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Abstract

Neural mechanisms involved in the regulation of oxytocin secretion in late pregnant rats

In the present work, I have investigated the role of oxytocin, a peptide hormone

synthesised in the paraventricular and supraoptic (SON) nuclei of the hypothalamus and
secreted from axon terminals in the posterior pituitary, in the initiation and maintenance of

parturition in rats. Furthermore, I have studied afferent pathways involved in the secretion of

oxytocin at the end of pregnancy, using immunocytochemical detection of Fos, the protein

product of the immediate early gene c-fos.

First, I have shown that delivery in rats, that has been disrupted by a systemic injection
of morphine, which prevents pituitary oxytocin release, can be restored by pulsatile but not

continuous administration of physiological doses of oxytocin, indicating a critical role of

pulsatile oxytocin for the normal progress of delivery. Following from there, I have shown that
labour and delivery can be induced in late pregnant rats with pulsatile administration of

oxytocin, while systemic administration of peptide oxytocin antagonists can delay the onset of

delivery and prolong its progress. Using Fos immunocytochemistry, I have demonstrated that
Fos expression is increased in the SON and in putative afferent neurones, including those in
the nucleus tractus solitarii (NTS) in the brainstem, in parturient compared to prepartum rats.

Similarly, Fos expression in these areas can be induced by a systemic injection of

cholecystokinin, that is known to excite magnocellular oxytocin neurones and hormone

release, indicating the involvement of NTS neurones in the regulation of oxytocin secretion.

Following from there, I have shown that during oxytocin-induced labour, Fos expression in the
NTS and the SON is increased even before delivery of pups, suggesting that vagino-cervical
stimulation is not a prerequisite for activation supraoptic neurones at term.

Using double-immunocytochemistry, I have shown that in response to pulsatile oxytocin
one third of NTS neurones immunoreactive for Fos contain tyrosine hydroxylase (TH), the
rate limiting enzyme for catecholamine synthesis. In addition, I have observed an increase in
the number of TH-containing neurones during oxytocin-induced labour and delivery. This

increase in TH immunoreactivity during induced labour is reflected by an increase in TH

mRNA expression, as assessed by radioactive in situ hybridisation for TH. Conversely, in
untreated rats, TH mRNA expression in the NTS is elevated on the day of term before

delivery but declines to significantly lower levels at the time of parturition. Furthermore, I
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used a subcutaneous injection of progesterone to delay the onset of delivery. Such treatment

also impaired the progress of delivery and was associated with a reduced expression of Fos in
the SON and of TH immunoreactivity in the NTS. Using in situ hybridisation for TH, I found

significantly lower TH mRNA expression in the NTS of late pregnant rats treated with

progesterone compared to rats given vehicle, consistent with the hypothesis that

catecholaminergic pathways from the NTS to the SON are involved in the secretion of

oxytocin during parturition. Finally, we have recorded electrical activity of supraoptic
neurones in term pregnant rats during oxytocin-induced labour. Since firing rate of supraoptic
neurones increased concomitantly with uterine pressure and cervix contractions during a four
hour oxytocin pulse treatment, these data support the hypothesis that oxytocin administration
to late pregnant rats, via augmented uterine activity, stimulates supraoptic neurones and hence
contributes to the initiation of pituitary oxytocin secretion.



General Introduction

Onee upon a time

nearly one hundred years ago, the first report on the uterotonic effects of pituitary
extracts was published (Dale 1906), followed after some years by the observation that such

extracts, when given to lactating animals, lead to an increase in intramammary pressure and

milk-ejection (Dale 1909, Ott & Scott 1910) due to the contraction of myoepithelial cells in
the mammary glands. Some years later, two active principles were identified in the posterior

pituitary: one causing an increase in uterine activity and intramammary pressure, was termed

oxytocin, meaning "fast delivery", and the other, causing an increase in blood pressure, was

referred to as vasopressin (Kamm et al. 1928).
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in the same magnocellular neurone at times of increased hormone release, e.g. during lactation

(Mezey & Kiss 1991) and chronic dehydration (Kiyama & Emson 1990).
In the past, magnocellular neurones in the SON and PVN have often been considered to

form a single functional unit, thus disregarding a) the difference in their position within the

hypothalamus and b) the fact that the SON consists primarily of magnocellular neurones,

while in the PVN magnocellular neurones form three main clusters within a network of a

variety of peptide-producing parvocellular neurones (Kiss et al. 1991, Swanson & Kuypers

1980, Swanson & Sawchenko 1983). Also, the SON is close to the ventral surface of the

brain and hence to the subarachnoid space, while dendrites of magnocellular PVN neurones

project towards the subependymal layer of the third ventricle (Hatton 1990). Since in the

PVN, unlike in the SON, magnocellular neurones are found within close proximity to

parvocellular neurones, the possibility of a mutual influence between these neurones has been

suggested (Swanson & Sawchenko 1983) and such differences between the SON and PVN

might explain recent observations that magnocellular neurones in the two nuclei are not

equally activated in response to stress (Jezova et al 1993), pain (Smith & Day 1994),

dehydration (Roberts et al. 1993) and the milk-ejection reflex (Fenelon et al. 1994, Lambert et

al. 1993).

Beside the classical nonapeptides, an increasing number of additional peptides are found
in magnocellular oxytocin neurones (including cholecystokinin (CCK), corticotropin-releasing

factor, met-enkephalin, dynorphin and thyrotropin-releasing factor) and vasopressin neurones

(including galanin, tyrosine hydroxylase, dynorphin and leu-enkephalin) and at least some of
these peptides can be released from axon terminals in the posterior pituitary (Bondy et al.

1989b, Leng et al. 1994, Martin et al. 1983, Meister et al. 1990, Vanderhaeghen et al. 1981),

though studies in vitro (Bondy et al. 1989b, Meister 1993) and in vivo (Leng et al. 1994)

indicate that the amount of the co-released peptides is much smaller than that of the

nonapeptides. This observation, together with the description of functional CCK (Bondy et al.

1989a) and kappa opioid receptors in the neural lobe (Bondy et al. 1989b, Sumner et al.

1992, Van de Heijning et al. 1991a) points to an involvement of the co-expressed peptides in
the local regulation of oxytocin and vasopressin release from neurosecretory axon terminals in
the neural lobe. Furthermore, co-expression of peptides and peptide receptors in magnocellular

hypothalamic neurones is altered by ovarian hormones (Levin & Sawchenko 1993) and during
different functional states (Meister et al. 1994, Shea & Gundlach 1993) supporting a

physiological implication of this co-localisation.
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The oxytocin gene and its regulation

Oxytocin and vasopressin genes, that have been detected in many mammals, show a

similar structural organisation and are believed to have evolved millions of years ago by

duplication from a common ancestor gene (Ivell & Richter 1984a, Mohr & Richter 1993).
Both genes consist of three exons (A, B, and C), that encode the hormone precursor, including
the respective neurophysin, separated by two introns (Ivell & Richter 1984a). Despite the
similarities between oxytocin and vasopressin with regard to the gene organisation and peptide

structure, the promoter regions of the two genes show little homology between them, but a

remarkable homology across species (Ivell & Richter 1984a). In the oxytocin gene, a

composite hormone response element and an oestrogen-responsive element, both of which can

enhance gene expression in vitro (Adan et al. 1993, Mohr & Schmitz 1991), have been

detected. Similarly, in vivo experiments suggest a modulatory role of gonadal steroids on

oxytocin mRNA expression (Crowley et al. 1995, Kawata et al. 1991): thus,

beginning in mid-pregnancy, an increase in the hypothalamic oxytocin mRNA content has

been described by some authors (Van Tol et al. 1988, Zingg & Lefebvre 1988b), though not

by others (Douglas et al. 1993b). More recently, oxytocin mRNA expression in the SON and
PVN has been shown to be unchanged after sustained treatment with oestradiol and

progesterone, but to increase by nearly 200%, when progesterone is withdrawn (Crowley et

al. 1995), a situation similar to that at the end of pregnancy. Since at the end of pregnancy

and throughout lactation, the oxytocin transcript shows an increased polyadenylation (Zingg
& Lefebvre 1989), possibly indicating a more efficient translation (Zingg et al. 1988a), an

increase in oxytocin mRNA content would not be a prerequisite for the observed high peptide

content in the neural lobe at term (Fuchs & Saito 1971). However, magnocellular oxytocin

neurones in the rat do not express nuclear gonadal steroid receptors (Bethea et al. 1994, Fox

et al. 1990, Rhodes et al. 1981a, Sar 1988) and thus the exact mechanism of steroid effects

on oxytocin gene expression in magnocellular neurones remains unclear.

Unlike sustained stimulation of oxytocin secretion, e.g. during chronic dehydration

(Brimble et al. 1978, Crowley & Amico 1993), or labour and lactation (Higuchi et al. 1985),
an acute stimulus applied to supraoptic neurones does not result in a significant change in

oxytocin mRNA expression (Sumner et al. 1989).
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Functional aspects of oxytocin

The best known functions of pituitary oxytocin include the induction of uterine
contractions during labour and delivery (Du Vigneaud et al. 1954, Fuchs & Poblete 1970) and
the milk let-down effect, following contraction of myoepithelial cells in the mammary gland in

response to suckling (Ott & Scott 1910, Lincoln et al. 1973, Cunningham & Sawchenko

1991). This increased secretion of oxytocin during labour and lactation is reflected by the
increased posterior pituitary content of oxytocin in term pregnant rats (Fuchs & Saito 1971,
Kumaresan et al. 1979). Since a) in late pregnancy the neural lobe content of vasopressin is
increased to a similar extent as that of oxytocin (Fuchs & Saito 1971) and b) this accumulated
excess is secreted during labour and delivery (Fuchs & Saito 1971, Kumaresan et al. 1979),
both neurohypophysial hormones might play a role for parturition. Indeed, vasopressin can

stimulate uterine activity in rabbits and humans (Fuchs 1969, Fuchs & Poblete 1970), yet so

far, vasopressin has been primarily implicated in the regulation of body fluid homeostasis and

arterial blood pressure (Honda et al. 1990, Leng et al. 1988b).

Reproductive functions of pituitary and central oxytocin
In humans, the reflex release of oxytocin in response to vaginal distension by the foetus

during the expulsive phase of labour was first described by Ferguson (Ferguson 1941, see

below for more details) and has since then been observed in most mammals.

During suckling and parturition in rats, there is a burst-like discharge of oxytocin
neurones (Lincoln & Wakerley 1974, Summerlee 1981), that is reflected by the intermittent
release of large amounts of oxytocin (Higuchi et al. 1986b, Lincoln & Wakerley 1974). This

bursting activity is associated with increased intranuclear oxytocin release in the SON and the

PVN (Moos et al. 1992, Neumann et al. 1992, 1993), possibly from dendritic processes of

supraoptic oxytocin neurones (Pow & Morris 1989).
Administration of an oxytocin antagonist into the SON during parturition and lactation

impairs the progress of delivery (Neumann, personal communication) and the milk-ejection
reflex (Lambert et al. 1993, Neumann et al. 1994), indicating reduced pituitary oxytocin

release. In addition, during osmotic stimulation, neither bursting activity of oxytocin neurones

(Leng et al. 1993b) nor a significant increase in intranuclear oxytocin release are observed

(Moos et al. 1992), despite the increased release of oxytocin from the pituitary (Hamamura et

al. 1992, Honda et al. 1990) and hence the intranuclear release of oxytocin could play a key
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role for the generation of burst-like oxytocin neurone activity and hormone release during

delivery and lactation.

Pituitary oxytocin release has also been shown in response to vaginal stimulation during
sexual activity and following manual stimulation (Argiolas & Gessa 1991, De Wied et al.

1993, Dreifuss et al. 1976) in female rats, and in male rats during ejaculation (Argiolas &
Gessa 1991, De Wied et al. 1993, Insel 1992b). During the menstrual cycle in humans

(Shukovski et al. 1989) and during the rat oestrous cycle (Windle & Forsling 1992) variations
in plasma oxytocin concentrations have been described, though the implication of these
observations remains to be examined.

Besides being secreted into the general circulation, central oxytocin release, particularly
within the limbic system (including the bed nucleus of the stria terminalis: BNST) and the

hypothalamus, is stimulated during parturition (Neumann et al. 1992) and suckling (Moos et

al. 1991, Neumann & Landgraf 1989) and has been implicated in lordosis and maternal
behaviour in female rats (Richard et al. 1992) and penile erection and copulatory behaviour in
male rats (Argiolas & Gessa 1991, De Wied et al. 1993). Interestingly, in mice maternal

behaviour can be induced by both subcutaneous and intracerebroventricular administration of

oxytocin (McCarthy 1990).

In female rats, increased oxytocin immunoreactivity is observed in the hypothalamus at

term and following ovariectomy and oestrogen-supplementation, indicating the involvement of

gonadal steroids in the regulation of oxytocin synthesis (Jirikowski et al. 1988, 1989). Also, at

term an increased apposition of oxytocin-immunoreactive neurones to the basement membrane

of arterioles in the hypothalamus has been described (Blanco et al. 1991), pointing to a

facilitated secretion of central oxytocin into the cerebral blood stream at the end of pregnancy.

This increased oxytocin secretion could contribute to the stimulation of prolactin release from
the anterior pituitary, critical for lactation. Though the effect of oxytocin on prolactin release
is small in the presence of a dopaminergic tone (Mogg & Samson 1990), at times when this

inhibitory influence is reduced, e.g. experimentally (Arey & Freeman 1989) or at the end of

pregnancy (Soaje & Deis 1994) and during lactation (Arbogast & Voogt 1991b, Hoffman et

al. 1994, Wang et al. 1993), oxytocin is a potent stimulator of prolactin release (Arey &
Freeman 1989).
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Non-reproductive functions of pituitary and central oxytocin

Pituitary oxytocin in rats is also released in response to stressful (Jezova et al. 1993,

Harbuz & Lightman 1988, Lightman & Young 1989, Patel et al. 1991) and painful stimuli

(Onaka & Yagi 1991, Smith & Day 1994) and food intake (Verbalis et al. 1986). The latter

effect, which is mediated by CCK, released from the duodenum in response to gastric

dilatation, is mediated by the vagus nerve (Fraser & Davison 1992) and involves in the

periphery the CCKA type receptor (Miller et al. 1993b). In response to an intravenous

injection of CCK, an increase in electrical activity of supraoptic oxytocin neurones

(Hamamura et al. 1991b) and in plasma oxytocin concentrations (Luckman et al. 1993b) have
been described and these effects involve activation of putative afferent, catecholaminergic
neurones in the brainstem (Luckman 1992). Oxytocin has also been shown to induce
natriuresis at physiological concentrations (Windle & Forsling 1991), which might explain its

release, along with vasopressin, in response to an acute hyperosmotic stimulus and during
chronic dehydration (Brimble et al. 1978, Verbalis et al. 1991a).

Within the CNS, oxytocin has been suggested to facilitate extinction of learned

avoidance behaviour, thus being antagonistic to the mnestic effects of vasopressin (De Wied et

al. 1993, Insel 1992b), yet on the other hand oxytocin injections into the medial preoptic area

can improve social recognition, an effect similar to that described for vasopressin (Popik et al.

1991). In addition, both oxytocin and vasopressin, along with many other peptides, act as

neurotransmitters in the brain (Swanson & Kuypers 1980, Sawchenko & Swanson 1982b)
and possibly in the spinal cord (Reiter et al. 1994) and the dorsal root ganglia (Kai-Kai et al.

1986).

Extracerebral sites of oxytocin actions

Apart from the CNS, oxytocin synthesis has been described in reproductive organs

including the ovaries in rats, sheep and cows (Ho et al. 1992, Ivell et al. 1990, Ivell & Richter

1984b), the pregnant and non-pregnant uterus in humans (Chibbar et al. 1993, Kimura et al.

1992, Miller et al. 1993a) and in pregnant rats in the uterus (Lefebvre et al. 1992b), the

amnion and the placenta (Lefebvre et al. 1992a, 1993). However, in the rat uterus the actual

peptide content is very small compared to that of the hypothalamus (c.f. Lefebvre et al. 1992b

and Fuchs & Saito 1971) and hence the physiological significance of such oxytocin

production requires further investigation. Similarly, a mismatch between the high oxytocin

mRNA and small peptide content has been found in rat testis and rat and bovine ovaries (Ang
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et al. 1994, Foo et al. 1991, Ungefroren et al. 1994a). This observation led to the hypothesis
that a post-transcriptional block could be a common feature in gonadal tissues with regard to

the oxytocin and vasopressin genes and could represent a mechanism through which over-

expression of the nonapeptides, and hence unwanted effects, are prevented (Ungefroren et al.

1994a).

Besides the presence in gonadal tissue, oxytocin receptors have been identified in the rat

thymus and since their concentration decreases following mating (Caldwell et al. 1993),

peripheral oxytocin might also be involved in the modulation of immune functions.

Oxytocin receptors - Distribution and regulation in the CNS

The effects of oxytocin, both within the CNS and in the periphery, are mediated by

specific oxytocin receptors. Within the CNS, in the hypothalamus and the limbic system,

autoradiographic studies have demonstrated oxytocin binding sites (Dreifuss et al. 1992,

Kremarik et al. 1991, Tribollet & Dreifuss 1981, Tribollet et al. 1990), which are regulated

by gonadal steroids (Patchev et al. 1993, Schumacher et al. 1990). Though in the SON

oxytocin binding has only been detected after pretreatment with an oxytocin antagonist, that

probably leads to an up-regulation of oxytocin binding sites (Freund-Mercier et al. 1994),

many studies suggest the presence of functional oxytocin receptors within the SON and PVN,

at least in term pregnant (Neumann, personal communication) and lactating rats (Lambert et

al. 1993, Neumann et al. 1994). Furthermore, using in situ hybridisation techniques oxytocin

receptor mRNA has been detected in regions of the magnocellular hypothalamus (Yoshimura
et al. 1993). Also, oxytocin can act via the vasopressin receptor, namely the Vn> vasopressin

receptor, as shown by recent data on the stimulatory effect of oxytocin on ACTH release from
the anterior pituitary, that are prevented by a specific V)b vasopressin receptor antagonist

(Schlosser et al. 1993).

In the hypothalamus and the BNST, the oxytocin receptor density (Coirini et al. 1991,

1992, Dreifuss et al. 1992, Jirikowski et al. 1989) and oxytocin receptor mRNA expression

(Bale & Dorsa 1995) increase in response to combined treatment with oestrogen and

progesterone. This is in agreement with the hypothesis that at the end of pregnancy, after

priming with progesterone and oestrogen, central oxytocin is involved via oxytocin receptors

in the initiation of maternal behaviour (Caldwell et al. 1987, Jirikowski et al. 1988, 1989,

Pedersen et al. 1982) and the facilitation of magnocellular oxytocin neurone activity (Belin &
Moos 1989, Lambert et al. 1993).
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Afferent projections to the maenocellular hypothalamus

Afferent projections from the forebrain and from within the hypothalamus
Unlike parvocellular PVN neurones, that receive direct projections from most

hypothalamic and many forebrain areas (Swanson & Kuypers 1980, Swanson & Sawchenko

1983), magnocellular neurones in the hypothalamus receive an afferent input from a limited
number of areas in the forebrain only, including the subfornical organ (SFO), the organum

vasculosum in the lamina terminalis (OVLT) , the BNST and the olfactory bulbs (Smithson et

al. 1989), and from within the hypothalamus, like the dorsomedial, median preoptic (MePN)
and arcuate nuclei (see Fig. A). Most of these projections to magnocellular neurones show a

preference for either oxytocin (the dorsomedial and arcuate nuclei and the BNST) or

vasopressin neurones (the SFO), but equally innervate the preferred type of neurone in both

the PVN and SON (Swanson & Kuypers 1980, Swanson & Sawchenko 1983). One exception
is the projection from the olfactory bulbs, that seems to exclusively innervate supraoptic
neurones (Hatton & Yang 1989).

In addition, some dopaminergic fibers have been detected immunohistochemically in the

SON and are believed to derive from the tuberoinfundibular and periventricular hypothalamic
nuclei (Buijs et al. 1987, Decavel et al. 1987, Lindvall et al. 1984). Dopamine agonists

reduce, but do not prevent, the suckling-induced oxytocin release (Crowley et al. 1987) and,

as shown by more recent studies, this effect is mediated by dopamine D2 receptors, while

stimulation of central Di receptors excites supraoptic oxytocin neurones (Crowley et al. 1991,

Parker & Crowley 1992). Following a systemic injection of CCK, that induces pituitary

oxytocin release, no change in intranuclear dopamine concentrations has been detected in the

SON, and only a small increase has been described in the PVN (Kendrick et al. 1991),

indicating that the dopaminergic innervation of the SON does not play a key role for oxytocin
release in response to CCK. Since in the tuberoinfundibular dopaminergic system, that
restrains prolactin release, gene expression of TH, the rate limiting enzyme in the dopamine

synthesis, is suppressed during lactation (Wang et al. 1993), when prolactin secretion is

enhanced, it is unlikely that in late pregnant and lactating rats dopamine-mediated inhibition of

oxytocin release plays an important role.

Also, histaminergic projections from the tuberomammillary nuclei to the SON and PVN

have been described (see Hatton 1990) and recent experiments have shown stimulation of

vasopressin release via Hi histamine receptors in vitro (Armstrong & Sladek 1985), and
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pituitary oxytocin release following intracerebroventricular injections of histamine in vivo

(Kjaer et al. 1994, Knigge & Warberg 1991).

With regard to the SON, a number of inputs, including the projection from the lateral

septum, the amygdala and the diagonal band of Broca, do not enter the SON proper, but
terminate dorsal of the SON in the perinuclear zone (Hatton 1990, Jhamandas & Renaud

1986, Tribollet et al. 1985), where, amongst others, GABA-immunoreactive neurones are

located (Herbison 1994, Theodosis et al. 1986b). Thus, it has been suggested that stimulation

of neurones in the diagonal band of Broca excites GABA neurones in the perinuclear zone of
the SON, which in turn inhibit supraoptic vasopressin (Jhamandas & Renaud 1986) and

possibly oxytocin neurones (Wuarin & Dudek 1993).
The functional importance of afferent projections from the forebrain to magnocellular

neurones and/or the perinuclear zone, some of which are reciprocal, is well documented for the

regulation of plasma osmolality (Honda et al. 1990) and arterial blood pressure and blood
volume (Wall & Ferguson 1992) and, though to a lesser extent, the milk-ejection reflex

(Ingram & Moos 1992, Moos et al. 1991). Thus, the release of neurohypophysial hormones in

response to hyperosmotic stimulation is critically dependent on an intact afferent projection
from the OVLT (Leng et al. 1989a) and the nucleus medianus, which in turn receives
extensive projections from the SFO (Brimble et al. 1978, Honda et al. 1990, Leng et al.

1988b, Tanaka et al. 1987). In contrast, ablation of the region anterior and ventral to the third

ventricle (AV3V), including the OVLT and the nucleus medianus, does not prevent the release
of oxytocin in response to suckling and delivery (Russell et al. 1988, 1989a), indicating that

inputs other then those from the AV3V region are critical for the secretion of oxytocin during
lactation and parturition.

Both the SFO and the OVLT belong to the group of circumventricular organs, which
lack an effective blood-brain barrier and these two structures are receptive to changes in

plasma osmolality (Honda et al. 1990, McKinley et al. 1992, Miselis 1981). During

pregnancy, there is a resetting of the plasma osmolality-vasopressin relationship: thus,

pregnant rats (and humans) show normal plasma vasopressm concentrations despite a slight
decrease in the plasma osmolality, that would normally inhibit vasopressin secretion

(Lindheimer et al. 1985), possibly because the threshold for vasopressin and oxytocin release
in response to osmotic stimulation is reduced (Koehler et al. 1994).

In response to suckling, projections from the BNST to the magnocellular hypothalamus

(Ingram et al. 1992, Moos et al. 1991) and connections between the hypothalamic
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magnocellular nuclei (Moss & Richard 1989, Moos et al. 1992) facilitate activity of oxytocin
neurones and oxytocin release and this seems to be the case also during delivery (Neumann et

al. 1992, 1993). The extensive connections between the magnocellular nuclei, including direct

projections from the PVN to the ispilateral SON and the contralateral PVN (Silverman et al.

1981, Tribollet & Dreifuss 1981) and between both SON (Takano et al. 1990) are believed to

be of importance for the milk-ejection reflex. Thus, magnocellular oxytocin neurones, that for
most of the time display a slow and irregular activity with 1-10 spikes/sec, show prior to each
milk ejection a high frequency discharge of about 80 spikes within 2-4 sec, that involves

synchronised activity of most oxytocin neurones from all four magnocellular nuclei (Belin &
Moos 1986, Poulain & Wakerley 1982). This coordinated activity results in the release of a

large pulse of oxytocin from the posterior pituitary (Dyball 1971, Lincoln & Wakerley 1974).

Similarly, during parturition the birth of each pup is preceded by a high frequency discharge
of magnocellular oxytocin neurones in the PVN (Summerlee 1981), that is reflected by peak

oxytocin plasma concentrations (Higuchi et al. 1986b). Following extensive lesioning of
afferent projections from the forebrain to the magnocellular hypothalamus and of inter-

hemispheric connections between the magnocellular nuclei, the burst amplitude in response to

suckling is greatly reduced (and hence milk ejection impaired). In contrast, such

deafferentation does not disrupt the synchronisation of bursts (Moos & Richard 1989),

suggesting that inputs from the forebrain are facilitatory, but not crucial, for the generation of
burst-like activity of magnocellular oxytocin neurones.

Afferent projections from the hindbrain

Following bilateral lesions made caudal of the magnocellular nuclei including the

mesencephalic lateral tegmentum, the milk-ejection reflex is completely prevented (Dubois-

Dauphin et al. 1985a, 1985b). However, anterogradely labelled neurones from the

mesencephalic lateral tegmentum were not detected in the SON or the PVN (Dubois-Dauphin
et al. 1985a), suggesting that the neural organisation of the milk-ejection reflex involves
afferent pathways in addition to those in the mesencephalic areas.

Injections of retrograde tracer into the hypothalamus result in the greatest density of
labelled cells in the brainstem, at the level of the area postrema, mainly in the ispilateral
nulceus of the tractus solitarii (NTS) and both the ispi- and contralateral ventrolateral medulla

(Cunningham & Sawchenko 1988, Sawchenko & Swanson 1982a). Both regions contain

noradrenergic neurones, the A2 cell group in the NTS and the Al cell group in the
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ventrolateral medulla, and excitatory projections from these neurones to the hypothalamus,

including magnocellular neurones, are well documented (Cunningham & Sawchenko 1988,

Day & Sibbald 1988, Day 1989). Bilateral injections of a neurotoxin, selective for

catecholaminergic fibers, into the magnocellular hypothalamus greatly reduce plasma oxytocin

concentrations in response to suckling (Crowley et al. 1987), indicating the importance of an

afferent catecholaminergic input for pituitary secretion in lactating rats. Furthermore,

administration of an aradrenergic agonist can induce burst-like activity of magnocellular

oxytocin neurones in vitro (Wakerley & Ingram 1993). Since oestrogen treatment of

ovariectomised rats attenuates a2-adrenoreceptor-mediated autoinhibition of hypothalamic

noradrenaline release (Karkanias & Etgen 1993), at times of high oestrogen concentrations,

e.g. the end of pregnancy and early lactation, a reduced autoinhibition would favour an

excitation of hypothalamic neurones to small amounts of catecholamines.

Normally, the excitatory effects of noradrenaline on oxytocin and vasopressin neurones

are mediated by aradrenergic receptors (Parker & Crowley 1993a, 1993b, Willoughby et al.

1987) and are potentiated by administration of a2-adrenergic antagonists (Day et al. 1985),

while Pi-adrenergic agonists inhibit suckling-induced oxytocin release (Moos & Richard

1979). Recent data have shown that the excitatory effects of catecholamines on neuronal

activity and pituitary oxytocin release in lactating rats can be greatly enhanced by co¬

administration of an ai-adrenergic agonist together with the glutamate receptor agonist
AMPA (Parker & Crowley 1993b) or neuropeptide Y (NPY) (Parker & Crowley 1993a).

Thus, peptides co-localised within catecholaminergic neurones, e.g. NPY, that has been

detected within a subset of noradrenergic NTS neurones that project to the PVN (Sawchenko

et al. 1985), could play a critical role for the burst-like release of oxytocin during parturition
and in response to suckling.

Afferent projections from catecholaminergic neurones in the brainstem
In the brainstem, noradrenergic neurones constitute the largest population of

catecholaminergic cells, extending rostro-caudally from the obex, just rostral of the area

postrema, to the pyramidal decussatio in the caudal brainstem (Cunningham & Sawchenko

1988). Adrenergic cells are located almost exclusively rostral to the area postrema, in the

dorsolateral and ventromedial medulla, the CI and C2 region, respectively (Kalia et al. 1985),
and innervate mainly parvocellular neurones in the medial and dorsal hypothalamus
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(Cunningham & Sawchenko 1988, Sawchenko & Swanson 1982a). Dopaminergic neurones

are found in the caudal part of the medulla, lateral to the central canal and ventral to the NTS

(Kalia et al. 1985). Unlike neurones in the A1 cell group, which project to a number of

regions including hypothalamic vasopressin, but not oxytocin, neurones (Sawchenko &
Swanson 1982a, Swanson et al. 1981), A2 neurones innervate in the hypothalamus

preferentially oxytocin neurones (Cunningham & Sawchenko 1988), while, as indicated by

electrophysiological data, the input to vasopressin neurones is indirect and consists of two

limbs, a peptidergic projection from the A2 to the Al cell group (Thor & Helke 1989) and a

noradrenergic projection from the latter to the hypothalamus (Cunningham et al. 1991, Raby
& Renaud 1989a, 1989b). Indeed, we and others have shown recently using retrograde

tracers, that CCK-induced stimulation of pituitary oxytocin secretion involves activation of a

noradrenergic projection from the NTS to the SON and PVN (Onaka et al. 1995b, Rinaman
et al. 1994). Likewise, afferent noradrenergic projections that travel in the ventral bundle are

critically important for normal sexual behaviour in female rats (Hansen et al. 1980).
On the other hand, it has been shown that lesions of ascending noradrenergic pathways

abolish the immobilisation stress-induced oxytocin release in male rats only, while having no

effects in females (Carter & Lightman 1987a), indicating a sexual dimorphism in rats with

regard to the involvement of a noradrenergic projection from the hindbrain for stress-induced

oxytocin release.

Gonadal steroid regulation of hypothalamic catecholamines

As pointed out in the previous paragraph, noradrenaline release from terminals of

ascending catecholaminergic pathways that reach the hypothalamus through the ventromedial
forebrain bundle is modulated by gonadal steroids (Carter & Lightman 1987a). In female rats,

basal levels of noradrenaline release in the hypothalamus are very low and not influenced by

gonadal steroids or behaviour, such as feeding and locomotion (Etgen et al. 1992). However,

during mating (Etgen et al. 1992) and following central application of oxytocin (Vincent &

Etgen 1993), noradrenaline release in the ventromedial hypothalamus is significantly increased
in female rats, in which lordosis behaviour has been facilitated by pretreatment with oestrogen

and progesterone, while lesions of the ventral noradrenergic bundle abolish steroid-facilitated

lordosis behaviour (Hanson et al. 1980).

Also, at the time of the LH surge, when female rats are receptive and pregnancy can be

induced, noradrenaline release in the medial preoptic area is increased (Demling et al. 1985,
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Ranee et al. 1981) and this increased release is reflected by an increased expression of TH

mRNA in catecholaminergic neurones in the ventrolateral medulla (Liaw et al. 1992c), that

project to the hypothalamus (Wright & Jennes 1993). The 'gating effects' of noradrenaline,
that are modulated by gonadal steroids, promote neuronal responses to stimuli, which would
remain subthreshold without steroid priming (Etgen et al. 1992, Tetel et al. 1994). Since

oestrogen attenuates the a2-adrenoreceptor-mediated autoinhibition of noradrenaline release

(Karkanias & Etgen 1993) and facilitates presynaptic noradrenaline release in the

hypothalamus (Vincent & Etgen 1993) and depolarisation of hypothalamic neurones (Kow et

al. 1991), oestrogen might enhance the stimulatory effects of noradrenaline with regard to

neuroendocrine responses, such as the release of LH at proestrous and of oxytocin at term.

Afferent projections from peptidergic neurones in the brainstem
The NTS receives viscerosensory and somatic information from the periphery (Van

Giersbergen et al. 1992), including the uterus (Ortega-Villalobos et al. 1990) and is

reciprocally connected with higher autonomic centres in the forebrain, namely the

hypothalamus and parts of the limbic system (Riche et al. 1990, Swanson & Sawchenko

1983).

In the NTS, a variety of putative neurotransmitters have been detected (Van Giersbergen
et al. 1992), and for many of these substances functional binding sites within the NTS have

been demonstrated. Some of the neuropeptides and biogenic amines, including enkephalin

(Sawchenko et al. 1990), NPY (Sawchenko et al. 1985), CCK (Kawai et al. 1988),

neurotensin (Van Giersbergen et al. 1992) and dynorphin (Ceccatelli et al. 1992), are co-

localised with catecholamines in NTS neurones, while other substances, e.g. inhibin-p,

somatostatin (Sawchenko et al. 1990) and nitric oxide (Ohta et al. 1993), are found primarily
in non-catecholaminergic subpopulations of the NTS. Since firstly, neurones in the NTS

containing inhibin-p (Sawchenko et al. 1988a, 1990) and somatostatin (Sawchenko et al.

1988b, 1990) project to the magnocellular hypothalamus and secondly, it has been shown that

inhibin-p plays a role for suckling-induced oxytocin release (Plotsky et al. 1988), while

somatostatin modulates electrical activity of supraoptic oxytocin neurones (Raby et al. 1988),

peptidergic projections from the NTS could, beside the catecholaminergic cell groups, play a

role for the regulation of oxytocin secretion during labour, delivery and lactation.
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Furthermore, in the CNS CCK receptors have been localised amongst other regions in
the hypothalamus, where primarily CCKB receptors are found (Honda et al. 1993, Meister et

al. 1994), and in the NTS and the area postrema, which contain both CCKA and CCKB

receptors (Hill & Woodruff 1990). In the SON and PVN, CCKB receptor gene expression is

increased, along with CCK peptide gene expression and synthesis during dehydration (Honda
et al. 1993, Meister et al. 1994). Also, CCK receptor density increases in association with

magnocellular activity (Day et al. 1989, Shea & Gundlach 1993) and since CCK peptide is
also present in NTS neurones (Kawai et al. 1988), it might be involved in the regulation of

magnocellular oxytocin (and vasopressin) neurone activity.

Pregnancy and parturition

Pregnancy and parturition - Oxytocin

Although the first function of oxytocin that was observed and published regarded its
uterotonic effects (Dale 1906), today more is known about the role of oxytocin for milk

ejection. This might be partly due to the fact that the milk-ejection reflex is not abolished by
anaesthesia (Lincoln et al. 1973), while it seems unlikely that parturition would occur

spontaneously in anaesthetised rats. However, apart from these technical limitations, the

greater interest in the regulation of oxytocin secretion during suckling might reflect long¬

standing doubts about a physiological significance of oxytocin for parturition (Smith 1932).

These doubts were strengthened by the lack of a dramatic rise in plasma oxytocin

concentrations during human labour (Chard 1989, Fuchs et al. 1982) and were maintained

despite 1) the common use of oxytocin infusions for the induction and augmentation of labour
in humans and 2) the more than two fold greater oxytocin peptide content in the posterior

pituitary of term pregnant compared to virgin rats (860 vs 350 mU oxytocin/gland,
Kumaresan et al. 1979) and the release of this accumulated excess into the general circulation
in the course of delivery (Fuchs & Saito 1971, Kumaresan et al. 1979).

Early animal studies showing that hypophysectomy had no effect on the onset or the

progress of delivery seemed to support the view that oxytocin was not involved in parturition

(Smith 1932). However, following removal of the neurohypophysis, neurosecretory oxytocin
and vasopressin axons are able to regenerate within days and thus hormone release into the

general circulation is not greatly impaired by such surgical intervention (Villar et al. 1994). In

contrast, hypothalamic lesions including the ventromedial hypothalamus and the medial
forebrain bundle, increase the length of gestation and disrupt delivery (Averill & Purves 1963,
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Gale & McCann 1961), suggesting that hypothalamic neurones and their afferent inputs are

involved in the initiation of parturition.
The role of oxytocin for parturition was further disputed when experiments using

repeated injections of oxytocin antibodies to late pregnant rats showed no impairment of

parturition (Kumaresan et al. 1971, Schriefer et al. 1982). Eventually, the notion of a

physiological importance of oxytocin during delivery was strengthened by the demonstration
of a dramatic rise in the endo- and myometrial oxytocin receptor density at term (35-150 fold

compared to mid-pregnancy or non-pregnant conditions, respectively, Alexandrova & Soloff

1980, Fuchs et al. 1982, Fuchs 1987), resulting in a dramatic increase in uterine sensitivity to

oxytocin (Fuchs & Poblete 1970). This increase in uterine oxytocin receptor density at term is

dependent on the rise in plasma oestrogen concentrations (and fall in plasma progesterone) at

the end of gestation (Alexandrova & Soloff 1980, Fuchs et al. 1982, 1983, see Fig. B & C).
There is no similar increase in the density of vasopressin receptors, which are also present in
the uterus of rats (Chan et al. 1990) and humans (Maggi et al. 1991a) and which can mediate

uterine contractions (Maggi et al. 1991a). However, vasopressin can also bind, though with a

lower affinity than oxytocin, to the myometrial oxytocin receptor (Chan et al. 1990) and thus
both neurohypophysial hormones might be involved in the generation of labour at term.

In rats, some reports have shown a heterogeneity of myometrial oxytocin receptors (El

Alj et al. 1980) and in particular an increase in the oxytocin receptor density only in the
circular myometrial layer (Crankshaw 1986, Tuross et al. 1987), but no change for the

oxytocin receptor density in the longitudinal muscle at term. However, the physiological

implication of a possible heterogeneity of myometrial oxytocin receptors remains to be
clarified. Also, there is evidence for a pharmacological distinction between the endometrial

and the myometrial oxytocin receptor in rats: thus, only stimulation of the endometrial subtype
results in an increased release of prostaglandins, while the myometrial receptor mediates

uterine contractility (Chan et al. 1993).
Beside the greater oxytocin receptor density in the term pregnant uterus, that suggests a

role for oxytocin during labour and delivery, a more detailed analysis of oxytocin release

showed not only a gradual increase in plasma oxytocin concentrations at term, but

superimposed on the background secretion, intermittent peaks of the plasma oxytocin
concentration (80 pmol/ml in rats, Higuchi et al. 1986b). In humans, the frequency and

amplitude of these peaks increase progressively during labour and delivery, reaching a

maximum during the expulsive phase (Dawood 1989, Fuchs et al. 1991). The physiological
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relevance of such pulsatile release of oxytocin for the progress of delivery is demonstrated by
the greater effectiveness of intermittent compared to continuous administration of oxytocin at

inducing and augmenting uterine contractions (Randolph & Fuchs 1989, Dawood 1989). In

addition, intermittent stimulation of uterine activity does not endanger the foetus(es) in the
same way as a sustained increase in intrauterine pressure would do (Dawood 1989, Fuchs et

al. 1991). Although doubts about the importance of oxytocin remain, particularly within the
medical profession, some clinical trials have demonstrated the greater effectiveness of pulsatile

compared to continuous administration of oxytocin for the induction of delivery (Dawood

1989).

Taken together, these recent advances have helped to establish the importance of

oxytocin for the progress of labour, though we still lack a coherent picture of the mechanisms
involved in initiating labour and delivery and hence the reflex release of oxytocin.

Pregnancy and parturition - The initiation of labour

Rats deliver between 8-18 pups after 22 days of pregnancy, usually in the second half of
the light phase. Expulsion of pups is preceded by increased uterine activity for 2-4 hours,
intensive grooming and nest building activity (Fuchs 1969) and once it has started it is

normally completed within 90 min (Fuchs & Poblete 1970, Leng et al. 1988a). Despite some

species differences with regard to the neuroendocrine aspects of pregnancy, the key features
involved in maintaining pregnancy and initiating parturition are similar, at least for the rat, the

sheep, in which most pioneering work was done, and the human. The maintenance of

pregnancy in mammals is dependent on high plasma progesterone concentrations, that reach a

maximum in the last trimester (Csapo & Wiest 1969, Csapo et al. 1980). During pregnancy,

progesterone is produced in the corpus luteum and in the placenta, the latter of which is the
main source of progesterone in the last two trimesters in the human (Itskovitz & Hodgen

1988). In contrast, in rats the corpus luteum remains the main source (Csapo & Wiest 1969).

However, following ovariectomy of rats on day 18 of pregnancy, placental progesterone

synthesis is sufficiently increased to maintain pregnancy (Csapo & Wiest 1969). High

concentrations of progesterone during pregnancy (50-150 ng/ml in rats) keep the uterus in a

state of relative quiescence and insensitivity to oxytocin (Burgess et al. 1992, Itskovitz &

Hodgen 1988, Lau et al. 1993). Thus, a crucial step for the initiation of uterine activity is the
increase in the ratio of plasma oestrogen/progesterone concentrations before term, resulting
from either a decline in plasma progesterone, e.g. in rats (Fuchs et al. 1976, Howard & Wiest
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1972), or an increase in oestrogen concentrations, e.g. in humans (Mazor et al. 1994, Mitchell
& Wong 1993) and sheep (Levine & Nathanielsz 1993, Thorburn & Challis 1979). Under the
influence of oestrogen, there is an increase in the activity of hydroxysteroid-dehydrogenase, an

enzyme located in the corpus luteum that degrades progesterone (Fuchs et al. 1976, Mitchell
& Wong 1993, Seong et al. 1992, Wahawisan & Gorell 1980). Furthermore, in the placenta

progesterone is metabolised (Howard & Wiest 1972), as well as converted into oestrogen,

contributing to the oestrogen dominance at term (Chan & Leathern 1975, Pepe & Rothchild

1972).

Under the rising plasma oestrogen concentrations, the secretion of prostaglandins (and in
the rat particularly of prostaglandin F2a (PGF2a) from decidua cells) is increased (Chwalisz
et al. 1991, Fuchs et al. 1981, Fuchs 1987) and contributes to the rise in oxytocin receptor

density in the decidua at term (Fuchs 1987), which in turn is a prerequisite for the greatly
enhanced production of prostaglandins seen in response to oxytocin in late pregnancy (Fuchs
et al. 1981, Fuchs 1987). Prostaglandins are important for the imtiation of uterine activity

(Chan 1977), the expression of oxytocin receptors (Chan 1987) and the formation of gap

junctions in the myometrium (Chan et al. 1988, 1991, Puri & Garfield 1982, Saito et al.

1985). Though the recently described increase in oxytocin mRNA in the endometrium of late

pregnant rats and humans (Chibbar et al. 1993, Lefebvre et al. 1992b, Miller et al. 1993a)

opens up the possibility that local oxytocin could initiate the increase in prostaglandin

synthesis and release, in rats the actual oxytocin peptide content in the uterus is negligible

compared to that in the hypothalamus (2 mU vs 700 mU, c.f. Lefebvre et al. 1992b and Fuchs
& Saito 1971) and hence the physiological significance of uterine oxytocin in the rat awaits

further investigation.

Under the oestrogen dominance at term, there is also an enhanced formation of gap

junctions (Garfield et al. 1982, Puri & Garfield 1982) and of myometrial oxytocin receptors

(Fuchs et al 1983) and a,-adrenergic receptors (El Alj et al. 1989, 1993, Legrand et al.

1987), all of which are crucial for the generation of strong and coordinated uterine

contractions in response to oxytocin during labour and delivery. At the same time, the number

of myometrial P2-adrenoreceptors that are coupled to adenylate cyclase and mediate uterine

quiescence, decrease (El Alj et al. 1989, Legrand et al. 1987, Viva et al. 1992). The

expression of other receptors, including those for serotonin, epidermal growth factors and
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angiotensin, which have uterotonic actions, are also favoured by oestrogen (Bigsby & Young

1994, Soloff 1989).

More recently, a number of substances with oxytocic properties, including endothelins

(Nakamura et al. 1993, Maggi et al. 1993), serotonin, histamine (Soloff 1989) and

neuropeptide Y (Fallgren et al. 1989) have been described in the circulation at term and might

play a role in the initiation of uterine activity. Conversely, there are a number of substances
with antioxytocic properties, including vasoactive intestinal peptide (Soloff 1989), relaxin

(Downing & Sherwood 1985, Sherwood et al. 1985) and nitric oxide (Yallampalli et al.

1993), which might contribute to the fine tuning of the initiation of labour. Since most of these

substances have vasoactive properties and arterial vasoconstriction, e.g. induced by
stimulation of the hypogastric and ovarian nerves, is followed by uterine contractions

(Hutchison et al. 1994), some of these substances might regulate uterine activity via their

effects on uterine blood flow. Furthermore, relaxin controls uterine activity indirectly by

inhibiting oxytocin release form the posterior pituitary (Jonas & Summerlee 1986).
Beside uterine activity, active cervical contractions have recently been reported during

delivery in the human (Olah et al. 1993) and might, together with oxytocin, contribute to the

effacement of the cervix (Khalifa et al. 1992), which is a prerequisite for the normal outcome

of delivery. In addition, prostaglandins and in the rat, relaxin that is released from the corpus

luteum at the end of pregnancy, are involved in the softening of the cervix at term (Downing &

Sherwood 1985).

Pregnancy and parturition - The foetal contribution to the initiation of labour

A foetal contribution to the initiation of parturition is best established in sheep: the
maturation of the foetal hypothalamic-pituitary-adrenal axis results in increased foetal plasma
Cortisol concentrations, which induce placental enzymes capable of metabolising progesterone

to oestrogen (Myers & Nathanielsz 1993, Thorburn & Challis 1979). Thus, maturation of the

foetal hypothalamo-pituitary axis initiates the increase in plasma oestrogen while decreasing

plasma progesterone, which, as described above, is a prerequisite for the initiation of

parturition in mammals. In the human, foetal Cortisol does not seem to influence labour and

delivery (Bonica & McDonald 1990, Thorbum & Challis 1979), but foetal oxytocin

concentrations are significantly increased at term (Chard 1989) and since oxytocin crosses the

placental barrier (Chard 1989), foetal oxytocin might contribute to the rise in maternal plasma

oxytocin concentrations and hence to the initiation of uterine activity.
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Unlike the sheep and the human, that usually give birth to one infant, the rat uterus

contains many foetuses and thus a foetal contribution to the onset of delivery would involve a

coordinated influence of the entire litter. Studies on gestation length after aspiration of foetal

hypothalami (Swaab etal. 1977) or injections of oxytocin antibodies (Schriefer et al. 1982) or

dopamine (to inhibit foetal oxytocin secretion, Schriefer et al. 1980) into the foetuses have not

yielded conclusive results, and thus, in rats the role of foetal Cortisol and oxytocin for the

initiation of partuntion remains controversial. In addition, in rat foetuses the release of

oxytocin following stimulation, e.g. by hypertonic saline (Almazan et al. 1989) or ovarian
steroids (Miller et al. 1989), is not fully developed at birth and hence a significant
contribution of the foetus to the increase in maternal oxytocin concentrations appears unlikely.

