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Abstract 

Many optical processing systems rely critically on the availability of high 

performance, electrically-addressed spatial light modulators. Ferroelectric liquid 

crystal over silicon is an attractive spatial light modulator technology because it 

combines two well matched technologies. Ferroelectric liquid crystal modulating 

materials exhibit fast switching times with low operating voltages, while very 

large scale silicon integrated circuits offer high-frequency, low power operation, 

and versatile functionality. 

This thesis describes the design and characterisation of the SBS256 - a general 

purpose 256 x 256 pixel ferroelectric liquid crystal over silicon spatial light mod- 

ulator that incorporates a static-RAM latch and an exclusive-OR gate at each 

pixel. The static-RAM latch provides robust data storage under high read-beam 

intensities, while the exclusive-OR gate permits the liquid crystal layer to be fully 

and efficiently charge balanced. 

The SBS256 spatial light modulator operates in a binary mode. However, 

many applications, including helmet-mounted displays and optoelectronic im- 

plementations of artificial neural networks, require devices with some level of 

grey-scale capability. The 2 kHz frame rate of the device, permits temporal mul- 

tiplexing to be used as a means of generating discrete grey-scale in real-time. 

A second integrated circuit design is also presented. This prototype neural- 

detector backplane consists of a 4 x 4 array of optical-in, electronic-out processing 

units. These can sample the temporally multiplexed grey-scale generated by the 

SBS256. The neurons implement the post-synaptic summing and thresholding 

function, and can respond to both positive and negative activations - a require- 

ment of many artificial neural network models. 
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Chapter 1 

Introduction 

1.1 Background 

Many optical processing architectures and systems require high performance, elec- 

trically addressed spatial light modulators (SLMs). The hybrid SLM technology 

of ferroelectric liquid crystal over silicon (FLCOS) is attractive because it com- 

bines two well matched technologies. Ferroelectric liquid crystals exhibit fast 

switching times coupled with low switching voltages, while very large-scale sil- 

icon integration permits the implementation of large active pixel arrays that can 

be addressed at high frame rates. These electrically addressed devices function 

as electronically-written, optically-read memory devices that are suitable for use 

in display applications, and as input or filter planes in optical systems. 

Many of the medium-resolution FLCOS SLMs designed so far have been based 

on the one-transistor dynamic random access memory (DRAM) circuit. The 

DRAM-type circuit offers high pixel density but has some performance limita- 

tions, including photo-induced charge leakage and limited FLC drive capability. 

In this thesis, I present a general-purpose 256 x 256 FLCOS device that incor- 

porates a static-RAM latch and an XOR-gate at each pixel. The pixel circuit 

Overcomes the limitations of the DRAM-type pixel at the expense of area and 

fill-factor. However, the high pixel count of this SRAM-type device raises many 

backplane design issues that are not as relevant to DRAM-type devices or smaller 

SRAM-type arrays. The device is particularly suitable for applications where the 

1 



Chapter 1. Introduction 

read-beam is intense, say at 

2 

he input stage of a cascaded SLM system, or in 

system where a pulsed light source cannot be used. 

In recent years there has been a dramatic increase in research on artificial 

neural networks ( ANNs). ANNs are useful tools for solving many classification, 

modelling, and prediction problems. They normally consist of parallel arrange- 

ments of many simple processing units (or neurons) connected together by vari- 

able strength connections (weights). Most work has centred on understanding 

the behaviour and limitations of many different network architectures and al- 

gorithms, through theoretical analysis and software simulation on digital pro- 

cessors. However, to realise the full potential of ANNs, efficient hardware imple- 

mentations must be developed. Among other approaches, including VLSI neural 

chips, the optoelectronic approach is expected to play an important role in the 

implementation of medium-scale ANNs (loo’s-1000’s of neurons). Optoelectronic 

implement at ions are especially at tractive for classification applications where the 

input exists in the optical domain. FLCOS SLM technology can be used to imple- 

ment the input, interconnection weights, and neuron functional blocks required 

by many optoelectronic ANN systems. Furthermore, if the image is converted to 

the coherent optical domain, powerful preprocessing functions can be performed 

on it ‘for free’ by using the techniques of Fourier optics. 

1.2 Objectives 

The objectives of my project were to: 

1. Develop a general-purpose 256 x 256 FLCOS SLM based on the static- 

RAM type pixel. 

2. Demonstrate real-time temporally multiplexed grey-scale on such a 

device. 

3. Develop a prototype neural-detector backplane capable of sampling 

the temporally multiplexed grey-scale generated by the SLM. 
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4. Optimise both devices for incorporation into a future optoelectronic 

ANN system. 

1.3 Thesis outline 

I begin Chapter 2 with an overview of some spatial light modulator technologies, 

and then introduce the technology of FLCOS. I then give a description of some 

pixel designs that have been incorporated into FLCOS SLM devices. These range 

from the single-transistor DRAM-type pixel, to so-called ‘smart pixels’ that can 

perform primitive processing functions. 

In Chapter 3, I review some applications for which FLCOS SLMs are par- 

ticularly suitable, including optical crossbar switching, and optical correlators. 

Then I consider some methods for generating grey-scale on FLCOS binary mode 

devices. The chapter closes with a review of some optoelectronic ANN imple- 

ment at ions. 

In Chapters 4 and 5, I present the SBS256 SLM - a 256 x 256 pixel device that 

comprises a SRAM latch and an XOR-gate at each pixel. Chapter 4 concentrates 

on backplane design issues such as the pixel circuit, architecture, transient current 

spikes, and power dissipation. In Chapter 5, I present electrical and optical char- 

acterisation results. The electrical results include current spike measurements, 

operating frequency, backplane electrical yield, and the effects of post-processing 

planarisation. The optical characterisation results include contrast ratio, frame 

rate, temporally-multiplexed grey-scale, and uniformity. 

Chapter 6 covers the development of OANN - a 4 x 4 prototype neural- 

detector backplane. The backplane is capable of sampling a 2’s complement vari- 

ant of the temporally multiplexed grey-scale generated by the SBS256. Photo- 

induced charge-leakage is identified as a potential problem for the neuron activ- 

ity storage circuits. A simple technique is presented to significantly reduce this 
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problem. Electrical and optical characterisation from the neuron circuits are also 

presented. 

Finally in Chapter 7 ,  I evaluate the performance of the two integrated circuit 

designs presented in earlier chapters and discuss possible improvements and future 

work using the devices. 



Chapter 2 

Spatial light modulators - an 
overview 

The advantages gained from the inherent parallelism of many proposed optical 

processing and computing architectures rely critically on the availability of high 

performance two-dimensional spatial light modulators (SLMs). SLMs are used 

as data displays, spatial filters, incoherent to coherent image converters, two- 

dimensional logic elements, and as routing elements. In this chapter I give an 

overview of some SLM technologies that have shown promise before focusing on 

the technology of ferroelectric liquid crystal over silicon (FLCOS). 

2.1 Introduction 

SLMs can modulate properties of an optical wavefront such as intensity, phase, 

or polarisation. Spatial light modulation can be accomplished via electrooptic, 

acoust oopt ic, magnet oopt ic, mechanical, phot orefract ive, or elect roabsorpt ive ef- 

fects in a variety of materials. There are two major classes of SLMs: optically 

and electrically addressed. There is such a wide variety of SLM technologies, that 

it is impractical to discuss all of them in detail (see 

741, or Applied Optics special issues on Information 

SLM review papers [18,23, 

Processing for more recent 

5 
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advances). In this chapter I will concentrate on electrically addressed devices, 

but will also consider optically addressed devices where appropriate. 

The main advantage of electrically addressed devices is their ability to inter- 

face with both electrical and optical systems. The characteristics of electrically 

addressed SLMs are likely to define the performance of the systems they are used 

in. These characteristics include pixel count, frame rate, contrast ratio, physical 

size, cost, and power dissipation. I begin with an overview of the major SLM 

technologies. 

2.2 Major SLM technologies 

In this section, I consider three SLM technologies that have shown promise: di- 

gital micromirror devices, Si-PLZT devices, and self electrooptic effect devices. 

2.2 1 Digit a1 micromirror devices 

The digital micromirror device (DMDl), developed by Texas Instruments [84], is 

a monolithically fabricated SLM that employs electrostatically deflected mirrors 

as the light modulating elements. Each mirror is suspended by thin hinges over 

one or more address electrodes which are in contact with the underlying address 

circuitry. When an electrode is addressed, the overlying mirror, which is held at 

a fixed potential, is attracted to it. The mirror element design can be tailored to 

a particular application. For example, torsion beam DMDs are built to modulate 

amplitude, while flexure beam DMDs modulate mostly phase, and cantilever 

DMDs modulate amplitude and phase in a coupled fashion. The torsion-beam 

mirrors can be deflected in either of two directions about the axis defined by the 

support hinges (see Fig. 2-1). When a pixel mirror is tipped in one direction, 

'DMD can also refer to deformable mirror devices, the forerunners to the digital 

micromirror technology 
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incident light is thrown out of the optical imaging system, so that the pixel 

appears dark. When it is tipped in the other direction, light passes through the 

imaging system so that the pixel appears bright. 

TORSION 
TORSION 

HINGE 

LANDING / 
ELECTRODE 

\ ADDRESS 
ELECTRODE 

Figure 2-1: Cross-section of a torsion-beam deformable mirror pixel. The 

mirror can be deflected in either of two directions about the support hinge axis 

by the underlying address electrodes. 

DMDs have been addressed using charge coupled device (CCD) and static 

random access memory (SRAM) technologies. Boysel [9] developed a 128 x 128 

pixel virtual phase CCD-addressed device to establish an analogue charge im- 

age, which is then transferred to the overlying electrodes to deflect clover-leaf 

deformable mirrors. It accepts 16 analogue input signals at a clocking rate of 

up to 4 MHz. The underlying CCD array permits frame addressing so, unlike 

row addressed architectures, there is no skew, and a high 96% duty cycle. The 

contrast ratio of this device is approximately 2:1, as it was designed as a phase 

modulator. A 768 x 576 pixel SRAM addressed DMD SLM with torsion-beam 

mirrors, has recently been developed by Texas Instruments capable of displaying 

PAL broadcast quality pictures for use in a projector display system [112]. Each 

frame of video is divided into three colour fields and grey scale is achieved by 

pulse width modulation within each colour field. Pixels can be switched in 10 ps 

and exhibit a contrast ratio of 50:l. Texas Instruments are also fabricating a 

2048 x 1152 pixel device for a prototype high definition television display system 

[116]. The die will be 37 by 22 mm in size, and so is likely to suffer yield and 

reliability problems. 
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2.2.2 Si-PLZT devices 

Si-PLZT devices combine mature silicon technology for processing and control, 

with the modulator material, lead lathanum zirconate titanate (PLZT). PLZT 

is a transparent, electrooptic, ferroelectric, ceramic material. It exhibits low 

switching times (5 100 ns), high contrast ratios (2  500:1), and analogue modu- 

lation capability. However, it also requires high drive voltages (20-100 V) to give 

reasonable transmission through crossed polarisers. 

The main technique used for combining Si and PLZT substrates involves flip- 

chip bonding an Si chip (or chips) to a PLZT wafer - flip-chip bonding is widely 

used in the emerging technology of multi-chip-modules. Control and driver cir- 

cuits are placed on the Si chip and connected to the PLZT modulator using 

metal solder bumps. The basic configuration of a unit cell is shown in Fig. 2-2. 

The drive transistor gate can be varied by electrically or optically addressed [20] 

control circuitry. The resulting electric field between the switching and ground 

electrodes, spaced 15-50 pm apart, can vary the refractive index of the overlying 

PLZT material to phase modulate a read-beam. Amplitude modulation can be 

achieved by passing the read-beam through suitably oriented crossed polarisers. 

The output signal rise/fall times are limited by the drive circuitry. To give an 

idea of the transmission characteristics inherent with these devices, consider one 

of the prototype modulators fabricated by Jin e t  al [48] where an electrode spa- 

cing of 15 pm was used. For an applied voltage of 0 V the transmission was - 0%, 

while for 40 V and 120 V it was - 4.5% and - 60% respectively. 

With the flip-chip bonding approach, there is a voltage compatibility problem 

between the 20-100 V required for the modulator drive circuits (which may con- 

tain more than the single transistor illustrated in Fig. 2-2) and the control logic 

circuits operating at 5 V. Jin e t  al have also studied methods of bonding thin 

Si films with driver circuits directly onto bulk PLZT and then flip-chip bond- 

ing an Si chip containing the control circuitry. The low-voltage control signal is 

passed across the solder bump to control the high-voltage drive circuit. This will 

allow them to use high-density, foundry-processed VLSI chips with sophisticated 
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Figure 2-2: Cross section of a unit cell of a Si-PLZT SLM implemented using 

flip-chip bonding of the Si chip to the PLZT wafer. The electric field between 

the switching and ground electrodes varies the refractive index of the overlying 

PLZT material. 

control circuits. Esener [ 191 reviews several other approaches used for combining 

the Si and PLZT substrates, each with their attendant advantages and disad- 

vantages. He also describes a technique that incorporates self-tuned Fabry-Perot 

cavities into the modulator structures to reduce the required drive voltage by a 

factor of at least five. An optically recorded volume hologram is used as one of 

the highly reflective coatings of the Fabry-Perot cavity. It is recorded in place 

using interference between read-beam illumination and the reflected output. The 

phase angle of the resulting hologram automatically compensates for thickness 

variations across the modulator layer. This technique could also be applied to a 

wide variety of other SLM technologies where modulator uniformity is difficult 

to achieve over large arrays. 

The large drive transistors required for high speed operation, coupled with 

the considerable power dissipation at high operating voltages, will probably limit 

this technology to relatively small, low fill-factor arrays. However, their analogue 

modulation capability makes them suitable for many optical processing and neural 

network applications. 



Chapter 2. Spatial light modulators - an overview 10 

2.2.3 Self electrooptic effect devices 

In the past few years several variants of the self electrooptic effect device (SEED) 

technology have been developed. SEEDs make use of the non-linear effect called 

the quantum confined Stark effect, which describes the changes in optical prop- 

erties of quantum wells when an electric field is applied perpendicular to mul- 

tiple quantum well (MQW) layers. Since the quantum confined Stark effect is 

an almost instantaneous process, the modulation frequency is limited only by 

the frequency with which the electric field can be modulated. Devices must be 

operated at a relatively narrow optical bandwidth, which is determined by the 

structure and properties of the MQW layers. 

The MQW structure typically consists of 50-100 alternate layers of GaAs and 

A1,Gal-,As grown by molecular beam epitaxy. In a SEED, a MQW is placed 

within a p-i-n diode structure, and can be configured as optical input and output 

devices [70]. When a SEED is connected to an external load, and is under strong 

optical illumination, the photocurrent generated in the SEED induces a large 

voltage drop across the load. The field across the MQW is reduced which, in 

turn, increases its absorption and photocurrent, so that by positive feedback, the 

transmittance of the device becomes significantly reduced. The modulation is 

fast, but the contrast ratio is low (2:1), and operation is restricted to a particular 

wavelength (typically 850 nm for GaAs/Al,Ga+,As MQWs). 

In symmetric-SEEDS (S-SEEDS), two SEEDs are connected back to back so 

that each acts as a light controlled load resistor for the other. The device can 

be switched between two stable states by momentarily changing the ratio of the 

two optical inputs. As switching is controlled by the ratio of two inputs rather 

than absolute intensities, device operation is more robust for real optical systems. 

The optical input and output power supply beams must be clocked, but this is 

not seen as a problem for most digital optical systems, where the architectures 

2Where x is typically 0.25 5 x 5 0.35 
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and algorithms tend to be synchronous anyway. A 256 x 128 optically addressed 

array and a 16 x 8 electrically addressed array have been fabricated [ll]. 

Figure 2-3: Cross section of a unit cell of an electrically addressed GaAs 

FET-SEED amplified differential modulator. implemented by Lentine et al [56]. 

Note that the drive transistors are wide compared to their length (W:L given in 

microns) to give high current sourcing capability for high frequency operation. 

S-SEEDS have also been successfully integrated with various electronic tech- 

nologies. When S-SEEDS are monolithically integrated with GaAs field effect 

transistors (FETs), very high speed, electrically addressed, differential modulator 

arrays can be implemented. A small 6 x 6 [56] electrically addressed integrated 

array has been fabricated with a differential amplifier at each pixel (see Fig. 2-3). 

The input voltage swing to the differential amplifiers can be as small as a few 

hundred millivolts, while the voltage across the MQW modulators can be as high 

as 10 V. This permits the array to be interfaced to standard Si bipolar emitter- 

coupled logic or GaAs FET electronic families that have typical voltage swings of 

less than 1 V. The device can operate at modulation frequencies of up to 2 GHz, 

limited only by the current sourcing capabilities of the drive transistors. Note 

that as with high speed Si-PLZT drive circuits, the transistors must be made 

wide to give high current sourcing capability for high frequency operation. They 

therefore take up significant area on the GaAs substrate which tends to limit 

pixel density, resolution and active wea fill factor. GaAs circuits also use only 
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n-channel transistors, so circuits such as inverters sink current in one of their 

states, and thus may be susceptible to overheating if care is not taken in their 

design. 

Goodwill e t  aZ[30]  have recently flip-chip bonded a 16 x 16 array of S-SEEDS 

to a silicon driver backplane. Although inherently slower than GaAS FET tech- 

nologies, silicon CMOS processes offer higher packing density, lower cost, higher 

yield and less overheating problems. The modulators are designed to work in 

the 1047-1064 nm region to match the high power available from diode pumped 

Nd:YLF and Nd:YAG lasers. They believe the device could work at up to 70 MHz 

with contrast ratios of 2-4:l. 

S-SEED technology shows great potential for smart pixel and digital optical 

computing applications where very high frequency operation and low switching 

energies are more important than high contrast ratio and pixel resolution. 

2.3 Liquid crystal devices 

The design of electrically addressed FLCOS SLMs has been influenced by the 

liquid crystal display (LCD) industry. Many of the liquid crystal cell configur- 

ations and addressing schemes are similar, so before focusing on FLCOS SLMs, 

some configurations and schemes will be reviewed. 

Liquid crystals (LCs) are attractive modulator materials for SLMs and dis- 

plays as they have high birefringence, low switching energies, and low drive 

voltage requirements. LCs research and development has been driven by the 

displays industry as it attempts to challenge the cathode ray tube’s dominance of 

the television monitor market with flat, light-weight, low-power devices. There 

can be major differences between the requirements of good SLMs and those for 

displays [ 151. Displays typically have to operate with white light illumination, 

have a wide viewing angle, be shock resistant, and may have to withstand ex- 

tremes of temperature. They usually only require 25-50 Hz frame rates, and 
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contrast ratios of 5-1O:l. SLMs, on the other hand, usually require high frame 

rates, high contrast ratios, and for coherently illuminated systems, phase flatness 

is also important. 

LCs are a class of materials that possess properties intermediate of those 

of typical crystalline and liquid phases. LC molecules are mainly organic in 

nature with long, thin, rod-like structures formed by linking aromatic rings to 

hydrocarbon chains. Their anisotropic3 structure can lead to anisotropy of certain 

bulk physical properties such as dielectric permittivity and refractive index. The 

combination of such anisotropy, characteristic of crystalline materials, with the 

flow properties of liquids make liquid crystals uniquely useful in a variety of 

applications. 

Three classes of liquid crystal structures exist: nematic, cholesteric, and 

smectic phases, each with a characteristic crystalline structure. Commercially 

available nematic LCs appeared in the early 1970’s and have been used extens- 

ively in the relatively mature LCD technology. However, nematic LCs exhibit 

relatively low contrast (5: 1), and 10-100 ms switching times, restricting potential 

device frame rates to 10-50 Hz. Since the early 1980’s, smectic phase ferroelectric 

liquid crystals (FLCs) have been investigated for use in high frame rate applic- 

ations requiring much faster switching times (10-100 ps) ,  and higher contrast 

ratios. 

2.3.1 Smectic phase - the surface stabilised effect 

In the smectic phase, the long axes of the molecules align themselves parallel 

to each other. Furthermore, the centres of gravity of these molecules exist in 

one plane and the planes, or layers, pile up on each other. However, there is no 

general regularity of spacing between the molecules in one layer. There is there- 

fore a two-dimensional ordering in the position of the liquid crystal molecules. 

3Anisotropic materials have different properties for different directions in the 
material. 
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Certain chira14 smectic liquid crystals exhibit ferroelectric properties, which can 

be utilised in electrooptic devices. Ferroelectric liquid crystals (FLCs) possess a 

permanent or spontaneous polarisation, and most of the commonly used ferro- 

electric phase is the chiral smectic C (SE) phase. In a bulk sample there is no 

net polarisation because the director n ,  spirals through the material from layer 

to layer. However, by use of suitable boundary conditions, the helical structure 

can be suppressed and thin layers of SE can show a net polarisation. 

The most commonly used device geometry is the surface stabilised FLC (SS- 

FLC), first described by Clark and Lagerwell [13]. A transmissive SSFLC cell 

typically comprises a 2-3 pm of FLC sandwiched between two glass substrates, 

each coated with a transparent electrode and a SiO, or rubbed polyamide align- 

ment layer. The device is similar to a twisted nematic device [89] except that the 

cells are thinner and the alignment layers are parallel. In the idealised SSFLC 

configuration, the substrates are close enough to unwind the FLC's intrinsic hel- 

ical structure permanently so that the molecular axes (or directors) can only exist 

in two energetically degenerate states oriented at hq5 to the layer normal, where 

6 is the molecular tilt angle. 4, is typically close to 22.5" over large temperature 

ranges, permitting the optic axis to be electronically rotated through approxim- 

ately 45", by an applied electric field of the appropriate sign. Both amplitude 

and phase modulation are possible. 

Amplitude modulation 

Amplitude modulation can be achieved by placing the cell between crossed polar- 

isers (see Fig. 2-4). If the polarisation of normally incident light is chosen either 

parallel or perpendicular to one of the voltage selected optical axis states, it will 

be transmitted through the FLC undected. When the other optical state is se- 

lected by applying a field of the opposite sign, the optical axis is rotated to a 45" 

4A chiral molecule cannot be superimposed upon its mirror image by translation, 

rotation, or reflection. 
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angle from the incident polarisation so that both the ordinary and extraordinary 

modes are excited. For the correct FLC layer thickness d, a total phase shift of 

7r will accumulate between these two modes, and the incident light's polarisation 

will be rotated by 90". The transmission I through the crossed-polarisers is given 

by: 

1 
Andn 

x I = 10 sin2 (44) sin2 ( 

where I0 is the inpub intensity, An is the FLC birefringence, and X is the wavelength 

of the incoming light. The contrast ratio is theoretically infinite, but in real 

devices, it is limited by the uniformity of the director alignment and the quality 

of the polarisers. Gourlay [31] has measured contrast ratios of up to 500:l for 

FLC test cells fabricated in-house in the Applied Optics Group facilities, at the 

University of Edinburgh. 

Phase modulation 

Two methods can be used to generate phase modulation. The first has one of the 

switchable optical axes parallel to the polarisation vector of the incoming light. 

When the FLC is switched to the other state, the phase of the light is changed by 

an amount dependent on both the FLC rotation angle and the birefringence. In 

the other method, the polarisation vector of the incident light and first polariser 

are set to bisect the FLC's two switchable optic axes. The propagation of light 

through the FLC produces elliptically polarised light from the incident linear po- 

larisation. The sense of the polarisation depends on which side the FLC's director 

is switched to. The elliptically polarised light then passes through an analyser, 

orthogonal to the first polariser, which reduces the elliptical polarisation to linear 

Polarisation exhibiting a 0 or T phase difference, independent of switching angle 

or optical path length. For 100% transmission, 4 must be 45', rather than 22.5". 
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Figure 2-4: Ferroelectric liquid crystal operation. (a) FLC optic axis switched 

SO that it is parallel to incident polarised light - no change in polarisation. (b) 

FLC optic axis at 45" to incident light - polarisation rotated by 90". 
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Real devices - the chevron defect 

The most common defect found in SSFLC Sc devices is the chevron defect [85, 

541. They are caused by the shrinking of the smectic layers during the final stages 

of cell fabrication, so that the layers are not normal to the bounding glass plates; 

zig-zag patterns can be observed when viewed through a polarising microscope. 

With devices in the chevron structure, the switched states are not fully bistable, 

and one of the states is usually preferred when the driving voltage is removed. 

Contrast ratios are also severely reduced. The chevron geometry can be changed 

to the more desirable bookshelf geometry by applying a low frequency alternating 

electric field across the FLC layer, typically 30 V/pm or more. 

Switching time 

To a first approximation the switching time r can be given by, 

where, 7 and Ps are the FLC material’s viscosity and spontaneous polarisation, 

and E is the electric field applied across it. Clearly r is lower for low viscosities, 

high polarisation, and high electric fields. 

Switching energy 

In general, the power dissipated, P, in charging and discharging a capacitor from 

0 to V and back to 0 again at frequency f is given by, 

P = QVf (2.3) 

where Q is charge dumped onto the capacitor. For an area A of FLC material 

with spontaneous polarisation P,, the charge Q associated with switching from 

one state to another is given by, 
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A rough calculation shows that P F L ~  for a typical test cell filled with SCE13 

FLC, is about 1 mW when the following values are used: 

2 PS = 26 nC/cm VFLC = 10 V 

A = 1 cm2 f = 2kHz. 

Charge balancing 

In order to prevent chemical degradation in any liquid crystal device, care must 

be taken to ensure that over a period of time, the LC layer does not receive a net 

voltage or field across it. Practically, this means that if a positive voltage pulse 

is applied across the LC for a certain period of time, a negative pulse of equal 

duration should then be applied across it. The is usually referred to as the charge 

balancing requirement. The FLC layer in SSFLC devices responds to the sign of 

the electric field applied across the layer. Therefore because of charge balancing, 

the duty cycle of the device can be significantly affected as the FLC will be in 

its OFF state for 50% of the time. This is explained in more detail for specific 

device implementations in Section 2.4. 

2.3.2 Other FLC modes 

SSFLC devices are inherently binary in nature, however, some FLC modes can 

have an analogue response. 

Electroclinic effect 

The smectic A ( S A )  phase, used in the electroclinic or soft mode electrooptic 

effect [4,16], has attracted attention because of its analogue optical response and 

sub-microsecond switching times. In this phase, the directors are perpendicular 
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to the layers and the optic axis can be rotated in proportion to the applied field. 

Davey and Crossland [16] have built test cells capable of generating more than 

50 grey levels. However, high electric fields are required, but, the main limitation 

of using the electroclinic effect to generate reproducible grey levels, is that the 

cell’s temperature must be controlled to within a few hundredths of a degree. 

This could be a problem for addressing an array of pixels on a silicon backplane 

as there are likely to be variations in temperature across the array, because of 

power dissipated in switching transistor circuits. 

Distorted helix effect 

The distorted helix effect (DHE) also has a fast, analogue response [21]. The 

DHE device structure is similar to the SSFLC but the helical precession of the 

director from layer to layer is not suppressed. This can be achieved by using FLC 

mixtures that possess a short helix pitch. The application of an external field 

distorts the helix and thus changes the cell’s birefringence. However, at present 

DHE device research is at an early stage of development and cells tend to suffer 

from alignment and scattering problems. 

2,3,3 Addressing schemes 

Liquid crystal devices can be addressed optically [32,71] or electrically. Electrical 

addressing of array LC devices can be performed by direct drive, passive, or active 

matrix addressing met hods. 

Direct drive addressing 

In direct drive addressing, one wire is used to address each pixel. It is useful for 

arrays up to 16 x 16, but above this, the area required for interconnect would 

dominate the pixel array. The frame rate is potentially high as all the pixels cm 

be addressed simdtmeously, and good contrast ratio can be expected as pixels 

can be constantly driven. 
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Passive addressing 

The simplest way to address a large array of pixels is to use matrix addressing 

techniques. Row and column electrodes are patterned onto the glass substrates 

and the pixels are defined where the electrodes overlap. Data is simultaneously 

presented to all columns, and one row at a time is selected by an appropriate 

voltage signal. This scheme results in error voltages which affect the unselected 

rows [3]. The size of the array is limited by the effects of the error voltages and 

the characteristics of the (typically nematic) liquid crystal. The frame time is 

proportional to the number of rows in the display as the signal has to be present 

on each row long enough for the liquid crystal to switch. This limits device to 

about 100 lines, which is acceptable for calculators, status display panels, etc. 

Multiplexing capabilities are improved with supertwist nematics (STN), which 

provides higher contrast, sharper turn-on characteristics, and faster response. 

The fast switching times and bistability of FLCs can also improve the multiplex- 

ing capabilities of passively addressed devices: CRL Smectic Technology have 

developed several transmissive FLC devices, including a 320 x 320 array [98], 

with a contrast ratio of at least 50:l. 

Active matrix addressing 

Active matrix addressing overcomes the problems associated with passive ad- 

dressed nematic devices by including an active element in each pixel. The active 

element is usually a thin-film transistor (TFT) , although two-terminal devices 

and diodes have also been used [44]. The TFT has the effect of sharpening the 

effective cell threshold by replacing the unfavourable switching characteristics of 

the TN cell with the favourable characteristics of a transistor. These TFTs serve 

to hold the desired voltage at each pixel, while subsequent rows are addressed 

with significantly reduced cross-talk. 

1 With TFT displays, there is also the opportunity to integrate some of the drive 
t 
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connectors [24,63]. However, the presence of TFTs on the back glass plate limits 

both the resolution and the ability to miniaturise the displays. The opaque 

TFTs take up room and must be a certain physical size to attain the necessary 

drive. This can cut the display’s light efficiency to less than 5%. The main 

disadvantage of TFT displays is their high cost. This is a direct consequence of 

the need to produce displays with a working TFT at each pixel. Defect densities 

of 0.01 defects/cm2 lead to yields of only l0-20% for a 10 inch diagonal display. 

The defect density is much lower than that needed for Si memory chips. Fault- 

tolerant architectures can improve yields [97], but they are still expensive. 

Matsushita manufacture a 15 inch diagonal, full colour, display with a resol- 

ution of 1152 x 900 pixels [log] is an example of a state-of-the-art active matrix 

device. This device is probably at the limits of what is economically feasible. 

2.4 Ferroelectric liquid crystal over silicon 

In recent years there has been an active interest in developing the hybrid techno- 

logy of ferroelectric liquid crystal over silicon (FLCOS). The fast switching times 

and low switching energies of FLCs, coupled with the high addressing speeds of Si 

backplanes make FLCOS SLMs attractive components for compact optical sys- 

tems. The Si and LC industries have each progressed rapidly over the last decade 

SO that the performance capabilities of SLMs has increased and can be expected 

to continue as a consequence of improvements in the component technologies. 

During the 1980’s, complementary metal oxide semiconductor (CMOS) be- 

came the dominant technology for general-purpose integrated circuit (IC) applic- 

ations. It has come to the forefront primarily due to low power consumption; 

aside from leakage currents, power is dissipated only during switching events and 

not when the circuit is in a stable (non-switching) state. This is a major im- 

provement over what occurs in circuits based on bipolar and nMOS fabrication 

technologies. Similarly, circuits can be designed where small deviations in tram 

; sistor characteristics 
F 
i 

do not perturb the operating point. Consequently, it has 
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proven to be a robust manufacturing technique that permits large quantities and 

varieties of ICs to be fabricated with high yield. The technology is very flexible 

- it is suitable for implementing digital logic, memory devices, photodetectors, 

signal processing, and various analogue applications. 

An FLCOS SLM is constructed by sandwiching a thin layer of FLC between a 

silicon backplane IC and a block of glass coated with a transparent front electrode 

(see Fig. 2-5). The backplane IC normally comprises an array of pixels, each with 

a memory circuit and an aluminium pad that doubles as an electrode and a mirror. 

