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Abstract 

This thesis examines the use of first-order hereditary Harrop formulae, a gen-

eralisation of Horn clauses due to Miller, as a foundation for logic programming. 

As this framework is constructive, this will sometimes dictate an approach whicli 

differs slightly from the traditional (classical) one. 

We discuss the foundational problems involved in adding negation to the frame-

work of first-order hereditary Harrop formulae, including the role of the Negation 

as Failure (NAF) rule and the Closed World Assumption (CWA) in a constructive 

setting, and introduce the notion of a completely defined predicate. This notion 

may be used to define a notion of NAF for a more general class of goals than 

literals. We also discuss the possibilities for forms of negation other than NAF, 

and explore the relationships between NAF and more explicit forms. 

Clark's completion of a program is often used in this context, and we show 

how a more explicit version of the completion may be given in hereditary Harrop 

formulae. We may think of the completion as specifying a theory in which an 

atom A fails if A D I, and hence is an explicit axiomatisation of failure, which 

in our case is more computationally meaningful than Clark's completion. 

The problem of finding answer substitutions for existentially quantified negated 

goals requires more powerful techniques than unification alone, and so we give an 

algorithm which is suitable for this purpose, and show how it may be incorporated 

into the goal reduction process. 

A constructive framework necessitates a different approach to model theory, 

and we give a Kripke-like model for the extended class of programs for which 

negation is implemented by the Negation as Failure rule. This is based on the 

model theory developed by Miller for hereditary Harrop formulae. No restriction 

on the class of programs is used, which requires some departures from the usual 

Tw process, but the spirit of the construction remains the same. 

The Kripke-like model suggests some structural properties of first-order hered-

itary Harrop formulae which are of semantic interest. One important question is 
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the precise strength of the class of formulae involved. We consider the redundant 

features of Miller's language, and show how they may be removed. This leads to 

a discussion of equivalence for this class of programs, which necessitates the use 

of an intermediate logic, in which programs which are operationally equivalent are 

logically equivalent. 

Implication in the bodies of clauses also allows a notion of meta-programming 

within a first-order framework. We explore this possibility to some extent by 

showing how the application of some of our results allow memoisation to take place, 

which may be thought of as reflecting meta-level information back into programs by 

a subtle separation of object and meta- levels. This also demonstrates an elegant 

connection between removing redundancies from programs and the derivation of 

a goal in this framework. 
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Chapter 1 

Introduction 

1.1 Logic and Programming 

The discipline of mathematical logic arose from a desire for rigour in mathematics 

during the 1800's. There had been various attempts at systemisation of mathe- 

matical thinking before that time, such as the famous 10 axioms of Euclid, but 

this was the first time that the foundations of mathematics came under intense 

scrutiny by the community-at-large. This was due to a number of paradoxes and 

counter-intuitive results which disturbed many mathematicians. Earlier mathe-

maticians often did not feel the need to rigorously define terminology and give 

formal detailed proofs of every last step in their line of thought. Many felt that 

the use of infinitesimals needed no justification, whereas the analysts of the 19th 

century worked to expel them from the vast body of mathematical reasoning. Such 

a vigorous desire for a minimum standard of rigour led to the evolution of gen-

eral principles of reasoning, which in turn led to the formal development of the 

concepts used in mathematics. 

The widespread interest in foundational issues led to a variety of important de-

velopments - Frege's scheme for the "laws of thought", set theory as conceived by 

both Zermelo and Fraenkel, and Hubert and Bernays, Zermelo's Axiom of Choice, 

Russell and Whitehead's Principia Mathematica, to name but a few. Mathemati-

cal logic grew out of this flurry of results into a well-defined discipline, which could 

serve as a backdrop to any mathematical debate. If a dispute arose over the va-

lidity of a supposed proof, then mathematical logic was designed to be the arbiter 

of the dispute. The claimant would need to demonstrate that his or her proof 

1 
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was valid with respect to the logical foundations of the theory under discussion, 

and the doubter would need to demonstrate that the proof was faulty by the same 

strict standards. Thus, a universal method had been found by which all manner 

of mathematical disputes may be settled. 

There is a vast amount of literature on mathematical logic, and we do not 

attempt a general introduction here. The interested reader may find further in-

formation in [51,71,9], and many other works 

A similar desire for rigour may be detected amongst computer scientists today. 

There is a growing realisation that programming is a more varied, widespread and 

complicated task than originally conceived, and that experience has suggested that 

rigour is needed in the definition of programming tasks, in order to avoid annoying 

and costly mistakes. Proofs of program correctness are important for large and/or 

critical systems, and for the comprehension of complex algorithms. Formal and 

definitive semantics for programming languages is important for the maintenance 

and alteration of programs, and for portability considerations, so that the lan-

guage, and hence the application, need not be tied to a particular architecture. 

The design and analysis of hardware may also be improved by the use of formal 

techniques. As computer applications become more and more widespread, and the 

reliability, speed and availability of hardware continues to increase, the need for 

formalism will not diminish. 

It is perhaps not surprising that the same era which produced some fundamen-

tal advances in mathematical logic was also the era in which the foundations of 

modern computing were laid. The 1930's and 40's produced Gödel's Incomplete-

ness theorems as well as the world's first digital computer. Turing's conception 

of a universal computing machine, the )-calculus, and recursive function theory 

all emerged around the same time that Church proved the undecidability of first-

order logic. Not surprisingly, there are some obvious similarities between some 

of these results. The undecidability of the halting problem for Turing machines 

may be considered as stating that the halting problem is undecidable for any ma-

chine model in which the machines have sufficient power. For example, the halting 

problem is decidable for finite state automata, which are less powerful than Tur- 
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ing machines. Similarly, Cödel's first incompleteness theorem may be considered 

as stating that any sufficiently powerful mathematical theory will contain state-

ments which are true but not provable. The proof of this result uses recursive 

function theory, which in itself may be used as a basis for computation, as well 

as an encoding of statements of the theory as natural numbers. Such an idea 

of encoding formal statements of mathematics in a syntactical manner would be 

instantly familiar to a computer programmer. 

One of the best examples of the close relation between logic and programming 

is given by proof theory. One may consider the work of Gentzen in this area as 

systematising the notion of proof to such an extent that any idiot can understand 

any proof, given enough patience. Such a detailed specification is precisely how a 

programmer instructs a machine. 

1.2 	Computability and Constructivity 

Naturally the availability of an umpire did not stop mathematicians arguing. 

Whilst the umpire's decisions were irrefutable, there was still a dispute about 

who the umpire should be. There were three distinct schools of thought: the for-

malists, whose champion was Hubert, the logicists, whose champion was Russell, 

and the intuitionists, with Brouwer as their champion. Briefly, the logicists were 

Platonists, believing in a divinely beautiful mathematical world, which mankind 

was free to discover, whereas the formalists believed that mathematics was, in 

essence, a game of symbol-pushing, correct with respect to itself, but with no 

external interpretations. 

Brouwer could accept neither of these views. He felt that there had to be 

something intuitive about mathematics, and hence it could not be as the formal-

ists believed, but that mathematics had to be constructive as well, in that one 

needed to be able to exhibit a given mathematical object in order to discuss it 

meaningfully. A famous example involves the decimal expansion of ir; if we con-

sider a number a whose value is 0 if a sequence of one thousand 5's does not appear 
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anywhere in the decimal expansion of 7r, and otherwise is 1 if the sequence begins 

at an even digit, and -1 if the sequence begins at an odd digit. To an intuitionist, it 

is meaningless to discuss such a number, as it requires that the decimal expansion 

of 7r be written out in full and examined as one entity. If at some stage in the 

future such a sequence is discovered, then the matter may be settled, but before 

such an event happens, if ever, it makes no sense to an intuitionist to discuss the 

value of a. A follower of the other schools may say that a exists, but its value is 

not currently known, and may never be known. In this way an intuitionist requires 

that an explicit, unambiguous construction be given for a number before he will 

accept that it exists. 

Brouwer's critique of classical mathematics centred around the treatment of 

infinite sets. It is clearly acceptable to apply the law of excluded middle to finite 

sets, so that given a finite set S and a number x, it is true that either x e S or 

x 0 S. An obvious way to test the truth of this proposition is to list all the elements 

of S, and check whether or not x occurs in that list. Clearly this process must 

terminate. However, the same technique cannot be applied to infinite sets, as it 

is not possible to finitely enumerate all the elements, and so to Brouwer, applying 

the law of excluded middle to infinite sets was akin to examining an infinite set 

after all its elements had been enumerated, and hence was unacceptable. Unless 

there is some way to finitely represent the infinite set, the law of excluded middle 

could not be true. In this way one may obtain intuitionistic logic from classical 

logic by removing the law of excluded middle and all its consequences. More on 

intuitionistic logic may be found in [21,51,42,64]. 

To the modern mind, Brouwer's arguments are those of a believer in algo-

rithms, so that in order to demonstrate an object's existence, one must produce 

an algorithm which constructs the object. In this way one may view the intuition-

ist's thinking as one like that of doubting Thomas; the only way to convince him 

is to produce the given object in front of his own eyes, rather than try to convince 

him on the grounds that it couldn't be otherwise. 

One of the more compelling properties of intuitionism in this context is the 

way that proof is identified with truth. For example, in the Tarksi semantics for 
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classical logic, A V B is true if A is true or B is true. In Heyting's conception 

of intuitionistic proof, a proof of A V B is a pair (i,p) such that if i = 0, p  is 

a proof of A, and if i = 1, p  is a proof of B, and so A V B is provable if A is 

provable or B is provable. Hence, in order to claim that a statement is true, it 

is necessary to find an appropriate "proof object" which proves the statement, 

rather than to perform a model-theoretic construction. Much ink has been spilt 

over the precise definition of proof objects, but the point here is that there is a 

direct proof-theoretic interpretation of truth, which seems to be more in keeping 

with the spirit of computing than the assignment of truth values. 

This ideal is often reflected in the way certain mathematical properties are 

viewed. For example, a proof that an odd perfect number exists would be less 

satisfying than exhibiting a certain odd number and proving that it is perfect. 

In a similar vein, it is just about unthinkable that it is possible to prove that 

there is a polynomial-time algorithm for 3-SAT without explicitly producing such 

an algorithm, and any such proof would be considerably less rewarding than a 

constructive one. 

The close link between computability and constructivity is illustrated by the 

trend in computer science in recent years towards constructive logics (i.e. logics in 

which only constructive conclusions may be reached, of which intuitionistic logic 

is one). Martin-Löf type theory [70] is one example, as is the Edinburgh LF [47, 

97]. Linear logic [42] is another recent development, about which Girard explicitly 

stated that the idea was to recapture the spirit of intuitionistic logic. It has also 

recently been shown [20] how a constructive interpretation of recursive function 

theory may be more appropriate than the classical one. This trend is not surprising 

given the natural inclination of computer science towards constructive ideas. Just 

as constructions with a compass and straightedge are natural tools of Euclidean 

geometry, so are algorithms, i.e. constructive proofs, natural tools of computer 

science. 
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1.3 Traditional Logic Programming 

There is some confusion about the early years of logic programming, and about 

when the first logic programming language was implemented. Logic program-

ming was certainly a consequence of Robinson's seminal paper on unification and 

theorem proving [101], and it now seems that the AbSys system was probably 

the first implementation of a logic programming language [24,23]. Certainly the 

most influential implementation was that of the programming language Prolog 

by Colmerauer and his colleagues at Marseilles [19]. However, the real impetus 

behind logic programming was given by Kowalski in his seminal paper of 1974 

[52]. Since then, Prolog has been found to be a useful and practical programming 

language for many applications [18,106]. 

Here we give the essentials; more details and proofs may be found in [61]. We 

will use FO to stand for the application of the substitution 0 to the formula F. 

(F) stands for the existential closure of all free variables in F, and similarly V(F) 

stands for the universal closure of all free variables in F. 

Kowalski's key idea was that the Prolog clause 

A:-B1,...,B 

where A and the B3  are atoms, may be interpreted both declaratively and proce-

durally. The declarative interpretation was given by considering the above clause 

as a shorthand for the formula 

VX 1  ... Xm ACB1 AAB 

where xi  are all the variables appearing in A and the B3. Such a formula is known 

as a Horn clause. A program is a finite set of Horn clauses. The procedural 

interpretation is given by interpreting the above clause as a specification of a 

procedure, whose "head" is A and hence names the procedure being defined, and 
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whose "body" specifies calls to further procedures B1 ,. . . , B,. Input and output 

is to be dane through the variables of A and the body. A sequence of procedure 

calls, then, is a conjunction of atoms, and execution takes place by starting with 

an initial number of procedure calls specified by 

where the G1  are atoms, generating more procedure calls by matching each G 

against clauses in the program and proceeding until the subsequent calls are ex-

hausted. The initial sequence of calls is known as the goal, and may be thought 

of in declarative terms as the formula 

Yl ... YrClAGk 

where the yi  are all the variables appearing in the G3 . In this way computation 

may be interpreted as the manipulation of a sequence of first-order formulae. Not 

surprisingly, such operations have a direct connection to proofs of the goal, and 

in particular to a certain method of finding a proof of the goal. This method was 

related to the resolution methods of automatic theorem proving, and has become 

known as SLD-resolution (or LUSH-resolution). 

This process may be defined as follows: given a goal 

GI)  . . . , Gk  

we use a computation rule R to choose G3  for some 1 < j < k, which is known as 

the selected subgoal. Next, if there is a clause A :- B1,.. . , B (where n > 0) in the 

program such that AO = G3 0 where 0 is the most general unifier (mgu) of A and 

C3 , then we replace C1,. . . , Gk  by 

(C1,. .. ) G_ 1 , B I)  .... 	.,Gk )O 

and continue. 	Due to the fact that ii may be 0, this goal may be smaller in 

size than the original, and so termination occurs when the goal is empty. As 
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there may be many choices for clauses with heads which match G, for a given 

computation rule R we define an R-computed SLD-tree, whose root is the initial 

goal, and in which the children of each node are the results of applying the above 

transformation to the parent, with one choice for each possible matching clause 

head. The leaves of this possibly infinite tree may be either the empty goal or 

goals for which there is no clause head which matches the selected subgoal. A 

branch from the root to a leaf containing the empty goal is known as a successful 

SLD-derivation. A branch from the root to a leaf containing a non-empty goal is 

known as an unsuccessful SLD-derivation. If 0k ,.. O are the substitutions used 

in a successful SLD-derivation of the goal G, then the answer substitution 0 is the 

composition of 01 ,. . . O,. This may be thought of as finding a goal GO such that 

GO succeeds, and so we refer to GO where 0 is an answer substitution as an answer 

for C. 

Now as the declarative reading of the program and goal are both formulae of 

first-order logic, we may ask what connection SLD-derivations have with proof 

theory. It is possible to show that this procedure is sound and complete with 

respect to provability in classical logic of goals from Horn clauses; that isa goal 

G has a successful SLD-derivation from a program P if P F-c  G [61]. 

Having established a proof-theoretic notion of consequence, it is natural to ask 

about model theory. Clearly, one such notion may be given by the standard model 

theory of first-order (classical) logic. It is not hard to see that any model in which 

P is true should also have C true whenever C has a successful SLD-derivation from 

P. With this in mind, we say that G is a logical consequence of P if C is true 

in all models of P. It is clear that this will be satisfied if C is true in a minimal 

model of P, and such a minimal model may be given by the least Herbrand model 

of P. It should be clear that we expect G to be true in the least Herbrand model 

if G has a successful SLD-derivation. This is indeed the case, and is proved by 

constructing the least Herbrand model as follows. This construction is due to 

Kowalski and van Emden [25]. 

Firstly, for a given program P, we define an operator T mapping from and 

into interpretations, as 
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T(I) = {A I there is a ground instance A C B1  A... A B of a clause in P such 

that B, E Ifor all 1< i <n} 

T(I) may be thought of as all things which may be deduced from P and the 

assumptions I in one step, so that T is sometimes referred to as the "immediate 

consequence" operator. We then define ordinal powers of Tp as follows: 

T 10 = T(ø) 

TpIn=Tp(TpI(n-1)) 
00 

Tp1wTp1n 

The least fixpoint of T turns out to be the least Herbrand model, which has 

an elegant ring about it, in that one starts from no assumptions and repeatedly 

applies the Tp operator until no new deductions are made, and that the set of 

deduced facts is then precisely the consequences of the program. This idea was 

extended in [5]. 

In this way Horn clauses were used as a logic programming language because 

of the two possible interpretations: one as formulae, and the other as specifying 

sequences of top-down operations. 

1.4 Constructive Logic Programming 

In the previous section we saw how a goal G has a successful SLD-derivation from 

P if P 1-C  G. In the light of the previous discussion, it would seem that it is 

natural to ask what role intuitionistic logic may play in this scheme. It is not hard 

to see that classical logic and intuitionistic logic coincide for Horn clauses, i.e. 

P Fc C if P F-1  G when P is a set of Horn clauses [81]. This may be easily seen 

from the proof rules which are needed to manipulate Horn clauses and goals. As 

this class of formulae is not a very large fragment of first-order logic, not many are 

needed, and all are intuitionistically valid. Certainly the law of excluded middle, 

i.e. that F V -iF is true for any formula F, is not needed, as there are no negations 
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in either goals or programs. Thus SLD-resolution may be distinguished from other 

forms of resolution in that the class of formulae on which it is defined is restrictive 

enough that only constructive consequences of the program may be derived. 

One way to interpret SLD-derivations as proofs is to think of the derivation 

as a refutation. Each step in the SLD-derivation may be considered as a valid 

deduction in classical logic, and hence the overall derivation may be interpreted 

as a proof. 

Given a program P, and a goal C = 	... A Gk ), we re-write the clauses 

in P so that they are of the form V(A V -B1  V... V -B). Now assume that C 

has a successful SLD-derivation from P. We imitate this derivation by a proof 

in first-order classical logic as follows. First we assume that -'C is true, i.e. we 

assume V(-'G1  V ... V -'Gk ). Let G3  be the selected subgoal, so that G3 0 = AO, 
where A V -'B1  V ... V B,, is a clause in the program, let -'B1  V ... V -'B, be C, 
and let -'C1  V... V -'G_1  V -'Gm  V... V -Gk  be C', so that -'C = V(G' V 

By our assumption, V(C' V -'Gd ) is true, and hence so is V(G'O V -'G3 0), and from 

the program P we get that V(G,O V CO) is true. Now if G3 0 is true, then -'C3  0 
is false, and so from the truth of V(G'O V -'G0) we get V(G'O). Otherwise, G3 0 is 

false, and so as V(C3 0 V CO) is true, we have V(C0) is true. In either case, we may 

deduce V(G'O V CO) is true, which is just the next step in the derivation. Hence, 

each step matches up with a correct deduction in classical logic. 

When the end is reached, the goal is of the form V(-B) where B is an atom, 

which matches some atom A in the program such that A has no body. As A0 = BO 
for some 0, we get -BO A BO, a contradiction. Hence, our initial assumption of 

-'C = -'(C1  A... A Gk ) leads to a contradiction, and so the final step is to deduce 

that (GI  A ... A Gk) is true. 

This argument is not valid intuitionistically, as both the final step (deducing C 
from the fact that -'C leads to a contradiction) and the conversion of the clauses in 

the program do not hold in intuitionistic logic. Hence the refutation explanation 

can only be valid for classical logic. 

An alternative explanation of SLD-resolution, which is intuitionistically valid, 
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is that asuccessful SLD-derivation represents a search, rather than a proof itself. 

Each step in the SLD-derivation represents a step in the overall search for a proof, 

and the search space may be defined by the notion of an SLD-tree. From a suc-

cessful search it is easy to find a proof that P F C. From the results of [81] it is 

clear that this proof is intuitionistically valid. This explanation seems to be more 

in keeping with Kowaiski's original idea of the notion of a clause being interpreted 

as specifying a number of procedure calls, which has no obvious connection to the 

refutation interpretation. 

The presence of negations in the refutation also seems to be somewhat inappro-

priate, as Horn clauses do not contain any negations. The proof search explanation 

does not need negations, and hence seems more aesthetically pleasing. Another 

criticism of the refutation explanation is that the role of the answer substitution 

is obscured, when in reality this is an important part of logic programming. As 

noted earlier, variables are used for input and output in a goal, and so the only 

way to produce output is to bind a variable in the goal, i.e. produce an answer 

substitution. It has been noted that "the purpose of a logic programming system 

is to compute bindings" [61]. Hence, it seems that the answer substitutionshould 

be interpreted as an important part of the answer, rather than the by-product of 

a search to produce yes or no. 

This is precisely the case in intuitionistic logic, as in order to prove a goal 

xG, one must exhibit a term t such that G[t/x] is true. Hence the refutation 

interpretation obscures an essential property of a logic programming system, but 

in intuitionistic logic, the answer substitution is given an important place. This 

suggests that the property which makes Horn clauses appropriate for logic pro-

gramming is not so much the existence of a resolution method for finding proofs 

as the fact that classical logic and intuitionistic logic coincide on these formulae, 

thus ensuring that only constructive conclusions may be reached. 

An interesting observation is that intuitionistic logic has a similar property for 

disjunctions; A V B is provable if A is provable or B is provable. This matches up 

precisely with what happens in Prolog, in that many implementations of Prolog 
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allow disjunctions, and determine whether there is a proof of the disjunction in 

precisely the manner specified above. 

A recurring feature in the semantics of programming languages is the execution 

of a program may result in one of three states: termination with success, termina- 

tion with failure, and non-termination. In logic programming terms, this means 

that a goal may either succeed, fail or loop. The third case corresponds to the 

existence of infinite branches in the SLD-tree. Because of this property, Kleene's 

idea of 3-valued logic [51] has often been cited as a possible way to weaken clas-

sical logic in order to give a more appropriate semantics for logic programming 

and there have been several investigations along these lines [29,30,32,54,55,56,58]. 

This may be thought of as weakening the mapping of formulae to truth values 

from a total function varying over 2-valued truth (i.e. each formula is mapped to 

either true or false) to a total function on 3-valued truth (so that every formula is 

mapped to true, false or I). In intuitionistic logic, this mapping may be thought 

of as a partial, rather than total, mapping from formulae to 2-valued truth, and 

hence is a somewhat different approach. The mapping is only partial because the 

proof system is only partial; first-order intuitionistic logic is not decidable. Hence, 

we use an implicit approach to this problem, rather than specify an explicit third 

value. Also, the three valued approach does not explicitly address the answer 

substitution property. 

For these reasons it seems that a constructive analysis of logic programming 

may be useful. Now whilst Horn clauses are sufficient for any computational pur-

pose [108], it is desirable to extend the class of formulae which may be used as a 

programming language. When considering such extensions, an analysis in terms 

of the differences between classical logic and intuitionistic logic will be useful, as 

by using larger and larger classes of formulae of first-order logic we will eventually 

reach a point at which classical logic and intuitionistic logic differ. As we be-

lieve the constructive interpretation is the more natural one, we investigate such 

extensions from an intuitionistic viewpoint. 

Such extensions have been given by Gabbay et al. [37,35,38], McCarty [65,66], 
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and Miller et al. [81,82]. All are extensions to Horn clauses, and involve using 

implications in the bodies of clauses. 

The QN-Prolog system of Gabbay and his colleagues was motivated by the 

formalisation of the British Nationality Act [104], and requires some seemingly 

unnatural restrictions on the variables involved. For example, unlike the other two 

systems, universally quantified variables may not appear in the body of clauses. 

McCarty's extension to Horn clauses is based on clauses of the form 

Pc -Q 

Pc(QR) 

where the variables of P are assumed to be universally quantified at the front 

of the clause, and the variables of Q which are not so quantified are universally 

quantified at the front of the body. It is shown how a proof system may be given 

in which the converses of the above formulae may also be used as clauses. 

The framework of Miller et al. uses a class of formulae known as hereditary 

Harrop formulae, which, apart from formulae which include negations, is more ex-

pressive than both of the other systems. For example, the following is a hereditary 

Harrop formula, but is not a legal clause in either of the other systems. 

P 	VxyVz q(x ) y,z) 

Another way in which this framework differs from the other two is the amount 

of operational detail that is specified. Both Gabbay et al. and McCarty spend 

a significant amount of time discussing and describing the ways in which the 

appropriate proof procedures may be implemented, whereas Miller et al. provide a 

more abstract operational semantics, which simplifies the presentation somewhat. 

Clearly it is important to understand how the features of a programming language 

are to be implemented, but a detailed examination of the issues involved is beyond 

our scope. As we wish to explore the connection between logic and programming 

rather than operational issues per se, we adopt the approach of Miller et al. towards 

extensions to Horn clauses. 
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Hereditary Harrop formulae may be generalised to higher-order formulae, which 

may then be used as a higher-order logic programming language, known as AProlog 

[79,81,86,87]. This language has applications to program transformations [44,45], 

theorem proving [27], and computational linguistics [80], as well as to modules [77] 

and lexical scoping [78] in which only the first-order part is needed. 

The central notion behind hereditary Harrop formulae is the idea of a uniform 

proof, which may be thought of as a proof which is essentially determined by 

the structure of the formula proved. It is shown in [81] how uniform proofs are 

sound and complete for various classes of formulae and notions of provability. In 

particular, it is known that for first-order hereditary Harrop formulae, uniform 

proofs are sound and complete with respect to intuitionistic provability [81,82]. 

There is also a model theory for a large fragment of hereditary Harrop formulae, 

which seems to be an elegant semantics for this class of programs. This model 

theory also captures the growth of programs in a natural way, generalises the 

traditional fixpoint semantics, and, being a possible world semantics, has clear 

connections to other model theoretic constructions. It is shown in [77] how the 

operational notion of derivability coincides with the model theoretic one. 

We examine this framework as a basis for logic programming, and look at 

how extensions, such as Negation as Failure [17,100], may be incorporated into 

it. In chapter 2 we review the preliminary concepts and definitions, and discuss 

various foundational issues, including the possibilities for negation and the ways to 

implement universal quantification in goals. We show how a version of Negation 

as Failure may be incorporated into hereditary Harrop formulae. 

In chapter 3 we examine the role of the completion of a program [17], which 

may be thought of as adding negative information to the program, so that we 

may derive negative information explicitly, rather than implicitly as in Negation 

as Failure. We show how the structure. of hereditary Harrop formulae make it 

possible to consider the completion as a program (i.e. a set of clauses) rather than 

just a formula of first-order logic, and that the completion correctly captures the 

computational properties of the program. 

In the following chapter we discuss how answer substitutions may be computed 
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for negated goals. The usual unification methods are not sufficient for this task, 

and so we present and prove correct an algorithm which will be useful in this 

regard. This algorithm is incremental, in the sense that new information may be 

incorporated without recomputing from scratch. 

Chapter 5 deals with model theory, and in particular how to incorporate nega-

tion into the model theory for hereditary Harrop formulae as given by Miller [77]. 

In this case the model in question is similar to a Kripke model, but with a slight 

difference. We show how the usual T construction [5,25] may be defined in the 

presence of negation, and that the procedural semantics coincides with the declar-

ative semantics given by this model. No restriction on the class of programs is 

needed for this process. 

In chapter 6 we show how the structural properties of logic programs may be 

exploited in order to derive a normal form for programs and goals. We may think 

of a normal form as a formula which is engineered to give a maximal amount of 

information with a minimal number of constructs. This normal form leads to a 

discussion of equivalence between programs and goals, and we show that a logic 

slightly stronger than intuitionistic logic is needed in order to capture the natural 

notion of equivalence in this context, i.e. that operationally equivalent programs 

are logically equivalent. 

Finally in chapter 7 we give some applications peculiar to hereditary Harrop 

formulae as opposed to Horn clauses. These include the possibilities for memoisa-

tion and a first-order notion of meta-programming, which is made possible by the 

presence of implications in the bodies of clauses. 



Chapter 2 

Hereditary Harrop Formulae and Extensions 

In this chapter we introduce the foundational issues involved in adding negation to 

the framework of first-order hereditary Harrop formulae. Section 2.1 deals with the 

definitions and basic properties of this framework as defined by Miller et al. [82], 

and Section 2.2 discusses extensions to this framework. Here we also discuss out 

motivation for interpreting universal quantifiers extensionally. Then we discuss 

the role of the Negation as Failure (NAF) rule and the Closed World Assumption 

(CWA) in a constructive setting, and introduce the notion of a completely de-

fined predicate, before presenting the formal extensions necessary to incorporate 

the above features in Section 2.3. We also show how the notion of completely 

defined predicates may then be used to define a notion of NAF for a more general 

class of goals than literals. In Section 2.4 we discuss the technicalities involved 

in our interpretation of the universal quantifier, as well as the problem of pro-

ducing answer substitutions for existentially quantified goals. We also discuss the 

possibilities for forms of negation other than NAF, and explore the relationships 

between NAF and more explicit forms. Finally we discuss the role of stratification 

in our approach to the model theory for programs which use the NAF rule. 

16 
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2.1 First-order Hereditary Harrop Formulae 

In this section we present the basic definitions and results pertaining to first-

order hereditary Harrop formulae, which may be found in [82,81,87]. Many of our 

examples are drawn from the same sources. 

The class of first-order hereditary Harrop formulae may be defined as follows: 

D:=AIVXDID1 AD2 IGDA 

C:=AVxCIxCIG1 vC2 lC1 AC2 lD DC 

A program is any set of closed D formulae, and a goal is any closed C formula. 

We often refer to D formulae as definite formulae, and G formulae as goal formulae. 

We denote by V the set of all D formulae, P the set of all programs and the set 

of all G formulae by g, As in the Horn clause case, computation is performed 

by trying to find a proof that a given goal C follows from a given program P. 

One significant difference between this approach and the traditional Horn clause 

methods is that a richer set of search primitives needs to be used. The refutation 

interpretation of SLD-resolution is not only not intuitionistically valid, it is also 

difficult to see how it may be extended to hereditary Harrop formulae. Hence the 

connection between logic and programming in this context can only be given by 

interpreting a goal formula C as both a formula of first-order logic and a series of 

instructions to be performed in a search space which is richer than that for Horn 

clauses. It is also somewhat aesthetically pleasing not to refer to negated formulae 

in order to explain the behaviour of a class of formulae which do not contain 

negations. Thus there is no analogue of SLD-refutation, but only a generalisation 

of the notion of an SLD-derivation. 

The relevant search space interpretation is given by defining a consequence 

relation 	on P x g as given below. 

PF-0C1VG2iffPF--0C1orpI--C2 
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PH0 G1 AG2  iffPH 0 G1  and PF-0 G2  

P 	xG if P G[t/x] for some ground term t 

P F-0  VxG if P H0  G[c/x] where c is a new constant 

PH0 DDCiffPU{D}H0 G 

This gives us a top-down definition of the computational process, so that given 

the goal p A 3x q(x) we proceed by finding a proof of p and a proof of 3x q(x), 

each of which we may further reduce according to the rules above. Note that 

there is no explicit reference to the details of the operational processes, such as 

unification or how to choose between alternatives in the search space. This allows 

us to consider the above definitions as a general prescription for the behaviour 

of logic programming languages, rather than as an explicit definition of a specific 

language. 

Note that there is no specification above about how to establish P F-c, A. We 

give below a definition of this in accordance with the above principles of generality. 

Let P be a set of definite formulae. We define [P] as the least set of definite 

formulae which satisfies the following conditions: 

PC [P] 

If VxD e [P] then D[t/x] [P] for all terms t 

If D1  A D2  e [P] then D1  e [P] and D2  E [P] 

We can now define F c, as the smallest relation satisfying the above conditions 

and 

P H0  A if A E [P] or there is a formula C D A e [P] such that P H0  C 

The definition of [P] indicates an important point: we are interested in validity 

with respect to a fixed set of terms, rather than validity with respect to all possible 
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sets of terms. We denote the set of all ground terms as U, which will be referred 

to as the Herbrand Universe. Given this set of terms, we refer to the set of all 

ground atoms as N, known as the Herbrand base. 

A proof system for these formulae may be given by the standard sequent cal-

culus of cut-free proofs for intuitionistic logic, so that P H0  G if there is a proof 

in this calculus of the sequent P -p C. Initial sequents are of the form P - A 

where A E [P]. We use the usual notational convention that the set on the left 

hand side of I- is written as a sequence of formulae. The rules for this calculus 

are the standard ones for intuitionistic logic (which may be found, amongst other 

places, in [81]). The important property of this class of formulae is that the proofs 

are uniform; that is, in a proof of P -p G, the top-level connective of C is in-

troduced in the last step of the proof. Thus a proof of P -f C1  A G2  must have 

as its immediate predecessors the sequents P -+ C1  and P -) C2. In this way 

uniform proofs capture the search space properties discussed above. 

The advantage of this class of proofs is that the search space rules are sound and 

complete with respect to uniform proofs, i.e. it is clear that P H0  C if P - C has 

a uniform proof. Moreover, uniform proofs are sound and complete with respect to 

intuitionistic proofs of sequents of the form P -f C, as is stated in the following 

theorem (Theorem 4 in [81]): 

Theorem 2.1.1 Let P be a program and C be a goal. Then 

PH I GPHQ C 

The proof may be found in [81]. The importance of this result is that we only 

need to consider uniform proofs in order to determine whether a given goal follows 

from a program. For example, consider the goal C1  A C2 . We know that if we 
can show that C1  and C2  both follow from the program, then C1  A C2  does, but 

the uniform proof property enables us to reach the stronger conclusion that if we 

do not find a proof by this method, then there is no proof of C1  A C2  from the 

program. So the proof search procedure described above for a goal C is the only 
way to find a proof of C, and it is this lack of ambiguity which allows us to give 
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a computational interpretation of formulae, and thus make a direct connection 

between mathematical logic and programming. In this way we may explain the 

computational process in terms of proof in that a successful search corresponds 

to the discovery of a uniform proof of a goal, and that a failure in the search 

corresponds to the discovery that the goal has no uniform proof. 

Uniform proofs are often referred to as 0-proofs, both here and in the litera-

ture, due to this operational interpretation of provability. 

Given the consequence relation F0, which is a representation of the desired 

properties of a logic programming system, we may ask whether this consequence 

relation is equivalent to some well-known consequence relation that has been stud-

ied previously. In addition to the theorem quoted above, the following result is 

shown in [81] (an immediate consequence of Lemma 10): 

Proposition 2.1.2 Let P be a program and G be a goal. Then 

PF I GPFM G 

where FM  is the standard consequence relation of minimal logic. 

It follows immediately from this proposition and the theorem above that P F0  

G if P F1  G if P FM  C. It is also pointed out in [81] that F-s, the standard 

consequence relation of first-order classical logic, is too strong to be useful in this 

context, as there are proofs in classical logic for which there are no uniform proofs. 

This is expressed in the following proposition. 

Proposition 2.1.3 Let P be a program and C be a goal. Then 

PFC CPFO G 

A counterexample to P f-C  C = P F0  C is the program (p(a) Ap(b)) D q and 

the goal x(p(x) D q). In [77] it is shown that 

(p(a) A p(b)) D q F 	x(p(x) D q) 
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but it is clear that there is no uniform proof of this goal from this program, and 

so it is not the case that 

(p(a) Ap(b)) D q F-0  3x(p(x) ID q) 

A similar problem is encountered with the goal p  (p ID q), as I-. p V (p 

but it is not true that F-c, p V (p D q). Thus classical logic is too strong to capture 

the search space interpretation discussed above, which seems fundamental to the 

concept of logic programming. Perhaps the best example of this phenomenon is 

given by the classical equivalence 

G1  V (D D C2) E (D ID C1 ) V G 

As both of these formulae are equivalent in classical logic to -D V G V C2, inter- 

preting the goal C1  V (D ID G2) as a formula of first-order classical logic destroys 

the direct correspondence between proofs of the goal and the search space inter-

pretation. The search interpretation suggests that we may think of the implication 

D ID C2  as an instruction to load in the code stored in a module D, and evaluate 

the goal G2  in this larger environment, whereas C1  is to be evaluated withont this 

extra code (this idea is discussed and developed in [77]). This seems to contradict 

the above classical equivalence, which suggests that it does not matter which goal 

is evaluated in the extended environment. Hence, classical logic derives too many 

equivalences to allow the direct and natural association between proof and search 

spaces that is possible in some weaker logics, such as intuitionistic logic or minimal 

logic. In this way the search space characterisation of a logic programming sys- 

tem excludes the possibility of using 	to analyse first-order hereditary Harrop 

formulae. 

Note that first-order hereditary Harrop formulae preserve the existential prop-

erty, i.e. that if P -f xG has a uniform proof, then there is a term t such that 

P -p G[t/x] has a uniform proof. As in the Horn clause case, we will often refer 

to G[t/x] as an answer for the goal dxC. 