Though our understanding of the mechanisms initiating parturition is still incomplete, I
would like to suggest that the increased ratio of the plasma oestrogen/progesterone

concentration in the last days of pregnancy allows a progressive augmentation in uterine

activity, that enhances PGF2a production and release (Chan 1977). Prostaglandins, in turn,

further stimulate myometrial oxytocin receptor expression and hence increased uterine

sensitivity to oxytocin, creating a positive feedback loop (Fuchs et al. 1982) that will

eventually lead to an increased neurosecretory activity of hypothalamic magnocellular
neurones.

Pregnancy and parturition - Afferent innervation of the uterus and the cervix

Until recently, the role of uterine afferents has attracted little attention, possibly due to

reports on a functional denervation of the uterus at term (Morizaki et al. 1989). Uterine

afferents, that are unmyelinated or thinly myelinated fibers travel with the hypogastric

(Steinman et al. 1992) and the pelvic nerves (Berkley et al. 1988, Bonica & McDonald 1990,

Robbins et al. 1992) and enter the spinal cord at the lumbal and sacral level (L1-L4 for the

hypogastric nerves and L5-S1 for the pelvic nerves, Berkley et al. 1988, 1993, Steinman et al.

1992). The sensory information is then relayed in the brainstem to higher autonomic centres

(Hubscher & Berkley 1994, Ortega-Villalobos et al. 1990). Electrophysiological recordings

from afferent nerves (Berkley et al. 1988, Peters et al. 1987, Robbins et al. 1992), as well as

from neurones in the brainstem (Hornby & Rose 1976, Hubscher & Berkley 1994) and from

neurones in the PVN itself (Akaishi et al. 1988, Negoro et al. 1973a, 1973b), have clearly

shown a responsiveness of these neurones to vagino-cervical and uterine distension throughout
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pregnancy and particularly at term. The physiological importance of these afferents for normal

reproductive functions is suggested by the observation that lesions of the pelvic nerves

interfere with the induction of pseudopregnancy (Carlson & Feo 1965), the foetus-expulsion
reflex (Higuchi et al. 1987) and the reflexive ovulation following caesarean section

(Cunningham et al. 1992). Furthermore, the uterus, the cervix (Steinman et al. 1992) and the

vagina are heavily innervated by both parasympathetic and sympathetic fibers (Nance et al.

1988), the former of which travel predominantly with the pelvic nerves (nervi erigentes), while
the latter travel with both the pelvic and the hypogastric nerves (Peters et al. 1987, Wray

1993). Postganglionic fibers, derived from parasympathetic ganglia in the parametria and
from the lumbar sympathetic chain, enter the uterus along with blood vessels and reach into
the endometrium and the myometrium (Peters et al. 1987, Vera et al. 1994). Since stimulation

of the hypogastric nerve causes constriction of uterine arteries, that is followed by an increase
in intrauterine pressure (Hutchison et al. 1994), such neurogenic mechanisms could play a

role for the initiation of uterine contractions at term. In addition, some sensory innervation of

the uterus and the cervix is provided by the vagus nerve (Ortega-Villalobos et al. 1990), that

terminates in the caudal part of the NTS and the dorsal motor nucleus of the vagus in the
caudal medulla oblongata (Hubscher & Berkley 1994).

Afferent projections from the female reproductive organs to the brainstem and the

hypothalamus

Lesions of the vagus nerve eliminate the response of NTS neurones to uterine stimulation
and alter those to vaginal and cervical stimulation (Hubscher & Berkley 1994). However,
such lesions do not impair the response of putative neurosecretory oxytocin neurones in the

PVN to vaginal distension (Akaishi et al. 1988), indicating that pathways in addition to those

involving the NTS can convey sensory innervation from pelvic reproductive organs to the

hypothalamus. Since vaginal distension modulates activity of neurones located in the ventral

medulla, and particularly in the nucleus paragigantocellularis (Hornby & Rose 1976), that

projects to the hypothalamus (Van Giersbergen 1992), neurones in the nucleus

paragigantocellulans could represent an alternative relay station for the transmission of

sensory information from the uterus to the hypothalamus.
Electrical activity, evoked in peripheral and central afferent neurones by vaginal

stimulation, are modulated by gonadal steroids, with the greatest responsiveness to such
stimulation at times of high plasma oestrogen concentrations (Berkley et al. 1988, Robbins et
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al. 1992), while progesterone administration inhibits, via a central site of action, the reflex
release of oxytocin following vaginal distension (Roberts 1971). Since progesterone

concentrations are high during pregnancy, an inhibitory effect of progesterone on oxytocin
release could play an important role in the prevention of premature oxytocin secretion.

Systematic studies on electrical activity evoked in neurosecretory oxytocin neurones in the
PVN during different reproductive states and following treatment with gonadal steroids have
shown that the percentage of cells excited by vaginal distension in mid-pregnancy, when

plasma progesterone concentrations are high, is significantly smaller than that at the end of

parturition (6.9% vs 72%) (Negoro et al. 1973b), when progesterone levels are very low

(Csapo et al 1980). Furthermore, spontaneous activity of magnocellular oxytocin neurones is

higher at the end of pregnancy than in mid-pregnancy, and spike activity at term can be further
increased in a majority of cells by vaginal distension (Negoro et al 1973b). The modulation of

magnocellular neurone activity by gonadal steroids is further demonstrated by the reduced

spike frequency following vaginal probing in late pregnant rats that have been ovariectomised

and pretreated with progesterone, but increased spike frequency in response to vaginal probing

following pretreatment with oestrogen (Jiang & Wakerley 1994). In addition, the stimulatory
effect of oxytocin on electrical activity of paraventricular oxytocin neurones in vitro is only

observed at term, while in mid-pregnancy administration of oxytocin to the preparation
inhibited most of the recorded cells (Kawarabayashi et al 1993).

Taken together, a high plasma progesterone concentration seems to be associated with
reduced activity of putative oxytocin neurones. However, progesterone treatment of

ovariectomised rats does not result in the same decrease in cell activity as seen in mid-

pregnancy (Negoro et al 1973a), suggesting that besides progesterone, other factors

contribute to the inhibition of spontaneous activity of neurosecretory oxytocin cells in mid-

pregnancy.

Pregnancy-related changes in the hypothalamus and the neurohypophysis - Oxytocin
synthesis

At the end of pregnancy, the rat neural lobe contains about twice as much oxytocin (and

vasopressin) peptide than that of virgin rats (Fuchs & Saito 1971, Kumaresan et al 1979),
and this increased synthetic activity is associated with elongated poly(A) tails of both

nonapeptide mRNAs in pregnant and suckled rats, indicating increased stability and hence
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possibly a more efficient translation of the transcripts (Carter & Murphy 1991, Zingg &
Lefebvre 1989, Zingg et at. 1988a).

Besides magnocellular neurones, other oxytocin-contairung neurones, that are involved in
the initiation of maternal behaviour (Numan 1988), including neurones in the ventromedial

hypothalamus, the medial preoptic area and the BNST (Caldwell et al. 1987, Jirikowski et al.

1988, 1989) show enhanced oxytocin immunoreactivity at the end of pregnancy and during
lactation.

Gonadal steroids, and particularly oestrogens, have been implicated in the up-regulation
of oxytocin synthesis in the hypothalamus (Jirikowski et al. 1988) and, as mentioned before,

oxytocin mRNA expression in the SON and PVN increases by nearly 200%, when

progesterone is withdrawn (Crowley et al. 1995). Thus, progesterone withdrawal at the end of

pregnancy, which is considered a critical step in the initiation of parturition, could contribute
to the observed neuronal excitation and increased hormone release at term. Though the

oxytocin gene contains steroid responsive elements (Adan et al. 1993, Burbach et al. 1990,

Miller et al. 1989a), the lack of nuclear gonadal steroid receptors in rat hypothalamic

oxytocin neurones, including magnocellular neurones (Fox et al. 1990, Rhodes et al. 1981a,

Sar 1988) suggests an indirect action of gonadal steroids on magnocellular oxytocin neurones

at term.

Pregnancy related changes in the hypothalamic-neurohypophysial system - Oxytocin
secretion

During the last trimester of pregnancy and during parturition, administration of the

opioid-antagonist naloxone results in greatly increased plasma (Bicknell et al. 1988c, Douglas

et al. 1993b, Russell et al. 1989b) and intranuclear (in the SON) oxytocin concentrations

(Neumann et al. 1992). Since the potentiating effect of naloxone on oxytocin release from

isolated neural lobes declines in the course of pregnancy (Bicknell et al. 1988c, Douglas et al.

1993b), the increased inhibition of oxytocin release by endogenous opioids seen during

pregnancy (Bicknell et al. 1988c, 1993) is exerted primarily at the hypothalamic level and

might, by preventing afferent inputs to excite magnocellular neurones, contribute to the

described accumulation of oxytocin in the neural lobe during pregnancy (Fuchs & Saito 1971,

Kumaresan et al. 1979).
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Though the origin of endogenous opioids that mediate this inhibition is not fully clarified,

possible candidates are p-endorphin-synthesising neurones in the mediobasal hypothalamus,
that project to the oxytocin-dense part of the SON (Sawchenko et al. 1982c) and show an

increased peptide content at the end of pregnancy (Petraglia et al. 1985).
In the magnocellular hypothalamus, both mu (Mansour et al. 1988) and kappa opioid

binding sites (Sumner et al. 1992) have been demonstrated, while in the neural lobe only

kappa opioid binding sites, which are found on oxytocin-terminals (Herkenham et al. 1986),
have been detected (Mansour et al. 1988). Since dynorphin, a kappa opioid receptor agonist,
is co-expressed (Watson et al. 1982) in secretory granules containing vasopressin in the

posterior pituitary, dynorphin, co-released with vasopressin, could play a role for the

regulation of oxytocin release from axon terminals in the neural lobe (Van de Heijning et al.

1991b). In addition to the direct effects of opioids on oxytocin neurones, morphine has

recently been shown to prevent CCK-induced noradrenaline release in the SON via a

presynaptic site of action within or close to the SON (Onaka et al. 1995a) and similarly, the

increasing opioid restraint on magnocellular oxytocin neurone activation in the course of

pregnancy involves a presynaptic action on catecholaminergic afferents (Bicknell et al. 1993).
Since an opioid-inhibition of prolactin release in term pregnant rats is dependent on the normal
decline of plasma progesterone concentrations (Soaje & Deis 1994), a similar mechanism
could contribute to the (opioid) control of preterm release of oxytocin.

Beside opioid peptides, the classical "inhibitory" transmitter GABA has been implicated
in the control of oxytocin secretion, since GABA-containing synapses contact supraoptic

oxytocin neurones (Theodosis et al. 1986b). Some of these GABA-containing presynaptic
terminals contact two postsynaptic elements (so called "double synapses"), and interestingly,
these have only been observed on oxytocin neurones and most commonly in lactating rats, in

which both the incidence of "double synapses" and the proportion of such synapses that are

immunoreactive for GABA are increased compared to virgin rats (Theodosis et al. 1986b).

Also, oestrogen-induced plasticity of GABAergic synapses in the hypothalamus of rats has

been observed (Parducz et al. 1993).

In the SON and its perinuclear zone, GABAa receptors containing the a,- and a2-

subunits are found, and in the case of the SON they have been located on both types of
neurones (Fenelon & Herbison 1994, Herbison 1994). Since progesterone and its metabolite

allopregnanolone are potent agonists at the GABAa receptor (Zhang & Jackson 1994),
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particularly that containing the ai-subunit (Paul & Purdy 1992), and since plasma

progesterone concentrations are elevated during pregnancy but decline at term, the increased

neurosecretory activity of oxytocin neurones might involve a decreased GABAa receptor-

mediated inhibition of supraoptic neurones. Furthermore, evidence from experiments using the

patch-clamp technique indicates that peptide secretion from axon terminals in the neural lobe
is also modulated by progesterone and allopreganolone acting on GABAa receptors (Zhang &
Jackson 1993, 1994) and the description of a GABAergic innervation of pituicytes has led to

speculations about a possible involvement of GABA in the regulation of glial retraction at the

end ofgestation (Buijs et ah 1987).

Pregnancy related changes in the hvpothalamo-neurohvpophvsial system - Morphological

changes

During delivery magnocellular hypothalamic oxytocin neurones show a high frequency

discharge prior to the delivery of each pup (Summerlee 1981), that resembles the bursting

activity observed in response to suckling (Lincoln & Wakerley 1974, Lincoln et ah 1973). In

contrast, during increased oxytocin secretion in response to CCK and hypertonic saline such
burst-like discharge is not seen (Leng et ah 1993b, Renaud 1987) and hence it has been

suggested that prolonged or repeated stimulation, that could induce structural adaptations
within the magnocellular hypothalamus, is required for such activity. However, during chronic

dehydration, a condition accompanied by increased secretion of oxytocin and vasopressin

(Brimble et al. 1978, Hamamura et ah 1992) and by structural alterations within the

hypothalamus and the neurohypophysis similar to those at the end of pregnancy and during

lactation (Perlmutter et ah 1984, Theodosis et ah 1986a), no bursting activity of oxytocin
cells is observed (Leng et ah 1993b, Moos et ah 1992).

Morphological changes seen at the end of pregnancy and during chronic dehydration
include at the level of the hypothalamus an increase in both the extent and the incidence of

direct appositions between somata of oxytocin neurones (Theodosis et ah 1986a) due to

retraction of glial elements and interneuronal coupling, that is mostly restricted to neurones of

the same peptide content (Cobbett et ah 1985, Theodosis et ah 1986a). Furthermore, the

incidence of "double-synapses", that permit transmission of information to more than one

postsynaptic cell, is increased at term (Theodosis et ah 1984, 1986a, Perlmutter et ah 1984).
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Similarly, in the neural lobe structural changes that involve predominantly oxytocin
terminals occur, namely a retraction of pituicyte processes that normally surround

neurosecretory elements and the pericapillary basal lamina, thus allowing greater access of
axon terminals to the basal lamina of the fenestrated capillaries and hence facilitating oxytocin

secretion into the general circulation (Tweedle & Hatton 1982, 1987). Possible mechanisms

causing these structural changes include a direct effect of increased plasma osmolality

(Perlmutter et al 1984) and a mediation by adrenergic receptors, that are located on pituicytes

(Bicknell et al. 1988a, Garten et al. 1989, Saavedra 1985). However, an increase in plasma

osmolality is an unlikely cause for the changes seen at the end of pregnancy, since plasma

osmolality is decreased rather than increased during gestation (Lindheimer et al. 1985). An
involvement of catecholamines on the other hand seems more likely, since the neural lobe

receives a) a central noradrenergic input from the catecholaminergic A2 cell group in the
dorsomedial medulla oblongata (Garten et al. 1989), which also sends an excitatory projection
to hypothalamic magnocellular neurones (Raby & Renaud 1989b) and b) a sympathetic
innervation from the cervical superior ganglia (Alper et al. 1980, Saavedra et al. 1985).

Furthermore, increased plasma concentrations of circulating catecholamines during labour

(Abboud et al. 1982, Bonica & McDonald 1990) and in response to the milk-ejection reflex

(Clapp et al. 1985) could, due to the proximity of pituicyte processes to blood vessels, easily
interact with adrenergic receptors located on these processes. Though these alterations in both
the hypothalamus and the postenor pituitary can occur in vitro within a few hours of a

stimulus (Perlmutter et al. 1984), they normally develop during the last days of gestation and

are most pronounced during delivery and lactation (Theodosis et al. 1984). After weaning, as

well as after the end of chronic dehydration, these changes are completely reversed, however,
the time required for such restoration increases with repeated stimulation (Chapman et al.

1986, Theodosis et al. 1984).

Unlike morphological alterations, that occur in response to chronic dehydration and

during pregnancy and are hence likely to be a prerequisite rather than the cause for burst-like

activity, increased intranuclear oxytocin release, that is observed during parturition and

lactation (Moos et al. 1992), might play a crucial role for the facilitation of bursting activity

(Moos & Richard 1989). The sources of such intranuclear release of oxytocin include

dendritic processes in the SON and axon collaterals that terminate in the periventricular zone

of the SON (Pow & Morris 1989, Theodosis 1985). In addition, oxytocin terminals of so far
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unknown origin, have been shown to synapse on supraoptic oxytocin neurones (Theodosis

1985) and might contribute to the enhanced intranuclear release of oxytocin.

Recently, a reciprocal excitation of supraoptic oxytocin neurones has been shown in

lactating, but not male rats (McKenzie et al. 1995), which could further facilitate and enhance

synchronised bursting activity of neurones, e.g. in response to suckling and during parturition.

Immediate early genes and their protein products as markers of neuronal activation

in the CNS

Detection of neuronal activation has for many years been assessed using intra- and
extracellular electrophysiological recordings. Recently, a new technique has been described
that allows detection of neuronal activation by immunocytochemical staining for Fos, the

protein product of the immediate early gene c-fos (Sagar et al. 1988, Sheng & Greenberg

1990), that was first described in carcinoma cells and hence was initially classified as an

oncogene (Sheng & Greenberg 1990). Unlike late response genes, including most genes

encoding enzymes, hormones and neurotransmitters, whose expression is induced over a time

frame of hours and whose transcription is thought to be the specific response of a cell to trans-

synaptic activation, transcription of immediate early genes following an extracellular stimulus
is activated rapidly (within minutes) but transiently, since the protein products of these genes

negatively regulate their own promotor (Sassone-Corsi et al. 1988).

Today many immediate early genes are known beside the first described c-fos and c-myc

genes and they have been grouped into families, including the Fos family (with c-fos, fos-B

and Fos-related antigens Fra-1 and Fra-2) and the Jun family (with c-jun, jun-B and jun-D)

(Sheng & Greenberg 1990). Protein products of the c-fos and c-jun families interact with each

other to form heterodimeric transcription factor complexes, which then bind with high affinity
and specificity to DNA elements of the consensus sequence 5'-TGACTCA-3' and stimulate the

transcription of nearby promotors. The -TGACTCA- sequence, which was first identified as a

phorbol ester-inducible promotor element and the binding site for a transcription factor

complex, was termed AP-1 (activator protein 1). All of the different combinations of dimers
formed by members of the Fos and Jun families can bind to the AP-1 sequence, however, the

affinity of a Jun/Fos heterodimer is much greater than that of a Jun/Jun homodimer (Sheng &

Greenberg 1990). Though normally Fos/Jun complexes are believed to activate transcription
of genes containing AP-1 sites, under certain circumstances fos-B/Jun complexes have been

implicated in the repression of transcription (Gizang-Ginsberg & Ziff 1994).
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The initial mode of action for the induction of c-fos is an influx of calcium through

voltage-dependent Ca2+ channels in response to a depolarising stimulus, which results in
detectable cellular concentrations of c-fos mRNA within 10 min that return to undetectable
concentrations within 60 min, demonstrating the transient expression of these genes

(Hamamura et al. 1991b). Since Fos, the protein product of the c-fos gene, reaches the highest
concentration in the nuclei of supraoptic neurones within 60-90 min after a stimulus and
remains detectable for about four hours (Verbalis et al. 1991b), immunocytochemical
detection of Fos protein has become a useful tool to study activation of neurones.

Nowadays, antibodies against a number of immediate early gene products are available,

however, the polyclonal anti-Fos antiserum was one of the first antibodies that allowed
reliable immunocytochemical detection of an immediate early gene protein (Hunt et al. 1987)
and has ever smce been used extensively as a marker for neuronal activation (Fenelon et al.

1993, Hoffman et al. 1993, Hunt et al. 1987, Luckman 1992, Verbalis 1991b). The antibody

used for immunocytochemical detection of Fos protein is directed against the N-terminal

amino acids 2-17, which show the least homology between members of the Fos family, and

does not cross react with FRA proteins, it is specific for Fos (Hunt et al. 1987).
In cortical neurones, a relationship has been demonstrated between bursting activity, as

seen during kindled seizures, and the induction of c-fos mRNA expression (Labiner et al.

1993) and in neurosecretory hypothalamic neurones, induction of c-fos has been associated
with hormone release (Hoffman et al. 1993). However, as recently demonstrated, this is only

true when hormone release is trans-synaptically stimulated (Luckman et al. 1994). Since
under most physiological circumstances, increased secretion of oxytocin (and vasopressin) is

mediated by trans-synaptic stimulation, normally hormone release is associated with Fos

expression in the hypothalamic magnocellular system (Verbalis et al. 1991b, Hoffman et al.

1993). In contrast, the reflex release of oxytocin during normal suckling is not accompamed

by increased Fos expression in the SON (Fenelon et al. 1993). Whether, as has been

proposed, the overall increase in cell activity in response to suckling is not sufficient to

activate c-fos expression (Leng et al. 1993b) and/or whether in suckled rats there is an

increased threshold for the induction of the c-fos gene, as suggested by experiments showing a

reduced secretion of oxytocin in response to certain stimuli in suckled compared to non-

suckled rats (Higuchi et al. 1988, Koehler et al. 1994, Lightman 1992), remains to be
clarified. Recently, it has been shown that Fos expression is induced in the SON in response to

the milk-ejection reflex when pups have been removed for at least 48 hours prior to the
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suckling stimulus (Smith et al. 1994). Thus, while continuous application of a stimulus seems

ineffective at inducing Fos expression, the same stimulus can, when applied acutely and after
a period of relative quiescence, induce Fos expression in neurosecretory neurones and this

might be due to the habituation of neurones with regard to the induction of Fos, in response to

repeated stimulation (Melia et al. 1994).

Apart from neurosecretory neurones themselves, Fos expression is also observed in

putative afferent neurones in the rat brainstem and detection of c-fos mRNA has been used to

identify neural circuits mediating the release of neurohypophysial hormones (Hamamura et al.

1991a, 1991b, 1992). Thus, following osmotically induced oxytocin and vasopressin

secretion, c-fos mRNA expression has been detected in the anteroventral third ventricle region
and the SFO, areas that are critical for oxytocin secretion in response to such stimulation

(Hamamura et al. 1991a, 1992). Likewise, systemic administration of CCK, a stimulus for

oxytocin, but not vasopressin secretion (Verbalis et al. 1991b), results in increased Fos

immunoreactivity in putative afferent neurones in the brainstem, including the NTS (Luckman

1992).

Since Fos protein is a regulator of gene transcription, Fos expression in the

magnocellular hypothalamus in response to a stimulus associated with peptide release, might
be followed by an increase in gene expression of the released peptide. Yet, neither the oxytocin
nor the vasopressin gene contain the consensus AP-1 binding site (Icard-Liepkalns et al.

1992), but a region that differs from that sequence by one basepair (TGACCA in the oxytocin
and TGAATCA in the vasopressin gene, Leng et al. 1993b), to which binding of Jun/Fos

complexes has not been demonstrated. However, binding of a variety of Fos/Jun complexes to

an AP-1 site, that differs from the consensus AP-1 site by one base (a 'T' rather than a 'C' at

the centre of the palindrome) has been demonstrated in the case of the tyrosine hydroxylase

(TH) gene (Gizang-Ginsberg & Ziff 1994, Icard-Liepkalns et al. 1992).
In summary, numerous studies have shown a correlation between increased Fos

expression and neuronal activation, and in the case of the hypothalamic magnocellular system

an association with increased hormone release, and thus immunocytochemistry for Fos is a

powerful tool for the investigation of neuronal activation, as long as limitations of this

technique are taken into consideration when interpreting the data. Particularly the combination
of immunocytochemistry for Fos with a second immunocytochemical procedure to

characterise a Fos-immunoreactive cell in terms of the transmitter produced, has proven useful
to map putative afferent pathways activated by a given stimulus.
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Aims of the present study

Our understanding of the initiation and maintenance of parturition remains incomplete.

Thus, the onset of labour is often unpredictable and therefore encourages medical doctors (and
some of the pregnant women) to use an infusion of oxytocin to induce delivery at a

"convenient" time. However, such treatment does not contribute much to the clarification of

physiological mechanisms involved in inducing and maintaining labour and delivery. Here, our

aims were three fold: firstly to examine the involvement of pituitary oxytocin in the initiation

and maintenance of labour and delivery in rats, secondly to identify putative afferent neurones

mediating the increased release of oxytocin at the end of pregnancy and thirdly to investigate
their regulation.

We began by examining the effects of oxytocin administration on the progress of delivery
in rats in which endogenous oxytocin has been inhibited by the opioid agonist morphine. In

addition, we used immunocytochemical detection of Fos, the protein product of the immediate

early gene c-fos, a relatively novel technique, to assess whether the known activation of

supraoptic neurones during a physiological, but strong stimulus like delivery of pups, was

reflected by increased expression of this immediate early gene.

We then employed another stimulus for pituitary oxytocin release, an injection of CCK,

and, using again Fos immunocytochemistry, we thought to identify common pathways

involved in oxytocin secretion.

Furthermore, we performed double immunocytochemistry to identify neurones

immunoreactive for Fos in terms of the transmitters produced and thus to map neuronal
circuits involved in oxytocin secretion during late pregnancy and parturition.

Finally, we tried to validate some of our conclusions concerning the activation of

supraoptic neurones at term, by recording electrical activity of supraoptic neurones in late

pregnant rats during induced labour.
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Fig. A Afferent projections to magnocellular neurones in the hypothalamus (modified
from Cunningham & Sawchenko 1991)
Direct afferent projections to magnocellular neurones in the hypothalamus (in the
SON and PVN) are derived from the brainstem, including the NTS and
noradrenergic cells in the ventrolateral medulla (A1 cell group), and the forebrain,
including the SFO, OVLT and the median preoptic nucleus (MePN) in the anterior
hypothalamus. The SFO and OVLT which lack an effective blood-brain barrier
and are susceptible to changes in plasma osmolality, are part of the osmoreceptor
complex, that controls, via pituitary oxytocin and vasopressin release, body fluid
homeostasis. Neurones in the brainstem, and particularly the NTS, relay sensory
aflferents from the periphery to higher autonomic centres, including magnocellular
neurones in the hypothalamus. Neurotransmitters, including noradrenaline (NE),
inhibin-p (ip), somatostatin (SS), enkephalin (Enk) and neuropeptide Y (NPY),
have been detected in fibers projecting from the brainstem to the hypothalamus,
including magnocellular neurones.
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Fig. B Gonadal steroid and oxytocin receptor concentrations during pregnancy
Top: Parturition is preceded by a fall in plasma progesterone and subsequent rise
in the plasma oestrogen/progesterone ratio
Oestrogen and progesterone plasma concentrations (left y-axis) and the ratio of the
plasma concentration of oestrogen/progesterone (right y-axis) during pregnancy in
the rat

Bottom: Uterine oxytocin receptor concentrations increase dramatically at term in
the rat

(data from S.A. Way, PhD thesis 1992, drawing by S. Dye)
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Fig. C The rat uterus
Top: Circular section through the rat uterus (modified from Bloom 1975)

Right: Higher magnification view of the endo- and myometrial layer of a term
pregnant rat uterus stained with eosin and haematoxylin
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General Materials and Methods

Animals and Surgery

For all experiments on pregnant rats date mated female rats (Wistar rats in Babraham
and Sprague-Dawley rats in Edinburgh) of 280-450 g body weight at term were used. For

mating, virgin rats (200-220 g body weight) were left overnight with experienced males, and
all female rats in which sperm was detected in vaginal smears the next morning were kept
from then on in single cages with food and water ad libitum. Wistar rats were kept on a 14 h
L: 10 h D (lights on 05.00-19.00 h) schedule, Sprague-Dawley rats on 12 h L: 12 h D (lights
on 08.00-20.00 h). For experiments on cycling rats, daily vaginal smears were taken and
examined under the light microscope for at least two consecutive four day oestrous cycles,
before rats were used for experimental purposes.

Besides female rats, we performed one experiment in male rats (see chapter two) of
similar weight to virgin females (200-300 g body weight) from the Babraham colony (Wistar

rats). For experiments requiring intravenous drug application in conscious rats, animals were

implanted with a jugular vein cannula (inner diameter 0.5 mm, outer diameter 1.0 mm) either
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on day 19 of pregnancy under halothane anaesthesia (Wistar rats) or on day 20 or day 21
under brief ether anaesthesia (Sprague-Dawley rats). In the morning of the experiment,

normally the day of expected term (day 21 of pregnancy in both strains of rats), the cannulae
were flushed with 0.1 ml heparinised saline (50 IU heparin/ml saline) before any injection and
then connected to polyethylene tubing (same diameter as above, volume 0.1 ml) to allow drug

application with as little disturbance of the animals as possible.
On the day of the experiment (day of term, see above), animals were assessed every 5-10

min for signs of labour (stretching, straining, vaginal bleeding), pup delivery and maternal
behaviour (nest building, excessive grooming, licking of external genitals, licking of the pups

during and after delivery, pup retrieval). Onset of delivery was defined as the time when the
first pup was fully expelled and the time of birth for each following pup was recorded until at

least the eighth pup. During the dark period the observation was continued in red light.
At the end of each experiment rats were killed by cervical dislocation and after

laparotomy the uteri were stripped of remaining pups and placentae.
For immunocytochemistry and in situ hybridisation, the brains and/or uteri were

removed, immediately frozen under crushed dry ice and stored at -80°C until processed. To

optimise conditions for double immunocytochemistry some animals were deeply anaesthetised
with sodium pentobarbitone (50 mg/kg body weight iv) and perfused transcardially with
chilled 0.9% saline and then 4% paraformaldehyde in phosphate buffer. The brains were

postfixed and then kept frozen at -80°C until processed for immunocytochemistry.
The use of two strains of rats should not give rise to any concern as during the long¬

standing collaboration between the two laboratories we never noticed any striking difference
between the two strains regarding parameters like gestation length, time of onset of delivery,
the progress of delivery and litter size. In contrast, similar results obtained in both laboratories
should strengthen the validity of our data.

Drugs

Cholecystokinin (CCK26-33, sulphated; Sigma, UK) was dissolved in sterile 0.9% saline

(1 mg/ml) and injected intravenously at a concentration of 20 pg/kg body weight, the injected
volume being 100 pi/100 g body weight.
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Morphine sulphate and naloxone HC1 (Sigma, UK) were dissolved in sterile 0.9% saline
and injected at a concentration of 1 mg/kg and 5 mg/kg body weight, respectively, in a volume
of 100 pi/100 g body weight.

Oxytocin (Syntocinon, Sandoz) was dissolved in sterile 0.9% saline and injected at a

concentration of either 33 mU/ml (= 66 ng/ml), 330 mU/ml (= 660 ng/ml) or 660 mU/ml (=
1320 ng/ml), respectively, the injected volume being 0.03 ml per injection.

Two peptide oxytocin antagonists were used, desGly9,d(CH2)5[Tyr(Me)2Thr4]OVT

(OVT16) (Manning et al. 1989) and the compound F382© (des-Gly9-[D-

Trp2,alloIle4,Orn8]dC60T, Ferring, Sweden) generously provided by Dr. M. Manning,
Medical School of Toledo, Ohio, USA, and Dr. P. Melin, Ferring Research Institute, Malmo,
Sweden. The effective dose (ED) was defined as the dose (in nmol/kg body weight) that

reduces the response to 2x units of agonist to equal the response to lx unit (1.7+0.3 nmol/kg
for OVT16 (Manning et al. 1989) and 2.9+0.2 nmol/kg for F382 (P. Melin, personal

communication)); both peptide oxytocin analogues were dissolved in 0.9% saline containing
0.03 mM HC1 and were given in a volume of 0.05 ml/100 g body weight per injection, at a

concentration of 30 or 60 pg/kg body weight.

Commercially available progesterone (Intervet, UK, 5 mg per rat, dissolved in 0.3vol%

cresol, 89.7vol% arachis oil and 10vol% benzylalcohol) or vehicle (0.2 ml per rat) was

injected subcutaneously into the right outer calf.

Tissue preparation

For immunocytochemistry brains were cut into coronal sections either on a sliding

microtome (30 pm) in the case of in situ perfusion-fixed brains, or on a cryostat (15 pm), for

non-perfused brains. Sections were collected, in 0.1 M phoshate buffered solution, throughout
the SON (extending from the anterior commissure to the median eminence) and through the
brainstem (from the pyramidal decussation to the widening of the fourth ventricle rostral of the
area postrema). We counted immunoreactive cells on every fifth section from the respective
areas (a minimum of 8 cryostat and 8 microtome sections per area), thus ensuring that
sections from similar rostro-caudal positions for all animals were analysed, so that a variation
in cross section area and section volume is controlled for. For in situ hybridisation of uterine

tissue, circular sections (15 pm) were cut under RNAse free conditions.
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All cryostat sections (from both the brain and the uterine) were fixed in 4%

paraformaldehyde in phosphate buffer for 30 min prior to the immunocytochemistry or in situ

hybridisation procedure.

Immunocvtochemistry

In the first instance, endogenous peroxidase was deactivated with a solution of 0.1 M

phosphate buffer, 20% methanol and 0.2% Triton-X (15 min at room temperature).
For Fos immunocvtochemistry the sections were preincubated for 60 min in 0.1 M

phosphate buffer containing 0.3% Triton-X and 1% normal sheep serum, then incubated with
a polyclonal antiserum raised in rabbits against the N-terminal amino acids 2-17 of the rat Fos

protein (kindly provided by Drs. G.I. Evan and D. Hancock, Imperial Cancer Research Fund,

London, UK), used at a dilution of 1:10 000 at 4°C for 24 h. The second antibody (IgG made
in goats, Vector, UK) coupled to a peroxidase complex was used at 1:500 for 24 h.

For immunocvtochemical detection of tyrosine hydroxylase (TH, the rate limiting enzyme

for the synthesis of catecholamines), sections through the brainstem were first preincubated
for 60 min in 0.1 M phosphate buffer containing 0.3% Triton-X, 1% normal horse serum and

0.5% bovine serum albumin and were then incubated with a mouse monoclonal TH antibody

(1:4000, purchased from Chemicon International, Temecula, CA, USA) for 24 h at 4°C.
Sections were then incubated with a biotinylated horse anti-mouse antiserum (at 1:2000 for 2

h at room temperature, Vector, UK) and then with a commercial streptavidin-biotinylated

horseradish peroxidase complex (1:200, Amersham, UK) for 2 h at room temperature.

In both protocols, the antigen-antibody complex was visualised using the nickel
intensified (glucose-amino-oxidase) 3',3'-diaminobenzidine method (Shu et al. 1988), which

results in either a dark purple nuclear staining in the case of Fos or in dark cytoplasmic

staining in the case of TH. The sections were then dehydrated in graded alcohols, cleared in

xylene and coverslipped.
Immunoreactive cells were counted with the identity of the sections coded, using a

microscope with a xlO objective and a brightfield condenser. To test the specificity of the
increase in Fos expression in the brainstem and the SON in response to a treatment, Fos-
immunoreactive nuclei were also counted on some cryostat sections containing the subfornical

organ (SFO) and the area postrema. These areas are part of the group of circumventricular

organs which lack an efficient blood-brain barrier and are susceptible to changes in plasma
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osmolality and blood borne substances. Every third section was collected of the respective
areas and a minimum of five sections per area were analysed.

Double immunocvtochemistry

For Fos and vasopressin double immunocytochemistry the sections were first stained for
Fos as described above. Then the sections were washed and preincubated with 2% normal

horse serum and 0.5% bovine serum albumin for 1 h. The first antibody, a mouse monoclonal

anti-vasopressin antiserum (a gift from Dr. F.R. Robert, INSERM, Hopital Henri Mondor,
94101 Creteil, France, Robert et al. 1985) was used at a concentration of 1:100 000 for 40 h
followed by the second antibody, a biotinylated anti-mouse IgG raised in horse, used at a

concentration of 1:400 for 2 h at room temperature. After another 2 h incubation with the

streptavidin-biotinylated horseradish peroxidase complex (1:200, Amersham, UK) the staining
was visualised using H202 and 3',3'-diaminobenzidine, resulting in a light brown reaction

product over the cytoplasm that can be clearly distinguished from the dark purple nuclear Fos

staining.
For Fos and TH staining, the sections were first stained for Fos as above, then washed

and preincubated with 2% normal horse serum and 0.5% bovine serum albumin for 1 h. After

that, sections were incubated with a mouse monoclonal TH antibody (1:4000, purchased from

Chemicon International, Temecula, CA, USA) for 24 h at 4°C. For visualisation of the

antibody, the streptavidin-biotinylated peroxidase complex method was used. After incubation
with the TH antibody, the sections were first incubated with a biotinylated horse anti-mouse

IgG (at 1:2000 for 2 h at room temperature, Vector, UK) and then with a commercial

streptavidin-biotinylated horseradish peroxidase complex (1:200, Amersham, UK) for 2 h at

room temperature. The antigen-antibody complex was visualised using the 3',3'-
diaminobenzidine method, resulting in a light brown reaction product over the cytoplasm that
can be clearly distinguished from the dark purple nuclear Fos staining.

In the brainstem, double- and single-labelled cells were counted in at least 42 alternate

sections per animal to survey the catecholaminergic cell groups of the NTS and of the
ventrolateral medulla (the A2/C2 and Al/Cl cell groups, respectively), while TH
immunoreactive cells located in the dorsal motor nucleus of the vagus were not counted, as the

majority of these neurones at the level of the area postrema contain dopamine, unlike at the
caudal level of the A2/C2 region, where the majority of TH immunoreactive cells contain
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noradrenaline (Kalia et al. 1985). The counts were divided into seven groups of six sections

each, so that each group extended rostro-caudally over a subdivision of 0.36 mm. The obex,

just rostral of the area postrema (Paxinos & Watson 1986), was taken as reference point zero.

For Fos and oxytocin double immunocytochemistry the sections were first stained for
Fos as described above, but using a biotinylated second antibody (1:200, Vector, UK) and the

streptavidin-biotinylated horseradish peroxidase complex (1:200, Amersham UK). The

staining was visualised using the nickel-intensified (glucose-amino-oxidase) 3',3'-
diaminobenzidine method.

Sections were then washed and preincubated with 1% normal sheep serum for 1 h, before
incubation with a polyclonal antiserum, raised in rabbits, against oxytocin (kindly given to us

by Dr. T. Higuchi, Kochi Medical School, Japan), for 24 h at a concentration of 1:50 000 at

4°C. The second antibody, made in goat against rabbit IgG and coupled to a peroxidase

complex, was used at a concentration of 1:500 for 24 h (Vector, UK). Cellular staining was

visualised using the 3',3'-diaminobenzidine method, resulting in a light brown reaction product
over the cytoplasm that can be clearly distinguished from the dark purple nuclear Fos staining.

In situ hybridisation

In situ hybridisation for TH mRNA

Coronal sections (15 pm) were cut through the brainstem on a cryostat under RNAse

free conditions, mounted on gelatinised slides and stored at -80°C until used.
A synthetic oligonucleotide probe complementary to the bases 1223-1252 (30 mer) of the rat

TH gene (Grima et al. 1985) was 3' end labelled with [35S]dATP (1000-1500 Ci/mmol, New

England Nuclear NEG 034H) using 50 U terminal desoxynucleotidyl transferase (Pharmacia,

UK) resulting in a specific activity of approximately 2.8 x 105 dpm/ng. This oligonucleotide

probe sequence has been used previously to map the distribution of tyrosine hydroxylase
mRNA expression in rat brain and adrenal (Kiyama et al. 1990). The radiolabeled probe was

purified by gel filtration on a Sephadex G-50 column. Frozen sections were warmed to room

temperature, fixed with 4% paraformaldehyde in 0.1 M phoshate buffer for 20 min and rinsed
in 0.1 M phosphate buffered saline (PBS). Sections were then pretreated with 0.25% acetic

anhydride in 0.1 M triethanolamine hydrochloride/0.9% sodium chloride for 10 min,

dehydrated through a series of graded alcohols and left to air dry. The oligonucleotide probe
was diluted in hybridisation buffer (50% deionised formamide, 4 x SSC, 10% dextran
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sulphate, 1 x Denhardt's solution, 250 pg/ml sheared salmon testis DNA, 0.3% 13-

mercaptoethanol to a final concentration of 1.7 x 103 dpm/pl (equivalent to 0.06 pmol/pl), and
350 pi of diluted probe applied to each slide (6-10 sections per slide). Following an overnight

hybridisation at 37°C, sections were washed once in 1 x SSC at room temperature, then three

times in 1 x SSC at 55°C (30 min each) and finally one more time in 1 x SSC at room

temperature for 60 min. Sections were briefly rinsed in dH20, followed by 70% ethanol/300
mM ammonium acetate and then absolute alcohol. Sections were allowed to air dry before

either being exposed to hyperfilm 13-MAX (Amersham, UK) for 4 weeks at room temperature,

or being dipped in Ilford K-5 nuclear track emulsion and exposed for 5 weeks in dark tight
boxes at room temperature. Emulsion dipped slides were photodeveloped with Ilford K-5 (1:5

in distilled water, at 4°C), counterstained with methylene blue, to allow visualisation of cells,
and coverslipped. The hyperfilm (3-MAX was developed in Kodak D-19 (1:5 in distilled water,

5 min at 20°C) and fixed in Ilford Hypam (1:4 in distilled water, 10 min at 20°C). Signal

specificity was assessed by incubating some sections with the radiolabeled probe in the

presence of a 25-fold excess of unlabelled probe.

For the quantitative analysis of TH mRNA expression an automated image analysis

system, the Joyce Loebl pMagiscan, was used. The average optical density per cell (silver

grains/cell) in the NTS and the ventrolateral medulla were measured in a minimum of 20 cells

(4x5 cells from four different sections) per area per rat. On most sections, the area covered

by the screen of the image analysis system (dorsal and lateral of the central canal and in the

ventrolateral medulla), contained five or less sections, so that the cells included in the analysis

were usually all or most of the cells containing silver grains per half section.

In situ hybridisation for oxytocin mRNA

Uterine circular sections (15 pm) were cut on a cryostat under RNAse free conditions,

mounted on gelatinised slides and stored at -80°C until used.
A synthetic oligonucleotide probe (27 mer) complementary to a sequence on exon C of

the rat oxytocin gene (912-939, Ivell & Richter 1984) was 3' end labelled with [35S]dATP

(1000-1500 Ci/mmol, New England Nuclear NEG 034H) using 50 U terminal

desoxynucleotidyl transferase (Pharmacia, UK) resulting in a specific activity of

approximately 4.3 x 104 dpm/ng. This oligonucleotide probe sequence has been shown to

hybridise with oxytocin mRNA in rat brain, uterus and placenta and its specificity has been
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verified using Northern blot analysis (Lefebvre et al. 1992a, 1992b, Zingg & Lefebvre

1988b). The radiolabeled probe was purified by gel filtration on a Sephadex G-50 column.

Frozen sections were warmed to room temperature, fixed with 4% paraformaldehyde in 0.1 M

phoshate buffer for 20 min and rinsed in 0.1 M phosphate buffered saline. Sections were then

pretreated with 0.25% acetic anhydride in 0.1 M triethanolamine hydrochloride/0.9% sodium
chloride for 10 min, dehydrated through a series of graded alcohols, then delipidated with
chloroform for 10 min, partially rehydraded and finally left to air dry. The oligonucleotide was

diluted in hybridisation buffer (50% deionised formamide, 4 x SSC, 10% dextran sulphate, 1
x Denhardt's solution, 250 ug/ml sheared salmon testis DNA, 0.3% B-mercaptoethanol to a

final concentration of approximately 2 x 103 dpm/pl (equivalent to 0.05 pmol/pl) and 20 pi of
diluted probe applied to each section (and two sections/slide). Following an overnight

hybridisation at 37°C, sections were washed once in 1 x SSC at room temperature, then three

times in 1 x SSC at 55°C (30 min each) and finally one more time in 1 x SSC at room

temperature for 60 min. Sections were briefly rinsed in distilled dH20, followed by 70%
ethanol/300 mM ammonium acetate and then absolute alcohol. Sections were allowed to air

dry before either being exposed to hyperfilm fi-MAX (Amersham, UK) for 26 h at 4°C, or

being dipped in Ilford K-5 nuclear track emulsion and exposed for 26 h in dark tight boxes at

4°C. Emulsion dipped slides were photodeveloped with Ilford Phenisol (1:5 in distilled water,

5 min at 20°C), counterstained with haematoxylin eosin and coverslipped. The hyperfilm 6-

MAX was developed in Kodak D-19 (1:5 in dH20, 5 min at 20°C) and fixed in Ilford Hypam

(1:4 in distilled water, 10 min at 20°C). Signal specificity was assessed by incubating some

sections with the radiolabeled probe in the presence of a 25-fold excess of unlabelled probe.
For the quantitative analysis of oxytocin mRNA expression an automated image analysis

system, the Joyce Loebl pMagiscan, in combination with a Ml7 Vickers microscope, was

used. Measurements of optical density, assessed in a minimum of 4 areas per endo- and

myometrium, respectively were transformed using a standard curve into dpm/mm3 endo- and

myometrium.
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Extracellular electrophysiological recording from supraoptic neurones and

measurement of uterine arid/or cervix pressure on the dav of expected term

Date mated day 21 pregnant Wistar rats were deeply anaesthetised with sodium

pentobarbitone (initially 20-30 mg/kg body weight intraperitoneally) and implanted with a

jugular vein cannula and a tracheal cannula. Then animals were carefully laparotomised by a

medial longitudinal incision (approximately 20 mm) in the abdominal wall. One horn of the

pregnant uterus was taken out of the abdominal cavity and kept moist with 37°C warm sterile
water. An small incision (5 mm) was made mid-way between the ovarian and the cervical end

in the uterine wall at the site of a pup and then a purse-string-suture was made around the
incision using an atraumatic needle and a sterile chromic collagen thread (Ethicon, 6/0, UK).
Then a deflated latex balloon (condom tip) was inserted and pushed towards the ovarian end
until it was located in between two pups. The balloon was then carefully inflated with 1.5-3
ml sterile water to ensure the correct location and then deflated. The uterine incision was

closed and the polyethylene tubing attached to the balloon was carefully fixed with the thread
to the uterine wall before being reinserted into the abdominal cavity. For the implantation of a

second balloon in the other uterine horn the procedure was repeated in exactly the same way

using the same abdominal incision. Finally, the balloons were inflated with 1.5-4 ml sterile
water and attached to the pressure recorder. In some rats we introduced an additional balloon
of the same size as above into the cervix. In that case the deflated balloon was introduced

through the vagina and inflated just above the cervix (the correct length has been tested in

pilot experiments under vision). At the end of the experiment the location of all inserted
balloon was examined prior to deflation.

Then the SON and the neural stalk were exposed by ventral surgery performed by Dr. G.

Leng as previously described (Dyball & Leng 1986, Leng 1981). Briefly, a bipolar stainless-

steel stimulating electrode was placed upon the neural stalk and a glass micropipette, filled
with 0.15 M NaCl, was introduced into the supraoptic nucleus under direct visual control.