Peripheral circuitry, such as shift registers and/or decoders, is usually included 

to address the array. The transparent front electrode is common to all pixels so 

the voltage applied across the FLC at each pixel is the difference between the 

front electrode voltage and that applied to the pixel electrode mirror. The device 

works in a reflective rather than transmissive mode but the principle of selectively 

rotating the polarisation of the read-beam is exactly the same (see Section 5.4). 

TO TRANSPARENT 
FRONT ELEC'IRODE 

COVER GLASS 

/ SPACER 

ALIGNMENT 
LAYER 

VLSI SILICON BACKPLANE 

CHIP CARRIER 

Figure 2-5: Cross-section of a FLCOS SLM. 

The remainder of this chapter reviews the various pixel designs that have been 

used in FLCOS SLM backplanes. These range from simple single transistor pixels 

i 
i 

to so-called 'smart pixels' that incorporate optical input with some primitive local 
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processing. I will discuss the single transistor pixel in some detail because the 

SBS256 device described in Chapters 4 and 5 was developed to overcome the 

short-comings inherent in the single transistor design. 

2.4.1 DRAM-type devices 

The main thrust of research into FLCOS SLMs has focused on new device designs 

with increased bandwidth. As with active-matrix displays, most designs utilise 

a pixel circuit based on the one-transistor cell of the dynamic random access 

memory (DRAM) to achieve a high pixel density (see Table 2-1). 

One-transistor pixel 

The basic structure of the one-transistor pixel is shown in Fig. 2-6. The capacitor 

CFLC represents the capacitance of the overlying FLC layer, while CMIRROR is 

the storage capacitance associated with the electrode mirror. The transistor acts 

as a voltage controlled switch, that isolates the capacitors when open (ENABLE 

low), and permits the capacitors to charge to the DATA line potential when closed 

(ENABLE high). 

The simplicity of the single transistor design offers small pixel size and thus 

high pixel density. However, it also has some important limitations: 

Can only provide a limited amount of charge to switch the overlying FLC. 

Suffers from photo-induced charge leakage. 

Limited FLC charge balancing capability - requires a pattern/inverse-pattern 

drive scheme. 

These will now be considered in turn. 

To achieve short frame scan times, it is usual for the row address time (the 

time when each ENABLE is high) to be shorter than the FLC response time. 
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Array Backplane Pixel Area (in pm2) Frame Ref. 

Size Technology (Pitch in pm) Rate (kHz) (Year) 

240 x 240* 

176 x 176 

12 x 12 

128 x 128 

256 x 256 

256 x 256 

256 x 256 

512 x 512 

CMOS 

3 pm p-well 

CMOS 

CMOS 

2 pm n-well 

CMOS 

2 pm p-well 

CMOS 

1.2 pm p-well 

CMOS 

1.2 pm n-well 

CMOS 

3.0 pm p-well 

CMOS. 

145 x 200 

(165 x 220) 

22 x 14.5 

(30) 

(110) 

(30) 

(20) 

(30) 

70 x 100 

22 x 22 

17 x 17 

28.4 x 28.4 

17 x 17 

(21.6) 

22 x 14.5 

(30) 

0.06 

1 

... 

5** 

4** 

4** 

8.3** 

0.4 

[114] (1982) 

[106] (1991) 

[51(1992) 

[49] (1993) 

136,351 (1993) 

[36,35] (1993) 

166,671 (1993) 

[ l O ]  (1994) 

* This device has a nematic LC modulator layer. 

** These frame rates do not include charge balancing (divide by two). 

Table 2-1: Examples from the literature of the development of one-transistor 

DRAM-t ype devices. 
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ENABLE T 
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T I 
1 %IRRoR 

Dk i A  

Figure 2-6: Schematic of the one-transistor DRAM-type pixel. It comprises a 

FET pass transistor addressed by ENABLE and DATA buslines, a charge storage 

capacitor, and an electrode mirror. FE denotes the transparent front electrode. 

Therefore the pixel capacitors are charged and then left electrically isolated until 

they are readdressed in the next frame. The movement of the ferroelectric dipoles 

while switching the FLC results in a voltage drop AV across the FLC layer given 

2PsA 
A V =  

where A is the pixel area, and C is the effective capacitance of the pixel. From 

Equation 2.2, shorter switching times can be achieved with higher Ps FLC ma- 

terials but A V  would be also be larger (assuming A and C were not changed). If 

AV approaches the voltage impressed by the DATA signal, only partial switching 

will occur. Each row of the array would then have to be addressed for a time 

approaching T so that more charge could flow onto the pixel as the FLC switches; 

the frame scan time would therefore be drastically increased. This may limit the 

FLCs used on one-transistor DRAM devices to those that possess a Ps of less 

than a few tens of nC/cm2 [15]. 

Photo-induced charge leakage is a problem inherent with DRAM-type pixels [35]. 

Once the pixel capacitor has been charged and isolated, the charge can leak away 



Chapter 2. Spatial light modulators - an overview 26 

through the transistor channel resistance R ~ F F  (10I2 R), the liquid crystal res- 

istance RFLC (1O1'*' R ), an d the drain-substrate reverse-biased junction (DDB) 

of the pass transistor (see Fig. 2-7). When light falls onto the backplane sub- 

ELECTRODE 
MlRROR 

DSB p 4 DDB T cMmRoR 

Figure 2-7: Equivalent circuit of the one transistor DRAM-type pixel. 

strate, the most significant leakage path is through DDB. Light falling onto the 

substrate generates electron-hole pairs as it is absorbed near the surface. For 

a p-type substrate, the additional holes do not really affect the total majority 

hole population, however, the minority electron population is greatly increased. 

The electrons can exist in the substrate for 10-100 ps, where they can travel 

for 100's of microns before they recombine with a hole. If some pass close to 

the reverse-biased diode they may be swept across its built-in electric field and so 

discharge the pixel capacitor. The photo-induced minority carrier population and 

thus the discharge rate is proportional to the light intensity. Handschy e t  aZ[35] 

measured a 50% erasure time of 100 ms with a light intensity of 10 mW/cm2 for 

their second-generation 256 x 256 pixel device. To reduce the effects of charge 

leakage, the following steps can be taken: 

Make the pixel storage capacitor as large as possible. 

Shield as much of the substrate as possible from incident light. 
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0 Refresh the pixel array at high frame rates. 

0 Use a low intensity read-beam. 

0 Pulse the read-beam on a low duty cycle. 

It should be noted that if the FLC in FLCOS devices could be aligned into the 

fully bistable bookstack geometry, then charge leakage would only be significant 

if the capacitor discharged before the FLC had switched. However, the bookstack 

geometry is usually attained by treating the FLC layer with a high electric field 

(20-30 V/pm) - at the time of writing, this treatment has not been reported 

for a DRAM FLCOS device, probably because researchers do not want to risk 

damaging one of their limited supply of working devices. 

The usual method of charge balancing the FLC layer on a one-transistor 

DRAM device, requires that after a pattern has been scanned onto the array 

and viewed, the inverse of the pattern must then be scanned on and held for the 

same duration. The pattern on the SLM is therefore discontinuous - it can only 

be interrogated for 50% of the time. Again, if the FLC layer had the bistable 

bookstack structure, the array would only need to be addressed when the pattern 

was to be altered, so a suitable drive scheme could be developed where the valid 

duty cycle was almost 100% (at the expense of frame rate). 

Three-transistor pixel 

The three-transistor DRAM pixel design shown in Fig. 2-8, permits continuous 

interrogation of the overlying FLC layer whilst ensuring it is fully charge balanced. 

The drive scheme for this type of pixel requires the following: 

0 The FLC layer must be fully bistable. 

The DATA line can be set to 0, V&/2,and Voo voltage levels. 

The front electrode must be held at V’&/2. 
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HOLD 

(0, VDDI2, VDD) VDD 
2 
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Figure 2-8: Schematic of the three-transistor DRAM-type pixel capable of 

providing almost continuously valid patterns. The two power rails, VDD and 

GND, which are required for substrate and well taps, are not shown. 

Under normal conditions the pass transistor M3 is on so the electrode mirror is 

also held at voD/2; as there is no voltage across the FLC layer, it remains in 

the state it was last driven to. Now assume the FLC is in its off state. It is 

switched to its on state by turning off the pass transistor, applying 0 V to the 

DATA line, and turning on the transmission gate M1 and M2. This results in a 

positive voltage (with respect to the mirror electrode) of vDo/2 across the FLC 

layer. After the FLC has switched, the transmission gate is turned off and the 

pass transistor is turned on again. To switch the FLC off again, the sequence is 

repeated with the DATA line set to VoD, to generate a negative voltage across 

the FLC layer. 

AS row addressing is normally used to address pixel arrays, the DATA lines can 

be set to a third voltage level, vDD/2 to permit individual pixels to be changed 

by setting the appropriate DATA line to 0 or VDD while setting all the others 

to VDD/~. A 64 x 64 device using this type of pixel has been designed by Mike 

Snook in the Applied Optics Group at the University of Edinburgh [94]. It is 
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currently being fabricated using a high voltage (35 V) CMOS process that will 

permit both microsecond FLC switching times and high field treatment of the 

FLC layer to ensure bistability. It will be used in an efficient optical cross-bar 

routing network [?2] (see Section 3.2.1). 

Four-t ransistor pixel 

The four-transistor DRAM pixel implemented by Jared et  al [46] is illustrated 

in Fig. 2-9. The inverter decouples the storage capacitor from the the pixel 

electrode mirror, and thus overcomes the Ps limitation of the single transistor 

design. However, the pixel still stores the state dynamically, and so suffers from 

light-induced charge leakage. 

ENABLE 

VDD 

GND 

ENABLE - I 
DATA 

Figure 2-9: Schematic of the four-transistor DRAM-type pixel implemented by 

Jared e t  al [46]. 

2.4.2 SRAM-type devices 

The one-transistor DRAM-type pixel offers high density at the expense of lim- 

ited storage and liquid crystal drive capability. For a given process, a typical 
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one-transistor DRAM-type pixel has a pitch 10-20 times the length of the min- 

imum size transistor, whereas a SRAM-type pixel may be 30-40 times the min- 

imum transistor length. The SRAM-XNOR pixel was originally designed by I. 

Underwood [103] to provide a stable drive waveform for nematic liquid crys- 

tal modulator materials. Here stable implies there is no charge leakage voltage 

‘droop’) a problem associated with the one-transistor DRAM pixel. My prelimin- 

ary investigations [105] with the Mk I1 16 x 16 test-bed device showed that the 

SRAM-XNOR pixel could also be used to drive FLC modulators (see Fig. 2-10). 

Figure 2-10: Test pattern on the 16 x 16 SRAM-XNOR device from my pre- 

liminary investigations into using FLC modulators. 

Although requiring more area, the SRAM-XNOR pixel shown in Fig. 2-11, 

has significant performance advantages over the DRAM-type. These include: 

Robust data storage under high read-beam intensities. By storing the data 

value in a static latch, the pixel does not have to be continually refreshed 

because of the latch’s internal positive feedback loop. 
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0 Easy FLC charge balancing to prevent chemical degradation. The inclusion 

of the XNOR gates permits the FLC layer to be charge balanced simply by 

toggling the global clock signal CK on a 50% duty cycle. 

0 Synchronous FLC switching across the whole array (Section 4.6 describes a 

suitable drive scheme.) 

0 The ability to switch high spontaneous polarisation FLC mixtures. As in 

the case of the inverter in the four-transistor DRAM pixel, the XNOR gate 

also continually drives the electrode mirror via the power rails, resulting 

in an effectively unlimited amount of charge being available to switch the 

FLC. This can permit high Ps materials to be used. 

0 An important side effect of the robust data storage and the continuous drive 

capability of the XNOR gate is that although the bistable SSFLC bookshelf 

geometry is desirable (for its high contrast), it is not required. 

DATA 

DATA 

SRAM LATCH 
‘T 

vFLC 
I 

MIRROR Y 

ENABLE CK 

Figure 2-11: Schematic of the SRAM-XNOR pixel used in the 16 x 16 

device [ 1031. 

Table 2-2 shows examples from the literature of the development of SRAM- 

type devices. McKnight [65] developed a 50 x 50 device, using nMOS technology, 

to drive a nematic liquid crystal working in the hybrid field effect mode. The 

64 x 64 device by Jared et  a2 [46] uses an inverter rather than an XNOR/XOR 
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~~~~ ~ ~ ~~~~~ - 

Array Backplane Pixel Liquid Frame Ref. 

Size Technology Circuit Crystal Rate (Year) 

16 x 16 6 pm nMOS SRAM-XNOR GHLC 5 Hz [103] (1987) 

50 x 50 1.5 pm nMOS SRAM-XNOR HFE E7 60 HZ [65] (1989) 

64 x 64 3 pm CMOS n-well SRAM-Inv. ZLI-4003 4.5 kHz [46] (1991) 

128 x 128a 1.5 pm nMOS SRAM-XNOR . . . ... [65] (1989) 

256 x 256 1.2 pm CMOS n-well SRAM-XOR SCE13 2 kHz [10] (1994) 

aProbe testing revealed a fatal design flaw on the backplane. 

%hapters 4 and 5 describe the development of this device in detail. 

Table 2-2: Examples from the literature of the development of SRAM-type 

devices. 

function so charge balancing must be accomplished using a pattern/inverse pat- 

tern drive scheme. A derivative of the SRAM-XNOR pixel has been used in the 

256 x 256 pixel FLCOS SLM (the SBS256 device), and is described in detail in 

Chapters 4 and 5. 

2.4.3 Smart pixel devices 

As SLM technology has progressed, designers have tended to either develop higher 

resolution arrays or incorporate more functionality at each pixel. So-called ‘smart 

pixels’ with photodetectors for optical input, can perform primitive thresholding 

and processing operations on incoming signals. Many smart pixel devices have 

been developed (see the review paper by Johnson et al[49]) - here I consider just 

two smart pixel designs to illustrate the level of functionality available in current 

devices. 

can only assume if anyone designs a pixel incorporating something like a 4-bit 

microcontroller, it will be referred to as a ‘Mensa’ pixel! 
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Isophote pixel 

The SASLMIII isophote chip designed by Snook et al [95] performs a variable 

threshold window edge enhancement function on an input image. It has a 64 x 64 

pixel array, where each pixel determines whether it lies on an edge of the input 

image by computing the following nearest neighbour logic function: 

where A - I correspond to the pixel positions illustrated in Fig. 2-12, and @ is 

the XOR function. The pixel’s own state E is included to ensure that only one 

line is activated along an input image edge. Each pixel contains 92 transistors, 

making it one of the most complex designs yet implemented in a large pixel array. 

The device must be operated using non-overlapping, and pulsed input and read 

beams. Its frame rate is limited only by the FLC switching time, and the usual 

charge balancing requirements. 

Figure 2-12: Nearest neighbour designations for the Isophote pixel. 

Winner-take-all pixel 

As its name implies, the winner-take-all (WTA) device [55] finds the maximumof 

a series of (analogue) values. An optical WTA device that can find the largest of 

an array of optical intensities would be useful for applications such as correlation 

peak detection, and certain optoelectronic neural network architectures that use 

competitive learning algorithms. 

SASLM - Smart and Advanced Spatial Light Modulators LINK programme. 6 



Chapter 2. Spatial light modulators - an overview 34 

Slagle and Wagner [93] have built a number of WTA devices including a 

32 x 32 array [93] and a 9 x 64 array broken into 31 competitive patches [ U O ] .  In 

each unit of the competitive patch device (see Fig. 2-13), a phototransistor detects 

the incoming light and converts it to a current. This is copied by the current 

mirror and fed into the two transistor competitive circuit [55]. The unit that 

generates the most photocurrent wins the WTA competition to supply current to 

the global inhibition bus. The inhibition bus effectively turns off the supply from 

all the other units. The current flowing in the winning unit is mirrored onto the 

electrode mirror to turn the overlying FLC to its on state. 

Y Y Y 

Figure 2-13: Schematic of the winner take all (WTA) pixel implemented by 

Wagner and Slagle [llo]. The winning unit supplies current to the global inhib- 

ition bus and increases K N H I B I T ,  which, by positive feedback, ensures that no 

other unit supplies current to the bus. 

As an alternative to generating an optical output, Turner and Johnson [102] 

have developed an electronic output WTA array to sequentially locate peaks at 

the output plane of an optical correlator. The winning pixel on the 12 x 12 

array reports its position by a combination of digital (course) and analogue (fine) 

signals, and is then disabled so that the next peak can be found. Once all the 

peaks have been reported, a global reset prepares the array for the next correlation 

frame. 
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~ ~ ~~ 

Technology Array Pixel Frame Rate Contrast Operating Reference 

Size Pitch (Analogue/ Ratio Voltage 

(CLm) Binary) (VI 

Liquid crystal devices 

AMLCD 1024 x 1440 50  50  Hz (A) 200: l  

FLCD 3 2 0  x 3 2 0  80 200 Hz (B) 50:l  

FLCOS-DRAM 256  x 256  2 0  2 lcHz (B) 29 : l  

FLCOS-SRAM 256 x 256 40 2 kHz (B) 8:l 

FLCOS-Smart 6 4  x 64* 160 2 lcHz (B) 8:l 

Self electrooptic effect devices 

S-SEED 256  x 128  ... . . . (B) 2 : l  

Si-SEED 1 6  x 16*  120  7 0 M H z  (B) 2: l  

FET-SEED 6 x 6  80 2 GHz (B) 2 : l  

Others 

DMD 768 x 576  17 1.5kHz (B) 50:l  

Si-PLZT 8 x 8' 250  10 MHz (A) >20:1 

15  

60 

5 

5 

5 

10 

10 

1 0  

5 

> 20 

* Devices currently being fabricated - expected performance values are given. 

Table 2-3: Typical characteristics of the various SLM technologies described in 

this chapter. 

WTA implementations tend to suffer from the device parameter variations 

inherent in all CMOS fabrication technologies which can result in certain units 

being more likely to win the competition. Another problem is that the circuit 

will still attempt to generate a winner even when there is no input signals. 

2.5 Summary 

This chapter has given an overview of some SLM technologies, including digital 

micromirror devices (DMDs), Si-PLZT devices, SEEDS, LCDs, and ferroelectric 

liquid crystal over silicon (FLCOS) SLM devices. Table 2-3 provides a brief 

summary of the typical characteristics of each of the technologies. 
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Texas Instrument’s proprietary DMD technology is very promising, with much 

of their effort being directed at trying to make it a viable technology for high- 

definition projection display systems. Both Si-PLZT and SEED technologies offer 

very fast switching times, and are suitable for smart pixel and optical computing 

architectures. However, they will probably be limited to systems with 10’s to 100’s 

of channels because of, (1) power dissipation, and (2) significant area requirements 

of high frequency drive transistors. FLCOS SLMs are attractive because of their 

small size, low power, high frame rates, versatility, and because they are based 

on two well established technologies, namely integrated circuit technology and 

liquid crystal displays (LCDs). In the next chapter, I review some applications 

for which FLCOS SLMs are particularly well suited. 



Chapter 3 

FLCOS SLM applications 

I begin this chapter with a brief discussion of why FLCOS SLMs are attractive 

components for optoelectronic systems, and then I review some applications that 

have already benefited, or could benefit, from the use of FLCOS SLMs. Some of 

these only require binary (phase or amplitude) modulation, but for others, grey- 

scale modulation can greatly enhance their capabilities, so some methods for 

generating grey-scale are also considered. The remainder of the chapter focuses 

on the emerging field of artificial neural networks and the suitability of FLCOS 

SLMs for their optoelectronic implementation. 

3.1 Why use FLCOS SLMs ? 

The technology of FLCOS SLMs has advanced rapidly in the past decade or so. 

Nevertheless, researchers in the field have tended to concentrate their efforts on 

designing, fabricating, and characterising new devices with higher pixel count 

and performance rather than actually using them. As FLCOS SLMs become 

available to other researchers ‘off-the-shelf’, the balance of effort should shift 

Over to applications-led research. 

The main strengths of FLCOS SLMs (see Table 3-1) can be attributed to 

combining two well-matched and rapidly advancing technologies - CMOS VLSI 

37 
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I Backplane characteristics I Optical characteristics I 
Mature, advancing technology 

Versatile functionality 

Fast addressing 

Low power 

Low cost in bulk quantities 

Post-processing available 

Small - compact, cheap optical systems 

Illumination - coherent or incoherent 

Fast switching times and frame rates 

High contrast 

Grey scale - temporal/spatial multiplexing 

Table 3-1: Strengths of FLCOS SLM technology. 

electronics and the FLC modulating materials being developed for the flat-panel 

display industry. The low voltage requirements and fast switching times of FLC 

materials combine well with CMOS VLSI technology which offers versatile func- 

tionality with high density integration, low power dissipation, and potentially low 

cost for volume production. The resolution, frame rate, and performance of FL- 

COS SLMs are likely to improve purely as a consequence of advances made in the 

component technologies, but also because of progress in SLM-specific research, 

such as more efficient circuit and layout design, post-processing, and device as- 

sembly. For example, by adding of an extra layer of metal after post-processing 

planarisation procedures [79], the optical quality and fill-factor of a device can 

be significantly improved. This can also lead to a reduction in the area set aside 

for the mirror electrodes in each pixel, and so reduces the pixel size, which in 

turn, can decrease the device size or allow more pixels to be incorporated onto a 

device. 

3.2 Binary mode applications 

Most electrically-addressed FLCOS SLMs work in a binary mode; the Si back- 

planes are usudly composed of digital (binary) circuits, and the FLC layers are 

normally configured in the binary SSFLC geometry. This binary mode operation 

makes them suitable for many applications. 
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3,2,1 Interconnect/crossbar switching 

Some optical systems require reconfigurable optical-space switches to connect two 

arrays of optoelectronic devices. 

Vector-matrix crossbar switch 

A commonly used optical-space switch architecture is the vector-matrix multiplier 

crossbar originally developed by Goodman et al in 1978 [29] (see Fig. 3-1). A 

number of systems using this architecture have been described [17,50]. However, 

the cylindrical lenses required for fan-out and fan-in tend to smear the light non- 

uniformly which limits potential scalability. 

INTERCONNECT 
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Figure 3-1: The vector-matrix multiplier crossbar switch architecture. Each 

optical input channel is imaged onto a column of the SLM and the transmitted 

light from a row is focused onto an output channel. 

Matrix-matrix crossbar switch 

The scalability of the crossbar switch can be greatly improved by redesigning it as 

a two-dimensional matrix-matrix crossbar (MMC) [52,53]. The input and output 

vectors must be rearranged into two-dimensional arrays. The two 0 x 0 
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matrices are interconnected through an N2 interconnection matrix. The N2 mat- 

rix is partitioned into sub-matrices so that there is one sulj-matrix for each output 

channel. A copy of the input matrix is multiplied by each sub-matrix and then 

summed into the appropriate output channel. 
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Figure 3-2: The matrix-matrix crossbar (MMC) architecture. The input matrix 

is replicated using holographic fan-out optics. Each copy is multiplied by an 

interconnection sub-matrix on the SLM, and then focused onto output channel 

matrix. 

FLCOS SLMs are particularly well suited for implementing crossbar switches 

because when in the ‘on’ state, pixels simply act as passive reflectors. Once an 

optical path has been configured between an input and output channel, the sig- 

nal bandwidth is only limited by the modulating frequency of the input source. 

The “Optically Connected Parallel Machines” [72] LINK project plans to build 

a 64 channel MMC using a FLCOS SLM. It is intended to operate at up to 

640 Mbits/sec per channel. The SLM backplane will utilise the three tran- 

sistor pixel design described in Section 2.4.1 to permit fast reconfiguration times 

(TFLC 5 10 ps) and pixels to be switched on or off individually to open or close 

a particular path to an output channel. 
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Holographic crossbar switch 

For both VMM and MMC architectures, each of the input channels are each split 

N ways, creating a loss that increases dramatically as the number of channels 

increases. The binary phase-only holographic cross-bar switch [75] offers an al- 

ternative method for signal routing that does not have the fan-out loss problem. 

In the binary phase-only holographic cross-bar switch, almost all the available 

input light from an input channel is directed only to the desired output channel 

(or channels) by displaying the appropriate routing hologram on the SLM. 

O’Brien e t  aZ[75] implemented a 2 x 2 crossbar with single-mode optical fibre 

inputs and outputs using a transmissive THORN EM1 128 x 128 pixel FLC SLM 

[8] operating in a binary-phase mode. Transferring this technique to FLCOS 

SLM technology would permit faster reconfiguration times and smaller, cheaper 

optical systems to be implemented. The rather limited space bandwidth product 

of presently available FLCOS SLMs can effectively be increased by combining 

them with fixed holographic elements and optically addressed SLMs, to permit 

large fan-out systems [76] .  The main limitation of the holographic crossbar switch 

is the computational overhead involved in calculating the required holographic 

pattern for each interconnection. 

3.2.2 Coherent optical processing 

Coherent optical processing systems exploit the Fourier transforming properties 

of simple lenses [33]. When an object is illuminated with collimated, coherent 

illumination, and imaged through a lens, the 2-dimensional Fourier transform of 

the object is formed at the back focal plane of the lens. 

Spatial filtering 

Just as the Fourier transform of a time-domain electrical signal contains its fre- 

quency spectrum, the two-dimensional Fourier transform of an image contains 
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its spatial frequency spectrum. The Fourier transform can be manipulated to 

perform image processing functions such as image enhancement and pattern re- 

cognition [61]. Fig. 3-3 illustrates the classical 6-f coherent optical processor. 

Three planes are of interest - the input plane, the Fourier plane, and the output 

plane. The transform lens forms the Fourier transform of the input image on its 

back focal plane - the Fourier plane. By including an appropriate filter at the 

Fourier plane, certain spatial frequencies can be passed or blocked. For example, 

edge enhancement can be performed by including a filter to block the low spatial 

frequencies. The retransforming lens then forms the filtered version of the input 

image at its back focal plane. 

A photographic transparency can be used as the Fourier plane filter, but 

this requires mechanical removal and replacement if a different filter function i s  

needed. Obviously, if an SLM is used, adaptive spatial filtering can be performed. 

Underwood [103] and McKnight [65] have successfully used the 16 x 16 and 

50 x 50 LCOS SLMs respectively, as adaptive spatial filters. 
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FILTER PLANE PLANE PLANE 

E O  
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Figure 3-3: The 6-f coherent optical processor. The transform lens forms 

the Fourier transform of the input image on its back focal plane - the Fourier 

plane. Certain spatial frequencies can be passed or blocked by including an 

appropriate filter at the Fourier plane. The filtered version of the input image is 

then reconstructed by the retransforming lens. 
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Correlation 

A great deal of research has been done in the area of optical correlation for im- 

age recognition and classification. Several correlator architectures have been de- 

veloped. Turner et al [ 1011 implemented the classical VanderLugt correlator [60] 

by using two 64 x 64 FLCOS SLMs [46]. The input plane SLM operates in a 

binary amplitude mode, while the Fourier plane filter SLM operates in a bin- 

ary phase-only mode. The input images are Fourier transformed by a lens, and 

the Fourier filters are computer generated. They identified warpage of the Si 

backplanes, introduced in the fabrication processes, as a major performance- 

limiting parameter of their system. McKnight et a2 [68] used their higher resolu- 

tion 256 x 256 DRAM-type devices in a correlator capable of working at 1 kHz. 

In the joint transform correlator (JTC) architecture, both the input and ref- 

erence images are Fourier transformed simultaneously, and interference between 

the transforms is achieved in one step. Both the input and reference images can 

be displayed on the same SLM, thus simplifying optical system alignment at the 

expense of resolution. The SBS256 SLM described in Chapter 4 is particularly 

suitable for this type of correlator. Its static memory pixels do not require con- 

tinual refreshing so the input image can be scanned onto one half of the pixel 

array, and then a sequence of reference images can be scanned into the other 

half. Using this drive scheme effectively increases the SBS256 frame rate because 

only half the array has to be addressed while the reference images are being 

cycled through. The JTC performance can be improved by including a nonlinear 

thresholding function at the Fourier plane. The non-linear JTC can exhibit higher 

correlation peaks and better discrimination [47]. It can be efficiently realised by 

adding a sharp-thresholding optically addressed FLC SLM at the Fourier plane. 

SLM pixellation effects 

When a pixellated SLM is used in a coherent optical system, replicated images 

occur in the output due to the regular structure of the SLM. These replicas arise 
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through convolution with distinct spectral orders in the SLM’s Fourier spectrum 

and in the case of a correlator can lead to false correlation signals. The effects 

of replication can be significantly reduced by randomising the pixel positions on 

the SLM [39]. For FLCOS SLMs, this could be incorporated into the layout of 

the pixel array during the design phase, but would create many problems for the 

designer, including signal routing through the array, and placement of the pixels. 

A more realistic solution would involve post-processing the backplane wafers to 

add an extra layer of randomised electrode mirrors over the existing regular array 

of pixels. 

The pixel flat fill factor can seriously affect the optical throughput of a cor- 

relator system. The power in the zeroth-order replica of the transformed output 

of the SLM is proportional to the flat fill factor squared. Cascading two devices 

in a correlator results in the output power at the detector being proportional to 

the flat-fill factor to the fourth power. For an unplanarised SBS256 device the 

flat fill factor is 23%, so the throughput would be less than 0.3%, while for a 

planarised SBS256 (see Section 5.3) with a 84% flat fill factor, the throughput is 

almost 50%. 

3.2.3 Optical computing and distributed processing 

For optical computing systems with up to a few thousand channels, SEED-type 

devices appear to be the most attractive because of their potential to work above 

100 MHz (see Ref. [83] for a selection of several SEED-type devices and systems 

designed for optical computing). FLCOS SLMs are probably too slow to be 

competitive with these, however, they may be suitable for systems that do not 

need to operate as fast but do require 104-105 channels. 
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3.3 Grey-scale generation 

Nematic liquid crystals have been widely used in flat panel displays because of 

their grey-scale capability [80,114]. Used in combination with active-matrix ad- 

dressing, a reasonable number of grey levels (4-16) can be generated in real-time. 

Electroclinic and distorted helix effect FLCs can also exhibit analogue response 

and have much faster switching times than nematics. However, research into elec- 

troclinics is at a very early stage; mixtures currently being investigated require 

high fields and very accurate control of the the operating temperature (< 0.025 "C 

for 100 grey levels) [16]. It would therefore be very difficult to incorporate elec- 

troclinics with Si backplanes, unless care is taken to ensure that switching in the 

electronic circuitry did not cause any local temperature variations. 

McKnight e t  a2 [68] have recently reported on an analogue 128 x 128 DRAM- 

type LCOS SLM that uses a distorted helix effect FLC. However, as this FLC 

geometry is not bistable, the DRAM charge leakage problem significantly de- 

grades the uniformity across the array when the frame scan time is comparable 

to the discharge time of the pixel storage capacitors. 

Although the SSFLC geometry is generally binary ', several techniques can 

be used to generate grey-scale in SSFLC devices 1381, including charge-metering, 

spatial multiplexing, and temporal multiplexing. These will now be considered. 

3,3,1 Analogue charge metering techniques 

Certain cell configurations [37,51] can be used to generate grey-scale on SSFLC 

devices using charge metering drive techniques. By using a well controlled rub- 

bing process on one of the cell's alignment layers, the SSFLC can be broken down 

'I will not consider the possibilities of multi-state switching: see Ref. [14] for more 

information. 
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into a multidomain structure with a fairly homogeneous domain size. To switch 

the whole surface AMAX of a cell from one bistable state to the other, a charge 

QMAX = ~ P S A M A X  must be applied, where Ps is the FLC spontaneous polar- 

isation. Applying a charge Q < Q M A X  will consequently only switch an area 

A < AMAX,  leading to the formation of a mixture of black and white domains. 

The spatial distribution of these domains is determined by the more or less ran- 

dom distribution of defects in the FLC layer which act as nucleation sites for the 

domains. 