Note also that, just as in the Horn clause case, variables which appear in the 

head of a clause may be considered existentially quantified when the body of the 
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clause is used as a new goal. This is due to the fact that we are searching in a 

top-down fashion. For example, consider the goal Ix p(x) and the program 

q(a) 

Vs q(x) D p(x) 

We first match the goal against the second clause, and produce the next goal 

Rx q(x), which is clearly a valid step as if ax q(x) and Vs q(s) D p(x) are true, 

then asp(s) is true. Now axq(x) succeeds with the answer q(a), and so the 

original goal succeeds with the answer p(a). Hence, once the head of the clause 

has been "passed", we may consider all free variables of the body to be existentially 

quantified. 

One interesting structural property of first-order hereditary Harrop formulae 

is that we may define the D formulae as above or in the equivalent fashion 

D:=AIVXDID1AD2IGDD 

which conveys the essential symmetry between implications which occur in pro-

grams and those which occur in goals. That this is equivalent to the previous 

definition may be seen by the equivalences 

G 	(D1  AD2) (G DI) A(G D D2 ) 

G1 D(C2 DD)EJ  (GI  AG2)DD 

C D VxD VxG D D 

where x is not free in G. The first form of the definition shows the connection to 

Horn clauses more concretely, and allows easier formal manipulation and so it is 

generally preferred. The second form is more useful when considering connections 

between first-order hereditary Harrop formulae and full first-order logic. 

Another useful application of the second form occurs when we consider the 

class of formulae which are both D and C formulae. These are denoted as M 

formulae, and are often referred to as core formulae. They may be defined as 

follows: 
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M:=AtVxM!M1 AM2 IM1  DM2  

By the above equivalences, these are the same as the class of formulae defined 

by replacing M1  D M2  in the above definition by M D A. As these formulae 

may be used both as programs and goals, if an M formula is asked as a goal and 

succeeds, we may "store" this result by adding it to the program. Note that this 

class of formulae includes Horn clauses. We will have more to say about this class 

of formulae later. 

Another observation that may be made about the structure of first-order hered-

itary Harrop formulae is that we may think of programs as sets of clauses, where 

a clause C is any closed formula satisfying 

C:=AJVXCIGJA 

with C formulae defined as above. This allows us to consider a program as a set 

of clauses without sacrificing any expressive power, as Vx (D1  A D2) is equivalent 

to (VxD1) A (VxD2 ), and so we may push conjunctions outwards until we",  arrive 

at a conjunction of clauses. We may think of this conjunction as a set of clauses, 

which is often more convenient. The definition below makes formal the notion of 

the head of a clause. 

Definition 2.1.1 Let C be a clause, A be an atom, C be a goal, and D be a 

definite formula. Then 

head(A) = A 

head(VxD) = head(D) 

head(G D A) = A 

heads(D) = {A 13 a clause C E [D] with head(C) = Al 

We may then define the set of clauses which correspond to a definite formula 

D as follows: 
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Definition 2.1.2 Let D be a definite formula. Then we define 

clausal(A) 	{A} 

clausal(D1  A D2 ) = clausal(D1) U clausal(D) 

clausal(VxD) 	= {VxD' I D' e clausal(D)} 

clausal(G D A) = {G D Al 

Let P = ID,. ... D} be a finite set of definite formulae. Then 

clausal(P) = Uclausal(D) 

Note that [D] contains all instances of all elements of clausal(D). 

As the above definition makes clear, we may think of a definite formula as a 

set of clauses, and hence we may think of a program as a set of clauses. We will 

often omit clausal(D) and clausal(P) when it is clear from the context what is 

meant. 

Given that we may think of programs as sets of clauses in this way, it is then 

clear that Horn clauses may be defined as follows: 

H:=AjVxPJIH1 AH2 QJA 

Q:= A I IXQ I Q1 A  Q2 

By moving the conjunctions outwards in definite formulae, as mentioned above, 

it is clear that a set of closed H formulae is equivalent to a set of Horn clauses. 

In fact if we allow disjunctions in the bodies of clauses, we arrive at a class of 

programs which is no more powerful than Horn clauses, as for any progam in the 

class of programs defined below, there is an equivalent Horn clause program. 

H:=AJVXJJIH1 AH2 JQDA 

Q:= AI *cQ I Q1 AQ2  IQ1VQ2 
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The equivalence of (Q1 V  Q2) D A and (Q1 D A) A (Q2 A) ensures that 

we may rewrite any program in the larger class as a Horn clause program. Thus 

there is some innate redundancy in the definition of the larger class of programs. 

We will explore such issues in chapter 6. 

2.2 Extensions 

2.2.1 Extensional Universal Quantification 

One feature of logic programming is that we usually consider the set of all closed 

terms, called the Herbrand Universe and which is here denoted as U, as a set which 

is fixed prior to the writing of a program, and hence is constant throughout the 

computation process. For simplicity, we assume that the Herbrand Universe is not 

empty. We usually think of this set of terms as being generated by a finite number 

of symbols, i.e. a signature, and, so it seems natural to associate a signature with a 

particular program. Often the signature of a program is taken to contain exactly 

the function and constant symbols which appear in the program. In our case we 

will assume that the signature must contain such symbols, but need not be limited 

to them. For example, consider the program below. 

Vs nonzero(s(s)) 

It is clear that non_zero(s'2(0)) succeeds for all n > 1, and that non-zero(0) 

fails. Clearly we wish the latter goal to fail, rather than produce a type error 

or something similar. Hence we need the external knowledge provided by the 

signature in order to have the correct "view" of the information in the program. 

This also makes it clear what to do with a goal such as non_zero(s(a)), which 

would otherwise succeed. 

We will assume that the number of symbols is in the signature is finite, so that 

the Herbrand Universe is recursively enumerable. It seems difficult to see how 

infinite signatures can be useful in this context, and so this does not seem to be a 

particularly restrictive assumption. 
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Definition 2.2.1 A signature E is a set of pairs f/n where f is a constant or 

function symbol of arity n > 0. 

Note that this definition allows the same symbol to appear more than once in 

the signature with different arities. 

The idea of restricting attention to a given set of terms seems natural from 

programming considerations. For any given predicate, there are some terms which 

will be applicable and some which will not. For example, it does not seem very 

sensible to discuss whether Mickey Mouse is a natural number, and so the natural 

number predicate should be restricted to terms constructed from 0 and the suc-

cessor function. We may use a similar idea to further decompose the signature, so 

that each predicate may use a particular subset of the signature. For example, in 

a program which contains information about products, suppliers and customers, 

there may be some predicates which refer to products and suppliers but not to 

customers, and so we may think of these predicates as using a subset of the overall 

signature. In this sense, given the Herbrand Universe U, we may derive thecorre-

sponding signature E, and for any given predicate pthere is a signature >1 ç 

such that p is only applicable to terms constructed from the symbols in >. These 

considerations will be useful in what follows, as we will not have to worry about 

Domain Closure Axioms and so forth to ensure that a given atom has a sensible 

interpretation. 

It is possible to extend the notion of signature into a rudimentary notion of 

typing. For example, an n-ary function symbol f from a signature E may use 

	

any term from 	as an argument, and the resulting term itself is an element of 

. This may be thought of as ascribing the type 	x 	x ... x 	-* 	to 

f. However, it is conceivable that a more useful notion is to ascribe the type 

X 	x . . . x 	-p 	to f, where the E are distinct signatures. We have not 

pursued this approach here, for the sake of simplicity, but as it would only require 

a change in the way terms are generated, it should not be too hard to incorporate 

into what follows. 
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We will only consider terms which may be built from the signature. This 

means that we cannot use "polymorphic" predicates such as append and member, 

for which the natural signature is {[]/O, ./21, but for which terms such as [1,2] are 

perfectly valid. This is somewhat restrictive limitation, but it greatly simplifies 

the discussion. There is no reason in principle why the following remarks should 

not apply to predicates such as append and member, but as the technical details 

involved are peripheral to our scope (and somewhat overwhelming), we will not 

pursue such issues here. 

Given that we think of the Herbrand Universe in this way, the rule given for 

deriving the success of universal quantification of goals in the definition of F0  

above is not quite adequate for our purposes. We may think of the above rule 

as requiring that there is an explicit rule stating the desired conclusion, whereas 

we wish to allow reasoning by cases. For example, let the Herbrand Universe be 

{a, f(a), f(f(a)) .... } and consider the program P below: 

p(a) 

Vx p(f(x)) 

According to the definition above, it is not the case that P F0  Vx p(x), and yet 

it is clear that for every term tin the Herbrand Universe P F0  p(t). We may think 

of this as requiring that universally quantified conclusions be independent of the 

language of the program. In our case we want the success of universally quantified 

goals to reflect the fact that we are dealing with a known Herbrand Universe, and 

so we will require something slightly different. The details are given in the next 

section; essentially we want a universally quantified goal to succeed precisely when 

all of its instances succeed. However we will still retain the "compactness" of the 

previous version, in that success of a universally quantified goal will only depend 

on the success of a finite number of instances, and hence describes a feasible search 

operation. This point is discussed in more detail in section 2.4. 
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2.2.2 Negation in a Constructive Setting 

It has already been mentioned how intuitionistic logic and classical logic may be 

expected to differ for various extensions to Horn clauses, and that intuitionistic 

logic often seems better suited to computation than classical logic. One such 

strength of intuitionistic logic may be shown by one of the most common extensions 

to Horn clauses: to allow the bodies of clauses to be conjunctions of literals, rather 

than conjunctions of atoms alone. The usual extension to the proof theory is to 

introduce the Negation as Failure (NAF) rule: for a ground atom A, we say that 

-'A succeeds precisely when A fails [17,33,49,100,105]. Now classically, A and 

-'A are symmetric in the sense that if one is false then the other is true, and 

vice-versa, and a proof that one leads to a contradiction is a proof of the other. 

This is due to the fact that in classical logic we must have that at least one of 

A and -'A is true. The NAF rule would thus suggest that this symmetry should 

be observed by the computational behaviour of the two goals A and -'A, i.e. that 

either A succeeds or A fails, and that from the failure of A we can prove -'A and 

vice-versa. However, it is not clear that defining -'A in terms of the failure of A 
preserves this symmetry, as A may loop. Thus the complementational nature of 

the NAF rule may introduce an asymmetry between A and -'A, which does not 

sit well with their symmetry in classical proof theory. 

There is an asymmetry between the two in intuitionistic logic, as there is no 

rule which identifies the truth of -'-'A with that of A. In fact, -'A is generally 

harder to prove than A, as in order to prove -'A intuitionistically, we must show 

that A can never be true. In this way we expect that -'A will generally be much 

harder to prove than A. 

Note that NAF is an implicit form of negation in that the negative consequences 

are defined as those which fail to be positive consequences. The logical justification 

for this extra-logical rule is known as the Closed World Assumption (CWA), which 

may be thought of as stating that anything which does not follow from the program 

is false. Thus the law of excluded middle holds for every predicate, and so it is 

difficult to see how the CWA may be reconciled with a constructivist philosophy. 
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Computability considerations also affect NAF, and so it really only coincides with 

the usual conception of negation in mathematical logic for the class of programs 

for which any goal either succeeds or fails, (i.e. there are no loops) and where 

the program's knowledge is complete, so that the CWA is satisfied. Such special 

cases may be found in certain deductive databases, such as a databases of student 

records which lists all the courses in which a student is enrolled. Obviously it is 

decidable whether or not a student is enrolled in a given course, and the knowledge 

in the database is complete, so that if we find that Computer Science 1 is not on 

the list of all courses in which the student is enrolled, we may conclude that the 

student is not enrolled in Computer Science 1. 

Unfortunately, not all programs satisfy both of the above conditions, i.e. are 

loop-free and omniscient, and for such programs, NAF becomes incomplete with 

respect to the consequences of the CWA, in that it does not follow that if A is 

true according to the CWA then -A is computed by the NAF rule. The main 

difficulty is that NAF may be thought of as inferring that an atom A which fails 

is false, whereas from the CWA we infer that any atom A which does not succeed 

is false. A general slogan which seems to be applicable to all formal programming 

languages is that any language of sufficient power to be interesting and useful 

will have some sort of undecidability or incompleteness property. One obvious 

example is that anything of equivalent power to Turing machines will inherit the 

undecidability of the halting problem. In order to use some notion of NAP in 

such a system, we need to give more justification than was given above in order 

to reconcile this approach with its formal basis in mathematical logic. 

It may be argued that the reason that NAP is only an approximation in such 

cases (i.e. that NAP is sound but not complete with respect to the consequences 

of the CWA) is that NAP is an inherently computable form of negation, but 

that the consequence of the CWA are inherently non-computable, as the above 

considerations indicate. Thus any computable form of negation can only be an 

approximation to the CWA, and thus cannot significantly improve on NAF. This 

is to miss the point of the argument; we are trying to incorporate negation into 

the class of "programmable" formulae, not to encode the CWA. We see the role 
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of the CWA as a justification, rather than a desirable end in itself, and so if the 

CWA does not provide an adequate justification for the NAF rule, then it does 

not necessarily follow that we must abandon NAF, but that in order to use it, we 

need to find some other logical' justification for it. 

As noted earlier, constructive truth is "inherently" three-valued, as the lack 

of the law of excluded middle means that we do not require every formula to be 

either true or false, and so in a constructive setting there are formulae which are 

neither true nor false, just as in the programming setting there are goals which 

neither succeed nor fail. This suggests that a constructive interpretation of NAF 

together with a modification of the CWA so that it is consistent with a constructive 

approach seems appropriate. 

An interesting property of intuitionistic logic compared with classical logic is 

that finer distinctions are made between programs. For example, consider the 

programs P1  and P2  where P1  is just p and P2  is (q D p) A (-'q D p). These 

two programs are equivalent in classical logic, whereas intuitionistically they are 

not. This is due to the fact that in intuitionistic logic, for the second program one 

must either derive q or derive -'q in order to derive p, which seems more in keeping 

with the operational nature of the program than the approach of classical logic, 

in which one may take a global view and deduce that p must hold on the grounds 

that it could not be otherwise. Now if we extend both programs by adding q, 

then there is no change in the behaviour of the goal p for the extension of the first 

program, but there is a significant change in the behaviour of the goal p from the 

extension of the second program, as q now succeeds rather than fails. This change 

is reflected in intuitionistic logic as P2, q I- p but P2  !/ p, whereas P2  Hc  p and 

P2, q F6. p. Thus classical logic is too strong to precisely capture the nature of 

computation in this context, as there are too many classical equivalences to allow 

an unambiguous association between derivability and proof. 

'Here we use the term logical in the narrow mathematical sense. 
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One approach suggested by the above argument is that in order to recast 

the CWA, we need to remove the insistence that there are only two possibilities, 

being that a goal C must be either true or false. A way to do this is to shift 

the emphasis of the CWA from being a global notion to a local one, in the same 

way that in P2  above intuitionistic logic may be thought of as being more locally 

orientated than classical logic. This will remove the conflict between the two-

valued approach of the CWA and the three-valued nature required by NAF. An 

important consideration here is that in shifting from the global view to the local 

one, we lose our global perspective. This manifests itself in the consideration that 

there are some situations in which NAF is not really applicable. In some ways, 

NAF is an attractive way to implement negation; there are completeness results 

which state that A is true if A succeeds, i.e. that P = A 	P I- A [61], and so a 

natural dual to this principle would be that A is false if A fails, or P = -'A 	P 1/ 

A. However, there is an underlying assumption here that the definition of every 

predicate in the program is complete, so that it is sensible to consider as false 

everything that is not explicitly stated to be true. This assumption of "universal 

completeness" will hold for some programs, but there are many others for which it 

will not, and for these the NAF rule does not make much sense. For example, the 

append predicate given below is complete in the sense that there is no additional 

clause we can insert which would correctly extend the append relation; all the 

information we ever want to consider about appending lists together is given, and 

so it is correct to apply NAF. Thus we may think of the append predicate as given 

below as completely defined. 

Vx append([J,x,x) 

VxVyVzVw append(y, z, w) D append(x.y,z,x.w) 

On the other hand, not every predicate will have such a complete definition. 

For example, a predicate containing information about carcinogens we would wish 

to consider incompletely defined, as it is possible that our list of carcinogens is not 

complete. Thus whilst we wish to be able to prove -'append([], [1, 2), [3]) from the 

failure of the goal append([], [1, 2], [3]), we may be undecided whether to conclude 
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-'carcinogen(chocolate) from the failure of the goal carcinogen (chocolate). Hence 

the NAF approach is inappropriate here, as whilstIx-carcinogen(x) may be true, 

it is not necessarily true that everything not known to be a carcinogen is known 

not to be a carcinogen. In this way we may classify each definition in the program 

as completely or incompletely defined, i.e. suitable for NAF or not. Thus for any 

program P, we say that a predicate p is completely defined in P if any extension to 

the definition of p given in P is either wrong or equivalent to the original definition. 

Otherwise, p is incompletely defined in P. This idea is explored further in section 

2.3. 

Note that we cannot give a formal definition in the narrow mathematical sense. 

This is due to the fact that the property in question is inherently semantic (i.e. a 

matter of judgement); only the programmer can know whether a given predicate is 

completely defined or not, and then only on the basis of the relation between the 

formal definition (i.e. the program) and the specification of what the program is 

supposed to do, which may or may not be given formally. With a formal specifica-

tion it is possible to consider the question of whether the definition of a predicate is 

complete with respect to the formal specification or not. As issues of specification 

and formal correctness are beyond our scope, we will use the informal definition 

above for the sake of simplicity and generality, and so we require the programmer 

to indicate which predicates are completely defined in any given program, similar 

to an idea expressed in [43]. 

We need to impose some restrictions on the way that completely defined predi-

cates may depend on other completely defined predicates and incompletely defined 

predicates in order to guarantee sensible behaviour. The notion of completely de-

fined predicates will not make a great deal of sense if there is a clause q D p in 

the program where p is completely defined but q is not, as if we are able to in-

crease our knowledge about q, we would be able to increase our knowledge about 

p. Thus we need to restrict the definition of completely defined predicates so that 

the only place that incompletely defined predicates can appear in the definition 

of a completely defined predicate is in the assumption part of an implication in 
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the body of a clause. This property will be useful later on, and is formalised in 

section 2.3. 

Note that the presence of completely defined predicates will have an effect on 

the way that implications in goals are treated. As it will not make sense to add to 

the definition of a completely defined predicate, we will not be able to execute goals 

which require the addition to the program of a clause whose head is a completely 

defined predicate. This point is discussed more fully in section 2.3. 

For these reasons we distinguish between completely defined predicates, i.e. 

those for which we may apply NAF, and incompletely defined predicates, for which 

some other form of negation will be necessary. This gives us our form of localisation 

of the CWA, in that only when a predicate p is completely defined will we be able 

to identify the failure of p(t) with the truth of -p(t). Thus we may think of the 

notion of completely or incompletely defined predicates as an indication of whether 

the CWA is true or not for smaller localised worlds, rather than viewing the CWA 

as a global condition on the entire program. 

Another useful property of the distinction between completely and incom-

pletely defined predicates will allow us to consider different forms of negation 

within the same framework. For completely defined predicates, it is clear that 

NAF is appropriate. For incompletely defined predicates, we need some other 

rule. This may be thought of as specifying what we may deduce from a failure 

to prove a goal. If the goal is an atom p(t) where p is completely defined, then 

the NAF rule says that we may deduce -p(t) from the failure of p(t), as we know 

that we can never have p(t) being true. In this way we may think of NAF as a 

form of consistency test, in that if p(t) fails, then it is not inconsistent to assume 

-ip(t), i.e. -'p(t) is consistent with the program, but not necessarily true. It is 

the fact that the predicate is completely defined which leads us to the stronger 

conclusion that -p(t) is true. In other cases, i.e. for goals other than completely 

defined atoms, some other action may be appropriate. For example, for incom-

pletely defined predicates, we might look for an explicit statement that --ip(t) is 

true, or some indication that the assumption of p(t) leads to an inconsistency. 

One such form of computation is the Negation as Inconsistency (NA I) principle 
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introduced by Gabbay and Sergot [39], which is an explicit form of negation in 

that formulae such as -p(t) form part of the program. Thus whilst our information 

may not be complete, we may know a particular piece of negative information. For 

example, although the list of carcinogens may be incomplete, it may be known that 

bananas are not carcinogenic, and so we would wish to state -'carcinogen(bananas). 

We may thus build up our knowledge of incompletely defined predicates in both 

a positive and a negative fashion. The NAI rule allows us to determine the truth 

of -'A by showing that A leads to an inconsistency. A thorough discussion of this 

idea is given in [39]; here we note that such a rule is appropriate for incompletely 

defined predicates. 

2.3 Technicalities 

In this section we define the necessary extensions to the earlier framework in order 

to incorporate negation. 

The definitions of D and C formulae given in [82] and in section 2.1 hare as 

follows: 

D:= A I VxD I D1 A D2  I GA 

G:= A IVxG J RxG  J C1 A C2  IC1 VG2  JDD C 

The addition of negated atoms to goals requires that we extend the definition 

of a C formula to include the case -'A. The definition of the G formulae which 

reflects this is given below. 

Definition 2.3.1 A definite formula D and a goal formula C are defined via: 

D:=AIVXDIDIAJJ2!GDA 

G:= A IAIVXCIXCIGIAC2IGiVC2IDDC 

We denote by V the set of all D formulae, and the set of all C formulae by g. 

Such an extension requires that programs consist of more than just a set of closed 
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definite clauses, as we need to know which predicates are completely defined. In 

fact, we will include a pair of disjoint sets of predicates names as part of the 

program, where the first set of names are the predicates which are incompletely 

defined, and the second are the completely defined predicates. This allows us to 

make some significant technical simplifications. Whilst we insist that the two sets 

be disjoint, it is not necessary that the two sets cover all predicate names, as there 

may be some predicates whose status is somewhat unclear (i.e. it is possible that 

the definition is complete, but we do not know that it is complete). Thus the 

first set of names may be thought of as those predicates for which we know our 

information is incomplete, and hence it is reasonable to extend the definition of 

such predicates during execution of the program, but not to apply the NAF rule 

to them. On the other hand, the completely defined predicates may use the NAF 

rule, but their definitions may not be extended. 

This leads us to the definition of a program which appears below. 

Definition 2.3.2 Given an atom A = p(t1,. . . ta), we define name(A) = p, and 

for any formula F, names(F) = {name(A) IA appears in F}. 

We say an atom A appears positively (negatively) in a formula F as follows: 

. A appears positively in A 

A appears positively (negatively) in F1  V F2  if A appears positively (negatively) in 

either F1  or F2  

A appears positively (negatively) in F1  A F2  if A appears positively (negatively) in 

either F1  or F2  

A appears positively (negatively) in IxF if A appears positively (negatively) in F 

A appears positively (negatively) in VxF if A appears positively (negatively) in F 

A appears positively (negatively) in F1  D F2  zff A appears positively (negatively) 

in F2  or A appears negatively (positively) in F1 
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A appears positively (negatively) in -iF if A appears positively (negatively) in F 

The above definition is used to determine the "parity" of an atom A in regard 

to implications. For example, p(a) occurs positively in p(a) A q(b), but negatively 

in p(a) D q(b). 

Definition 2.3.3 A derivation state is a pair (D, N) where D is a set of definite 

formulae and N is a pair (N1 , N2) where Ni  c names(H) and N1  fl N = 0, and 

which satisfies: 

For all atoms A and B such that name(A) E N2, C D A is a closed formula in 

[D], and B occurs in G, then 

If B occurs positively in G, then name(B) e N2. 

If B occurs negatively in C, then name(B) E N1. 

If N = (N1, N2), we say ass(N) = N1, den(N) = AT2. 

A program is a derivation state (D, N) in which D is a set of closed definite 

formulae. 

We denote the set of all programs by P. When N is the pair (names(D), 0), 

we often write the program as just D. As mentioned above, we may think of D as 

either a set of closed definite formulae or as a set of clauses. 

The restrictions on the occurrences of atoms in the bodies of the clauses of 

completely defined predicates ensure that completely defined predicates may only 

depend on the success of other completely defined predicates and the assumption 

of incompletely defined predicates. For example, given the clause 

(r D q) D p 

then if den(N) contains p, then it must contain q and ass(N) must contain r. 
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Clearly this property of programs will be maintained throughout execution 

provided that additions to the program only extend incompletely defined predi-

cates. 

We also need to extend the notion of operational provability. We will do so by 

introducing two relations F8  and F1, where the former is used to indicate success 

and hence will be similar to F0 , and the latter is used to indicate failure. There 

will be some interplay between the two relations, as we wish to identify P F3  -'A 

with P F1  A when name(A) is a completely defined predicate, i.e. for completely 

defined predicates we identify negation (P F-8  -IA) with failure (P H f  A). 

As mentioned above, we are interested in validity with respect to a given set 

of ground terms U. In the presence of the Negation as Failure rule, this raises 

some compactness problems. For example, it seems natural to state that the goal 

xp(x) fails if p(t) fails for each t e U. However, this can lead to some technical 

complications, and is somewhat at variance with what happens in Prolog. Consider 

the program 

Vxp(x)p(s(x)) 

(xp(x)) D  

where the Herbrand Universe is {O, s(0), s(s(0)) .. .. }. According to the above rule, 

q fails. However, a Prolog system will not return an answer for the goal q. The 

problem is that we need more than w steps in order to show that q fails. Whilst 

this in itself is not an insurmountable problem, it seems more appropriate (and 

more elegant) to alter the definition of failure so that q neither fails nor succeeds. 

Hence we will need an extra condition, in that not only must we have that every 

ground instance p(t) of p(x) fails, but also that they do so compactly, i.e. that 

there is a finite set of instances which fail, and the failure of this finite set of 

instances implies the failure of all ground instances. For this reason we will need 

to consider arbitrary terms, and not just ground terms, in the definition of failure 

for existentially quantified goals. A formal definition is given below. 

We will assume that the number of symbols in the Herbrand universe is finite, 

and so we may associate a signature with U. This signature will be denoted as E. 
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We also assume the existence of a countably infinite set of variables disjoint 

from the set of constants and function symbols of all signatures. 

Definition 2.3.4 Let E be a signature containing at least one constant symbol. 

Terms are defined as follows: 

• 	A variable or a constant in E is a term 

If  is an n-ary function symbol in E and t1,. . . t are terms, then f(t1,. . .t) is 

a term. 

Nothing else is a term. 

The Herbrand universe U is the set of all ground terms which may be formed 

from the symbols in E. 

We denote by T the set of all terms which may be formed from the symbols in 

E. 

Note that U is the set of all ground terms, whereas T is the set of all terms. We 

think of each of the variables appearing in aterm in T as ranging over elements 

of U, so that we think of IT as a more sophisticated representation of the same set 

of terms. Thus the non-ground terms in IT do not have any deep meaning; they 

merely act as place holders. 

As mentioned above, we wish to define the failure of existentially quantified 

goals (and also the success of universally quantified goals) by way of a finite set 

of "representative" instances, rather than by way of all ground instances (which 

is generally infinite). In order so to do, below we introduce the notion of a repre- 

sentation. 

Definition 2.3.5 A covering set of U is a set of terms T such that t E U if t is 

a ground instance of a term t' e T. 

A minimal covering set is a covering set of which no proper subset is a covering 

set. 
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A representation of U is a finite minimal covering set of U. 

We refer to the set of all representations of U as R(U). 

We may now state that 3xG goal fails if there is a representation R such that 

G[t/x] fails for all t e R. This essentially guarantees a continuity property, in that 

xG only fails when there is a finite set of instances of C that fails. Consider again 

the above example. As any representation must contain a term of the form 3' ( y ) 

for some n, for 3xp(x) to fail we must have that p(y) fails. However it seems that 

any reasonable definition of failure would not allow p(y) to fail in this instance, 

as it "matches" a clause in the program which generates the same goal. Hence as 

p(y) does not fail (even though every ground instance of it does), xp(x) does not 

fail. 

We will define the success of universally quantified goals in a similar way, i.e. 

that VxG succeeds if there is a representation R such that G[t/x] succeeds for 

all t E R. Note that as a term in a representation may contain variables; we 

will have to consider the possibility that variables may occur in atoms, andhence 

take this into account in the definition of success and failure for atoms. As we 

desire the failure of G[t/x] for all t E R to be at least as strong a condition as the 

failure of G[t/x] for all t e U, it seems natural to expect that the former property 

implies the latter. Similarly it seems natural to expect that if G[t/x] succeeds 

for all t c R then C[t/x] succeeds for all t E U. Thus the success or failure of 

the instances of an atom shall be our guiding intuition in the relevant definitions 

of success and failure, and so it seems natural to adopt the policy that an atom 

succeeds if every instance of it. succeeds, and an atom fails if every instance of 

it fails. However this is not quite sufficient for our purposes. Ultimately, we are 

interested in the validity of sentences, i.e. whether a given set of closed definite 

formulae implies a given closed goal formula. Free variables and the like are merely 

tools used in the derivation process. Hence we are not interested in the validity of 

formulae containing free variables per se, but only in using the success or failure 

of such formulae to determine the validity of sentences. Thus we know that any 

free variable in a derivation must be introduced by a quantifier, which allows us 
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to simplify the definition of success for an atom. For example, let E be {a/O, f/1} 

(so that the Herbrand Universe consists of a,f(a),f2(a),. . .), and consider the 

program 

p(a) 

Vx p(f(x)) 

As p(a) and p(f(y))  succeed, we have that Vx p(x) succeeds. On the other hand, it 

is less clear what we should expect for p(z). It is clear that every (proper) instance 

of p(z) succeeds (i.e. that p(a) and p(f(y))  succeed for any y), which suggests that 

p(z) should succeed. However this means that the definition of success for an atom 

may be somewhat complicated, as we may have to "split" p(z) into a number of 

instances. This also means that for a goal such as Vx p(x) there are two "layers" 

of universal quantification - one being the explicit quantifier and the other being 

the implicit quantification given by the occurrence of free variables in terms such 

as p(f(y)).  Hence we shall define the success of an atom as above and in [77], i.e. 

in terms of the atom itself, rather than its instances. Thus in the above example, 

Vx p(x) succeeds, but p(z) does not. It should be noted that if an atom succeeds 

according to the definition of F-0  in Section 2.1, then all its instances succeed. In 

this way the definition of success and failure for atoms may appear to be somewhat 

asymmetric, but as we are ultimately interested onfy in closed formulae, this will 

not be of great concern. 

Note that the definition of F-0  for VxG may be thought of as utilizing only 

the representation {y} of U. Thus our definition of success for VxG seems a 

natural extension of I-a  when considering validity with respect to a given Herbrand 

Universe. 

An important point to note is that the definition of F-0  in Section 2.1 is induc-

tive. Hence it is tempting to define P F-3  -A via P F- f  A and vice-versa. However 

it is not clear that this will lead to the desired definition of F-5  and F-1. Note that 

according to the rules for F-0  in Section 2.1, p D p F-0  p if p D p F-0  p, and so the 

minimality requirement is necessary, i.e. that H0  be the least relation satisfying 

the above rules. Now if we were to define P F-5  -A as P F-1  A and then impose a 
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similar minimality requirement, it is not clear that the resulting relations are well-

defined. For these reasons it seems better to give an iterative (i.e. non-inductive) 

definition of the relations I 3  and H1  which is obviously well-defined, and then show 

that the relations satisfy the appropriate inductive properties. 

As our notions of success and failure are dependent on instances, it will be 

convenient to use the instances of a program P rather than the program itself in 

some circumstances. To this end we define below a mapping (), which is similar 

to the mapping [] above. The former is more convenient for stating some later 

results, as well as somewhat more intuitive. Essentially the difference is that (D) 

consists purely of instances, whereas [D] contains D itself. 

The definitions of I-, and F- follow. For the reasons mentioned above, these 

are not defined (only) over P x G, but over the pairs ((D, N), C), where (D, N) 

is a derivation state and C is a goal formula. Note that neither D nor C need be 

closed here. We will refer to such pairs as derivation pairs. 

Definition 2.3.6 Let D be a definite formula. We define (D) by cases as follows: 

(A) 	={A} 

(VxD) 	= U (D[t/x]) 
WT 

(D1  AD2) =(D1)u(D2) 

(GA) ={CA} 

Let D' be a set of definite formulae. Then we define 

(D') = UDEDI(D) 

We denote by A cx B the statement that A is an instance of B. 

Definition 2.3.7 Let ((D,N),C) be a derivation pair. We define the relations 

F-k and F- on derivation pairs for any k > 0 by cases on G as follows: 

(D,N)H°AiffAe(D) 
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(D, N) F-0  A iffVB E (D), B ç  A and VG B e (D), B A 

• (D, N) F- 	A iff(D,N) Fk A or 3G D Ac (D) such that (D, N) F_k C 

• (D, N) H' A if either (D,N) H A orVB e (D), B A and VC D Be (D) 

such that B X A, (D, N) Fk C 

(D, N) H' -iA if (D, N) F- A and name(A) e den(N) 

• (D, N) F' -A zff(D,N) F A 

(D,N)FkGiVG2 if (D,N) F" G1  or(D,N)F-"G2  

(D, N) [_k C1  V C2  if (D, N) F- G1  and (D, N) F G2  

• (D, N) F- C1  AG2  if (D,N) F C1  and (D,N) H C2  

(D,N)F G1 AG2  if (D,N) F-  C1  or(D,N)FG2  

(D, N) f-k RxG if (D, N) I- C[t/xJ for some t e U 

(D, N) F- xC if R e k(U) such that (D, N) F- C{t/x} for all t € R where the 

variables in R do not appear free in D or C 

(D, N) Fk VxG if R 7(U) such that (D, N) F G[t/x] for all t R where the 

variables in R do not appear free in D or C 

(D, N) kk VxC if (D, N) F C[t/x] for some t e U 

(D, N) Fk 	C if (D U {D'}, N) F- C and names (heads (D')) c ass(N) 

(D, N) pk D' D G if (D U {D'}, N) G and names (heads (D')) 9 ass(N) 
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The relations F-, and Fj  are defined as 

k>O 

F-1  
k>O 

Note the case for negation, which ensures that the NAF rule is only applied to 

completely defined predicates of P, i.e. those whose names appear in den(N). We 

do not insist on the same restriction for the failure of -IA as it seems reasonable 

for -A to fail whenever A succeeds, regardless of whether name(A) is a completely 

defined predicate or not. As negation is only applied to literals, all this does is 

allow more things to fail than would be the case otherwise. For example, given 

the program P = (p, ({p}, 0)), we have that P 1-, p, and so it seems reasonable 

that we have that P F-1 -'p,  even though p is not completely defined. Thus the 

success of an atom implies the failure of its negation, but the failure of an atom 

doesn't necessarily imply the success of its negation. 

Note also that the implication rule has to be slightly modified so that only 

predicates in ass(N) may be extended. There may be less restrictive ways of 

dealing with this problem; this way ensures that only assumptions known to be 

consistent with the program are allowed to be made, and that a goal of the form 

D D G for which D is an extension of the definition of a predicate not in ass(N) 

is computationally indeterminate. Without this restriction, computation of the 

goal append([J, [], [1, 2,3j) D G from the standard append program (i.e. the two 

standard clauses with append being completely defined) involves a program which 

extends the definition of append, and so it is not obvious what the computational 

behaviour should be. This is a form of the consistency problem: which goals 

should be provable from an inconsistent program? This question is taken up in 

a later section; here we note that the present way of dealing with the problem is 

"safe", in that inconsistencies are avoided. 

It should also be noted that this form of the implication rule is not a con- 

servative extension of the implication rule for F-0 , in that it is not the case that 
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(p D p, (0, {p}))  H3  p D p, due to the fact that p is completely defined, and hence 

the antecedent of the goal cannot be added to the program. However, it should be 

clear that for a program P = (D, N) and a goal C in which all predicates which 

occur negatively in G are in ass(N) that D H 0  C implies that P H3  C. Hence 

ass(N) may be used to identify formulae for which F-3  conservatively extends H,. 

In particular, if G is a goal in which all negatively occurring predicates are in 

ass(N) and positive occurrences of a universal quantifier are not allowed in goals, 

it should be clear that D H0  C if P 	C. We shall see how this device is useful 

in chapter 5. Clearly a conservative extension is desirable and would simplify the 

definitions of H and H f , but raises some difficult problems for the model theory. 