Single neurones, recorded extracellularly from the supraoptic nucleus region were identified

antidromically as projecting to the neural lobe and as putative oxytocin neurones by their
continuous pattern of discharge and by their transient and significant increase in firing rate in

response to an intravenous injection of CCK (20 pg/kg body weight), while vasopressin
neurones were identified by a lack of such excitation and by their phasic activity. For
antidromic stimulation a matched biphasic stimulus was used (2 ms pulses, <1 mA peak-to-

peak).
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Statistical analysis

Unless indicated otherwise, non-parametric tests and a two-tailed hypothesis were used

for statistical comparisons. Data are expressed as means+s.e.m.. In the case of two groups,

the Mann Whitney U-test was used, while the Kruskal-Wallis test, followed by Dunn's post-

hoc test was used for multiple comparisons. A difference was considered significant for a two-

tailed value of p<0.05.

For statistical analysis of the progress of delivery, the time between birth of pups

(interbirth intervals) was recorded and the comparison calculated either for the cumulative
between a number of pups or for individual intervals. Since the time between the birth of the

first and the second pup is very variable, this first interbirth interval was excluded from

subsequent analysis. For the same reason, drugs, administered to parturient rats, were injected
in all but one experiment after the birth of the second pup.



Chapter 1

The maintenance of normal parturition in the rat requires

neurohypophysial oxytocin

During delivery in rats 30-40% of the accumulated pituitary oxytocin content (about 350

mil, Fuchs & Saito 1971, Kumaresan et al. 1979) is released into the general circulation. The

physiological importance of this release is demonstrated by the disruption of the normal

progress of delivery following inhibition of oxytocin secretion by administration of central or

systemic opioid receptor agonists to parturient rats and by the restoration of such disrupted

delivery by an infusion of oxytocin (Bicknell et aI. 1988c, Leng & Russell 1989c, Russell

1989b). During pregnancy endogenous opioids restrain the release of oxytocin at the level of
the hypothalamus and the pituitary (Bicknell et al. 1988c, 1993, Douglas et al. 1993a),

however the opioid inhibition of oxytocin release from terminals in the neural lobe declines

gradually towards term (Douglas et al. 1993a), while in the hypothalamus an endogenous

opioid tone remains present on magnocellular oxytocin neurones throughout delivery (Bicknell
et al. 1988c, Neumann et al. 1992). Despite this opioid restraint during delivery in rats, burst-
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like discharge of neurosecretory neurones has been observed preceding the birth of each pup

(Summerlee 1981) and this electrical activity is reflected by intermittent peak plasma

concentrations of oxytocin up to 80 pg/ml (Higuchi et al. 1986b), indicating pulsatile hormone
release. In humans, such pulsatile release of oxytocin has been descnbed throughout the last
tnmester of pregnancy (Chard 1989), with an increase of the pulse frequency and amplitude in
the course of labour and a maximum during the expulsion of the foetus (Fuchs et al. 1991).

Since in rats, an injection of the opioid receptor agonist morphine during delivery

significantly reduces oxytocin secretion and greatly prolongs delivery of subsequent pups

(Russell et al. 1989b), we used such treatment to investigate the effectiveness of different

patterns of oxytocin administration at restoring the normal progress of parturition in rats.

Furthermore, we used Fos immunocytochemistry to examine whether expression of this
immediate early gene product, that is induced in magnocellular hypothalamic neurones in

response to non-physiological or pharmacological stimuli, including haemorrhage, an injection
of hypertonic saline (Fenelon et al. 1993) and an injection of CCK (Hamamura et al. 1991b),

is also induced during parturition, which is a physiological stimulus for the secretion of

oxytocin.

Materials and Methods

Animals

Date mated pregnant Wistar rats from the Babraham colony were implanted with a

jugular vein cannula under brief halothane anaesthesia on day 19 of pregnancy. In the morning

of day 21 of pregnancy, the day of expected term, the cannulae were flushed with 0.1 ml

heparinised saline (50 IU heparin/ml saline) and connected to polyethylene tubings filled with
isotonic saline or oxytocin. Rats were continuously observed for signs of labour (stretching,

straining, vaginal bleeding), pup delivery and maternal behaviour (nest building, excessive

grooming, licking of external genitals, licking of the pups during and after delivery, pup

retrieval). During the dark phase the observation was continued in red light.

Experimental design
One group of animals was killed on the day of expected term but prior to any signs of

labour and delivery (prepartum group, n=5). Another group of rats was allowed to deliver

pups without any treatment (controls, n=9). All other rats received a single injection of

morphine sulphate (Sigma, 1 mg/kg body weight, in 0.05 ml saline/100 g body weight)



Chapter 1 - Normal parturition requires neurohypophysial oxytocin 46

immediately after the birth of the second pup. Then rats were randomly assigned to one of the

following treatment groups:

• the naloxone group (n=6) was given a single injection of naloxone HC1 (Sigma, 5

mg/kg body weight, in 0.1 ml saline/100 g body weight)
• the morphine group (n=10) was given a continuous infusion of saline (6 pl/min) for

90 min

• the oxytocin infusion groups were given an infusion of oxytocin (Syntocinon,

Sandoz) at a higher or lower rate (0.4 mU oxytocin/min, n=9, or 0.1 mU

oxytocin/min, n=10)

• the oxytocin pulse groups were given the equivalent of the higher or lower infusion
rate of oxytocin in pulses (2 mU oxytocin in 0.03 ml each 5 min, n=5, or 1 mU

oxytocin in 0.06 ml each 10 min, n=9 or 0.5 mU oxytocin in 0.03 ml each 5 min,

n=6)

Time of birth for each pup was recorded until 90 min after delivery of the second pup, when
animals were deeply anaesthetised with sodium pentobarbitone (50 mg/kg body weight iv) and

in situ perfusion-fixed with 4% paraformaldehyde in phosphate buffer. The brains were

postfixed and kept frozen at -80°C until processed for Fos immunocytochemistry.

Fos immunocvtochemistry

Coronal sections (30 pm) though the hypothalamus and the brainstem were cut on a

sliding microtome and processed for standard Fos immunocytochemistry according to Shu et

al. 1988 (see general materials and methods section). Fos immunocytochemistry was

performed on brains of 4-7 rats per group for the following groups: prepartum, parturient,

morphine only, morphine plus oxytocin pulses (1 mU oxytocin each 10 min) and morphine

plus an infusion of oxytocin (0.1 mU oxytocin/min). For each rat Fos-immunoreactive nuclei

were counted under the light microscope on every fifth section (on average 11-15 sections per

area) through the hypothalamus (SON and PVN) and the brainstem (including the area

postrema and the dorsal vagal complex (DVC), the latter consisting of the NTS and the dorsal
motor nucleus of the vagus nerve), the locus coeruleus and the nucleus of the hypoglossal

nerve. The counts were averaged for each area in each animal and then group means+s.e.m.

were calculated.
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In addition, sections through the hypothalamus of one parturient rat were processed for

double-immunocytochemistry for Fos and oxytocin to examine whether during parturition c-

fos expression was indeed detected in magnocellular oxytocin neurones.

Statistical analysis

The cumulative times between delivery of pups for experimental and control groups were

compared using the Mann-Whitney U-test. The first birth interval, which is usually the

longest, was excluded from statistical analysis because it is highly variable between animals.
The incidence of Fos-immunoreactive nuclei was compared between each experimental

group and the control parturient or prepartum group for each respective area using the Mann-

Whitney U-test. For p<0.05, based on a two-tailed hypothesis, a difference was considered

significant.

Results

The progress of delivery in control rats and rats injected with morphine, morphine +

naloxone or morphine+oxytocin
All animals that were allowed to deliver started to give birth between 12.00 h on day 21

and 14.37 h on day 22. Though a total of 85 rats had been implanted with a cannula, sixteen

rats were excluded due to either a small litter size (less than 7 pups/litter, n=2), the

unreliability of the implanted cannula (n=2), or the missed onset of delivery, assigned to the

time of the birth of the first pup (n=12).

The remaining 69 rats had on average 11+0.7 pups per litter. Delivery of the first pup

was preceded by a period of 1-4 hours of straining and stretching movements of mother rats

and licking of the vaginal orifice. Most rats started to bleed from the vagina shortly before the
onset of delivery.

Once the first pup was expelled, mother rats that were given a saline injection engaged in
normal maternal behaviour, including licking of pups, crouching and retrieving of pups, nest

building activity and eating of the placentae, which were delivered in between pups. In control

animals, the birth intervals shortened in the course of delivery and all but one of nine control

animals delivered all pups within 90 min of the birth of the second pup (and thus before being

killed). In contrast, most morphine-treated rats did deliver only 6 pups within 90 min of the
first injection and hence we used the cumulative time between the birth of pups 2-6 for
statistical comparison between the treatment groups.
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Control animals (n=9) gave birth to pups 2-6 in 56+6.1 min (Fig. 1), while rats given a

single injection of morphine took significantly longer to deliver pups 2-6 (82.5+3 .6 min, n=10,

U-test, p<0.05). Furthermore, morphine-treated rats showed for 30-60 min after the morphine

injection a complete lack of maternal behaviour (they failed to lick and retrieve pups, they did

not engage in nest building activity and they did not eat the placentae). These adverse effects
of morphine were completely reversed by an injection of naloxone. Thus, morphine + naloxone

treated rats delivered pups 2-6 in a time similar to controls (42+5.6 min, n=6) and displayed
normal maternal behaviour throughout delivery.

When the single injection of morphine was followed by an infusion of oxytocin at a rate

of 0.4 mU/min the progress of delivery was not different from controls and significantly

shorter than in morphine only treated rats (time between pups 2-6: 56.6+7.5 min, n=10, li¬

test, p<0.05), while a lower dose oxytocin infusion (0.1 mU/min) following the morphine

injection was not effective at restoring delivery (time between birth of pups 2-6: 68+6.3 min,

n=10, not significantly different from morphine only treated rats).

In contrast, when the lower dose of oxytocin was administered in pulses, 1 mU each 10

min, following morphine, the time between pups 2-6 was significantly shorter than in

morphine-treated rats (43.3+5.1 min, n=6, U-test, p<0.05) and than in rats given morphine

plus the same dose of oxytocin as an infusion (see above, U-test, p<0.05) or as pulses each 5
min (see below, U-test, p<0.05), while there was no significant difference to control animals.

Also, these animals showed normal maternal behaviour, including licking of pups, crouching

and retrieving of pups and eating the placentae. Thus, oxytocin at a phsyiological dose of 1

mU each 10 min was able to fully reverse the effects of morphine on the progress of delivery

and maternal behaviour.

Using a different pulse pattern, a pulse of oxytocin each 5 min, we found that similar to

the continuous administration of oxytocin, only the higher dose (2 mU oxytocin each 5 min =

equivalent to the higher dose oxytocin infusion of 0.4 mU/min) was effective at restonng the
normal progress of delivery (time between pups 2-6: 53+9.8 min, n=5), while 0.5 mU

oxytocin each 5 nun could not significantly improve the prolonged delivery following an

injection of morphine (time between pups 2-6: 78+8.4 min, n=6, U-test, p<0.05 compared to

controls).

In summary, the prolongation of delivery and the impairment of normal maternal
behaviour following a systemic injection of morphine to parturient rats can be restored either

by naloxone, by a higher dose of oxytocin given as a continuous infusion or with oxytocin
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given at physiological doses but in pulses each 10 rnin. Conversely, pulses given at 5 min

intervals, even at a higher dose, were less effective.

Fos-immunoreactive nuclei throughout the brain of partunent rats (Table 1)
Control animals were killed before any signs of labour (prepartum) or 90 min after the

birth of the second pup (partunent), in situ perfusion-fixed and the brains processed for Fos

immunocytochemistry.

Table 1

Fos-immunoreactive (ir) nuclei in the brain of prepartum and parturient rats

area prepartum parturient

anterior olfactory nuclei + +++

lateral septal nuclei (+) ++

bed of the stria terminalis (BST) - +

anterior hypothalamus + ++

medial preoptic area (MPOA) + ++

primary olfactory cortex + ++

medial preoptic nucleus (MePO) + ++

ventromedial hypothalamus (VMH) + ++

dorsomedial hypothalamus (DMH) + ++

arcuate nucleus + ++

supramammillary nuclei ++ ++

mammillary nuclei (+) ++

central nucleus inferior colliculus + ++

central grey + ++

parabrachial nuclei (+) ++

medial vestibular nucleus + ++

- : no Fos-ir nuclei, (+): few Fos-ir nuclei, + : some Fos-ir nuclei, ++ : many Fos-ir nuclei,
+++ : very many Fos-ir nuclei

Fos-immunoreactive nuclei were widely distributed throughout the brain (Table 1, Fig. 2)

in prepartum and parturient rats and though there seemed to be a slight increase in the number
of Fos-immunoreactive nuclei in most areas in rats killed during (parturient) compared to rats

killed before parturition (prepartum), the difference was not very pronounced.
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Unlike in the areas listed above, we observed a marked increase in the incidence of Fos

immunoreactive nuclei in the brainstem and the magnocellular hypothalamus of parturient rats

compared to those killed prior to delivery. Therefore, we confined counting of Fos-
tmmunoreactive nuclei to areas which are either likely to be involved in the secretion of

oxytocin during delivery (including the SON and the PVN in the hypothalamus and putative

afferent neurones in the dorsal vagal complex) and areas in which the increase in Fos

expression seemed most marked (including the area postrema, the locus coeruleus and the
nucleus of the hypoglossal nerve, that contains motor neurones of the tongue).

Fos-immunoreactive nuclei in the SON and PVN of the hypothalamus (Fig. 3 & 4)
In the SON, the number of Fos-immunoreactive nuclei was low before delivery and

increased significantly during parturition (U-test, p<0.05). Animals that were given morphine
after the birth of the second pup had significantly fewer Fos-immunoreactive nuclei per

section SON compared to control parturient ammals (U-test, p<0.05). When the progress of

delivery was fully or partly restored with pulses or an infusion of the lower dose of oxytocin

(1 mU oxytocin each 10 min or 0.1 mU oxytocin/min), Fos expression in the SON remained
reduced and thus, rats given morphine and oxytocin pulses or an infusion of oxytocin showed
Fos expression in the SON similar to that in morphine only treated rats and significantly less
than the control parturient group (U-test, p<0.05). An injection of naloxone restored Fos

expression in the SON to normal parturient levels (67+11 Fos-immunoreactive nuclei/section
SON vs 58+13 in control parturient rats, data not shown).

In the PVN, the number of Fos-immunoreactive nuclei did not show a significant

increase in parturient compared to prepartum rats, nor was it significantly affected by

morphine and/or oxytocin treatment.

Double-immunocytochemistry for Fos and oxytocin on sections through the

hypothalamus revealed that Fos-immunoreactive nuclei were detected in oxytocin-

lmmunoreactive neurones in both the SON and PVN, though not all oxytocin neurones were

also immunoreactive for Fos, particularly in the PVN (Fig. 5), and furthermore in the latter
Fos-immunoreactive nuclei were not confined to the oxytocin cell population.

Beside the magnocellular hypothalamus, we observed Fos expression throughout the

hypothalamus in both prepartum and parturient rats, but failed to find a marked difference in
the number of Fos-immunoreactive nuclei in these areas between groups and therefore we

assessed Fos expression only qualitatively in these areas (Table 1, Fig. 1).
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Fos-immunoreactive nuclei in the brainstem (Fig. 4 & 6)

In the dorsal vagal complex, Fos expression was low before delivery and increased

significantly during partuntion (U-test, p<0.05). An injection of morphine had no significant
effect on Fos expression in the dorsal vagal complex, but Fos expression remained at the
elevated level seen in control parturient rats regardless of whether the progress of delivery was

fully reinstated with pulses of oxytocin or continued to be slow in response to an infusion of

oxytocin at a dose of 0.1 mU/min.

In the area postrema, Fos expression was apparent before delivery and did not show a

significant further increase dunng parturition and, similar to the PVN, Fos immunoreactivity
was not affected by morphine nor by subsequent administration of oxytocin.

Fos-immunoreactive nuclei in the locus coeruleus and the nucleus of the hypoglossal

nerve (Fig, 7)

In two other areas in the hindbrain, we observed a increase in Fos expression in

partunent compared to prepartum rats: the locus coeruleus and the nucleus of the nervus

hypoglossus (Fig. 7). While in the former, Fos expression was not significantly reduced

following morphine and thus not increased in response to the restoration of delivery with

oxytocin, in the nucleus of the hypoglossal nerve Fos expression decreased significantly in

response to morphine, but was not different from control parturient rats when pulses of

oxytocin (1 mU each 10 mm) were given that fully restored delivery. On the other hand, in
rats given the lower dose oxytocin infusion (0.1 mU/min), which was not fully effective at

restoring the normal progress of delivery, Fos expression in the nucleus of the hypoglossal
nerve remained reduced and similar to that in morphine only treated rats.

Discussion

Here, we have shown that in rats, in which pituitary oxytocin secretion has been inhibited

by an injection of morphine (Russell et al. 198%), administration of oxytocin in pulses at a

physiological dose is highly effective at restoring the disturbed progress of delivery. In

contrast, to reinstate delivery with a continuous infusion of oxytocin a four fold higher dose of

oxytocin was needed. Similarly, when pulses of oxytocin each 5 min rather than each 10 min
were given, a higher dose of oxytocin was required to reinstate normal delivery. Thus, the

greatest effectiveness of physiological doses of oxytocin, injected intermittently each 10 min,
at restoring delivery that has been disrupted by morphine indicates that the pattern of oxytocin
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release is critical for the normal progress of delivery. This is in agreement with observations in

humans, in whom pulsatile secretion of oxytocin has been reported to occur during labour and

delivery (Fuchs et al. 1991). Also, in humans intermittent oxytocin injections are effective at

inducing delivery at much lower doses than that required with an infusion of oxytocin

(Dawood 1989), indicating the physiological significance of such pulsatile release at inducing
and maintaining labour and delivery.

Since systemic administration of pulsatile oxytocin was highly effective at restoring

delivery, these data indicate, as has been suggested from studies performed in vitro (Russell et

al. 1989b) that uterine responsiveness to oxytocin has not been impaired by systemic

morphine. Furthermore, such pulsatile release of oxytocin, which is associated with transient

but high plasma concentrations of the peptide (Higuchi et al. 1986b), might be important for
the generation of forceful uterine contractions and at the same time the prevention of a

desensitisation of the uterus to the effects of oxytocin, that are observed after prolonged
continuous administration of the peptide (Engstrom et al. 1988).

In the second part of our study, we have demonstrated that Fos, the protein product of
the immediate early gene c-fos, which has been used widely to examine neuronal activation in

response to a variety of non-physiological stimuli (Curran & Franza 1988, Hoffman et al

1993), and that in the magnocellular hypothalamus has been shown to be associated with

hormone release from the posterior pituitary (Luckman et al. 1993b, Hamamura et al. 1991b,
Verbalis et al. 1991b), is also induced in response to a physiological stimulus like

spontaneous parturition. Though we have observed Fos expression in parturient rats in a

number of areas in the brain, not all of these areas are directly involved in parturition.

Conversely, Fos expression in some areas, including the olfactory nuclei and cortex, the
anterior hypothalamus and the BST, in late pregnant rats might reflect the initiation of
maternal behaviour at term (Insel 1992b). Since we were primarily interested in the control of

pituitary oxytocin secretion at term, we examined Fos expression quantitatively only in areas

known to be involved in oxytocin secretion, namely the magnocellular hypothalamus and the
NTS.

Neurones in the anterior hypothalamus, including the preoptic area, and the BNST have

been implicated in rats in the initiation of maternal behaviour (Numan 1988, Numan &

Numan 1994), which depends on steroid priming with progesterone followed by oestrogen as

seen in the last trimester of pregnancy. Furthermore, central, but not systemic administration
of oxytocin can induce maternal behaviour in oestrogen-primed rats (Pedersen et al. 1982) and
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similarly, vagino-cervical stimulation, that is associated with increased Fos expression in

parvocellular hypothalamic neurones (Flanagan et al. 1993), can induce maternal behaviour in

multiparous rats (Yeo & Keveme 1986). Thus, the observation that systemic oxytocin

administration that restored delivery following the disruption by morphine, also reinstated

maternal behaviour, that was impaired following an injection of morphine, might be due to a

central release of oxytocin in response to the expulsion of pups and hence following activation
of sensory pathways from the uterus to the forebrain. This is supported by data in mice, in
which subcutaneous as well as intracerebroventricular administration of oxytocin can induce
maternal behaviour (McCarthy 1990).

Fos was also observed before and during delivery in neurones of the OVLT, which are

part of the osmoreceptor complex (Honda et al. 1990, Leng et al. 1988b), and in which Fos

has been shown in response to osmotic stimulation (Hamamura et al. 1991a). Unlike the

release of oxytocin in response to osmotic stimulation that is significantly reduced by ablation
of the region anterior and ventral to the third ventricle (AV3V), including the OVLT

(Blackburn & Leng 1990a), such lesions do not greatly disturb the progress of partuntion

(Russell et al. 1989a), supporting the assumption that these neurones are not part of the

afferent pathway mediating the reflex release of oxytocin during delivery. Conversely,
activation of a number of neurones throughout the hindbrain and the mesencephalon in late

pregnant and parturient rats indicates, as one might expect, that labour and delivery stimulates
a variety of sensory and motor afferents. Thus, neurones in areas including the central grey

might be activated in response to the pain associated with delivery (Morgan et al. 1991), while
activation of neurones in the olfactory bulbs and the pyriform cortex could reflect olfactory

stimulation by the newborn (Argiolas & Gessa 1991).

In the PVN, Fos expression was apparent in rats before delivery of any pups, and though

the distribution of Fos immunoreactive nuclei in the PVN before delivery was most prominent

over the parvocellular parts, we cannot exclude the possibility that some magnocellular PVN
neurones also expressed Fos prior to parturition. In contrast, Fos expression in the SON was

low prior to delivery but significantly increased in rats killed during parturition. The primarily
dorsal distribution of Fos-immunoreactive nuclei in the SON in partunent rats suggests the

activation of oxytocin neurones and sections taken from one animal for double

immunocytochemistry confirmed the presence of Fos-immunoreactive nuclei in supraoptic

oxytocin neurones, though some vasopressin neurones also seemed to be activated. Since

morphine inhibits oxytocin secretion (Russell et al. 1989b) and the progress of partuntion,
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while exogenous oxytocin was highly effective at restonng parturition, the lack of Fos

expression in the SON of morphine-treated rats seems to reflect reduced secretion. The

reinstatement of delivery with oxytocin was not associated with normal Fos expression in the

SON, while in the dorsal vagal complex Fos expression was not affected by the disruption nor

the restoration of delivery, indicating that morphine acts rostrally of the dorsal vagal complex
and possibly at, or close to, supraoptic neurones. Indeed, it has been suggested that opioids
could regulate supraoptic oxytocin neurones via a presynaptic site of action on

catecholaminergic afferents (Bicknell et al. 1993, Onaka et al. 1995a).

Thus, the increased incidence of Fos-immunoreactive nuclei in the magnocellular

hypothalamus and in putative afferent neurones in the dorsal vagal complex of parturient rats

reflects the increased plasma concentration of oxytocin during delivery of pups (Higuchi et al.

1986b, Douglas et al. 1993a). Since putative afferent neurones involved in mediating the

release of oxytocin during delivery were activated only at the time of parturition, this is

consistent with the hypothesis that delivery of pups initiates the positive feedback stimulation

of pituitary oxytocin release via neurones in the dorsal vagal complex (Ortega-Villalobos et

al. 1990). Although this study does not provide conclusive evidence that neurones in the

dorsal vagal complex that are activated during delivery mediate the reflex release of oxytocin,

the importance of the afferent projection from neurones in the NTS to magnocellular

hypothalamic nuclei for neurohypophysial hormone release is well established (Day 1989,

Raby & Renaud 1989a, Sawchenko & Swanson 1982b, Onaka et al. 1995b, Rinaman et al.

1994).

Unlike the SON, that contains predominantly neurosecretory neurones, the PVN is a

more heterogeneous nucleus, containing both magnocellular and parvocellular neurones

(Sawchenko & Swanson 1982a, Swanson & Sawchenko 1983), the latter of which project to

the dorsal vagal complex and thus might form a neural circuit between the hypothalamus and

the brainstem, which could account for the maintenance of Fos expression in the dorsal vagal

complex in rats in which vagino-cervical stimulation was prevented. In addition, activation of

this circuit might have comprised an excitatory pathway from the locus coeruleus, and in

particular from noradrenergic cells withm this nucleus, which project to the parvocellular

neurones in the PVN (Sawchenko & Swanson 1982a) and in which Fos expression was

greater in parturient compared to prepartum rats and not significantly reduced following an

injection of morphine. Alternatively, morphine might not have completely prevented pituitary

oxytocin secretion and/or uterine activity might have been maintained, though possibly at
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reduced force, by factors other than pituitary oxytocin, e.g. prostaglandins (Chan 1987, Chan
et al. 1988), and such mechanisms might have contributed to the maintenance of Fos

expression in the NTS and the parvocellular PVN. Furthermore, the inhibitory effect of an

intravenous injection of morphine to parturient rats on oxytocin release lasts about 50 min and
thus can explain the gradual reinstatement of parturition after the initial complete abolition of
further births.

In contrast, in the nucleus of the nervus hypoglossus, where afferent fibers from the

tongue terminate, Fos expression increased during delivery, possibly reflecting the licking
behaviour of the mother, which is part of normal maternal behaviour during parturition. Thus,

disruption of maternal behaviour by systemic morphine resulted in the significant reduction of
Fos expression compared to control parturient animals in this nucleus, but was restored when

delivery and maternal behaviour were reinstated with pulses of oxytocin.

In summary, it appears that pituitary oxytocin is important for the normal progress of

delivery and that the pattern of this release is critical for the efficient biological action of

oxytocin in sustaining the progress of delivery. Furthermore, we have for the first time shown
that a physiological stimulus for pituitary oxytocin release, namely delivery of pups, is
associated with an increased expression of the immediately early gene product Fos in

magnocellular neurones and putative afferent neurones in the brainstem. Besides these areas,

which show an increase in Fos expression at the time of parturition, we have descnbed a

number of nuclei throughout the brain in which Fos expression is observed before and during

delivery of pups. This results indicates activation of a number of sensory and motor neurones

during parturition, that are not necessarily directly involved in mediating oxytocin secretion.
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Fig. 1.1. Effects of morphine on the progress of delivery
Top: Cumulative time (min) between pups 2-8 in rats injected with saline,
morphine or morphine and oxytocin (values expressed as means+s.e.m.)
Rats were given either an injection of isotomc salme (open circles, n=9), or
morphine (1 mg/kg body weight) followed by isotomc saline (filled squares, n=10)
or morphine followed by oxytocin pulses (1 mU each 10 min, open squares, n=9).
In morphine-treated rats, which delivered on average only 6 pups pnor to killing
(90 min after the birth of the second pup) delivery was significantly slower than in
saline treated rats.

*p<0.05, U-test, compared to the saline-treated group
Bottom: Comparison of the time between delivery of pups 2-6 (means+s.e.m.) in
different treatment groups
Rats were given isotonic saline (open bar, n=9) or an injection of morphine (1
mg/kg body weight) followed by either an infusion of saline (filled bar, n=10), or a
single injection of naloxone (5 mg/kg body weight iv, shaded bar, n=6), an
infusion of 0.1 mU oxytocin/min or pulses of 0.5 mU oxytocin each 5 min (narrow
cross-hatched bars, n=10, 6), or pulses of 1 mU oxytocin each 10 mm (wide cross-
hatched bar, n=6), or an infusion of 4 mU oxytocin/min or pulses of 2 mU
oxytocin each 5 min (right hatched bars, n=9, 5).
In rats given only morphine and rats given morphine and pulses of 0.5 mU
oxytocin each 5 min, the time between pups 2-6 was significantly longer than m
control rats (fp<0.05, U-test). In contrast, rats given morphine followed either by
an injection of naloxone, or low dose pulses of oxytocin (1 mU oxytocin each 10
min) or the liigher dose of oxytocin (0.4 mU oxytocin/min as an infusion or as
pulses) gave birth to four more pups in significantly less time than morphine-
treated rats (*p<0.05, U-test).
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Fig. 1.2. Fos-immunoreactive nuclei in the SON before and during parturition
Control rats were killed by an overdose of sodium pentobarbitone (50 mg/kg body
weight iv) and in situ perfusion fixed with 4% paraformaldehyde either in the
morning of the day of expected term (day 21 of pregnancy) but before delivery of
any pups (prepartum, Top) or 90 min after the birth of the second pup (parturient,
Bottom). The brains were cut into 30 pm coronal sections through the SON, at
the level of the optic chiasm, and processed for standard Fos
lmmunocytochemistry (values are means+s.e.m ).
Prepartum rats showed significantly fewer Fos-immunoreactive nuclei in the SON
than parturient rats.
oc = optic chiasm, scale bar 100 pm
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Fig. 1.3. Fos-immimoreactive nuclei in the NTS before and during parturition
Control rats were killed as described above and the hindbrains cut through the
rostro-caudal extort of the NTS (from the decussatio of the pyramids to the rostral
oid of the area postrema) into 30 pm coronal sections and processed for standard
Fos immunocytochemistry.
As in the SON, prepartum rats (Left) showed significantly fewer Fos-
immunoreactive nuclei in the NTS than parturioit rats (Right). Scale bar 100 pm
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Fig. 1.4. Effects of morphine and morphine plus oxytocin pulses on Fos expression in
the hypothalamus and the brainstem during delivery
Rats were given after the birth of the second pup and for 90 min either isotonic
saline (control parturient, open bars), an injection of morphine followed by an
infusion of saline (morphine, filled bars), morphine plus pulses of 1 mU oxytocin
each 10 min (morphinet-OT pulses, wide cross-hatched bars) or morphine plus an
infusion of oxytocin (1 mU oxytocin/min, mor+OT infusion, narrow cross-hatched
bars). Rats were killed 90 mm after the birth of the second pup and the brains
processed for standard Fos immunocytochemistry (n=4-7 per group). The numbers
of Fos-immunoreactive nuclei/section were counted in the hypothalamus (the SON
and PVN) and the brainstem (the dorsal vagal complex (DVC) and the area
postrema).
In the SON and DVC, but not the PVN and area postrema, the incidence of Fos-
immunoreactive nuclei/section was significantly higher in control parturient than
prepartum rats (fp<0.05, U-test, means+s.e.m. number of Fos-immunoreactive
nuclei in rats killed prepartum are indicated as shaded area within each chart).
Morphine and morphine plus oxytocin treated (regardless whether oxytocin was
given as an infusion or in pulses) parturient rats showed significantly fewer Fos-
immunoreactive in the SON than control parturient rats (*p<0.05, U-test), while in
the PVN, the DVC and the area postrema there was no significant difference
between the parturient groups.
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Fig. 1.5. Effects of morphine and morphine plus oxytocin pulses on Fos expression in
the locus coeruleus and the nucleus of the hypoglossal nerve
Rats were treated as described in Fig. 1.4., killed 90 min after the birth of the
second pup and the brains processed for standard Fos immunocytochemistry (n=4-
7 per group). Fos-immunoreactive nuclei/section were counted in the locus
coeruleus and the nucleus of the hypoglossal nerve in the medulla oblongata.
In both areas, the incidence of Fos-immunoreactive nuclei/section was

significantly higher in control partunent (open bars) than prepartum rats
(tp<0.05, U-test, means+s.e.m. number of Fos-immunoreactive nuclei m rats
killed prepartum are indicated as shaded area within each chart).
In the locus coeruleus of morphine (filled bar) and morphine plus oxytocin treated
rats (cross-hatched bar) the number of Fos-immunoreactive nuclei per section was
not significantly different from normal parturient rats, while in the nucleus of the
hypoglossal nerve, morphine-treated rats (filled bar) showed significantly fewer
Fos-immunoreactive nuclei compared to control parturient rats (*p<0.05, U-test).
In rats in which delivery was fully restored with pulses of oxytocin (wide cross-
hatched bar), Fos expression in the nucleus of the hypoglossal nerve was not
significantly different from that in control parturient rats, but higher than in rats
given morphine plus an infusion of oxytocin (narrow cross-hatched bar).
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Fig. 1.6. Fos and oxytocin imniunoreactivity in the PVN of a parturient rat
Coronal sections (30 urn) through the PVN of control parturient rats were
processed for double immunocytochemistry for Fos and oxytocin.
Fos-immunoreactive nuclei (dark purple nuclear staining) were detected in PVN
neurones stained for oxytocin (light brown cytoplasmic staining), however, Fos
expression was also observed in other neuronal subpopulations. Also, not all
oxytocin neurones in the PVN expressed Fos during parturition.
Third ventricle on the right side of the photograph. Scale bar 100 pm.



Fos- and oxytocin-immunoreactive neurones in the PVN of a parturient rat

100 |im



62 Chapter 1 - Normal parturition requires neurohypophysial oxytocin

Fig. 1.7. Fos expression in the anterior hypothalamus of a parturient rat
Coronal section (30 jam) through the anterior hypothalamus, processed for
standard Fos immunocytochemistry.
Fos expression was abundant in the anterior hypothalamus, at the rostral end of
the optic chiasm, in parturient rats.
Scale bar 100 pm.
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Chapter 2

The involvement of cholecystokinin (CCK) receptor types in

pathways controlling oxytocin secretion

As shown in the previous chapter, Fos expression is induced during parturition

throughout the brain and allows the investigation of the pathways involved in the secretion of

oxytocin during delivery of pups and thus in response to a physiological stimulus. In previous

reports, intravenous administration of CCK has been shown to excite selectively

magnocellular oxytocin neurones (Hamamura et al. 1991b, Luckman et al. 1993b), while

inhibiting or having no effect on vasopressin neurones. Since this excitation of oxytocin
neurones and the resulting increase in hormone release following an injection of CCK is
associated with an increased expression of the immediate early gene c-fos in magnocellular
neurones (Hamamura et al. 1991b, Verbalis et al. 1991b) and putative afferent neurones in
the dorsal vagal complex of the brainstem (including the NTS and the dorsal motor nucleus of
the vagus nerve, Luckman 1992), it is possible that CCK activates the same pathways

mediating oxytocin secretion as parturition.
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Using immunocytochemical detection of Fos combined with a second

immunocytochemical procedure to identify hypothalamic neurones activated by CCK in terms

of transmitter produced, it has been shown that in the SON Fos-immunoreactive nuclei are

found exclusively in magnocellular oxytocin neurones, while in the PVN at least three
neuronal populations express Fos: neurones producing corticotropin-releasing factor, and

magnocellular and parvocellular oxytocin neurones (Verbalis et al. 1991b). Since

parvocellular oxytocin neurones project to the dorsal vagal complex in the caudal medulla

oblongata (Sawchenko & Swanson et al. 1982a), which in turn provides a direct afferent input
to the hypothalamus, that is activated upon systemic administration of CCK (Luckman 1992,
Onaka et al. 1995, Rinaman et al. 1994, Verbalis et al. 1991a), these neurones may form a

neural circuit between the PVN and the brainstem as pointed out in the previous chapter. In

the periphery, the activation of pituitary oxytocin release by systemic CCK is mediated by the

vagus nerve (Fraser & Davison 1992, Van Dijk et al. 1984), including the gastnc branches,

that project to the dorsal vagal complex in the caudal medulla.

CCK and CCK receptors are present in neurones throughout this proposed pathway and
it has therefore been suggested that CCK activates a chain of neurones, which may utilise
CCK as a central neurotransmitter (Honda et al. 1993, Kawai et al. 1988, Meister et al.

1994, Miller et al. 1993b). There are two distinct CCK receptor types, the CCKA and CCKB

receptor, which are both found in the central nervous system (Carlberg et al. 1992, Honda et

al. 1993, Van Dijk et al. 1984), while in the periphery, the CCKA receptor type seems to

predominate (Miller et al. 1993b). In the CNS, the CCKA receptor is pnmanly detected in the

area postrema and the medial NTS of the brainstem, while the SON and PVN themselves

possess only the CCKB type receptor (Carlberg et al. 1992, Honda et al. 1993, Meister et al.

1994, Van Dijk et al. 1984). Since systemically administered CCK is unlikely to directly
access CCK receptors in the hypothalamus, that is located within the blood-brain barner

(Ermisch et al. 1993), circulating CCK is likely to mediate oxytocin secretion by acting at one

of the circumventricular sites, including the area postrema, which lack an efficient blood-brain

barrier, or at the peripheral endings of the afferent vagus nerve (Miller et al. 1993b, Verbalis
et al. 1986). Thus, it has been possible to show the induction of Fos immunoreactivity in the

brainstem, including the area postrema and the dorsal vagal complex, in response to a

systemic injection of CCK (Luckman 1992).

In the present study, we used two potent non-peptide CCK receptor antagonists, one

selective for the CCKA receptor (MK-329) and the other for the CCKB receptor (L-365,260),
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to establish which receptor type was involved in the neuroendocrine activation following

systemic administration of CCK. Since the work presented here was my contribution to a

larger study, involving in addition electrophysiological evidence, as well as evidence from

plasma oxytocin concentrations and from in situ hybridisation (Luckman et al. 1993b), I will

refer, whenever necessary, to the findings described in the complete study.

Recently, it has been shown that suckling-induced secretion of oxytocin is preceded by an

increase in plasma CCK (Linden et al. 1990) and that both the increase in plasma CCK and

oxytocin are impaired by abdominal vagotomy and by lesions in the lateral midbrain (Linden
et al. 1990). These data suggest the involvement of the vagus nerve and possibly a facilitatory

role of circulating CCK for the stimulation of suckling-induced pituitary oxytocin secretion.

Furthermore, systemic CCK has been implicated in the initiation of maternal behaviour in

ovariectomised, oestrogen-treated rats (Linden et al. 1989) and in the maintenance of maternal

behaviour in lactating rats (Mann et al. 1994). Since the vagus nerve carnes afferents from

the uterus, which terminate in the dorsal vagal complex in the caudal medulla (Ortega-

Villalobos et al. 1990), a region that is activated during parturition (see chapters one & three)
and projects to the hypothalamus, including magnocellular neurones (Onaka et al. 1995, Raby
& Renaud 1989a, 1989b, Sawchenko & Swanson 1982a), the vagus nerve could represent a

common ascending pathway for the release oxytocin in response to a variety of stimuli. Thus,

we examined in a second experiment whether the CCK receptor type involved in mediating the

neuroendocrine response to systemic CCK, can, when administered during partuntion, be

effective at preventing oxytocin secretion (and Fos expression in the SON) and hence disrupt

the progress of delivery and/or maternal behaviour.

Materials and Methods

Animals

We used rats from the Babraham colony, either male rats, which were anaesthetised with

tribromoethanol (10 ml/kg intraperitoneally) and implanted with a jugular vein cannula two

days prior to the experiment (experiment 1) or date mated pregnant Wistar rats, which were

implanted with a jugular vein cannula under brief halothane anaesthesia on day 19 of

pregnancy (expenment 2).



Chapter 2 - Effects of CCK receptor antagonists 66

Drugs

CCK-8 (CCK26-33, sulphated; Sigma, UK) was dissolved in isotonic saline (1 mg/ml)

and injected intravenously at a concentration of 20 pg/kg body weight, the injected volume

being 100 pl/100 g body weight.

Selective non-peptide antagonists against the CCKA and CCKB receptor, MK-329 (3S(-)-

N-(2,3-dihydro-l-methyl-2-oxo-5-phenyl-lH-l,4-benzodiazepine-3-yl)-lH-indole-2-car-boxy-

amide, also known as L-364,718 or devazepide) and L-365,260 (3R(+)-N-(2,3-dihydro-l-

methyl-2-oxo-5-phenyl-1H-1,4-benzodiazepine-3-yl)-N'-(3methlphenyl)urea) (both Merck

Sharp & Dohme, UK), respectively, were dissolved in a solution containing 20% absolute

ethanol and 80% propan-l,2-diol. Both antagomsts were given intravenously to male rats at a

concentration of 100 pg/kg. Pregnant rats were injected immediately after the birth of the first

pup with the CCKA receptor antagonist at a concentration of 1 mg/kg. The injected volume

being in both experiments 10 pl/100 g body weight.

Experimental design
The effect of specific CCK receptor antagonists on Fos expression in the brain following

intravenous administration of CCK (experiment 1)

On the day of the experiment the cannulae were connected to polyethylene tubings (of 0.1

ml volume). Twenty-two male rats were divided into four groups of five to six rats each:
• two groups were given an injection of vehicle followed after 20 mm by either an

injection of saline or CCK (20 pg/kg body weight, both n=5),

• one group was given the CCKA receptor antagonist (100 pg/kg body weight)

followed after 20 min by an injection of CCK (n=5)
• one group was given the CCKB receptor antagonist (100 pg/kg body weight)

followed after 20 min by an injection of CCK (n=5).

Rats were deeply anaesthetised with sodium pentobarbitone (50 mg/kg body weight iv) 90 min

after the second injection and in situ perfusion-fixed with 4% paraformaldehyde in phosphate

buffer.



Chapter 2 - Effects ofCCK receptor antagonists 67

The effect of a CCKA receptor antagonist on the progress of parturition and Fos

expression (experiment 2)

On the day of the expenment (= the day of expected parturition, day 21 of pregnancy)

the cannulae were connected to polyethylene tubings as described above and rats were

observed for delivery. Immediately after the birth of the first pup animals were given an

intravenous injection of either vehicle (10 pl/100 g body weight, n=4) or the CCKA receptor

antagonist (1 mg/kg, n=4). 90 ltiin after delivery of the second pup (by which time delivery is

normally completed) rats were deeply anaesthetised and perfusion-fixed in situ as descnbed
above.

In both expenments the brains were removed, postfixed and stored at -80°C until cut on

a microtome into 30 pm coronal sections through the hypothalamus and/or the brainstem and

processed for standard Fos immunocytochemistry (see general materials and methods section).

Statistical analysis

Comparisons were made using non-parametric tests. In the first experiment the Mann-

Whitney U-test was used to compare the number of Fos-immunoreactive nuclei after saline
and CCK treatment, and the Kruskal-Wallis test to compare Fos immunoreactivity in rats

treated with either CCK receptor antagonist to those treated with CCK only. In the second

experiment the Mann-Whitney U-test was used to compare the cumulative time between

delivery of pups 1-9 and to compare the number of Fos-immunoreactive nuclei in the SON of

rats treated with the CCKA receptor antagonist or vehicle.

Results

Fos expression in the hypothalamus and the brainstem in response to CCK, and CCK

plus the CCKa or CCK« receptor antagonist

Systemic injection of vehicle followed by CCK (20 pg/kg) caused a significant increase

in the number of Fos-immunoreactive nuclear profiles in the dorsal vagal complex and the

area postrema of the brainstem and the SON and PVN of the hypothalamus compared to

vehicle and saline-treated rats (U-test, p<0.05, Fig. 1, 2 & 3). In each of these areas the
increase in Fos immunoreactivity in animals pretreated with the CCKA receptor antagonist
MK-329 (100 pg/kg) was significantly reduced compared to CCK-treated rats, while trie

CCKb receptor antagomst L365,260 (100 pg/kg) significantly reduced the number of Fos-
immunoreactive nuclei only in the SON (Kruskal-Wallis test, p<0.05). Fos expression in the
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PVN in rats pretreated with L365,260 was reduced compared to CCK-treated rats, but this

effect did not reach significance, while in the dorsal vagal complex and the area postrema

L365,260 had no affect on Fos immunoreactivity.

The effect of an injection of the CCKA receptor antagonist on the progress of delivery
In pregnant rats, the progress of delivery was not affected by an injection of the CCKA

receptor antagonist (1 mg/kg) after the birth of the first pup (cumulative time between pups 2-

9: 57.5+6.8 min (n=4) vs 59.3+1.7 min (n=4) in vehicle-treated rats, Fig. 4 top). The first

interbirth interval, that is normally excluded from statistical companson because of its large

intragroup variability, was also not significantly different between the two treatment groups

(Fig. 4). Both groups of rats showed a similar number of pups per litter (11.3+1 pups/litter for
controls and 11+0.4 pups/litter for CCKA receptor antagonist treated rats, range 9-13

pups/litter) and in both groups mother rats displayed, once delivery started, normal maternal

behaviour, including nest building activity, licking and retneval of pups dunng and after

delivery.

Fos expression in the SON in parturient rats injected with the CCKA receptor antagonist

or vehicle

The number of Fos-immunoreactive nuclei in the SON of parturient rats was higher than

that in rats from experiment 1 given an injection of vehicle followed by saline (Fig. 4 bottom).
However there was no significant difference for the incidence of Fos-immunoreactive in the

SON between parturient rats given an injection of the CCKA receptor antagomst MK-329 or

vehicle.

Discussion

In male rats, a systemic injection of CCK induced a significant increase in the number of

Fos-immunoreactive nuclear profiles in the dorsal vagal complex and the area postrema in the
brainstem and in the SON and PVN in the hypothalamus. These results are in agreement with

our data on the significant increase in oxytocin plasma concentrations following systemic

administration of CCK (Luckman et al. 1993b) and the described activation of hypothalamic

oxytocin (and corticotropin-releasing factor containing) neurones in the PVN in response to

intravenous CCK (Verbalis et al. 1991b). Fos expression in the brainstem, including the area

postrema and the dorsal vagal complex, suggests that neurones in these areas are part of the
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afferent pathway involved in the release of oxytocin from the postenor pituitary in response to

systemic CCK (Carter & Lightman 1987b). Alternatively, peripheral CCK, which does not

penetrate the blood-brain barrier in significant amounts (Ermisch 1992), might stimulate

magnocellular neurones by acting at circumventricular organs like the organum vasculosum of

the lamina terminals (OVLT), a forebrain structure that has a strong neuronal input to the

SON and PVN (Honda et al. 1990). However, lesions of the OVLT do not impair oxytocin

release following an injection of CCK (Blackburn & Leng 1990a), while lesions of the area

postrema severely attenuate the effects of CCK on oxytocin release (Carter & Lightman

1987b). The NTS and the area postrema are heavily interconnected and both areas are

activated by intravenous CCK (Cunningham et al. 1994, Luckman 1992, Sawchenko &
Swanson 1982a). Unlike the area postrema, the NTS is a source of a direct afferent input to

magnocellular oxytocin neurones, part of which compnses noradrenergic neurones of the A2
cell group (Raby & Renaud 1989b, Sawchenko & Swanson 1982a). Peripheral administration

of CCK has been shown to activate catecholaminergic neurones in the A2 cell group and to

result in noradrenaline release in both the PVN and the dorsal part of the SON (Kendnck et

al. 1991, Luckman 1992, Ueta et al. 1993).