The optical transmission of the cell can be varied between 0 and 100% by ad- 

justing the amplitude or duration of the charge-dumping switching pulse. Either 

voltage or current mode switching pulses can be used. The voltage pulse tech- 

nique has been used successfully by Hartmann [38] in a 96 x 108 active-matrix- 

addressed transmissive SSFLC device, while Killinger et aZ[51] have investigated 

the current mode approach in test cells. They found that a sequence of cur- 

rent pulses can provide a more linear grey-scale response than the voltage mode 

approach. To ensure grey level reproducibility, it is essential to incorporate a 

blanking step into the electronic addressing scheme, before the writing step is 

performed. 

Domain sizes can be made as small as 2 pm, so there is the potential to 

generate large numbers of grey levels on relatively small pixels. If charge metering 

circuitry was included on a one-transistor DRAM-type FLCOS SLM, hundreds 

of grey levels could be generated on each pixel (for a typical 30 x 30 pm2 pixel). 

Of course, it should be noted that the FLC must be truly bistable to overcome 

the DRAM charge leakage effects. 

3.3.2 Multiplexing techniques 

Multiplexing techniques are often denoted by the name dither and can be spatial 

or temporal in character, or a combination of both. 
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Spatial multiplexing 
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With spatial multiplexing the pixel is subdivided into parts or subpixels. Using 

an SLM where every pixel is the same size, a group of 16 pixels would be required 

to generate a ‘super’ pixel with 17 grey levels. This has the disadvantage of loss 

of effective resolution and redundancy; there are many different ways of achieving 

each grey level. A more efficient method would involve binary weighted pixels. 

To achieve 16 linear grey scales, the subpixels could be binary weighted as in 

Fig. 3-4. With this technique, the number of greys obtained is 2’, where S is the 

number of subpixels. 

Figure 3-4: Binary weighted subpixel division to generate 16 grey levels. The 

number of greys obtained is 2’, where S is the number of subpixels. 

Temporal multiplexing 

Temporal multiplexing (TM) involves splitting each grey-scale image into a num- 

ber of time-sequential subframes. Each subframe has an associated bit-plane 

generated by an appropriate encoding algorithm. These bit-planes are then se- 

quentially scanned into the SLM so that by integrating at the detector plane over 

a number of subframes, the desired grey-scale image is produced. In the case of 

display applications, the integration is carried out by the human eye. 

Fig. 3-5 shows how a 4-grey level image is built up using a simple linear 

encoding algorithm to create the bit-planes. I used this technique to generate 

grey-scale on the 16 x 16 device [105]. For the six grey levels shown in Fig. 3- 

6(a), five subframes were required. Each subframe lasts 500 ps, resulting in a 
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Figure 3-5: Linear encoding algorithm to generate four grey levels. 

frame rate of just above 133 Hz. The linearity is satisfactory (see Fig. 3-6(b)), 

however, notice the variation across each pixel; this is caused partly by ‘hillocks’2 

on the aluminium pads, and partly by defects in the FLC layer. 

The linear encoding algorithm is satisfactory for generating a small number 

of grey levels, however, each extra grey level requires an extra subframe: the 

frame rate is inversely proportional to the number of grey levels. A more efficient 

binary weighted encoding algorithm using a pulsed light source is illustrated in 

Fig. 3-7. In this case, only one extra subframe is required to double the number 

of greys. For example, 256 grey levels can be generated at 125 Hz using eight 

binary encoded bit-planes, with 1 ms subframes. In Chapter 6, I describe how this 

technique can also be used if the detector system, rather than the light source, is 

pulsed in a binary weighted fashion. The pulsed light source technique could also 

be extended to colour rendition by using three coloured (red, green, and blue) 

light emitting diodes (LEDs) as the light sources. These multiplexing techniques 

permit FLCOS SLMs to be used in helmet mounted display systems for virtual 

reality, night vision, and other military applications [113]. 

2Stress-relief ‘hillocks’ form when the metal layer is sintered during the MOS fab- 

rication sequence. 
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Figure 3-6: (a) Six linearly encoded temporal multiplexed grey levels on the 

16 x 16 device, and (b) corresponding microdensitometer trace through a section 

of the bottom row of pixels. 
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Figure 3-7: Binary encoded bit-planes to generate eight grey levels. 

- 

3.4 Artificial neural networks 

- 

In recent years artificial neural networks (ANNs) have emerged as powerful tools 

capable of solving many pattern recognition, classification, and prediction prob- 

lems. ANNs are highly parallel arrangements of many simple processing elements, 

or neurons, connected together. Every connection between neurons has an adapt- 

ive coefficient, or weight, assigned to it, which determines the connection strength 

between them. A positive weight can help excite a neuron, while a negative one 

can help to inhibit it. 

Many different neural network architectures and models have been developed 

and are well documented elsewhere (see Refs. [40,88] for a thorough study of 

neural algorithms and architectures, or Lippmann’s two papers [57,58] for a more 

condensed review). I will briefly consider the multi-layer perceptron [SS] because 

it illustrates the basic concepts of many neural architectures and also because it 

is probably the most widely studied. 

3.4.1 The multi-layer perceptron 

The multi-layer perceptron (MLP) consists of two or more layers of neurons where 

each neuron in a layer is connected to all the neurons in the next layer, but not 



Chapter 3. FLCOS SLM applications 51 

connected to any in its own layer, as shown in Fig. 3-8. The input layer distributes 

the input pattern, through appropriate weights, to the hidden layer. 

The neurons in the hidden layer perform a nonlinear transfer function on the 

sum of their weighted input signals. This can be represented mathematically by 

a vector-matrix product and a nonlinear operator f {}: 

where Jj represent a neuron in the hidden layer, the vector I represents the states 

of the m input neurons, and W is the interconnection weight matrix between the 

two layers. Similarly the output neurons can be described by: 

An error back-propagation algorithm [86] is useh to adjust tde interconnection 

weights between the neurons. Briefly, an input pattern is presented to the net- 

work and it generates an output pattern dependent on the network’s connection 

weights. If the output pattern does not correspond to a specified target pattern, 

then the weights are adjusted by back-propagating the errors so that the next 

time the input pattern is presented, the output will be closer to the target. This 

is repeated until the output corresponds to the target. 

OUTPUTLAYER 

OUTPUT 

6 6 

Figure 3-8: The multi-layer perceptron. 
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3.4.2 Electronic implemenbations 

Much progress has been made in understanding the behaviour and limitations of 

many different architectures, largely through software simulations and theoretical 

analysis. However, efficient hardware implementations are crucially important in 

the long term if the full potential of neural networks is to be realised. 

While, most ANN software simulations can use single or double precision 

floating point representations for the weights and neuron states, most hardware 

designs, whether electronic or optoelectronic, are restricted to limited precision 

or even binary weight and state representations. For electronic implementations, 

designers must make a tradeoff between the mathematical precision required and 

the silicon area, which will in turn affect the chip size, cost, and attainable neuron 

density. For example, in a digital design the size of the multiplication hardware 

increases as the square of the word size of the multiplicands. In analogue imple- 

mentations, circuits can be made smaller but tend to suffer from noise, process 

variation, and limited precision. References [ 115,731 provide a description of many 

digital and analogue implementations, and consider their inherent advantages and 

disadvantages. 

The intrinsic vector-matrix multiplication function of a layer of neurons can 

be mapped onto the two-dimensions of a silicon chip. The one-dimensional input 

vector is fed via the edge of the chip, and each neuron is fanned-out by running a 

signal wire along the appropriate column of the two-dimensional interconnection 

matrix. If the output of each I;W& component is a current, as in analogue [42] 

and pulse-stream implementations [34], the summing function for each neuron Jj 

can be achieved simply by running a wire along each row of the array. 

3 -4.3 Opt oelect ronic implement at ions 

The two-dimensional architecture used in electronic implementations can be ex- 

tended to the optoelectronic domain. Stearns E961 has implemented a 49-36-10 

MLP with electronic inputs and a optically presented weight matrix using a two- 
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dimensional array of amorphous silicon (a-Si) photoconductors programmed by 

an AMLCD placed directly over the array. 

A number of researchers have implemented neural network architectures using 

the vector matrix multiplier (see Fig. 3-1) with optical input signals [6,22,81,117]. 

In practice, some alterations must be made to the system to permit representation 

of negative weights. A common method of implementing negative weight values 

is to spatially separate the weight matrix into two sections - one for the positive 

values, the other for the negative values. Farhat e t  ak [22] implemented a 32 

neuron Hopfield model [43] network that used an array of LEDs to represent 

the input vector, and two photographic transparencies to represent the positive 

and negative sections of the binary bipolar interconnection weight matrix. The 

signals generated by an array of photodetectors at the end of each arm of the 

system were then electronically combined and thresholded to give the neuron 

states which were then fed back to the input LEDs. As photographic masks were 

used, this system was obviously not adaptable in real-time. 

Zhang e t  aZ[117] built a 128-32 neuron, single layer perceptron (SLP) for char- 

acter recognition, using a polarisation-based optical system. A 1 x 128 trans- 

missive stripe FLC SLM is used for the input vector, obviating the need for a 

cylindrical fan-out lens, while a 128 x 128 FLC SLM is used for the weight matrix 

(see Fig. 3-9). Each weight comprises a strip of four pixels to permit five spa- 

tially multiplexed grey levels corresponding to weight values: -4, -2, 0 , +2, and 

+4. A polarising beam splitter separates the vertical and horizontal polarisation 

components (representing positive and negative weight components respectively ) , 
which are then fanned-in onto photodetectors using cylindrical lenses. Signals 

from appropriate pairs of photodetectors are electronically amplified, compared 

(subtracted), and thresholded to give an output signal for each of the 32 output 

neurons. A personal computer (PC) is used to control the system calculate the 

weight adjustments during the learning cycle. 

Zhang e t  al [118] also implemented a second-order neural network by re- 

arranging the system to pass the optical beam through the input SLM twice. 
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Figure 3-9: The pl 

Zhang e t  al [117]. 

larisation-based single layer perceptron implement 

This introduced quadratic product interconnections between the neurons which 

enhanced the classification ability of the network, by permitting translation and 

scale invariance with regard to the input vectors [26]. The weighting scheme was 

also changed to permit 17 grey scales by grouping the pixels on the weight SLM 

into 4 x 4 blocks. 

Oita e t  al [81] developed an MLP for character recognition using a two stage 

VMM architecture that included programmable binary mode LCDs for the two 

weight matrices. The system only represents binary unipolar weights so an input 

dependent t hresholding operation is required. 

Some optoelectronic ANN implementations incorporate a learning algorithm 

to adjust the weighted interconnections to the required values. Mao and John- 

son [62] have designed a 2 x 32 array of integrated neurons that compute the 

error and weight modification for a bipolar supervised Delta rule [64] architecture. 

Each neuron compares two optical input signals. The difference is thresholded 

and compared with a target value. If there is a difference between the threshol- 

ded and target value, one of a pair of modulator pads is turned on to increase or 
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decrease the corresponding weight on an optically-addressed SLM. Wagner and 

Slagle [110] have proposed a similar system to implement a self-aligning unsu- 

I 

pervised competitive learning architecture. They plan to use a dynamic volume 

hologram for the weighted interconnections, and their sparse-topology winner- 

take-all FLCOS SLM [93] as the neuron array. 

Many of the optoelectronic ANN implementations described above use the 

vector-matrix crossbar architecture. They also require two optical pathways to 

implement both positive and negative activations. The MMC architecture is more 

suitable for applications where the input is two-dimensional. Later in Chapter 6, 

I will present a scalable, single optical-path optoelectronic ANN system that uses 

the MMC architecture, and a 2’s complement variant of the pulsed temporal 

multiplexing scheme described in Section 3.3.2 

3.5 Summary 

In this chapter I have reviewed some app ications for which FLCOS SLMs are 

particularly suitable. They can be used in crossbar switching systems, as input 

and filter planes in correlation and Fourier processing systems, in display ap- 

plications, and as weight planes in optoelectronic ANNs. I also demonstrated 

temporally-multiplexed grey-scale on the 16 x 16 FLCOS SLM. 



Chapter 4 

The SBS256 - backplane design issues 

In this and the next chapter, I cover the successful development of the SBS256 - 

a FLCOS SLM that incorporates a static random access memory (SRAM) latch 

and an exclusive-OR (XOR) gate at each pixel. In this chapter I concentrate 

on backplane design issues such as process selection, pixel circuit functionality, 

backplane architecture, and power dissipation. 

4.1 Introduction 

Most of the medium-resolution FLCOS SLMs designed elsewhere have been based 

on the single transistor dynamic random access memory (DRAM) type pixel [35, 

66,1061. The DRAM-type pixel offers high density at the expense of limited 

liquid crystal drive capability. Preliminary investigations [105] with the Mk I1 

16 x 16 test-bed device illustrated the potential of the SRAM-type pixel. The 

pixel provides a stable drive waveform for the overlying FLC layer, permits easy 

charge balancing, and is robust under high read-beam intensities. The SRAM- 

type device is also easy to control with a simple interface, and can be used in a 

constant illumination optical system. However, the prototype device did have a 

low resolution: for many optical processing applications, higher resolution would 

obviously be desirable. 

56 
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To compete with DRAM-type devices that were being developed elsewhere, 

a 256 x 256 SRAM-type pixel array was considered both desirable and feasible. 

The electronic characteristics of the backplane determine many of the optical 

characteristics of the SLM. For example, the time it takes to address the pixel 

array is an important factor in determining the optical frame rate of the device. 

Similarly, the pixel layout affects the fill factor and thus the device’s optical 

efficiency. For a 256 x 256 array, the inherent parallel architecture of the sil- 

icon backplane imposed several constraints on the potential performance of the 

device. Decisions made throughout the design cycle resulted in many comprom- 

ises between the functionality, speed, power dissipation, reliability, and yield of 

the device. I will discuss these issues throughout this chapter. 

4.2 Process selection 

The prototype 16 x 16 and 50 x 50 SRAM-XNOR backplanes were implemented 

in n-channel metal oxide semiconductor (nMOS) technology. However, comple- 

mentary metal oxide semiconductor (CMOS) has since become the dominant 

technology offered by silicon foundries for general purpose IC applications. This 

dominance is primarily due to its low power dissipation. Low power dissipation 

permits extremely dense integration; some state-of-the-art microprocessors con- 

tain several million transistors [82] on a single chip. Compared with their bipolar 

and nMOS equivalents, digital CMOS circuits dissipate power only during switch- 

ing events, and not when they are in stable or non-switching states. For these 

reasons, I chose CMOS as the most appropriate technology for the backplane. 

4.2.1 Which CMOS process ? 

From a survey of possible silicon foundries, the Applied Optics Group at the 

University of Edinburgh selected the Austria Mikro Systeme [28] (AMS) silicon 

foundry to fabricate a series of SLM backplanes designed by the group [l]. The 
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Min. Trans. 

Geom. (pm) 

CBH 

CBK 

CCD 

Operating Max. Die 

Voltage (V) Size (mm2) Comments 
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~~ ~ 

0.8 

1.2 

2 .o 
2 .o 
3 .O 

2.2-5.5 

2.2-5.5 

2.2-11 

2.2-50 

2.5-5.5 

~ 

7 x 7  

14 x 14 

14 x 14 

14 x 14 

18 x 22 

~ ~ ~~ ~~ ~ ~ 

epitaxial wafer, n-well, double poly, double metal 

epitaxial wafer, n-well, double poly, double metal 

n-well, double poly, double metal 

n-well, LDD, double poly, double metal 

p-well, single poly, double metal 

Table 4-1: A selection of CMOS processes available from the AMS silicon 

foundry. 

foundry offers a number of CMOS processes with various integration densities, 

operating voltages, and die sizes (see Table 4-1). 

The 3 pm CCD' process, one of their older processes, is used for the 512 x 512 

pixel one-transistor DRAM device [lO]. The device is an expansion of the 176 x 176 

device, and many of the layout cells have been re-used with minimum redesign. 

It has a 30 pm pixel pitch, which results in a large, and consequently, relatively 

slow backplane capable of a data transfer rate of less than 10 MHz. As men- 

tioned in Section 2.4.2, a SRAM-XOR type pixel should fit into a pixel pitch 

of 3040  times the minimum transistor gate length for a given process. For the 

3 pm process, a SRAM-XOR pixel with ten transistors, would probably occupy at 

least 100 x 100 pm2, so a 256 x 256 pixel array would not fit onto the maximum 

available 18 x 22 mm2 die size for the CCD process. 

The 2.0 pm CBH process was attractive because it has a maximum operat- 

ing voltage 11 V, but a 256 x 256 pixel array would probably not fit onto the 

14 x 14 mm2 die available for the process. The high voltage CBK version, util- 

ises lightly doped drain (LDD) regions to help limit the electric field strength 

at the drain junctions. However, each high voltage transistor requires approxim- 

ately five times the area of a normal transistor so a 256 x 256 pixel array would 

lThis process designation should not to be confused with charge coupled device 

technology. 
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almost certainly not be possible. The 3-transistor, 64 x 64 pixel device [94] is 

implemented in this process with a 120 pm pixel pitch. 

The CAE 1.2 pm process wits considered the most suitable technology for 

fabricating the 256 x 256 device because it combines small geometry with a 

14 x 14 mm2 die size. I t  is also an epitaxial process and is therefore much less 

susceptible to latch-up [77]. However, it has a lower operating voltage (5.5 V) than 

the 2 pm CBH process, so FLC switching times can be expected to be slower. The 

0.8 pm CYB process became available while the backplane was being designed 

but has the disadvantage of small die size (7 x 7 mm2), a restriction imposed by 

AMS process engineers to ensure reasonable yield figures during the early stages 

of commissioning the process2. 

4.2.2 Process variation 

For every CMOS process, transistor characteristics such as threshold voltage, 

carrier mobility, and parasitic capacitances, vary from batch to batch, wafer to 

wafer, chip to chip, and even from transistor to transistor. The silicon foundry 

can only guarantee that the characteristics will fall within certain limits and 

usually provides the circuit designer with three sets of parameters for each type 

of transistor. One set contains the typical or average parameters while the other 

two, known as the fast and slow models, contain the extreme values that can be 

expected for the process. These models are used with a circuit simulator such as 

HSPICE [108] to model the effects of process variation on circuit functionality 

and performance. The circuit designer must ensure that his circuit will perform 

satisfactorily for any combination of transistor models. For example, a shift, 

register may be required to operate up to 40 MHz, so the worst-case combination 

for high frequency operation would be when all the pMOS and nMOS transistors 

2At the time of writing, AMS engineers were considering relaxing the die size re- 

striction to 10 x 10 mm2 for SLM backplanes, on the condition that the customer takes 

full responsibility for low yield results. 
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in the circuit on a fabricated chip are slow (the combination is referred to as SS). 

Similarly the worst-case combination for power dissipation in a circuit or chip is 

when all the transistors are fast (FF). 

4.3 Transient current spikes 

Even though CMOS offers low static power dissipation, the switching power dis- 

sipation can often limit the operating frequency of many ICs. However, the frame 

rates of SLM backplanes are generally very slow compared to typical electronic 

switching frequencies, so the switching power dissipation is less significant than 

in, say, a microprocessor (see Section 4.7). Nevertheless, the highly parallel archi- 

tecture of an SLM, and the potential magnitude of the transient switching current 

spike associated with setting or resetting the whole array simultaneously, could 

seriously affect the performance of a device by causing excessive power supply 

noise, latch-up, or electromigration. Before considering these effects, I will briefly 

explain why the current spikes occur. 

4,3,1 The mechanism: switching an inverter 

The basic building block of many digital circuits is the inverter (see Fig. 4-1(a)). 

During the edge of an input signal VIN, there will always be a short-circuit current 

flowing from the supply rail to ground (see Fig. 4-1(b)). This current flows as 

long as VIN is higher than VTn and lower than Voo - where V T ~  and V& 

are the threshold voltages of the nMOS and pMOS transistors respectively. For 

simplicity, assume the inverter has no capacitive load and is symmetrical, so 

and 

P n  = P p  = P, 
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where /? is the common gain factor of the transistors (pA/V2). Using the simple 

first-order MOS transistor formula, this lead to 

As the inverter is assumed to be symmetrical, the current reaches a maximum 

when KN equals half the supply voltage (V'N = V D D / ~ ) ,  so 

When a load capacitance is added to the output node V&JT, the falling edge 

of the spike may become broader as the capacitor must 

VIN 
a I I  

be charged or discharged. 

....................... i/ VDD - VTP ....... 

v,, 
t 

I I  

............ VOUT 

t 
I I  - 

7 
- - 

v.N 

Figure 4-1: (a) Basic CMOS inverter, and (b) the transient current spike be- 

haviour on switching. 

HSPICE simulations predicted a worst-case (FF) Im,, current spike of 100 pA 

for a single minimum size symmetric inverter with a 50 fF load. If every pixel in an 

array had an inverter, and they were all switched at once, a 256 x 256 array could 

generate a combined current spike of 6.5 A! Even if this simple extrapolation is 

i ~ .n  order of magnitude too high because process variation and signal skew are not 

taken into account, the effects of the spike could serious aEect the functionality 

and performance of the device. 
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4.3.2 Power supply noise 

Power is usually supplied to a die via bonding wires. These can have an induct- 

ance of 0.2-2 nH ( 0.5-1 nH/mm). The back emf generated in the bonding wires 

by a large current surge can add volts of noise to the power supply. Sensitive 

circuitry may be affected and could even switch to an erroneous state. The best 

way to reduce power supply noise is to ensure that large current spikes do not 

occur in the first place. At the design stage, careful circuit and timing analysis 

should show up any potential problems, that can then be reduced or eliminated. 

4.3.3 Latch-up 

The potential for latch-up, a pnpn self-sustaining low impedance state, is inherent 

in standard bulk CMOS circuit structures [77,99]. The parasitic pnpn circuit 

contains a pair of cross-coupled pnp and npn transistors that can be triggered 

into a latched state by some disturbance (see Ref. [27, pages 122-1301 for a 

description of the mechanism and some protection strategies). The large transient 

current spike could affect the power and ground rails enough to turn on one of 

the bipolar transistors in a pnpn latch path, resulting in latch-up. Latch-up is a 

positive feedback effect, so the chip’s power supply must be cut to reset the chip. 

For an SLM backplane, the current spike would probably be pattern dependent, 

therefore the possibility of latch-up would also be pattern dependent: this would 

obviously be unsatisfactory for a general purpose SLM. 

4.3.4 Electromigrat ion 

High current densities in the metal buslines can result in electromigration ef- 

fects [7]. The main force that acts on the lattice atoms in conductors arises from 

the momentum exchange between the lattice atoms and the electron wind being 

driven by the electric field. The collisions exert a force in the same direction as 

the electron flow. Vacancies move upstream where they condense to form voids, 
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while ions move downstream where they form crystals and hillocks. The voids 

can coalesce to cause a wire to open circuit, whereas the accumulation of ions 

downstream can short wires together. Electromigration effects are roughly in- 

versely proportional to the square of the current density but are also dependent 

on temperature and the crystal structure of the conductor. 

For the aluminium interconnect used in typical CMOS processes, it is normally 

recommended to keep the mean current density below 1 mA/pm2, and the peak 

current density below 10 mA/pm2. Again using simple extrapolation for the 

minimum size inverter mentioned above, the 100 p A  current spike per inverter 

could require the main power and ground rails to be at least 650 pm wide for a 

256 x 256 array. 

During the design stage I was not sure whether the simple linear superposition 

of the individual current spikes was a valid assumption to make, but I felt it was 

better to err on the side of caution to ensure that the backplane could operate 

for this worst-case scenario. This decision affected both the pixel design and also 

the backplane addressing architecture: these are now discussed. 

4.4 Pixel circuit 

Each pixel comprises a SRAM latch, an XOR gate, an electrode mirror, and six 

control and supply buslines (see Fig. 4-2). The latch is for storage, while the 

XOR gate is used to charge-balance the FLC layer above the electrode mirror. 

4.4.1 SRAM latch 

The SRAM latch is based on the standard six-transistor circuit (see Ref. [27, 

page 3901). It consists of a pair of cross-coupled CMOS inverters connected 

by pass transistors to the DATA and /DATA3 lines. The pass transistors are 

3The slash (/) refers to the complement or inverse of the signal. 
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DATA 

DATA 

64 

SRAM LATCH XOR 

Figure 4-2: (a) Schematic diagram and (b) transistor-level diagram of the 

SRAM-XOR pixel. The transistor dimensions are given as W:L in pm. The slash 

(/) refers to an active low signal or complement of a signal. 
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pMOS rather than nMOS, so that with the appropriate drive scheme, the FLC 

directly above the /ENABLE access line tends to be switched to its OFF state 

(see Section 4.4.3). 

To consider the write operation, assume a LOW (0 V) is stored at node 

LATCH and a HIGH (V&) at /LATCH, and we wish to set LATCH to HIGH 

and /LATCH to LOW. When the /ENABLE line is asserted, DATA is HIGH 

and /DATA is LOW. Node LATCH rises towards Voo. The ratio of M5 to M4 

must ensure that LATCH can rise to at least 2/3 Voo to turn off M1. Node 

/LATCH falls to a voltage determined by the ratio of transistors M1 and M6, 

and the voltage on the gate of M1. In this manner the cross-coupled inverter pair 

is unbalanced and positive feedback then causes the latch to switch state. 

While switching the latch from one state to another, the most difficult combin- 

ation occurs for slow pMOS and fast nMOS (SF) transistors. Extensive HSPICE 

simulations were performed to ensure that the latch would switch reliably for this 

case. HSPICE simulations predicted a worst-case (FF) current spike of 60 p A  

whenever the pixel was set or reset. The spike could not be reduced without com- 

promising the size of the pixel as all four transistors in the pair of cross-coupled 

inverters would have had to be lengthened. The effects of this current spike on 

the array addressing scheme are considered in the Section 4.5. 

4.4.2 XOR gate 

Standard CMOS implementations of XOR gates can require up to 16 transistors, 

obviously too many to fit into a small pixel. However, if a low specification gate 

is acceptable, and the true and complement of one of the signals is available, 

as is the case with the SRAM latch, the XOR function can be performed with 

just four transistors (see Ref. [27, page 311). This cut-down XOR-gate consists 

of an inverter and transmission gate (see Fig. 4-2(b)). As mentioned above, 

HSPICE simulations showed that if minimum size transistors were used to im- 

plement the inverter, a worst-case (FF) 100 pA transient current spike occurs 

in each pixel when the input signal CK is toggled. In this case both inverter 
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Inputs to XOR gate 

LATCH CK 

0 0 

0 1 

1 0 

1 1 

ELECTRODE FRONT 

MIRROR ELECTRODE VFLC 

0 0 

1 0 

0 -VDD 

1 +VDD 

Optical response 

of FLC 

OFF 

OFF 

OFF 

ON 

Table 4-2: Truth table and optical response of the FLC layer for the 

SRAM-XOR pixel. When a LOW is stored in the latch, the voltage across the 

FLC layer, VFLC, is zero. In this case, the FLC tends to be in its OFF state for 

the monostable behaviour seen in the devices assembled in-house. (see Section 5.5 

for more details). When a HIGH is stored in the latch, V&C = ~ V D O ,  depending 

on the state of the global clock signal CK. 

transistors are made as long and thin as space would permit to limit the current 

spike, and therefore minimise the potential latch-up and electromigration prob- 

lems considered earlier. By doing this, the worst-case current spike is reduced to 

7 pA per pixel for the rising edge of CK and 10 pA for the falling edge. 

4.4.3 Pixel drive scheme 

In each pixel, the data value stored in the SRAM latch and the global clock signal 

CK are the inputs to the XOR gate, whose output is connected to the second-level 

metal electrode mirror. The CK signal is also applied to the transparent front 

electrode. In this arrangement, the voltage signal on the electrode mirror is in 

phase or in anti-phase with the front electrode depending on whether a LOW or 

HIGH is stored in the latch (see Table 4-2). 

As mentioned in Section 2.3.1, the main operating limitation of FLC is that 

it must be charge balanced to prevent chemical degradation; if a positive voltage 

pulse is applied across the FLC, it should be followed by a negative voltage pulse 
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of equal magnitude and duration. Inclusion of the XOR gate permits the FLC 

layer to be charge balanced simply by toggling the global CK signal on a 50% duty 

cycle (see Table 4-2 and Fig. 4-3). Consider the case where a HIGH is stored in 

the latch: if the CK signal is toggled, the voltage across the FLC layer, VFLC, is 

kV’&. Because of the charge balancing requirement, CK should be toggled on a 

50% duty cycle, so the pixel is in its ON or reflecting state for 50% of the time 

and in its OFF or non-reflecting state for the other 50%. 

Now consider the case where a LOW is stored in the latch: here the FLC 

state depends critically on the FLC cell configuration. If the FLC is in the fully 

bistable configuration, it remains in the state it was last switched to, however, as 

is described in Section 5.5, the SBS256 SLM devices assembled in-house seem to 

exhibit a monostable behaviour. For these devices, the FLC tends to favour one 

of the two possible optical states, corresponding to the OFF state of the pixel. 

So when +Voo is applied across the FLC (LATCH = 1 and CK = l), it flips to 

its ON state, but when 0 V is applied, the FLC relaxes to (or stays in) the more 

favoured OFF state. This is fortunate because if the FLC was not fully bistable 

and each of the optical states were equally favourable, the FLC could relax to an 

intermediate tilt angle state when 0 V is applied across it. For SRAM-type pixels 

that can apply 0 V across the FLC, this would result in a significant reduction 

in the contrast of OFF pixels. The monostable behaviour permits an efficient 

SLM drive scheme to be used that takes full advantage of the SRAM-XOR pixel 

functionality and drive capabilities (see Section 4.6). 

DRAM-type devices are often charge balanced using a pattern/inverse pat- 

tern drive scheme [lOS]. A synchronised, pulsed light source is then required 

to interrogate the device. The extra degree of freedom provided by having an 

XOR-gate in each pixel permits the device to be charge balanced without an 

inverse pattern appearing, so a continuous rather than pulsed light source can 

be used to interrogate it. A further advantage of the SRAM-XOR pixel over the 

DRAM-type is that the electrode mirror is continually driven by the power ra i l s  

via latch and/or XOR gate transistors (see Fig. 4-2). This results in an effect- 
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LATCH 

CK 

F th I I (F+1) 
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Figure 4-3: Pixel drive scheme. In frame F, the pixel has a logic one in its latch; 

it is on for 50% of the time, and for the other 50% it is off while the negative 

charge balancing voltage pulse is applied across the FLC. The pixel is off in frame 

(FS1) as a logic zero is stored in its latch. 
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ively unlimited amount of charge being available to switch the FLC, thus making 

the backplane suitable for use with current and future FLC mixtures possessing 

spontaneous polarisations greater than 30 nC/cm2. 

4.4.4 Pixel layout 

The pixel layout (see Fig. 4-4) evolved through an iterative process. Throughout 

the design cycle, electronic functionality, current spike problems, potential yield, 

and fill factor all imposed conflicting constraints on the pixel layout. For example, 

to limit the magnitude of the transient current spikes, most of the transistors are 

longer than the minimum permitted by the design rules. These obviously take 

up more space, and leave less area for the electrode mirror. 

The pixel has a 40 pm pitch. Each pixel requires two power buslines and four 

control signal buslines. Two levels of metal are available with the CAE process, 

so three signals are routed on each level. The GND, DATA, and /DATA signals 

are routed in first level metal (METALl), and the VDD, CK, and /ENABLE 

buslines are routed in second level metal (METAL2) as they tend to switch the 

overlying FLC to its off state (see Table 4-3). The two power rails and the CK 

signal buslines are wider than the minimum design rules permit as they have to 

cope with significant transient current spikes, especially at the edges of the array 

where the current for a whole column or row enters (or exits). The others are 

minimum width (2.4 pm for METALl, 2.8 pm for METAL2). When scaled up 

to a 256 x 256 pixel array, the busline spacings are likely to be the main limiting 

factor on backplane yield, so the spacing between all metal buslines within the 

pixel are at least 0.2 pm above the minimum design rules (1.4 pm for METALl, 

1.8 pm for METAL2). 

