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Abstract 

There has been much recent interest in the effects of host immunity, 

and in particular 'strain-specific' immunity, on the structure of malaria 

populations. However, the number of studies incorporating both 

epidemiological and genetic consequences have been limited. In this 

study, a theoretical model of malaria populations is constructed in an 

attempt to rectify this situation. The model is constructed to reflect the 

important features of the human-mosquito-malaria system under the key 

assumption that strain-specific immunity occurs, and is controlled by alleles 

at a single locus (to be referred to as the immuno-allelic locus) in the 

parasite genome. The model is more realistic with regard to the nature of 

malaria than previous models of strain-structued malaria populations, and 

includes such features as a short period of immune memory and 

competition between parasites growing in hosts. The model is complex, 

and is thus designed to be examined through computer simulation. 

Both the epidemiological and genetic effects of strain structure on 

malaria populations are studied (the former is also examined through an 

analytical model). For example, the effects of the number of alleles at the 

immuno-allelic locus on the proportion of hosts infected are examined. 

Also, the degree of genetic heterogeneity of malaria parasites inside hosts 

compared to the total level of genetic heterogeneity of the parasite 

population is examined. This is done by calculating the value of the statistic 

G51 for a neutral locus in the parasite genome (referred to as Gs-r(fl)).  The 

degree of genetic heterogeneity in a parasite population is of interest as it 

determines the degree to which sexual recombination will lead to the 

generation of novel genotypes. The generation of such novel genotypes is 

important as it may allow evasion of a new vaccine, or the development of 

resistance to anti-malarial drug. 

In the simulations examined, Gsi-(fl)  is found to decrease (the degree 

of genetic heterogeneity increases) with increasing numbers of alleles at 

the immuno-allelic locus. It also decreases with increasing levels of 

transmission in the population. This latter result appears to agree 

qualitatively with the findings of recent population-genetic field studies. 

In a recent paper, Hastings proposed that if the GST  value calculated 

for the immuno-allelic locus (to be referred to as Gs-r(d))  is compared to 

GST(fl), then the former will be found to be larger. This could be used as a 
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method for identifying immunogenic loci, which may in turn help in the 

search for vaccine candidates. However, this prediction came from an 

analytic model of malaria populations with many simplifying assumptions, 

some of which may be important to the predictions. 

In the simulation study presented, the values of Gs-r(fl)  and  GST(d)  are 

compared under a wide variety of conditions. It is shown that the qualitative 

predictions of Hastings's study holds for a wide variety of conditions, and for 

a more realistic set of assumptions as to the nature of malaria populations. 

Bootstrap analysis shows that this qualitative prediction can be examined in 

the field using practicable sample sizes. 

While the research presented here largely confirms the conclusions 

of Hastings work, there are some profound differences between the two 

studies, and these differences are described and discussed. The 

importance of taking into account the epidemiology of a parasite population 

when examining its genetics is also highlighted. Finally, the importance of 

the effects of a strain structure on methods of control of malaria populations 

are discussed. 

II 

vii 



Parameters of the model 

Symbol Standard 
value 

Description 

0 10 Number of alleles at the Immuno-allelic locus 

N 6,000 Number of hosts 

5 x iO 	per day Host Death Rate 

M m i n  0.05 Immune Threshold 

P 0.025 per day Probability of immune response being 
mounted 

2.74 x iO 	per day Probability of loss of immunity 

b0 12.3 per 2 days Parasite Growth Rate 

kd b0 Density-dependant Death Rate 

S 0.2 per day2  Rate of Increase in Immune Killing 

T 0.1 per day Double Bite Rate 

c 1.0 Coefficient of Vector Infectivity 

0 2 x 10-5 Density of parasites (if any) transmitted in a 
double bite. 
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Statistics collected 

Symbol Description 

G ST(d) GST value for the immuno-allelic locus 

GST(d) 
Average, with time, of GST(d)  during the stationary distribution 

3 ST(d) 
Average of GST(d)  across more than one simulation run 

G ST(n) GST value for the neutral locus 

ST(n) 
Average, with time, of GST(n)  during the stationary distribution 

3 ST(n) 
Average of GST(n)  across more than one simulation run 

Ratio of GST(d)/GST(n) 

Average, with time, of t during the stationary distribution 

Average of t across more than one simulation run. 

P 1f  Proportion of hosts infected 

j,inf 
Average, with time, of Pf during the stationary distribution 

inf 
Average of Pjf across more than one simulation run 

W Mean level of host immunity 

Average, with time, of W during the stationary distribution 

Average of W across more than one simulation run 

PV Proportion of double bites, from infected hosts, that transmit parasites 

PV 
Average, with time, of Pv during the stationary distribution 

PV Average of Pv  across more than one simulation run 

Zinf Mean number of zygotes per transmitting double bite 

i nf 
Average, with time, of Zinf during the stationary distribution 

inf 
Average of Zinf  across moreihan one simulation run 
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1) Introduction 

1.1) Malaria 

Malaria describes a group of diseases found in humans and other 

vertebrates caused by parasitic protozoa of the genus Plasmodium. Human 

malaria is caused by four species of Plasmodium: P. falciparum, P. v/vax, P. 

malariae and P. ovale. 

Malaria in humans is found in much of the tropical and semi-tropical 

world with approximately 40% of the world's population at risk (World 

Health Organisation 1995b). This leads to an estimated 1.5-2.7 million 

deaths a year (World Health Organisation 1995a). Most clinical cases and 

almost all deaths due to malaria occur in tropical Africa. It is one of the 

three leading causes of morbidity and mortality in the third world and has 

been described as "the single outstanding tropical disease control priority" 

by the World Health Organisation (World Health Organisation 1995a). 

1.2) Malaria species and life-histories 

The genus Plasmodium comprises a group of parasitic protozoa 

which infect both mosquitoes and vertebrates. The parasites are 

transmitted from one vertebrate host to another via mosquito bites. The 

degree of host specificity of Plasmodium species varies. However, those 

infecting humans are largely specific to humans in nature. Human malaria 

parasites are transmitted exclusively by members of the mosquito genus 

Anopheles (Garnham 1988). 

Plasmodium has a haploid genome for most of its life history, 

although it is transiently diploid in the mosquito (Beale and Walliker 1988). 
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Much of a human malaria infection consists of parasites dividing inside red 

blood cells. A single parasite invades a red blood cell and multiplies 

asexually to produce between 8 and 32 daughter parasites depending on 

the species (Garnham 1988). These parasites burst out from the infected 

blood cell and then invade other red blood cells. Frequently this invasion, 

multiplication, and release is synchronous in an infection, and the parasite 

release is then associated with many of the clinical symptoms of the 

disease (Harinasuta and Bunnag 1988). 

Some asexual blood stage parasites develop into gametocytes. 

These are haploid cells which can be clarified'by their morphology as male 

and female forms (Garnham 1988). Gametocytes are generally found 

circulating in the infected blood of a host at extremely low densities (Taylor 

and Read 1996). If a mosquito takes a blood meal which includes mature 

gametocytes, these then develop into gametes, which may fuse to form 

zygotes. This diploid stage of the parasite migrates across the wall of the 

mosquito gut and undergoes what appears to be a single meiosis followed 

by many mitoses (Garnham 1988; Sinden and Hartley 1985) to form an 

oocyst. The oocyst then ruptures to release mitotic, haploid cells known as 

sporozoites. These migrate to the mosquito salivary glands, from where 

they are injected into the next host when the mosquito takes a new blood 

meal. 

The sporozoites, once injected into a host, migrate to the liver and 

invade the liver cells. They then divide asexually many times. The 

daughter cells are then released into the blood stream where they invade 

red blood cells thus, completingthe life-cycle. For a more detailed 

description of the life-cycle see Garnham (1988). 
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The life-cycle of malaria is complicated. The salient features of the 

cycle relevant to this study are: (i) it is a vector-born parasite; (ii) it is 

haploid for most of its life history; (iii) it multiplies asexually in its vertebrate 

host and (iv) it undergoes obligate sex in the vector, where it undergoes a 

transient diploid stage. It should also be remembered that, as genetically 

identical parasites can produce both male and female gametes, fertilisation 

between gametes does not necessarily correlate with outcrossing. 

1.3) Immunity and Strain Theory in Malaria 

1.3.1) Definitions of immunity 

Immunity to malaria can be divided into two broad categories: anti-

disease immunity and anti-parasite immunity. 

Anti-disease immunity is seen as protection of the host from the 

symptoms of the disease (e.g. fever, anaemia, death) whilst not interfering 

with the growth of the parasites in that host. One possible explanation for 

this is that the human immune system removes parasite products which 

induce the host disease symptoms (Riley et al. 1994). 

Anti-parasite immunity is seen as an immune response that interferes 

directly with the course of the malaria parasites' life-cycle. There is 

experimental evidence that different stages of the parasite life history are 

recognised differently (Riley, Hviid and Theander 1994), and thus we can 

break down anti-parasite immunity into two functional sub-groups, asexual 

immunity and transmission-blocking immunity. 

In the case of asexual immunity, the immune system interferes with 

the development of asexual parasites, and thus suppresses the asexual 

parasitaemia. In some cases, asexual parasites are quickly and completely 
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cleared from the host, or fail to develop in the host at all after the initial 

inoculation of parasites. This will be referred to as 'sterile immunity'. 

Although anti-parasite immunity does not directly reduce disease, it is likely 

that this will also occur as the severity of disease is likely, in part, to 

correlate with the numbers of asexual parasites present (Kwiatkowski 

1991). 

Transmission-blocking immunity occurs when the immune system 

disables the activities of the sexual, transmission stages of the parasite (e.g. 

gametocytes, gametes, or zygote) (Riley, Hviid and Theander 1994). If only 

transmission-blocking immunity occurs, then there is no reduction in 

disease, or asexual parasitaemia within that host. However, no 

transmission can occur from that host to another. 

1.3.2) Evidence for strain-specific immunity 

There is clear epidemiological evidence from hyper-endemic regions 

that people do develop both anti-parasite and anti-disease immunity to 

malaria. However, it appears to develop slowly. Very young children do 

not generally suffer from malaria. This is the case even when they are born 

of a malarious mother (McGregor 1986). In the very young, clinical impact 

increases with age, and in studies in The Gambia a peak in disease 

severity is found in children 1-2 years old (McGregor 1986). However, after 

this period, the amount of severe and mild disease due to malaria 

decreases markedly with age (McGregor 1986). This decrease is coupled 

to a somewhat slower decline in parasite densities and parasite prevalence 

in these older age groups (Gupta and Day 1994b). However, even in 

adults, complete, sterile immunity is uncommon. Adults in endemic areas 
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are likely to show occasional periods of parasitaemia throughout their lives, 

though often in the absence of any clinical symptoms (Riley et al. 1994). 

The reasons for the initial absence of parasites in the very young 

child appear to be at least three fold. Firstly, during very early childhood, 

foetal haemoglobin persists in the red blood cells and this provides some 

protection against malaria. Secondly, maternal antibodies can cross the 

placenta into the foetal blood stream. Thus, in endemic areas, a child may 

be born with circulating antibodies protective against malaria (McGregor 

1986). Thirdly, malaria parasites need pABA (p-amino benzoic acid) for 

their growth. Though this is found in humans of most ages through dietary 

intake, it is absent from breast milk and is thus not found in very young 

children. This may also contribute to protection (Marsh 1992). 

The decline in both disease and parasite burden with age from early 

childhood is often interpreted as the slow acquisition of anti-disease and 

anti-parasite immunity with increased exposure to the parasites. There has 

been recent controversy as to this commonly held view, and there is some 

evidence that increasing age alone may, at least in part, contribute to 

protection against malaria (Baird 1994; Baird 1995; Gupta and Day 1994a; 

Roberts etal. 1994). 

In a study in a hyperendemic region of Irian Jaya, Baird (1995) 

examined the development of immunity in non-immune migrant workers 

from Java. He found that very quickly (within two years) the migrant workers 

developed levels of immunity comparable to that found in the local 

population who had a very similar age profile. Thus, although immunity 

clearly requires exposure to malaria to develop, this may well occur quite 

quickly, with the level of immunity being age dependent. However, the lack 

of age structure in susceptibility to malaria found in low endemic areas, and 

5 



amongst people with no previous exposure to the disease has been used to 

argue against this (Gupta and Day 1994a). Clearly more work needs to be 

done in this field to separate the relative importance of age-specific and 

exposure-specific immunity. 

A common explanation for the age profile of malaria immunity in 

endemic populations is that it is exposure-specific and that this is caused by 

strain-specific immunity. The argument goes that there are many different 

'strains' of malaria parasite in the population. Each strain is seen by the 

immune system differently, such that previous exposure to one particular 

strain causes a protective immune response against future exposure to that 

particular strain, but either no response, or a reduced response to a 

different strain. Thus, for a maximal level of immunity, an individual must 

experience all the strains in the population (Day and Marsh 1991). This 

takes time, and as many intermediate levels of immunity are passed 

through as there are strains. This creates the immunity profile seen in 

hyper-endemic regions. If there is a significant degree of cross-reactivity 

between strains, one would still expect immunity to increase with age, 

although one would expect the rate of acquisition of immunity to be greater, 

than if there is no cross reactivity between strains. 

The earliest supporting evidence for strain-specific immunity comes 

from the use of malaria therapy to treat neurosyphilis. It was found that 

repeated inoculation with the same (homologous) strain of malaria parasite 

(in most studies Plasmodium vivax was used, but studies with P. falciparum 

produced broadly similar results, e.g. Powell et al. 1972) would quickly 

produce signs of immunity in the host - reduced periods of fever and fewer 

parasites in the blood. However, this was frequently not the case when a 

heterologous strain was used. In many cases when a heterologous strain 



was used for a second inoculation, the reduction in fever and parasite 

densities was much less than for the homologous challenge. However, in 

some cases this was not so, and the heterologous challenge showed a very 

similar profile to the homologous challenge (Jeffery 1966). 

It was also found that, even with a single strain, the level of immunity 

to that strain increased over several repeated challenges (Ciuca et al. 

1934). Thus even in the case of a single strain, exposure-specific immunity 

appears to occur. 

1.3.3) Possible bases for strain-specific immunity 

1.3.3.1) Antigenic polymorphism 

The basis of strain-specific immunity is not known. However there is 

a large degree of genetic polymorphism amongst malaria parasites in the 

natural world (Kemp etal. 1990). It is easy to assume that some aspect of 

this polymorphism accounts for the different responses of the immune 

system to different invading parasites. 

Genes encoding many antigens that are putatively involved in 

immune protection have now been cloned and sequenced. These have 

been isolated from the different stages of the malaria parasite that are found 

in the vertebrate host. There are two striking features of many of these 

genes (e.g. the genes for the merozoite surface protein-1, the merozoite 

surface protein-2, the circumsporozoite protein and the S-antigen). First, 

many of these genes are highly polymorphic, with a large degree of 

sequence diversity between different alleles. Second, the immuno- 
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dominant epitopes of the gene products are, in many cases, found to have a 

repetitive sequence (Kemp, et al1 990;   Mendis et al. 1991; Schofield 1991). 

There is likely to be strong selection for a high degree of sequence 

divergence between alleles at an immunologically important locus. A new 

variant that is not recognised by an immune system that has seen a different 

variant before is likely to survive in that host. Thus, new or rare variants are 

likely to be at a selective advantage in a population and increase in 

frequency The greatest advantage to a new variant occurs if its sequence is 

sufficiently distinct for no cross-reaction in immune response with a 

previous variant to occur. Thus, one would expect a gene involved in 

strain-specific immunity not only to be polymorphic but to have a large 

degree of sequence diversity between alleles. This diversity should be 

specifically in regions coding for immunodominant epitopes. Indeed, there 

is evidence from the analysis of nucleotide sequences (the examination of 

non-synonymous versus synonymous base changes) that several malaria 

surface antigens (e.g. CSP, MSP2, MSP1) are under positive diversifying 

selection (Hughes 1992; Hughes and Hughes 1995). 

Repetitive, coding elements are found in many pathogenic 

organisms (e.g. Meyer etal. 1990; Schofield 1991). It has been postulated 

that they are associated with immune evasion. This is because repetitive 

DNA sequences have higher mutation rates than non-repetitive regions. 

This increases the probability that the pathogenic organism will generate a 

novel allele which can evade the immune system (Meyer et all 990). 

The fact that repetitive elements have been found in many antigenic 

molecules of Plasmodium has been used to argue that they are involved in 

immune suppression. The suggestion is that these regions induce 

inappropriate and ineffective immune responses and prevent the host from 



mounting more effective responses against other parasite epitopes (Anders 

etal. 1988; Schofield 1991). However, this view cannot explain the large 

degree of sequence diversity between alleles in manyof these genes. 

1.3.3.2) Antigenic variation 

Not only are there several polymorphic antigens that may be 

involved in determining strain-specific immunity, there is also a family of 

genes known as the var genes (Baruch et al. 1995; Smith et al. 1995; Su et 

al. 1995) that may be involved. These genes appear to be involved in 

'antigenic variation' in the malaria parasites. 

Antigenic variation is a phenomenon by which a pathogen evades 

the host's immune system. This has been described in Trypanosomes 

(Borst 1991) and is also found in Neisseria (Borst 1991) and malaria 

(Brown and Brown 1965). It is a term used to describe the regular replacing 

of antigens visible to the immune system with different forms, which are not 

recognised by the antibodies that recognised previous forms. Thus, a 

parasite clone may evade a host immune response by changing its 

antigenic profile once the host starts to mount an effective immune 

response against the previous profile. 

Antigenic variation of this type was first shown in malaria with P. 

know!esi, a malaria species that infects monkeys (Brown and Brown 1965). 

It was shown that infection occurred in a series of recrudescences. 

Parasites from each recrudescence are not recognised by sera from the 

host collected before or during that recrudescence, but are recognised by 

sera collected from later recrudescences. These results suggest that the 



parasite is indeed changing its antigenic profile to avoid the host immune 

system. 

Recent work has described some of the genes involved in antigenic 

variation in P. falciparum (Smith et al. 1995; Su et al. 1995). These genes 

have been grouped together as the var genes. It has been estimated that 

there are at least 50 members of this family found in a single parasite 

genome, and perhaps as many as 150 (Su et al. 1995). The var genes, and 

their products PfEMP1 (Baruch et al. 1995), have excited particular interest, 

not only because of their importance in antigenic switching, but because 

they may also be important in defining the virulence of P. falciparum. 

Many of the deaths caused by malaria are caused by a complication 

in P. falciparum known as cerebral malaria (White and Warrell 1988). This 

is believed to occur through the sequestration of infected erythrocytes into 

brain capillaries. This sequestration may well occur through the binding 

properties of PfEMP1 (Borst et al. 1995). Thus, expression of different 

members of the var gene family may well be effective in evasion of host 

immune responses, and also involved in determining the clinical course of 

an infection (Baruch et al. 1995; Borst et al. 1995). 

1.3.4) The period of immune memory 

The period of time that an individual maintains either an anti-disease 

or an anti-parasite immune memory against malaria, after clearing a 

malaria infection, is important for a 'clear understanding of the epidemiology 

of malaria and for an intelligent implementation of control strategies. Many 

epidemiological models of diseases assume immunity is sterile and life- 
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long and, for many disease agents (e.g. measles), this is a reasonable 

assumption (Anderson and May 1992). Some mathematical models of 

malaria populations have also made this assumption' ,  (e.g. Gupta and Day 

1994b; Hastings 1996). However, there is reasonably strong epidemio-

logical and experimental evidence against this. 

Epidemiological evidence of an immune response against disease 

symptoms is conflicting, with reports both suggesting a short period of 

immune memory (Molineaux 1988), and at least one report suggesting that 

anti-disease immunity may last as long as 40 years (Deleron and Chougnet 

1992). However, there is no evidence of anti-parasite immunity lasting for 

such a long time. 

Malaria therapy studies have also shown some degree of 

disagreement in their results. In these studies, neurosyphilis patients were 

deliberately infected with malaria parasites. Boyd and Matthews showed 

some degree of both anti-parasite and anti-disease immunity lasting up to 7 

years with P. vivax (Boyd and Matthews 1939). However, Jeffery found 

immunity to be much shorter lived (Jeffery 1966), and this difference has 

been suggested to be due to differences in the treatment regimes between 

the two studies (Jeffery 1966). In a study on P. falciparum, when human 

volunteers were infected with malaria parasites, sterile immunity has been 

shown to last less than one month, although anti-disease and a less strong 

anti-parasite response was shown to last for at least 3 years (Powell et al. 

1972). Studies on transmission-blocking immunity in P. vivax have 

suggested that this form of immunity may last for only 3-4 months (Mendis 

and Carter 1992). 
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1.3.5) A comment on the term 'strain' 

The term 'strain' has many connotations, and, though it was used in 

much of the past literature on malaria (e.g. Jeffery 1966), recently, it has 

often been replaced by more carefully defined terms such as 'line' or 'clone' 

(Kemp et all 990). 

The traditional view of the term "strain" is to describe a group of 

organisms within a species with a similar set of phenotypic characteristics, 

which are presumably caused by co-segregating alleles at genetic loci. 

This can occur in sexual species through geographic isolation (and genetic 

drift or local adaptation (Crow and Kimura 1970)) or through a lack of 

recombination between the loci (Hastings and Wedgwood-Oppenheim 

1997). In parasite populations, the presence of co-segregating strains in a 

population is often referred to as a "clonal population structure" (Tibayrenc 

et al. 1990). 

However, this definition of strains is not necessary to explain the 

observations of 'strain-specific immunity'. Here the only phenotypic 

characteristic of importance is the response of the immune system to the 

parasite. Thus the co-segregation of other characteristics, whether it occurs 

or not, is unimportant, and should not be implied by either the evidence for, 

nor the name 'strain-specific immunity'. 

The antigenic profile of a parasite may be caused by differences in its 

genotype at either one or many loci and genetically inherited (this will be 

referred to as haplotype-specific immunity), or by differences in expression 

of genes and thus, epigenetically inherited (which will be referred to as 

expression-specific immunity). 
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Some recent theoretical studies on malaria have examined the 

effects of strain-specific immunity on the epidemiology of the parasite (e.g. 

Gupta and Day 1994b). An important feature of these studies has been the 

assumption that strains are transmitted independently. Strains can be seen 

as having independent values for R0 (Gupta et al. 1994a), where R0 is the 

basic reproductive rate, defined as the number of secondary infections one 

would expect to arise from a single primary infection, if surrounded by a 

very large number of fully susceptible potential hosts (Bailey 1982). Under 

all definitions of strain structure, the independent transmission of strains is 

unlikely to be the case. The only situation Which would support such an 

assumption is as follows:- 

when each strain is transmitted by a different mosquito 

population. 

and 

when growth of one strain in a host does not interfere with the 

growth or transmission of a second strain in the same host. 

If either of these assumptions are not true for malaria populations, 

then the number of strains present in a population is likely to have a strong 

effect on the R0 of each strain. Thus, there is clearly a need to examine the 

effects of strain structure on the epidemiology of malaria under the 

assumption that strains do interfere with each other's transmission. 
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1.4) Population Genetics of Malaria Parasites 

1.4.1) Previous studies 

The first practical population genetic studies of P. falciparum were 

done in the early 1970's (Carter and McGregor 1973; Carter and Voller 

1975) and studies have continued up to the present day. These studies 

have, in general, had two foci: The degree of genetic diversity amongst 

parasite populations across the world, and the degree of genetic diversity in 

individual hosts. 

Studies of the first type (e.g. Carter and Voller 1975; Creasey et al. 

1990) are important for examining the degree to which P. falciparum 

populations are subdivided on a large geographic scale. This is important 

for understanding and predicting the spread of novel advantageous 

mutants across the world's malaria populations (e.g. the spread of drug 

resistance). It may also be useful for the study of the spread of an epidemic, 

specifically if it arose from a genetically distinct parasite population. A 

smaller geographic scale has also been examined for similar reasons, e.g. 

where the level of subdivision has been defined as coastal versus inland 

villages in the Madang region of Papua New Guinea (Paul etal. 1995). 

The second group of studies has examined the degree to which 

genetically distinct parasite populations are found in either human hosts 

(e.g. Carter and McGregor 1973; Hill and Babiker 1995) or in the mosquito 

host (e.g. Babiker etal. 1994; Hill etal. 1995). There are several reasons 

for this type of study. 

Firstly, the degree of genetic diversity inside individual human hosts 

determines the degree to which outcrossing can occur. Outcrossing is 
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defined here as the frequency at which zygotes are formed from genetically 

non-identical gametes. Selfing is defined here as the probability that a 

zygote is formed by the fusing of gametes that are genetically identical and 

the daughters of the same zygote. If only a single parasite genotype is 

present in an individual, then, since the parasite is haploid, only selfing can 

occur during a transmission event. Thus, no novel combinations of genes 

can be produced. However, if more than one genotype is present, then 

outcrossing can occur. Outcrossing, through meiotic recombination of non-

identical haploid genotypes, can lead to the generation of novel genotypes. 

The degree to which novel genotypes can, or'cannot be created is of great 

interest and importance, as novel genotypes have the potential to deal with 

changes in the parasite environment which the parental genotypes might 

not be able to survive (Charlesworth 1989; Crow 1992; Kondrashov 1993). 

Changes in the parasites' environment could be the presence of a novel 

drug treatment, or an anti-malaria vaccine. 

Examining the degree of genetic diversity of oocysts found in 

mosquitoes (the oocyst is a more convenient stage to examine than the 

zygote but is likely to reflect the genetics of the zygote) allows one to 

measure directly the outcrossing rate. Direct measures of the outcrossing 

rate may be better than inferring it by examining asexual parasites in the 

human blood. It may well be that the frequencies of asexual parasites do 

not directly reflect the degree of outcrossing that occurs in the mosquito 

because the proportion and degree of infectivity of gametocytes of particular 

parasite genotypes varies. However, in the one case where blood stage 

and oocyst measurements have been compared they did appear to match 

up well (Hill and Babiker 1995). 
I 
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Secondly, there has been debate in the literature as to whether 

malaria populations show a clonal population structure (i.e. whether the 

population can be divided into a population of genetically distinct co-

segregating strains) (e.g. Dye 1991; Tibayrenc etal. 1990; Walliker 1991). 

The degree to which outcrossing in a population of parasites occurs will 

determine, at least in part, the degree to which a clonal population structure 

can exist (Hastings and Wedgwood-Oppenheim 1997). The degree to 

which clonality is present in a population is of great importance in the 

tracking of epidemics (Tibayrenc 1995), the diagnosis of different clinical 

forms of the disease, and the design of contrcj! strategies. However, it has 

been pointed out (Hastings and Wedgwood-Oppenheim 1997) that 

estimates of high levels of outcrossing from field data does not preclude the 

presence of co-segregating strains, for one has the potential to measure 

outcrossing within strains rather than between strains, depending on the 

choice of markers used. 

Thirdly, it has been argued by Frank (Frank 1994; Frank 1996), that 

kin selection may be an important determinant for the level of virulence of a 

parasite population. If high virulence levels of a parasite correlate with a 

short-term transmission advantage, while lower virulence levels correlate 

with a longer-term transmission strategy, then it can be shown that if there 

are, on average, many different parasite clones in each infected individual, 

there would tend to be a greater level of virulence in that population than if 

there is, on average, only a few clones per individual. 

Finally, studies of the genetic diversity of parasites per individual has 

lent extra weight to the concept of strain-specific immunity. A study by 

Ntoumi and co-workers (Ntoumi etal. 1995), showed a reduction in genetic 

diversity per individual with increasing age of the population. This fits with 
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the hypothesis that one is susceptible to fewer parasite types as age 

increases due to an increase in prior exposure. 

1.4.2) A comment on terminology 

The population genetics of malaria, though a small and recent field, 

has already generated a large number of terms to describe a very similar 

group of concepts or parameters. The symbols ?, ji, N e, s, F, f, FIS and GST 

have all been used, in one way or another, to describe or calculate the 

degree to which malaria parasites are restricted in their potential to outcross 

due to the subdivision of the parasite population into hosts. 

The symbols X and t have both been used (Carter and McGregor 

1973; Hill and Babiker 1995 respectively) to describe the mean number of 

genetically distinct clones of malaria parasite found in blood samples from 

infected human hosts. Both studies examined the number of alleles at 

polymorphic loci found in each host. Then, by measuring the allele 

frequencies across hosts and, assuming that genetically distinct clones 

have either a Poisson (Carter and McGregor 1973; Hill and Babiker 1995) 

or Negative Binomial Distribution (Hill and Babiker 1995) of the number of 

clones within hosts, it is possible to estimate the values of X (or p) for a 

particular population. 

The number of genetically distinct clones found in infected hosts 

affects the potential for outcrossing in the population. The more clones 

present in a host, the greater the probability that any zygotes formed by a 

mosquito taking a blood meal from that host is formed by the fusion of two 

non-identical parasites. The more clones present in the donor host, the 
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greater the probability that a zygote will be heterozygous at a given 

polymorphic locus. 

Consequently one can work back from the proportion of 

heterozygotes (in the zygotes) at a locus (and the allele frequencies at that 

locus) to produce a measure of the effective mean number of clones per 

infected host (N e) ( Hill et al. 1995). The values of N e  and X (or ji)  (i.e. the 

values obtained from oocysts and blood samples respectively) would be 

equivalent in value if the following assumptions are true for the population: 

all parasite genotypes in a host are equally infectious to 

mosquitoes. 

no disassortative or assortative mating occurs. 

all parasite clones in a host are completely unrelated (as this is 

assumed in the method by Hill et a! .(1 995) for calculating NO. 

all infected hosts are equally infectious to mosquitoes*. 

all infected hosts are infected by the same number of clones*. 

The selfing rate, s, has been looked at by Read (Read et al. 1995; 

Read et al. 1992). Read used a theoretical model of malaria and ESS 

analysis (Maynard Smith 1982) to predict the selfing rate for a malaria 

population based on the sex ratio of gametocytes in that population. The 

model used by Read implicitly assumed that parasites in a host that are 

neither identical, nor daughters of the same zygote, are not related to each 

* Assumptions 4 and 5 are interactive, i.e. if all hosts are not equally 
infectious, but the greater the number of clones present, the greater the 
infectivity, then it is not necessary for all hosts to have equal numbers of 
clones, and the exact distribution will depend on the degree of infectivity 
of each combination. 



other in anyway. Under this assumption, s can be seen as the reciprocal of 

Ne. 

Dye and Godfray (1993) extended the model of Read to take into 

account the possibility that parasites that are not identical sisters could be 

related. In this model, it was shown that Read's predicted values for s were 

in fact predicted values for F, the Inbreeding Coefficient. 

The Inbreeding Coefficient is referred to in the malaria literature by 

the symbols F and f (Dye and Godfray 1993; Hill etal. 1995). It is defined 

as the probability that the two alleles at a locus in a diploid organism are 

identicai by descent. Traditionally F is the calculated value and is seen as 

an estimate of f, the true value (Hartl and Clark 1989). It is normally 

calculated by counting the excess of homozygotes at a polymorphic locus 

and comparing this to the predicted value under conditions of random 

mating (Hartland Clark 1989). If non-identical parasites are assumed 

never to be related (assumption 4 above) then the Inbreeding Coefficient is 

identical to the Selfing Rate. This is likely to be a reasonable assumption if 

the population of human hosts is large, and only a single haplotype is 

transmitted by an infected mosquito biting a human host. 

The reasons for inbreeding can be two fold. It can be caused by (i) 

assortative mating (like preferentially mates with like) and (ii) population 

subdivision. In malaria, the population of parasites is subdivided into hosts, 

and mating, in almost all cases*,  can only occur in mosquitoes between 

parasites from the same host. When only a few genetically distinct clones 

are found in a host, the chances of sélfing (or mating with a closely related 

parasite) are increased which thus increases the degree of inbreeding. 

* The only biologically plausible exception to this is interrupted feeding of 
a mosquito leading to a blood meal from more than one host. 
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Wright developed F statistics to deal with these two different aspects of 

inbreeding and produced a hierarchy of Inbreeding Coefficients: Fig, FST 

and FIT. FIS is normally used to describe the coefficient of inbreeding 

caused by assortative or disassortative (collectively to be referred to as 

'non-random') mating. Fs -r is used to describe the coefficient of inbreeding 

for population subdivision and FIT  is used to describe the total Inbreeding 

Coefficient (and is thus equivalent to F and f above). For a full discussion of 

F statistics see Hard and Clark (1989) chapter six. 

Unfortunately, FIS as used in malaria has had a different usage from 

that above, caused by using two different levels of subdivision. In a paper 

by Paul (Paul et al. 1995), a population of malaria parasites was considered 

at two different levels, that of coastal vs. inland villages and also between 

hosts in a group of villages. Thus, FIS was used in this case to denote the 

degree of inbreeding found in zygotes caused by both population 

substructuring in hosts and any inbreeding effects due to non-random 

mating. 

In a recent paper by Hastings (1996), the statistic GST  was used to 

describe the degree of inbreeding due to the population subdivision of 

parasites into discrete hosts (the statistic GST,  by convention, replaces FST 

when more than 2 alleles are found at the locus examined). Thus the use of 

GST by Hastings is equivalent to Paul's use of FIS  under the assumption that 

no non-random mating occurs. Under this assumption, and treating a 

population of individuals as the total population of hosts, GST  (and FIS) are 

equivalent to F and f. 

The use of GST  by Hastings is in a theoretical model of malaria. Field 

studies are unlikely to be able to separate the effects of non-random mating 

from the effects of population subdivision into hosts, thus field studies are 
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likely to measure FIT  (or GIT)  rather than GST.  However, experimental 

studies by Ranford-Cartwright (Ranford-Cartwright et al. 1993) suggest that 

random mating occurs between parasites in a mosquito blood meal, and 

thus non-random mating seems unlikely. This is also suggested by the fact 

that when N e  has been calculated from both oocyst and blood data from the 

same population, the results are very similar (Hill and Babiker 1995). 

In the study presented here, GST  values are examined. A detailed 

description of the calculation of GST  is described in Section 2.2. Here, it is 

enough to say that GST  values can be between zero and one. When a 

value of zero is found, there is no inbreeding (reduction in heterozygosity) 

due to population subdivision. When a GST value of one is found there is 

complete inbreeding due to population subdivision. In this case, at the 

diploid stage, no heterozygosity at a polymorphic locus is expected to be 

found. 
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1.4.3) A study by Hastings 

A demonstration of the potential usefulness of studying population 

genetics theory in the context of malaria is embodied in a recent study by 

Hastings (1996). In this study it was assumed that haplotype-specific 

immunity occurred and was defined by a single locus in the parasite 

genome. It was assumed that alleles at this locus elicited independent 

immune responses with no cross-reactivity. Hastings coined the term 

'immuno-allelic' to describe a locus behaving in this manner. Using his 

analytic model Hastings examined (under eqiilibrium conditions) the GST 

value for this immuno-allelic locus, and a neutral locus, with the 

subpopulations being defined as parasites within hosts. He showed that, 

under the assumptions of the model, the 0ST  values at the immuno-allelic 

locus always had a larger value (the population appeared to be more 

substructured) than the value at the neutral locus for all parameter values 

examined. This qualitative result was found to be consistent irrespective of 

the degree of physical linkage between the two loci, provided the loci are in 

genetic linkage equilibrium. 

There is an intuitive explanation for Hastings's results. If a mixture of 

parasite genotypes infects a host which is immune to some, but not all, 

alleles at the immuno-allelic locus, then the diversity of alleles at that locus, 

in that host, will be restricted. Across many hosts this immune restriction will 

appear as a high level of genetic substructuring at that locus. No such 

restriction occurs at a neutral locus, and thus a lower degree of 

substructuring is expected. 

This result is important as it provides a potential method for 

identifying immunologically significant loci through population genetic 
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methods. Thus the importance of a locus's polymorphism for evasion of the 

host's immune responses can be examined. This may help in the finding of 

candidate vaccine genes and designing the subsequent vaccines. 

Hastings's study also looked at drug resistance genes in 

experimental (e.g. murine) populations and it was shown that the GST 

values at a drug resistant locus (in a situation where both drug resistant and 

non-drug resistant parasites are present) would be higher than for a neutral 

locus assuming a drug treatment regime is involved. This could then be 

used to test whether a putative drug resistance locus is indeed involved in 

resistance. 

Hastings's model is analytic and, as with all such analyses, some 

degree of biological realism must be lost for the sake of mathematical 

tractability. Thus, it may be important to examine analytic results through 

computer simulation studies, where more realistic assumptions can be 

employed. 

An important assumption of Hastings is that sterile strain-specific 

immunity is life-long. This has been an assumption of other models (e.g. 

Gupta and Day 1994b). However, the evidence for any form of anti-parasite 

immunity generally supports the idea that it is short lived (see earlier in this 

chapter). The length of immune memory is likely to have large effects on 

the degree of immune restriction of the immuno-allelic alleles, and thus may 

have important effects on the ratio of GST  at the two loci. 

There are other simplifications in the model, which may have effects 

on its outcome of the model, e.g. the fact that parasites are assumed to grow 

in non overlapping generations and that the population of hosts is assumed 

to be infinite, but the effects of removing these simplifications are less clear. 
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The model used by Hastings has a defined number of parasite 

zygotes contributing to the infections in a host. However, several of the 

parameters used in the model are likely to have interactive effects on this 

number (e.g. the number of immuno-allelic alleles present in the 

population), but this is not examined. Maintaining such a fixed 

epidemiology is a useful way of examining the effects of various assumed 

parameter values on the values of GST  for a particular malarious region, 

where the epidemiology is reasonably well known. Thus this is a sensible 

technique for seeing whether the examination of GST  is likely to yield useful 

results in any particular field study. It is not, hOwever, a useful technique for 

examining the effects of altering a particular malaria parasite population. 

Thus it cannot be used as a predictive study on the effect of, for instance, 

reducing the number of alleles present at an immuno-allelic locus (as might 

happen with the introduction of a vaccine), on the values of Ge-i-  at the two 

loci. This is because there are likely to be both direct, and indirect (through 

changes in the populations epidemiology) effects of the number of alleles 

on the parasite population genetics. 
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1.6) The aim of this study. 

The aim of the study presented here is to create a model of malaria 

parasite populations to examine the population genetics of the parasites in 

relation to strain-specific immunity. It is intended to be more realistic in 

terms of the biology of malaria parasites than the model of Hastings (e.g. 

including a short period of immune memory), and to allow for the genetics to 

be examined in an epidemiological framework. 

More specifically, the model is intended to examine the degree of 

population substructuring that occurs under various epidemiological 

conditions, and with different assumptions as regards the parasite's biology. 

It is also intended to examine the robustness of Hastings's predictions with 

more realistic assumptions as to the nature of malaria parasites. It is 

designed to examine the parasite genetics in a dynamic epidemiological 

framework, which might allow predictions as to the effects of different 

intervention strategies on both the epidemiology and genetics of the 

parasite populations. 

This model is also intended to allow some understanding of the 

effects of strain-specific immunity, under a series of biologically plausible 

assumptions, on the interactions between strains that co-habit the same 

population of hosts. A simplistic, analytic model is also designed. This is 

intended to allow for the direct comparison between inter-strain and no 

inter-strain competition on the epidemiology of a malaria population. 
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2) Model and Methods 

2.1) The Model 

In this section, a mathematical model is presented that is intended to 

simulate the key dynamic features of the malaria-mosquito-human system. 

Like malaria, the hypothetical parasite is assumed to infect two animals. 

One of these animals, the vector, reflects the role of mosquitoes in the 

system. The other, the host, reflects the role of humans. 

Host-parasite dynamics in the malaria system occur in continuous 

time. That is to say, there is no natural way to divide the life cycles into 

discrete parts. Nevertheless, for purposes of simulation, discrete time-

steps are used. Clearly, this can introduce biologically unrealistic dynamic 

outcomes. However, it should be possible to eliminate such a possibility by 

choosing time steps to be sufficiently small. For most of the simulations 

presented here, 0.2 day is used as the time step, and this should be taken 

to be the time step unless otherwise stated. Thus, the parasite growth in 

hosts etc. are updated every 4.8 hours. It seems intuitively plausible that 

this constitutes a reasonable model of continuous time. However, smaller 

time steps are also used for some of the simulations to ensure that 0.2 day 

is a reasonable value, and data from these are presented in Appendix 1. 
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2.1.1) Description of parasite genetics 

Like malaria, the hypothetical parasites are assumed to be haploid 

when in the host. They are assumed to be genetically identical except-at 

two loci where there may be more than one allele present in the population. 

