pairs 

These are the simplest variables which have a component orthogonal to the {A}, and 

which we expect to possess a slow component. Also, density fluctuations are coupled to the 

(longitudinal) currents, the fluctuations of which occur due to forces in the system. If we 

take these forces to arise from pair interactions, one might expect that fluctuations of density 

pairs are key to an understanding of fluctuations in currents, and therefore in the densities. 

By assuming that these couplings provide the main contribution to slow parts of the memory 

function, we allow the memory function to aquire a slow component, rather than (as in the 

Markovian approach) simply treating it as quickly decaying. 

To make the approximation one defines a new projection operator P, which projects onto 

all density pairs PqPp,  and replaces the fluctuating forces F in the memory function by their 
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projections T2 F. This gives the memory function as (T2 F, e_Ct(P2 F)*) .  In making this 

approximation, we lose the quickly decaying part of the memory function - referred to as the 

'regular part'. We shall put this part back in later, although we shall not concern ourselves too 

much, as it is not particularly relevant to studies of the glass transition [95]. 

The next approximation consists of replacing the 'projected evolution operator' e_?t  with 

the standard evolution operator eLt  within the memory function. This approximation allows 

F to aquire components parallel to {A 2 } as it evolves in time according to the classical equa-

tions of motion. Without this approximation, the evolution of F would be constrained such 

that it remained orthogonal to the {A} - ie, F(t) could never become correlated with these 

variables. One might make a rather hand—waving argument that the fluctuating force should 

be allowed to become correlated with the slow variables: we are interested in the approach to 

an arrested state, in which density fluctuations and currents are arrested. As these will deter-

mine the forces upon the particles, it seems reasonable to assume that these forces will become 

arrested too, and so are likely to be correlated with the other slow variables. 

The procedure described above results in the memory function containing fourth—order density 

correlations. These are split into a product of pair correlations so that the equations may be 

closed. This approximation has no obvious physical justification other than a hope that second 

order correlations are sufficient to capture the important physics. These approximations are un-

controlled, in the sense that there is no expansion in a small quantity. The only true justification 

(or otherwise) can come from the comparison of results with experiment. 

As well as the main approximations outlined here, a (less drastic) 'convolution approximation' 

is used in determining the mode—coupling expression for the memory function - see Ref. [95]. 

This series of simplifications results in an expression of the memory function of the form 

1 
Mq(t) 	

2(2ir)3 
 f dkV(q, k, Iq — kJ)0k(t)0 q—k(t), 	(4.16) 

where the 'vertex' V is given by 

V(q, k, Iq - kJ) = 	 - k) ( el 
- 

[kc(k) + (q - k)c(jq - kI)]). (4.17) 

The most important thing to note is that the vertex depends solely upon the static structure of 

the system via 8(q) (in a system of number density p its close relation, the direct correlation 

U 
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function c(q), is fixed by S(q) = 1/(1 - pc(q)) [72]). This is where variables such as mean 

density, interparticle potentials and temperature enter the theory. These fix the static structure, 

which in turn fixes the coupling to nonlinear fluctuations which the memory function describes. 

The density correlators must then be calculated self—consistently. 

4.31 MCT for colloids 

So far in this chapter, we have outlined the mode—coupling theory as it applies to a classical de-

terministic system, via a Hamiltonian description. This is the original manner in which MCT 

was developed, and is suitable for the description of a classical atomic liquid, whose phase 

space vector evolves according to the deterministic laws of classical mechanics. However, in 

this thesis, we are interested in colloidal systems, for which the microscopic dynamics are 

stochastic rather than deterministic (unless one explicitly includes solvent degrees of freedom). 

Does the MCT formalism developed above, which describes the slow dynamics of a determin-

istic system, carry over to the case of Brownian dynamics? Since MCT describes dynamics, 

this is not obvious a priori. However, one can develop formalism [97], based upon the Smolu-

chowski description which, upon making mode—coupling approximations, leads to the same 

late—time dynamics as that of the deterministic approach presented above. More generally, 

the memory function descriptions of deterministic and Markovian processes (obeying detailed 

balance) are closely related [98]. 

This means that we can use the formalism developed above to describe the glassy dynamics, 

due to particle caging, of a colloidal system. Of course, the cases of deterministic and stochastic 

dynamics lead to differing results for the short—time dynamics. In our formalism, we have 

thrown away any information about this regime by discarding the regular part of the memory 

function. To complete the description of either a deterministic or stochastic system, we can 

now put this regular part back in, 'by—hand', choosing it to recover the correct dynamics in the 

absence of particle caging (ie, far from the glass transition). Provided it is quickly decaying, 

the choice of this contribution does not affect the position of glass transitions within parameter 

space, nor the characteristic late—time decays one finds in the vicinity of the transition. 

In dilute colloids, in which the cage effect is not present, correlations decay exponentially (Ch. 
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3). Thus, in the absence of the mode—coupling contribution to the memory function, çb(t) 

should be of exponential form. This may be achieved if we choose the regular contribution 
Reg such that it results in an instantaneous friction term: ie, f M(t - t')q5(t') = vqq(t). 

Additionally, we neglect the inertial term in Eq. 4.15, to give 

q5q (t) + ro q q (t) + J mq(t - t')q q (t')dt' 	0, 	 (4.18) 
0 

where r0  vq /ul j  and mq (t) = Mq (t)/1l [99]. 

4.4 Solutions of MCT 

We now discuss some features of the solutions to MCT, as simplified versions of it (discussed 

in the following section) shall later become the basis for a model of colloid rheology. We 

do not go into the details of obtaining these solutions: Ref. [95] provides somewhat more 

mathematical detail. 

The parameter space of mode—coupling theory is defined by the values of S(q) at each wavevec-

tor. This (infinite dimensional) parameter space splits into regions of 'weak' and 'strong' 

coupling. In the weak coupling (corresponding to 'high temperature' or, in the language of 

colloids, 'low density') region, the density correlators decay to zero on a timescale set by the 

coupling. This corresponds to a liquid: particles are free to diffuse over long distances in the 

fluid, and an initial spontaneous fluctuation relaxes totally over a sufficiently long timescale - 

in the language of Ch. 3, this is the cr—relaxation time. As the coupling is increased towards a 

transition point, this timescale becomes increasingly long according to a power law, diverging 

at the transition. At this point the correlations no longer decay to zero in any finite time - the 

c relaxation timescale has diverged. The system is now within the strong coupling regime: 

the long—time limit of the correlation functions is nonzero. We write lim t ,0  q q  = fq This 

long—time limit is known as the nonergodicity parameter and jumps discontinuously from zero 

to a finite value at the transition: upon further increasing the coupling, there is a characteristic 

square—root increase in fq  from the transition value [95]. These strong—coupling solutions cor-

responds to the glass, in which particles are not free to roam: rather they are trapped within their 
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cages, thus preventing an initial density fluctuation from fully relaxing. Thus MCT (at least in 

its simplest incarnation) predicts an idealised glass transition in strongly coupled systems 

MCT makes several predictions as to the nature of the relaxation processes in the vicinity of 

the transition. Density correlation functions (and indeed all correlation functions of variables 

with a slow component [1001) are predicted to show a characteristic two—stage relaxation (cf 

Fig. 3.1). There is a /—decay towards a plateau, which, on the low—coupling side of the 

transition, is followed by an a—relaxation towards zero (on a timescale which diverges with 

the power—law discussed above). The timescale for the 6—relaxation onto the plateau also 

diverges as the transition is approached, but (obviously) always remains less than that of the a 

process. MCT also makes predictions regarding correlation functions close to the transition: in 

particular, the functional form of the decays onto, and from, the plateau region are universal (up 

to their amplitude) - the correlations at all wavevectors show the same temporal variation. In 

the vicinity of an MCT transition, the final relaxation towards zero is well fitted by a stretched 

exponential (e— ta,  a < 1), in accordance with many experimental systems close to a glass 

transition [100]. 

Finally, we note that, as well as diverging timescales, the transition exhibits a divergence of the 

zero—shear viscosity, in accordance with the notion that a glass has the character of a solid (Ch. 

3). The shear viscosity is controlled by transverse current correlations, which may be expressed 

in terms of density fluctuations within the MCT [101, 102]. The viscosity is expressed as the 

integral of density correlations, and so diverges with the a—relaxation timescale. 

Comparison with experiment: colloids 

This section would be incomplete without some comparison of MCT to experiments. We 

restrict attention to colloids, in which we are primarily interested. 

MCT predicts that there is a glass transition in a system of Brownian hard spheres at a volume 

fraction q = 0.516 [102]. This contrasts with the experimental value, q 0.58. However, 

many of the predictions of the MCT regarding the glass transition appear to hold: there is 

reasonable agreement between the variation of the nonergodicity parameters with wavenumber 
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[103]; and predictions of the dynamics in systems approaching the transition appear consistent 

with experiments [77] - in particular, scaling laws predicted by MCT [95] are found to hold. 

Further evidence for the usefulness of MCT comes from comparison with experiments on at-

tractive colloids. MCT predicts the melting of colloidal glasses upon adding short ranged 

attrations, followed by a subsequent loss of ergodicity as the attraction strength is increased. 

Experiments appear to confirm this scenario [104]. 

So, although it is certainly not 'correct', many believe MCT to be the most succesful theory of 

the colloidal glass transition. Despite its successes, others dislike the theory, due to the rather 

arbitary nature of some of the approximations used. The author's viewpoint is that MCT is 

too successful to discard, even if the approximations are not understood. Rather than simply 

criticise these approximations then, it would seem sensible to further our understanding of 

them, and if possible, make improvements. 

For the purposes of this thesis, we regard MCT as providing a suitable description of the glass 

transition in colloids. For more details on the comparison of MCT with real colloidal systems, 

see [105] and references therein. 

4.5 Schematic models of the glass transition 

Solution of the full mode—coupling theory is an involved task due to the coupling between 

fluctuations at all wavevectors. However, it has been found that many features of the solutions 

to these equations survive a rather drastic simplification which results in schematic models. 

One presumes there to be a single dominant wavenumber in the system (the typical inverse 

interparticle separation), and throws away all coupling of the fluctuations at this wavenumber 

to other density modes - this means that we consider fluctuations at wavevectors which lie on 

a shell in q—space. 

Mathematically, this corresponds to approximating the static structure factor by a single peak 

S(q) 	- q0 ). In this case, there is only one equation (rather than an infinity correspond- 

ing to the spectrum of wavevectors), and the memory function is no longer an integral over 
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wavevectors, but reduces to a quadratic product of density fluctuations, with a coupling con-

stant representative of the height of the main peak in S(q) [100, 102]. The parameter space is 

one dimensional as the only parameter is the single coupling constant of the theory. This model 

is known as the 172—model. It is defined by the equations 

(t) + 	 f dt'm(t + v(t) + 	- t')(t') = 0, 	 (4.19) 

with 

M(t) = v20 2 (t). 	 (4.20) 

The 172—model has an idealised glass transition at v2 = 4. The model shows much of the 

phenomenology of the full theory, with the exception that, close to the transition, the final 

decay of correlation functions has an exponential form, as opposed to the (apparent) stretched—

exponential found in the full theory. 

Including fluctuations at the subsequent peaks of S(q) leads to progressively more complicated 

models. Including N 6—function contributions leads to a system of N coupled equations for 

N correlation functions. The inclusion of an infinity of wavevectors recovers the full theory. 

On a less sure footing, one can also generalise the 1 72—model to cases in which, although there 

is still a single correlator, the memory function is some other polynomial in the correlation 

function: for example, the F12—model has m(t) = v10(t) + v2q 2 (t). In this model, the simple 

exponential decay at late times goes over to a stretched relaxation more in keeping with that 

found in the full theory. 

Thus we see that schematic models can capture the essence of the MCT. The features of a 

variety of schematic models are discussed in [95]. Refs. [102] and [106] study the 1 72—model 

in particular. Obviously restricting attention to these models, one throws away some predictive 

power. However, these simplified descriptions were useful in the early development of MCT, 

and so one might hope that such an approach might once again be fruitful as one seeks to extend 

MCT, for example to deal with deal with sheared systems. 



Chapter 5 

Jamming In Suspensions 

5.1 Introduction 

In the previous chapters, we have introduced the background physics relevant to this thesis. 

This has been rather extensive, since the work presented here combines the physics of the glass 

transition with that of colloidal rheology and the notion of jamming under imposed stress. 

In the remainder of the thesis, shall consider the physics of jamming in suspensions and, in 

particular, whether there is a link to the glass transition. We begin by discussing the nature of 

stress transmission within jammed suspensions, making comparisons with both granular and 

molecular systems. In this chapter we shall also discuss the link between shear thickening and 

jamming, discussing the role of hydrodynamic interactions in these phenomena. 

5.1.1 Mechanical or thermodynamic jamming? 

As discussed briefly in Ch. 3, Liu and Nagel suggested a correspondance between solidity in 

a range of out of equilibrium situations. These included jammed granular materials as well as 

glasses. In granular materials the nature of jamming is, in one sense, trivial - that is, there 

is no ambiguity in the manner in which stress is propogated through the material. Forces are 

transmitted by direct interparticle contacts. The common picture is of a stress bearing network 

of particles in contact, with the temperature irrelevant compared to other energy scales (eg, a 

57 
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typical gravitational energy in the system). Thus thermal fluctuations are negligible: there is 

no thermal motion tending to return particle distributions towards a free energy minimum. 

At the other end of the spectrum, we have molecular materials. In this case, thermodynam-

ics plays the leading role in governing the response to stress: in a glass, applied forces are 

supported not due to chains of rigid particles in contact, but because deformation perturbs the 

microstructure from its equilibrium state, resulting in thermodynamic forces (both energetic 

and entropic). 

Many materials lie in between these two extremes (fine powders, suspension of both non—

Brownian (a > 1gm) and colloidal (a < 1im) particles). Somewhere in the middle of this 

range, the nature of jamming becomes rather blurred: at what point does solidity cease to arise 

from a contact network and instead come about as the result of thermodynamic forces? In 

colloidal glasses, solidity is ascribed to thermodynamics: deformations result in a free energy 

penalty, appearing macroscopically as elasticity. To what extent can shear—induced solidity be 

attributed to this mechanism, and to what extent is it due to a network of contacts? The former 

case might be thought of as a stress induced glass transition, whilst the second has more in 

common with a granular material. Of course, the answer to this question is likely to depend 

crucially upon the particle size. 

5.1.2 Outline 

In Ch. 6 we shall proceed upon the assumption that jammed colloids may be treated as a stress—

induced glass. Working on this assumption, we formulate a simple model of stress—induced 

glassiness, building upon schematic MCT models of the glass transition. The remainder of this 

chapter is split into two parts. Firstly, we shall consider some issues, relevant to both the ther-

mal and mechanical jamming scenarios, which are ignored in our simple model. These relate 

to the interplay between bulk and surface properties which, we believe, are key to interpreting 

experiments such as that of Bertrand et al [42], and to understanding the process of high shear 

granulation. Secondly, we shall consider the role played by solvent—mediated hydrodynamic 

interactions in jamming suspensions. This feature, obviously not present in granulars, is often 

held responsible for shear thickening in dense colloids and, in part, for the divergence in the 
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zero—shear viscosity of colloids [107]. We shall argue that hydrodynamics are not primarily 

responsible for these phenomena. 

5.2 Simple ideas on jamming 

In this section, we discuss a simple picture of jamming in dense suspensions, as observed in 

the experiments of [42, 91]. In order to do so, we consider the phenomenon of dilatancy - the 

expansion of deforming particulate materials. 

5.2.1 Dilatancy 

Dilatancy, first documented by Reynolds [108], occurs because, in order to flow, particles need 

more room than they have in dense packings, as schematically illustrated in Fig. 5.1. It is 

easily observed: go for a walk on a wet beach, and you will notice that the sand around your 

feet appears to dry. This occurs as the dense packing expands to allow the particles to pass one 

another as the material deforms. This draws the water in to fill the additional pore space, drying 

the surface of the sand. There is a lower bound on the concentration of sand (or any granular 

material) cd  at which this occurs : for 0 q5j there is no expansion upon deformation - the 

particles have sufficient room to flow past one another. In contrast, for q > cbd, the particles 

have insufficient room, and the volume fraction of a flowing material is lowered to od. For 

non—Brownian hard spheres in the absence of gravity q'd  0.555 [109]. This is connected to 

soil mechanics [110], in which deformed soils tend to a critical state density. 

The precise role of dilatancy within shear thickening remains something of a mystery, despite 

the fact that the two phenomena have long been thought to be related. (In the past, the word 

dilatancy was used to refer to thickening.) In suspensions, the sample cannot simply expand, 

as the concentration is fixed by the constituents. In slow flows, we might expect that large scale 

dilation is not neccessary, as relaxation processes allow particles to find their way past their 

neighbours. But, within faster flows, thermal motion cannot prevent dilation of the packing. 