The previous 16 x 16 and 50 x 50 SRAM-XNOR devices had flat fill factors 

of 30-35%. For this design, the fill factor was not as critical as other design con- 

straints because post-processing planarisation was planned (see Section 5.3.1). 

However, it was also important that the device should be usable without planar- 
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Figure 4-4: Pixel layout. The pixel occupies a a  axea of 40 x 40 pm2. 
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0 

-vim 

0 

0 

-VDD 

Busline VDD 
0 

0 

0 

0 

VDD (HIGH) 

/ENABLE (HIGH) 

FRONT ELECTRODE I 

Table 4-3: The voltage across FLC overlying the buslines routed in METAL2 

- VDD, CK, and /ENABLE. Under normal operating conditions, these buslines 

tend to switch the overlying FLC to the off state or leave it in the off state. 

isation, so although the 23% pixel fill factor was lower than the previous devices, 

it was considered acceptable. 

4.5 Backplane architecture 

Figure 4-5 shows a block diagram of the main functional units on the backplane. 

The 256 x 256 pixels with a 40 pm pitch, result in a 10.24 mm x 10.24 mm active 

array. For the 14 x 14 mm2 die available on the CAE process, this leaves a 

1.5 mm border between the edge of the array and the bonding pads for placing 

glue spots during SLM assembly. The array is addressed using a column-at-a- 

time addressing scheme. Early in the design cycle I decided to use a decoder to 

select each column as it ensured that a maximum of 256 latches can change state 

at once. This helps limit the current spike generated by setting or resetting the 

Pixel latches, to 4 mA; that is, 256 times 60 pA, as mentioned earlier. If a shift 

register with a rolling enable signal had been used, a potentially damaging 1 A 
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current spike could occur if a drive scheme with frame setting/blanking was used, 

as in the 176 x 176 device. 
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Figure 4-5: Block diagram of the main functional units on the backplane. 

Data enters the backplane via a 32-bit bus. The data bits are loaded into 

thirty-two parallel &bit shift registers; eight clock cycles are required to assemble 

the 256-bit data word for a column. The data word is then latched to the aux- 

iliary 256-bit register-buffer which drives the DATA and /DATA buslines. The 

latch-buffer circuit, previously implemented on the 176 x 176 backplane [106], 

helps optimise the addressing scheme as it permits the (n+l)& data word to be 
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assembled in the shift registers while the nth word is written to its appropriate 

column. As both operations are performed simultaneously, the frame scan time 

can be kept to a minimum. The appropriate column /ENABLE signal is selected 

using the 8-to-256 line column decoder. 

Data shift registers 4.5.1 

Each cel in the thirty-two 8-bit shift reglaters consists of two latches in the D- 

type configuration. The data shift registers are operated using a two phase non- 

overlapping clocking scheme (see Fig. 4-6). To prevent possible race conditions, 

the non-overlapping clock signals, PHIl and PHI2, propagate in the opposite 

direction to the data flow. The maximum clock frequency at which the shift 

registers can operate at is limited by a combination of the distributed resistance 

and capacitance of the clock buslines and the ON resistance of the input pad 

inverter driver. A t  high frequencies, these impedances smear the edges of the 

non-overlapping clocks enough to make them overlap. 

To 
LATCH-BUFFER 

C E L L  

TO NEXT 
IN a3.L 

PHI2 PHIl 

PHIl ... ---- 

PHI2 --.l-r-Ul-... 

Figure 4-6: Schematic of a single data shift register cell. 

The capacitance per unit area of METAL1 (0.029 fF'/pm2) is almost twice that 

of METAL2 (0.016 fF'/pn2). However, PHIl and PHI2 are routed in METALl 
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- 
2 . 0 - - - 

rather than METAL2, to help reduce the effect of FLC capacitance when the 

backplane is assembled into an SLM. For the buslines running the length of the 

shift register the distributed capacitance is about 7 pF while the resistance is 

about 500 R. In HSPICE simulations, each clock busline is modelled using a 3-n 

network, rather than a simple lumped RC model. Using 3-7~ network to represent 

a distributed RC busline results in a rise/fall-time error of less than 3% [87]. 

From HSPICE simulations, the worst-case (SS) operating frequency is 25 Mhz 

(see Fig. 4-7)) which corresponds to a frame scan time of just less than 82 ps. 

Of course, from the inherent process variation, some die should work at higher 

frequencies. 
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Figure 4-7: Worst-case (SS) HSPICE simulation of a section of the data shift 

register operating at a frequency of 25 MHz. It shows part of a 1010000 data 

train propagating along the shift register. The simulation includes the effects of 

the input pads’ circuitry, and the distributed capacitances and resistances of the 

clock signal lines. 
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4.5.2 Auxiliary 256-bit register-buffer 

When the 256-bit data word is assembled, it is transferred to the register-buffer 

on the rising edge of the signal LDLAT. Each register-buffer cell comprises a 

single SRAM latch with two inverters to drive the DATA and /DATA buslines. 

The inverters have four of the eight clock cycles per column to charge or dis- 

charge the buslines, therefore they could be designed to switch quite slowly 

(4 x 62.5 = 250 ns for a 16 MHz shift register clock frequency) to help limit 

short-circuit power dissipation. 

DATA DATA 

FROM DATA + LDLAT 
!mIFrRlxmlER 

CELC 

Figure 4-8: Schematic of a single latch-buffer cell. 

4.5.3 840-256 line column decoder 

Each cell in the 8-to-256 line column decoder consists of two 4-input NAND gates 

which are fed into a 3-input NOR gate, and a inverter buffer to drive an /ENABLE 

busline (see Fig. 4-9). The other signal to the NOR gate is the control signal 

/WRITE. The /ENABLE drivers are bigger than the DATA and /DATA drivers 

as only one busline is charged or discharged at a time. When all eight decoder lines 

to a cell axe high, the /ENABLE busline goes low on the falling edge of /WRITE, 

and data on all the DATA and /DATA lines is written to the appropriate column 

of pixel latches. 
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ENABLE 

Figure 4-9: Schematic of a single column decoder cell. The /ENABLE line 

remains HIGH unless all the input lines A-H are HIGH and /WRITE is LOW. 

Fig. 4-10 illustrates the timing sequence of the control signals for the data 

shift register, auxiliary latch-buffer, and column decoder circuits. Note that the 

sequence is continuous: the PHI’S do not have to stop while the other signals are 

pulsed, a consequence of including the auxiliary latch-buffer. 

PHI1 

PHI2 

LDLAT 

lwRITE 

n n  n n n n n n - n  
ni 

I I 
8 CLOCK CYCLES U 

Figure 4-10: Control signal timing sequence to load a single column of the 

array. For clarity, the data bytes and column decoder byte are not included. The 

sequence is continuous: the PHI’S do not have to stop while the other signals 

are pulsed, a consequence of including the auxiliary latch-buffer in the addressing 

circuitry. Note that when /WRITE is pulsed LOW, the data assembled in the 

previous eight clock cycles is written to the appropriate column. 

4.5.4 Busline distribution 

six VDD and four ground pads supply power to the die. The VDD power rail is 

routed in METAL2 onto the array from both the top and bottom edges, while the 

ground rail is routed in METAL1 and comes in from both the left and right sides. 
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The power buslines leading up to the array are 60-80 pm wide to ensure they 

can handle the transient current spikes without voltage drop or electromigration 

problems. The arrows in Fig. 4-4 indicate how the DATA, /DATA, /ENABLE, 

and CK control signals come into a pixel, and so onto the pixel array. 

The global clock signal CK is actually split up into eight separate signals, 

each one supplying a vertical block of 32 x 256 pixels (see Fig. 4-11). If the 

CK transient current spike was found to cause problems, these could be tem- 

porally staggered off-chip so that the spike would occur as eight smaller spikes. 

The separate clock signals also permit a device with a partially non-functioning 

array to be properly charge-balanced. From yield considerations, it was expected 

that some die would have shorts between the pixel clock lines and neighbouring 

buslines. If CK was a single global signal, and was shorted by a defect to another 

busline somewhere on the array, it would probably not toggle between 0 V and 

Voo, and so the FLC layer could not be properly charge balanced. This would 

lead to gradual degradation of the FLC layer, and the device would eventually be- 

come unusable. As CK is routed as eight separate signals, the working sections of 

the device can be fully charge-balanced while the CK signal for the section where 

the defect occurs can be disconnected to reduce shorting current. The device can 

then be used in applications where a fully working array is not required. 

CKO CKl CK2 CK3 CK4 CK5 CK6 CFI 

Figure 4-11: Schematic of the split global clock signal CK. 
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4.5.5 Control signal busline test circuits 

To help estimate backplane yield, some control signal busline test circuits to check 

the integrity of the DATA and /ENABLE buslines are included along the edge 

of the array. These are discussed in detail in Section 5.2.4. 

4.6 SLM drive scheme 

For a large array operating at high frame rates, the bit-plane scan time, T’ps, 

can take up a significant proportion of the frame time. For example, if the data 

shift register is clocked at 16 MHz, T’PS = 128 ps as it takes 2048 clock cycles 

to scan in a bit-plane. For a 2 kHz frame rate, this corresponds to 25% of the 

frame time. I will refer to this as the duty cycle factor D, given by 

f CK D = 2048- 
fDSR 

(4.5) 

where f D s R  is the clocking frequency of the data shift register; and f c ~  is the 

SLM frame rate. The time elapsed between addressing the first and last columns 

can cause problems with charge balancing. However, the inclusion of the XOR- 

gate at each pixel permits the use of a drive scheme that can fully charge balance 

and synchronously switch the FLC layer across the whole array (see Fig. 4-12). 

Assume that pixel A is in the right-most column, pixel 2 is in the left-most 

column, and that both their latches are set to logic high in the Fth frame and 

logic zero in the (F+l)th frame. The pattern is scanned in from right to left with 

the data shift register operating at 16 MHz. 

By toggling the global clock signal, CK, at appropriate times within the frame, 

pixels with a logic one in their latch switch on and off simultaneously - there is 

no addressing skew. They do however, receive their charge balancing pulses for 

different portions of the frame, with pixels in columns other than the right-most 

actually receiving part of theirs during the bit-plane scan of the next frame. 
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Figure 4-12: Charge balanced SLM drive scheme. Pixel A is in the right -mos t 

column and pixel 2 is in the left-most column. Assume that both their latches 

are set to logic high in the Fth frame and logic zero in the (F+l)th frame. The 

array is addressed from right to left. By toggling the global clock signal, CK, 

at appropriate times within the frame, the FLC above pixels with a logic one in 

their latch switches on and off simultaneously - there is no skew across the array. 
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The pattern on delay, TPO, is given by, 

TPO = T’PS + TFLC + TEX 

and the balance delay, TB, by, 

80 

where, TBPS is the bit-plane scan time; TFLC is the liquid crystal settling time; 

and TEX is extra time inserted to give the appropriate frame rate. Notice that a 

T ~ p s  term must be included in TPO to ensure proper charge balancing. Therefore, 

from Equations 4.6, 4.7, and adding TBPS for the bit-plane scan, the frame rate 

~ C K  is given by 
- 1 

fCK = 
~ ( T B P S  + TFLC + TEX) 

From this, the maximum frame rate, ~ c K ~ ~ ~  is given by, 

.. 1 
(4.9) 

that is, when TEX = 0. 

4.7 Power dissipation 

In normal operation the backplane dissipates dynamic power. The following 

circuits or switching events were identified as potential contributors to power 

dissipation: 

1. Input pad buffers for the control signals. 

2. Input pad buffers for the 32-bit data signals. 

3. Data shift register circuitry. 

4. DATA and /DATA busline drivers. 

5. Column decoder circuitry. 

6. Set ting/reset ting pixels. 
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7. /ENABLE busline drivers. 

8. FLC switching 

The amount of power these circuits dissipate depends both on the operating 

frequency of the data shift registers and on the charge balanced frame rate of 

the device. Before discussing the pattern dependent contributions from 2, 3, 4, 

6, and 8, I will the consider pattern independent dissipation (1, 5, and 7) in the 

various control signal circuits. 

4,7,1 Pattern independent power dissipation 

Simple inverters are used to drive all the control signal buslines. The control 

buslines are all at least 10.24 mm long so their capacitances’ significantly load 

the driver inverters. The dynamic and short-circuit power dissipation components 

for a simple inverter with a load capacitance CL, are: 

PSC = Imean V D  DD 

(4.10) 

(4.11) 

where Voo is the typical voltage swing in a CMOS inverter; and f is the switching 

frequency. Here I have also included the duty cycle factor D because most of the 

control signals on the backplane work in a ‘burst’ mode. For a symmetrical 

inverter with no load, Veendrick [107] gives Imean as 

(4.12) 

where r is the rise or fall time of the input signal, and T = l / f .  Analytical 

analysis for an inverter with a capacitive load is much more difficult so, even 

though it over-estimates Imean, Equation 4.12 is substituted into Equation 4.11 

to give 

(4.13) 
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D 

D 

0 1 8  

D/8 
D/16 

01256 

Input Dissipation per busline 

PDY (mW) PSC (mW) 

1.03 0.15 

1.03 0.15 

0.13 0.02 

0.13 0.02 

0.06 0.01 

0.01 0.01 

signal 

Number of Contribution 

buslines (mw)  

2 2.36 

2 2.36 

2 0.30 

2 0.30 

4b 0.28 

256 2.82 

Duty 

cycle 

1 Total I 8.42 

aLeast significant bit of column decoder byte. 

bTo take account of other the column decoder bit buslines. 
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Table 4-4: Estimated power dissipation in the pattern independent control 

signal buslines operating at 16 MHz and a frame rate f c ~  of 2 kHz (D = 0.256). 

Using Equations 4.10 and 4.13, the PHIl busline driver dissipates up to 1.03 mW 

dynamic and 0.15 mW short-circuit power when the following values are used: 

CL = 7pF  VDD = 6 V  

VT = 0.62 V /? = 840 pA/V2 

f = 16MHz T = 5 n s  

D = 0.256 

The results of similar calculations for the other control signal busline drivers are 

shown in Table 4-4. 

4.7.2 Pattern dependent power dissipation 

The power dissipated in scanning in a bit-plane is strongly data dependent. For 

example, a pattern that requires all the array DATA lines to be changed between 

each two succeeding columns, such as a fine vertical stripe pattern, will cause 

significant power to be dissipated in the DATA busline drivers but very little in 
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the data shift register, while a fine horizontal stripe pattern will dissipate very 

little in the DATA drivers but a significant amount in the shift register. 

Generally, the DATA and /DATA busline drivers make the most significant 

contributions to power dissipation because there are two buslines running across 

each row of the pixel array that can be toggled at up to 1/16 the frequency of 

the data shift register clock. 

Using Equation 4.10 as a starting point, the dynamic power dissipation in all 

the DATA busline circuitry can be written as 

(4.14) 

where, 

N is the number of pixels in a column; 

CDATA is the capacitance of a DATA busline; 

fDsR is the operating frequency of the data shift register; and 

G C ~ L  is the transition factor for data across the pixel array, i.e. for a thin vertical 

stripe pattern G C ~ L  = 1, while for a thin horizontal stripe GCOL = 0. 

Similarly, the DATA buslines short circuit power dissipation can be written as 

1 
PscDBL 96 

= -NPDATAmATAfDSRDGCOL(VDD - 2vT)3 (4.15) 

where, 

PDATA is the transistor common gain factor in the DATA busline driver; and 

TDATA is the rise/fall time of the DATA busline signal. 

From Equations 4.14 and 4.15 there can be up to 24 mW dynamic and 8.4 mW 

short-circuit power dissipation in the DATA busline drivers when the following 

values are used: 

N = 256 CDATA = 5 pF VDD = 6 V  

VT = 0.62 V ~ D S R  = 16 MHz D = 0.256 

PDATA = 71 pA/V2 TDATA = 100 ns GCOL = 1.0 

However, note that the figures are a worst-case calculation: a fine vertical stripe 

pattern with GcoL = 1: McKnight e t  al 1671 estimate that GCOL = 0.20 for 
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a binary thresholded version of a ‘natural’ scene, so lower dissipation can be 

expected in practice. Similar calculations can be performed for the 32-bit data 

input pads and the data shift registers. 

The pixel array also dissipates power in changing the state of the pixel latches 

and overlying FLC. From Equation 2.5 in Chapter 2, FLC switching dissipates 

about 0.64 mW for a 1 cm area (the area of the pixel array) switching at 2 kHz, 

with V ~ D  = 6 V.  The most significant array contribution comes from the short 

circuit dissipation in the inverters of the XOR gates PscXoR, g iven by 

As mentioned in Section 4.4.2, the inverter transistors are quite long and thin 

= 4.67 pA/V2), but with TCK = 1 ps for the CK driver buffers used on 

the SLM interface, PscxoR = 5.5 mW assuming values from above for the other 

variables. 

4.7.3 Total power dissipation 

Table 4-5 summarises the contributions for a selection of different patterns. The 

worst-case ‘Checkerboard’ pattern can dissipate up to 64 mW, when all the pat- 

tern independent and dependent contributions are added up. The SBS256 back- 

plane has an area of almost 2 cm’, so the dissipation is unlikely to increase the 

backplane temperature by more than a few degrees when it is mounted into a 

standard pin grid array chip package. 
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Other 

(mw) 

08.42 

14.83 

11.63 

11.63 

11.63 

09.70 

Pattern 

Total 

Power 

(mw) 

08.42 

14.83 

31.86 

44.00 

64.23 

20.23 

All OFF 

All ON 

Horizontal stripe 

Vertical stripe 

Checkerboard 

‘Natural’ scene 

Data transition 

factors 

GROW G C O L  

0.0 0.0 

0 .o 0.0 

1 .o 0.0 

0.0 1 .o 
1 .o 1 .o 
0.2 0.2 

Input pads 

P D Y  PSC 

(mw) (mw) 

N O  N O  

N O  -0 

2.36 2.47 

N O  N O  

2.36 2.47 

0.47 0.49 

DSRa 

P D Y  PSC 

(mw) (mw) 

N O  N O  

N O  N O  

12.30 3.10 

N O  N O  

12.30 3.10 

2.46 0.62 

N O  N O  

-0 -0 

-0 N O  

24.01 8.36 

24.01 8.36 

4.82 1.67 

=Data shift register. 

bAnd /DATA buslines. 

Table 4-5: Estimated power dissipation for a selection of patterns with the 

device operating at a 2 kHz frame rate and f ~ s ~  = 16 MHz. The ‘Other’ column 

takes into account the dynamic and short circuit power dissipation in switching 

the pixels and overlying FLC, and the pattern independent (-8.42 mW) dissip- 

ation of the other address circuitry. 
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4.8 Summary 

In this chapter I have discussed the backplane design issues of the SBS256 - a 

FLCOS SLM that incorporates a SRAM latch and a XOR-gate at each pixel. The 

latch provides robust data storage, while the XOR-gate permits a simple charge 

balancing scheme to be used. The array addressing scheme was constrained by the 

need to limit transient current spikes that occur because of the device’s parallel 

architecture. The pixel circuit and addressing circuitry were optimised to ensure 

the device could be addressed quickly and efficiently, while also ensuring that 

current spikes and power dissipation would not affect functionality. 



Chapter 5 

The SBS256 - testing and 
characterisation 

In this chapter I present test and characterisation results for the SBS256 SLM. 

I begin by describing the two interfaces I designed and built to drive the SLM 

backplane. Then I present backplane electrical test results. These include cur- 

rent spike measurements, and yield estimates. I follow this by describing post- 

processing planarisation and device assembly. I then present optical characterisa- 

tion results including FLC switching time, contrast ratio, and device uniformity. 

Finally, I show that the device can be used to generate multiplexed grey-scale. 

5.1 SLM controller interfaces 

I designed and built two computer controlled interfaces to test and drive the 

SBS256 backplane. 

5.1 . 1 SimpleInt interface 

The first ‘Simpleht’ interface (see Fig. 5-l), simply buffers and conditions com- 

puter generated control and data signals. These signals axe generated by an 
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IBM-compatible personal computer, and passed to the interface via an Amplicon- 

Liveline CIO-DI096 card. After conditioning and buffering, the signals are passed 

on to the backplane. The interface board is quite compact so that it can be moun- 

ted easily into an optical system. It has several test-points for monitoring the 

backplane functionality and also includes components to complete the DATA and 

/ENABLE busline test circuitry. 

CONTROL SBS256 
LDLAT SLM 

SIGNALS 

Figure 5-1: Block diagram of the simple interface (SimpleInt). 

The control and data signals are synthesised by software written in the C 

programming language, so the frame scan time is rather slow; it takes 50 ms 

to scan in a single bit-plane. The frame scan time could probably be reduced 

by a factor of three or four if the critical output functions were rewritten in an 

Assembly programming language. This interface is suitable for driving the SLM 

in applications where high frame rates are not important. It should be noted that, 

once a bit-plane has been scanned into the pixel array, the global clock and front 

electrode signals can be toggled (with a 50% duty cycle for charge balancing) 

at almost any frequency below the maximum switching frequency of the FLC 

material. 

5.1.2 FastInt interface 

The second, more sophisticated, 'FastInt' interface (see Fig. 5-2) includes a 16 bit- 

Plane frame store to permit high speed addressing of the backplane for temporal 
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multiplexing applications. The drive scheme sequence shown in Fig. 4-12, is 

controlled by a 4-bit algorithmic state machine. The control signals are generated 

by on-board counters and combinational logic. It was constructed on a wire-wrap 

prototype board and is capable of operating at up to 24 MHz: that is, data can 

be scanned onto the backplane at up to 24 MHz on the 32-bit bus. The interface 

addressing circuitry is designed so that the frame store can be expanded to 32 

bit-planes by adding four extra memory chips (each 32k x 8-bits). The state 

machine can be configured under software control to cycle through a variable 

number of bit-planes. This is achieved by setting the bit-plane counter start 

value to the appropriate number. Similarly, the frame rate can be adjusted using 

the programmable delay counter. 

I I I I 

CKkFE 

GFN 
SIGNALS 1 

k9 e 
CKO-7 &PE COLUMN 

alm 8 
-7+- DccA-DceH 

_____ 

CONlROL 5"' PHI2 SBS256 
SLM -LDLAT 

--am 
SIGNALS 

GEN 

Figure 5-2: 

on-board RAM store to hold 16 image bit-planes. 

Block diagram of the fast interface (FastInt). It includes an 

The interface board has a socket for a SBS256 device but, as the board is rather 

bulky, I also constructed a small SLM mounting board to enable the device to be 

easily mounted in an optical system. The extra capacitances of the connecting 

cables between the interface and mounting board increase the rise/fall-times of 

the control and data signals. Capacitive coupling within the cables can also add 

significant noise to the signals. Therefore, the FastInt is normally operated at 

16 MHz (rather than 24 MHz) to ensure the SLM receives relatively 'clean' control 

and data signals. 
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5.2 Backplane electrical testing 

A batch of ten 4 inch wafers, each with 21 candidate die, was fabricated at the 

AMS silicon foundry. When the fabricated wafers came back from AMS, wafer 10 

was sawn up and three die ( 10#1-10#31) bonded into 144 pin grid array packages 

for preliminary electrical testing using the SimpleInt interface. 

5.2.1 Preliminary testing 

Under quiescent conditions, a fully working die should sink a negligible amount 

of current from the power supply as it is a digital CMOS design with no current 

biassing circuitry. A simple power-up electrical test verified that the design does 

not have a major short-circuit failure mode; dies l O # 1  and 10#3 sink 0 mA but 

10#2 sinks 11 mA. Probing the CK signals on l0#2 revealed that the interface 

could not set CK5 to 0 V. When CK5 is set to Voo the current is reduced to 

0 mA. This is probably due to a short between CK5 and a neighbouring busline 

within the pixel array, and illustrates one of the yield limiting effects that were 

expected with this densely packed backplane design. 

To aid with preliminary testing, the following on-chip signals are buffered and 

routed to output test pads 

0 Output of the last 8-bit data shift register. 

0 DATA255 busline. 

0 /ENABLEo and /ENABLE7 buslines. 

0 Electrode mirrors of the top-right and bottom-right pixels. 

lThe die are labelled W#D, where W is the wafer number and D is the candidate 

die number. 
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5v 
CK - 

Probing of these signals on the three test chips confirmed that the functionality 

of the design was correct. 

SLM 

5.2.2 Current spike measurements 

Throughout the design cycle I was concerned about the current spike that would 

be generated on the transitions of the global clock signal CK. I assumed a worst- 

case scenario where all the pixels switched simultaneously, so all the current spikes 

would be superimposed to produce a significant and potentially damaging spike. 

To minimise the effect, I made the transistors in the XOR-gate as long as space 

would permit, and split the CK into eight separate signals. The test configuration 

shown in Fig. 5-3 was used to investigate the current spikes that occur in practice. 

The resistor R p  (10 0) connects the power supply to the SLM backplane2. Under 

quiescent conditions, it has no effect as no current flows. However, when a CK 

transition occurs, the voltage drop on VDD is proportional to the magnitude of 

the current spike. This can be observed on an oscilloscope (CRO). 

I GND 

Figure 5-3: Experimental set-up used to investigate the magnitude of the CK 

transition current spike. 

Table 5-1 shows that the current spike for a 64 x 256 block of pixels is 

about 60% of that expected by simple superposition of the current spike predicted 

by HSPICE (TT case) for a single pixel. This could be accounted for by a 

2Note that R p  is not present under normal SLM operating conditions. 
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CK transition 

0 to VDD 

VDD to 0 

combination of temporal skew on the CK signal and process variation across the 

chip: not all the XOR inverters switch at exactly the same time. Although lower 

Predicted (mA) Measured (mA) Ratio (%) 

65 37.5 58 

98 62.5 64 

than predicted by simple superposition, the spikes are significant and vindicated 

the architectural and design decisions made during the backplane design cycle. 

Table 5-1: Comparison of the predicted and measured CK transition current 

spikes for a 64 x 256 block of pixels on die 10#1, all with a HIGH in their 

latches to enable the XOR inverters. The predicted values were based on the 

superposition of values obtained from HSPICE simulations (TT case) for a single 

pixel. 

Figure 5-4 shows the effect of the current spike flowing through R p  on VDD 

when all eight CK signals are toggled simultaneously. The voltage drop on VDD 

during the rising edge of CK corresponds to a 125 mA current spike or 49% of 

the predicted value, while the voltage drop during the falling edge corresponds 

to 150 mA or 38% of the predicted value. In this case the effects of CK skew and 

process variation reduced the peak of the spike even further. These results show 

that the backplane can be operated safely without the need to stagger the eight 

CK signals off-chip. 

5.2.3 Data shift register operating frequency 

HSPICE simulations predicted that the backplane data shift register can be 

clocked at 25 MHz (see Section 4.5.1). The output of the last data shift re- 

gister cell is buffered and routed to an output test pad and can be used to verify 

that data can be clocked through at high freQuencies. 
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Figure 5-4: The effect of the current spike flowing through ILp on VDD when all 

eight CK signals were toggled simultaneously. Although the measured spikes were 

40-50% lower than predicted by simple superposition of the HSPICE simulations 

for a single pixel, they were still significant and vindicated the architectural and 

design decisions made during the backplane design cycle. 
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The FastInt interface can operate at up to 24 MHz - limited by the program- 

mable logic array ICs used to implement the control sequence state machine, and 

the fact that it is built on a wire-wrap prototype board. Eight die from differ- 

ent wafers were used to verify that the shift registers could operate at 24 MHz. 

All devices were then assembled into SLMs and re-tested to check that the ex- 

tra capacitance associated with the FLC layer did not reduce the shift registers 

operational frequency: all eight SLMs still operated at 24 MHz. This was ex- 

pected because all of the control signals and interconnect are routed in METAL1 

to ensure there is a relatively thick layer of inter-level oxide (- 1 pm between 

METAL1 and METAL2) to reduce the capacitance introduced by adding the 

front electrode. 

7 I I 1 1 I I I I I 

0 100 200 300 400 500 600 700 800 900 loo0 

TIME (ns) 

Figure 5-5: Oscilloscope trace of the data shift register test-point on die 5#6, 

with the non-overlapping clocks operating at 24 MHz. The data input is a fine 

horizontal stripe pattern which results in the test-point signal toggling at half the 

clock frequency. 
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5,2,4 Backplane yield test structures 

The yield of the backplane is limited by the densely packed circuitry and intercon- 

nection within the pixel array. As mentioned earlier, the spacings of the buslines 

running across the array are just 0.2 pm greater than the minimum design rules 

permit, so shorts between them can be expected on some die. 

Some of the signals, such as the power rails and global clock signals, are 

connected directly to external circuitry and so can be probed with a volt meter 

or oscilloscope to check their integrity, as described above for die 10#3. However, 

others signals such as the DATAs, /DATAs, and /ENABLES are generated and 

distributed entirely on-chip and so are not as readily accessible. To help test the 

integrity of the DATA and /ENABLE buslines, two simple test structures [104] 

are included along the edges of the pixel array. 

DATA busline test circuits 

Fig. 5-6 shows the basic structure of the DATA busline test circuits. Along the 

edge of the array, each DATA busline is connected to the gates of two transistors 

- one nMOS, the other pMOS. The drains of all the nMOS transistors are ganged 

together and routed to the test pad TDB2. This circuit can show whether the 

DATA lines can be set individually to logic level HIGH. Similarly, the ganged 

pMOS circuit connected to the TDBl pad can show whether each line can be set 

LOW. To illustrate how they function, consider the ganged pMOS structure. A 

load resistor is connected between the TDBl pad and 0 V; its resistance is chosen 

to be comparable with the on resistance of a single pMOS transistor (about 40 kR 
for the transistor size used in the test circuit). If all the DATA lines are set to 

HIGH, all the pMOS transistors are off, so the test pad voltage is pulled 

to 0 V as no current flows through the load resistor. Then if one of the DATA 

buslines is switched to LOW 

and the load resistor act its 

If this sequence is repeated 

while the rest remain HIGH, the single on transistor 

a potentid divider so V T D B ~  rises to about v D D / 2 .  

for a number of the DATA lines, a trace similar to 
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that shown in Fig. 5-7(a) results. Any faulty buslines show up as missing pulses 

in the pulse train. 

Figure 5-6: Schematic of the DATA busline tester. The circuit can help determ- 

ine whether a silicon backplane die will fully or partially work when assembled 

into an SLM. 

/ENABLE busline test circuits 

A similar structure is used to test the /ENABLE buslines. Fig. 5-7 shows how 

the circuit can be used to detect which /ENABLE busline is broken even when 

the defective line switches one of the test transistors permanently on. The pulses 

correspond to the buslines /ENABLEs3-/ENABLE32 (left to right) on die 8#21. 

On this die /ENABLE47 cannot be set to HIGH because of a defect, so the 

appropriate test transistor cannot be turned off, therefore the VTEB~ signal cannot 

return to 0 V. However, the sequence of pulses can still be distinguished easily 

because when any other /ENABLE is set to LOW, there are then two transistors 

in parallel rather than one, so there is still a significant voltage change on V T E B ~ .  

t t 
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Figure 5-7: (a) A trace of VTDBl on the DATA busline tester. The pulses 

correspond to the buslines DATA223-DATA192 (left to right) on die 8#01. This 

trace illustrates how the busline tester can be used to detect a faulty DATA 

busline: note that the pulse for DATA202 is missing - this may be caused by a 

defect in the latch buffer circuitry, or along the busline. (b) A similar trace of 

VTEB~ on the /ENABLE busline tester. 
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Ir 

S e 2 S  Backplane yield 

A custom probe card was purchased to help estimate the yield and identify yield 

failure mechanisms on the ten wafers. The following tests were performed in 

sequence on each die: 

1. Measurement of quiescent current after power-up and initialisation. 

2. Integrity of all eight CK busline signals when toggled. 

3. Functionality of the two test point pixels. 

4. DATA busline integrity test. 

5. /ENABLE busline integrity test. 