One of these loci is immuno-allelic, with a maximum of D alleles (D ~ 1). 

The other locus is selectively neutral, and has two alleles. 

Alleles at the immuno-allelic locus will be designated i, where i = 

1,2,3,4.. .D. Alleles at the neutral locus will be designated j, where j = 1,2. If 

there are N hosts in the simulation, then hosts are designated k, where k = 

1,2,3,4...N. 

It is assumed that parasite numbers are limited by both resource 

competition and by aspects of the host immune response. Under the 

assumption of my parasite-growth model (to be described presently), it can 

be shown that if a single parasite genotype is present in a host and no 

immune response to that genotype is present, parasite numbers will 

eventually approximate K, where K is a very large integer. K is equivalent 

to the concept of the "carrying capacity" in ecological literature (Begon et al. 

1990). The value of K is identical for all parasite genotypes. It is convenient 

to represent the number of individual parasites within a host as a proportion 

of K. This proportion is referred to as the parasite density. Let Vj, J ,k 

represent the density of parasites with genotype i,j in host k. Thus, the 

density of all parasites with allele i at the immuno-allelic locus in host k is 

referred to as Vik  where Vjk= Vilk + Vj2k. 
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2.1.2) Description of hosts 

The host population is assumed to be finite with a fixed size N. The 

host death rate per time-step (y) is constant and independent of any 

parasites present (where O<y<l). All deaths are immediately replaced by 

births (in the same time step) and thus the population size remains 

unchanging. New-born hosts are uninfected and susceptible to all parasite 

types. 

If the density of parasites with a particular immuno-allelic allele is 

above a certain critical density (designated Mm j n) in a host, then there is a 

probability (p) per time-step that an immune response will be mounted. 

Otherwise the host will remain susceptible to parasites with that allele. The 

immune response is specific to allele i, which means that if an immune 

response is mounted against allele i, it has no effect on parasites containing 

immuno-allelic allele g (where g = 1,2.3..D and g ~ i). Loss of immunity to a 

particular immuno-allelic allele i does not occur so long as parasites with 

the immuno-allelic allele i are present in the host. Once all parasites of type 

i have been removed from a host that is immune to type i parasites (Vilk 

+V2k= 0), immunity is lost with probability 3 per time-step (where 04k1). 

Parasites of type i,j,k are assumed to be lost from host k through 

stochastic processes when V J k < 10- . When this occurs VjJk is caused to 

equal zero. 



2.1.3) Parasite population dynamics 

In this section the dynamics that determine the growth of the 

population of parasites with the ith  allele at the immuno-allelic locus, and 

the jth  allele at the neutral locus in host number k willi be described. These 

parasites will be called, simply, parasites of type i,j,k. 

The growth of parasites of this type is described by: 

= V,Jk[bo — st —kIVk]+U,Jk 
	 (2.1.3.1) 

Where AVk is the change in density of parasites with genotype i,j in 

host k in a single time step. All terms inside the square brackets determine 

the per-parasite growth rate per time-step, and this is multiplied by the 

parasite density (V 11 k). The excess of parasite births above parasite deaths 

in the absence of all other factors can be seen as the maximum parasite 

growth rate, and is described by b0. All other terms inside the square 

brackets are aspects of the death rate and cause a reduction in the per 

parasite growth rate below bo. 

The term (st,) is the immunity-induced death rate, where s is the rate 

of increase in immune killing of parasites and represents the intensity of the 

immune response (where 0<s<1). The value of trepresents the period of 

time since host k became immune to allele i (in the case where no immune 

response is mounted t, = 0). 

The next term (k!Vk) in the equation represents the density-

dependent parasite death rate. Vk iq the total density of parasites in host k. 

i=D j=2 

Vk =Vyk 
	

(2.1.3.2) 
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The term k1j denotes the parasite density-dependant death rate and 

its value determines the degree to which the total density of parasites NO 
affects the death rate of parasites of type i,j. It is assumed that kd>O,  and 

thus, as the parasite density increases, the per parasite death rate also 

increases. Furthermore, kd is defined as having a value equal to b0. This 

has the effect that when Vk is equal to one, if there is no immune response 

mounted, the parasite growth rate is equal to zero. Thus, the density of 

parasites have a value of one when at the carrying capacity (K). 

The last term in the equation is U11k.  This represents the introduction 

of parasites of genotype i,j into host k by transmission events (i.e., from bites 

from the vector). The manner in which Ujjk is determined is described in the 

next section. 
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2.1.4) Transmission dynamics 

Let us now turn to the transmission dynamics of the system, and 

examine the factors contributing to the term Ujk in the growth equation 

above. Ujjk represents the increase during a given time step in the density 

of parasites of genotype i,j in host k as a result of the inoculation of 

parasites by the vector. The value of U11k  is expressed as a fraction of K, the 

carrying capacity for parasites within a host. 

The parasites that are transmitted to host k via the vector can come 

from any host in the population. Let the contribution, from host h be denoted 

by 'V,Jh (where h=1 ,2,3..N). Thus, we have: 

Uqk = ITjh 
	

(2.1.4.1) 

For a vector to transmit parasites from host h to host k, it is assumed 

that a vector must first bite host h and then bite host k within a single time 

step. It is assumed that the number of such "double bites", from host h to 

host k, during a given time step follows a Poisson distribution with 

parameter T/N per day, where T is known as the Double Bite Rate. Let B 

designate the number of double bites during a particular time step, from a 

particular host h, who is the potential source of parasites, and to a 

particular host k, who is the potential recipient. Furthermore, let b 

designate a particular double bite where b=1,2 . . .B. 

After a vector bites host h, and before it bites host k, sex occurs within 

the vector. That is, certain parasites from host h will fuse in pairs to produce 

diploid zygotes in the vector, which then undergo meiosis, followed by 

mitoses to produce many haploid progeny. The number of zygotes formed 
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within the vector in double bite b is represented by Zb,  and Zb is assumed to 

follow a Poisson distribution with parameter CVh , where c, the "coefficient of 

vector infectivity", is a positive constant that reflects the typical dosage, and 

infectivity of parasites transmitted to the vector in a bite. Thus, the expected 

number of zygotes formed is an increasing function of Vh,  the density of 

parasites in host h. Note that Zb=O is possible, and this is the case where 

no zygotes are transmitted. It is assumed that, before sex, the distribution of 

parasite genotypes within the vector is identical to the distribution in host h. 

It is further assumed that, when a zygote is formed, haploid parasites are 

chosen at random from the population within the vector. Thus, if we pick at 

random one of the haplotypes in one of the zygotes within a vector, then the 
Vrh probability that this haplotype has genotype i,j is given by 	This is equal 

to the proportion of parasites in host h that have genotype i, j, and shall be 

referred to as Pijh. 

It is assumed that, after zygote formation, all haploid parasites 

remaining within the vector die. The next step is formation of new haploid 

parasites within the vector. This occurs by means of recombination during 

meiosis between the two haplotypes that make up the zygote. Each zygote 

produces only four meiotic products. In a system with 2 loci, such as this 

one, there are four possible haplotypes of these meiotic products. There 

are the two parental haplotypes with genotypes identical to the two 

parasites that fused to form the zygote, and there are the two recombinant 

haplotypes where the alleles at each locus are inherited from a different 

haploid parent. If the parental haplotypes share common alleles, then the 

parental and recombinant haplotypes may appear the same. 

It is assumed that the 2 loci in our model are unlinked and that 

therefore, on average, these four haplotypes occur at equal frequencies. 
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However the four possible progeny haplotypes need not be found in the 

product of a single meiosis. The products of single meioses have been 

extensively studied in fungal genetics, and this has shown that such meiotic 

products, when examined at two loci may appear in one of three groups. In 

the first group, all four progeny types are present. In the second.group, only 

the parental types are present with two progeny of each type and in the third 

group, only the recombinant types are present with two progeny of each 

type. The relative frequency of these three groups can be calculated. If it is 

assumed that our loci are unlinked with respect to each other, and are 

unlinked with respect to their chromosomal centromeres, and that 

recombination occurs without interference, then they are found to occur with 

frequencies of 2/3, 1/6, and 1/6 respectively. (For a detailed explanation of 

the products of meiosis see Appendix 2). 

It is also assumed that the haploid progeny of a zygote multiply 

mitotically to produce a very large numbers of haploid parasites. It is further 

assumed that each meiotic product of any zygote produces the same 

number of haploid parasites within a vector. The relative frequencies of the 

parasites transmitted to host k are assumed to be equal to the frequencies 

of the haploid progeny genotypes after meiosis. If Zb=O  (which means no 

zygotes formed in the vector), then it is assumed that no parasites are 

transmitted from host h to host k. If Zb>O  (so that zygotes are present in the 

vector), then it is assumed that the number of parasites transmitted to host k 

takes a fixed value irrespective of the number of zygotes that have been 

formed, and this value is the same for all possible values of h and k. The 

value is given by 0 (the inoculum density), which represents the number of 

parasites transmitted to host k as a fraction of K, the carrying capacity, for 

parasites living within hosts. 
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Using the foregoing assumptions, one can now write an expression 

for 'Vijh. It is: 

Tij~ = B  7B 0  154 
+ 052+31) 

b=1z=I1\ 	2 	4 (2.1.4.2) 

where 8[4], 5[2], andö[1] are all functions that can have a value of one or 

zero, and signify whether a zygote produces all, two or one meiotic product 

with genotype i, j respectively. 

In cases where all four meiotic products have the same genotype (in 

this case i,j,.), the zygote would have to be hothozygous at both loci (caused 

by the fusion between gametes with identical genotypes). Thus, the 

probability of 6[4]  having a value of 1 (P[5[4]] ) is: 

r 
P[8[411  = rl3h

2 
 (2.1.4.3) 

There are two ways in which only one of the four meiotic products 

has the genotype i,j. This can occur when the zygote is heterozygous at 

both loci, with one copy of allele i at the immuno-allelic locus, and one copy 

of allele j at the neutral locus. It can also arise when genotype i,j fuses with 

genotype a,b,(where a is an allele at the immuno-allelic locus and a#i, and 

b is an allele at the immuno-allelic locus where b#j), or when genotype a,j, 

fuses with genotype i,b. As has been stated above and in Appendix 2, the 

four meiotic products of such a zygote may contain zero, one or two 

products with the genotype i,j, depending on whether the parental ditype, 

non parental ditype or the tetratype is produced. As is explained in 

Appendix 2, the probabilities of these three possibilities occurring in a 

particular meiosis are respectively 1/6, 1/6 and 2/3 



Thus the probability that 8[1] equals one (P5111 ) is: 

, 	 a=D 	

(b#j

b=2a=D

P5[1] 	IJ 	PibhPaJh +Pljh 	
(2.1.4.4) 

3 1 b~j 	a#i  	a#i 

The probability of 6[2] being equal to one is more complex, as it can 

occur due to a non-parental ditype being formed from the double 

heterozygote or due to the production of a zygote homozygous for either i or 

and heterozygous for the other. Thus: 

1 ((b=2 	a=D 	

(b;ej

b=2a=D 	 a=D 	 b=2 

P5[2] = 	 Pap, + P:Jh 	Pbi, + P,p, , Pajh + Pm> P,bh 
6 	b~j 	a#i 	) 	a#i 	 a*i 	 b#j 

(2.1.4.5) 

Note that the sum of P,5211  P8[1]  and P5[4]  is the probability that the 

progeny of a zygote from host h contains parasites with genotype i,j. This is 

likely to be less than one and in many cases can be zero, depending on the 

frequencies of the different parasite genotypes in host h. 
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2.2) Statistics Collected 

2.2.1) GsT(fl), GST(d) and t 

The main statistics collected are GST(n), GST(d) and t. This section 

describes how each of these statistics is calculated. Gs1-(fl),  and  GST(d)  are 

measures of the degree of genetic heterogeneity at the neutral and 

immuno-allelic locus, respectively. The value of t gives the ratio 

GST(d)/GsT(fl). In the next section, the other statistics collected from the 

model will be discussed. 

As stated in the introduction the aim of this work is to examine the 

degree of genetic heterogeneity of the simulated parasite populations in 

their hosts using Wright's F statistics. FST  is the statistic normally used to 

examine the genetic structure of a subdivided population. However FST  is 

normally used to describe a two allele system, and GST  to describe loci 

where more than two alleles occur (Hartl and Clark 1989). 

At the immuno-allelic locus, in many situations more than 2 alleles 

will be used, and thus GST  is the more appropriate term. At the neutral 

locus, only two alleles are used and FST  should thus be used. The two 

terms are, however, equivalent where 2 alleles are involved, and thus to 

prevent an expansion of terminology, I follow Hastings (1996) in using GST 

to describe both loci. 

In diploid systems, the value of GST  for a locus is normally calculated 

by measuring the mean degree of heterozygosity (iI) at a locus in a 

subdivided population, i.e. the proportion of diploids that are heterozygous 

at that locus across all the sub-populations, and the allele frequencies in 

the total population. From the allele frequencies an expected 
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heterozygosity value (Hexp) can be produced assuming that the population 

is large and panmictic. The value of GST  is then given by: 

GsT= 
H—H 

Jlexp 
(2.2.1.1) 

The Ge-i-  value at the immuno-allelic locus is be described by Gsr(d) 

and at the neutral locus by GsT(fl). 

As stated above, GST  is normally calculated from the heterozygosities 

at the diploid stage. However, in this model the parasite is haploid for most 

of its life cycle. Depending on the rate of transmission between hosts, the 

numbers of diploid stages at any particular time step are expected to be 

quite small, and thus there is the potential for sampling to cause wide 

fluctuations in the GST  value calculated. 

The diploid stages do, however, reflect the haploid genotype 

frequencies in each host, albeit weighted by the total parasite density in 

each host (as the parasite densities in a host correlate with its infectivity). 

The diploid stage can thus be seen as a sample of the potential diploid 

stages generated from the parasites in those hosts. Therefore, one can use 

the allele frequencies in each host, to generate predicted heterozygosity 

values assuming that a large number of vectors bite each host. The 

predicted homozygosity for a locus for a given host, can be produced by 

summing the square of the allele frequencies at that locus in that host. The 

predicted heterozygosity at that locus, in that ,host, is made by subtracting 

the homozygosity at the locus from one. Thus the heterozygosity in host k 

for the immuno-allelic locus (H(d)k) can be calculated: 
1. 

i=D 

H(d)k = 1 - 
	

+ Pi2k) 2  (2.2.1.2) 
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The heterozygosity at the neutral locus (H( n)k) can be calculated in a similar 

manner. 

To produce a mean heterozygosity across all hosts for a locus, the 

heterozygosity for each host (Hk) is weighted by multiplying it by the 

predicted mean number of zygotes each host will produce per time step. 

Thus the mean heterozygosity for the immune locus can be described: 

- 	H(d)kcVk 	 (2.2.1.3) 
H(d) 	k=N 

cVk 

Expected heterozygosities can also be calculated assuming that the 

population is not subdivided; this is done by calculating the total allele 

frequencies for the population. These total allele frequencies must also be 

weighted by the infectiousness of each host to mosquitoes. Thus the 

weighted allele frequency for immuno-allelic allele i (P( w) 1 ) is: 

k=Nj=2 P1k 
	

(2.2.1.4) 
P("), = 	k=N 

>cVk 

A similar expression can be derived for the weighted allele frequency of the 

neutral allele j (P( w)j ). 

The expected heterozygosity for the immuno-allelic locus (H exp(d)) is: 

Hexp(d) = 1 - 	 (2.2.1.5) 

and for the neutral locus: 

j=2 

Hexp(n) = 1P(w)j 2 	 (2.2.1.6) 



GST can be calculated for each locus by comparing the mean 

heterozygosity of the locus in each infectious host with the expected 

heterozygosity if the parasite population is not subdivided. 

This is calculated separately for each locus: 

Hexp(d) - H(d) 	 Jlexp(n) - 11(n) 
GST(d)= 	 GST(n)= 	 (2.2.1.7) 

Jlexp(d) 	 Hexp(n) 

In the work to be described in this thesis, an important objective is to 

examine explicitly the relative magnitude of GST(d)  and  GST(fl).  The statistic t 

is used to describe the ratio Gs-r(d)/GST(fl).  Thus if t is greater than one then, 

the value of GST(d)  is larger than that of GST(fl).  This would imply that the 

apparent level of genetic substructuring (or inbreeding) of the parasite 

population is greater when an immuno-allelic locus is examined compared 

to when a neutral locus is studied 

The GST  values for both loci change with time. However, their values 

are of most interest once a stationary distribution has been reached, as 

once this has occurred, the values should be independent of the starting 

conditions. Using the Standard Parameter Values, an apparent stationary 

distribution arises within the first 1500 days (see Chapter 3). It is thus 

believed to be prudent to start observing the distribution after 4000 days to 

ensure that astationary distribution truly has been reached. 

Once a stationary distribution has been produced, there is still a lot of 

variation with time in the GST  values for the population, especially at the 

neutral locus (see Chapter 3). Thus it seemed sensible to obtain a 

representative GST  value for each locus by measuring GST  at two-day 

intervals after day 4000 for 1000 days and taking the mean of the 

observations. This procedure appears to be sufficient in light of the small 
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standard errors found when the trials were repeated. The representative 

value for the statistics GST(d), GST(fl) and t collected in this manner is 

described by G.(d) , GST( n ) i, respectively. 

Each set of parameter values examined with the model was repeated 

with two different starting conditions. The two sets of starting conditions 

were: 

Initial Condition A) 20% of the host population initially infected, each 

host equally infected with each possible genotype such that Vk for each 

infected host = 1.0. In this situation the starting GST  values for both loci = 

Me 

Initial Condition B) 20% of the host population initially infected, each 

host infected with only 1 parasite genotype, but equal numbers of hosts 

infected with each possible genotype. In this situation the starting GST 

values for both loci = 1.0. 

Due to the constraints on computer time, most simulations with each 

set of parameter values were repeated only once, so that there was one run 

with each set of starting conditions. The mean values for GST(d) , G ()  and i 

and their standard errors were then calculated with each pair of runs. The 

mean values for these parameters, when taken across more than one 

simulation, are referred to by G(d),  G ()  and t. 

It is possible that, with certain parameter values, a stationary 

distribution is not reached within the first 4000 days. However, in the 

studies presented here, the standard errors for GST(d), Gsi -(fl).and t are very 

small in comparison to their respective mean values. Thus it seems that 

either a stationary distribution has been reached, or is very close to being 



reached, by day 4000, for each statistic, with each set of parameter values 

examined. A similar finding is made when examining the mean values after 

day 4000 of the other statistics collected from the model (described below). 

2.2.2) Other Statistics Collected 

Several other statistics are also collected when running the 

simulations. These are collected to help understand better the dynamics of 

the simulation and explain the effects of different parameters on the Gi 

values at the two loci studied. There are many other statistics that could be 

collected, but they were not felt to be of importance in relation to the 

questions being asked. The other statistics collected are: 

2.2.2.1): The proportion of the population of hosts that are infected by 

parasites. 

This statistic (Pjf) is calculated by dividing the number of hosts that 

contain a total parasite density of greater than 1.0 x 10 -9  in a particular time 

step by the total number of hosts (N). A mean value (Pj,) for P1 f during the 

stationary distribution is calculated by taking the average value for Pinf  with 

time from day 4000 until day 5000 as described above. "Pinf  is the mean 

value of Pinf  unless otherwise stated for two simulation runs, one started 

with Initial Condition A, the other with Initial Condition B. 

2.2.2.2): The mean number of immUno-allelic alleles hosts are immune to. 

During each time step for which data is collected, the number of 

alleles to which each host is immune is calculated. The mean value across 
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all hosts is referred to as W. A mean value (W) for W during the stationary 

distribution is calculated by taking the average value for W with time from 

day 4000 until day 5000 as described above. W is the mean value of W for 

two simulation runs (unless otherwise stated), one started with Initial 

Condition A, the other with Initial condition B. 

2.2.2.3): The proportion of double bites, biting from an infected host, that 

transmit parasites. 

During each time step for which data was collected, the proportion of 

double bites from infected hosts, which transmit parasites (i.e. Z>0) is 

calculated. This statistic is referred to as P,. A mean value (Pu) for P 

during the stationary distribution is calculated by taking the average value 

for Pv  with time from day 4000 until day 5000 as described above. P v  is 

the mean value of Pv  for two simulation runs (unless otherwise stated), one 

started with Initial Condition A, the other with Initial Condition B. 

2.2.2.4): The mean number of zygotes that are formed in the infective bites. 

During each time step for which data was collected, the number of 

zygotes in each double bite which transmits parasites (i.e. when Z>0) is 

calculated. The resulting values are then averaged over the total number of 

infected double bites that occurred in that time step. This statistic is referred 

to as Z. A mean value (Z) for Z 1 f during the stationary distribution is 

calculated by taking the average value for Zinf  with time from day 4000 until 

day 5000 as described above. Zinf  is the mean value of Z m t for two 



simulation runs (unless otherwise stated), one started with Initial Condition 

A, the other with Initial Condition B. 

2.3) Design of the Model 

2.3.1) General considerations 

The model described above is designed to investigate several 

specific questions underlying the population genetics of the malaria 

parasite. Its specific purpose is to investigate the consequences of, and 

opportunities provided by, strain-specific immunity, assuming that this is 

haplotype-specific and determined by alleles at a single locus. It is 

designed to examine these questions in the context of the epidemiology of 

the parasite assuming a short length of immune memory in the host. 

The model is also applicable to situations where haplotype-specific 

immunity occurs, and is not caused by a single locus, but by two or more 

loci, as long as these loci are linked. Linkage can either be physical on a 

chromosome, or epidemiological (Gupta etal. 1996). In either case, each 

locus involved will act in the same manner as the single immuno-allelic 

locus presented here. 

The model is a complex one, with 11 different parameters and many 

dynamic variables. This complexity is important to allow the population 

genetics of the parasite to be understood in a biologically and 

epidemiologically realistic context. However, the added complexity in the 
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model makes it analytically intractable, and thus a computer simulation has 

been used. 

There are many arguments that can be made in favour of both 

analytic and computer simulation models. Analytic models produce more 

precise, repeatable results and the dynamic relationships are often more 

apparent than is the case in computer simulation models. However, to be 

solvable, analytic models must in general be quite simple, which, when 

trying to describe a complex biological system may require many unrealistic 

assumptions. On the other hand, computer simulations allow much more 

complex models to be created. Computer simulations also facilitate the 

study of stochastic effects. However, the system becomes more of a "black 

box" with the reasons behind any particular result becoming much more 

inscrutable. 

Although each malaria parasite has distinct phases in its life history, 

these phases are not synchronous between parasites. Thus there are no 

distinct points in time at which the population of parasites should be 

examined, and instead they should be examined continuously. One of the 

problems with computer simulation is the difficulty of constructing a model 

that acts in continuous time. Thus, a discontinuous time model has been 

constructed here, where all the calculations of the model are made at 

discrete points in time. This has, in principle, the potential to lead to 

unrealistic effects. However, these effects can be minimised by using small 

time-step sizes. To check that the errors created are small, the results of the 

simulations can be compared when different step sues are used (see 

Appendix 1). 



For a general discussion of the advantages of complex and simple 

mathematical models of biological systems and the use of discrete vs. 

continuous time in such models, see Crow and Kimura 1970, chapter 1. In 

general, the situation required here (continuous time and overlapping 

generations) becomes mathematically intractable except for relatively 

simple cases (e.g. Charlesworth 1994), and thus computer simulation is 

necessary. 

2.3.2) The Details of the model 

2.3.2.1) Parasite growth 

In the model presented here, a modified logistic growth equation 

(Begon et a! 1990) was chosen to calculate parasite growth in the hosts 

(see Equation 2.1.3.1 in Section 2.1.3). The difference from the equation's 

usual form is that, although it is used to describe the growth of individual 

parasite genotypes, unlike the normal logistic growth equation, the density-

dependent effects are based on all the parasite genotypes present (i.e. the 

total parasite density). The equation is therefore equivalent to the Lotka-

Voltera equation (Begon, et a! 1990) describing population growth when 

there is complete resource competition between species. The equation is 

used as it allows for a parasite density-based limitation on growth and is of 

a simple form. 

Although the model is designed to examine the effects of stochastic 

processes at the level of the populaiion of hosts (e.g. the number of vectors 

biting a particular host in a particular time step), growth of parasites inside 

each host is assumed to be deterministic. Although the initial number of 
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sporozoites infecting a host may be very small, the number of blood stages 

these sporozoites lead to is very large (in the region of 105  or 106 ), and 

then grow up to much greater levels (Lines and Armstrong 1992). If one 

assumes that density-dependent effects on growth largely occur in the 

blood stages, these large numbers of parasites justify a deterministic growth 

equation. 

Despite its simplicity, the logistic growth equation is a much more 

complex form of parasite growth than is found in previous epidemiological 

or population genetic models of malaria populations (e.g. Bailey 1982; 

Gupta etal. 1994a; Hastings 1996b; Molineaux and Gramiccia 1980). It is 

important to take into account parasite growth in the host in this model for 

two reasons. Firstly, the level of infectiousness of a host to vectors is likely 

to be correlated to the density of parasites in that host. Secondly, and 

perhaps more importantly, the dynamics of parasite growth can have 

important effects on the relative frequencies of different parasite genotypes 

invading the same host. 

There is evidence that the degree of infectivity of hosts to 

mosquitoes, increases with the density of gametocytes present (Taylor and 

Read 1996; Tchuinkam etal. 1993). It is assumed in the model presented 

here that infectiousness of a host correlates with parasite density. This is 

equivalent to assuming, in the real world, that the number of infectious 

gametocytes present is proportional to the density of asexual parasites in 

that host. Some correlation between their densities seems very likely, 

because gametocytes can only be generated from asexual parasites; thus, 

the more asexual parasites present, the more gametocytes can be 

generated. There is no clear evidence of a correlation between asexual 

parasite densities and gametocyte densities in real infections, but in the 



absence of data to the contrary it seems to be a sensible working 

hypothesis, and one used by Hellriegel in her model (Hellriegel 1992). 

The degree to which parasite genotypes are represented in a host 

depends on how parasites grow in that host. This is especially the case 

where non-specific density-dependent growth limitation is involved, as 

appears to be the case in malaria (Kwiatkowski 1995). To understand the 

importance of this, consider a case where a parasite genotype is introduced 

to a host at a low frequency, and then a few days later a second parasite 

genotype is introduced at the same low frerquency.  Assume that both 

parasite genotypes grow at the same basic rate and that no haplotype 

specific immunity is acting against either parasite type. At the time the 

second parasite genotype enters the host, the first parasite has grown up to 

a density at which non-specific density dependent effects are preventing its 

further growth. In this case the second parasite genotype would also be 

prevented from growing and be maintained near its original, low level. 

Thus despite being introduced at the same low level and having the same 

basal growth rate, the parasite introduced first into a host is represented at a 

much greater frequency in that host than one introduced later. The degree 

to which this effect is evident will depend on the basal growth rate of the 

parasites and the time between parasite introductions. 

In many epidemiological or population genetic models of malaria, the 

effects of parasite growth in relation to transmission of parasites between 

hosts is ignored (e.g. Bailey 1982; Gupta etal. 1994a; Hastings 1996b). In 

these models, hosts are deemed either infected or uninfected, and it is 

assumed that the rate of transmission from infected hosts is uniform. Thus, 

in these models, the importance of defining a mechanism of parasite growth 

to determine transmission rates is negligible. 
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Although many previous models define hosts as either infected and 

equally infectious, or uninfected and uninfectious, there are several 

exceptions (e.g. Molineaux and Gramiccia 1980; Saul 1996). In these 

models, hosts are seen to undergo a latent phase at the start of an infection 

where they are infected but not infectious. This can be seen as some 

acknowledgement of parasite growth in the host, with the parasites initially 

at too low a density, or in the wrong developmental stage, to pass on the 

infection. 

The effects of parasite growth on the coinfection of different parasite 

genotypes in the same host is not addressed in other genetic or 

epidemiological models of malaria (although it is addressed in the context 

of immunity by Hellriegel (1992)). In many epidemiological models no 

distinct parasite types are examined, and thus this question does not arise 

(e.g. Bailey 1982; Molineaux and Gramiccia 1980). In others, where 

different parasite genotypes are addressed it is assumed that no co-

infection occurs (Gupta et a! 1994a) or that parasite types exist in a host 

totally independently of each other (Gupta and Day 1994b). In Hastings's 

analytic, genetic model (Hastings 1996) the issue is avoided as the 

parasites are assumed to undergo discrete generations. Therefore, co-

infecting parasite genotypes enter a host at exactly the same time. Thus, 

most models of parasite growth would have the relative frequencies of the 

parasites maintained through an infection (in the absence of immunity) in 

the same proportions as they were at the start of that infection. 



2.3.2.2) The immune response 

In the model presented here, the immune system is allele specific in 

both recognition and action, with no cross immunity between alleles. The 

immune system starts to kill parasites containing a particular immuno-allelic 

allele after the parasites with that allele have reached a threshold density 

(Mm i n) and then only after a lag period (mean length of lag=1/p). 

Although this threshold and lag have no obvious specific biological 

justification, they are designed as a simpI tractable form of density-

dependent activation of an immune response with a delay in its action. A 

more complex form of this occurs if immune effector cells are stimulated to 

increase in numbers by contact with parasites, and this effector cell growth 

takes time (Anderson and May 1992; Hellriegel 1992). A similar simplified 

system to that used here (with a threshold and lag) is used in a model by 

Saul (1994). The time course of parasite densities within hosts produced 

by Saul's model appears to be a reasonable approximation to the time-

course found in real malaria patients (Saul 1994). 

Other models of the immune system's interaction with malaria 

parasites have been developed (e.g. Anderson et al. 1989; Hellriegel 

1992). These models have tried to be more realistic in terms of the 

biological processes involved in immune activation and killing. 

Consequently, these models are highly complex, with many parameters 

and many interacting variables. This was acceptable when studying a 

single host, as was done in these models. However, the model presented 

here is intended to study a population of infected hosts. In increasing the 

numbers of hosts analysed there is a practical necessity to reduce the 

complexity of the immune system in each host. This both increases the 



ease of interpretation of the results produced, and reduces the computer 

power needed for the study. Also, despite the more realistic bases for 

these models, the course of the modelled infections is unlike that found in 

real infections (Gravenor et al. 1995). 

In the model presented here, loss of immunity to parasites with a 

particular immuno-allelic allele is a step-wise function; a host can change 

from a state where it is immune to a particular allele to a state where it is 

totally susceptible from one time-step to the next. However, in the natural 

world, immunity is likely to be lost gradually, with a host becoming gradually 

more susceptible with time. It was felt that a very simple 'all or nothing' loss 

of immunity had many advantages over a more complex, 'dwindling' loss of 

immunity. Firstly, it helps keeps the number of parameters in an already 

complex model as few as possible. Secondly, the parameter P is easily 

translatable into 'the mean period of immune memory' (1/13), which allows 

for an easy grasp of this aspect of the model, and also allows easy 

comparisons to other epidemiological and population genetics models of 

malaria populations which include all-or-nothing loss of immunity (e.g. 

Hastings and Wedgwood-Oppenheim 1997; Gupta et a! 1994a). It should 

be noted that although there is evidence that antibody titres, and T cell 

responses dwindle with time after exposure to malaria (e.g. Ballet et al. 

1985), these responses can be very complex (Taylor etal. 1996) and the 

knowledge of how these biochemical and cellular indicators of immunity 

change parasite growth rate, parasite carrying capacity, and the period of 

infectiousness in subsequent infections remains small. Thus, if one 

incorporated dwindling immunity into the model, it has the potential to be 

less realistic than the model described. 
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It should also be realised that in simple epidemiological terms, an 'all 

or nothing response' with a fixed probability of occuring per time-step has 

similar population effects to dwindling immunity with a predefined time-

scale. If one asumes that the lower the level of immunity, the greater the 

probability of reinfection, then in both cases, the probability of a host being 

reinfected after a new parasite challenge increases with time since the 

onset of immunity. Thus there maybe very little difference in measures of 

simple epidemiological parameters (such as parasite prevelance) between 

the two systems. 

2.3.2.3) Transmission 

Malaria is transmitted between mammalian hosts by mosquitoes. 

While in the mosquito, the parasite undergoes several developmental 

changes, and many cell divisions. This all takes time. The period of time 

between an infectious blood meal of P. falciparum being taken and that 

mosquito being able to pass on the parasites to another host is in the order 

of 10 to 22 days, depending, at least in part, on temperature (Bailey 1982). 

This lag is known as the "extrinsic incubation period" (Bailey 1982). Clearly 

the transmission of parasites from one host to another via a vector, all 

occurring in a single time step, as occurs in this model, cannot be justified 

on biological grounds. The reasons why this is done is to save on computer 

memory requirements and simulation time. To have the infections from a 

couple of weeks earlier contributing to infections in a particular time step, 

would require keeping a track of the infections in a very large number of 

vectors. This was felt to be unwieldy in the simulation. 
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There have been previous epidemiological models which have not 

taken into account the extrinsic incubation period (Gupta eta! 1994a). This 

approach has recently been criticised by Saul (1996) as being potentially 

unrealistic for examining the dynamics of malaria infections. 

As stated earlier, the main interest in the model is to examine the 

values of GS-r(d)  and  GsT()  and certain epidemiological parameters when a 

stationary distribution has been reached. At such a time, whether an 

infection is transmitted during the same time step, or takes two weeks to 

occur, should be of no consequence, as both' the rate of infection and the 

composition of the infections should be similar. However, it may effect the 

dynamics of the epidemic phase of the infection, with a larger epidemic rise 

and crash in the proportion of hosts infected (Pinf)  when the extrinsic 

incubation period is taken into account than when it is not. 

The number of double bites that occur from a particular host, during a 

time step is determined by a Poisson Distribution (PD). The PD is a 

discrete distribution that describes rare and random events. It is assumed 

that all hosts are identical in their probability of being bitten, and being 

bitten by one vector in a time step does not preclude being bitten by 

another. Under these assumptions the use of the PD is appropriate. There 

is evidence of host heterogeneity in the mosquito biting rates (Knols et al. 

1995) but this was felt to be an unnecessary complication to the model, and 

thus the use of a PD was felt appropriate. 

While the malaria parasite is developing in the mosquito, sexual 

recombination occurs (Sinden and Hartley 1985). The malaria life history is 

particularly unusual in that, in many cases, only one, or very few, zygotes 

develops in a mosquito (Pichon etal. 1996), and thus the exact nature of 
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meiosis is important. This has not been taken into account by previous 

population genetic models of malaria (e.g. Curtis and Otoo 1986; Hastings 

1996). Assuming that meiosis occurs in the same manner as it does in 

other eukaryotic organisms that have been examined, a maximum of four 

genetically distinct haploid progeny should be produced (Alberts et al. 

1983). In some cases only one of these four progeny develop (e.g. in the 

development of the vertebrate egg (Alberts et al. 1983)). How many of 

these progeny develop in malaria is not known. However studies on the 

oocyst stage of the malaria parasite show that two alleles of the same gene 

can be found in an oocyst (Ranford-Cartwright etal. 1993), and thus at least 

two of the haploid progeny of meiosis do develop. 

Detailed analysis of the products of a single meiosis has been made 

only in fungi (Fincham 1983) and Drosophila (Ashburner 1989), by a 

process known as Tetrad Analysis (in Drosophila as half-tetrad analysis). 

These studies show that, when the four haploid progeny of a single meiosis 

are examined at two polymorphic loci, all four potential haploid progeny 

genotypes are not invariably present. This is described in more detail in the 

model section, and in Appendix 2. In the work described here, the 

frequency of each haplotype produced from a single meiosis in the parasite 

is based on studies of fungi and Drosophila. Not only is it assumed that four 

products are formed by each meiosis, and that the frequency of each two 

locus haplotype is determined in the same manner as it is in fungi, but it is 

also assumed that each of the four potential haplotypes is passed onto the 

next host in equal frequency. This is also assumed in other models (e.g. 

Dye and Godfray 1993; Hastings 1996). However some models assume 

that only one haplotype is passed on by each infecting vector (e.g. 

Hastings 1997; Hill and Babiker 1995; Hill etal. 1995). 
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The number of sporozoites passed on to a new host in a single bite 

has been studied (Beier 1993; Ponnudurai etal. 1991; Rosenberg etal. 

1990). There are large differences in the numbers of sporozoites injected 

by individual mosquitoes, but estimates of the mean number of sporozoites 

have been calculated as between 15 and 25. These numbers are clearly 

small, and thus stochastic effects are likely to be important. Considering the 

small number of zygotes generally formed in a vector, it is likely that most, 

though not necessarily all, haplotypes formed in a vector are transmitted to 

the next host. It is, however, unlikely that these haplotypes will exist in 

equal frequencies. Thus, in models where only one haplotype is 

transmitted, there is likely to be an underestimate of the degree of mixing of 

haplotypes in a host (in this model measured by GST(fl)).  In models 

(including this one) where all haplotypes are assumed to be transmitted in 

equal frequencies there is likely to be an over estimate of the degree of 

mixing. 

The number of zygotes formed in a vector is determined, in this 

model, by a PD with its mean proportional to the density of parasites in the 

host. The reasons for assuming a correlation between the density of 

parasites present in a host, and the infectivity of the host to the vector have 

been explained above. 

Field caught and laboratory fed mosquitoes have been examined 

from the point of view of oocyst distributions. These studies have all found a 

Negative Binomial Distribution (NBD) of oocysts in mosquitoes (Billingsley 

et al. 1994; Medley et al. 1993; Pichon et al. 1996). NBDs are found 

frequently in nature when the spatial distribution of organisms is examined 

(Crofton 1971; Rutledge et al. 1973). One of the bases for an NBD is when 

many Poisson Distributions, with different means, are summed together (Hill 
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and Babiker 1995). This is likely to be the case when any particular event is 

both random and rare (e.g. the formation of a viable zygote in a blood 

meal), but where the probability of such an event depends on aspects of its 

local environment (e.g. the density of gametocytes in the blood meal and 

the size of the blood meal). 

Thus, the Poisson Distribution seemed a plausible basis for the NBD 

found in real infections and is therefore used as the basis for the calculation 

of the number of zygotes in each double bite in this study. It should also be 

realised that the use of a NBD as the basis for each double bite, again with 

the means proportional to the parasite densities, is not likely to produce a 

NBD across a population of double bites (Grafen and Woolhouse 1993), 

and thus has no advantage over the system used. Use of an NBD does, 

however, have two disadvantages: the increase in number parameters of 

the model and the lack of logical explanation for its use at the individual 

vector level. 

2.3.3) The potential problems 

The complexity of the model is expected to lead to some difficulty in 

its analysis. Firstly, as has already been stated, the complexity makes it 

difficult to understand the precise basis for any particular result. However 

general trends can be examined and speculation about more specific 

results given. This can lead to further manipulation of the model to test 

hypotheses as to the model's nature. As the aim of this study is to gain 

biological rather than mathematical insights into the nature of malaria 

populations, this was felt to be a sensible method of analysis. 
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Secondly, the many parameters involved in the model mean that any 

parameter that is varied could be examined with a large variety of different 

values for the other parameters. Constraints on computer time prevented 

examination of more than a small part of this 'parameter space'. It was 

decided to use a carefully chosen set of parameter values that, where 

possible, were chosen to reflect the current level of understanding of the 

nature of malaria parasite's life history. Each parameter was then varied 

independently against this background. 

This method has the potential to miss important trends that are not 

apparent in the part of parameter space examined. It is also possible that 

trends that are felt to be important are only specific to the parameter values 

examined and not, as might be felt, universal to the model. Some 

preliminary studies were done to examine other parts of the parameter 

space, and these agreed with the trends reported here. 

Of course, the most important problem with the model is that it must 

be biologically unrealistic. The life history of the malaria parasite involves 

interactions with two very different organisms - mosquitoes and man. Such 

an interaction between three biological systems is likely to be highly 

complex. Thus there are many simplifications in the model. These occur in 

many instances to allow the model to be more tractable, and in other cases, 

simply because that aspect of the biology of the parasite is not known. This 

is true for all simulation studies. This model was designed, not to describe 

every detail of the biology of malaria, but to capture the essence of its 

population dynamics. 