Administration of the CCKA receptor antagonist MK-329 before the injection of CCK
abolished the increase in Fos expression in the NTS, the area postrema and the SON and
PVN. Furthermore, MK-329, used at a dose range between 0.01 - 1 mg/kg body weight dose-

dependently inhibited pituitary oxytocin release, while L365,260, used at the same dose range,

was not effective (Luckman et al. 1993b). We cannot conclude from these data whether this

effect is due to the blockade of CCKA receptors in the NTS and the area postrema or in the

penphery, e.g. at vagal afferents (Van Dijk et al. 1984), inhibiting the excitatory input from
these brainstem areas or the penphery to the SON and PVN or whether MK-329 acted in

addition on other, more rostral sites or on the hypothalamic oxytocin neurones themselves.

However, apart from the NTS and the area postrema, that contain both types of CCK

receptors (Hill & Woodruff 1990), most other areas in the brain possess mainly CCKB

receptor types and the SON in particular has been shown to express exclusively CCKB

receptors (Carlberg et al. 1992, Honda et al. 1993). Since it is also unlikely that MK-329
acted via the CCKB receptor as despite their chemical similarity, binding studies indicate that
the relative affinities of MK-329 and L365,260 for the CCKA and CCKB receptor differ by

more than one order of magnitude (Hill & Woodruff 1990), brainstem areas, and possibly

peripheral afferents, are the most likely site of action of systemic MK-329. Furthermore, the
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increase in electrical activity of supraoptic oxytocin neurones following intravenous CCK is

completely abolished by the CCKA receptor antagonist (1 mg/kg), but not the CCKB receptor

antagonist (Luckman et al. 1993b).

The attenuation of CCK-induced Fos expression in the SON and PVN, but not the

brainstem, by the CCKB receptor antagonist L-365,260 points either to an involvement of

central CCK in mediating Fos expression in the hypothalamus after peripheral administration
of CCK or to an inhibitory effect of L-365,260 on the afferent input from the NTS to the

hypothalamus. Though we cannot conclude from our results which projection is involved in

the activation of magnocellular oxytocin neurones, a likely source are noradrenergic neurones

in the NTS, that co-localise CCK (Kawai et al. 1988) and project directly to the SON (Onaka
et al. 1995b). Furthermore, a majority of neurones in the NTS that are retrogradely labelled
from the SON and contain tyrosine hydroxylase, the rate limiting enzyme for catecholamine

synthesis, express Fos following administration of CCK (Onaka et al. 1995b).
Since the CCKB receptor antagonist did not affect secretory activity of oxytocin neurones

(Luckman et al. 1993b), it remains possible that several neurotransmitters are involved in the

regulation of pituitary oxytocin secretion, like the recently described peptidergic innervation
from the NTS to hypothalamic oxytocin neurones (Sawchenko et al. 1985, 1988a, 1988b,

1990), and that Fos expression induced in the hypothalamus by intravenous CCK is more

sensitive to antagonism than oxytocin secretion.

Unlike the inhibitory effect of MK-329 on hypothalamic activation after administration
of CCK, the CCKa receptor antagonist had no effect on the progress of delivery nor on Fos

expression in SON neurones of parturient rats. Although we did not examine Fos expression
in the NTS of parturient rats treated with MK-329, the lack of any effect of MK-329 on Fos

expression in the SON and on the progress of delivery indicates that oxytocin release was not

affected and hence an inhibitory effect of MK-329 on the afferent input from the brainstem to

the SON in parturient rats is unlikely (Douglas et al. 1993a, Luckman et al. 1993a, Russell

1989b, 1991). Though we used a higher dose of the CCKA receptor antagonist to try and block
Fos expression in the SON of parturient rats than that used to prevent the release of oxytocin

effects in response to CCK, we have shown in the complete study that MK-326 used at a dose

range between 0.01 - 1 mg/kg body weight dose-dependently inhibits CCK-induced oxytocin

secretion, without having an agonistic effect even at the highest dose (Luckman et al. 1993b).

Thus, our results indicate a different sensitivity of Fos expression in SON neurones and

pituitary oxytocin release to the inhibitory effects of a CCKB receptor antagonist during
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parturition and in response to CCK. Though parturition and an injection of CCK are both

associated with an increase in Fos expression in the NTS, the proportion of Fos-

immunoreactive nuclei contained in TH neurones in response to CCK is greater than that

during parturition (c.f. Onaka et al. 1995b and chapter three), suggesting the existence of a

common, yet not identical pathway. We and others have shown recently, that in response to

CCK about 80% of Fos positive nuclei in the NTS that project to the SON or PVN contain

TH (Onaka et al. 1995b, Rinaman et al. 1994), this indicates the physiological importance of

the catecholaminergic pathway from the A2 region to the magnocellular hypothalamus.
The recent finding that different peptides are co-localised in subsets of catecholaminergic

NTS neurones (Kamai et al. 1988, Sawchenko et al. 1985), opens up the possibility that
activation of different subpopulations of catecholaminergic NTS neurones could account for
the observed differences with regard to the regulation of Fos expression in the SON in

response to different stimuli. Furthermore, during parturition, but also in response to CCK, a

substantial proportion of non-catecholaminergic neurones express Fos, that remain to be

characterised in terms of the transmitter produced, and are likely to be involved in the control

of Fos expression in the hypothalamus and oxytocin secretion from the posterior pituitary.
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Fig. 2.1. Fos expression in the SON of rats injected with CCK
Rats were killed 90 min after an injection of isotonic saline (100 pi/100 g body
weight iv, controls) or CCK (20 pg/kg body weight iv) and the brains cut into
coronal sections (30 pm) through the SON and processed for standard Fos
immunocytochemistry.
Control rats showed significantly fewer Fos-immunoreactive nuclei in the SON
than rats killed after an injection of CCK.
oc = optic chiasm, scale bar 100 pm
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Fig. 2.2. Fos expression in the brainstem of rats injected with CCK
Rats were killed 90 min after an injection of isotonic saline (100 pl/100 g body
weight iv, controls) or CCK (20 pg/kg body weight iv) and the brains processed
for Fos immunocytochemistry.
Control rats showed significantly fewer Fos-immunoreactive nuclei in the NTS
and the area postrema than rats killed after an injection of CCK.
AP = area postrema, cc = central canal, scale bar 100 pm.
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Fig. 2.3. Fos expression in the hypothalamus and the brainstem of rats injected with
CCK or CCK followed by an injection of a CCKA (MK-329) or CCKB
(L365,260) receptor antagonist
The incidence of Fos-immunoreactive nuclei/section was counted in the SON and
PVN and in the brainstem (the dorsal vagal complex (DVC) and area postrema) of
rats injected intravenously with isotonic saline (open bars), CCK-8 alone (20
pg/kg body weight, filled bars), CCK with prior injection of MK-329 (CCKA
receptor antagonist, left-hatched bars) or L365,260 (CCKB receptor antagonist,
cross-hatched bars).
Animals (n=5-6 per group) treated with CCK alone showed significantly more
Fos-immunoreactive nuclei compared to saline treated rats (fp<0.05, U-test).
Pretreatment with either CCK receptor antagonist reduced this increase in Fos
expression in the SON and PVN (*p<0.05, U-test), though in the PVN the
difference between rats given CCK and those given CCK plus the CCKB receptor
antagonist was not significant. In the DVC and the area postrema, only the CCKA
receptor antagonist significantly reduced the expression of Fos compared to CCK
alone treated rats, while in rats injected with the CCKB receptor antagonist Fos
expression in the brainstem was not significantly different from that seen in CCK-
treated rats and significantly higher than that in saline treated rats (fp<0.05, U-
test).
f, *p<0.05, U-test compared to isotonic saline and CCK alone, respectively
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Fig. 2.4. Effect of a CCKA receptor antagonist on the progress of delivery and Fos
expression in the SON
Top: The progress of delivery was assessed by the cumulative time between
delivery of pups 1-9 in rats injected immediately after the birth of the first pup
with the CCKa receptor antagonist MK-329 (1 mg/kg, filled circles, n=4) or
vehicle (10 pl/100 g body weight, open circles, n=4).
There was no significant difference for the time between delivery of pups 1-9
between the two groups.
Bottom: Fos-immunoreactive nuclei in the SON of parturient rats given MK-329
The incidence of Fos-immunoreactive nuclei/section SON was not significantly
different between rats injected after the birth of the first pup with vehicle (open
bar, n=4) or MK-329 (filled bar, n=4).
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Chapter 3

Induction of uterine activity with oxytocin in late pregnant rats

replicates the expression of c-fos in neuroendocrine and

brainstem neurones as seen during parturition

The oxytocin content of the rat neurohypophysis increases approximately two fold from

the beginning of pregnancy to term and this accumulated excess is secreted into the circulation

(Douglas et al. 1993b, Fuchs & Saito 1971, Kumaresan et al. 1979) between the births of the

first and last pups of the litter. Findings in a variety of species, including the human, suggest

that this release of oxytocin occurs in pulses (Fuchs et al. 1991, 1992), reaching peak plasma
levels at the expulsion of each foetus (Higuchi et al. 1986b). Oxytocin pulses during delivery
are superimposed on an elevated background secretion (Fuchs et al. 1991, Higuchi et al.

1986b) and in rats these pulses are preceded by a burst-like increase in activity in

neurosecretory oxytocin neurones (Summerlee 1981).
In the first chapter, I have provided evidence for the physiological importance of pulsatile

oxytocin secretion for the normal progress of parturition and have shown that at the time of
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parturition, expression of Fos, the protein product of the immediate early gene c-fos, is

increased in the SON and putative afferent neurones in the brainstem, including the NTS.

Sensory afferents from the uterus and the vagina terminate in the NTS (Ortega-Villalobos et

al. 1990), which projects directly to the hypothalamus, including supraoptic oxytocin
neurones (Raby & Renaud 1989a, 1989b, Sawchenko & Swanson 1982a), and hence the NTS

might be involved in the relay of sensory information from the uterus to the SON dunng

delivery. Since a) neither magnocellular nor brainstem neurones appear to be activated to

express Fos before the expulsion of pups and b) the continuous administration of oxytocin,

although inducing delivery, apparently does not deplete pituitary oxytocin (Fuchs & Poblete

1970), I investigated firstly, whether the more physiological intermittent administration of

oxytocin could induce delivery and activate magnocellular oxytocin neurones and putative

afferent neurones in the ventrolateral medulla and the NTS and secondly, whether increased

uterine activity in response to pulsatile oxytocin administration could play an important role
for the activation of these afferent pathways.

Materials and Methods

Animals

Date mated Sprague-Dawley rats were implanted with a jugular vein cannula on day 20

of pregnancy under brief ether anaesthesia and in the morning of the next day the cannulae

were connected to oxytocin- or saline-filled polyethylene tubings. The treatment (oxytocin or

saline pulses) was started at 10.45 h and for four hours each 10 mm a pulse of saline (0.03

ml) or oxytocin (10 mU oxytocin for 2 hours and then 20 mU oxytocin for 2 hours) was

injected. All animals were assessed every 5-10 min for signs of labour (stretching, straining,

vaginal bleeding), pup delivery and maternal behaviour (nest building, excessive grooming,

licking of external genitals, licking of the pups during and after delivery, pup retneval). Onset
of delivery was defined as the time when the first pup was fully expelled and the time of birth
for each following pup was recorded until at least the twelfth pup.

Experimental design

Dose-dependent effects of oxytocin on the onset of delivery
In order to induce delivery in late pregnant rats, I first injected pulses of oxytocin at a

dose that was highly effective at restoring delivery that has been disrupted by morphine (see

chapter one): animals were injected intravenously with 1 mU oxytocin every 10 min for four
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hours (n=4), however since this dose proved not effective at inducing delivery, we used in

separate rats increasing doses of oxytocin. Thus, rats were given 1 mU every 10 min for two

hours and then 2 mU each 10 min for two hours (n=3), or 2 mU and then 4 mU (n=2) or 5 mU

and 10 mU (n=2); however, none of these rats started to give birth during the treatment.

Another eighteen rats were given an even higher dose oxytocin treatment (10 mU

oxytocin per pulse for two hours and then 20 mU oxytocin per pulse for two hours). Fourteen
animals were injected at the same times with saline vehicle. Animals were killed either before

birth of any pups (prepartum groups, n=4 in the oxytocin-treated group and n=5 in the control

group) or 90 min after delivery of the second pup (parturient groups, n=14 in the oxytocin-
treated group and n=9 in the control group). Four of the oxytocin-treated parturient rats were

killed before the end of the treatment (during the last 30 min of the injections), while all

remaining rats were killed after the treatment (30-60 min after the last injection for all

prepartum and oxytocin-treated parturient rats). Control partunent rats were killed whenever

delivery occurred (in most cases in the second half of the light phase on day 21). After 20.00

h, the normal start of the dark phase, the observation of rats was continued in red light.
Rats were killed by cervical dislocation, the brains were removed and immediately frozen

under crushed dry ice and subsequently processed for standard Fos immunocytochemistry (see

general materials and methods section) and the uteri were examined for foetuses and

placentae.
To generate a larger group of rats which were injected with oxytocin but in which

delivery was not induced during such treatment, I injected sixteen other rats with 10 mU

oxytocin each 10 min for the entire four hour treatment period, rather than to increase the dose

of oxytocin to 20 mU per pulse for the last two hours. Nine rats were given saline pulses at

the same times (0.03 ml saline per pulse). 30-60 min after the treatment (and 90 min after

delivery of the second pup, n=4, 2 in the oxytocin- and saline-treated group, respectively)
animals were deeply anaesthetised with sodium pentobarbitone (50 mg/kg body weight iv) and
in situ perfusion-fixed. The brains were postfixed and then kept frozen at -80°C until

processed for immunocytochemistry. The in situ perfusion fixation was chosen to optimise
conditions for double immunocytochemistry performed on brainstem sections of these rats.

The experiments, with and without in situ fixation, were performed over a few weeks,
with about 6-10 rats treated on each experimental day and with equal numbers of term

pregnant animals injected with either saline or oxytocin each day.
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To assess whether oxytocin injections could have a direct effect on Fos expression in the

brain, independent of utenne activity and parturition, 10 virgin rats were injected at a random

stage of the oestrous cycle with the higher dose oxytocin regime (10 mU each 10 min for 2

hours and then 20 mU each 10 min for 2 hours) and were killed by cervical dislocation 30-90

min after the end of the treatment. The brains were frozen on crushed dry ice and processed

for Fos immunocytochemistry (see general materials and methods section).

Fos immunocvtochemistry

For immunocytochemistry on non-perfused brains, 15 pm coronal cryostat sections were

cut and every fifth section was mounted on gelatinised slides. For Fos immunocytochemistry

on in situ perfusion-fixed brains, coronal sections (30 pm) were cut on a microtome and every

fourth section was collected in 0.1 M phosphate buffered solution and processed for

immunocytochemistry (for details see general materials and methods section).

Sections were collected throughout the SON, from the antenor commissure to the median

eminence, and through the brainstem, from the pyramidal decussation to the widening of the

fourth ventricle rostral of the area postrema. We counted Fos-immunoreactive nuclei in every

fifth section from the respective areas (on average 12 and 9 cryostat sections per SON and

NTS, and 8 microtome SON sections), thus ensuring that sections from similar rostro-caudal

positions between animals were analysed, so that a variation in cross section area and section
volume is controlled for.

To test the specificity of the increase in Fos expression in the NTS and SON in response

to oxytocin treatment (10/20 mU per pulse), Fos-immunoreactive nuclei were counted on

cryostat sections containing the subfornical organ (SFO) or the area postrema. Every third
section was collected of the respective area and a minimum of five sections per area were

analysed.

Double immunocvtochemistry

Double immunocytochemistry was performed for Fos and oxytocin or vasopressin, or

Fos and tyrosine hydroxylase (TH, the rate limiting enzyme for the synthesis of

catecholamines), on alternate free-floating coronal microtome sections (30 pm) through the

SON or NTS, respectively (for details see general materials and methods section).
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In the NTS, double- and single-labelled cells were counted in at least 42 alternate

sections per animal to survey the catecholaminergic cell groups of the NTS and of the

ventrolateral medulla (the A2/C2 and Al/Cl cell groups, respectively), while TH-

immunoreactive cells located in the dorsal motor nucleus of the vagus were excluded, as the

majonty of these neurones at the level of the area postrema contain dopamine, unlike at the

caudal level of the A2/C2 region, where the majority of TH-immunoreactive cells contain

noradrenaline (Kalia et al. 1985). The counts were divided into seven groups of six sections

each, so that each group extended rostro-caudally over a subdivision of 0.36 mm. The obex,

just rostral of the area postrema (Paxinos & Watson 1986), was taken as reference point zero.

Statistical analysis

Comparisons between two groups were made using the non-parametnc Mann-Whitney

U-test and, in the case of multiple comparisons, the Bonferroni correction was applied as

appropriate. Comparisons between more than two groups were made with the non-parametnc

Kruskal-Wallis test, followed by Dunn's post-hoc test. Comparison of percentages was

performed with the two-proportion t-test. For a value of p<0.05 a difference was considered

significant.

Results

The effect of oxytocin pulses on the onset of delivery

Fourteen rats were injected with saline pulses for four hours in the morning of expected

delivery as controls for pulsatile oxytocin administration. None of these rats started to give
birth during the treatment, but gave birth within 17 hours after the last saline injection (median
time of onset of delivery: 8.1 h after the start of the treatment = 18.51 clocktime, Fig. 1 & 2,

top).

Eleven rats were injected with oxytocin pulses ranging from 1 mU per pulse up to 5 mU

and 10 mU per pulse for four hours. Of these rats, none started to deliver dunng the treatment

Only two of these rats gave birth within the normal range (i.e. 17 hours after the last

injection). The other mne ammals gave birth between 20 and 41 hours after the end of the
treatment. In comparison with the saline group, the onset of delivery occurred significantly
later (median time 27.1 hours after the start of the treatment, test for medians and U-test,

p<0.05, Fig. 1).
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In contrast, fourteen out of eighteen rats (77%) injected with a higher dose regime of

oxytocin (10 mU per pulse for 2 hours and then 20 mU for 2 hours) delivered during the four

hour treatment (median time to first pup was 3.3 hours after the first injection, U-test, p<0.01

vs controls, Fig. 2, top).

All rats injected with oxytocin, regardless of the dose, demonstrated typical signs of
labour (stretching and straining movements) promptly after beginning the oxytocin injections,

while in saline-treated rats such behaviour was usually not observed during the treatment

period, but only pnor to delivery, a few hours after the end of the injections. Once the first

pup was born, all rats, regardless of the treatment, showed normal maternal behaviour (licking
of pups during and after delivery, retrieving and grouping of pups and nest building activity).

The litter size, which shows a weak inverse correlation with the time of onset of

parturition (see chapter four), did not differ significantly between groups (13.4±0.5 pups per

litter in prepartum and parturient controls, 11.5±1.5 pups per litter in lower dose and

14.3±0.6 pups per litter in higher dose oxytocin-treated prepartum and partunent rats).

Neonatal pup survival was similar in all groups (98%, 100% and 100% of pups alive 6 hours
after birth, respectively, for rats that were allowed to deliver).

The progress of delivery, as assessed by the time between delivery of the first and the
twelfth pup, was prolonged in lower dose oxytocin-treated rats compared to controls

(119.39±5.1 min, n=6, vs 100.2±5.8 min, n=7, U-test, p<0.05), but was similar for higher

dose oxytocin-treated rats (99.4±2.9 min, n=10) and controls (Fig. 2, bottom). Comparison of
the mean of all interbirth intervals in saline-treated rats (11±3 min, n=7) with the mean of the

interbirth intervals during the first two hours and the last two hours of the higher dose

oxytocin treatment, and after the end of the oxytocin treatment (11±2 min, n=3, 14±3 min,

n=l 4, and 12±3 min, n=8, respectively) also showed no significant difference. Thus, although

rats treated with the higher dose of oxytocin entered parturition early, the progress of

parturition in these animals was not disturbed by the treatment and progressed normally even

after the treatment was discontinued.

Fos expression in the SON of oxytocin-treated rats

Vehicle-treated rats that were killed before delivery of any pups showed a low incidence

of Fos-immunoreactive nuclei in magnocellular neurones in the SON, compared with rats

killed during spontaneous delivery, indicating activation of SON neurones during the birth of

pups. Oxytocin-treated rats (10 mU or 10/20 mU per pulse) that were killed before delivery of
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any pups showed a significantly higher incidence of Fos-immunoreactive nuclei in the SON

than control prepartum rats (Fig. 3 & 5). All animals killed dunng parturition showed a

significantly higher incidence of Fos-immunoreactive nuclei than control prepartum rats

regardless of whether delivery had occurred spontaneously or had been induced with oxytocin

(Fig. 3 & 5, Kruskal-Wallis test, p<0.05). This result was confirmed in another set of ammals

injected with 10 mU oxytocin or saline pulses for four hours and perfusion-fixed in situ at the

end of the experiment but before delivery had started: as in the previous experiment, oxytocin-

treated rats (n=12) showed significantly more Fos-immunoreactive nuclei per section SON

than prepartum controls (n=7) (19.6±2.4 vs 7.6±2.5 Fos-immunoreactive nuclei/section li¬

test, p<0.02).

SON sections from spontaneously parturient and oxytocin-treated parturient rats (n=2,

2), processed for double immunocytochemistry (Fos and either oxytocin or vasopressin),

showed Fos in both types of magnocellular neurones, however the dense cell packing in the

SON made it difficult to reliably quantify the relative numbers of oxytocin and vasopressin

neurones expressing Fos (Fig. 6).

Fos expression in the NTS of oxytocin-treated rats

Oxytocin-treated rats (10/20 mU per pulse) killed before the delivery of any pups showed

significantly more Fos-immunoreactive nuclei in the NTS than saline-treated prepartum rats

(Fig. 4 & 5, Kruskal-Wallis test, p<0.05), but a similar incidence of Fos-immunoreactive

nuclei in the NTS to either parturient group (saline- or oxytocin-treated). In all parturient

animals the incidence of Fos-immunoreactive nuclei was higher than in control prepartum rats

(Kruskal-Wallis test, p<0.05).

Fos-immunoreactive cells in catecholaminergic brainstem neurones of oxytocin-treated

prepartum rats (Fig, 7)

There were few Fos-immunoreactive nuclei in the NTS of saline-treated prepartum rats,

while 10 mU pulses of oxytocin for four hours increased the incidence of Fos-immunoreactive

nuclei in the NTS even before delivery (Fig. 8 & 9). The incidence of Fos-immunoreactive

nuclei per NTS and ventrolateral medulla in parturient rats (treated either with 10 mU

oxytocin pulses or saline, n=2, 2) and in oxytocin-treated prepartum rats was similar, but

significantly greater than in saline-treated prepartum rats (Table 1). Although the incidence of

Fos-immunoreactive nuclei was higher at every level of the NTS and the ventrolateral medulla
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in oxytocin- compared to saline-treated prepartum rats, the difference was only significant at

the caudal level of the NTS (U-test, p<0.05, Bonferroni correction applied as appropriate, Fig.

9, top).

The total number of TH-immunoreactive cells per NTS was also significantly greater in

parturient and oxytocin-treated prepartum than saline-treated prepartum rats (Fig. 6, 8 & 9

and Tab. 1, Kruskal-Wallis test, p<0.05), while there was no significant difference in the

number of TH-immunoreactive cells between groups in the Al/Cl region. The number of TH-
immunoreactive cells at every individual level of the brainstem was greater in oxytocin- than
saline-treated rats, however the difference reached significance only at the caudal levels of the
NTS (U-test, p<0.05, Fig. 9, middle).

The total number of double-labelled cells (cells immunoreactive for both Fos and TH)

per NTS and per ventrolateral medulla was significantly higher in parturient and oxytocin-

treated prepartum than saline-treated prepartum rats (Table 1). The oxytocin-treated

prepartum group showed consistently a greater incidence of double-labelled cells than the

saline-treated group throughout the brainstem (Fig. 9, bottom), but the difference was only

significant at the two most caudal levels of the NTS (U-test, p<0.05, Fig. 9, bottom).

Table 1

Incidence of Fos-, TH- and double-labelled (Fos- and TH) immunoreactive (ir) cells

in the NTS and the ventrolateral medulla (VLM)

Fos-ir nulcei/area TH-ir cells/area Fos+TH-ir cells/area

groups NTS VLM A2/C2 Al/Cl A2/C2 Al/Cl

saline prepartum

(n=7) 177±21 78419 281±69 322429 6148 66415

oxytocin prepartum

(n=12) 475474* 289471* 660451* 541463 132423* 165441*

parturient

(n=4) 7094188* 5574198* 9204124* 401453 195447* 242475*

Oxytocin-treated prepartum and parturient rats showed a significantly higher incidence of Fos-, TH-
and double-labelled (Fos- and TH-immunoreactive) cells in the A2/C2 region than saline-treated
prepartum rats. In the Al/Cl cell group, only the incidence of Fos-immunoreactive nuclei and
double-labelled cells was higher in oxytocin-treated prepartum and parturient rats compared to the
saline-treated prepartum group (*p<0.05, Kruskal-Wallis test).
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Both groups showed a similar distribution of Fos-immunoreactive nuclei, TH-

immunoreactive cells and double-labelled cells (immunoreactive for both Fos and TH) in the

brainstem with a peak incidence of labelled cells at the level of the area postrema in the NTS

(Fig. 9). Although the absolute increment in the numbers of immunoreactive cells following

pulsatile oxytocin compared to saline treatment was similar at all rostro-caudal levels, the

percentage increase of labelled cells was greatest in the caudal NTS, as apparent from the

significant differences between the two groups at the caudal levels of the NTS (Fig. 9 & 10).

The proportion of TH-stained cells that were also labelled for Fos in the NTS was not

significantly different in saline- and oxytocin-treated prepartum rats and in the parturient

group (Table 2). Likewise there were no significant differences between the groups for the

proportion of TH-stained cells that were also labelled for Fos in the ventrolateral medulla

(Table 2).

Table 2

Percentage of TH-immunoreactive (ir) cells expressing Fos and
Fos-immunoreactive nuclei in TH-containing cells

groups

% TH-ir cells expressing Fos

NTS VLM

% Fos-ir nuclei contained in TH-ir cells

A2/C2 Al/Cl

saline prepartum

(n=7) 21±5 32±2.6 40±6.2 96±5.5*

oxytocin prepartum

(n=12) 31±7.2 20±2.9 26±2.7 58±5.1

parturient

(n=4) 43±12 32±3.1 26±4.1 61±6.3

The percentage of TH-immunoreactive cells that expressed Fos before and during parturition, were,
unlike the absolute numbers, not significantly different between groups in either the region of the
NTS or the ventrolateral medulla. The number of Fos-immunoreactive nuclei that were detected in
cells containing TH were also similar between groups, however in the Al/Cl cell group in saline-
treated prepartum rats the percent of Fos-immunoreactive nuclei contained in TH-stained cells was
nearly 100% and significantly higher than in oxytocin-treated prepartum and parturient rats
(*p<0.05, Kruskal-Wallis test).
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The proportion of Fos-immunoreactive cells that was also immunoreactive for TH was

higher in the saline-treated prepartum group compared to the oxytocin-treated prepartum

group and the parturient group, but the difference was only significant in the Al/Cl region

(Table 2, Kruskal-Wallis test, p<0.05) and not in the NTS (Table 2). However the total

number of double-labelled cells was very low in the saline-treated prepartum group, so that

the proportional data have to be interpreted with caution.

Fos-immunoreactive nuclei in the SON and NTS of non-pregnant rats injected with

oxytocin pulses

Ten non-pregnant rats injected with oxytocin pulses (10 mU every 10 min for 2 hours
and then 20 mU for 2 hours) showed very few Fos-immunoreactive nuclei in either the SON

(2.2±0.3 Fos-immunoreactive nuclei/section) or the NTS (4.6±0.8 Fos-immunoreactive

nuclei/section). The incidence of Fos-immunoreactive nuclei in the SON or NTS of virgin rats

treated with oxytocin was not significantly different from that in the respective regions in late

pregnant rats injected with saline pulses (4.4±2.4 Fos-immunoreactive nuclei/section SON and

2.5±1.4 Fos-immunoreactive nuclei/section NTS), but was significantly less than that in late

pregnant rats injected with oxytocin (c.f. Fig. 3 & 4: 17.7±6.1 Fos-immunoreactive
nuclei/section SON and 12.0±1.9 Fos-nnmunoreactive nuclei/section NTS, Kruskal-Wallis

test, p<0.05).

Fos-immunoreactive nuclei in the SFO and the area postrema of vehicle- and oxytocin-

treated prepartum rats

Fos-immunoreactive nuclei in the area postrema and the SFO, two areas outside the
blood-brain barrier which are sensitive to changes in blood pressure and plasma osmolality,

were counted on cryostat sections from saline- (n=5) and oxytocin-treated prepartum rats

(10/20 mU oxytocin for 4 hours, n=10). There was no significant difference in either area

between the saline- and the oxytocin-treated groups (7.6±1.0 vs 6.3±1.1 Fos-immunoreactive
nuclei/section in the area postrema and 1.2±0.4 vs 0.9±0.2 Fos-immunoreactive nuclei/section
in the SFO).
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Discussion

This study demonstrated that intermittent injections of oxytocin to late pregnant rats are

highly effective at inducing delivery. In contrast, lower doses of oxytocin delayed rather than
advanced parturition, indicating that stimulation of the uterus with doses of oxytocin which

are ineffective at inducing delivery, might cause a down-regulation of oxytocin receptors

(Engstroem et al. 1988) and hence a desensitisation of the uterus to endogenous oxytocin,

resulting in a delayed onset of parturition.
Once parturition was induced during the oxytocin treatment, it progressed normally even

after discontinuation of the treatment. As inhibition of pituitary oxytocin secretion during

delivery disrupts the normal progress of delivery (Luckman et al. 1993a, Russell et al. 1989b,
Zlatnik & Fuchs 1972), it appears that oxytocin treatment initiated endogenous oxytocin

release and thus delivery, once induced by exogenous oxytocin, could be sustained. Although

pulsatile oxytocin, when given before delivery, augments uterine contractions to a greater

extent than a continuous oxytocin infusion (Randolph & Fuchs 1989), much higher doses of

oxytocin were needed to consistently advance delivery in rats, than are needed to restore

delivery interrupted by morphine. This observation can be explained by the dramatic increase
in uterine oxytocin receptor density dunng the hours preceding delivery (Alexandrova &
Soloff 1980, Fuchs et al. 1982, 1983), resulting in an enhanced sensitivity of the uterus to

oxytocin dunng labour (Fuchs & Poblete 1970).

Strong uterine contractile activity, as seen during delivery, stimulates uterine afferent

nerves, namely the hypogastric and pelvic nerves (Peters et al. 1987, Sato et al. 1989). The
increased discharge frequency of the pelvic nerve during delivery of pups (Peters et al. 1987)
and the lack of a reflex contraction of abdominal muscles and the diaphragm in response to

vaginal distension (foetus-expulsion reflex) after lesioning of the pelvic nerves (Higuchi et al.

1986a, 1986b) together with a reduced increase in plasma oxytocin concentrations in these

rats, indicate an involvement of uterine afferents for the reflex release of pituitary oxytocin

and hence the normal progress of delivery in rats. However, the prolonged delivery in pelvic
neurectomised rats can be only partly overcome by systemic administration of oxytocin,

suggesting that factors other than the reduced release of oxytocin contnbute to the

prolongation of delivery in these rats (Higuchi et al. 1986a). It has been suggested that pelvic

neurectomy abolishes reflex abdominal contractions that contribute to the expulsion of the
foetuses (foetus-expulsion reflex, Fliguchi et al. 1987). Alternatively, pelvic neurectomy might
interfere with the pulsatile release of oxytocin from the posterior pituitary. Thus, pulsatile
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rather than continuous infusion of oxytocin to pelvic neuroectomised rats might have provided
a more physiological stimulation of uterine activity and might have been more effective at

restoring delivery.

Although the afferent pathways between the uterus and the hypothalamus are not yet

fully described, vaginal distension in pregnant and lactating rats facilitates the firing rate of
neurones in the PVN (Negoro et al. 1973a) and the SON (Dreifuss et al. 1976) and vagal
utenne afferents project to the dorsal vagal complex in the brainstem (Ortega-Villalobos et al.
1990), from where catecholaminergic neurones send excitatory projections, amongst others, to

magnocellular SON and PVN neurones (Cunningham & Sawchenko 1991, Raby & Renaud
1989a, 1989b, Sawchenko & Swanson 1982a, 1991). Unlike the SON, which consists
predominantly of magnocellular neurones, the PVN is a more heterogeneous nucleus,
containing magnocellular and parvocellular neurones and increased Fos expression is apparent
in the PVN before parturition (see chapter one, Luckman et al. 1993a, Luckman 1995).
Therefore I restricted Fos counts in the present study to the SON, where the expression of the

c-fos gene appears to be a reliable indicator of electrical activity and hormone secretion
(Hamamura et al. 1991b, 1992, Hoffman et al. 1993). Thus, I can infer from the findings of
similar numbers of Fos-immunoreactive nuclei in the SON of oxytocin-treated and

spontaneously partunent rats and from the normal progress of delivery in the former that
pulsatile oxytocin treatment in late pregnant rats stimulated secretory activity of SON
neurones. Indeed, double immunocytochemistry for Fos and oxytocin or vasopressin

performed on sections through the SON of oxytocin-treated and normal parturient rats
confirmed Fos induction in a substantial number of supraoptic oxytocin neurones, while it also

revealed activation of vasopressin neurones.

Similar to the SON, I observed an increase in Fos expression in the NTS of rats which
delivered spontaneously and of rats in which delivery has been induced with oxytocin.
Neurones in the NTS are known to project to the hypothalamus, including the magnocellular
neurones (Raby & Renaud et al. 1989a, 1989b). Recently, we have shown that a majority of
NTS neurones, that project to the SON and express Fos in response to CCK are

catecholaminergic (Onaka et al. 1995b), indicating the physiological importance of an afferent
catchecholaminergic input from the NTS to the SON during CCK-induced oxytocin release. In
this study, I found that the number of Fos-immunoreactive nuclei and the number of Fos and
TH double-labelled cells in the NTS was significantly higher in oxytocin- compared to saline-
treated prepartum rats, consistent with the hypothesis that an excitatory input from
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catecholaminergic NTS neurones to the SON is activated during oxytocin-induced labour.

Although in the NTS the proportion of activated TH-containing neurones was not significantly
different between groups, the absolute number of TH-containing cells was significantly higher
in the oxytocin- than the saline-treated prepartum group, particularly in the caudal and dorsal

NTS, where predominantly noradrenergic neurones are located (Kalia et al. 1985). The

increase in the number of NTS neurones containing TH might indicate an increased enzyme

activity, possibly in response to increased catecholamine release stimulated through the

pathway from the uterus proposed above. Various stimuli have been shown to increase the

number of cells immunoreactive for TH in the locus coeruleus (Debure et al. 1992, Weiser et

al. 1993) and the hypothalamus (Arbogast & Voogt 1991a), suggesting the existence of a

population of "sleeping cells" in which TH expression is either inactive or at a low level, but

increases in response to certain stimuli (Debure et al. 1992). Whether the observed change in

the number of TH-containing cells in the NTS is reflected by a concomitant change in TH

synthesis, as has been shown to occur under other circumstances (Debure et al. 1992,

Arbogast & Voogt 1991a, Wang et al. 1993) remains to be investigated (see chapter six). As

we did not observe an increase in the number of TH-containing cells in response to oxytocin-

treatment in the Al/Cl region, utenne activity or delivery appear to induce TH

immunoreactivity specifically in the A2/C2 region, consistent with the hypothesis of an

important role for the excitatory noradrenergic projection from the NTS to oxytocin neurones

in the SON. However a substantial number of NTS neurones that express Fos during

parturition and following oxytocin treatment do not contain TH, indicating that other

brainstem neurones, which remain to be identified in terms of transmitter produced, were also

activated by the oxytocin treatment.

The activation of catecholaminergic neurones in the Al/Cl region, albeit less than that in

catecholaminergic NTS neurones, might indicate that vasopressin neurones are also driven by
afferents from the uterus, which is in agreement with reports on vasopressin release before and

during spontaneous delivery (Fuchs & Saito 1971, Kumaresan et al. 1979).
The observation that Fos expression in the SON before delivery was higher in oxytocin-

treated than control prepartum rats indicates that passage of the foetus through the lower birth

canal is not essential for the reflex stimulation of oxytocin secretion at the end of pregnancy.

The cervix, which has a higher density of oxytocin receptors and mechanoreceptors than the

corpus and fundus uteri of the rat (Gorodeski et al. 1990), presents a firm barrier during

pregnancy and softens only at the time of delivery. Oxytocin itself can reduce the ngidity of



Chapter 3 - Induction ofdelivery with pulsatile oxytocin 89

the cervix (Khalifa et al. 1992), as well as relaxin (Downing & Sherwood 1985). Also, utenne

contractions contribute to the softening of the cervix by stimulating prostaglandin release,

which then induces collagen breakdown in the cervix (Fuchs 1987). Furthermore if labour is

induced with oxytocin before softening of the cervix has occurred, the resulting uterine

activity appears to be stronger (Olah et al. 1993) than when induced after dilatation of the

cervix, suggesting that oxytocin-induced strong uterine contractions in late pregnant rats might

be a more potent stimulus for SON oxytocin cell activation than spontaneous labour. The lack

of an increase in Fos expression in the SON or brainstem in virgin rats in response to oxytocin

supports the hypothesis that, if the uterus is not sensitive to oxytocin, the oxytocin treatment

cannot excite brainstem and SON neurones.

The absence of an induction of the c-fos gene (and hence Fos protein) in the SFO and

area postrema following oxytocin treatment, unlike following osmotic stimuli (Hamamura et

al. 1991a, 1992) or changes in blood pressure (Badoer et al. 1993, Russ & Walker 1994),

suggests that these two circumventricular organs do not mediate the stimulating actions of

systemically administered oxytocin on SON neurones. Thus, we can exclude the possibility
that a change in blood volume and/or plasma osmolality induced by the four hour oxytocin

pulse treatment contributed significantly to the induction of Fos in the SON and NTS. In

addition, increased Fos expression in the SON caused by a decrease in blood volume and

hence blood pressure is only observed in response to severe hypovolemia (Badoer et al. 1993).

Oxytocin itself has no effects on mean arterial blood pressure in male rats (Enckson &
Millhom 1991) and our own preliminary blood pressure measurements in term pregnant rats

injected with oxytocin or saline pulses also showed no difference between groups. A direct
effect of intravenous oxytocin on SON neurones is unlikely, as first, its plasma half-life is

only about 1-2 min (Higuchi et al. 1986b), and second, the blood-brain barrier is rather

impermeable for neurohypophysial peptides (Ermisch 1992, Van Bree et al. 1989). Thus, the
most plausible explanation for the observed increase in Fos expression in SON and NTS
neurones following oxytocin-induced labour and delivery without concomitant activation of
neurones in the SFO or area postrema is that uterine contractions stimulated neurosecretory

activity of SON neurones via catecholaminergic brainstem neurones.

In summary, I have shown that pulsatile oxytocin injections are very effective at inducing

delivery in rats and that dunng such delivery SON magnocelluiar neurones and putative

afferent neurones in the brainstem, of which a substantial proportion are catecholaminergic,
are activated in a similar way as during spontaneous delivery. In addition, I have shown that
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such pulsatile administration of oxytocin similarly activates neurones in the SON and

brainstem even before the delivery of any pups. I suggest that uterine activity induced with

pulsatile oxytocin administration is a potent stimulus for the excitation of magnocellular

oxytocin neurones via afferent pathways, which are normally activated during the delivery of

pups. Thus, the birth of pups appears not to be a prerequisite for the reflex excitation of SON
neurones at the end of pregnancy in rats.
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Fig. 3.1. Induction of delivery with an oxytocin pulse treatment
Time of onset of delivery in hours after 10.45 h (= start of a 4 hour oxytocin pulse
treatment) on day 21 of pregnancy was compared for animals given each 10 min
for 4 hours an injection of either isotonic saline (open bar, n=9), 1 mU oxytocin
(wide hatched bar, n=4), 1 mU oxytocin for 2 hours and then 2 mU oxytocin for 2
hours (wide cross-hatched bar, n=3), 2 mU and then 4 mU oxytocin (narrow
hatched bar, n=2), 5 mU and then 10 mU oxytocin (narrow cross-hatched bar,
n=2) or 10 mU and then 20 mU oxytocin (filled bar, n=14). Since in the lower
dose oxytocin-treated groups the numbers of rats per group were small (n=2-4),
we indicated individual values by filled circles, rather than calculating the standard
error.

Animals that were given 10 and 20 mU oxytocin for 4 hours delivered
significantly earlier than saline treated rats (***p<0.01, U-test), while all animals
given lower doses of oxytocin pulses taken together delivered significantly later
than saline-treated rats (p<0.05, U-test).
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Fig. 3.2. Onset and progress of delivery during an oxytocin pulse treatment
Top: The time of onset of delivery in each rat injected with saline (0.03 ml each
10 min for 4 hours, open circles) or oxytocin pulses (10 mU each 10 min for 2
hours: wide hatched area and 20 mU oxytocin each 10 min for 2 hours: narrow
hatched area, filled circles) on the day of expected term (day 21 of pregnancy) was
assessed. Animals killed before delivery has occurred but after the end of the
treatment are represented by a crossed circle.
While none of the control rats delivered during the saline-injections, 14/18
oxytocin-treated rats (77%) started to give birth during the 4 hour oxytocin
treatment (median time of the onset of delivery: 3.3 h vs 8.1 h after start of the
treatment in oxytocin- and saline-treated rats, ***p<0.01, U-test).
Bottom: Individual birth intervals were compared for rats injected with oxytocin
or saline pulses for 4 hours.
There was no significant difference between oxytocin- (filled bars, n=14) and
saline-treated rats (open bars, n=9) for any of the first eleven birth intervals
(intervals between pups 1-12).
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Fig. 3.3. Fos expression in the SON of oxytocin-treated prepartum and parturient rats
Rats were given pulses of oxytocin (10/20 mU oxytocin for 4 hours) or saline and
were killed by cervical dislocation after the treatment, before or during (90 min
after delivery of the second pup) delivery. The brains were frozen, cut into coronal
sections (15 pm) through the hypothalamus and processed for Fos standard
immunocytochemistry.
In saline-treated prepartum rats there were few Fos-immunoreactive nuclei in the
SON (A), while in the SON of oxytocin-treated rats (10 mU oxytocin each 10 min
for 4 hours) killed before (B) and during parturition (C) we found a much greater
incidence of Fos-immunoreactive nuclei, that was similar to the incidence in
saline-treated parturient rats (D). oc = optic chiasm, scale bar 0.1 mm
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Fig. 3.4. Fos expression in the NTS of oxytocin-treated prepartum and parturient rats
Similar to the SON, in saline-treated prepartum rats there were few Fos-
immunoreactive nuclei in the NTS (A), while in the NTS of oxytocin-treated (10
mU oxytocin each 10 min for 4 hours) rats killed before (B) and during parturition
(C) we found a much greater incidence of Fos-immunoreactive nuclei, that was
similar to the incidence in saline-treated parturient rats (D).
AP = area postrema, cc = central canal, scale bar 0.1 mm
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Fig. 3.5. Fos expression in the SON and NTS of oxytocin-treated prepartum and
parturient rats
Rats were injected with pulses of oxytocin (10/20 mU for 4 hours) or saline and
killed before (prepartum) or during (parturient) delivery and the brains processed
for Fos immunocytochemistry. The numbers of Fos-immunoreactive nuclei were
counted on sections (on average 9-12 sections per area per rat) through the rostro-
caudal extent of the SON and the NTS.
The number of Fos-immunoreactive nuclei per section SON and NTS (means±
s.e.m.) was significantly higher in oxytocin-treated (filled bars, n=4) compared to
saline-treated (open bars, n=5) prepartum rats (*p<0.05, Kruskal-Wallis test), but
similar to that in the SON and NTS of parturient rats (oxytocin-treated rats, n=14
and saline-treated, n=9). In all parturient rats, the incidence of Fos-
immunoreactive nuclei was significantly greater than that in saline-treated
prepartum rats (*p<0.05, Kruskal-Wallis test).
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Fig. 3.6. Fos expression in supraoptic oxytocin and vasopressin neurones during
delivery that has been induced with pulses of oxytocin
High magnification view of a section through the SON processed for double
immunocytochemistry for Fos (dark purple nuclear staining) and oxytocin (light
brown cytoplasmic staining, Top) or vasopressin (light brown cytoplasmic
staining, Bottom) in a rat in which delivery has been induced with pulses of
oxytocin.



Vasopressin- and Fos-immunoreactive cells in the SON of a parturient rat
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Fig. 3.7. Fos expression in catecholaminergic NTS neurones during delivery that has
been induced with pulses of oxytocin
High magnification view of a section through the NTS (A2 region) at the level of
the area postrema processed for double immunocytochemistry for Fos (dark purple
nuclear staining) and tyrosine hydroxylase (TH, the rate limiting enzyme for
catecholamine synthesis, light brown cytoplasmic staining) in a rat in which
delivery has been induced with pulses of oxytocin.
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Fig. 3.8. Fos expression in catecholaminergic NTS neurones during delivery that has
been induced with pulses of oxytocin
Double immunocytochemistry for Fos (dark nuclear staining) and TH (light
cytoplasmic staining) in the A2 region at the level of the area postrema in rats
injected with saline (Top) or oxytocin (10/20 mU, Bottom) for 4 hours and killed
before delivery of any pups.
In the NTS of saline-treated rats, there were very few cells stained for either Fos
or TH, while in oxytocin-treated rats we observed more cells stained for Fos, TH
(open arrow) or both Fos and TH (filled arrow).
Scale bar 100 jam
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Fig. 3.9. Incidence of cells stained for Fos, TH or both throughout the NTS and the
ventrolateral medulla (VLM)
The incidence of cells immunoreactive for Fos (Top), TH (Middle) or both Fos
and TH (double-labelled cells, Bottom) was assessed per six sections throughout
the rostro-caudal extent, from 1.98 mm caudal to 0.18 mm rostral of the obex, of
the NTS and the ventrolateral medulla (VLM) in oxytocin- (filled circles, n=12)
and saline-treated (open circles, n=7) prepartum rats.
The incidence of cells (means±s.e.m.) immunoreactive for Fos (Top), TH
(Middle) or both Fos and TH (double-labelled cells, Bottom) was always higher
in oxytocin- compared to saline-treated prepartum rats in both the NTS (A2/C2
region) and the VLM (Al/Cl region). *p<0.05, comparing saline- and oxytocin
treated rats at each level, U-test, Bonferroni correction applied as appropriate
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Fig. 3.10. Percentage increase in the number of cells immunoreactive for Fos, TH, or
both throughout the brainstem of oxytocin-treated prepartum rats
The percentage increase in the number of cells immunoreactive for Fos (filled
bars), TH (hatched bars) or both Fos and TH (double-labelled cells, shaded bars)
was analysed throughout the rostro-caudal extent of the NTS (A2/C2 region) and
the ventrolateral medulla (VLM, Al/Cl) for saline- (n=7) and oxytocin-treated
(n=12) prepartum rats. The difference in the number of cells stained for Fos, TH
and Fos and TH is expressed as % increase in oxytocin- compared to saline-
treated rats.