After power-up, the backplane is quickly initialised by scanning in a test pattern 

to ensure that all the pixels and signals are in a known state. If the quiescent 

current is more than 150 mA (900 m W  when Voo = 6 V), the power supply is 

immediately switched off so that the interface board is not damaged. The die is 

recorded as ‘failed’ and no further testing is performed. If the quiescent current 

is less than 150 mA the remainder of the tests can be performed. 

On the probed wafers, the percentage of fully working backplanes is 44% . In 
calculating this I have ignored the results of wafer 9 because it was used (and 

damaged) as a test wafer for post-processing planarisation (see Section 5.3.1). A 

further 29% of ‘partial pass’ die could be constructed into working SLMs with 

perhaps one or two broken lines, or a section of 32 x 256 pixels that cannot be 

fully charge balanced. These yield figures are extremely encouraging considering 

the high packing density required to fit the electrode mirror, circuitry, and signals 

into a 40 x 40 pm2 area. It is worth noting that wafer 4 tends to skew the yield 

results - without it the full pass yield is 49%, while the partial pass yield is 32%. 

I will now use some of the probe tests results of wafer 1 to illustrate some of 

the failure mechanisms that can occur on the backplane. 
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Wafer number 
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6 

7" 
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Full pass die 

11 

7 

13 

3 

9 

12 

. . .  
10 

0 

... 

Partial pass die 1 Failed die 

6 4 

1 

6 

8 

. . .  
7 

2 

17 

6 

1 

... 
4 

19 

... . . .  I 
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"Supplied to CRL Smectic Technology. 

bDamaged by planarisation before probe testing. 

"Not probe tested - used for initial devices. 

Table 5-2: Wafer yield results from electrical probe testing. Die that have 

partially passed can be made into SLMs, but will have a broken line (or lines) or 

section. 
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Failure mechanisms of die on wafer 1 

Of the 21 potentially working die on wafer 1 (see Fig. 5-8)) 11 draw no current 

and pass all the functionality and busline tests, 6 have some minor faults, and 4 

have serious or fatal faults. The failure mechanisms can usually be derived from 

the observed test signals (in some respects, the faulty die are more interesting 

because of this!). As an example, here are some observations of die 1#6: 

0 Die draws 3 mA in quiescent state, 

0 CK4 cannot be set to 0 V (it settles at 0.24 V), 

0 /ENABLE busline test signal VTEB~ = 3.35 V (rather than 0 V), 

/ENABLE154 pulse is missing from busline scan test, 

From these, I can infer that the /ENABLE154 busline is shorted to the adjacent 

branch of the CK4 signal somewhere along the column: A similar short occurs 

on die 1#8, where /ENABLE72 is shorted to CK2 (die draws 27 mA). If this 

die was assembled into an SLM, the 32 x 256 block of pixels associated with 

the CK2 signal would not be fully charge balanced as VCK2 cannot be set below 

2.6 V. In use, the FLC over this block would gradually degrade but the rest of 

the device would be unaffected, illustrating the advantage of splitting CK into 

eight separate signals. The same would occur for die 1#6 but the degradation 

would probably take longer because CK4 can be set to 0.24 V. 

On die 1#4, the /ENABLE171-173 signals do not function but the adjacent 

clock signal (CK5) is unaffected. In this case, the fault is caused by a 'puddle' 

of metal on the METAL1 layer stretching across the appropriate three decoder 

cells. Die 1#4 also illustrates another failure mechanism - VCK7 cannot be pulled 

lower than 4.5 V without overloading the driver interface, but no /ENABLES 

are affected, therefore CK7 is probably shorted to at least one electrode mirror 

somewhere in the appropriate block of 32 x 256 pixels. As a final example, die 

1#14 draws 1 mA and, from the DATA busline testers, DATA41 does not function 
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Figure 5-8: Probe test yield of wafer 1 where C = full pass (11 die), c = partial 

pass (6), and X = fail (4). 

properly. If assembled into an SLM, this die would have one broken row near the 

top of the array, and so could be used for applications where a fully working SLM 

is not essential. 



Chapter 5. The SBS256 - testing and characterisation 102 

5.3 Post-processing planarisation and SLM as= 

sembly 

The techniques described in this section were performed by various people in the 

Applied Optics Group, in the Physics department and the Silicon Research Group 

in the Electrical Engineering department, at the University of Edinburgh. They 

are acknowledged where appropriate. 

5.3.1 Wafer planarkation 

The fill factor and quality of the electrode mirrors of the backplanes can be sub- 

stantially improved with post-processing planarisation [79]. It is not appropriate 

to discuss the post-processing procedures in great detail, as the work is carried out 

by A. O’Hara, a research fellow with the Applied Optics Group. Briefly, a thick 

layer (4 pm) of SO2 is deposited onto a wafer by an Oxford Plasma Technology 

AMR electron cyclotron resonance plasma-enhanced chemical vapour deposition 

system. The oxide layer retains the profile of the underlying circuitry, with sur- 

face variations of up to 2 pm. The wafer is then polished by a Logitech PS2000 

polishing system until surface variation of the polished surface is reduced to less 

than 10 nm. This process is referred to as chemical-mechanical polishing (CMP). 

High fill-factor (84%) METAL3 electrode mirrors are then added using stand- 

ard MOS procedures3; photolithography, oxide etch, metal deposition, and metal 

etch. The wafer is not sintered on completion to ensure that mirror quality is not 

reduced by stress-relief hillock formation inherent in the sintering process. 

3These post-processing procedures are performed in the fabrication facilities of the 

Silicon Research Group. 
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Full pass 

Partial pass 

Fail 

Planarisation yield results 

7 5 

10 11 

4 5 

At the time of writing, post-processing planarisation is progressing rapidly but 

is still at the experimental stage. As part of the on-going development by the 

Applied Optics Group, two SBS256 wafers were processed. Unfortunately, probe 

testing of the first planarised wafer, wafer 9, revealed that all the die sink substan- 

tial currents (remember a die should sink negligible current in its quiescent state), 

with only two that could be made into partially functioning SLMs. Note that 

this wafer was not probe tested before planarisation because the post-processing 

commenced before the probe card had been purchased. It could have been a low 

yield wafer to start with, but the failure mechanisms on it are different from those 

seen on wafer 3 (the low yield wafer), so the low yield is probably a consequence 

of post - processing . 

Planarisation of wafer 2 was more successful. Table 5-3 shows the probe test 

yield results before and after post-processing. Although two of the fully working 

die have been damaged slightly, they can still be made into partially working 

SLMs. However, the METAL3 quality on this wafer is very poor - the layer is 

covered in what look like water marks. These are a result of inadequate cleaning 

after the CMP stage. 

I 1 Before I After 

Table 5-3: Yield results for wafer 2 before, and after, post-processing planar- 

isation. 

The photomicrographs in Fig. 5-9 show the effect of planarisation on the 

pixel fill factor. Although this technique is in the early stages of development, 

it promises to improve significantly, the quality of SLM devices. Many of the 
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procedures must be characterised and optimised, but these initial results for the 

SBS256 backplane are very encouraging. 

5.3.2 SLM assembly 

After a wafer has been probe tested, it is cut up into individual die, and some 

of the candidates glued into PGA packages and bonded by A. Ruthven of the 

Silicon Research Group. The chips are then assembled into SLMs by J. Gourlay 

and A. J. Stevens of the Applied Optics Group. The full details of the assembly 

procedures are described in Ref. [31]; only a brief summary is given here. 

The assembly procedure is performed in the Applied Optics Group LC clean 

room. All equipment and substrates are meticulously cleaned to minimise con- 

tamination. A 12 mm x 12 mm x 1.1 mm block of optically-flat, Indium Tin 

Oxide (ITO) coated glass is used as the cover glass. A thin aluminium film is 

deposited onto one of the thin faces and onto the edge of the ITO-coated face. 

The film serves as a connection between the conducting IT0 film and front elec- 

trode bonding wire (see Fig. 5-10). SiO, alignment layers are evaporated onto 

the cover glass. The SiO, is obliquely evaporated at an angle of 30" to the sub- 

strate. This is commonly referred to as medium-angle deposition. This structure 

gives relatively strong surface anchoring of the FLC molecules. Four spots of 

glue, impregnated with 2 pm spacer balls, are placed at the corners of the cover 

glass. The cover glass is then placed carefully atop the active area of the back- 

plane chip, and the glue is cured with an ultra-violet lamp. The front electrode 

bonding wire is then glued to the aluminium film on the edge of the cover glass. 

Finally, the device is filled with Merck SCE13 FLC material [59] under vacuum 

at an elevated temperature of 120 "C, and then slowly cooled back down to room 

temperature. 
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Figure 5-9: Photomicrographs of a group of six pixels (a) without, and (b) with 

post-processing planarisation on die 2#2. For unplanarised devices the flat fill 

factor is 23%, while the for planarised devices it is 84%. Courtesy of A. O’Hara. 
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Figure 5-9: Photomicrographs of a group of six pixels (a) without, and (b) with 

post-processing planarisa,tion on die 2#2. For unplanarised devices t'he flat fill 

factor is 23%, while the for planarised devices it is S4%. Court'esy of A.  O'Hara. 
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Figure 5-10: Cross-section of the SBS256 SLM. 

5.4 Viewing systems 

Here I describe two SLM viewing systems. The first system is similar to the 

configuration used in a polarising microscope. Both can use an incoherent or 

coherent light source; however, the second is more efficient if a 

used. 

5.4.1 Using a non-polarising beam-splitter 

larisers 

The first system , shown in Fig. 5-11(a), uses a non-polarising 

coherent source is 

and two po- 

beam-splitter and 

two crossed polarisers (P1 and P2). The light source is partially collimated by the 

lens and is then linearly polarised by PI, which is oriented with its polarisation 

axis vertical (aligned normal to the page for plan view given in Fig. 5-11(a)). 

The non-polarising beam-splitter transmits 50% of the light onto the SLM, while 

the other 50% is lost by reflection. If the SLM and P1 are aligned correctly, 

the light reflected from ON pixel electrode mirrors has its polarisation rotated 

by go", while that reflected from OFF pixels is unaffected. The reflected light 

is split again by the beam-splitter and 'analysed' by P2 which is oriented with 
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its polarisation axis horizontal. Light from ON pixels is transmitted through 

P2 because the FLC has rotated (the light’s) polarisation, while light from OFF 

pixels is blocked. With this configuration, the output beam is about 10% the 

intensity of the original beam because of losses in the polarisers but mainly from 

the two passes through the beam-splitter. 

LASER 

4 - A  
P2 

SBS256 BEAM LENS LIGHT SBS256 POLARISING DETECTOR 
SLM SPLITER SOURCE SLM BEAM 

SPLITrER 

Figure 5-1 1 : 

beam-splitter and two polarisers, while (b), uses a polarising beam splitter. 

Two SLM viewing configurations. (a) Uses a non-polarising 

5,4,2 Using a polarising beam-splitter 

The second configuration is illustrated in Fig. 5-11(b), Here a laser that generates 

linearly polarised light is used. Its polarisation is set to vertical (out of the page) 

so that the polarising beam-splitter (PBS), directs almost all the light (> 98% 

for a wavelength-specific PBS) onto the SLM. If the SLM is oriented correctly, 

the light reflected by ON pixels is rotated by 90°, while that reflected by OFF 

pixels is not rotated. The PBS then splits the light according to polarisation: 

horizontally polarised light (ON pixels), is transmitted straight through to the 

detector system4, while the vertically polarised light (OFF pixels) is reflected back 

4Not a human eye when a laser is used ! 
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into the laser. This configuration can have a much higher throughput (- 90% 

ignoring SLM losses) than the non-polarising beam-splitter system, and is used 

in the neural-backplane characterisation system described in Section 6.7.4. 

5.5 Optical characterisation 

Once assembled and re-tested to ensure that cell assembly has not damaged 

the backplane, the device can be viewed under a polarising microscope. The 

microscope polarisers are set to give a good OFF state when the device is not 

being addressed and then, while it is being addressed, they are adjusted to give 

optimum contrast. Fig. 5-12 shows a test pattern on a section of a working 

unplanarised device (8#2). By toggling CK very slowly ( N  1 Hz), the optical 

response can be seen to match the truth table given in Table 4-2. There is no 

visible difference between a pixel with a LOW stored in its latch (VFLC = 0 V), 

and a pixel with a HIGH stored and CK set LOW (i.e. VFAC = -Voo during the 

charge balancing section of the drive sequence). These observations agree with 

results obtained from the 16 x 16 device. 

5.5.1 Data storage 

The SRAM pixel provides robust data storage under high-read beam intensities. 

To verify this qualitively, a pattern was scanned onto an unplanarised device, and 

CK was toggled at 1 kHz. The device was viewed under the polarising microscope, 

and then placed in front of a 250 W mercury-vapour light source for just over two 

hours. It was positioned far away enough so that the infra-red radiation being 

emitted by the light source did not overheat it. The device was then viewed under 

the microscope to verify that the pattern was unchanged. 



Figure 5-12: Test pa t te rn  0 1 1  a section of SLM s#2. 
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5.5.2 P lanarisat ion 

Fig. 5-13 shows the improved fill-factor and quality of a planarised device com- 

pared to an unplanarised one. 

5.5.3 FLC switching time 

The optical system described in Section 5.4.1 was used to determine the FLC 

switching time. A neutral density filter reduced the light falling onto the pho- 

todiode detector to ensure its integral amplifier was not saturated. An ‘all ON’ 

pattern was loaded onto the SLM, and CK was toggled at 1 kHz. The rise time 

T F L C ~ ~ ~ ~  = 150k5 ps, while the fall time T F L C ~ ~ ~ ~  = 55k5 ps (see Fig. 5-14). 

Mao and Johnson [62] have also reported asymmetrical switching times for their 

neural-backplane FLCOS SLM. The asymmetry may be due to the single-sided 

FLC alignment layer. 

The potential frame rate of the device is limited by TFLC~~~.. Assuming data 

is loaded onto the backplane at 16 MHz ( T ~ p s  = 128 ps), and using Equation 4.9, 

the maximum frame rate is 1.8 kHz. Increasing the data shift register frequency 

24 MHz gives a frame rate of 2.1 kHz. As with post-processing planarisation, 

device assembly techniques are still at the experimental stage, so with better 

alignment layers and a thinner (- 1 pm) cell gap, the FLC switching time could 

be significantly reduced, which in turn, would help increase the device frame rate. 

Some devices displayed an inverse of the desired pattern during the charge 

balancing section of the drive sequence rather than the expected ‘all OFF’ pattern. 

They also exhibited a very slow optical response (T’Lc > 1000 ps). These effects 

can be attributed to a faulty connection between the IT0 front electrode and 

the evaporated aluminium along the edge of the cover glass: the front electrode 

voltage is undefined and tends to float to a value dependent on the pattern loaded 

onto the underlying electrode mirrors. 
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Figure 5-13: A pattern on a section of an SLM (a) without, and (b) with 

post-processing planarisation. 



Chapter 5. The SBS256 - testing and characterisation 112 

I I I I 1 I I I I 1 1 .o 

0.8 

0.6 

0.4 

0.2 

Figure 5-14: Optical response of the FLC. Here the global CK and FE signals 

are toggled at 1 kHz. The rise time T F L C ~ ~ ~ ~  = 150d15 ps, while the fall time 

TFLcFALL = 55*5 ps. 

5.5.4 Contrast ratio 

A charge coupled device (CCD) camera connected to a frame-store was considered 

convenient for investigating the SLM on/off contrast ratio. The camera was 

attached to the polarising microscope and the microscope was set to medium 

magnification. The microscope light source was adjusted to ensure the reflected 

light did not saturate the camera. A pattern was scanned onto the SLM and CK 

was toggled very slowly (-0.2 Hz). The image was grabbed by the frame-store 

during the ‘pattern-on’ section of the SLM drive scheme. A section of the image 

was then used to estimate the contrast ratio (see Fig. 5-15). As can be seen, 

there are variations across each pixel. These are caused by defects in the FLC 

layer, so to estimate the contrast ratio, average intensity values for area of an 

‘on’ and ‘off’ pixel are calculated. The intensity of each data point on the image 

is stored as an &bit number and so has a value between 0 and 255. The average 

value for the intensity within the black square over the ‘on’ pixel is 203, while 

that for the white square over the ‘off’ pixel is 24; therefore the contrast ratio 

is 4 : 1  - a typical value for SLM backplanes. Note that here the image was 
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grabbed when the device was operating very slowly; when the device is operat]ed 

at higher frame rates the contrast ratio is effectively reduced by 50% because of 

the charge-balancing section of the frame time. 

Figure 5-15: Estimating the pisel on/off contrast ratio. The superimposed 

white and black squares illustrate the areas over which each int.ensity average 

was taken. 

5.5.5 Uniformity 

SSFLC devices require a thin 1-2 pm cell gap to suppress the helical precession of 

the FLC molecules. The SBS256 backplane wafers supplied by AMS exhibit a sig- 

nificant curvature across their diameter, typically 2-3 pm per die. This curvature 

probably relieves the stress introduced by by the various deposition, heating, and 

etching st'eps during processing. Once a wafer is sawn up, die curvature is reduced 

to less than 1 pm, but this is still significant when compared to the 2 prri cell gap 

defined by the spacer balls we use. The die bonding procedures also add to the 

die curvature: 

0 The die are glued into chip packages which are not opticallj- flat. 

0 The thermal-setting glue used is quite viscous7 and is therefore difficult t,o 

spread into a uniform film. 

0 The die cannot be pressed flat into the package because they do not have a 

protective over-glaze coating covering the top-level metal. 
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These problems result in the assembled SLMs eshibit,ing significant, fringing part,- 

terns (see Fig. 5-16). 

Figure 5-16: ( a )  

The bull’s-eye fringe pattern - a result of backplane warpa,ge, and ( b )  the wedge 

patjt,ern - probably caused by a piece of dirt t’rapped at between the backplane 

and cover glass the edge of the array. 

Two typical fringe patterns present on fabricated SLRk.  

Solutions to die curvature problems are critical to the success of large area 

FLCOS devices such as the SBS256 and 512 x 512 DRAM SLMs and, ajt, the 

time of writing, the problems are being investigated by ,4. O’Hara [78] .  Possible 

solutions include: 

0 IJsing a less viscous glue, perhaps one available in film form. 

0 Coating the die with a protective layer of baked photo-resist so that force 

can be applied without damaging the top-level metal. 

0 Bonding the die to an optical flat, then bonding this to the chip package. 

5.5.6 Multiplexed grey-scale 

As mentioned in Section 3.3, rnultiplexing techniques can be used to emulate 

grey-scale on binary mode SLMs. 
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P. 

Temporal multiplexing 

The simple linear encoding temporal multiplexing technique is used to generate 

the grey-scale test pattern shown in Fig. 5-17. For the 16 grey levels shown, 

15 bit-planes were required. The device was controlled by the FastInt interface, 

with f c ~  = 1 kHz, so the grey-scale frame rate is -66 Hz. Even though the FLC 

quality on the device shown is not very good, the grey levels are fairly linear. 

The intensity of some of the pixels are significantly affected by domain defects in 

the FLC. 

Fifteen bit-planes are used to generate the ‘Monalisa’ test pattern shown in 

Fig. 5-18. 

Spatial multiplexing 

Fig. 5-19 shows the optical response of the FLC for the grey-scale test pattern 

when the reflected light is imaged onto a photodiode. This graph effectively 

illustrates spatial multiplexing because in each successive frame, an extra column 

of pixels is switched on. Exactly the same effect is achieved when blocks of 4 x 4 

pixels are used rather than columns. When grouped into 4 x 4 blocks, the device 

functions as a 64 x 64 array, capable of generating 17 grey levels. 

5.6 Summary 

In this chapter I have presented electrical and optical characterisation results for 

the SBS256 SLM (see Table 5-4). The current spikes generated by the charge 

balancing clock signal CK are significant but do not affect the electrical function- 

ality of the device. From probe testing the yield was estimated at 44% for fully 

working die, and 32% for partially working die. Post-processing planarisation was 

successful and increased the flat fill factor of the pixel electrode mirrors from 23% 

to 84%. The SLM is capable of generating a 2 kHz fully charge balanced frame 
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Figure 5-17: (a) Temporally multiplexed grey-scale on a section of a planarised 

device (2#19) and, (b) a cross-section intensity profile through a row of pixels 

( S t h  row from the top). 
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Figure 5-18: ’hloiialisa’ grey-scale test pat te rn  011 a sect ion of an  uriplaiiarisecl 

S L l I  ( S#2). Fift e m  bit  -planes arc used to I w d e r  the temporally mult iplesed 

h orcil’-scale. . EJecausc of an error in  t he clril-ing soft n-are. this del-ice was not prop  

m.1~- charge balaricect - not ( 3  t ha t  a prc\-ious -triangle‘ pat t e r n  i s  still part ialll- 

1-i si bl e.  



Backplane specifications 

Number of pixels 

Active pixel array area 

Die area 

Technology 1.2 pm n-well CMOS 

Pixel circuit SRAM-XOR (10 transistors) 

Pixel pitch 40 pm 

Electrode mirror area 

256 x 256 

10.24 x 10.24 mm2 

14.00 x 14.00 mm2 

19 x 19 pm2 (unplanarised) 

37 x 37 pm2 (planarised) 

Backplane operating frequency 24 MHz 

Frame scan time 

Drive voltage 

Power dissipation 

84 ps 

5-6 V 

< 90 mW 

Optical characteristics 

Chargebalanced frame rate 2 kHz 

Modulation Binary (phase or amplitude) 

Duty cycle 50% (with unpulsed light source) 

Pixel contrast ratio 4-8 : 1 

Grey scale Temporal or spatial multiplexing 

Table 5-4: SBS256 specifications. 
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Figure 5-19: Optical response of the FLC for the grey-scale test pattern shown 

in Fig. 5-17. 

rate with a contrast ratio of -8:l. Backplane warp was identified as a major 

performance limiting parameter. Finally, I demonstrated temporal and spatial 

multiplexed grey-scale techniques for generating real-time grey-scale. 



Chapter 6 

OANN - a prototype neural-detector 
backplane 

In this chapter I present a prototype neural-detector backplane that can sample 

the temporally multiplexed grey-scale generated by the SBS256 SLM. Both devices 

form the basis of an optoelectronic implementation of the hidden layer in a multi- 

layer perceptron artificial neural network architecture. I begin by discussing the 

requirements for such a system and then describe the simplified system used to 

characterise the neural-detector backplane (OANN). Photo-induced charge leak- 

age is identified as a potential problem for the activity storage circuits on the 

backplane, so a technique to significantly reduce charge leakage is presented. The 

neuron circuit and backplane drive scheme are then described in detail. Finally, 

test and characterisation results are presented. 

6.1 Introduction 

Artificial neural networks (ANNs) are useful tools for solving many prediction, 

modelling, and classification problems. As classifiers, they can be used to identify 

patterns and trends in data, which can be in numerical, electronic, or optical form. 

In most ANN systems, the input layer is the location of the massive analogue 

parallelism, while the subsequent layers are narrower. Optoelectronic implement- 

120 
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ations are particularly suitable for applications where a high fan-in architecture 

can be used, and the input pattern is available in the optical domain. As with 

other optical systems, FLCOS SLMs offer the possibility of compact, low-power, 

and high frame rate solutions. However, ANNs generally require adaptive, ana- 

logue interconnection weights between the neuron processing units. FLCOS SLMs 

are adaptive but normally operate in a binary mode because the backplanes are 

based on digital circuits, and the commonly used SSFLC configuration is binary 

in nature. Nevertheless, as shown in Section 3.3, their high frame rates permit 

temporal multiplexing (TM) to be used as a means of real-time grey-scale emu- 

lation. Although processing rate is sacrificed because of the multiple subframes 

required, the resulting grey-scale frame rates can still be significantly higher than 

those available with active-matrix nematic LCDs. For example, nematic LCDs 

can exhibit about 16 grey levels and can operate at up to 50 Hz, while the SBS256, 

operating at 2 kHz, can generate 16 grey levels at 500 H z  using four subframes 

and a binary weighted pulsed light source: a factor of ten improvement. 

6.2 System requirements 

I begin this section with a brief description of a system that can perform the 

forward pass function of the hidden layer in the multiple layer perceptron (MLP) 

architecture. I follow this with a discussion of the advantages and limitations of 

using TM grey-scale in such a system. I then describe a simplified system suitable 

for testing and characterising the OANN backplane. 

6.2.1 An optoelectronic hidden layer ANN 

Fig. 6-1 shows the basic components of a system based on the matrix-matrix 

crossbar architecture (see Section 3.2.1). The input SLM can be optically or 

electrically addressed. If optically addressed, the input scene can be converted 

directly from the incoherent to coherent domain. A device such as the Isophote 
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SLM described in Section 2.4.3, would be suitable; it would also perform a useful 

edge enhancement operation on the input scene. If the input SLM is electrically 

addressed, there will be some data transfer overheads because the image must be 

captured by, say, a CCD camera, and then scanned onto the SLM. 

ONTO 

LAYER 
- NEXT 

I W 

INPUT FAN-OUT WEIGHT FAN-IN NEURAL 
(SLM) OPTICS MATRICE OPTICS BACKPLANE 

(HOLOGRAM) (SLM) (LENSLETS) 

Figure 6-1: Input-to-hidden layer section of an optoelectronic ANN. 

Once the image I is in the coherent domain, Fourier filtering techniques could 

be used to preprocess the image. A fan-out hologram replicates the (preprocessed) 

image onto the weight matrix SLM, W .  After the multiplication, the resulting 

IW submatrices are fanned-in onto the neural-detector backplane using a lenslet 

array. To take full advantage of the weight SLM pixel count, a lenslet array with 

square aperture micro-lens could be used. The backplane performs the summing 

and thresholding operations and then generates optical or electrical outputs that 

can be fed onto further layers. 

Note in this system, the interconnection weights would first be calculated in 

software using the backpropagation learning algorithm, and then downloaded to 

the interface controlling the weights SLM. To cope with the imperfections in the 

components of the optical system, the weights can then be re-adjusted by placing 

the system in a learning loop. This approach is used in a variety of electronic 

pulse-stream [34] and analogue [42] hardware implementations. 

6.2.2 Using temporally multiplexed grey-scale 

The TM approach has a considerable impact on the design, operating conditions, 

and performance of the optoelectronic ANN system. 
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In analogue and pulse-stream neural hardware, capacitors are normally used 

to store packets of charge that represent the neuron activations. However, with 

TM grey-scale, there is a significant mismatch between the overall frame time of 

the SLM and the time it takes to charge a typical capacitor on an IC backplane. 

For example, it takes 50 ps to increase the voltage on a 5 pF capacitor by 1 V 

using a 100 nA current, whereas the time to display and charge balance a single 

bit-plane on the SBS256 is 500 ps for a 2 kHz frame rate. The overall frame time 

depends on the number of greys required, but even for a single subframe, the 

voltage on a 5 pF capacitor would rise by 10 V if a 100 nA current was sourced 

onto it (ignoring the fact that the current sourcing circuit would probably be 

operated with a 5 V power supply). To overcome this mismatch, a sampling 

scheme must be used in the neuron circuit to access the activity capacitor. 

The long overall frame time of the SLM can also lead to charge leakage prob- 

lems. Low charge leakage is critical to the functionality of the neuron circuit, so 

I will discuss it separately in Section 6.3. 

Below is a list of some advantages and limitations associated with using TM 

greys in an optoelectronic implementation. 

Advantages 

1. Flexible number of grey level weights. Some simple applications may 

only require a few grey levels, while others may require 6 to 10-bit 

greys. More greys can be generated simply by adding more subframes. 

However, there will be a corresponding decrease in the system pro- 

cessing rate. 

2. The polarisation based systems described in Section 3.4.3, have two 

optical pathways, one for positive activations and one for negative ac- 

tivations. This architecture is less amenable for use with integrated 

neuron backplanes. By implementing negative weights with 2’s com- 

plement temporal multiplexing (see Fig. 6-2), a single pathway system 

can be realised. 
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Figure 6-2: Temporally multiplexed 2’s complement grey-scale scheme for gen- 

erating positive and negative activations. Using four bit-planes, sixteen grey 

levels can be realised - here four different activations are illustrated. The neuron 

circuit drive scheme must sample each bit-plane with the appropriate binary 

weighting. Note also, that one of the bit-planes is used for the sign-bits, so the 

neuron sampling circuit must respond in the appropriate manner. 

Limitations 

1. Decreased dynamic range within the neuron circuit. The negative ac- 

tivations must be subtracted from the activity capacitor, and then the 

positive ones added (or vice versa) - they are not done simultaneously, 

and thus the dynamic range is lower. 

2. Two temporally multiplexed SLMs cannot be efficiently cascaded be- 

cause one must cycle through all its bit-planes for each of the bit-planes 

on the other. If the weight SLM is temporally multiplexed, then the 

input SLM must: 

- generate true grey-scale, 

- use spatial multiplexing for grey-scale, or 

- work in a binary mode. 
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6,2,3 Simplified system 

With enough time and resources, the system shown in Fig. 6-1, could be built to 

perform useful optoelectronic neural computation. However, within the limited 

time-scale of my PhD project, I built a simplified system to verify that temporal 

multiplexing can be used €or weight generation. 

The simple optical system shown in Fig. 6-3, provides the prototype 4 x 4 

OANN backplane with optical input signals corresponding to a 16 x 16 input 

pattern. To eliminate the problems of cascading two SLMs (the input and weight 

devices), the multiplication of the input pattern by the weights matrix is calcu- 

lated in software. The resulting IW products for each of the hidden layer neur- 

ons are encoded into the appropriate bit-planes and down-loaded to the SBS256 

FastInt RAM store. Therefore, there is no need for the input SLM or the fan-out 

hologram. The fan-in lenslet array is replaced by a microscope objective lens, 

so to match the 1:l mark-space ratio of the input photodiodes on OANN, the 

combined IW patterns must also be placed on the SBS256 with a 1:l mark-space 

ratio. Each of the sixteen 16 x 16 IW patterns occupy 640 x 640 ,urn2 on the 

SBS256, while the photodiodes are 100 x 100 ,urn2. The x6.3 microscope object- 

ive scales and focuses the IW patterns onto the appropriate photodiodes on the 

neural-detector backplane. The x 6.3 objective matches the desired demagnifica- 

tion to within 2%. 

The OANN backplane (see Fig. 6-4) detects the incoming light signals, stores 

the resulting activations, and then encodes the activations as electronic pulse 

width outputs [12]. Pulse width outputs are desirable because they can be fed 

directly into the EPSILON1 pulse-stream ANN chips [34,45], so that further elec- 

tronic layers can be added to perform more complex classification tasks. 

'EPSILON - Edinburgh Pulse Stream Implementation of a Learning Oriented 

Network. 
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Figure 6-3: The simplified optical system suitable for characterising the OANN 

neural-detector backplane. The 1:l mark-space ratio of the IW submatrices on 

a 128 x 128 section of the SBS256 are required to match the mark-space ratio of 

the input photodiodes on the OANN backplane. 

Note that the simplifications made to the original system shown in Fig. 6-1, 

are purely to make the test system easier to build, align, and use, and are not 

limitations of the TM approach. 

6.3 Activity Storage 

As mentioned in the previous section, a sampling scheme must be used to access 

and update the activity capacitor CACT within the neuron circuit. The single- 

transistor DRAM circuit, as used in the DRAM-type SLMs, is a simple sample 

and hold circuit (see Fig. 6-5). However, if used in an optical system without 

any modification, it can suffer from severe photo-induced charge leakage effects. 

Once C A C T  has been charged and isolated, the charge can leak away through the 

transistor channel off resistance ROFF (typically 10 "* 'S2),  and through the drain- 

substrate reverse-biased junction DDB of the pass transistor. The reverse-biased 

junction D D B  is the more significant leakage route. Any thermally or optically 

generated minority-carriers (electrons in the p-substrate) near it can be swept 

across its depletion region so discharging CACT. 
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Figure 6-4: Photomicrograph of the 4 x 4 OANN backplane. The 3 x 3 nim 

die was fabricated by ,4MS on a CAE multi-product wafer brokered 12)- EURO- 

CHIP. I chose to implement it on the CAE process because I ha,d used i t  for 

the SBS256 backplane, and also because it  is an epitaxial process which can 

help reduce charge leakage effects (see Section 6.3). Each neuron occupies 

200 x 200 pm2, with the input photodiodes placed on a 1:l mark-space ratio. 