In a simplistic explanation for thickening, one then argues that particles must protrude from 

the fluid—surface, giving rise to large surface forces, ultimately resulting in the large stresses 
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Figure 5.1: An illustration of the dilation of dense packings upon shearing. In the left hand picture, the par-
ticles are unable to flow easily, since particles pack tightly into the interstices between their neighbours. 
In order to flow freely, the packing must expand orthogonal to the flow direction, allowing the particles to 
easily flow past their neighbours. This phenomenon is responsible for the drying of wet sand when it is 
stood upon: the dilation of the particles' packing creates causes fluid to rush in to fill the additional pore 
space, resulting in a drying at the surface of the material. 

measured at the rheometer plates. Such a scenario is given credence by the loss of gloss often 

observed at the surface of suspensions [30], but it does not feature greatly in current explana-

tions of thickening [13]. 

5.2.2 Jamming and granulation 

In the experiments of Ref. [42], initially fluid samples of some suspensions were transformed 

into a solid state by shearing. Upon vibration, these samples melted back into the initial fluid 

state. These observations point towards the existence, in the jammed state, of some metastable 

structure. Presumably, whilst thermal fluctuations are not sufficient to overcome the energy 

barrier to relaxation back into the initial fluid state, the energy input by vibration is. This 

suggests two main questions: firstly, what is the difference (on the microscopic level) between 

the statically jammed state and the initial fluid? And secondly, what provides the energy barrier 

to rearrangement from the jammed solid into the fluid state - ie, why does the solidity persist 

after cessation of shear? 

The first of these questions seems related to shear thickening: a strongly thickened state has a 

solidlike quality. In the experiments, it seems that the thickened state persists after the shearing 

is removed. With this in mind, a simple scenario which accounts for the observations is as 

follows: consider a finite, dense sample of a hard sphere colloid. As the sample is deformed, 

the bulk concentration is lowered to qj and the material shear thickens. The solvent fills the 

increased pore space between the particles, sucking it from the sample boundaries, drying the 
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surface. As well as lowering the concentration, the deformation alters the microstructure, so 

that particles are less efficiently packed than in the equilibrium structure, lowering the entropy. 

The free energy will also be raised by the surface energy cost of particles protruding from the 

interface. However, the system cannot relax to its free energy minimum, as the capillary forces 

squeeze the sample tightly, holding it in an expanded, stressed structure. To relax, work must 

be done against the capillary forces. 

We now consider the quantities of interest in such a scenario, comparing the relevant en- 

ergy/stress scales, with the aim of elucidating the relevance of jamming to granulation. We 

also argue that there are restrictions on the size of samples which can dilate without fracturing. 

Stress scales 

Firstly, we estimate the magnitude of the forces acting upon a particle, of radius a, protruding 

from a solvent of surface tension -y. If a particle, initially contained within the fluid, is wholly 

removed from it, an interfacial area A = 41ra2  is created between the (solid) particle and the 

air, whilst the same interfacial area between the solid and the fluid is lost. If the solvent wets 

the particle surface [70], the interfacial energy cost of removing the particle is then given by 

AE = 47i- ya2 , setting the typical scale of the interfacial energy cost of a particle protruding 

from the interface as E -ya2 . 

If the surface of the solvent—air interface is curved, there is a difference between the pressure 

of the solvent (P8 ) and that of the surrounding atmosphere (Pa), given by LP P - Pa  = 

-y( 11R, + 1/R2), where R1, R2 are the principal radii of curvature of the surface on the fluid 

side [70]. The mean curvature ,ç (11Ri + 1/R2) can vary over the surface, its variation 

being determined by hydrostatic pressure differences in the solvent (and, technically, in the 

atmosphere). However, even leaving aside this complication, it does not seem easy to estimate 

this curvature. Consider a spherical droplet of suspension, of radius R: if no particles protrude 

from the surface, then the mean curvature is ic = 2/R. The pressure within the fluid droplet 

is greater than that of the surrounding atmosphere with AP = 2-y/R. This suggests that a 

particle protruding from the interface will be pushed out by the pressure difference (in conflict 

with minimisation of the interfacial energy). We can estimate the magnitude of this force as 
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Air 

Fluid 

Figure 5.2: A schematic illustration of the dimpled fluid—air interface which could arise if particles protrude 
from the interface. Such a situation could result in decreased positive curvature (with respect to the case 
of a spherical droplet), or in negative curvature. One should note that this diagram is in 2-0: the curvature 
in the orthogonal plane may be of opposite sign, so the mean curvature at a point may be of either sign. 

FAp .- (AP)a 2 	2-ya2 /R: if the droplet is significantly larger than the individual particles 

(R >> a), then this force is much less than that arising from the interfacial energy cost, which 

is of the order 	-ya. 

However, if many particles protrude from the fluid surface, it is not clear that its curvature 

remains close to t - 2/R: if the contact angle between the solvent and the particle surface is 

small, it seems that the surface must take on a dimpled appearance as illustrated schematically 

in Fig. 5.2. This dimpling could reduce the magnitude of LP, or even change its sign. If the 

curvature changes sign, we expect that Jr.1 < 1/a, since a is the smallest lengthscale in the 

problem. Thus, the dimpling might result in a force Fp - ya tending to keep particles within 

the droplet. This is of the same order, and of the same sense, as the force resulting from the 

interfacial energy cost. 

Therefore, regardless of the dimpling effect, in a (roughly spherical) droplet of radius B>> a, 

we expect an inwards capillary force of order F ya acting upon particles protruding from 

the fluid—air interface. The maximum number of particles X which may be at the surface scales 

as N (R/a) 2 , and so the typical energy cost of protruding particles is E - Nya 2  = 

corresponding to a typical (normal, compressive) stress 	'y/R from capillarity. 

In a thermal system, this should be compared to the typical thermal energy density. If the latter 

is far greater than the capillary stress, we expect that an energy barrier due to capillary forces is 

easily overcome. The typical thermal energy density is just given by Ethermal  kT/a 3 . Then 
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a jammed droplet of typical dimension R may be maintained by capillary forces provided 

R < ya3 /kT. Note that this criterion does not ask whether we can create a jammed state, 

but rather whether such a state, assumed a priori to exist, can survive. Depending upon the 

particle size, this gives a maximum droplet size which ranges from a few millimetres for 50nm 

radius particles, to several metres for particles of radius 1tm. Thus, it seems that macroscopic 

jammed droplets of colloidal particles may be sustained by capillary forces. 

In a granulation process, as well as in a rheological experiment, the externally imposed stress 

provides another scale of stress. In order to create a jammed state, sustained by capillary 

forces, external forcing must be sufficient to surmount the capillary energy barrier in the first 

place - thus, we expect that, to do so, an external stress aext -y/R is required. Except for 

very small droplets, this stress (aex t lPa for R 3cm) is easily applied. (However, as 

mentioned during our discussion of dilatancy above, one might also require a sufficiently fast 

flow in order to cause dilation.) On the other hand, we expect that droplets which are already 

in a jammed state may be melted by application of a stress 0 shear >> a. This suggests then, 

that (for example in a granulation process) large lumps of material might become jammed, but 

could also be 'melted' by the external forces. In contrast, sufficiently small lumps are more 

difficult to jam, or to melt. 

By considering the extent of dilatancy, we now argue that, if a suspension can only flow through 

dilation, it will tend to break up. This suggests how granules might form out of a strongly mixed 

paste. 

Fracture and granulation 

In a dilating sample, particles are pushed through the fluid surface. We can estimate the extent 

of this as follows. Consider the deformation of a sample at volume fraction 0. Initially, the 

total volume is V, and so the volume occupied by the particles and solvent are, respectively, 

V = Vçb and V301 = V(1 - 0). Upon deformation the sample dilates so that the volume 

fraction is reduced to cbd. The volume of the particulate packing (as opposed to the actual 

volume of the particles) increases to a value trfina1  whilst the solvent resides within a volume 

V/mnA .  Of course, neither the volume of particles nor solvent has changed, so V1 inal 
c5d = Vçb 
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and 	- d) = V(1 - 

TfznaL > VP '  and so, after dilation, part of the material is dry - ie, it lies outwith the 

solvent. If we consider the (overly) simple case in which both the initial and dilated samples 

are a spherical droplet, this dry region is a layer of thickness 

((1) 1/3 f1_\h/3 

rdrY=R 	
1—d) ) 

at the surface, with R the radius of the initial droplet. 

The experiments of [109] suggest that, in order to flow, a dense packing of spheres dilates to 

a bulk concentration 0 = 0.555. Taking this as the bulk concentration of our dilated droplet 

(ie, cbd = 0.555) the thickness of the dry layer varies from zero (at q' = 0.555) to around 

ten percent of the sample size R (at q c 0.64). If the thickness of this layer is much greater 

than the particle size, this picture suggests that, during the deformation, layers of particles are 

shed by the dilating suspension. However, this is not observed experimentally, suggesting that a 

picture of homogeneous dilation is too simplistic: rather, in strongly sheared dense suspensions, 

one can observe fracture of the sample [32, 331. This suggests that the material chooses to 

create additional surfaces, resulting in fracture, rather than shed particles. The idea that flowing 

colloids do not dilate homogeneously is consistent with experiments [89]. 

If fracture occurs in preference to shedding particles, Eq. 5.1 suggests a limit on the size of 

samples which can flow without fracturing. This criterion for flow without fracture is quite 

stringent. For example, taking çb = 0.58, it suggests that samples will fracture if R >> 25a. 

Thus, dense macroscopic samples can fracture if sheared sufficiently strongly. 

If this occurs, it provides a mechanism for smaller lumps of material to form, as occurs in a 

granulation process. From the order of magnitude calculations above, these smaller granules 

are more robust: sufficiently small lumps can dilate and flow without fracture if external forcing 

demands it. Alternatively, if forcing is sufficiently weak and if thermal motion is not too great, 

they could remain as rigid, jammed solids. The final result will depend upon which criteria are 

satisfied and which are not. This, in turn depends upon the system parameters. 

At present, we have not worked out the details of this picture. However, even in the rough form 

(5.1) 

described here, it suggests how the result of shearing dense pastes, as in high shear granulation, 
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might be understood by considering the effect of dilatancy, and the typical stresses which arise. 

Summary 

We believe that the ideas described above are key to understanding the persisting shear induced 

solids found experimentally, and that these ideas are relevant to the process of high shear gran-

ulation. However, it is evident that we do not have a detailed picture of the microstructure 

in a jammed sample. Nor do we have a picture of the pathways betwen the two macroscopic 

states. In order to produce a detailed theory, it seems that a better description of the micro-

scopic structure of the jammed state is required. This would enable one to construct detailed 

pathways between the two macroscopic states of the system, allowing more precise calculation 

of the energy barrier to relaxation, as well as the stress required for to create the jammed state. 

Computer simulation might provide a suitable avenue of attack for this problem. 

We now leave these questions, and turn instead to discuss the mechanisms behind shear thick-

ening, which we have largely ignored in the above discussion. 

5.3 The role of hydrodynamics 

Shear thickening is often discussed in terms of hydrodynamic interactions without reference to 

the cage effect which, in the MCT, is responsible for the large (zero—shear) viscosity observed 

in dense colloids. Hydrodynamic theories [107] thus ignore the presence of the glass transition. 

If one attributes the rise in viscosity to the presence of the dynamical glass transition, then 

the viscosity diverges at 0.58 (consistent with some experimental observations, whilst 

inconsistent with others: see [18] and the discussion in Ch. 3). In this case, it seems likely 

that the nonlinear rheology of dense suspensions is coupled to the glassy dynamics. This 

notion is supported by work on the yielding of colloidal glasses and thinning of dense colloidal 

fluids [29, 111]. In order to investigate this further, we now make a simple calculation of 

hydrodynamic relaxation times in a colloid, so that we may compare these to the relaxation 

times associated with the glassy dynamics. 
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5.3.1 Hydrodynamic relaxation times 

To calculate a hydrodynamic relaxation time, we begin by assuming that it is dominated by 

pairs of particles, 'bound' by hydrodynamic forces, which tend to prevent relative motion of 

two near neighbours. We calculate a diffusion coefficient for motion along the line of centres, 

from which we obtain the lifetime of the hydrodynamic 'bond'. This pair approximation is 

motivated by the fact that there are few contacts which are sufficiently close to result in long 

relaxation times, and so there are fewer situations in which three particles are in very close 

proximity. Thus we expect that relaxations are dominated by that of particle pairs. Besides 

this expectation, the cooperative caging of particles is exactly the phenomenon described by 

MCT: here, we are attempting to illustrate the fact that hydrodynamics alone (ie, without the 

cooperative slowing down due to the cage) is not responsible for large relaxation times. 

Relaxation of hydrodynamic pairs 

In a system of particles interacting hydrodynamically the velocity ui of particle i may be writ-

ten as [2] 

ui 	w.. F3 . 	 (5.2) 

w.. is a mobility tensor, giving the velocity of particle i due to a force F3  acting upon particle j. 
-23 

This means that if particle 1 experiences a force, say through collisions with solvent molecules, 

particles 2, 3, 4... (as well as particle 1) will attain a velocity, as they 'feel' the movement of 

particle 1 through hydrodynamics. We may superpose velocities in this way, provided that 

the linear Stokes' equations are a good description of the fluid mechanics, a situation which 

typically holds in the low Reynolds numbers flows relevant to colloidal suspensions [2]. 

In a colloidal suspension, particles are constantly subjected a barrage of collisions from the 

solvent molecules. This results in diffusion, with the diffusivity D determined by the mobility 

and the thermal energy kT. In a dilute system the mean square displacement obeys 

(r(t)r(t)) = 2DLt 
	

(5.3) 

with the diffusion coefficient D given by D = kTw, with w =the mobility of an 

isolated sphere. In the presence of a second sphere, the diffusivity of sphere 1 is modified 
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by hydrodynamic interactions with sphere 2. We can split the motion into that of the cen- 

tre of mass position (rcm) and that of the relative motion (r 	r2 - r1). The latter obeys 

r0 )(r(t) - r0 )) = 2Dt, where D = 2kT(w11 
- 12) 

and r(t = 0) r0  [2]. 

We wish to calculate the typical time for two particles, initially at some small separation r0 , 

to escape from one another: ie, we wish to know the lifetime of a hydrodynamic 'bond'. In a 

dilute system, the typical relaxation timescale is the time taken for a particle to diffuse over a 

distance equal to its own radius. In analogy, here we take the relaxation time of a hydrodynamic 

bond to be the typical time for the relative separation to increase by a particle radius. To 

calculate this quantity, we utilise the diffusion coefficient for motion along the line of centres, 

given by D11 r0  D r0 . In terms of this quantity, the mean square separation is given by 

((8r) 2 ) = 2D 11 t, with Jr = (r(t) - r0) r. 

The hydrodynamic mobilities of two interacting spheres have been studied by Batchelor. For 

spheres of common radius a, they may be written [112] 

	

1 
 [Aij

rr 	 rr )l
=ii 	6irija 

	(r) —. + B,(r) 
(A _ 
	

(5.4) 

t1 	A.. P.. 	nnt,- 	*1, 	h1*, 	 ,.1,,,r, ,rn1 	 *, tb where  tin... 	LA23 ...izata..n...sIo... Lia. LIIUUAIILIL.O ii Liii.. jisn..i'...a aLJii5 ama p¼..LpL.mmtmmL.uIaL ui tin~ iiim.. 

of centres respectively. This form simply reflects that the response to any force perpendicular 

to r is equivalent (governed by B23 ), whilst forces parallel to r result in a different response. 

Symmetry dictates that w .. is symmetric in particle labels and that w = 

Eq. 5.4 gives the diffusion coefficient at t = 0 (so that r = r0) as 

2kT 
D(r) = 	(A ii (r) - A 1 (r)). 	 (5.5) 

6iria 

The separation dependent quantity A ll  - A l2  is tabulated in Ref. [112]. In this work, we 

approximate A 11  (r) - Al2 (r) by making a fit to the tabulated data. The expression 

A ll  - A l2  f(x) = 4(x — 1)/(1 — (9/5)(2x - 2) log(2x - 2) 	(5.6) 

+0.0117203 + 2.88897(2x — 2) 

+0.183829(2x - 2)2 
- 0.00677877(2x —2)), 

with x r/2a, fits the data well over the relevant range of separations, as shown in Fig. 5.3. 
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Figure 5.3: The difference between the hydrodynamic functions Al l and Al2  as a function of the dimen-
sionless separation x = r/2a. The points are the tabulated data from [112] and the line is a fit to this 
data. The leading two terms as x -+ 0 in the expression for A ll  - A l 2 are known [113]: the fit was 
performed by adding higher order corrections to these leading terms. 