Since it seems problematic for the model theory to cope with extensions to com-

pletely defined predicates, we place this restriction here to avoid considering cases 

which are semantically meaningless. We may think of this restriction (i.e. that 

predicates occurring in a negative position in a goal must appear in ass(N) for the 

goal to succeed or fail) as insisting that additions to the program must be known 

to be consistent with the program, just as we insist that to use NAF we must 

know that the predicate involved cannot be consistently extended. In this way 

this restriction, whilst somewhat undesirable, does seem to be in keeping with our 

approach. 

Note that there are programs and goals for which neither P H3  C nor P H f  G. 

For example, if P = (p D p, (0,0)) and C = p, then it is clear that P V. p and 

The above definitions of F- and H may be used to derive a proof system by 

interpreting the left hand side of each if as the derived sequent and the right 

hand side as the previous sequent or sequents. We may think of proofs in this 

system as trees whose nodes are sequents, where each sub-tree is classified as 

either a "success" sub-tree or a "fail" sub-tree, and so this is a generalisation of 

the concept of an SLDNF-tree [61]. 

A formal definition is given below. 
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Definition 2.3.8 Let (F, C) be a derivation pair where P = (D, N). 

Let match(A) = {G i B E (D) I B cxz Al. 

An 0-derivation is a tree built using the following rules: 

P + G 
where G A E (D) 

P —*±A 
VBE(D),B9~A VGBe match(A)P —G 

P-4- A 

. -++ 
A where name(A) E den(N) 

P C1 P __4+ G2 
P -+ C1 A C2 

P — G 
P -++ C1 V C2 

i = 1,2 

P -* G[t/x] 
for some t E U 

P -++ 33 

PA 

P -- -A 

P 	G2 

P-G1AG2 
z=1,2 

P—*C1 P—*G2 
P —+-C1vG2 

P —'a C[t/x] Vt E 
R for some R E R(U) 

P -+- xG 

P 	+ G[t/x] Vt e R 	 1? - G[t/x] 
for some R E R(U) 	 for some t E U P —*+VxG 	 P—*VxG 

P,D -* C 
	

P,D --4- C 
P 	+ D G 
	

P—+- DjG 

where the cases P - VxG and P —c 3xG have the side condition that no 

variable in R occurs free in P or G and the last two rules have the side condition 

that names(heads(D)) c ass(N). 

A sequent P - C is called a positive sequent, and a sequent P —c C is 

called a negative sequent. 

A positive sequent JJ 	+ G is initial if C is an atom A and A e (D). A 

negative sequent P -p Cis initial if C is an atom A and we have VB e (D), 

B~kA and VCDBE(D), B9kA. 
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An 0-proof is an 0-derivation whose root is positive and .whose leaves are 

initial. 

An 0-denial is an 0-derivation whose root is negative and whose leaves are 

initial. 

We may think of an 0-proof or 0-denial as exploiting the iterative nature of 

the definition of F, and F-f* This will allow us to use 0-proofs and 0-denials to 

derive results about the relations F-, and I- j more easily. 

The following proposition shows how F, and F- may be thought of in a more 

inductive style which is closely related to the definition of F0 in Section 2.1. 

Proposition 2.3.1 Let (D, N) be a derivation state. Then 

(D, N) F, A iffA E (D) or 3G D A E (D) such that (D, N) F-, G 

(D, N) F, -'A if (D, N) F A and name(A) E den(N) 

(D, N) F, G1 V C2 if (D, N) F, C1 or (D, N) F, C2 

(D, N) F, C1 AG2 if (D, N) F, C1 and (D, N) F, C2 

• (D, N) F, *cG if (D, N) F, G[t/x] for some t E  

(D, N) F, VxG if 3R E R(U) such that (D, N) F, G[t/x] for all t E R where no 

variable in R appears free in D or G 

(D, N) F, D' j C if (D U {D'}, N) F, G and names (heads (]1Y)) c ass(N) 

(D, N) F A if \/B E (D) B 9~ A and VG D B E (D) such that B cx A, 

(D, N) F1 G 

(D, N) F1 -'A if (D, N) F-, A 
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(D, N) H1  G1  V C2  zff (D, N) I- G1  and (D, N) H C2  

(D, N) 1-1  C1  AG2  if (D, N) H1  G1 orKD,N)  H G2  

(D, N) F- 3xG if 2R e R(U) such that (D, N) H f  C[t/x] for all t e R where no 

variable in R appears free in D or G 

(D, N) Hj  VxG if (D, N) H1  G[t/x] for some t E U 

(D, N) H1  D' 3 C if (D U {D'}, N) H f  G and names (heads (D')) c ass(N) 

Proof: Obvious. 

U 

It is not hard to see that the two notions of derivability coincide, as stated in 

the proposition below. 

Proposition 2.3.2 Let (P, G) be a derivation pair where P = (D, N). Then 

P H3  G zff P -* C is provable. 

P H f  G if P -f G is provable. 

Proof: As the rules are derived directly from the definitions of H3  and H f , the proof 

is immediate. 	 UI 

It is also easy to see that the success (failure) of a goal implies the success 

(failure) of each of its ground instances. This is formally stated in following propo-

sition. 

Proposition 2.3.3 Let (P, G) be a derivation pair where P = (D, N). Then 

I. P H3  G = P{t/x} H3  C[t/x] for any t e U 

2. P H1  G = P[t/x] H1  C[t/x] for any t e U 
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Proof: We proceed by induction on the depth of the relevant 0-derivation. 

In the base case, G is an atom A. 

As the sequent is initial, A c (D), and hence A[t/x] E (D[t/x]) for any 

t, i.e. P[t/x] F- 9 A[t/x] for any t e U. 

As the sequent is initial, VB E (D) B ç A and VG D B e (D), 

B 9~ A, and hence VB E (D[t/x]) B A[t/x] and VC D B e (D[t/x]), 

B ç A[t/x] for any t, i.e. P[t/x] F- Aft/x] for any t e U. 

Hence the induction hypothesis is that the proposition holds when the rele- 

vant 0-derivation is of no more than a given depth. There are six cases: 

A: 	1. If the base case does not hold, then we have 3G D A e (D) such 

that P F-3 G, and hence G[t/xI D A[t/xJ E (D[t/x]), and by the 

hypothesis P[t/x] I- G[t/x], and so P[t/x] F-3 A[t/x]. 

2. If the base case does not hold, then we have VB E (D) B A and 

VG D B e (D) such that B cx A, P 	C, and by the hypothesis, 

P{t/x} F- f G[t/x] for any t E U. Hence VG' D B' E (D[t/x]) such 

that B' cx A[t/x] we have P{t/x] 	C', and as above VB E (D[t/x]) 

B 9k A[t/x], and so P{t/x] F-1 A[t/x] for any t e U. 

-'A: 1. P F-3 -'A if P F-1 A and name(A) e den(N), and by the hypothesis 

this implies that P[t/x] F-i. A[t/x] and name(A) E den(N) for any 

t E U, i.e. P[t/xJ I- -'A[t/x]. 

2. P F-i -IA if P F 9 A, and by the hypothesis this implies that 

P[t/x] F- A[t/x] for any t e U, i.e. P[t/x] I- -'A[t/x]. 

G1 V C2: 1. P F-3 C1 V C2 if P F-3 C1 or P F-3 C2, and by the hypothesis, 

P[t/x] F-3 G j [t/x] or P[t/x] F-3 C2[t/x1 for any t 	U, and so 

P[t/x] H 3 C1 [t/x} V G2[t/x], i.e. P[t/xj F-3 (C1 V G2)[t/x] for any 

tel,l. 

2. P F-1 C1 V C2 if P F- C1 and P F-1 C2, and by the hypothesis, 

P[t/x] F-1 C1[t/x} and P[t/x] F-1 G2 [t/x] for any t E U, and so 
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P[t/x] F- G1[t/x} V G2[t/x}, i.e. P[t/x] F- (C1  V G2 )[t/x] for any 

tEll. 

C1  A C2: 1. P F- 3  G1  A C2  if P F-3  G1  and P F-3  C2, and by the hypothesis, 

P[t/x} F-3  G1[t/x] and P[t/x} F-3  G2[t/x] for any t E U, and so 

P[t/x] F- 3  C1 [t/x] A G2[t/x], i.e. P[t/x] F-3  (C1  A G2 )[t/x] for any 

EU. 

2. P F-f  G1  A C2  if P F-f  G1  or P F- f  G2, and by the hypothesis, 

P[t/x] F-1  G1 [t/x] or P[t/x] F-3  G2[t/xJ for any t e U, and so 

P[t/x] F-1  G1 [t/x] A G2 [t/x], i.e. P[t/x] F- (C1  A C2)[t/x] for any 

EU. 

yG: 	1. P H 5  3yG if P F-3  G[t'/y] for some t' E U and by the hypothesis, 

P[t/x] F-3  G{t'/y][t/x] for any t E U, and so P[t/x} F-3  yG[t/x] for 

any t E U. 

2. P F-1  yG if 3R E R(U) such that P F-1  G[t'/y] for all t' E R and 

by the hypothesis, P[t/x] F-1  G[t'/y][t/x] for any t e U, and as no 

variables in t' can contain x, we have P F- f  yG[t/x] for any t E U. 

VyG: 1. P 1-3  VyG if 2R E R(U) such that P F-f  G[t'/y] for all t' ER and 

by the hypothesis, P[t/x] F-3  G[t'/y][t/x] for any t E U, and as no 

variables in t' can contain x, we have P[t/xJ F-3  VyC[t/xj for any 

EU. 

2. P F-1  VyG if P F-1  G{t'/y} for some t' E U and by the hypothesis, 

P[t/x] F-f  G[t'/y}[t/x] for any t E U, and so P[t/x] F-f  VyGft/x} for 

any t E U. 

D' D C': 1. (D, N) F-3  D' D C' if names(heads(D')) C ass(N) and (D U 

{D'}, N) F-5  C', and so by the hypothesis we have ((DU{D'})[t/x} , N) F-5  

G'[t/x] for any t E U. Hence we have that (D[t/x], N) F-3  D'[t/x] 

G[t/x], i.e. (D[t/x], N) F-3  (D' C')[t/x] for any t E U. 

2. (D,N) F-1  D' D G' if names(heads(D')) ç ass(N) and (D U 

{D'}, N) F-1  C', and so by the hypothesis we have K(DU{D'})[t/x] , N) F-

G'[t/x] for any t E U. Hence we have that (D[t/x], N) F-1  D'[t/x] 

C[t/x], i.e. (D[t/x], N) F-1  (D' D G')ft/xJ for any t E U. 
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A possibly surprising result is that there is a weak dual to Proposition 2.3.3, 

in that for DHHF programs, if a representative set of instances of a goal fails, then 

so do all sets of representative instances, including the goal itself. This result is 

proved below. 

Proposition 2.3.4 Let (P, G) be a DHHF derivation pair where P = (1), N). Let 

R E 7?(U) be such that the variables in R do not contain any variables which occur 

free or bound in P or G, and t' e T be such that no variable in t' occurs bound in 

P or G. Then 

P[t/x] I-, G[t/x] for all t c R = P[t'/x] I- G[t'/x] 

Proof: We proceed by induction on the depth of the 0-derivation of P[t/x] I_ 

Let R = ft, ....  

In the base case, C is an atom A. 

As P[t1/x] F A[t1/x] for each i, we have VB E (D[t/x]), B çk A[t1/x] and 

VG D B e (D[t2/x]), B ç A[t/x] for each i. Let B e (D[t'/x]), and so B = 

B'[t'/x] for some B', i.e. B'[t'/x] E (D[t'/x]), and so B'[t/x] E (D[t1/x]). If 

B'[t'/x] cx A[i'/x], then B'[t1/x] cx A[t1/x] for any i, which is a contradiction, 

and so B'[t'/x] çk A[t'/x]. Now let C D B E (D[t'/x]), and so C D B = 

G'[t'/x] D B'[t'/x] for some O' D B', i.e. C'[t'/x] D B'[t'/x] e (D[t'/x]), 

and so C'[t/x] D B'[t/x] E (D[t1/x]). If B'[t'/x] cx A[t'/x], then B'[t1/x] cc 

A[t1/x] for any i, which is a contradiction, and so B'[t'/x] 	A[t'/x]. Hence 

VB e (D[t'/xJ), B 9k Aft'/x], and VG D B E (D[t'/x]), B A[t'/x}, and so 

P[t'/x] H1  C[t'/x]. 

Hence we assume that the proposition is true for all 0-derivations of no more 

than a given depth. There are six cases: 
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A: If the base case does not hold, then P[t1 /x] F-1  A[t1/x] if VB E (D[t1 /x]) 

B 	A[t/x} and VG D B e (D[t/x]) such that B cc A[t/x], P[t1/x] H f  

C. As above, if B E (D[t'/x]), we cannot have B x A[t'/x], and so 

we have that B çk A[t'/x] VB E (D[t'/x]). Let C D B E (D[t'/xJ), 

and as above C D B = G'[t'/x] D B'[t'/x] for some C' D B', i.e. 

C'[t'/x] D B'[t'/x] E (D[t'/x]). If B'[t'/x] cc A[t'/x], then G'[t/x] D 

B'[t1/xJ e (D[t 2 /x]), and B'[t1/xJ cx A[t/x] for all i. Hence we have that 

P{t/x} l- G'[t1/x] for all i, and by the hypothesis we have P[t'/x] 1-1  

G'[t'/x]. Hence VB E (D[t'/x]) B ç A[t'/x] and VC D B e (D[t'/x]) 

such that B cx A[t'/x], P[t'/x] F-1  G, i.e. P[t'/x] F- f  A[t'/x]. 

C1  V C2: P{t/x] Ij (G1  V G2)[t/x} if P[t/x] F-1  G1[t/x] and P[t/x] F- G2[t/x], 

and so by the hypothesis P[i'/x] F-1  G1 [t'/x] and P[t'/x] F-f  G[t'/x], 

i.e. P[t'/x] 	(C1  V G2 ){t'/x]. 

C1  A C2: P[t/xj F-f  (C1  A G2)[t/x] if P[t/x] F-1  G1[t/x] or P[t/x] F-f  G2[t/xJ, 

and so by the hypothesis P[t'/x] F-f  G1[t'/xJ or P[t'/x] F-1  G2[t'/x}, i.e. 

P[t'/x] F-1  (C1  A G2)[t'/xJ. 

yG: P[t/x} F-1  yG[t/x] if 3Y E 1(U) such that P[t/x] F-f  G[t/x}[t"/y] for 

all t E R, and so as t,,  does not contain x and t does not contain y, 

by the hypothesis P[t'/x] F-1  G[t'/y][t'/x] for all t" E R, i.e. P[t'/x] F- 

yG[t'/x]. 

VyG: P[t/xj F-1  VyG[t/x] if P[t/x] F- 1  G[t/x][t"/y] for some t" E U, and as t 

does not contain y, by the hypothesis P[t'/x] F- f  G[t"/y][t'/x] for some 

t" e U, i.e. P[t'/x] F-1  VyG{t'/x}. 

D' D C: (D{t/x},N) F- f  (D' D G)[t/xJ if names(D') c ass(N) and ((D U 

{D'})[t/x], N) H f  C[t/x] and so by the hypothesis ((DU{D'})[t'/x] , N) F- f  

C[t'/x], i.e. (D[t'/x],N) F- f  (D' D C)[t'/x]. 

Note that a corresponding result does not hold for F-3; consider the program 
below. 
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p(a) 

Vx p(f(x)) 

Now {a, f(y)} is a representation, and p(a) and p(f(y)) both succeed, but p(y) 

does not succeed. This result cannot be extended to DHHF_ formulae either, as 

for the above program, -'p(y) does not fail, although -'p(a) and -'p(f(y)) both do. 

The significance of this point will be seen in Section 6.1. 

The intuitive reading of P F3 C and P i-1 C may be given as "C succeeds" 

and "C fails" respectively. The validity of this interpretation is shown by the 

proposition below. 

Proposition 2.3.5 Let (P, G) be a derivation pair where P = (D, N). Then 

PF3 G=P 1 C 

PFfG=PVS G 

Proof: We proceed by simultaneous induction on the depth of the 0-proof and 

0-denial for P F-3 G and P F1 C. 

In the base case, the sequent is initial, and hence C is just an atom A. 

As p 	A is initial, we have that A E (D), and so as A oc A, it is 

not the case that VB E (D) B 9E, A, and by Proposition 2.3.1 it is not 

the case that P F1 A. 

As P -+ A is initial, we have that VB € (D), B 9~ A and VC D 

BE (D), Bç* A, and so as A oc A we must have A V (D) and 

/G D A E (D), and so by Proposition 2.3.1 it is not the case that 

PH 3 A. 

Hence the induction hypothesis is that the proposition holds for all derivation 

states whose 0-proof or 0-denial is no more than a given depth. 

There are seven cases: 
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A: 	I. P I-, A = C D A E (D) such that P F-5 C, and by the hypothesis 

it is not the case that P F7 C. Hence, it is not the case that 

VB E (D) B9~A and VC D B E (D) such that B oc A we have 

P F-f C, and by Proposition 2.3.1 it is not the case that P F-1 A. 

2. PF-f AzVBE(D),B9~A and VGDBE(D) such that B oc A 

we have P F-1 G. Now as A oc A, we must have that A V (D). 

Also, by the hypothesis it is impossible that 3G D A e (D) such 

that P 1- 5 C, and so it is impossible that P F-5 A. 

-'A: 1. P F-3 -A = name(A) e den(N) and P F-1 A, and by the hypothesis 

it is impossible that P F-5 A, and so it is impossible that P F-1 -'A. 

2. P F-1 -'A = P F-5 A, and by the hypothesis it is impossible that 

P F-1 A, and so it is impossible that P F-5 -'A. 

C1 V C2: 1. P F-3 C1 V C2 if P F-3 C1 or P F-3 G2 and by the hypothesis, this 

implies that either it is not the case that P F-1 G1 or it is not the 

case that P F-1 C2, i.e. it is not the case that P F-1 C1 and P F-1 C21 

and so it is not true that P F-1 C1 V G2- 

2. P F-1 C1 V C2 if P F-1 C1 and P F-1 C2 and by the hypothesis, this 

implies that it is not the case that PF-5 C1 and it is not the case 

that P F-3 C2, i.e. it is not thecase that either P F-5 C1 or P F-5 C2, 

and so it is not true that P F-5 C1 V C2. 

C1 A C2: I. P F-3 G1 A C2 if P F-5 C1 and P F-3 C2 and by the hypothesis, this 

implies that it is not the case that P F-1 G1 and it is not the case 

that P F-1 C2, i.e. it is not the case that either P F-1 C1 or P F-1 C2, 

and so it is not true that P F-1 C1 A G2- 

2. P F-1 C1 A G2 if P F-1 C1 or P F-1 C2 and by the hypothesis, this 

implies that either it is not the case that P F-5 C1 or it is not the 

case that P F-5 C2, i.e. it is not the case that P F-5 C1 and P F-5 C2, 

and so it is not true that P F-5 C1 A C2. 

dxC: 1. P F-3 RxG if P F-3 G[t/x] for some t E U, and by the hypothesis, 

this implies that it is not the case that P F-f C[t/x]. Now if 3R E 

1(U) such that P F-1 G[t'/x] for all t' E R, then by Proposition 
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2.3.3 P H1  G[t/x] for all t e U, as no variables of R appear free in 

P. Hence it is impossible that BR E R(U) such that P H1  G[t/x] 

for all t' e R, i.e. it is not true that P Hf  BxG. 

2. P Hf  BxG if BR E R(U) such that P H1  G[t/x] for all t E R, and 

by Proposition 2.3.3, P H1  G[t/x] for all t E U, as no variables of R 

appear free in P. By the hypothesis this implies that it is not the 

case that P H3  G[t/x] for any t € U, and so it is impossible that 

P H3  G[t/x] for some t e U, i.e. it is not true that P H3  BxG. 

VxG: 1. P H8  VxG if BR E R(U) such that P H3  G[t/x] for all t E R, and 

by Proposition 2.3.3, P H3  G[t/x] for all t E U, as no variables of R 

appear free in P. By the hypothesis this implies that it is not the 

case that P H1  G[t/x] for any t e U, and so it is impossible that 

P H1  G[t/x} for some t E U, i.e. it is not true that P Hf  VxG. 

2. P H f  VxG if P F-1  G[t/x] for some t e U, and by the hypothesis, 

this implies that it is not the case that P H3  G[t/x] for some t € U. 

Now if BR E fl(U) such that P H3  G[t'/x] for all t' e R, then by 

Proposition 2.3.3 P 1-3  G[t/x] for all t E U, as no variable's of R 

appear free in P. Hence it is impossible that BR e 7(U) such that 

P H3  G[t/x] for all t' E R, i.e. it is not true that P H3  VxG. 

D' 	G': 	1. (D, N) H3  D' D C' if names(heads((D')) c ass(N) and (D U 

{D'}, N) 	1-3 	C', and by the hypothesis, this implies that it is 

not the casethat (D U {D'}, N) H1  C', and so it is not true that 

(D, N) H1  D' D G'. 

2. (D,N) H1  D' D C' if names(heads((D')) c ass(N) and (D U 

{D'}, N) H1  G', and by the hypothesis, this implies that it is not the 

case that (D U {D'}, N) H3  C', and so it is not true that (D, N) H3  

D'DG'. 

FM 

Thus the above definitions are consistent. Note that a similar result will hold 
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for the case when universal quantification is interpreted intensionally (i.e. using 

the new constant rule). 

This result suggests that it is consistent to define a more general form of 

negation. If we let C be a goal in which all predicates which occur in positive 

positions are in den(N) and 11 those in negative positions are in ass(N), then we 

may define an extension of the relations 1-8  and H f  as follows: 

PH 3 -'GiffPF f G 

PF-'GiffPF3 G 

From the above result we see that P F-1  G implies that P F-3  G does not hold, 

and so P F-3  -'C is a consistent conclusion. A similar argument holds for the other 

case, and so this indicates how we may implement negation for a wider class of 

formulae than just atoms. This theme is taken up in section 3.2. 

2.4 Discussion 

2.4.1 Terms and Universal Quantification 

A distinctive feature of the definition of F-3  compared to that of F0  is that the 

rule for universally quantified goals is defined in terms of representations, of which 

there may be infinitely many. However, we know that if an atom succeeds, then 

every instance of i, succeeds, and so a successful search for a proof of a universally 

quantified goal will only require a finite number of instances to be tested. For 

example, if E is {a/O, f/1}, consider the program below. 

p(a) 

Vx p(f(x)) 

It is clear that p(a) and p(f(y)) succeed, and so Vx p(x) succeeds. Clearly it 

is not necessary to consider a representation such as la, f(a),f(f(x))}. On the 
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other hand, an implementation will not need to consider inductive methods. For 

example, consider the program 

p(a) 

Vx p(x) D p(f(x)) 

In this case p(t) succeeds for every ground term t, but every non-ground term 

neither succeeds nor fails, and so there is no representation R such that p(t) 

succeeds for all t E R. Hence it is unnecessary for us to consider inductive methods 

of proof. 

There are some cases in which an inductive method of proof would indeed be 

useful, however. For example, given the program 

Vx less(O,s(x)) 

VxVy less(x,y) D less(s(x),s(y)) 

it seems reasonable to conclude that Vx less(x, s(x)) is true, but as the definition 

of less is recursive, we need an inductive method of proof in order to reach this 

conclusion. One such way would be to replace the quantified variable with a new 

constant, and "expand" the constant where necessary, using our knowledge of the 

Herbrand Universe. For example, the success of the above goal would be found by 

the following derivation. 

P L Vx less(x, s(x)) 

P H 3  less (c,s(c)) 

P 	less(O, s(0)) A Vs less(x, s(x)) D less(s(x), s(s(x))) 

P 	less(c,s(c)) D less(s(c),s(s(c))) 

less(c, s(c)), P l- less(s(c) , s(s(c))) 

less(c, s(c)), P I- less(c, s(c)) 

and so we get that P H 3  Vx less(x, s( x)). 

The key step is the replacement of less(c, s(c)) by 
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less(O, s(0)) A Vx less(x, s(x)) D less(s(x), s(s(x))) 

Clearly it is not hard to specify an induction scheme for goals such as Vx p(x) 

where the signature of p is {a1/0, .. . a/O, f, /1, . . . f/1}. The problem is more 

complicated when considering a general goal VxG, and signatures which contain 

functions of a number of different arities. One way to proceed is to substitute a 

new constant for each universally quantified variable in the goal, and then deal 

with each of the new constants as they are encountered when the atomic parts 

of the goal are reached. In this way we "delay" the decision of what to do for 

each variable until we are forced to decide, similar to the way that the choice of 

substitution for existentially quantified variables may be delayed by the use of 

unification. The techniques of Bundy et al. [12,13] may be useful in this context. 

Such an inductive method will presumably be somewhat intricate and compu-

tationally expensive, and so we do not pursue it here. It should be noted that 

whilst our approach makes use of a known set of terms, it does so in a way that is 

compact, as noted above, and so no inductive properties are needed. 

An observation which is relevant to this discussion is that we may thinlçof our 

method of success for universal quantification as similar to that of an intermedi- 

ate logic. One such logic is the logic of constant domains [34,21]. This logic is 

characterised by the property that in order to establish VxF it is not necessary 

to establish that VxF must always hold, no matter what extra assumptions are 

made, but only to show that F[t/x] is true for all terms t. A proof theoretic char-

acterisation is given by adding the following inference rule to those of intuitionistic 

logic: 

Vx (0 V (x)) D (0 V Vx O(x)) 

where x is not free in q. 

Such an inference rule is precisely what we would expect from the considera-

tions discussed above, as both sides of the implication become 0 V I'(c) when we 

replace the universal quantifier with a new constant. In our case we go one step 

further, in that not only is the domain constant, but it is known. 
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Hence our interpretation of the universal quantifier is a natural one when the 

Herbrand Universe is fixed in advance. This theme is taken up in section 6.5. 

One example for which the intensional interpretation (i.e. the "new constant" 

version) is perhaps more appropriate is in an example due to Miller [73]. If we 

wish to deduce a rule from the constitution of the USA such as the one below 

Vx president(x) D US-citizen(x) 

then the intensional interpretation is perhaps more appropriate than the exten-

sional one. The reason is that it is not now known who all the U.S. Presidents 

will be, although we do know all the U.S. Presidents up to date. Hence, there is 

a difference between the extensional interpretation (i.e. all presidents up to the 

present have had this property) and the intensional interpretation (i.e. there is 

a rule in the constitution which states that the U.S. President must be a U.S. 

citizen). The difference is more striking for the goal 

Vx president(x) D white-male(x) 

This is true for all U.S. Presidents so far, but there is no corresponding rule in 

the U.S. constitution. 

One way to develop a unified framework for these two possibilities is to consider 

some signatures as closed and some as open. For example, the signature of all 

Catholic monarchs of Great Britain would be considered closed, as the Act of 

Settlement of 1701 ensures that no Catholic may occupy the throne. On the other 

hand, the signature of U.S. Presidents (or that of all British monarchs) would 

be considered open, as there are still future Presidents (and monarchs) whose 

identity is unknown. Hence for closed signatures, the extensional interpretation 

is appropriate, whereas for open signatures, the intensional one is probably more 

appropriate. In the latter case a modal interpretation is probably better still, so 

that we can distinguish between what must be true (for example, the U.S. citizen 

rule) from what happens to be true now, but need not be so in the future (e.g. 

the white male rule). Such notions of necessity and possibility coincide when the 

signature is closed. 
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As mentioned above, we only consider the case where the terms of the Herbrand 

Universe are generated only from the symbols in the signature. In order to allow 

for polymorphic predicates, we need to relax this restriction by specifying in more 

detail how the relevant terms may be built. For example, the arguments to append 

must be lists, but the elements of the list may be of any kind whatsoever. This 

may be thought of as adopting a type system for programs and goals, so that each 

term must have a type. The adoption of a type system, such as those of [111,85, 

90,84], would provide the framework in which we may use induction over a much 

wider class of programs; however the issues involved will be essentially the same 

as those discussed above. 

2.4.2 Answer Substitutions 

A well-known limitation of the NAF rule is that it is only defined for ground 

atoms. A naive approach to extending it to include non-ground atoms is for -p(x) 

to succeed if p(x) fails. This approach is implemented in many Prolog systems, 

but may lead to counterintuitive behaviour. For example, given the program 

p(a) 

q J p(b) 

the goal -p(x) fails as p(x) succeeds. However, it is clear that -ip(b) succeeds 

because p(b) fails. 

One way to interpret this approach is to consider -'p(x) to be universally quan-

tified, so that the goal is actually Vx-p(x), which is equivalent (both intuitionis-

tically and classically) to -3x p(x). This may be seen as a direct counterpart to 

the goal 3xp(x) in that Vx-p(x) succeeds precisely when 3xp(x) fails. 

This is not the only possible extension of NAF to non-ground atoms (although 

it is clearly easy to implement). An obvious alternative is to consider the quan-

tification as 3x-p(x), so that -'p(x) succeeds if there is an instance of p(x) which 

fails. In this case, for the program above, we expect the answer substitution x - b 
to be returned for the goal3x-p(x). Note that the previous case does not require 
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an answer substitution as it involves a universally quantified formula. This case 

has a more subtle symmetry with 3xp(x) in that 3xp(x) succeeds if there is an 

instance p(t) of p(x) which succeeds, whereas3x-p(x) succeeds if there is an 

instance p(t) of p(x) which fails. 

This interpretation of NAF requires a more powerful way to generate answer 

substitutions than the unification methods employed in SLD-resolution. The stan-

dard method by which answer substitutions are generated is by unifying an atomic 

goal with the head of a clause in the program, applying the resulting substitution 

to the body, and then applying the answer substitution for this instance of the 

body to the variables of the original goal. Clearly we cannot generate any answer 

substitutions for negated goals in this way, as the answer substitutions are only 

generated for successful goals. Thus a more general method which searches for in-

stances of p(x) which fail rather than for instances of p(x) which succeed is needed 

in order to use formulae such as Bx-ip(x) as goals. 

A limited implementation of this idea is present in some Prolog systems, such as 

Mu-Prolog [88], which uses a delay mechanism for non-ground negated goals. This 

technique delays the processing of the goal -'p(x) until some other goal pi'oduces 

a substitution under which x becomes a ground term. For example, given the goal •  

x(-,p(x) A q(x)), the processing of -p(x) is delayed until after the processing of 

q(x), and if this succeeds with the answer substitution being x - t where t is a 

ground term, then the NAF rule is directly applied by checking that p(t) fails. In 

this way answer substitutions can only be generated by non-negated goals, and 

these are then filtered by the negated goals. Naturally a ground substitution may 

not occur, in which case no more processing of negated goals may occur. When 

such an impasse is reached, the goal is said to flounder [63]. As there are many 

goals which flounder, such as3x-p(x), it is clear that this technique can be nothing 

more than approximation to the desired process. 

In chapter 4 we give an algorithm for constructing answer substitutions for 

non-ground negated goals. The existence of such an algorithm allows us to define 

the notion of success for any existentially quantified goal in a uniform way, i.e. that 

xG succeeds if there is a term t E U such that G[t/x] succeeds. In this way we 
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may think of this algorithm as a justification for this definition. One interesting 

possible connection between such an algorithm and an inductive algorithm for 

universally quantified goals may be that if the induction mechanism used for the 

universal quantification will always produce a counterexample when the goal fails, 

then we may implement the generation of answer substitutions for ax-'p(x) by 

searching for a proof of Vxp(x). If this search is successful, then3x-p(x) fails. 

If the search fails, producing a counterexample p(t), then x <-- t is an answer 

substitution for ax-p(x). In this way any such induction mechanism may be 

useful in this context as well. This point is discussed more fully in section 4.5. 

2.4.3 Incomplete Definitions and Inconsistency 

The fact that NAF is an implicit form of negation means that we only need to 

extend goals to include negated atoms to capture it, as programs do not need to 

state explicitly which formulae are false. In contrast, any form of negation for 

incompletely defined predicates will need to explicitly state negative information, 

and so one way of incorporating such a form of negation is to allow negatedatoms 

to play the same role as atoms, so that we, build up programs and goals from 

literals, rather than atoms alone. The definition of D and G formula may now be 

given as 

L:=AI -'A 

D:=L!VXDID1AD2ICJL 

G 	L IVxG IxC  I G1 A C2  IG1 V C2  ID 

Here we use L to stand for a literal. Note that the formula C 	iA is a 

definite formula. In this way we may think of the extension as allowing our basic 

conclusions to consist of both positive and negative pieces of information (literals), 

rather than positive information alone (atoms). Hence we may use clauses such as 

Vx —carcinogen (x) C unfertilised(x) A unprocessed(s) 
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meaning that anything which has been grown without fertiliser and has not been 

processed is not a carcinogen. 

Note also that this merely extends the conclusions that may be drawn to include 

negative information, as well as positive information. Hence this extension adds 

some extra colour to the class of first-order hereditary Harrop formulae, but does 

not change their fundamental computational properties, as we only allow negation 

to be applied to atoms. 

We need to extend the definition of (D), which is done in the obvious way, i.e. 

that (-IA) = {—A}. 

Another needed extension is to the definitions of 1-.  and Ij  to cope with 

this extended class of programs and goals. For example, we want F-3  to have the 

property that 

(D, N) F-3  -'A if -'A E (D) or 3G D -'A E (D) such that (D, N) F-3  G or 

(D, N) A and name(A) E den(N) 

This ensures that the NAF rule is only applied to completely defined predicates of 

P, i.e. those whose names appear in den(N), Iand that negation for incompletely 

defined predicates is computed in a similar manner to that for positive literals. 

An important question which arises for such programs is the question of con-

sistency. For example, it is obvious that the program -A A A is inconsistent. We 

may define consistency as follows: 

Definition 2.4.1 A program P is consistent if there is no atom A such that P F3  

A A —'A. Otherwise P is inconsistent. 

As discussed in [77], the question of what is to be done with inconsistent 

programs depends on the context in which the inconsistency occurs. in some 

cases, the approach of full intuitionistic logic may be appropriate, i.e. that if a 

contradiction is found, then all goals are provable. Various mathematical examples 

suggest themselves, such as if we find that both even(0) and -'even(0), then we 
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would think it reasonable to disregard all the knowledge contained in the program, 

and so deduce that every goal is provable. On the other hand, knowledge bases 

and the like often have to deal with inconsistent information in a less mathematical 

way. For example, in a parent-children database, we may have a relation named 

mother. If we find that both mother(Mary, Jane) and mother(Mary, Jane) are 

true, then we have an obvious inconsistency, but it seems difficult to see how 

this information should effect the truth of mother(Gladys, Fred) or father(Alan, 

Jenny). In this way the inconsistency would be dealt with locally, and without 

forcing all other formulae, such as carcinogen (chocolate) A-'carcinogen(chocolate), 

to be true. Thus the inconsistency may be thought of as being inherently local, in 

that the number of formulae affected by the contradiction is comparatively small. 

In a more mathematical setting, it may be considered that the interdependence is 

much greater, and so it is more reasonable to expect that most, if not all, formulae 

become trivially true. In [77] it was shown that 	may be trivially extended to 

capture the intuitionistic notion of inconsistency. We merely note that there is a 

similar notion to that of completely and incompletely defined predicates, in that 

we may assume that the default solution is to use the minimal version, and that 

in special cases which warrant it, we may use the stronger intuitionistic version. 

We may then adopt a similar solution by allowing the programmer to specify a 

dependency relation between predicates, so that if a contradiction is found in one 

predicate, then we can immediately tell which predicates may also contain suspect 

information and which are independent of the contradiction. 

Such problems with inconsistency can also arise from consistent programs. For 

example, we would expect the behaviour of 

-AAAH8  G 

to be the same as that of 

- 'AHAjG 

and so anything which applies to the first case should also apply to the second. 

Note that this problem does not arise when negation could only appear in C 
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formulae. In this case it may be arbitrarily difficult to determine whether we may 

"safely" assume A, as checking the consistency of P extended by A will involve 

determining whether P H8  -'A is true or not. 

A similar problem is encountered if we allow formulae of the form -'A where 

name(A) e den(N) as definite formulae in order to memoise successful goals of 

the form V(-'A). This involves adding the successful goals to the program, so that 

other goals may use the memoised ones as a shortcut, rather than recomputing 

known results. The class of programs so obtained is consistent, as for -A to 

succeed we must have that A fails. However, the operational provability relation 

given above does not allow completely defined predicates to be extended. The 

precise nature of this difficulty is discussed in section 7.1; for now we note that a 

method for dealing with inconsistent programs will be useful for this task as well. 

Thus a minimal approach to inconsistency may be a way of allowing more forms 

of negation than NAF. 