It is hoped that these simplifications do not have major qualitative 

effects on the outcome of the model, although clearly one would expect 
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quantitative differences between the predictions of the model and malaria 

in the natural world. There is, however, a risk in all modelling of complex 

systems that simplifications will also lead to qualitative differences. 

2.3.4) Discussion 

As has been stated, the complexity of the model has led to its 

analysis through computer simulation. However, despite its complexity, the 

model can be seen as having several, interacting aspects each of which 

are, individually, quite simple. This in turn led to the construction of the 

simulation programs in a modular form. This is important for two reasons. 

Firstly, as the biology of malaria parasites becomes better known, aspects 

of the model may be shown to be inappropriate. Only trivial alterations to 

the computer program would be necessary to see what effects a more 

accurate version has on the output statistics. 

Secondly, it should be realised that although the model has been 

designed to answer specific questions about malaria parasites, its 

modularity allows alterations to be made that could make it easily 

applicable to other vector born pathogens or even disease agents with 

other modes of transmission. Thus, the computer programs developed can 

be seen as a tool allowing the population genetics of many organisms to be 

examined in the context of their own epidemiologies. 

One restriction of the model presented here is that imposed by the 

availability of computer power and time. If the current trend in increasing 

computer power with decreasing cost continues, then the modularity of this 
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model may well allow its expansion to take into account complex aspects of 

parasite biology not yet addressed. 

2.4) Choice of standard parameter values. 

In Chapter 4 the parameters of the model described above are 

examined in detail. This is done by varying the value of each parameter, 

while keeping the other parameter values constant. Thus, a series of 

'Standard Parameter Values' are used. These'are the values at which each 

parameter is set while another parameter is being examined. 

Wherever possible, the standard parameter values used reflect the 

current understanding of the malaria-human-mosquito system. However, 

for some parameters, very little is known and an arbitrary choice of value 

was made. In Chapter 4, where the effects of different parameter values are 

examined, some indication of the effects of such arbitrary choices can be 

gained. 

The standard value for the number of immuno-allelic alleles present 

in the model (D) was given a value of ten. The number of alleles at the 

immuno-allelic locus defines the number of immunologically distinct 

'strains' that are present. It is not known how many such strains are present 

in real malaria populations. Thus any value of D used must be seen as 

arbitrary. In the model by Hastings (Hastings 1996) between 2 and 20 

immuno-allelic alleles are used while Gupta used 2 strains in her model 

(where multiple immunologically distinct strains were present) (Gupta et a! 

1994a). In a different paper, Gupta assumed 5 strains of P. falciparum to be 
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present when analysing data from the Madang region of Papua New 

Guinea (Gupta etal. 1994b). 

A standard host population size (N) of 6000 was used. It is obvious 

that population sizes for hosts of the malaria parasite will vary greatly from 

locality to locality. It would also be true to say that a useful definition of an 

epidemiologically distinct host population in the real world may well be 

difficult to produce. Human populations are often aggregated into villages 

and towns, with both human and mosquito migrations between them. 

Clearly in most cases the effective population size for a malarious 

population will be larger than the few hundred or less found in any village 

examined, but how much larger is difficult to estimate. Many 

epidemiological and genetic models of malarious populations assume an 

infinite population size (e.g. (Gupta et a! 1994a; Hastings 1996). The 

standard population size here of 6000 would correspond to a small town or 

a collection of villages, between which reasonably frequent travel occurs. 

This is obviously a great simplification 

The host death rate is set at 5 x 10 -5  per day. This would correspond 

to a mean life expectancy of 54.8 years which corresponds reasonably well 

with that used in other models (Anderson et a! 1989). It also corresponds 

reasonably well to an estimated Crude Death Rate measured in a study in 

Nigeria (approximately lxlO -4  per day (Molineaux and Gramiccia 1980)). 

The host death rate in this model is constant, i.e. it is not age related. This is 

not the case in real human populations in malarious regions where the 

majority of deaths occur in the very young and very old (Anderson and May 

1992; Molineaux and Gramiccia 1980). For instance, in the Nigerian study 

the death rate for children of ages one to four years is four to five times 

greater than the Crude Death Rate measured (Molineaux and Gramiccia 
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1980). There is also no malaria induced mortality in this model, whereas it 

has been estimated that, for instance, in a study in Zaire, approximately 

14% of children dying between the ages of one and two years die from 

malaria (Wernsdorfer and Wernsdorfer 1988). Ignoring both age-specific 

and malaria-specific mortality is a great simplification, but one that was felt 

would not greatly bias the results of the study while removing some added 

complexity of the model. Many other models of malaria populations have 

also assumed a constant, non-malaria induced death rate (e.g. Bailey 1982; 

Gupta, Swinton and Anderson 1994a; Hastings 1996). 

The threshold for immunity, M m jn , was given a standard value of 0.05. 

In this model, if the value is above lID then, when all immunologically 

distinct parasite types are present in a host, at equal densities, all parasites 

would be below the threshold value and thus, no parasites would be 

cleared from the host. Thus when D has a standard value of 10, a value for 

M mun  of between 0.0 and 0.1 is necessary, and a standard value of 0.05 has 

been chosen arbitrarily. 

The probability of an immune response being mounted against a 

particular allele in any time step (p) was given a standard value of 0.025 

per day. This corresponds to a mean time between a parasite genotype 

growing above Mmin and the start of an immune response of 40 days. 

The intensity of the immune response is controlled by s, and this is 

given a standard value of 0.2 per day 2 . With this value, if parasites with only 

one particular immuno-allelic allele are present in a host, then the mean 

period of infection, after it has grown to a level above M m j n  is approximately 

53 days. 



There is no simple consensus on the duration of natural infections or, 

more importantly, infectiousness (in this model the duration of infection and 

infectiousness are completely correlated). Gupta and co-workers (Gupta et 

a! 1994a) suggest that infectiousness may well only last about two weeks, 

and a mean period of between 5 and 18 days was used in the model they 

presented. Carter, on the other hand (Carter and Gwadz 1980), quotes 

work by Jeffrey and Eyles, showing that infectiousness lasted in a group of 

non-immune hosts for at least one month, and for 20% of the participants, 

for as long as one year. Thus, in this model a compromise position of a 

mean period of infection of approximately two months seemed appropriate. 

The probability of loss of immunity per time step, P was given a 

standard value of 2.74 X 1 0-4 per time step. This corresponds approximately 

to a period of immune memory of one year. This is a little understood topic, 

there being estimates for periods of immunity of anything from a few days 

up to nearly lifelong immunity (Deleron and Chougnet 1992; Gupta etal. 

1994b; Powell et a! 1972; Saul 1996). Often, the differences in length 

depends on the differences in the definition of 'immunity'. In this model, 

sterile immunity is the only concern (anti-parasite or anti-transmission 

immunity) and there is evidence that this is short lived, perhaps lasting less 

than a year (Mendis and Carter 1992; Powell etal. 1972; Saul 1996; also 

see Section 1.3.5). 

The parasite growth rate, b0, was given a standard value of 12.3 per 

2 days (and therefore a value of (12.3) 1 /20  per time step). In other models it 

has been assumed to have a valqe of 8 per day (Anderson et a! 1989; 

Hellriegel 1992). Gravenor et a! (1995) compiled values from earlier 

workers for P. falciparum and found values ranging from 9 to 20.6 with an 

average of 12.3 per 2 days. 
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The Double Bite Rate, 1, was given a standard value of 0.1 double 

bites per host per day. Realistically, the Double Bite Rate is likely to vary 

from place to place, depending on the respective densities of mosquitoes 

and humans, and the biting habits of the mosquitoes. 

The parameter T is proportional to, though less than the 

epidemiological statistic, the Vectorial Capacity. The Vectorial Capacity is a 

measure of the mean numbers of human hosts to which an infectious host 

would pass on an infection per unit time given a fully susceptible population 

(Bailey 1982). In the model presented here;, not all double bites from an 

infected host will transmit parasites. If however this is the case, T and the 

Vectorial Capacity would be equal. 

Vectorial Capacities of malaria have been measured in many parts of 

the world at different times. The values have generally been in the region of 

0.2 to 30 per day (Graves et al. 1990; Molineaux and Gramiccia 1980; 

Rubio-Palis 1994). These values are higher than the value of 0.1 per day 

used here. However it has been pointed out by Bailey (Bailey 1982), that 

these measures generally assume that all infectious mosquitoes which bite 

a host transmit parasites to that host. This is not necessarily the case. It 

has been commented by Beier (Beier 1993) that, for non-immune 

volunteers, five infected mosquito bites are needed to pass on a P. 

falcipa rum infection reliably. Pull and Grab have estimated that the 

probability of a P. falciparum infected vector infecting a non-immune host is 

in the region of 0.026 (Bailey 1982; Pull and Grab 1974). Thus it may well 

be that many of the estimates, of Vectorial Capacity are 4-40 fold too high. It 

should also be noted that Vectorial Capacities are much easier to measure 

in areas which have high, rather than low levels of transmission , and so the 



measured range shown above, is likely to be biased to the high end of the 

distribution. 

The parameter c, determines the infectivity of parasites to the vectors. 

It determines both the proportion of vectors biting infected hosts that actually 

transmit parasites and the numbers of zygotes formed in such transmission 

events. A standard value of c = 1.0 is used in these simulations. With this 

value for c, if all infected hosts have parasite densities equal to their 

Carrying Capacities (K), then the mean number of oocysts formed in double 

bites from infected hosts would be 1.0. The tumber of studies examining 

oocyst (the visible product of a zygote) numbers in field caught mosquitoes 

is small (Billingsley et al. 1994). However, two recent studies have 

examined field data and, using the assumption that there is a Negative 

Binomial Distribution of oocyst numbers, estimates of the mean numbers of 

oocysts found in potentially infected vectors have been calculated. These 

estimates are 1.34 and 2.37 (Billingsley etal. 1994; Pichon etal. 1996 

respectively). Thus, the choice of a value for c of 1.0 is low, however it was 

not felt to be inappropriate. 

The density of parasites that are introduced into a host through an 

infectious bite, 0, is given a standard value of 2x10 5 . The numbers of 

sporozoites entering hosts has been shown to be small (Beier 1993; 

Ponnudurai etal. 1991; Rosenberg etal. 1990). However it seems likely 

that there is little density-dependent growth limitation until the parasites 

have left the liver. The number of parasites at this stage is considerably 

more, probably between 40,000 and 800,000 although occasionally more 

may occur (Lines and Armstrong 1992). Parasite numbers in febrile 

schoolchildren are in the region of 2 x 1010.  Thus, if we assume that the 
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Carrying Capacity for P. falciparum is in the region of 1010  or 1011,  a value 

of 0 of 2 x 10-  would appear reasonable. 

In conclusion, in this study it has been intended to use realistic 

parameter values wherever possible. This has not always been the case, 

and in hindsight some values may seem slightly higher or lower than is 

appropriate. However, these values are probably in the correct region of 

the parameter space. In Chapter 4 the parameter values are manipulated, 

and thus the effects of having inappropriate values for any of the 

parameters can be evaluated. 



3) The Dynamics of the Model 

3.1) Introduction 

In this chapter the hypothetical parasite population described in the 

model section is examined with time. It is important to understand the 

dynamics of the population for several reasons. Firstly, in the next chapter 

the effects of the different parameters on the outcome statistics of the model 

are examined, and values of the various statistics are measured once these 

statistics appear to be in a stationary distribution. An examination of how 

these statistics change with time helps to justify the choice of time steps 

used for examining the stationary distribution. 

Secondly, while this model incorporates aspects of the parasite 

population which show epidemiological as well as population genetic 

features (e.g. the proportion of hosts infected with parasites). Thus to some 

extent this model can be compared on purely epidemiological grounds to 

epidemiological models in the literature. 

Finally, one of the reasons for studying this hypothetical population is to 

make predictions as to what is occurring with malaria parasites in the field. 

In many cases, malaria populations will not be in a stationary distribution 

but in a state of flux. Whether due to the introduction of control 

programmes, or seasonal changes in mosquito numbers, or the introduction 

of new immunological strains (through mutation or migration), or etc., the 

dynamics, and therefore the genetics, of a malaria population may well be 

perturbed. It is therefore important to examine the hypothetical population 

presented here when it is not as well as when it is at a stationary 

distribution. 
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3.2) Results 

This section are presents the results of simulation runs where the 

standard parameters were used. The time courses of two specific 

simulations are examined in detail, and these show features typical to the 

other simulation runs. One of these, to be referred to in this section as 

'Simulation Run 1', is run with Initial Conditions A, as described in 

Section 2.2.1, with GST=O  for both loci. The other simulation will be called 

'Simulation Run 2', and is run under Initial Conditions B, which are also 

described in Section 2.2.1. Run 2 is initiated with GST=l  for both loci. In 

both cases the simulations are sampled every 4 days to produce the time 

course data. The statistics examined can be broadly separated into three 

groups: host statistics, vector statistics and parasite genetics. 

Unless otherwise stated, when the mean of a statistic is calculated 

over time, it is calculated between day 4000 and 5000, as described in the 

Section 2.2. 
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Mean Values at the Stationary Distribution of the Output Statistics 

Initial Condition A Initial Condition B 
0.940142 0:939312 

GST(d) 0.939454 0.940027 
0.939672 0.939991 
0.939737 0.940706 
0.819915 0.814303 

GSTln 0.827076 0.821827 
0.816303 0.816029 
0.814390 0.828402 
1.146634 1.153516 
1.135874 1.143826 
1.151131 1.151909 
1.153916 1.135567 
0.662414 0.673311 

Pinf 0.672420 0.665819 
0.667284 0.666921 
0.672902 0.664893 
1.534064 1.549564 

Zinf 1.543168 1.543041 
1.549157 1.541526 
1.535698 1.541291 

- 0.483969 0.488509 
P V  0.485909 0.485599 

0.486881 0.488663 
0.486717 0.486874 

- 5.182491 5.189862 
W 5.174132 5.159174 

5.166388 5.178418 
5.182063 5.148859 

Table 3.2a: 
The mean statistics presented are calculated from sample values taken every 2 days 
from day 4000 to day 5000, as described in Section 2.2. Values in the first column 
are calculated from simulations started with Initial Condition A and values in the 
second column are from simulations started with Initial Conditions B. The Standard 
Parameter Values are used. 
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A Comparison of the Effects of the Two Different Starting Conditions 
on the Output Statistics 

Initial Condition A Initial Condition B 

- (0.9400327) (0.9405669) 

GST(d) 
0.93975125 0.940009 
(0.9394697) (0.9394511) 

(0.8249031) (0.8263917) 

GST(n) 
0.81942101 0.82014024 
(0.8139390) (0.8138888) 

(1.154662) (1.1543019) 
1.1468888 1.1462045 

t (1.139115) (1.138107) 

- (0.673588) (0.67 1465) 

Pinf 0.66875501 0.66773599 
(0.663922) (0.664006) 

- (1.547371) (1.54765) 

Zinf 1.5405218 1.5438555 
(1.533673) (1.540053) 

(0.4871718) (0.4888377) 
0.48586899 0.48741125 

(0.484559) (0.485987) 

(5.183736) (5.187202) 

W 5.1762685 5.1690782 
(5.168801) (5.150954) 

Table 3.2b: 
Each statistic is calculated across 4 runs with each starting condition, these values are 
presented in bold. The numbers in parentheses above and below the mean values are 
the upper and lower 95% confidence limits respectively. The simulations were 
executed using the Standard Parameter Values. 



3.2.1) Host statistics 

There are two host statistics examined: the proportion of hosts that 

are infected (P) and the mean number of immuno-allelic alleles to which 

members of the host population are immune (W). Figure 3.2.1a examines 

how these two statistics change with time in Simulation Run 1. The upper of 

the two lines in Figure 3.2.1a shows how the proportion of hosts infected 

changes with time. Recall that the simulations are initiated with 20% of the 

hosts infected. In the data from the simulation run shown in Figure 3.2.1a, 

the fraction of infected hosts rises steeply from 20% to about 90% after 

about 90 days, and then falls to about 60%. The fraction of hosts infected 

then rises again to about 65%, and vacillates to either side of this value, 

having apparently achieved a stationary distribution. The mean proportion 

of hosts infected (averaging over time) was calculated using the procedures 

described in Section 2.2. As can be seen from the graph, the stationary 

distribution seems to be well established by day 4,000, and thus the 

decision to calculate the average from day 4,000 until day 5,000 appears to 

be justified. The average proportion of hosts infected, between day 4000 

and day 5000 (P 1 ), for this run is 0.662, with a variance of 1.24 x 10. 

During each time step for which data were collected, the number of 

alleles to which each host was immune were calculated, and the resulting 

values were averaged over hosts (W). The results of this calculation are 

shown, for Run 1, by the lower line in Figure 3.2.1 a. As can be seen from 

the figure, W starts at zero, rises to a maximum of about 5.60 on around day 

430, and then falls to about 5.2, wavering around this value for the 

remainder of the run. The variation in the average number of alleles to 

which individuals were immune was substantially less than the variation 



over time in the proportion of hosts infected. The value of W was 5.182, with 

a variance of 1.17 x 10. 

Simulations under Initial Condition A were repeated four times. In 

each case Pint  and W were calculated. The value for each repeat for both 

statistics can be found in the column labelled "Initial Condition A" in the 

Table 3.2a. It can be seen for both statistics that the values for each run are 

similar, and that, in Table 3.2b, the confidence limits for the means of these 

runs is relatively small in comparison to the mean. 

Figure 3.2.1b shows the data from Simulation Run 2 (GST=1). The 

shape of this graph for both Pinf  and W can be seen to be very similar to that 

found in Figure 3.2.1a for Simulation Run 1. The differences to be noted 

are that the maximum value for Pinf  is both larger (about 93%) and occurs 

later (around day 230) in Simulation Run 2. This is also true for W, which 

reaches a maximum of about 5.79 around day 520 in Simulation Run 2. 

The appearance and position of the stationary distributions achieved 

do, however, appear to be very similar. Tables 3.2a and 3.2b show that P, 

and W values for four different runs under Initial Condition B are very similar 

to those run under Initial Condition A. The mean values for these runs 

across each condition have overlapping 95% confidence limits. 
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The Proportion of Hosts Infected (P 1ç) and the Mean Level of 
Immunity (W) versus Time during Simulation Run 1 
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Figures 3.2.1a and b: 
Values are calculated and plotted every 4 days over the 5,000 days examined. 
Simulation Run 1 was started with Initial Conditions A and Simulation Run 2 was 
started with Initial Conditions B. The Standard Parameter Values were used. 
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3.2.2) Vector Statistics 

Figure 3.2.2a presents data on aspects of vector transmission during 

Simulation Run 1. The lower of the 2 lines shows the proportion of double 

bites that actually transmit parasites (P). It can be seen that there is a great 

deal of variation in this value over the time steps sampled, with the value 

occasionally going above 0.6 and occasionally below 0.4, but generally 

remaining within these bounds and vacillating around 0.5. The mean value 

of P, (over time) (Pu)  for the stationary distribution for Run 1 is 0.484. 

The upper line in Figure 3.2.2a shows the mean number of zygotes 

found in each infected vector in Run 1 (Z 1 f). There is a very substantial 

amount of variation in this value between time steps sampled in this 

simulation, with values as high as 2.0 and as low as 1.2. The mean value 

between day 4000 and day 5000 (Z) is 1.534. 

In Figure 3.2.2b, the same statistics (P u , and Z,f) are shown for 

Simulation Run 2. The shapes of the graphs for both statistics appear very 

similar to those in Figure 3.2.2a, with the values of P v  and Zinf being 0.489 

and 1.550 respectively. 

The comparison between the statistics -Pv  and Znf  for the two sets of 

starting conditions can be seen in Tables 3.2a and 3.2b. As for the host 

statistics described above, the means across four runs for these statistics 

are very similar under Initial Condition A and Initial Condition B, with 

overlapping 95% confidence limits. 

To study further any underlying trend that is occurring with either P 

or Zinf  during the period of the simulations, the values of each were 

replotted for Run 1, with each point plotted being the mean of the previous 
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20 time steps (4 days). This can be seen in Figure 3.2.2c. As can be seen 

there is still a lot of variation between points on the graph, but much less 

than when each point represented a statistic at a single time step. In this 

plot one can see more clearly that there appears to be no underlying 

change in the values of Z 1 f and that it appears to arrive at a stationary 

distribution immediately. 

With P s,, the lower line in Figure 3.2.2c, there is an initial rise in value 

to the region of 0.6, it then returns to a lower level within the first 500 days 

and remains in the region of 0.5 for the durathn of the simulation, with the 

appearance of a stationary distribution. 
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Figures 3.2.2a-b: 
Values are calculated and plotted every 4 days over the 5,000 days examined. 
Simulation Run 1 was started with Initial Conditions A and Simulation Run 2 was 
started with Initial Conditions B. The Standard Parameter Values were used. 
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The Proportion of Double Bites that Transmit Parasites (P) and the 
Mean Number of Zygotes per Transmitting Double Bite (Z1 11 f), averaged 

over time, versus Time during Simulation Run 1 
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Figures 3.2.2c: 
In this case, mean values of each statistic are plotted every 4 days, having been 
calculated from the measured values at each time step over the 40 previous time steps 
(4 days). Simulation Run 1 was started with Initial Conditions A. The Standard 
Parameter Values were used. 
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3.2.3) Parasite Genetics 

Figures 3.2.3a and 32.3b show how GST(d)  and Gs-r(fl)  change with 

time during Run 1 and Run 2 (Initiated with GST=O  and  GST=l  respectively). 

First, the value of GST(d)  will be examined, as represented in Figure 3.2.3a 

by the upper line. It can be seen that the value for GS-r(d) rises steeply from 

0.0 over the first few days until it reaches a value of about 0.85 on around 

day 130. There is then a short plateau before continuing to rise more slowly 

to what appears to be a stationary distribution',vacillating around 0.95. The 

value for GST(d)  for this run is found to be 0.940 with a variance of 1.92 xl 0 -5 . 

If we now turn to GST(fl)  (the lower line) in Figure 3.2.3a we can see 

that the value starts at 0.0 at the start of the simulation rising very steeply to 

a value of about 0.50. After this point the gradient becomes less steep, but 

continues to rise to a value around 0.82. The value then varies around this 

point with the appearance of a stationary distribution. The variation in 

GST(fl), once a stationary distribution has been reached, appears to be 

greater than it is for GST(d).  The value for GST(n)  for this run is found to be 

0.820 with a variance of 1.07 x 10-4 .  

Figure 3.2.3b shows the values of GST(d)  and  GST(fl)  with time in 

Simulation Run 2. The upper of the 2 lines represents the value GST(d). It 

can be seen that GST(d)  descends from an initial value of 1.0 to a minimum 

value of around 0.83 on around day 200 then rises again to around 0.95. It 

then varies around this value with the appearance of a stationary 

distribution. The value for GST(d)  in Run 2 was found to be 0;939. 

The lower of the two lines represents the value of GS-r(,).  This value 

starts initially at 1.0 then descends steeply to a minimum of about 0.69 on 
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around day 340 then rises again to a value around 0.82, it then vacillates 

around this value with the appearance of a stationary distribution. The 

value for GSI(n)  was found to be 0.814. 

Though the initial shapes of Figures 3.2.3a and 3.2.3b are very 

different, it can be seen that the apparent stationary distributions produced 

for both statistics when compared between the two runs appear very similar. 

This is confirmed by examining the values of GST(d)  and GST(n)  over several 

runs with Initial Condition A and Initial Condition B (see Tables 3.2a and 

3.2b). 

Figure 3.2.4 shows how the value of t changes with time in both 

Simulation Run 1 and Simulation Run 2. The shape of the curves in the 

two runs are similar. In both cases, the value of t starts at 1.0, rises to a 

maximum and then descends to a value of around 1.2 and then remains 

around this value, vacillating on either side with the appearance of a 

stationary distribution. For Simulation Run 1, the initial rise starts 

immediately increasing very steeply to a maximum value of around 1.64 

around day 80. For Simulation Run 2, however, there is a lag before the 

value starts to rise it then increases to a maximum of about 1.28 around day 

350. 
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Figures 3.2.3a and b: 
Values are calculated and plotted every 4 days over the 5,000 days examined. 
Simulation Run 1 was started with Initial Conditions A and Simulation Run 2 was 
started with Initial Conditions B. The Standard Parameter Values were used. 

78 



The value of t versus Time during Simulation Runs 1 and 2 
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Figure 3.2.4: 
Values are calculated and plotted every 4 days over the 5,000 days examined. 
Simulation Run 1 was started with Initial Conditions A and Simulation Run 2 was 
started with Initial Conditions B. The Standard Parameter Values were used. 
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3.3) Discussion 

In this chapter I have examined how various statistics from the 

hypothetical population change with time, given a set of standard parameter 

values. This was intended, in part, to justify the approach used in the next 

chapter, where the effects of manipulating the parameters of the model are 

examined. It is also useful for understanding the dynamics and 

epidemiology of the model. 

Let us first turn our attention to P r t and W. When the simulations 

began, no hosts were immune to any immuno-allelic alleles, and 20% of the 

hosts were infected. Once the simulations started, an 'epidemic' swept 

through much of the population in both simulations, causing a peak with a 

large number of hosts infected. The numbers infected then descended to a 

low value before approaching a stationary distribution. This "boom and 

bust" cycle is found in other epidemiological models of the spread of a 

disease through a susceptible population (e.g. Anderson and May 1992; 

Gupta etal. 1994a). It is likely that the reason for the epidemic rise and 

crash in Pinf  is similar to the causes in these other models. Namely, as the 

infection spreads through the susceptible population, the numbers of hosts 

susceptible to new infection (those that are uninfected and not immune to 

parasite infection) become smaller. At some point the number of hosts 

infected cannot be sustained, as the rate of generation of new hosts is lower 

than the rate of generation of susceptible hosts (through loss of immune 

memory, or through birth of new hosts). At this point Pf decreases until the 

numbers of susceptible hosts are sufficiently replenished for another 

(smaller) epidemic to occur. 



In other models there are often several damped oscillations before 

an equilibrium state is achieved (e.g. Anderson and May 1992; Gupta etal. 

1994a). In the equilibrium state there are enough susceptible hosts for any 

loss of infections through host death and immune clearance to be 

compensated for by the generation of new infections. Likewise, the loss of 

susceptible hosts through infection and immunity is compensated for by the 

birth of new hosts and the loss of immunity. 

There are a number of factors that might explain the fact that, in the 

present model, a long series of cycles in the Pi,f and W values do not occur, 

as they do in other, related models. Perhaps the most obvious factor is that, 

in the present study, the length of immune memory is short in comparison to 

the other models cited above. It has been shown that a short immune 

memory can suppress cycling (Gupta et a11994a). The present model 

differs from previous work in a number of other ways, and these other 

differences may also suppress cycling. For example, in the present study, a 

larger number of immuno-allelic alleles were used than is the case in 

previous work. Preliminary explorations of a modified model showed more 

cycling when the number of alleles was reduced. 

It has been pointed out in Section 2.3 that the model employs a 

simplification of vector transmission, in that transmission occurs in a single 

time step, whereas in a real population, there would be several days 

between a mosquito gaining an infection from a host and transmitting it to 

another host (the "Extrinsic Incubation Period"). This is unlikely to affect the 

values of statistics at the stationary distribution, but may affect the dynamic 

epidemiology of the model. Although the effects of this lag have not been 

examined, it is possible to speculate as to its effects on the results. A lag 

between the initiation of a transmission event and its conclusion is likely to 



increase the sizes of the epidemic boom and bust cycle in the epidemic 

phase of the infection, due to the lag in the negative-feedback loops 

inherent in the model. Thus, in a model that took into account the Extrinsic 

Incubation Period, one might expect to find a larger initial epidemic rise and 

crash in Pinf,  and more cycles before a stationary distribution is reached 

than is found in the model presented here. 

The proportion of hosts infected in this model stabilised at around 

65%. There is a wide variety of estimates of prevalence of P. falciparum 

infections in different studies and in different parts of the world. Much of this 

may be due to differences in transmission rates in the populations. This can 

be shown by examining the seasonal variation in prevalence in a region. In 

the Garki project in Nigeria (Molineaux and Gramiccia 1980), prevalence 

levels were found to vary from approximately 45% to around 60% from the 

wet season to the dry season. Unfortunately, estimates of prevalence in 

may studies are likely to be low. This has been shown by the recent use of 

PCR (polymerase chain-reaction) technology where it has been found that 

many low parasitaemias in hosts go undetected when the more traditional, 

microscopical methods are used (e.g. Felger etal. 1995; Roper etal. 1996). 

Thus, it is only possible to say that the prevalence rates in this study are in 

the right order of magnitude for many field studies. 

It should also be noted that, in this model, all malaria infections are 

infectious to the vector (though to differing levels depending on the parasite 

density). This does not appear to be the case in malaria populations in the 

field, where hosts may be infected with malaria parasites, but are not 

infectious to mosquitoes. Gupta and co-workers (Guptaetal, Swinton and 

Anderson 1994a) estimated that only one quarter of malaria infections are 

in fact infectious. Thus, if the value of P j f is compared purely to the 



prevalence of infectious hosts in a natural population, it is likely to be too 

high. 

The large degree of variation between the time points sampled for 

both Z1 f and P, can be explained by the small number of transmission 

events that occur in any one time step. Only about 65% of the 6000 hosts 

were infected for most of the simulation run and on average, 0.01 potential 

transmission events per infected host may occur during a single 

transmission event. Thus, there would be approximately 36 potential 

transmission events in any time step sampled.' With such a small number of 

events one would expect a wide variation in the means of P,, and 

When each point plotted is an average over a large number of time 

steps, the variance is, as one would expect, much less. There seems to 

have been very little variation through time in the level of either P, or Z 1 f 

when averaged over time. P v  did show a small rise and fall at the 

beginning of the run, and then remained roughly constant for the rest of the 

time course. As these two statistics depend on the degree of infection in 

each infected host, and not the number of hosts infected, it would appear 

that, though there were quite wide initial fluctuations in P 1 f, there was very 

little change in the distribution of parasite densities among the infected 

hosts through the simulation run. 

It is, unfortunately, very difficult to compare the value of P v  to that 

found in the field. The statistic, P v  measures the proportion of vectors that, 

having bitten infected hosts, actually acquire an infection. This is 

exceedingly difficult to measure in a field situation. It has,. however, been 

studied by feeding laboratory reared mosquitoes on naturally infected hosts 

in Papua New Guinea. In this case, P, was found to have a value of 0.38 



(Graves et al. 1988), as opposed to the value at the stationary distribution in 

this study of approximately 0.48. 

The mean number of zygotes found per infected mosquito (Z) was 

found to have a value of approximately 1 .54 at the stationary distribution. 

This is very close to the maximum, sustainable value for Z 1 f of 

approximately 1.58 (1/(1-e), with c=1.0), which would only occur if all 

infected hosts had parasite densities equal to the Carrying Capacity (K). 

Thus it must be the case that, With the Standard Parameter Values, most 

infected hosts do indeed have very high parasite densities, either at or near 

the Carrying Capacity. 

Oocyst counts from natural mosquito populations have only rarely 

been examined (Billingsley et al. 1994). However, from the data of 

Billingsley (Billingsley et al. 1994) and Pringle (quoted in 6Pichon et al. 

1996) estimated values for Z 1 f of 7.22 and 13.8, respectively, can be made. 

These values are much higher than that measured in this study. There 

appear to be two reasons for this. Firstly, as stated in Section 2.4, the value 

of c chosen for the Standard Parameter values is too low, and therefore Z 1flf 

could not be as high as that found in natural mosquito populations. 

Secondly, the basis for the distribution of zygotes amongst vectors in this 

model is a Poisson Distribution (PD), whereas the distributions of oocysts 

found in these studies appear to be Negative Binomial Distributions 

(NBDs). NBDs are likely to produce more mosquitoes with a large number 

of oocysts than a PD is. This is likely to increase the mean value of oocysts 

in infected mosquitoes compared to a PD. Thus, even if the same mean 

number of oocysts (across all vectors) is found, a population with an NBD 

would have a higher value for Z 1 f than one with a PD. 



It is important to note that, despite very different starting values for 

GST at the two loci and in the two simulation runs, in both cases the GST 

values appear to achieve stationary distributions in less than 1,000 days. It 

should also be noted that Hastings's prediction that GST(d)  would be greater 

than Gs-r(fl)  (Hastings 1996) holds up under this particular set of parameters. 

This is the case, not only when a stationary distribution has been reached, 

but during the initial changes in values too. 

The value of GST(d)  in real malaria parasites is, of course, not known, 

as it is only postulated that an immuno-allelic'locus truly exists. However, 

several estimates of parameters closely related to GST(fl)  have been made in 

several parts of the world, suggesting Gs-i-(n)  values from approximately 0.3 

in Tanzania (e.g.Babiker etal. 1994; Hill etal. 1995) to approximately 0.9 in 

Papua New Guinea (Paul et al. 1995). The value at the stationary 

distribution in these simulations of GsT() = 0.82, is clearly in this range, and 

closer to that found in Papua New Guinea than Tanzania. 

The value of t in both simulations is always found to be above 1.0, 

and produced a peak value well above that found at the stationary 

distribution. This is important to note, for it suggests that if one plans to look 

for an immuno-allelic locus in a malaria population in the field, even if that 

population appears to be far from a stationary distribution, then the 

difference between GST(d)  and  GST(fl)  may well still be detectable. In fact, it 

may even be greater at the time studied than when the stationary 

distribution is reached. In both simulations, the stationary distribution was 

achieved within 1000 days. 

It should also be noted that for each statistic examined in Simulation 

Run 1 and Simulation Run 2, a stationary distribution appears to have been 



realised well before day 4000 when observations started to be collected to 

produce a mean over time. Furthermore, even in statistics which showed 

great variation from one time step to the next, such as the mean number of 

zygotes transmitted by infected vectors the mean with time showed 

very little variation between repeated simulations. It should also be noted 

that no significant differences between the two starting conditions are found 

in the mean values of any of the statistics collected. This helps support the 

view that a stationary distribution has indeed been reached by day 4000. 



The Stationary Distributions of the Model 

4.1) Introduction 

In this chapter, the parameters of the model are manipulated, and the 

effect of this on the values of the output statistics at the stationary 

distribution are examined. It is important to examine the effects of 

parameter manipulations for a number of reasons: 

Without examining the effects of manipulations of parameters, it is 

very difficult to gain any understanding as to the underlying processes 

acting in the model, and the relative magnitude of their effects. 

The choice of standard parameter values, though intended to be 

as close to the true nature of malarial biology as possible, may be 

unrealistic, or may vary from place to place in the a natural population (e.g 

the host population size and the Double Bite Rate). To understand the 

effects an inappropriate value for a parameter may have, it is important to 

alter its value and observe what effects (if any) occur. The model may be 

very sensitive to the precise values of some parameters, but relatively 

insensitive to the values of others. 

It is also the case that different anti-malaria intervention strategies 

are likely to have different effects on various aspects of the parasite's 

ecology. Anti-mosquito strategies are likely to reduce the Vectorial 

Capacity in a population (in this mbdel, this is proportional to the Double 

Bite Rate, see Section 2.4). However, a vaccine may reduce the size of the 

susceptible population (equivalent to reducing the size of N), or reduce the 



period an infection may last (equivalent to increasing the rate of immune 

recognition (p)), or even reduce the numbers of immunologically distinct 

strains in a population (equivalent to reducing the value of D in this model). 

Thus, to understand the possible effects of malaria control strategies on the 

population genetics of parasites, one needs to understand the effects of 

different parameter values on the outcomes of this model. 

As has been stated in Section 2.3.3, restrictions on computer time 

prevented a thorough examination of the parameter space of the model. 

Thus it was decided to alter each parameter independently against a 

background of standard values for the other parameters. 	For further 

discussion see Section 2.3.3. 
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4.2) Results 

4.2.1) Host population size (N) 

A range of host population sizes from 2000 hosts to 10,000 was 

examined. As can be seen from Table 4.2.1a, there are no discernible 

effects of population size on any of the output statistics examined. To 

confirm this, a larger number of simulations were performed with N=2,000 

and N=10,000 so that a more powerful analysis could be done. A total of 

ten runs were done with each of the two population sizes, and their means, 

variances, and standard errors are shown in Table 4.2.1 b. 

To compare the mean values between these two population sizes for 

each output statistic, Welch's Approximate t-Test (Sokal and Rohlf 1995) 

was used. The results of this test for each output statistic is presented in 

Table 4.2.1b along with information on the power of the test. It can be seen 

that there is no significant difference in the mean value for any of the output 

statistics with the two different population sizes. The power of the test 

shows that, in most cases, less than a 1 % difference in mean value of these 

statistics would be significant at the p=0.05 level. Therefore, it is very 

unlikely that a substantial difference in the output statistics would have been 

missed. 

Table 4.2.1b also presents the results of the F max  Test (Sokal and 

Rohlf 1995) for each output statistic. This test compares the variances of 

different samples. The table shows that, for all of the output statistics, there 

is a significantly larger variance among the mean values of each statistic for 

each simulation run when the simulations are done with the small 



population size (N=2000) compared to when the larger population size 

(N=10,000) is used. 

The statistical tests described above assume a Normal Distribution of 

the data analysed. Although there is no strong evidence for normality, it is 

a useful working hypothesis, especially as the tests used are based on F 

statistics which are robust to deviation from the Normal Distribution. Only if 

data is highly asymmetric (i.e. highly skewed) is there a much increased 

chance of error (J. Haig, University of Sussex, pers. corn.). 

In Figures 4.2.1a-g, a graphical representation of the data used for 

each analysis is shown. It can be seen that the data are not highly 

asymmetrical and thus, the use of F statistics seems to be appropriate. It is 

assumed that the data presented in this chapter are drawn from the same 

family of distributions, and thus the application of F statistics is appropriate 

in all cases. 



The Effects of Population Size (N) on'the Output Statistics of the Model. 

N GST(d) GST(n) t Pjf Zunf PV W 

2,000 0.9416505 0.834956 1.1278095 0.662226 1.541459 0.4867245 5.135239 

7.82 10-' 14.20 10-3  14.74 iO 1.14 	10-  4.38 10-3  14.35 10-5  10.0203 

4,000 0.94065 0.824996 1.140189 0.664849 1.546047 0.487698 5.170577 

4.87 10-  1.14 10 9.79 10 2.07 10 3.09 10-4  1.63 10-  0.017 

6,000 0.939880 0.819780 1.146547 0.6682456 1.542189 0.4866401 5.172673 

1.55 	10 5.57 10 -  7.51 	10 4.12 10 5.53 10-  1.53 	iO-  0.0136 

10 9 000 0.9404155 0.8209145 1.145572 0.666747 1.545596 0.487579 5.166396 

1.52 10-  2.95 10 1.31 	10 2.48 10 7.53 10-4  1.20 iO-  0.013 

Table 4.2.1á: 
In most cases, the means and standard errors of each statistic are calculated from two simulation runs, one with Initial Condition A, the other 
with Initial Condition B. The only exception is for N=6000, in this case, eight runs were done, four with Initial Condition A and four with 
Initial Condition B. The mean values of each statistic are presented in hold, the standard errors are in parentheses underneath their respective 
means. Apart from the parameter N, the Standard Parameter Values were used. 