From the diffusion coefficient for relative motion along the line of centres, we estimate the 

lifetime of a hydrodynamic bond between two particles at dimensionless separation x to be 

T(x) '.-' a2 /D(x) which gives 
6 

W 2kTf (x) 	
(5.7) 

This is only approximate: we have not accounted for the fact that, as the relative separation in-

creases from the initial value, so does the mobility. Nor have we distinguished diffusion which 

reduces the separation from that which increases it. We shall not be concerned with these cor -

rections, instead concentrating upon the order of magnitude, and the way in which the typical 

relaxation timescales change with volume fraction. In order to study this, we need the distri-

bution of interparticle separations at a particular volume fraction - ie, the radial distribution 

function g(r). 

The distribution of relaxation times 

The radial distribution function g(r) (or, in terms of the dimensionless variable x, (x)) pro- 

vides us with the mean distribution of interparticle separations within a fluid. Here, we use 
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the Percus—Yevick radial distribution function (rdf) for hard spheres. An expression for this is 

given in [2]. 

We wish to calculate the distribution of relaxation times within a suspension at volume fraction 

. We cannot analytically invert our expression (Eq. 5.7) for r(x) to give an analytic expression 

for the function p(r) by relating p(T)dT to g(r)dr. However, for a given value of the relaxation 

time (say r1 ), we can (via Eq. 5.7) calculate the corresponding interparticle separation, x(-r1 ). 

The fraction of bonds surviving beyond time Ti is then just the probability that a particle chosen 

from random is within a dimensionless distance x(Ti) of its nearest neighbour. If this distance 

lies outwith the nearest—neighbour shell in (x) then all bonds are unrelaxed at Ti.  For smaller 

values of x(r), the fraction of unrelaxed bonds (Fb0fld(Ti)) is given by an integral over the rdf 

which gives the fraction of particles within the nearest—neighbour shell which are also within 

a distance x from the origin. This gives 

Fb0fld8(ri) = I p()d 
- fx(T1 ) x2(x)dx 

(5.8) fx * 
Jr1 	 j x2(x)dx 

where x' corresponds to the limits of the nearest—neighbour shell - the position of the 1st 

minimum in (x). The normalisation integral in the denominator appears since p(r) is nor-

malised over all particles within the nearest neighbour shell, whilst (x) is normalised over all 

separations. 

We show the results of this calculation in Fig 5.4. For volume fractions 0 < 0.5, the Percus-

Yevick expression for the radial distribution function is a reasonable approximation to the 

hard—sphere rdf as found by computer simulation (see [72] for a comparison at 0 = 0.49). 

There is a quantitative error in the height of the main peak, but given the approximate nature 

of our calculation, this is of no concern. However, as one approaches random close pack-

ing, the Percus—Yevick rdf becomes unsatisfactory: the contact value of g(r) ought to diverge 

upon reaching the close packed state, whilst the Percus—Yevick expression does not show a 

great change in the height of the first peak as random close packing is approached. Also, for 

large packing fractions ( 0.6) the first minimum dips below zero! This prevents us from 

confidently predicting the distribution of hydrodynamic relaxation times for volume fractions 

approaching q = 0.6, as the rdf which we have used will predict too small an incidence of 

large relaxation times. 



70 
	

CHAPTER 5. JAMMING IN SUSPENSIONS 

0.1 

F (t) 
bonds 

0.01 

0.001 

0.0001 

le-05 

— 4> =030 
4)0.40 
4> =0.50 
4'55 

10 	 100 	 1000 	10000 	le+05 

I 

Figure 5.4: The fraction of hydrodynamic 'bonds' remaining at time T in a hard—sphere colloid for a range 
of volume fractions. (Time is measured in units of the time To  for an isolated colloidal particle to diffuse a 
distance equal to its own radius.) 

5.3.2 Is thickening due solely to hydrodynamics? 

Raising the volume fraction of a colloid from 0 = 0.3 —* 0 = 0.5, one notices a strong slow-

down in its dynamics, as well as a large increase in the viscosity [18]. At 0 = 0.49, typical 

relaxation times are about a factor of 50 greater than in a dilute system, and at higher volume 

fractions, the relaxation times become long compared with experimental timescales [76].  In 

contrast, typical hydrodynamic pair relaxation times show no sign of becoming macroscopi-

cally long: even for 0 = 0.5 the probability that a bond will last a time 50r0  is only about 1%. 

Also, predictions of the viscosity (see [13], and references therein) based upon a hydrodynamic 

slowdown shows a weaker increase in the viscosity than the experiments of [18] and predict 

that the viscosity does not diverge until random close packing, where interparticle gaps close 

to zero. 

This backs up the notion that, in the vicinity of the glass transition, hydrodynamics do not play 

a significant part in creating the long relaxation times observed experimentally. The relaxation 

times are due instead to the cage effect, of which MCT seems to provide a reasonable descrip-

tion. Of course, at volume fractions approaching random close packing, the divergence of the 
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contact value of g(r) implies that all particles have very close neighbours so that, in this limit, 

the time for two hydrodynamically 'bound' neighbours to escape one another can become ar-

bitrarily large. At sufficiently high concentrations, had the glass transition not intervened, one 

would expect hydrodynamics alone to result in slow relaxations. 

In shear thickening dense colloids, viscosities of the order 10 3  times the solvent viscosity can 

be observed, even at volume fractions well below random close packing [30].  If one presumes 

that the close link [18] between viscosity and relaxation times remains (at least approximately) 

valid in sheared systems, this implies a similar mark—up in the typical relaxation time. If this 

slowdown is due to hydrodynamics, rather than having anything to do with the nearby glass 

transition, Fig. 5.4 suggests that the particles must be pushed sufficiently close together that 

the hydrodynamic relaxation time increases by a factor 1000. In contrast, typical glassy 

relaxation times have a head—start, the viscosity (which we have argued is due to the glassiness 

and not to hydrodynamics) already being of the order 50 times that of the solvent [18]. 

A simple argument 

So, can shearing produce a sufficiently strong increase in hydrodynamic relaxation times over 

those in the quiescent state to account for observations of shear thickening (Sec. 2.3.3)? A 

simple argument suggests that, at least in some cases, it can. Consider an amorphous hard 

sphere suspension of hard spheres, radius a, at a concentration 0 . In a sense, we can attribute 

the relative viscosity q, (0) of this suspension to the osmotic pressure II which (in a suitable 

experiment employing a semi—permeable mebrane) sets the volume fraction. In such a setup, 

the system resists osmotic compression since greater volume fractions increase the number of 

close contacts, lowering the entropy. 

Theory ignoring the glass transition [107] predicts a form of the viscosity increase with con-

centration. (In this argument, we use this theory for the viscosity, rather than the calculation 

given above since, as we noted, the Percus—Yevick rdf fails at high concentrations.) The rel-

ative viscosity as a function of concentration 71r(0)  diverges as 0 -+ qRCP. Assuming this 

form we can calculate the osmotic pressure increase required to increase the relative viscosity 

of a suspension from an initial value ij. to a final value ijj. Firstly, we calculate the initial 
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and final volume fractions to be Oi  and çb', where these quantities are defined by 1r (i) 

and q,(çbf) = ii. We then calculate the osmotic pressure difference between of and çb as 

ArI = H(of) - fl  (4), thus giving the osmotic pressure increase required to raise the relative 

viscosity (according to hydrodynamics) from i to 77f. 

We now argue that, if the main effect of shearing upon the microscopic structure of the colloid 

is to form close contacts (resulting in longer hydrodynamic relaxation times and a correspond-

ingly greater viscosity), then this is a similar effect to increasing the osmotic pressure. In this 

case we expect that the shear stress required to increase the relative viscosity of a colloid by 

shear thickening is of the same order as the increase in osmotic pressure required to cause the 

same degree of 'thickening'. Thus, to increase the relative viscosity from to r( by shearing, 

requires the application of an additional shear stress &r ".' LH. 

Using this argument, we now estimate the stresses required to cause varying degrees of shear 

thickening. We take the osmotic pressure of a (dense) colloidal suspension of particles, radius 

a, at volume fraction 0 to be 
11 3qkT 1.85 

47ra 0.64 - 
(5.9) 

This expression captures the correct form of the divergence [2]. Note that Eq. 5.9 suggests a 

size dependence of the shear stress required to produce a given increase in relative viscosity. 

Thus, in the above argument, it also alters the stress required to increase the relative viscosity 

from 	tp 	(This is interesting given that experiments [30] find that the shear rate (zy) 

required for discontinuous thickening varies with particle radius, possibly consistent with 'y 

1/as .) 

We begin by considering the stress needed to cause shear thickening from a relative viscosity 

7/r 	50 -4 177 	500. From hydrodynamic predictions [13] for the viscosity 1)r (ç5), 

0.54 and Of 0.6. From Eq. 5.9, for 690mm diameter particles, this gives the additional 

stress required to cause this degree of thickening as La ' 0.5Pa (at room temperature). 

Let us compare this to the stresses which arise in a corresponding experimental system: in 

[33], a suspension of 690nm diameter particles at a volume fraction q  0.56 continuously 

shear thickens from a relative viscosity k 	27 to Tir 	530 upon increasing the stress from 

(approximately) 10 -* 700Pa. Obviously the stress required is significantly greater than that 
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suggested by our argument. For smaller particles, our argument would predict that greater 

stresses were required. However, this dependence is not crucial in our comparison: for our 

argument to predict stresses as large as those found experimentally, the particle radius would 

need to be an order of magnitude smaller. 

In the same experiments, more concentrated samples thickened discontinuously: for 0 = 0.61, 

a much smaller increase in the stress (from a 	5 to a 	50) increases the relative viscosity 

from ?lr 	173 to Tir 	2670. Our argument predicts that such an increase in Tir requires 

an increase in stress of La 	1.5Pa. Again, this is much smaller than the stress found 

experimentally. 

This suggests that the stresses required to cause sufficiently close contacts for hydrodynamic 

shear thickening (up to 71, 1000) are not prohibitively large. However, let us consider 

Bertrand's experiments: in this case, the viscosity, due to an applied stress, diverges. Ignoring 

the glass transition, in order to cause such a divergence of the viscosity by osmotically com-

pressing one must create a random close packed state. This carries a large entropy penalty: in 

the (idealised) random close packed state, particles can no longer move relative to one another, 

resulting in the loss of degrees of freedom. Classically, each of these degrees of freedom can 

access an infinity of microstates, and so their loss formally results in a divergent entropy loss. 

This leads to a divergence of the osmotic pressure at RCP. 

If our argument above holds, this suggests that shearing a system into a state in which each 

particle contacts its neighbours also requires a divergent stress, suggesting that this is not the 

origin of experimental jamming. In contrast, let us regard these jammed states as stress induced 

glasses. Following a similar line of reasoning to the above argument, in order to produce a 

divergent viscosity, we need only a stress of the order H (q5). This is certainly not divergent, 

arguably making this a more plausible scenario. 

Summary 

So, it seems that not all shear thickening phenomena are primarily governed by hydrodynamic 

interactions. Without taking the cage effect into account, one cannot fully capture the rheol- 

ogy of colloids at concentrations above their glass transition: neither can one understand the 
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experimentally observed jamming. It seems that the cage effect, and the slow dynamics which 

it entails, plays a role in shear thickening behaviour in dense systems. This points towards 

the need for an improved understanding of the rheology of concentrated colloids: ideally, one 

would devise a theory which captured the many—body cage effect, its effect upon flow (and 

vice—versa), as well as the hydrodynamic interactions between colloidal particles. (The rela-

tive influence of these distinct features might well shift with concentration.) This is obviously 

a challenging task (elucidating the effect of hydrodynamic interactions on the glass transition 

is quiescent colloids is hard enough [114]). The influence of hydrodynamic interactions upon 

the non—Newtonian rheology of colloids has been, and continues to be, studied extensively 

[115]. In contrast, the influence of the cage effect upon the non—Newtonian rheology seems 

less well understood. However, recent work [29, 82, 111] which has its basis in MCT, appears 

promising: in the following chapter, we proceed along this line of research. 



Chapter 6 

Modelling a Stress-Induced Glass 

As mentioned in the previous chapter, we would like to better understand the role of the cage 

effect in governing the rheology of dense suspensions. In particular, we wish to investigate 

whether we might regard jammed suspensions as a stress induced glass. With this aim, we 

now describe a model of jamming in suspensions, based upon a schematic version of the MCT 

discussed earlier. We begin by disussing the effect that one expects stressing a dense suspension 

to have upon the glass transition. 

6.1 The effect of stress and flow upon the glass transition 

As discussed in Ch. 4, the coupling constants of the MCT are dependent upon the static struc-

ture of the system via S(q). (Recall that this is the key way in which variables such as interpar-

ticle potential, temperature and density enter the theory.) Therefore, alterations to the structure 

alter the material's susceptibility to arrest. Intuition suggests that flow—induced structural alter-

ations will tend to promote, rather than inhibit, dynamical arrest: since the equilibrium static 

structure of a quiescent (hard sphere) fluid is the most efficiently packed fluidlike structure 

at that density, a perturbed structure will have a greater number of close contacts, hindering 

particle diffusion and promoting arrest. The most obvious way to alter structure is to apply 

stress to the material. Stressing a solid distorts the microstructure, resulting in a free energy 

penalty which is manifested as elasticity. After the transient flow has ceased, both stress and 
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Figure 6.1: An illustration of the way in which advection by shear flow reduces the distance over which 
particle diffusion is necessary to relax a fluctuation with wavevector component in the flow direction. 
We show the evolution of a sinusoidal fluctuation in the x—direction (without Brownian motion) as it is 

advected by a flow v = yy*. (a) is at zero—strain, (b) corresponds to a strain 'y = 5, (c) to -y = 10 and (d) 

to -y = 15. Note how the distance between adjacent peaks (and troughs) is reduced by the shear flow. 

the distorted structure remain. Thus one expects that stressing a material can 'shift' its glass 

transition. 

Stressing a colloidal fluid can also alter the microstructure, but in this case, it is accompanied by 

steady—state flow. This has its own impact upon the tendency to arrest, distinct from the effect 

of a distorted structure. The flow shortens the lifetime of those fluctuations with wavevector 

components in the flow direction because diffusion over small distances, aided by advection 

with the flow, can relax a long—ranged fluctuation. This is illustrated in Fig. 6.1. Fluctua-

tions orthogonal to the flow are not directly affected, but any coupling between fluctuations at 

differing wavevectors can ensure the premature relaxation of these fluctuations also [29, 82]. 

Since the onset of glassy behaviour is associated with the failure of fluctuations to relax, flow 
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prevents structural arrest. 

Given the above arguments, we anticipate stress and flow having essentially opposite effects. 

One will tend to cause a slowdown of the dynamics, resulting in a more viscous material, whilst 

the other will tend to speed up relaxations and result in a less viscous response. However, the 

flow response to stress depends upon the viscosity, and so a material's state under a given 

imposed stress ought to be determined in a self—consistent fashion. 

A microscopic approach? 

Having identified the likely effects of shearing upon the colloidal glass transition, one would 

ideally like to formulate a first—principles theory which naturally captures both of these effects. 

A theory, based upon MCT, which captures the fluidisation under shear has already been de-

vised [82, 29]. Expectation values of relevant quantities are obtained by calculation of overlap 

integrals with density fluctuations which, as in MCT, are treated as 'slow' variables. From first 

principles, this theory leads to predictions of the shear melting of colloidal glasses. It is found 

that, for nonzero shear rates, all fluctuations are ergodic. 

In order to formulate a tractable theory, the authors were forced to make several approxima-

tions. One of these was to assume that the system remains near equilibrium, in the sense that 

internal forces in the material are taken to be described by the quiescent static structure fac-

tor. Whilst this approximation may suffice for the description of fluidisation under shear, it 

must preclude the theory from capturing dynamical arrest due to shear—induced changes to the 

structure. The difficulty of calculating such changes is a major obstacle to improving upon this 

situation. However, it is not the only one: as we have seen, in MCT, one approximates the non-

linear coupling between density fluctuations by projecting onto density pairs. In a simplified 

version of MCT, this is equivalent to writing the Hamiltonian of the system as an integral over 

a bilinear product of densities [116] with the direct correlation function acting as an effective 

potential. Since jamming may be associated with extended clusters, one might expect that an 

improvement to this harmonic approximation will be necessary - in other words 8(q) may not 

be a suifficiently good description of the structure to capture thickening and jamming. 

So, it appears that the formulation of a microscopic theory which captures both of these effects 
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is a particularly challenging task. It seems likely that one would have to improve upon the 

quiescent MCT as well as adapt it to deal with sheared suspensions. In the work presented here, 

we take a simpler approach, utilising a schematic MCT model, altered to introduce competition 

between the effects described above. We shall also take a scalar approach: the only stress in 

the model shall be regarded as the shear stress, and the only deformation shall be the shear 

rate. Scalarising is a fairly common simplification to make in theories of nonlinear rheology 

[9] although, obviously, this is not wholly satisfactory. 