Note that t)he active area is almost entirely covered in METAL2 to reduce the 

number of photo-induced electrons in the p-substrate. 
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VRESET 

CACT CACT 

Figure 6-5: (a) Simple sample and hold circuit using one transistor and an 

activity capacitor, and (b) equivalent circuit when S/H = 0. 

Thermally and optically generated carriers are constantly being created and 

then eliminated by recombination. When carriers are generated, they can either 

recombine locally or diffuse and drift away from the region where they were 

generated. The time it has to diffuse is called the carrier life-time and the distance 

it moves is known as the diffusion length [92]. Carrier recombination can occur 

in the bulk or at a surface. The surface recombination rate depends on the how 

the surface was prepared, and often dominates the recombination process. For Si 

the electron carrier lifetime is typically between 10 and 100 ,us. The diffusion 

I 
length Ln is given by 

so when the electron mobility P n  = 497 cm2/Vs (for the CAE process), = 

10-100 ps, and k T / e  = 25 meV at room temperature, the consequent value for 

Ln is between 113 and 357 pm. These values are significant because they show 

that metal shielding layers must be extended over quite a distance beyond range 

to reduce the effect of the photo-induced electrons on sensitive circuitry. 

Even though a metal protective layer should help to reduce charge leakage 

effects, 100% coverage is unlikely if only two layers of metal are available on a 

particular process. It is normal layout practice to route signals both horizontally 

and vertically on the metal layers, so there will almost certainly be gaps for light 

to impinge onto the silicon substrate. Therefore, photo-induced minority carriers 
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will probably be generated near storage capacitors if a reasonable circuit packing 

density is used: further protection is required. 

6.3.1 Improving charge storage - the n-well ring 

As most of the photo-induced carriers are generated near the surface, the access 

transistor to CACT can be surrounded with an n-well ring tied to the positive 

power rail so that minority electrons tend to be swept into it, before they have 

a chance to reach the access transistor drains (see Fig. 6-6). The n-well ring 

structure has been used by other researchers to reduce latch-up [99] and to im- 

prove the signal-to-noise ratio of the Hughes optically addressed liquid crystal 

light valve [lll]. An epitaxial process, such as the CAE process, can also im- 

prove the efficiency of the n-well ring because the built-in electric field created by 

the doping gradient from the epi to substrate, attracts minority carriers towards 

the surface [99]. 

LIGHT 
METAL2 SHIELD I 

0 2 

EPI-P 

P+ SUBSTRATE 

Figure 6-6: Charge storage n-well ring protection to reduce charge leakage. 
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I incorporated two test circuits on the SBS256 backplane to compare the 

effect of using, and not using, the n-well ring protection structure (see Fig. 6- 

7). The simple source-follower circuit used to monitor the activity voltage has 

linearity and range limitations but was considered adequate. Fig. 6-8 shows the 

results of the 1% charge decay time for a 5 pF capacitor with, and without, n- 

well ring protection. The measurements were taken by Matthew Aitken of the 

Electrical Engineering department as part of his honours degree project. This 

simple protection structure decreases the decay rate by a factor of over 2000 for a 

range of light intensities. Extrapolating to the 5.6 mW/cm2 intensities expected 

in the optical system, the 1% leakage time is just less than 100 ms. Therefore 

a complete forward pass calculation can be performed without any appreciable 

charge leakage from CACT. 

r - - -  1 I Y 
I U I  I I 

N-WELL SA4 
RING LOAD 

N-WELL SA4 

10k 
RING 

Figure 6-7: Test circuit included on the SBS256 backplane to compare charge 

leakage from CACT with, and without, n-well ring protection. 

6.4 Neuron circuit 

The neuron circuit is a simple optical-in, electronic out, processing node. Each 

neuron (see Fig. 6-9) consists of a photodiode, current-routing circuitry, an activ- 

ity storage capacitor CACT, and a two-stage comparator to encode the neuron 

activity into a pulse width signal. 
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Figure 6-8: Charge leakage with, and without, n-well ring protection on the 

the SBS256 test circuits. Results courtesy of Matthew Aitken. 
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Figure 6-9: Schematic of a single neuron. 



Chapter 6. OANN - a prototype neural-detector backplane 132 

Inputs 

RESET 0/0 S/H 

0 0 0 

0 0 1 

0 1 0 

0 1 1 

1 X X 

Effect on 

VACT 

No change 

Increases in proportion to I ~ H  

No change 

Decreases in proportion to I ~ H  

Resets to VZERO 

Table 6-1: Truth table for the current-routing control signals. When S/H =1, 

VACT rises or falls (depending on O/O) by an amount IPHT~/H/CACT, where TS/H 

is the sample and pulse time. 

6.4.1 Operation 

A photodiode operating in the photoconductive mode is used to detect the incom- 

ing IW bit-planes. The resulting photocurrent is sunk from the current-routing 

circuitry. To implement positive and negative weights using a 2’s complement 

drive scheme, the current-routing circuitry must be able to selectively source the 

photocurrent onto, or sink it from, the activity capacitor CACT. The signal 0/0 

is used to define the direction of current flow whenever the sample and hold signal 

S/H is pulsed (see Table. 6-1). 

Fig. 6-10 illustrates the 2’s complement drive scheme used to emulate 32 grey 

levels - 16 positive (including 0), and 16 negative. Five subframes are required, 

one for the sign-bit, and four for the binary weighted bits. The sequence starts 

with a RESET pulse to set VACT to a zero activation state, VZERO. When S/H 

is high, VACT rises or falls (depending on O/O) by SVACT given by, 

T S I H ~ P H  

CACT NACT = 

where rS/H is the sample and pulse time. 

In subframe 5 ,  the O/O signal is high so when S/H is pulsed, a current I p H  is 
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010 

sunk from CACT. Then for the remaining subframes, 0/0 is low so when S/H is 

pulsed, the current IpH is sourced onto CACT. 

I I I I 
I I I I 

I I 

I I I I I I 

I I I I I 1 
I I I I I I 
I I I I I I 

BITPLANE 1 5 1 4 1 3 I 2 l 1 1  

n1 I I I I I 

rn -r 
I I I - 1  I 

S/H I I I I I 
I I 1 I I 

I I I I I RESET 11 I I I I I 

I 
I 

I ;/I I I I 1 I 
I I I I I 

TF I I I I I 

I I 1 I I I 

Figure 6-10: OANN control signals for the 2’s complement drive scheme to 

implement 16 positive and 16 negative weights. The S/H sequence (not to scale) 

is a binary weighted pulsed signal. The pulses occur just before the falling edge 

of the SLM charge-balancing global clock signal CK (not shown). This gives the 

FLC over ‘on’ pixels as much time as possible to switch, so that there is not a 

spurious pattern on the SLM when S/H is pulsed. 

The S/H signals are synchronised with the bit-planes that appear on the SLM. 

More specifically, they occur just before the falling edge of the SLM global clock 

signal CK: remember that CK is used to charge balance the FLC (see Section 4.6). 

This ensures that the FLC over ‘on’ pixels has as much time as possible to switch, 

so that there is not a spurious pattern on the SLM when S/H is pulsed. 

Once all the bit-planes have been presented, the comparator encodes the ac- 

tivation voltage VAC* as a pulse width encoded signal by applying the desired 

transfer function signal TF to the other input of the comparator. 
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6.4.2 Back-end circuit details 

Fig. 6-11 shows a transistor-level diagram of the neuron back-end: the input 

phot odiode, current-router , and activation capacitor. 

Figure 6-11: Transistor level diagram of the neuron back end. 

The back-end circuit should respond linearly to the intensity of the incoming 

light, so a photodiode, rather than a phototransistor, is used to detect the in- 

coming light because it has a more linear response. The dark-current of a typical 

pn+ photodiode on the n-well CAE process is approximately 1 nA [94], so the 

incoming light levels should be high enough to generate currents of at least 10 nA 

in the photodiode. 

The 0/0 signal is used to enable or disable the cascode current mirror. A 

cascode current mirror has a much more linear response than that of a simple 

two-transistor current mirror (see Ref. [2, pages 219-2391), The current mirror 

transistors are long and thin (W = 4 pm, L = 16 pm) to decrease the effects of 
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process variation. When S/H is high and 0/0 is low, the copied version of IPH 

is sourced onto CACT, but when 0/0 is high, the current mirror is disabled, and 

IPH is drawn directly from CACT. When S/H is low, current is either sourced or 

sunk by the reference voltage VSPONGE, depending on whether 0/0 is high or 

low. The sizes of the switching transistors are not critical to the functioning of 

the circuit. 

The actual value of activation capacitor CACT is not critical, so it was made as 

large as space would permit. The gates of three large nMOS transistors with their 

sources and drains tied to ground (each with a gate area = 65.2 x 30 pm2), result 

in CACT = 8.4 rt 0.4 pF. The thin gate oxide within the transistors’ structure 

helps provide the largest capacitance per unit area (1.4 5 0.1 fF/pm2) on the 

CAE CMOS process. However, when a transistor gate is used as a capacitor, 

care must be taken to ensure the voltage between the gate and the substrate is 

kept greater than the transistor threshold voltage (typically VT = 0.6-0.8 V for 

nMOS devices). 

VACT operating range 

The circuits and components limit the range over which the activation voltage 

VAC* can operate. The upper range is limited by the minimum voltage required 

across the output transistors of the cascode current mirror to ensure they re- 

main in the saturation mode. It is also limited by the transfer characteristic of 

the sample and hold pass transistor M8. HSPICE simulations (SS worst-case) 

showed that VACT could rise to just above 4 V when Voo = 6 V. As mentioned 

above, the lower limit is constrained by the requirement to keep the voltage on 

a transistor-capacitor above VT. Therefore, the drive scheme should ensure that 

the combination of the Ip, photocurrent levels, and the total duration of the 

S/H pulses, do not result in VACT rising above 4 V, or below 1 V. 
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Charge-sharing event 

A significant charge-sharing event can occur because of the way the current- 

router is implemented. When 0/0 is low, and the S/H pulse-train is applied, 

the circuit behaves properly by dumping the appropriate currents onto CACT, be- 

cause the photodiode junction capacitance is isolated from CACT by the current 

mirror. However, when the 0/0 signal is high, and S/H is pulsed, the photo- 

diode and CACT are effectively connected in parallel by the transistor M8, so a 

charge-sharing event occurs because the photodiode junction capacitance (voltage 

dependent, but typically 2 pF for the voltages present in circuit) is similar to that 

of CACT- 

This problem was identified early in the backplane design cycle - an extra 

current mirror isolating-stage could have been added but would have increased 

the complexity of the circuit. Instead, I decided to ensure the drive scheme 

sequence minimised the charge-sharing event (see Fig. 6-10). This is achieved 

by presenting the sign-bit subframe at the start of the sequence, and ensuring 

V V ~ P ~ N G E  = VVZER~. Therefore, after the RESET pulse at the start of the se- 

quence, the voltage across the photodiode and VACT should be equal, so negligible 

charge-sharing occurs when S/H is pulsed. Note that without an extra isolating 

current mirror, this is the only way negative activations can be satisfactorily 

presented to the neuron. A scheme where, say, four positive and then four negat- 

ive subframes are presented to this current-router circuit, would not work, because 

there would be four charge-sharing events associated with the negative activation 

subframes. However, this scheme is less attractive anyway, because it requires 

almost twice as many subframes as the 2’s complement scheme, to represent the 

same number of grey levels. 

AC analysis 

The back-end circuit exhibits a relatively low frequency response. HSPICE AC 

analysis simulations showed that when IPH = 100 nA and a small 10 nA AC signal 
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is superimposed on the input, the circuit has a 25 kHz 3 dB bandwidth response 

(see Fig. 6-12). This limited response is a combination of the capacitance of the 

large (100 x 100 pm2) photodiode, and the relatively low currents present. Even 

though the circuit operates in a pulsed mode, and so a standard HSPICE AC 

simulation is not strictly appropriate, it shows that the circuit can cope with the 

1-2 kHz frame rates available from the SBS256. 
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Figure 6-12: HSPICE AC analysis simulation of neuron back-end. For 

IPH = 100 nA and a small 10 nA AC signal superimposed on the input, the 

circuit has a 25 kHz 3 dB bandwidth response. 

Noise considerations 

HSPICE noise analysis simulations showed that the thermal, shot, and flicker 

noise [loo] generated within the circuit components was equivalent to a few mil- 

h o l t s  of noise on the activity capacitor, and so would probably be overwhelmed 

by system noise present on the power supply rails and from capacitive coupling 

of the electrical input and output signals. 
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6.4.3 Front-end circuit details 

M17 

After all the bit-planes have been presented and sampled onto CACT, the 2-stage 

comparator (see Fig. 6-13) encodes VACT as a pulse width signal by applying the 

desired transfer function signal TF to the other input of the comparator. The 

comparator is based on the standard design given in Allen and Holberg (Ref. [2, 

pages 333-3491). It does not need to have high performance characteristics so 

has been designed to be quite small, with the only design constraints being a 

common mode input range of 1-5 V and a tail current of 2 pA. The output of 

the comparator is then passed to an inverter busline-driver. It can drive the 

busline that routes the neuron output to an output pad, with a rise/fall-time of - 100 ns. If the comparator drove the busline directly, the fall-time would be 

almost 3 ps because the charge on the busline capacitance (w 0.5 pF) would have 

to be discharged through M16, which sinks a constant current of 2 pA. 
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6.4.4 Neuron layout 

For this prototype backplane, high packing density was not critical, therefore the 

neuron (see Fig. 6-14) occupies a relatively large 200 x 200 pm2 area. With a 

200 pm pitch, the 100 x 100 pm2 photodiodes are on a 1:l mark-space ratio, and 

there is plenty of space for the transistor circuitry and activity capacitor. The 

photodiode is clearly visible in the top-left quarter of the circuit, while the triple 

transistor activity capacitor is placed in the top-right quarter. Note the n-well 

guard ring surrounding the access transistors in the bottom-centre section. Most 

of the control signals are routed horizontally in METAL1. However, the power 

rail VDD, BIAS, and the neuron output buslines are routed in METAL2 VDD 
also acts as an optical shield covering as much of the circuitry as possible. 

6.5 OANN backplane 

The 3 x 3 mm2 OANN backplane (see Fig. 6-4) was fabricated by AMS on a 

CAE multi-product wafer brokered by EUROCHIP. As there are only 16 neur- 

ons, the output signals (N00-15) are routed individually off the array to output 

buffer pads, so no addressing circuitry is required. For larger arrays (> 8 x 8)) 

multiplexing decoders would probably be necessary. The four photodiodes at the 

corners of the array can be used to help align the optical system. A few other 

test circuits are also included but will not be discussed here. 

6.6 OannInt interface 

I built the OannInt interface to test and characterise the OANN backplane (see 

Fig. 6-15). The interface is computer controlled and uses the same control signals 

as the SBS256 FastInt interface so that they can both be operated in parallel by 

a single PC. The interface control sequence is defined by a simple state machine 
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clocked by a signal derived from the crystal driving the FastInt state machine. 

This ensures that both interfaces can operate synchronously when configured 

correctly. 

OANN 
BACKPLANE 

- 

VSPONGE 

- 
RESET 

- S/H 

RAM 
ADDRESS 
COUNTER 

PC DI096 CONTROL 

CARD k? RAM 

* REFERENCE 
VOLTAGES ' 16 

INTERFACE SIGNAL 

I I 

NEURON 
BUFFER OUTPUT NOO- 15 "' RAM _1 L 'A- - 

Figure 6-15: Block diagram of the OANN backplane interface (OannInt). For 

clarity, the various control and RAM addressing signals have not been drawn. 

I designed the interface to be as flexible as possible. The RESET, O/O, and 

S/H control signals are all stored as a RAM look-up table so that the control 

sequence can be redefined easily. Similarly, the transfer function RAM supplies 

the 8-bit DAC with a sequence of bytes corresponding to the desired transfer 

function TF. Simple triangular ramp or variable-gain sigmoidal functions can 

be produced simply by loading the RAM with the appropriate bit-pattern. To 

simplify backplane characterisation, TF is always a simple single-sided ramp. 

The DAC that converts the byte sequence in the transfer function RAM into 

TF can only provide a full scale deflection of 0 to 4 V, so the full range of the 

2-stage comparator cannot be verified. However, as the neuron current-routing 

circuitry can only operate up to VACT = 4 V, the extra 1 V (1-5 V) range of the 

comparator is actually redundant anyway. 
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After the FastInt has been loaded with the appropriate bit-planes and delay 

counts, and the OannInt has been configured to generate the control signals at 

the appropriate times, both interface state machines are triggered to cycle once 

through their programmed sequences. 

As with the counters in the FastInt, the RAM address counter is configured as 

a programmable down counter. When it reaches 255, both the transfer function 

RAM and the neuron output RAM are enabled. While the TF signal is ramped, 

the neuron states are read into the neuron output RAM until the address counter 

reaches zero. The state machines then enter their idle states until the next trigger 

pulse from the PC. The sequence in the RAM corresponding to the neuron states 

can then be read by the PC. 

The voltage references VZERO, VSPONGE, and BIAS can be adjusted using 

potentiometers. The reference VSPONGE must be able to sink as well as source 

current: a LM324 op-amp configured as a buffer connected to the VSPONGE 

potentiometer provides this capability. 

For all the experiments described in the next section, the OannInt state ma- 

chine and RAM counters are clocked at a frequency of l MHz, or f ~ ~ ~ / 1 6  (where 

the clocking frequency of the FastInt state machine and SBS256 data shift re- 

gisters, f ~ s ~  = 16 MHz). This helps provide a good matching between the pro- 

grammable counters on both the FastInt and OannInt, and permits a wide range 

of frame rates and S/H pulses widths to be selected. Because of this, the transfer 

function TF is defined over a 256 ps range, and thus the neuron pulse width out- 

puts will lie between 0 and 256 ps. However, this means that the neuron outputs 

are not fully compatible with the EPSILON chip set, which require 0-20 ps input 

signals. This is not a limitation of the OANN backplane - the OannInt could be 

modified to generate the required EPSILON pulse widths, but I have not done 

SO, purely for the convenience of having the two interfaces well matched. 
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6.7 Testing and characterisation 

Ten die, already bonded into 40-pin chip packages, were supplied by EUROCHIP. 

Of these, three had been damaged during bonding. Initial visual inspection of 

the candidate chips also revealed that there were significant residue deposits on 

many of the neuron photodiodes (see Fig. 6-16). This may have been caused 

by an incomplete cleaning step during the fabrication sequence. ,Although initial 

electrical testing showed that the residue did not short the photodiodes to the 

neighbouring buslines, its opacity would obviously affect the intensity of the light 

actually hitting the active area. Chip #1 wa,s least affected by this problem, and 

so was used in all the optical characterisation experiments described MOW. 

Figure 6-16: Photomicrograph showing the residue on the photodiodes on 

chip #4. This may have been caused by an incomplete cleaning step during the 

the fabrication sequence at AMS. 
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6.7.1 Pulse width output versus VACT 

The two-stage comparator of the neuron front-end encodes the voltage VACT on 

the activity capacitor into a pulse width signal. By pulsing the RESET signal, 

VACT can be set to the voltage reference VZERO. Fig. 6-17 shows the pulse width 

output with respect to VACT, where each data point represents the averaged value 

of all 16 neurons on chip #2. The standard deviation for each average is less than 

1 ps so all the neurons generate essentially the same output for a given VACT. 

The response is also approximately linear over the range tested. 

250 

200 

150 

100 

50 

0 

Figure 6-17: Pulse width output with respect to neuron activation voltage 

VACT. Here each data point represents the averaged value of all 16 neurons on 

chip #2. The standard deviation for each average is less than 1 ps. 

6.7.2 Sample and hold characteristics 

For a given intensity of light, the duration of the S/H signal determines how much 

current is sourced onto, or sunk from, from the activity capacitor. The backplane 

was placed in a simple optical system (see Fig. 6-18) to investigate the effect of 

varying the S/H pulse width. 
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OANN 
BACKPLANE P1 P2 LIGHT 

SOURCE 

Figure 6-18: Simple optical system to investigate the current-router functional- 

ity. The polariser P2 can be rotated with respect to P1 to attenuate the incoming 

light according to Malus’ Law. 

The white light source is partially collimated by the lens and then passes 

through the two polarisers P1 and P2. By rotating P2 with respect to P1 (or vice 

versa), the transmitted light can be attenuated according to Malus’ Law [91]. The 

top-left alignment photodiode APNo at the edge of the neuron array was used to 

help set P2 to give linearly increasing light intensities for each S/H sweep. The 

values at the end of each trace correspond to the voltage across a 500 kS2 load 

resistor connected to APNo. 

Fig. 6-19 shows the pulse width output of neuron N10 on chip #1 with respect 

to the S/H pulse width for five linearly increasing light intensities, with 0/0 set 

low and high. The results show that the basic functionality of the back-end circuit 

is correct. There is a slight mismatch between sourcing current onto, and sinking 

current from, CACT for the same light intensity. This is probably due to the 

imperfect mirroring capability of the cascode current mirror. 

6.7.3 Effects of process variation 

The process variation inherent in all CMOS processes was expected to affect 

the uniformity of response of neurons across the array. Fig. 6-20 illustrates the 

variation across chip #1 for uniform illumination. Here, the neurons were reset 

to give a 143 ps pulse width output, and then the S/H signal was pulsed for 

128 ps. After this, the average neuron output was 228 ps, while the minimum 
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Figure 6-19: Pulse width output of neuron N10 versus S/H for several different 

intensities, with 0/0 set low and high. The values at the edge of each trace 

correspond to the voltage across a 500 kR load resistor connected to the alignment 

photodiode APNo. 
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was 220 ps and the maximum was 234 ps. This corresponds to a 5 9 %  variation 

* 
c 

I - 

on the average if 143 ps is taken as the zero point. Variations in the input 

photodiodes, the cascode current mirror transistors, and the transistor-capacitors, 

all contribute to this variation. 
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Figure 6-20: Neuron pulse width output variation on chip #1 while under 

uniform illumination. Here the neurons were reset to give a 143 ps output, and 

then S/H was pulsed for 128 ps. 

6.7.4 Cascading the SBS256 and OANN 

Fig. 6-21 shows the experimental set-up used to investigate how the SBS256 SLM 

and OANN backplane perform in the optical system described in Section 6.2.3. 

The He:Ne laser (wavelength = 632.8 nm) is rated at 10 mW, but is almost 

10 years old, and actually generates just over 1 m W  of optical radiation. A 

planarised SBS256 SLM (device 2#11) is used to ensure that enough light passes 

through the system to fall onto the neuron photodiodes. While an ‘All ON’ 

pattern was displayed on the SLM, S/H was pulsed for 64 ps (with VZERO set 

to give an initial 142 ps neuron pulse width signal). The resulting pulse widths are 
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Figure 6-21: ( a )  The simplified optical system described in Section 6.2.3, and 

( b )  a photograph of the actual s-\-st%eni a,nd int)erfaces. 
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6.7.5 Neuron characterisation 

The results above show tha t  the neuron responses are affected tlie non-  

uniforrni t ies on the S L l l  del-ice. Ne1-er.t heless. hj- select irig a neuron that is 

not affected bj- a fringe. its response to t h e  2's complement dri1-e scheme c m  be 

investigated . 
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Using a 6-bit 2’s complement drive scheme, 64 grey levels can be realised (-32 

to +31). Fig. 6-23 shows the transfer characteristics for five binary input test 

patterns with the weights swept from -32 to +31. The test patterns are 8 x 8 

rather than 16 x 16 because the software controller program on the PC had a 

limited amount of memory available for data storage. For each value on a weight 

sweep, every pixel in the input pattern is multiplied by the weight value. These 

IW multiplications are calculated in software as explained in Section 6.2.3. To 

reduce alignment requirements in the optical system, the resulting 8 x 8 ITV 

pattern is tiled to make a 32 x 32 pattern, and then encoded into the six 2’s 

complement bit-planes These are then down-loaded to the FastInt RAM store, 

I 

and a forward pass calculation is performed. 

300 I 

-40 -30 -20 -10 0 10 20 30 40 

WEIGHT 

Figure 6-23: Transfer characteristics for neuron NO0 on chip #l. For each of 

the five input test patterns, the trace corresponds to a sweep of all the possible 

weights using a 6-bit 2’s complement drive scheme. 

Fig. 6-23 shows the transfer responses of neuron NO0 on chip #1 for the test 

patterns. Here the S/H signal is pulsed for 4 ps in the least significant bit-plane, 

8 ps in the second least significant bit-plane, and so on. Using six bit-planes, 

the most positive weight corresponds to a total of 64 ps. The resulting pulse 
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width output for this S/H pulse is slightly different (252 ps as opposed to 225 ps) 

to that obtained in the previous experiment because VZERO has been adjusted 

slightly to give a different starting point. 

The response is fairly linear with respect to the number of neurons on in the 

input pattern. Defects in the FLC layer on the SLM are likely to be the main cause 

of any nonlinearity. As with the sample and hold experiment described above 

in Section 6.7.2, there is a slight mismatch between sourcing current onto, and 

sinking current from, the activity capacitor. Again, this is a result of mismatching 

between the current generated in the photodiode, and the copied current in the 

current mirror. This could be compensated for by adjusting the S/H pulse in the 

sign subframe so that it is slightly longer, a refinement that has not been carried 

out here. 

6.8 Summary 

In this chapter I have presented the OANN prototype neural-detector backplane. 

The device has a 4 x 4 array of neurons that can sample the temporally mul- 

tiplexed grey-scale generated by the SBS256 SLM. At the start of the chapter, 

I discussed requirements for an optoelectronic system incorporating the SBS256 

SLM and the OANN backplane. After presenting a technique to reduce signi- 

ficantly photo-induced charge leakage from storage capacitors, I described the 

neuron circuit in detail. Test and characterisations results were then presented. 

I demonstrated a 2’s complement temporally multiplexed SBS256 drive scheme 

to generate positive and negative activations that the neuron array could sample. 

However, the non-uniformity of the SLM device affected the uniformity of re- 

sponse across the neuron array. 



Chapter 7 

Discussion and conclusions 

In this chapter I evaluate the performance of the two IC designs presented in the 

preceding chapters. I also discuss possible improvements to the devices, and give 

pointers to possible areas of future work. 

7.1 SBS256 SLM 

In Chapters 4 and 5, I presented the SBS256 SLM. 

7.1.1 Backplane evaluation 

The backplane circuits function as designed: the pixel exhibits the expected stor- 

age and XOR-gate functionality, while the peripheral addressing circuits load the 

image bit-planes onto the array as expected. 

The current spikes generated by toggling the global clock charge-balancing 

signal CK, are approximately 40-50% of the value estimated by the simple su- 

perposition of current spike predicted by HSPICE simulations for a single pixel. 

Although lower than estimated, they illustrated the need to ensure that transistor 

sizing and addressing architecture must be taken into account when designing a 

large array SLM backplane. 

152 
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The bit-plane scan time of the array is limited by the rise/fall times of the data 

shift register’s non-overlapping clock buslines. HSPICE simulations predicted 

that the data shift register would operate at up to 25 MHz: operation at 24 MHz 

was verified. 

On the probed wafers, the percentage of fully working die is 44%, while another 

29% will function as partially working SLMs. These yield figures are extremely 

encouraging, considering the high packing density of the transistor circuits and 

buslines running through the array. The busline yield circuits suggested by I. Un- 

derwood, proved to be a simple but effective means of determining the yield failure 

modes of the backplane. 

The backplane was also used to help develop the post-processing chemical- 

mechanical planarisation technique being investigated by A. O’Hara. Preliminary 

results show that this technique can be successfully used to increase significantly 

the optical quality of SLM devices. It is particularly suitable for improving the fill- 

factor of devices such as the SBS256 that have several transistors and buslines in 

each pixel. Once the technique has been fully characterised, it is likely to become 

an integral part of SLM fabrication. 

7.1.2 Optical evaluation 

The device functions as an electrically-written, optically-read, memory device and 

exhibits the expected FLC optical response. Qualitative experiments show that 

data storage is robust under high read-beam intensities. The 4 4 1  pixel on/off 

contrast ratio is similar to that observed on other SLMs. This is likely to improve 

as better FLC alignment techniques are developed. 

The asymmetric FLC switching times are curious but have been observed in 

other SLM devices and test cells. The relatively slow 155 If: 5 ps switch-on time 

limits the device’s maximum frame rate to -2 kHz. Again, better alignment 

techniques and thinner cells (by using 1 pm spacer balls rather than the 2 pm 

balls) should improve the switching times, and therefore frame rate. For example, 
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if both the FLC switching times could be reduced to 40 ps, and data is scanned 

in at 24 MHz, the device could operate at a fully-charge balanced frame rate of 

4 kHz (with the pattern appearing on a 50% duty cycle). The frame rate of present 

devices is sufficient to demonstrate temporally multiplexed grey-scale using the 

simple linear encoding scheme. The grey-scale rendition is approximately linear 

but can be affected by defects in the FLC. 

The main limitation of the assembled devices used in this project is the non- 

uniformity of the FLC layer. This is caused by a combination of the warp intro- 

duced to the backplane by (1) the CMOS processing steps, and (2) the gluing 

procedure when the die are inserted into chip packages. When viewed under white 

light illumination, a series of approximately circular ‘rainbow’ fringe patterns is 

observed over the pixel array. These significantly reduce the optical quality of 

the device. The problem is also observed on the 16 x 16 and 176 x 176 devices 

but is much more noticeable on the large active area of the SBS256. At the time 

of writing, die-flattening experiments are being carried out by A. O’Hara. 

7,1,3 Improvements 

The Smectic Technology group at Thorn EMI’s Central Research Laboratories 

(CRL) have recently procured a 25 wafer batch of SBS256 backplanes for commer- 

cial exploitation (see Appendix B). Fabrication at AMS should commence soon. 

To help improve the backplane yield, I have redesigned the METAL2 mask. Be- 

cause the transient current spikes were lower than estimated, I have made the 

VDD and CK buslines slightly narrower. This increases the spacing between 

them and the adjacent /ENABLE lines to at least 2.6 pm (the minimum design 

rule spacing is 1.8 pm), so the number of busline shorts ought to decrease, thus 

increasing the yield. 

As mentioned above, improvements in the device assembly techniques are 

required. Nevertheless, the results obtained so far with limited resources, equip- 

ment, and manpower are very encouraging. Possibly the most dramatic improve- 

ment in optical quality will come if and when the die-flattening experiments are 
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successful. The cell thickness can then be reduced to 1 pm, and so improvements 

in FLC switching times and alignment quality can be expected. These improve- 

ments, along with planarisation, should help the SBS256 become a powerful, high 

quality SLM, suitable for a variety of applications. For example, researchers on 

the SCIOS [go] collaborative project plan to use the device as a reconfigurable 

holographic router in an optical computing architecture, while researchers on 

the HICOPOS [41] project plan to use two SBS256 devices in a matched-filter 

correlator system. 

7,1,4 A more compact SRAM-type design 

Now that planarisation is available, some of the constraints on the pixel layout 

can be relaxed. The most obvious is that the electrode mirror can be reduced so 

that it can just accommodate the various contacts and vias between the circuit 

transistors and the top level metal. The single pixel design, where every pixel 

is oriented identically, can be replaced by the ‘Quad’ pixel design illustrated in 

Fig. 7-1. Here the VDD, CK and GND buslines can be shared between adjacent 

pixels, thus saving on area. All the pMOS transistors can be placed in the same n- 

well, again saving area by eliminating some of the spaces required between n-wells 

and nMOS transistors. These modifications should reduce a single SRAM-XOR 

type pixel to about 30 x 30 pm2 using the same 1.2 pm CMOS process (that is, 

the pixel pitch is about 25 times the minimum transistor size). This could either 

increase the operating frequency of the backplane because of shorter data shift 

register clocking buslines, or increase the pixel count if the the same active area 

is used. 