The Effects of Population Size (N) on the Output Statistics of the Model 

N GST(d) GST(n)  P 1 f Zint P V  W 

2000 0.9403 0.8249 1.1399 0.6665 1.5474 0.4880 5.1549 

[2.21 x 10-6] [7.17 x 10-5 ] [1.118 x 	10-4 ] [3.086 10-5 1 [9.788 x 10- ] [1.708 x 10-5 ] [1.000 10- 1 
(4.700 x 10-4 ) 1  (2.67 x 10-3 ) T(3.34 x 10) (1.757 x 10) (3.129 x 10-3 ) (1.307 x 10-3 ) (0.0100) 

10,000 0.9402 0.8211 1.14507 0.6682 1.5444 0.48726 5.1693 

[3.467 x .10-7
] 

[8.770 x 10-6]  [1.722 x iO- i [3.9102 x 10-6]  [2.725 x iO - ] [4.781 x 10-61  [1.383 x 10-4 1 
(1.862 x 10) (9.64 x 10) (1.312 x 	10-3 ) (6.253 x10 4 ) (1.651x 10) (6.914 x 10-4 ) (3.720 x 10-3 ) 

t 0.198 ns 1.340 ns 1.439 ns 0.911 	ns 0.848 ns 0.500 ns 1.350 'is 

Power 1.14 x 10 6.39 x iO 8.08 x iO 4.21 x 10-3 7.98 x 10-3  3.34 x 10-3  0.0241 

Fmax 6.37* 8.18** 6.49* 7.89** 3.59 357* 7.23 

Table 4.2.1b: 
The mean, variance, and standard error for each statistic are calculated from 10 simulation runs, five with Initial Condition A, the other five 
with Initial Condition B. The mean values of each statistic are presented in bold, the variances are presented underneath their associated 
means in square brackets and the standard errors are under those in parentheses. Apart from the parameter N, the Standard Parameter Values 
were used. The row labelled " t 	shows values of t, calculated for Weiche's Approximate t Test (Sokal and Rohlf 1995) for each output 
statistic. The letters "ns" beside a value of t signifies this value was not found to be significant at the p=0.05 level. The Row labelled 
"Power" gives values for the minimum difference between means which would he statistically significant (p<0.05) using Weiche's 
Approximate t Test (The calculation of this value is explained iii Appendix 3). The row labelled "F 11 " shows values of the statistic F 11  
calculated for the 	test (Sokal and Rohlf 1995). The symbol '' beside an F,,,,, x  value signifies that the difference in variances was 
found to he significant at the p=0.Ol level, whereas the letters "ns' signify that the statistic was not found to he significant at the p=().US level. 



The Effects of Population Size (N) on the Output Statistics of the 
Model. 

g. 4.2.la 
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Fig. 4.2.1c 
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Figures 4.2. la-g (Figures 4.2. le-g overleaf): 
The values of the output statistics are presented for the 10 simulation runs (five with 
Initial Condition A, the other five with Initial Condition B) with two different values 
for N. Apart from the parameter N, the Standard Parameter Values were used. 
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The Effects of Population Size (N) on the Output Statistics of the 
Model (continued). 

Fig. 4.2.1e 
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4.2.2) Aspects of transmission 

4.2.2.1) Double Bite Rate (T) 

The rate at which potential transmission events occur can vary from 

place to place in the real world, and will depend on the densities of both 

mosquitoes and humans. A range of Double Bite Rates from 0.05 per day 

to 2.0 per day was examined. 

In Figure 4.2.2.1 a, the upper, dashed line represents the values of 

Gs -r(d) as a function of T, the Double Bite Rate. It can be seen that, as T 

increases, GST(d)  appears to fall towards an asymptotic value of around 0.9. 

The value of GST(d)  decreases from 0.982 to 0.940 (an average rate of 

change of 0.70 per unit of T) when T is increased from 0.05 to 0.1 per day. 

However it decreases from 0.900 to 0.898 (an average rate of change of 

0.02 per unit of T) with a change in T from 1 .0 to 2.0 per day. Thus, over the 

range of T examined the value of GST(d)  drops slightly below 0.9 and 

appears to be approaching or have arrived at an asymptotic value at the 

higher levels of T. 

The lower, solid line in Figure 4.2.2.1a represents the values of 

GST(fl). The effects of T on GST(n)  is much greater than that on GS-i-(d).  As with 

as T increases, the value of GST(fl)  goes down. With Gs-r(fl)  the value 

decreases from 0.953 to 0.823 (an average rate of change of 2.6 per unit of 

T) with the increase of T from 0.05 to 0.1 per day, and from 0.437 to 0.340 

(an average rate of change of 0.097 per unit of T) with the increase of T from 

1.0 to 2 per day. Thus, although The rate of change in Gsl-(fl)  with T is 

greater than the rate of change in GS-i-(d)  for any range of values if T 

examined, in both cases, the rate of change with T also declines as T 



increases. No asymptotic value for Gs-r(n)  is found over the range of values 

of T examined. 

Figure 4.2.2.1a clearly shows that, as T increases, not only do the 

values for Gs-j-  at the two loci decrease, but the difference between GST(d) 

and GST(n)  increases. This is shown in Figure 4.2.2.1 b, where the effect of T 

on t is shown. The value of t rises from just above one (1.03) to above 

two (2.64) over the 40 fold range T examined. 

In Figure 4.2.2.1c, the effect of T on W, the mean level of host 

immunity, is represented by the solid line. The larger the value of T, the 

larger the value of W, although the rate of increase with T of W declines as T 

increases. Thus, the value of W is very low (2.47) when T=0.05 per day, 

rising steeply to a value of 5.17 when T=0.1 per day. However when T was 

increased from 1.0 per day to 2.0 per day, the value of W was found to 

increase only from 7.97 to 8.04. At this point W appears to be close to 

reaching an asymptotic value. 

Figure 4.2.2.1c also shows the effect of T on the statistic Pinf,  the 

mean proportion of hosts infected. This is represented by the broken line in 

the figure. As with the value of W, as the value of T increases, so does the 

value of Pinf  and the rate of increase with T declines. The value of Pinf 

appears to approach an asymptote, in this case, with a value of around 0.88 

at the larger values of T. 

The changes in the value of P v  with T are shown in Table 4.2.2.1 a. 

These changes are small, and thus statistical analysis to see whether they 

were explicable by chance alone seemed appropriate. Examination of the 

estimated variances for each value of -Pv  suggests that the variance may 

be varying greatly between the treatments, and therefore a simple ANOVA 



analysis is inappropriate. This is because, when levels of the independent 

variable lead to different levels of within-group variance, it is not valid 

simply to average the estimates of within-group variance and then use this 

average in the ANOVA. To deal with this problem, standard ANOVAs are 

carried out, but for the estimate of within-group variance (the MS WIthjfl) the 

largest sample variance found in any of the treatment groups is used (the 

degrees of freedom are unchanged from a standard ANOVA). Thus in the 

present instance, the sample variance of 7.37 x 10-6  is used (see Table 

4.2.2.1b). This procedure involves a loss of statistical power, but it ensures 

that the probability of type-1 errors is less than the stated p values. In other 

words, the procedure is crude, but rigorous. 

Using this method, despite the loss of statistical power, a significant 

difference (at the p=0.05 level) was found in the values of P v  with different 

values of T. This result is presented in Table 4.2.2.1 b. 

The effects of Ton Zinf  is also shown in Table 4.2.2.1 a. There is little 

change in the values of Zinf  with each value of T. The Modified Anova 

analysis of the values of Zinf  with T is presented in Table 4.2.2.1c. No 

significant difference in the values of Zinf  with different values of T was 

found at the p = 0.05 level. 

The changes observed in both P v  and Z m f are small. Thus even if 

these differences are not caused by chance, but by some underlying trend, 

these differences seem unlikely to have a major bearing on the main 

statistics of interest (namely GS-r(d), GS1(n) and ). 

As described in the methods section, only a small number of 

simulations are used to calculate the values of each output statistic for each 

set of parameter values used. Thus accurate measures of variance are 
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difficult to obtain. During the rest of this chapter, when Anova analysis is 

needed, the Modified Anova Analysis described above is used. 

The Effects of the Double Bite Rate (T) on GST 

1 

0.9 

0.8- 
 -.\

.T(d). . 

.-- 

0 

0.6 	

..................... 

0.5 . 
ST(n) 

0.4 .- - 

0.3-  

0 	0.5 	1 	1.5 	2 	2.5 
Fig. 4.2.2.1 a 	 I (per day) 

Figures 4.2.2.1a - c (Figures 4.2.2.lb-c overleaf): 
Mean values are plotted with their standard errors represented as error bars. In most 
cases, the means and standard errors are calculated from two simulation runs, one with 
Initial Condition A, the other with Initial Condition B. The only exception is for 
T=O. 1 per day, in this case, eight runs were done, four with Initial Condition A and 4 
with Initial Condition B. Note the small size of the standard errors make the error 
bars difficult to distinguish. Apart from the parameter T, the Standard Parameter 
Values were used. 
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The Effects of Double Bite Rate (T) on P and Z 

T (per day) P V  Zinf 

0.05 0.44893 1.5472 

[9.94 x 10-8]  [1.10 x 10-6] 

(2.23 x 10 -4) (7.42x 10-4) 

0.1 0.486640 1.54219 

[235 x 10-61  [3.06 x 10 -41 
(5.42 x 10-4) (1.95 x 10) 

0.5 0.51278 1.54609 

[7.37 x 10 -6 ] [1.16 x 10-5 ] 

(1.92 x 10 -3 ) (2.41 x 10-3 ) 

1.0 0.51270 1.5453 

[8.82 x 1010]  [3.98 x 10] 

(2.1 x 10-5 ) (4.46 x 10-4) 

1.5 0.51095 1.5456 

[1.25 x 10-8]  [1.79 x 10-6] 

(7.9 x 10-5 ) (9.45 x 10) 

2.0 0.50793 1.54578 

[1.19 x 10-6]  [4.51 x 10] 

(7.73 x 10-4) (4.75 x 10-5 ) 

Table 4.2.2.1a: 	 - 
In most cases, the means, variances and standard errors of P.,, and Zinf  are calculated 
from two simulation runs, one with Initial Condition A, the other with Initial 
Condition B. The only exception is for T= 0.1 per day, in this case, eight runs were 
done, four with Initial Condition A and 4 with Initial Condition B. The mean value for 
each statistic is presented in bold, while the variances are presented underneath their 
associated means in square brackets and the standard errors are under those in 
parentheses Apart from the parameter T, the Standard Parameter Values were used. 
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Modified Anova Analysis of Pv  with different values for T. 

Source of 	Degrees of 	SS 	 MS 	 Fs Variation 	Freedom 
Between 5 	 6.855 x 10-3 	1.371 x 10-3 	186** 
Treatments 

Within 12 	 (1.66 x 10-5 ) 	7.37 x 10-6 I Treatments 

Total 	17 	 6.872 x iO 
Table 4.2.2.1b 

Modified Anova Analysis of Zinf  with different values for T. 

Source of 	Degrees of 	SS 	 MS 	 Fs Variation 	Freedom 	 -- 
Between 
Treatments 

Within 	12 Treatments 

Total 	17 
Table 4.2.2.1c 

6.87 x 10 5 	1.37 x 10 	0.447 ns 

(2.29 x 10- ) 	3.06 x 10-  t 

2.98 x iO 

Tables 4.2.2.1b and C: 
SS signifies the "Sum of Squares", while MS signifies the "Mean Square". The SS 
value for the Within Treatment row is in brackets to show that this value was not used 
to calculate the Within Treatment MS. Instead the largest Within Treatment Variance 
was used (see Section 4.2.2.1). This largest Within Treatment Variance is labelled 
with the symbol "t"  The symbol "**" beside a value of Fs signifies that the statistic 
was found to be significant at the p=O.Ol level, whereas the letters "ns" signify that the 
statistic was not found to be significant at the p=0.05 level. 
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4.2.2.2) Coefficient of vector infectivity (c) 

The parameter c denotes the degree of infectiousness of the 

parasites within hosts to the vectors. The larger the value of c, both the 

greater the probability that double bites from an infected host actually 

transmit parasites to another host, and also, the greater the number of 

zygotes formed in such bites (see Section 2.1). 

In Figure 4.2.2.2a, the effects of c on the GST  values at the two loci 

under study can be seen. The upper, broken line represents the effect of c 

on GST(d).  It can be seen that the value of GST(d)  appears to descend 

asymptotically from a value of around 0.97 when c=0.5 towards a value of 

around 0.93 when c has a value of 2.5. 

The lower, solid line in Figure 4.2.2.2a represents the values of Gs -I-() 

with different values of c. As with GST(d),  as c is increased, the value of 

0ST(n) decreases. The rate of decrease with c declines as c gets larger. 

Unlike the value of GST(d),  that of Gs]-(fl)  does not appear to be approaching 

an asymptote in the range of values examined. 

In Figure 4.2.2.2b, the value of t is shown in relation to c. It can be 

seen that as c increases, so does , and that this rise appears to be roughly 

linear over the range of values examined. It is found that t has a value of 

1.05 when c=0.5, and a value of 1.38 when c=2.5. 

In Figure 4.2.2.2c, the upper, broken line represents the value of Pinf 

(the mean proportion of hosts infected) with different values of c. The value 

Of Pinf increases with increased values of c. For example, when c=0.5, Pinf =  

0.48 and when c=2.5, Pinf = 0.75. Although Pinf  increases with increasing 

values of c, the rate of increase declines as c gets larger. 
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The lower, solid line in Figure 4.2.2.2c represents the values of W 

with different values of c. As c is increased, W is found to rise too. As with 

the rate of increase of W with c declines as c increases. 

The upper, solid line in Figure 4.2.2.2d represents the value of P. 

As c is increased, the value of iP v  increases. Once again, the rate of 

increase in Pv  decreases with increasing values of c. 

The lower, broken line in Figure 4.2.2.2d represents the values Z. 

The value of Zinf  increases from 1.26 to 2.58 over the range of c examined. 
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The Effects of the Coefficient of Vector 
Infectivity (c) on GST 
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Figures 4.2.2.2a - d (Figures 4.2.2.2c - d on following pages): 
Mean values are plotted with their standard errors represented as error bars. In most 
cases, the means and standard errors are calculated from two simulation runs, one with 
Initial Condition A, the other with Initial Condition B. The only exception is for 
c=1.0, in this case, eight runs were done, four with Initial Condition A and 4 with 
Initial Condition B. Note the small size of the standard errors make the error bars 
difficult to distinguish. Apart from the parameter c, the Standard Parameter Values 
were used. 
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The Effects of the Coefficient of Vector 
Infectivity (c) on P1 f and W 
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4.2.2.2.1) Modifying the model to hold the numbers of zygotes constant 

As has been stated above, the value of c has two direct effects in the 

model. Firstly, c controls the numbers of zygotes transmitted by an infected 

vector. Secondly, the value of c also effects the proportion of vectors that 

transmit parasites from one host to another. To separate these effects, 

simulations were run with different values of c, but with the numbers of 

zygotes that any infected mosquito transmitted artificially fixed at either one, 

two, or three, depending on the specific simulation run. Thus the effects of c 

could, at least in part, be distinguished. 

In Figure 4.2.2.2.1 a, the effects of c can be seen on the values of GST 

at the two loci. The upper group of lines, shows the effects of c on 

under the conditions of having the number of zygotes fixed at either one, 

two or three zygotes. These lines are very difficult to distinguish by eye, 

with the greatest difference between any two values being less than 0.5%. 

However, the differences between these three conditions is found to be 

statistically significant (see Table 4.2.2.2.1a for analysis). The shape and 

position of this group of lines is very similar to the line formed when GST(d) 

was plotted against c with the number of zygotes not fixed (see Figure 

4.2.2.2a). 

The lower group of lines in Figure 4.2.2.2.1a represent the values of 

GsT(n) when the number of zygotes are fixed. For each value for the number 

of zygotes, as c increases, GST(n)  declines. This is also the case when the 

number of zygotes is not fixed (see Figure 4.2.2.2a). The rate at which 

GST(fl) decreases with increasing c is, however, less when the number of 

zygotes is fixed than when it is not. It is also evident that for any particular 
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value of c, the value of GST( n) decreases with the numbers of zygotes 

present. 

Figure 4.2.2.2.1b shows the effect of c on the value of t . It can be 

seen that whether the number of zygotes are fixed to one, two or three, 

increases with increasing values of c The rate of increase in t with c 

becomes greater as the numbers of zygotes are increased. 

If we now examine Figure 4.2.2.2.1 c, we can look at the effects of c, 

with a fixed numbers of zygotes, on the value of P. The lines representing 

this effect under the conditions of one, two or three zygotes are tightly 

bunched together. 	Statistical analysis using the Modified Anova (see 

Table 4.2.2.2.1 b) showed that any differences in value of Pin  between the 

three different conditions can be explained by chance alone. If this group 

of lines are compared to the line representing the value of P j f with different 

values of c when the numbers of zygotes was not fixed (see Figure 

4.2.2.2.1c), then it can be seen that the shape and position of these line are 

very similar to those when the number of zygotes was not fixed. 

The other group of lines in Figure 4.2.2.2.1c represents the mean 

proportion of double bites, biting from infected hosts, that transmit parasites 

(Pu), as c is altered, under the three different conditions. Once again, these 

lines are tightly bunched together, and no significant effect is found when 

the numbers of zygotes are altered on the values of P (see Table 

4.2.2.2.1 c). 
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Figure 4.2.2.2.1d shows the effects of c on the mean level of host 

immunity (W). Under all three conditions, when the value of c is increased, 

the value of W increases as well. However, the greater the number of 

zygotes, the greater the value of W for any particular value of c. Though 

this difference is slight, it is significant (see Table 4.2.2.2.1d). 



The Effects of the Coefficient of Vector 
Infectivity (c) on GST  with Fixed Numbers of Zygotes. 
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Figures 4.2.2.2.1a - d (Figures 4.2.2.2.1c - d on overleaf): 
Mean values are plotted with their standard errors represented as error bars. In most 
cases, the means and standard errors are calculated from two simulation runs, one with 
Initial Condition A, the other with Initial Condition B. The only exception is for 
c=1.0, in this case, eight runs were done, four with Initial Condition A and 4 with 
Initial Condition B. Note the small size of the standard errors make the error bars 
difficult to distinguish. Apart from the parameter c, the Standard Parameter Values 
were used. 
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Two Way Modified Anova Analysis of GST(d)  with different values for 
c and different numbers of zygotes. 

Source of 	Degrees of 	SS 	 MS 	 Fs Variation 	Freedom 

Due toc 3 5.62 x 10 1.87 x 10 	1341** 

Due to Number 2 1.289 x 10 6.45 x 10-5 	46.3** 
of zygotes 

Interaction 6 3.9 x 10-6  7 x 10 	0.50 ns 

Error 12 (1.33 x 10) 1.39 x 106t 

Total 23 5.77 x iO 
Table 4.2.2.2.1a 

Two Way Modified Anova Analysis of Pj with different values for c 
and different numbers of zygotes. 

Source of 	Degrees of 	SS 	 MS 	 Fs Variation 	Freedom 	 --- -  - 

Duetoc 	3 	 0.15884 	0.05295 	12.6** 

Due to Number 
of zygotes 	2 	 0.01004 	5.02 x 10- 	1.19 ns 

Interaction 	6 	 0.02343 	3.9 x 10 	0.93 ns 

Error 	12 	 (0.0504) 	4.2 x 10 3 t 

Total 	23 	 0.24272 
Table 4.2.2.2.1b 

Tables 4.2.2.2.1a - d (4.2.2.2.1c - d overleaf): 
SS signifies the "Sum of Squares", while MS the "Mean Square". The SS value for 
the Error row is in brackets to show that this value was not used to calculate the Error 
MS. Instead the largest Within Treatment Variance was used (see Section 4.2.2.1). 
This largest Within Treatment Variance is labelled with the symbol "V'S  The symbol 
"**" beside a value of Fs signifies that the statistic was found to be significant at the 
p=O.Ol level, whereas the letters "ns" signify that the statistic was not found to be 
significant at the p=O.OS level. 
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Two Way Modified Anova Analysis of P with different values for c 
and different numbers of zygotes. 

Source of 	Degrees of 	SS 	 MS 	 Fs 
Variation 	Freedom  

Due toc 3 0.5731 0.1910514 	2,233** 

Due to Number 2 1.17 x b-s 5.8 x 10-6 	0.07 ns 
of zygotes 

Interaction 6 1.85 x iO 3.1 x 10-6 	0.04 ns 

Error 12 (1.43 x 10) 8.55 x 10 5t 

Total 23 0.57332 
Table 4.2.2.2.1c 

Two Way Modified Anova Analysis of W with different values for c 
and different numbers of zygotes. 

Source of 	Degrees of 	SS 	 MS 	 Fs Variation 	Freedom  

Due toc 3 25.688 8.5629 	2,414** 

Due toNumber 2 0.1074 0.05368 	15.1** 
of zygotes 

Interaction 6 6.3 x iO 1.1 x iO 	0.03 ns 

Error 12 (8.39 x 10) 3.33 x 10 3 t 

Total 23 25.805 
Table 4.2.2.2.1d 
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4.2.2.3) Inoculum density(0) 

Five different inoculum densities were examined over a range from 

2x1O-7 to 2x10 -3  (four orders of magnitude). The results from these 

simulations are presented in Table 4.2.2.3a. It can be seen that the 

differences in these statistics under each condition are very small, with the 

largest change being approximately 8% between the largest and smallest 

value. Statistical analyses (see Tables 4.2.2.3b-h) show that the changes 

in the values of GsT(d), pj nf, P, and W with different values of 0, are found to 

be significant at the p=0.05 level, while changes in value of GsT(n),  t and 

zjflf  are not found to be significant at this level. 

The values of GST(d),  and P 1 f descended slightly with increasing 

values of 0. 	While the values of P 	and W rose slightly with increasing 

values of 0. 
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U 
M 

The Effects of Innoculurn Size (B) on the Output Statistics of the Model. 

0 GST(d) GST(n) t Pint Zinf Pv W 

2 x io 0.9417075 0.8238365 1.143085 0.6735025 1.5478525 0.467016 5.086451 

(8.05 xlft 5 ) (2.26 x10 3 ) (3.24 xlft 3 ) (7.39 xlO -4 ) (6.03 x10 4 ) (9.72 x10 4 ) (3.93 xlO-3 ) 

2 x 10-6 0.941311 0.821336 1.1460755 0.6685195 1.535857 0.478109 5.131025 

(5.9 x10 5 ) (1.289 xlO-3 ) (1.87 xlft 3 ) (1.14 xlO-3 ) (8.74 xlO-4 ) (3.24 x10 3 ) (0.0133) 

2 x 10 -  0.9398625 0.8232315 1.141689 0.6673505 1.542321 0.484411 5.1716535 

(1.53 xlO-4) (2.89 x10 3 ) (4.19 x10 3 ) (3.26 x10 3 ) (3.49 xlft4 ) (7.7 xIO-5 ) (6.79 xlft 3 ) 

2 x 0.937443 0.814269 1.15127 0.658829 1.538553 0.499507 5.211783  
(5.25x 10-5 ) (4.415 x10 4 ) (6.89 xlft4 ) (2.909 x10 3 ) (4.11 x10 3 ) (1.83 xlO -3 ) (0.01256) 

2 x 10- 0.9327415 0.809024 1.153085 0.640943 1.5442915 0.508598 5.237739 
(4.0 xlO-5 ) (5.04 x10 3 ) (3.24 xlft-) (1.00 x10 3 ) (2.73 xlft 3 ) (1.68 xlO 3 ) (1.57 xlO-3 ) 

Table 4.2.2.3a: 
In most cases, the means and standard errors of each statistic are calculated from two simulation rUns, one with Initial Condition A, the other 
with Initial Condition B. The only exception is for 0=2x 10, in this case, eight runs were done, four with Initial Condition A and four with 
Initial Condition B. The mean values of each statistic are presented in hold, the standard errors are in parentheses underneath their respective 
means. Apart from the parameter 0, the Standard Parameter Values were used. 



Modified Anova Analysis of GST(d)  with different values for 9. 

Source of 	Degrees of SS 	 MS 	 Fs Variation 	Freedom 
Between 4 1.15 x 10-4 	2.86 x 10-5 	147.7** 
Treatments 

Within 11 (1.4x 10-6) 	1.9x 10-7 t Treatments 

Total 	15 1.16 x 10 
Table 4.2.2.3b 

Modified Anova Analysis of GsT()  with different values for 0. 

Source of 	Degrees of 	SS 	 MS 	 Fs Variation 	Freedom 
Between 	4 	 3.02 x iO 	7.54 x iO 	1.48ns Treatments 

Within 
Treatments 	11 	 (2.82 x 10- ) 	5.08 x 10-5 t 

Total 	15 	 5.83 x iO 
Table 4.2.2.3c 

Modified Anova Analysis of t with different values for 0. 

Source of 	Degrees of 	 MS 	 Fs Variation 	Freedom 
Between 
Treatments 	4 	 1.39 x iO 	3.46 x iO 	0.34ns 

Within 
Treatments 	11 	 (5.25 x 10) 	1.02 x iO t 

Total 	15 	 6.64 x iO 
Table 4.2.2.3d 

Tables 4.2.2.3a - h (Tables 4.2.2.3e-h overleaf): 
SS signifies the "Sum of Squares", while MS the "Mean Square". The SS value for 
the Within Treatment row is in brackets to show that this value was not used to 
calculate the Within Treatment MS. Instead the largest Within Treatment Variance was 
used (see Section 4.2.2.1). This largest Within Treatment Variance is labelled with 
the symbol "t".  The symbol "" beside a value of Fs signifies that the statistic was 
found to be significant at the p=O.OS level, while the symbol "**" signifies that the 
statistic was found to be significant at the, p=O.Ol level. The letters "ns" beside a value 
of Fs signify that the statistic was not found to be significant at the p=O.OS level. 
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Modified Anova Analysis of Pinf  with different values for 0. 

Source of 	Degrees of 	 MS 	 Fs 
Variation 	Freedom  
Between 4 1.48x10-3 	3.70x10-4 	21.8** 
Treatments 

Within 11 (1.41 x 10-4) 	1.70x 10-5 t 
Treatments 

Total 	15 1.62 x iO 
Table 4.2.2.3e 

Modified Anova Analysis of W with different values for 0. 

Source of 	Degrees of 	SS 	 MS 	 Fs Variation 	Freedom 
Between 4 	 0.0298 	7.44 x 10-3 	21.1** 
Treatments 

Within 11 	 (2.20 x 10) 	3.53 x 10-4 t 
Treatments 

Total 	15 	 0.0320 
Table 4.2.2.3f 

Modified Anova Analysis of Pv  with different values for 0. 

Source of Degrees of MS Fs Variation Freedom 
Between 4 2.20 x 10-3  5.5 x 10-' 26.22** 
Treatments 

Within 11 (5.17 x 10 5 ) 2.10 x iO- 	t Treatments 

Total 15 2.25 x iO 
Table 	4.2.2.3g 

Modified Anova Analysis of Zin f with different values for 0. 

Source of Degrees of SS MS Fs Variation Freedom 
Between 4 1.78 x iO 4.46 x iO- 1.32 ns Treatments 

Within 11 (2.65 x 10 4) 3.38 x 10-5 t Treatments 

Total 15 4.43 x iO' 
Table 4.2.2.3h 
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4.2.3) Aspects of immunity and infection 

4.2.3.1) Probability of Loss of Immunity (f3) 

Several different values of 13 are examined ranging from 13=1.37 x 10 -

3 to 13 = 10 per day. For convenience, these rates are described by the 

reciprocal 1/13, which corresponds to the mean period of time a host is 

immune to a particular immuno-allelic allele after parasites with that 

particular allele have been cleared from the host. Thus the range of values 

of 1/13  examined are from 0.1 days to 720 days. 

In Figure 4.2.3.1a, the upper, broken line represents the values of 

GST(d) with different values of 1/13. As the mean period of immune memory 

is increased, GS-1-(d)  is found to rise. The value of GS-i-(d)  was found to rise 

from a value of 0.732 to a value of 0.973 over the range of values of 1 /13  

used. The rate at which GSi-(d)  increases with 1/13 decreased as the value of 

1/13 is increased. 

The lower, solid line in Figure 4.2.3.1a represents the values of Gs-1- ( fl) 

with different values of 1/13. As with Gs-r(d),  it can be seen that as 1/13 is 

increased, the value of Gs-r(n)  also increases. The value of GST(n)  rises from 

0.492 to 0.921 over the range of values of 1/13 examined. This rate of 

increase in GsT(n)  with the mean period of immunity declined as the period 

of immune memory was increased. 

Figure 4.2.3.1b represents the values of t with different values for 

1/13. As the value of 1/13 is increased, t decreases. The value of i 

decreased from approximately 1.5 to just over 1.0 over the range studied. 
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The rate at which t decreases with 1/0, declines as the value of 1 /13  

increases. 

In Figure 4.2.3.1c, the broken line represents the values of Pinf  with 

different levels of immune memory. As the value of 1/13 is increased, the 

value of Pjf decreases greatly from a value of 0.991 to a value of 0.446 

over the range of values of 1/13 studied. 

The solid line in Figure 4.2.3.1c represents the values of W with 

different values for the mean period of immune memory. It can be seen that 

as the value of 1/13 is increased, the value of W rises greatly from a value of 

0.53 when the mean period of immune memory is 0.1 days to a maximum 

value of 5.78 the value of 1/13  is 720 days. 

The values of Pv  with different values for the mean period of immune 

memory can be seen in Table 4.2.3.1 a. It can be seen that as the value of 

1/13 is increased, P v  decreases from 0.59 to 0.46 over the range studied. 

The values of Z, with changing values of 1/13, is also shown in 

Table 4.2.3.1a. There is, however, no significant change in value found 

(see Table 4.2.3.1 b). 
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The Effects of the Mean Period of Immune Memory (1/13) 
on the values of GST 

0.4 11I 
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Fig. 4.2.3.1a 	 1 I (days) 

The Effects of the Mean Period of Immune Memory (1/13) 
on the values of i 
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1. 
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Fig. 4.2.3.1b 	 1 /I (days) 

Figures 4.2.3.1a - c (Figure 4.2.3.1c overleaf): 
Mean values are plotted with their standard errors represented as error bars. In most 
cases, the means and standard errors are calculated from two simulation runs, one with 
Initial Condition A, the other with Initial Condition B. The only exception is for 1/13 
= 365 days, in this case, eight runs were done, four with Initial Condition A and 4 
with Initial Condition B. Note the small size of the standard errors make the error 
bars difficult to distinguish. Apart from for the parameter 13, the Standard Parameter 
Values were used. 
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The Effects of the Mean Period of Immune Memory (1/n) 
on the values of Pi n f and W. 
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Fig. 4.2.3.1c 	 1 /f (days) 

The Effects of the Mean Level of Immune Memory (1I) on Pv  and Z1  

1I3 (days) P, Z 11 f 

0.1 0.586021 1.550816 

(2.3 x 10) (1.31 x 10-3 ) 

60 0.563163 1.542665 

(1.33 x 10- ) (4.79 x 10) 

120 0.541161 1.5470835 

(5.80 x 10) (2.31 x 10-3 ) 

180 0.523497 1.54090 

(2.05 x 10-5 ) (2.37 x 10-3 ) 

365 0.484411 1.542321 

(7.7 x 10) (3.49 x 10- ) 

720 0.455592 1.548509 

(4.31 x 10 -4) 1  (1.01 x 10-i) 

Table 4.2.3.1a: 
In most cases, the means and standard errors are calculated from two simulation runs, 
one with Initial Condition A, the other with Initial Condition B. The only exception is 
for 110 = 365 days, in this case, eight runs were done, four with Initial Condition A 
and 4 with Initial Condition B. The mean value for each statistic is presented in bold 
with the standard errors presented in parentheses under their associated means. Apart 
from for the parameter P , the Standard Parameter Values were used. 
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Modified Anova Analysis of Z i.f with different values for 1I. 

Source of 	Degrees of 	ss 	MS 	 Fs 
Variation 	Freedom  
Between 	5 	 1.99 x10 4 	3.99 x iO 	0.87 ns 
Treatments 

Within 	12 	 (2.87 x 10- ) 	4.59 x iO-  t 
Treatments 

Total 	17  

Table 4.2.3.1b 

Table 4.2.3.1b: 
SS signifies the "Sum of Squares", while MS the "Mean Square". The SS value for 
the Within Treatment row is in brackets to show that this value was not used to 
calculate the Within Treatment MS. Instead the largest Within Treatment Variance was 
used (see Section 4.2.2.1). This largest Within Treatment Variance is labelled with 
the symbol "t". The symbol "**" beside a value of Fs signifies that the statistic was 
found to be significant at the p=O.Ol level, whereas the letters "ns" signify that the 
statistic was not found to be significant at the p=0.05 level. 
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4.2.3.2) Immune Threshold (Mmjn) 

The immune threshold (M mjn) determines a critical density in the host 

for parasites with any specific immuno-allelic allele. Above this density 

there is a chance that an immune response is mounted against that 

particular immuno-allelic allele. Below this density there is no probability 

that such an immune response will be mounted against that allele. 

A range of values from 0.0 to 0.09 is examined. If a value of lID or 

greater (with the Standard Parameter Values, D=10) is used for the value of 

M mjn , then there is the potential for several genotypes to remain in a host 

without each individually reaching a density equal to M mjn . Thus, no 

immune response would ever be mounted against these parasites. For this 

reason no values for M m jn greater equal or greater than 0.1 is used. 

In Figure 4.2.3.2a the upper, broken line represents the effects of 

M min  on the value of GS-1-(d).  It can be seen that as the value of M min  is 

increased, the value of Gs-r(d)  quickly descends from approximately 0.99 

when M m j n  has a value of 0.0 to a value of around 0.945 when M min  has a 

value of 0.01. Above this value of M m j n , the rate of change in Gs-r(d)  is 

greatly reduced with GST(d)  dropping to a value of 0.936 when M m j n  has a 

value of 0.09 

The lower, solid line in Figure 4.2.3.2a represents the values of Gs-I-(fl) 

as the value of M m j n  is altered. As the value of Mmjn  is increased, Gs -r(fl) 

descends from around 0.96 to a value of approximately 0.817 over the 

range of values of Mmin  studied. 
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Figure 4.2.3.2b represents the effects of M miii  on t. It can be seen 

that, as the value of M min  is increased, i initially rises quickly and reaches 

a value of 1.15 when M m j n 0.09. 

In Figure 4.2.3.2c, the upper, broken line represents the effects of 

Mmjn  on the value of Pjf. As M m j n  is increased, Pinf  rises towards a value of 

around 0.67. 

The lower, solid line in Figure 4.2.3.2c represents the effects of M m j n  

on the value of W . As Mmin  is increased, W also rises, in this case, 

reaching a value of approximately 5.2. 

The effects of M m j n  on Pv  are shown in Table 4.2.3.2a. The value of 

Pv  rises from a value of around 0.429 to a value of around 0.487 over the 

range studied. As with the previous statistics, as Mmin  is increased the rate 

in change of P v  with M m j n  is greatly reduced. The differences in P v  with 

changes in M m , n  are much smaller than the changes in the output statistics 

presented above, however, statistical analysis shows that there is a 

significant difference between the values of P v  at the 0.05 level (Table 

4.2.3.2b). 

The apparent effects of M min  on Zinf  are also very small. The values 

Of Zinf with different values of M m j n  can be seen in Table 4.2.3.2a. 

However, unlike with P, when statistical analysis was done on these 

values, no significant difference was found between the means at the 0.05 

level (see Table 4.2.3.2c). 
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The Effects of the Immune Threshold value (M m i n) 

on the values of GST 
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The Effects of the Immune Threshold value (M m j n) 

on the values of t. 
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Fig. 4.2.3.2b 	 M mm 

Figures 4.2.3.2a - c (Figure 4.2.3.2c overleaf): 
Mean values are plotted with their standard errors represented as error bars. In most 
cases, the means and standard errors are calculated from 2 simulation runs, one with 
Initial Condition A, the other with Initial Condition B. The only exception is for 
Mmin 0.05, in this case, eight runs were done, four with Initial Condition A and 4 
with Initial Condition B. Note the small size of the standard errors make the error 
bars difficult to distinguish. Apart from for the parameter M m j n , the Standard 
Parameter Values were used. 
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The Effects of the Immune Threshold value (M m j n ) on the values of Pj 
and W 
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The Effects of the Immune Threshold (M m j n) on P and Zinf  

Mmin P v  Zinf 

0.0 0.429221 1.535821 

(1.44 x 10-3 ) (0.0118) 

0.01 0.481805 1.541502 

(2.70 x 10- ) (0.0 104) 

0.02 0.481537 1.545055 

(1.63 x 10-3 ) (7.61 x 10-3 ) 

0.05 0.484411 1.542321 

(7.7 x 10) (3.49 x 10-4) 

0.09 0.487503 1.541894 

_____________ (3.64 x 10-3 ) (1.5 x 10-4) 

Table 4.2.3.2a: 
In most cases, the means and standard errors are calculated from two simulation runs, 
one with Initial Condition A, the other with Initial Condition B. The only exception is 
for Mmin O.OS, in this case, eight runs were done, four with Initial Condition A and 4 
with Initial Condition B. The mean value for each statistic is presented in bold with 
the standard errors presented in parentheses under their associated means. Apart from 
for the parameter M mjn , the Standard Parameter Values were used. 
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Modified Anova Analysis of P with different 
values for Mm i n . 

Source of 	Degrees of 	SS 	 MS 	 Fs 
Variation 	Freedom  
Between 4 	 5.59 x 10--3 	1.39 x 10-3 	52.4** 
Treatments 

Within 11 	 (6.69 x 10-5 ) 	2.65 x 10-5 t Treatments 

Total 	15 	 5.66 x 10 
Table 4.2.3.2b 

Modified Anova Analysis of Zif with different 
values for Mm i n . 

Source of 	Degrees of 	ss 	MS 	 Fs Variation 	Freedom 
Between 	4 	 9.36 x 10-5 	2.34 x 10-5 	0.084 ns Treatments 

Within 
Treatments 	11 	 (8.25 x 10) 	2.78 x iO t 

Total 	15 	 9.18 x iO 
Table 4.2.3.2c 

Tables 4.2.3.2b and C: 

SS signifies the "Sum of Squares", while MS the "Mean Square". The SS value for 
the Within Treatment row is in brackets to show that this value was not used to 
calculate the Within Treatment MS. Instead the largest Within Treatment Variance was 
used (see Section 4.2.2.1). This largest Within Treatment Variance is labelled with 
the symbol "t".  The symbol "**" beside a value of Fs signifies that the statistic was 
found to be significant at the p=O.Ol level, whereas the letters "ns" signify that the 
statistic was not found to be significant at the p=O.OS level. 
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4.2.3.3) The probability of an immune response being mounted (p) 

The probability of an immune response being mounted (p) controls 

the mean period of time that parasites, with any particular immuno-allelic 

allele, remain in a host after their density has grown above M m j n  and before 

an immune response to that allele is mounted. Thus the larger the value of 

p, the shorter the time that a host will remain infected with parasites with any 

particular immuno-allelic allele. 

A range of values of p was examined from a value of 0.005 to 0.05 

per day. This is equivalent to having the mean period between a parasite 

genotype increasing above the M m j n , and the start of immune killing, of 

between 200 and 20 days respectively. 

In Figure 4.2.3.3a, the upper, broken line represents the values of 

GST(d) with different values of p. It can be seen that as p is increased (i.e. as 

the mean period of infection decreases), GS-I-(d)  rises asymptotically towards 

a value close to 1.0. When p is given a value of 0.005, Gs-r(d)  has a value of 

0.708, but when the value of p is increased to 0.05, GST(d)  increases in 

value to 0.986. 

The lower, solid line in Figure 4.2.3.3a represents the values of GS1(n) 

with different values of p. It can be seen that as p is increased, the value of 

GST(n) rises greatly. Thus, when p is given a value of 0.005, GSi(n)  had a 

value of 0.269. However, when the value of p is increased to a value of 

0.05, Gsi-(fl)  increases to a value of 0.966. The rate of increase in GST()  with 

p declines as p increases. 

In Figure 4.2.3.3b, the values of t are represented with different 

values of p. It can be seen that as p is increased, t declines steeply from a 
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value of approximately 2.63 when p was given a value of 0.005 and 

appears to be very close to 1.0 when p=0.05. 

In Figure 4.2.3.3c, the broken line represents the values of P m t with 

different values of p. As p is increased, Pinf  decreases from a value of 0.996 

to a value of 0.307 over the range of values for p studied. 

The solid line in Figure 4.2.3.3c represents the values of W with 

different values of p. It can be seen that as p is increased, W does not 

change monotonically. Instead, W rises from a value of 3.51 when p = 

0.005 to a maximum value of 5.42 when p = 0.015 before falling to a value 

of 2.98 when p = 0.005. 

The value of P, with different values of p, can be seen in Table 

4.2.3.3a. It can be seen that as p decreases, so does the value of P, 

decreasing from 0.623 to 0.457 over the range of values for p studied. 

Table 4.2.3.3a also shows the values of Zinf  with different values of p. 