2.4.4 Computational Aspects 

One question that comes to mind when dealing with negation in a constructive 

context is the relation between rules such as NAF and the intuitionistic interpre-

tation of -'A as A D I. In [77] it was shown how we may implement this form of 

negation by allowing I as a distinguished atom, so that I may be the head of a 

clause. We may then compute (D, N) I-s  A D I via (D U {A}, N) H8  I. Thus this 

form of negation seems natural for incompletely defined predicates. Now in order 

to implement negation in a uniform way, as well as to directly justify NAF in terms 

of intuitionistic logic, we may wish to implement negation for completely defined 

predicates in the same way. This will involve the addition of negative information 

to the program in order to make this identification, as otherwise there is no way 

to derive a contradiction from the program extended with the assumption A. The 

standard way to add such information is by the completion of the program. The 

details of this process are discussed in chapter 3, but for now we may think of 

this process as adding negative information to the program in such a way that if 
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P F-3  -IA, then from the completion of the program we may derive A D I. In this 

way we can see the completion of a program as making NAF explicit, in that there 

is a given theory in which A D I is true if A fails. 

One problem with deriving A via A D I is that the latter requires that 

a completely defined predicate be extended, and the rules for H as described 

above prevent this. However it seems natural to make an exception in this case, 

as we are trying to use the negative information in the completion to show that 

the assumption of a given atom leads to an inconsistency. One way around this 

problem is to exclude N from consideration, so that we consider the completion 

of a program P = (D, N) as just a set of clauses P', which we may think of as a 

shorthand for (P', (names(1-I), 0)). 

This will lead to problems with goals of the form D i C where G is not J.. and 

the head of D is a completely defined predicate, in that such goals may succeed 

from the completion but do not succeed from the original program. It may be 

argued that this is reasonable; we think of the completion as an explicit statement 

of what is known, and as a result, it is inappropriate to use implicit forms of 

information. This also means that it will not be true that p D I F 3  p D G 

where C is any goal, and hence this method cannot be expected to be complete 

for intuitionistic logic. This in itself is not a great problem, as we are seeking to 

represent the implicit inferences made from the program in an explicit form, and 

not to implement a given logical system. As mentioned above, the intuitionistic 

approach to inconsistency is probably not the most appropriate one in this context 

anyway, and so it seems that this approach is defensible. However, we prefer to 

make an exception to the rule for implication, so that goals of the form A D I 

are always computed via (D, N) F3  A D I if (D U {A},N) F3  I, but all other 

implications must use the rule given in section 2.3. This will make it easier to state 

and prove results, as well as reinforcing the perception that the completion is used 

to capture the operational properties of the program, rather than a semantic device 

per se. In this way the completion will only alter the computation of negated 

atoms, and not any other goals, which seems more appropriate than altering an 

established and understood method. 
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Now if we imagine trying to write the completion as a set of clauses, rather 

than a meta-level formula in the manner of Clark [17], then we will need to be able 

to state negative conclusions. The natural way to do so is to write a clause of the 

form C D -'A as (GA A) D I, from which it is easy to see that A D I succeeds if C 

succeeds. In this way the completion allows us to implement negation in a uniform 

and explicit way, provided we can make the A D I mechanism work. In such an 

implementation there is little distinction between completely and incompletely 

defined predicates, as all the information is given explicitly. 

One problem with this way of implementing negation is that we may prove 

undesired results. For example, the clause p D -p would be written as (pAp) D I, 

which is obviously the same as p D I, i.e. -'p, which may not be what was intended. 

As we shall see, the choice of logic is crucial for issues such as these. 

Another problem is that we may get loops where they are not expected. For 

example, consider the program -'p D -'q and the goal -'q. We would expect 

this goal to fail, as it is perfectly consistent to add q to the program. Clearly 

(p D I) D (q i I) is equivalent to ((p D I) A q) D I. We then get the following 

(infinite) derivation sequence 

((pDI)Aq)DIF3 qjI 

q,((pDI)Aq) D IF 3  I 

q,((pDJ)Aq) D IF-S  (PD I)Aq 

q,((pDI)Aq)DIF-3 pjI 

p,q,((pDI)Aq) D IF5  I 

p,q,((pDI)Aq)D IF-3(pD I)Aq 

p,q,((PD_L)Aq)D IF I 

The problem is that we are always able to match I with the clause 

((p D i) A q) D I 

and so we loop. However, it is clear that we are, in a sense, matching the goal -'p 
with the "head" -'q, and so it is the ambiguity behind the use of I that is the 
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problem. In this way the translation of (p D I) D (q D I) to ((p D I) A q) D I 

loses some important computational information, i.e. that it is -'q which is the 

real "head" of the clause. If we were only to match the goal p D I with itself, 

rather than with q D I as above, then it is possible to avoid this looping process. 

This seems desirable, as the assumption of q does not make the above program 

inconsistent. This may be thought of as binding the I more closely to q than 

to the other atom, and so we need to be aware of the context in which we are 

searching for a contradiction. Hence it may be more enlightening to write such 

clauses as C D (A D I) with the head of the clause considered as -IA, so that we 

may consider a literal -'B = B D I to match the head of this clause if A matches 

B. This may be thought of as a delaying process; for purposes of unification we 

consider a negative literal to be in its "closed" or compact form -IA, but after this, 

the deduction component uses the "open" form A D I. 

However, this technique will not work on arbitrary programs. The problem is 

that there may be other ways to prove I. from the program, especially when it is 

extended by an assumption. For example, consider the program below. 

q A (p D -'q) 

It is clear that if p is assumed, then we have a contradiction, and so we desire 

p D I to succeed. However, if we use the strategy described above, p D I will fail, 

as there is no clause head which matches either p or -'p. The more general rule 

will indeed find that p D I succeeds, as shown by the derivation sequence below. 

q,(pAq) IF-3 pD I 

p,q,(pAq) D 	I 

p,q,(pAq) D IH 5 pAq 

Thus the simplified procedure will only work if we know that the only way for 

-'A to succeed is for A to be an instance of an atom B such that there is a clause 

head (B I). We shall see in section 3.2 that our version of the completion is such 

a program. We may think of any class of programs which satisfies this property 
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as one in which we use the closed form of a negative literal for deduction as well 

as unification. A consequence of this is that the two clauses -'A and A D -A are 

now no longer operationally equivalent. This may been seen by the fact that the 

first clause (-IA) is just a negative fact, and so -'A L -IA, as the computation 

terminates with success after the unification step, whereas A D -A l/ -IA, as 

the next goal produced is A, which does not match anything, and so fails. This 

corresponds to the approach taken to inconsistency in minimal logic, which may be 

thought of as intuitionistic logic without the rule that any formula may be derived 

from a contradiction. Hence, the difference between intuitionistic and minimal 

deduction in this context may be characterised by the strength of the binding 

of A D I, and that any such class of programs will use a minimal rather than 

intuitionistic approach to inconsistency. 

In this way the computational nature of A D I seems to indicate that the 

full intuitionistic approach to inconsistency is less natural in this context than the 

minimal one. We take up this theme in section 5.6. 

2.4.5 Stratification 

For model-theoretic reasons, it is common to restrict the use of negation in the 

bodies of clauses. One such restriction is to insist that programs be stratified [4,54, 

55,62], i.e. that it be possible to divide the predicates of the program into layers so 

that each predicate p may depend positively on predicates in its own layer or lower 

down, but may only depend negatively on predicates in lower layers. This means 

that negated predicates may only be used by other predicates once the negated 

predicates are fully defined. 

For example, program P1  is stratified, but programs P2  and P3  are not. 

P1 	 P2 	 P3  

even(0) 	 even(0) 	 even(0) 

even(x) D even(s2(x)) 	odd(x) D even(s(x)) 	-'even(x) D even(s(x)) 

even(x) D -iodd(x) 	-'even(x) D odd(x) 
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The restriction to stratified programs allows the model theory of such programs 

to be given in a manner known as the iterated fixpoint semantics [4]. This is done 

by dividing the program up into the strata suggested by the above definition, so 

that we know that if p depends on -'q, then q is defined in a lower stratum than p. 

We may then apply the standard fixpoint semantics to the lowest stratum, as it 

can contain no negations, and then use this interpretation to construct a similar 

fixpoint for the two lowest strata by noticing that any negated atom -'q is such 

that q is defined in the lowest stratum, and so we may determine the truth of -'q 

from the model of the lowest stratum. Otherwise we may proceed as normal, thus 

getting a model for the second lowest stratum, as well as for the lowest. We then 

continue this process for all remaining strata. 

One problem with this approach is that there are non-stratified programs which 

seem useful, and so this restriction is stronger than we would like. Whilst P2  and 

P3  above are not stratified, their operational behaviour is known; for example 

it is clear that the goal even(s2(0)) succeeds for both programs (assuming that 

negation is computed via the NAF rule). We may think of stratified programs 

as defining a well-ordered hierarchy of predicates. There is a similar hierarchy 

defined over ground atoms by both P2  and P3, and so it seems that a refinement 

of the idea of stratification will lead to a weaker restriction. A weaker form of 

stratification based on this idea has been proposed by Przymusinski [94,95], in 

which the only restriction is that a ground atom A may not depend upon its 

negation, and so programs such as -'p D p are not allowed. The reasons for having 

any restriction at all are semantic rather than operational; for the program -'p D p 

it is obvious that both the goals p and -'p loop, and so the computational nature of 

this program is known, although it is not very enlightening. The programs which 

obey this weaker restriction are known as locally stratified. Similar weaker forms 

of stratification have also been studied [32,41,14,93]. 

Whilst this is a reasonable restriction, in that the programs outside this class 

do not seem very useful, we feel that no restriction should be placed on the class 

of programs. This is because all programs have some clear, if perhaps eccentric, 

operational behaviour, and so this should be captured in the semantics of such 
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programs, rather than ignored. A constructive approach can help in this regard, 

as is it natural for formulae to exist which are neither true nor false, and so we may 

consider programs such as -'p D p as both operationally and model-theoretically 

indeterminate, in that p neither succeeds nor fails, and so p should be neither true 

nor false. This cannot be done in classical logic, as we must have that p is either 

true or false, and so we can only capture such operational behaviour in a three-

valued logic or something similar, rather than the direct approach which is possible 

in intuitionistic logic. Perhaps there is little philosophical difference between the 

alternatives of defining troublesome programs out of existence or allowing them 

to exist but ignoring them, but it seems important from a computer scientist's 

point of view that all programs be given an interpretation. Naturally there are 

some programs for which there is no sensible interpretation, but it seems preferable 

that programs of little practical use be given a corresponding interpretation, rather 

than being ignored. 

One interesting example of this was given by Przymusinska and Przymusinski 

[93], in which the authors show how the program P1  below, which is not locally 

stratified, may be converted to program P2, which is locally stratified, and pre-

serves the operational properties of P1 . 

P1  

p(1, 2) 

p(l,2) A -ig(2) 3 q(1) 

p(l, 1) A -ig(1) 3 q(1) 

p(2,2) A -'q(2) j q(2) 

p(2,1)A -'q(l) D q(2) 

P2  

p(1, 2) 

p(l,'2) A -'q(2) 3 q(1) 

The reason that these two programs are operationally equivalent is that as 

p(l, 1), p(2, 2) and p(2, 1) all fail, nothing can ever succeed from the last three 

clauses, and so they cannot make any contribution to the set of goals which suc-

ceed. However, it is the presence of these three clauses which prevents P1  from 

being locally stratified. This suggests that it is really the operational behaviour 

of the program that should "drive" the model theory, in that two programs which 
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are equivalent operationally should have the same model. We will see in chapter 

5 how this concept may be used to derive a model theory which is valid for all 

programs, so that no restriction needs to be placed on the class of programs. 

A similar problem exists with the completion of programs. Clark's completion 

was restricted to Horn clause programs, so that no negations could appear in the 

bodies of clause. This restriction has the property of ensuring that the comple-

tion is never inconsistent, as there can never be a program P such that comp(P) 

contains the formula A -* -IA. However, the weaker restrictions discussed above, 

such as local stratification, may also be used to ensure the consistency of the com-

pletion [14,103]. Now even though the completion is to be used for operational 

reasons rather than model theory, it seems one useful approach is to define the 

completion for locally stratified programs only. As the clause -'A D A may be 

interpreted under NAF as meaning A succeeds if A fails, it is difficult to see how 

such clauses can convey any information relevant to the computation of the nega-

tion of completely defined predicates, as there is no clear definition of derivability 

from such a clause. Hence it seems reasonable to exclude such clauses from any 

completion process in which we wish to allow negations to appear in the body of 

clauses. 

This is related to the earlier discussion on the difference between NAF and the 

(global) CWA. As the goal A loops forever for the program -IA A, the CWA 

would imply -'A, as A does not succeed, whereas NAF does not infer -'A as A 

does not fail. Hence if we view the completion as making explicit the operational 

behaviour of the program, we do not lose very much by restricting the class of 

programs in this way. 

2.5 Notation 

Here we list the various classes of formulae which will be used in later chapters. As 

can be seen from the definitions below, the main difference between all the classes 

is the formulae which may be used as goals. In most cases we wish to consider 
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the addition of negation in goals, and so we will give first the "positive only" 

form, followed by the more general one. Generally the largest class of programs, 

i.e. first-order hereditary Harrop formulae, is the most desirable for programming, 

but we often use a slightly smaller class, in which universal quantifiers are not 

allowed in goals, for technical convenience. This smaller class may be normalised, 

in that there is a smaller class of formulae which have the same expressive power, 

and so we need to study at least three languages other than Horn clauses. These 

are introduced below. 

In all cases, only closed D formulae may be used in programs, and only closed 

C formulae may be used as goals. 

Horn clauses may be defined as follows: 

Definition 2.5.1 DHorn  and CHorn  formulae have the following form 

D:=AIVxDID1 AD2 ICJA 

C := A I C1  A C2 I  3xG 

DHorn_ and G fforn_ formulae have the following form 

D:=AIVXDJD1 AD2 ICDA 

C:=Al -'AIC1 AC2  IxC 

As discussed in [77] and section 2.1, this class of formulae is no more power-

ful than the usual definition of Horn clauses. As also noted in [77] and section 

2.1, Horn clause goals may include disjuncts without increasing the power of the 

language, and hence Horn clauses may be equivalently defined as follows. 

Definition 2.5.2 DHornV  and GHOrnV  formulae have the following form 

D:=AIVXDI ]J1AD2ICDA 

G:= A IG1 A C2  1G1 v C2  IxC 
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DHOrnV _ and CHor ,,V _ formulae have the following form 

D:=AVxDID1 AD2 IGDA 

G:=AJ-'AjG1  AG2 IGi VG2 JxG 

A more general (and more powerful) class of formulae is first-order hereditary 

Harrop formulae. 

Definition 2.5.3 DHHF and GHHF  formulae have the following form 

D:=AIVXDID1 AD2 IGDA 

G:= A IG1 A C2  I G1 VG2  IxG IVxG ID 

DHHF_ and GHHF_ formulae have the following form 

D:=AIVXDID1AD2IGJA 

G:=Al - AlGlAG2IGivG2j 2xCJVxGIDDC 

For technical reasons, we will often wish to omit universally quantified goals 

from consideration, and hence use the following class of formulae, which we will 

refer to as module formulae. 

Definition 2.5.4 Dmod and Gmod  formulae have the following form 

D:=A!VXDID1AJJ2IGJA 

G:= A IG1 A C2  1C1 v C2  lxC I DDC 

Dmod_ and Gmod_ formulae have the following form 

D:= A IVxD IDI A D2 J CA 

G:=Af - AICiAG2ICivC2IxClDJC 

As discussed in section 6.1, we will have cause to consider the following lan- 

guages as well. 
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Definition 2.5.5 Dobject  and Gobj ecj  formulae have the following form 

D:AIVxDJD1 AD2 JCDA 

G:=AIG1 AC2 IDDC 

Doôject _ and Gobject _ formulae have the following form 

D:=AIVXDID1 AD2 IGJA 

G:=AI -'AIG1 AG2 DDG 

Definition 2.5.6 Dmta  and Gmcta  formulae have the following form 

D:=A( -1A(VxDfDi AD2 JGJAIGJ-A 

G, VG2  I2xG IVxG ID 

Note that we may equivalently define Dmeta  and Gmeta  formulae as 

L:=A I -iA 

D:=L!VxD!D1AD2IGJL 

G:=LIG1  AG2  1G1  VG2 J2xGIVxGID D G 

It should be clear that the definition of D formulae does not change very much 

in from case to case, and so we may think of the various alternatives above as 

variations on a standard theme. Some possible variations are given below: 

D:= A IVxD J DA D2  IG D D 

D:=Ajk/XD(D1 AD2 IGJA 

D:=AI - AIVxDlDi AD2 ICDA 

D:=Aj-AIVxDIDiAD2lGJAIGJ,A 
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We have seen how the first variation is no more powerful than the second, and 

hence we usually use the second. However, whenever we do wish to use the first 

variation, we refer to it as the extended form, and the second variation as the 

clausal form. For example, the extended form of Do b3ect  and Co b ect  formulae are 

given below. 

D:= A IVxD ID1 AD2  IC 

G:=AI-'AIG1 AG2 IDJG 

The third and fourth variations are used to construct explicit negative infor-

mation as well as positive information, and hence may lead to an inconsistency, 

which means that they must be used with care. Thus the most common of these 

variations will be the second one, when negation is not considered, or the third 

one, when negation is considered. 

In all of the above languages, it is interesting to consider which formulae are 

both programs and goals. Such formulae will be referred to as core formulae, and 

labelled as M formulae. For example, MHorn  consists of conjunctions of closed (or 

ground) atoms. Clearly hereditary Harrop formulae will have the most interesting 

core, which may be given as follows: 

M:=AIVXMIJVI1 AM2 IMJA 

The core of the module formulae is similar, except that no universal quantifiers 

may occur, and so Mmod is the set of all ground Dobi programs, which may be given 

as follows: 

M:=AIM1 AM2 IMJA 

Core formulae are of interest as they represent the formulae which may be both 

asserted (programs) and tested for truth (goals). Hence, a core formulae, once it 

has been proved to be true, may be added to the program, i.e. memoised. We will 

have more to say about memoisation in chapter 7. 



Chapter 3 

Completions and Negation as Failure 

In this chapter we examine the relationship between the Closed World Assumption 

(CWA) and the Negation as Failure (NAF) rule. A common method of attack is 

to consider the completion of a program [17], which may be thought of as adding 

negative information to the program in such a manner that an atom fails if its 

negation is derivable from the completion of the program. We give a form of 

the completion which is more explicit than that of Clark [17], as well as being 

adapted to first-order hereditary Harrop formulae. This requires that we filace a 

restriction on the class of programs, so that the completion is never inconsistent. 

With this restriction, we show that the completion behaves as expected, in that the 

computational properties of the program and its completion correspond precisely. 

3.1 Completions and Provability 

As discussed above, NAF is an implicit form of negation, which may be seen from 

the definition of P F- -'A. Now as intuitionistic negation identifies -'A and A D I, 

we may ask whether such an interpretation can be given in this case, i.e. is there a 

formula P' such that P F-  -' A if F' F-1  A D I? One way to achieve this is through 

the completion of the program, first proposed by Clark [17]. We may think of this 

as adding extra information to the program, so that for any atom A for which 

name(A) E N, we have that P H 8  -'A if P', A H 3  I, where P' is an extension of 

76 
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P. Note that the classes of programs defined above (i.e. sets of closed D formulae) 

can never be inconsistent, and so there is no way that P U {A} can prove I. 

However, we envisage the larger program P as adding negative information to P, 

and hence enabling the assumption of A to lead to an inconsistency. 

We may think of the larger program as a theory in which -A holds if A D I 

holds, and so the two may be considered interchangeable. In our case we will often 

wish to think of -'A as a shorthand for A D I, and so whilst our formal results 

will use the latter version, we shall see how the former version is sometimes more 

intuitive. Hence, we will often use -IA rather than A D I in discussion. 

We may add such negative information to the program by allowing I as a 

distinguished atom, as is done in [77]. In Clark's case, the extra information was 

also added implicitly, by making the "if" 's of the program into "if and only if" 's. 

Clark's completion is given in the definition below. 

Definition 3.1.1 Let P be a Horn clause program. For each predicate p, of arity 

n, which is defined by k clauses 

p(t111 t12,...t1 ) C B1  

p(t 1, 42, . . . t) c Bk  

where Bi  is a conjunction of atoms (or body), the completion comp(P) of P is 

given by 

Vxl... 	p(x1.... x,) +4(E1 A B1)v ... V (Ek  A Bk ) 

where E1  is x1  = t 1  A... A x = t, 1 <i <k, (E1  A B) stands for the existential 

closure of E•AB1  for all variables of EZ ABI  other than x1,. . . , x,,, and the variables 

{ x 1 ,. . . x} are new variables, i.e. they do not appear anywhere in the k clauses 

above. 

Note the importance of the equations, which may be thought of as encapsulat-

ing the unification process. 
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In addition, Clark's scheme involves adding the following formula for each 

predicate p which appears in the body of some clause in the program but not as 

the head of any clause: 

Vx1, .. . x-ip(x 1,.. .x) 

This is just the case when a predicate has no clauses defining it in the program, 

and so for all terms t1  . . . t we have that p(t1,.. . t) is false. 

For a Horn clause program P, we refer to the Clark completion as comp(P). 

Note that this completion is defined for Horn clause programs, so that no negation 

appears in the body of the clauses in the program. This means that comp(P) is 

only meaningful when negation is only allowed in queries, rather than in both the 

body of a clause and in a query. As remarked in section 24.51  this ensures that 

the completion is consistent, but there are less restrictive assumptions which also 

ensure the consistency of the completion. For this reason we will assume that 

programs are locally stratified, and it is probable that any restriction which leads 

to the consistency of the completion will suffice. 

From our point of view, it will only make sense to define the completion for 

predicates which are completely defined, as the completion gives an explicit rep-

resentation of information which is left implicit in the program. Thus in the com-

pletion of a program P = (D,N), we restrict our attention to predicates whose 

names appear in den(N). 

One important thing to note is that the completion is really carried out as a 

meta-level process rather than as an object level transformation. The equations 

and the +-+ ensure that comp(P) is not a Horn clause program, and so cannot be 

used directly for the computation of the negation of completely defined predicates. 

We will be able to use the completion directly for computation, rather than just 

as a semantic device, if we can write the completion in the form of an extension 

to the program, rather than as a meta-level formula. The particular form we have 

in mind is one that adds clauses whose heads are negative literals. For example, 

consider the even predicate defined below. 
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even(0) 

Vxeven(x) D even(s2(x)) 

The Clark completion comp(P) is 

Vxeven(x) x = 0 V 3y x = s2(y) Aeven(y) 

From this we may infer the additional information that 

Vx—even(x) +-* x OAVy x 54 s2(y)V(x = s2(y)A -ieven(y)) 

Hence, a more explicit form of the completion may be given as 

even(0) 

Yx even(x) D even(s2(x)) 

-'even(s(0)) 

Vx -even(x) D -'even(s2(x)) 

Note that if we replace -'even by odd, this process has added the usual definition 

of the odd predicate to the usual definition of the even predicate, which is just 

what would be expected. 

It is this latter form that we will define as our completion PC,  which is then 

an extension to the program. This seems a more natural way to view the added 

information. 

As there are negations in the head of these formulae as written above, we will 

need to find some way of writing such formulae as definite formulae. One possibility 

is to allow negated atoms to be heads of clauses, and thus extend the class of 

programs. This extension raises some technical issues with regard to inconsistency, 

as discussed above. Another possibility is to allow I as a distinguished atom, and 

compute P' 	-'A via C,  A I- S I. Using this technique the last two clauses of the 

completion C  of the even predicate defined above may be written as 
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even(s(0)) D I 

Vx ((even(x) D I) A even(s 2(x))) D I 

Note that the formula below, which is equivalent to the second clause, is not a 

clause in the usual sense, as the "head" of the clause is not an atom. 

Vx (even(x) I) D (even(s2(x) DI) 

The operational features of this approach were discussed in an earlier section. 

It is not hard to see that this approach to the completion will allow us to use 

the technique discussed in the previous chapter in which even(s 2(X)) D I would 

be considered the head of the clause. The derivation of -even(s 3(0))  from this 

program is given below. 

PC  F. even(s3(0)) DI. 

even(s 3(o)),  PC F- I. 

even(s 3(o)),  Pc F3 	2 2x (even(s (x)) A (even(x) I)) 

even(s3(0)), PC  F3  even(s(0)) D I 

even(.s(0)),even(s3  (0)),Pc F31 

even(s(0)), even(s 3(0)), P F3  even(s(0)) 

This derivation hinges on the fact that we made three "right" choices along 

the way: firstly that the first time that we encounter I we match I against (the 

second version of) the fourth clause in PC, next that we match even(s' (x)) against 

the assumption even(s 3(0)) rather than the original clauses of the program, and 

finally that we use the third clause in pc  to match against the second occurrence 

of I. These seemingly arbitrary choices may be understood by considering that in 

order to derive a negated atom -IA, we must use information added to the program 

by the completion. Hence we can only derive -A if there is an instance of a clause 

in the completion corresponding to this formula. In this way we may think of the 

clause 

Vx((even(x) D I) A even(s2(x))) I 
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as equivalent to the "clause" 

Vx (even(x) D 1) D (even(s2(x)) DI) 

so that we can think of even(82(x)) D I, or -'even(s2(x)) as the "head" of the 

clause. Thus in the above derivation, the goal even(s3(0)) D I matches the fourth 

clause in pC 
 but not the third, and so there is only one possible choice, rather than 

two. The goal even(s(0)) D .1. works in a similar manner, this time matching the 

third clause but not the fourth. 

The choice of which clause to match even(32(x)) with may also be explained 

by this concept of the head of a clause. Consider the program given below. 

DA(GD(AJI)) 

The clause G D (A L) represents a part of the completion of some smaller 

program, in particular a clause dealing with the definition of A. Now for a goal 

B D I where BO = AO, we have the following derivation sequence 

P,GD(AI)H 3 B± 

B,P,GD(AI)F-3 ± 

B,P,G D (A D 1) 1-., A A G 

B,P,G D (A _L) F-., GO 

The last step in the above derivation may be derived directly from the first 

step by matching B D I with A D I, provided that B is not needed in the 

computation. We will show later that this is indeed the case for a large class 

of programs. Now if B and A do not unify, then the derivation above would be 

different, as we need to find some other way for A to succeed. However, we know 

that the completion has the property that if A and B do not unify, then this clause 

cannot tell us anything about the negation of B, and so some other clause will 

be needed for B j I to succeed. In other words, either B and A are unifiable or 

this clause cannot tell us anything about the negation of B. Hence, the technique 

of matching against the extended clause head is a correct short-cut, in that no 
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correct derivations of B D I are missed out. A formal proof of this property is 

given in section 3.3. 

This enables us to write the above completion of the even predicate in the 

original form, i.e. 

even(0) 

Vx even(x) D even(32(x)) 

-ieven(s (0)) 

Vx-'even(x) D -leven(s2(x)) 

with the above convention about the equivalence of -iA and A D I and the concept 

of the extended clause head understood. This may be thought of as a compromise 

between the logician's idea of negation, i.e. A D I and the programmer's idea of 

negation, i.e. A fails. 

Note that this technique may be thought of as ensuring that in deriving A 

I, the assumption of A must be used in the computation. This is justified by 

the perception that we define the completion in such a way that we know it is 

consistent, and so P' V3 .1, and so for PC,  A F-3  I to hold, we must have that 

the assumption is used in the derivation. It is this property that allows us to 

use the more specialised computation rule; we are not trying to find whether the 

program is in any way inconsistent, which is the natural interpretation of P H. I; 

we are merely checking whether a given extension to a consistent program makes it 

inconsistent. Thus we can consider this case as a specialised form of a consistency 

check. 

LA 



Chapter 3. Completions and Negation as Failure 	 83 

3.2 The Completion Process 

It is interesting to note that although the CWA is defined on a program, Clark's 

completion is defined for a predicate, and the completion of the program is given 

by the conjunction of the completions of each predicate. In this section we give a 

similar completion procedure for a first-order hereditary Harrop formula program, 

and our completion will have the added advantage of being defined in an executable 

language, and so it directly specifies a computational method for NAF. This is 

done by adding the extra information as clauses, rather than converting clauses 

into stronger statements, as is done in [17]. 

The basic idea is the observation that if G D A is the only clause whose head 

matches A and name(A) is a completely defined predicate, then we know that if C 

fails, then A fails, and as name(A) is a completely defined predicate, we have -IA. 

Hence, we identify the failure of A with the negation of A, and so the negation 

of A with the failure of G. Recall that a completely defined predicate can only 

depend on completely defined predicates, and so this identifies the negatin of A 

with the negation of G. The main problem is then to express the negation of C 

in our form of clauses. 

For example, consider the program below, where p, q and r are completely 

defined, and s and t are not. 

Vx (y-'q(y) A r(y)) D p(x) 

Vx s(x) D t(x) 

We wish the completion of this program to be 

Vx (y-'q(y) A r(y)) j p(x) 

Vx s(x) 3 t(x) 

Vx (Vyq(y) V -r(y)) 3 -'p(x) 

Vx -q(x) 

Vx -'r(x) 
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Note that the third clause in the completion requires the use of a universal 

quantifier in the body, and that the completion is a set of DHHF formulae. 

We may write the definition of a completely defined predicate p in the following 

manner: 

Let the clauses of p be the universal closure of 

Atli, t12,. . .t) c G1  

p(tkl,tk2,...tkfl ) c Gk 

where Gi  is a goal. We use the same idea as above for the encapsulation of 

unification by expressing the clauses in the equivalent fofm 

Vxl ... x p(x1 ,.. .x) c (E1 A C1 ) V... V R(Ek A Gk) 

where Ei  is x1  = t1  A ... A Xn  = t, 3(Ei  A C1 ) is the existential closure of all 

free variables of E1  A Gi  other than {x1.... x}, 1 < i < k, and the x are new 

variables, and so they do not appear in any C2 . 

Now as p is a completely defined predicate, we may then conclude that 

Vxi  ... x -'p(x1, ... x) c -'[(E1  AC1)V... Va(EkAGO] 

We then proceed to transform the body into a C formula, so that the above 

formula becomes a clause defining -'p. The above observation that a completely 

defined predicate can only depend on completely defined predicates will be useful 

in the following transformation process. We wish to push the - inwards, and when 

this connective is only applied to atoms, wemay consider the clauses so given as 

executable, giving us the desired explicit form of the completion. In classical 

logic, the justification of this process is immediate due to the larger number of 

equivalences between formulae than in intuitionistic logic, but in our case we need 

to do more work to justify it. In order to do this, we introduce below the operator 

fails, which takes a goal and returns another goal such that fails(G) succeeds if 

the original goal G fails. This is akin to the transformation process of Barbuti et 

al. [7], and may be thought of as a way of expressing -G as a goal. 



Chapter 3. Completions and Negation as Failure 	 85 

Definition 3.2.1 Let C be a GHHF_ goal formula. We say C is negatable if all 

predicates which occur positively in C are completely defined, and all predicates 

which occur negatively in G are incompletely defined. 

It should be clear that if G D A E (D) and name(A) is completely defined, 

then G is a negatable goal formula. This is due to the way that completely defined 

predicates may depend on other predicates, and so all the bodies of the clauses of 

the program in which we will be interested will be negatable goal formulae. 

The reason that negatable goals are interesting is that we may identify the 

failure of a negatable goal with the truth of its negation. This may be thought of 

as an extension of the way that we infer -'A from the failure of A when name(A) is 

a completely defined predicate. The reason that all the negatively occurring pred-

icates must be incompletely defined is that we must be able to add the necessary 

assumptions to the program in order to show that the goal fails, and hence that 

its negation succeeds. The operator fails may now be defined as follows: 

Definition 3.2.2 Let C be a negatable goal formula. 

We define another GHHF_ goal formula fails(G) as follows: 

fails(A) = -'A 

fails(-iA) = A 

fails(G1  V G2 ) = fails(G1 ) A fails(G2 ) 

fails(G1  A C2 ) = fails(G1 ) V fails(G2 ) 

fils(D j C) = D j fails(C) 

fai1s(xG) = Vx fails(C) 

fails(VxC) = 3x fails(C) 

It is obvious that for any negatable GHHF goal G, fails(C) is also a GHHF. 

goal. As we are dealing only with completely defined predicates, we know that the 

failure of A and the success of -'A are equivalent, as are the success of A and the 
failure of -'A. For the other goal formulae, the definition of fails(C) is very similar 
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to that of H1; we know that if C1  V C2  fails then we must have that C1  fails and 

C2  fails, and vice-versa, and so on. 

We may think of this transformation as exploiting the properties of failure and 

success. For example, the goal p A q fails if either p fails or q fails, and under 

Negation as Failure, this is the same as either -'p succeeds or -iq  succeeds, i.e. 

-'p V -'q succeeds. 

Note also that fails(fails(G)) = G. Below we show that the expected behaviour 

of fails(G) indeed occurs. 

Lemma 3.2.1 Let (F, G) be a derivation pair where P = (D, N) and C is negat-

able. Then 

P 	C 	P H1  fails(G) 

Proof: We proceed by induction on the depth of the relevant 0-derivation. The 

base case occurs when G is a literal, i.e. either A or -'A, where A is an-atom. 

By Proposition 2.3.1, we have that 

PH8  APHJ  -'A 

PHS  -'APH f  A 

and so it is clear that the base case holds. 

Hence the induction hypothesis is that the statement holds for all 0-derivations 

of no more than a given depth. There are seven cases: 

A, -'A: As above, it is clear that these two cases follow immediately from Propo-

sition 2.3.1. 

C1  V C2: P H3  C1  V C2  if P H3  C1  or P H3  C2  and by the hypothesis this 

is equivalent to P H1  fails(C1) or P H1  fails(C2 ), which in turn is 

equivalent to P H1  fails(G1 ) A fails(02 ), i.e. P H1  fails(G1  V C2). 



Chapter 3. Completions and Negation as Failure 	 87 

G1  A C2: P F 9  C1  A C2  iff P L C1  and P H8  C2  and by the hypothesis this 

is equivalent to P I-j fails(C1) and P H f  fails(C2 ), which in turn is 

equivalent to P H1  fails(C1 ) Vfails(C2 ), i.e. P H1  fails(G1  A C2 ). 

axC: P F-s  3xG if P F-s  G[t/x] for some t E U and by the hypothesis this 

is equivalent to P F1  fails(G[t/x]) for some t E U, which in turn is 

equivalent to P F1  Vx fails(G), i.e. P F- f  fails(xG). 

VxC: P F3  VxG if 3R E R(U) such that P 1-8  C[t/x] for all t E R and by the 

hypothesis this is equivalent to P H f  fails(C[t/x]) for all t e R, which 

in turn is equivalent to P 	x fails(G), i.e. P F1  fails(VxC). 

D' D C: (D, N) F8  D' 	G if names(heads(D')) fl den(N) = 0 and (D U 

{D'}, N) F-3  G and by the hypothesis this is equivalent to names(heads(D'))fl 

den(N) = 0 and (D U {D'}, N) I-i  fails(G), which in turn is equivalent 

to (D, N) F1  D' fails(G), i.e. (D, N) Hf  fails(D' D G). 

rol 

The dual result to the above is an immediate corollary, which gives us the 

proposition below. 

Proposition 3.2.2 Let (P, C) be a derivation pair where G is negatable. Then 

P F3  G P H f  fails(C) 

P F1  C <=> P H3  fails(C) 

Proof: 

This was proved in lemma 3.2.1 above. 

Let C' = fails(G), and so fails(G') = C. By lemma 3.2.1, P 1- 3  C' 

P 1-1  fails(G'), which is just P 1- fails(C) 	P F C. 

I. 
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As mentioned in section 2.3, we may interpret this result as defining a notion 

of NAF for a larger class of formulae than just atoms. If P H 3  -'C iff P F- C, then 

from the above proposition we have that P l- -C if P L fails(C), and so we 

can think of fails(G) as a way of writing -iG as a goal. In this way once we have 

implemented -A as a goal, we may derive a more widespread notion of NAF, i.e. 

one that is applicable to any negatable goal, not just to atoms. 

We need another transformation before we can define our completion, so that 

each occurrence of -A is replaced by A D I. This is done by the transformation 

below. 

Definition 3.2.3 Let D be a DHHF_ definite formula and C be a CHHF_ goal 

formula. 