Oxytocin-treated rats showed always a higher number of labelled cells than saline-
treated rats, particularly in the NTS, though the increase was more pronounced in
the caudal compared to the rostral parts of the NTS.
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Chapter 4

Oxytocin antagonists delay the initiation of parturition and

prolong its active phase in rats

In the previous chapters, I have concluded from the effectiveness of pulsatile
administration of oxytocin at inducing and maintaining delivery in rats, that endogenous

oxytocin might play a critical role for parturition. Here, I administered two novel peptide

oxytocin antagonists to late pregnant and parturient rats in order to further examine the

importance of endogenous oxytocin in parturition. Although oxytocin is not the sole
contractile agent at the uterus, since locally synthesised prostaglandins have also strong

uterotonic effects amongst other local and systemic agents (Chan & Chen 1992, Chan et al.

1991, Fuchs 1987, Soloff 1989), oxytocin is one of the most potent substances at augmenting
labour in humans and rats (Dawood 1989, Randolph & Fuchs 1989). However, the
involvement of oxytocin in the initiation of parturition is less clear (Fuchs 1987), partly due to

conflicting reports on gestation length after oxytocin antagonist (Chan et al. 1991) or oxytocin



Chapter 4 - Oxytocin antagonists and parturition 102

antibody (Kumaresan et al. 1971) administration and a much smaller rise in plasma oxytocin
concentrations before, than during parturition in many species (Fuchs et al. 1991, Thorburn &
Challis 1979). Furthermore, the myometrial oxytocin receptor concentration in rats rises

dramatically only shortly before delivery (Alexandrova & Soloff 1980, Fuchs et. al. 1982)
and in parallel there is a dramatic increase in uterine sensitivity to oxytocin in the last hours
before delivery (Fuchs 1969, Fuchs & Poblete 1970). Thus, the initiation of parturition by

exogenous oxytocin has generally been found to require prolonged administration at high
doses (see chapter three, Fuchs & Poblete 1970, Fuchs et al. 1983). Beside oxytocin,

prostaglandins are known for their uterotonic action (Chan 1977), and a-adrenergic receptors

in the rat myometrium are involved in uterine contractions at term (El Alj et al. 1988, Legrand

et al. 1987), while stimulation of p-adrenergic receptors mediates uterine quiescence through
most of pregnancy (El Alj et al. 1989) and hence p-adrenergic receptor agonists are

commonly used for threatened preterm labour in humans (Higby et al. 1993, Kupferminc et

al. 1993).

The objectives of the present study were first, to investigate the importance of oxytocin
for the progress of delivery during the early and later stages by administering two novel

peptide oxytocin antagonists, F382 (Ferring, Sweden) and OVT16 (Manning et al. 1989),

systemically to rats during the delivery of pups, and second, to investigate the role of oxytocin
in the initiation of parturition by giving repeated injections of an oxytocin antagonist to

animals on the day of expected parturition but before the delivery of any pups. Furthermore,
we thought to examine electrical activity of SON neurones during parturition, using Fos

immunocytochemistry, to test the hypothesis that a reduction of uterine contractions in

parturient rats following oxytocin antagonist administration alters the neurosecretory activity
of oxytocin neurones and hence Fos expression.

Material and Methods

Animals

Date mated rats (Wistar rats in Babraham and Sprague-Dawley rats in Edinburgh) were

implanted with a jugular vein cannula either on day 19 of pregnancy under halothane
anaesthesia (Wistar rats) or on day 20 under brief ether anaesthesia (Sprague-Dawley rats).
On the day of expected parturition (day 21 of pregnancy for both strains of rats) animals were

continuously observed for signs of delivery. Once the first pup was born, animals were
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carefully monitored and the time of each pup birth was recorded. During the dark period the
observation was continued in red light.

Drugs

Oxytocin (Syntocinon, Sandoz) was diluted in isotonic saline. Two peptide oxytocin

antagonists were used, desGly9,d(CH2)5[Tyr(Me)2Thr4]OVT (OVT16) (Manning et al. 1989)
and the compound F382® (des-Gly9-[D-Trp2,alloIle4,Orn8]dC60T, Ferring, Sweden). The
effective dose (ED) was defined as the dose (in nmol/kg) that reduces the response to 2 units
of agonist to equal the response to 1 unit; in vivo antioxytocic ED, measured by changes in the

integrated uterine pressure in oestrogen-pretreated rats, is 1.7±0.3 (OVT16) and 2.9±0.2

(F382) (Manning et al. 1989 and P. Melin, personal communication). In contrast, both the in

vivo antivasopressor and the antidiuretic ED of OVT16 are much greater (7.3±1.3 and ~100,

respectively, Manning et al. 1989), thus clearly showing OVT16 to be a highly selective

oxytocin antagonist. The in vivo duration of the antagonistic action in the uterine assay is

more than 60 min for OVT16 (Manning et al. 1989) and 220±29 min for F382 (P. Melin,

personal communication, calculated from the time at which there was an initial inhibition of
the uterine response to oxytocin of at least 50% until recovery of 75% of the original

response). Both peptide oxytocin analogues were dissolved in isotonic saline containing 0.03
mM HC1 and were given in a volume of 0.05 ml/100 g body weight per injection, at a

concentration of 30 or 60 pg/kg body weight. Since the pharmacological experiments

performed by the supplier of the antagonists indicate a much longer duration of the

antioxytocic effects of F382 compared to OVT16, we used both antagonists in the same

experimental design to assess their efficacy on slowing the progress of delivery.

Morphine sulphate was dissolved in sterile isotonic saline solution (0.9%) and injected at

a concentration of 1 mg/kg body weight in 0.05 ml/100 g rat.

Experimental design

Preliminary pharmacological experiments

Pilot pharmacological experiments were carried out to establish the activity and dose of
the oxytocin antagonists needed to

1) prevent oxytocin-induced contractile activity of uterine strips in vitro,

2) to abolish milk-ejection in response to oxytocin in vivo in anaesthetised rats, and
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3) to prevent exogenous oxytocin from restoring the progress of delivery following disruption

by morphine treatment.

For that purpose

1) four untreated rats were killed by cervical dislocation 10-16 hours postpartum and the
uteri were removed, cut into separate horns, each of which was then connected to a

pressure transducer with a preload of 10 g, suspended in 50 ml of De Jalon solution (90 g

NaCl, 42 ml 10% KC1, 5 g glucose, 5 g NaHC03, 2.7 ml 1 M CaCU, aerating gas 02 +

5% C02) and essayed in an in vitro uteri strip preparation (see detailed description in
Russell et a I. 1989b),

2) three lactating rats (two Sprague-Dawley rats and one Wistar rat, on day 9-13 of

lactation, with all but one pup removed 12 hours prior to the experiment) were

anaesthetised with urethane (1.25 g/kg body weight iv) and implanted with two venous

cannulae each, one cannula in the femoral vein and the other in the jugular vein, to allow

separate administration of oxytocin and the oxytocin receptor antagonist. One to three

mammary glands were cannulated by G. Leng and J.A. Russell and the polyethylene

tubings connected to a pressure transducer, attached to a calibrated pen writer, to allow
continuos intramammary pressure recordings. After a minimum recovery time of 60 min,
rats were injected with increasing doses of oxytocin (0.25-1 mU oxytocin = 0.5-2 ng/0.1
ml isotonic saline) into the jugular vein, with a minimum of 5 min between injections.

Oxytocin was injected for 30-50 min before and 120 min following administration of

either OVT16 or F382 (30 pg/kg body weight iv) into the femoral vein and

3) ten term pregnant Sprague-Dawley rats, implanted with a jugular vein cannula under ether

anaesthesia on day 20 of pregnancy (for detailed description see above), were injected with

morphine (1 mg/kg body weight iv, to prevent pituitary oxytocin secretion, see Russell et

al. 1989b and chapter one), followed by a single dose of either OVT16 (30 pg/kg body

weight iv, n=6) or vehicle (0.05 ml/100 g body weight iv, n=4) immediately after delivery
of the second pup. Subsequently, all rats were given intravenous oxytocin injections (1
mU oxytocin (= 2 ng) each 10 min for 90 min), a treatment which I have shown in chapter
two to completely restore normal parturition (Luckman et al. 1993a).
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1) Effects ofoxytocin receptor antagonists in vitro on oxytocin-induced uterine activity

Both oxytocin antagonists (OVT16 and F382, final concentration 0.45 pg/ml, within the

range expected in vivo in extracellular fluid after intravenous injection of 30 pg/kg) added to

the in vitro uterine strip preparation greatly reduced spontaneous and oxytocin-induced utenne

contractile activity (oxytocin concentrations: 0.7-2.8 mU/ml = 1.4-5.6 ng/ml, equivalent to the

intravenous administration of 10-40 mU oxytocin) and baseline pressure, while the antagomsts

did not affect the increase in uterine contractions in response to an injection of prostaglandin

PGF2a (0.35pg), that was greater than that induced by the highest dose of oxytocin (5.6 ng =

2.8 mU). For OVT16, the effects of two lower doses (1/4 and 1/16 of the initial dose, final

concentration 0.12 and 0.03 pg/ml) were also tested in the in vitro uterine strip preparation:

while 1/4 of the original dose was similarly effective at reducing spontaneous and oxytocin-

induced uterine contractions and decreasing baseline pressure as the initial dose, 1/16 of the

dose was only effective at preventing the uterine response to the lowest dose of oxytocin and

for a duration of less than 20 min, compared to more than 100 min following administration of

the higher doses. Thus, all doses of the oxytocin antagonists that were effective at preventing
the increase in uterine activity in response to 1 mU oxytocin were also effective at reducing

baseline pressure of the uterus, and both effects showed a duration of more than 100 nun for
both antagomsts.

2) Effects of oxytocin receptor antagonists on the intramammary pressure response to

iv oxytocin in lactating rats

Both F382 and OVT16 given intravenously (at a concentration of 30 pg/kg body weight,

respectively) to urethane-anaesthetised lactating rats (n=3) prevented the rise in intramammary

pressure in response to intravenous oxytocin at increasing doses (0.5-2 ng equivalent to 0.25-1

mU) for at least 80 min (Fig. 1).

3) Effectiveness ofOVT16 to block exogenous oxytocin actions duringparturition

In rats injected with morphine, vehicle and oxytocin pulses delivery progressed normally
as expected from previous experiments (see chapter one), while in rats given the oxytocin

receptor antagonist OVT16 instead of vehicle, the effects of exogenous oxytocin to restore

delivery were prevented (time between birth of pups 2-7: 78±7.9 min m antagonist- vs
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43.8±7.6 min in vehicle-treated rats, U-test, p<0.04, Fig. 2), thus confirming the effectiveness

of the oxytocin antagonist to block oxytocin actions during parturition.

Oxytocin antagonists (OVT16 and F382) and the progress of parturition
Nineteen rats (nine Wistar and ten Sprague-Dawley rats) were given a single injection of

the vehicle immediately after birth of the second pup (0.05 ml/100 g body weight iv) as

controls for seventeen oxytocin antagonist-treated rats (seven Wistar rats injected with F382

and ten Sprague-Dawley rats injected with OVT16, 30 pg/kg body weight). The nine Wistar

control rats were given a second vehicle injection after birth of the fourth pup as controls for

another group of Wistar rats injected with F382 (30 pg/kg body weight iv, n=7) after the birth
of the fourth pup only. All animals were carefully monitored and each pup delivery was

recorded. Pup survival was assessed 4-6 hours after the birth of the last pup (ratio of pups

alive/all pups born) and the presence of milk in the pups' stomachs was noted. Mothers were

given an overdose of sodium pentobarbitone (50 mg/kg body weight iv) and after laparotomy
the uten were examined for pups and placentae.

Oxytocin antagonist (F382) and the onset of parturition

Thirteen Wistar rats were injected with F382 (30 pg/kg body weight iv) before delivery

of any pups, at 12.00, 14.00 and 16.00 h on the day of expected parturition. Twenty-five rats

were given vehicle injections at the same times. Eleven other Wistar rats were injected with

F382 (60 pg/kg body weight iv) starting at 10.00 h on day 21 and then every 2 hours until

22.00 h, while seven rats were given the vehicle at the corresponding times (0.05 ml/100 g

body weight iv). When rats started to gve birth within the treatment period, the injections,

vehicle or oxytocin antagonist, were discontinued. As mentioned above, all animals were

carefully monitored throughout delivery. Pup survival and the presence of milk in the pups'
stomachs was assessed 4-6 hours after the birth of the last pup. Then, mothers were killed and

after laparotomy the uteri were examined for pups and placentae.

Statistical analysis

The difference in the time of the onset of parturition between the three groups was

calculated by assigning a rank to each rat according to the time of onset of delivery (the earlier
the onset the lower the rank) and then comparing the rank sums using the non-parametnc
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Mann-Whitney U-test (one-tailed). For comparison of the progress of delivery, group means

for the cumulative time between delivery of pups 2-4, 2-5, 2-6, 2-7, pups 4-7 and pups 6-10,

respectively, were calculated and compared using the non-parametric Mann-Whitney U-test. A

difference was considered significant for p<0.05. Group data are expressed as means+s.e.m.

Results

The effects of OVT16 and F382 on the progress of parturition

Rats injected with OVT16 or F382 (30 pg/kg) after delivery of the second pup gave birth
to the following five pups more slowly than vehicle-injected rats (time from birth of pups 2-7:

100±8 and 83.3+11.7 min in F382 and OVT16 treated animals, respectively, and 51+6.3 and

48.9+6.4 min in the corresponding control groups (U-test, p<0.05, Fig. 3).
The cumulative time between pups 2-5 and 2-6 was also significantly longer in

antagonist- compared to vehicle-treated rats, while the time between pups 2-4 was

significantly longer in F382-treated rats only. When the course of delivery was divided into an

early (time between delivery of pups 2-6) and a later stage (time between delivery of pups 6-

10), the delay caused by the antagonist was only significant during the early, but not the later

stage (Table 1).

Table 1

The effect of oxytocin antagonists (F382 or OVT16) injected after the birth of the second pup on the
time to deliver four pups during an early and later stage of delivery

groups time between pups 2-6 time between pups 6-10

controls (n=7) 38.7±7.9 min 32.3±3.9 min

F382-treated rats (n=9) 88±7.6* min 56.3±6.7 min

controls (n=10) 41±6.0 min 27.4±5.8 min

OVT16-treated rats (n=10) 75.2±12.5* min 32.7±6 2 min

* p<0.05, U-test compared to respective control group.

The effect of oxytocin antagonists (F382 or OVT16, 30 pg/kg body weight iv)) injected after the birth
of the second pup on the time to deliver four pups during an early and later stage of delivery. Rats
given either oxytocin antagonist delivered pups 2-6 significantly slower than control rats, while the
time between delivery of pups 6-10 was not statistically different between groups.
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Of seven rats injected with F382 (30 pg/kg) after delivery of the fourth pup, four rats

showed no prolongation of the interbirth intervals following the injection (cumulative time

from pups 4-7: 24.7±2.9 min (n=4) vs 27.5±3.1 min in controls, Fig. 4, shaded area A =

means±s.e.m. of interbirth intervals in control rats). In the remaining three rats, delivery of

pups 4-7 was much slower compared to controls and compared to the four unaffected animals

(cumulative time from pups 4-7: 86±4.3 min) and similar to rats injected with an oxytocin

antagonist after the second pup (shaded area B = means±s.e.m. of interbirth intervals in rats

injected with F382 after the birth of the second pup). The delay induced by the antagonist in

3/7 rats was most pronounced for the first interbirth interval following the antagonist injection

(time between birth of pups 4-5: 61.3±9.9 min, n=3, vs 9.2±2.5 min in controls), while the
two following interbirth intervals were similar to control animals (time between delivery of

pups 5-6 and 6-7, respectively: 9±2.5 and 19±4.1 min, n=3, vs 16±3.1 and 13+2.2 min in

controls). We did not find any difference between rats affected and those unaffected by the

antagonist injection after the birth of pup 4 which could account for this effect. The litter sizes

were similar for both groups (11+1 pups/litter in the four not affected rats, range 8-14 pups,

and 10±2 pups/litter in the three rats that showed a delay following the antagonist injection,

range 8-14 pups) and all pups were suckled 4-6 hours after the completion of delivery.
Maternal behaviour, as assessed by vaginal licking, licking of pups during and after

delivery, retrieval and grouping of pups and nest building, was normal in antagonist-treated
animals. Pup survival 4-6 hours after delivery of the last pup was similar between all groups,

regardless of treatment or strain of rats (79 - 85%) and all pups were suckled at the time of

killing. Post mortem examination of the uteri revealed that none of the animals had pups or

placentae left in utero The average litter size was not different between groups (experimental

Wistar rats had on average 10.5±0.5 pups per litter, and controls had 11.8±0.5 pups, both

Sprague-Dawley groups had a mean of 12.3±0.4 pups per litter).

Of 31 Wistar rats not treated with F382 before delivery, 21 rats with litters of more than

11 pups all delivered between 12.20 h on day 21 and 09.00 h on day 22. The remaining 10
rats all had small litters (7 pups or less) and all delivered after 09.58 h on day 22, with the last
one delivering after 9.35 h on day 23. In recognition of this effect of the litter size on the time
of onset of parturition, all rats with litters of 7 pups or less were excluded from subsequent

analysis.
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The effect of F382 on the onset of parturition

As the times of onset of delivery in vehicle-treated rats from both control groups were

similar, we have combined both control groups for statistical comparisons. Thus 53% (17/32)
of animals injected with vehicle before the birth of any pup delivered in the light phase of day
21 of pregnancy and nine rats (28%) delivered in the first half of the next light phase (between
07.00 h and 13.00 h on day 22, Fig. 5), while during the dark phase only six rats (19%)
started to give birth.

In rats given three repeated doses of 30 ug/kg F382 before the birth of any pups (at

12.00, 14.00 and 16.00 h), delivery occurred throughout the night, with no apparent

preference for the light phase (4/13 rats started to deliver during the light phase on day 21,
4/13 during the dark phase and 5/13 during the day 22 light phase). The difference of the rank
sums of the times of onset of delivery for the antagonist and control group with the Mann-

Whitney U-test just failed to reach significance (p<0.06), although the median time of onset of

delivery was later in antagonist-treated rats (04.08 h on day 22 vs 18.52 h on day 21, Fig. 5).

Only one rat (that had been injected with F382 before delivery of any pups) had to be
excluded from subsequent analysis on the basis that it had a small litter (5 pups, as revealed

by post mortem examination in the morning of day 23 of pregnancy, by which time it had not

yet given birth).

When seven injections of F382 at twice the previous dose (60 pg/kg) were given, starting
at 10.00 h on day 21 and then every 2 hours until 22.00 h, the onset of delivery was

significantly delayed compared to vehicle-treated animals (U-test, p<0.01) and the median
time of onset of delivery was significantly later in the antagonist-treated group compared to

control rats (10.23 h on day 22 vs 18.52 h on day 21 in controls, U-test, p<0.01, Fig. 5). Only
two of eleven antagonist-treated animals started to deliver during the treatment (in the light

phase of day 21), while the remaining nine rats gave birth in the light phase of the following

day. The time between the birth of the second and the seventh pup was similar in all groups

(63±11.5 min in control rats, 72.5±15.3 min and 61.8±5.2 min in rats previously injected with

30 or 60 pg/kg F382, respectively). At the end of the study (4-6 hours after completion of

delivery) all pups were suckled and no pups or placentae were detected in the uteri in any rat.
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Discussion

This study provided evidence for an involvement of oxytocin during both the initiation

and the maintenance of parturition in rats. The role of oxytocin in initiating parturition has

remained controversial due to the previous failure of oxytocin antagonists (Chan & Chen

1992, Chan et al. 1991) or oxytocin antibodies (Kumaresan et al. 1971) to prolong gestation

significantly in rats, while being effective at prolonging the progress of delivery and disrupting

maternal behaviour (Van Leengoed et al. 1986). I have now demonstrated that repeated

administration of an oxytocin antagonist significantly prolongs gestation. The need for

multiple injections could be related to the half-life of the antagonist, since a sustained action is

obviously required to delay the onset of parturition for several hours compared with a

relatively brief action to slow parturition once it has started. These data are in agreement with
observations made in humans, indicating an acute decrease in uterine contraction frequency

during a two hour infusion of a peptide oxytocin antagonist, but no long-term effect on the
onset of delivery after such treatment (Goodwin et al. 1994). Here, rats treated with F382

before delivery of any pups started to give birth later, while the progress of the delayed

delivery was normal, indicating that the antioxytocic effect of the antagonist was overcome.

Since I have also demonstrated the effectiveness of OVT16 to prevent exogenous oxytocin

from restoring delivery that has been disrupted by morphine, the prolongation of delivery seen

in response to oxytocin antagonist administration during parturition can be attributed to the

antioxytocic effects of the antagonists used.

The dose of oxytocin required as an agonist to initiate delivery is higher than that needed

to augment labour and delivery that has started spontaneously (Fuchs & Poblete 1970, c.f.

chapter one and three). This raises the possibility that the initiation of parturition may involve

the activation of endometrial oxytocin receptors, leading to prostaglandin release (Chan et al.

1993). The endometrial oxytocin receptors might be more difficult to access from blood for
both circulating oxytocin and oxytocin antagonists than myometrial receptors, since the

vascularisation of the myometrial layer is greater than that of the endometrium, and

particularly than that of the epithelial layer, into which only few vessels reach (Ramsey 1989).

Thus, the lower dose of oxytocin agonist and antagonist required to affect the progress of

parturition can be explained by a myometrial site of action, while the higher dose of either

agonist or antagonist needed to affect the initiation of parturition is consistent with the

hypothesis that such effects are mediated by endometrial oxytocin receptors, which are less
accessible for blood-born substances. Stimulation of endometrial oxytocin receptors, e.g. by
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local oxytocin, induces the release of prostaglandins (Chan & Chen 1992, Chan et al. 1993,

Fuchs et al. 1982), that is important for the formation of gap junctions (Chan et al. 1991,

Garfield & Beier 1989), for the induction of myometrial oxytocin receptors (Chan et al. 1991,
Fuchs et al. 1984) and the effacement of the cervix (Huszar & Naftolin 1984), the latter of

which can also be initiated by oxytocin itself (Khalifa et al. 1992). All of these changes are

essential for the generation of strong contractions during labour and delivery and thus might

be involved in the positive feedback onto hypothalamic neurosecretory oxytocin neurones (see

chapter three). The physiological importance of endometrial oxytocin receptors in the uterus is

supported by reports of oxytocin mRNA and peptide in the human (Miller et al. 1993a) and
the rat endometrium at term (Lefebvre et al. 1992b), opening up the possibility that an

increase in local oxytocin secretion, that is not necessarily reflected by a rise in circulating

oxytocin concentrations, might contribute to the initiation of parturition.

In addition, there might be an involvement of vasopressin receptors, which are present in

the uteri of rats (Chan et al. 1990), rabbits (Maggi et al. 1991a) and women (Maggi et al.

1990) and mediate uterine contractility. However, in contrast to oxytocin receptors, the

vasopressin receptor concentration, at least in rabbits and humans, does not increase at term

(Maggi et al. 1991a, 1992) and an infusion of vasopressin, unlike oxytocin, cannot induce
labour in late pregnant rats (Fuchs & Poblete 1970). Also, both antagonists used in this study

have been reported to bind with a much higher affinity to the rat oxytocin compared to the rat

vasopressin receptor (Manning et al. 1989 and Melin, personal communication).
Once parturition has been initiated and delivery of pups has started, a single dose of an

oxytocin antagonist prolonged delivery by about one hour, but did not prevent parturition,

which is in agreement with the reported half-life of OVT16 (Manning et al. 1989). Our data

showing that an oxytocin antagonist prolongs delivery more consistently when injected after

the birth of the second rather than the fourth pup might indicate that delivery is more

dependent on oxytocin during the early compared to the later stages of parturition. This could

be due to factors other than oxytocin, e.g. prostaglandins, which are released dunng the

process of parturition (Behrens et al. 1993) and can perhaps restore uterine activity that has
been reduced by the antagonist treatment and thus ensure that delivery is completed even if the
action of oxytocin is blocked. In addition, oxytocin plasma concentrations rise during the
course of delivery and might diminish the effect of the antagonist treatment (Higuchi et al.

1986b). Due to the moderate effect on the progress of delivery following administration of

peptide oxytocin antagomsts, that was much less pronounced than the delay observed in
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response to morphine (see chapter one), I have not assessed Fos expression in the SON of rats

given an antagonist treatment dunng parturition. Repeated injections and/or administration of

a non-peptide oxytocin antagonist, which is more resistant to enzymatic degradation, might

result in a greater delay of pup birth and hence might be a suitable model to examine whether

uterine activity is a critical factor for the induction of Fos expression in the SON and in

putative afferent neurones during parturition.
Beside its classic uterotomc role, oxytocin has been shown to soften the cervix (Khalifa

et al. 1992) and a high density of cervical oxytocin receptors (Gorodeski et al. 1990) supports

an active role of cervical contractions (Olah et al. 1993) during the expulsive phase. These

findings, together with the observation that preterm labour is accompanied by an increase in

oxytocin receptor concentrations similar to that in term labour (Garfield et al. 1982, Garfield

& Beier 1989) warrant further exploration of the effects of oxytocin antagonists in preterm

labour, particularly as there seem to be no adverse effects on foetal or maternal well-being

following treatment with oxytocin antagonists (Goodwin et al. 1994), while the current

treatment of preterm labour with p-adrenergic agomsts can have serious consequences for

both the mother and the foetus (Kupferminc et al. 1993) and an uncertain efficacy (Higby et

al. 1993).

In summary, I suggest that in the rat, oxytocin plays a key role both before and dunng

the delivery of pups, as systemic administration of an oxytocin antagonist significantly delays

the onset of delivery and prolongs its progress, the latter effect being more pronounced during

the early than later stages of delivery.
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Fig. 4.1. Effect of an oxytocin receptor antagonist on intramammary pressure
Intramammary pressure (in mmHg) was recorded from a cannulated mammary
gland of a lactating rat (day 12 of lactation, after removal of all but one pup 12
hours prior to the experiment) in response to intravenous injections of oxytocin
(0.25-1 mU iv, open arrows) before and after an injection of the oxytocin receptor
antagonist F382 (30 pg/kg body weight iv).
Repeated injections of oxytocin resulted in a dose-dependent increase in
intramammary pressure. After an intravenous injection of the F382 the
intramammary response to oxytocin was completely abolished for 80 min, while
120 min after the antagonist injection the intramammary pressure increase to 1
mU oxytocin was fully restored.
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Fig. 4.2. Effectiveness of the oxytocin receptor antagonist OVT16 to block exogenous
oxytocin actions during parturition
Animals were injected intravenously after the birth of the second pup with either a
single injection of vehicle (controls, open bar, n=10), the oxytocin receptor
antagonist OVT16 (30 ug/kg body weight iv, hatched bar, n=10), morphine (1
mg/kg body weight) plus vehicle (0.05 ml/100 g body weight iv) followed by
pulses of oxytocin (1 mU oxytocin each 10 min iv, cross-hatched bar, n=4) or
morphine plus OVT16 (30 pg/kg body weight iv, filled bar, n=6) followed by
pulses of oxytocin and the cumulative time for delivery of pups 2-7 was compared
between groups.
While rats given morphine, vehicle and oxytocin pulses showed no delay in
delivering subsequent pups compared to vehicle treated rats, in rats treated with
morphine, OVT16 and oxytocin delivery was significantly prolonged compared to
controls and animals given morphine plus vehicle plus oxytocin pulses (*p<0.05,
U-test). There was no significant difference between rats given only a single
injection of OVT16 and rats given morphine, OVT16 and pulses of oxytocin.
These data suggest that GVT16 is highly effective at preventing exogenous
oxytocin actions during parturition.
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Fig. 4.3. Effect of two oxytocin-antagonists (OVT16 and F382) on the progress of
parturition
Wistar rats (open circles, n=9) and Sprague-Dawley rats (open squares, n=10)
were given a single injection of the vehicle immediately after the birth of the
second pup (0.05 ml/100 g body weight iv) as controls for rats injected
intravenously with either F382 (filled circles, n=7) or OVT16 (filled squares,
n=10) at a dose of 30 pg/kg body weight each (values are means±s.e.m.).
Antagonist-treated rats showed a delay in the delivery of the subsequent five pups,
which was most pronounced during the first 80 min following the antagonist
injection.
*p<0.05, U-test, compared to the respective controls
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Fig. 4.4. Effect of an injection of F382 after the birth of pup 4 on the progress of
parturition
Seven Wistar rats were injected with the oxytocin antagonist F382 (30 pg/kg body
weight iv) after the birth of the fourth pup and interbirth intervals were recorded.
Four rats (filled circles) delivered the subsequent three pups within the control
time range (shaded area A = means±s.e.m. of control animals). The remaining
three rats (filled squares) delivered pups 4-7 in the time range of rats injected with
F382 after the birth of the second pup (shaded area B = means±s.e.m. of rats
injected with F382 after pup 2) and thus slower than control animals.
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Fig. 4.5. Dose-related effects of the oxytocin antagonist F382 on the onset of
parturition
Rats were given either three intravenous injections of F382 at a concentration of
30 pg/kg body weight (filled circles represent the time of birth of the first pup in
individual rats, n=13), or seven injections of F382 at a concentration of 60 pg/kg
body weight (filled triangles, n=ll) starting in the morning of the day 21 of
pregnancy. Thirty-two animals were given three (open circles, n=25) or seven
(open triangles, n=7) vehicle injections at the same time as experimental animals
the antagonist. The x-axis indicates the time of day, bars represent the dark phase.
The overall median of the time of onset of delivery for the two control groups
combined (18.52 h on day 21) was earlier than that in rats injected with the
oxytocin antagonist. Though the difference just failed to reach significance for rats
treated with three injections of F382 (30 pg/kg, upper panel, median time: 04.08 h
on day 22, p<0.055 vs controls), the delay was highly significant for the group
given seven injections of F382 (60 pg/kg, lower panel, median time: 10.23 h on
day 22, **p<0.01, U-test, compared to controls).
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Chapter 5

Progesterone treatment in late pregnancy delays the onset of

delivery and prevents the normal activation of supraoptic
neurones during such delivery

Delivery in rats is preceded by a decrease in the plasma progesterone concentration,

resulting in an increased ratio of plasma oestrogen/progesterone (Csapo & Wiest 1969). This
switch from a state of relative progesterone dominance during most of pregnancy to one of

greater oestrogen dominance at the end of gestation is considered to be a crucial step towards
the initiation of labour (Csapo & Wiest 1969, Csapo et al. 1980, Fuchs et al. 1983). Under

the increasing influence of oestrogen, uterine changes, including the formation of gap junctions
and the expression of oxytocin receptors, which are important for successful delivery, take

place (Alexandrova & Soloff 1980, Chan et al. 1991, El Alj et al. 1993, Fuchs et al. 1983,
Puri & Garfield & Beier 1982). If the normal fall in plasma progesterone is postponed, these

changes are prevented and gestation is prolonged (Bosc et al. 1987, Garfield et al. 1982).
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Furthermore, high levels of progesterone during pregnancy have been implicated in a

functional deafferentation of the term pregnant uterus (Morizaki et al. 1989), that might
contribute to a reduced transmission of sensory information from the uterus to the CNS during

pregnancy and following progesterone administration (Frye & Duncan 1994). Beside a

peripheral site of action, systemic progesterone also reduces the noradrenaline content of the

hypothalamus and the medulla (Chaudhuri et al. 1992), possibly due to a reduced
noradrenaline synthesis and release and oxytocin release, induced by vaginal distension, has
been shown to be inhibited by an acute intracerebroventricular administration of progesterone

(Roberts 1971).

In addition, oxytocin immunoreactivity in the hypothalamus increases at the end of

pregnancy in rats (Jirikowski et al. 1989) and increasing concentrations of oestrogen have
been implicated in contributing to these changes (Jirikowski et al. 1988). Since central

oxytocin can induce maternal behaviour (Pedersen et al. 1982, McCarthy 1990) and maternal
behaviour is initiated at the end of pregnancy (Numan 1988), when the plasma ratio of

oestrogen/progesterone concentrations increases, a change in gonadal steroid concentrations in
favour of oestrogen at term seems to affect both the uterus and the CNS, and thus could be
critical for the normal initiation of parturition.

Although the factors involved in the initiation of parturition are not fully understood, we

have shown in the previous chapters that oxytocin is of importance for both the initiation and
the progress of delivery in rats. Thus, oxytocin might augment uterine contractions, which will
then stimulate the reflex release of pituitary oxytocin via a catecholaminergic projection from

the NTS to the SON (see chapter three, Onaka et al. 1995b). The recent finding of oxytocin
mRNA and peptide in the endometrium of term pregnant rats (Lefebvre et al. 1992b) and
humans (Miller et al. 1993a) opens up the possibility that local oxytocin initiates uterine

activity which then feeds back onto hypothalamic magnocellular neurones to stimulate the
release of oxytocin during parturition. The increased neurosecretory activity of magnocellular

oxytocin neurones during delivery is reflected by increased expression of Fos, the protein

product of the immediate early gene c-fos, in the SON and putative afferent neurones in the
NTS (Fenelon et al. 1993, Luckman et al. 1993a, see chapter three). Using

immunocytochemistry for Fos, a marker for neuronal activation (see previous chapters), we

investigated the effects of a systemic injection of progesterone to late pregnant rats on the
onset of delivery and the activation of supraoptic neurones and putative afferent neurones in
the brainstem during delivery. Since recently, a dramatic increase in uterine oxytocin mRNA
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content at term has been discussed as a mechanisms by which local synthesis and release of

oxytocin could affect the timing of delivery (Chibbar et al. 1993, Lefebvre et al. 1992b), we

also examined whether progesterone treatment would affect the increase in uterine oxytocin
mRNA content in late pregnancy.

Material and Methods

Animals

On day 20 of pregnancy, at 09.30 h, date mated female Sprague-Dawley rats were given
an injection of either progesterone (5 mg, Intervet, n=48) or vehicle (0.2 ml of 0.3vol% cresol,
89.7vol% arachis oil and 10vol% benzylalcohol, kindly provided by Intervet, n=23)

subcutaneously into the right outer calf.
For intravenous oxytocin (Syntocinon, Sandoz, dissolved in sterile 0.9% saline) or saline

administration twenty progesterone-treated rats were implanted with a jugular vein cannula
one day prior to the experiment under brief ether anaesthesia. Eight progesterone-treated rats

were implanted with a jugular vein cannula in the morning of day 20 of pregnancy and the
other twelve progesterone-treated rats were implanted with a cannula in the morning of day
21. In the morning of the experiment, the cannulae were flushed with 0.1 mi heparinised saline

(50 IU heparin/ml saline) and connected to oxytocin- or saline-filled polyethylene tubings.
All animals were assessed every 5-10 min from the morning of day 21 of pregnancy

onwards for signs of labour (stretching, straining, vaginal bleeding), pup delivery and
maternal behaviour (nest building, excessive grooming, licking of external genitals, licking of
the pups during and after delivery, pup retrieval). Onset of delivery was defined as the time
when the first pup was fully expelled and the time of birth of each pup was recorded until at

least eleven pups were born. During the dark period the observation was continued in red

light.
At the end of each experiment all rats were killed by cervical dislocation, laparotomised

and the uteri removed under RNAse free conditions, stripped of foetuses and placentae and

quickly frozen on dry ice and stored at -80°C until processed for in situ hybridisation (see

below). Similarly, the brains were removed and quickly frozen on crushed dry ice and stored
at -80°C until processed for immunocytochemistry (see general materials and methods

section).
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Assessment of weight of pups and foetuses

Three pups or foetuses from each litter were randomly selected (paying particular
attention not to select obviously small or large pups/foetuses), and individually weighed. The

average of the three measurements was calculated and considered representative for the

respective litter. According to the treatment, the average weight of pups or foetuses was

calculated for each treatment group.

Experimental design

Effects of progesterone on the onset and progress of delivery and Fos expression in the
SON and NTS

Rats injected with either progesterone or vehicle as described above were killed in time-
matched pairs, one of each group, either in the afternoon of day 21 of pregnancy but prior to

delivery (between 12.00-15.00 h, both n=6, day 21 prepartum groups), during delivery, 90
min after the birth of the second pup (n=10, 11, parturient groups) or 6-12 hours after the
birth of the first pup (both n=6, postpartum groups).

Since progesterone-treated rats delivered about one day later than vehicle-treated rats,

one group of six progesterone-treated rats was killed in the afternoon of day 22 of pregnancy

(between 12.00-15.00 h) prior to delivery (n=6, day 22 prepartum group).
All rats were killed by cervical dislocation and the brains and uteri were removed and

frozen until processed for immunocytochemistry.

Effects of oxytocin administration to progesterone-treated rats on the onset and progress

of delivery and Fos expression in the SON and NTS
Twelve progesterone-treated rats that had been implanted with a jugular vein cannula on

day 20 of pregnancy were given pulses of oxytocin (10 mU oxytocin each 10 min for 2 hours
and then 20 mU oxytocin each 10 min for 2 hours, n=8) or saline (0.03 ml each 10 min, n=4)
on day 21 of pregnancy, from 11.00-15.00 h and were observed for delivery of pups.

Rats that had not given birth by the end of the treatment were killed between 15.30-16.30

h as described above and the brains were removed and frozen until processed for

immunocytochemistry.

Eight other progesterone-treated rats that had been implanted with a jugular vein cannula
on day 21 of pregnancy were given on day 22 of pregnancy from 09.00-13.00 h either

oxytocin (n=5) or saline pulses (n=3) as described above. Animals were observed for delivery
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of pups and were killed either 90 min after the birth of the second pup (parturient group) or

time-matched within 90 min after the end of the treatment but before delivery of pups

(prepartum groups). All rats were killed as described above and the brains and uteri were

removed and frozen until processed for immunocytochemistry or in situ hybridisation.

Immunocvtochemistrv

For immunocytochemistry 15 pm coronal cryostat sections through the hypothalamus or

the brainstem were cut and mounted on gelatinised slides. Sections containing the SON were

collected throughout the hypothalamus from the anterior commissure to the median eminence.
Brainstem sections were collected from the pyramidal decussation to the widening of the
fourth ventricle rostral of the area postrema.

Sections through the hypothalamus were processed for Fos immunocytochemistry and
sections through the brainstem were divided into two sets, one processed for

immunocytochemical detection of Fos and the other for tyrosine hydroxylase (TH), the rate

limiting enzyme in the catecholamine synthesis.
On average 9.0+0.4 sections per animal and area (SON or NTS) were counted for Fos-

immunoreactive nuclei and 6.0+0.3 sections per animal per NTS for TH-immunoreactive

cells, with the identity of the sections coded, using a microscope with a xlO objective and a

brightfield condenser.

In situ hybridisation for oxytocin mRNA

Uterine transverse sections (15 pm) were cut on a cryostat under RNAse free conditions,
mounted on gelatinised slides and stored at -80°C until processed for in situ hybridisation with
a synthetic oligonucleotide probe complementary to the bases 912-939 (27 mer) of the rat

oxytocin gene (Ivell & Richter 1984, see general materials and methods section).
For the quantitative analysis of oxytocin mRNA expression, an automated image

analysis system (Joyce Loebl pMagiscan) was used and the optical density (silver grains/area)
in the endo- and myometrium of the uterus was measured as determined by counterstained
uterine sections. For each animal two slides and two sections/slide were analysed as follows:
for each section the mean of three background measurements was subtracted from the mean of
three measurements over each of the two areas of myometrium and the endometrium. Then,
the mean for each area (from a total of four sections) per animal was established and finally
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we calculated the group means+s.e.m. from individual measurements according to the
treatment. To compare the grain density measurements from different autoradiographic films,

optical densities measurements were transformed into dpm/mm3 with a standard curve based
on measurements of ten uterine standards (three measurement per standard minus three
measurement of background density surrounding the standards) and assuming a 95%

efficiency of the scintillation counter.

Statistical analysis

Comparisons between two groups were made with the non-parametric Mann-Whitney Li¬
test. For comparisons between more than two groups the non-parametric Kruskal-Wallis test,

followed by Dunn's post-hoc test was used. Comparison of percentages were performed with
the two-proportion t-test. A value for p<0.05 was considered significant.

Results

The effect of an injection of progesterone on the onset and progress of delivery
Animals injected with the vehicle one day prior to expected term delivered their pups

between 11.00 and 20.00 h on day 21 of pregnancy (n=ll). By the time the last vehicle-
treated rat started to deliver, none of the ten progesterone-treated rats had given birth, but they
delivered between 09.00 h on day 22 and 10.00 h on day 23, thus significantly later (28 hours)
than controls (U-test, p<0.001, Fig. 1, top).

In progesterone-treated rats, delivery of pups was not only greatly delayed, but the

progress of parturition was prolonged compared to vehicle-treated rats, particularly during the

early stages of parturition (time between delivery of pups 2-6: 80.9+11 min vs 39.1+3 min in

controls, Kruskal-Wallis test, p<0.05), while the time between delivery of pups 6-10 was not

significantly different between groups (38.4+6 min vs 27.2+3.9 min in progesterone- and
vehicle-treated rats, Fig. 1, bottom). Furthermore, the birth weight of pups born to

progesterone-treated mothers was significantly higher than that of control pups (Fig. 2, top)
and at the time of killing (90 min after delivery of pup 2) progesterone-treated rats still had on

average 3+1 pups left in the uterus, while none of the vehicle-treated rats had any pups left in

utero (Kruskal-Wallis test, p<0.05).

When neonatal survival was assessed 6-8 hours after the onset of delivery 99+1% of all

pups born were alive in the control group compared to only 86+6% in the progesterone-treated

group (U-test, p<0.05, Fig. 2, bottom). All vehicle-treated rats showed normal maternal
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behaviour (licking pup pups, pup retrieval, nest building activity), while in most progesterone-

treated rats no such behaviour was observed.

The litter size, which shows a weak negative correlation with the onset of delivery in rats

(see chapter four) was not significantly different between groups (14.2+0.7 and 13.6+0.4 pups

per litter in prepartum (vehicle- and progesterone-treated) rats and 12.8+1.2 and 12.7+0.9

pups per litter in parturient (vehicle- and progesterone-treated) rats, respectively).

The effect of pulsatile oxytocin treatment on day 21 or day 22 of pregnancy on the onset

and progress of delivery in progesterone-treated rats

Animals that were given an injection of progesterone on day 20 and then on day 21 a

four hour oxytocin pulse treatment (10 mU each 10 min for 2 hours and then 20 mU each 10
min for 2 hours, n=5) or saline (0.03 ml, n=3) starting at 11.00 h did not deliver during such
treatment (Table 1).

Table 1

The effectiveness of pulses of oxytocin at inducing delivery in rats treated with progesterone

number of rats in which delivery was induced

groups day 21 day 22

saline-treated rats 0/3 0/4

oxytocin-treated rats 0/5 6/8*

*p<0.05, U-test compared to respective control group.

Pulsatile administration of oxytocin (10 mU oxytocin each 10 min for 2 hours and then 20 mU each
10 min for 2 hours) on day 21 (11.00-15.00 h) was not effective at inducing delivery in rats that had
been injected with progesterone (5 mg sc) on day 20 of pregnancy.

In contrast, 6/8 animals (75%) treated with progesterone and then given the same

oxytocin pulse treatment as above on day 22 (09.00-13.00 h) started to deliver during the
treatment and thus delivered significantly earlier than rats treated with progesterone alone, but
later than vehicle-treated rats (Kruskal-Wallis test, p<0.05, time of first pup: 09.05, 10.05,

10.06, 12.05, 12.32 and 12.58 h, respectively, Table 1). None of the four saline-treated rats

gave birth during the treatment and these rats were killed time-matched with an oxytocin-
treated parturient rat after the end of the treatment.
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Most rats that had been injected with progesterone and in which delivery had been
induced with oxytocin pulses on day 22 showed normal maternal behaviour and the time
between delivery of pups 2-6 (61.3+4 min vs 38.4+6 min in vehicle-treated rats, Kruskal-
Wallis test, p<0.05) was shorter, and neonatal pup survival (99+1%) increased, compared to

rats treated with progesterone only. However, delivery of pups 2-6 was still significantly
slower than in vehicle-treated rats (Fig. 1, bottom). The time between pups 6-10 was not

significantly longer than in vehicle rats (25.3+4.8 min in progesterone plus oxytocin-treated
rats vs 27.2+3.9 min in controls). The average pup weight of progesterone-treated rats in
which delivery was induced with oxytocin on day 22 was not significantly different from
controls (Fig. 2, top).

The litter size was again not significantly different between groups (12.3+2.6 and
11.8+0.4 vs 12.3+1.8 and 12.8+0.3 pups per litter in rats given progesterone plus saline or

oxytocin on day 21 and day 22, respectively).

The effect of an injection of progesterone on Fos expression in the SON and NTS of

parturient rats

Vehicle-treated animals killed before or 6-12 hours after delivery of pups showed very

few Fos-immunoreactive nuclei in the SON (1.5+0.3 Fos-immunoreactive nuclei/section,

n=4), while the number of Fos-immunoreactive nuclei was significantly increased in rats killed

during parturition (15.6+4.5 Fos-immunoreactive nuclei/section, n=6, Fig. 3). All rats given
an injection of progesterone showed few Fos-immunoreactive nuclei in the SON whether they
were killed before (day 21 and day 22, 1.7+1.0 Fos-immunoreactive nuclei/section, n=5, and

2.8+0.4, n=4), during (3.7+2.7 Fos-immunoreactive nuclei/section, n=7) or after delivery of

pups (0.3+0.2 Fos-immunoreactive nuclei/section, n=3). Thus progesterone-treated parturient
rats had significantly fewer Fos-immunoreactive nuclei per section SON than vehicle-treated

parturient rats (Kruskal-Wallis test, p<0.05, Fig. 3).
In the NTS, vehicle-treated animals killed before or after delivery of pups showed very

few Fos-immunoreactive nuclei in the NTS, while parturient rats showed a significantly higher
number of Fos-immunoreactive nuclei (0.4+0.1 Fos-immunoreactive nuclei/section, n=4 and

0.8+0.2, n=3 vs 14.4+2.7, n=6, Kruskal-Wallis test, p<0.05). Likewise, rats given an

injection of progesterone showed few Fos-immunoreactive nuclei in the NTS before (4.4+3.2,
0.3+0.2 Fos-immunoreactive nuclei/section, n=4, 4, on day 21 and day 22, respectively) and
after delivery (2.3+1.9 Fos-immunoreactive nuclei/section, n=3), but an increased number of
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Fos-immunoreactive nuclei during delivery (17.4+4.9 Fos-immunoreactive nuclei/section,

n=6, Kruskal-Wallis test, p<0.05). Thus, in the NTS parturient rats regardless of whether

they were given progesterone or vehicle, showed an increase in the number of Fos-
immunoreactive nuclei compared to pre- and postpartum animals.