6.2 The formulation of a schematic model 

We shall now formulate a model based upon the schematic F2 model described in Ch. 4. Recall 

that the equation of motion for a density correlator within an schematic model for a colloidal 

suspension is 

(t) + r 	f m0 (t) + 	(t - t')(t') dt' = 0, 	 (6.1) 

with m(t) = v2 2 (t) for an F2 model. The wavevector dependent parent of this equation holds 

rigorously for a quiescent colloidal suspension. However, its derivation fails outwith thermo-

dynamic equilibrium, where the fluctuation—dissipation theorem (FDT) no longer holds. (This 

is most easily seen in an alternative approach [117] to the projection operator formalism de-

scribed in Appendix A. In this formalism, one derives separate equations for the correlation and 

the response: in the special case of equilibrium, the fluctuation—dissipation theorem allows one 

to collapse these equations onto the MCT described in Ch. 4). However, in the first—principles 

theory of rheology mentioned above, the authors obtain an equation which is remarkably simi-

lar to that of the quiescent MCT, with the caveat that the origin of time in their equations refers 

to the start—up of the flow. They also found that a schematic version of their model, in which 

the MCT vertices were altered to mimic their variation due to flow in the microscopic model, 

provided qualitatively similar results to the more sophisticated approach [82]. 

This suggests that the character of the MCT survives generalisation to sheared systems, whilst 

the memory function becomes altered by shear. With this in mind, we assume that we may 

describe sheared systems using a schematic model, whilst modifying the coupling 'constant' 
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in order to describe the effect of shearing upon the system's memory. The form of this de-

pendence is motivated by simulation of sheared suspensions, experimental observations and 

intuition. However, the exact mathematical form is, unavoidably, somewhat arbitary. To guard 

against this affecting the results unduly, variations to the choices described below were also 

investigated. In the following, we will describe the model on which most time was spent, 

whilst highlighting those places in which alternative options were also considered. The results 

of those alternatives will be discussed in Ch. 8. 

The effect of shear stress 

The first alteration which we make to the static F2 model is to allow the coupling to increase 

with shear stress. The most obvious way to do this is to assume a regular expansion of the 

coupling about the unstressed state, ie, 

V2 —* v0  + aci + bcr2  + ca3  +... 	 (6.2) 

One can then neglect the odd powers of or on the grounds of symmetry — the material should 

not respond differently to being sheared in opposite directions. 

However, this approach is limited. It is best suited to cases in which one is interested in the 

region around a = 0, as in order to make progress, one neglects higher order terms. But we 

have no reason to believe that this is the region of interest: if one is concerned with a region 

of stress away from or = 0, a different approach may be needed. Therefore, in the following 

we consider a second case, in which we model the effect of stress by v2 - v0  + au (where 

or should be regarded as an absolute magnitude so that symmetry is not violated). Whilst 

this prescription suggests a nonanalyticity at or = 0, we do not consider it as a linearisation 

around the unstressed state. Rather, it is a way in which we can account for a sub—quadratic 

(specifically linear) rise in the coupling at values of stress away from zero (which is certainly 

not forbidden by symmetry). One can consider this approach as a linearisation of the coupling 

around some nonzero stress, in which case v 0  need not exactly coincide with the coupling at 

zero—shear. Thus, this approach is somewhat complementary to that of expanding around the 

unstressed state: in the latter, whose results we shall show in Ch. 8, one expects to capture the 
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correct behaviour for or -* 0, whilst the former is less restrictive for larger stresses (and will 

turn out to result in richer phenomenology). 

The effect of shear flow 

The second modification that we make is to recognise the fluidising effect of flow. The effect of 

this upon the memory function in an MCT—like theory has been calculated by Fuchs and Cates 

[82]. Wavevectors q are advected by the flow to higher values q(t) = /q2  + 2kk + kj20 

(for a flow in the x—direction with gradient in the y—direction: cf Fig. 6.1). Such advected 

wavevectors appear within the vertex in their theory, 'killing off' the coupling at late times 

(through the vertex) and thus restoring ergodicity for any flow rate. 

In the models presented here, we allow for a vertex which vanishes at large accumulated strains. 

In the primary model which we discuss, we choose an exponential decay m(t) e_'' (more 

precisely, we should consider the absolute magnitude of the shear rate). Similarly to the situ-

ation regarding the stress, we are primarily interested in 'yt > 1, and so the apparent nonan-

alytic dependence at small strains is again immaterial. However, in order to ensure that this 

choice does not unduly influence the results, in Ch. 8 we consider a second model for which 

M (t) - 1+ 2 t2.  

The memory function under shear 

Depending upon the precise mathematical form chosen, various memory functions are possible. 

The main body of our work has focused on the memory function defined by the primary choices 

described above, giving 

m(t) = (v 0  + cw.) e_ 12 (t). 	 (6.3) 

As mentioned, we will return to variations of this form, and make a comparison of the results. 

The viscosity 

In the proposed memory function (and generalisations thereof), the effect of shear appears 

in two quite separate ways, via the applied stress a and the resulting shear rate Zy.  These two 
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quantities are, of course, not independent, but are related through the viscosity i 	or/j', which 

may vary. In order to complete the definition of our scalar model, we need a prescription for 

the viscosity, so that upon specifying an applied stress, all other quantities are fixed. In linear 

response theory, the shear viscosity is expressed as the time integral of a stress correlator [72]. 

In our schematic model, we have only one correlator, and choose 

f cb(t)dt=T, 	 (6.4) 

where we have chosen units such that stresses are dimensionless. Thus, the viscosity equates 

to a characteristic relaxation time 'r. 

Whilst we are not studying just the linear regime in this work, this prescription is, we believe, 

a suitable choice. In MCT, the shear viscosity diverges as the relaxation time of correlators as 

one approaches the glass transition (and this correspondence in not lost under shear [29, 82]): 

this is captured by Eq. 6.4. Writing ij as (say) the integral of 01 , would also capture this, 

but leads to very similar results. With this prescription, dynamical arrest implies a divergent 

viscosity and hence zero shear rate. This is consistent with the idea, discussed above, that shear 

flow prevents arrest. 

Our model is now fully defined: we have 

(t) + r0(t) + f m (t - t') 0 (t) dt' =0, 	(6.5) 

m(t) = (v0  + aa ) e_'t 2 (t), 	(6.6) 

= f 
00 

0(t) dt. 	 (6.7) 

Having devised the model, we now proceed to study it in some depth. We do so by a combina-

tion of analytic and numerical work. 
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6.3 Solution of the model 

The conventional P2 model may be studied analytically by asymptotic expansions around the 

glass transition. Close to the transition, these techniques yield the characteristic signatures 

of the MCT glass transition (see Ch. 4). Here, we adapt these techniques to deal with the 

additional complexity present in our model over the F2 model. 

The P2 model has also been studied numerically, using a standard algorithm [118]. To adapt 

this technique to the present situation, one needs to adapt a code which solves the standard F2 

model in a simple way - this is outlined later. Firstly though, we describe our analytic study of 

the model. 

6.3.1 Analytic solution 

Many of the following methods are adapted from standard techniques used in solution of the 

MCT equations of motion (See, eg [95]). We begin by defining a Laplace transform: 

00 

f(z) 	L(t)](z) 	i f [f 	 I (t) e t dt; Im(z) > 0. 	 (6.8) 

Then, Laplace transforming Eq. 6. 1, we obtain 

—1 

= 
- i7-0+rn(Z) 

(6.9) 

Close to a glass transition, the condition I mi << im(z)I will hold for low frequencies - in other 

words, close to the glass transition the dominant source of low—frequency friction arises from 

the cage effect, which the mode—coupling approximation to the memory function describes. 

Since we are interested in low-frequency dynamics, we make the approximation of ignoring 

the regular part of the memory function. For clarity in what follows, we shall label the position 

in parameter space by the vector v (v 0 , a, a) - these labels shall appear as subscripts. 

Ignoring the regular part of the memory, we have 

z,, (z) 
= zm(z). 	 (6.10) 

1 + zq5(z) 
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A familiar result 

We split the correlator into the sum of its late—time limit and a (time—dependent) remainder: 

we write 0 (t) = f., + g (t). Now let us assume that, for suitable values of the relevant 

parameters, our model admits nonergodic solutions. In a nonergodic state the relaxation time r 

is divergent and so = 0 for any finite stress. Therefore, upon taking the zero-frequency limit 

of Eq. 6. 10, we obtain the result 

1 
fV  = 	 (6.11) 

where V = v 0  + aa. Here, we have used the fact that, since g y  (t) tends to zero at late times, 

terms g(t) give rise to singularities weaker than ' 1/z as z -+ 0. 

This result fixes the nonergodicity parameter of a glassy state with coupling V: it has nonzero 

solutions for f., provided V > 4, indicating that glassy solutions become possible beyond this 

value of the coupling. However, this need not imply that our model undergoes a glass transition 

at V = 4, since we have calculated this by assuming a priori that we are in a glassy state, and 

thus 'y 0. By doing so, our model reduces exactly to the F2 model, and so this result, which 

holds for the F2 model, is inevitable. It has been shown that the nonergodicity parameter is 

the largest of the solutions to Eq. 6.11 [95]. (The smaller solution would require that the 

nonergodicity parameter becomes smaller upon increasing coupling, which seems unlikely.) 

MCT glass transitions lead to a characteristic behaviour of the nonergodicity parameters: they 

jump discontinuously from zero on the liquid side of the transition, to a finite value as the 

transition is breached. Further increasing the coupling, there is a nonanalytic (square root) 

variation from the value at the transition. Eq. 6.11 tells us that such behaviour will be present 

in the current model if and only if the transitions occur at the F2 value of V = 4. We shall 

return to this point at a later stage. (Of course, it still remains for us to investigate where in 

parameter space these transitions occur, if indeed they exist at all.) 

A Low—frequency expansion 

We now consider the behaviour of correlation functions close to transition points (assuming 

that the latter exist). We write 0, (t) = f., + g, (t), where f.,,, is the long time limit of the 
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correlator at a point v on the locus of transition points to nonergodic states. Since we study 

correlators close to the transition points Iv - V' I is a small quantity. 

To guide our treatment of Eq. 6. 10, we consider what we know of conventional MCT behaviour 

(which, from the previous section, tells us the behaviour of the correlator at transition points in 

the current model). A glassy correlator decays onto a plateau on the 0—relaxation time, where 

it then remains for all time. In the current model, transitions will be at V > 4, and we might 

expect the inequality to hold, due to the fluidising term in the memory. Thus, on timescales for 

which j't << 1, the correlators q5(t) and q5(t) will be very similar. By considering Iv - v, I 
arbitrarily small, we can ensure that they do not become strongly separated until q  (t) has 

essentially reached its long time limit. Thus, there will be a regime of time for which g.,, (t) is 

a small quantity. 

In Laplace—space, the separation of the correlator into a constant plus a remainder reads z0, (z) = 

fvc  + zgv(z). In line with standard MCT techniques [95], we now treat gv (z) perturbatively 

in the Laplace transformed equation of motion, Eq. 6.10. Expanding the LHS in powers of 

gv (z), we find 

zq v (z) 	 fVC. 	zv(z)) 
(i - 

zgv (z) 	z 2g(z) 

1+z(z) = 	+ 1—f 	I — fvc, + (1_f)2 
+O(zgv(z))) 

_fvc 	zgv(z) 	z 2g(z) 
= 1—

+ 
 (1 - fj2 - (1—f)3 

+ O(z 3g(z)). 	 (6.12) 

We now wish to approximate the RHS in the same regime of frequency. Considering the 

memory function in the time domain, we expect that 'yt (as well as g.,, (t)) can be treated per-

turbatively, since it is the shear—induced memory loss which prompts the growth of 9v  (t). We 

also treat the separation from the transition as small: we write 

V = V + c, 	 (6.13) 

where V is the value of V at the transition point v. We find the (time—domain) memory 

function to be 

m(t) = (I 	 + g(t)) (1 - yt + O( y2 t2 )). 	(6.14)  (  

In the time regime of interest, terms O(g(t)'j't) and 0 (g 2 (t)) are negligible with respect to 

terms 0 (g(t)). Additionally, terms 0 (fg(t)) and 0 (ej't) may be neglected with respect to 
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terms 0(e). The RHS of Eq. 6.10 then becomes 

zm(z) —Vf + 2fVzg(z) - Vcf.cz'yL[t](z). 	 (6.15) 

Using Eq. 6.11 (evaluated at the transition), we find that Eq. 6.10 becomes, asymptotically 

close to the transition, 

zg(z) 
( 	

1 
(1 - f)2 

- 2fV) + zVcfvc[t](z) + fe 0. 	(6.16) ve 

Performing the back Laplace transform, we find the correlator in the time domain to be 

(t) 	
( +

6fv 
	1

Vft 	 (6.17) 
(1_fv)2 - 2fV + ef) \ 	(1fv 	- 

2f,,:  V 

or, expressed more succinctly, 

q(t) = 1 (1 - t/?) 	 (6.18) 

with f and T defined appropriately. This expression is consistent with an exponential decay 

from the plateau at late times: we shall show in Ch. 7 that an exponential decay from the 

plateau does indeed agree with the numerical results which we have obtained. 

Transition points 

We now investigate the possibility of 'jamming transitions', distinct from the conventional F2 

transition at V = 4, within our model. We begin by evaluating Eq. 6.9 at z = 0 to deduce 

T = T, - im(0). 	 (6.19) 

We have just shown that, close to the transition, the correlator is consistent with an exponen-

tial at late times. Motivated by numerical results, we assume that this is the correct late—time 

form of the correlation functions. As we approach a jamming transition, the relaxation time 

of this exponential diverges (since the shear rate vanishes at the transition point), whilst the 

0-relaxation timescale remains finite 1 . Therefore, at the transition, the contribution from the 

'At an MCT transition, both the ce and 8 relaxation timescales diverge. However, in general the transitions 
described here do not occur at these points, and so the /3 relaxation time remains finite 
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exponential completely dominates over the short time (non-exponential) contribution. Accord-

ingly, Eq. 6.19 becomes 

	

r = r0  +V f exp(—'yt) 2 (t) dt 	 (6.20) 

vfo

00  
exp(_Zyt)f 2 exp(_2t/)dt, 	 (6.21) 

where we have approximated the correlator by qf(t) = f exp(—t/fl over the whole tempo- 

ral range, and dropped the (non—divergent) contribution from the regular part of the memory 

function. By definition, 'r = f000 0(t) dt, and so we require f000  f exp(—t/) = T, giving 

T_— TH. 

We now write this as an iteration: the nth approximation to the relaxation time is calculated 

using the (n - 1)th value to determine the shear rate. Thus 

fo
00  

f 
	

Ve_0t/T(0)e_21t/T(1)dt, 	 (6.22) 

which we can solve to give the ratio of T(1)  to 

- f 
-  - 

- (VI - 2). 	 (6.23) 

The key point to note is that the ratio is independent of r(°): thus, no matter how large the 

initial guess, the iteration leads to a larger value if the RHS is greater than unity. This suggests 

that, where this is the case, the relaxation time is divergent. Thus, setting the RHS=1 in Eq. 

6.23, we conclude that the transitions to glassy states occur at stresses a which obey 

	

Ic [(v0  + acr)f, - 2] - cr = 0, 	 (6.24) 

where f is given by the largest solution offc = (v 0  + aa)f (from Eq. 6.11). 

These transition points do not coincide with the F2 transition and have a different character to 

MCT transitions in general. These differences shall be investigated later. From a rheological 

point of view, we have found values of the stress for which the shear rate first becomes zero 

- ie, jamming transitions. The location of these transitions according to Eq. 6.24 will later be 

checked against a numerical solution for the full flow curves. 
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Behaviour at large stresses 

As well as finding the transition points, one would like to build up a picture of the flow be-

haviour. Let us begin by investigating the large-stress behaviour of the system. We begin by 

postulating a situation in which the relaxation time diverges in the limit of large stress: in this 

case, Eq. 6.23 tells us that 

urn 	> 1 	 (6.25) 
O.*OO T(o) 

which, implies that 

lim ctf2 > 1. 	 (6.26) 
o.—*oo 

This can only be satisfied if a > 1, since in a glass the nonergodicity parameter f approaches 

unity in the limit of large stress (see Eqs. 6.11 and 6.13). Therefore, nonergodic solutions may 

only be admitted in the limit of large stress if a > 1. 