We define contr(G) and contrd(D) as follows: 

contr(A) = A 

contr(-iA) = AD I 

contr(G1  V C2 ) = contr(G1 ) V contr(C2 ) 

contr(G1  A C2 ) = contr(G1 ) A contr(G2 ) 

contr(xC) = 3x contr(G) 

contr(VxG) = /x contr(G) 

contr(D D C) = contrd(D) D contr(G) 

contrd(A) 	= A 

contrd(D1  A D2) = contr(D1 ) A contr(D2 ) 

contrd(VxD) 	= Vx contr(D) 

contrd(G D A) = contr(G) D A 

Note that neither contrd(D) nor contr(G) can contain any occurrence of -IA. 

We use these two constructs to construct the completion as follows: if A is an 

instance p(i,. . . s) of p(x 1 ,. . . x), then from the program we have that 
k 

AcV(E1AG) 
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where Ei  is s = t 1  A ... A .s, = t. 

Now if name(A) is a completely defined predicate, we may then deduce that 

-'A holds if the body of the clause fails, i.e. 

-'Ac -'V(EIAG) 

Now as all predicates in all the G• must be completely defined, we get 

k 

-'A C A V(-'E1  V fai1s(G)) 

It is obvious that (E A G) fails if E fails or C fails, and so as E is just a set of 

equations and we may think of equality over terms as being completely defined, 

we get that -'(E A G) 	-iE V -'C. A similar argument may by given by the 

intuitionistic equivalence of E A G and E A (E D C), and so -'(E A C) is the 

same as -i(E A (E D C)), and so we get -iE V -'(E D G) which in turn is just 

-'E V (E D -iG). This equivalence will hold even if C contains an incompletely 

defined predicate, as the equations may be thought of as expressing "p(x 1 ,. . . x) 

unifies with p(t 1 ,. . . t)", and as first-order unification is decidable, we know that 

the Ei  obey the law of excluded middle, so that either E1  is true or E2  is false, and 

we can easily determine which via unification. 

As noted above, this process will not work for a program such as 

as we first derive 

-'p D  p 

P  D -'p 

which is then transformed to 

(pAp) D I 
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Thus from the completion we get that p D I, which should not happen as in 

the original program both p and -'p loop. This is the reason that we need to 

restrict our attention to locally stratified programs. This is not necessarily the 

only restriction that will work, but it is a convenient one. 

In our case, we need to consider the possibility that the program will grow 

during execution, in that goals may contain implications. Hence, we need not 

only that the original program is locally stratified, but also that all extensions of 

the program which occur during execution are also locally stratified. This leads 

us to the definitions below. 

Definition 3.2.4 Let P = (D, N) be a derivation state. 

We define the P-reliant relation on literals as follows: 

A is P-reliant on L if 3G D A E (D) such that L appears in G 

-'A is P-reliant on L if A is P-reliant on L 

We define the P-dependent relation on literals as follows: 

A is P-dependent on L if A is P-reliant on L or there is an L' such that A is 

P-reliant on L' and L' is P-dependent on L 

-'A is P-dependent on L if A is P-dependent on L 

We say A is P-self-dependent if A is P-dependent on A. 

It is easily seen that the P-dependent relation is the transitive closure of the 

P-reliant relation. Thus in the program below we have that p is P-dependent on 

p but not on -'p, and that q is P-dependent on -'r and .s. 

p D p 

D q 

sjr 
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These relations are useful in order to formally define the property of local 

stratification, which is done below. 

Definition 3.2.5 Let (F, G) be a derivation pair. 

P is locally stratified if there is no atom A such that A is P-dependent on -A. 

P and G are a locally stratified derivation pair if every derivation state which 

occurs in the computation of G is locally stratified. 

Thus the program given above is locally stratified, whereas the program con-

sisting of the clause -'p D p is clearly not locally stratified. 

Note that if P = (D, N) is locally stratified, then so is (D U {A}, N), so that 

the addition of an atom to a locally stratified program results in a locally stratified 

program, i.e. the assumption of an atom preserves local stratification. 

We need the notion of a locally stratified derivation pair P and G rather 

than just a locally stratified program because the program may increase during 

execution, and so we need to ensure that all programs which occur during excution 

preserve local stratification. 

We are now in a position to give a formal definition of our completion. 

Definition 3.2.6 Let P = (D, N) be a locally stratified derivation state. For each 

predicate letter p appearing in P, we define p+  and p as follows: 

Let the clauses defining p be the universal closure of 

Atli, t12,. . .t) c C1  

p(tkl ,tk2,.. .tkfl ) c Gk  

We denote by p the clause 

Ic 

Vx1  ... xp(x1, ... x) CV(EAcontr(C)) 
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where E j  is x, 	t 1  A ... A x = t, 3(Ei  A G.) is the existential closure of all 

free variables of E1  A C1, 1 < i < k, and xi,... x, are new variables which do not 

appear in any C2 . 

If p E den(N), then p is the clause 

k 
Vs1  . . . x, I C p(x,... x,) A AV(-iE1 V contr(fails(G1 ))) 

If p 0 den(N), then p is empty. 

If there is no clause in P whose head's name is p, then p is empty. If p 

den(N), then p is also empty. Otherwise, p is the clause 

Vx11  . . . Xn J_ C p(x,... x) 

The completion of a predicate p is {p,p}. 

The completion PC  of P is (DC,  N), where DC  is the union of the completions 

Of each predicate appearing in P. 

We will write often DC as D U D to emphasise the nature of our definition 

of the completion, i.e. the original clauses of the program (in a slightly modified 

form) together with a set of extra clauses containing the negative information. 

Note also that pC contains the clause 

for all completely defined predicates which occur in the body of some clause in 

the program, but for which there is no clause head whose name is p. This is the 

same as in Clark's case. 

The only thing that prevents us from using the above two clauses directly to 

compute negated atoms (as distinct from the usually semantic use of comp(P) ) is 

the inequations. We show how we may incorporate these by giving an algorithm 

to solve such inequations as explicitly as possible (i.e. producing an explicit answer 

whenever possible) in the next chapter. 
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It should be noted that solving the equations and inequations may be done 

independently of the idealised interpreter, as the equations and inequations are 

relations between terms rather than predicates. Hence, we may call the equa-

tion/inequation solver at any point in a derivation, and so we shall write P - E 
to denote that the set E of equations and inequations has a solution. This will 

come in handy when mixing equations, inequations and goals. 

Apart from the inequations, the clauses above are definite formulae according 

to our definiion, and so we may think of this form of the completion as some sort 

of meta-program for the computation of literals. The reason that we consider it a 

meta-level program is that we consider the programmer as writing the "positive" 

clauses for the completely defined predicates, and the "negative" clauses as being 

implicitly understood due to the fact that p is completely defined. Thus this 

executable form of the completion makes explicit the complement of the definitions 

written by the programmer. 

In the next section we show the expected results about the completion, i.e. that 

the completion of a locally stratified program behaves as expected, and precisely 

captures the NAF rule for the program. 

3.3 	Properties of the Completion 

An interesting property to note is that if P is locally stratified and C D A E (D), 

then we know that A is not P-dependent on -'A, which means that no instance of 

any atom which appears in C is P-dependent on -'A. Hence, if P' is the program 

{fails(G) D A I C D A e clausal(P)I, then no instance of any atom which appears 

in fails(C) is P'-dependent on A, and so if the clause 

I C A A contr(fails(G)) 

appears in P' , then 

(DC U {A}, N) F8  contr(fails((C)) if 

(DC, N) F8  contr(fails(C)) 
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This is the property mentioned in section 2.4.4, i.e. that for a large class of 

programs, when searching for a proof of A D I, we only need A to determine which 

clause to use, and not as an assumption. For example, consider the completion 

(below) of the program p D q, where p and q are completely defined: 

p D q 

((p D I) A q) D I 

PD  

It is clear that to find a proof of q D I it is sufficient to determine whether 

p D I from the completion of the program, rather than from the completion 

extended by the assumption of q. 

This property is formalised in the lemma below. We write the substitution 

[x1 	si,. .. Xn  - s,] as [x1  +- s.] 1. 

Lemma 3.3.1 Let P = (D, N) be a locally stratified derivation state, and p(s1.... s) 

be an atom such that there is a clause 

k 
Vxl,...xfl ICp(xi, ... xn)AAV(-1EiV• contr (fails  (Gt))) 

in DC.  Then 

k 
(DC U {p(si,.. . s,)}, N) I-, AV(-E1 V contr (fails (G1))[x2  - s.]) 

Ij 

k 
(DC,N) 	AV(-E1 V contr(fa1ls(G2 ))[x 2  - 

Proof: The = direction is clear. 

For the other direction, consider an 0-proof of P -p A for some atom A. 

It is clear that A is P-dependent on any other atom which appears as a 

consequent in this proof. Hence, if A is not P-dependent on A', then A' does 

not appear as a consequent in any 0-proof of P -b A. 
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k 
Assume that (DC  U {p(si,• . . s,)}, N) L 	V contr(fai1s(G))[x 

Now as P is locally stratified, we know that fai1s(G)[x1 	s] 	is 

not fails(P)-dependent on P(si,. . . .s,), where fails(P) = {fails(C) I C c P}. 

Hence, p(i,... s7 ) does not appear as a consequent in any uniform proof of 

DC 	contr(fai1s(G1))[x - s1 ] 1, and so we may omit p(.s1 ,. . . s,) from 
k 

the antecedent of every sequent in the proof, and so (DC,  N) F3  AV(-'Ej V 

contr(fai1s(G))[x1 - 

701 

Next we show a useful lemma about PC 

Lemma 3.3.2 Let (P, G) be a locally stratified derivation pair where P = (D, N). 

Then it is not the case that 

PC  F3  contr(G) A contr(fails(G)). 

Note that this is a weaker statement than 

PC  F contr(G) A contr(fails(G)). 

This stronger statement is not true, as it requires that either contr(G) or 

contr(fails(G)) fails for any C and any program P, and thus for no loops to occur. 

However, the weaker statement above is sufficient for our purposes, as whilst it 

does not guarantee that contr(G) A contr(fails(G)) always fails, it does guarantee 

that it never succeeds. 

Proof: As D' D G is a goal formula for any definite formula D' and goal formula 

C, the above is equivalent to showing that is it impossible that 

(DC U DIC,  N) F3  contr(G) A contr(fails(G)). 
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for any definite formula D' and any goal formula G. This is due to the fact 

that if (D, N) }- D' D C, then we must have that D' does not extend any 

completely defined predicates of D, and so Dc = D/+.  

We proceed by induction on the depth of the 0-derivation 

The base case occurs when the purported proof has the smallest depth, in 

which case C must be an atom A, and the problem reduces to showing that 

it is impossible that 

(DcUD/c,N) 1-5  AA(A DI) 

This is true if both the following are true: 

(Dc UDC,N)  I- A 

(Dc UD,N)  H 3  A D I 

Let A be p(s1 ,. . . s,j. As the overall 0-proof is of the smallest possible 

height, for the first case to be true we must have that A E (D U D'), so 

there is a clause 

k 

Vx1 ... x p(x1.... x,) C V 3(Ei  A contr(Gj) 

in D U D' such that E[x 1  - 	is true and C is empty for some 

1 <j < k. 

For the second case, we must have that 

(Dc uDcu{p(si .... sn)},N) H31 

and so we must have 

(DC U D/C  U {p(s1.... s)}, N) F-3  
k 

X m  q(x1  .... -m)  A AV(-'E V contr(fails(C1))) 

for some predicate q. 

Now as (DC U DEC,  N) F-3 p(s,. .. sn ), this is equivalent to 
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k 
(DC U DEC,  N) H ...... Xm  q(x1,. Xm ) AAV(—Ei  V contr(fails(G))) 

In this case the 0-proof will be shortest if the answer for the first conjunct is 

q(t1,. . . t) where q(t1,. . t) E (D U D'). This means that 	- t} 1  

is true for some j and that C3  is empty. But as 

(DC U DfC,  N) F3  AV(-,Ei  V contr(fails(G1))) 

we have that both E3[x - t.] 1  and —iE[x1  - t1 ] 1, which is a contradic-

tion. 

Hence, the base case holds. 

So the inductive hypothesis is that there is no 0-proof of height less than n 
such that 

(DC U DIC,  N) I- contr(C) A contr(fails(G)). 

The cases for C - A and G = -A coincide, and so there are six cases to 

consider: 

A: Let A be p(s,. . . .$). For there to be an 0-proof in this case, we must 

have that both the following hold: 

(DC U DIC,  N) F-3  A 

(Dc uDIC,N)  F3  A DI 

In the first case, we must have that RG D A e (D U D') such that 

(Dc  UDIC , N)F S C 

In the second case, we must have that 

(DC U DIC  U {p(s j.... s)}, N) F-3  I 

and so we must have 

(DC U D' U {p(s,. . . s,)}, N) F-3  
k 

Xm  q(x1,.. . x) A AV(- E2 V contr(fails(G1))) 
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for some predicate q. 

As above, as (DC U DEC,  N) I- A, this is equivalent to 

k 
(DC U Dec, N) F-3  x1,. . . X q(x 1,. .. X) AAV(-Ei  V cont r (falls (C1))) 

Let the answer for the first conjunct be q(t j ,. . . t3. As above, if 

q(t 1,.. t) E (D+ U  D+) then the second conjunct cannot have an 

0-proof. Otherwise, we have that 3G D q(t 1,. . . t) E (D U D') such 

that 

(Dc uDIC,N)  F-8  G 

Now as q(t1.... t) matches a clause in the program, we must have that 

Ej  [Xi - t] tm 1  is true for some 1 <j < k and that 

(DC U DIC,  N) F 3  contr(C) 

But we must also have that the second conjunct succeeds, and so 

(DC U  D/C,  N) F 3  contr(fails(G2 )) 

which contradicts the induction hypothesis. 

Hence, there is no 0-proof of length n such that 

(DCuDFC,N) 1- AA(A D I) 

C1  V C2: Note that contr(G1  V G2)=  contr(G1) V contr(G2), and that 

contr(fails(G1  V C2)) 

= contr(fails(G1 ) Afails(C2 )) 

= contr(fails(G1)) A contr(fails(C2 )) 

and so 

contr(C1  V C2) A contr(fails(G1  V C2)) 

(contr(C1 ) A contr(fails(G1)) A contr(fails(C2 ))) V 

(contr(G2 ) A contr(fails(C1 )) A contr(fails(G2))) 

Hence, 

(DC U  DEC,  N) F 3  contr(C1  V C2) A contr(fails(C1  V C2)) 
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implies that 

(DC U DIC,  N) F contr(G1) A contr(fai1s(G)) 

for some i = 1, 2, which contradicts the induction hypothesis. 

C1  A C2: Note that contr(G1  A G2) = contr(G1 ) A contr(G2), and that 

contr(fails(G1  A C2 )) 

= contr(fails(G1) V fails(C2 )) 

= contr(fails(G1)) V contr(fails(C2)) 

and so 

contr(G1  A C2) A contr(fails(G1  A G2)) 

(contr(G1) A contr(C2) A contr(fails(G1)) V 

(contr(G1) A contr(C2) A contr (fails (C2)) 

Hence, 

(DC U DIC,  N) F3  contr(G1  A C2) A contr(fails(G1  A C2)) 

implies that 

(DC U DIC,  N) F3  contr(G) A contr(fails(G1 )) 

for some i = 1, 2, which contradicts the induction hypothesis. 

xG: Note that 

contr(xC) A contr(fails(xG)) 

= 3x contr(G) A contr(Vx fails(G)) 

= 3x contr(G) A Yx contr(fails(G)) 

Hence, 

(DC U DIC,  N) I- contr(xG) A contr (fails (xG)) 

if 

(DC u DIC,  N) F3  3x contr(G) A Vx contr(fails(C)) 

which implies that 
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(DC U D, N) H8  contr(C[t/x]) A contr(fails(G[t/x])) 

for some t E U, which contradicts the induction hypothesis. 

VxG: Note that 

contr(VxG) A contr(fails(VxG)) 

Vx contr(G) A contr(x fails(G)) 

= Vx contr(G) A 3x contr(fails(G)) 

Hence, 

(DC U DIC,  N) I- contr(VxG) A contr(fails(VxG)) 

if 

(DC U D1', N) H5  Vx contr(G) A 3x contr(fails(G)) 

which implies that 

(DC U DIC,  N) H3  contr(G[t/x]) A contr (fails (G[t/x])) 

for some t E U, which contradicts the induction hypothesis. 

D" D G: Note that 

contr(D" D C) A contr(fails(D" D G)) 

= (contrd(D") D contr(G)) A (contrd(D") D contr(fails(G))) 

contrd(D") D (contr(G) A contr(fails(G))) 

Hence, 

(DC U DIC,  N) H8  contr(ij 	C) A contr(fails(D" D G)) 

if 

(DC U DIC,  N) H8  contrd(D") D (contr(G) A contr(fails(G))) 

which implies that 

(DC U DIC  U DC,  N) H 5  contr(G) A contr(fails(G)) 

which contradicts the induction hypothesis. 
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Thus by induction, we get the result. 

OR 

This in itself is not a particularly important result, but it is useful to prove 

further results, such as the corollary below. 

Corollary 3.3.3 Let P = (D, N) be a locally stratified derivation state. Then it 

is not the case that 

pC Fj 

Proof: For this to occur, we must have that there is a clause 

k 
I C 	xi  . . . x, p(x1,. . .x,) A AV(-iEj  V contr(fails(Gj)) 

in D such that 

k 
(DC) N) F 3  3x,.. .. x, p(x1, . . . x,) A AV(-E1 V contr (fails (G1))) 

Let the answer for the first conjunct be p(i,... sn). Thus we must have that 

k 
(DC, N) I- (A v(-Ei V contr(fails(G)))[x1 - 

Now for p(s1,... s,) to succeed we must have that 

	

(DC,N) 	 i F3  (contr(G)[x1 - s•i.n ) 2 2 = 1 

for some J. Then we have that 

(DC, N) F3  contr(G') A contr (falls (G')) 

for the goal G' = 	+— 	which contradicts lemma 3.3.2. 

Next we give a formal proof of the fact that the "short-cut" rule referred to 

above is indeed correct. 
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Proposition 3.3.4 Let P = (D, N) be a locally stratified derivation state, and 

P(1,.. . s,) be an atom such that there is a clause 

Ic 
I C 311,. . . x p(x j ,. . . x,) AAV(-iEj  V contr(fails(G2 ))) 

in P.  Then 

k 
(DCU{p(s1,...$)},N) F-3 ± if (D', N) H3  AV(-lEj Vcontr(fails(Gj))[xi  - 

k 
If (DC  U {p(s1,. . . s)}, N) H f  I. then (DC,  N) H f  AV(-iE1 V contr(fai1s(G))[x1  f- 

sj 

k 
If(D,N) I-f  AV(-iEVcontr(fails(G))[x - s] 1) then (DCU{p(si,. . .$)}, N) I/, 

Proof: 

1. The = direction is clear. For the other direction, consider 

(DC U {p(s1,. . . s,)}, N) H3  
k 

x, q(x,.. . x,) A AV('E1 V contr (fails (G))) 
i=1 

where p 	q. If (DC  U {p(s1,. . .$)},N) I 5  q(t1,. . .t), then Ej  [xi  

t.j. 	or some j  and t t=1 

(DC U {p(s1,. . . s,)}, N) H3  R((E A contr(G))[x - 

But we must also have that 

(DC  U {p(si,.. . s,)}, N) H V((-'E3  V contr(fails(G3 )))[x2  - t .] 
rn
_ 1 ) 

This is impossible by lemma 3.3.2, and so we must have p = q and 

ii = m. Now if we have 

(DC U {p(s1,. . . s)}, N) H3  p(t 1 ,. . . tj 

where si  j4 t 2 , then, as above, there is a goal C' such that 

(DC U {p(s1,. . . s)}, N) H3  contr(G') A contr(fails(C')) 
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Hence, we must have si  = t2  for all 1 <i < n, and so 

(DC U {p(s1,.. . s)}, N) H3  AV(E1 V contr(fai1s(G))[x 	s1 ] 1 ) 

Now as P is locally stratified, we have that fai1s(G)[x , sJ 	is 

independent of p(i,. . . s,3, and by lemma 3.3.1, we have that 

k 
(DC, N) F-  AV(-Ei  AV(-E V contr(fails(G1))[x1 - sJ) 

i=1 

Obvious. 

Consider 

k 
(DC, N) F-1  AV(-E V contr(fails(G1 ))[x1  - sJ) 

By a similar argument to 1 above, we know that it cannot be the case 

that 

(Dc u{p(s1,...$)},N) F-3 
k 

x q(x,. . . x,) A AV(-E1 V contr (fails (G3)) 

unless we have 

k 
,Ti 	\ (DC, N) H3 	 x A V(-E1  V contr(fai1s(G))[ 2 -s i 	I 

i=1 

This is a contradiction by proposition 2.3.5, and so we cannot have that 

(DCu{p(s1,...$)},N) F-3  I 

We may think of the above proposition as the formal justification of the "short 

cut" described above, in that when searching for an 0-proof of 

(DC U {p(s1,.. . s)}, N) H3  I 

it is only necessary to consider the clause 

k 
Ic x1 , . . .xp(x1 , . . .x)A AV(- E1 V contr(fails(GJ)) 
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rather than all clauses in D, as all that can happen by ignoring the other clauses 

is that some loops are avoided. 

The reason that we use 3 above, rather than the converse to 2, which is stronger, 

is that there may be a clause in D which leads to a loop, even though the 

relevant clause for p(i,... s)D I does not. For example, let P be the program 

(D,{p,q,r}) where D is 

-'q D p 

r D r 

P' is then 

(qDJ)Dp 

rjr 

qApDI 

(r A (r D I)) D I 

qDJ 

It is clear that 

(Dc U{p},N)  1-1  q A p 

but that an attempt to find an 0-proof such that 

(DC U {p},N) H r A (r I) 

leads to a loop. Hence, (DC U {p}, N) V f  I, but (DC U {p}, N) F-1  q Ap. This 

means that H1  is not quite strong enough for our purposes, and so we need a 

slightly stronger relation in order to avoid some unnecessary loops. 

Hence we define the relations H3  and 'fc  which are to be used on the corn-

pletion of derivation states. 
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Definition 3.3.1 Let (F, G) be a locally stratified derivation pair where P = 

(D, N). We define the relations F,Ff  C 
c pc >< gc, where 	is the set of all 

possible completions of derivation states, and cc  is the set of all goal formulae in 

"contradiction" form (i.e. contr(G)), as the smallest relations which satisfy 

F-3 =F 

I- c Ffc 

8. Pc  F-f  C p(s1 	3) D I zff 

k 
PC  H (AV(-E1 V contr(fails(G1 )))[x 	sj) 

where there is a clause 

k 
I C 	x1,. . . x p(x1,... x) AAV(-Ei  V contr(fails(G3)) 

It is clear that PC H C if PC 
	

C, and by proposition 3.3.4 we get pc 

p(s1,...$)L if 

PC  H 	V contr(fai1s(G1))[x 	s] 

It is also clear that PC F-1  C implies PC H G, but the crnverse does not hold. 

As noted above, it is possible that (DC  U {p}, N) may lead to a loop when trying 

to prove I without the short-cut rule, and so it is not the case that pc  1/ p D I, 

but that PC H1  p D I. 

We are now in a position to prove the central result, i.e. that the completion 

has the expected operational behaviour. 

Proposition 3.3.5 Let P = (D, iV), C be locally stratified derivation pair. Then 

I. P H C PC  F- contr(C) 

2. P I- C PC 	contr(C) 
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Proof: We proceed by induction on the height of the 0-derivation for C. 

Clearly 1 and 2 above are equivalent to the corresponding statements when 

replaced by D U {D'}. This is due to the fact that for any goal formula C, 

D' D G is also a goal formula and that if we have (D, N) 1- D' D G or we 

have (D, N) F1  D' D C', then we must have that D' does not extend any 

completely defined predicate of D, and so Dc = D/+ 

In the base case G is an atom A. 

A: Let Abe p(s1,...$). 

As the 0-proof is of the smallest possible height, we have P F5  

A ' A e (D U {D'}), which is clearly equivalent to pc 
F A. 

2. Similarly, P 1-1  A 	VB E (D U {D'}) B ç A and VG D B E 

(D U {D'}) B A, and so p(s1 ,.. . s,) does not match any clause 
k 	 k 

head p(t11,.. . t), which is equivalent to ,t\V(-'E), i.e. -V(E) 

where Ei  = 	t 1 A ... A3, = tin, and so pc 
Ffc A. 

Hence the inductive hypothesis is that 1 and 2 hold for all D and D' and for 

all goals C whose 0-derivation is less than a given depth. There are seven 

cases: 

A: Let Abep(.s1,...$). 

P. F-3  A if 3G D A e (D U {D'}) such that P F3  C, i.e. P F5  

A G3 ){x *- s] 1), and by the hypothesis this is equivalent 

to PC F 	((E, A contr(G3))[x - s1 ]
1), which in turn is just 

Pc  F A. 

P F1  A if VB E (D) B ç A and \/G D B E (D U {D'}) such that 

B cx A we have P F-f  G, i.e. P F-f  ((E1  A C1)[x - s]) for 

all 1 <i < n, and by the hypothesis this is equivalent to PC 1-1  

3((E1  A contr(G1))[x1  - s2 ] 1), which in turn is just P' F A. 

'A: Let A be P(,,. . . s,). 
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P H3  -'A if name(A) E den(N) and P H A, which is equivalent to 

VB E (DU {D'}) B A and VG D B E (DU {D'}) such that B oc A, 

we have PH1  G, i.e. P H1  ((EAG1)[x1 - s2]) for all 1 < i 

This in turn is equivalent to P H3  V(-iE1  V fails(G)[x - 

by proposition 3.2.1, and by the hypothesis this is equivalent to 

PC H3  V(-'E1Vcontr(fails(G2))[xi f—  sj.i ) for all 1 < i < n, which 

is just PC  H3  p(s1,. . . .$) D I. 

P H1  -'A if P H3  A, which is equivalent to 3G D A e (D U {D'}) 

such that P F. G, i.e. P 1-3  ((E3  A G)[x - s] 1 ) for some 1 

j :5 k. This in turn is equivalent to P H1  V((E, V fails(G,)[x - 

by proposition 3.2.1, and by the hypothesis this is equivalent 

to pc 
Hf  C V((-'E3  V fails (contr(G,)))[xi  i— s]1), which is just 

PC H j p(s1,...$) D1. 

C1  V C2: I. P F 3  G1  V C2  if P H3  C1  or P I-s  C2, and by the hypothesis this is 

equivalent to PC H.,C  contr(G1) or PC H3  contr(G2), which in turn 

is just PC  F-3c  contr(C1) V contr(G2), i.e. PC F-,c  contr(G1  V G2)- 

2. PH1  C1  VC2  if PH1  C1  and PH1  C2, and by the hypothesis this 

is equivalent to PC F-fC contr(G1) and PC F- fc  contr(G2), which in 

turn is just PC  1-1  contr(G1) Vcontr(G2), i.e. pc Hf  C  contr(G1 VG2 ). 

C1  A C2: 1. P H3  C1  A G2  if P H3  G1  and P H3  C2, and by the hypothesis this 

is equivalent to pc 	contr(G1) and PC H3  contr(G2 ), which in 

turn is just PC  H3  contr(G1 )Acontr(G2 ), i.e. PC  [-,,c  contr(G1 AG2). 

2. P Hf  C1  A G2  if P H1  G1  or P H1  C2, and by the hypothesis this is 

equivalent to pc 	contr(G1 ) or pc H1  C contr(G2 ), which in turn 

is just PC  H1 C contr(G1 ) A contr(G2 ), i.e. pc H1 c  contr(G1  A C2). 

dxC: I. P H3  3xG if P H3  G[t/x] for some t E U, and by the hypothesis 

this is equivalent to PC H3  contr(G[t/x]), which in turn is just 

PC  1-3  3x contr(G), i.e. PC F- .,c  contr(xG). 

2. P H1  IxG if 3R E R(U) such that P H1  G[t/x] for all t 

and by the hypothesis this is equivalent to PC  Hfc  contr(G[t/x]) 
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for all t E R, which in turn is just P' H1  x contr(G), i.e. PC Ffc 

contr(xC). 

VxG: 1. P I-s  VxG if IR E R(U) such that P H, G[t/x] for all t E I?, and by 

the hypothesis this is equivalent to PC  H contr(G[t/x]) for all t E 

R, which in turn is just PC  H Vx contr(G), i.e. PC  F- contr(VxG). 

2. P 1-1  VxG iff P F-1  G[t/x] for some t E U, and by the hypothesis 

this is equivalent to PC }-j contr(G[t/x]), which in turn is just 

PC  F-f c  Yx contr(G), i.e. PC  F-1  contr(VxG). 

D" D G: 1. (D U {D'}, N) F- D" D G if names(hads(D")) C ass(N) and 

(D U {D'} U {D"}) F-3  C and by the hypothesis this is equivalent 

to (DC  U {D"}, N) H contr(G), i.e. PC  H D"D contr(G), and as 

names(heads(D")) c ass(N), contrd(D") = D", and so this is just 

PC  F 	
, 

3  contr(D D C). 

2. (D U {D'},N) }- D" D C if names(heads(D")) 9 ass(N) and 

(D U {D'} U {D"}) 1-1  G and by the hypothesis this is equivalent 

to (DC  U {D"}, N) Ff C  contr(G), i.e. PC V3 D" D contr(G) and as 

names(heads(D")) C ass(N), contrd(D") = D", and so thisis just 
C  H1 C  contr(D" D C). 

In this way we see that our completion preserves the computational behaviour 

of the program, and gives an explicit form of negation, rather than the implicit 

way NAF is defined. Our completion also has the advantage of being executable, 

in the sense that it is a first-order hereditary Harrop formula program, and so, 

provided we can find some way of solving the inequations, we may compute directly 

from the completion, rather than only use it as a semantic device. This is due 

to the fact that we may view the completion as a program for which A fails if, 

A D I succeeds (where A is completely defined). This property may also be seen 

as a way of reconciling NAF with the interpretation of negation in intuitionistic 

logic, in that an implicit form of negation (NAF) is given an explicit form (PC). 

It is this explicit representation of an implicit definition which requires that the 
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class of programs be restricted. We shall see in chapter 5 how we may give a 

form of semantics to programs which contain negations for which no restriction on 

the class of programs is necessary. This suggests that we should perhaps use the 

completion as some kind of guide to the success and failure of goals, rather than 

a semantic device per se, and use some kind of model which does not use such an 

explicit construction for the semantics. 



Chapter 4 

Answer Substitutions for Negated Goals 

In this chapter we consider the problem of finding answer substitutions for exis-

tentially quantified negated goals. This requires an extension to the usual process, 

as we need more than just unification. We give an algorithm which is suitable 

for this purpose, which is incremental, and hence able to make use of new infor-

mation without starting again from scratch. We also show the correctness of the 

algorithm, and discuss some possible extensions of it. 

4.1 Motivations 

As mentioned in the previous chapter, we wish to find answer substitutions for 

existentially quantified negated goals. In order to generate the required answer 

substitutions, we need to do more work than is typically done by the resolution 

process. For example, consider the program 

p(a) 

q(b) D p(b) 

q(a) 

and the goal x-ip(x). The goal 3xp(x) succeeds with the answer substitution 

being x - a. A direct application of the NAF rule will then give us that as p(x) 

succeeds, -p(x) fails. Now whilst Vx-ip(x) is false, -'p(b) follows from the CWA, 

110 
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and so one correct answer substitution for the goal 3x—p(x) is x - b. Thus our 

process needs to find failures rather than successes, which generally takes more 

effort, as we may need to consider every clause in the program whose head matches 

p(x), rather than looking for a matching clause whose body succeeds, which we 

may find at the first attempt to match the goal with a clause in the program. 

It also is possible that there are more answer substitutions for the above goal. 

For example, if there is another constant c in the language, then -p(c) is true, 

and so x - C is another correct answer substitution. Hence, we may need to 

consider more information than is given in the program in order to generate answer 

substitutions. This is a consequence of the fact that NAF is an implicit form of 

negation, i.e. that we define what is false by the complement of what is true, and 

so if p(e) is false, then we do not add -'p(c) to the program, but merely leave it out. 

Thus the signature used may include constant and function symbols which do not 

appear anywhere in the program. This is not a problem for SLD-resolution, as it 

only generates answer substitutions by unification, and so all symbols used in such 

answer substitutions must appear somewhere in the program. For this reason, we 

assume that each predicate has a signature, in the manner discussed earlier, so 

that we can tell what language may be used to construct answer substitutions. 

In this way the problem reduces to an exhaustiveness check in the sense that 

given a goal G, we wish to find, if possible, all instances of C which fail. This 

is the direct complement of the SLD-resolution process, as we may think of that 

as finding all instances of C which succeed. The signature is used to determine 

exactly what all the instances of C are. In what follows we assume that the goal 

is just an atom A, as we only allow negation to be applied to atoms, and that we 

wish to find instances of A which fail, i.e. we wish to find the instances of A which 

are not in the set of successful instances of A. 

Now if we are given the completion of the program, as described above, then 

our task is made easier, as we already have a computational description of the 

goals which fail. The only difficulty is the solution of inequations. This may be 

addressed by looking at it as an instance of the relative corn plernent problem, which 

may be stated as: given a term t and a set T of instances of t, find all instances of 
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t which are not instances of any term in T. As the formula x1  0 t1  V...  V x, 

is equivalent to the set of all instances of p(x1, . . . , x,) which are not instances 

of p(t 1,. . . t), we may use an algorithm for the relative complement problem to 

solve the inequations. 

The relative complement problem was addressed by Lassez and Marriott [59], 

and it was shown that an explicit finite representation of the relative complement 

may not exist. However, a criterion was given for determining when it is possible 

to give a finite representation of the relative complement, as well as an algorithm 

for finding the finite representation when it does exist. A parallel algorithm for 

this problem was given in [57]. 

This algorithm is not quite suitable for our purposes. In [59] the emphasis 

was on finding a representation of the entire relative complement; here we are 

interested in finding correct answer substitutions. Thus we may only need to 

produce one substitution, although subsequent failures in the search process may 

mean we need to backtrack over —p(x) and so search for another correct answer 

substitution. Our search for a correct answer substitution may not need to examine 

all of the relative complement, and so even if there is no finite representation, we 

may still be able to find what we want. Rarely will we need to enumerate all of 

the relative complement, and so we approach the problem in a slightly different 

way than was done in [59]. 

Another property important for inequation solving algorithms for logic pro-

gramming is that the algorithm be incremental, in that if the set of constraints 

increases, we wish to be able to use previous answers to solve the new problem, 

rather than recompute from scratch. In our case this means that if the relative 

complement of a given term t with respect to a set of terms T is computed, then 

we wish to be able to use this answer to reduce the amount of work needed to find 

the relative complement oft with respect to TUt', where t' is another instance of t. 

This will make our algorithm useful for wider applications, such as an inequation 

solver for a constraint logic programming language [48]. 

Even if the completion of the program is not available to us (for example, the 

principle of information hiding may mean that we do not have access to the code 
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for a certain program, but only to the answers it generates) we will still be able 

to use the incremental algorithm to generate answer substitutions by computing 

the relative complement of A with respect to the set of successful instances of A. 

The set of most general instances of A which succeed may be infinite, and this set 

will be generated incrementally, i.e. one such instance will be found, then another, 

and so on. If the set is infinite then the process will not terminate, and so we 

cannot merely sit and wait for this set to be produced. An incremental algorithm 

will allow us to produce successive approximations to the relative complement, so 

that if the enumeration of the successful instances of A terminates, then the most 

recent approximation becomes exact. 

An important observation is that in order to find an answer substitution we 

may need to consider a significant part of an infinite set of terms, as the relative 

complement of the success set may not be finitely representable, even if the set 

of successful instances of A is finitely representable. However, the desired answer 

may occur in a finitely representable subset of the relative complement, and so 

whilst the lack of a finite representation is a nuisance, it may suit our purpose to 

attempt the enumeration of an infinite representation. 

- 	For example, given the program 

even(0) 

Vxeven(x) D even(s2(x)) 

the set of successful instances is {even(s'(0)) I n is even }. It seems natural given 

the goal3x—even(x) to produce the answer substitution x - s(0), and then if 

another is required, x - s(0) etc. These substitutions may be "used" by other 

goals. Naturally, there is still some room for the delaying technique of Mu-Prolog, 

in that we may wish to compute answer substitutions from other goals and then 

check them using NAF. However, this technique can only be supplementary to the 

process described herein. 