Table 2

Correlation between the incidence of Fos-immunoreactive (ir) nuclei in the SON and NTS, TH
immunoreactivity in the NTS and the progress of delivery in progesterone- and vehicle-treated rats

progesterone-treated vehicle-treated both groups

correlation between rats (n=7) rats (n=6) combined (n=13)

time between pups 2-6 and Fos-ir
nuclei in the SON

r2 = 0.07 T-Ho©IIOH r2 = 0.14

time between pups 2-6 and Fos-ir
nuclei in the NTS

r2 = 0.02 r2 = 0.27 r2 = 0.02

Fos-ir nuclei in the SON and the
NTS

r2 = 0.02 r2 = 0.35 r2 = 0.03

Fos-ir nuclei in the SON and TH-
ir cells in the NTS

r2 = 0.78* r2 = 0.11 r2 = 0.05

Fos-ir nuclei in the NTS and TH-
ir cells in the NTS

oo©II r2 = 0.01 r2 = 0.001

There was no correlation between the number of Fos-immunoreactive nuclei in the SON and the
NTS and the time between delivery of pups 2-6 for either progesterone- or vehicle-treated rats, nor
for both groups combined. Similarly, we did not observe a correlation between the number of TH-
immunoreactive cells in the NTS and Fos expression in the SON in vehicle-treated rats, while in
progesterone-treated rats, this correlation was highly significant (*p<0.01).

To examine whether the low level of Fos expression in the SON of progesterone-treated
rats was the result of the slow progress of delivery, we calculated the correlation for the
number of Fos-immunoreactive nuclei in the SON or NTS with the time between the births of

pups 2-6 for progesterone- and vehicle-treated parturient rats and for both groups combined

(Table 2).
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There was no significant correlation between the progress of delivery (assessed by the
time between delivery of pups 2-6) and the number of Fos-immunoreactive nuclei in the SON
or NTS. Likewise, there was no correlation between the number of Fos-immunoreactive nuclei

in the SON and NTS for neither group, nor all parturient rats combined. However, we

observed a significant correlation between the number of TH-immunoreactive cells in the NTS
and the number of Fos-immunoreactive nuclei in the SON for the progesterone-treated group,

but not in the vehicle group, nor for the combined parturient group.

Effect of oxytocin injections on Fos expression in the SON and NTS of progesterone-

treated rats

In rats that were given progesterone and then oxytocin or saline pulses on day 21 of

pregnancy and killed after the treatment but before delivery of any pups, the number of Fos-
immunoreactive nuclei in the SON and NTS was low and not significantly different from
vehicle-treated prepartum rats (2.2+0.9 Fos-immunoreactive nuclei/section SON in oxytocin-
treated rats, n=5, vs 0.7+0.3 in saline-treated rats, n=3, and 0.9+0.7 Fos-immunoreactive

nuclei/section NTS, n=5 vs 3.8+2.9, n=3, Fig. 4).
In progesterone-treated rats, in which delivery was induced with the oxytocin pulse

treatment on day 22 and which were killed 90 min after the birth of the second pup, the
number of Fos-immunoreactive nuclei in the SON and NTS was higher than in saline-treated
rats that did not deliver (6.9+1.7 Fos-immunoreactive nuclei/section SON, n=6 vs 2.2+0.2,

n=4, U-test, p<0.05, and 2.5+1.3 Fos-immunoreactive nuclei/section NTS, n=6 vs 0.4+0.4,

n=4), but lower than in vehicle-treated parturient rats (U-test, p<0.05). The two oxytocin-
treated rats that did not start to deliver during the injections showed fewer Fos-

immunoreactive nuclei per section SON (3.8 and 4.0 Fos-immunoreactive nuclei/section SON)
and NTS (1.0 and 3.7 Fos-immunoreactive nuclei/section NTS) than parturient rats, however
as there were only two rats in this groups we did not calculate the means+s.e.m.

Fos expression in progesterone-treated rats that were given pulses of oxytocin was lower
in both the SON and the NTS when compared with rats injected with oxytocin without

progesterone pretreatment (c.f. chapter three, Fig. 4).
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The effect of an injection of progesterone on the number of TH-immunoreactive cells in

the NTS

Vehicle-treated animals killed before delivery of pups showed very few TH-
immunoreactive cells in the NTS, while the number of TH-immunoreactive cells was

significantly increased in rats killed during parturition (1.9+0.6 TH-immunoreactive
cells/section NTS, n=4 vs 7.3+0.8, n=5, U-test, p<0.02, Fig. 5).

In rats given an injection of progesterone the number of TH-immunoreactive cells/section
NTS was low in rats killed on day 21 (1.7+0.6 TH-immunoreactive cells/section NTS, n=4)
and similar to vehicle-injected rats before delivery. Progesterone-treated rats killed on day 22
but still before delivery had more TH-immunoreactive cells/section NTS than day 21

progesterone-treated rats (4.2+1.5 TH-immunoreactive cells/section NTS, n=4, U-test,

p<0.05) and progesterone-treated parturient rats showed a small further increase in the
number of TH-immunoreactive (6.3+1.2 TH-immunoreactive cells/section NTS, n=6). Thus,

the incidence of TH-immunoreactive cells/section NTS in progesterone-treated parturient rats

was significantly higher than in progesterone-treated day 21 prepartum rats (U-test, p<0.01,

Fig. 5), but not significantly different from progesterone day 22 prepartum rats. Though

progesterone-treated parturient rats had fewer TH-immunoreactive cells per section NTS than
control parturient rats, this difference was not significant.

Rats injected with progesterone on day 20 of pregnancy and treated with oxytocin or

saline pulses on day 21 showed a similar number of TH-immunoreactive cells/section NTS

(4.6+1.7 and 3.9+1.9 TH-immunoreactive cells/section NTS, n=5, 3), that was not different

from control prepartum animals. Progesterone-treated day 22 prepartum rats that were given

oxytocin pulses and in which delivery was induced (n=6/8) showed a similar incidence of TH-
immunoreactive cells in the NTS as progesterone plus saline treated rats (2.2+0.8 and 2.3+0.7
TH-immunoreactive cells/section NTS, respectively, n=6, 4) and as control prepartum rats

(1.9+0.6 TH-immunoreactive cells/section NTS).

The effect of progesterone on the uterine OT mRNA content (Fig, 6 & 7)

The endometrial OT mRNA content was significantly higher in vehicle-treated rats on

day 21 prepartum than in parturient and postpartum rats (1205+105 dpm/mm3 vs 461+52 and
281+20 dpm/mm3, respectively, Kruskal-Wallis test, p<0.05). In progesterone-treated rats, the
endometrial oxytocin mRNA content in day 21 prepartum rats was similar to that in vehicle-
treated prepartum rats and significantly higher than in day 22 prepartum, parturient or
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postpartum progesterone-treated rats (1026+106 dpm/mm3 vs 161+44 and 248+57 and

147+40 dpm/mm3, Kruskal-Wallis test, p<0.05). The myometrial oxytocin mRNA content

was not significantly different between groups.

Discussion

This study has shown that an intravenous injection of progesterone to late pregnant rats

delays delivery by more than one day and markedly prolongs the progress of delivery, impairs
neonatal survival and maternal behaviour.

Though the increased duration of delivery and the high neonatal mortality in

progesterone-treated rats might be partly attributed to the increased foetal weight in rats in
which gestation was prolonged (and thus a greater disproportion between the foetal size and
the narrow birth canal), this is unlikely to be the only reason for the observed prolongation,
since administration of pulsatile oxytocin on day 22 of pregnancy, that advanced delivery by
about 6 hours, improved the progress of delivery and significantly reduced neonatal mortality,

indicating that insufficient endogenous oxytocin release might have contributed to the slow

delivery and increased mortality. Since oxytocin treatment was not fully effective at restoring
the normal process of delivery, unlike in morphine-treated rats (see chapter one), progesterone

treatment might have reduced uterine responsiveness to oxytocin (Chwalisz et al. 1991).

Normally, the uterine sensitivity to oxytocin remains low until a few hours before delivery,

when, parallel to the dramatic increase in uterine oxytocin receptor expression, the uterus

becomes highly sensitive to oxytocin (Fuchs & Poblete 1970, Fuchs et al. 1983, Garfield et

al. 1982). In humans, rats and sheep, uterine oxytocin receptor concentrations increase

following oestrogen treatment, while progesterone administration can inhibit the effects of

oestrogen (Burgess et al. 1992, Maggi et al. 1991a, Fuchs et al. 1983)

Thus, the lack of an effect of pulsatile oxytocin on delivery in progesterone-treated rats

on the expected day of term (day 21 of pregnancy) is consistent with the hypothesis that

oxytocin induces delivery by stimulating contractions of the uterus, which, due to the

suppressive effects of progesterone on uterine oxytocin receptor expression, was not

responsive to oxytocin on day 21 of pregnancy.

Since a) progesterone-treated rats that delivered spontaneously on day 22 showed normal

Fos expression in the NTS and b) the NTS receives direct afferent projections from the uterus

(Ortega-Villalobos et al. 1990), this is consistent with the hypothesis that uterine activity has
been induced and has stimulated neurones in the brainstem as observed in response to normal
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delivery and oxytocin-induced labour (see chapter one & three). However, the lack of

concomitant Fos expression in the SON, but the improvement of delivery with oxytocin,

suggests that oxytocin secretion during progesterone-delayed delivery was reduced.
Since in rats magnocellular neurones do not contain steroid hormone receptors (Fox et

al. 1990, Rhodes et al. 1981a, Sar 1988), the inhibition of Fos expression in the SON during

delivery following progesterone treatment is likely to involve interneurones and/or afferent
neurones. Catecholaminergic neurones in the NTS represent a major excitatory input to the

hypothalamus, including magnocellular oxytocin neurones (Cunningham & Sawchenko 1988,

1991, Onaka et al. 1994, Sawchenko & Swanson 1982a) and express oestrogen receptors

(Heritage et al. 1977, 1980). As shown in chapter three, during normal and oxytocin-induced

delivery there is not only an increase in the number of TH-immunoreactive NTS neurones that

express Fos, but also an increase in the total number of TH-immunoreactive neurones. Since

administration of oxytocin pulses to late pregnant rats leads to strong uterine activity

(Randolph & Fuchs 1989), we have proposed that this might be an important stimulus for the

initiation of the increased release of oxytocin during labour and delivery (Fuchs et al. 1991,

Higuchi et al. 1986b), that is, at least partly, mediated by noradrenergic neurones in the NTS.

Here, we described a more gradual increase in TH immunoreactivity in the NTS of

progesterone- compared to vehicle-treated rats and a strong positive correlation between the
incidence of TH-immunoreactive cells in the NTS and Fos expression in the SON in

progesterone-treated rats, consistent with the hypothesis that progesterone affects the

excitatory input provided by the catecholaminergic pathway from the NTS to the SON during

delivery and thus reduces Fos expression in supraoptic neurones.

An alternative site at which progesterone treatment could act to inhibit electrical activity
of supraoptic oxytocin neurones includes GABAa receptors, located on magnocellular

supraoptic neurones (Buijs et al. 1987, Theodosis et al. 1986b). Progesterone, and

particularly its metabolite allopregnanolone, are agonists at the GABAa receptor (Paul &

Purdy 1992, Frye & Duncan 1994). Since prolonged exposure to high concentrations of

progesterone reduces the binding affinity of GABA to the GABAa receptor, but not to

allopregnanolone (Paul & Purdy 1992), progesterone treatment of late pregnant rats could

inhibit electrical activity by a direct action on supraoptic neurones. Furthermore, GABAa

receptors are located in the neural lobe on peptidergic axon terminals (Buijs et al. 1987,

Zhang & Jackson 1993) and in vitro studies have shown a GABAa receptor mediated
inhibition of hormone release from the neural lobe by progesterone and its metabolite
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allopregnanolone (Zhang & Jackson 1994). Thus, progesterone could inhibit electrical activity
of supraoptic neurones (and Fos expression) and hormone release from the posterior pituitary
via GABAa receptors and hence impair the normal progress of delivery. Since progesterone

can impair the induction of c-fos mRNA expression in peripheral organs (Kirkland et al.

1992, Subramaniam et al. 1993), a similar mechanism in the CNS could contribute to the

reduced Fos expression in progesterone-treated rats observed in this study.

The recent finding of uterine oxytocin mRNA and peptide has opened up the possibility
that local oxytocin could be involved in the initiation of uterine activity and hence the positive
feedback stimulation of SON neurones (Chibbar et al. 1993, Lefebvre et al. 1992b). Though
the uterine oxytocin mRNA content is much higher than that of the hypothalamus, the actual

peptide content in the uterus at term is less than 1% of that in the posterior pituitary (5 mU =

10 ng compared to 700-800 mU = 1400-1600 ng, c.f. Lefebvre et al. 1992b, Fuchs & Saito

1971). This apparent mismatch seems to indicate a lack of storage capacity in the uterus,

unlike in the posterior pituitary, in which a large amount of oxytocin peptide accumulates in

the course of pregnancy (Kumaresan et al. 1979) and is eventually released in pulses during

delivery (Higuchi et al. 1986b), while uterine oxytocin is most likely released as soon as it is

synthesised. Similarly, a mismatch between the high oxytocin mRNA content but low peptide

synthesis has also been described in the bovine and rat testis for both oxytocin and vasopressin

(Foo et al. 1991, Ungefroren et al. 1994a). This phenomenon has been explained by a post-

transcriptional block and it has been suggested that such a mechanism could be involved in the

regulation of neurohypophysial peptide production in gonadal tissues, namely to restrain

peptide synthesis and hence unwanted effects of the peptides (Ang et al. 1994, Ivell & Richter

1984b). Furthermore, the shorter poly(A) tail of the uterine compared to the hypothalamic

transcript (Lefebvre et al. 1992b, Zingg & Lefebvre 1989) suggests that translation efficiency
of the uterine transcript might be low and hence a major contribution of uterine oxytocin to

plasma hormone concentrations seems unlikely. Unlike in sheep, in which oxytocin is
transcribed and translated efficiently in the corpus luteum (Ivell et al. 1990a), the role of the

oxytocin (and vasopressin) mRNA in gonadal tissues of rats, cows and humans (Chibbar et

al. 1993, Miller et al. 1993a) remains unclear. However, uterine oxytocin might interact

locally with endometrial oxytocin receptors, which in response to stimulation release

prostaglandins (Chan et al. 1993) and thus could contribute to the initiation of uterine activity.
Our finding that uterine oxytocin mRNA content decreases on day 21 of pregnancy regardless
of whether delivery has occurred or not, indicates that the delayed delivery in progesterone-
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treated rats was initiated despite a greatly reduced uterine oxytocin mRNA content. Thus,

other factors, including prostaglandins synthesised in the uterine endometrium (Fuchs 1987)
and/or the stretch of the uterine wall by the growing foetuses (Lye & Freitag 1990, Wathes et

al. 1982), might have contributed to the initiation of labour in progesterone-treated rats. The
lack of an effect of progesterone on uterine oxytocin mRNA also indicates that the uterine

oxytocin gene is not inhibited by such treatment and is agreement with the observed increase
in oxytocin mRNA in the rat uterus and placenta at a time during pregnancy when plasma

progesterone concentrations are still elevated (Lefebvre et al. 1992a, 1992b).
In summary, we have shown that if the decline in plasma progesterone concentrations at

the end of gestation is postponed, delivery is delayed and its progress disrupted, most likely
due to a reduced secretion of endogenous oxytocin. Since during such delayed delivery NTS
activation is normal, while SON activation is impaired and the increase in TH

immunoreactivity in the NTS is altered, I suggest that a reduced catecholaminergic input from
the NTS to the SON might have contributed to a reduced electrical stimulation of

magnocellular neurones and hence impaired (pulsatile) hormone release during the delayed

delivery following progesterone treatment.

Since progesterone did not completely prevent delivery, it might have impaired

synchronised bursting activity of supraoptic oxytocin neurones (and hence Fos expression),

possibly via an alteration of the excitatory noradrenergic input from the brainstem, while

having no or less effect on background secretion. As shown in chapter one, pulsatile release of

oxytocin is critical for the normal progress of delivery and thus, reduced pulsatile oxytocin
release might explain the slower delivery in progesterone-treated rats.
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Fig. 5.1. Effects of progesterone on the onset and progress of delivery
Top: Onset of delivery in rats injected with progesterone on day 20 of pregnancy
Each circle represents the time of birth of the first pup for individual rats injected
subcutaneously with progesterone (5 mg, filled circles, n=10) or vehicle (0.2 ml,
open circles, n=ll) on day 20 of pregnancy (09.30 h). The x-axis indicates the
time of day, bars represent the dark phase.
Progesterone-treated rats delivered significantly later (28 hours) than vehicle-
treated controls (***p<0.001, U-test). While most control rats delivered in the
light phase of day 21 of pregnancy, the times of onset of delivery were more
spread out in the progesterone-treated group.
Bottom: Time between delivery of pups 2-6 and pups 6-10 in rats injected with
progesterone or progesterone and oxytocin pulses
The cumulative time for delivery of pups 2-6 in rats injected with vehicle (0.2 ml,
/MAan Uoff *">— 1 1\ mop pli/-*rtor Ia rote m t ron nrAfYPC+ArAnfi
v/pwii uuio, ii ny vVoo oigniiivunuj onvi ivi vuiupuiw uu iuio girvn pivgvoivivxiv

mg sc, filled bars, n=10, *p<0.05, Kruskal-Wallis test) on day 20 of pregnancy
and to rats given progesterone on day 20 followed by oxytocin pulses (10/20 mU
each 10 min for 4 hours) on day 22 (cross-hatched bars, n=6, *p<0.05, Kruskal-
Wallis test). Though in rats given progesterone plus oxytocin, the time between
pups 2-6 was shorter than in rats given only progesterone, this difference did not
reach significance. There was no significant difference between groups for the
time between delivery of pups 6-10.
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Fig. 5.2. Effects of progesterone on neonatal weight and mortality rate
Top: Weight of pups born to mothers injected with vehicle, progesterone or
progesterone and oxytocin pulses
The average weight (means±s.e.m.) of three randomly selected pups per litter was
compared for rats injected subcutaneously on day 20 of pregnancy with vehicle
(0.2 ml, open bar, n=ll), progesterone (5 mg, filled bar, n=10), or progesterone
on day 20 followed by oxytocin pulses (10/20 mU each 10 min for 4 hours) on day
22 (cross-hatched bar, n=6).
Birth weight of pups born to mothers injected with vehicle was significantly lower
than that of pups born to mothers injected with progesterone (*p<0.05, U-test). In
contrast, the birth weight of pups born to rats given progesterone plus oxytocin
was not significantly different from that of vehicle-treated rats.
On the y-axis is the time in hours of the onset of delivery in rats, with assigning
time zero to the onset of deliver}' in vehicle-treated rats to indicate the positive
correlation (r2=0.56, data not shown) of the birth weight of rats with the length of
gestation.
Bottom: Neonatal mortality of pups born to mothers injected with vehicle,
progesterone or progesterone and oxytocin pulses
The neonatal mortality rate was calculated as the number of pups that died within
10 hours of delivery/number of all pups born, in % for rats injected
subcutaneously on day 20 of pregnancy with vehicle (open bar, n=ll),
progesterone (filled bar, n=10), or progesterone and oxytocin pulses (cross-
hatched bar, n=6). Neonatal mortality was significantly lower in vehicle and
progesterone plus oxytocin treated rats than that in rats given only progesterone
(14+1.7% vs <1.5% in the two other groups, *p<0.05, Kruskal-Wallis test).
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Fig. 5.3. Effect of progesterone on Fos expression in the SON and NTS during delivery
The number of Fos-immunoreactive nuclei on sections through the SON (Top)
and the NTS (Bottom) was compared for of rats injected subcutaneously with
vehicle (0.2 ml, open bars, n=4-6) or progesterone (5 mg, filled bars, n=4-7) on
day 20 of pregnancy.
Rats were killed either on day 21 before delivery (or day 22, progesterone-treated
rats only, prepartum rats), 90 min after the birth of the second pup (parturient
rats), or 6-12 hours after the birth of the first pup (postpartum rats).
Vehicle-treated parturient rats showed a significant increase in Fos expression in
the SON and NTS compared to prepartum and postpartum vehicle-treated rats
(*p<0.05, Kruskal-Wallis test), while in progesterone-treated rats, an increase in
Fos expression during parturition was only apparent in the NTS, but not the SON
(*p<0.05, Kruskal-Wallis test, compared to prepartum and postpartum
progesterone-treated rats).
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Fig. 5.4. Effect of progesterone and oxytocin pulses on Fos expression in the SON and
NTS during delivery
The number of Fos-immunoreactive nuclei on sections through the SON (Top)
and the NTS (Bottom) was compared for of rats injected subcutaneously with
progesterone (5 mg, filled bars, n=4-7) on day 20 of pregnancy followed by
pulsatile administration of oxytocin (10/20 mU for 4 hours, hatched bars =
prepartum rats, n=5, 2, cross-hatched bars = parturient rats, n=6) or saline (0.03
ml for 4 hours, shaded bars, n=3, 4) on day 21 or day 22 of pregnancy. Rats were
killed either at the end of the treatment but before delivery of any pups
(prepartum) or 90 min after the birth of the second pup (parturient).
Only two rats that were given oxytocin on day 22 did not deliver during the
treatment (day 22, hatched bar) and thus the two individual values are indicated by
filled circles.
The number of Fos-immunoreactive nuclei per section was not different between
saline- and oxytocin-treated rats on day 21 of pregnancy, while there was a slight,
but significant increase in the number of Fos-immunoreactive nuclei per section
SON in rats in which delivery was induced with oxytocin pulses on day 22
compared to the respective saline group (*p<0.05, U-test).
However, all rats treated with progesterone plus oxytocin pulses had fewer Fos-
immunoreactive nuclei in the SON and NTS than rats injected with pulses of
oxytocin or saline on day 21 of pregnancy (Right, filled and open bars,
respectively, c.f. chapter three) without progesterone pretreatment.
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Fig. 5.5. Effect of progesterone on TH immunoreactivity in the NTS of late pregnant
rats

Top: The number of TH-immunoreactive cells/section NTS was counted in rats
injected subcutaneously with vehicle (0.2 ml, open bars, 0=4-6) or progesterone (5
mg, filled bars, n=3-7) on day 20 and killed on day 21 (or day 22, progesterone-
treated rats only) before delivery of any pups (prepartum) or 90 min after the birth
of the second pup (parturient).
There was a significant increase in the number of TH-immunoreactive
cells/section NTS in control parturient compared to control prepartum rats
(*p<0.05, U-test), and similarly there was a significant increase in TH
immunoreactivity in the NTS of progesterone-treated parturient compared to
progesterone day 21 prepartum rats (*p<0.05, U-test). However, in progesterone-
treated rats the increase in TH immunoreactivity was more gradual and less
pronounced than in controls.
Bottom: The number of TH-immunoreactive cells/section NTS was counted in
rats injected subcutaneously with progesterone followed by pulsatile
administration of oxytocin (10/20 mU oxytocin for 4 hours, right hatched bars =
prepartum rats, n=5, 2, cross-hatched bars = parturient rats, n=6) or saline
(shaded bars, n=3, 4) on day 21 or day 22 of pregnancy and killed at the end of the
treatment before (prepartum) or during delivery (parturient).
There was no significant difference between groups for the number of TH-
immunoreactive cells/section NTS. Since only 2/8 oxytocin-treated rats did not
deliver on day 22 during the oxytocin treatment (day 22, hatched bar), the
individual values are indicated by filled circles.



NTS
I I Vehicle

— , Hi Progesterone

day 21 day 22
- prepartum - parturient

NTS

m Prog. +SA ;
, prepartumW\ Prog. + OT

ESS Prog. +0T parturient



138 Chapter 5 - Effects ofprogesterone on parturition

Fig. 5.6. Effect of progesterone on uterine oxytocin mRNA content of late pregnant
rats

Oxytocin mRNA was counted using an automated image analysis system and the
optical (= grain) density measurements were transformed using a standard curve
into dpm/mm3 endo- or myometrium. Rats were injected subcutaneously with
vehicle (0.2 ml, open bars, n=4-5) or progesterone (5 mg, filled bars, n=4-5) on
day 20 of pregnancy and killed on day 21 (or day 22, progesterone-treated rats
only) before (prepartum), during (parturient) or after (postpartum) delivery of
pups.
The myometrial oxytocin mRNA content was low and not significantly different
between groups, while the endometrial oxytocin mRNA content of both vehicle-
and progesterone-treated rats was significantly higher on day 21 than in all other
groups (*p<0.05, Kruskal-Wallis test).

Fig. 5.6a. Radioactive in situ hybridisation for oxytocin mRNA in the uterus of late
pregnant and parturient rats
Overleaf: Oxytocin mRNA expression (assessed by radioactive in situ
hybridisation in transverse uterine sections) was significantly more abundant in the
endometrium of term pregnant (Left) compared to a parturient (Right) rats.
Scale bar 100 pm

Fig. 5.6b. Overleaf: High magnification view of a uterine section processed for in situ
hybridisation for oxytocin mRNA showed silver grains primarily in the uterine
endometrium in term pregnant rats.
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Chapter 6

Acute changes in TH mRNA expression in brainstem neurones of
late pregnant rats

As shown in the previous chapters, circulating oxytocin is critical for delivery and occurs

despite the restraint of endogenous opioid peptides on oxytocin neurones during pregnancy

(Bicknell et al. 1988c, Neumann et al. 1992), suggesting the existence of an excitatory

influence that can override the opioid inhibition on magnocellular neurones. Possible
candidates involved in mediating the bursting activity of oxytocin neurones during delivery

(Summerlee 1981) include the ascending noradrenergic pathways from the NTS to the SON,
that provide a major excitatory input onto magnocellular neurones (Raby & Renaud 1989a,

1989b, Swanson & Sawchenko 1982a), and are involved in CCK-induced oxytocin release

(Onaka et al. 1995, Rinaman et al. 1994). The involvement of catecholamines in the bursting

activity of magnocellular oxytocin neurones is further supported by the observation that
administration of an a!-adrenergic agonist in an in vitro slice preparation to magnocellular
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oxytocin neurones results in a burst-like activity similar to that seen during the milk-ejection
reflex (Wakerley & Ingram 1993).

In the previous chapters, I have shown that in rats in which delivery is induced with

oxytocin pulses the number of TH-immunoreactive cells in the NTS and Fos expression in the
SON is increased (see chapter three), while a delay of delivery following an injection of

progesterone alters the increase in TH immunoreactivity in the NTS and is accompanied by
reduced Fos expression in SON neurones during such delivery (chapter five), pointing to an

involvement of the noradrenergic projection from the NTS in the normal activation of

supraoptic neurones during parturition.
Unlike magnocellular oxytocin neurones, that lack gonadal steroid receptors (Bethea et

al. 1994, Fox et al. 1990, Rhodes et al 1981a), catecholaminergic brainstem neurones express

nuclear oestrogen receptors and are hence a target for gonadal steroid regulation (Heritage et

al. 1977, 1980). Thus, TH mRNA expression in the rat brainstem increases in

catecholaminergic neurones in the ventrolateral medulla, that project to the medial preoptic
area where LHRH neurones are located (Wright & Jennes 1993), at the time of the LH surge

(Liaw et al. 1992c) and thus at the time of an increase in the plasma oestrogen/progesterone

ratio (Freeman 1988). Similarly, in vitro studies have indicated a stimulatory effect of

oestrogen and an inhibitory effect of progesterone on TH mRNA expression (Kedzierski et al.

1994, Kim et al. 1994, Wang & Porter 1986). Since an oestrogen or progesterone response

element in the promotor region of the TH gene has not yet been detected, a change in the TH
mRNA content of NTS neurones can be attributed to trans-synaptic or trans-membrane
actions (Kohama & Bethea 1995). Most stimuli that affect TH expression have been reported

to first activate TH mRNA expression, which in turn is followed by an increase in TH activity

(Arbogast & Voogt 1993, McMahon et al. 1992, Nankova et al. 1994). However, gonadal

steroids can modulate TH activity by protein phosphorylation (Wang & Porter 1986) and such

changes in enzymatic activity are succeeded by a concomitant change in TH mRNA

expression (Arbogast & Voogt 1991b, 1994).
The induction of TH mRNA expression in vivo can occur within 1-2 hours of a stimulus,

including immobilisation stress, hypoxia and electrical stimulation (Czyzyk-Krzeska et al.

1994, Liaw et al. 1992b, Nankova et al. 1994) and this increase in TH mRNA is followed

with some latency (2-6 hours) by an increase in TH protein and TH activity (McMahon et al.

1992, Nankova et al. 1994). Though no direct relationship between TH mRNA expression

and catecholamine release has so far been demonstrated, at the time of the LH surge, an
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increased release of catecholamines in the preoptic area (Demling et al. 1985, Ranee et al.

1981) coincides with an increase in TH mRNA expression in neurones in the ventrolateral
medulla (Liaw et al. 1992c). Similarly, noradrenaline release in the preoptic area is increased
in response to Al neurone stimulation (Fernandez-Galaz et al. 1994, Herbison et al. 1990),
the latter of which is also associated with an increase in the TH mRNA content (Liaw et al.

1992b). Thus, an increase in TH mRNA expression can, under certain circumstances, reflect
catecholamine release from the respective axon terminals.

In this chapter, we have investigated first, whether TH mRNA expression in the
brainstem changes in untreated rats in relation to the reproductive stage and second, whether
the observed change in TH immunoreactivity in oxytocin-treated and normal parturient rats

and progesterone-treated late pregnant rats (see chapter three and five) is associated with a

change in TH mRNA expression.

Materials and Methods

Animals

Vaginal smears from cycling female rats were taken daily and examined under the

microscope until a minimum of two consecutive four day oestrous cycles were established.
For experiments on pregnant rats, date mated female Wistar rats from the Babraham

colony were used. Twelve animals were either not treated and killed at different stages of the
oestrous cycle (proestrous and metestrous) or at different stages of pregnancy (day 17 or day
21 of pregnancy, before delivery of pups) or on day 10 of lactation. Other date mated rats

were either implanted with a jugular vein cannula under brief halothane anaesthesia on day 20
of pregnancy (n=12) or were given an injection of progesterone (Intervet, 5 mg sc, n=10) or

vehicle (0.2 ml of 0.3vol% cresol, 89.7vol% arachis oil and 10vol% benzylalcohol, also kindly

provided by Intervet, n=ll) at 09.30 h on day 20 of pregnancy subcutaneously (we have
shown in chapter five that such treatment delays delivery by about 28 hours). From the

morning of day 21 onwards until the time of killing animals were observed for signs of labour

(stretching, straining, vaginal bleeding), pup delivery and maternal behaviour (nest building,
excessive grooming, licking of external genitals, licking of the pups during and after delivery,

pup retrieval).
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Experimental design
TH mRNA in the brainstem of untreated rats at different stages of the reproductive cycle

Eight rats, in which at least two consecutive oestrous cycles have been established, were

killed by cervical dislocation in the afternoon of proestrous (n=4) or metestrous (= diestrous 1,

n=4) between 15.00-15.30 h.

Twelve other rats were date mated and killed by cervical dislocation between 15.00-

15.30 h on day 17 or day 21 of pregnancy (prepartum), respectively, or at the same time in the
afternoon of day 10 of lactation. All pregnant rats were laparotomised and the uteri examined
for pups and placentae and the brains removed under RNAse free conditions and immediately
frozen on crushed dry ice and stored at -80°C until processed for in situ hybridisation for TH
mRNA.

TH mRNA in the brainstem of rats treated with progesterone

Five progesterone- and five vehicle-treated rats were killed time-matched before the birth
of any pups on day 21 of pregnancy between 11.00-13.00 h (day 21 prepartum groups). Six
vehicle-treated rats were allowed to deliver and were killed 90 min after the birth of the second

pup (between 11.00-15.00 h on day 21, parturient group). The remaining five progesterone-

treated rats were killed on day 22 of pregnancy between 11.00-13.00 h but before the birth of

any pups (day 22 prepartum group). All rats were killed by cervical dislocation,

laparotomised and the uteri examined for pups and placentae and as described above the
brains were removed and immediately frozen until processed for in situ hybridisation for TH
mRNA.

TH mRNA in the brainstem of rats injected with oxytocin or saline pulses

Rats implanted with a jugular vein cannula were given 0.1 ml heparinised saline (50 IU

heparin/ml saline) to flush the cannulae, which were then connected to polyethylene tubing
filled with isotonic saline or oxytocin. From 11.00-15.00 h on day 21 of pregnancy animals

were given each 10 min a pulse of saline (0.03 ml, n=6) or oxytocin (10 mU for 2 hours and
then 20 mU for 2 hours, n=6). This treatment induces labour and Fos expression in SON
neurones (see chapter three) and significantly increases the number of TH-immunoreactive
cells in the NTS. At the end of the treatment (between 15.45-16.45 h) again all rats were

killed in time-matched pairs (one animal of each group) by cervical dislocation, laparotomised
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and the uteri examined for pups and placentae, the brains removed, frozen and eventually

processed for in situ hybridisation for TH mRNA.

In situ hybridisation for tyrosine hydroxylase mRNA

For the quantitative analysis of tyrosine hydroxylase mRNA expression (see general

materials and methods section) an automated image analysis system (Joyce Loebl pMagiscan)
was used. The average optical density per cell (silver grains/cell) in the NTS and the
ventrolateral medulla were measured on counterstained brainstem sections using a light

microscope with x40 objective and a brightfield condenser. For each animal a minimum of 4 x

5 cells were measured throughout the brainstem in each the NTS and the ventrolateral
medulla. On most sections, the area covered by the screen of the image analysis system (dorsal
and lateral of the central canal and in the ventrolateral medulla), contained five or less cells, so

that the cells included in the analysis were usually all or most of the cells containing silver

grains per half section. Means+s.e.m. were calculated for each area per animal, which were

then grouped according to the treatment and the group means+s.e.m. were established. Since
for each five cells a different section was used, counts were taken throughout the rostro-caudal

extent of the brainstem from the decussation of the pyramids to the rostral end of the area

postrema (according to the rat brain atlas of Paxinos & Watson 1986). The majority of

catecholaminergic neurones caudal to the area postrema synthesise noradrenaline, while
adrenaline producing cells are found almost exclusively rostral to the area postrema and

dopaminergic cells ventral of the NTS in the dorsal motor nucleus of the vagus (Kalia et al.

1985) and thus the TH mRNA containing cells that were included in the statistical analysis

represent mainly noradrenergic neurones.

Only in oxytocin- and saline-treated rats, the brainstem was divided into a caudal and
rostral part, with the former extending from the pyramidal decussation to the caudal end of the
area postrema and the latter from the caudal to the rostral end of the area postrema. In

progesterone- and vehicle-treated rats the caudal and ventral brainstem parts were grouped

together since we did not observe a significant difference in the amount of silver grains/cell for
the rostral and caudal divisions.

According to the number of silver grains per cell, we established a distribution histogram
for all cells of one experimental group (range 63-123 cells, for 5-6 rats per group). For each

experimental group, the total number of cells was assigned 100% and the number of cells
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containing less than 100, 100-200, 200-300 silver grains etc. up to 900-1000 silver grains,
was expressed as percent of the total number of cells analysed in each treatment group. Since
the data for the distribution histogram were derived from a relatively small number of rats

(n=5-6), we did not perform a statistical comparison of the groups medians, but confined
ourselves to a qualitative representation of the data.

Furthermore, we counted the total number of cells containing silver grains for each
animal (6-8 sections per area per animal) throughout the brainstem to assess whether a change
in TH mRNA content reflected a recruitment of cells synthesising TH or a higher production
rate of TH in the same number of cells.

Statistical analysis

Intergroup comparisons were made using non-parametric tests, either the Mann-Whitney
U-test for comparison between two groups or, for comparisons between more than two

groups, including subpopulations ofgroups, the Kruskal-Wallis test, followed by Dunn's post-

hoc test. For a two-tailed value of p<0.05 a difference was considered significant.

Results

Neurones in the rat brainstem could be clearly identified on counterstained sections by
the presence of silver grains overlying cells (Fig. 1), while there was hardly any background

staining.

TH mRNA expression in the NTS and the ventrolateral medulla of untreated rats during
the oestrous cycle, pregnancy and lactation (Fig. 2)

The content of TH mRNA per cell, expressed as an average number of silver grains/cell,
was significantly elevated in the NTS of rats killed on day 21 of pregnancy before delivery of

any pups compared to rats killed on day 17 of pregnancy and on day 10 of lactation (Kruskal-
Wallis test, p<0.05). The lactating group showed among all groups the smallest intragroup

variability (reflected by the small standard error). Though the TH mRNA content in NTS cells
of rats killed on metestrous and proestrous was lower than in day 21 prepartum rats, the
difference was not significant. In the ventrolateral medulla, the average amount of silver

grains/cell was not significantly different between groups.

The numbers of cells per section expressing TH mRNA were not significantly different
between groups in the NTS and the ventrolateral medulla, though rats killed on day 21 but
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prior to delivery of any pups showed the highest number of TH containing cells in the NTS

(Fig. 2). With the exception of the lactating group, the number of cells per section reflected,

though at a lower, and hence not significant level, the changes in the TH mRNA content per

cell.

TH mRNA expression in the NTS and ventrolateral medulla of late pregnant rats after a

systemic injection of progesterone (Fig. 3)
The average number of silver grains/cell in the NTS was significantly higher in control

day 21 prepartum rats compared to parturient rats and compared to progesterone-treated day
21 prepartum rats (Kruskal-Wallis test, p<0.05). In progesterone-treated day 22 prepartum

rats, the average number of silver grains/cell was higher than in progesterone-treated day 21

prepartum rats, but lower than in the control prepartum group. However, these differences
were not significant.

Similar to the first experiment, the numbers of cells per section expressing TH mRNA
were not significantly different between groups (Fig. 3) for the NTS and the ventrolateral
medulla. In comparison with the first experiment, we counted fewer cells containing silver

grains/section in the NTS, while in the ventrolateral medulla the average number of cells

containing silver grains per section was similar (c.f. Fig. 2 & 3).

TH mRNA expression in the NTS and the ventrolateral medulla of rats injected with

pulses of oxytocin or saline (Fig. 4)

The content of TH mRNA per cell, expressed as an average number of silver grains/cell,
was higher in the NTS of oxytocin- compared to saline-treated rats, however the difference
was not significant in the Mann-Whitney U-test. Since I have shown in chapter three, that the

percentage increase in the number of TH-immunoreactive was more pronounced in the caudal

parts of the NTS, I divided the brainstem in a caudal (from the decussatio of the pyramids to

caudal tip of the area postrema) and a rostral (throughout the area postrema) part and

compared the TH mRNA content per cell in these subdivisions. The average number of silver

grains/cell was significantly higher in oxytocin- compared to saline-treated rats in the rostral

part of the NTS (Kruskal-Wallis test, p<0.05), while in the caudal parts the difference
between the oxytocin- and the saline-treated groups was small and not significant. In both

parts of the ventrolateral medulla the number of silver grains/cells was not significantly
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different between groups. Oxytocin-treated rats showed in all comparisons a smaller

intragroup variation than saline-treated rats (small standard error).
The numbers of cells per section expressing TH mRNA were not significantly different

in the NTS and the ventrolateral medulla between groups and were similar to progesterone-

treated rats (and hence lower than in the NTS of untreated rats).

The distribution histogram of cells in the NTS according to the number of silver grains

per cell

To take a closer look at the TH containing cell population, we established a distribution

histogram including all cells analysed in one group and these were subdivided according to the
number of silver grains. In vehicle-treated parturient rats (n=6, number of cells n=83, median:
273 silver grains/cell. Fig. 5) the distribution histogram showed a shift to the left compared to

vehicle-treated day 21 prepartum rats (n=5, number of cells analysed n=65, median: 410 silver

grains/cell).
In progesterone-treated day 21 prepartum rats, the median of the amount of silver grains

per cell was lower than in the vehicle-treated day 21 prepartum group (median: 246 vs 410

silver grains/cell, number of cells n=79, c.f. Fig. 5 & 6). In progesterone-treated rats killed on

day 22 before delivery, there was a shift to the right compared to progesterone-treated day 21

prepartum rats (median: 346 vs 246 silver grains/cell, number of cells n=63, 79). Thus, in

progesterone-treated day 21 prepartum rats there was a marked shift to the left compared to

normal day 21 prepartum rats. There was a similar trend, albeit less pronounced, when

progesterone-treated day 21 prepartum rats were compared to progesterone-treated day 22

prepartum rats (Fig. 6).
In oxytocin-treated (day 21 prepartum) rats the distribution of TH neurones in the NTS

according to the amount of silver grains/cell was similar to that in saline-treated (prepartum)
rats (463 and 419 silver grains/cell in oxytocin- and saline-treated rats, respectively, number
of cells n=104, 123, Fig. 7) and the medians of both groups were not markedly different from
control day 21 prepartum rats (c.f. Fig. 5 & 7). When the TH cell population in the NTS was

subdivided into a caudal and a rostral group, there was a small shift to the right and hence to a

higher amount of silver grains/cell in the rostral NTS of oxytocin-treated rats compared to the
saline group (medians: rostral NTS: 516 vs 405 silver grains/cells, in oxytocin- and saline-
treated rats, respectively, n=46, 54, Fig. 7, inset). In the caudal NTS, the medians were 407
and 341 silver grains/cell in oxytocin- and saline-treated rats (n=58, 69). Thus, in the saline-
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treated group, the distribution of cells according to the silver grain content in the two divisions
of the NTS was similar, while in oxytocin-treated rats, rostrally located cells in the NTS had a

higher content of silver grains/cell.

Discussion

Here, we have shown that at the end of normal pregnancy, but before delivery of any

pups, the TH mRNA content of NTS neurones is significantly higher than in rats during

parturition. Since in day 21 pregnant rats, TH mRNA expression in the NTS was significantly

higher than in day 17 prepartum rats, the observed up-regulation of TH mRNA occurs late in

pregnancy. Furthermore, our data indicate that the TH mRNA content of the NTS decreases
within a few hours and since TH mRNA expression in the brainstem does not show a diurnal

variation (Liaw et al. 1992a), these acute changes in TH mRNA expression could be
associated with labour and delivery.

The decrease in TH mRNA content during parturition was only seen in NTS neurones,

that project preferentially to magnocellular oxytocin neurones and not in noradrenergic
neurones in the ventrolateral medulla, that innervate almost exclusively vasopressin cells

(Raby & Renaud 1989a, 1989b). Since some uterine afferents travel with the vagal nerve, that

projects to the NTS (Ortega-Villalobos et al. 1990), this pathway could be involved in the

regulation of TH mRNA expression in NTS neurones. Though our data suggest that TH
mRNA expression declines prior to and/or during delivery and hence at a time of increased
uterine activity, oxytocin treatment seems to be able to prevent the normal decline in TH
mRNA expression and instead to induce TH mRNA expression in the NTS in term pregnant

rats. Since oxytocin pulse treatment stimulates stronger uterine activity than that seen during

spontaneous labour (Randolph & Fuchs 1989) and than that in response to saline treatment

(Douglas et al. 1994), and is a more potent stimulus for the induction of Fos and TH

expression in the NTS prior to delivery (see chapter three), the effects of oxytocin on TH

mRNA expression, might, at least partly, be mediated by the stress and pain (McMahon et al.

1992, Nankova et al. 1994) that is likely to be associated with oxytocin-induced labour.

Though day 21 prepartum rats injected for four hours with saline pulses showed a lower
TH mRNA content in both the NTS and the ventrolateral medulla than vehicle-treated and

untreated day 21 prepartum rats, while rats given an oxytocin pulse treatment for four hours
showed a TH mRNA content per NTS neurone similar to vehicle- and untreated prepartum

rats. Whether saline treatment has a negative effect on TH mRNA expression in the
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brainstem, which is compensated for by the oxytocin treatment, or whether other factors
accounted for the general lower levels of TH mRNA expression in these two groups cannot be
answered by this study. Possibly the time of killing, that was latest in saline- and oxytocin-
treated rats (after 15.45 h compared to 15.00-15.30 h in untreated and 11.00-15.00 h in

vehicle-treated rats) and thus closest to the time of parturition, might have contributed to the
lower expression of TH mRNA in the brainstem and further supports the aforementioned

hypothesis that labour is associated with a decrease in the TH mRNA content of NTS cells.

Furthermore, saline injections might have had an effect on the general circulation, including
blood pressure and volume, and thus might have influenced the TH mRNA content in the
NTS. In progesterone-treated rats, the TH mRNA content in the NTS on day 21 of pregnancy

was significantly lower than in vehicle-treated rats. Since in these rats delivery is delayed by
more than one day and its progress impaired and not reflected by an increase in Fos

expression in the NTS (see chapter five), our data support a physiological importance for the
increase in TH mRNA expression in late pregnant rats. Thus, an impaired excitatory input
from noradrenergic brainstem neurones to the SON might contribute to the lack of normal
activation of supraoptic neurones during progesterone delayed delivery.

In the brainstem, TH mRNA expression has been reported to change during the oestrous

cycle, namely to increase in A1 neurones at the time of the LH surge (Liaw el al. 1992c),
when plasma oestrogen concentrations are high (Freeman 1988), pointing to the possible
involvement of gonadal steroids, namely a stimulatory effect of plasma oestrogen, on TH
mRNA expression. Indeed, in distinct areas of the rat hypothalamus, TH immunoreactivity is
modulated by oestrogen treatment (Yuri & Kawata et al. 1994).

The decline in plasma and uterine progesterone concentrations is considered a critical

step in the initiation of uterine activity and hence parturition (Bosc et al. 1987, Csapo &
Wiest 1969, Csapo et al. 1980, Saito et al. 1985) and progesterone treatment of late pregnant

rats prolongs the quiescent state of the uterus maintained during most of pregnancy (El Alj et

al. 1989). Furthermore, progesterone, which has analgesic (Frye & Duncan 1994), sedative

(Paul & Purdy 1992) and anxiolytic (Freeman et al. 1993) properties, could, when given to

late pregnant rats, reduce the transmission of uterine sensations to the NTS and thus alter the
induction of TH mRNA expression in these neurones.

Beside the effects of gonadal steroids on TH mRNA expression, there is evidence for the
involvement of gonadal steroids in catecholamine synthesis and/or release (Chaudhuri et al.