Therefore, we can be sure that, for a < 1, the shear rate can be made arbitrarily large by 

ramping up the stress, since the relaxation time does not grow unbounded. In this case, we can 

calculate the relaxation time in the large stress limit from Eq. 6.20. Only the region t i-' 1/'5' 

tontnhiites sinif1cant1v to the intera1 anl for 1are shear rates this region heenmes arbitrarily ---- -- ------ - 	- a----, 

small. Thus, we may expand the correlator in powers oft [119], giving 

f e_tq2(t)dt fo e — ,:yt (2(0) + 0(t 2 )) dt, 	 (6.27) 
 00 	 00 

where we have used the initial condition that 0(0) = 0. We use the second boundary condition 

(0(0) = 1) to give 

T To  + V f et/Tdt 	 (6.28) 

which is solved in the limit of large stress by 

T0  
T = 	. 	 (6.29) 

1—a 

These results suggest that at a = 1 the large—stress relaxation time diverges. Let us now 

consider the situation for which both the shear rate and the relaxation time grow unbounded for 

large stresses: this occurs if r grows sublinearly with or at large stresses. In this case we have 

that a > 1 and i- = implying that a = 1, else the relaxation time becomes negative. 
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This analysis shows that a = 1 is a 'watershed' between ergodic and nonergodic solutions in 

the limit of large stress. For a < 1, solutions are ergodic with the viscosity approaching a 

constant value; for a = 1 there is the rather unusual situation that both the viscosity and the 

shear rate grow unbounded with applied stress; and for a > 1, we have that, at sufficiently 

large stresses, the system is a solid and there is no (steady state) flow. 

Small coupling behaviour 

For completeness, we outline a way to find asymptotes at small values of the stress, provided 

that v 0  is also small (although this condition will not be met for a system representing a dense 

supension). 

To zeroth order in the coupling V, Eq. 6.1 becomes the simple differential equation 

dO 
0(t) + To j = 0 

with solution q(t) = exp(—t/r 0 ). For small values of the coupling, one expects that the 

correlator remains exponential to a good approximation, but with an altered relaxation time. 

Therefore, let us construct a zeroth—order memory function by taking 0 to be an exponential 

with some (as yet undetermined) relaxation time. (Fixing the relaxation time as r 0 , one simply 

recovers the known zeroth—order correlator.) The largest timescale in the system is r, and so 

yt a which we may choose arbitrarily small. Therefore, we may approximate the 

fluidising exponential term by unity. 

These approximations result in a memory function m( °) (t) = V exp(-2t/T). We then wish to 

solve the equation 

+ 0(1) (t) 
+ fo 

m( (t - t') 01  (t') dt' = 0 	 (6.30) 

for 0( l ) ( t). Taking a Laplace transform and simplifying, we obtain 

01 )  (Z) 
= 	 ZY + 2ri7-0  + Vi 

2/r0  - iz - z2r - 2izr/r0  - iVz 	
(6.31) 

Factorising the denominator and expanding in partial fractions allows us to perform the inverse 

transform, which gives the solution in the time domain as a sum of two exponentials. This 
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reminds us that (save for the trivial case V = 0) our initial guess as to the form of the correlator 

was incorrect, since this is not self—consistent. However, the two correlators should agree in 

the limit of small coupling: this is ensured by demanding that they have the same relaxation 

time, ie, r1 f00° (') (t) dt = r. Doing so gives the relaxation time of the system in the 

limit of small coupling as 
2T0  

T= 2 - v (6.32) 

6.3.2 Numerical solution 

MCT models may be solved numerically using an established algorithm [118]. The difficulty 

in finding solutions to these models obviously results from the convolution integral. This algo-

rithm simplifies the integral term in the following way. Eq. 4.15 is written (ignoring inertia, 

dropping q—subscripts, and absorbing 12  into the memory function) 

d f 
= M(t) - 	 J M(t - t')(t') dt'. 

dt 
(6.33) 

In this form, the correlation function at time t may calculated from those at earlier times. The 

integral I in this equation is re—written in terms of a constant term and two integrals: 

I = 0(t/2)J'vf(t/2) + / 
pt/2 

M 	
t/2 

(t - t')4(t') dt' + f q5(t - t')M(t') dt'. 	(6.34) 
JO  

The important point is that the integrands are the product of a term which varies quickly only for 

early times (eg, (t')) and one which varies quickly only for late times (eg M(t - t')). When 

these integrals are discretised, this allows the slowly varying term to be treated as constant 

over a small interval, simplifying the integrals. The neglected term is cubic in the timestep. 

By evaluating the integral in this manner, the temporal evolution of the correlator may be 

calculated. For full details, see the original reference [118]. 

In order to adapt this algorithm to deal with our model, we employ the following procedure: 

Input the parameters (a, v 0  and a) which one wishes to study. 

Make a guess at the relaxation time of the correlation function for these parameters. 
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Calculate the shear rate using this relaxation time and the chosen value of the stress. This 

defines a time dependent F2 vertex. 

Solve the time—dependent F2 model as outlined above to yield a correlation function. 

Re—calculate the relaxation time by integrating the correlator. 

Repeat from step 3 onwards using the new value of the relaxation time until it converges 

upon a self—consistent solution. 

The code used was adapted from a FORTRAN F2 solver by Matthias Fuchs. It has been 

checked that it reproduces the expected F2 results for a-  = 0. The code was used to generate 

values of the relaxation time 'r, as well as plots of the correlation function (t) for a given 

parameter set. 

For some parameters close to a nonergodicity transition, the code becomes slow to converge. 

In these cases, the initial guessing of the relaxation time becomes important, in that for a 'bad' 

initial guess, long runs are required for the code to converge upon the self—consistent solution. 

A work—around to this problem is for users to manually iterate their guesses at the relaxation 

time: one guesses an initial value then, according to whether this value increases or decreases 

upon computational iteration, one makes another estimate, attempting to obtain bounds upon 

the correct value. Once the correct value is known roughly, the code may be left to obtain it 

to the desired accuracy, but in some cases it proved simpler and quicker to continue 'by hand' 

in the manner described above until a satisfactory bound upon the value was obtained. The 

stability of results obtained in this manner was then checked by entering the upper and lower 

bounds as initial guesses, and checking that in each case the code returned a value within the 

expected range. This crude but effective method could no doubt be improved upon with a more 

sophisticated code. 

In the following chapter, the results obtained numerically are presented and compared with the 

analytical results derived in the previous section. 



Chapter 7 

Results of the Jamming Model 

In this chapter we present results obtained from the model described in Ch. 6. We begin by 

showing the flow curves obtained for a range of parameters. We then concentrate upon the 

jamming transitions showing, via 'phase diagrams', that parameter space splits into regions of 

ergodicity/nonergodicity. We also show results for the correlation functions of the model close 

to these transitions. 

7.1 Model flow curves 

The steady state theological behaviour of our model is completely characterised by the flow 

curves, since we have reduced the stress and deformation tensors to two scalars. Upon varying 

the parameters, our model leads to a wide variety of flow curves. We might expect that the 

most interesting behaviour will be found close to the glass transition, as in that region there is 

the possibility for interplay between the long relaxation times and the effect of shearing. Re-

calling the 'meaning' of the parameters v0  and a, we therefore expect that the most interesting 

behaviour will be found for v0  4. For hard sphere colloids, discontinuous thickening tends 

to occur for concentrations 0 > 0.5, for which the zero shear viscosity is around 50 times 

that at zero—concentration [79].  Thus, we shall begin by studying values of v0  for which the 

zero—shear viscosity (relaxation time) T > 50: here, and in the rest of this chapter, we use units 

such that r0  = 1. As the parameter a does not have such an obvious experimental analogue, it 

91 
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Figure 7.1: Model flowcurves for c = 0.95. For this range of v0 , shear thinning is clearly present and, 

for v0  = 3.8, thickening is just about discernable at low stresses. At larger values of the stress, small 

variations in the viscosity are present (eg, for v0  = 3.5 the viscosity increases from r = 18.9 at a = 20 to 

r = 19.0 at a = 30). However, these variations are sufficiently small that they are not obvious on the flow 

curves. 

is not so obvious what values to start with. However, from the previous chapter, we expect that 

values of order unity can lead to stress—induced nonergodicity, so we concentrate upon values 

in this range. 

By taking the viscosity as equal to a relaxation time, we have made the stress dimensionless: 

therefore, stresses a in the model should be compared to experimental stresses UeXp ' aG 

where G is the characteristic modulus of the material of interest (Ch. 1). In the model, we 

expect the stress to result in interesting behaviour when it is sufficiently large that v0  + ca - 4. 

7.1.1 Variation of v0  

We begin by choosing a value a = 0.95 and varying the value of v0  within the range 3.5 < 

V, < 3.8. (For v0  = 3.5, the viscosity at zero shear is -r = 45.6, and so this corresponds to 

hard sphere concentrations in the vicinity of the equilibrium phase transition.) The flow curves 

for some parameters in this range are shown in Fig. 7.1. The most obvious feature is that, in 
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Figure 7.2: Flow curves, for a = 0.95, for larger values of v0 . Shear thickening is apparent to such a 
degree that the curves become 'S-shaped' and, for the two largest values of v0 , there is a window of 
stress for which the viscosity (relaxation time) diverges. The limits of this window (denoted o and ac2, 

as shown here for one of the parameter sets), are 'jamming' transitions. The values of the stress at which 
these occur, according to Eq. 6.24, are shown as horizontal lines near the stress axis. 

all cases, there is a regime of shear thinning. For the largest value of v0 , the shear thinning is 

proceeded by thickening at small applied stresses. 

To investigate whether this trend to shear thickening develops, let us now move closer to the 

glass transition, and study the range 3.9 < v0  < 4. In contrast to the rather gentle curves of 

Fig. 7. 1, this leads to some rather more dramatic behaviour - see Fig. 7.2. As v0  is increased 

from 3.8, the predominately shear thinning behaviour shown in Fig. 7.1 is interrupted by 

strong shear thickening. For v 0  = 3.85, the thickening is rather modest, whilst for the larger 

values of v0  shown, the thickening becomes so strong that regions of negative slope appear. In 

these regions, increasing the stress lowers the shear rate, which is exactly the opposite effect 

to that which it has in 'normal' circumstances. Recall that, as discussed in Ch. 2, regions of 

negative slope should be unstable to inhomogeneities - we shall discuss possible experimental 

signatures of an 'underlying' flow curve such as those in Fig. 7.2 in Ch. 9. Regardless of 

questions about stability, S—shaped flow curves such as there describe a situation in which too 

large a stress actually inhibits the flow of the material, reminiscent of many jamming situations. 
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Figure 7.3: Flow curves for c = 0.95, with v0  above the quiescent glass transition. Note the existence 

of a yield stress in each case - stresses below some threshold appear to result in divergent relaxation 
times, and so there is no steady—state flow. At stresses beyond the yield stress, the glass melts, and 

steady—state flow is possible. 

For the two largest values of v0  shown, there is a window of stress for which the relaxation 

time has diverged - the system has became nonergodic due to the applied stress. We call the 

boundaries of the nonergodic state 'jamming transitions'. Their positions in parameter space, 

as calculated analytically in the previous chapter (Eq. 6.24), are seen to agree well with the 

numerical results. That such 'full jamming' occurs at all is not obvious from the definition of 

our model - particularly at late times, the vertex can decrease with increasing stress. We shall 

examine in detail the nature of these transitions at a later stage: for now, we continue surveying 

the behaviour for different values of the parameters. 

By studying v 0  > 4, we can examine the behaviour of systems which are nonergodic in the 

absence of shear. In this case, as shown in Fig. 7.3, there is no steady—state flow unless the 

stress is increased beyond a yield stress which increases with v 0 . Given the behaviour at lower 

values of v0  for a = 0.95, the presence of a yield stress is not surprising: Fig 7.2 shows that, 

at small stresses, there is a tendency to thicken. Therefore, it is not surprising that, for v0  > 4, 

small stresses cannot fluidise the system. The application of stresses beyond the yield stress 

lead to 'shear melting' of the glass, followed by a thinning viscosity, similar to the behaviour 
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at stresses above 0c2  in Fig. 7.2. 

For smaller values of v 0  than those discussed here, the rheology is much closer to Newtonian. 

For v 0  = 3, for example, the viscosity changes only by 15% upon increasing the stress 

between zero and or = 5. Also, increasing v 0  further introduces no new qualitative features: the 

yield stress increases monotonically with v0 , as one would expect. The results for a = 0.95 can 

then be summarised as follows: far from the quiescent glass transition (v 0  < 3), the rheology 

is quasi—Newtonian; for 3 < v 0  < 3.8, shear thinning is the main feature in the rheology. In 

the range 3.8 < v 0  < 4, shear thickening becomes more pronounced: upon increasing v0  the 

flow curve first becomes nonmonotonic, and then (for v0  > 3.866) the curve reaches all the 

way back to the stress axis, indicating a jamming transition to a nonergodic state. Finally, for 

v 0  > 4, a yield stress appears, below which there is no (steady—state) flow. Above this yield 

stress, behaviour is similar to that above a in the 'full—jamming' flow curves. 

7.1.2 Variation of a 

Having played around with the proximity to the quiescent glass transition, we now fix the value 

of v0  and investigate the effect of varying a. As we have mentioned earlier, the experimental 

meaning of a is not so obvious: it controls the extent to which the mode coupling vertex 

increases due to applied stress, and so seems related to the susceptibility of the static structure 

to external forcing. 

If a is chosen sufficiently small (for a given value of v 0 ) then there is only shear thinning. This 

becomes of interest if the quiescent state is glassy, as this state can be fluidised by shearing. The 

nature of this fluidisation is not trivial, and so we shall return to this point later in this chapter. 

For now, we choose to vary a around 1, as this is large enough to provide competition between 

the thinning and thickening terms in the memory function. We initially choose v 0  = 3.9 (for 

which the zero—shear viscosity is T = 813.73), which is sufficiently close to the quiescent glass 

transition to uncover some interesting behaviour. 

Flow curves for a range of a less than unity are shown in Fig. 7.4. The variation in the curves 

with increasing a is qualitatively similar to that in Fig. 7.2, with the shear thickening becoming 

increasingly strong as a is increased. In contrast, for a > 1, we expect to find a change in the 
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Figure 7.4: Flow curves at v0  = 3.9, which is close to the quiescent glass transition, for a range of values 

of c. For the largest value of c, there are jamming transitions at c1, 0c2. The analytical calculation of 

the transition points are shown as horizontal lines close to the stress axis. 

behaviour, since in this case (Ch. 6), the large stress limit of the viscosity diverges. We present 

the flow curves arising in this region of parameter space in Fig. 7.5. In this case, the the 

system becomes nonergodic at some value of the stress but, in contrast to the previous case, 

does not 'unjam' upon increasing the stress. This is consistent with the result that, for a > 1, 

r = 00. However, it is not the only possibility: there is a very small (for v0  = 3.9) 

range 1 < a < 1.0032 for which the system refluidises upon increasing the stress (as in, eg, 

Fig. 7.2), followed by a second region of jamming. Upon increasing the stress further, the 

system remains in this second nonergodic region. This behaviour is illustrated for a = 1.002 

in Fig. 7.6. As a is increased towards a*  1.0032, both 02  and Uc3 tend to ai,  and thus the 

high—stress fluid region vanishes leading to the scenario of Fig. 7.5. 

A final flow scenario is found at a = 1. However, in this case it is difficult to resolve some 

important details of the flowcurve numerically: there is nontrivial structure to the flowcurve in 

regions where a, 'y  and T are all large. There is a 'low—stress' window of nonergodicity for 

0.165 < a < 5.935. Upon increasing the stress further, the jammed state yields, followed by a 

second regime of thickening, in which the flow curve again has a region of negative slope, and r 
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Figure 7.5: For these parameters, there is no refluidisation from the jammed state to a high stress fluid 
- one cannot break the jam by 'brute force'. As might be expected, larger values of c result in the jam 
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becomes too large to track. Numerically, this gives the impression that a second nonergodicity 

transition occurs: however, we shall see shortly (by examining Eq. 6.24) that this is not the 

case. 

This concludes our initial survey of the model's rheology. The flow curves presented above 

cover the main scenarios that were found, and so we will not bore the reader by trotting out the 

curves for further parameter sets. In order to get an overview of the behaviour over a wide range 

of parameters, we now concentrate upon the jamming transitions, using Eq. 6.24 to elucidate 

their positions in parameter space, and then studying the nature of the transitions. 

7.2 'Phase behaviour' 

Using the analytical work of the previous chapter, we can calculate a 'phase diagram' for our 

model. To do so, we choose a value of v0 , then solve Eq. 6.24 (using the symbolic maths 

software Maple) to find the transition points for a range of values of a. This yields a line 

of transitions in parameter space, splitting it into ergodic and nonergodic regions. The phase 

diagrams provide us with an overview of the behaviour for a range of parameters without 

numerically calculating the flow curves for each case. The phase diagrams of the model for a 

range of v 0  are shown in Fig. 7.7 and Fig. 7.8. 