In this way our algorithm is incremental and attempts to enumerate possible 

answers even when it is known that there is no explicit finite representation of the 

instances of A which fail. 
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There remains a problem of finite representation even when the success set 

is finite, or we have the completion of the program. As noted above, there may 

not be a finite set of answer substitutions which is complete, i.e. includes all 

correct answers. The reason that there may not be a finite representation of such 

instances is due to the possibility that different variables in A may be mapped 

in the success set to terms containing the same variable. For example, given the 

program Vzp(z, z), the goal xy-'p(x, y) and the signature {a/O, f/1}, then whilst 

the set of successful instances of p(x, y) is just {p(z, z)}, the relative complement 

of p(x, y) with respect to p(z, z) is 

{p(a, f()), p(f(), a), p(f(a), f(f())), p(f(f(...)), f(a)) . . .} 

where - is used to denote an arbitrary term. 

The problem is that we have to go deeper and deeper into the term in order to 

finitely specify the complement. A formalisation of this idea is given in [59]. The 

instances which cause this behaviour are called restricted in [59]. 

As noted above, we are interested in finding an answer substitution and hence 

one particular term of this set, one of these rather than a finite representation 

of all of them. However, due to the fact that we may need to backtrack over 

this substitution, we wish our algorithm to produce as many of these instances as 

desired. The way this is done is to enumerate all such terms of depth d, then all 

of depth d + 1, and so forth until the desired term is found, thus enumerating the 

relative complement of a term with respect to a restricted instance in a stratified 

way. 

In the light of this result, it is possible to argue that explicit substitutions are 

not desirable, and that some form of implicit representation of the answers should 

be used. The most prominent example of such a representation is constraints 

[48]. This is not quite the point at issue; whilst constraints do capture all possible 

answers in a finite representation, we may still want to look at some explicit an-

swers. Indeed, for the formula3x—p(x) to be intuitionistically provable we need 

to provide a witness, i.e. an explicit answer. As mentioned above, we do not nec-

essarily want all answers, as we are after a particular correct answer substitution 
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for existentially quantified goals, and so whilst we desire each substitution to be 

maximally general' (so that it is not an instance of some other correct answer 

substitution), we do not necessarily need to find all most general correct answer 

substitutions for the goal. Also, any constraint mechanism will still need some 

criterion and algorithm for giving an explicit answer where possible. For example, 

given the inequationsx 0 and x s(s(y)) we would expect to get the answer 

x = s(0). The algorithm below shows how this may be smoothly integrated with a 

general method of finding finitely representable subsets of a relative complement, 

which will be required by a constraint solver. Hence, any representation, be it 

substitutions or constraints, will need to address the issues raised above. 

Some other approaches to this problem have concentrated on representation 

of the solutions [15,16,53,110,96] or on a transformation approach [7,6]. We feel 

that whilst these are relevant issues, there is still a need to provide a method to 

generate explicit answers wIere possible, and for this method not to depend on 

restrictions to the class of programs. 

For example, given the program 

Vx lc(0,s(x)) 

VxVy le(x, y) D le(s(x), s(y)) 

and the goal x-ile(x, s(0)), an answer of x 	0 A x 54 s(0) is certainly correct, 

but conveys less information than the answer substitution x - S2 (y). In this 

way an answer of the form x t to a query may not be as informative as an 

explicit example of a term i'  such that ' t. Also, it seems that such a method 

of generating explicit answers should not depend upon structural properties of the 

program, but purely in terms of what succeeds and fails. Thus all that is important 

is to give an algorithm that produces answer substitutions for non-ground negated 

atoms. 

'We wish to return the substitution x - s(y), rather than x f-  s(0), x - s2(0) 
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In this way our philosophy is similar to that of Maluszyriski and Näslund [68], in 

that we need only consider the operational behaviour of the program. However, as 

will be seen, we do not use an explicit constraint, but rather stratify the production 

of the answers until all the required answers have been found. 

4.2 Definitions 

We assume that there are a countable number of distinct new variables available. 

We denote variables by v, w, x, y, z,..., constants by a, b,..., and function symbols 

by f, g.....As in Prolog, we use - to denote distinct variables whose names are of 

no interest. Hence, f(x, y) and f(, -) denote the same term. We say that a term t 

is a function term if t is neither a variable nor a constant, so that t = f(t1,. . . t,) 

with n > 0. 

As noted in [59], we often think of a term as a finite representation of the set 

of all its instances, so that a term t may represent either the syntactic term t or {t 

o 10 is a substitution}. This may be thought of as some sort of implicit universal 

quantification of the variables appearing in t. It will always be clear from the 

context whether we mean the term itself or the set of its instances. 

We use the notation t/T to denote the set of all instances of t which do not 

have any instance in common with any term in T, where T is a set of terms. Thus 

i/T represents an implicit generalisation in the terminology of [59]. We will often 

refer to t/T as a relative complement problem. When T is just a singleton set {t'} 

we write t/t'. We also use the obvious generalisation T1/T2  to denote the set of all 

instances of any term in T1  which do not have any instance in common with any 

term in T2. Hence t E T1/T2  means that I is an instance of some term in T1 , and t 

is not an instance of any term in T2. We use term(t/T) to denote t and rest(t/T) 

to denote T, and for convenience we define term(t) = t, and rest(t) = 0. 

It is obvious that if I and I' do not unify then t/t' = {t}. 

As we are dealing with an implicit form of negation, we need a notion of 

signature to explain precisely which terms are under consideration. 
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Definition 4.2.1 Let E be a signature. For any f/n e E we denote by (f/n) 

the term f(x1,. . . xi,), where the ; are distinct new variables. 

We denote by > the set of all ground terms which may be constructed from 

E. Thus if E is the signature of all function and constant symbols used in the 

program, >1 is the Herbrand Universe U. When the value of n is obvious from 

the context (e.g. for a constant) we will often write f/n as just f. We denote 

{(f/n) 	f/n e E} by 	. For a term t which is not a variable, we denote by 

symbol(t) the outermost symbol of t. For example, symbol(f(a, g(b))) = f. 

As pointed out in [59], the relative complement of f(t) with respect to some 

set of instances T is always impossible to represent explicitly when there are an 

infinite number of symbols in the signature, and is trivial to compute when 

contains only constants, and so the only interesting case is when E is finite and 

contains constants and a function symbol of non-zero arity (thus ensuring, in the 

absence of typing, that the Herbrand Universe is infinite). For this reason the 

algorithm given below assumes that E is finite. It may be possible to somehow 

extend the algorithm below to cope with infinite signatures, but it is difficult to 

see how such an extension would be useful. 

We use the definition of a restricted instance from [59], given below. We denote 

by vars(t) the set of all variables which appear in t. 

Definition 4.2.2 An instance tO oft is a restricted instance oft if any variable 

appears more than once in the sequence v10,. . .v,O where vars(t) = {v1,. . 

Otherwise tO is an unrestricted instance of t. 

Note that a restricted instance t' of t imposes more dependencies between the 

variables of t than does t itself. For example, f(z, z, z) is a restricted instance of 

f(x, y, y), but f(a, g(z), g(z)) is an unrestricted instance of f(x, y, y). 

The predicate restricted(t, t') is true if t' is a restricted instance of t. Similarly, 

the predicate unify(t, t') is true if t and t' are unifiable. Note that t and t' have 

a common instance if t and t' unify, and that if 0 is the most general unifier of t 

and t' then the most general instance mgi(t, t') is given by tO = t'O. 
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If t' is a restricted (unrestricted) instance of t, then t/t' is a restricted (unre-

stricted) relative complement. 

We will find it convenient to use the following extended form of substitution. 

Definition 4.2.3 Given two terms t' and t", we define the substitution t' 4-- t" by 

If t' is a variable then t[t' - t"] is t with all occurrences of t' replaced simultane-

ously by t" 

If t' is a constant then t[t' *- t"] = t 

If t' is a function term and t' and t" are not unifiable then t[t' +- t"] = t 

If t' is a function term and t' and t" are unifiable with t' = f(t1  . . . t,) and t" = 

f(s1,... s,) then t[t' - t"] is the simultaneous application of the substitutions 

[t14—s1} ... [t4—s] tot 

For example, g(f(x, x), y)[f(a, x) 4_-f(y, b)J = g(f(b, b), y). 

This may be thought of as using the two terms to induce a substitution so that 

t' imitates t" whilst remaining an instance of t'. This imitation can be exact when 

t' is a variable, but is less so when t' is a function term. We will see how this is 

used later. 

We denote the empty list by [], and concatenation by A.B, so that A.B is a 

list with head A and tail B. We use head(List) and tail(List) to denote the usual 

list destructor functions, so that head(A.B) = A, tail(A.B) = B. 

We denote by refresh(t) the same term t except that each variable occurrence 

in t is replaced by a new distinct variable, i.e. refresh(f(x, x)) = f(y, z). 

Definition 4.2.4 If t and refresh(t') are unifiable, then we define ref (t, t') as {s}, 

where s is the most general instance oft and refresh(t). Otherwise, ref (t,t') is the 

empty set. 

We also define 
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ref (t, T) = U ref (t, t') 
VET 

ref (S, T) = U ref (s, T) 
sES 

We will often refer to ref (t, t') as just s, rather than the set whose only element 

is S. 

Note that t/rcf (t, t') is an unrestricted relative complement. This is due to the 

fact that the variables in refresh(t') are only made identical in ref (t, t') in the way 

that the variables in refresh(t) are made identical in mgi(t, refresh(t)). Thus no 

new dependencies are introduced, and hence ref (t, t') is an unrestricted instance 

of t. 

This allows use to break the problem down somewhat. For example, for the 

relative complement f(x, y)/f(g(z), g(z)) with E = {a/O, g/1}, we wish to produce 

{f(a, .), f(..., a), f(g(x),g(y))/f(g(z),g(z))} 

Note that 

ref (f(x,y),f(g(z),g(z))= f(g(x),g(y)) 

and so 

f(x, y)/ref(f(x, y), f(g(z), g(z))) = If (a, .), f(, a)} 

and that 

f(x, y)/f(g(z), g(z)) = f(x, y)/f(g(x'), g(y')) U f(g(x'), g(y'))/f(g(z), g(z)) 

It is this reduction which allows us to stratify the production of the relative 

complement t/t' when t' is a restricted instance of t. This idea is formalised in 

lemma 4.3.6. 

For an atom A, we denote by .succeeds(A) the set {AO J A succeeds with answer 

substitution O}. This may be an infinite set, as in the case of the program given 
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above for the even predicate. We denote by match(A) the set of all atoms which 

are the head of some clause in the program and unify with A.. 

The following definition will be useful when we consider restricted instances. 

Definition 4.2.5 Let I be a term over the signature E. If I is non-ground, then 

strata(t) = { i[x2 +- t] 	I tj E E'J, where vars(t) = {x1,. . . x}. Otherwise, 

strata(t) = M. 

The reason for the name strata is that if I is non-ground (i.e. contains a variable) 

then each term in strata(t) has depth one greater than that of I, as each variable 

is replaced by a term from E+.  Thus we penetrate one level deeper into the term 

I, and so strata(t) contains all instances of I of no more than a given depth, and so 

we can stratify the instances of I in this way. This allows us to give some answer 

substitutions when it is impossible to enumerate all of them, as discussed below. 

4.3 Preliminaries 

Before we present the algorithm itself, we show some useful lemmas. 

The first is an easy result about the relative complement. 

Lemma 4.3.1 Let I and I' be two terms. Then either t/t' = {i} or t and t' are 

unifiable with I/i' = i/mgi(t,t'). 

Proof: If t and t' are not unifiable, then t and I' have no instances in common, and 

so there is no instance of t which is an instance of I', i.e. i/t' = {t}. 

Otherwise, t and I' are unifiable, and hence have a most general common 

instance, mgi(i, I'). As mgi(t, t') is an instance of t', we have that t/t' ç 

I/rn gi(t, t'). Now let I" E I/mgi (I, t'). Then I" is an instance of I, but t" is 

not an instance of mgi(t, t'), and as any common instance of t and t' is an 

instance of mgi(t, I'), we must have t" is not an instance of t', i.e. I" E i/I'. 

Thus I/i' = t/mgi(t,t'). 
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The next lemma, although trivial to prove, is important for computational 

purposes. 

Lemma 4.3.2 Let T1  and T2  be sets of terms, and let t be a term. Then 

t/(T1  U T2) =(t/T1)/T2  = (t/T2)/T1. 

This ensures that we can compute t/T via a loop like 

Inst := t; 

for each t' E T do 

Inst 	Inst/t' 

This also ensures that our algorithm will be incremental, as once we have 

t/{t17 . . .,t,}, we know that t/{t1,. .. 7t,t+11 =(t/{4,. . 

Another result which will be useful later is the following one, also trivial to 

prove. 

Lemma 4.3.3 Let t, t j  and t2  be terms. Then 

{t1,t2 }/t = (t1/t) U (t2/t). 

A less trivial result is the following one, which gives a structural result for 

unrestricted instances, which means that we may use a localised procedure to 

calculate an unrestricted relative complement. 

Lemma 4.3.4 Let t' be an unrestricted instance oft, where t = f(t1,. . . t) and 

t'=f(s1,...$). Then for any l<k<n we have 

= {t[tk 	t") I t E tk/Sk} U t[tk S' SkJ/t'. 
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Proof: We proceed by first showing that for any 1 < k < n, {t[tk - t"J I t" E 

tk/Sk} ut[tk 4- S/]/t' ç t/t', and then the reverse inclusion. 

C: If u e t[tk <-- .Sk]!t, then u is an instance of I and not an instance of I', 

and so u e t/t'. 

If u e {t[tk ~-- t"] I t" E tk!sk}, then it is obvious that u is an instance 

of t. Let Uk be the kth argument of u. Now for some t" E tkl.Sk we have 

U = t[tk - t"]. Thus Uk is not an instance of 3k, which means that u is 

not an instance of I', i.e. u E lit'. 

: Let u e t/t', and let the ith argument of u be u. As u is an instance 

of t, we have tO = u for some substitution 0. Thus we have tkO = Uk 

for any 1 < k < n, and that if 0k is the restriction of 0 to the variables 

which appear in tk, then 0k = [tk 4-- Uk], and so u = tO is an instance of 

tOk = t [tk 4— Uk]. 

Now if Uk is not an instance of 3k then as Uk must be an instance of tk 

(as u is an instance oft), we have that Uk tk/Sk, and so u {t[tk 4-

t"] I t" E tk/Sk}. 

If u, is an instance of 5k, then as t' is an unrestricted instance of t, we 

know that the variables of t' which appear in si are only introduced to 

I' by the substitution [I - s}, and so u is an instance of t[tk - ak]. 

Ii 

To see why this result is important computationally, consider the case when we 

wish to find the unrestricted relative complement t/s, where t = f(t 1,. . . t) and 

s = f(s1,.. . s,). The above result allows us to search locally, so that we first look 

for instances of t1 which are not instances of s, and having found such a term t', 

we then produce the term t[t1 - t'] as an answer to the original problem. Once all 

such terms t' have been found, we have then found all of the relative complement 

such that t1 0 s, and so we apply the substitution [t - s1] to t before proceeding 

to do the same for t2 and S2 and so on. 

Now let us examine the possible cases for t j and s. 
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If ti  is a constant c, then there are no instances of 1, other than c, and so we 

can get no information from this case (note that s- must then be c, as s is 

an instance of t). 

If si  is a variable, then we have a similar case, as ti  must also be a variable, 

and so again no information may be deduced. 

If t1  is a variable and .s1  is not a variable, we may produce an answer t[t1  f-

ft ], for each f/n E K such that f .symbol(s). Hence, it remains only to 

consider the relative complement symbol(s1)+/s, which is the same as the 

case when both ti  and si  are function terms, which is dealt with below. 

If t2  is a function term, then so is s, and symbol(t) = symbol(s). This case 

corresponds exactly to the original case of t/s, and so we use the algorithm 

recursively at this point. Note that as s is an unrestricted instance of t, 

.s, is an unrestricted instance of t, as if there are no repeated variables in 

v10,. . . v,O where vars(t) = {v1,. . . v,} and 0 is the mgu oft and s, then there 

can be no repeated variables in v0,. . . v'O where vars(t) = {v,.. . v}. 

Thus the restricted condition may be thought of as global; if the initial 

problem is unrestricted, then so are any sub-problems generated from it. 

Thus for the unrestricted problem we may use this localised procedure to find 

relative complement. The reason that s must be an unrestricted instance for this 

procedure to work is that we know that there are no extra dependencies between 

the variables of s when compared with those of t, and so the structure of the two 

terms is similar. For example, let E be {a/O,g/1} and consider the two relative 

complements f(x,x)/f(g(z),g(z)) and f(x,y)/f(g(z),g(z)). Note that the first 

case involves an unrestricted instance and the second a restricted instance. 

For the first case, we find all instances of x which are not instances of g(z), 

which is just a, giving the partial answer {f(a, a)}, and then having found all 

instances of x which differ from g(z) the problem may be easily reduced to to 

f(g(z),g(z))/f(g(z),g(z)) = 0 and we are done. Thus the similarity of structure 

between f(x, x) and f(g(z), g(z)) ensures that the localisation produces the right 
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answer, as the problem reduces to finding all instances of x which are not instances 

of g(z). 

In the second case, the localised procedure alone is not sufficient. Firstly, (ig-

noring the unrestrictedness requirement), we again find all instances of x which 

are not instances of g(z), i.e. a, and so we get the partial answer {f(a,y)}. 

The procedure above suggests that we then proceed to the relative complement 

f(g(z),y)/f(g(z),g(z)), and so look for instances of y which are not instances 

of g(z), i.e. a, giving another partial answer If (a, y), f(g(z), a)}. We have now 

reached the end, as we are left with f(g(z),g(z))/f(g(z),g(z)). However, we do 

not have f(x,y)/f(g(z),g(z)) = {f(a,y),f(g(z),a)}, as f(g(a),g(g(a))) is an in-

stance of f(x,y) which is not an instance of f(g(z),g(z)), and so f(g(a),g(g(a))) e 

f(x, y)/f(g(z),g(z)), but it is not an instance of either f(a, y) or f(g(z), a). Hence, 

this simple procedure will only work for unrestricted instances, although it may 

be used as a method of generating some but not all of the relative complement of 

a restricted instance, as the answers returned will be correct but not complete. 

The problem is that a restricted instance produces more dependencies between 

variables than exist in the original term. In the above example, the most general 

unifier of the two terms binds x and y to terms containing a shared variable, and 

so there is a global connection between the two, which is ignored by the localised 

procedure. As hinted above, we may use the localised procedure to produce partial 

answers for the restricted case, but we need to do more work in order to produce 

all possible answers. This idea is formalised in the following lemmas, which give 

structural results which are important for computational purposes. 

Lemma 4.3.5 Let t' be an instance oft. Then 

refit, t') is not the empty set 

.s is an unrestricted instance oft, where {s} = ref (t,t') 

t' is a instance of s, where {s} = ref (t,t') 

Proof: 
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It is clear that t' is an instance of refresh(t'), and as t' is an instance of 

t, t and refresh(t') have a common instance, and so mgi (t , refresh(t, t')) 

exists, i.e. reJI:t,  t') is not the empty set. 

Let rejt, t') = {s}. As s = mgi(t, refresh(t')), s must be an instance 

of t. As there are no repeated variables in refresh(t'), the most general 

unifier 0 of refresh(t') and t can only bind the variables of t to terms 

containing different variables, and hence there are no repeated vari-

ables in v10,.. . vO where vars(t) = {vi , . . . v,}, i.e. s is an unrestricted 

instance of t. 

As t' is an instance of refresh(t') and of t, t' is an instance of s. 

Lemma 4.3.6 Let t' be an instance oft. Then 

t/t' = t/ref (t, t') U ref (t, t')/t'. 

Proof: 	From lemma 4.3.5 it follows that ref (t, t') is not the empty set. Let 

ref(t,t') be {s}. 

2: If t" e t/ref(t,t'), then t" is an instance of t but not of s, and from 

lemma 4.3.5 we have that t' is an instance of .s, and so t" is not an 

instance of t'. 

If t" E ref (t, t')/t', then t" is an instance of s but not of t', and from 

lemma 4.3.5 we have that s is an instance of t, and so t" is an instance 

of t. 

In either case we have that t" t/t'. 

C: Assume t" E t/t', and so t" is an instance of t but not of t'. If t" is an 

instance of s, then t" E ref (t, t')/t'. Otherwise, t" is not an instance of 

s, and hence t" e t/ref(t,t'). 

In either case we have t" E t/ref (t, t') U ref (t, t') It'. 

0 
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A generalisation of this result is given below. 

Lemma 4.3.7 Let {t1 ,.. .t} be a set of instances oft. Then 

t/{t1 ,. . . t,} = i/ref (t, It,,... t}) U ref(t, It,,... t})/{t1 ,. . . t,} 

Proof: We proceed by induction on n. The base case follows immediately from 

lemma 4.3.6. Hence, we assume that the lemma holds for all values less than 

a given size. We will write ref (t, {t, . . . t}) as rk. Now 

t/{t1,. . . t,} = (t/{11 ,. . . t_1 })/t by lemma 4.3.2 

= ((i/r....1  Ur_1/{t1  ... . t 1 })/t, by the hypothesis 

= (t/t)/r_1  U r_1 /{t1  . . . t} by lemmas 4.3.2 and 4.3.3 

= ((t/ref (I, t) U ref(t, i)/t)/r_1  U r,_/ {ti  . . . t} by lemma 4.3.6 

= t/r Uref(t,t)/{t,r_1 } Ur_1/{t1  ... . t} by lemma 4.3.2 

The result will then follow if we can show that 

ref 	 = 

ref (t,t)/{t1 ,...i} Ur_1/{t1  .... t} 

as the latter is just 

r/{t1  .... t} 

from lemma 4.3.3. 

Now from lemma 4.3.5, ti  is an instance of s where {s} = ref(t, t.), and so 

ref(t, t)/{t, r_1 } c ref(t, t)/{t1 ,. . . t} 

which establishes one direction of the desired equality. 

Let {s} = ref (t, ti). 
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For the other direction, consider t' E ref (t,t)/{t1,.. . t}, so that t' is not 

an instance of any t 2. If t' is an instance of s j  for some 1 < j < n - 1, then 

as t' is not an instance of any t, t' E r_1/{t1,. . . t,}. Otherwise, t' is not 

an instance of any t, 1 < j < n - 1, and so as t' is an instance of .s, we 

have that t' E ref (t,t)/{t,r_1 }. Thus we have that 

ref (t,t)/{t1  .. . . t,} C ref(t,t)/{t,r_1 } U r_/{t . . .t}. 

Hence 

r/{t1,.. .t} = ref (t,t)/{t,r_1 } U r,_1/{t . . . t,} 

which in turn shows that 

t/{t1,. . . t,} = t/r U r/{t1,. . . t,} 

and so the lemma is true for n. 

Thus by induction we get the result. 

U 

The next lemma is also important computationally. 

Lemma 4.3.8 Let t' be an instance oft. Then t/t' = t/strata(t'). 

Proof: Clearly every ground instance oft' is an instance of an element of strata (t'), 

and vice-versa, and hence t/t' = t/strata(t') 
	

U 

These results suggest that when dealing with the case when s is a restricted in-

stance of t, we should produce some possible answers, and then leave the problem 

in an intermediate state so that we may resume computation later if more answers 

are desired. For a term t = f(t1  . . . t) and a restricted instance s = f(s1,. . . Sn), 

the first step is to break the problem up as suggested by lemma 4.3.6, i.e. we 
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reduce i/s to t/ref(t,$) U ref (t,$)/s. By lemma 4.3.5, t/ref(t,$) is an unre-

stricted relative complement, and so we may use the procedure outlined above 

to produce some answers. By lemma 4.3.6, t/s = t/ref(t,$) U ref (t,$)/s, and 

as i/s is restricted and t/ref(t, s) is unrestricted, we must have that ref (t, s)/s 

is a restricted relative complement, as otherwise the restricted relative comple- 

ment i/s would be finitely representable, contradicting the quoted result in [59]. 

Thus ref (t, s)/s is a restricted relative complement, and so the next step is to 

reduce ref (t, s)/s to ref (t, s)/strata(s), as suggested by lemma 4.3.8. Hence, we 

need to generate the terms strata(s) = {f(s1  . . . s,)[x1 	g+]'.fl 
I g E El where 

vars(s) = {x 1,. . . X}. Next we divide strata(s) into two disjoint sets U and R 

such that for each t' E U, ref (t, s)/t' is an unrestricted relative complement, and 

that for each t' E R, ref (t, s)/t' is a restricted relative complement. In this way 

the problem is reduced to T/R, where T = ref (t, s)/U. Now we may consider that 

this has reduced the problem enough, and that we may leave T/R as a reasonable 

continuation of the problem which may be resumed later. However, we go a little 

further that this, as there may be terms in T which do not unify with anything in 

R, and so these terms lead to answers which will not take much effort to produce. 

Hence, TIll = T1  U (T2/R) where T1  is the set of all terms in T which do not unify 

with any term in R. The final step before we leave this problem is to reduce T2/R 

to T2/ref(T2, R) U ref (T2, R)/R, which ensures that all answers of the same depth 

are found at once. We then leave ref (T2, R)/R as the continuation of the problem 

which may be resumed later if more answers are needed. 

In this way, we can use the twofold technique of first considering s as an unre-

stricted instance of I, producing the solutions so generated, and then substituting 

for all the variables in s, finding what solutions there may be, and then leaving 

another restricted relative complement problem behind, which may be attacked 

later to provide further answers. Thus we work our way through the infinite num-

ber of possibilities by first finding all answers such that variables first appear at 

depth d (the depth of the term s), then those in which they first appear at depth 

d + 1, then at depth d + 2 and so forth. Thus the level at which variables appear 

in the answers is always increasing. 
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For example, to find f(x,y)/f(z,z) where E = {a/0,g/1}, we proceed as 

follows: 

First, we generate refresh(f(z,z)) = f(.,), and find f(x,y)/f(_,..) = 0. 

Next, we find strata(f(z,z)) = {f(a,a),f(g(w),g(w))}, and so we proceed to 

(f(x, y)/f(a, a))/f(g(w), g(w)). Now f(x, y)/f(a, a) is an unrestricted problem, 

and so we get that this is just {f(g(_),_),f(a,g(_))}, and so the overall problem 

is now {f(g(_),_),f(a,g(_))}/f(g(w),g(w)). This is the stage referred to above 

as T/R. Now as f(a,g(_)) does not unify with f(g(w),g(w)) we may reduce this 

to {f(a,g(_)} U f(g(_),_)/f(g(w),g(w)). It is now that we perform the final "re-

fresh" step, in that we reduce f(g(_),_)/f(g(w),g(w)) to f(g(_),_)/f(g(_),g()) U 

f(g(_),g(..))/f(g(w),g(w)). The first relative complement is easily seen to be just 

{f(g(_),a)}, and so we finally arrive at f(x,y)/f(z,z) = {f(a,g(_),f(g(.),a)} U 

f(g(_),g(_))/f(g(w),g(w))}. Note that any term in the remaining relative com-

plement has variables appearing at level 4 or more. Hence, the known structure 

of the answers is always increasing. 

Note that the sets of terms if (a, ), f(g(_), a)} and {f(a, ), f(..., a)} "cover" 

the same set of instances, in that for the signature E, the set of all term which 

are an instance of either term in the first set is the. same as the set of all terms 

which are an instance of either term in the second set. However, the first set has 

the useful property that the two representative terms do not unify, and so have 

no instances in common. Thus we have a more specific representation than in the 

second case. 

We can ensure that the computational process has a similar partition property, 

i.e. that no two terms in the explicit representation are unifiable. For the unre-

stricted relative complement t/t', consider {t[t +- t"] I t" e t./s1 }. We may think 

of this as the set of all instances of t for which the kth subterm is not an instance 

of 8k  Certainly no instance of t [tk - SkI/t is unifiable with any instance of any 

term in {t[t[k - t"]  I t" e k/Sk},  and so we only need to establish the partition 

property for this latter set. 

If tk is a variable and Sk is a function or constant, then the finite representation 

Of tk/Sk will include any term t" E E such that syrnbol(t") 	syrnbol(sk). As 
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the partition property holds for 	, then it will hold for any terms of the form 

t{tk - t"J where t" E 

Hence, if we only generate the representation of t/s in the above manner, i.e. 

substituting terms from E for tk when tk is a variable and Sk is not a vari-

able, then the above argument shows that the partition property will hold for the 

relative complement. Note that we only generate explicit representations from 

unrestricted complements, and so this establishes the partition property for any 

relative complement. That this is indeed the case here may be seen from the 

algorithm below. 

Thus the process partitions the instances, and so ensures that none of the terms 

representing the relative complement "overlap". 

4.4 The Incremental Algorithm 

Firstly we present the incremental algorithm for the relative complement problem. 

We then give a formal proof of the algorithm's correctness. 

The code for the incremental solution of the relative complement problem 

is given below. We present the algorithm in the style of a producer/consumer 

environment, in that we assume that there is some consumer process waiting 

for the output, and that when enough output has been generated, the consumer 

process will kill this producer. Thus we imagine that the extension of the SLD-

resolution process will use the substitutions generated in the same way as any 

other, i.e. when a substitution is found, it is applied to the rest of the goal and the 

next sub-goal is attempted. If subsequently a failure occurs, then on backtracking 

to this goal we wish for another substitution to be produced, if possible, and then 

to proceed as before. Backtracking may also be asked for by the user, as it may be 

desirable to see some of the possible answers. In either case, the resolution process 

will control the action of the process which generates the substitutions, killing it 

when no more are needed. 
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The procedure complement (Term, Restr, Inst, Cont) below calculates the rela-

tive complement Term/Restr, giving the explicit answer Inst, and implicit answer 

Cont, so that Cont is another relative complement problem which may be at-

tempted later in order to produce more solutions to the original problem. 

When Term/Restr is an unrestricted relative complement, then Cont is the 

empty set and Inst is a finite representation of the relative complement. 

procedure complement (Term,Restr, Inst ,Cont) 

Cont := 0; Inst := Term; 

for each t' E Restr do 

Approx := 0; 

for each t E Inst do 

if not unify(t, t') then 

Approx := Approx U {t}); 

else 

:= mgi(t,t'); 

if re.stricted(t, t') then 

Ref:=z ref(t,t'); 

call complement({i}, Ref, Ansi, ); 

Approx := Approx U Ansi; 

U := Is e strata(t) I unrestricted(Ref,$)}; 

R := Is E strata(t') I restricted(Ref,$)}; 

call complement(Ref, U, T, ); 

T2 	{ t E T I 3r E R such that t unifies with r }; 

T1  T\T2; 

Approx := Approx U T1); 

call complement(T2, ref (T2, R), Ans2, ); 

Approx := Approx U Ans2; 

Cont := ref (T2/R)/R; 

else 

if t' is not a variable and t is not a constant then 

if t is a variable then 
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/ 	 . 	+ for each t 	(>\ {symbol (t )/arzty(t/ )}) do 

Approx := Approx U {t"}; 

1 t 	(syrnbol(t )/arzty(t))+  

MI 

for each i E f  . . . arity(t')} do 

t 	ith argument of t; s := ith argument of t'; 

call complement ({t1}, {s},  Ans,  ); 

for each t" E Ans do 

Approx := Approx U {t[t1  — 

t 	t{t +- s.]; 

rof 

fi 

fi 

fi 

rof 

Inst := Approx; 

rof 

erudecorp 

We now show that the procedure complement is correct. First we show that it 

always terminates, and then we prove that all the correct answers are found. 

Lemma 4.4.1 The procedure complement 

always terminates. 

always returns finite sets in the variables Inst and Cont 

Proof: The termination of the two outer loops is immediate, as Inst is not altered 

within the inner loop, and Restr is not altered in the outer loop, and both 

lists are finite. Thus termination will follow if we can show that the procedure 

halts for the two terms t and t'. 
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The proof proceeds in two phases. In the first we show by induction on the 

depth of t' that the procedure halts when t' is an unrestricted instance of t. 

In the second phase we show that this is also the case when t' is a restricted 

instance of t. Notice that the predicates unify(t, t') and restricted(t, t') are 

both decidable and so cause no termination problems, and also that mgi(t, t') 

may be easily computed from the most general unifier. 

It is also obvious that ref (t, t') and .strata(t') cause no termination problems, 

as both may be easily computed. 

The second part of the statement will be shown if we can ensure that only 

finite sets are added to Approx. 

Firstly, assume that t' is an unrestricted instance of t. The if section obvi-

ously terminates and only adds a finite set to Approx, and so we concentrate 

on the for loop. The base case occurs when t' is a constant or a variable. If 

t' is a variable then termination is obvious. If t' is a constant, then we need 

only show that the for loop terminates, which is obvious as arity(t') = 0, 

and so the for loop will not be entered. Obviously, the finite set condition is 

met. 

For the inductive case, the only difference is when t' is a function. As arity(t') 

is finite, we need only show that the recursive call to complement terminates. 

As the depth of si  is less than that of t', by the inductive hypothesis we have 

that it terminates. 

The subsequent for loop must terminate, as Ans must be finite by the induc 

tive hypothesis, and so the finite set condition holds for the inductive case 

as well. 

Thus we have that the procedure must halt for any t, t' where t' is an 

unrestricted instance of t, and that the variables Inst and Cont are assigned 

values which are finite sets. 

Secondly, assume that I' is a restricted instance of t. The recursive calls 

to complement must terminate, as each of the three is made with an unre- 

stricted relative complement problem. As noted above, the functions strata 
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and ref and the predicates restricted and unrestricted cause no termination 

problems, and so the procedure complement defined above always terminates 

for restricted relative complement problems. 

The finite set condition must hold also, as we know that it holds for the 

unrestricted case, and so the sets Ansi, T and Ans2 must all be finite, and 

so must T1, being a subset of a finite set, and so only finite sets are ever 

appended to Approx. 

Thus the procedure halts for any t, t' where t' is a restricted instance of t, 

and so from this and the above result, we get the termination of complement 

in all cases, as well as the finite set condition. 	 19 

We now turn to the more difficult task of proving the correctness of the above 

procedure. Consider first the code fragment 

procedure complement (Term, Restr,Inst, Cont) 

Contlist := 0; Inst := Term; 

for each t' E Restr do 

Approx := 0; 

for each t € Inst do 

update Approx and Cont as appropriate 

Inst := Approx; 

rof 

erudecorp 

This code is precisely the code from procedure complement above with most 

of the body replaced by the line beginning "update ...". This code will be correct 

provided that Approx and Cont are updated correctly, as given some I', we cal-

culate the value of I/I' for each element I E Inst, adding it to Approx each time, 

and when Inst is exhausted, we may use Approx rather than go back to Term by 

the fact that t/{t1,t2} = {t/t1 }/t 2 . Thus we only need to prove correct the code 

that updates Approx and Cont. 

Proposition 4.4.2 The procedure complement always returns all correct answers. 
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Proof: From the above discussion and lemma 4.4.1, we need only consider the 

correctness for two terms t and t'. 

lit and t' are not unifiable, then t and t' have no instances in common, and 

so there is no instance of t which is an instance of t'. Hence, t/t' = {t}, and 

so we add {t} to Approx. Otherwise, t and t' are unifiable, and from lemma 

4.3.1 we have that t/t' = t/rngi (t, t'). 

Thus the assignment t' := mgi(t, t') is correct. 

As before, the proof now divides into two phases, one for the unrestricted 

case and the second for the restricted case. 

First, we assume that t' is an unrestricted instance of t. 

We proceed by induction on the depth of t'. The base case occurs when t' 

is a constant or a variable. If t' is a variable then nothing happens, which 

is correct as t must then be a variable too, and so t/t' = 0. If t' is a 

constant and so is t, again nothing happens, and nothing should, as again 

t/t' = 0. Otherwise, t is a variable, and so t/t' = E+\t/,  which is the same as 

(E\{symbol(t')}), as t' is a constant. Now arity(t') = 0, and so nothing is 

done by the for loop and so {t[t - t"] J t" E t/t'} is added to Approx, which 

is correct. 

For the inductive case, assuine that complement is correct for all terms less 

than depth m, and let t' have depth m. As t' is an instance of t, we note 

that t must have depth no more than m. The only interesting case is when 

t' is a function term. 