7 A 5  SRAM versus DRAM 

For a given CMOS process, the SRAM-XOR pixel will occupy more area than 

the single-transistor DRAM-type. This results in either a larger active area for 

a given number of pixels, or a smaller number of pixels for a given active area. 
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t t t  
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Figure 7-1: The ‘Quad’ pixel layout. Here the pixels are no longer oriented 

identically. This permits (1) the VDD, CK, and GND lines to be shared between 

adjacent pixels, and (2) all the pMOS transistors for four pixels to be placed in 

one n-well. With planarisation the electrode mirrors can also be much smaller. 

For a 1.2 pm CMOS technology, the ‘Quad’ pixel should fit into an mea of about 

60 x 60 pm2, so the pixel pitch is about 25 times the minimum transistor size. 
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For example, with a 1.2 pm CMOS process similar to that used for the SBS256, 

McKnight e t  al [66] implemented a 256 x 256 array using a 20.6 x 20.6 pm2 

single-transistor pixel. Using this size of pixel, a 512 x 512 device would be 

realisable on the same active area as the SBS256. However, the SRAM-XOR 

pixel has improved data storage and FLC drive capabilities. Including the SRAM 

latch overcomes the photo-induced charge-leakage problems associated with the 

DRAM-type - an important factor for a device that operates in an optical system ! 

With an XOR-gate in each pixel, a charge balancing scheme can be used that does 

not result in an inverse pattern appearing on the device. Therefore the SBS256 

does not require a pulsed light source to view it. 

The FLC switching time is inversely proportional the FLC’s spontaneous PO- 

larisation PS (in nC/cm2), so faster FLC materials generally have higher values. 

In a DRAM-type device, sufficient charge must be dumped onto the data storage 

capacitors to switch the overlying FLC. The active-addressing technique permits 

the array to be addressed very rapidly, ideally within one FLC switching time. 

However, for FLC mixtures with Ps greater than 40 nC/cm2, the charge dumped 

onto the capacitor may not be enough to switch the FLC so the access transist- 

ors must remain on until the FLC switches. Therefore, the array takes N FLC 

switching times to address, where N is the number of columns, so the potential 

frame rate is severely affected. In the SRAM-XOR pixel, the electrode mirror 

is actively driven via circuit transistors by the power rails, so there is an effect- 

ively unlimited amount of charge available to switch the FLC. The pixel design 

is therefore more suitable for driving faster FLC mixtures. 

As process geometries shrink, backplane operating volt ages will tend to de- 

crease to limit the effects of hot-carrier degradation [25]. This will also tend to 

favour the SRAM-XOR type over the DRAM-type, again because the electrode 

mirror is actively driven. 

Both types of device are suitable for a variety applications, but the DRAM- 

type device is favoured where high resolution is the most important system re- 

quirement. The SRAM-XOR type device is particularly suitable for systems 
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where the read-beam is intense, say at the input stage of a cascaded SLM system, 

or in an application where a pulsed light source cannot be used. The synchronous 

FLC switching available with the pixel design may also be useful in applications 

where a whole image must appear on the device simultaneously, with no address- 

ing skew. The static nature of the SBS256’s data storage permits sections of 

the array to be addressed while other sections retain a previous pattern. This 

permits architectures such as the joint transform correlator (see Section 3.2.2), to 

be efficiently implemented using the device. It should be noted that both types 

of device show the desired pattern on a 50% duty cycle. Some applications may 

require a 100% duty cycle, so a device based on the three-transistor pixel [94] 

may be more suitable. 

Summing up, SRAM-XOR type devices offer improved functionality over 

the DRAM-type and are still competitive in terms of pixel count compared 

with current DRAM-type devices. However, using the 1.2 pm process with a 

10.24 x 10.24 mm2 active array, the DRAM-type has the potential to increase to 

about 750 x 750 if a 13 pm pixel pitch can be used, while the SRAM-type could 

probably increase to 350 x 350, if a 30 pm pitch pixel based on the ‘Quad’ design 

is used. Obviously with a smaller geometry process, such as a 0.8 or 0.6 pm one, 

a higher pixel density could be achieved for both types but, at present, these 

processes are not available on large area die. 

7.2 OANN neural-detector backplane 

In chapter 6, I presented OANN - a prototype neural-detector backplane. 

7.2.1 OANN evaluation 

The OANN backplane consists of a 4 x 4 array of optical-in, electronic-out, 

processing units, or neurons. It was designed to sample the grey-scale generated 
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by the SBS256 SLM. By using a 2’s complement grey-scale encoding scheme, the 

neurons can respond to positive and negative activations. 

Early in the backplane design cycle, I identified photo-induced charge leakage 

as a potentially severe problem for the activity storage capacitors. Therefore I 

included a simple protection technique that had been verified using a test circuit 

on the SBS256 (see Section 6.3). This n-well protection circuit reduced charge 

leakage by a factor of about 2000, making charge leakage almost insignificant 

during the grey-scale frame rate of the SLM (typically 2-8 ms). The technique is 

also suitable for improving charge storage in standard electronic circuit designs 

where optical radiation is not present, that is, the structure also reduces the 

number of thermally generated minority carriers close to the access transistors. 

The n-well ring does result in a small area increase for the storage circuit; however, 

this could probably be offset by using a smaller storage capacitor. 

The neuron circuits function as designed. The input photodiode and current 

mirror sub-circuit can respond linearly to low light intensities, with currents as 

low as 50 nA being generated and copied. The current routing circuits can source 

current onto, or sink current from, the activity capacitor; however, a charge- 

sharing event can occur if an inappropriate drive scheme is used. The 2-stage 

comparator generates a pulse width output signal dependent on the voltage stored 

on the activity capacitor. 

A 2’s complement grey-scale drive scheme was successfully demonstrated using 

six bit-planes to generate the 64 levels of activation - 32 positive, and 32 negative. 

The neuron circuit responded in the appropriate manner. The drive scheme can 

be optimised to take account of the number of grey levels weights required for a 

particular application, and the light intensities present in the optical system. 

The rather low power of the laser used in the experiments resulted in quite 

long S/H integration times (50-100 ps),  but these match satisfactorily with the 

bit-plane frame time available from the SLM devices. A more powerful laser would 

be required for a cascaded SLM system where the multiplication is performed in 

the optical domain. 
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The variation across the neuron array is 9%. This is due to process variation 

and is inherent in analogue integrated circuit implementations. When the back- 

plane is used in an optoelectronic ANN system, this variation could be taken into 

account by including the system in the weight-adjusting learning loop. However, 

the gross variation resulting from the fringes on the SLM used to characterise the 

backplane could not be overcome by ‘system in the loop’ learning: an optically- 

flat SLM is required. 

7.2.2 Improvements and future work 

The most obvious requirement for satisfactory operation of a simple ANN system, 

is to have an optically-flat SBS256 device. As mentioned earlier, flat devices 

should be available soon. 

In the longer term, the system proposed in Section 6.2.1 is feasible. A SBS256 

SLM could be used for the input plane, but a device such as the Isophote is 

preferable because it can provide a coherent image directly from the ‘real-world’. 

Some Fourier Optics preprocessing could also be included. With a computer 

generated fan-out hologram and a fan-in lenslet array, a large fraction of the 

SBS256 pixel count could be utilised in the weight plane. This represents up 

to 65,536 interconnection weights. Note that the maximum size of the input-to- 

hidden layer is limited by the number of pixels on the weight SLM. Therefore, 

there must be a trade-off between the numbers of neurons in the input and hidden 

layers. For example, if a 64 x 64 input image is required, the hidden layer can 

be a 4 x 4 array, while for a 32 x 32 image, the hidden layer can be 8 x 8. From 

these figures, a higher pixel count weight SLM device may be required for some 

classification tasks. 

The neuron circuit could be redesigned to increase its frequency response, 

and the neuron array could be increased to an 8 x 8 array without any need to 

add decoder addressing circuitry. Sixty-four output neurons would map well to 

the EPSILON pulse-stream neural chips, which could implement the hidden to 

output layer of a multi-layer perceptron ANN. A system such as this with, say 
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32 x 32 input, 64 hidden, and 64 output neurons, could perform useful image 

classification tasks at frames rates of 500 Hz (assuming the SBS256 can operate 

at 4 kHz, and eight bit-planes are required). 

Summing up, I demonstrated a prototype optical-in, electronic-out neuron 

device. It is suitable for optoelectronic ANN networks architectures where high 

fan-in is required, and further layers can implemented using electronic pulse- 

stream neural chips. Of course, the neuron circuit design could be extended to 

generate an optical output for further optical processing, by redesigning it to be 

incorporated into a FLCOS SLM (see Appendix A for a description of a test pixel 

that I included on the SBS256 - it converts an analogue voltage into an optical 

pulse width signal). 

7.3 Conclusions 

The technology of ferroelectric liquid crystal over silicon has much to offer the 

fields of optical image processing and miniature displays systems. It has advanced 

rapidly over the past eight years or so, and will continue doing so for the foresee- 

able future. Experience has given researchers a good ‘feel’ for the technology’s 

strengths and limitations, thereby allowing systems researchers to begin designing 

systems that take advantage of the strengths, while the device researchers address 

the performance limitations of present devices. The technology is also amenable 

to high-volume production, and so costs should gradually decrease if sufficient 

quantities are manufactured and sold. Devices such as the SBS256 presented in 

this thesis, and the 176 x 176 DRAM are now commercially available. This al- 

lows systems researchers to incorporate them into their systems as ‘off-the‘shelf’ 

components. 

In the field of artificial neural networks, the optoelectronic approach should 

feature prominently in image recognition applications, where the input exists in 

the optical domain. The increasing electronic and optical bandwidths of new 
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FLCOS SLMs devices should permit the implementation of high-speed opto- 

electronic ANNs, with many hundreds of thousands of adaptive interconnection 

weights and hundreds, possibly thousands, of neurons. These systems should be 

capable of performing sophisticated image processing tasks. 
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Appendix A 

Pulse width modulation test pixel 

The simple temporal multiplexing scheme described in Section 3.3.2 can be thought 

of as a discrete pulse width modulation scheme, where the pulse width is built up 

over a number of subframes. Here I describe an analogue pulse width modulation 

circuit that I included as a test structure on the SBS256 FLCOS SLM. I will give 

a brief description of how the circuit operates and show some preliminary results 

from the test structure. 

A. l  Circuit principles and operation 

As with the SBS256, the FLC is operated in a binary mode, but the width of the 

voltage pulse applied across it is controlled by an analogue value stored at the 

pixel. The circuit is based on the neuron pulse width output circuit described 

in Section 6.4.3. It consists of a 2-stage comparator, an XOR gate, and an 

electrode mirror (see Fig. A-l(a)). The comparator provides a pulse width output 

dependent on its input signals, Vp and VN. Vp  is the analogue voltage representing 

the desired activation of the pixel, and VN is a triangular ramp voltage. By 

ramping VN from 5 to lV, pulse widths ranging from 0 to 100% duty cycle can be 

achieved. The XOR gate is included to ensure the FLC can be charge balanced, 

just as in the SBS256 pixel. Because of the charge balancing requirement, the 

pixel can be on for between 0 to 50% of the frame time. Fig. A-l(b) illustrates 
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how increasing V', increases the width of the pulse applied across the FLC, which 

increases the time the FLC is switched to its ON state. 

The comparator does not need to be high performance and so was designed to 

be quite small. The only design constraints used were a common mode input range 

of 1-5 V and a 2 pA tail current. As this is a proof of principle circuit, both inputs 

of the two-stage comparator are connected to external pads. If implemented as 

a pixel array, the input voltage Vp would be held on a storage capacitor, and 

V'& would be a global ramp signal. As Vp would be stored dynamically, photo- 

induced charge leakage would occur. However, this could be significantly reduced 

by incorporating the n-well protection ring presented in Section 6.3. 

A.2 Results 

The electrode mirror signal is routed to a test pad to facilitate electrical testing. 

By keeping CK low, the 2-stage comparator exhibits a similar linear pulse width 

output response to that of the OANN neuron output circuit. 

The optical response is shown in Fig. A-2. Here the CK signal and V'& are 

operated synchronously at 1 kHz and V p  is decreased from 5 to 0.5 V, in 0.5 V 

steps. A gradation is clearly visible; however the FLC contrast is not very high 

so there is not an obvious difference between adjacent grey levels. The response 

is fairly linear but defects in the FLC layer caused by hillocks on the electrode 

mirror make quantitative measurements very difficult. 
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Figure A-1: (a) Schematic and (b) timing diagram for the pulse width modu- 

lation test pixel. 
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Figure A-2: Optical response of the pixel. Here Vp is decreased from 5 to 0.5 V, 

in 0.5 V steps. 

A.3 Future work 

The test structure shows that the pulse width modulation scheme works in prin- 

ciple. With fast switching (< 50 ps) ,  high contrast ( n ~  1OO:l) FLCs, the technique 

could be used to generate essentially analogue grey-scale (in the time-domain) at 

kilohertz frame rates. However, it should be noted that the grey-scale exists in 

the time-domain, so detector systems must integrate over the whole frame time 

to ensure the grey-scale is sampled correctly. 

The pixel circuit could probably be implemented in a 80 x 80 pm2 area using 

the 1.2 pm process, so a 128 x 128 array would be feasible. The most obvious 

application would be as a medium resolution raster-scanned grey-scale display 

device. The device could also perform thresholding and contrast enhancement 

functions on an input image, simply by altering the externally generated ramp 

function VN. This type of pixel would also be suitable for incorporating into an 

optical-output version of the neuron used on the OANN backplane, thus permit- 

ting further layers of neurons to be implemented optically. 
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SBS256 press cuttings 

Below are some of the press cuttings and advertisements that have appeared in 

various specialist electronics and optelectronic magazines, regarding CRL Smectic 

Technology’s commercialisation of the SBS256 SLM presented in this thesis. A 

copy of the CRL’s data sheet is also included. 
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Figure B-1: Scanned from Electronics, 23 May 1994. 
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Figure B-3: Scanned from Ph,otonics Spectru. July 1994. 
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Figure B-4: Scanned from Opto & Laser Europe, Sepkmber 1994. 



Silicon Backplane (SRAM) 
Spatial Light Modulator 

(SBS256) 

Ievice Features 

S LM u s e s  single crystal sil icon integrated circuit and ferroelectric smectic 
liquid crystal technology 

The use of  standard CMOS V L S l  technology t o  form circuitry a t  each pixel 
allows the f a s t  switching times of the ferroelectric liquid crystal t o  be utilised, 
and offers the potential of  low prices for quantity supplies. 

SRAM latch technology al lows high incident l ight levels 
T h i s  IC structure i s  not sensitive t o  incident light s o  it i s  suited t o  use with 
high levels of  continuous illumination. 

H Very  fas t  frame scan t imes 
The SLM can be operated a t  a frame rate of  up t o  3kHz. As an example, a t  
this operating speed the binary nature of  the liquid crystal effect can be used 
t o  generate significant pseudo grey levels for observation by eye. 

Compact device 
The SLM device is physically compact, so the associated optics which are 
required for systems can also be small. 

H PC addressable 
The standard device is offered with a simple P C  interface. T h i s  allows 
straight forward operation of  the SLM in a laboratory, and application specific 
interfaces can be supplied. 

Small pixel pitch and phase or amplitude switching 
The 40pm pixel pitch and the binary phase or amplitude switching of  the SLM 
make it suitable for optical processing applications such a s  compact 
correlators. 

Faster interface, optics and mounting hardware 
We are able t o  offer standard or custom optical base plates and suitable 
optical components for use with the SLM. A faster  interface using memory 
mounted close t o  the SLM and a video interface will be available. (These will 
allow more use of  the f a s t  frame scan rates available with this SLM) 



Data Summary Target Specification 

SBS256 with Simple Interface System 

Number of pixels 256 x 256 (65,536 total) - 
Active array size 10.24 x 1 0 . 2 4 m m  
Pixel pitch 4 0 p m  
Pixel mirror size 19 x 1 9 p m  
Effective fill factor 2 2 %  
Modulation Binary Phase or amplitude 
Flatness Better than h/2 Target 
Operating wavelength 

Cell thickness for maximum 
contrast 

6 3 3 n m  standard Can be optimised fo r  operation at other 
customer specified wavelengths 
where: m is an integer 

(2m + I)A 
4 An 

h is the operating wavelength 
An i s  the liquid crystal  birefringence 

d =  

Interface PC Digital Input Simple interface is upgradeable fo r  specific 

Software PC compatible 
Refresh rate 

Frame scan time 

Duty cycle 50% Unpulsed l ight source 
Pixel contrast ratio 1 5 0 :  1 * Target 
Area contrast ratio 1 5 0 :  1 * Target 
Optical power density T o  be determined High levels expected 
SLM drive voltage 6V 
SLM power dissipation - 300mW Estimated 
Mounting of SLM 

Output (DIO) card customer applications 

- 20Hz 

- 3 0 0 ~ ~  @ 25°C 

Rate limited by the simple interface for  a 
single frame and PC dependant. 
-3kHz SLM device update rate. (Charge 
balanced operation) 

PGA socket onto 
custom P C B  
138 x 63 x 3 5 m m  
190 x 100 x 4 0 m m  

Un-packaged P C B  is designed of ease of 
mounting t o  accessory optical base plates. 
Supplied with removable t rans i t  covers. 
Plast ic cased ?CB Custom interface size 

Electrical supply None r e w i r e d  Dr ive voltages derived f rom h o s t  P C  
~~ ~~ ~~ ~ ~ ~~ ~~ ~~ ~~ ~ 

Anti-reflection coatings optimised for  particular customer specified wavelengths are available 

T h e  S i l icon Backplane incorporated in this device w a s  designed at T h e  Un ive r s i t y  o f  Edinburgh. 

CRL Smectic Technology, 
Dawley Road, Hayes, Middlesex, UB3 
United Kingdom 
Telephone +44 (0)81 848 6428 
Facsimile +44 (0)81 848 6565 
E-mail  smectic @ thorn-emi-crl.co 

All performance figures and other data contained in this document 
must be confirmed in writing before they become applicable to any 
tender, order, or contract. The company reserves the right tb make 
alterations or amendments to the information in this document and/or 
product specifications at its discretion. No freedom to use patents or 
other industrial property rights is implied by the publication of this 
document. 

0 Central Research Laboratories Ltd., 1994 
Issue 1 

Registered Office. DawleY 
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Abstract 

We present a high fan-in optoelectronic artifical 
neural network with temporally multiplexed grey scale 
weights and a prototype neural-detector backplane. 
The weights are generated using a high performance 
lzquid crystal over silicon spatial light modulator. The 
neural-detector backplane is capable of recognising both 
ezcitatory and inhibitory activations. 

1 Introduction 

Optics offers much for neural integration. Optical 
systems can have massive fan-in, and optical pro- 
cessing has potential speed advantages over a purely 
electronic system. More pragmatically, an optical sys- 
tem can interface directly to an optically-presented 
task. In most neural systems, the input layer is the 
location of the massive analogue parallelism. Sub- 
sequent layers are narrower. We describe below an 
experimental implementation of a modest layered net- 
work where the input layer is optical, and the out- 
put layer electronic. We believe that this offers an 
optimal combination of the strengths of both tech- 
niques in many recognition applications. Most ex- 
amples of direct optical-input systems use a (possibly 
integrated) sensor array for image capture, with sub- 
sequent electronic processing. With spatial light mod- 
ulator (SLM) technology, the first layer of processing 
1s performed optically, under electronic control. We 
believe this to be a novel and powerful combination. 
We also present a simple technique to significantly re- 
duce photo-induced charge leakage of the neuron ac- 
tivations which are stored dynamically on capacitors. 

The SLM technology of ferroelectric liquid crys- 
tal over very large scale integrated (FLC/VLSI) sil- 
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icon has matured considerably over the past few 
years. These high speed, low power SLMs function as 
electronically- wri t t en, opt icall y-read memory devices 
and are used as reflective optical processing elements 
in image recognition, miniature displays and optical 
switching. At present, most SLM silicon backplanes 
work in a binary mode, as they are based on stand- 
ard digital circuits. Similarly, FLCs are inherently 
binary in nature. However, their fast switching times 
and the high addressing speeds of silicon backplanes 
permit temporal multiplexing to be used as a means 
of real-time grey-scale emulation. This renders them 
suitable as adaptive weight planes in optoelectronic 
neural networks. 

2 256 x 256 pixel FLC/VLSI SLM 

The silicon backplane of a FLC/VLSI SLM con- 
sists of an 2-dimensional array of pixels, each with 
a memory circuit and reflective electrode-mirror, and 
peripheral circuitry such as shift registers and/or de- 
coders to address the array. An electric field can be 
generated across a thin overlying layer of FLC by ap- 
plying the appropriate voltage to the electrode-mirror. 
This can alter the state of the FLC to produce binary 
phase or amplitude modulation in an incident read- 
beam. 

Many of the medium-resolution FLC/VLSI SLMs 
designed so far have been based on the single tran- 
sistor dynamic random access memory (DRAM) type 
pixel [6, 3, 21. As a development of previous proto- 
type devices 17, 4,  51, we have designed, fabricated, 
and tested a 256 x 256 pixel FLC/VLSI SLM that 
incorporates a static random access memory (SRAM) 
latch and an exclusive-OR (XOR) gate at each pixel 
(see Fig.1). Although requiring more area, the SRAM- 



XOR pixel has significant performance advantages 
over the DRAM-type. These include robust data stor- 

balancing to prevent chemical degradation, synchron- 
ous FLC switching across the whole array, and the 
ability to switch high spontaneous polarisation FLC 
mixtures. The SLM was constructed by sandwich- 
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Figure 2: Cross-section of a FLC/VLSI SLM. 

Figure 1: (a) Schematic and (b) transistor-level dia- 
gram of the SRAM-XOR pixel. 

Figure 3: Test pattern on a section of the 256 x 256 
pixel FLC/VLSI SLM. 

ing a 2-3pm film of FLC between the VLSI silicon 
backplane and a cover glass coated with a transparent 
front electrode (see Fig. 2). The backplane was fab- 
ricated by Austria Mikro Systeme on a 1.2pm n-well 
double-metal, 5.5V, complementary metal oxide semi- 
conductor epitaxial process. The 256 x 256 pixels are 
on a 40pm pitch, resulting in a 10.24mm x 10.24mm 
active array. A bit-plane is loaded column-sequentially 
onto the array at  up to 24MHz via a 32-bit data bus 
(see Fig. 3). 

The SLM can display up to 3000 bit-planes per 
second. This high frame rate permits temporal mul- 
tiplexing to be used to generate real-time grey-scale. 
Temporal multipiexing involves splitting a grey-scale 
image into a number of time sequential subframes. 
Each subframe has an associated bit-plane that is gen- 
erated by an appropriate encoding algorithm. The bit- 
planes are sequentially scanned into the SLM so that 
'integrating' over a number of subframes gives the de- 
sired grey-scale image. The linear encoding algorithm 
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&own in Fig. 4 is satisfactory for generating a small 
Dumber of grey levels; however, each extra grey level 

an extra subframe. The frame rate is inversely 
proportional to the number of grey levels. 

fully tested and characterised. The multiplication of 
the input pattern by the interconnection weights mat- 
rix (IWM) is calculated in software. A more advanced 
system is planned, where the multiplication will be 
performed optically by cascading two SLMs. A 4 x 
4 array of 16 x 16 input-IWM patterns are placed on 
the SLM with a mark-space ratio of 1:1, to match the 
spacing of the photodiodes on the neural backplane. 
The lens, L1, scales and focusses each of the input- 
IWM patterns onto the appropriate photodiode in the 

5 neural-detector backplane. If a computer generated 

more of the SLM could be utilised as the input-IWM 
patterns would not have to be on the same mark-space 
ratio as the photodiodes. 
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Figure 4: Temporal multiplexing using a linear encod- 
ing algorithm. 

A more efficient binary weighted encoding al- 
gorithm pulsed sampling in the interrogation system 
can result in much higher frame rates. In this case, 
n subframes can generate 2" grey levels. So, for ex- 
ample, 256 grey levels can be generated at 125Hz with 
eight subframes each lins in duration. 

3 System Architecture 

The optical system (see Fig.5) has been made as 
simple as possible so that the neural backplane can be 

Read Beam 

n jc 

SLM Polarizing Neural L1 
B earn-S plitter Backplane 

Figure 5: The optical system 

3.1 Neural-Detector Backplane 

The neural-detector backplane consists of a 4 x 4 
array of optical-input, electronic output neurons (see 
Fig. 6). The four photodiodes at the corners of the 
array are used to help align the optical system. The 
outputs are pulse width modulation encoded so that 
they are compatible with the EPSILON chip set [l]. 
This will allow us to construct a multi layer perceptron 
network for more complex image classification. 

3.2 Neuron Circuit 

Each neuron consists of a 100pmx100pm photo- 
diode, current-switching circuitry, an activity storage 
capacitor, and a two-stage comparator to encode the 
neuron activity into a pulse width signal (see Fig. 7). 
The photodiode is operated in the linear photocon- 
ductive mode. Its dynamic range is limited to 102- 
103 by shot, thermal, generation-recombination, and 
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flicker noise sources inherent in it and the support- 
ing circuitry. To keep the activity capacitor, CACT, 
to  a reasonable value (5pF), a sampling scheme was 
used. A binary weighted pulse train, synchronised 
with the bit-planes that appear on the SLM,  is ap- 
plied to the sample and hold signal, S/H. The sig- 
nal 0/0 defines whether charge is dumped onto or 
taken off CACT, whenever S/H is pulsed. Most of  
the time however, S/H is low so current is sourced or 
sunk from the reference signal, VSPONGE, depend- 
ing on O/O. After both positive and negative activa- 
tion components have been presented to the activity 
capacitor, the 2-stage comparator encodes VACT as 
a pulse width signal by applying the desired transfer 
function signal, TF. This signal is generated by count- 
ing through a block of off-chip RAM that feeds an 8-bit 
digital-to-analogue converter. Simple triangular ramp 
or variable-gain sigmoidal functions can be produced 
simply by loading the RAM with the appropriate bit- 
pat tern. 

Figure 7: Transistor level diagram of optical input 
electronic output neuron. 

3.3 Activity Storage 

The neuron activity is stored dynamically on CACT. 
The drains of access transistors M8 and M9 are 
reversed biased n+p diodes so any photo-induced 
minority-carriers (electrons in the p-substrate) gener- 
ated near them could be swept across their depletion 
regions so discharging CACT. From a previous test- 
chip, we found that just covering a storage capacitor 
and associated access circuitry with second-level metal 
to protect against direct incident light did not improve 
the charge storage characteristics by an appreciable 
amount. Photo-induced minority electrons in p-type 
Si can travel for up to 300pm before they become loc- 
alised in a recombination centre and recombine with 
a hole, so the second-level metal covering the neuron 
circuitry was extended 400pm beyond the edge of  the 
array. 

As most of the photo-induced carriers are generated 
near the surface, the access transistors were surroun- 
ded with a ring of  n-well [8] tied to the positive power 
rail so that minority electrons would tend to be swept 
into it before they reached the access transistor drains 
(see Fig. 8). Fig. 9 shows the results of the 1% charge 

Figure 6: Photomicrograph of the 4 x 4 neural- decay time for a 5pF capacitor with and without n- 
detector backplane. Each neuron occupies 200pm x well ring protection. This simple protection device 
200pm. has decreased the decay rate by a factor of  over 2000 

for light intensities present in the system so that a 
complete forward pass calculation can be performed 
without any charge-decay degradation in the result. 
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4 Conclusions 

This paper has described a modest system. 
However, the potential is much greater. FLC/VLSI 
SLM technology will continue to improve both in 
frame rate (up to 10kHz) and resolution (up to 1024 x 
1024). The neural-detector plane could be expanded 
to up to a 16 x 16 array before multiplexing would be 
required on the output pins. Such a system would be 
capable of performing recognition tasks in the optical 
domain in a compact and robust form. Also, program- 
mability - the ubiquitous problem with optical systems 
- is dealt with electronically, thus allowing of optical 
neural systems that are reprogrammable in situ, and 
electronically. 
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ABSTRACT 

Chemical-mechanical polishing (CMP) has been used as the planarization technique 
in the fabrication of the silicon backplanes which form the basis of the opto-electronic 
devices, electrically addressed spatial light modulators (SLMs). The production of high 
optical quality devices requires that the interlevel dielectric be planarised to optical tol- 
erances. The CMP process was applied to commercially fabricated wafers as part of a 
post-processing procedure. The local surface variation of the interlevel dielectric was 
consistently less than 1OOA providing a suitable substrate onto which the top level metal 
is deposited. 

INTRODUCTION 

Spatial light modulators (SLM) are opto-electronicdevices used in the fields of optical 
computing, image processing and image displays [l]. One type of SLM is the liquid 
crystal (LC) over silicon device which combines these two mature technologies [Z]. The 
SLM silicon backplane consists of an array of pixels similar to DRAM or SRAM devices 
but each with an electrode whose voltage is determined by the associated pixel control 
circuitry. The voltage on the electrode dictates the state of the overlying liquid crystal 
which in turn is used to modulate light incident onto the device. The electrodes must 
also operate as mirrors and with the standard fabrication of the backplanes two problems 
are encountered. First, the metal surface is optically very poor due to the distortion of 
the film during metal sinter. Secondly, the pixel mirrors have a very low fill factor (i.e. 
active mirror area relative to overall pixel area). Both of these problems can be overcome 
by adding a further level of metal which is dedicated to the fabrication of the electrodes 
thus allowing optimisation of this level optically [3]. To ensure a flat surface onto which 
the top level metal is deposited, the interlevel dielectric must be planarized to the high 
optical standard required for devices illuminated by coherent light. 

The level of planarization required is set not by the photolithography and step mver- 
age considerations but by the more demanding optical requirements of the device. The 
surface variation must be <X/10 (- 500A for visible light ) to provide the necessary 
optical quality for a standard mirror with stricter requirements for higher quality mirrors. 
These specifications are more severe than the N 2700A requirement [2] typically set by 
the fabrication of sub 0.5pm geometries. CMP is shown to be capable of realising these 
unique demands and has been incorporated into a post-processing procedure which is 
applied to commercially fabricated wafers. 



POST-PROCESSING PROCEDURE 

The post-processing procedure was used to add a further level of metal to commer- 
cially fabricated wafers from AMS in Austria. This technique has been applied to two sets 
of wafer designs. A 1762 DRAM S L M  backplane fabricated in 3pm p-well CMOS tech- 
nology and a 2562 SRAM SLM backplane fabricated in 1.2pm n-well technology. The 
wafers were removed from the normal process prior to passivation to improve the normal 
functionality of the devices as designed, which is associated with the LC switching speed. 
Our custom post-processing began with the deposition of a thick (- 4pm) layer of Si02 
using ECR-PECVD which conforms to the underlying circuitry. The topography of the 
surface at this stage was - lpm peak to peak. This partially sacrificial layer requires to 
be thick to compensate for the effect of erosion during CMF', thus allowing the polishing 
stage to achieve the required surface finish while leaving sufficient material to provide a 
suitable inter-level dielectric. Also, since the underlying metal layer is populated with 
hillocks a thicker dielectric is desirable to reduce the chance of shorts between the metal 
layers. The wafers were then polished using a Logitech P S 2 W  polishing system. The 
polishing pad is made from expanded polyurethane and on the Logitech system the pad 
curvature can be varied to fine tune the polish rate uniformity. During polishing the 
wafer surface is analysed periodically to estimate the polishing rate and uniformity. The 
process is stopped when the desired surface finish is obtained. The remaining procedures 
are 'standard' processing steps first to produce the vias and then to deposit and pattern 
the top level metal. 