The phase diagrams show that, at a given value of v0 , there will be transitions to a nonergodic 

state provided a is sufficiently large. As v0  is decreased, the minimum value of a necessary 

for nonergodicity increases: for v 0  < 3.83, there is no transition unless a > 1, in which case a 

transition isguaranteed regardless of v 0 . For v0  > 3.80, there is a window in a for which the 

nonergodic region is finite in a (see Fig. 7.8). If this window includes a > 1, there is a second 

(infinite) range of stress in which the system is nonergodic (we saw this for the case v0  = 3.9 

in the previous section). 

Is there a yield stress? 

As we approach the quiescent glass transition (v 0  = 4), the minimum stress required to jam the 

system approaches zero (at fixed a > 0). For v 0  > 4, the system is glassy without shearing. In 
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Figure 7.9: The yield stress of the 'shear thinning only' case a = 0. The yield stress increases smoothly 

from zero at v0  = 4. 

this case, provided a is not too large, we can cause fluidisation by shearing. This may be seen 

for the cases v0  = 4 and v0  = 4.1 in Fig. 7.7. It is interesting to ask whether or not a glass has 

a yield stress - ie, will any nonzero stress melt the glass, resulting in steady—state flow? For 

v 0  = 4.1 it is rather obvious that a yield stress does indeed exist, but for v0  = 4 the situation 

as a —* 0 is not clear from the diagram. To answer this question, we examine Eq. 6.24 with 

a = 0. This gives an expression for the stress orc  at the transition, in terms of v 0 : 

orc = v0 /2 — 2 + (v 0 /2 — 1)/T— 4/v 0 . 	 (7.1) 

We show, in Fig. 7.9, the a = 0 yield stress as a function of v0 . The yield stress vanishes at 

v0  = 4. Thus, at the glass transition, an arbitrarily small stress is predicted to melt the glass. 

This is at odds with related work [82], in which a nonzero yield stress appears at the glass 

transition. We return to this point in Ch. 9. 

Large stress behaviour 

We note that the large stress behaviour is governed by a, in agreement with the approximate 

analysis of Sec. 6.3.1. By a - 100, the phase shows only a weak dependence upon v0: 
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the system is in a nonergodic (ergodic) state for a > 1 (a < 1). The line a = 1 is of 

particular interest, as we were unable to elucidate the behaviour in this case using numerics. As 

mentioned above, if v0  is sufficiently small there are no transitions at finite or unless a > 1. For 

a = 1, the system remains ergodic at all finite stresses if v0  is less than a threshold value v0  

3.83. For larger values of v0  (such as the case v0  = 3.9 which we studied numerically) there is 

a finite window in stress for which the solutions are nonergodic (unless v0  > 4 in which case 

the system is jammed for any finite stress): beyond this window the system remains ergodic for 

all finite stress. This is in contrast to the impression given by a numerically determined flow 

curve: since the relaxation time becomes very large, the flowcurve suggests the presence of 

transitions beyond the initial window of nonergodicity. 

The nature of the jamming transitions 

Having considered the position of the transitions in parameter space, let us note that they are 

rather different in character to the conventional MCT glass transitions. The jamming transitions 

are not associated with the first appearance of nonergodic solutions (which occurs at v0  + 

aa = 4), but rather with the disappearance of the ergodic, flowing solutions. At the jamming 

transitions, v0  + aa> 4: this implies that, for the jamming transitions to have any significance, 

flowing solutions (where they exist) must be stable with respect to glassy ones (or else the 

jamming transitions would be hidden by the usual nonergodicity transition at v0  + au = 4). 

This is correct under numerical iteration (hence the resulting flow curves), but physical stability 

does not obviously follow. However, in the preceeding analysis, we have assumed this to be the 

case: we shall return to this point in Ch. 9, where we shall also discuss the differences between 

the jamming transitions and the usual MCT glass transitions in some more depth. 

7.3 Correlation functions 

All of the results presented so far have only contained information regarding the relaxation time 

(viscosity) for a given set of parameters. But MCT makes important predictions regarding the 

form of the correlation functions, rather than just their late time limit, and the same goes for the 
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Figure 7.10: Correlation functions for a range of stresses approaching the first jamming transition (at 

c1 = 0.2) for v0  = 3.9, c = 0.95. Note that, sufficiently close to the transition, there is a clear separation 
between the 3—decay and the flow—induced final decay, resulting in a very well—defined plateau. 

current model. In this section we show model correlators for a range of parameters, comparing 

them to correlators obtained from the conventional P2 model. We begin by presenting the 

correlators approaching a jamming transition. Fig. 7.10 shows the correlation functions for 

Vo = 3.9, a = 0.95 for a series of values of or approaching the jamming transition at = 0.2. 

We see that, at early times the different correlators are very similar. They differ significantly 

only at late times, when the flow 'kills off' the memory, resulting in decay from the plateau 

region. As the transition is approached, the timescale on which this occurs (essentially r) grows 

strongly. As one nears an MCT glass transition, both the 0 relaxation timescale (on which the 

plateau is approached) and the a—relaxation time (on which the correlator decays below the 

plateau) diverge. At a jamming transition, there is only a single divergent timescale. The /3-

relaxation occurs on a finite timescale, resulting in the very well—defined plateau which we see 

in Fig. 7.10. This is again due to the fact that the jamming transitions do not occur at MCT 

critical points: on timescales t << 1 /'?, the dynamics are essentially those of the F2 model at 

the appropriate coupling. At the jamming transition, this coupling is v2 > 4, for which the 

/3—relaxation occurs in a finite time, and so it is no surprise that we have but a single divergent 

timescale. 
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Figure 7.11: The correlation functions for our model with v0  = 3.9, c = 0.95 and o = 0.199, compared 

with the correlation function for the F2 model with v2 = 3.9 + (0.95 x 0.199) = 4.08905. At a = 0.199, the 

shear rate is y = 1.04 x 10 (the jamming transition for these parameters is at a = 0.2). As we would 

expect, the dynamics in the two cases are similar until -1t 1. 

We show, in Fig. 7.11, that the early—time dynamics are identical to an F2 model with appropri-

ate coupling. For times t < l/-y, the decay of the correlation functions are indistinguishable to 

the eye. This shows that, close to the jamming transitions, the late—time dynamics are governed 

by the shear—induced fluidisation. In the absence of this fluidisation in the memory function, 

there would be no a—relaxation, since we would be within the glass. This raises questions 

regarding the late—time dynamics in the vicinity of jamming transitions in this scenario: is the 

characteristic stretching of the final decay (Ch. 3), found in the vicinity of the glass transition, 

also present close to jamming transitions? Given the brief argument above, one might expect 

that it is not: we shall return to this point in Ch. 8. 

Functional form of the late—time decay 

In our calculation of the transition points we assumed that, in the vicinity of a transition, the 

late—time decay of the correlation functions were of exponential form. In Figs. 7.12 and 

7.13, we demonstrate (for one particular parameter set) that an exponential does indeed fit the 

numerics very closely, both for or a and a 	2• The same conclusion was reached for 
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Figure 7.12: The correlation function close to a jamming transition for v0  = 3.9, c = 0.99 and a = 0.172 

(the transition occurs at ad = 0.174), along with the exponential decay consistent with Eq. 6.17, using 
the numerically determined shear rate at those parameters. 
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Figure 7.13: The correlation function at a stress (a = 3.334) just above the window of nonergodicity 
(a.2 = 3.333), for the same parameters as Fig. 7.12. At early times (yt << 1) the coupling is greater than 
that at the initial jamming transition, and so the plateau is much higher. Again, the exponential is that 
consistent with the late—time expansion of the correlation function, with the shear rate calculated from 
the numerical calculation of r at this stress. 
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all other parameter sets that were examined, vindicating our calculation of the transition points. 

7.4 Summary of results for the rheology model 

We now summarise the key results obtained in studying our MCT based rheology model. We 

have shown that, similiarly to MCT models, the parameter space (defined by the values of v 0 , 

a and a) splits into two regions. In the first region, the correlation functions decay to zero 

on a timescale 'r. These solutions correspond to an ergodic fluid. In the second region, the 

correlations do not decay to zero: rather, there is a nonzero long—time limit f,. These solutions 

correspond to nonergodic solids. Dependent upon the parameters, upon increasing the stress, 

we have found the following scenarios: 

there are no jamming transitions; 

there is a window of stress for which the solutions are nonergodic; 

there is a single transition into a jammed state; 

increasing stress leads to nonergodicity, followed by melting into a fluid, which then 

re—jams upon further increasing the stress; 

the quiescent system is glassy, and is fluidised (or not, for a > 1) upon increasing the 

stress. 

The nonergodic solutions map directly onto the F2 model, since in this case the shear rate, 

which distinguishes the current model from F2, is identically zero. However, the manner in 

which these states are approached differs substantially from that of the F2 model. The tran-

sitions are shifted from the MCT transition points: therefore, there is but a single divergent 

timescale upon approaching the transition; and the variation in the nonergodicity parameter 

upon entering the glass state is analytic, except for the discontinuity at the transition. The 

transitions do not occur at the lowest coupling for which nonergodic solutions are available. 

Rather, they are associated with the disappearance of ergodic solutions. In Ch. 9, we shall dis-

cuss these results within the context of experimental results on jamming in suspensions. Firstly 

though, in the following chapter we consider the effect of alterations to the model. 



Chapter 8 

Variations of the Model 

As promised in Ch. 6, we now turn to consider some variations of the model. These are 

• Building on an F12 model, rather than upon an F2 model. 

• Allowing a quadratic stress dependence of the vertex. 

• Choosing an algebraic form m(t) 	'
1+=t 

rather than an exponential form, for fluidis- 

ation under flow. 

In this chapter, we present the results of these alterations, and discuss the stability of the 

model's predictions in light of these results. 

8.1 An F12 model 

8.1.1 Motivation 

In the model defined by Eqs. 6.5 and 6.6, we found that, close to jamming transitions, the final 

decay of correlators was exponential. Close to an MCT glass transition, this final decay is not 

of exponential form, but rather has the form of a stretched exponential - see Ch. 4. However, 

the F2 model is anomalous, in that it does not show this stretching. Thus, one cannot attribute 
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the exponential decay found in our jamming F2 model to the difference between our jamming 

transitions and a standard F2 glass transition. 

In contrast, the static F12 model does display the stretched exponential decay which fits both 

experiments and MCT predictions. Thus, in order to to investigate whether the exponential 

decay is meaningful, we studied a jamming F12 model. This is defined by the usual equation 

of motion for the correlation functions (Eq. 6. 1), and the memory function 

m(t) = ((v1 + a1a)q(t) + (v2 + a20')2(t)) e_1t. 	 (8.1) 

The static F12 model has a locus of transitions in the {v1, v21 plane [95]: for v2 < 1, upon 

increasing v1,  one passes through what is known as a 'type A' transition. As one does this, the 

nonergodicity parameter increases smoothly from zero. These transitions are not thoughht to 

be connected with the experimental glass transition. For V2 > 1, upon increasing v1 beyond 

a critical value v (v2), the system encounters a 'type B' transition, which corresponds more 

closely to the experimental glass transition: there is the usual discontinuity in the nonergodicity 

parameter and, in the vicinity of the transition, the stretching of the dynamics discussed above 

occurs. As V2 approaches 4, the critical value of v1 tends to zero, consistent with our knowledge 

of the F2 transition. 

8.1.2 Results 

Results were obtained for the jamming F12 model by simply adapting the code used to solve 

the F2 rheology model. No analytic solutions were attempted. 

Rheology 

Numerically, one obtains flow curves which are qualitatively similar to those of the F2 rheology 

model. For sufficiently large parameters (v1, V2, al and cr2), the shear rate appears to vanish 

at certain values of the stress, suggesting jamming transitions to a nonergodic state, as found 

in the original model. Similiarly to the F2 rheology model, there are parameters for which 

we found (i) no transitions; (ii) a transition to a jammed state with no re—fluidisation; (iii) 
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Figure 8.1: The steady—state rheology of the F12 model with parameters v = v2 = 0.95, aj = c2 = 0.9. 
There appears to be a transition to a nonergodic state, but for these parameters there is no high stress 
fluid state. 

jamming, followed by re—fluidisation; and (iv) a quiescent glass state which is melted upon 

shearing. Other scenarios may of course be present, but we have not found them. Fig. 8.1 

shows an example of the flow curves which may be obtained in the F12 based model. 

In the model studied in Ch. 7, we noted that the behaviour at c = 0, for which the yield stress 

vanished continuously at the quiescent glass transition, differed from the results of related work 

[82]. In the case of our F12 based model, it is more difficult to elucidate this point, since we do 

not have an analytic expression for the transition points: therefore, we must turn to numerics. 

However, we can ease progress by modifying the numerical code: for c = c2 = 0, the 

memory function does not explicitly depend upon a. In order to specify the memory function, 

one just needs to choose a value of 'y  (as well as v1 and v2).  Having done so, we calculate 

the correlation function from the memory function in the usual way, and integrate to obtain the 

viscosity (and thus the stress). In this case, as in the unsheared F2/F12 models, there is no need 

for an iteration of r. 

Fig. 8.2 shows the rheology of the F12 based model, in the shear thinning only case (cr1 = 

a2 = 0), in the vicinity of its quiescent glass transition (we have chosen V2 = 2, for which 
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Figure 8.2: The low shear rate rheology of the Fl 2 model with v2 = 2, c = a2 = 0, for values of Vi which 
straddle the quiescent glass transition (which, for V2 = 2, occurs at v" = 2/ - 2 0.82842712). The 

data for larger Vj lie above that for smaller values. For the four largest values of Vi shown, the presence 
of a yield stress is suggested by the fact that the flow curve begins to level off around y 10_ 1 .  In this 

range of shear rate, there is no apparent levelling off for Vi = 0.8284272. 

the transition occurs at v 1  =v"it= 2\/ - 2 	0.82842712). For the four largest values 

of v 1  shown (all of which are within the glass) the stress clearly approaches a constant value 

(the yield stress) within the range of shear rate shown. For v1 = 0.8284272, the flow curve 

also approaches a constant value, but does not do so until y  10-22 . Since vrt is irrational, 

we cannot study the rheology exactly at the transition: therefore, in Fig. 8.3, we plot the 

yield stress (an ) vs. the distance to the transition (e - vrt) in the hope that a pattern 

will emerge. However, this is not conclusive: a simple power law cannot describe the data 

convincingly over the range of e studied. Neither does the yield stress obviously approach a 

constant value as c —* 0. Therefore, we are unable to conclusively state that the yield stress 

does, or does not, vanish smoothly as the transition point is approached. 

Late time dynamics 

Our main motivation for extending the study to an F12 model is to investigate whether or 

not the late time exponential relaxation found in the original model survives. In order to do 

so, the final relaxation of correlation functions, close to jamming transitions, were fit with 
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Figure 8.3: The points show yield stresses of the F12 based model for v2 = 2 and Vj = v 	+ c, plotted 
against e . The continuous line is a power law fit to the data: c, = 0.10575 e0237289 . 

exponentials. Fig. 8.4 shows an exponential fit to the correlation function for the parameters 

V1 = V2 = 0.95, a1 = a2 = 0.9 (the same as those used in Fig. 8.1) at or = 0.6032. The 

exponential provides a good description of the final decay in this case. 

However, unlike in the case of the F2 rheology model, for other parameters the final decay was 

ill—fitted by an exponential. For the parameters a1 = 0.4, a2 = 0.55, v1 = 0.75 and v2 = 2.2, 

one finds a jamming transition followed by re—fluidisation. Close to the latter, an exponential 

fits the final decay well, but close to the former, it does not, as shown in Fig. 8.5. 

This is not the only parameter set for which the exponential fit is less than satisfactory - other 

examples have been found. This is in marked contrast to the case in the F2 model in which, for 

all cases tested, the tail of the relaxation was well fitted by an exponential, suggesting that this 

form of the decay is an artefact of the original model. 

8.2 Quadratic stress dependence of vertex 

The next alteration that we allow for is a quadratic, rather than linear, dependence of the vertex 

upon stress in an F2 based model. ie , we use a memory function m(t) = (v0  + aa2)e_'t2(t). 
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Figure 8.4: The correlator close to the jamming transition( a = 0.6032) for the same parameters as Fig. 

8.1. The final decay of the correlation function is well described by an exponential fit. 
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Figure 8.5: The correlator for the parameters c = 0.4, 02 = 0.55, V = 0.75 and J2 =2.2, and 

a = 0.0322 which is close to the initial jamming transition. The fit is an exponential fit to the correlator for 

times t > 10 4 . 
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Figure 8.6: The correlator for the parameters v0  = 3.9, a = 0.5 and o-  = 1.938 with a quadratic stress 

dependence of the correlator. The transition occurs at o• = 1.939. Note that the tail is well fitted by an 
exponential. 