1992, Demling et al. 1985) and hence a physiological implication of such regulation. Thus,
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subcutaneous administration ofprogesterone to intact female rats can reduce the noradrenaline

content of the hypothalamus and the medulla (Chaudhuri et al. 1992), while in oestrogen-

primed ovariectomised rats, prior to the induced LH-surge, the release of noradrenaline in

response to electrical stimulation of Al neurones is higher than in animals not primed with

oestrogen (Herbison et al. 1990).
An additional interpretation with regard to the observed changes in TH mRNA

expression in neurones likely to mediate oxytocin release includes the involvement of
catecholamines in the formation of synaptic contacts, as has been shown in the developing rat

brain (Parnavelas & Blue 1982). Since at the end of pregnancy, morphological changes in the

hypothalamus, including an increase in somatosomatic and somatodendritic appositions and an

increase in "double synapses" (Theodosis & Poulain 1984, Theodosis et al. 1986a, 1986b,
Tweedle & Hatton 1982), take place, the increase in TH mRNA expression in the NTS might
indicate a role of the catecholaminergic projection from the NTS to the hypothalamus for the
initiation of structural changes at term. Furthermore, the observation that in late pregnant rats,

noradrenaline release in the SON is increased prior to rather than during parturition itself

(Herbison, personal communication) suggests that the higher TH mRNA content in the NTS

before compared to that during parturition might be the response to catecholamine release and
could reflect synthetic activity. Though such presumed TH gene activation in the NTS prior to

delivery is not associated with an increase in Fos expression (Luckman 1995), the induction of
TH gene expression does not necessarily involve activation of the AP-1 site by Fos/Jun
heterodimers (Ginzberg & Ziff 1994), but can also be mediated by a calcium responsive

element (Kedzierski et al. 1994, Kim et al. 1994). Thus, the lack of Fos expression in

catecholaminergic neurones in response to a stimulus does not exclude activation of TH gene

expression.

However, such a presumed involvement of catecholamines prior to delivery does not

explain the observed increase in TH mRNA expression and TH immunoreactivity in the NTS
in response to oxytocin-induced labour. Since oxytocin-induced labour (and delivery) is a

more potent stimulus of uterine activity (Randolph & Fuchs 1989), it might have activated TH

gene expression by afferent pathways other than or in addition to those normally activated

during labour and thus led to a concomitant expression of both TH mRNA and TH protein

(Czyzyk-Krzeska et al. 1994, Kedzierski et al. 1994, Wang & Porter 1986). Indeed, a variety
of stimuli, including stress and hypoxia, can rapidly induce TH gene expression and TH

activity (Czyzyk-Krzeska et al. 1994, Nankova et al. 1994). Since repeated stimulation has
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been shown to induce a more persistent and more pronounced increase in TH mRNA

expression and a sustained rise in TH protein and activity (for 1-3 days), and it has been

suggested that such sustained response can sensitise the system, so that it can display an

augmented response in the case of repeated or prolonged activation (Nankova et al. 1994).

Thus, oxytocin-induced labour in term pregnant rats might be an example for the stimulation
of a highly sensitised system, namely the excitatory noradrenergic projections from the NTS
onto the magnocellular hypothalamus, and thus might have induced the concomitant increase
in TH mRNA and TH expression.

Unlike the number of TH-immunoreactive cells in the NTS, that was increased following

oxytocin- and decreased following progesterone-treatment on the day of expected term, the
number of NTS neurones expressing TH mRNA were not different between groups. This
could be due to the greater sensitivity of in situ hybridisation compared with

immunocytochemistry to detect positive cells and hence some cells faintly stained for TH

protein might not have been included in the calculation. In addition, an increase in TH mRNA

upon stimulation, that is further enhanced by an increased stability of the transcript, has been
shown in some conditions to be more pronounced than the rise in TH protein and TH activity

(Czyzyk-Krzeska et al. 1994, Kedzierski et al. 1994). The greater number of TH mRNA

containing cells in the NTS of untreated rats in the first experiment compared to rats injected
with progesterone, oxytocin or the respective vehicle seems to reflect experimental variability
rather than a specific effect since in the ventrolateral medulla the number of TH mRNA

containing cells was similar between experimental groups.

Finally, we have shown with the distribution histograms, made for each treatment group

according to the amount of silver grains (and hence TH mRNA content) per cell for all cells

counted, that in prepartum rats there were relative more cells containing a high amount of
silver grains, while in parturient and progesterone-treated rats there was a shift to the left and
hence to lower amounts of silver grains per cell. In saline- and oxytocin-treated rats, the
distribution histograms were similar when the NTS was examined as an entity, while a

tendency to a higher amount of silver grains/cell was apparent in the rostral part of the NTS in
the oxytocin-treated group. Other workers have described a population of TH containing

"sleeping cells", that normally contain very little TH mRNA, but can, in response to certain

stimuli, increase their TH mRNA expression (Debure et al. 1992). Though we cannot rule out

the possibility that the increase in TH mRNA expression in the NTS at the end of pregnancy

is due to the existence of two catecholaminergic populations in the NTS, one which is only
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activated in late pregnancy and shows a higher expression of TH mRNA before than during

parturition, and another population, in which TH mRNA does not change during pregnancy,

the similar shape of the distribution histograms in control and experimental groups indicates
that the increased amount of silver grains per cell in the prepartum group is the result of an

overall higher expression of TH mRNA compared to the parturient group.

Taken together, our data indicate that the catecholaminergic projection from the NTS to

the SON might play a role for the excitation of hypothalamic oxytocin neurones at term and
hence the increased release of oxytocin from the posterior pituitary during parturition.
Whether noradrenaline is also involved in the initiation of morphological changes in the

hypothalamo-neurohypophysial system of late pregnant rats and the facilitation of bursting

activity during delivery and lactation remains to be investigated. However, recent data

indicating a synergistic effect of catecholamines together with NPY and AMPA on oxytocin
release in lactating rats (Parker & Crowley 1993a, 1993b) open up the possibility that the

excitatory effects of catecholamines on magnoceilular oxytocin neurones can be potentiated by
other transmitters, some of which, as in the case of NPY, are co-localised within a

subpopulation of noradrenergic NTS neurones that project to the hypothalamus (Sawchenko
etal. 1985).
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Fig. 6.1. In situ hybridisation for TH mRNA in the brainstem
Top: Coronal section through the hindbrain at the level of the area postrema with
the region of the NTS dorsal and lateral of the central canal.
Bottom: Higher magnification view of cells in the NTS hybridised with an
antisense oligonucleotide probe against the rat tyrosine hydroxylase gene (silver
grains overlying cells counterstained with methylene blue).
cc = central canal, scale bar 100 pm
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Fig. 6.2. TH mRNA expression in the brainstem of cycling, pregnant and lactating rats
Top: TH mRNA content was assessed using radioactive in situ hybridisation for
TH mRNA in neurones of the NTS (A2 cells) and the ventrolateral medulla
(VLM, A1 cells) of cycling, pregnant and lactating rats. The signal was counted
using an automated image analysis system and expressed as number of silver
grains/cell in A2 and A1 neurones of untreated cycling rats (killed in metestrous
and proestrous, respectively, open and shaded bars, both n=4), pregnant rats (on
day 17 and day 21 of pregnancy, respectively, killed before delivery of any pups,
wide and narrow cross-hatched bars, both n=4) and lactating rats (day 10 of
lactation, hatched bars, n=4). All rats were killed by cervical dislocation between
15.00-15.30 h.
The number of silver grains/cell was significantly higher in day 21 pregnant rats
compared to day 17 pregnant and lactating rats (*p<0.05, Kruskal-Wallis test),
while there was no significant difference between groups in the VLM.
Bottom: Means+s.e.m. number of cells containing silver grains in the NTS and
the VLM of cycling, pregnant and lactating rats
The mean number of cells containing silver grains in the NTS and the VLM (6-8
sections per area per animal) was not significantly different between groups.
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Fig. 6.3. Effects of progesterone on TH mRNA expression in the brainstem of late
pregnant rats
Top: TH mRNA expression (silver grains/cell) was counted in A2 and A1
neurones of rats injected subcutaneously with vehicle (0.2 ml, open bars, all n=5-
6) or progesterone (5 mg, filled bars, all n=6) on day 20 of pregnancy and killed
either on day 21 (or day 22, progesterone-treated rats only) before delivery of any
pups (prepartum, between 11.00-13.00 h) or 90 min after the birth of the second
pup (parturient, between 11.00-15.00 h on day 21).
We observed a significantly higher number of silver gains/cell in the NTS of
vehicle-treated prepartum rats compared to vehicle-treated parturient and
progesterone-treated day 21 prepartum rats (*p<0.05, Kruskal-Wallis test), while
there was no significant difference between groups in the VLM.
Bottom: Means+s.e.m. number of cells containing silver grains in the NTS and
the VLM of vehicle- and progesterone-treated rats
The mean number of cells containing silver grains in the NTS and the VLM (6-8
sections per area per animal) was not significantly different between groups.
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Fig. 6.4. Effects of oxytocin on TH mRNA expression in the brainstem of late pregnant
rats

Top: TH mRNA expression (silver grains/cell) was counted in A2 and A1
neurones of rats injected with pulses of saline (open bars, n=6) or oxytocin (10/20
mU each 10 min for 4 hours, filled bars, n=6) in the morning of day 21 of
pregnancy and killed between 15.45-16.45 h on that day. In addition, the analysis
was performed in the brainstem subdivided into a caudal part (extending from the
pyramidal decussatio to the caudal end of the area postrema) and a rostral part
(form the caudal to the rostral end of the area postrema) according to the rat brain
atlas of Paxinos & Watson 1986 (see inset graphs).
When TH mRNA content was assessed in the entire NTS, there was no significant
difference between the oxytocin- and the saline-treated groups, while there was a
significant increase in the number of silver grains/cell in the rostral NTS of
oxytocin- compared to saline-treated rats (*p<0.05, Kruskal-Wallis test). In the
caudal NTS and the VLM, there was no significant difference between groups.
Bottom: Means+s.e.m. number of cells containing silver grains in the NTS and
the VLM of saline- and oxytocin-treated rats
The mean number of cells containing silver grains in the NTS and the VLM (5-8
sections per area per animal) was not significantly different between groups,
neither for the entire NTS and VLM, nor for the rostral and caudal subdivisions.
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Fig. 6.5. Distribution histogram of TH mRNA containing cells in the NTS of
prepartum and parturient rats
Distribution histogram of cells containing TH mRNA in the NTS according to the
amount of silver grains/cell for vehicle-treated prepartum and parturient rats were
established. Cells (n=65, TOP) of five vehicle-injected rats killed before delivery
were assigned 100% and the percentage was calculated of cells containing less
than 100, 100-200 silver grains etc. up to 1000 silver grains. The same procedure
was performed for cells (n=83, Bottom) of six vehicle-treated rats killed during
parturition.
In parturient rats there was a shift to the left and hence to a lower level of TH
rnRNA content per cell compared with prepartum rats.
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Fig. 6.6. Effect of progesterone on the distribution histogram of TH mRNA containing
cells in the NTS
Distribution histograms as described in Fig. 6.5. were established for cells of
progesterone-injected rats (5 mg sc, on day 20 of pregnancy) killed before delivery
either on day 21 (5 rats, number of cells =79, TOP) or day 22 (5 rats, number of
cells n=63, Bottom).
Progesterone-treated rats killed on day 22 showed a marked shift to the right
compared to progesterone-treated rats killed on day 21, while the latter showed a
shift to the left compared to control prepartum rats (c.f. Fig. 6.5).
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Fig. 6.7. Effect of oxytocin on the distribution histogram of TH mRNA containing NTS
cells
Distribution histogram (see Fig. 6.5.) were established for cells of six saline-
cumber of cells=123, TOP) and six oxytocin-injeeted rats (number of cells=104,
Bottom), all killed before delivery. In addition, separate distribution histogram
were calculated for cells located in the caudal (open bars) and rostral (filled bars)
NTS, respectively (insets: Top for saline-treated rats, number of cells n=69, 54,
Bottom for oxytocin-treated rats, number of cell n=58, 46 in the caudal and
rostral part, respectively).
When TH containing cells were analysed throughout the NTS, there was no
significant difference in the distribution histograms for the two treatment groups.
However, when cells in the rostral and caudal NTS were analysed separately,
there was a small shift to the right and hence to a higher silver grain content per
cell in the rostral NTS in oxytocin- compared to saline-treated rats (see inset
graphs).
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Chapter 7

Effects of pulsatile oxytocin injections to late pregnant rats on

uterine pressure and electrical activity of supraoptic neurones

In the previous chapters, I have put forward the hypothesis that at the end of pregnancy

uterine activity, induced by exogenous oxytocin or spontaneously during labour, can exert a

positive feed back onto magnocellular oxytocin neurones that will eventually initiate the

increased release of oxytocin from the posterior pituitary.
It is known that at the end of pregnancy and during lactation (Dreifuss et al. 1976), but

not in early and mid- pregnancy, vagino-cervical stimulation leads to an increase in firing rate

of magnocellular neurones (Negoro et al. 1973b) and at the time of delivery, the birth of each

pup is preceded by strong abdominal and uterine contractions (Higuchi et al. 1986a, 1987)

and burst-like activity of putative oxytocin cells in the PVN (Summerlee 1981). The high

frequency discharge of neurosecretory oxytocin cells is reflected by the pulsatile release of

oxytocin during delivery, which is superimposed on an elevated background secretion

(Higuchi et al. 1986b).
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In the course of pregnancy, the neural lobe content of both oxytocin and vasopressin is

increased compared to virgin rats (Kumaresan et al. 1979) and the accumulated excess of
both peptides is released in the course of parturition (Fuchs & Saito 1971, Kumaresan et al.

1979). Though the role of vasopressin for labour and delivery remains unclear, there is
evidence for a reflex activation of supraoptic vasopressin neurones, similar to oxytocin

neurones, in response to vagino-cervical stimulation (Dreifuss et al. 1976).
An increase in neurosecretory activity of both types of magnocellular neurones during

parturition, suggesting an involvement of vasopressin and oxytocin for labour and delivery, is
in agreement with our observation that in parturient rats Fos expression is increased in both

types of supraoptic neurones (see chapter one & three). Furthermore, I have shown that Fos

expression can be induced in late pregnant rats in the SON, including oxytocin and

vasopressin neurones, and in putative afferent neurones in the brainstem with a four hour

oxytocin pulse treatment prior to delivery, indicating that vagino-cervical stimulation is not a

prerequisite for the stimulation of neurosecretory activity in supraoptic neurones. Since we

have shown previously that pulsatile administration of oxytocin can induce uterine
contractions and delivery in late pregnant anaesthetised rats and that such induced labour is
associated with an increase in Fos expression in the SON and putative afferent brainstem

areas (Douglas et al. 1994), here we assessed electrical activity of supraoptic neurones and
uterine pressure changes in late pregnant anaesthetised rats during pulsatile oxytocin

administration.

Materials and Methods

Animals and Surgery

Date mated day 21 pregnant Wistar rats were anaesthetised with sodium pentobarbitone

(initially 20-30 mg/kg intraperitoneally) and implanted with a jugular vein cannula (see

general materials and methods section). Two rats were in addition implanted with a uterine

balloon, one rat was implanted with two uterine balloons, one in each hom, and three rats

were implanted with two balloons each, one in the uterus and the other in the cervix. Then the

surgical placement of the electrodes was performed by Dr. G. Leng (see general materials and
methods section).

After a minimum recovery time of 60 min the recording was started. Electrical activity of

supraoptic neurones was recorded in 100 msec (10 Hz) bins, as spikes/sec, uterine and
cervical pressure changes were recorded as analogue data in Volt and converted with a force
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transducer into mmHg. Six of the seven rats, IG1-6, were injected with oxytocin pulses (10
mU oxytocin in 0.03 ml 0.9% saline, each 10 min for 2 hours and then 20 mU oxytocin each
10 min for 2 hours), while in one rat the cervix or uterine balloon was de- and inflated (by +1-

2 and +1.5-3 ml, respectively) and cell activity in response to such acute pressure changes was

recorded.

Cells were identified as projecting to the posterior pituitary by displaying a constant

latency action potential in response to a biphasic stimulus (2 ms, 40 Volt) applied to the
neural stalk. To classify antidromically activated cells as vasopressin or oxytocin neurones,

the spontaneous firing pattern was taken into consideration (cells displaying phasic activity
were presumed to be putative vasopressin neurones and cells showing continuous activity were

classified as putative oxytocin neurones) and in addition most cells were characterised by their

response to an intravenous injection of CCK (20 pg/kg body weight: cells displaying no

change in activity or a transient decrease were classified as putative vasopressin neurones and
cells showing a transient increase in firing rate were classified as putative oxytocin neurones).
For cells that failed to display a clear response to CCK, we gave a injection of naloxone (5

mg/kg body weight iv) followed by a second injection of CCK, since in late pregnant rats

electrical activity of supraoptic oxytocin neurones is under an inhibitory opioid tone (Bicknell
et al. 1988c). For some cells, which were pharmacologically identified prior to the treatment,

a minimum time of 10-20 min was allowed before the four hour oxytocin treatment was

started.

Data analysis

The recordings were analysed using Spike 2 (Version 4.70, 1991, Cambridge Electronic

Design Ltd., Cambridge) and a Genstat program wntten by David Brown. The latter was used
to analyse correlations and long-term changes in cell activity, uterine and cervical pressure in

the course of the four hour treatment. The recording time consisted of three periods: 1) the

control period, 30-60 min, prior to the oxytocin treatment and 2) the treatment period that was

subdivided either according to the dose of oxytocin into a first two hour period (during which
animals were injected with 10 mU oxytocin each 10 min) and a second two hour period

(during which 20 mU oxytocin were injected each 10 min) or into 60 min periods. For the
statistical analysis using the Genstat program each period was subdivided into 200 sec bins
and for each bin the following parameters were calculated:
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• uterine and cervical pressure and contraction amplitude (in mmHg)
• frequency (in spikes/sec)

• activity quotient (in percent as the time in sec during which the cell was active

divided by 200 sec, calculated for each 200 sec in 100 msec bins)
and finally the overall mean was calculated for each of the above variables during each period.

In addition we calculated for each period:
• the correlation of each of the above parameters with time
• the correlation between uterine/cervical pressure and cell activity and
• the correlation between the two pressure recordings in the case of two balloons per

rat (2x uterine pressure or utenne and cervical pressure)

Comparisons for means+s.e.m. of uterine and cervical pressure and amplitude were

performed using the two-tailed non-parametric Mann-Whitney U-test. In addition we

calculated the average spike activity for all analysed cells before and during each hour of the
treatment using the rate program written on Spike 2. We compared electrical activity of

magnocellular neurones during a period of at least 10 min prior to any treatment with 10 min

periods during the end of each hour of the oxytocin treatment, or during 10 min periods after
one or two hours of recording without any treatment. Spike activity during these periods was

compared using the parametric t-test. A similar approach was used to assess statistically acute

changes in neuronal activity, e.g. following an injection of CCK and each injection of

oxytocin, and in response to vaginal probing, cervical and uterine distension. Thus, the

average firing rate during 1-3 x 60 sec each before and after the stimulus was calculated and

compared with each other using the parametric t-test. For all comparisons spike activity was

calculated in 1 sec bins unless stated otherwise.

Results

Electrical activity was recorded in seven rats and of a total of 18 cells, of which 16 were

analysed (the two recordings not analysed were excluded due to a duration of less than 2000

sec per recording). Of the 16 cells analysed, 11 displayed a clear response to CCK that

allowed to identify them as either putative oxytocin (increase in firing rate) or putative

vasopressin neurone (decrease in firing rate, Fig. 1 & 2), in addition to their classification

according to the firing pattern (continuous and phasic activity for oxytocin and vasopressin

neurones, respectively, Table 1).
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All but one animal were implanted with a uterine balloon, so that uterine pressure could
be recorded simultaneously with cell activity (Fig. 1). In one rat, uterine pressure was

recorded from both horns and in three other rats uterine and cervical pressure were recorded in

addition to neuronal activity.

Table 1

Individual recordings from supraoptic neurones without oxytocin treatment

cell duration (sec) firing pattern response to CCK (spikes/sec)

activity before after .

putative identification

CI 4500 sec phasic 4.3+0.21 3.2+0.2* vasopressin neurone

C2 2500 sec phasic - - vasopressin neurone

C3 7500 sec continuous 2.5+0.1 3.4+0.1* oxytocin neurone

C4 10000 sec phasic - - vasopressin neurone

C5 4300 sec phasic - - vasopressin neurone

C6 4000 sec phasic 1.5+0.2 0.3+0.07* vasopressin neurone

C7 4000 sec phasic 6.7+0.5 3.0+0.5* vasopressin neurone

*p<0.05, t-test compared to the value before the CCK injection

All but one animal were given a four hour oxytocin pulse treatment (10 mU oxytocin

each 10 min for 2 hours and then 20 mU oxytocin each 10 min for 2 hours), while in one

animal, implanted with two balloons, one in the uterine body and the other in the cervix, these

balloons were alternately de- and inflated with saline (±1-3 ml) and cell activity in response to

acute pressure changes was investigated.

Recordings from supraoptic neurones during periods without treatment

To assess spontaneous activity of supraoptic neurones in late pregnant rats, activity from

seven cells was recorded for one hour or more without oxytocin treatment (Table 1). The

average duration of these recordings, that served as a control period for recordings of neuronal

activity during the four hour oxytocin treatment, was 5257+901 sec (= 88+15 min, range

2500-10000 sec = 42-167 min). Beside being identified by the firing pattern, 4/7 neurones

were classified according to their response to an intravenous injection of CCK (20 pg/kg body

weight) as putative oxytocin or vasopressin neurones (Table 1, Fig. 1 & 2).
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The firing rate of cells during these control periods was calculated as average number of

spikes during a period of 15-20 min at the beginning of the recording and then during 10 min

periods at the end of each hour of the recording. Activity of vasopressin neurones significantly
decreased in the course of 60 min without oxytocin treatment and without uterine pressure

manipulations (CI and C2, Table 2). However, when uterine pressure was changed manually

by de- and inflation of a balloon, spike activity significantly increased in the course of one

hour in 2/4 vasopressin neurones (C4 and C5, Table 2), while in the other two cells there was

no significant change (C6 and C7, Table 2, Fig. 1). For one cell, in which electrical activity
was recorded for a total of three hours, the spike activity was significantly decreased at the
end of the recording compared to the beginning (C7, Table 2).

Table 2

Electrical activity of supraoptic neurones without oxytocin treatment

cell type

start of recording

neuronal activity (spikes/sec)

after 1 hour after 2 hours after 3 hours

CI vasopressin 3.3+0.2 2.5+0.2*

C2 vasopressin 4.3+0.1 3.5+0.1*

C3 oxytocin 2.5+0.1 1.8+0.1* 2.2+0.1

C4 vasopressin 2.3+0.1 5.8+0.2*

C5 vasopressin 1.5+0.8 2.2+0.1*

C6 vasopressin 7.0+0.2 7.4+0.6

C7 vasopressin 4.5+0.2 4.7+0.2 4.5+0.2 3.8+0.2*

*p<0.05, t-test compared to the control (first) value

Electrical activity without oxytocin treatment, but during uterine pressure manipulations,
was recorded from only one putative oxytocin neurone (C3, Table 2), which showed a small
but significant decline in spike activity in the course of the first hour (Table 2, Fig. 1).

Recordings from supraoptic neurones during the four hour oxytocin pulse treatment

Six animals were injected with pulses of oxytocin (10 mU oxytocin each 10 min for 2
hours and then 20 mU oxytocin each 10 min for 2 hours) and a total of nine cells were

recorded during such treatment (Table 3).
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The average recording time for all nine cells was 9100+1621 sec (152+27 min, range

3500-19000 sec = 58-317 min), with an average duration of 8268+1560 sec for six oxytocin

neurones and 10767+3539 sec for three vasopressin neurones. Thus, for 3/9 cells recorded

during the oxytocin treatment the recording spanned nearly the entire four hour treatment

period (12000-19000 sec, Fig. 3 & 4). For three cells, the recording extended over more than
half of the treatment time (2-3 hours) and for three other cells the recording covered at least

one hour of the treatment period (3600-5500 sec). Apart from two cells, one putative oxytocin
and one putative vasopressin neurone, which were identified according to their firing pattern

only, all other cells we additionally identified by their response to an intravenous injection of

CCK (20 pg/kg body weight)(Table 3, Fig. 2).

Table 3

Individual recordings from supraoptic neurones with oxytocin treatment

oxytocin treatment: 10 mU each 10 min for 2 hours and then 20 mU each 10 min for 2 hours
cell duration (sec) firing pattern response to CCK (spikes/sec) putative identification

before after

T1 12000 sec continuous 3.8+0.2 6.6+1.3* oxytocin neurone

T2 19000 sec phasic 5.1+0.3 0.3+0.1* vasopressin neurone

T3 14600 sec continuous 1.3+0.1 1.8+0.2* oxytocin neurone

T4 7000 sec continuous 0.3+0.003 1.4+0.1* oxytocin neurone

T5 7000 sec continuous - - oxytocin neurone

T6 3600 sec continuous 4.4+0.2 5.3+0.3* oxytocin neurone

T7 5500 sec continuous 6.1+0.3 7.0+0.6 oxytocin neurone

T8 4300 sec phasic 0.9+0.03 0.3+0.01* vasopressin neurone

T9 9000 sec phasic - - vasopressin neurone

*p<0.05, t-test compared to the value before the CCK injection

Electrical activity during a minimum of 10 min prior to any treatment or at the beginning
of a new recording served as the control value, to which all other values were compared

(*p<0.05, t-test compared to the control value, Table 4a & b).

Thus, for six cells the control period was taken from before the start of the treatment,

while for three cells the baseline was established from a 10 min period at the beginning of the
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recording during the first hour of the oxytocin injections (Table 4). Activity was measured

during the last 10 min of each hour of the treatment and these values were compared to the

respective control value for each cell (Table 4a & b).

Table 4a

Change in electrical activity of oxytocin neurones during the oxytocin treatment

cell

oxytocin treatment

10 mU each 10 min for 2 hours and then 20 mU each 10 min for 2 hours

before treatment 1st hour 2nd hour 3rd hour 4th hour

T1 3.8+0.2 4.2+0.3 4.5+0.3 3.9+0.3

T3 0.8+0.03 1.2+0.04* 1.6+0.04* 1.2+0.04*

T5 0.3+0.003 0.7±0.04* 2.5+0.07* 2.4+0.7*

T7 4.7+0.1 5.0+0.1* 5.6+0.1* 5.8+0.1*

T4 0.3+0.003 0.5+0.04*

T6 4.5+0.1 4.8+0.1*

Table 4b

Change in electrical activity of vasopressin neurones during the oxytocin treatment

oxytocin treatment

10 mU each 10 min for 2 hours and 20 mU each 10 min for 2 hours

cell before treatment 1st hour 2nd hour 3rd hour 4th hour

T2 1.2+0.1 1.7+0.1* 2.2+0.1* 3.1+0.2* 3.9+0.2*

T9 3.0+0.2 2.6+0.1 3.5+0.1* 3.3+0.1*

T8 0.2+0.03 0.5+0.03*

*p<0.05, t-test compared to the control (first) value

Oxytocin neurones

In the first hour of the oxytocin treatment, electrical activity of all oxytocin neurones

(n=4) increased. Likewise, in the course of the second hour electrical activity of putative

oxytocin neurones showed a further increase, that was sustained in 2/4 cells, while in two cells
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activity showed a slight decrease in the third hour. However, the firing rate remained higher
than at the beginning of the treatment (Table 4a, Fig. 3 & 6).

Vasopressin neurones

Similar to oxytocin neurones, vasopressin neurones showed an increase in activity in

response to the oxytocin treatment. For two cells, which were recorded through almost the
entire four hour treatment, the firing rate increased progressively and was significantly higher
at the end compared to the beginning of the recording (Table 4b, Fig. 4).

For those two vasopressin neurones, which showed a typical phasic pattern (T2 and T9),
we calculated the activity quotient (the time in percent during which the cell is active, assessed
for 0.1 sec bins throughout the recording, divided by the total recording time) that increased in
both cells from the first to the third hour of the recording (46% and 45% in the first hours vs

56% and 74% in the third hour, respectively). The increase in the activity quotient was

accounted for by a shortening of the silent intervals between periods of phasic activity (Fig. 4
& 11).

Uterine and cervical pressure and contraction amplitude

Uterine and cervical pressure and contraction amplitude were recorded in six animals, either

prior to or during the oxytocin treatment and during acute pressure manipulations. The

pressure changes during the oxytocin injections were compared to baseline values estimated
from periods without such treatment (on average 3399+625 sec = 55+10.4 min).

Uterine pressure and contraction amplitude
In two animals, in which uterine pressure was recorded during a period without the

oxytocin treatment and without pressure changes, uterine pressure and amplitude showed no

dramatic change when the values at the beginning of the recording and after one hour were

compared (an increase of uterine pressure by 0 and 1 mmHg, respectively), and no dramatic

change in contraction amplitude (+1 mmHg and -6 mmHg, Table 5, Fig. 1). In the other two

rats in which uterine and cervical pressure were manipulated uterine pressure decreased in the
course of one hour (by 7.5 and 14.5 mmHg, respectively), while the amplitude showed either
no significant change (+ 1 mmHg) or a decrease (by 7 mmHg, Table 5).
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Table 5

Change in pressure and contraction amplitude during periods without oxytocin treatment

ch

uterine pressure

ange in % (and mmHg,

uterine amplitude

c.f. beginning/1 hour lat

cervical pressure

er)

cervical amplitude

0% ( 0 mmHg)
+ 1.1% (1 mmHg)

-50% (7.5 mmHg)

-76% (14.5 mmHg)

+1% (1 mmHg)

-11% (6 mmHg)

4% (1 mmHg)

-58% (7 mmHg)

200% (27 mmHg)

+45% (4 mmHg)

-7% (3 mmHg)

-71% (20 mmHg)

+50% (3 mmHg)

+4% (1 mmHg)

In contrast, during the four hour oxytocin pulse treatment uterine pressure showed a

consistent and progressive increase in all animals examined, while the contraction amplitude
decreased concomitantly (Fig. 3, 4, 5, 6 & 7). Thus, uterine pressure increased by 5.9+2.3

mmHg, 19.1+3.9* mmHg and 14.1+3.0 mrriHg during the first and last two hours and after
the end of the treatment, respectively (*p<0.05, U-test compared to baseline, Fig. 7). Unlike
uterine pressure, the amplitude of uterine contractions decreased from a baseline value (=

100%) before the treatment by 0.6+0.02 mmHg, 4.1+0.2* mmHg and 0.6+0.1 mmHg during
the first and last two hours and after the end of the treatment, respectively (*p<0.05, U-test

compared to baseline, n=4, Fig. 4, 6 & 7). The steady increase in uterine pressure throughout
the four hour treatment and the concomitant decline in contraction amplitude was most

pronounced in two animals (Fig. 4 & 6). In one of these rats, in which uterine pressure was

recorded from both uterine horns, the pressure in the two horns showed a synchronised

increase when the oxytocin treatment was started, while there was no response of the uterus to

an intravenous injection of CCK (Fig. 6). Though the synchronised activity between the two

homs was apparent for most of the oxytocin treatment, the activity in both homs was most

clearly correlated to each oxytocin injection during the last two hours of the oxytocin

treatment, when both uterine homs displayed an increase in pressure and a decline in the

contraction amplitude following each injection (Fig. 6, 7 & 8). However, the pressure in both

homs showed a significant correlation at the beginning of the treatment and some further

increase in the course of the treatment (r1— 0.75 vs r = 0.90 at the beginning and the end of
the treatment, respectively, p<0.05 for each period, Fig. 8).
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The contraction frequency of the uterus showed no consistent change during the oxytocin

injections, however, we did observe sometimes an increase in frequency following a pulse of

oxytocin (Fig. 8), but not at other times (Fig. 1).

Cervical pressure and contraction amplitude

Cervical pressure and amplitude during periods without oxytocin treatment were

recorded in three animals. Pressure and amplitude were measured during 10 min at the

beginning of each recording and during 10 min after one hour of either no treatment or uterine
and pressure manipulations. In the former case (n=l) there was very little change in cervical

pressure and amplitude (a decrease in pressure by 3 mmHg and an increase in contraction

amplitude by 1 mmHg). In the course of the uterine pressure manipulations (n=2), the cervical
of one animal responded with a increase in both pressure and amplitude (by 4 and 3 mmHg,

respectively), while the other animal showed a decrease in pressure and amplitude (by 27 and
20 mmHg, respectively, Table 5). Thus, the cervix showed no consistent change in pressure or

contraction amplitude without any treatment or following uterine pressure changes.
In contrast, in both animals, in which cervical pressure and contraction amplitude were

measured during the oxytocin treatment, we observed a decrease in cervical pressure and a

concomitant increase in contraction amplitude and frequency during the oxytocin injections

(Fig. 9, 10 & 11). These changes were directly opposite to those seen in the uterus during the

oxytocin pulse treatment (Fig. 7). Thus, the cervical pressure decreased during the treatment

compared to the baseline value by 13 and 4 mmHg during the first two hours and by 14 and

15 mmHg during the last two hours, respectively, and continued to decrease in the 60 min

after the end of the treatment (by 10 and 20 mmHg from baseline), while the contraction

amplitude increased (by 4 and 22 mmHg during the first two hours and by 12 and 31 mmHg

during the last two hours, respectively, and remained at that level during the 60 min after the

end of the treatment (Fig. 7).

Uterine pressure and cervical pressure in relation to each other
Unlike the significant correlation between the pressure in the two uterine horns of the

same animal, apparent prior to the oxytocin treatment, there was no significant correlation
between uterine and cervical pressure of the same animal before we started the treatment (r2=
0.48 and r2= -0.50, respectively, Fig. 10 & 11), but a significant positive correlation during
the last two hours of the treatment (r2= 0.96 and r2= 0.84, p<0.001). Unlike the case for the
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two uterine horns, we did not consistently observe a period of increased synchrony between
cervical and uterine activity in response to an injection of oxytocin (Fig. 10 & 11). Thus, in
one animal an injection of oxytocin, but not CCK, induced a series of synchronised and
increased uterine and cervical contractions (Fig. 10 & 12), while in another animal CCK, but
not oxytocin triggered a period of synchronised activity between the uterus and the cervix

(Fig. 13).
In addition, we observed peak pressures which occurred simultaneously in the cervix and

the uterus, though they were of higher amplitude in the former (Fig. 10). These cervical peak

pressure increments showed no obvious relation to oxytocin injections, however they occurred
more often in the second half of the treatment (Fig. 9 & 10), superimposed on the rhythmic
contractions of both the uterus and the cervix and were not associated with an acute change in

neuronal activity (Fig. 10).

The effect of oxytocin pulses on neuronal activity
Since the oxytocin pulse treatment did not only augment uterine activity, but also induced

an increase in electrical activity of both types of supraoptic neurones, we investigated the
effect of each oxytocin injection on neuronal activity. Thus, the mean firing rate of each
neurone (n=6) was calculated for 1-2 x 60 sec bins immediately after each oxytocin injection

and at mid-time between two injections

Oxytocin neurones

In 2/6 oxytocin cells we observed a consistent excitation of the firing rate immediately

following an injection of oxytocin, while at mid-time between two injections neuronal activity
was relatively lower (Fig. 8, 14 & 15, left). The difference between the pre- and post-injection

values, though often not very marked, reached significance more often in the second,

compared to the first half of the treatment (Fig. 15). In two other neurones, we observed for a

thin majority of oxytocin injections an excitation of neuronal activity, while in the remaining
two neurones no consistent association of firing rate with the oxytocin injections was apparent

(Fig. 15, right).

One of the two neurones displaying an increase in electrical activity following an

injection of oxytocin fired at a rather slow rate and showed a small, though significant overall
increase in activity during the oxytocin treatment (0.8+0.03 and 1.6+0.04 spikes/sec before
and during the second hour of the treatment), while the other neurone displayed a higher
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discharge rate (4.7+0.1 and 5.8+0.1 spikes/sec in the first and the fourth hour of the

treatment), indicating that the neuronal responsiveness to systemic oxytocin does not

dependent on the firing rate of the cell. The two neurones that did not show a consistent

change in activity in response to oxytocin both fired at a relatively high rate (3.8+0.2 and
4.5+0.1 spikes/sec before and 4.2+0.3 and 4.8+0.1 spikes/sec during the first hour of the

treatment, respectively). The two remaining neurones, that showed more often an increase than
a decrease in response to oxytocin pulses, both displayed an activity of less than one spike/sec
before the treatment (0.3+0.1 and 0.3+0.003, respectively) and a slight increase dunng the

injections (0.5+0.04 spikes/sec in the first hour in the case of one neurone and 2.5+0.07

spikes/sec in the third hour in the case of the other).

Vasopressin neurones

In contrast to oxytocin neurones, three vasopressin neurones showed a decrease in spike

activity following each oxytocin pulse but an increase at mid-time between the first and the

second oxytocin injection (Fig. 11, 14, 15 & 16). In two cells, for which activity was recorded

through all or most of the four hour treatment the firing rate increased progressively in the
course of the treatment and was higher at mid-time between two oxytocin injections than

immediately following an injection (Fig. 15, left). Though a similar pattern was observed in

the third cell, the duration of the recording was only one hour and thus the response to only

5/25 oxytocin injections could be analysed (Fig. 15, right).

Correlation of uterine and cervical pressure with neuronal activity

Thus, it appears that the electrical activity of both supraoptic oxytocin and vasopressin

neurones is influenced by stimuli which induce changes in uterine pressure. Therefore, we

investigated whether there was any correlation between uterine and cervical pressure and

neuronal activity.

Oxytocin neurones

A correlation between electrical activity and uterine or cervical pressure was calculated

for five cells, of which three were recorded for more than one hour. In these three cells the

correlation between the uterine pressure and the cell firing increased and was positive for the

last 1-2 hours of the treatment (Table 6, Fig. 6, 9 & 10). Since in one animal uterine pressure

was recorded from both uterine horns, we calculated the correlation between neuronal activity
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and the pressure for each horn separately (Table 6). The results indicate that at the beginning
of the treatment there was no correlation for either horn with oxytocin neurone activity, while

at a later stage of the treatment, the correlation between cell activity and uterine pressure was

highly significant for both homs (Table 6). In contrast, two cells, which were only recorded

during the first hour of the oxytocin treatment, showed a very small increase in electrical

activity during that time and we failed to observe a correlation between uterine pressure and

cell activity (r2= 0.25 and r2= 0.1 at the beginning of the treatment and r2= -0.3 and r= 0.4

after one hour of the oxytocin injections, respectively, data not shown).

Table 6

Correlation of neuronal activity and uterine pressure

oxytocin

10 mU oxytocin each 10 min for 2 hours and

oxytocin neurones

treatment

then 20 mU oxytocin each 10 min for 2 hours

vasopressin neurones

cell first 1-2 hours last 1-2 hours cell first 1-2 hours last 1-2 hours

T3 T2= 0.12 r2^ 0.45

T5 1^= 0.1 1^= 0.83*

r1= 0.01 rL= 0.80*

T7 r*= 0.3 ?= 0.55

T2 r2= -0.3 rz= 0.68*

T9 r*= -0.03 1^= 0.66*

*p<0.05, t-test

Since cervical pressure was only recorded in two animals treated with oxytocin, a

correlation between cervical pressure and oxytocin cell activity in relation to the treatment

could only be calculated for one oxytocin neurone. For this neurone we observed no

correlation with cervical pressure before the treatment (r2= 0.03), and though in the course of
the treatment the correlation coefficient increased to r*= 0.4, this correlation was not

statistically significant (Fig. 9).
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Vasopressin neurones

For two vasopressin neurones recorded through most of the four hour oxytocin pulse

treatment, no correlation was found between cell activity and uterine pressure at the beginning
of the recording (r2= -0.3 and r2= -0.03, respectively), while dunng the last two hours of the

oxytocin injections there was a significant positive correlation between uterine pressure and
neuronal activity (r2= 0.68 and r2= 0.66, respectively, p<0.05, Fig. 4 & 16). When analysed in

greater detail, one vasopressin cells showed a marked correlation between uterine contractions
and phasic cell activity during most of the four hour treatment (Fig. 16, 17 & 17a). Statistical

analysis performed for each of the 200 sec intervals, into which the four hour treatment was

subdivided, revealed a positive correlation between uterine pressure and cell activity for
almost every interval (r2= 0.35-0.6), and thus a highly significant correlation for the entire
treatment period (p<0.01, Fig. 17 & 17a).

Cervical pressure and vasopressin cell activity, analysed for one cell, showed no

significant correlation at the beginning of the recording (r2= -0.03), but a significant positive
correlation during the last two hours of the treatment (r2= 0.66, p<0.05, Fig. 11).

Effect of cervical and uterine pressure changes on neuronal activity in term pregnant rats

Since the findings so far suggest that uterine and cervical activity can modulate

supraoptic neurone activity in late pregnant rats, we thought to investigate in a last experiment
whether acute changes in uterine pressure, induced by de- and inflation (±1-3 ml) of balloons

located in the uterine corpus or the cervical end, would affect neuronal activity. Thus, in one

animal implanted with two balloons, electrical activity of one oxytocin and one vasopressin

cell in response to manipulations of the balloon volume was recorded. For comparison of

firing rate, the number of spikes were counted in 1-3x60 sec bins just prior to and immediately

after a change in cervical or uterine pressure and compared using the parametric t-test.

Oxytocin neurone

In the case of the oxytocin neurone, an acute increase in cervical pressure induced a

gradual, but significant decline in cell activity, while a subsequent decrease in cervical

pressure induced a gradual increase in spike activity and when this procedure was repeated, it

yielded the same result (Fig. 18 & 18a). However, the firing rate in response to an acute

pressure change seemed, after an initial response, to move towards its baseline value despite a
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continuation of the induced pressure change. Uterine pressure, recorded simultaneously, was

not affected by such cervical pressure manipulation (Fig. 18a).

Vasopressin neurone

Changes in vasopressin cell activity in response to cervical distension, though displaying
a similar trend to those of the oxytocin cell (namely a decrease in activity following inflation
of the balloon in 4/5 times and an increase in activity in response to deflation in 3/6 times),
were less consistently observed (Fig. 19 & 19a). Again cervical pressure changes had no

effect on uterine activity (Fig. 19a).
De- and inflation of the balloon located in the uterine corpus (+2 ml), resulted in only

minor pressure changes within the uterus, with no change in contraction amplitude and

frequency, and no alteration of the phasic activity of a vasopressin cell nor in a change in

cervical contractions (Fig. 20). Also cervical pressure, recorded simultaneously, was not

affected by uterine pressure changes.

However, a more pronounced decrease in utenne pressure (3-3.5 ml) induced a gradual

decline in the frequency of rhythmic cervical contractions (Fig. 21a) and a significant increase
in vasopressin cell activity (during the 10 mm following the pressure change compared to the
same period before the change, Fig. 21). Similarly, following an intravenous injection of the

oxytocin antagonist F382 (30 pg/kg body weight, Fig. 22a), uterine pressure declined, while

the amplitude and frequency of the contractions remained unchanged. The phasic activity of
the putative vasopressin neurone became more continuous and firing rate showed an

significant increase during a 15 min period after the antagonist administration (compared to a

period of the same duration prior to the antagonist injection (Fig. 22). An injection of CCK

(20 pg/kg body weight iv) to the same animal clearly inhibited cell activity (Fig. 22 & 22a).

The effect of vaginal probing on supraoptic neurone activity in term pregnant rats

Finally, we examined the effects of vaginal probing, a stimulus that can activate or

inhibit magnocellular oxytocin neurones depending on the reproductive state (Negoro et al.

1973a, 1973b), on electrical activity of oxytocin and vasopressin cells. The oxytocin neurone

had been exposed to cervical pressure manipulation prior to vaginal probing, while the

vasopressin neurone had been recorded through the four hour oxytocin pulse treatment.
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Both neurones showed a significant decrease in firing rate in response to vaginal probing

(Fig. 23 & 23 a). This rapid and significant decline in firing rate was observed for each of the
three probings performed during the recording of the vasopressin cell (Fig. 23 & 23a).

Discussion

hi this study, we have shown that electrical activity of supraoptic neurones increases in
the course of a four hour oxytocin pulse treatment in term pregnant rats, while during periods
without any treatment, a decrease in firing rate was observed. Since the SON is located within
the blood-brain barrier, circulating oxytocin, which does not readily cross this barrier

(Ermisch 1992, Weber et al. 1993), is unlikely to have a direct effect on supraoptic neurones.

The increase in electrical activity of supraoptic neurones was accompanied by an increase in
uterine pressure and cervical contractions, which were positively correlated with the firing rate

at the end of the oxytocin treatment. Thus, our data are consistent with the hypothesis that
uterine activity can modulate supraoptic neurone activity. Though in the present study, we

have not examined the effects of saline injections on uterine and cell activity, in a previous

chapter (see chapter three) we have shown that only pulsatile oxytocin administration induces
Fos expression in supraoptic (oxytocin and vasopressin) neurones, while saline injections were

not effective. Furthermore, we have shown that in term pregnant anaesthetised rats oxytocin

injections augment uterine activity to a greater extent than saline injections (Douglas et al.

1994). Thus, a likely explanation for the observed increase in finng rate is the increase in

intrauterine pressure in response to oxytocin.
Previous work has shown that uterine activity during labour that has been induced with

an infusion of oxytocin bears a close resemblance to that observed during spontaneous labour

(Fuchs & Poblete 1970), namely a progressive increase in contraction frequency and

amplitude (Higuchi et al. 1986b). However, labour induced with pulsatile administration of

oxytocin is characterised by a greater than normal increase in intrauterine pressure (Randolph
& Fuchs 1989). This is in agreement with our observations firstly that unlike during normal

labour, uterine activity in response to intermittent oxytocin injections resulted in Fos

expression in the SON and brainstem neurones even before delivery of pups and secondly that

oxytocin treatment augmented primarily intrauterine pressure, while decreasing contraction

amplitude. Though we have not systematically analysed the contraction frequency, we did
observe an increase in contraction frequency following an injection of oxytocin or CCK in the
cervix and, less consistently, in the uterus. The high amplitude rhythmic contractions of the
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cervix, which were not always accompanied by uterine contractions in response to both

oxytocin and CCK, are in agreement with reports on the ability of the cervix to contract

independently of the uterus (Olah et al. 1993) and with reports on a higher density of oxytocin

receptors at the cervical compared to the ovarian end of the rat uterus (Gorodeski et al. 1990).
In addition, oxytocin has been implicated in the effacement of the cervix (Khalifa et al. 1992)
and thus, the effects of pulsatile oxytocin treatment on delivery might have a dual site of
action: one to augment uterine activity important for the expulsion of foetuses and the other to

contribute to the softening of the cervix, which is a prerequisite for normal delivery.
In the course of spontaneous labour, cervical and uterine activity becomes more

coordinated and this is reflected by an increase in distally directed contractions (Crane &

Martin 1991a, Fuchs & Poblete 1970). Here, we found a significant correlation between
uterine and cervical contractions at the end, but not at the beginning of the treatment. In

addition, in the course of the treatment, we observed an increasing incidence of high amplitude

peaks in cervical pressure, that appeared superimposed on normal contractions and were, in
most cases, associated with a concomitant peak of smaller magnitude in the uterus. In

contrast, alterations of uterine pressure in rats not pretreated with oxytocin were not

accompanied by a concomitant change in cervical pressure, unless a sustained decrease in
uterine pressure was induced, which resulted in a decline of high amplitude cervical

contractions. Similarly, manipulations of cervical pressure without oxytocin treatment did not

affect uterine activity. Thus, oxytocin injections seem able to initiate synchronised and
coordinated uterine activity, as seen prior to spontaneous delivery (Fuchs & Poblete 1970,

Crane & Martin 1990a).