The value of Z wi f declines from 1.578 to 1.498 with increasing p, this 

decrease is significant at the 0.01 level (see Table 4.2.3.3c). 
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The Effects of the Rate of Immune Recognition (p) 
on the values of GST 
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Figures 4.2.3.3a - c (Figure 4.2.3.3c overleaf): 
Mean values are plotted with their standard errors represented as error bars. In most 
cases, the means and standard errors are calculated from two simulation runs, one with 
Initial Condition A, the other with Initial Condition B. The only exception is for 
p=0.025 per day, in this case, eight runs were done, four with Initial Condition A and 
4 with Initial Condition B. Note the small size of the standard errors make the error 
bars difficult to distinguish. Apart from for the parameter p, the Standard Parameter 
Values were used. 
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The Effects of the Rate of Immune Recognition (p) on the values 

Of P1 f and W 
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The Effects of the Rate of Immune Recognition (p) on P and W 

p (per day) P V  Zinf 

0.005 0.623652 1.578097 

(1.35 x 10-3 ) (1.87 	x 10- ) 

0.01 0.596574 1.567082 

(7.63 	x 10- ) (2.87 x 10-3 ) 

0.015 0.561215 1.562384 

(2.25 	x 10- ) (2.68 	x 10-3 ) 

0.025 0.484411 1.542321 

(7.7 x 10- ) (3.49 x 10- ) 

0.035 0.48929 1.5286455 

(6.29 x 10-4) (2.69 x 10-3 ) 

0.05 0.357202 1.498418 

(1.96 x 10-3 ) (3.73 	x 10-3 ) 

Table 4.2.3.3a: 
In most cases, the means and standard errors are calculated from two simulation runs, 
one with Initial Condition A, the other with Initial Condition B. The only exception is 
for p=0.025 per day, in this case, eight runs were done, four with Initial Condition A 
and 4 with Initial Condition B. The mean value for each statistic is presented in bold 
with the standard errors presented in parentheses under their associated means. Apart 
from for the parameter p. the Standard Parameter Values were used. 
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Modified Anova Analysis of Pv  with different 
values for p. 

Source of 	Degrees of 	ss 	MS 	 Fs 
Variation 	Freedom 
Between 5 	 0.1090 	0.0218 	2,156** 
Treatments 

Within 12 	 (3.98 10-5 ) 	1.01 10-5 t 
Treatments 

Total 	17 	 0.1090 
Table 4.2.3.3b 

Modified Anova Analysis of Zinf  with different 
values for p. 

Source of Degrees of SS 	 MS 	 Fs 
Variation 	Freedom  
Between 5 8.71 x 10-3 	1.74 x iO 	56.9** 
Treatments 

Within 12 (2.94 x 10-4) 	 3.06 x iOt 
Treatments 

Total 	17 9.00 x iO 
Table 4.2.3.3c 

Tables 4.2.3.3b and C: 
SS signifies the "Sum of Squares", while MS the "Mean Square". The SS value for 
the Within Treatment row is in brackets to show that this value was not used to 
calculate the Within Treatment MS. Instead the largest Within Treatment Variance was 
used (see Section 4.2.2.1). This largest Within Treatment Variance is labelled with 
the symbol "t".  The symbol "**" beside a value of Fs signifies that the statistic was 
found to be significant at the p=O.Ol level, whereas the letters "ns" signify that the 
statistic was not found to be significant at the p=0.05 level. 
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4.2.3.4) The Rate of Increase in Immune Killing (s) 

The Rate of Increase in Immune Killing (s) determines the length of 

time between an immuno-allelic allele being recognised by the immune 

system, and parasites with that allele in that host being cleared from the 

host. Thus the higher the rate of increase in immune killing, the shorter the 

period that parasites of a particular genotype will remain in a host. A range 

of values of s from 0.05 to 0.5 per day2  were examined. 

The upper, broken line of Figure 4.2.3.4a represents the values of 

GST(d) with different values of s. It can be seen that as s increases, the 

value of GST(d)  increases too. This increase is slight, with the value of GS1-(d) 

rising from approximately 0.92 to, what seems to be, an asymptotic value of 

around 0.95 over the range of values of s studied. Despite the small size of 

this change, the effects of s on GST(d)  were found to be significant at the 

p=0.05 level (see Table 4.2.3.4b) 

The lower, solid line in Figure 4.2.3.4a represents the values of GST(n) 

with different values of s. As with GST(d),  the value of GST(n)  increases with 

increasing values of s and appears to approach an asymptotic value. The 

effects of s on GST(n)  appear to be much larger than they are for GST(d). 

In Figure 4.2.3.4b the effects of s on the ratio of GST(d)  to  GST(n) () 

can be seen. As s is increased, the value of t decreases. This decrease 

appears to approach an asymptotic value in the region of 1.13. 

The upper broken line in Figure 4.2.3.4c represents the effects of s 

on the mean proportion of hosts infected (Ph). It can be seen that the value 

Of Pinf decreases with increasing values of s but the rate of this decrease 

becomes less as s increases. 
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The lower, solid line in Figure 4.2.3.4c represents the values for the 

mean level of host immunity (W) with different values of s. The value of W 

decreases with increasing values for s, however an asymptotic value for W 

of around 5.0 appears to be being reached with the higher values of s. 

The value of P, with different values of s, can be seen in Table 

4.2.3.4a. It can be seen that as s increases, so does the value of P, 

increasing from a value of around 0.53 to a value of around 0.58 over the 

range of values for s examined. Though this change is small, it is found to 

be significant at the p=0.05 level (see Table 4.2.3.4c). 

Table 4.2.3.4a also shows the values of Zinf  with different values of s. 

The value of Zinf  also increases with increasing values of s, and this 

increase is found to be significant at the 0.05 level (see Table 4.2.3.4d). 
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The Effects of the Rate of Increase in Immune Killing (s) 
on the values of GST 
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The Effects of the Rate of Increase in Immune Killing (s) 
on the values of i. 
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Figures 4.2.3.4a - c (Figure 4.2.3.4c overleaf): 
Mean values are plotted with their standard errors represented as error bars. In most 
cases, the means and standard errors are calculated from two simulation runs, one with 
Initial Condition A, the other with Initial Condition B. The only exception is for 
s=0.2 per day 2 , in this case, eight runs were done, four with Initial Condition A and 4 
with Initial Condition B. Note the small size of the standard errors make the error 
bars difficult to distinguish. Apart from for the parameter s, the Standard Parameter 
Values were used. 
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The Effects of the Rate of Increases in Immune Killing (s) on the 
values of P 1 f and W 
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The Effects of the Rate of Increase in Immune Killing (s) on P and 

Zinf  

S P V  Zi n f 

0.05 0.482326 1.512025 

(7.62 x 10- ) (6.16 x 10- ) 

0.1 0.4811375 1.534556 

(3.447 x 10- ) (4.68 x 10- ) 

0.2 0.484411 1.542321 

(7.7 x 10- ) (3.49 x 10- ) 

0.3 0.497147 1.5500745 

(9.48 	x 10- ) (2.72 x 10-3 ) 

0.5 0.498919 1.554081 

(3.11 	x 10) 1  (1.99 	x 10-3 ) 

Table 4.2.3.4a: 
In most cases, the means and standard errors are calculated from two simulation runs, 
one with Initial Condition A, the other with Initial Condition B. The only exception is 
for s=0.2 per day 2 , in this case, eight runs were done, four with Initial Condition A 
and four with Initial Condition B. The mean value for each statistic is presented in 
bold with the standard errors presented in parentheses under their associated means. 
Apart from for the parameter s, the Standard Parameter Values were used. 
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Modified Anova Analysis of GST(d)  with different 
values for s. 

Source of 	Degrees of 	SS 	 MS 	 Fs Variation 	Freedom 
Between 4 	 8.68 x 10-4 	2.17 x 10-4 	522** 
Treatments 
Within 11 	 (2.3x 10-6) 	4.16x 10-7 t Treatments 

Total 	15 	 8.70 x 10 
Table 4.2.3.4b 

Modified Anova Analysis of P, with different 
values for s. 

Source of 	Degrees of 	SS 	 MS 	 Fs Variation 	Freedom 
Between 4 	 5.78 x 10-4 	1.45 x iO 	6.11* 
Treatments 
Within 11 	 (6.25 x I0- ) 	2.37 x 10-5 t Treatments 

Total 	15 	 6.41 x iO 
Table 4.2.3.4c 

Modified Anova Analysis of Zinf  with different 
values for s. 

Source of 	Degrees of 	SS 	 MS 	 Fs Variation 	Freedom 
Between 6 	 2.26 x 10-3 	5.66 x 10-4 	7.46* 
Treatments 
Within 13 	 (3.57 x 10-4) 	7.59 x 10-5 t 
Treatments 

Total 	19 	 2.62 x iO 
Table 4.2.3.4d 

Tables 4.2.3.4b-8d: 
SS signifies the "Sum of Squares", while MS the "Mean Square". The SS value for 
the Within Treatment row is in brackets to show that this value was not used to 
calculate the Within Treatment MS. Instead the largest Within Treatment Variance was 
used (see Section 4.2.2.1). This largest Within Treatment Variance is labelled with 
the symbol "t".  The symbol "**" beside a value of Fs signifies that the statistic was 
found to be significant at the p=0.01 level, whereas the letters "ns" signify that the 
statistic was not found to be significant at the p=0.05 level. 
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4.2.3.5) The Number of lmmuno-A lie/ic Alleles (D) 

The number of alleles at the immuno-allelic locus (D) defines the 

number of immunologically distinct "strains" present in this hypothetical 

population. A range from D=2 to D=20 is examined. 

The upper, broken line of Figure 4.2.3.5a represents the values of 

GST(d) with different values of D. It can be seen that as D increases, the 

value of GS-r(d)  descends. Thus GS-r(d)  has a value of very nearly one 

(0.997) when D=2, and a value of 0.858 when 'D=20. 

The lower, solid line in Figure 4.2.3.5a represents the values of 

GST() with different values of D. As with GsT(d)  as D increases, the value of 

GST(n) decreases. The rate of change of GST(n)  with D is greater than that of 

Gs-r(d), with a value for GST(n)  of 0.975 when D=2 and a value of 0.690 when 

D=20. 

It can be seen in Figure 4.2.3.5b that as D is increased, so t 

increases. Thus, a value for t of 1.02 is found when D = 2 and a value of 

1.24 when D = 20. 

There is a very large effect of D on the mean proportion of hosts 

infected (P). The value of Pinf  is represented by the broken line in Figure 

4.2.3.5c. It can be seen that as D is increased, the value of Pt rises 

quickly from 0.186 when D=2 to 0.885 when D=20. 

The use of the statistic W is not particularly informative when 

comparing the mean level of immunity in populations with different values of 

D. This is because the maximum value for W is larger when more alleles at 

the immuno-allelic locus are present. Thus, to examine the effects of D on 
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the level of immunity in the host population, the value of W/D is calculated. 

This describes the level of immunity of the host population as a proportion 

of the maximum it could be with D alleles present. This statistic is 

represented by the solid line in Figure 4.2.3.5c. It can be seen that as D is 

increased, the value of W/D decreases slightly. The value of W/D is found 

to be 0.573 when D=2, and 0.457 when D=20. 

In Table 4.2.3.5a, the effects of different values of D on P v  are shown. 

It can be seen that the value of P v  increases over the range of values of D 

examined. This change was found to be significant (see Table 4.2.3.5b) at 

the p=0.05 level. 

The effects of different values of D on Zinf  can also be seen in Table 

4.2.3.5a. However, the changes in value of Zinf  are not significant at the 

p=0.05 level (see Table 4.2.3.5c). 
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The Effects of the Number of Immuno-allelic Alleles (D) 
on the values of GST. 
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Figures 4.2.3.5a - c (Figure 4.2.3.5c overleaf): 
Mean values are plotted with their standard errors represented as error bars. In most 
cases, the means and standard errors are calculated from two simulation runs, one with 
Initial Condition A, the other with Initial Condition B. The only exception is for 
D=10, in this case, eight runs were done, four with Initial Condition A and 4 with 
Initial Condition B. Note the small size of the standard errors make the error bars 
difficult to distinguish. Apart from for the parameter D, the Standard Parameter 
Values were used. 
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The Effects of the Number of Immuno-allelic Alleles (D) on the values 

Of Pinf and W/D 
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The Effects of the Number of Immuno-allelic Alleles (D) on P and Z1 

D P V 
 Zinf 

2 0.4208005 1.551969 

(3.72 x 10- ) (9.0 x lO- ) 

5 0.4472795 1.53334 

(2.98 x 10-3 ) (3.75 x 10-4) 

7 0.46775 1.544913 

(6.7 x 10- ) (4.86 x 10-4) 

10 0.484411 1.542321 

(7.7 x 10-5 ) (3.49 x 10- ) 

15 0.5138585 1.546519 

(1.33 x 10-3 ) (5.15 x 10-4) 

20 0.5355935 1.5523005 

(1.57 x 10- ) (1.03 x 10- ) 

Table 4.2.3.5a: 
In most cases, the means and standard errors are calculated from 2 simulation runs, 
one with Initial Condition A, the other with Initial Condition B. The only exception is 
for D=10, in this case, eight runs were done, four with Initial Condition A and four 
with Initial Condition B. The mean value for each statistic is presented in bold with 
the standard errors presented in parentheses under their associated means. Apart from 
for the parameter D, the Standard Parameter Values were used. 
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Modified Anova Analysis of P with different 
values of D. 

Source of 	Degrees of 	SS 	 MS 	 Fs Variation 	Freedom 
Between 
Treatments 	5 	 0.01823 	3.64 x 10-3 	205.3** 

Within 
Treatments 	12 	 (4.29 x 10-5 ) 	1.77 x 10-5 t 

Total 	17 	 0.01828 
Table 4.2.3.5b 

Modified Anova Analysis of Zij with different 
values of D. 

Source of 	Degrees of 	SS 	 MS 	 Fs Variation 	Freedom 
Between 	5 	 5.32 x 10-4 	1.06 x 10-4 	0.654 ns Treatments 

Within 12 	 (3.79 x 10) 	1.62 x 10-4 t Treatments 

Total 	17 	 9.12 x 10 
Table 4.2.3.5c 

Tables 4.2.3.5b and C: 

SS signifies the "Sum of Squares", while MS the "Mean Square". The SS value for 
the Within Treatment row is in brackets to show that this value was not used to 
calculate the Within Treatment MS. Instead the largest Within Treatment Variance was 
used (see Section 4.2.2.1). This largest Within Treatment Variance is labelled with 
the symbol "t".  The symbol "" beside a value of Fs signifies that the statistic was 
found to be significant at the p=O.Ol level, whereas the letters "ns" signify that the 
statistic was not found to be significant at the p=0.05 level. 
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4.2.3.5.1) Comparison of Pinf  to the prediction of independent transmission. 

In the model examined here, there is potential for competition 

between parasites with different immuno-allelic alleles and thus 'strains' do 

not act independently. However, it is possible to produce the predicted 

effect of D on P fr1f if transmission is independent. This predicted value 

(PinfEexpi) is calculated from the value for Pinf  when D=1 (Pjf[1]) by the 

equation: 

'inf[exp] = 1 	- 	
(4.2.3.5.1) 

In Figure 4.2.3.5.1 the values for Pinf  with different values of D as 

found with the model are represented by the dashed line. The solid line 

represents the predicted values of Pjnf (Pinf[exp]) under the assumption of 

independence. Pjnf[1]  is calculated back from the value of Pinf  found with 

D=20. 
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A comparison of the effects of D on P 1 f with and without strain- 
specific competition 

Figures 4.2.3.5.1 In the case of the dashed line, mean values are plotted with 
their standard errors represented as error bars. In most cases, the means and standard 
errors are calculated from two simulation runs, one with Initial Condition A, the other 
with Initial Condition B. The only exception is for D=10, in this case, eight runs 
were done, four with Initial Condition A and 4 with Initial Condition B. Note the 
small size of the standard errors make the error bars difficult to distinguish. Apart 
from for the parameter D, the Standard Parameter Values were used. For the solid line 
the values are calculated by the method described in the associated text. 
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4.2.3.5.2) Examination of the effects of D on the population genetic 
statistics of the model under constant transmission. 

The standard model was modified so that exactly the same number 

of transmitting double bites are transmitted per time step, irrespective of the 

numbers of hosts infected, or the level of infection in those hosts. The 

number of zygotes for each transmitting double bite was fixed at one. This 

was done to separate the effects of changing the overall rate of 

transmission in the population (through the changing values of 	from 

other effects that may be caused by altering th,value of D. 

The effects of changing values of D, in the absence of changes in the 

overall rates of transmission can be seen in Figures 4.2.3.5.1a and b. In the 

former, apart from D and the modified transmission system (set to 38 bites 

per time step) the standard parameter values were used. In the latter, 150 

bites per time step were used and the value of M m i n  was given a value of 

zero. 

In Figure 4.3.5.2a it can be seen that as the number of alleles at the 

immuno -allelic locus (D) increase, the values for both GST(d)  and  Gs-r(n) 

decrease. The value of t is found to increase with D, though this increases 

is slight (from 1.06 to 1.11 over the range of D examined), it was found to be 

significant using the modified Anova with P<0.01. The value for W/D was 

found to decrease greatly with D over the range of values for D examined. 

It can be seen in Figure 4.3.5.2b that G-j-for both loci tends to 

descend with increasing values of D. Although t is always found to have a 

value greater than one, under the conditions examined, its value is not 

found to significantly change with different values of D. 
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The effects of D on the model when modified for constant transmission 
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The effects of D on the model when modified for constant transmission 
and with MmjnO. 
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Figures 4.2.3.5.2a & b: 
Mean values are plotted with their standard errors represented as error bars. In all 
cases, the means and standard errors are calculated from two simulation runs, one with 
Initial Condition A, the other with Initial Condition B. Note the small size of the 
standard errors make the error bars difficult to distinguish. Values were calculated 
using a modified version of the model described in chapter 2, the modifications are 
explained in the text. Apart from for the parameter D, and in the case of Fig 4.3.5.2b 
Mm in(where Mm j n=O), the Standard Parameter Values were used. 



4.2.3.6) Parasite Growth Rate (bo) 

The Parasite Growth Rate (bo) determines the speed at which 

parasites grow inside a host. This helps determine the rate at which a new 

parasite genotype entering a host reaches its carrying capacity and, once 

the immune system is activated, the length of time before that parasite type 

is cleared. A range of values for b0 were examined from 6 to 16 per 2 days. 

The results from these runs can be seen in Table 4.2.3.6a. It can be 

seen from examining this table, that the effects of the different values of b0 

examined on the output statistics are very slight. The effects of b0 on 

GST(n), tand Zinf were found not to be significant at the p=0.05 level. 

However the effects of b0 on the other output statistics were found to be 

significant at the p=0.05 level or greater. The values of these increased 

with increasing values of b0. 

Note that the largest effect of b0 on any of the output statistics was on 

i, where a 6.0% change in value occurred over the range of values for b0 

examined. 
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The Effects of the Parasite Growth Rate (b0) on the Output Statistics of the Model. 

b 0  
(per 2 days) 

GST(d) GST(n) t Pinf Zunt PV W 

6 0.940261 0.825768 1.138634 0.656497 1.538114 0.4660435 5.020062 

4.45 x10 5  1.97 x10-3  2.80 xlft 3  1.30 x10-3  5.56 x10-4  1.04 xlO-3  6.54 xlft3  

8 0.9401095 0.823595 1.141566 0.662504 1.539547 0.478162 5.087409 

1.285x10 3  6.29x10-3  7.11 x10 3  5.14x10-4  3.724x10-3  2.43x10 3  3.53x10-3  

1 0 0.9395215 0.821876 1.143417 0.664263 1.544555 0.482968 5.144009 

1.28 x10 4  1.01x10-3  1.29 x10 3  4.34 x10 3  2.02 x10 3  1.92 x10 3  7.12 xlO-3  

12.3 0.9398625 0.8232315 1.141689 0.6673505 1.542321 0.484411 5.1716535 

1.53 x10 4  2.89 x10 -3  4.19 x10 3  3.26 x10 3  3.49 xi0 7.7 x 1 -5 6.79 xlO-3  

14 0.9396115 0.819535 1.1465205 0.671129 1.541189 0.492433 5.197678 

2.18 xlO-4  1.02 x10 3  1.165 xlO-3  4.13 x10 4  3.59 x10 3.57 x10 1.94 xlO-3  

16 0.939025 0.82137 1.14326 0.671792 1.537521 0.494503 15.22127 

8.05 -x10 4  2.23 x10 3  2.10 xlO-3  2.5 x10 4  1.21 x103 	1  1.71 xlO-3  8.28 xlft 3  
Table 4.2.3.6a. 	 - 
In most cases, the means and standard errors of each statistic are calculated from two simulation runs, one with Initial Condition A, the other 
with Initial Condition B. The only exception is for b0=12.3 per 2 days, in this case, eight runs were done, four with Initial Condition A and 
four with Initial Condition B. The mean values of each statistic are presented in bold, the standard errors are in parentheses underneath their 
respective means. Apart from the parameter h0, the Standard Parameter Values were used. 



Modified Anova Analysis of GST(d)  with different 
values for b0. 

Source of 	Degrees of 	 MS 	 Fs 
Variation 	Freedom 
Between 5 	 1.9 x 10-6 	4 x 10-7 	0.12 1 ns 
Treatments 
Within 12 	 (5.6 x 10-6) 	3.30 x 10-6t Treatments 

Total 	17 	 7.5 x 10 
Table 4.2.3.6b 

Modified Anova Analysis of GST(n)  with different 
values for b0. 

Source of 	Degrees of 	SS 	 MS 	 Fs Variation 	Freedom 
Between 	5 	 7.59 x iO 	1.52 x 	0.19 ns Treatments 
Within 	12 	 (3.18 x 10) 	7.90 x 10-5 t Treatments 

Total 	17 	 3.94 x iO' 
Table 4.2.3.6c 

Modified Anova Analysis of t with different values for b0. 

Source of 	Degrees of 	SS 	 MS 	 Fs Variation 	Freedom 
Between 5 	 1.33 x 10 -4 	2.66 x 10-5 	0.263 ns Treatments 
Within 12 	 (5.48 x 10- ) 	1.01 x 10 -4t Treatments 

Total 	17 	 6.81 x 10 
Table 4.2.3.6d 

Tables 4.2.3.6b-h (Tables 4.2.3.6e-h overleaf): 
SS signifies the "Sum of Squares", while MS the "Mean Square". The SS value for 
the Within Treatment row is in brackets to show that this value was not used to 
calculate the Within Treatment MS, instead the largest Within Treatment Variance was 
used (see Section 4.2.2.1). This largest Within Treatment Variance is labelled with the 
symbol "t".  The symbol "*" beside a value of Fs signifies that the statistic was found 
to be significant at the p=0.05 level, while the symbol "**" signifies that the statistic 
was found to be significant at the p=0.01 level. The letters "ns" beside a value of Fs 
signify that the statistic was not found to be significant at the p=O.OS level. 
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Modified Anova Analysis of Pinf  with different values for b0. 

Source of 	Degrees of 	ss 	MS 	 Fs Variation 	Freedom 
Between 5 	 3.54 x 10- 	7.07 x 10-5 	4.17* 
Treatments 
Within 12 	 (1.33 x 10-) 	1.70 x 10 5 t Treatments 

Total 	17 	 4.86 x iO 
Table 4.2.3.6e 

Modified Anova Analysis of W with different values for b0. 

Source of 	Degrees of 	SS 	 MS 	 Fs Variation 	Freedom 
Between 5 	 0.06079 	0.012 	56.3** 
Treatments 
Within 12 	 (1.85 x 10-3 ) 	2.13 x 10-4 t Treatments 

Total 	17 	 0.06264 
Table 4.2.3.6f 

Modified Anova Analysis of P with different values for b0. 

Source of 	Degrees of 	SS 	 MS 	 Fs Variation 	Freedom 
Between 5 	 1.129x10-3 	2.26x10 4 	19.1** 
Treatments 
Within 12 	 (4.26 x 10) 	1.18x iOt Treatments 

Total 	17 	 1.171 x iO 
Table 4.2.3.6g 

Modified Anova Analysis of Zinf  with different 
values for b0. 

Source of 	Degrees of 	SS 	 MS 	 Fs Variation 	Freedom 
Between 5 	 8.23 x iO 	1.65 x 10 	0.539 ns Treatments 
Within 12 	 (2.791 x 10-4) 	3.06 x 10-5 t Treatments 

Total 	17 	 3.613k iO 
Table 4.2.3.6h 
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4.3) Discussion 

The aim of this chapter was to examine the effects of manipulating 

the parameters of the model. This was necessary to gain a deeper insight 

into the dynamics of the model and possibly into the dynamics of human-

mosquito-malaria interactions. 

4.3.1) Trends in the results 

For most points in parameter space, only two simulation runs were 

examined. This was done to save computer time. However, it has the 

potential to give an inaccurate value for the mean of each statistic, and to 

reduce the reliability of any statistical analysis used. The similarity between 

runs, evident from the small standard errors in the results presented and the 

use of the Modified Anova Analysis appeared to justify this approach. 

There are several important features of the results that should be 

noted. Firstly, in all cases examined, when a parameter is varied so that the 

value of GST(d)  decreases, so does the value of GST(n).  However, the rate of 

change of Gs-r(d)  with the change of parameter value is always found to be 

slower than the rate of change of Gs-r(n).  Thus, as the two values decrease 

with the change in a parameter, the difference between them always 

increased. Therefore, the value of t is always found to increase when the 

value of GST(n)  and GST(d)  decrease. 

It is generally found that when P1 (the mean proportion of hosts 

infected at the stationary distribution) is increased by the change in a 

parameter value, GST(d)  and GST(n)  decrease. However, this is not the case 

when the value of the inoculum size (8) is altered. In this case, the values of 
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Gs-r(d) and  GST(n)  all decrease as the value of 0 increases. This will be 

discussed later. 

One of the main aims of designing and examining the model 

presented here was to compare its results to those of Hastings's analytic 

model which assumed life-long immune memory (Hastings 1996). 

Hastings's analytic model examined the ratio of the equilibrium values of 

GST(d) and GST(fl)  (t) and found it always to be greater than one. Due to the 

stochastic nature of the simulation study presented here, no equilibrium 

value of these statistics is ever reached. However the values Gs-r(d), GST(n) 

and L reflect the means of the stationary distributions of these statistics, and 

thus, are comparable to the equilibrium values of Gs -i- ( fl), GST(d) and t in 

Hastings's model. 

In the results presented above, it is found that, under all conditions 

examined, the ratio of GS-I-(d)  to GS1(n) () has a value greater than one. 

This clearly agrees with the general results of Hastings's model. Thus, 

despite the very different assumptions of the models, this qualitative result 

seems quite robust. 

In Hastings's model, if either the number of independent 

transmission events leading to an infection, or the number of zygotes 

formed per vector were increased, then GST(n)  and  GST(d)  went down while t 

was found to increase. In the model presented here, when the Double Bite 

Rate (T) is increased, the number of independent transmission events 

increase also. In this case, the values of Gs-r(d)  and GST(n)  decrease while 

increases, in accordance with the results of Hastings. 

Increasing the value of the coefficient of vector infectivity (c) 

increases the mean number of zygotes per infected vector (Zf), however it 
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also increases the proportion of vectors infected (P u) and thus the number 

of independent transmission events. By fixing the numbers of zygotes at 

either one, two, or three per infected vector, it is possible to separate the 

effects on the output statistics of these two aspects of c. It is thus possible 

to show that the greater the number of zygotes per infected vector, the lower 

the values of GST(n)  and GST(d)  and the greater the value of t. 

Thus, not only is the general qualitative result of Hastings agreed 

with in this model (t >1), but also these more specific qualitative results. 

However, one finding of Hastings is not in accord with the findings of this 

study; this difference is in the effects of the number of immuno-allelic alleles 

present in the model (D). 

In the model by Hastings, as D is increased in value, the equilibrium 

values of GST(d)  decreases, the equilibrium value of Gs-r(fl)  increases, and 

the value of t decreases. In my model, as the value of D is increased, the 

value of Gs-r(d)  decreases (as does GS-r(d) in Hastings model). However the 

value of GST(n)  also decreases (unlike Gs-i-(n)  in Hastings model), and to a 

greater extent than the value of GST(d).  Thus the overall effect is that i 

increases with increasing values of D in my model, whereas the equilibrium 

value of t in Hastings's model decreases with increasing values of D. This 

difference between the two models is examined in detail later in this 

section. 
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4.3.2) Discussion of the trends 

One problem with computer-simulation studies is that it is often 

difficult to understand the exact nature of the dynamic processes that 

produce the results. This is particularly true when different dynamic forces 

are pushing variables in different directions. However, in the present 

model, there are a number of cases where the dynamics involved in 

producing the results seem clear. These results will be discussed in detail, 

and in some of the other cases, the likely forces involved will be pointed out. 

Many of the results produced from the model can, at least in part, be 

explained by considering the overall rate of transmission in the population, 

i.e. the rate at which parasites are injected into hosts. This will be referred 

to as the Inoculation Rate (IR). This Inoculation Rate is the product of three 

features of the population: (i) the Double Bite Rate (T); (ii) the proportion of 

vectors, biting infected hosts, that become infected (P u ); and (iii) the 

proportion of hosts infected (P 1 f). The Double Bite Rate is a defined 

parameter of the model, and thus is not affected by any of the other 

parameters. The value of P, is controlled by the parameter c and the 

distribution of parasite densities amongst the hosts. It is clear from the 

results section above, that the value of Pjf is strongly affected by a variety of 

parameters in the model. 
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4.3.2. 1) The Population Genetic Statistics (GST(n), GST(d), and ) 

The output statistics measuring the population genetic aspects of 

parasite population (namely c3 s-I-(d)  ,GST(n), and t) can largely be explained 

by considering the Inoculation Rate and the numbers of zygotes per vector. 

It has already been shown that, in most cases, when these two factors are 

increased (e.g. through increasing T and c respectively), Gs-r(d)  and  GsT(n) 

go down and t goes up. The reason for this appears reasonably simple. 

First, consider the effects of the Inoculation Rate on GST(n).  The value 

of Gs-i-(fl)  describes the amount of genetic diversity at the neutral locus found 

in each host compared to the amount of genetic diversity at the locus found 

in the total population. A GsT()  value of zero would occur if each infected 

host has the same amount of genetic diversity as the total population. In 

this instance each infected host would contain parasites with all the alleles 

at this locus that are found in the total parasite population (amongst hosts) 

and in the same frequencies as they are found in that population. A GST(fl) 

value of one would occur if each infected host contained parasites with only 

a single allele at the neutral locus, while the total population has two or 

more alleles present. 

It is straightforward to see that if a host is infected with parasites with 

a single allele at the neutral locus it will contribute to a higher GST(fl)  value 

than if it is infected with parasites with multiple alleles at the neutral locus. 

Thus, the higher the rate of super-infection (infection of a host with parasites 

derived from different vectors), the greater the chance that a host, infected 

with parasites containing only one allele, receives parasites introduced with 

a second allele, which will cause a decrease in the value of GST()  Thus, in 
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almost all cases, the value of GST(n)  decreases with higher Inoculation 

Rates. This occurs with increases in the values of T, P, and 

The same argument as to why the value of GST(n)  decreases can be 

used to explain why the value of GST(d)  decreases with higher Inoculation 

Rates. However, the rate of decline is less, and the value of GsT(d)  greater 

than that of Gs-,-(n).  This difference can be explained by considering the 

action of the immune system. 

Envisage a situation where four parasite haplotypes are transmitted 

to a host. Let their genotypes be denoted AB, Ab, ab and aB. Letters A and 

a represent alleles at the immuno-allelic locus and letters B and b represent 

alleles at the neutral locus. If the host is immune to the immuno-allelic 

allele A, then only parasite types aB and ab will survive. If the host is 

immune to allele a, only genotypes Ab and AB will survive. In either case 

the level of genetic diversity found at the immune locus is less than that 

found at the neutral locus. 

For a difference in genetic diversity to occur between the two loci in a 

single host, at least two parasite genotypes must infect that host, both 

bearing the same allele at the immune locus (to which the host is 

susceptible), but different alleles at the neutral locus. The greater the 

number of parasite genotypes that are introduced into a host, the greater 

the probability that such an event occurs. Thus, across a population, one 

would expect that, the greater the Inoculation Rate, the larger the value for 

. Also one would expect that for any value of IA, if the mean number of 

zygotes in an infected mosquito is - increased, a larger value of t can be 

expected. 
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It has been pointed out earlier that the effects of different values of D 

on the statistics GS-I-(d) , GST(n) and t is, in this model, very different from the 

effects found in Hastings's model (Hastings 1996). The two models are far 

from identical, and one or more of the differences between them must 

account for the discovery that t increases with D in the model presented 

here and t decreases withD in the model of Hastings. The effects of two of 

these differences are explicitly examined in Section 4.2.3.5.2 

In Hastings's model, it was assumed that different values of D would 

not affect any other aspect of the model and thus the genetic consequences 

of changing the value of D was examined with a fixed Inoculation Rate. It is 

clear in the model presented here that changing the value of D has a very 

large effect on Pinf  and thus on the IR. It is plausible that this increase in the 

transmission rate swamps the effects found by Hastings. This hypothesis 

was tested by examining the effects of D in my model with the transmission 

rate artificially fixed (see Section 4.2.3.5a). 

The results show that the changes in pjf do have a large effect on 

the results. In this modified model, the value of t still increases with 

increasing values of D, but the increase is much smaller than before. Thus 

a fixed transmission rate accounts for some but not all of the difference 

between the two models. 

Another difference between the two models which may have an 

effect on i is the density dependent initiation of the immune response 

(controlled by Mmin) used in the model presented here, but which is not 

included in the model of Hastings. - astings By setting M m j n O, this difference is 

removed. When this is done in combination with an artificially fixed 

transmission rate (see Section 4.2.3.5.2b), the difference between the two 
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models with respect to the effects of D on t is made even smaller (D is now 

found to have no significant effect on ) however t is still not found to 

decrease with increasing values for D. 

The model by Hastings assumes life-long immunity where as the 

model presented here assume immunity is short lived. As was stated in the 

introduction, this may have a major effect on the genetics of the model. 

However, Hastings model has been altered to act as if short term immunity 

occurred (by the method described in Hastings and Wedgwood-Oppenheim 

(1997)), and the same qualitative result as Hastings found earlier that t 

decreased as the number of immuno-allelic alleles increased was found, 

although the effect appeared to be weaker (Hastings and Wedgwood-

Oppenheim, unpublished data). 

Whether a short-term or life long immunity model is used in the 

model by Hastings, it is always assumed that the immunity profile of the 

population is constant, i.e. the percentage of the population in each immune 

class is the same. This is not the case here. Even with the transmission 

rate fixed, the mean level of immunity in the population changes greatly with 

different values for D (see Figure 4.3.5.2a), and this may also account for 

some of the difference between the two models. Unfortunately it would be 

difficult to alter the model to fix the immunity level at a constant value and 

thus it is only possible to speculate that this, in combination with the 

features described above may explain this qualitative difference between 

the two models. 

Thus, the results presented do not explain the difference between the 

two models, although they do point to plausible explanations. It may 

however be worth pointing out, that with two models so different in many 
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aspects, it is almost surprising there are not more qualitative differences 

found. 

The effects of different values for the inoculum size (0) are also 

surprising. As the value of 0 is increased, the values of Pinf  and P 

descend, yet t increases and Gs-r(n)  and  GST(d)  also increase in value. This 

is the opposite of the effects when Pfr 1f decreases due to changes in value of 

any of the other parameters. 

It may well be that with many of the parameters, factors other than 

just the associated changes in Inoculation Rate are affecting the values of 

Ge-i-  at the two loci and i. However, in other cases they are either acting in 

the same direction as the effects of the IR, or their effects are swamped by 

the large changes in IR over the range of parameter values examined (as is 

assumed to be the case when different numbers of alleles are examined at 

the immuno-allelic locus). Here, although Pf and P v  do change with 

changes in the value of 0, those changes are small (2.1% in both cases) 

Thus, presumably, forces other than the effects of the changes in IR are 

causing the dominant effects on the genetic output statistics of the model. 

4.3.2.2) The epidemiological statistics (P,,,,, W, P, and Z,f) 

As has been stated above, it seems likely that the major factor 

affecting GST  at the two loci is the Inoculation Rate. This has three 

determinants, but only one that varies greatly with the parameters of the 

model, namely the proportion of hosts that are infected (Pjf). Thus, it is 

important to examine how this statistic changes with the changes in the 

values of the different parameters of the model. 
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For a stable level of infection to occur, i.e. for Pinf  to arrive at a 

stationary distribution (measured by the value P 1 ), the number of new 

infections created must be compensated for by the same number of 

infections ending. New infections are formed by the inoculation of 

uninfected hosts with parasites possessing immuno-allelic alleles to which 

these hosts are susceptible; Infections end through the death of infected 

hosts or the clearing of parasites from the host via an immune response. 

On intuitive grounds, it seems likely that changing a parameter to 

increase the rate of production of new infections is likely to increase the 

value of P. Changing parameters to increase the rate at which parasite 

infections end should decrease the value of 

In fact, those parameters that increase the transmission per infected 

host, namely the Double Bite Rate (T) and the Coefficient of Vector 

Infectivity (c), do confirm this view. In the case of the parameter c, this is 

shown to largely be due to the increase in value of P, not the increase in 

the number of zygotes per vector that also occurs. 

As the mean period of immune memory (1/0) is increased, Pinf  goes 

down. This can be explained by the fact the proportion of hosts susceptible 

to any particular immuno-allelic allele decreases with increasing 1/a. Thus 

the proportion of double bites that successfully pass on an infection 

decrease with increasing values of 1 /13 . 

The parameters M m j n , 0, s and p affect the mean period that an 

infection with a particular allele is likely to last. As this period increases, the 

rate at which hosts clear infections decreases. Thus one expects, and finds, 

that if these parameters are altered to increase the mean period of infection, 

then Pinf  should also increase. 
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The parasite basal growth rate (bo) also effects the mean period of an 

infection with a particular immuno-allelic allele. However, the manner in 

which this occurs is more complex and less easy to predict. The exact effect 

depends on interactions with both Mmin  and s, and are beyond the present 

scope of this study. 

The value of Pinf  was found to increase with the number of alleles at 

the immuno-allelic locus (D). This may initially seem obvious. It seems 

likely that the more parasite types that are treated differently by the immune 

system, the larger the value of Pinf  that would occur. However, the effects of 

different values of D are unlikely to be simple. Consider two extreme 

alternatives: 

The growth and transmission of parasites are in complete 

competition (as would happen, for instance, if the immune system did not 

recognise the immuno-allelic alleles as different). In this case, as the 

number of alleles is increased, the rate of transmission of each allele would 

decrease and the value of Pint  would remain constant, irrespective of the 

value of D. 

Parasites with different immuno-allelic alleles grow, and are 

transmitted without competition. This is analogous to the concept of the 

independent transmission of strains assumed in many models by Gupta 

(e.g. Gupta and Day 1994b). In this situation, one would expect the value of 

Pinf to increase with D. 	The degree to which P-t increases with D is 

described by Equation 4.2.3.5.1. 

When considering the explicit competition between parasite 

genotypes (through non-specific density dependence in parasite growth) 

found in the model, it appears surprising that when the values for Pinf  are 
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compared to that predicted with no competition, i.e. extreme atternative two, 

(see Figure 4.2.3.5.1) there is so little difference. This result is explored 

further in Chapter 6 and discussed in Chapter 7. 

The other output statistic of the model controlling the Inoculation Rate 

is the proportion of vectors, having bitten infected hosts, that do transmit 

parasites (P u). The estimated stationary distribution value for P (P u ) is 

controlled by two aspects of the model. These controlling factors are the 

Coefficient of Vector Infectivity (c), and the distribution of densities of 

parasites in the infected hosts. The distribution of parasite densities is not 

directly measured in the simulations. 

Thus it is expected, and found, that as c is increased, so does the 

value of P. When the number of zygotes are fixed, changing the value of 

c has the same effect on the value of P v  as when the number of zygotes are 

not held constant. This latter result suggests that the number of zygotes per 

infected vector does not have a discernible effect on P. 

Though changes in value of some parameters other than c do have a 

noticeable effect on the value of P (e.g.. s, p, 1/3). These effects are 

unlikely to be caused by the effects of altering the Inoculation Rate. This is 

suggested by the effects of the Double Bite Rate (T) on P. Despite altering 

the value of IR greatly there is very little effect on the value of P. These 

changes induced in T, are not monotonic, suggesting that whatever 

dynamic processes are involved, they are not simple. 