In this case, the analysis leading to Eq. 6.18 remains essentially unchanged. Thus we might 

expect that the exponential decay at late times survives the current alteration. This has been 

checked numerically for several parameter sets: the exponential fits are every bit as convincing 

as those in the original model. An example is given in Fig. 8.6. 

8.2.1 Phase diagrams 

Since the tail retains the exponential character, the locus of transitions in parameter space is 

found by trivially altering the analysis leading to Eq. 6.24. This allows us to obtain phase 

diagrams, as shown in Fig. 8.7, for the new model. In this case, the model shows a qualitative 

difference to the original version. For all values of a > 0 and v0  < 4, there is a transition to a 

glassy state at sufficiently high stress, but there is no re—entrant fluid for any values of a. For 

V, > 4, one finds glassy states at zero applied stress (as expected): these may or may not be 

melted by shearing, dependent upon the value of a and v0 . If they are melted, they re—jam, 

so that they are nonergodic in the large stress limit. This leads to flow curves for which, upon 

increasing the stress, one melts a glass before causing thickening and jamming. An example of 



114 
	

CHAPTER 8. VARIATIONS OF THE MODEL 

2 

- Vo = 4.1 
Vo=4 
Vo=3.9 

1.5 

Jammed 	 - 

0.5 

Fluid 

0.1 	 1 	 10 	 100 
a 

Figure 8.7: Phase diagrams for the model with a quadratic stress dependence of the vertex. The 'phase—
behaviour' is somewhat different to that found in Ch. 7, with all states being jammed at sufficiently high 
stress. 

such a curve is shown in Fig. 8.8. 

8.2.2 Flow curves 

The transitions aside, the rheology of this model is interesting. One can find shear thinning at 

low applied stresses, before the onset of shear thickening - such behaviour did not appear in 

the model studied in Ch. 7. Fig. 8.9 shows the flow curves for v0  = 3.9, a = 0.2, for which 

full jamming is present: compare this to the flow curves for v0  = 3.9 in the initial model (Fig. 

7.4) - in that case a value of a>> 0.2 is required to jam the system. 

8.2.3 A final possibility 

We have argued in Ch. 6 that a quadratic stress dependence is the correct form at low stresses, 

but that we have no reason to require such a form away from or = 0. Thus, it is interesting 

to consider the results which arise from a vertex which has a quadratic dependence at small 

stresses, but which goes over to a linear form at larger values. With such a vertex, there is a 

tendency to shear thin at both low and high stresses, whilst jamming is possible for intermediate 
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Figure 8.8: The flowcurve which results from a vertex which is quadratic in the stress, for the parameters 

= 4.1, a = 0.9. In the absence of stress, the system is a glass, which is melted upon imposition of 
a sufficiently large stress. However, upon increasing the stress further, there is strong thickening and 

jamming. 
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Figure 8.9: The steady—state rheology for v0  = 3.9, a = 0.2 with a vertex which is quadratic in the applied 

stress. Note the presence of thinning at low stresses, followed by thickening and jamming. No fluidisation 
after a stress induced jamming is found for these (or any) parameters with this model. 
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Figure 8.10: The flow curve which arises for v0  = 3.9, c = 0.95 if one allows for variation of the coupling 
with stress which is quadratic at low stresses (a < 1), and linear for large stresses (a > 1). In this case 
thinning proceeds the jamming. 

values. The simplest manner to allow a linear vertex at large stresses whilst retaining the 

quadratic form around a = 0 is to choose a vertex for which m(t) = (v 1, + aaa)e—'tq52(t) 

with a = 2 for a < 1 and a = 1 for a> 1. Results from this choice are shown in Fig. 8.10. 

If the unsheared state is a glass, this scenario allows for it to melt upon shearing, followed by 

thickening and jamming of the resulting fluid as the stress is further increased. In this case, we 

obtain behaviour such as that shown in Fig. 8.11. 

8.3 Algebraic fluidisation 

Finally, we investigate the effect of the manner in which flow enters the memory function by 

replacing the exponential of our original model with the algebraic form m(t) 	1/(1 + Zy2t2). 

As in the case of the F12 based model, this change makes analytic progress difficult - the 

results presented here were obtained numerically. The rheology of this model is qualitatively 

similar to the original model, with jamming and re—fluidising scenarios easily found. We do 

not show any jamming flow curves, as they add nothing new. 

1. 

CT  1. 

0. 
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Figure 8.11: The steady rheology arising from a vertex which is quadratic in stress for o• < 1 and linear 
for or > 1, for v0  = 4.1 and a = 0.9. In the absence of applied stress the system is a glass: this is 
shear melted upon the application of a sufficiently large stress. Upon further increasing the stress, there 
is thickening and full jamming. At the highest stresses ergodicity is restored. 
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whether or not the schematic model upon which we base our work affects the behaviour in the 

case a = 0, in particular, whether or not a yield stress appears discontinuously at the quiescent 

glass transition. We now ask the same question regarding the form of the fluidisation factor in 

the memory function. 

The flow curves for this model with a = 0, and values of v0  straddling the glass transition 

(at v 0  = 4) are shown in Fig. 8.12. Sufficiently deep within the glass, the stress approaches 

a constant value as 'y —+ 0, suggesting the presence of a yield stress. At the transition point, 

no such plateau is evident in Fig. 8.12: rather, over several orders of magnitude, the rheology 

appears consistent with a power law fluid. However, in Fig. 8.13, we show the v 0  = 4 flow 

curve at smaller shear rates: doing so, we see that the stress does saturate, but not until 'y '—' 

10- 28. Thus, it appears that choosing algebraic (rather than exponential) fluidisation leads to a 

discontinuously appearing yield stress. 



CHAPTER 8. VARIATIONS OF THE MODEL 

Vo=4.004 
Vo=4.002 

- Vo=4.00I 
-- -. Vo=4 

Vo=3.999 

0.01 L__L 
e- 14 1e-12 	le-10 	le-08 	1e-06 	0.0001 

Y 

Figure 8.12: a = 0 flow curves of the model with algebraic fluidisation. Sufficiently deep into the glass, a 
yield stress is apparent. The situation is not so clear as the transition is approached from above. 
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Figure 8.13: The a = 0 flow curve of the model with algebraic fluidisation, at the transition point v0  = 4. 
At sufficiently small shear rates, the flow curve does level off, showing that in this case the yield stress 
does appear discontinuously at the glass transition. 
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Figure 8.14: The correlation function of the model with an algebraic dependence upon shear rate, for 
the parameters V0 = 3.9, a = 0.3 and a = 0.78: this stress is just above the second critical stress 

0c2 0.775, and so the material is in the high stress fluid state. 

8.3.1 Late time dynamics 

Also of interest is the late—time relaxation of correlators in systems close to jamming. Simil-

iarly to the results of the jamming F12 model, the quality of exponential fits to the late—time 

dynamics is variable. Some correlators (of systems close to a transition) are manifestly non-

exponential - an example is given in Fig. 8.14 which shows a correlator for or ac2. Other 

examples (including cases in the vicinity of the initial transition) were also found. 

8.4 Structural stability of the model 

In the preceeding part of this chapter, and in Ch. 7, we have described the results of making 

different choices in the formulation of a simple model of jamming. If the results of the model 

were particularly sensitive to these choices then it would be difficult to have any confidence in 

its predictions. With this in mind, we now discuss the stability of the model to these changes. 
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8.4.1 Flow scenarios 

We have seen that the basic rheological scenarios resulting from the model are not altered 

by either using an F12 model or by varying the form of fluidisation to the algebraic form 

studied in the previous section. In contrast, choosing the vertex to vary quadratically with 

stress, regardless of its value, alters the flow behaviour somewhat: provided a 0 0, in the limit 

of large stress the system jams regardless of other parameters. This behaviour is unphysical 

(since dilute colloids do not shear thicken), and results from the form of the vertex at large 

stress: the more general flow behaviour is recovered if we allow a vertex which become linear 

at large stress. 

Thus, the flow scenarios which we have found require only that the vertex does not increase too 

quickly at large stress. We have not attempted to obtain a precise criterion for this condition. 

8.4.2 Late—time dynamics 

As shown in this chapter, the main effect of altering the fluidising form of the model, or of 

building upon an F12 model, was to alter the late—time decay of correlations in the vicinity of 

the jamming transitions. Unlike the basic rheological scenarios, the exponential decay found 

in Ch. 7 is not robust with respect to arbitary choices which were made, and so cannot be 

regarded as significant. 

As an aside, this raises the interesting question of whether or not, in the vicinity of a jamming 

transition, one expects to find the dynamical stretching which appears in unsheared supercooled 

liquids. In the proximity of a conventional glass transition, the late—time relaxations occur via 

a cooperative, many body relaxation. In the scenario discussed in Ch. 6, this relaxation is 

assisted by the shear advection of fluctuations. At high accumulated strain (since the zero of 

time), diffusion over small lengthscales can relax the fluctuations, thus a cooperative movement 

of many particles might be avoided. Since this result from the model appears to be sensitive to 

details however, it cannot shed any light upon the validity of this speculation. 
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8.4.3 Yielding behaviour 

In [82], Fuchs and Cates investigate schematic models of shear thinning, including one which 

is a combination of two of the variants studied here (at a = 0). The memory function is 

M(t) = 	
1 	

(V1 0(t)+ v202 (t)). 	 (8.2) 
1+('yt) 2  

In this case a yield stress appears discontinuously at the quiescent glass transition. In their 

work, this model appears as a simplified version of a seperate model which has a microscopic 

basis: this microscopic model also predicts a discontinuously appearing yield stress. 

This is in contrast to the model studied in Ch. 7 (with a = 0), in which we saw that the yield 

stress goes to zero smoothly as v0 	4+•  We have seen that replacing the exponential fluidis- 

ation with the same algebraic term as used in [82] recovers the discontinuity in a s,, whilst the 

effect of building upon an F12 model, whilst retaining the exponential fluidisation, is unclear. 

Thus, as with the functional form of the correlation functions, this aspect of the results is rather 

sensitive to the mathematical details of the model and so we must be cautious in interpreting 

these results. One would tend to lean towards the predictions of the microscopic model. 



Chapter 9 

Discussion 

In this chapter we shall interpret the results of our models in the context of experimental ob-

servations. We will also return to the arguments made in Ch. 5 regarding the relevance of 

glassiness to nonlinear rheology. Firstly though, we discuss the nature of the jamming transi-
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stability, raised in Ch. 7. 

9.1 The jamming transitions 

Recall from Ch. 6 that, for sufficiently large v0 , a and a, glassy solutions to our models are 

always available. However, even where they exist, they are not the only possible solutions - as 

we have seen, ergodic, flowing solutions are also possible for some parameters. As mentioned 

in Ch. 7, our analysis assumes that, where they exist, the flowing solutions (to which our 

iteration converges) are physically stable with respect to the nonflowing glassy solutions. We 

discuss this assumption below, but firstly, presuming that it holds, we compare the jamming 

transitions to those of conventional, static MCT. 

123 
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9.1.1 Comparison of jamming transitions with MCT glass transitions 

In the F2 (and other MCT models) the glass transition occurs at points in parameter space 

where nonergodic solutions become available. At these critical points 1  there is a bifurcation 

in the long—time limit (f) of the correlation function: at these points it jumps from its value in 

the fluid (f = 0) to a nonzero value f, followed by a nonanalytic variation as the coupling is 

further increased (f - f where € is the separation from the transition in the space of 

coupling constants). At lower values of the coupling, no such nonergodic solution is possible. 

In the case of our jamming transitions, this is not the case: rather (at fixed v0  and a) the system 

jams at values of the stress for which the ergodic, flowing solutions vanish. These points are 

not critical points: they do not correspond to a bifurcation in f. Therefore, the initial jump in 

f at jamming transitions is followed by an analytic variation with coupling (ie, with the stress 

if other parameters are fixed). This point is illustrated by the variation of the nonergodicity 

parameter f with a, as shown in Fig. 9.1. In the figure, there is a range of stress for which a 

glassy solution has become available (indicated by the existence of nonzero f in the upper part 

of the diagram) but is not chosen - rather, the system remains flowing (as indicated in the lower 

part by a nonzero shear rate). Only when the viscosity of the flowing solution diverges (at 0'ci), 

signalling that flowing solutions are no longer possible, does the system become nonergodic. 

At U2,  a flowing solution again becomes available. 

This key difference - that jamming transitions do not occur at critical points - has other impli-

cations. The /3 relaxation timescale rj (as well as the longer structural relaxation timescale T) 

diverges at an MCT transition - ie, at a critical point. In our model, transitions do not occur at 

these points. Therefore, the 0 relaxation of the underlying F2 model (that with v2 = v0  + aa) 

occurs on a finite timescale. By moving arbitrarily close to a jamming transition, we can make 

the shear rate sufficiently small that 'yTo << 1, therefore ensuring that the 6 relaxation of the 

unsheared system is unchanged by the flow. Thus, in the neighbourhood of jamming, we have 

a pre—plateau relaxation which occurs on a finite timescale, followed at arbitrarily late times by 

a flow induced final relaxation. This leads to a (very) well—defined plateau region if one looks 

sufficiently close to a jamming transition - see eg, Fig. 7.10. 

'This is the standard terminology, although these points have nothing whatsoever to do with the usual critical 
points of equilibrium statistical mechanics. 
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Figure 9.1: Schematic variation of y  and f upon varying ci. Solid (dashed) lines denote stable (unstable) 

solutions under the iteration described in Ch. 6. Arrows indicate flow of y under the iteration. Note that 

the ergodic solution remains stable beyond the critical point where a nonergodic solution first becomes 

valid, ie, v0  + co > 4. Therefore, around the jamming transitions, there are no nonanalyticities after the 

discontinuity in 1. 

91.2 Stability of ergoaic vs. nonergoaic solutions 

Under numerical iteration, ergodic solutions to our models are stable: where ergodic solutions 

exist, any finite initial guess of the relaxation time T leads to convergence upon that solution 

(Fig. 9.1). However, as written, the iteration does not directly map onto temporal evolution, 

and so stability under iteration does not imply physical stability. This said, the nature of the 

iteration suggests that transient violations of Eq. 6.4, resulting in an infinitesimal shear rate in 

the nonergodic state, lead the system towards the flowing state. Can one make a correspondence 

between flow of the solutions under iteration (as illustrated in Fig. 9.1) and temporal evolution? 

To do so would require a physical model for the temporal evolution of the viscosity as it is 

perturbed from a steady state value (consistent with our solutions). We have not been able 

to formulate such a model, and so cannot argue rigorously that the solutions which are stable 

under iteration are also physical stable. However, we have tacitly assumed this to be the case. 

If our assumption is correct, then we have a model which shows an interesting range of non- 
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linear rheology, including nonergodicity transitions which differ from those of MCT. What if 

it is not? In this case, our models would shown none of the novel phenomenology which we 

have described. There would be but a single nonergodicity transition at v0  + aa = 4 with 

much of the phenomenology of the usual F2 model. Rheologically, this would imply that (at 

fixed v0  and a), upon increasing the stress beyond at = (4 - v0)/a, the material (which for 

smaller values of the stress is flowing) chooses to abruptly arrest, even although a flowing so-

lution remains a valid possibility. This scenario is in marked contrast to both the usual MCT 

transition, and to the jamming transitions described above, in which the relaxation timescale 

diverges smoothly. In this case, the relaxation time would jump from a finite value to a diver-

gent one. Rheologically, this would result in a discontinuity in the flow curve, with the shear 

rate jumping from a finite value to zero at at. 

To us, this seems somewhat unlikely, particularly since the shear rate at at  need not be small, 

or even decreasing. If the shear rate were to jump to zero, it would seem to suggest that the 

material prefers to be in a nonergodic state, which goes against the usual notion that it becomes 

trapped there, unable to explore phase space. Finally, such a situation would seems to be in 

contrast to the many reports of flow at high stresses in discontinuously thickening colloids (eg, 

[30, 33]). 

If our intuition is correct, then where flowing solutions exist, the nonergodic state is metastable. 

This opens up the possibility of hysteresis: if one can take the system into a jammed state, then 

it might be possible to lower (raise) the stress below (above) ai (0 c2), whilst remaining in the 

nonergodic state. The model predicts no limit to this at large stresses, but this situation could 

not persist below at,  since below this point there are no nonergodic solutions. We discuss the 

possibility of hysteresis further in the following section. 

9.2 Comparison of model rheology with experiment 

Quantitative comparison of our models with a specific experimental system is difficult, since 

restricting attention to schematic models results in loss of quantitative predictive power. (In 

an F2 model, one could take the interpretation of v2 as the height of the first peak in S(q) 
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literally, but such a minimilistic approach seems unlikely to tally with reality on a quantitative 

level. Indeed, as stated in Ch. 3, the predictions of the F2 model do significantly differ from 

experimental results.) However, we can compare the basic scenarios which we have found with 

experiments. 