Since the induction of Fos in the NTS and SON dunng labour but before delivery is only

observed following oxytocin treatment, we cannot be certain whether physiologically uterine
and/or cervical contractions represent the key stimulus for supraoptic neurone excitation (or

whether an increase in firing rate normally precedes the augmentation of uterine activity).

However, our data indicate that a gradual but sustained increase in uterine pressure and

cervical activity, induced by pulsatile oxytocin, has at least the potential to increase the

electrical discharge of supraoptic neurones at term.

In addition, vasopressin cell activity decreased immediately following an oxytocin

injection, concomitantly with a transient reduction in uterine pressure and contraction

amplitude, while neuronal activity and uterine pressure both showed a maximum at mid-time
between two injections, suggesting that oxytocin injections play a modulatory role for the
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synchronisation of uterine and neuronal activity in late pregnancy. Beside such significant
correlation between vasopressin cell activity and uterine pressure observed throughout the

oxytocin treatment, we also observed a positive correlation between the progressive increase in
cervical contractions and vasopressin cell activity. Though we also found a significant positive
correlation between uterine pressure and oxytocin cell activity, we did not see a

synchronisation between uterine and oxytocin cell activity, but rather a higher firing rate

immediately following a pulse of oxytocin, when uterine pressure showed a transient
decreased.

A relationship between supraoptic neurone activity and uterine contractions during
induced labour suggests a physiological significance of oxytocin and vasopressin release

during parturition in the rat, which in the case of vasopressin, remains to be clarified.

Shortly before delivery of pups, background activity of both types of magnocellular
neurones increases (Richard et al. 1988) and during labour and delivery the release of a

substantial amount of vasopressin has been reported in rats (Fuchs & Saito 1971, Kumaresan

et al. 1979). Since vasopressin Vrreceptors are present in the uterus and mediate uterine
contractions (Chan et al. 1990, Maggi et al. 1991a, 1992), vasopressin could, in addition to

oxytocin, play a role for the augmentation of intrauterine pressure.

Unlike the excitatory effect of the gradual rise in uterine pressure and cervical
contractions during the oxytocin pulse treatment, moderate inflation of a balloon placed in the

body of the uterus had no effect on vasopressin cell activity. Since the pregnant rat uterus is

already greatly expanded, it might offer little resistance to further distension and this might

explain the rather small pressure change induced by such manipulation, which proved

ineffective at modulating neuronal activity. In contrast, when uterine pressure was reduced by

a systemic injection of an oxytocin receptor antagonist or by an extensive deflation of the

uterine balloon, we observed a moderate increase in firing rate of a putative vasopressin

neurone over a period of 5-15 min. Since the latter experiments were performed after the four
hour oxytocin treatment, SON neurones might have become more sensitive to uterine pressure

changes. Alternatively, the decrease in uterine pressure following either the oxytocin

antagonist injection or the extensive deflation, might represent a more potent stimulus than
moderate inflation of the balloon. The excitation of vasopressin neurones following a decrease
in uterine pressure is not consistent with the excitation of supraoptic neurones observed during
the gradual increase in uterine activity by oxytocin pulses. Thus, it could be that in late

pregnancy, all sensations from the uterus are predominantly excitatory to supraoptic



Chapter 7 - Electrical activity ofsupraoptic neurones 178

vasopressin neurones. At this point of the discussion it seems important to emphasise that the

effects of uterine pressure changes on supraoptic neurone activity presented here are based on

two cells only, one supraoptic oxytocin and one vasopressin cell, and hence any interpretation
of our observations should keep the preliminary nature of the data in mind.

Since neurosecretory vasopressin neurones co-express dynorphin (Watson et al. 1982), a

kappa opioid receptor ligand, and endogenous opioids restrain oxytocin neurones at the

hypothalamic level (Bicknell et al 1988c, 1993) and oxytocin release from axon terminals in
the posterior pituitary (Bicknell & Leng 1982, Van de Heijning 1991a), the stimulation of

vasopressin cells in late pregnancy might contribute, via the release of dynorphin either from
terminals in the posterior pituitary or from dendrites within the SON, to the inhibition of

premature oxytocin secretion. Thus, the decrease in electrical activity of oxytocin neurones

towards the end of the four hour oxytocin treatment, could reflect an inhibition of oxytocin

neurones by dynorphin released from increasingly activated vasopressin neurones. Since

dynorphin has also an autoinhibitory effect on vasopressin neurones themselves (Bicknell

1993), this might serve to control premature release of both vasopressin and oxytocin release

at term.

A tight control of neurohypophysial hormone release would be expected to occur

particularly in term pregnant animals, when the uterus is already highly sensitive oxytocin

(Fuchs & Poblete 1970, Fuchs et al. 1983), but the cervix not yet fully effaced. At that time a

sudden increase in oxytocin neurone activity (and hormone release), e.g. in response to acute

vagino-cervical stimulation, could, by augmenting intrauterine pressure against a tight cervix,

endanger the foetus(es). Similarly, it would seem sensible to restrain the acute release of

vasopressin, since vasopressin can also induce uterine contractions (Maggi et al. 1991a).

While we observed excitation of SON neurones during a gradual increase in uterine

pressure and cervical contractions, acute cervical distension and vaginal probing resulted in an

inhibition of oxytocin and vasopressin cell activity. Since others have reported increased
neuronal activity in response to vaginal distension in term pregnant rats (Negoro et al. 1973b),

it might be that our rats were closer to parturition than those described in previous studies

(Negoro et al. 1973a, 1973b) and hence at this late stage of pregnancy acute cervical

distension might inhibit rather than excite supraoptic neurones.

The reported increase in supraoptic neurone activity and hormone release following

vaginal distension in lactating rats (Dreifuss et al. 1976) might reflect a decreased inhibitory
tone on SON neurones in these rats, in which neurohypophysial hormone release would not
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any deleterious effects. Thus, our observations and previous reports can both be

accommodated by the postulation of an inhibitory influence on supraoptic neurones that is

predominantly present at term, when the control of neurohypophysial hormone release is of

critical importance. Likely candidates involved in such regulation are endogenous opioids,

which restrain supraoptic neurones at term (Bicknell et al. 1988c) and whose inhibitory

control is augmented in late pregnancy, when plasma progesterone concentrations decline

(Soaje & Deis 1994).

In summary, we have shown that pulsatile administration of oxytocin to late pregnant

rats initiates synchronised activity in the uterus and the cervix, which could represent a potent

stimulus for activation of afferent pathways and the increased electrical activity of supraoptic

neurones necessary for the release of large amounts of neurohypophysial hormones during

parturition. Together with the reported observation that delivery can be induced in

anaesthetised rats with such oxytocin treatment (Douglas et al. 1994), we have provided a

model which allows to use electrophysiological recording to investigate the regulation of the
reflex release of neurohypophysial hormones in term pregnant rats.
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Fig. 7.1. Electrical activity of supraoptic neurones in term pregnant anaesthetised rats
Neuronal activity (upper trace, spikes/sec) and uterine pressure (lower trace, in
mmHg) of two supraoptic neurones recorded in term pregnant rats under sodium
pentobarbitone anaesthesia (30-40 mg/kg body weight). Both cells, a putative
oxytocin (Top) and vasopressin (Bottom) cell were identified by their response to
an intravenous injection of CCK (20 pg/kg body weight).
There was no significant change in electrical activity for either cell or uterine
activity in the course of the 1 hour recordings.
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Fig. 7.2. Effects of CCK on electrical activity of supraoptic neurones and uterine and
cervical pressure in term pregnant anaesthetised rats
Neuronal activity (middle trace, spikes/sec), uterine pressure and cervical pressure
(in mmHg) were recorded in two anaesthetised animals injected intravenously with
CCK (20 pg/kg body weight).
The putative oxytocin neurone responded to an injection of CCK with an increase
in firing rate (Top), while the putative vasopressin neurone showed a decrease in
firing rate (Bottom). In contrast, uterine and cervical activity were not affected by
the injections of CCK.
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Fig. 7.3. Electrical activity of a supraoptic oxytocin neurone and uterine pressure in a
term pregnant anaesthetised rat during a 4 hour oxytocin treatment
Neuronal activity (upper trace, spikes/sec) and uterine pressure (lower trace, in
mmHg) of a supraoptic oxytocin neurone were recorded throughout the 4 hour
oxytocin pulse treatment (arrow = pulse of oxytocin: 10 mU each 10 min for 2
hours and then 20 mU each 10 min for 2 hours).
Electrical activity as well as uterine pressure increased gradually in the course of
the treatment.
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Fig. 7.4. Electrical activity of a supraoptic vasopressin neurone and uterine pressure in
a term pregnant anaesthetised rat during a 4 hour oxytocin treatment
Neuronal activity (upper trace, spikes/sec) and uterine pressure (lower trace, in
mmHg) of a supraoptic vasopressin neurone was recorded throughout the 4 hour
oxytocin pulse treatment (arrow = pulse of oxytocin, details see Fig. 7.3.).
Electrical activity as well as uterine pressure increased in the course of the
treatment.
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Fig. 7.5. Uterine pressure and supraoptic neurone activity in response to an injection
of CCK and oxytocin
Neuronal activity (middle trace, spikes/sec) of a supraoptic oxytocin neurone (as
identified by the increase in firing rate to CCK) and uterine pressure were recorded
from both uterine horns (upper and lower trace, in mmHg) of a term pregnant
anaesthetised rat during the first 2 hours of the oxytocin pulse treatment (arrow =
a pulse of 10 mU oxytocin).
While there was no significant increase in uterine pressure in response to an
injection of CCK, uterine pressure in both homs increased with the first injection
of oxytocin.
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Fig. 7.6. Uterine pressure and supraoptic oxytocin neurone activity during the oxytocin
treatment

Neuronal activity (middle trace, spikes/sec) of a putative oxytocin neurone and
uterine pressure recorded from both uterine horns (upper and lower trace, in
mmHg) of a term pregnant anaesthetised rat were recorded during the 3rd hour of
the 4 hour oxytocin pulse treatment (arrow = a pulse of 20 mU oxytocin).
There was a significant increase in firing rate of the putative oxytocin neurone in
the course of the recording and concomitantly an increase in uterine pressure that
was synchronised between the two horns.
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Fig. 7.7. Uterine and cervical pressure and contraction amplitude during the oxytocin
treatment

Top: The change in uterine pressure and contraction amplitude (n=4) during and
after the 4 hour oxytocin pulse treatment was expressed as % change from
baseline (= 100%).
Uterine pressure significantly increased and contraction amplitude decreased in the
course of the treatment compared to the baseline value (= assessed during a period
before any treatment, *p<0.05, U-test).
Bottom: Likewise, the change in cervical pressure and contraction amplitude
(n=2) was expressed as % change form baseline (= 100%) during and after the 4
hour oxytocin pulse treatment. Because of n=2 for all cervical measurements, the
two individual values are indicated as filled circles.
In both animals analysed, there was a decrease in cervical pressure and an increase
in the contraction amplitude during the oxytocin treatment.
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Fig. 7.8. Concomitant recording of uterine activity from both horns and electrical
activity of an oxytocin neurone during the oxytocin pulse treatment
Electrical activity of a putative oxytocin neurone (spikes/sec) and uterine pressure
(in mmHg) recorded simultaneously from both uterine homs are shown at various
times during the 4 hour oxytocin pulse treatment (arrow = a pulse of oxytocin).
Top: 2nd hour of the treatment, Middle: 3rd hour of the treatment, Bottom: 4th
hour of the treatment.

In the course of the treatment, uterine contractions became more synchronised
between the two homs. The firing rate showed, albeit not consistently, an increase
in spike activity following an injection of oxytocin.
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Fig. 7.9. Oxytocin neurone activity and uterine and cervical pressure during the
oxytocin treatment
Electrical activity of a putative oxytocin neurone (middle trace, spikes/sec),
uterine pressure (upper trace, in mmHg) and cervical pressure (lower trace, in
mmHg) were recorded from a term pregnant anaesthetised rat during the last 2
hours of the oxytocin pulse treatment (arrow = a pulse of 20 mU oxytocin). At the
end of the recording the cell was identified by an increase in firing rate to CCK as
a putative oxytocin neurone.
The contraction amplitude of the cervix increased in the course of the treatment,
while neither uterine nor cell activity exhibited a significant change during the
oxytocin treatment.
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Fig. 7.10. Oxytocin neurone activity and uterine and cervical pressure during the
oxytocin treatment
Electrical activity of a putative oxytocin neurone (lower trace, spikes/sec), uterine
pressure (top trace, in mmHg) and cervical pressure (middle trace, in mmHg) are
shown at various times during the 4 hour oxytocin pulse treatment (arrow = a
pulse of oxytocin). Top: 2nd hour of the treatment, Middle: 3rd hour of the
treatment, Bottom: 4th hour of the treatment. The cell was identified by an
increase in firing rate in response to an injection of CCK as a putative oxytocin
neurone.

Unlike the cell, neither the uterus nor the cervix were affected by the injection of
CCK. However, we observed an increasing number of pressure peaks in the cervix
in the course of the treatment that were usually accompanied by peaks of smaller
magnitude in the uterus. These peaks were not related to injections of oxytocin and
could reflect abdominal straimng.
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Fig. 7.11. Vasopressin neurone activity and uterine and cervical contractions in relation
to oxytocin pulses
Electrical activity of a putative vasopressin neurone (middle trace, spikes/sec),
uterine pressure (top trace, in mmHg) and cervical pressure (bottom trace, in
mmHg) recorded at various times during the 4 hour oxytocin pulse treatment
(arrow = a pulse of oxytocin) are shown. Top: 1st hour of the treatment, Middle:
2nd hour of the treatment, Bottom: 4th hour of the treatment.
The phasic activity of the putative vasopressin neurone showed a progressive
increase in spike frequency and a shortening of the silent periods in the course of
the treatment. Concomitantly, uterine contractions became more regular and
cervical contractions increased in amplitude and frequency. During the last hour of
the treatment we observed more often a synchronised activity between the uterus
and the cervix than at the beginning of the treatment. In response to some of the
oxytocin injections, the cell showed a silent period.
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Fig. 7.12. Effects of an injection of CCK on uterine and cervical activity
Uterine pressure (top trace, in mmHg) and cervical pressure (bottom trace, in
mmHg) at the end of the 4 hour oxytocin pulse treatment (arrow = 20 mU
oxytocin) and in response to an injection of CCK are shown.
In response to the last injection of oxytocin, intrauterine pressure and cervical
contraction amplitude increased, while a subsequent injection of CCK had no
additional effect on either the uterus or the cervix.
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Fig. 7.13. Effect of an injection of CCK on uterine and cervical activity
Electrical activity of a putative vasopressin neurone (middle trace, spikes/sec,
identified by the decrease in firing rate in response to CCK), uterine pressure (top
trace, in mmHg) and cervical pressure (bottom trace, in mmHg) recorded after
discontinuation of the 4 hour oxytocin pulse treatment are shown. Top: 10 min
after the last oxytocin injection, Bottom: 20 min after the last oxytocin injection.
An injection of CCK triggered a series of high amplitude contractions that were
synchronised between the uterus and the cervix.
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Fig. 7.14. Effects of intermittent oxytocin injections on oxytocin and vasopressin
neurone activity
Neuronal activity (upper trace, spikes/sec) of two supraoptic neurones (Top: a
putative oxytocin neurone, Bottom: a putative vasopressin neurone) and uterine
pressure (lower trace, in mmHg) were recorded during the oxytocin treatment.
The oxytocin neurone displayed more often an increase in firing rate following an
injection of oxytocin, while the vasopressin neurone displayed more often a
transient decrease in firing rate after the injections.
The uterus in one animal showed an inconsistent and small response to the
oxytocin injections (Top), while in the other animal uterine pressure increased in
response to each oxytocin injection (Bottom).
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Fig. 7.15. Oxytocin and vasopressin neurone activity in relation to
Mean spike activity (spikes/sec) of four supraoptic cells
immediately after each oxytocin pulse (filled bars) and at
oxytocin pulses (shaded bars) was calculated.
Top: Two putative oxytocin neurones.
Left: The firing rate immediately after an injection of oxytocin (filled bars) was
more often higher than at mid-time between two injections (shaded bars). Though
this pattern was apparent throughout the treatment, the difference between the two
values was more often significant in the second half of the treatment (*p<0.05, t-
test for the two respective values). Furthermore, there was a gradual increase in
spike activity in the course of the first 2-3 hours of the treatment, but a decline in
spike activity thereafter.
Right: Here, the firing rate immediately following a pulse of oxytocin (filled bars)
was more often lower than at mid-time between two pulses (shaded bars), however
the difference between the two values was not significant for any of the injections.
Bottom: Two putative vasopressin neurones.
Left: Unlike the oxytocin neurone, the vasopressin neurone showed always a
higher firing rate at mid-time between two oxytocin injections (shaded bars)
compared to that immediately following an injection (filled bars). However the
difference between the two values was significant only during the first half of the
treatment (*p<0.05, t-test for the two respective values). The overall firing rate
showed a progressive increase in the course of the treatment.
Right: Similar to the vasopressin cell described above, this cell showed more often
a higher firing rate at mid-time between two injections (shaded bars) than
immediately following an injection of oxytocin (shaded bars), though the
difference between the two values was in most cases not significant (*p<0.05, t-
test for the two respective values). The overall firing rate showed, similar to the
previously described vasopressin cell, a progressive increase in the course of the
treatment.

oxytocin pulses
during 2x60 sec bins
mid-time between two
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Fig. 7.16. Synchronisation between neuronal activity and uterine pressure
Electrical activity of a putative vasopressin neurone (upper trace, spikes/sec) and
uterine pressure (lower trace, in mmHg) during three 20 min periods throughout
the oxytocin treatment (arrow = a pulse of oxytocin) are shown. Top: 1st hour.
Middle: 2nd hour, Bottom: 3rd hour.
There was a marked synchronisation between the phasic activity of the putative
vasopressin neurone and uterine contractions. Furthermore, the cell displayed in
response to most of the oxytocin injections a silent period.
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uterine pressure i 1
5 mmHg

Fig. 7.17. Correlation between vasopressin neurone activity and uterine pressure
Correlation analysis of electrical activity of a supraoptic vasopressin neurone and
uterine pressure was performed for each 200 s interval of the entire 4 hour
oxytocin pulse treatment.
There was a significant correlation for most of the 200 s intervals and thus an
overall highly significant correlation between the increase in electrical activity and
uterine pressure (r2=0.46, p<0.01, Genstat analysis).

Fig. 7.17a. Vasopressin neurone activity in relation to uterine contractions
Top: Correlation of electrical activity (spikes/sec) of a putative vasopressin
neurone (same as in Fig. 7.16.) with uterine activity in relation to the oxytocin
injections was calculated for each 80 sec (in 1 sec bins) during the last 2 hours of
the oxytocin pulse treatment.
Bottom: Uterine activity was correlated with itself for the same period.
There was a striking synchronisation of electrical activity and uterine pressure,
following each pulse of oxytocin.
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oxytocin neurone

Fig. 7.18. Effects of cervical pressure changes on oxytocin neurone activity
Electrical activity of a putative oxytocin neurone (spikes/sec) was recorded during
180 sec prior to (black bars) and immediately after (shaded bars) de- and inflation
(+1.5-3 ml saline) of a balloon placed in the cervix.
Electrical activity decreased consistently and significantly in response to an acute
increment in uterine pressure, while reduction of uterine pressure resulted in an
increase in spike activity (*p<0.05, t-test, for comparison of the respective pre-
and post-stimulus value).

Fig. 7.18a. Effects of cervical pressure changes on oxytocin neurone activity and uterine
pressure
Electrical activity of a putative oxytocin neurone (middle trace, spikes/sec) and
uterine pressure (lower trace, in mmHg) were recorded in response to de- and
inflation of a balloon placed in the cervix (+1.5-3 ml saline, upper trace). Top:
Entire 50 min recording. Bottom: High magnification view of the time period
indicated in the top trace by a shaded bar.
There was a decrease in neuronal activity in response to an increase in cervical
pressure and an increase in firing rate following subsequent decrease in cervical
pressure, while uterine pressure was not affected by cervical pressure
manipulations.
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vasopressin neurone
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Fig. 7.19. Effects of cervical pressure changes on vasopressin neurone activity
Electrical activity of a putative vasopressin neurone (spikes/sec) was calculated
during 180 sec prior to (black bars) and immediately after (shaded bars) de- and
inflation (+1.5-3 ml saline) of a balloon placed in the cervix was assessed.
Electrical activity increased in response to deflation of the uterine balloon in 3/6
times and decreased following inflation in 4/5 times, however these changes in
electrical activity in response to uterine pressure manipulations were less
consistently observed than in the case of the oxytocin cell (see Fig. 7.18, *p<0.05,
t-test, for comparison of the pre- and post-stimulus value).

Fig. 7.19a. Effects of cervical pressure changes on vasopressin neurone activity and
uterine pressure
Electrical activity of a putative vasopressin neurone (middle trace, spikes/sec) and
uterine pressure (lower trace, in mmHg) in response to de- and inflation of a
balloon placed in the cervix (+1.5-3 ml saline, upper trace). Top & Bottom are
two subsequent 50 min periods during the same recording.
Though we observed mostly decrease in neuronal activity in response to an
increase in cervical pressure and an increase in firing rate following subsequent
decrease in cervical pressure in half of the cases, the effects of cervical pressure
manipulations on vasopressin neurone activity were less marked than those
observed for the oxytocin cell (see Fig. 7.18a).
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Fig. 7.20. Effects of uterine distension on vasopressin neurone activity and cervical
contractions
Electrical activity of a putative vasopressin neurone (middle trace, spikes/sec) and
cervical pressure (upper trace, in mmHg) in response to uterine distension (1.5-3
ml) via a balloon placed in one uterine horn (uterine pressure: lower trace, in
mmHg) were assessed. Top: Entire 50 min recording. Bottom: High
magnification view of the time period indicated in the top trace by a shaded bar.
We observed no significant change in firing rate or in cervical pressure in response
to uterine distension via a balloon, possibly because the resulting pressure changes
in the uterus were rather small.
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Fig. 7.21. Effects of uterine pressure changes on vasopressin neurone activity
Electrical activity of a putative vasopressin neurone (spikes/sec) was assessed
during 10 min before (black bar) and after (shaded bar) a large decrease in utenne
pressure induced by deflation of a balloon (3-4 ml) placed in one uterine horn.
Electrical activity increased significantly in response to the decrement in uterine
pressure (*p<0.05, t-test, for comparison of the pre- and post-stimulus value).

Fig. 7.21a. Effects of uterine pressure changes on vasopressin neurone activity and
cervical contractions
Electrical activity of a putative vasopressin neurone (middle trace, spikes/sec) and
cervical pressure (lower trace, in mmHg) were assessed in response to a large
decrease in uterine pressure (upper trace, decrease by 150-200 mmHg).
Concomitantly with the decrease in uterine pressure, the firing rate of the putative
vasopressin neurone increased in the course of 10-15 min (compared to a period of
the same duration before the pressure change) and at the same time the frequency
of high amplitude cervical contractions decreased.
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Fig. 7.22. Effects of F382 and CCK on vasopressin neurone activity
Electrical activity of a putative vasopressin neurone (spikes/sec) was assessed
during 15 min before (black bar) and after (shaded bar) an injection of the
oxytocin receptor antagonist F382 (30 fig/kg body weight iv) and 120 sec before
(black bar) and after (shaded bar) an injection of CCK (20 pg/kg body weight iv).
There was a significant increase in spike activity following an injection of F382
and a significant decrease in spike activity in response to an injection of CCK
(*p<0.05, t-test, comparing the respective pre- and post-stimulus values).

Fig. 7.22a. Effects of F382 and CCK on vasopressin neurone activity and uterine
pressure
Electrical activity of a putative vasopressin neurone (upper trace, spikes/sec) and
uterine pressure (lower trace, in mmHg) were recorded in response to F382 (30
pg/kg, Top & Bottom) and CCK (20 pg/kg, Top). Bottom: Higher magnification
view of the period indicted in the top trace by a shaded bar.
Uterine pressure showed a rapid decrease in response to an injection of F382,
while the contraction frequency and amplitude were not affected. Concomitantly
with the decrease in uterine pressure, the firing rate of the vasopressin neurone
increased significantly in the course of 15 min following the injection of F382. In
contrast, in response to an injection of CCK, neuronal firing rate declined rapidly
and significantly (see Fig. 22), whereas uterine pressure showed no marked
change.
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Fig. 7.23. Effects of cervical probing on oxytocin and vasopressin neurone activity
Electrical activity of a putative oxytocin (Top) and vasopressin (Bottom) neurone
was assessed during 60 sec before (black bars) and after (shaded bars) vaginal
probing.
Both neurones responded to vaginal probing with a significant decrease in
electrical activity (*p<0.05, t-test for the two respective values).

Fig. 7.23a. Effects of cervical probing on oxytocin and vasopressin neurone activity and
uterine pressure
Electrical activity of a putative oxytocin neurone (Top, lower trace, spikes/sec)
and a putative vasopressin neurone (Bottom, lower trace, spikes/sec) and uterine
pressure (upper traces, in mmHg) were recorded in response to vaginal probing (p

- vaginal probing).
Both neurones were transiently inhibited following vaginal probing. In the case of
the vasopressin neurone, for which electrical activity was recorded during repeated
probings, the observed decrease in firing rate was reproducible. In contrast,
uterine pressure was not affected by vaginal probing.
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General Discussion

I started the presented studies with two main objectives: firstly, to assess the importance
of endogenous oxytocin for parturition in the rat and secondly, to investigate afferent

pathways involved in oxytocin secretion during late pregnancy and parturition.
The role for oxytocin during labour and delivery has remained controversial due to the

apparent lack of a dramatic increase in plasma oxytocin concentrations until delivery. Here,
we have demonstrated the importance of oxytocin for normal delivery in rats and we have also

provided evidence for an intermittent release of oxytocin, that is critical for the normal

progress of parturition, since pulsatile, but not continuous, administration of physiological
doses of oxytocin was effective at sustaining the normal progress of delivery in rats in which

pituitary oxytocin secretion had been inhibited by an injection of morphine. Similarly, in

humans, pulsatile release of oxytocin has been described during spontaneous delivery

(Dawood 1989, Fuchs et al. 1991) and pulsatile administration of oxytocin has been shown to

be more effective at inducing labour and delivery than a continuous infusion (Dawood 1989).
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The apparent importance of the pattern of oxytocin release supports the hypothesis that

the hypothalamus plays a key role in controlling parturition. Though the finding of large

quantities of oxytocin mRNA in the uterus of term pregnant rats has led to the suggestion that
the uterus might be a major source of oxytocin during parturition, the amount of oxytocin

peptide present in the term pregnant rat uterus is less than 1/100 of that in the posterior

pituitary (c.f. Lefebvre et al. 1992b and Fuchs & Saito 1971), indicating that, unlike in the

posterior pituitary, oxytocin is not stored in the uterus, but is constitutively released. Such a

mismatch between the amount of the oxytocin transcript and peptide has also been observed in
the rat testis and a post-transcriptional block has been postulated with regard to oxytocin in

gonadal tissues of the rat (Foo et al. 1991). Since a common feature of oxytocin mRNA found

in gonadal tissues is a shorter poly(A) tail compared to the hypothalamic transcript (Lefebvre
et al. 1992b, Foo et al. 1991), this might indicate a less efficient translation of the transcript

(Carter & Murphy 1991, Zingg & Lefebvre 1989) and might hence represent a mechanism by
which unnecessary translation is prevented in peripheral tissues. However, even small

amounts of uterine oxytocin could have paracrine effects, mediated via endometrial oxytocin

receptors, including the stimulation of prostaglandin synthesis and release, the latter of which
contributes to the induction of myometrial oxytocin receptors and enhances uterine activity

(Chan et al. 1988, 1993, Fuchs 1987). Increased uterine activity could then lead to the

positive feedback onto supraoptic neurones and oxytocin release. The physiological

importance of this positive feedback loop is strengthened by the delay of the onset of delivery

following administration of an oxytocin receptor antagonist, which reduces uterine activity, to

late pregnant rats (see chapter four).

Furthermore, the critical role of uterine activity in stimulating the release of pituitary

oxytocin is supported by the observation that when labour and delivery are initiated by

pulsatile oxytocin treatment, the progress of delivery is maintained even after the
discontinuation of the treatment. In contrast, a continuous infusion of oxytocin, that augments

uterine activity to a lesser extent than pulses of oxytocin (Randolph & Fuchs 1989), has been

reported previously to be unable to induce pituitary oxytocin release, albeit that such infusion
results in preterm labour and delivery (Fuchs & Poblete 1970). Here, we have shown, using
Fos immunoreactivity as a marker for neuronal activation, that in response to pulsatile

oxytocin treatment in late pregnancy, Fos expression is increased in supraoptic neurones and
in putative afferent neurones in the brainstem. This increase in Fos expression, that was

observed regardless of whether rats started to deliver during such treatment or not, mimicked
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Fos expression seen during spontaneous delivery, suggesting that delivery of pups itself is not

necessarily the critical stimulus for the initiation of the reflex release of oxytocin. Indeed, in
the last chapter, we consolidated our hypothesis that uterine activity is a critical stimulus for

magnocellular neurones by showing that electrical activity of supraoptic neurones increases

concomitantly with the gradual augmentation of uterine pressure induced by intermittent

oxytocin administration to late pregnant rats. Thus, we have established a model, using

pulsatile oxytocin treatment of late pregnant rats, which makes it possible to study the afferent

projections from the uterus to the SON in anaesthetised rats and thus to investigate the
relevance of afferent projections for the initiation of neurosecretory activity in term pregnant

rats.

In summary, we have been able to establish the importance of pituitary oxytocin release,

induced, at least partly, by uterine activity in late pregnant rats, for the initiation and
maintenance of delivery. In addition, we have made some observations which opened up new

questions and which require further investigation before the physiological relevance of these
results can be fully understood. In the last chapter, I described a significant correlation
between uterine contractions and electrical activity of magnocellular neurones in the course of
the oxytocin pulse treatment, indicating the existence of an afferent pathway from the uterus

to the SON, which might serve to synchronise neuronal activity and thus possibly to improve
the efficiency of hormone release. Since the most striking synchronisation was observed for
uterine contractions and vasopressin cell activity, the release of vasopressin, in addition to that
of oxytocin, during labour and delivery seems to play a physiological role, which at present

remains unclear. Since vasopressin is a potent vasoconstrictor, it could help to maintain blood

pressure during delivery (that is accompanied by a substantial blood loss). Furthermore,
vasoconstriction has been shown to augment intrauterine pressure, at least following electrical
nerve stimulation (Hutchison et al. 1994) and thus vasopressin might contribute to the
induction of uterine activity at term. Vasopressin receptors are present in the rat uterus (Chan
et al. 1990) and in humans and rabbits vasopressin receptors mediate uterine activity (Maggi
et al. 1991a, 1992) and hence both oxytocin and vasopressin might act synergistically to

initiate uterine activity, although only the oxytocin receptor density increases dramatically at

term (Maggi et al. 1991a). Alternatively, I would like to suggest that vasopressin release at

term could help to prevent premature release of oxytocin via the postulated co-release of

dynorphin (Bondy et al. 1989b), an endogenous kappa opioid receptor agonist, that is co-

expressed with vasopressin in secretory granules of magnocellular neurones (Watson et al.
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1982) and could, upon secretion, inhibit via kappa opioid receptors, oxytocin release either at

the hypothalamic (Sumner et al. 1992) or the neurohypophysial level (Bondy et al. 1989b,
Herkenham et al. 1986). Since an opioid inhibition of prolactin release in term pregnant rats is
enhanced by the normal decline of plasma progesterone concentrations (Soaje & Deis 1994),

changes in gonadal steroid concentrations could be critical for the control of preterm release of

oxytocin.
An inhibition of oxytocin cell activity might be particularly important at a time when the

cervix is not fully softened, since at that time release of oxytocin would result in an increase in
intrauterine pressure, which would endanger the foetus(es) that cannot yet be expelled. This

hypothesis is in agreement with our observation that vaginal probing inhibited oxytocin cell

activity (and hence hormone release). However, in response to such an acute stimulus as

vaginal probing vasopressin neurone activity was similarly reduced, indicating that both types

of magnocellular neurones are under an inhibitory control at term, possibly because both types

of neurohypophysial hormones can induce uterine activity. By contrast, in the course of
induced or spontaneous labour, the cervix is softened (Olah et al. 1991) and this is reflected

by the increase in amplitude of cervical contractions (see chapter seven), which would seem to

be the appropriate stimulus for oxytocin (and vasopressin) release.
The activation of both supraoptic vasopressin and oxytocin neurones during labour, and

particularly in response to oxytocin-induced labour, is supported by the detection of Fos

protein in both types of neurones (see chapter three). Though Fos expression is an indirect
measurement of neuronal activity and in magnocellular neurones of hormone release, a large

body of evidence in addition to that provided in this work supports the association of Fos

expression with neurosecretory activity in the magnocellular hypothalamus (Hamamura et al.

1991a, 1991b, Luckman et al. 1993a, Verbalis et al. 1991b). In contrast, the absence of Fos

expression in the SON does not necessarily indicate a lack of oxytocin secretion, as seen in
rats injected with CCK following pretreatment with a CCKB receptor antagonist (see chapter
two and Luckman et al. 1993b). However, the conclusion drawn from our studies in parturient
rats treated with morphine and in rats treated with progesterone on day 20 of pregnancy, that
reduced expression of Fos in the SON indeed reflects reduced secretion, seems warranted for
two reasons: first, an injection of morphine to parturient rats has been shown previously to

inhibit oxytocin secretion (Russell et al. 1989b, 1991) and second, the impaired progress of

delivery in both morphine- and progesterone-treated rats is improved by administration of

exogenous oxytocin.
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The role of the immediate early gene c-fos is generally considered to involve induction of
late genes (Sheng & Greenberg 1990), through binding of Fos heterodimers to so-called AP-1
sites contained within the respective late genes. However, the vasopressin and the oxytocin

gene possess only a site which differs from the canonical AP-1 site by one base (Leng et al.

1993a) and to which binding of Fos has not yet been demonstrated. Thus, the exact role of Fos

expression during parturition in supraoptic neurones awaits further investigation. Since in the

SON, Fos expression in response to increased neurosecretory activity is dependent on trans-

synaptic activation and not on spike activity per se (Luckman et al. 1994), this observation

opens up the possibility that neurotransmitter(s) themselves modulate Fos expression in

postsynaptic elements. Such stimulus specificity, which could explain the lack of a simple

relationship between immediate early gene induction and the amount of hormone secretion,

might involve activation of distinct subpopulations of NTS neurones that project to the

hypothalamus and, as shown recently, co-localise different neurotransmitters (Kawai et al.

1988, Sawchenko et al. 1985, 1988a, 1988b, 1990). Thus, depending on the stimulus, a

specific subpopulation of afferent neurones could be activated, resulting in the release of a

certain combination of neurotransmitters within the hypothalamus and hence differential
stimulation of second messenger systems in the postsynaptic neurone, which might account for
the observed differences in immediate early gene expression. Since labour is associated with

pain and stress (Bonica & McDonald 1990), this might lead to activation of afferent pathways
in addition to those stimulated by uterine contractions and hence contribute to the induction of

Fos expression and oxytocin release during parturition (Jezova et al. 1993, Lightman &

Young 1989, Smith & Day 1994, Walker et al. 1992). This might be particularly the case

during oxytocin-induced labour, which is characterised by stronger uterine activity than

spontaneous labour (Randolph & Fuchs 1989) and activates, unlike normal labour, supraoptic
and putative afferent NTS neurones prior to delivery of pups (see chapter three). Though in

rats, noxious stimuli not involved in reproduction, e.g. hindpaw pinches, also stimulate

magnocellular oxytocin neurones and oxytocin release (Akaishi et al. 1988, Onaka & Yagi

1991), in the NTS (Bailey & Wakerley 1994) and the PVN (Akaishi et al. 1988) there is a

degree of specificity with regard to neuronal subpopulations activated in response to footpinch
and vaginal distension. Hence some of the Fos-immunoreactive neurones in the hypothalamus

and the NTS during parturition are likely to reflect specific activation of afferent neurones and

magnocellular neurones in response to labour, while others might be activated due to the

accompanying pain and stress.
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Since vaginal distension seems to be a less potent stimulus for oxytocin release than

suckling (Poulain & Wakerley 1982), uterine activity might have to reach a certain threshold
before magnocellular neurone activation can occur. At the end of pregnancy, gonadal steroid
concentrations show a typical change, namely an increased ratio of plasma

oestrogen/progesterone concentrations (Csapo et al. 1980), that in turn seems to modulate the

excitability of hypothalamic neurones in vitro (Kow et al. 1991) and the sensitivity of

magnocellular oxytocin neurones to vaginal-cervical stimulation in vivo (Negoro et al. 1973a,

1973b). Thus, progesterone treatment of late pregnant rats might reduce the responsiveness of

magnocellular oxytocin neurones to the uterine activity during spontaneous labour.
In humans, uterine activity in the last trimester of pregnancy is increased at night,

coinciding with high plasma oxytocin concentrations (Fuchs et al. 1992) and the latter are

strongly correlated with the ratio of plasma oestrogen/progesterone concentrations. In

baboons, it has been shown that plasma oestrogen and progesterone concentrations both
exhibit a nocturnal surge during the third trimester of pregnancy (Wilson et al. 1991) and that
in the last 10 days prior to delivery, the oestrogen surge is shifted forward, resulting in an

increased ratio of plasma oestrogen/progesterone, that is associated with increased uterine

activity (Wilson et al. 1991). This indicates that an alteration in the circadian rhythm of

gonadal steroid plasma concentrations might be involved in the initiation of labour. An
interference with these circadian rhythms, e.g. by an injection of progesterone (see chapter

five), might have contributed to the observed delay in the onset of parturition in our

experiments.

During parturition, Fos is also expressed in putative afferent neurones in the brainstem
and I have shown, using double immunocytochemistry, that in parturient and late pregnant

rats a significant proportion of Fos immunoreactive nuclei is found in catecholaminergic
neurones in the NTS. Since firstly, the catecholaminergic cell group in the NTS represents a

major excitatory pathway to magnocellular oxytocin neurones in the SON and PVN (Onaka et

al. 1995, Raby & Renaud 1989a, 1989b, Rinaman et al. 1994, Sawchenko & Swanson

1982a) and secondly, the NTS receives sensory information from the pelvic reproductive

organs, including the uterus (Hubscher & Berkley 1994, Ortega-Villalobos 1990), this nucleus
is likely to be involved in the mediation of oxytocin release during parturition.

Further evidence for the importance of an afferent input from the uterus for oxytocin
release during delivery is provided by the observation that following progesterone treatment of
late pregnant rats, pulsatile oxytocin could not induce delivery on the day of expected term.
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This is consistent with the hypothesis that when the expression of functional uterine oxytocin

receptors is delayed by progesterone treatment (Fuchs et al. 1983, Maggi et al. 1991a), the
uterus remains relatively insensitive to oxytocin and thus the positive feedback of uterine

activity onto magnoceliular oxytocin neurones is prevented. However, at the time of

spontaneous parturition progesterone-treated rats still fail to show a normal increase in Fos

expression in the SON, while Fos expression in the NTS is not affected. These data imply that

during such delayed delivery the afferent input from the uterus to the NTS is intact, but the

excitatory projection from the NTS to the SON is impaired. This hypothesis is supported by
our data showing altered TH immunoreactivity and TH mRNA expression, namely a reduced

number of TH containing cells at the time of parturition and lower TH mRNA content on day
21 of pregnancy in NTS neurones of progesterone-treated rats and suggests that progesterone

might act at the level of catecholaminergic NTS neurones, possibly by affecting TH gene

transcription and translation and thus the excitatory input from the NTS to the SON. Up till

now, there is little data on the relationship between TH mRNA expression and catecholamine

release from axon terminals. However, electrical stimulation of catecholaminergic Al

neurones leads to increased noradrenaline release in the preoptic area (Herbison et al. 1990)
and is followed within less than one hour by an increase in TH mRNA expression in the same

cell group (Liaw et al. 1992b), pointing to the possibility that TH gene expression and

transmitter release or electrical activation are somehow correlated. Furthermore, the a2-

adrenoreceptor mediated autoinhibition of catecholamine release in the hypothalamus is
attenuated by oestrogen (Karkanias & Etgen 1993) and hence at term, when the ratio of

oestrogen/progesterone plasma concentrations is elevated, even small amounts of

catecholamines would be expected to lead to a more pronounced excitation compared to mid-

pregnancy, when plasma progesterone levels are high.
Since magnocellular neurones in rats and monkeys do not express nuclear gonadal

steroid receptors (Bethea et al. 1994, Fox et al. 1990, Rhodes et al. 1991a, Sar 1988), while

catecholaminergic neurones in the NTS contain oestrogen receptors, the latter are targets for

gonadal steroid modulation (Heritage et al. 1977, 1980). Other workers have described an

inhibitory effect of progesterone on TH mRNA expression and a negative correlation of TH

activity, measured by the accumulated metabolite concentration, and plasma progesterone

concentrations in vivo (Arbogast & Voogt 1993, Liaw et al. 1992a, 1992b, Wang & Porter

1986), which is in agreement with our observations. The observation that in normal pregnant
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rats there is an increase in TH mRNA expression in the NTS prior to delivery could indicate
an involvement of this pathway in priming neurosecretory oxytocin neurones for the

coordinated burst-like increase in electrical activity seen during delivery and lactation (Belin

& Moos 1986, Lambert et al. 1993, Moos & Richard 1989), which is critical for the release

of large amounts of oxytocin.
In addition, morphological changes in the magnocellular hypothalamus and the neural

lobe of late pregnant rats, including an increased apposition between oxytocin neurones in the
former and a greater access of axon terminals to the capillaries in the latter (Theodosis et al.

1984, 1986a, Tweedle & Hatton 1982), have been implicated in the facilitation of bursting

activity and hormone release. In vitro, morphological changes of posterior pituitary glial cells
can be induced within hours by catecholamine administration (Bicknell et al. 1989, Luckman
& Bicknell 1990). Though a similar involvement of catecholamines for the induction of
structural plasticity in vivo has not yet been shown, the neural lobe receives a direct

noradrenergic projection from NTS neurones (Bicknell et al. 1988a, Garten et al. 1989,

Saavedra 1985). Furthermore, in the developing rat brain, ascending catecholaminergic

pathways have been implicated in the organisation of synaptic contacts (Parnavelas & Blue

1982). Thus, the observed acute changes in TH mRNA expression and TH immunoreactivity
in brainstem neurones of late pregnant rats could indicate a contribution of a noradrenergic

projection from the NTS to the initiation of structural plasticity in the neural lobe and possibly
in the hypothalamus at the end ofgestation.

However, the significance of morphological changes in suckled rats for the bursting

activity and increased hormone release seems to be permissive rather than causal for the

synchronised high frequency discharge of the oxytocin neurone population, since similar

morphological changes are also observed during chronic dehydration (Chapman et al. 1986,
Theodosis et al. 1986a), a condition that is not accompanied by a burst-like discharge of

oxytocin neurones (Leng et al. 1993b). Thus, once the morphological changes have taken

place, additional factors seem necessary to generate the bursting activity of oxytocin neurones,

possibly including the intranuclear release of oxytocin, that is more pronounced during

parturition and lactation (Moos & Richard 1989, Moos et al. 1992, Neumann et al. 1993)
than following hyperosmotic stimulation (Moos et al. 1992) and enhances the burst amplitude
of oxytocin neurones (Lambert et al. 1993, Moos & Richard 1989, Neumann et al. 1995) and
hence the amount of hormone released from the posterior pituitary. The release of intranuclear

oxytocin release in turn, might be dependent on a gating mechanism that involves the
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synergistic actions of transmitter co-release. In this respect, glutamate, an excitatory amino
acid widely distributed in the brain, including the hypothalamus, might play an important role:

1) glutamate has been implicated in the release of most pituitary hormones, including oxytocin
and vasopressin (Brann 1995), 2) a high density of glutamate-containing nerve terminals has
been described in the SON (Meeker et al. 1989), 3) patch-clamp analysis has shown that

g'utamate could account for almost all fast excitatory postsynaptic potentials (EPSP) in the
rat SON (Wuarin & Dudek 1993) and finally electrophysiological recordings form supraoptic
neurones suggest that activation of non-NMDA receptors might be critical for the induction of
clustered spike activity (Hu & Bourque 1992). A physiological significance of glutamate for

bursting activity of supraoptic neurones is further supported by the observation that central

co-administration of AMPA and aradrenergic agonists greatly potentiates the excitatory
effects of the adrenergic agonist on oxytocin release in lactating rats (Parker & Crowley

1993b).

Likewise, NPY has been demonstrated to have an enhancing effect on ^-adrenergic

agonist-induced oxytocin release in lactating rats (Parker & Crowley 1993a), indicating that

synergistic actions of neurotransmitters might represent a mechanism by activation of

magnocellular neurones can be greatly enhanced without being reflected by a dramatic
increase in any one transmitter release. This hypothesis also supports a physiological
relevance of the described co-expression of NPY in a subset of catecholaminergic NTS
neurones that project to the hypothalamus (Sawchenko et al. 1985) and the up-regulation, via
the Y]-receptor, of TH mRNA expression in the rat brain following central administration of
NPY (Hong et al. 1994).

In this respect it is intriguing firstly, that aradrenergic agonist administration in vitro

using brain slice preparations can induce bursting activity of oxytocin neurones that bears a

close resemblance to the activity observed during the milk-ejection reflex in vivo (Wakerley &

Ingram 1993) and secondly, that noradrenaline release within the SON is increased in the
hours prior to delivery (Herbison, personal communication).

In summary, while we have not fully elucidated the complex regulation of the initiation
of parturition, our studies provide evidence for an involvement of oxytocin prior to as well as

during delivery. The role of oxytocin prior to delivery might involve a gradual augmentation
of uterine activity that will eventually feed back to magnocellular neurones (via the NTS) and
initiate the burst-like reflex release of oxytocin, crucial for the normal progress of delivery in
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rats and humans (see Fig. D). The importance of uterine contractions for the activation of

magncocellular neurones at term is emphasised by the increased electrical activity of

supraoptic neurones during oxytocin-induced labour and delivery. Thus, pulsatile oxytocin
treatment offers the chance to investigate the regulation of neurosecretory activity in the SON
at the end of pregnancy, since such treatment activates, most likely via the stimulation of
uterine activity, putative catecholaminergic cells in the NTS and leads to an increase in TH

immunoreactivity in these neurones. Furthermore, the observation that TH mRNA expression
in the NTS is significantly higher before than during parturition, points to an involvement of

catecholaminergic NTS neurones in the reflex release of oxytocin, possibly by priming

magnocellular neurones for the burst-like release of oxytocin during normal parturition.
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