It has been shown that the mean number of zygotes per infected 

vector at the stationary distribution (Z 11.) has an important effect on the 

values of GST  at the two loci. The value of Zinf  is controlled by the same 

factors as is the value of P, namely the value of c and the distribution of 
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parasite densities amongst hosts. Thus one would expect the value of Zinf 

to vary with the value of P v  as the parameters are manipulated. This is not 

always the case. There are several instances where P shows a significant 

change in value with the manipulation of a parameter (for example the 

effects of changing the value of p). However no significant change in the 

value of Zinf  is found. The value of i, is calculated from all the double bites 

from infected hosts that occur in the time steps examined, whereas Zinf  is 

calculated only from those bites that transmit. Thus, the value of Z mf is 

calculated from only about half the number of measurements that P v  is 

calculated from. This is likely to explain the smaller number of statistically 

significant results found. In those cases where changes in the value of Zint 

were found to be significant, it did vary in the same direction as P t,, with the 

manipulation of a parameter value. 

The degree to which hosts are immune to different immuno-allelic 

alleles is likely to have important effects on the GST  values of the two loci in 

the model. If hosts are susceptible to all alleles, then no significant 

difference in value between Gs -r(d) and  Gs-I-()  is likely to be observed. 

Assuming a constant IR, it would seem likely that the greater the number of 

alleles that hosts are immune to, the greater the difference between Gs -r(d) 

and GST(n),  and thus the greater the value of t. 

However, the mean level of immunity in the host population at the 

stationary distribution (W) does not show any clear trend with the value of 

i. This is probably due to the fact that altering parameter values that 

change W also alters the value of IR. As has been previously stated, in 

most cases the effects of IR on GST(d), GsT(n) and t appear to be dominant. 

Nevertheless, it is appropriate to consider the effects different parameter 

values have on the value of W. 
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The value of W can be increased by increasing the rate at which 

parasites become immune to immuno-allelic alleles. This can occur 

through two general routes. Firstly, the rate at which hosts are infected by 

parasites can be increased (this can occur through increases in the 

inoculation rate or increases in numbers of zygotes per infected vector). 

This leads to a higher rate at which the immune system of each host 

experiences new alleles, and thus a greater rate of acquiring immunity to 

each allele. 

Secondly, the rate at which a host, once infected, mounts an immune 

response to the immuno-allelic alleles in that infection can be increased. 

This is expected to occur with increasing values of the parameters of M m j n  

and p (in both cases this should lead to a reduced mean period of parasite 

infection). Thus, one might assume that increasing the values of these 

parameters would also increase the value of W. This does not occur. This 

is because as the mean period of infection decreases, so does the value of 

Pint. It appears, at least in the part of the parameter space examined, the 

corresponding decrease in transmission rate has a greater effect in 

reducing W than the increase in the rate of development of an immune 

response has in increasing it. 

The effects of altering the value of the mean level of immune memory 

(1/0) also produces a somewhat counter intuitive result. As the value of 1/1 

increase, the rate of loss of immunity from each host is reduced and thus, 

one might expect that W is increased. However, 1/p decreases with 

increasing values of 1/3. This result seems likely to have been caused by 

the large reduction in value of P 11-a with increasing values of 1/n, and this 

has an overriding effect on W. 
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Chapter 5: Bootstrap Analysis 

5.1) Introduction 

This chapter is intended to examine the usefulness of the predictions 

of the model presented in Chapter 4 for finding immuno-allelic loci in real 

malaria populations. To do this, simulated field data are used and 

examined to see how likely a field collection of malaria parasites of a 

particular size is likely to find GS-r(d)  to be sinificantly greater than GST(n) 

(1>1) with a given set of parameter values. 

It is assumed that in such a field study, oocysts would be dissected 

off the guts of mosquitoes and scored for specific genetic markers. This is a 

method that has been employed in several field studies (e.g. (Babiker et al. 

1994)). The oocyst is believed to reflect the genetics of the zygote and thus, 

in this chapter, zygote genotype data are collected for analysis. 

5.2) Methods 

For each simulation examined, zygotes are collected and their 

genotypes recorded every two days, from day 4,000, until 10,000 zygotes 

have been recorded. 

A total of 1000 samples are then drawn (with replacement) from each 

data set for each sample size. Sample sizes of 500, 200, 100 and 50 

zygotes were examined. The bootstrapping method (Sokal and Rohlf 

1995) was then employed to examine whether t was significantly greater or 

less than one for each sample. Each sample was bootstrapped 2,500 
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times. This is the same method as was employed by Hastings (Hastings 

1996), and a program created by Hastings was used to do this analysis. 

5.3) Results 

5.3.1) Standard Parameter Values 

A data set of 10,014 zygotes was collected from a simulation using 

the Standard Parameter Values and started with Initial Conditions B. In 

Chapter 3, under these parameter values, values of 0.940, 0.823 and 1.141 

were found for GS -I- (d) , GST 	and t respectively. The results of the 

bootstrap analysis can be seen in Table 5.3.1. It can be seen that with only 

50 oocysts sampled, t is found to be significantly greater than one 43% of 

the time. However, when 500 oocysts are examined, no non-significant 

results were found. It should also be noted that in no case was tfound to be 

significantly less than one, even with the smaller sample sizes. 

5.3.2) Double Bite Rate = 0.05 

A data set of 10,004 zygotes was collected from a simulation using 

the Standard Parameter Values for all parameters except the Double Bite 

Rate (T) which was given a value of 0.05 per day. In Chapter 4 under these 

conditions, values of 0.981, 0.952 and 1.031 were found for GST(d) , GST(n) 

and respectively. The simulation was started with Initial Conditions B. 

The results of the bootstrap analysis can be seen in Table 5.3.2. It can be 

seen that with only 50 oocysts sampled, t is found to be significantly greater 

than one only 8% of the time. However, when 500 oocysts are examined, 
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91 % of the of samples found t to be significantly greater than one. For a 

sample size of 100, 0.4% of samples found t to be significantly less than 

one (i.e. a Type 1 error occurred). 

5.3.3) Double Bite Rate = 2.0 

A data set of 11,595 zygotes was collected from a simulation using 

the Standard Parameter Values for all parameters except the Double Bite 

Rate (T) which was given a value of 2.0 per day. In Chapter 4, under these 

conditions, values of 0.899, 0.340 and 2.642 were found for GS-J- (d) 

and t respectively. The simulation was started with Initial Conditions B. 

The results of the bootstrap analysis can be seen in Table 5.3.3. It can be 

seen that with only 50 oocysts sampled, t is found to be significantly greater 

than one 84% of the time. 	However, once 200 or more oocysts are 

examined, 100% of samples found t to be significantly greater than one. 

Under no sample sizes was tfound to have a value significantly less than 

one. 

5.3.4) Rate of Immune Recognition (p) = 0.005. 

A data set of 10,002 zygotes was collected from a simulation using 

the Standard Parameter Values for all parameters except for the Rate of 

Immune Recognition (p) which was given a value of 0.005 per day. In 

Chapter 4 under these conditions, values of 0.708, 0.269 and 2.634 were 

found for GST(d) GsT(n) and t respectively. The simulation was started with 

Initial Conditions B. The results of the bootstrap analysis can be seen in 

Table 5.3.4. It can be seen that with only 50 oocysts sampled, t is found to 
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be significantly greater than one only 25% of the time. 	This is raised to 

73% of the time when 200 oocysts are sampled and 94% when 500 are 

sampled. 

Type 1 errors were found to occur in 11 cases (1.1%) with 50 

oocysts, 4 cases with 100, 2 cases with 200 and no cases of type 1 errors 

were found when 500 oocysts were sampled. 

Bootstrap analysis with the Standard Parameter Values 

Sample 
p>0.05 

Size  

p<0.05 P<0.01 p<0.001 

50 574 247 124 55 

100 229 289 268 214 

200 29 96 256 619 

500 0 2 8 990 

Table 5.3.1 

Bootstrap analysis with the T = 0.05 

Sample 
size 

p>0.05 p<0.05 P<0.01 p<0.001 

50 921 77 2 0 

100 755 170 64 7 

200 436 284 202 78 

500 86 161 295 458 

Table 5.3.2 

Tables 5.3.1-5.3.4 (Tables 5.3.3 and 5.3.4 overleaf): 
The tables presented show the number of times (out of 1000) that bootstrap analysis 
found a samples of different sizes (shown in the left hand column) to have a value of t 
significantly greater than 1. The values for p shown in the top row describe the 
different levels of significance examined. For further explanation, see text. 
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Bootstrap analysis with the T = 2.0 

Sample p>0.05 
size  

p<0.05 P<0.01 p<0.001 

50 155 279 383 183 

100 22 77 192 709 

200 0 0 12 988 

500 0 0 0 1000 

Table 5.3.3 

Bootstrap analysis with the p = 0.005 

Sample 
size 

p>0.05 p<0.05 P<0.01 p<0.001 

50 749 178 47 15 

100 562 244 130 60 

200 287 288 237 186 

500 43 96 192 669 

Table 5.3.4 
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5.4) Discussion 

Collecting oocysts in the field has become a very useful method for 

population genetic analysis of malaria (Babiker and Walliker 1997). 

However, it is also a very time consuming and arduous technique and the 

collections of very large numbers of oocysts is at the moment impractical. It 

is therefore reassuring that to find a significant difference in GST  values of 

the scale predicted by the model presented here, hundreds rather than 

thousands of oocysts are needed. The largest, published collection and 

genetic analysis of oocysts so far has been 71 (Babiker etal. 1994). Thus 

although the numbers needed are likely to be larger, they are not likely to 

be unfeasibly so, especially as one collection of oocysts could be seen as a 

'reference collection' and used for the study of many different putative 

immuno-allelic loci. It is also reassuring that, under the wide variety of 

conditions examined, the probability of Type 1 errors always appeared to 

be small. 

It is somewhat disconcerting to note that the value of t does not 

appear to be as strong an indicator as to the probability of finding a 

significant result as had been hoped. This is shown by examining the 

results of sections 5.3.3 and 5.3.4. With both sets of conditions very similar 

values for t had previously been found in Chapter 4 (2.64 and 2.63 

respectively) yet the chance of finding a significant result with different 

numbers of oocysts is found to be very different (100% with 200 oocysts in 

the former and 73% with 200 in the latter). 

If one compares the results for the Standard Parameter Values 

(=1.14) to the standard values in the paper by Hastings (t=1.17), despite 

very similar values for tand t, very different results of the bootstrap 
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analysis is found. It was found that 200 or more oocysts was needed for a 

90% probability of getting t significantly greater than one with the standard 

parameters for the model presented here, while 500 oocyst were needed in 

the study by Hastings. The values for GSi-(d)  and  GST(fl)  in Hastings's study 

were much lower than GST(d)  and GST(n)  found in this model (0.766 and 

0.656 as opposed to 0.940 and 0.823) despite producing a similar value for 

t. When the values of GST(d)  and  GST(fl)  were artificially raised in Hastings's 

model to values similar to those in the model here, the bootstrap results 

became more like those found in this study (Hastings and Wedgwood-

Oppenheim, unpublished data). 

It would thus appear from both of the above comparisons that the 

higher the values for GST  at both loci (for the same value of t) the greater the 

ease with which a significant effect can be found in a field study This 

appears to be in contrast to (Hastings 1996), who suggested that as GST 

was reduced, the chance of finding t significantly greater than one is 

increased. However in his study, t was assumed to change with GST.  As 

has been stated above , when GST  is changed but t is kept constant, 

Hastings's model produces very similar results to those found here (e.g. for 

(=1.17, GST(n) = 0.82 and 10 alleles at the immune locus there is a 97% 

chance of finding 1>1 with p=0.05 significance). 

The precise effects of the values of GST  at each loci and the value of t 

on the probability of finding a (to be significantly greater than one has not 

been fully elucidated and must warrant further study. 
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6) Strain Competition 

6.1) Introduction 

In previous models of the effects' of strain-specific immunity on 

malaria infected populations, it has been assumed that each 'strain' acts 

independently (see Section 1.3.5). In this chapter a series of simple 

analytical models are studied. First I examine the prevalence of a single 

parasite strain in a host population. The model is then modified to examine 

the effects of several independent strains on parasite prevelance. Finally I 

examine the effects of inter-strain competition on parasite prevelance. 

6.2) The Model 

6.2. 1) A single strain 

The models described in this section are modifications of a simple 

model described by Anderson and May (1991, pgs. 123-5). In their model 

only a single parasite strain is considered; it is further assumed that there is 

no geographic or age structuring, no infection-induced mortality, life-long 

immunity and no heterogeneity in the parasite population. Under these 

assumptions, and with their model, it can be shown that the equilibrium 

value for the proportion of hosts susceptible to infection (x*)  is described by: 

X* = YRO 	 6.2.1.1 

where R0 is the basic reproductive rate (see section 1.3.5). The equilibrium 

proportion of hosts infected (P*)  is described by 

P* = I /2 	 6.2.1.2 
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where t is the per capita host death rate (= birth rate = rate of input of new 

susceptibles into the population), and v is the per capita rate of recovery 

from an infection (all infections are assumed to be infectious). 

Here I consider the situation where life long immunity does not occur, 

and thus new susceptible hosts do not enter the population just through 

birth, but also from loss of immunity of previously infected hosts. Equation 

6.2.1.2 can then be altered (following Gupta eta! 1994a) to take this into 

account by including the additional term h, which describes the per capita 

rate of loss of immunity. 

P.=( #+h  

U1+h+v)L R0  
6.2.1.3 

If we assume that the birth rate is low compared to the rate of loss of 

immune memory, then this can be simplified to: 

P . = (h 

h+vA, I? 
6.2.1.4 

It should be recognised that the terms R0 and v are not necessarily 

independent of each other in the first of these two equations. This is 

because R0 can be described by: 

R0  = bC / V 
	

6.2.1.5 

where C describes the Vectorial Capacity of the vector population (Bailey 

1982) (see Section 2.4) and b, the probability that an infectious vector, 

when biting a susceptible host, transfers that infection (MacDonald 1957). 
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6.2.2) Multiple strains with no competition 

Here the models of Anderson and May and Gupta et al. described 

above are modified to consider a situation where there are several (D) 

strains of malaria parasite which act independently of each other then one 

can predict the total parasite prevalence (P;) as 

ic=i-'lj(i-p:) 

	
6.2.2.1 

where P,*is  the prevalence of infection of strain i in the population. If each 

strain has the same values for v, h and A0, then this can be simplified to 

6.2.2.2 

and is thus equivalent to: 

I 

I h(1—)/jfl 

h + v ii 	 6.2.2.3 

6.2.3) Multiple strains with competition 

There are many ways in which strains may compete in a population: 

there may be competition for resources in hosts; for vector transmission 

between hosts; for new hosts; for a mixture of the above. 

In this model it is assumed simply that competition is only for 

transmission. A simple form of transmission competition is that the vectorial 

capacity for the host population is constant irrespective of the numbers of 

parasite strains present. 
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I assume that each strain is equal in its competitive ability and thus 

that the Vectorial Capacity for each strain is equal and is reduced by the 

presence of other strains in the population: 

Ci = CT/D 	 6.2.3.1 

where CT is the Vectorial Capacity for a strain if it is alone in the host 

population, and Ci is the Vectorial Capacity for a strain if other strains are 

present in the population. If it is assumed that there is no competition 

between strains in each host, then v is not altered by the presence of other 

strains in the population and thus: 

6.2.3.2 

where 1?  is the basic reproductive rate for a strain if it is alone in the host 

population, and R0  is the basic reproductive rate for a strain if other strains 

are present in the population. This situation can be seen as analogous to 

the situation described by Saul (Saul 1996), where the total R0 for a 

population, can be seen as the mean of the R0s for all the immunologically 

distinct strains present. With this form of competition the total parasite 

prevalence is: 

Ih(1/) 

h+v  JJ 6.2.3.3 
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6.3) Results 

6.3. 1) A single strain. 

It is evident from the equation 6.2.1.4 that for a single parasite strain, 

in the absence of other strains, as the value of R0 increases, so does the 

proportion of hosts infected. The maximum value for P*  is determined by 

the relative values of h and v, with P" tending to h/v when R0 is very large. 

This is illustrated graphicaly in Figure 6.3.1. It can be seen that as 1/h is 

increased (with a fixed value for v), the prevalance, P, for each value of R0 

is less. 

The effects of R0 on parasite prevalence with a singe parasite 

strain 
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Figure 6.3.1: Parasite prevalence is plotted against R0 using equation 6.2.1.4. 1/v 
is set at 100 days, while each line has a different value for h. The values of 1/h is 
written under each line. 
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6.3.2) Parasite prevalence with no competition. 

In Figure 6.3.2 the effects of the number of strains present on the 

total parasite prevalence can be seen under the assumption of no 

competition between strains. As the number of strains present in the 

population increases, so does the parasite prevalence. The total parasite 

prevalence appears to be asymptotically approaching a value of one. The 

rate at which the prevalence approaches one is dependent on the values of 

v and h. It is also effected by the value of R0, especially when the value of 

R0 is small (see Equation 6.2.2.3). 

The Effects of the Number of Parasite Strains on Parasite 
Prevalence with no Inter-strain Competition. 
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Fig . 6.3.2 	 Number of Strains (D) 

Figure 6.3.2: Parasite prevalence is plotted against the number of parasite strains 
(D) using equation 6.2.2.3. 1/v is set at 100 days, while each line has a different 
value for h. The value of lfh is written under each line. R0 is given a value of 100. 
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6.3.3) Parasite prevalence with inter-strain competition. 

Figure 6.3.3.1 represents the effects of strain competition on the 

parasite prevalence (see equation 6.2.3.3) in a population. The upper two 

lines represent the effects of strain competition on the total parasite 

prevalence in a population. The lower two lines represent the effects of 

strain competition on the prevalence of a single strain in the population. 

If one compares the effects of number of strains on total parasite 

prevalence with and without inter-strain competition (see Figures 6.3.2, 

6.3.3.1 and 6.3.3.2), it is evident that when the number of strains are large 

(i.e. close to the R0 for the population), there is a very large effect. However 

when D is small in relation to R0 this difference is quite small. 
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The Effects of the Number of Parasite Strains on Parasite 
Prevalence with no Inter-strain Competition. 

- 

0. 	-  

0.6--1 	 65 days 	630 days 

0 020406080100 

Fig. 6.3.3.1 	
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Figure 6.3.3.1: The upper two lines represent the total parasite prevalence with 
different numbers of parasite strains (D) with different values for 1/h using equation 
6.2.3.3. The lower two lines represent the parasite prevalence of individual strains as 
the parasite prevalence increases. 1/v is set at 100 days, while each line has a different 
value for h. The value of 1/h are presented on the graph. R0 is given a value of 100. 

Comparison of Effects of the Number of Parasite Strains on 
Parasite Prevalence With and Without Inter-strain Competition. 
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Figure 6.3.3.2: The dashed lines represent different total parasite prevalence with 
no inter-strain competition, while the solid lines represent total parasite prevalence with 
inter strain competition. The upper pair of lines have a value for 1/h of 265 days, 
while the lower pair have a value of 630 days. The value IN is set at 100 days, while 
each line has a different value for h. R0 is given a value of 100. 
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6.4) Discussion 

The models presented here show that inter-strain competition can 

have very profound effects on the epidemiology of malaria population. 

However these effects are small, and only evident when the numbers of 

strains is large and approaching the value of R0 for the population. Most 

profoundly this study shows that, under the assumptions stated, a 

population cannot sustain more parasite strains than the value for R0 of the 

total population. This result is easily understood by examining equation 

6.2.3.2, for as D approaches ROT,  Roapproaches one at which point 

parasites cannot be maintained in the population. 

This is an interesting result and may have implications as to the 

control of parasite populations (see Chapter 7), however that depends on 

whether the method of inter-strain competition described is applicable to the 

real world. Clearly more work needs to be done to examine whether these 

qualitative results are robust to other, possibly more realistic, forms of inter-

strain competition (e.g. involving intra-host competition). 



7) General Discussion 

The aim of this study has been to examine the effects of strain-

specific immunity on the population genetics of malaria parasites in the 

context of their epidemiology. This has been done through the construction 

of a theoretical model which has been examined through computer 

simulation. A second mathematical model has also been examined to look 

just at the effects of strain-specific immunity on the epidemiology of malaria 

populations 

The study has focused on the use of Wright's F statistics (specifically 

Gs-r) to examine the degree of genetic substructuring within hosts and 

potential for outcrossing in malaria parasites, although other aspects of the 

parasite population have also been examined. The values of GST for the 

two loci have been studied, one being immuno-allelic, the other neutral. 

7.1) Discussion of the results 

The GST values for both loci were examined, first over time from very 

different starting conditions, and second at the stationary distributions that 

were achieved. At all times and under all conditions examined, GST at the 

immuno-allelic locus was found to be greater than at the neutral locus (i.e. t 

was found to be greater than one). 

Manipulation of the parameter values in the model showed that, in 

almost all cases, where a parameter was altered such that the proportion of 

hosts infected during the stationary distribution (P) was increased, t was 
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also found to increase, and the GST  values for the two loci were found to 

decline. 

When the effects of the number of alleles at the immuno-allelic locus 

(D) were examined it was found that as D was increased, the values of GST 

at the two loci decreased, while t and Pinf  increased. 

A detailed discussion of the results has been presented at the end of 

Chapters 3 to 6. However several important points can be drawn from the 

results and these are highlighted here. 

The dynamics of the model examined in Chapter 3 show that the 

hypothetical parasite population acts in an epidemiologically expected 

manner. The population shows an initial epidemic "boom and bust" cycle 

as one would expect from parasites invading a population of susceptible 

hosts. 

It has been postulated at the end of Chapter 4 that the population-

genetic results presented in that chapter can largely be explained by 

considering the Inoculation Rate (IR), where the IR is the product of the 

Double Bite Rate (T), the proportion of hosts infected (Pinf), and the 

proportion of double bites biting from an infected host that transmit parasites 

(Pu). When a single parameter was manipulated, the larger the value of IR, 

in almost all cases, led to lower values of GST(n)  and GS-1-(d),  and greater 

values of i. The likely reason for this was explained at the end of Chapter 

4. 

The changes in value of IR may also explain the changes in GST 

found during the epidemic phase of the infections described in Chapter 3. 

Unfortunately, these changes do not appear to be simple. There is a lag in 
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the response of tto Pinf,  with t rising to a peak shortly after the peak in P-1 . 

This is not surprising as one would expect GST  to take time to equilibrate to 

a new inoculation rate (Crow 1986), this time being lengthened by the time 

taken for parasite densities to grow up after their initial inoculation into a 

host. However the lag in t"s increase is very different in the two runs, 

suggesting that there are other factors involved in determining the dynamic 

phase of Osi-  than just the IR. These factors are beyond the scope of this 

study. 

3) It has been stated in Section 1.3.5 that the independent 

transmission of immunologically distinct parasite strains is unlikely. The 

model presented is constructed with several features that cause parasites 

with different immuno-allelic alleles to interact and compete. These 

features are (i) a single population of vectors; (ii) a small number of zygotes 

in most transmitting vectors; and (iii) total parasite density dependent 

growth in the hosts. Surprisingly, in Chapter 4, the values of Pinf  found with 

different values of D suggest that the immuno-allelic alleles appear to act 

close to independently in terms of overall transmission. 

The studies in Chapter 6 suggest that there is a simple explanation 

for this. Using a different model of malaria epidemiology, it is shown that 

when the number of immunologically distinct strains present in a population 

is small compared to basic reproductive rate of the parasites, the proportion 

of hosts infected is a poor indicator of inter-strain competition. 

It is not known what the basic reproductive rate of the parasite 

population in Chapter 4 is, however it is likely to be larger than the number 

of alleles at the immuno-allelic locus (D). It is also seems likely that the 

competition between strains in the simulation model described in Chapter 2 

is less stringent than that used in Chapter 6. In combination, these factors 
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are likely to explain the, initially surprising, effects of D on Pinf  found in 

Chapter 4. 

7.2) Potential problems with the study 

It is clear from the literature that some form of strain-specific immunity 

occurs (see Section 1.3.2). However, to what degree it is genetically or 

epigenetically controlled is not known. Here we have assumed that strain 

specificity is completely genetically controlled (i.e. it is haplotype specific), 

and by a single locus. This need not be the case. 

There has been much interest recently in antigenic switching, 

especially since some of the var genes have been cloned (Su etal. 1995), 

and these genes may be important in strain-specific immunity (Borst et al. 

1995). If this is the case, this is likely to be through a mixture of epigenetic 

(e.g. the switching of antigen expression in a particular clone) and genetic 

(e.g. different repertoires of var genes in each host) factors. This study has 

not attempted to examine the effects of antigenic variation on the population 

genetics of malaria parasites. As yet, too little is known about the diversity 

of alleles amongst hosts, the control of switching and the importance of the 

var gene products in controlling human malaria infections for a population 

genetic model to be constructed to take antigenic variation in malaria 

populations into account. Until more is known of the biology of this gene 

family, it will be difficult to predict the effects of antigenic switching on the 

population genetics of malaria parasites. When more is known of the action 

of the var genes it should be straightforward to build them into the model. 

Indeed, antigenic switching in a host can be seen as similar to inoculation 



of that host with a new parasite clone with a new immuno-allelic allele, but 

with the same neutral allele 

The var genes may define part of the specification of immunologically 

distinct strains, but other immuno-allelic loci may also be involved. If this is 

the case, these other loci may still be identified by examining their GST 

values with respect to the GST  values at neutral loci. Assuming the immuno-

allelic loci are not closely linked to the var genes, the presence of the var 

genes will act as background 'noise' to the measurements of GST,  and 

should not obscure the difference between Gs1()  and  GST(d). 

If immunity is largely haplotype specific, there are several other 

methods by which it can be defined other than by a single locus with no 

cross-reactivity between alleles (as is assumed in this study). Namely, 

there could be multiple loci involved, and/or their alleles could show some 

degree of cross reactivity. Though the model presented here does not 

address these alternatives, it is possible to speculate on the population 

genetic outcomes of these alternatives. 

Firstly, the effects of multiple loci on the strain structure of parasites 

has become a topic of interest recently (Gupta et al. 1996; Hastings and 

Wedgwood-Oppenheim 1997). The work by Gupta and co-workers has 

proposed that if alleles at multiple loci are responsible for strain-specific 

immunity, then a strong degree of linkage disequilibrium will develop 

between alleles at the different loci. This is likely to mean that no matter 

how many loci are present, the GST(d)  value for each locus will be equal, 

and greater than a Gs-r(n)  value measured. The loci are likely to act 

epidemiologically as a single locus with the number of alleles equal to the 

smallest number of alleles that any of the loci have. 
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Secondly, partial cross-reactivity between alleles at a locus will 

reduce the average degree of susceptibility of the host population and 

consequently reduce the value of P 11.1. Thus in much the same manner as 

increasing the mean period of immune memory (1/13), it is likely to increase 

GST(d) and GST(n)  and decrease t. 

The model presented here assumes that immunity to a particular 

immuno-allelic allele is completely sterile against parasites with that allele. 

However, as stated in Chapter 1, sterile immunity against malaria is a rare 

phenomenon in man. In most cases anti-parasite immunity appears as a 

reduced parasite density and a shorter period of patent infection (e.g. Boyd 

and Kitchen 1943; Ciuca etal. 1934). 

It is possible to speculate as to the effects of partial immunity on the 

outcomes of the model. It seems likely that the less effective the immune 

response, the greater the proportion of hosts that become infected. This is 

likely to cause an increase in the Inoculation Rate, which is itself likely to 

reduce the values of GST(n)  and GST(d)  and increase the value of i. This 

prediction may seem counter-intuitive, however the situation can be seen 

as analogous to the reduction in the period of immune memory shown in 

Section 4.2.3.1 
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7.3) Implications of the study 

7.3.1) The usefulness of examining GST  values from field 

data to look for immuno-allelic loci, and the choice of 

field site. 

The results of the model clearly show that the general prediction of 

Hastings, namely that GST  values can be used to detect an immuno-allelic 

locus, is robust to very different assumptions about the biological nature of 

malaria parasites. More specifically, Hastings's prediction holds up even 

when a short period of immune memory is assumed, and also when the 

parasite population is in a state of flux as well as at a stationary distribution. 

It has been suggested that, by measuring the GST  values for 

potentially immunologically important loci in a population, and comparing 

these values to those measured at neutral loci (e.g. microsatellites), one 

can help to discover a locus' immunological importance (Hastings 1996b; 

also see Section 1.4.3). 

The results in Chapter 4 show that a wide variety of parameters of the 

model, have large effects on the magnitude of i. It was also shown in 

Chapter 5 that the magnitude of t does not necessarily correlate with the 

probability of finding 1>1 in a field study. 

When comparing different real malaria populations, most of the 

parameters of the model are likely to be constant, or at least similar in value 

(unless comparing different species). The only parameters that are likely to 

change drastically between potential study sites are the size of the human 

population and the transmission rate. The size of the human population 

has been shown to have no discernible effect on t , however, larger the 
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transmission rates have been shown to both lead to larger values of t and 

to increase the chances of finding t>1 in a field study. Thus, the results 

presented here agree with Hastings's view, that if such a technique is to be 

used in the field, examining parasites in an area of high transmission, rather 

than low transmission would be better for detecting a difference between 

the two loci. 

The model highlights the importance of examining the level of 

transmission from the point of view of rate of inoculation to the population 

rather than the rate of transmission from infected hosts, i.e. the Inoculation 

Rate is a more important factor for comparison between areas than is the 

Double Bite Rate. In epidemiological terms this is equivalent to comparing 

Entomological Inoculation Rates rather than Vectorial Capacities (Bailey 

1982; Molineaux et al. 1988). 

The accurate measure of vectorial parameters can be difficult (Gupta 

and Snow 1996), however, increasing transmission rate does appear to 

correlate (at least in the model presented in Chapter 2) with the reduction in 

GST(fl). Thus, perhaps the best way to choose a study site to look for 

immuno-allelic loci, is to look for ones with low estimates for GsT().  Thus 

Tanzania or the Gambia, may well be better than Papua New Guinea for 

such a study (Babiker etal. 1994; Carter and McGregor 1973; Paul etal. 

1995). 

In Chapter 3 it is shown that changes in the value of t lag behind, but 

appear to mirror, the value of P,. f during the epidemic phase. In the two 

simulation runs examined in detail (with different starting conditions), very 

different lag periods occurred, from a few days to around half a year. Thus, 

when a population is in flux, it is not possible to predict when the largest 



value of t is likely to occur. In such a situation it would again appear to be 

most sensible to measure t when GST(fl)  is at its lowest value, as this does 

appear to correlate reasonably well with high values of t during the 

epidemic phase as well as during the stationary distributions examined. 

In the studies presented in Chapters 3 and 4, GST  values are 

calculated from the parasite genotype densities in each host. According to 

the assumptions of this model, this should predict the 0ST  values one would 

find in the zygotes in the vectors. In Chapter 5 zygote data was explicitly 

examined. Population genetic studies of real malaria populations have 

calculated outcrossing rates by looking at genetic polymorphisms in either 

oocysts or blood stage parasites. If oocysts reflect the genetics of the 

parasite zygotes, using them is clearly an accurate way of measuring GST. 

Examining outcrossing rates by prediction from the blood stages has much 

more room for error (see Section 1.4.1), although in the one study where 

the outcrossing rates from oocyst and blood data was examined they two 

did agree (Hill and Babiker 1995; Hill et al. 1995). However, despite the 

increased risk of error, examining the blood stages has many advantages. 

For instance, blood samples are much easier to collect than dissecting 

oocysts from the guts of mosquitoes. Also it is much easier to collect 

parasites at the blood stage from specific age groups than it is to collect 

oocysts from mosquitoes that have fed on those age groups. 

It would be of great interest to know whether the inherent 

inaccuracies in calculating GST  from blood collections translate into a large 

loss of power when testing whether a locus is immuno-allelic. This could be 

done through the simulation of blood data sets with specific GST  values and 

the examination of these data sets having simulated the use of different 

experimental techniques (e.g. isoenzyme polymorphisms as used by Carter 
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and McGregor (1973) or the polymerase chain-reaction as used to generate 

the data for the study by Hill and Babiker (1995)). Such simulations could 

then be used, via bootstrap analysis, to weigh up the relative merits of blood 

versus oocyst data analysis when using GST  measurements to identify 

immuno-allelic loci. This is clearly important and warrants study. 

However, the results of the bootstrap analysis in Chapter 5 suggest 

however that only 200 to 500 oocysts are needed for the reliable finding of 

an immuno-allelic locus. Thus, although it would clearly be more 

convenient to use blood data, an oocyst based study should be within the 

bounds of practicality for a field study 

7.3.2) Other implications 

The dynamic nature of this model may provide a useful tool in the 

design of control strategies. The value of Gs-r(fl)  in a population is a useful 

measure of the degree of outcrossing in that population. This may have 

implications on the spread of drug and vaccine resistance and the level of 

virulence in the population (see Section 1.4.1). The dynamic nature of the 

model takes into account the effects of parameter values on the 

epidemiology of the system, and its knock-on effects on the population 

genetics. Thus, unlike previous population genetic models (specifically 

(Hastings 1996) the effects of different control strategies on GST(fl)  (and thus, 

the degree of outcrossing) can be predicted. 

The effect of the number of immuno-allelic alleles on P 1 f may be 

useful in the design of vaccine strategies. If independently transmitted, 

immunologically distinct strains exist in a malaria population (e.g. scenario 

(2) in Section 4.3.2.2), and if a vaccine removes only a few of these strains 
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from the population, then one would expect a large reduction in the parasite. 

prevalence in the population. If, however, there is complete competition 

between strains (scenario (1) in Section 4.3.2.2) then such a partial vaccine 

would have no effect on the total prevalence. In this model, it was found 

that, despite no independent transmission of immuno-allelic alleles, there 

was still a sizeable difference in Pinf  with different values of D, and thus a 

vaccine against only a few of the alleles at the immuno-allelic locus would 

still be expected to reduce P 1 f in the population and thus may be worth 

implementing. 

However, the studies in Chapter 6, suggest that if the number of 

immuno-allelic alleles are large, i.e. a similar number to the R0 for the 

population, then a small reduction in the number of strains present may in 

fact increase the total parasite prevalence. This result is only preliminary 

and more work needs to be done on this topic before any serious concerns 

along these lines should be raised. 

7.4) Possible Future Directions 

There are many interesting features of the model reflected in the 

results described and discussed above, and there are clearly many 

potential follow-on studies. These can generally be described under two 

headings, though there is much overlap between them. 

1) Further examination of the processes underlying the results of the 

model. 
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As has been stated previously, the nature of a computer simulation 

study is such that some of the underlying causes of a result can be 

intractable. However, deliberate modifications of the model can be used to 

clarify the various causes to some extent. This was done when examining 

the coefficient of vector infectivity (c) in Section 4.2.2.2 

There are many possible manipulations of the model which may 

produce illuminating results. For instance, the dominant nature of IR in the 

study may well be obscuring other interesting interactions in the model. 

Thus, it is of interest to control deliberately the inoculation rate and to 

manipulate the parameters against this background. This may be of use in 

predicting the effects of the same inoculation rate on heterogeneous 

population (e.g. the effects of age - see below). 

2) Examination of the possible application of the model to field studies of 

malaria populations. 

It has been shown in a study by Ntoumi and co-workers (Ntoumi et al. 

1995) that the number of alleles at the MSP2 locus, found in individuals in 

an endemic population, decreases with age. This result fits with the general 

concept of strain-specific immunity. As the population gets older the mean 

number of immunologically distinct strains each individual has experienced 

increases, thus the probability of being immune to any new inoculation 

increases, and thus the probability of a mixed infection is reduced. 

In the model presented here, the host population is age structured, 

and includes births, deaths, and hosts experiencing more alleles at the 

immuno-allelic locus with increasing age. Thus, one would expect older 

hosts to have higher levels of immunity than the younger ones. If the older 
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and younger age groups were separate populations, Pinf for the older 

population would be expected to be smaller than for the younger one, and 

thus the IR to be smaller, the GST  values to be higher, and the value of tto 

be smaller. However, as the populations are not separate but 

interconnected, a high lR, due to the high Pinf  in the younger age groups is, 

in part, experienced by the older ages. This higher IR coupled with the 

higher levels of immunity in the upper age groups may well cause an 

increase in value of t due to the greater levels of immunological restriction. 

If this is the case it may be of great importance as the most effective way to 

examine Hastings's predictions in the field may be to look specifically at 

one age group. This has not been examined in this study, but should be 

done. 
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7.5) In conclusion 

The study presented here lends weight to the predictions of Hastings 

as to a possible method for identifying immunologically important loci. This 

model shows that these predictions are robust even in the face of more 

realistic parasite life-history assumptions, including the use of a short period 

of immune memory. However, if the immune memory to any particular 

allele at the locus identified is only short-lived, what use is its identification? 

Once a locus is identified as being an important target of anti-

parasite immunity and that its polymorphism is involved in the evasion of 

this immunity, it may be possible to construct a vaccine that promotes an 

immune response against invariant regions of the locus and also aimed at 

eliciting longer-term immune memory. However, even a vaccine which 

elicits short term protection may still be useful under certain conditions. For 

example, it may be useful to protect very young children through their first 

few years of life where they appear to be at their most vulnerable; it may be 

useful in the prevention of the spread of an epidemic in a region with 

sporadic, unstable malaria; and it maybe useful as a "visitors' vaccine" for 

people visiting an endemic region from a non-malarious one (Saul 1994). 

As well as confirming the robustness of Hastings's results, this study 

provides some insights into the level of interdependence of different 

immunologically distinct strains, and moreover it highlights the inter-

relationships of population genetics and the epidemiology of malaria 

parasites. The models constructed for these studies may also prove to be a 

resource in any future examination of the population genetics and 

epidemiology of malaria parasites and other disease agents. 
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Appendix 1: Choice of time-step size. 

As explained in the text (Section 2.1), simulation runs were repeated 

with different time-step sizes. This was done to check that the step size 

used in subsequent simulations is appropriate. Step sizes of 0.05 to 0.8 

days were examined. The Standard Parameter Values involve a low 

value for the Double Bite Rate (1=0.1 per day), and it was felt that the effects 

of an inappropriate time-step size might be greater when T had a larger 

value. Therefore, the effects of the step size on the output statistics was 

examined not only with the Standard Parameter Values, but also with T=2.0 

per day (with the other parameters at their standard values). The results of 

these simulations are presented in the Tables A1.1 and A.1.2. 

The time-step size of 0.2 days seems to be appropriate as there is 

very little change in value of any of the output statistics, compared to the 

values of the statistics when the time-step is reduced to 0.05 days. 
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The Effects of Time-step Size on the Output Statistics of the Model with T=0.1 per day. 

Step 	size 
(days) GsTd 

= 
GSTOO 

= 
t 

= 
P 1 f 

= 
Zf 

= 
Pv 

= 
W 

0.05 0.940057 0.822159 1.1434025 0.664723 1.535148 0.48864 5.154949 
1.03 x10 3  1.61 x10 3  9.92 x10 4  2.76 xIO-3  0.0139 2.27 xlO -3  7.96 xlO-3  

0.1 0.940289 0.8246105 1.140291 0.663497 1.548212 0.487505 5.167035 
2.11 x104  2.21 x10 3  3.32 x10 3  4.84 xIO-3  2.58 x10-3  1.87 x10-3  0.0145 

0.2 0.9398625 0.8232315 1.141689 0.6673505 1.542321 0.484411 5.1716535 
1.53 x10-4  2.89 x10-3  4.19 xlO-3  3.26 xlO-3  3.49 xlO-4  7.7 xlO -5 6.79 x10 3  

0.5 0.938933 0.8208165 1.143906 0.675939 1.544008 0.497081 5.205043 
4.025 x10 4  1.45 x10 3  2.51 xlft 3  4.94 x10 9.15 x10 4  4.27 xlO-4  0.01097 

0.8 0.938849 0.817455 1.148503 0.684751 1.537852 0.50474 5.219799 
8.53 x10 4  17.96 x104  7.4 	xlft 5  3.12 xlO-3  1.36 x10 3  4.74 x10 4  3.08 xlO-3  

The Effects of Time-step Size on the Output Statistics of the Model with T=2.0 per day. 