9.2.1 Does 'full jamming' in our models correspond to experimental stress 

induced solidity? 

As mentioned in Ch. 2, Bertrand and co—workers have performed experiments in which an 

initially fluid suspension was transformed into a persisting solid by shearing [42]. Similar 

phenomena have been observed in industrial situations [91]. In Bertrand's experiments, this 

phenomenon occurred only for a particular range of concentrations: at lower volume fractions, 

shear thickening was observed, whilst at higher concentrations, the sample was solid in its 

quiescent state. 

In our model, for suitable values of c, upon increasing v 0  we find a similar sequence of be-

haviour, provided we make the obvious link between v 0  and concentration (although the most 

suitable variation of c with concentration is not clear). It is tempting to identify the jamming 

transitions of our model with the stress induced solid found experimentally. 

However, such an identification is not trivial: the particles used in the experiments are perhaps 

too large for the notion of glassiness to be relevant. They are slightly outwith the range of 

sizes usually regarded as colloidal, having radii a 3jim, suggesting that Brownian forces are 

small compared with forces such as gravity. Also, in such a system it is certainly not clear that 

stress transmission is due to thermodynamic forces rather than direct contacts. It would be of 

great interest to ascertain whether suspensions of smaller particles, in which Brownian motion 

is more important, can also be jammed into a solid. The industrial experiments mentioned 

above show that (in some cases at least) they can. For obvious reasons these experiments, 

similarly to those of Ref. [42], do not utilise the simple model systems favoured by physicists. 

Thus, further experiments investigating jamming, particularly on model systems [89] would be 

welcome. 

Secondly, our model ignores the question of how the stressed material mantains its solidity 
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after the external forcing is removed. If, as in the experiments, the solid state persists after 

removal of the external driving, our model suggests it remains stressed. This was discussed in 

Ch. 5: we believe that capillary forces at the surface of the sample can sustain the stress which 

is imparted by the rheometer plates. We have not attempted to capture this aspect of the physics 

in the model. 

These points make it difficult to unambiguously identify the jammed states found experimen-

tally with that of our model. However, the similarities between the two scenarios are encour-

aging. In both cases, there is a parameter which one can increase to produce shear thickening, 

cause jamming, and then create a glassy state in the absence of applied stress. 

Another aspect of our work cannot be easily compared to Ref. [42]. In the theory, jammed 

states may be refluidised, depending upon parameters and the precise mathematical form, 

whilst in these experiments reproducible rheological measurements could not be made in cases 

for which jamming occurred, and so it is not clear whether or not refluidisation is possible 

upon steadily increasing the stress. However, this aspect of our work seems relevant to other 

rheological experiments, in that the basic shape of a material's constitutive flow curve is crucial 

to its macroscopic rheology. 

9.2.2 Shear thickening scenarios 

As we discussed in Ch. 2 experimental observations of shear thickening (eg, Fig. 2.5) often 

show an essentially vertical section of the flow curve (in its usual representation): beyond a 

certain point, increasing the stress has little or no impact upon the shear rate. The shear rate 

may even appear to decrease with shear stress (even although, classically, this is disallowed). If 

the shear rate is controlled, thickening appears even more catastrophic: the rheometer increases 

the stress in an attempt to attain the shear rate which has been programmed, sometimes leading 

to stresses so large that the rheometer is damaged. 

If one assumes the usual instability of regions of the flow curve with negative slope, this be-

haviour may be inferred from the 'S—shaped' flow curves which appear in our model. (The 

situation is rather similar to the shear thinning of wormlike micelles - see Ch. 2.) One expects 

that, upon increasing the shear rate, the stress must jump from the lower to the upper branch, 
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leading to the observed behaviour. If the experiment is stress controlled, one expects that for a 

window of stress, the shear rate remains approximately constant, as the material forms a high 

viscosity band whose extent grows with the applied stress until it fills the cell, at which point 

the material is wholly on the high viscosity branch. 

Of course, dependent upon the situation, there may or may not be a high viscosity branch 

available to the system: in some cases the model shows no fluidisation upon increasing the 

stress from the nonergodic state, essentially setting a maximum rate at which the material can 

flow, regardless of the applied stress [30, 33]. In this case, our model suggests that increasing 

the stress will result in a jammed state. But, if regions of the flow curve with negative slope 

are unstable, how might one cause jamming in a material whose constitutive flow curve has 

the form shown in Fig. 9. 1, where a high viscosity flowing branch is allowed? One cannot 

simply raise the stress beyond °c1,  as doing so will result in banding. The answer might be to 

access the second branch, above 0c2, before gradually decreasing the stress below this value. 

Doing so, the shear rate might remain on the high viscosity branch until a2,  at which point 

full jamming would occur. Once in the jammed state, it might be possible to (carefully) lower 

the stress below or,, without leaving the jammed state: as mentioned previously, this is limited 

by a, below which nonergodic solutions do not exist. This scenario is illustrated in Fig. 9.2. 

Hysteresis can be observed upon increasing and then decreasing the applied stress (Fig. 2.5), 

but jamming has not been observed in this manner. 

9.2.3 Glassy or hydrodynamic thickening? 

So, whilst the model cannot be easily mapped onto specific experimental systems, it offers a 

natural explanation, via the S—shaped constitutive flow curves, for the discontinuous thickening 

observed in dense colloids. (Note that a similar approach to ours, based also upon glassiness, 

via the SGR model, results in qualitatively similar flow curves to those of the current model 

[63].) It is arguable that hydrodynamic explanations do not provide such a natural explanation 

for discontinuous thickening. They do not seem to offer the possibility of the nonmonotonic 

constitutive flow curves which arise in the current approach. Neither do they seem to offer an 

explanation of stress induced solidity - as we argued in Ch. 5, creating an arbitrarily large 
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Figure 9.2: An illustration of the hysteresis which might be expected, given the classical instability of 
regions of the flow curve with negative slope. Upon increasing the stress above CTc2, the system reaches 
the high viscosity branch. Upon consequently decreasing the stress, it remains on the high viscosity 
branch, resulting in full jamming at O2. As the stress is decreased, the system might remain jammed 
until a: at lower stresses, nonergodic solutions do not exist and thus jamming is forbidden. 

viscosity via hydrodynamics requires an arbitrarily large stress. 

Finally, we note that the hydrodynamic picture [120] predicts that thickening occurs at large 

Peclet numbers. This is in contrast with our work in which, depending upon the parameters, 

thickening may occur at much lower Peclet numbers - see Fig. 7.2, in which thickening begins 

at Pe— 10. Whilst experiments do typically show thickening at Peclet numbers of order ten 

or so, this is not always the case: even keeping the concentration approximately constant, a 

range of experimental systems show quite a range in the Peclet number at the onset of thick-

ening [43].  Also, increasing volume fraction typically decreases the Peclet number required to 

cause thickening: in [33], discontinuous thickening is observed at Pe 5 for qi = 0.59 (within 

the glass), whilst at lower volume fractions a larger value is required, even for continuous thick-

ening, (eg, Pe - 100 for q = 0.56). This suggests that mechanisms other than hydrodynamics 

are at work in shear thickening colloids. 

To summarise, hydrodynamics arguments (as outlined in Ch. 2) alone do not appear to be 

capable of describing all aspects of shear thickening phenomena, although such arguments 
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undoubtedly have some bearing on the non—Newtonian theology of dense suspensions. In 

particular, the authors of Ref. [120] claim that their theory provides an understanding, in 

terms of hydrodynamics, of continuous thickening. This may be so, but in more concentrated 

systems, one must account for the cooperative nature of particle relaxations. We suggests that 

it is this cage effect, rather than hydrodynamics, which plays the leading role in controlling the 

flow of dense suspensions. 



Chapter 10 

Conclusions 

In this thesis, we set out to investigate the role played by the cage effect in determining the 

nonlinear rheology of dense suspensions, in particular their propensity to shear thicken and jam. 

This was motivated, at least in part, by the experiments of Bertrand et al [42] and by similar 

observations in industrial systems [91]. These observations seem somewhat at odds with purely 

hydrodynamic explanations of shear thickening. With this in mind, we have investigated a 

simple model in which the glassy dynamics of a dense suspension are intertwined with its 

rheology. 

The experiments mentioned above also motivate questions regarding the stability of jammed 

suspensions once external driving is removed: why does the stress induced solid not return to 

its original state when the external stress is removed? What are the microscopic differences 

between the jammed solid and the more stable fluid? These questions, as well as the physics 

of shear thickening and jamming, are relevant to the industrial process of high shear granula-

tion, whereby materials (eg, washing powder) may be prepared in a granular form. We have 

suggested answers to these questions. 

In this chapter, we draw conclusions from the work which has been presented. In addition, we 

highlight open questions regarding jamming in particulate systems, and its relation to the glass 

transition, suggesting areas where future work would be of benefit. 
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The cage effect and shear thickening 

Hydrodynamic interactions alone cannot explain all shear thickening phenomena, particularly 

those in very dense suspensions. It is natural to suppose that the cage effect has a bearing 

upon shear thickening: however, a first—principles theory (originating from MCT or some other 

microscopic theory of the glass transition) capable of capturing thickening appears some way 

off. In this case, ad hoc models such as that presented here have a role to play. 

We have shown that, allowing for a vertex which can increase with stress, whilst being eroded 

by flow, a simple MCT—like model can reproduce much of the phenomenology found in shear 

thickening dense colloids. The S—shaped flow curves which arise from the model, when cou-

pled with classic flow instabilities, rather naturally lead to scenarios consistent with experiment: 

discontinuous shear thickening is inferred from the constitutive behaviour. 

In addition, the model predicts 'full—jamming' scenarios: that is, S—shaped flow curves can 

extend back to the a—axis, indicative of stressed, nonflowing states. In the context of the 

model, this is a stress induced glass, which has the properties of the idealised glass state of 

MCT. However, the model predicts that jamming transitions are distinct from conventional 

MCT glass transitions: they are associated with the disappearance of ergodic solutions, rather 

than the appearance of nonergodic ones. This results in transitions which are not associated 

with a bifurcation of the nonergodicity parameter. Because of this difference, much of the 

phenomenology of these transitions is missing: there is but a single divergent timescale at a 

jamming transition; and, after the discontinuity at the transition, the nonergodicity parameter 

varies analytically with the vertex. 

It is natural to associate the jammed state of the model with the stress induced solids found 

experimentally, although this identification is not trivial. However, the simple argument of Ch. 

5 suggests that, to cause a divergence of the viscosity via hydrodynamic interactions between 

particles, one requires very large (formally divergent) stresses. In contrast, the same argument 

suggests that the stress required to cause a similar divergence due to particle caging is rather 

more modest. 

In short then, an MCT—like model in which vertices may increase with applied stress, whilst be- 

ing eroded due to flow advection, accounts for many features of the rheology of dense colloids, 
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including some aspects whose description in terms of hydrodynamics appears inadequate. This 

is not to say that hydrodynamic forces in shear thickened suspensions are irrelevant, but rather 

that this is not the only piece of physics relevant to the problem. The large degree of cooper -

ativity required for large scale motion (the cage effect) is an important factor which must be 

accounted for. 

Persisting jammed states 

If our picture of stress induced arrest is correct, then the jammed samples found experimentally 

remain stressed, even after external forcing has ceased. We suggest that the stress is sustained 

by capillary forces at the sample boundary, caused by particles protruding from the interface 

due to dilatancy. If this is so, decreasing particle size or increasing sample size can preclude 

surface forces from sustaining the jammed solid, and so this suggestion may be tested rather 

simply. A rough scenario based upon this notion seems to account for the observed bistability 

of the samples. However, a detailed understanding of this scenario has yet to be developed. 

Jamming: unanswered questions 

Jamming occurs in a wide range of situations. Grain in a hopper, sheared dense suspensions, 

and motorway traffic can all jam up. However (even leaving aside traffic jams) it is not yet 

clear how different jamming situations are related. A question of interest is whether jammed 

states are related to glasses: an improved microscopic theory of colloid rheology, incorporating 

the cage effect, possibly via an MCT—like theory, might go some way towards answering this 

question in colloids. But linking the glass transition, in which thermodynamics are vital, to 

jammed granulars in which they are irrelevant, seems an even harder goal. Whilst our model 

suggests a relation between glassiness and jamming, and despite intriguing similarities between 

different systems (eg granulars and glasses), it remains to be seem to what extent the same 

physics really does underly the behaviour of these materials. 

The question, raised earlier, regarding the nature of stress transmission in jammed materials is 

a pertinent one. What is the nature of stress transmission in systems which are both particu- 

late and thermal in nature? ie, what is the nature of stress transmission in jammed colloids? 
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With this question in mind, further systematic experimental investigation of jamming in model 

suspensions (such as that of Ref. [89]),  through a range of particle size, would be welcome 

indeed. Such an investigation might shed light on the question of whether, as we have assumed 

in much of this thesis, the notion of a stress induced glass is correct. If, in jammed colloids, 

stress transmission is of a similar nature to that in a glass, this would seem to be the case. An 

alternative possibility is that sufficient Brownian motion can prevent full jamming. In that case, 

a jammed state could not be supported by thermodynamic forces, suggesting a granular—like 

transmission of forces. 

Experimental validation of our model would support the basic ideas which underly it - ie, that 

of jamming as stress induced glassiness. If our model is valid, one might be able to create a 

fully jammed state in discontinuously thickening suspensions by bringing the system into the 

strongly thickened state, and then carefully decreasing the stress. Also, measurements of the 

nonergodicity parameter f in jammed samples would be of interest: assuming a correspon-

dance between the parameter v 0  and the concentration, the coupling could, in principle, be 

varied. Such experiments would test our prediction that the nonergodicity parameter varies 

analytically after the initial jump at the transition. 

We hope that the work presented in this thesis will motivate further work, both theoretical 

and experimental, aimed at increasing our understanding of jamming phenomena and their 

relationship to the glass transition. 



Appendix A 

The Zwanzig-Mori formalism 

In this appendix, we use the projection operators defined in Ch 4 to derive formally exact 

equations of motion for dynamical variables and their correlations. This formalism is due to 

Zwanzig and Mori, and is covered in various standard texts [72, 94, 121]. 

Taking the time derivative of Eq. 4.5 gives the time derivative of the variables in the set {A 2 } 

as, in vector notation, 

A(t) = e tiJLA, 	 (A.1) 

into which we can insert the unit operator to give 

A(t) = et(P + Q)iJLA 	 (A.2) 

= e ti. A + etQiAA, 

where we have defined a projection operator 

TB =— (B, A t ) .x' .A, 	 (A.3) 

and its complement 	1 - P, using the scalar product defined in the main text. The dagger 

denotes a Hermitian conjugate in the space of A (rather than in the Hilbert space of dynamical 

variables). Thus At  is a row vector. The frequency matrix 1 is defined by ii (iCA, At). 

X_ 1 . 

A geometrical interpretation of the operators P and Q is provided in the main text. These 

operators, as well as Al, are Hermitian in the vector space of dynamical variables. (One can 
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easily show that £ is Hermitian by writing the equilibrium average as a phase—space integral 

and integrating by parts. Using the definition of P, one easily deduces that the projectors are 

Hermitian.) 

The second term on the RHS of Eq. A.2 can be simplified using the identity 

et = eZQit + f dtlet_t')iet' 	 (A.4) 

which is proven [94] by Laplace transforming. This gives 

etiJLA = F(t) + f dt e t_t'PiLF(tl), 	 (A.5) 

where F(t) eLtQiJA.  This quantity is known as the random force or the fluctuating force, 

for reasons made clear in the main text. This quantity (also known as the fluctuating force) is 

orthogonal to the subspace spanned by the {A}, and so F(t') = QF(t'). This gives 

PiJLF(t') = (i)LQF(t'), At) . x' A 	 (A.6) 

= —(F(t'), (QjJ)*At) . 	. A 

= —(F(t'),F) •x' A 

= _(F,Ft(_t')) .-' .A, 

where we have used the Hermiticity of £ and Q, as well as 'FIT. We now define the matrix of 

memory functions via correlations of the random force 

M(t) 	(F, Ft(_t)) x', 	 (A.7) 

which, with Eqs. A.5 and A.2 yields 

A = i - A(t) + F(t) - f dt'M(t') . A(t - t'). 	 (A.8) 

This equation is known as a generalised Langevin equation for the set JA }. Again, reasons 

for the names should become clear in the main text, where we apply some physical insight to 

these formal manipulations. 

Finally, we multiply this equation on the RHS by the row vector At  and take a thermal average 

(ie, we take a scalar product) to give an equation for the correlation matrix 

(t) = ij 	
- 10) dt'M(t') 	- t'). 	 (A.9) 
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