RESULTS 

The level of flatness achieved by the CMP process was independent of the starting 
wafer. The resultant local surface variation was consistently less than 100A (250pm 
scans) with some measurements as low as 4OA r.m.s., figure 1. This degree of flatness 
ensured that the interlevel dielectric provided a suitable substrate onto which the second 
or third level metal was deposited for the 176 DRAM SLM or the 256 SRAM S L M  re- 
spectively. From an optical point of view the mirrors created are superior to the original 
mirrors in both &ace finish and pixel mirror fill factor. Figure 2. shows a portion of 
the 256 SRAM SLM array before and after planarization displaying the high quality of 
the mirrors obtained and also giving a visual indication of the planarity achieved. 



Figure 1: Figure 2. SEM micrographs of 2562 SLM top surface (a) after standard 
fabrication process and (b) following additional custom post-processing procedure. The 
pixel pitch is 40pm. The micrographs were taken with the same magnification 



Figure 2: Figure 3. Cross-sections of 2562 SLM through the pixel array displaying the 
planarity of the 3rd level metal. 
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Figure 1. Topographical scan (250pm) of a 2562 SLM device following CMP with the 
surface variation reduced to 36A r.m.s.. 

CONCLUSION 

The multi-level metallization of SLMs, to produce high optical quality mirrors, places 
high demands on the planarization technique which can be satisfied using CMP. A post- 
processing procedure incorporating CMP was applied to commercially fabricated wafers 
to add a further level of metal to SLM silicon backplanes, figure 3. This further metal 
level was optimised optically to produce high quality mirrors. The planarity achieved 
using CMP demonstrates the capability of this technique to produce surfaces flat to lOOA 
r.m.s. which will satisfy the future requirements of silicon microfabrication. 
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Abstract 
We discuss recent advances in the design and fabrication of electronically addressed 
ferroelectric liquid crystal over silicon spatial light modulators. We summarise the prospects 
for further advances in the near future. 

BACKGROUND 
The Spatial tight Modulator (SLM) is a key component in many optical computing systems. The SLM 
technology of Ferroelectric Liquid Crystal over Very Large Scale Integrated (FLCNLSI) silicon has 
matured considerably over the past few years. Electronically Addressed SLM's (EASLM's) of medium 
resolution (128* pixels or more) have been reported by several labs [l]; systems containing muttiple 
devices have been reported [Z] .  We are now designing custom devices with system-specific 
performance characteristics. 

INTRODUCTION 
FLCNLSI SLMs are produced by sandwiching a thin layer of FLC between a custom designed silicon 
backplane and a cover glass coated on the inside with a transparent conductive electrode. Most 
EASLM backplane designs are based on a pixel circuit consisting of one active element - a Metal- 
Oxide-Semiconductor Field Effect Transistor (MOSFET) which acts as a switch to control the amount 
of charge stored on a capacitive storage element - a small metal mirror on the surface of the silicon. 
The voltage thus generated produces an electric field which alters the state of a thin overlying layer of 
FLC to produce a binary phase or amplitude modulation in an incident wavefront-This scheme 
provides the smallest possible pixel and thus the highest denstty of pixeis; it is analogous to the 
purely electronic Dynamic Random Access Memory (DRAM) cell. This type of pixel suffers from light 
induced charge leakage which is manifest as a reduction in contrast ratio with incident light intensity 
thus limitting the maximium light level at which it can be operated. There is also a limit to the 
spontaneous polarization, Ps, of the FLC material which can be used - the pixel capacitor must store 
enough charge to switch it. The drive to reduce the pixel size is compromised by the need to maintain 
an optically-flat metal area to act as the reflective aperture (or mirror). Underlying circuit elements 
such as transitors or interconnect cause undulations in the overlying part of the mirror; these can 
cause non uniform optical contrast across a mirror, losses due to scattering and, in coherent systems, 
phase variations. A flat fill factor (flat mirror area I pixel area) of around 25% has become a de facto 
minimum. 

CURRENT DESIGNS 
We have previously reported a 176 x 176 DRAM-type pixel array [3] .The frame rate was limited by 
the RC time constant of the relatively high resistance polysiliam row access lines. A 51 2 x 51 2 pixel 
array based upon the original 176 x 176 device has been designed. The primary modification has 
been the use of aluminium to replace the plysilicon row access lines within the pixel array. The 
finished design has been fabricated by Austria Mikro System and is undergoing electrical testing. 

An alternative to the single transistor pixel design above is based around an enhancement of the six 
transistor Static RAM (SRAM) cell. The enhancement involves inserting a simple logic gate between 
the memory and the mirror. This allows some of the addressing requirements of the FLC to be met 
more easily. The SRAM design overcomes all of the above disadvantages of the DRAM pixel at the 
expense of increased transistor count leading to increased pixel area and decreased chip yield. In 
partiarlar it maintains its state indefinitely, allows the use of the fast-switching, hgh Ps, FLC materials 
and shows no variation of contrast ratio with incident light intensity over a wide range of input 
intensity. We have demonstrated a fully working 256 x 256 pixel array built in 1.2um CMOS 
technology. We have also demonstrated the principle of grey scaie on this binary device by means of 
temporal multiplexing of sequential frames. 



SILICON FABRICATION ISSUES 
We have succesfully applied a post-processing backplane planarisation technique to the 176 x 176 
DRAM device which has allowed a flat mirror to be placed on top of the existing circuitry. The 
technique involves the deposition of a thick dielectric layer which is subsequently polished flat; this 
s lows the deposition of a further metal layer which forms a flat mirror covering almost the entire pixel. 
The planatisation technique is described in detail elsewhere [4]. LC cell construction has been carried 
out succesfully on planarised backplanes The increased flat fill factor of the backplane increases the 
light throughput of the finished S L M  and reduces the stray light reaching the substrate. 

~ ~~ 

I Approx electronic 
address time (p) 
Frame rate (Hz) 

SUMMARY AND FORWARD LOOK 
Table 1 summarises the current situation. High resolution devices, based on both DRAM and SRAM 
pixels, have been demonstrated. The pixel designs lend themselves to use in different applications 
areas. The planarisation process, which significantly enhances device performance, has been 
demonstrated on one design. It is, in principle, equally applicable to all of the devices of Table 1. 
(Clearly, to be optically useful, the 51 2 DRAM device requires to be planarised.) 
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Given the current (minimum feature size and maximum die size) limitations of using commercial 
silicon vendors it should be possible to pursue the DRAM technology to 1024 x 1024 and the SRAM 
to 51 2 x 51 2 with frame rates comparable to, or better than, those of Table 1. Beyond that there is a 
likely need for access to specialised memory fabrication processes. 
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Device 

Date 
Silicon process 
Pixel pitch (pm) 
Nominal 
Mirror size (pm2) 
Mirror size ( p 2 )  
after planarization 
flat fill facto+ (%) 
before / after 
Dlanarisation 

Table 1. Summary of silicon backplanes for FLCNLSl EASLM's 
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improving the performance of 
liquid-crystal-over-silicon spatial light modulators: 
issues and achievements 

lan Underwood, David G. Vass, Antony O’Hara, Dwayne C. Burns, Peter W. McOwan, 
and James Gourlay 

The performance of liquid-crystal-over-silicon spatial light modulators has advanced rapidly in recent 
years. In this paper 
we report on a number of techniques to improve the optical quality; these have applications in both 
current and future devices. 

Key words: Spatial light modulators, optical quality, ferroelectric liquid crystal, mirror morphology, 
g a y  scale, planarization. 

Most progress has centered around new device designs with increased bandwidth. 

1 .  introduction 
The hybrid technology of liquid-crystal-over-silicon 
has proved successful within the wider field of spatial 
light modulators i SLM’s I.  The primary attractions 
are, first, that both component technologies have a 
high degree of inherent compatibility, and second, 
that the industries built around the component tech- 
nologes, i.e., the Si and the liquid-crystal (LC) indus- 
tries are each progressing rapidly so that the perfor- 
mance capability of SLM’s has increased and can be 
expected to continue to increase significantly purely 
as a consequence of improvements in the component 
technologies. The latter is illustrated clearly by the 
progress over the past ten or so years in Si, from 
large-scale integration to very-large-scale integration 
iVLSI) and beyond, and in LC’s, from nematic and 
related materials to the much faster switching smec- 
tic materials and in particular the surface-stabilized 
ferroelectric liquid-crystal (SSFLC) effect. The at- 
tendant progression in SLM capabilities is shown in 
Table 1. 

In addition to the SLM performance gains derived 
from the mainstream of the two component technolo- 
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ges, further performance gains are derived from 
SLM-specific (added-value) research such as custom 
SLM-specific VLSI (circuit and layout) design. This 
includes dynamic random-access memory (DRAM) 
and static random-access memory (SRAM) pixels as 
well as smart pixels that incorporate local processing 
or photodetectors. The development of custom SLM- 
specific VLSI fabrication methods, SLM-specific FLC 
materials, Si backplane packaging for SLM’s, and 
FLC cell fabrication techniques that are compatible 
with the Si backplanes permits the enhancement of 
functionality, performance, and quality. 

Most current SLM designs are based on Si back- 
planes of -1- to 3-km complementary metal-oxide 
semiconductors coupled with SSFLC’s. We hence- 
forth refer to the technology as ferroelectric liquid 
crystal over very-large-scale integration, FLC/VLSI. 
The Si backplanes are generally digital in nature and 
thus match the inherently binary nature of the 
SSFLC. The current status of  SLM technology is 
examplified by the 176 x 176 DRAM device shown in 
Fig. 1. 

In judging the performance of FLC/VLSI SLM’s, 
particularly the functionally simple SLM’s based on 
SRAM and DRAM, two main issues merit individual 
inspection: bandwidth and optical quality. The lit- 
erature indicates that most progress has been made 
in the former by increasing the pixel count, the frame 
rate, or both. In this paper we report on a number of 
issues that have a direct impact on the latter. 

In Section 2 we 
look at recent progress in customizing the fabrication 
of the Si backplane. The benefits include a high- 

We consider the following topics. 
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Table 1. Examples from the Literature that Show the Development of FLC//vLSI Devices 

Backplane Resolution Frame Rate Pixel 
Year Group / Reference Technology Liquid Crystal (n x n) (Hz) Circuit 

1986 Univ. of Edinburgh2 6-pm nMOSa Guest host 16 5 SRAMC 
1988 Univ. of Edinburgh3 1.5-pm nMOS Twisted nematic 50 60 SRAM 
1989 Univ. of Edinburgh4 3-pm CMOSb FLC 176 1 K  DRAMd 

STC Technology 
GEC-Marconi 

Research Centre 
1990 Displaytech5 3-pm CMOS FLC 64 8 K  SRAM 
1992 Univ. of Colorado6 2-pm CMOS FLC 128 5 K  DRAM 

Boulder Nonlinear 
Systems 

~ ~~~ ~~~~~~ ~~ ~ ~ 

"nMOS, n-type metal-oxide semiconductor. 

%RAM, static random-access memory. 
dDR.AM, dynamic random-access memory. 

complementary metal-oxide semiconductor. 

quality optical finish that aids the alignment of the 
FLC layer and permits flat pixel mirrors coupled with 
a high fill factor. In Section 3 we examine a method 
of producing gray scale by temporal multiplexing on a 
binary device, thus enhancing its application potential. 
In electronical addressing of the device, the charge (or 
dc) balancing condition is maintained to extend the 
lifetime of the liquid crystal. Finally, in Section 4 we 
look at the potential of the above described tech- 
niques to promote further improvements. 

2. Custom Silicon Fabrication 

A. Procedure 
The poor optical quality of the metal that forms the 
mirrors on the Si backplanes is due primarily to the 
electronically necessary sinter procedure during the 
metallization stage of microfabrication. Following 
the metal-deposition, photolithography, and metal- 
etch stages of fabrication, the wafers must be sintered 
to produce good ohmic contacts and improved adhe- 
sion of the Al film to the underlying Si02.7 A typical 
example of this procedure involves the wafers being 
inserted into a furnace at 435 "C for 20 min in the 
presence of a forming gas (40%H2/60%N2). During 
the heating and cooling phases of the operation, 
stresses are induced in the films, and to relieve these 
stresses, the Al film distorts, which results in hillocks 
and depressions being f ~ r m e d . ~ . ~  The optical effi- 
ciency of the mirror is therefore substantially reduced 
because these irregularities scatter the light incident 
upon the mirror surface. 

To protect the Al film during the sinter procedure, 
we applied a low-temperature SiOz coating to the 
wafer by using electron cyclotron resonance plasma- 
enhanced chemical-vapor deposition. 

In the course of the anneal operation, the Si02 film 
acts as a constraining layer and, when the anneal is 
complete, the SiOz is removed. Initial work was 
carried out on test structureslO; this technique has 
now been incorporated into the fabrication procedure 
of two batches of SLM wafers, both fabricated at the 
Edinburgh Microfabrication Facility (EMF). This 

additional procedure permits high electrical perfor- 
mance to be achieved without a reduction in the 
optical quality of the mirrors. An example of the 
improvement on mirror quality when the sinter 
protection layer is used is shown in Fig. 2. 

Increasing the pixel mirror fill factor requires 
multilevel metallization in which the mirror is depos- 
ited as the last metal layer on top of the underlying 
circuitry. Further, this structure eliminates spuri- 
ous switching of the LC layer that is due to electrical 
signals on exposed interconnect lines and partially 
protects the underlying circuitry from incident light 
that would otherwise lead to increased leakage cur- 
rents in the circuit. In order to provide a flat surface 
onto which the mirror can be deposited, the interme- 
diate dielectric must be planarized. Various pla- 
narization techniques are used in the semiconductor 
industry; however, the only method capable of produc- 
ing the standard of optical flatness necessary here is 
chemical-mechanical polishing'' ( CMP). Although 
it is only recently that CMP has been used at this 
stage in the processing sequence it is already being 
used in the manufacture of leading-edge technology 
chips.12J3 We have applied this technique to en- 
hance our SLM's by adding it as a backend step on 
fully fabricated wafers. Studies have been carried 
out on electrically inactive 176 x 176 SLM backplane 
wafers in which the finished wafer is coated with - 4 
pm of electron cyclotron resonance plasma-enhanced 
chemical-vapor deposited SiO2 and is then polished to 
produce an optically flat surface. Metal is then 
deposited to produce high-quality mirrors. Figure 
3(a) shows an area of a 176 x 176 SLM that is then 
coated with Al to enable the surface flatness to be 
measured by the use of interferometry [Fig. 3(b)]. 
We have demonstrated that, by using this technique, 
we can obtain the surface flatness on the intermedi- 
ate dielectric that is essential for the fabrication of 
high-quality mirrors. The main difficulty associated 
with CMP is maintaining the uniformity of the 
polishing rate across the wafer. l0 Experimentation 
has allowed us to improve the control of the polishing 
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Fig. 2.  
standard procedure, (bi metal protection technique. 

Interferograms of pixel mirrors fabricated by the use of (21 

ib) 
176 x 176 DFXM SLhl iai deike, (b) displayed image 

The backplane of this device is 
5, 1. 
iurtesy of GEC-Marconi). 
[Treated. 

te to a point where we are now? for the first time, 
corporating CMP into the fabrication sequence of 
lly operational wafers. 
The improvements to the Al mirror surface quality 
we implications beyond improving the mirror effi- 
my. Previously, unevenness of the Al surface has 
id an adverse effect on LC alignment. By improv- 
g the mirror surface, the LC alignment has been 
hanced (see Subsection 2.B). Our initial experi- 
ce with cell fabricated by the use of backplanes 
oduced with the hillock suppression technique sug- 

gests that LC layer thickness uniformity is greatly 
enhanced. We propose that this arises because the 
presence of hillocks causes tilting of the cover glass 
and a consequence wedging of the LC layer. Further 
investigation is required before reaching a firm conclu- 
sion. 

B. Mirror Morphology 
Good mirror quality is crucial to enable highly aligned 
FLC structures. The alignment of FLC molecules is 
highly dependent on the bounding surface morphol- 
ogy. Irregular hillocks and depressions locally alter 
the sensitive boundary conditions required of the 
SSFLC device structure. They disturb the forma- 
tion of parallel smectic planes, introduce variations in 
surface molecular tilt angle, and randomly induce all 
manner of defects from the device ideal.14 The 
boundary conditions for the formation of the SSFLC 
device structure are generally obtained by anisotropic 
treatment of the bounding plates. Surface energy is 
transferred to the bulk FLC medium by elastic forces. 
The surface treatment usually takes the form of the 
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ibl 
Fig. 3. Effect of CMP technique for backplane planarization: la1 
Part of 176 x 176 SLM backplane with an area of - 600 brn x 450 
pm, ( b j  interferogram of part of a polished wafer following 
metdlization. Magnification is the same as iai. 

creation of microrelief structures. A common tech- 
nique for the generation of such structures is oblique 
evaporation of thin films such as SO, that can 
generate a variety of anisotropic surface structures 
such as ridges and tilted c01umns.l~ This surface 
energy should be uniform across the bounding plates 
of the FLC device. If large enough, any perturbation 
from this uniformity affects the molecular alignment 
jn the bulk FLC material. Therefore mirror quality 
directly determines the defect structure. It is un- 
likely that surface treatments can compensate for 
large fluctuations in the surface energy caused by 
poor mirror quality. 

Defect-free FLC structures should be obtainable 
when high-quality mirrors can be constructed on 
VLSI Si backplane SLM devices. Such improve- 
ments are significant steps toward increases in con- 
trast ratio, device uniformity, modulation efficiency, 
and reflectivity. This improvement is demonstrated 
by a comparison of FLC devices fabricated on a 
standard (unprotected metal) VLSI process and those 

Fig. 4. SEM picture of alignment structure produced by oblique 
SiO, evaporation. 

fabricated on a protected metal process, as described 
above. The protected metal process results in a 
reduction of hillock and depression formation, al- 
though some of these undesirable features can still be 
observed. It was expected that such an improve- 
ment to the mirror quality would result in more 
favorable surface conditions to attain good FLC align- 
ment. This has been observed experimentally. 
SSFLC cells were constructed on two SLM devices 
from the same VLSI process. The SLM backplane 
used was a 16 x 16 test-bed The wafers 
were processed at the EMF. One device originated 
from a wafer that used the standard, unprotected 
metal process. The other origmated from a wafer 
fabricated with the extra metal protection processing 
step described at the begnning of Subsection 2.-A. 
The SSFLC device alignment layers were obliquely 
evaporated with SiO, to a thickness of 50 nm on both 
the SLM chip and the front cover glass with an 
indium tin oxide transparent-conducting electrode. 
The SiO, was obliquely evaporated at an angle of 30' 
to the substrate. This is commonly referred to as 
medium-angle deposition. This alignment layer 
technique results in a ridge structure with a period of - 100 nm running perpendicular to the direction of 
evaporation, which has been observed by a scanning 
electron microscope (SEMI and is shown in Fig. 4. 
This structure gives relatively strong surface anchor- 
ing of the FLC molecules. A zig-zag defect structure 
is usually observed in FLC test cells, suggesting the 
presence of the chevron defect. Small-angle deposi- 
tion has been shown to give improved alignment with 
FLC devices.15 But oblique evaporation of SiO, at - 5" will have major shadowing problems because of 
the topography of the surrounding circuitry. Only 
fully planarized SLM backplanes would permit prob- 
lem-free oblique evaporation at small angles on pixel 
mirrors. Alternatively the small-angle deposition 
technique could be applied to only the front cover 
glass electrode, and this would result in asymmetric 
boundary conditions on the FLC device. A study 
into such asymmetric alignment layers would be of 
considerable interest. 

10 May 1994 Vol. 33. No. 14 APPLIED OPTICS 2771 



rbi 

Fig. 5. LC structureon pisel vasuntreateci. oi.'i : ii u ! i t ~ c ~ a t d .  OS: tc treated. O F F :  ( d :  treated, OS.  

_rUl FLC cell was constructed on the SLM chip with 
2, I-pm cell gap between the mirrors and the conduct- 
ing front electrode. The device is therefore opti- 
mized to operate in reflection as a switchable half- 
wave plate with smectic C" FLC material exhibiting a 
22.5" cone angle for light with a wavelength of 
approximately 633 nm (He-Ne). The device was 
filled with SCE13 FLC material iMerck-British Drug 
House) under vacuum at an elevated temperature of 
120 "C. Both protected metal and unprotected metal 
devices were constructed under the same conditions. 
Therefore these devices permitted comparisons to be 
made to show any improvement to the FLC character- 
istics. Figures 5(a) and 5(b) show the unprotected 
metal device illuminated with polarized light and 
observed through cross polarizers, respectively. 
Figures 5( c) and 5( d) show the protected metal device 
under similar circumstances. On the unprotected 
metal device one observes a lower reflectivity and 
apparently no domain structure. There are do- 
mains, however, but they are so numerous and fine 
(because of the poor metal quality) that they appear 
uniform. This is not a desirable feature as they will 

still adversely affect performance and be difficult to 
remove. In the metal protected sample, domains are 
large and clearly visible. This is actually encourag- 
ing as such distinct domains are observed in glass-on- 
glass FLC test cells. Therefore the alignment of the 
FLC in the metal protected device is clearly approach- 
ing the level attainable in high surface quality test 
cells. We conclude that the high performance of 
FLC structures observable in test cells should be 
possible through improved metal quality VLSI back- 
plane SLM's. 

3. Temporal Multiplexed Gray Levels 
Gray-level SLM's have many potential uses, includ- 
ing display applications and as adaptive weight planes 
in optoelectronic neural networks. As described in 
the introduction, most current FLC/VLSI SLM's 
operate in a binary mode. However, the microsec- 
ond switching times of the FLC and the high address- 
ing speeds of Si backplanes permit temporal multiplex- 
ing to be used as a means of real-time gray-level 
generation. 

2772 APPLIED OPTICS Vol. 33, No. 14 10 May 1994 



Fig. 6. Four-gray-level image obtained by the use of a linear 
encoding algorithm. 

Temporal multiplexing involves splitting each gray- 
level image into a number of time-sequential sub- 
frames. Each subframe has an associated bit-plane 
that is generated by an approximate encoding algo- 
rithm. These bit-planes are then sequentially 
scanned into the SLM to produce the desired gray- 
level image. 

A simple linear encoding algorithm has been used 
to create the bit-planes. Figure 6 shows how a 
four-gray-level image is built up. For the 16 gray 
levels illustrated in Fig. 7,15 subframes were required. 
Each subframe lasts 500 ps, resulting in a frame rate 
of - 133 Hz. 

The linear encoding algorithm above is satisfactory 
for generating a small number of gray levels; how- 
ever, each extra gray level requires an extra subframe. 
The frame rate is inversely proportional to the num- 
ber of gray levels. A more efficient binary weighted 
encoding algorithm with a pulsed light source, as 
illustrated in Fig. 8 is now being investigated. In 
this case, n subframes can generate 2" gray levels. 
So, for example, 256 gray levels can be generated at 
125 Hz when a l-ms subframe duration is used. 

I I 1 I 

Fig. 7. Photo showing 16 linearly encoded temporal multiplexed 
gray levels. The key shows the gray level present in the central 
square of 4 x 4 pixels. 

Fig. 8. 
encoding algorithm and a pulsed light source. 

Eight-gray level image obtained by the use of a binary 

A. Advantages of Surface-Stabilized Ferroelectric Liquid 
Crystals for Producing Gray Scale 
There are, in principle, several advantages to produc- 
ing gray scale as described above: 

(1) The fast switching speed of the FLC should 
eliminate the problems of shadowing and ghosting of 
a fast moving pattern that are associated with slow 
switching nematic-LC displays. 

In contrast to the gray levels produced by 
applying analog electrical signals to nematic LC's. 
there should be no phase variations associated with 
the gray levels produced by temporal multiplexing in 
which the applied electrical signal is digital. This 
makes the proposed scheme particularly suitable for 
use in coherent optical systems. 

(2) 

B. Direct-Current Balancing 
It is widely accepted that to prevent chemical degrada- 
tion of the FLC layer. the electric field across it should 
be properly dc balanced. In DRAiM-type devices. thi, 
has been achieved by scanning in a bit-plane: then. 
after the FLC is allowed to settle and the read beam is 
pulsed, the exact inverse of the bit-plane is scanned in 
with the front electrode signal togg1ed.j The result- 
ing image duty cycle was less than 5%. 

The functionality of some SRAM-type pixels, such 
as those on the 16 x 16 SLM, is enhanced by the 
inclusion an LVOR gate.2 The inputs to the xxorl are 
the pixel latch and a global clock signal. One can 
achieve dc balancing simply by continually toggling 
both the global clock and the front electrode. The 
resulting image duty cycle is 50%. A further advan- 
tage over the DRAM pixel is the availability of an 
effectively unlimited amount of charge to switch the 
FLC. This is discussed elsewhere.6 

4. Conclusions and Future Developments 
In this paper we began by identifying that improving 
the optical performance of FLC,'VLSI SLM's is a 
critical issue if their success is to be continued. 

We have demonstrated several techniques that, 
when applied to the Si backplane, boost the optical 
quality of finished dsvices. Custom sintering of the 
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metal layer has facilitated much improved FLC align- 
ment and a consequent increase in optical contrast 
and uniformity. CMP has allowed the planarization 
of electrically inactive Si backplanes to optical flatness. 
This makes possible, for what is, to our knowledge, 
the first time, pixels that exhibit both optical flatness 
and a high fill factor. This research will continue 
with the application of the techniques to fully opera- 
tional Si wafers, thereby permitting the improve- 
ments to be translated into fully working FLC/VLSI 
devices. 

We have demonstrated a means of producing gray 
scale on an inherently binary device by means of 
temporal multiplexing. The drive scheme for the 
device maintains the dc balance condition that is 
essential for device longevity. The next steps here 
are to apply a binary weighting scheme to the sub- 
frames to permit the production of 2“ gray levels from 
n subframes and to prove by experiment the hypoth- 
eses made in Subsection 3.A, namely, that such a 
system eliminates shadowing and ghosting and that 
the gray levels produced are phase free. 

The techniques described are applicable to all 
FLC ’VLSI backplanes and will be used to enhance 
the performance of the next generation of SLM‘s 
based on backplanes, recently designed at The Univer- 
sity of Edinburgh and currently in fabrication, which 
include a 256 x 256 SRAM backplane and a 512 x 
512 DRAM backplane. 
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1. Introduction 

The marriage of the two technologies of Very Large Scale Integrated (VLSI) silicon 
backplane active drive and Ferroelectric Liquid Crystal (FLC) light modulating layers 
has attracted much attention as a promising means of implementing compact high 
performance, smart and advanced Spatial Light Modulators (SLMs)L1]. Two of the 
attractions of the hybrid technology are (i) that the two component technoiogies 
show a significant degree of compatibility, and (ii) that vast resources are being 
poured into these component technologies so that the performance of VLSVFLC 
SLMs can be expected to continue to improve at a useful rate simply as a 
consequence of improvements in the component technologied21. 

The ready availability of both user friendly Computer Aided Design (CAD) tools for 
VLSI design and relatively cheap silicon fabrication for prototype quantities of 
devices have combined to make the technology accessible to a wide range of 
potential users so that, to date, many new devices have been reportedP1. In fact, 
most reports concentrate on the description of either iarger/faster arrays of simple 
pixels or new (smart) pixel designs; progress in these areas has been rapid while, in 
the authors' opinion, the rate of improvement in the quality of the SLMs as measured 
by factors such as contrast ratio and uniformity has failed to keep pace. 

Some of the issues which must be addressed in order to maximise the optical quality 
of VLSVFLC SLMs include (i) optimisation of the optical properties of the silicon 
backplane , (ii) consistent repeatable production of a high quality Surface Stabilised 
Ferroelectric Liquid Crystal (SSFLC) layer, (iii) optimal electronic addressing of the 
SSFLC by the backplane, and (iv) the production of grey scale from the inherently 
binary SSFLC effect. In this paper we discuss the initial approach we have taken, at 
The University of Edinburgh, to tackling these issues. 
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2. Custom Processing of the Silicon Backplane 

Here, we present a brief description of two of the primary deficiencies of "standard" 
silicon when applied to driving an overlying FLC layer; we discuss the consequences 
of the deficiencies and present results of our efforts, within the Scottish Collaborative 
Initiative in Optoelectronic Science (SCIOS), to overcome them. 

1. The surface profile of the layers making up a pixel circuit typically shows layer 
boundary step heights of up to the order of l p m .  This leads to intra-pixel 
variations in the amplitude and phase of light reflected from a metal pad covering 
the whole pixel and to variations in the thickness of the FLC layer The alternative 
approach of sharing the pixel real estate between un-flat circuit and flat pad leads 
to a lower optical fill factor. The preferred solution is planarisation of the dielectric 
layer underlying the metal pad. Three options have been explored - spin on 
polyimide , Electron Cyclotron Resonance (ECR) oxide deposition and chemical- 
mechanical polishing. The last of these techniques has been tried succesfully~41 
on an electrically defective SLM wafer. An optical interferogram of part of a 
polished wafer is shown in Figurel(B). Operational SLM wafers are currently 
being polished; it is anticipated that these will produce "optically flat" working 
pixel arrays with a high pixel fill factor (>go%). 

2. The granular nature of the thick metal layer gives rise to light scattering and 
leads to poor FLC alignment and bistability."Hillocks" which are present in the 
metal layer also scatter light and can be high enough to span the FLC layer 
causing short-circuits between the pad and the IT0  counter electrode; 
furthermore they may be the cause of uneven LC layer thickness. The electrically 
necessary step of sintering the aluminium is largely responible for the poor 
optical quality of the metal. We have explored the use of dielectric over-layers 
during sintering which have resulted in a significant improvement in the 
smoothness of the final sintered metal surface as shown in Figure 2. Recent 
results also indicate an improvement in LC alignment and layer thickness 
uniformity as a result of the high quality metal finish. 

Figure I .  Left - photograph of a portion of a 176* pixel array (30 p m pixel pitch). 
Right - optical interferogram (A =564nm) of portion of the array after planarisation 



Figure 2. Left - Optical interferogram (A=564nm) of part of a metal pad (approx 
74x50p m2) following standard sintering. Right - Optical interferogram of similar metal pad 
after modified sintering operation. An ECR oxide layer of thickness 0.3pm was present 
during sintering. 

3. Electronic Addressing of the SSFLC layer 

It is generally accepted that LC longevity requires that no net long term DC field is 
allowed across the layer. This leads to complications in addressing the bistable 
SSFLC based SLMs. The High Performance (HP)SLM 1762 device[s] solves this 
problem by building each frame from two sequential complementary sub-frames in a 
system where a pulsed light source illuminates only the positive sub frame. We have 
devised (in collaboration with BNR Europe) a 2 transistor pixel[s] which is capable of 
both DC balancing and a high (approaching 100%) duty cycle. We have also 
developed drive schernesC7I which allow a modified-SRAM pixel to supply a very 
stable drive signal to a SSFLC layer as demonstrated in $4 below. 

4. Grey scale in SSFLCs 

Although inherently binary in nature, the switching speed of SSFLCs is such that 
effective grey scale can be achieved by temporal rnultiplexing of sequential bit 
planes while maintaining a significant speed advantage over the older analogue 
nernatic LCs. Several options exist, including 

1. Equal weight subframes 
2. Binary weighted sub-frame duration with constant illumination intensity 
3. Binary weighted illumination intensity with constant sub-frame length 
4. A combination of 2 and 3 (for increased dynamic range). 

We are currently active in investigating the first three and present here, in Figure 3, 
preliminary results from the first of theseis]. The microdensitometer trace shows a 
fairly linear range of grey scale on part of a 16x16 pixel SLM.(lt also shows 
significant non uniformity in transmitted intensity across individual pixels - an 
example of the problem we are tackling as described in 53 above. 
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Intensity 

Figure 3. Top - Photograph of a line of pixels (pitch 200p m) showing grey scale achieved 
by time multiplexing Bottom - corresponding microdensitometer trace. 

5. Conclusions 

We have presented an analysis of some issues which must be addressed in order to 
maximise the potential of the VLSVFLC SLM technology. Preliminary results are very 
encouraging and indicate the potential for significant performance improvements. 
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