Step 	size 
(days) GST(d) GST(n) P1f Zi n i P  W 

0.05 0.898872 0.339997 2.64381 0.863082 1.545411 0.5030455 0.8041268 
3.21 xlO-4  1.464 x10 3  0.0104 2.28 xIft 4  6.47 x10 4  4.55 X  10-4 4.03 x10-3  

0.1 0.897076 0.339904 2.639301 0.8694975 1.545332 0.507025 8.032764 
1.87 xlO-4  2.02 xlft 3  0.0162 1.45 x10 4  4.84x10 4  1.96 xlO-4  6.0 x10 3  

0.2 0.8987325 0.3401095 2.6426 0.880011 1.5457805 0.50793 8.036869 
3.78 x10-4  2.36 x10 3  0.017 5.39 x10 4.75 x10-5  7.73 xl0 4.49 x10 3  

0.5 0.900913 0.345707 2.606082 0.9034355 1.544930 0.5035715 8.073682 
1.71 	x10 4  1.864 x10-3  10.0145 6.79 xlft 4  5.38 x10 4  4.48 x10 4  1.625 xlO-3  

0.8 0.904817 0.351966 12.570768 0.92349 1.544153 0.494937 8.12116 
3.35 xlO-5  9.27 xlO -4  6.86 xlft 3  4.3 xIO-5  3.67 x10 4  2.85x 10 3.75 x10-3  

Fables Al .1 and A1.2. 	In most cases. the means artcl standard errors 	of each statistic are calculated from Iwo simulation riin 	nrit. will  
Inutal Condition A, (lie other with mitt ii Condition B The only L\Lcptlon is with T=O I per clay  md the Time-step  SILC=0 1 days, in this 
case, eight runs were clone, four with Initial Condition A and four with Initial Condition B. The mean values of each statistic are presented in 
bold, the standard errors are in parentheses underneath their respective means. Apart from the parameter T, the Standard Parameter Values 
were used. 



Appendix 2: Meiosis 

The genetic consequences of individual meiotic events have been 

studied extensively in fungi. This is possible because of the biology of 

many fungal species, where the products of individual meiotic events are 

found together in what are known as 'tetrads'. Genetic analysis of these 

tetrads has greatly increased the understanding of meiosis. 

Let us consider an organism with two unlinked loci, with two alleles 

at each locus. The diploid stage is heterozygous for both loci. There are 

four combinations of alleles possible for the haploid progeny following 

meiosis. As meiosis produces four haploid progeny, it is an easy 

misconception, that, if the loci are unlinked, all four combinations will be 

produced from each meiosis. However examination of fungal tetrads has 

shown that this is not necessarily the case. In general either two or four 

different combinations of alleles are produced in each meiosis. The 

reasons for this and the relative frequencies of the different outcomes can 

be explained by considering the mechanisms by which meiosis occurs. 

Figure A2 shows a schematic diagram representing meiosis with 2 

unlinked loci and 2 alleles at each locus. It shows two of the several 

different ways crossover events and segregation can occur in meiosis, and 

demonstrates two of the possible outcomes. In one case (Alternative A), 

this leads to four genetically distinct progeny being produced, in the other 

case shown (Alternative B), only two progeny types are produced. 

The relative frequencies at which all four progeny types , or the two 

alternative pairs of progeny types, are produced from a single meiosis, 

depends upon the degree of linkage between the two loci and also the 
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degree of linkage between each locus and its respective chromosomal 

centromere. 

Assuming no interference between recombination events, and the 

two loci are unlinked with respect to each other, then there is a continuum 

between two extreme alternatives. These two alternatives are firstly, that 

the two loci are completely linked to separate centromeres, in which case 

meiosis can not lead to the production of all 4 progeny types and the two 

alternative pairs of progeny types are produced in equal frequencies. 

Secondly, either one, or both loci are so distant from their chromosomal 

centromeres that there is effectively no linkage between them. In this case, 

all four progeny types are produced (the tetratype) in 2/3 of cases, and the 

two alternative pairs of progeny types produced (the parental and non-

parental ditypes) each occur in 1/6 of cases. 

This topic is discussed further by Fincham (1983). 
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Appendix 3: Calculating the power of Welch's 
Approximate t test. 

When the two sample sizes under consideration are equal, then the test 

statistic t' s  is calculated using the formula: 

(Y, —Y2)—(1u, -it2) 

In 

In this case, the difference between Welch's approximate t test, and 

Student's t test is the numbers of degrees of freedom involved. In the 

Student's t test, where the sample variances are equal, the degrees of 

freedom = 2(n-1). In this case, where the variances are unequal the 

degrees of freedom = n-i (Sokal and Rohlf 1995). 

To calculate the power of such a test, it is necessary to examine the 

minimum difference between two sample means that would be found 

significant. In the case presented in the text, the degrees of freedom are 9, 

and the level of significance of interest is p=0.05. By examining statistical 

tables, it is found that the value of to05[9]= 2.262. 

Knowing the sample size (n), the estimated variances of the two samples 

(s 2  and s22), and the critical value of t', it is then possible to calculate the 

minimum difference between Y, - Y that would be found to be significant. 

(The null hypothesis assumes that ji -#2=0). 



Appendix 4: The tests of the computer 
program 

To examine the model described in Chapter Two, it was translated 

into a computer program (described in Appendix 5). It is possible that the 

computer program has mistakes in it often referred to as 'bugs'. Most bugs 

are easily recognised, as they prevent the program working, or it produces 

clearly anomalous results. However, some can be more subtle, and less 

evident. There are several ways in which these more subtle bugs can be 

found. The model can be deliberately altered in ways that strong 

predictions can be made as to the outcomes of the simulations, and those 

predictions then tested. This is done in sections A4.1 and A4.2a of this 

appendix. 

It is also possible that with some parameters of the model, 

predictions can be made as to their 'limit conditions'; i.e. when they are 

given values at their maximum or minimum extremes. Such conditions are 

often biologically unfeasable and are thus not examined in Chapter 4 

(where the effects of different parameter values are examined). However in 

Chapter 4, in several cases, trends can be seen as a parameter tends 

towards its limit condition. Thus, as both the parameters, c (the coefficient of 

vector infectivity) and T (the double bite rate) are reduced, GST  for both loci 

tend towards one and t tends towards one (see Sections 4.2.2.1and 

4.2.2.2). This is because in both cases as the parameters tend towards 

zero, the rate of mixed infections is reduced, and thus the value of Gi-  at 

both loci tend towards one. Unfortunately, in both of these cases, although 

the trends towards the limit can be -seen, the limit conditions themselves 

cannot be examined as the population of parasites will become extinct 

before the limit is reached. The trend towards parasite extinction with 
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decreasing values of T and c (as evidenced by Figures 4.2.2.1c and 

4.2.2.2c) can also be seen as tests of the model. Reducing the values of 

these parameters is effectvely reducing the value of R0 for the parasites. 

Standard epidemiological theory shows that as R0 is reduced towards one, 

the prevelance of parasites in the population will tend to zero (Anderson 

and May 1992). 

Two cases where the limit conditions can be examined and have 

strong predicted outcomes are examined in section A4.2.2b of this 

appendix. 

A4. 1): Drift at the neutral locus: 

There is much population genetic theory as to the dynamics of alleles 

at a neutral locus. It is a general prediction that the probability of any 

particular neutral allele reaching fixation in a population is directly 

proportional to its initial allele frequency (Hartl and Clark 1989). 

To test whether this occurs in the computer program used, it was 

necessary to increase the rate at which fixation of alleles occurred, this was 

done by making the host population size small (N=20). Unfortunately 

under the Standard Parameter values, with such a small population size, 

the parasite population quickly becomes extinct. This was countered by 

altering 1/p to equal 5 days. To speed up the simulations, D was set to 2 

alleles, for all other parameters the standard parameter values were used. 

The population was initiated with 30% with Allele 1 at the neutral locus and 

70% with Allele 2 at the neutral locus. Simulations were run until one allele 

or the other at the neutral locus was fixed. This was repeated 5000 times. 



The probability distribution for fixation of alleles at the neutral locus is 

expected to follow a binomial function with a mean frequency for Allele 1 of 

0.3. The standard deviation for a binomial function is calculated by 

afr(1_13)/ 	 A4.1.1 

(Sokal and Rohlf 1995) where p is the frequency at which one of two 

alternative events (e.g. fixation of Neutral Allele 1) occurs, and k is the 

number of trials executed (in this case 5000). Thus, in this case the 

frequency of fixation of neutral Allele 1 has a predicted mean of 0.3 with a 

standard deviation of 6.48 x 10 3 . When the' trials were examined, 1484 

were fixed for Allele 1 and 3516 for Allele 2. This frequency (0.2968 for 

Allele 1) is well within 2 standard deviations of the predicted frequency. 

A4.2): Making the immuno-allelic locus neutral. 

The general result of the simulations examined in this thesis is that 

t>1, i.e. GST(d) > GsT(fl). The reason for this should be due to the differential 

response of the immune system to alleles at the immuno-allelic locus. 

Thus one would expect GST(fl)  not to be significantly different to GST(d)  if: (a) 

all the alleles at the immune locus completely cross-react in their 

recognition by the immune immune system, and (b), if the immune system 

has no effect on parasite densities. Both of these predictions are 

examined. 
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A4.2a) Immuno-al/elic alleles treated the same 

In this case D (the number of immuno-allelic alleles) was given a 

value of 2, however the immune system was then altered so that both 

alleles were treated the same. I.e. immunity to one allele conferred 

identical immunity to the other allele. If both alleles are treated identically 

then no selection can act to increase GST  at the immune locus compared to 

the neutral locus, and thus one would expect t not to differ significantly 

from one. The results of eight such simulations can be seen in the Table 

A4.2.1. The mean value for t was found to 'be 0.998641± 4.36 x10 3  

Thus t was not found to be significantly different from one. 

GST(d) GST(fl) L 

0.703169 0.706081 0.995877 

0.703064 0.706489 0.995152 

0.707689 0.701967 1.008152 

0.702850 0.700040 1.004015 

0.707311 0.706894 1.000590 

0.704835 0.714019 0.987138 

0.702505 0.702492 1.000017 

0.701652 0.702927 10.998187 

Table A4.2.1 
The mean statistics presented are calculated from sample values taken every 2 days 
from day 4000 to day 5000, as described in Section 2.2. The upper four values in 
each column are calculated from simulations started with Initial Condition A and the 
lower four values in each column are from simulations started with Initial Conditions 
B. Apart from for the parameters D (D=2), 13  (1/13 =60 days) and T (T=1.0 per day), 
the Standard Parameter Values were used.. The model was modified so that each 
allele at the immuno-allelic locus was viewed identically by the immune system (see 
text). 
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A4.2b) Immune response has no effect 

This was examined in 2 different ways. Firstly by examining the 

output statistics with s=0 (where s is the rate of increase in immune killing) 

and secondly examining the statistics as p=O (where p is the probability of 

an immune response being mounted). In both cases there is a potential 

problem of the length of time the simulations take to reach a stationary 

distribution. To decrease this, the turnover in parasite densities is 

increased,. This is done by increasing the host death rate (y)  to 1/365 per 

day. 

The effect of s=0 on the simulations 

Eight runs were repeated with the s=0 and y = 1/365 per day. The 

other parameters with their standard parameter values. The results of 

simulations are presented in the table A4.2.2. The mean value for t was 

found to be 0.99975 ± 0.001 94. Thus, the 95% confidence limits include 

the value one. It is therefore possible to conclude that no significant 

difference between GST(d)  and GST()  was found. 

The effects of p=O on the simulations 

Eight runs were repeated with the p=0 and y = 1/365 per day and the 

other parameters with their standard parameter values. The results of 

simulations are presented in the table A4.2.3. The mean value for t was 

found to be 0.99745 ± 0.010. Thus, the 95% confidence limits include the 
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value one. It is therefore possible to conclude that no significant difference 

between GST(d)  and GST(fl)  was found. 

It may appear surprising that when p=O, t is not significantly different 

from one. In Section 4.2.2.3, t was shown to get larger as p was 

decreased in value, with the value of t never being found below one. 

However, it should be noted that in Section 4.2.3.3 p  was always much 

larger in value than y,  the host death rate. Host death is the other method 

for the host population to lose infections and is not immuno-allelic allele 

specific. As the value of p is reduced to values near, or below, the host 

death rate (in this section y=0.027 per day), the relative importance of 

allele-specific versus non-specific loss of infection becomes smaller , and 

the value of starts to become smaller. When p is much larger than y (see 

Section 4.2.3.3), host death has very little effect on the population genetics, 

and other aspects of the model such as the Inoculation Rate have the 

dominant effects on the genetics of the system. This is evident in Figure 

A4.2. 
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GST(d) GST(fl) L 

0.881046 0.879321 1.001962 

0.881566 0.879975 1.001808 

0.880029 0.881363 0.998486 

0.880048 0.886090 0.9931 82 

0.888279 0.891934 0.995903 

0.882368 0.885246 0.996748 

0.888727 0.889885 0.998698 

0.878543 	10.868808 11.011205 

Table A4.2.2: 
The mean statistics presented are calculated from sample values taken every 2 days 
from day 4000 to day 5000, as described in Section 2.2. The upper four values in 
each column are calculated from simulations started with Initial Condition A and the 
lower four values in each column are from simulations started with Initial Conditions 
B. Apart from for the parameters s (s=0), and y ('y=0.0027 per day) the Standard 
Parameter Values were used. 

GST(d) GST(fl) C 

0.880044 0.881362 0.998505 

0.883863 0.881238 1.002978 

0.882925 0.889043 0.993118 

0.889008 0.887185 1.002055 

0.890718 0.894105 0.996212 

0.881778 0.879023 1.003134 

0.889273 0.894165 0.994529 

0.885489 10.895248 10.989099 
Table 4.2.3 
The mean statistics presented are calculated from sample values taken every 2 days 
from day 4000 to day 5000, as described in Section 2.2. The upper four values in 
each column are calculated from simulations started with Initial Condition A and the 
lower four values in each column are from simulations started with Initial Conditions 
B. Apart from for the parameters p (p=0), and y (y=0.0027 per day) the Standard 
Parameter Values were used. 
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Figure A4.2: 
Mean values are plotted. In most cases, the means calculated from two simulation 
runs, one with Initial Condition A, the other with Initial Condition B. The only 
exception is for p=0, in this case, eight runs were done, four with Initial Condition A 
and 4 with Initial Condition B. Apart from for the parameters p, and y  (0.0027 per 
day) the Standard Parameter Values were used. 

A.4.3) Discussion 

It is impossible to rule out any bugs in the computer except by 

examining the same model by analytic methods (in this case an impractical 

solution). The results of the tests presented here are consistent with the 

computer program accurately representing the model. When these tests 

are considered in addition to the results presented in chapters Three and 

Four, and the logical explanations for the results in these chapters, it would 

appear reasonable to believe that the analysis of this thesis is not the 

embarrassing study of a 'bug'. 
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Appendix 5: The computer program 
Below is a printout of a sample program used to examine the model 

presented in Section 2.1. The program is written in "C" and was run on 

UNIX workstations. The file "standardhybrid.h" (not shown) contains 

routines for the memory management of large arrays, methods for 

generation of pseudo-random numbers and methods for simple data 

analyses. These routines are based on those found in (Press et al. 1992). 

#define seed-value -2173 
#include "standardhybrid.h" 
#define file _name Output 3" 
#define graph I 'mathematical" 
#define popfile "population' 
#define start_sampling 4000 
#detine max-pop-size 6000 
#define max _num_allele 10. 
#define 1mm_classes I  / I more than num alle les */ 

#cleti lie death rate 0.00005 
#detine r 0.2 
#define maxbites (max-pop-size * 3) 
#define immune min 0.05 
#clefiiie kap 10. 

I' data file d ec l arations */ 

FILE *fp, *fp2  *fp3 ,  *fp4 ,  *fp5 , *fp6,  *fp7 ;  

/* s truc ture  dec l arations*/ 
1* * * * * * * * * *** * * ** * * * * * * * * * * * * * * * * * **I 

typedef struct people HOST; 
struct people 

long idx; 

mt age; 
double total_para; 
double old _total_para; 
mt total-immune; 
mt age_to_first; 
HOST *infectedidx ; 

HOST *infectousidx; 	}; 
/* HOST host[pop_size] ;*/ 
HOST *first -infected;  
HOST *hos t; 

HOST *li nkl; 

HOST *prev ious ; 

HOST *fi rsti nfectous ; 

HOST *prev ious i nfec tous ; 

HOST *li nk2; 

1* Global dec larations */ 

long background-run, host _dex, death_count,allele_dex,numbers_infectous, time _to_quit, 
time-step, Iast_tickcount,total_infectous_hosts, numbers-infected, pd, npd, tt, fcount, 
pop-size, zygotes, inf_mosies, immune_cnt, zero_inf_cnt, tot_mos_bite; 
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double total_hetero,tot_neut_hetero, *allele_freq,  estim hetero, neut_estim_hetero, * neu tfreq;  

double ***frequenc ies , *hetero, * neut hetero, meanf, avf, bite—rate, n_meanf, *f ,  *f;  

double ***alle l e  pop,***old allejepop, avnf, varf, varnf, step_size, immune—memory, 
iiiean_mean_f, mean_mean_nf, square_mean_f, square_mean_nf, variancef, variancenf, 
i mrn_mem_var, coef_zygote; 

double pop—weight, mean—infected, mean —zygotes, mean_i nf_mos, mean_immunity, i mm_recog, 

hap_inoc, selection; 

mt **i mmune, **mosqu itoes , mos_idx, num_immune, trial, sample_start, check, num_oocysts, 
**paraan-i ve , "immune—count, inim_allele, neut_allele, bitten; 

float bO, num_allele; 

float dO; 
float kb; 
mt aiph; 
long y3, y4, j, d; 

long jgy = 0; 
/* end of d ec l arations*/ 

/*function  prototypes*/ 

void new_calc_and_print_stats(void); 
void duplicate (void); 
void debug(void); 
void sampling (void); 
void average—etc (void); 
void summary_stats (void); 
void print_to_file(void); 
void files (void); 
void infectous_link (void); 
void tirne_step_initialise(void); 
void set _to—zero (void); 
double growthcurve(double, double, double); 
void gamete—sampling (void); 
void transmission (void); 
void mosquitoe_gets_parasites(int); 
void immune—system (void); 
void create_initial_pop(void); 
void initialise(void); 
void the_deed_is_done(void); 
void wait_a_while(void); 
void host_births_and_deaths(void); 
void host_stats(void); 
void parasite_pop_dynamics(void); 
void calc_and_print_stats(void); 
void birth (void); 

void parasite_intro(void); 
void setup—links (void); 
void infected_procs (void); 
void infectous_procs (void); 
void pop_procs(void); 
void indiv_hetero (void); 
void fcalc (void); 

void immune_mem(void); 
void new—transmission (void); 
void new—mosquito (void); 
void new—gamete—grab (void); 
void new—recombination (int); 
void new_fcalc (void); 

void new_infected_procs (void); 
/*end of function p rototypes*/ 
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void new—mosquito (void) 
{ mt x, i; 
/*checks Poisson distrobution of zygotes.*/ 
x = poi_val(coef_zygote * link l->old_total_para); 
zygotes += x; 
if (x >=l) 

inf_mosies ++; 

bitten = (rand—nu * pop —size) + I; 
while (bitten > pop_size) bitten = (rand—nu * pop—size) + 1; 
for(i =1; i <=x; i++) 

new_recombination(x); 

/*For  each zygote samples, recombines then sends to same host with 
same total frequency*/ 

I) 

void new—recombination (mt zygs) 

mt allel, alle2, neuti, neut2; 
double md; 
allel = 0; 

alle2=O; 
neuti = 0; 
neut2 = 0; 

new_gamete_grabO; 
allel = inim_alIele; 

neuti = neut_allele; 
new_gamete_grabO; 

alle2 = inim_allele; 
neut2 = neut_allele; 

if (allel AND alle2) AND ((allel <= num_allele) AND (alIe2 <= num_allele))) 

if (bitten <= pop—size) 

f md = rand_nu; 
if (md <= 0.166666667) 

(pd++; 
allele_pop[bitten][allel][neut]] += (2 * hap_inoc)/(double)zygs; 
allele_pop[bitten] [alle2] [neut2] += (2 * hap_i noc)/(double)zygs; 

else 
if (md <= 0.33333333) 

npd++; 
alIele_pop[bitten] [alle I] [neut2l += (2 * hap_i noc)/(double)zygs; 
alleIe_pop[bitten] [alle2] [neut 1] += (2 * hap_inoc)/(double)zygs; 

else 

allele_pop[bitten] [alle 1] [neut 1] += hap_inoc/(double)zygs; 
allele_pop[bitten] [alle2] [neut2] += hap_i noc/(double)zygs; 
allele_pop[bitten] [alle I] [neut2] += hap_i noc/(double)zygs; 
allele_pop[bitten] [alle2] [neut 1] += hap_inoc/(double)zygs; 

I 	I 
host[bitten].total_para = 4 * hap_inoc/(double)zygs; 

else 
fprintf(fp, 'bitten out of range); } 

else 

if(allel > num_allele) fprintf(fp,'allel out of range"); 
if (alle2> num_allele) fprintf(fp,alle2 out of Rage); 
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void new—gamete—grab (void) 
double gamete—grab, gamete_prob, total_inf; 
mt loc_allele_dex, loc_allele_dex2, neut; 
mt test; 
loc_allele_dex =0; 
loc_al!ele_dex2 = 0; 
total_inf = 0.; 
gamete—grab = 2; 
test = 0; 
gamete_prob=0; 

/* adds all clones in a host together. *1 

for (loc_allele_dex = I; loc_allele_dex <= num_allele; loc_allele_dex++) 
{ totaLinf += (old_allele_pop[link I ->idx] [loc_allele_dex] [I] 

+old_allele_pop[l ink I ->idx] [bc_al lele_dex] [2]); 

inim_allele =1; 
neut_allele =1; 
while (test == 0) 

while (gamete_grab>= 1.0 OR gamete_grab< 1.0e- 10) 
gamete—grab = rand—nu; 

if (gamete—grab >1.0 OR gamete_grab< 1.0e- 10) 
fprintf(fp, random number out of range'); 

/* Checks to see if allele sampled is this one*/ 

for (neut =1; neut <= 2 AND (gamete—grab > gamete_prob); neut++) 
for (boc_allele_dex2 = I; (loc_allele_dex2 <= num_allele) AND 

(gamete—grab > gamete_prob); loc_allele_dex2++) / goes through alleles 
until one is sampled.*/ 

gamete_prob += old—allele—pop[link] ->idxl [loc_allele_dex2][neut] /total_i nf; 
/* Check to see if latest allele sampled if so return its va l ue !*/ 

if (gamete—grab <= gamete_prob) 
1mm_allele = loc_allele_dex2; 

neut_allele = neut; 
test= l; 

it (test == 0) 
fprintf(fp, 'oops\n'); 

fprintf(fp, "rand = %fn', gamete —grab); 
fprintf(fp, 'total allele Freqs in host num %d, is %ñn', linkl ->idx, gamete_prob); 
fprintf(fp, "total parasites in it are = %ftn', total_inf); 
fprintf(fp, "numbers infectous = %d\n', numbers_infectous); 
fprintf(fp, "boc_allele_dex 2 = %d\n", boc_allele_dex2); 
fpri ntf(fp, "total —parasites = %f\n", link I ->total_para); 
exit(1); } 	} 	} 

void new _transmiss ion (void) 
(long x, i; 

if (sample—start ==l) new_caic_and_print_statsO; 
x = poi_val((bite_rate * step_size)); 
tot_mos_bite += x; 
for(i = I; i <=x; i++) 

{ 	new_mosquitoO; } 

void duplicate (void) 
(mt boc_allele_dex; 
for (boc_allele_dex = I; loc_allele_dex<= num_allele; loc_allele_dex++) 



(old_al lele_pop[host_dex] [loc_allele_dex] [I] = allele_pop[host_dex] [loc_allele_dex] [I]; 
old_al lele_pop[host_dex] [loc_allele_dex] [2] = allele_pop[host_dex] [loc_allele_dex] [2]; 
host [host_dex].old_total_para = host [host_dex].total_para; ) } 

void pop_procs(void) 
(for (host_dex = I; host_dex <= pop_size; host_dex++) 

duplicate; 
host_births_and_deathsO; 
immune—memo; 
setup_linksQ; 
host [host_dex] .age++; 

11 

void irnmune_mem(void) 

mt loc_allele_dex; 
if(inimune[host_dex][1] >0.5) num_immune++; 
for (loc_allele_dex = I; loc_aIlele_dex<=num_alleIe; loc_allele_dex++) 

if (immune[host_dex] [loc_allele_dex] > 0.5) immune_cnt-H-; 
if ((immune[host_dex][loc_allele_dexl >0.5) 

AND (alIele_pop[host_dex]  [Ioc_allele_dex][ 1] + 
allele_pop[host_dex][loc_allele_dex][2] < le-9)) 

{ 	if (rand—nu <(I/immune_memory) * step—size) 
{ immune[host_dex] [loc_allele_dex] = 0; 

void new_infected_procs (void) 
while (linkl NOT NULL) 

if((linkl->idx) > pop—size OR (linkl->idx) < I) 
fprintf(stderr, 'linki out of range"); 

fprintf(fp, "link] out of range"); 
exit(l); 
link  =NULL; 

host_stats(); 
new_transmissionO; 
linki = linkl->infected_idx; 

if (sample—start ==I) 
(tot_neut_hetero =tot_neut_hetero/pop_weight; 
total_hetero = total_hetero/pop_weight; 
new_fcalc 0; 

/* works  out mean hetrozygosity. and total allele freqs*/ 

void new_fcalc (void) 
mt loc_allele_dex; 

double estim homo, neut_estim_homo; 
estim_homo = 0.; 
neut_estim_homo =0.; 
neutfreq[I] =0.; 
neutfreq[2] =0.; 
/*adds  up all allele freqeuncies and finds mean*/ 

for (loc_allele_dex = I; loc_allele_dex <= num_allele; loc_allele_dex++) 
{ allele_freq[loc_allele_dex] = 0.; 
previous->infected_idx = NULL; 
link I = first—infected; 
while (link I NOT NULL) 

if ((link I->idx) > pop—size OR (link I ->idx) < I) 
fprintf(stderr, "link I out of range"); 
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fprintf(fp, "link I Out of range'); 
exit(]); 
link  =NULL; 

allele_freq [loc_allele_dex] += (frequencies[l ink I ->idx] [bc_al lele_dex] [I] 
+ frequencies[l ink I ->idx] [bc_al lele_dex] [2]) * link I ->old_total_para; 

neutfreq [I] += frequencies[link I ->idx] [loc_allele_dex] [lj * link I ->old_total_para; 
neutfreq[2] += frequencies[li nk I ->idx] [boc_allele_dex] [2] * link I ->old_total_para; 
link I = link l->infected_idx; 

al lele_freq[boc_al lele_dex] =(aIleIe_freq[Ioc_aHele_dexl/pop_weight); 
esti m_homo += pow(al lele_freq [loc_allele_dex] ,2); 

neutfreq[ II =neutfreq[ l]/pop_weight; 

neutfreq[2] =neutfreq[2]/pop_weight; 
neut_estim_homo = pow(neutfreq[l], 2) + pow(neutfreq[ 2],2); 
if (estim_homo> I.) 

fprintf(fp, "in gen %d, estimated homozygosity was %ñnand rounded down to I .\n', 
time—step, estirn_homo); 

estim_homo = I.; } 
if (neut_estim_homo> I.) 

fprintf(fp, "in gen %d, Neut estim homozygosity was %f\nand rounded down to I .\n", 
ii Inc_step, neut_estirn_homo); 

estim_homo = I.; } 
estim_hetero = I - estim_homo; 

neut_estim_hetero = I - neut_estim_homo; 
n_meanf = (neut_estim_hetero - tot_neut_hetero)/neut_estim_hetero; 

if (neut_estini_hetero == tot_neut_hetero) n_meanf = 0; 
i'neanf = (esti rn_hetero -total_hetero)/esti m_hetero; 
if (estim_hetero == total_hetero) n_meanf = 0; 
samplingO; 

void sampling (void) 
(mean_mean_f += meanf; 
square_mean_f += pow(meanf, 2); 
mean_mean_nf += n_meanf; 

square_mean_nf += pow(n_meanf, 2); 
mean— infected += ((double)numbers—infected/pop—size); 
if (inf_mosies> 0) mean—zygotes += (double)zygotes/inf_mosies; 
else zero_inf_cnt ++; 
mean_i nf_mos += (double)inf_mosies/tot_mos_bite; 
mean— immunity +=(double)immune_cntipop_size; 
fcount++; 

void parasite—intro(void) 

mt boc_intro_dex; 
mt loc_allele_dex; 
mt intro, xintro; 

for (loc_intro_dex = I; Ioc_intro_dex<=(int)(pop_sizel5)i-1; Ioc_intro_dex++) 
(if (trial%2 ==0) 

check-H-; 

for (boc_allele_dex = 1; boc_alIeIe_dex <= num_allele; Ioc_allele_dex++) 

alleIe_pop[Ioc_intro_dex] [boc_allele_dex] [I] = 1/(2.* num_al Ide); 

aIIeIe_pop[Ioc_intro_dex] Iboc_allele_dexl [2] = 1/(2.* num_al Ide); 

else 

intro = (loc_intro_dex%(2 * (int)num_allele)) +1; 
xintro = intro - num_allele; 
if (intro <= num_aIlebe) 
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alIeIe_pop[loc_intro_dex][intro][l] = I; 
else 

{allele_pop[loc_intro_dex][xintro][ 2] = 1;) 

void create—initial —pop(void) 
(double total_pop; 
long loc_host_dex, loc_allele_dex, loc_bite_dex; 
for ( loc_bite_dex=l; loc_bite_dex<= maxbites; loc_bite_dex++) 

mosquitoes[loc_ bite _dex][l  ]=0; 
mosquitoes[loc_bite_dex] [2]=0; 

for (loc_host_dex = 1; loc_host_dex<= pop_size; loc_host_dex++) 

host[ loc_host_dex]  .idx=loc_host_dex; 
host[ loc_host_dex1. age--O.;  

host [loc_host_dexj.total_para=0.0; 
host[loc_host_dex) .total_i mmune=0.; 
host [loc_host_dex]  .age_to_first=0.; 
for (loc_allele_dex = I; Ioc_allele_dex<= num_allele; loc_allele_dex++) 

allele_pop[loc_host_dex] [loc_allelelex] [1 ]=0.; 
allele_pop[loc_host_dex] [loc_allele_dex][21=0.; 
immune[loc_host_dex] [loc_allele_dex]=0; 
para_arrive[loc_ host  _dex][loc_aIlele_dex]= -5; 
immune_count[loc_host_dex] [loc_alIele_dex]= -5; 

II 
parasite—intro; 
for(loc_host_dex =1; loc_host_dex<= pop_size; loc_host_dex++) 

(total_pop= 0.; 
for(allele_dex =1; al lele_dex<=nurn_allele; allele_dex++) 

total—pop += (allele_pop[loc_host_dexi [al lele_dex] [1] 
+ allele_pop[loc_host_dex] [al lele_dex] [21); 

host[loc_host_dex] .total_para = total—pop; 

nuni_immune = 0; 

void initialise(void) 
(host = malloc(sizeof(HOST) * max—pop—size); 
host--; 
check = 0; 
pd=npd=tt=0; 
/ assigments of global declarations */ 
f = dvector( I ,max_pop_size); 
nf = dvector( 1 ,max_pop_size); 
allele_freq = dvector( I, max_num_allele); 
frequencies = d3tensor(1, max —pop—size, I, max_num_allele, 1, 2); 
mosquitoes = imatrix(1, maxbites, 1,4); 
hetero = dvector( 1, max —pop—size); 
neut_hetero = dvector(1, max—pop—size); 
neutfreq=dvector( 1,2); 
allele_pop=d3tensor(l, max —pop—size, I, max_num_allele, 1,2); 
old_allele_pop=d3tensor( I, max —pop—size, 1, max_num_allele, 1, 2); 
immune=imatrix( 1, max_pop_size, I, max_num_allele); 
para_arrive=imatrix( I, max —pop—size, I, max_num_allele); 
immune_count=imatrix( I, max—pop—size,], max_num_allele); 
background_run=l; 
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void files(void) 
if (trial == I) 

fp=fopen("outputl", 

if (trial ==2) 
fp=fopen("output2", "w"); 

if (trial ==3) 
fp=fopen("output3", "w"); 

if (trial =4) 
fp=fopen("output4", "w'); 

if (trial >5) 
fp=fopen('output5', "w"); 

void setup—links (void) 
(1* checks through all population to see which ones are i nfected*/ 

if (host[host_dex].total_para> I .Oe-9) 
if (host[host_dex].total_para>  0.00001 )nunThers_infected ++; 

if (first—infected = NULL) 

first—infected = &host[host_dex]; 
previous = &host[host_dex]; 

else 
previous->infected_idx = &hosthost_dex]; 
previous = &hostlhost_dexl; 

/'Logistic growth of p aras ites */ 
double growthcurve (double both, double tot, double self) 

double change—pop; 
double sel; 
sel = (selection * pow(step_size,2)); 
change_pop = (bO - (kb *(both + (alph*(totboth)))) - 

(sel * immune[link I ->idx] [al lele_dex])) * self; 
return (change —pop); 

void birth(void)/*resets host [host_dex]*/ 
mt loc_allele_dex; 

for (loc_allele_dex = I ;loc_allele_dex<=num_allele; loc_allele_dex++) 
(allele_pop[host_dex][loc_allele_dex][I ]=0; 
allele_pop [host_dex] [loc_allele_dex] [2]=O; 
immune[host_dex] [loc_allele_dex]=O; 
immune_count[host_clex][loc_allele_dex]= -5; 
para_arrive[host_dex][loc_allele_dex]= -5; 

host[host_dex] .age-0.; 
host[host_dex] .total_para=0.; 
host[host_dex].total_immune=0.; 
host [host_dex]  .age_to_first=O.; 

void the—deed—is—done(void) 
fprintf (fp, "number of deaths were %d, death—count); 
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fclose(fp); 
if (trial <3) 
{ fclose(fp2); 
fclose(fp3); 
fclose(fp4); 
fclose(fp5); 

void host—births _ and _deaths(void) 
if (rand—nu <(death_rate * step—size)) 

birthQ; 
death _count++; 

void parasite—pop—dynamics (void) 

double change 1, change2, together; 
together = old_allele_pop[link I ->idx] [allele_dex] [1] + old_allele_pop[link I - 

>iclx][allele_dex][2]; 
immune—system; 
change] = growthcurve(together, link I ->.old_total_para, old_allele_pop[li nk I-

>idx][allele_dex][I ]); 
change2 = growthcurve(together, link I ->old_total_para, old_allele_pop[l ink I - 

>idx]{allele_dex][2]); 
allele_pop[link I ->idx] [allele_dex] [1] += change I; 
allele_pop[link I ->idx] [allele_dex] [2] += change2; 
if (alIele_pop[link  I ->idx] [allele_dex] [I] < I .Oe-9) 

allele_pop[link I ->idxl[allele_dex] [1] = 0.; 
if (allele_pop[link I ->idx] [allele_dex] [2] < I .Oe-9) 

allele_pop[linkl ->idx][allele_dex][2] = 0.; 

void immune-system (void) 

if (immune[link I ->idx][allele_dex] == 0) 

if ((allele_pop[Iink  I ->idxl [allele_dex][ I] + allele_pop[link I ->idxI [allele_dex] [2J) 
> immune—min) 

if (rand—nu <(imm_recog * step—size)) 
immune[linkl->idx][aIlele_dex] = I; 
j gy++; 

I 	I 
else immune[linkl->idx][allele_dex] ++; 

void host_stats(void) 
double total —pop; 

total—pop = 0; 
pop_weight += link] ->old_total_para; 
for(allele_dex =1; allele_dex<=num_alleIe; alleIe_dex++) 

parasite—pop—dynamics; 
total —pop += (allele_pop[l ink I ->idx] [allele_dex] [I] + allele_pop[l ink I ->idx] [al lele_dex] [2]); 

link l->total_para = total—pop; 
if (link I ->total_para < I .Oe-9) 

link I->total_para = 0.; 
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void time—step—initialise (void) 

long loc_bite_dex, loc_allele_dex, loc_host_dex; 
mos_idx=O; 
total_hetero = 0.; 
tot_neut_hetero = 0.; 
total_infectous_hosts=0; 
numbers—infected--O; 
numbers_i nfectous=O; 
estim_hetero= 0.; 
neut_esti m_hetero=0.; 
num_immune = 0; 
pop—weight = 0; 
zygotes = 0; 
inf_mosies = 0; 
iminune_cnt =0; 
tot_mos_bite = 0; 
zero_inf_cnt = 0; 
for (loc_host_dex = I; loc_host_dex<= pop—size; loc_host_dex++) 

for (loc_allele_dex = I; loc_allele_dex<= num_allele; loc_allele_dex++) 

frequencies[loc_host_dex] [loc_allele_dex] [l] = 0.; 
frequencies[loc_host_dex] [loc_allele_dex] [2] = 0.; 

} 	I 
for (!oc_bite_dex= 1; loc_bite_dex<= rnaxbites; loc_bite_dex++) 

mosquitoes[loc_bite_dex][ 1]=0; 
mosquitoes[loc_ bite _dex] [2]=0; 

I 	I 

void new_calc_and_print_stats(void) 

long loc_allele_dex2; 
double total_inf; 
total_inf =0.; 
/* works  out infectous parasite allele f requenc ies*/ 

for (loc_allele_dex2 = 1; loc_allele_dex2 <= num_allele; loc_allele_dex2 ++) 

if (link] ->idx > pop—size) 
fprintf(fp, "oh bugger, %d %d',linkl->idx, pop—size); 

exit(l); 

frequencies[link I  ->idx][loc_allele_dex 2] [1] = 
(old_allele_pop[link I ->idx] [loc_allele_dex2] [I ]/link I - 

>old_total_para); 
frequencies[link I ->idx] [loc_allele_dex2] [2] = 

(old_allele_pop[l ink I ->idx] [loc_allele_dex2] [2]/link  I - 
>old_total_para); 

if (frequencies[link I ->idx] [loc_allele_dex2] [1] <0) 
frequencies[link I ->idx] [loc_allele_dex2] [1] = 0.; 

if (frequencies[] ink I ->idx] [loc_allele_dex2] [2] <0) 
frequencies[link I ->idx] [loc_allele_dex2] [2] = 0.; 

indiv_hetero (); 
total _hetero += hetero[link I ->idxl *link  I ->.old_total_para; 
tot_neut_hetero += neut_hetero[link I ->idx] *1  ink I ->.old_total_para; 
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/*ca l cu  lates each i nfectous hosts h e terozygos ity */ 

void indiv_hetero (void) 

double homozyg, neul, neu2, neut_homo; 

mt loc_allele_dex; 
homozyg = 0.; 
neut_homo = 0.; 

neul =0.; 
neu2 = 0.; 
for (loc_allele_dex = I; loc_allele_dex <= num_allele; loc_allele_dex++) 