If t is a variable, then (E\{symbol(t')}) is added to Approx. This addition 

is the same as {t[t - t"] jt" e t/t'}. Next t is updated to symbol (t'), and so 

if the case when t is a function is correct, this will ensure that symbol(t1)+/t 

is added to Approx, and as 

(E\{symbol(t')}) U symbol (t')/t' = +/t' = i/I' 

we know that Approx is updated correctly. 
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If t1  is a function term, then by lemma 4.3.4 we know that the operation of 

the for loop is correct, i.e. that it is correct to compute t 1 /s1  and then apply 

the substitutions [t 1  - t"] to t, where t" G t/s, and so forth for all the 

other arguments of t. Hence, we need only show that each iteration performs 

correctly. 

Now Approx is updated by {t[t2 - t"] I t" E t 2 /s}, which is correct. t 

becomes t[t1 - si ], which, by the above discussion, is also correct. 

Hence, by induction we get that the procedure complement is correct when 

t' is an unrestricted instance of t. 

Next, we assume that t' is a restricted instance of t. Now from lemma 4.3.6 

we know that t/t' = t/ref(t, t') U ref (t, t')/t', and by lemma 4.3.8 this is 

just t/ref (t, t') U ref (t, t')/strata(t'). Hence, the first update to Approx is 

correct as it adds the former of these two relative complements. Now if 

strata (t') = U U R where unrestricted(ref(t, t'), u) holds for each u E U and 

restricted(ref(t, t'), r) holds for each r E R, then by lemma 4.3.2 we have 

ref (t, t')/strata(t') = (ref (t, t')/U)/R. Thus the second call to complement 

is correct, as it calculates T = ref (t, t') U, which is an unrestricted relative 

complement. It remains to compute T/R. Now by lemma 4.3.3 we know 

that 

T/R= Ut"/R 
t"ET 

If t" does not unify with any element of R, then t"/R = {t"}, and so 

T/R = T1  U (T2/R), where T1  is the set of such terms t". Hence the sec-

ond update to Approx is correct. Finally, from lemma 4.3.7 we get that 

T2/R = T2/ref(T2, R) U ref (T2, R)/R. As the first is an unrestricted rel-

ative complement, the third call to complement and update to Approx is 

correct. Thus T2/ref(T2, R) may be given an explicit representation, and so 

the only remaining relative complement problem is ref (T2, R)/R. Hence we 

get 

t/t' = t/ref(t, t') U T1  U T2/ref (T2, R) U ref (T2, R)/R 
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where strata W) = U U R, and T1  U T2 = ref (t, t')/U. 

Thus all the updates to Approx are correct, and Cont is updated correctly. 

0 

Thus we see that our algorithm performs as claimed. 

Now in order to apply the above algorithm to the generation of answer substi-

tutions, we proceed by finding the relative complement of the goal with respect to 

the set of successful instances, i.e. the set of answers. Now if the set of instances 

of p(t1, . . . t,) which succeed is computable and finite, then it is clear that any ele-

ment of p(t1 ,. . . t)/succeeds(p(t1 ,. . . t,)) is an instance of p(t 1 ,. . . t,) which fails, 

and so we may use the above algorithm to find answer substitutions for existen-

tially quantified negated goals. In the case of the completion of a program, we may 

consider the above process as solving the inequations in an incremental fashion, so 

that the solution to previous inequalities may be used to solve later inequalities. 

To see this, consider that the negative part of each predicate definition is of the 

form 

k 

Vx1 ,. . . x, -'p(x1.... x,) C 	V contr(fails(G1))) 

which may be re-written as 

k 

Vx1,. . . X. -'p(x1,. . . x,) C 	V (E1  A contr(fai1s(G)))) 

Hence we use the algorithm to solve the inequations, and the usual process for 

the rest of the goal. Now one possible correct answer for the goal -'p(t1,... , t) is 

given by the relative complement 

p(t 1,.. . , t)/{p(t11,.. . , t1 ), p(t21,.. . , t2 ),. . . ,p(tkl,. . . , tk fl)} 

where E1  = 	t 1  A ... A x, = tin. As we have to find an answer substitution 

which is valid for each conjunct, one way to proceed is to find a substitution for 

the first conjunct, and then use the next conjunct to refine this substitution in 

such a way that the refined substitution is a correct answer substitution for both 



Chapter 4. Answer Substitutions for Negated Goals 	 138 

conjuncts, and so on. This process of refinement is what happens in the normal 

derivation process for conjuncts; an answer substitution for B1  is found, say 01, 

and then we search for an answer substitution for B201, and if one is found, say 

02, we continue the process for B30102  and so forth until all the conjuncts are 

exhausted or the refinement fails, in which case there is no answer substitution 

for the conjunct. The incremental property of our algorithm allows the process of 

generating answer substitutions from the inequations to be smoothly integrated 

into the derivation process; when processing each conjunct, we may choose either 

of two refinement techniques - one for the relevant relative complement problem, 

the other for the substitution generated by the success of the goal B1. A non-

incremental algorithm would not be able to use this simple procedure, as it would 

need to know in advance which conjuncts will be chosen to solve the inequations, 

and hence would need to operate "globally", rather than "locally". 

Another point to note is that it may be necessary to use universal quantification 

in goals to ensure that the correct answer is obtained. For example, given the 

program 

VxVy q(x, j) D p(x) 

Vx q(x,a) 

and the goal ax-'p(x), then the next goal is 2xVy-'q(x, y) which obviously fails, as 

q(x, a) succeeds. Hence, we need to ensure that all such universally quantified vari-

ables are correctly handled. Techniques to handle such variables were discussed in 

section 2.4, and may be used here in addition to the relative complement proce-

dure. This is due to the fact that answer substitutions are only returned through 

existentially quantified variables. For example, given the program 

Vx q(x,a) 

over the signature {a/O,b/O,f/1} and the goal yVx-'q(f(x),y), it is clear that 

q(f(c),y)/q(f(c),a) is {q(f(c),b),q(f(c),f(_)}, and hence y - b is a correct an-

swer. In this way universal quantifications of variables in negated goals reduce 
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the number of variables which may be instantiated by the relative complement 

process. 

In the case when the success set is either infinite or not computable (i.e. some 

instance of the goal loops), then the search for answer substitutions may not termi-

nate. A heuristic which may be useful in this context is to compute A/succeeds(A) 

via A/ref(A, match(A)) Uref(A, match(A))/succeeds(A). This initial computation 

avoids dependence on the search for successful instances, and so may be thought 

of as insurance against the possibility that the success set for a given atom may be 

infinite, or that the search for successful instances loops. This approach ensures 

that the maximal number of answer substitutions is found. 

For example, let E be {a/0,b/O, f/1,g/2}.  Consider the goal y-'p(y) and the 

program 

\/x p(x) D  p(f(x)) 

As the goal will loop, the enumeration of the success set will not terminate, and 

so we will not find the correct answer substitutions y +- a, y - b and y 	g(_, -) 

unless we do so before attempting the enumeration of the success set. We consider 

what may be done about infinite success sets and the like in the next section. 

4.5 Answer Substitutions and Induction 

We have given an incremental algorithm for the relative complement problem 

tailored to the production of answer substitutions for a constructive form of NAF. 

This process allows us to consider existentially quantified negated atoms in the 

same computational fashion as existentially quantified non-negated atoms in that 

both have the existential property, i.e. that a proof of 3xG will always yield a 

term t such that G[t/x} is true. As mentioned above, it is possible that the relative 

complement may not be finitely representable by terms alone. This incompleteness 

will remain even with some form of constraint system; an explicit answer cannot 

always be given, but whenever it can, this process will find one. Also, when no 
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complete explicit representation of all the answers is possible, we may produce any 

finite subset of it, by enumerating all answers of no more than a given depth. 

There is another incompleteness in that the set of positive answers may be 

infinite, and so we may produce no negative answers at all, but just wait for 

the termination of an infinite process. However, the successive approximations 

contain information which may be used to produce exact answers under certain 

circumstances. 

For example, consider the program for the even predicate given above. The 

goal 3x even(x) will generate the success set 

{even(0), even(s2(0)), even(s4(0)), ... } 

The successive values of Approx are 

even(x)/even(0) = {even(s(x))} 

even(s(x))/even(.s2(0)) = {even(.s(0)), even(.s3(x))} 

{even(s(0)), even(s3(x))}/even(s4(0)) = {even(s(0)), even(s3(0)), even(s5(x))} 

and so forth. It is obvious that -'even(s(0)) and -'even(s3(0)) are correct answers 

for the query 3x -leven(x), and so, provided that we can somehow ensure that 

the approximate answers can never succeed, some parts of the approximation may 

be made exact. In this way we may produce some correct answer substitutions 

without waiting for the entire success set to be enumerated. 

It is instructive to examine which programs produce-an infinite set of (distinct) 

answers. The answer seems to be that such programs use inductive definitions. 

For example, consider the two programs P1  and P2  below and the goal xp(x)- 

P, 
	 P2  

p(a) 	 p(a) 

Vxp(x) D p(x) 	 Vxp(x) D p(f(x)) 

In F1, we initially match against the fact to get the answer p(a). Next the rule 

is used to produce the same subgoal, and so we produce the answer p(a) infinitely 
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often. In F2, we again initially produce the answer p(a), and then match p(x) 

against the second clause to produce the subgoal 3x'p(x'), which gives answer 

p(a), and so a second answer is p(f(a)). 

Now for an infinite number of answers (distinct or otherwise) to exist, there 

must be an infinite number of 0-proofs of the goal. We may think of these 0-

proofs as a tree (in the manner of the SLD-tree [61]) in which there are an infinite 

number of finite branches. There may be infinite branches interspersed between 

the finite ones, and so different ways of searching the tree may produce different 

results. Hence, we assume the use of a fair search strategy, so that any of the 

infinite number of answers may be eventually discovered. For this to occur, the 

search strategy must include a fair clause selection strategy, i.e. one which ensures 

that each matching clause is eventually reached by the proof search process. A 

particularly suitable one is given by the "fact first" rule: the facts, or unit clauses, 

are to be used before any other in the derivation. Once all facts are exhausted, we 

may use rules. In this way we may generate the set of answers in a breadth-first 

manner, thus giving us a rough measure of the progress of the search for answers. 

The idea behind this is to ensure that at every step in the generation of aswers, 

the depth of the answers will increase. For example, let P be the program 

even(0) 

Vx even(x) D even(s2(x)) 

For the goal yeven(y), we first get the answer even(0), note the substitution 

Y - s2(x) and then the next goal is 3x even(x). Assuming we match against the 

unit clause first, we then get another answer even(s2(0)), and then using the rule 

generate another goal, and so forth. 

If we now turn our attention to the program itself, it is clear that there are 

only a finite number of clauses in the program and that each (distinct) answer is 

an instance of the head of some clause. Hence by the pigeonhole principle, there 

must be a clause head which is used an infinite number of times in the derivation 

process, and so there must be a predicate whose definition depends on itself, either 



Chapter 4. Answer Substitutions for Negated Goals 	 142 

directly or indirectly. In this way the only class of programs which can possibly 

produce an infinite number of answers are those which contain a self-dependent 

predicate. 

We may define the class of inductive programs as follows: 

Definition 4.5.1 An atom p(t1,. . . t,,) is inductively defined in P if 

p(t1,. . . t,) is not P-self-dependent 

p(t1,. . . t,) is either a unit clause or P-dependent on an atom q(s1, . . . Sm ) which 

is inductively defined 

The definition of a predicate p in a program P is inductive if every term 

p(t1,. . . t,,) is inductively defined. 

A program P is inductive if it contains only inductive predicate definitions. 

The first condition ensures that the inductive definition is not cyclic, 'nd the 

second ensures that the induction must "bottom out" somewhere. For example, 

the even predicate as defined above is inductive. 

Clearly, not all programs are inductive. However, we feel that a number of 

useful programs are inductive, and that many programmers write programs in 

this inductive style. Many list processing predicates are written in the form of one 

clause, often just a unit clause, for the empty list case, and another for the case 

of an element with a list appended to it. For example, the standard definition of 

append below is inductive. 

Vs append([],s,x) 

VxVyVzVw append(y, z, w) D append(x.y, z, x.w) 

There are many similar predicates involving lists, generally of the following 

form, which may not be strictly inductive, but are similar in spirit: 
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base-case(Terms) D process_list ([1' Terms) 

process-element (x,Terms) A process_list(y, Terms) D process_list(x.y, Terms) 

where Terms is a list of terms and both base-case and process-element are inde-

pendent of process-list. 

There are many programs written by a similar process of "signature exhaus-

tion", i.e. writing a clause for each symbol in the signature, which will typically 

depend on a subterm, and so make the definition inductive. 

Now for such programs we may devise some measure of inductive depth, so 

that at each stage in the calculation of an answer substitution, we are guaranteed 

to increase the depth of the answer produced in a measurable way. Thus we can 

produce a lower bound on the depth of the answers in terms of the number of 

times we iterate through a particular clause, and so if we come across an atom A 

in Approx whose depth is less than this lower bound, we know that we can never 

find that A succeeds, and so we know that A is in fact an exact answer. 

For example, consider the even program above and the goal Ix even(x). We 

note that at each iteration through the second clause, the depth of the answer will 

increase by 2, and so after one such iteration, we get that Approx is {even(s(0)), 

even(s3(x))}, and so any further answers must have depth greater than than of 

even(s(0)). Hence even(s(0)) is in fact an exact answer. 

An interesting observation that may be made at this point is that many of the 

programs exhibited here were discussed in a different context in section 2.4, i.e. in 

terms of universally quantified goals. There is clearly a duality between Vx p(x) 
and 2x -'p(x) in that both cannot be true simultaneously. Any algorithm used to 

establish the truth or falsity of Vxp(x) may then be used to establish the truth 

or falsity of 3x -'p(x), particularly if the algorithm constructs counterexamples, 

so that if Vxp(x) fails, then the algorithm finds a term t such that p(t) fails, i.e. 

-'p(t) succeeds. Such an algorithm will then be untroubled by inductive programs, 

as the search to find a term t such that p(t) fails will not loop needlessly. Thus 

an algorithm for computation of universally quantified goals which demonstrates 
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failure by finding counterexamples may be used to find answer substitutions for 

negated goals, making such an algorithm doubly useful. 



Chapter 5 

Semantics and Model Theory 

1n this chapter we give a Kripke-like modal for programs which may contain nega-

tions in the bodies of clauses. This is inspired by the work of Miller on the 

semantics of first-order hereditary Harrop formulae [77]. We concentrate on NAF, 

although some other forms of negation may be incorporated. No restriction on 

the class of programs is needed in this approach; our method allows for programs 

which are not locally stratified [94]. This necessitates a slight departure from the 

standard methods, but the important properties of the construction still hold. 

5.1 A Kripke-like Model 

In [77] it was shown how a Kripke-like model may be constructed for Dmod formu-

lae. This uses techniques inspired by the possible worlds approach of Kripke [107]. 

This construction was then shown to precisely model the computational behaviour 

of Dmod and Gmod  formulae, just as the previous construction of Kowalski and van 

Emden [25] did for Horn clauses. We now look at how to extend the construction 

of [77] to cater for the inclusion of negation, and the inclusion of our notion of 

universally quantified goals. We will first extend the model theory to cope with 

negated atoms as goals, and afterwards we shall consider some aspects of a further 

extension to include negated atoms as the heads of clauses. 

145 
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Before plunging into the details of our extension, we review some details about 

the original model theory, and so for the time being we consider Dmod programs 

and Gmod goals, which are given as follows: 

D:=AlVxDID1 AD2 GDA 

G:=AJG1 AG2  IC1  VG2  I *cCID C 

Note the absence of universally quantified goals in this class of formulae. 

The aim of our investigation is to construct a model of the program which 

precisely matches up with the operational behaviour of the program. In this way 

we expect P H0  C to be equivalent to the statement that C is true in the model 

associated with the program P. The model theory of [77] uses a consequence 

relation ft= similar to the relation = defined over Kripke models of first-order 

intuitionistic logic. The worlds in this model are identified with programs. If we 

let U be the set of all closed terms, fl be the set of all closed atomic formulae 

and P be the set of all programs, then an interpretation is defined as an function 

powerset(fl) such that VP1,P2  E P with P1  ç P2,I(P1 ) ç I(P2).Thus, 

interpretations are "internally monotonic". Given this notion the consequence 

relation ft= was defined in [77] as follows: 

I,Pj=AiffAEI(P) 

I, P 1f= G V C2  if I, P 	C1  or I, P J= C2  

I, P 1J= G A C2  if I, P H= G1  and I, P H-- C2  

I, P H-- 3xC if I, P ft= G[t/x] for some t E U 

I,Pft=DGiffI,Pu{D}ft=C 

Next we define the operators fl and U for interpretations. 

Definition 5.1.1 Let I and 12  be interpretations. Then 
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11 	12 if VP E 
7),  11(P) c 12(w) 

(I u 12)(P) = 11(P) U 12(P) 

(I n 12)(P) = 11(P) n I(P) 

We may think of this model theory as a large collection of models indexed by 

programs, so that I, P ft= C if G is true in the model located in I at program P. A 

least fixed point method is given in [77] from which we get a single interpretation J 

such that P Fc, G if J, P 14= C. Thus for any program we can find an interpretation 

in this collection which precisely describes the program's behaviour. 

This construction is carried out by an operator on interpretations named T in 

the spirit of [25], and defined as follows: 

T(I)(P) = {A I A E [F] or there is a closed clause G D A e [F] such that 

I,P14=G} 

This operator is shown to be continuous, and so the least fixed point is 

00 

Tw(I±) = Ti(I) 

where I_ L  is the null interpretation, i.e. 11(P) = 0 for any P. It is then shown 

how P 1-0  C if T'(I1), P 14= C, so that Tw(11)(P) may be thought of as a model 

for the program P. 

It is interesting to examine the difference between the model constructed and 

the standard Kripke model. The definition in [107] is reproduced below. 

Definition 5.1.2 A Kripke model is a quadruple K = (W, , D, J=) such that W 

is partially ordered by <, D is a non-decreasing function mapping elements of W 

to non-empty sets, and = is a binary relation on worlds and formulae defined via: 

Fort1 ... t, e D(w), if  J= p(t1,. . . t,) then Vw' > w, w' J= At, .... t) 

• 
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wVbiffw=çorwb 

w = xq iffw = [t/x] for some t e D(w) 

w = VXO iffVw' > w, w' = [t/x] for all t E D(w') 

wDbiffVw'>w,jfu/J= then w'Hb 

w=-'çbzff VW,  >w,w'q 

The partial order < may be thought of as an "information" ordering; w1  <w2  

is interpreted as stating that w2  has no less information than w1. We often refer to 

as the access relation, or the reachability relation between worlds. The function 

D may be thought of as determining the objects of interest for a given world. As 

knowledge is increased, and hence we progress to worlds which are "higher" in 

the partial order, we may construct new objects of interest, and so there may be 

objects in w2  which do not exist in w1  where w1  w2. Hence the rule for V in the 

definition of = must take this possibility into account, and so we must show that 

for all worlds w' > w, w' J= 0[t/x] for all t G D(w') rather than just w 	.q[t/x} 

for all t e D(w). A similar remark applies to -the cases for D and -. 

We may interpret the statement w j=  qas 0 is true at (or in) world w. We 

write Vw e W, w 	as jz= qf. It is well known that intuitionistic provability is 

sound and complete with respect to Kripke models. More on Kripke models may 

be found in [21,107]. 

In our case, it is.  easy to see that a natural choice for W and < is that the 

worlds are derivation states with the reachability relationship between worlds being 

set inclusion. We will consider two worlds (i.e. two derivation states) equal if 

(w1) = (w2). An obvious difference between the two consequence relations is that 

R-- is a relation between interpretations, worlds and formulae, whereas = is a 

binary relation between worlds and formulae. This may be thought of as another 

specialisation in our case, as the definition of a Kripke model does not specify 

how the atomic formulae which are true at a given world are to be determined, 

whereas in our case we will always do so by an interpretation. As the formulae 
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true at a given world in the Kripke-like model will clearly depend on the chosen 

interpretation, it seems natural to include the interpretation as above, so that 

I, w ft= G may be interpretated as stating that under the interpretation I, C is 

true at world w. In a similar way, we will sometimes write I, w J= C, to mean that 

if the atomic formulae true at w are specified by the interpretation I, then w j=  G. 

Thus we may interpret the Kripke-like model directly as a Kripke model, using the 

same worlds structure and reachability relation as in the Kripke-like case, so that 

the only difference between the two is the difference between the the consequence 

relations = and j= 

One such difference is given by the rules for implication. Using the above 

syntax and convention, the rule for implication in a Kripke model reads 

I, P J= D D C if for every world w' D P, we have I, w' = D = I, w' j=  G 

As the relation j= is only defined when the antecedent is a D formula and the 

consequent a G formula, this condition cannot be used directly for JJ= . A more 

serious objection is that the T operator resulting from the = definition (i.e. the 

definition of T(I)(P) with I, P H-- C replaced by I, P = G) is not monbtonic, 

and so the usual fixed point method will not work. This may be seen from the 

following example, due to Dale Miller [73]: 

Consider the two programs P1  and P2  below. 

P, 	 P2  

(rDp)Dq 	 (rDp)Dq 

r 

Note that P1  c P2. Now as 11(P1 ) = 11(P2 ) = 0 and there are no atoms in 

P1, we get 

T(Ij(P1 )= {q I Ij,Pi  J= r :Dp} 

Now 11,P1 J= r D p if VW' D P1  we have 11,w' J= r = Ij,W J= p. This is 

vacuously true, as there is no world w' such that Ij, w' f= r. Hence, T(11) (P1 ) = 
{q}. In a similar way we get that T(11)(P2 ) = {q,r}. 
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However, it is obvious that T(11), P1  V= r D p, as we know that P2  D P1, and 

T(11),P2 J= r but T(11), P2  K p. Hence, we get that T 2(11)(P1 ) 	0, and by 

a similar argument that T2(11)(P2) = {r}. Thus the version of the T operator 

defined by = is not monotonic, and so we need to use a different relation. 

However, it can be shown that there is a Kripke model such that = C if 

T(I1), P 	C, so that the two relations j=  and  jJ= coincide "at the fixed 

point" [73]. The worlds in this model are the worlds w of the Kripke-like model 

such that w > F, so that P becomes the bottom world. This may be seen to be 

intuitively reasonable by the fact that the lack of monotonicity of the = version 

of the T operator is due to its behaviour on I, but as the iterations increase, this 

idiosyncracy disappears. 

Note that a notion of universality similar to that of the = definition is captured 

in the = definition by the fact that the reachability relation between worlds is 

just set inclusion. As w c w U {D} for any D, we have that w U {D} is always 

reachable from w, i.e. w < w U {D}, and that any w' D w that contains D also 

contains wU{D}. Hence, the 	version may be read as "for any world containing. 

w in which D is assumed", rather than as "for any world containing w in which D 

is provable", as is the case for the = version. Thus 	circumvents the "all worlds 

reachable from w" condition, does not involve definite formulae as consequents and 

leads to a monotonic operator, and hence we may derive our desired interpretation 

by the calculation of a least fixed point. 

In the light of the equivalence result, the JJ= relation may be thought of 

as a computational version of = for this class of formulae, in that H== behaves 

differently and perhaps more intuitively on the internal construction, but leads to 

the same final result. 

We may gain a geometric insight into the structure of the collection of models 

by viewing it as an inverted cone, with the empty program at the bottom. The cone 

extends infinitely upwards in an ever-widening way, as every possible extension 

(of which there are infinitely many) of a program P is reachable from P. A 

representation of this idea is given in Figure 5-1. There are R, worlds here, as any 

program may be extended in an infinite number of ways, as may each extension. 
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P1  U P3  U P4  

0 

Figure 5-1: Inverted cone of models 

The lines between worlds in Figure 5-1 represent reachability, so that P1  may 

reach P1  U P2, P1  U P3  or P1  U P3  U F4, but P1  U P2  may not reach P1  U P3  U P4. 

5.2 Worlds and Accessibility 

We wish to extend the programs and goals covered by this model thebry to DHHF_ 

and GHHF_  formulae, i.e. where D and C formulae are defined as 

D:=AIVXDID1 AD2 ICJA 

C:=Al - AIxGIVxGIGiAG2IG1vG2lDDC 

The definition of H= for a universally quantified formula may be stated as 

follows for a goal G: 

I, P j= VxG if Vw' > P we have I, to' j= G[t/x] for each t E U 

This is just the condition for intuitionistic universal quantification given in 

[107] translated into our syntax and with H--= substituted for =. A feature of 
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the Kripke-like model which is not a general feature of Kripke models is that the 

function D does not change from world to world, but is constant, in that for all 

w E W, D(w) = U. This is a definitive property Of Beth models [21], which use a 

notion of derivability which differs from both of those discussed above. Hence, we 

prefer to think of the Kripke-like model as one in which there are no new objects 

constructed in the process of increasing our knowledge. It is this possibility that 

necessitates the side conditions on the definitions of truth in a Kripke model for 

the connectives V, D and - which state that the formula must not only be true in 

the current world but also true in every future world, as these are the ones which 

will be affected if new objects are constructed at a later stage. The worlds "below" 

the world in which the new object is first constructed can have no knowledge about 

formulae involving the new object, and so in order to preserve the property that 

whatever is true at a given world will always be true in all future worlds, we need 

to restrict the formulae which are considered true in the current world. 

In our case, we saw above that due to the fact that the reachability relation is 

just set inclusion, we may circumvent this side condition for D, and analogously, 

since we will never construct new objects, it should be possible to do th6. same 

for V. Now as we think in terms of a Herbrand universe, which is fixed before the 

program is written, we may simply neglect the side condition for V, so that we 

may replace the above definition by the following: 

I, P J= VxG if I, P ft= G[t/x] for all t e U 

We do not need to consider all worlds w' > P here as we know that no new 

objects can be constructed, and so the Herbrand universe U is never increased. 

Now from the definition of an interpretation it is easy to see that if I, P ft= C 

and w' > P then I, w' ft= C, so if I, P ft= G[t/x] then I, w' ft= G[t/x], and so 

I, P H-- G[t/x] for all t E U implies that I, w1 ft= G[t/x] for all t E U. Clearly 

the reverse holds, i.e. that if I, w1 ft= G[t/x] for all t € U and for all w' > P, then 

I, P ft= G[t/xJ for all t E U. 

A relevant observation at this point is that there are intermediate logics (i.e. 

strictly between intuitionistic logic and classical logic) which have model-theoretic 
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properties very similar to that of the Kripke-like model. The best known example 

is called the logic of constant domains, whose models are characterised by Kripke 

models in which the domain is constant, i.e. the mapping D is the same for all 

worlds. Clearly the Kripke-like model is one such model, as U is fixed for all worlds. 

However, the logic of constant domains is not quite right in our case, as we are 

interested in one particular domain, rather than a class of domains. Nevertheless, 

the natural place to study the semantics seems to be an intermediate logic, rather 

than intuitionistic logic. This point is taken up in section 6.5. 

Note that we also want the definition of ft= to behave similarly to 1-3, and 

so we will also use representations in the relevant formal definition. However the 

above remarks will still apply. 

The reconciliation between the NAF rule and the condition for truth of a 

negated atom in a Kripke model is more problematic. The desired definition of 

J= for negated formulae, using the analogy of Kripke models, would be 

I,P j= -'A if Vw' > P we have l,w' = A 

If the relation < between worlds is set inclusion (ç), then there is n w and 

A such that T'(11),  w J= -'A, as the world w U {A} is always reachable from w, 

and we know from the properties of interpretations that A e T"(11)(P U {A}), i.e-

T' (I_L ), 

.e.

T"(11), P  {A} = A for any A. Thus in order to incorporate negated atoms into 

this model, we need to restrict the reachability relation between worlds, so that 

there are less worlds "above" a given world w. We may think of this as a form of 

pruning of the inverted cone. 

It may be informative to consider what sort of pruning occurs if we apply the 

CWA to a program P. The CWA may be understood as identifying P F-  -'A with 

P H1  A. So P H1  A means that P U {A} is not reachable from P, and so the only 

worlds reachable from P are those of the form P U {A} where P F-3  A, in which 

case P U {A} H3  C 	P H3  G. Hence, we understand the CWA as saying that 

there are no significant worlds reachable from P, so that P is maximal in the sense 

that the only worlds reachable from P are those in which the information added 

to P is a consequence of P. 
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P = P1  uP2  

P1  P2  

0 

Figure 5-2: Inverted cone + CWA = diamond 

The effect of this pruning of the inverted cone above P is shown in Figure 5-2. 

Note how the maximality of P makes the cone finite, as all elements of the cone 

must be subsets of P. Thus this drastic pruning may be interpreted as stating 

that all true formulae follow from P and P alone. 

This form of pruning is too extreme for our purposes. What we desire is some 

form of selective pruning, whereby we may make some worlds unreachable, but 

allow access to others. Thus we desire some form of inverted cone with "holes" 

appearing here and there, so that the geometric interpretation is in the form of 

Figure 5-3. 

The shaded triangles are the parts pruned from the initial diagram of Figure 5-

1. Here there are several worlds that P can reach, but some that P can not reach. 

The non-reachable ones are intended to include all extensions to the completely 

defined predicates of P. Thus P can only access "reasonable" worlds. 

In order to find the correct form of pruning, let us examine the growth of 

programs in this context. One feature of the Kripke-like model is that it captures 

the growth of programs very nicely. The only programs above a given world w 

are those which extend w. Thus, this approach induces the view that the process 

of programming begins at the tip of the inverted cone and proceeds upwards to 

a point where the finished program is reached. At this point, we may consider 
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Figure 5-3: Inverted cone with holes 

that the programmer has said "That is all that I know to be true", and then the 

machine makes deductions based on the information supplied. We may further 

contemplate that there are some predicates for which the programmer knows his 

or her knowledge to be complete, and so there is more information known to the 

programmer than he is able to express in the program, i.e. the negative parts of 

the information known about the predicates of the program. Such predicates we 

may consider completely defined, i.e. that no other programming process will lead 

to more information. This is certainly not true in the model theory of [77], as if w 

is a program containing clauses for the predicate p, then the program w U {P(01 
is reachable from w for any t, and so it is always possible to extend the definition 

of p given in w. Thus no predicate can be completely defined. Hence, we wish the 

reachability relation between worlds to reflect the following: 

W U {D} is reachable from w if D does not contain any more information than w 

about the completely defined predicates of w. 

The notion of completely and incompletely defined predicates is used to deter-

mine which worlds are reachable and which are not. If P contains an incompletely 
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defined predicate p, then we wish any world which extends the definition of p to 

be reachable from P. On the other hand, any world which extends the definition 

of a completely defined predicate of P should not be reachable from P. 

For example, let P1  be the program which defines the append predicate in the 

usual way, given below: 

Vx append([J,x,x) 

VxVyVzVw append(y, z, w) D append(x.y, z, x.w) 

We wish that no program which extends this definition of append be reachable 

from P1. On the other hand, the program P2  which defines all known carcinogens 

we would wish to be able to extend in any fashion, as we know that our knowledge is 

not complete, and so we wish to be able to extend it in any way possible. Thus the 

world P1  A append([], [1, 2], [3]) is not reachable from F1, as append([], [1, 2], [3]) is 

false, whereas carcinogen (chocolate) is unknown, and so P2 A carcinogen (chocolate) 

is reachable from F2, as we may find that chocolate is a carcinogen at some time 

in the future. 

Now in [77] worlds and sets of definite clauses tended to be interchangeable. As 

noted above, in. our case programs need to be more than just definite clauses; as 

we need to know which predicates are completely defined. Thus whilst in our case 

the worlds will again be just the same as programs, we have a more sophisticated 

notion of worlds as we have a more sophisticated notion of programs. 

As discussed above, the partial order on these worlds will need to be something 

more restrictive than set inclusion. The natural partial order between worlds is 

given below. 

Definition 5.2.1 Let P1  and P2  be sets of definite formulae, and Ni  c names(P) 

x names(P,), i = 1,2. Then (PI , N1 ) < (P2, N2) 1ff 

P1 cP2  

ass(N1) 9  ass(N2) 
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(F2 , (N, {append})) 

/ 
(P2, (N,ø)) 
	

(F1 , (N, {append})) 

(Fl , (N, 0)) 

Figure 5-4: The append program and its possible extensions 

3. den(N1) c den(N2) 

. for each C E P2\P1, rtame(head(C)) e ass(N1) 

The fourth condition in the definition of < is the interesting one, as it ensures 

that no completely defined predicate of P1  is extended by P2. Recall that ass(N1)fl 

den(N1) = 0, and so the only permitted extensions are those which extend the 

definitions of predicates which are known to be incompletely defined. 

For example, let P1  be the two clauses for append given above, and let P2  = P1  U 

{append(nil, nil, [1, 2])1. The partial order for (Ps , (N, 0)) and (Pi, (N, {append})), i = 

1,2 is given in Figure 5-4. 

Note that (P1,(N,O)) < (P2,(N,{append})) but that (P1,(N,{append})) 

(F2 , (N, {append})). Thus our partial order restricts the reachable worlds to those 

which do not extend the completely defined predicates, and in which incompletely 

defined predicates remain incompletely defined. 
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Given this partial order, we know that all worlds above a given world w are 

those which consistently extend w, and so we know that if -A is true at world w, 

then -'A will be true for all worlds w' above w. It is this property that allows us 

to extend the 	relation, as described in the next section. 

5.3 Extending the Framework 

We saw above that an interpretation was defined as any function I mapping sets 

of definite formulae to sets of closed atoms such that whenever P1  c P2  then 

1(P1 ) ç 1(P2). Thus we may think of an interpretation as providing an indication 

of which atoms are true for each definite formula. However, in order to serve 

as an indication of which atoms are false, we will need more information. As 

argued in chapter 2, the computational behaviour of programs fits naturally into 

a constructive setting. As it is possible for neither P H3  A nor P H3  -'A to be true, 

it seems natural to allow an interpretation I to be such that neither I, P = A 

nor I, P 	-'A, and so we wish for a more general notion of interpretation than 

that given in [77]. Due to' the possible occurrence of free variables in programs 

and goals, we also need to consider maps which range over sets of atoms which are 

not necessarily ground. In this way our construction will resemble that of [26]. As 

mentioned in [26], it seems unreasonable for p(x) to be true and p(a) to be false. 

We may circumvent this difficulty by thinking of the ground instances of the atoms 

in the interpretation as the "real" items of interest, and the non-ground atoms as 

place-holders. This leads us to the following definition of an interpretation. Let 

71' be the'set of all atomic formulae. Let W be the set of all derivation states. 

Definition 5.3.1 Let X be a set of atoms. We refer to the set of all instances of 

all elements of X as inst(X). Note that X ç inst(X). 

We define X1  -< X2  as inst(X1) ç inst(X2). When X1  is a singleton set {A} 

we will often write X1  -.< X2  as A -< X2 . 

Let A be an atom. We define A+  to be the set of instances of A in which each 

variable in A is instantiated to an element of E+. 



Chapter 5. Semantics and Model Theory 	 159 

Let P be a derivation state. An interpretation is any function I : W -f 	x 

satisfying the following conditions, where 1(P) = (S, F): 

inst(S) fl inst(F) = 0 

for all worlds w1, w2  such that w1  < w2  where I(w1) = (Si, F1) and 1(w2) = 

(S2 , F2), we have S1  -< S2  and F1  -< F2  

Let 1(w) = (S, F). We define pos(I)(w) = S and neg(I)(w) = F. We define 

Ii- (W) = (0, 0)Vw e W. 

We refer to 1(w) as an interpreted world. 

We think of pos(I) as specifying which atoms are true, and of neg(I) as specify-

ing which atoms are false. Thus, we may think of the definition of an interpretation 

given in [77] as the special case of our definition obtained when neg(I)(w) = 0 for 

any world w. The first side condition ensures that no atom is specified as being 

both true and false, and so this condition ensures that interpretations are internally 

consistent. The second condition is a generalisation of the previous condition of in-

ternal monotonicity. This is justified by the perception that as programs increase, 

the knowledge contained in the program cannot decrease, and so no extension to 

a program is allowed to decrease either the set of atoms known to be true or the 

set of atoms known to be false. Thus we preserve the principle of monotonicity of 

information. 

We use the relation -< merely as a shorthand; this is a device which allows us 

to handle the non-ground atoms more easily. 

Note that we do not explicitly require that inst(S U F) = 11'. 

This is possible, of course; indeed, the (global) CWA may be thought of as 

requiring this to be the case for any interpretation, i.e. that if inst(pos(I)) = S, 

then inst(neg(.[)) = ?-I'\S. However, there are many programs for which such 

an interpretation will be inappropriate. For example, consider the simple loop 

program 
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p(a)Dp(a) 

There are no successful goals, but the set of goals which fail does not include p(a), 

and so if we wish for some form of interpretation which precisely matches up with 

computational behaviour, we cannot insist that inst(S U F) = 7-1'. 