(homozyg += pow( 
(frequencies[link I  ->idx][loc_alIele_dex][ 1]+ 

frequencies[] ink I ->idx] [loc_allele_dex] [2]), 2); 

for (loc_allele_dex = I; loc_allele_dex <= num_allele; Ioc_alIele_dex++) 
neu I += frequencies[link I ->idxj [loc_allele_dex] [I]; 
neu2 += frequencies[link I ->idx] [Ioc_alleIe_dex] [2]; 

neut_homo = pow(neul, 2) + pow(neu2,2); 

if (homozyg >1.) 
(if (homozyg> 1.01) 

fprintf(fp, "homozygosity in host %d, greater than 1.01 in gen %d\nand 

rounded to I\n', link2->idx, time—step); 
fprintf(fp, 'homozygosity = %t\n', homozyg); 

if (homozyg> 1.2) 
for (loc_allele_dex = I; loc_allele_dex <= num_allele; Ioc_alIeIe_dex++) 

fprintf(fp, freqs are: %t\n', 
frequencies[link I ->idx] [bc_al lele_dex] [I] + 

frequencies[Iink I ->idx] i!loc_aIleIe_dex]  [2]); 

fprintf(fp, "wibble"); 
exit(1); 

homozyg = I.; 

if(neut_homo> 1.01) 

fprintf(fp, ' neut homozygosity in host %d, greater than 1.01 in gen %d\nand 

rounded to l\n", Iink2->idx, time—step); 
neut_homo = 1.; 

if (neut_homo> 1.) neut_homo = 1.; 

hetero[Iinkl->idx] = 1 - homozyg; 
neut_hetero[Iinkl ->idx] = I - neut_homo; 

void print—to—file(void) 
fprintf(fp3, %f %f\n", time—step * step_size, meanf); 

fprintf(fp5," %f %f\n', time—step * step—size, n_meant); 
fprintf(fp4, %f %f\n", time—step * step—size, ((float)num_immune/pop_size)); 

fprintf(fp2, ' %f %f\n", time_step * step—size, ((float)numbers —infected/pop—size)); 

void average_etc(void) 

long dx; 
double neul, neu2; 
mt loc_allele_dex; 
dx= I; 
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previous->infected_idx = NULL; 
link I = first—infected; 
while (linkl NOT NULL) 

if((linkl->idx) >pop_size OR (linkl->idx) < I) 

fprintf(stderr, "linkl out of range); 
fprintf(fp, 'link I out of range"); 
exit(I); 
link] =NULL; 

f[dx] = (estim_hetero - hetero[link I  ->idx])/estim_hetero; 
if(estim_hetero <= hetero[linkl->idx]) f[dx] =0.0; 
nf[dx] = (neut_esti m_hetero - neut_hetero[li nk I ->idx])/neut_esti m_hetero; 
if (neut_estim_hetero <= neut_hetero[linkl ->idx]) nf[dx] =0.0; 
if(nf{dx] <= 0.00000000001) 

for (loc_allele_dex = 1; loc_allele_dex <= num_alIele; loc_alIele_dex++) 

neu I += frequencies[link I ->idx] [loc_allele_dex] [1]; 
neu2 += frequencies [link I ->idx] [loc_allele_dex] [2]; 

dx++; 
linki = linkl->infected idx 

if(dx >1) 

avf= mean(f, dx); 
varf = variance(f, dx); 
avnf= mean(nf, dx); 
varnf = variance(nf, dx); 
van = (vanf *(dx_  I ))Idx; 
varnf = (varnf *(dx  I ))Idx; 

else 
avf = - 1; 
fprintf(fp, 'dx is %d\n', dx); 

} I 

void summary_stats (void) 

mt immunity[imm_classes]; 
i nt loc_allele_dex, loc_host_dex, imm_dex; 
average_etcO; 
mean_mean_f = mean_mean_f/fcount; 
mean_mean_nf = mean_mean_nf/fcount; 
mean—infected = mean_infected/fcount; 
mean—zygotes = mean_zygotes/(fcount - zero_inf_cnt); 
mean_inf_mos = mean_inf_mos/fcount; 
mean—immunity = mean_immunity/fcount; 
variancef = (square _mean_f - (pow(mean_mean_f, 2) * fcount))/(fcount - 1); 
variancenf = (square_mean_nf - (pow(mean_mean_nf, 2) * fcount))/(fcount - I); 
for (loc_allele_dex = 0; loc_aIlele_dex <= num_alIele; loc_allele_dex++) 

{ immunity[Ioc_allele_dex] = 0.; 

fprintf (fp, "jgy is %d\n", jgy); 
fprintf (fp, 'in gen %d\n", time_step); 
fprintf (fp, 'meanf was %ñn", meani); 
fpnintf (fp, 'avf was %ñn", avf); 
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fprintf(fp, "avnf was %f\n, avnf); 
fprintf (fp, "varf was %f\n, varf); 
fprintf (fp, varnf was %t\n", varnf); 
fprintf (fp, neutral meanf was %ñn", n_meant); 
fprintf (fp, 'tot neut Hetero was %f\n', tot_neut_hetero); 
fprintf (fp, "neutral estim hetero was %ñn", neut_estim_hetero); 
fprintf (fp, "bite rate was %t\n", bite_rate); 

fprintf (fp, "square_mean_f is %ftn", square_mean_f); 
fprintf (fp, "mean_mean_f is %f\n", mean—mean—f); 
fprintf (fp, "fcount is %d\n', fcount); 
fprintf (fp, "check is %d\n", check); 

for (loc_host_dex = I; loc_host_dex <= pop—size; Ioc_host_dex++) 
imm_dex = 0; 

for (loc_allele_dex = I; loc_allele_dex <= num_allele; loc_allele_dex++) 

if (i mmune[loc_host_dex]  [bc_al lele_dex] > 0.5) 
imm_dex ++; 

imiiiunity[iiiin_dex] ++; 

fprintf (fp, "pop_size is %d\n", pop—size); 
for (loc_allele_dex =0; loc_allele_dex <= num_allele; loc_allele_dex++) 

fprintf (fp, "pop—size is %d\n", pop —size); 

fprintf (fp, "hosts immune to %d alleles are %f, pop —size is %d\n, 

loc_allele_dex, immunity[loc_allele_dex],  pop—size); 
fprintf (fp, "pop—size is %d\n", pop—size); 

if (loc_allele_dex > 0) 
fprintf (fp, "Freq in pop of allele %d is %t\n", loc_allele_dex, 

allele_freq loc_allele_dexi); 

fprintf (fp, neutral alleles are at freq %f, %f.\n", neutfreq[1 I, neutfreq[2]); 
if (neutfreq[ 1] <=0.000001) mean_niean_nf = 2000; 
if (neutfreq[2] <=0.000001) mean_mean_nf = 1000; 

if (trial ==l) 

fp6 = fopen("transrun 1 ","w"); 

else fp6 = fopen("transrun I ","a"); 
f1,rintf (fp6, '%f %d %f %f %f %f %f %f %f %f %f %f\n", bite —rate, 

(int)num_al lele, immune—memory, mean_mean_f, variancef, 
mean_mean_nf, variancenf, 

mean_mean_f/mean_mean_nf, mean_infected, mean—zygotes, mean_inf_mos, mean—immunity); 

fclose (fp6); 
fprintf (fp, "Mean no. of bites = %f in %d trials\n", (float)j/d, d); 
fprintf (fp, "numbers sampling 3 is %d 4 is %d", y3, y4); 

fprintf (fp, "numbers of PD, NPD, Ti' are %d, %d, %d respectively", pd, npd, tt); 

void trial—initialise (void) 

tot_mos_bite = 0; 

zero_i nf_cnt = 0; 
mean—infected = 0; 
mean—zygotes = 0; 

mean_inf_mos = 0; 
mean_immunity = 0; 
variancef = 0.; 
variancenf= 0.; 

square_mean_f = 0.; 
square_mean_nf = 0.; 
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mean_mean_f = 0.; 
mean_mean_nf = 0.; 
fcount = 0; 

mai nO 

initialiseO; 
selection = 0.2; 

hap_inoc = 0.000005; 
imm_recog = 0.025; 
bite_rate = 0.1; 
num_oocysts = I; 
coef_zygote = I; 
immune—memory =365; 
imm_mem_var= immune—memory * 3.0; 
step_size = 0.2; 
pop_size = 6000; 
aiph = I; 
time—to—quit = 5000; 
for (trial = 1; trial <= 20; trial++) 

trial—ii tialiseO; 
pd=npd=tt=0; 
num_allele =10; 
if (trial == I) bite_rate = 0.05; 
if (trial == 2) bite—rate = 0.05; 
if (trial == 3) bite_rate = 0.1; 
if (trial == 4) bite_rate = 0. I; 
if (trial == 5) bite_rate = 0.5; 
if (trial == 6) 	bite—rate = 0.5; 
if (trial == 7) bite_rate = 1.0; 
if (trial == 8) bite_rate = 1.0; 
if (trial == 9) bite_rate = 1.5; 
if (trial == 10) bite_rate = 1.5; 
if (trial == 11) imm_recog = 0.005; 
if (trial == 12) imm_recog = 0.005; 
if (trial == 13) imm_recog = 0.01; 
if (trial == 14)imm_recog=0.01; 
if (trial == 15) imm_recog = 0.015; 
if (trial == 16) imm_recog = 0.015; 
if (trial == 17) imm_recog = 0.035; 
if (trial == 18) imm_recog = 0.035; 
if (trial == 19) imm_recog = 0.05; 
if (trial == 20) imm_recog = 0.05; 
/* New growth ca l c */ 

bO = (pow( 12.3, (step—size/2))) -1; 
dO=0.; 
death—count = 0.; 
kb=bO - dO; 
sample_start = 0; 
filesO; 
create _i nitial_popO; 
for (time_step=l; time—step <= (int)(time_to_quit * (1/step—size)); time_step++) 

if ((time_step >= start_sampling/step_size) 
AND (time_step%(int)(2/step_size) == 0)) sample_start = I; 

else sample—start = 0; 
time—step—initialise; 
first—infected = NULL; 
/*prev i ous.>i nfec tedidx  = NULL;*/ 



debugO; 
pop_procsO; 
previous->infected_idx = NULL; 
link I = first—infected; 
if (time_step == (int)(time_to_quit * (1/step —size))) summary_stats; 
new_infected_procsO; 
if (time—step == 2000) 

fprintf(fp, "In gen 2000, numbers infectected is %d,\n", 
numbers—infected); 

fprintf(fp, "Done!n"); 
the _ deed _is_doneO; 

void debug(void) 

static FILE *deb ;  
mt i; 
if (time—step == I) 

deb = fopen("growthc", "w"); 
for (i = I; i <=20; i++) 

fprintf(deb, "%f, %f, %f, %f, %f, %f, %f, %f, %f, %f\n", aIlele_pop[i][1][1], 
alleIe_pop[i] [2][ 1], aIIele_pop[i][3]1 I], 

allele_pop[i][ 4][1 ]' alleIe_pop[i][5][1], 
alleIe_pop[i] [6](1 ],  aIlele_pop[i][7] [I], 

alIele_pop[i][8][1], aIIele_pop[i][9][1], 
alIele_pop[i][10][ I]); 

fprintf(deb, "%f, %f, %f, %f, %f, %f, %f, %f, %f, %f\n\n, alIele_pop[ilI 11121, 
alIeIe_pop[i] [211121,  aIlele_pop[i][3] [21, 

al Iele_pop[i] [4][2], allele_pop[i][5]  [2], 
allele_pop[i] [6]121,  aIlele_pop[i]  [7]  [2], 

allele_pop[i] [8] [2], allele_pop[i][9]  [2], 
allele_pop[i][I0][2]); 

} 	 } 

if (time—step ==2) fclose(deb); 
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The last 6 years have seen a long running debate as to the extent to which populations 

of pathogens can be split into a series of genetically distinct "strains" or clones'" 
refs.therein* 

A clonal structure has implications for epidemiology as it may allow the 

history of infections to be traced, and may form the basis for clinical decisions. If 

genetically stable strains do exist then genes, including those affecting virulence, will 

segregate within this strain background and the strains may be associated with clinical 

or epidemiological differences. Unfortunately, and despite its obvious importance, this 

debate remains unresolved. The purpose of this brief discussion is not to attempt a 

definitive resolution, but rather to demonstrate how the application of basic population 

genetic approaches provides a framework within which we can consider the putative 

emergence of a strain structure. The discussion will tend to focus on Plasmodium 

falciparum both because of its clinical importance as the most debilitating widespread 

eukaryotic infection, and because its population genetics are known in some detail thus 

enabling theory to be grounded in reality. In particular, it will be shown that earlier 

arguments about the role of recombination may need to be (re)interpreted in the context 

of immunity. 

Sex plays a pivotal role in the process of strain formation and maintenance because it 

breaks down genetic differentiation between the putative strains. The mode of sexual 

recombination differs between eukaryotes such as Plasmodium, Trypanosomes etc., 

where sex is presumed to occur via meiosis, and bacteria (and viruses) where sexual 

recombination appears to take the form of sporadic exchange of small segments of 

genetic material '2"3' therein. As the following calculations make clear, the consequences 

of these differing modes of genetic exchange affect the extent to which populations may 

become "clonal". First, a note about our use of the terms "outcrossing, "sex" and 

"recombination". The last term is potentially the most confusing as it appears to be used 

in at least three different ways when eukaryotes are considered. Firstly, in the molecular 

genetic sense of the breaking and rejoining of DNA during meioses; our subsequent use 

* Also the topic of a recent meeting at CDC, Atlanta "international Workshop on molecular epidemiology 
and evolutionary genetics of pathogenic microorganisms", June 1996. 
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of the term "recombination" ignores this connotation. Secondly, it may be used 

according to the older genetic definition of a process leading to the production of non-

parental genotypes. In most higher eukaryotes this is equivalent to the frequency of 

sexual reproduction but this is not the case in "lower" eukaryotes: for example, in 

Plasmodium sex involving gametogenesis, fertilisation and meiosis is mandatory but if 

between identical genotypes, then no novel genotypes arise. The term "outcrossing" is 

more useful for this definition of recombination as it describes the situation where sex 

occurs between non-identical haplotypes, resulting in the re-arrangement of genetic 

material: thus in Plasmodium outcrossing can be estimated as 66% 1 " or 10%16.  The 

third usage is the population genetic definition of the frequency of re-arrangement 

between two loci; this is the usage employed here in discussion of eukaryotes and has a 

maximum of 0.5. It can be calculated by estimating the expected recombination rate due 

to physical linkage (or lack thereof) of two loci and then multiplying by the outcrossing 

rate to get the true value; for example recombination between unlinked loci is 0.5 but if 

only 0.3 of reproduction involves outcrossing, than the true average rate of 

recombination is 0.5x0.3=0. 15 per genome per generation. When considering 

prokaryotes such as bacteria, recombination is clearly defined as the rate of genetic 

transfer between organisms per gene segment per genome per generation' 3 . In these 

calculations it is assumed that mating is entirely random and consequently that there is 

no co-transmission of distinct but related genotypes through the same source of 

infection (such as infected food or mosquito bites). This restriction was assumed both 

for mathematical tractability and to make the results as general as possible; the same 

assumption has been made in several other studies 14" 5" 7 . It may also be worthwhile 

pointing out for non-specialist readers that "linkage disequilibrium" simply describes 

the situation where alleles at two loci are found together more frequently than would be 

expected purely by chance; importantly it does not imply, nor preclude, that the two loci 

are physically linked on the same chromosome. As an example familiar in this context 

consider the case of 2 loci, one with alleles a and b, the other with alleles x and y: it has 

been that if these encode antigens then under certain circumstances 2 of the 4 
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possible combinations will dominate the population resulting in large scale linkage 

disequilibrium. 

There appears to be two main underlying mechanisms by which a strain structure can 
arise in a pathogen population. Critically, both these models represent processes which 
act in essentially the same manner: they reduce the probability of co-infection of 
different genotypes within the same host and hence reduce the opportunities (via 
recombination) for gene flow between putative "strains". This same functional basis 
allows us to describe these phenomena with the same basic population genetic models. 
We shall call these the "epidemiological" and "immune mediated" models. The former 
may occur because of low infection rates, geographical isolation, differing host 
preferences 18  or an "epidemic" population structure ' 9; the latter is included as 
"epidemiological" even though its ultimate cause may be that a novel gene combination 
evades immunity. The "immune mediated" model .arises from the actions of acquired 
immunity against either a single immunodominant locus 8 '9, or against several immune 
loci' ° . 

The most useful population genetic approach to address these models is to regard each 
strain as a genetic "island" and to estimate genetic differentiation between them. This 
"Island Model" is attributable to Wright 20  and is a standard tool in population 

g. genetics 21 '22 . It is explicitly used to investigate geographic islands each with 
endogenous populations of, for example, Drosophila, mice or humans. The extent of 
genetic differentiation between the islands depends on the extent of gene flow through 
migration of individuals between islands; increased migration obviously increases gene 
flow and limits, or prevents, the genetic differentiation of populations on separate 
islands. The same maths apply if we redefine the sub-division of the population into 
genetic islands or "clones" rather than geographic islands. The barriers in this case are 
immunogenic or epidemiological rather than geographic but the same maths applies, the 
only difference being that recombination rate replaces migration rate as a measure of 
gene flow. Firstly, we investigate the situation where a individual pathogen undergoes 
large clonal expansion either as a result of encountering a novel new environment, or 
because a novel gene combination gives it an advantage; this corresponds to the 
"epidemic" structure of Maynard Smith et al19 . We follow its fate by using a single 
island model. Conventionally, this corresponds to a small isolated population which has 
colonised an island off a large continental mainland. This small population is assumed 
to be genetically distinct because it was derived from a small number, possibly a single, 
colonist(s) which by chance will contain an unrepresentative gene sample (the so-called 
"founder effect"). We are interested in calculating how long it takes this genetic 
differentiation to decay through genetic recombination between the "clone" and "non-
clone" individuals (Box Ai). Similarly, We can follow the population genetics of more 
numerous clones by assuming that the pathogen population is, or can be arbitrarily (e.g. 
by host species), divided into a number of distinct "strains". We then adapt the 
conventional "Finite Island" model to investigate how much gene flow (through 
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recombination) is necessary to prevent genetic differentiation of the clones (Boxes Au 
and B). 

One of the uses of strains is in epidemiological tracking. Figure la shows the expected 
"lifespan" of a newly emergent strain, that is the time (in generations), before its 
genetic character has decayed back to 90% that of the parental population. Obviously, 
the conversion to real time depends on the timescale of the disease. If we regard an 
infective generation as around 2-4 weeks, there will be roughly 10-20 generation per 
year. Figure 1 a suggests that the clone would be stable for at least 5 to 10 years if 
recombination rate is 1%, and for 50-100 years if recombination is 0.1%. These figures 
appear to be much higher than previously supposed and show that an epidemic may well 
be useful for epidemiological tracking after its initial expansion has taken place. The 
extent to which a population is likely to be structured into a series of clones as a result 
of repeated epidemics is shown on Figure lb. In this analysis s is the probability of an 
epidemic occurring in a generation, and p is the proportion of the population represented 
by this epidemic; it is the product of these two factors, sp, which is important. For 
example, if an epidemic is believed to occur about once every 100 generations (s0.01, 
or about every 10 years), and to involve 1% of the populations (P=O.Ol), then sp=10 
and it can be seen that a significant degree of "clonality" will only exist if 
recombination rate is less than about 10- .  As the frequency and/or size of epidemics 
gets larger then the homogenising effects of recombination become swamped, and a 
clonal structure can become established despite high rates of recombination. In this 
consideration of strains created as a result of epidemics, there will (by definition) be 
genetic differences between the strains which may therefore be accompanied by 
differences in pathology, virulence and response to treatment. 

The situation where epidemics are absent, small or rare enough to be negligible can also 
be investigated (Box Au). As a working hypothesis, this assumes that putative clones 
are present, for example as a result of geographical or host-species isolation. The critical 
question in terms of virulence patterns is not so much whether these strains actually 
exist, but whether they are likely to differ genetically and hence possibly differ in 
factors such as virulence or other clinical properties. In essence, the problem is to 
determine the amount of recombination necessary to prevent wholesale genetic 
differentiation of the population into distinct "strains". The degree of genetic 
differentiation is conventionally measures as Ge,,  the subscript St arising because it 
measure the differentiation of subpopulations or strains, relative to the total population. 
G 1  lies between 0 and 1, representing zero and complete differentiation respectively and 
is plotted as a function of recombination rate on Figure ic. Again, the effect is non-
linear and it appears unlikely that a clonal structure will arise in populations where 
recombination rates exceed about 10 

In protozoan pathogens there are few estimates for recombination rates apart from 
Plasmodium. One problem is that demonstrating that recombination is rare is 
insufficient. It must be demonstrated that it is exceedingly rare (less than about 0.0001 
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judging from Fig 1 c) before we could accept a clonal population structure as a working 
hypothesis. For example, although sexual recombination is known to occur in 
Trypanosoma brucei, its effect on population structure and the existence of strains 
remains obscure' 8 . Similarly, recombination can be inferred in Tcruzi23  but at a level 
insufficient to break down it's predominantly "clonal" population structure" . It is 
difficult to estimate recombination rates per DNA segment per individual per generation 
in bacteria. In many respects this depends on the level of assay resolution and on the 
effect of transformations on gene function. For example sequencing the gene would 
detect far more genetic variation than would be possible by electrophoresis, and small 
recombinational events may not affect the function basis (including virulence) of the 
gene product; both these factors decrease the "effective" recombination rate. Estimates 
for raw recombination rates per nucleotide are generally low 24  and we conjecture that 
the effective rate, i.e. those events creating detectable variation or changes in virulence, 
are also likely to be low and probably less than about 10-5 to 106  per segment per 
individual. It is clear that this is low enough that a strain structure may result (see figs 
lb and 1c), and explains the observation that a clonal population structure may be 
observed in E. coil despite the presence of recombination 24 '25 . 

In contrast to these epidemiological models, it has recently been proposed that a strain 
structure could result from acquired immunity and be associated with differing clinical 
patterns 8 ' 9'26 , an influential idea which has generated considerable debate in the 
literature 2730. One problem arises from the qualitative argument that if a strain is 
defined at a single immunodominant locus, then alleles affecting factors such as 
virulence and R0  (an epidemiological measure of the potential rate of pathogen spread) 
would segregate freely against a "strain" background unless very closely physically 
linked to, or encoded by, the immunogenic locus; thus strains could be defined 
immunologically but would not differ in their clinical or epidemiological properties. In 
the specific case of Plasmodium faiciparum, an argument can be made that the PIESA 
(or PfEMP1) locus determines both strain structure and virulence and that strains may 
therefore differ clinically 8, but this problem of free segregation restricts the general 
application of the model. Subsequent work investigating the consequences of immunity 
to several loci' °  has made the process far more plausible (Box B). This occurs because 
the barrier to gene flow between strains is increased by the effects of meiosis, (the 
"meiotic barrier" i.e. parameter a in Box B) which depends geometrically on the number 
of genes defining a strain. Under the supposition of 2, 5, or 10 loci, the magnitude of 
outcrossing necessary to prevent the creation of separate strains becomes 8x 10 4 , 6x 10-3   
and 0.2 ,respectively, assuming lifelong immunity and that wholesale differentiation 
throughout the genome occurs when recombination is less than 10 (Figure lc). In the 
case of the short term immunity model (where 90% of infections are assumed to be re-
infections), these values are increased by a factor of 10 subject, of course, to a 
maximum value of r=0.5. This clearly shows that increasing the number of loci greatly 
relaxes the conditions necessary for the emergence of strains but that, at least for P. 
falciparum the conditions must be far more stringent than the 2 locus, lifelong immunity 
model originally proposed' °  However, it is not clear how many separate strains can co-
exist. The maximum number of "discordant" strajns' 0  (i.e. those not sharing any 
common alleles) cannot exceed the minimum number of alleles at any one locus. In 
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other words, if one locus has only 2 alleles then this effectively limits the number of 
strains to two. This is critically important as when only 2 strains are present, very 
stringent conditions are necessary for the emergence of strain structures (Figure ic). 
Thus increasing the number of loci defining a strain is a two edged sword. It increases 
the barriers to gene flow (see above) but increases the likelihood of reducing the number 
of discordant strains. It is known that many antigenic loci appear to encode 2 major 
allelic types 31 , which would limit the number of discordant strains to two, but whether 
these major divisions obscure more numerous immunologically distinct variants is 
unclear. Obviously a final assessment awaits a more detailed understanding of the 
immunological relationships between pathogen and host. 

We are now in a position to quantify the consequences of acquired immunity acting 
against antigen loci. To investigate the illustrative case of Plasmodium falciparuni we 
assume outcrossing rates of 0.1 to 0.661416  and use the methodology of Box B, 
arbitrarily assuming there are 5 strains defined by either a single locus or by 5 unlinked 
loci. Intuitively, loci closely physically linked to the immunogenic locus/loci have 
reduced levels of recombination between strains and hence will become more 
differentiated between strains. The results are illustrated on Figure 2. As might be 
expected from Figure 1c, selection at immune loci does not necessarily result in 
wholesale genetic differentiation of the genome. Rather it occurs in "foci" around the 
selected locus or loci; the size of these foci being determined by factors which act to 
reduce recombination. In the case of Figure 2 these are outcrossing rate, number of loci 
which define a "strain", and the length of immunity. It has been estimated that in P. 
falciparum, one centimorgan corresponds to 15-30 kb of DNA32 , and these calculations 
suggest that genetic differentiation would only occur upto 60 kb of DNA either side of a 
single immune locus. It seems improbable that such a small piece of genetic material 
could encode major differences in both virulence and R 0, so, at least in Plasmodium, the 
available data argue against the differentiation of clinically distinct strains (although one 
could, of course, increase the size of this putative differentiated region by postulating a 
larger number of loci defining a strain, and/or by postulating that a higher proportion of 
infections are re-infections; that is increasing either a or b, the meitotic and immune 
"barriers", in the methodology of Box B). Similar calculations can be made for other 
pathogens as details of their biology become available. It may be that in other 
eukaryotic pathogens, such as Leishmania, that outcrossing rates are so low that these 
foci are much wider and/or that the effects of immunity and segregation decrease the 
rate of recombination between strains to the extent that they become differentiated at all 
loci, including those unlinked to the immune loci (Figure ic). 

These results show that strains will not be either differentiated or undifferentiated, but 
these are merely the ends of a continuum. As outcrossing rate is decreased the 
differentiation around the immune loci expands outwards along the chromosome 
(Figure 2) until ultimately it falls sufficiently that even loci on separate chromosomes 
become differentiated (when recombination rate between clones is less than about 10, 
Figure ic). Figure 2 also suggests another test to identify immune loci. Alleles at the 
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immunogenic loci defining a strain are subject to "balancing" selection, i.e. they become 
selectively more advantageous as the strain becomes rarer (since the number of non-
immune susceptible hosts increases) and are therefore maintained in the population 
indefinitely. Variation therefore accumulates around such loci whereas in other regions 
of the genome variation is periodically lost by selective sweeps or stochastic processes; 
this difference in the level of variation may be diagnostic of loci undergoing balancing 
selection 33  and therefore be used to identify immunogenic loci defining a strain. It is 
dubious whether the map of molecular markers is dense enough at present (re Figure 2) 
but in principle it constitutes a fourth independent population genetic test for 
immunogenicity (the others being the rate of molecular evolution 34, differences in 
genetic variation within hosts 35 , and linkage disequilibrium between putative immune 

10 loci ). 

An important point to note in these calculations is the differences between bacteria and 
eukaryotes in the putative emergence of strains. Since the former only exchange small 
pieces of DNA, the recombinant offspring will not inherit an (unfavourable) mixture of 
immune loci but will retain the same "strain" genotype and antigenic profile. In other 
words, the meiotic barrier is absent in bacteria (a=1 in the terminology of Box B) so 
there is no segregation load on the population and prokaryotic strain structure will 
evolve independently of the number of loci defining the strain's antigenic phenotype. 
The presence of strain structure in prokaryotes acts to decrease recombination between 
strains solely through the actions of acquired immunity (the "immune barrier") which 
reduces the probability of co-infection of separate strains (the factor b in the 
terminology of Box B). The other major consequence is that recombination is 
unaffected by chromosomal location relative to immune loci, so "foci" of increased 
genetic differentiation and variation (see Figure 2) will not build up around immune 
loci; in the case of prokaryotes the results shown on Figure lc quantify the extent of 
genetic differentiation as a function of recombination rate. 

The calculations based on a model of multi-locus immunity, show that the 
demonstration of significant outcrossing within a population is insufficient to reject the 
hypothesis that no strain structure is present. Even the relatively high outcrossing rate of 
0.67 obtained for P. falciparum in Tanzania could, in principle, represent outcrossing 
within strains while outcrossing and recombination between strains could be orders of 
magnitude lower (see methodological note in Box B) and allow a strain structure to 
result (Figure Ic). Thus it may be logically more robust to search for linkage 
disequilibrium rather than outcrossing as a test of strain structure 3 ' 11 , although care has 
to be taken to ensure that spurious positive results do not occur through geographic 
subdivision3  or restrictive sampling of a single non-representative epidemic' 9 . 

Paradoxically, genetic differentiation at unlinked loci may result in strains of different 
clinical characteristics but prevent the identification of immunogenic loci either by the 
linkage disequilibrium method proposed by Gupta et a! 10  (because all loci will be 
linked, not just the immunogenic), or by the G, method proposed by Hastings 35 . 

Another consequence of short-term immunity restricting outcrossing to predominantly 
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within strains is that the production of deleterious inter-strain genotypes is drastically 
reduced. This greatly reduces the genetic load (or, more specifically, the segregational 
load) within the population which could be used as an argument against multi-locus 
strain structure 11 . 

In many infections there may be a positive correlation between short-term transmission 
rate and virulence. Increased virulence may be favoured since it increases the short-term 
rate of transmission despite the fact that it may ultimately reduce the total number of 
transmissions 3638 . Thus, the processes of strain formation and virulence levels are 
correlated and spring from the same epidemiological factor: as mixed infections 
increase so does expected virulence and recombination rate, and hence strain 
differentiation decreases (Figure lb, ic). Thus we may expect that as the infection rate 
falls due to epidemiological or immune models described above, recombination rate 
falls and increasing strain differentiation will result. These strains may differ in 
virulence due to random genetic differences, but will on average be expected to be less 
virulent than in areas of intense transmission. Conversely, in areas of intense 
transmission, recombination rate will increase, strain structure will be less apparent, and 
overall levels of virulence may be higher. 

As stated at the outset, the results described above cannot give a definitive answer to the 
current debate on "clonality", rather they provide an objective basis within which this 
debate can be conducted. They provide general pointers, for example to the fact that it is 
the extent of outerossing and recombination which is important, rather than its presence 
or absence. Figures la, lb and Ic all suggest that only at levels of recombination below 
about 10-3  or  10-4  are clinical differences in strains likely to emerge. They also show that 
certain hypothesis are incompatible: for example a model of Plasmodium strains 
defined at two loci and provoking lifelong immunity' °, even if true, is extremely 
unlikely to result in differing clinical properties unless the actual strain-defining loci 
(antigens) are themselves responsible for pathology (Figure 2). The calculations also 
provide a framework for interpretation of field data. For example it has been shown that 
the genotypic diversity of malarial infection declines with age and in adults is 
characterised by occasional bouts of infection. This could, in principle, be interpreted as 
putative support for a strain specific pattern with children becoming immune to strains 
and adult infections occurring as immunity is lost. However if epidemiological evidence 
suggests that the latter only accounts for 10% of total transmission, then k0. 1 in the 
model of short-term immunity of Box B and it is unlikely that these putative "strains" 
would differ genetically (Figure 2) and hence clinically. Perhaps more importantly the 
application of an objective body of theory from a different branch of biology provides a 
fresh perspective on the important parameters in the evolution of virulence; the most 
critical one in this respect being whether immunity is strain-specific and if so whether it 
is lifelong or periodically lost. 

We thank f. Maynard Smith, M Tibayrenc, S. Gupta and M Fisher for comments and/or 
discussion. This work was supported by the Medical Research Council. 
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Box A: epidemiological strains. 

(i) 	population genetics of a new "epidemic" strain 

For convenience we follow the derivation and symbolism of Crow 22 . We assume the 
frequency of a gene in the mainland population is P, in the original epidemic clone it is 
Po and in the epidemic clone after t generations it is p 1. It is easily shown (assuming that 
the clone is sufficiently small that mating within the clone can be ignored) that 

Pt  P 
= 0 - r)' 	(Crow22, rearrangement of eqn 3.3) 

p0  —P 

In other words, the difference in allele frequency decays at a rate of r per generation. 
Linkage disequilibrium also decays at the same rate, assuming the main part of the 
population is in equilibrium, so the "lifespan" will be the same irrespective of whether 
we define a strain by its allele frequencies or by its linkage disequilibrium. For 
convenience, we assume that the "clone" ceases to be genetically distinct once it has lost 
90% of its original differentiation. It is straightforward to calculate the expected 
"lifespan", 1, of the clone in generations as a function of recombination rate. This is 
shown of Figure la and it is obvious that genetically distinct clones can exist on a 
timescale useful in epidemiological tracking at low recombination rates. In this and 
subsequent calculations, we assume that there is no barrier to recombination within the 
"species", although in bacteria it can be shown that recombination (via transformation) 
decreases as the genetic difference between strains increases 39 . We also assume that an 
epidemic expansion occurs, and then terminates with no expected difference in fitness 
relative to other individuals of the same species. Such a situation may occur when a 
pathogen population is expanded purely by chance (for example, if it contaminates a 
water supply). The situation where a "clone" expands as a result of a favourable 
mutation has been considered elsewhere 13 

We can make some quick approximate calculations to determine how this affects the 
overall "clonality" of the population. Assume that epidemics occur at frequency s and 
each epidemic spreads to represent a proportion p of the population (e.g. if its eventual 
size is 5% of the population p=O.OS). The chance of an individual not being in a clone is 
the probability that its ancestor in each of the previous 1 generation had not been 
incorporated into an epidemic which is (1-sp)'. Clonality is defined as the probability 
that a randomly selected individual is a member of a genetically distinct clone which is 
therefore l-(1-sp)'. Clonality as a function of recombination rate is shown on Figure lb 
for a variety of values of sp. Again, this shows very clearly that a "clonal" population 
structure can only persist at low recombination rates. Note that this assumes that a 
epidemic spreads and then becomes selectively neutral, i.e. is no longer favoured by 
natural selection. When this is not the case, a selectively advantageous allele can sweep 
through a strain removing genetic diversity at linked loci by hitch-hiking: this reduces 
diversity within the strain 4042  and may increase genetic differentiation between them 
although the dynamics are complicated 13 . "Clonality" measures the probability that an 
individual will belong to a genetically distinct strain, but does not tell us how many 
strains will be present. This occurs because s and p are confounded: a high value of s 
(with low p) will result in more strains being present than the case of low s (with high 
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p): the exact number expected will also depend on population size and the extent to 
which the population is sampled. 

(ii) 	population genetics of extant strains 

Genetic differentiation between the clones (or islands) is conventionally measured as 
whose scale is from 0 to 1. It can be shown that: 

 
Gst

= 4Nra + I 
(from Crow22, eqn 3.18) 

where a = ('__ 
i 

2 N is the number of individuals per strain, and n is the number of 
n— 

strains. Note that rs  is the effective recombination rate between strains; if there are n 
strains then this is r=r(1-1/n) because a proportion 1/n of recombinational events will 
be within the same strain. The factor rs  therefore replaces migration rate in in the 
original equation. Total population size (=Nn) is assumed to be large (in this case one 
million). G 1  as a function of recombination rate is shown on Figure ic assuming 
differing number of clones within the population. 
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Box B: Gene flow in immunity-derived strain structure. 

It is assumed that strong immune selection on antigenic loci structures the pathogen 
population into a series of antigenically distinct "strains". As in Box A we need to 
calculate an effective recombination rate between strains r5  as r=r(1-1/n)ab where r is 
recombination rate in the absence of immunity, and is scaled by a to take account of the 
barrier to gene flow due to the segregation at meiosis (the "meiotic barrier"), and b to 
account for the reduction in outcrossing between different strains due to host immunity 
preventing their coexistence (the "immune barrier"). There is a slight methodological 
question here as when we measure recombination or outcrossing in the field it is already 
reduced by any effects of immunity, ultimately it may merely reflect outcrossing rate 
within clones; thus we obtain underestimates of r (i.e. recombination in the absence of 
immunity) from field data. We could reduce this by investigating immunologically 
naive or compromised individuals or merely by regarding r as a conservative estimate. 

If two strains undergo "conventional" sexual recombination (e.g. Plasmodium), then the 
probability of retaining the original strain structure after meiosis and an unlinked allele 
"migrating" into the other strain is 0. 5z ,where z is the no. of loci defining the strain. 
Thus for "conventional" sexual diploids we calculate a=0.5' but for bacteria it appears 
that only small, individual pieces of DNA take part in "recombination" so a1. The 
calculation for conventional sexual species make the conservative assumption that all 
intermediate antigenic combinations immediately die and that segregation at meiosis 
forms a "meiotic barrier" to gene flow between strains. If this is not the case, "stepping 
stone" models or models of gene flow across a selective barrier of a "hybrid zone" 43  
could be employed. The critical points are that a difference exists between the 
magnitude of a for "conventional" sexual species and bacteria and that the assumption 
of lethality over-estimates the extent of genetic isolation (and hence differentiation) 
between strains. 

We can make an estimate of b using the existing methods 35(note that in these papers G 1  
are not comparable: in the former 35  individual hosts were analogous to islands whereas 
in the present case islands correspond to strains). Assume there are n strains and that 
hosts encounter and then become resistant to them. We can regard this as a flux with 
hosts classified into, and moving through, immune status groups progressing from 
resistant to 0, to resistant to 1, to 2 etc. upto resistant to n-i strains (we are not interested 
in people resistant to all n since they won't get any infections). Assuming immunity is 
lifelong (and death rate is low relative to infection rate) the reduction in outcrossing 
rate between strains, b, can be calculated as 

1 - ' 	i 	1 
b=—(1— 	)=- 

fljØ 	n — i 	2 

The term in brackets is the probability that the second haplotype has survived the effects 
of acquired immunity. This is an important result as it shows that lifelong, strain-
specific immunity cannot reduce outcrossing rate between strains below 50% of the 
value it would take in a naive population. The weighting factor n arises because 
immunity is lifelong so there are n classes of immune status each of which have the 
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same weight. This is not the case when immunity is not lifelong 44 . We assume that 
immunity is periodically lost so that hosts slip back into the class of being susceptible to 
only a single strain and that infection rate is so rapid that they become re-infected rather 
than falling back into immune status group n-2; we call this the "short-term immunity" 
model. Recombination between strains obviously cannot occur in the class n-i so if the 
proportion of infections which occur in this manner is k, then we can recalculate b as 

b= (1—k) 

2 
Thus under short-term immunity, the reduction in outcrossing rate can greatly exceed 
the maximum of 50% which occurs when immunity is lifelong. When interpreting the 
results of these calculation (e.g. Figure 2), it is important to remember that the estimate 
of a ia an underestimate; thus the general conclusion that it is difficult to produce 
genetically differentiated strains in eukaryotic species rests on conservative assumptions 
and is robust. Note that the same procedure can be used to investigate the situation 
where strains are adapted to different environments (such as hosts species) by allelic 
differences at z loci which act epistatically. The value of a is unchanged as it measures 
the barrier to gene flow caused by the breakdown, at meiosis, of favoured allele 
combinations. The parameter b now becomes a measure of the relative ability of a strain 
to establish itself in a non-preferred environment or host type. 
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Figure 1 a. The "lifespan" of a clone as a function of recombination rate. The lifespan is 
arbitrarily taken as the time (in generations) for 90% of its genetic differentiation to 
disappear. Note that it is assumed that the loci are unlinked in eukaryotes in which case 
recombination rate is half outcrossing rate. 

Figure lb. The extent of clonality within a population as a result of an epidemic 
population structure, plotted as a function of recombination rate (see caption to Figure 
1 a). Clonality is defined as the probability that an individual randomly sampled from the 
population belongs to a genetically distinct clone. 

Figure ic. The extent of genetic differentiation between "strains" as a function of r, the 
recombination rate between clones (see text for details of how this is calculated). It is 
assumed that 2,5, 10 or 20 strains are present and that total population size of pathogens 
is 1,000,000. 

Figure 2. Genetic differentiation, Ga,,  in the chromosome surrounding an immunogenic 
locus at position "0"; in Plasmodium falciparum 1 centimorgan is equivalent to 
approximately 15-30 kb 32 . Outcrossing rates wre 0.1 or 0.67 corresponding to 

16 	 14 estimates in P. falciparum from Papua New Guinea •(PNG) and Tanzania 15 (1 anz) 
respectively. There were assumed to be 5 distinct strains defined either by a single locus 
or by 5 unlinked loci. Immunity was assumed to be either lifelong or short term (i.e. is 
periodically lost such that 90% of infections are re-infections of hosts previously 
exposed to that strain, see Box B for further details). Note that this only applies to 
pathogens undergoing "standard" eukaryotic meiosis and recombination. In prokaryotes, 
recombination is independent of chromosome location so no such foci of genetic 
differentiation would be expected; this is illustrated by the example "bacteria" where 
recombination is 5x10 5  and G, remains constant at 0.2 over the whole genome. 
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Figure lb 
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Figure Ic 
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Figure 2 
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