The partial order 	on interpretations is extended in the obvious way, as is 

the operator 11. The dual operator U provides a slight difficulty as there is now no 

longer one maximal interpretation. 

This means that the obvious definition of U may not lead to an interpretation, 

as if I(w) = (S1, F) where i = 1, 2, then if inst(S2 ) fl inst(F) 	0 or inst(S1) fl 

inst(F2) 54 0, the mapping (I U 12)(w) = (Si U S2, F1  U F2) is not an interpretation 

as inst(pos(11UI2)(w))ninst(neg(11u12)(w)) 0. However, we may consider two 

interpretations I and '2  with this property as mutually inconsistent, and so we 

never wish to consider the mapping JU '2  as an interpretation. This consideration 

motivates the definitions below. 

Definition 5.3.2 Let 1,, I be interpretations. 

I and 12  are mutually consistent interpretations if for all worlds w we have 

inst(pos(11)(w)) fl inst(neg(12)(w)) = 0 and inst(neg(11)(w)) fl inst(pos(12)(w)) = 

0. Otherwise, I and 12 are mutually inconsistent. 

We define the relations < and t and the operator fl as follows: 

11(w) < 12(w) iffpos(11)(w) -< pos(12)(w) and neg(11)(w) -< neg(12)(w) 

12  iffVw E W we have 11(w) <12(w) 

(I fl I2)(w) = (inst(pos(11)(w)) fl inst(pos(12)(w)), 

inst(neg(11)(w)) fl inst(neg(12)(w))) 

If I and 12  are mutually consistent then we define the operator U as follows: 

(I U 12)(w) = (pos(11)(w) U pos(12) (w) , neg(11)(w) U neg(12)(w)) 
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In this case the interpretations do not form a lattice under the operations U 

and fl, as there are an infinite number of maximal interpretations. For any two 

such maximal interpretations I and 12  with 11(P) = (S1,fl'\S1) and 12(P) = 

(S2, fl'\S2) such that S1 	S2, then I U 12  is not an interpretation. However, it 

will be seen below that the formal results do not depend upon the interpretations 

forming a lattice, and so this will not be a problem. 

There is a third cone structure too, apart from that of worlds and of interpre-

tations. In this structure, each node is a pair of sets of atoms (i.e. each node is 

an interpreted world), with the partial order being componentwise set inclusion. 

It is this structure on which the construction process described below is carried 

out. As the relation ft= relates interpretations, worlds (i.e. derivation states) 

and goals, it may sometimes be helpful to think of the relation ft= as a relation 

between nodes in this third structure (i.e. pairs of sets of atoms) and goals. 

Now we come to the generalisation of the relation ft= defined in [77]. As there 

is both positive and negative information explicitly given in an interpretation, it 

seems natural to define two relations H=+ and H= such that 	is used for 

the positive information and J= for the negative information. These are defined 

below. 

Definition 5.3.3 Let (F, G) be a DHHF derivation pair where P = (D, N) and 

I be an interpretation. Then 

J,p 	A iffA-<pos(I)(P) 

I,P := -iA if A -< neg(I)(P) 

I, P 	G1  V C2  if I, P 	C1  or I, P ft C2  

I, P j= G1  A C2  if I, P 	G1  and I, P ft C2  

I,P Jj= 4  3xG iffl,P J= C[i/x] for some tEU 

I, p + VxG if 3R E 7(U) such that J p ft +  G[t/x] for all t E R where the 

variables in R do not appear free in P or C 
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I,(D,N) ft D'G iffl,(Du{D'},N) ft G and (DU{D'},N)> (1), N) 

I,P I:I= A if A -< neg(I)(P) 

I,P j= -A if A - pos(I)(P) 

I, P j= C1 V C2 if I, P j= G1 and I, P 14= C2 

11 P H= G1 A G2 if I, P 	C1 or I, P = G2 

I, P fz RxC if 2R e R(U) such that I, P 4= G[t/x] for all t e R where the 

variables in R do not appear free in P or G 

I,P 	'c/xC iffl,P f= G[t/x] for some tEU 

I,(D,N) 	D' D C iffl,(Du{D'},N) 	C and (DU{D'},N) ~! (D, N) 

It should be clear that these definitions are similar to those of [77], with the 

main differences being the cases for universal quantification, implication and nega-

tion. The motivation for the universal quantification case is clear from the dis-

cussion in Chapter 2 on the corresponding operational definition. In the case of 

[77] the side condition on implication is vacuously true, as D U {D'} D D. Here 

we explicitly require that (D U {D'}, N) be reachable from (D, N), i.e. that the 

new world is reachable from the first. This may be thought of as ensuring that the 

assumption makes sense. This restriction is not strictly necessary, in that there 

may be weaker restrictions that work. However, this is a safe choice, and in our 

opinion a natural one. 

One interesting thing to note is that given two interpretations 11 and 12, we 

have that I E 12 if for all P and A we have I, P J= A = 12' PH--+ A and 

I, P ft ---iA 	12, p ft + -A This property will be useful in some subsequent 

	

proofs, as it allows us to deduce that if J P 	C = 12' P ft= C for any P and 

C, then I E 12. 
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Note that this definition of an interpretation may be used for the negation of 

incompletely defined predicates, in that if we know -ip(b), then we may represent 

this information in an interpretation I by ensuring that p(b) E neg(I)(w). Thus, 

Negation as Inconsistency [39] may be captured this way, and so our model theo-

retic framework may be used for more than one kind of negation. Naturally the 

construction process described below would need to be modified, but the notion 

of interpretation would need no extension. We take up this theme in section 5.6. 

The following lemma establishes that interpretations respect the reachability 

relation between worlds. 

Lemma 5.3.1 Let P1  and P2  be DHHF_ derivation states, C be a GHHF_ goal 

formula, and let I be an interpretation. If P1  <P2  then 

1. 1, P, I:1=+  C=.I,P2  I:I=+  C 

. 1, P, = G=I,P2  = C 

Proof: We proceed by induction on the size of C. The base case occurs when G is 

a literal. 

A: 	I. J  P1 ft A implies that A -< pos(I)(P1), and as inst(pos(I(P1 ))) c 
inst(pos(I(P2))), we have J p2 	A. 

2. 1, P, ft= A implies that A -< neg(I)(P1), and as inst(neg(I(P1 ))) c 
inst(neg(I(P2 ))), we have I, P2 	A. 

-'A: As I,P ft -'A if I,P H= A and I,P H= A if I,P H= -'A, this 

case follows directly from the one above. 

Hence we assume that the lemma is true for all goals of no more than a given 

size. There are five cases: 

C1  VC2: 1. J1 ft C1  V C2  if I, Pi 	G1  or I, Pi 	+ C2  and by the 

hypothesis this implies that ],P2 	G1  or j, p2 ft +  C2, i.e. 

I, P2  I:1=+  C1  vC2. 



Chapter 5. Semantics and Model Theory 	 164 

2. 1, P, JJ= C1 VG2 if I, PI 	G and I, P, H= C2 and by the 

hypothesis this implies that I, P2 ft= C1 and I, P2 ft= C2, i.e. 

I, P2 4= G1 vG2. 

	

C1 A G2: I. J J31 	C1 A G2 if I, P1 	C1 and I, JJ 	+ G2 and by the 

hypothesis this implies that I, P2 	G1 and ] p2 ft= C2, i.e. 

I, P2 ftG1 AG2. 

	

2. 1, P, 	G AC2 if I, P1 	C1 or 1, P, 	C2 and by the 

hypothesis this implies that I, P2 	C1 or I, P2 j= G2, i.e. 

I, P2 I 	G1AG2. 

dxC: 1. I, P1 H:--+ 3xG iff I, p1 	G[t/x] for some t E U, and by the 

hypothesis this implies that ] p2 ft= G[t/x] for some t e U, i.e. 

1, '2 J:J= 

	

2. I, P1 	3xC if 3R E 'R(U) such that I, P1 	G{t/x} for all 

t € R, and by the hypothesis this implies that I, P2 ft C[t/x] for 

all t E R, i.e. I, P2 J=- 3xC. 

VxG: 1. I, P1 ft= VxG if 3R E R(U) such that I, P1 H= C[t/xJ for all 

t e R, and by the hypothesis this implies that J p2 + G[t'/x] for 

all t e R, i.e. I, P2 H= VxG. 

	

2. I, P1 	VxG if I, P1 	G[lx] for some t e U, and by the 

hypothesis this implies that I, P2 ft= C[t/x] for some t e U, i.e. 

I, P2 l:l=: VxG. 

D' DC: 1. I,(D1,NI ) 	D' D G if I, (D, U {D'},NI ) 	C and (D1 U 

{D'}, N1) ~! (D1, N1), and so names(heads(D')) ç ass(N1). Now 

as (D1, N1) 	(D2, N2), this implies that names(heads(D')) c 
ass(N2), and hence names(heads(D')) fl den(N2 ) = 0, i.e. (D1 U 

{D'}, N1) 	(D2 U 1 D'J,  N2). Hence by the hypothesis we have 

I, (D2 U {D'}, N2) ft + C, and names(heads(D')) c ass(N2), and 

sol,(D2,N2) H= D'jC. 

2. I,(D1,NI) = D' D C if I, (DI U {D'}, N1) = G and (D1 U 

{D'}, N1) > (D1, N1), and so names(heads(D')) c ass(N1). Now 

as (D1, N1) 	(D2, N2), this implies that names(heads(D')) c 
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ass(N2), and hence names (heads (D')) fl den(N2) = 0, i.e. (D1  U 

{D'}, N1) < (D2  U {D'}, N2). Hence by the hypothesis we have 

I,(D2  U {D'}, N2) f= C, and names(heads(D')) c ass(N2), and 

so I, (D2, N2) J= D' D C. 

'I 

Note that this result depends critically on the fact that if P1  < P2, then 

ass(N1) C ass(N2). It is difficult to see how such a result could hold in the absence 

of this property. 

It is easy to prove a lemma analogous to lemma 2 of [77]. 

Lemma 5.3.2 Let (P, C) be a DHHF_ derivation pair where P = (D, N) and I 

and 12  be two interpretations. Then 

11 E12  if VP VG 11,P 	GI2,P 	C. 

I E: 12iffVPVGI1,P ft= GI2,P  ft= C. 

Proof: For the = direction of 1, consider the cases G= A and G = -'A. A -< 

pos(11)(P) if I, P j=  A which implies that '2,  P ft A which is equivalent 

to A -.< pos(12)(P). Similarly, A -< neg(11)(P) if I, P ft= -iA which 

implies that 12, p 	+ -'A which is equivalent to A -< neg(12)(P). A similar 

argument establishes 2. 

For the other direction, we proceed by induction on the structure of C. For 

the base case, if C is an atom A and 11,  P J= A, then A -< pos(11)(P), and 

so A -< pos(12)(P), as 11(P) < 12(P), and so 12 p 	A. If C is -'A for 

some A and J PH-- + -'A, then A -< neg(11)(P), so we have A -< neg(12)(P), 

as 11(P) <12(P) and so 12p ft 	A 

Similarly, if I, P = A then A -< neg(11)(P) which implies that A -< 

neg(12)(P), as 11(P) < 12(P), and so 12,P 	A. If C is -'A for some A 

and 11,P = -'A, then A -< pos(11 )(P), so we have A -< pos(12)(P), as 

11(P) <12(P) and so 12,P = -' A. 
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Hence the inductive hypothesis is that the lemma holds for all goals of no 

more than a given size. There are five cases: 

G1  V G2  

As J PH-- +  G1  or ] p 	+ C2, by the inductive hypothesis 

12, P H--+ C1  or 12, P 	G2 , and so we have 12,p + G1  V C2 . 

As '1  P J= C1  and '1,  P 	C2, by the inductive hypothesis 

12 P ft= C1  and I2  , P ft= G2 , and so we have 12, P 	C1  V G2• 

G1  A C2  

As I, P 	C1  and I, P 	C2, by the inductive hypothesis 

12, P Jf+ C1  and 12, P 	C2, and so we have 12 ]J + C1  A G2- 

As 11,P H= C1  or 11,P 	C2, by the inductive hypothesis 

12,P j= C1  or 12,P ft= C, and so we have 12,P 	C1  AC2 . 

axC 

As I,  P  ft= G[t/x] for some t E U, by the inductive hypothesis 

12, P H= G[t/x] for some t E U, and so we have 12, P ft dxC. 

As 3R e R(U) such that '1,  P ft= C[t/x] for all t e R, by the 

inductive hypothesis 12'  P J= C[t/x] for all t E R, and so we have 

I2P H= BxG. 

VxC: 

As 3R e 7?(U) such that J p ft C[t/x] for all t E R, by the 

inductive hypothesis 12, P 	G[t/x] for all t E R, and so we have 

12,P I:I=+ VxC 

As I, P = C[t/x] for some t E U, by the inductive hypothesis 

12' P H= G[t/x] for some t E U, and so we have 12'  P H= VxG. 

D'DG' 

As '1,  (D U {D'}, N) 	C', by the inductive hypothesis 12,  (D U 
{D'}) ft C', and so we have 12,  P 	D' D C'. 

As I, (D U {D'}, N) H= C', by the inductive hypothesis 12, (D U 
{D'}) ft= C', and so we have 12,  P = D' j G. 
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In the light of Proposition 2.3.3, it should not be surprising that the following 

Lemma holds. 

Lemma 5.3.3 Let (P, G) be a derivation state, and let I be an interpretation. 

Then 

J, PH--+  G ] p 	G[t/x] for any t e U 

I, P 	G = I, P 	G[t/x] for any t E U 

Proof: Obvious. 	 o 

Next we show that interpretations conserve the consistency of 	and 

Lemma 5.3.4 Let I be an interpretation. Then there is no derivation pair (F, G) 

such that 

I,P ft C and l,P ft= C 

Proof: We proceed by induction on the size of G. 

The base case occurs when G is an atom A. Now 

	

I, P J 	A if A -.< pos(I)(P) 

17  I:1= A if A -< neg(I)(P) 

and as I is an interpretation, inst(pos(I)(P)) fl inst(neg(I)(P)) 0, and so 

there can be no atom A such that j p ft A and I, P 	A. 

Hence the induction hypothesis is that the lemma is true for all goals of no 

more than a given size. There are five cases: 

	

C1  VC2: jp + G1 VC2  if I,P 	G1  orl,P 	G2  and by the hypothesis 

this implies that it is impossible that I, P =- C1  or it is impossible 

that I, F H= G2 , and in either case it is impossible that I, P = C1  

and I, P H---  C2 , i.e. it is impossible that I, P ft= C1  V C2. 
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G1 AG2: I,P 	G AG2  if I,P ft= G and I,P 	C2  and by the hy- 

pothesis this implies that it is impossible that I, P 	C1  and it is 

impossible that I, P ftz G2, and so it is impossible that I, P j= C1  

or I, P 	G2 , i.e. it is impossible that I, P J= C1  A G2 . 

xG: J, p ft= xG if I, P ft= G[t/x] for some t E U, and by the hypothesis 

this implies that it is impossible that I, P H= C[t/x] for some t E U, 

and so by Lemma 5.3.3 it is impossible that 3R e R(U) such that 

I, P J= G[t/x] for all t E R, i.e. it is impossible that I, P 	BxG. 

	

VxG: J p 	VxG if 3R E R(U) such that ] p + G[t/xJ for all t E R, 

and so ], p j=+  G[t/x] for all t e U, and by the hypothesis this implies 

that it is impossible that I, P 	G[t/x] for all t E U, and so it is 

impossible that I, P J= VxG. 

D'G: I,(D,N) + D'DGiffI,(DU{D'},N) + G and (DU{D'},N)> 

(D, N), and by the hypothesis this implies that it is impossible that 

I, (DU{D'}, N) I= G, and so it is impossible that I, (D, N) ft= D' 

G. 

0 

The next three lemmas are important for the construction process. 

Lemma 5.3.5 Let I and 12 be interpretations. 

If I 	12, then I  and 12  are mutually consistent. 

Proof: As I 12, for any P we have 11(P) <12(P), and so 

pos(11)(P) -< pos(12)(P) 

neg(11)(P) -< neg(12)(P) 

As 12  is an interpretation, inst(pos(12)(P)) fl inst(neg(12)(P)) = 0, and so 

inst(pos(12)(P)) fl inst(neg(11)(P)) = 0, and 

inst(neg(12)(P))ninst(pos(11)(p)) = 0, i.e. I and 12  are mutually consistent. 

0 
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Lemma 5.3.6 Let I  and 12  be interpretations. If I and 12 are mutually consis-

tent, then I, U I is an interpretation. 

Proof: As '1  and 12  are mutually consistent, we have that for any program P 

inst(pos(11)(P)) fl inst(neg(12)(P)) = 0 

inst(neg(11)(P)) fl inst(pos(12)(P)) = 0 

and so as both ii  and 12 are interpretations, it is clear that 

inst(pos(11)(P) U pos(12)(P)) fl inst(neg(11)(P) U neg(12)(P)) = 0 

Thus I Li 12  is internally consistent. 

Now as I is an interpretation for i = 1, 2, for any programs P1  and P2  such 

that P1  F2, we have 

pos(12)(P1) -< pos(11)(P2 ) 

neg(12)(Pj ) -< neg(11)(P2 ) 

for i = 1, 2, and hence we have 

pos(11)(P1) U pos(12)(P1) -< pos(Ii )(P2) U pos(12)(P2 ) 

neg(11)(P1) U neg(I2)(P) -< neg(11)(P2) U neg(12)(P2) 

Hence, Il 11 12 is an interpretation. 	 107 

Corollary 5.3.7 Let I and 12  be interpretations. If I 	4, then I, LI 12  is an 

interpretation. 

Proof: Follows immediately from lemmas 5.3.5 and 5.3.6. 	 0 

Lemma 5.3.8 Let I and 12  be mutually consistent interpretations. Then I ç 

11 1112  and 12 E11 1112. 

Proof: Obvious. 	 0 
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Another important lemma, again similar to one in [77] is given below. 

Lemma 5.3.9 Let 11 	13  E ... be an increasing sequence of interpretations)  

and let (P, G) be a DHHF_ derivation pair where P = (1), N). 

00 

If [] 11,P :j=+  G, then 2k> 1 such that 4,P 	G. 
1=1 

If U I,  P 	C, then 2k > 1 such that 4, P - C. 

Proof: Note that U jOO is an interpretation by corollary 5.3.7. Let I(P) = (Si, P). 

We proceed by induction on the structure of C. 

If G is an atom A and Lj 1 I1,P 	A, then A -< U11 S2, and as A 

is an instance of itself, A e inst(U °1  S1) = U 1  inst(S3. Hence 2k 

such that A E inst(Sk), and so inst(A) c inst(Sk), which implies that 

A -< Sk, i.e. 'k, 	ft= A. 

If C is A and Li1  Ii, P H= -iA, then A -< U 1 F, and as A is an 

instance of itself, A E inst(U00 1  Fj = U inst(F3. Hence 2k such that 

A E inst(Fk ), and so inst(A) C inst(Fk ), which implies that A -< Fk, 

i.e. 'k p 	+ - A. 

As I,P R--.- A if I,P J= -'A and I,P ft= -A if I,P R--t A, this 

follows from the above argument. 

Hence the inductive hypothesis is that the lemma holds for all goals of no 

more than a given size. There are five cases: 

C1  V C2  

1. As U00, 'i  P ft C1VG2, we have [j°°1  I, P 	C1  or [J 1  I, P  J= C2. 

By the hypothesis, we have J. p + C1  or F p + C2  for some 

> I. Let k be the maximum of i and j. By lemma 5.3.2, we 

have 4, P 	C1  or 4, p 	C21  as 	'k and I. 'k and so 

'k'3 :j=+ Ci  vC2. 
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2. As [j I, P 	G1VG2, we have L]1 I, P 	01 and 11 I, P H= 02. 

By the hypothesis, we have I, P ft= G and I, P 	C2 for some 

i,j > 1. Let k be the maximum of i and J. By lemma 5.3.2, we 

have 'k,'3 	C and 'k, 	02, as 	Ik and I E 'k, and 

SO 'k, J= G1 vG2. 

C A 02 

00 

1 
As [J.i= I, p 	G1AG2, we have [J I, [3 H--+ G1 and 1100 J, P ft= 02. 

By the hypothesis, we have 1, P 	C1 and L p + C2 for some 

i,j ~: 1. Let k be the maximum of i and j. By lemma 5.3.2, we 

have 'k, P ft C1 and 'k, p + G2, as I, g 'k and Ij E 4, and 

so 'k,' 	C AG2. 

AsU i Ij,PGi AG2,wehaveL i I j,PGi or[j?0 1 J,pftzG2. 

By the hypothesis, we have I, PH--  01 or I, P ft= 02 for some 

> 1. Let k be the maximum of i and j. By lemma 5.3.2, we 

have 'k 	 G1 or 'k P H=+ C2, as I 'k and Ij E 'k and so 

4 J.G1 AG2. 

As U I, P ft= RxG', we have that u Ii, p ft + G'[x/t] for 

some t E U. By the hypothesis, 'k, P t4= G'[x/t] for some k 1, 

and so we have 'k P H=+ 3xG' . 

As U 1 I, P J=- 3xG', we have that IR E 7?(U) such that 

111 I, P ft= C'[x/t] for all t E R, and so by the hypothesis, for 

each t ER there is a k such that Ik,, P ft= C'[t/xJ. Let k be the 

maximum of all the k. Hence 'k, P ft= G'[t/x] for all t E R, and 

so we have 'k, P ft= dxC'. 

1. As 1100 1 P Jfr VxG', we have that IR E R(U) such that 

LJ 	I, p ft + G'[x/t} for all t E R, and so by the hypothesis, for 

each t E R there is a kt such that 'ks, 
PH--+ G'[t/x]. Let Ic be the 

maximum of all the k. Hence 'k' p ft + G'[t/x} for all t E R, and 

so we have 4, p hI=:+ VxC' 

2xG 

VxG 
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2. As [J'°1  I, P ft= VxG', we have that U001  I, P 	G'[x/t] for 

some t e U. By the hypothesis, 'k  P = G'[x/t] for some k > 1, 

and so we have 'k,  P ft= VxG'. 

D'DG' 

As UOO 1  I, (D, N) ft= D' D C', we have that [j  I  I, (DU {D'}, N) 	C'. 

By the hypothesis, Ik ,(D U {D'}, N) ft= C' for some k > 1, and 

so we have 4, (D, N) 	D' D C'. 

As u 1  I, (D, N) ft= D' D G', we have that 	1 Ij,(DU {DJ, N) H= C'. 

By the hypothesis, 'k  (D U {D'}, N) H= C' for some k > 1, and 

so we have 4, (D, N) 	D' D G. 

Note that this result depends critically on the compactness properties of goals 

containing quantifiers. 

Thus our extended notion of interpretation preserves important semantic prop-

erties. We show in the next section how the important properties of the T(I1 ) 

construction are preserved as well. 

5.4 The Construction Process 

We wish to find a single interpretation J such that P I-s  C if J, P fj= G and 

P F-1  C if J, P ft= G. The construction of this interpretation may be thought of 

as mirroring the computational process, and is performed by a machine which has 

an unbounded amount of time and space and never makes a mistake. It is this step 

which justifies all the above definitions etc., as we may interpret this as defining 

a model for the program P. The interpretation J is traditionally constructed in 

logic programming semantics as the least fixed point of a monotonic operator T 

which maps interpretations to interpretations. The monotonicity of T guarantees 

that the least fixed point of T is T'(11)  for suitably defined powers of T, where 

I_L  is the empty interpretation. 
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We proceed in a similar manner to that in [77], i.e. we build ordinal powers 

of a T operator, and use the union of all such powers to produce the desired 

interpretation. Before we do so, let us consider the nature of the construction 

process. The desired process is one that builds upwards, so that as the process 

goes on, the knowledge we have is always increasing, but never in an inconsistent 

fashion. 

We may think of this process as ascending a cone similar to the worlds described 

above, except that each node is an ordered pair (S, F) where S and F are sets 

of atoms with the accessibility relation being componentwise set inclusion. The 

process begins at the base node and continues upward monotonically, in that when 

going from node (S1, F1) to (S2, F2), we have S1  -< 52 and F1  -< F2. This means 

that whenever the construction process places an atom A in neg(T'(I))(w), we 

must be sure that A will not be placed in pos(T2(I))(w) for some J. 

As our desired interpretation is T'(11),  we are mainly interested in the ordinal 

powers of T so that we may construct Tc?(I1), rather than interpretations and 

fixpoints per se. Before we define these ordinal powers, it is important to note 

that a consequence of the monotonicity of the operator given in [77] is that if 

W 4= C, then T'(I1), w ft= G. This may be seen by the fact that 

I. 	T(11_), and so as T is monotonic, we have T(11) T2(11) and so on. This 

is perhaps a more important consequence of the monotonicity of T than the fact 

that a least fixed point exists. Whilst the fixpoint semantics does display a certain 

mathematical elegance, if the method used to construct the desired interpretation 

does not respect provability via j= , it is difficult to see what use it would be. The 

only thing we lose by using a direct construction rather than an operator is the 

ability to think of T as an operator on arbitrary interpretations, and so produce 

other constructions based on it. Traditionally the only other construction to gain 

much interest has been to produce the greatest fixpoint of T in order to deal with 

NAF. However, we have seen that the constructivist approach necessitates a more 

general notion of interpretation, which allows us to directly incorporate similar 

semantic properties to those of the greatest fixpoint of T. Thus we capture the 
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same descriptive power as the least fixpoint /greatest fixpoint approach, but in a 

more concrete way. 

In some ways, the above definition of an interpretation is too general, in that 

it allows interpretations which do not correspond to our intuitive understand-

ing of the program. For example, consider the program (p(a), (0, {p})), and the 

interpretation I for which 1(P) = (0, {p(a)}) for all programs P. Clearly this 

interpretation is somehow "at odds" with the program, especially when it comes 

to comparisons with the operational notion of provability. Hence it seems more 

natural to construct the sequence of interpretations in which we are interested (i.e. 

T*(I±)) than to consider an operator on arbitrary interpretations. 

It is possible to define a continuous operator which suits our purposes, but as 

the partial order involved does not form a complete lattice, the Knaster-Tarski 

fixpoint theorem used in [77] will not apply. In the next section we show how 

this operator may be defined, and discuss related issues. Below we present a more 

specific construction which builds the powers of T directly, and for which we may 

derive the desired results. 

We define the powers of T in a slightly more intricate way than is strictly 

necessary, in order to facilitate some later proofs. 

Definition 5.4.1 Let I be an interpretation, and let P = (D, N) be a DHHF_ 

derivation state. We define the ordinal powers of T as follows: 

pos(Pr°(I))(P) = {A I A E (D)} 

neg(Pr°(I))(P) = {A I name(A) E den(N) and VB E (D) and VG D B E (D), B Al 

T°(I) = Pr°(I) 

pos(Pr(I))(P)= {A I 	A E (D) such that Tk(I),P 	G} 
neg(Prk+l(I))(P)= {A J name(A) e den(N) and 'lB e (D), B 9E A and 

VG D B e (D) such that B x A, T'(I), P j= G} 

Tc(I) = Prk+(I) u Tc(I) 

00 

T-  (I) = UT2(I) 
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For an example of how this process works, consider the program below. 

even(0) 

Vx -'even(x) D even(s(x)) 

Let P = (D, (0, {even})) where D is the code in the even program above. Then 

we have 

Pr°(I j )(P) = ({even(0)},0) 

Pr'(11)(P) = (0, {even(s(0))}) 

Pr2  (Ij(P) = ({even(s2(0))}, O) 

Pr3(I j )(P) = (0, {even(s(0))}) 

and so 

T°(11)(P) = ({even(0)},O) 

T'(11)(P) = ({even(0)}, {even(s(0))}) 
2 	 2 T (11)(P) 	({even)(0),even(s (0))}, {even(s(0))}) 

T3(11)(P) = ({even)(0),even(s2(0))}, {even(.s(0)),even(s3(0))}) 

Note that even(x) neither succeeds nor fails, as there are some instances of it 

which succeed and some which fail. 

In this way we may think of the powers of T as using the program to define 

an increasing sequence of interpretations which is used to model the behaviour of 

the program. The final interpretation in this sequence (i.e. T'(I1)) can indeed be 

shown to capture this operational behaviour. 

Below we show that the powers of T are interpretations. 

Lemma 5.4.1 Let I be an interpretation. Then for any i > 0, Pri(11) and T'(11) 

are both interpretations. 
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Proof: We proceed by induction on i. Let P = (D, N) be a DHHF_ derivation 

state. 

In the base case, we have Pr°(I j ) = T°(11), and so we need only show that 

Pr°(11) is an interpretation. Let P = (D, N) be a DHHF_ derivation state. 

It is clear that there can be no atom A such that A E (D) and YB e (D) 

B çk A, and so pos(Pr°(Ii))(P) fl neg(Pr°(Ij)(P) = 0. 

Now given P1  = (D1, N1) and P2  = (D2, N2) such that P1  P2 , we know 

that (D1) C (D2), ass(N1) C ass(N2 ), den(N1) C den(N2), and for each 

C E D2\D1, name(head(C)) E ass(N1). As (D1) 9 (D2), we have that 

pos(Pr°(11))(P1) 9 pos(Pr°(11))(P2). Now if A E neg(Pr°(11))(P1), then 

name(A) E den(N1) and YB E (D1) and VG B E (D1 ) we have B 

A. Now as for each C E DAD, we have name(head(C)) V den(N), it 

follows that YB E (D2) and VG D B E (D2 ) we have B ç A, and so 

A E neg(Pr°(11))(P2). 

Hence we assume that the lemma is true for all 0 < i < k, so that Pr c(I j ) 

and T'(I1) are interpretations. It will be sufficient to show that Pr (Ii) 

is an interpretation, and that Pr k+1  (Ii) and T'(I1 ) are mutually consistent. 

Let P = (D, N) be a DHHF_ derivation state. If A E pos (Pr 4(I1))(P), 

then 3G D A E (D) such that Tk(I±),  p 	G, and so it is impossible that 

VG i B E (D) such that B X A, Tk(I±),  P ft= G by lemma 5.3.4, and so 

pos(Prk(Ij))(P) fl neg(Pr 4(I1))(P) = 0. 

Now as above, if P1  and P2  are two program such that P1  < P2, then 

(D1 ) c (D2), and so pos(Prc+(Ij))(Pi)  c pos(Pr 4(I1))(P2). Now if 

A E neg(Pr 1  (11))(P1 ), then name(A) e den(N1 ) and YB E (D1), B A 

and VG D B e (D1) such that B oc A we have that Tk(I±),P1 H= C. As 

above, for each C e D2\D1  we have name(head(C)) 0 den(N1), and so it 

follows that YB E (D2) and VG D B E (D2) such that B oc A we have 
Tk(I1),P2J=_ C, and so A E neg(Pr(I1))(P2 ). 

Hence Prk  (Ii) is an interpretation. 
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Let P = (D, N) beaDHHF_ derivation state. Now ifA e pos(Pr' 1(I1))(P), 

then 3G A E (D) such that Tk(I±),P 	C. If A E neg(Tk(I±))(P), 

then A e neg(Prt(11))(P) for some 0 < i < k, and so name(A) E den(N) 

and VBE(D)B~kA and VGJBE(D) either B~kAorB oc Aand 

T 1(Ij, P H= G, which by lemma 5.3.2 implies that VG D B e (D) ei-

ther B ç A or B oc A and Tk(I±),P H= C. Hence pos(PrIc(I j ))(P) 

pos(Tk(Ij)(P) 
= 0. 

Similarly, if A E neg(Pr 4(I1))(P), then name(A) E den(N) and VB E 

(D) B çk A and VG D B E (D) such that B oc A, Tk(11), P ft= C. If 

A e pos(Tk(11))(P), then A e pos(Prt(Ij)(P) for some 0 < i < k, and so 

either A E (D) or 3G D A E (D) such that T 1(I1),P 	G, and so by 

lemma 5.3.2 this implies that either A E (D) or 3G D A E (D) such that 
Tk(I1),P 	G. Hence pos(Prk+l(I j ))(P) npos(Tk(Ij)(P) 

= 0. 

Thus Pr''(I1) and T'(I1) are mutually consistent, and so by lemma 5.3.6, 

T''(I1) is an interpretation. 

Ii 

Thus the construction gives us an increasing sequence of interpretations. This 

sequence respects 	and H= as shown below. 

Proposition 5.4.2 Let P be a DHHF_ derivation state and let G be a GHHF_ 

goal formula. Then 

1.Tk(IJ),P+GT3(Ij),pftC for any j>k 

.Tk(Ij),P_GTi(Ij),p_G for any j>k 

Proof: T'(I1) and T3(11) are interpretations by lemma 5.4.1, and as Tk(I±) 

T3(11), 1 & 2 follow immediately by lemma 5.3.2. 	 D 

Thus our construction preserves important properties. 
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We now show the relationship between our construction and the relations H3  

and H. First we show that F-5  and F-1  are sound with respect to the IKripke-like 

model. 

Proposition 5.4.3 Let (P, G) be a DHHF_ derivation pair where P = (D, N). 

Then 

I. PH 3 G=T'(Ii),P=G 

2. If G is negatable, then P F-1  G = T"(11), P 	C 

Note that the restriction in 2 is necessary. As T'(11)  is an interpretation, 

enlarging the program must preserve what is known to be true and what is known 

to be false. On the other hand, enlarging a program may mean that a goal which 

originally failed does not fail in the larger program. 

Proof: We proceed by induction on the depth of the 0-derivation of C. The base 

case occurs when G is an atom A and the sequent P _*+ A (resp. P ----- A) 

is initial. 

As the sequent is initial, we have A E (D), and hence A E pos(T°(I j ))(P), 

and so T(I1),P 	A. 

As the sequent is initial, we have VB E (D) and '/C D B E (D) 

B 	A and as A is negatable, we have name(A) e den(N), and hence 

A e neg(T0(11))(P), and so T"(I1),P 4= A. 

Hence we assume that the proposition is true for all 0-derivations of no more 

than a given depth. There are seven cases: 

A: 	1. If the base case does not hold, we have that 3G D A e (D) such that 

P F-3  C, and by the hypothesis this implies that Tw(I± ) ,  PH-- + G. 

By lemma 5.3.9 we have that T k  (Ii), P ft=
+  C for some k, and so 

Tk+l(I1),P 	A, i.e. Tw(11),P 	A. 
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2. If the base case does not hold, we have that VB E (D) B ç A, and 

VG D B E (D) such that B X A, P F1. G, and as G is negatable, 

by the hypothesis, T"(I1), P j=  C. By lemma 5.3.9 we have 

that T'(11) ,  p H= G for some k, and so T 1(I1), P 	A, i.e. 

Tw(11),P 	A. 

-A: 	1. P F, -'A if P F1  A and name(A) e den(N), and by the hypothesis, 

T"(11), P 	A. By lemma 5.3.9, we have that Tk(I±),  P ft A 

for some k, and so Tk(I±),  p 	-'A, i.e. Tw(Ij,  p + -'A 

2. P 1-1  -'A if P F, A, and by the hypothesis, Tw(11),  P Jj= A. By 

lemma 5.3.9, we have that Tk(I1) ,  p ft=+ A for some k, and so 

Tk(11),P j= -'A, i.e. Tw(11),P ft= -IA. 

G1  V C2: 1. P F, C1  V C2  if P F, C1  or P F, C2, and so by the hypothesis 

T"(Ii),PU= C1  or Tw(11),P + C2,i.e.T(Ij ),P 	C1VC2. 

2. P 1-1  C1  V G2  if P F, G1  and P F, C2 , and so by the hypothesis 

T'(ir1), P H= C1  and T"(11), P = C2, i.e. Tw(11), P H---  C1  V 

C2. 

C1  A C2: 1. P F, G1  A C2  if P F, G1  and P F, C2, and so by the hypothesis 

T"(11),P f= C1  and T"(11),P 	C2, i.e. Tw(I±), P J: 	C1  A 

C2. 

2. P 1-1  G1  A C2  if P F, C1  or P F, C2 , and so by the hypothesis 

Tw(I±),P l= C orT"(11),P 	C2, i.e. Tw(11),P = GAC. 

xG: 	1. P F, ]xG if P F, C[t/x] for some t E U, and so by the hypothesis 

T"(11),P ft= G[t/x], i.e. T(I1),P ft=+  3xG. 

2. P F f  3xG if 3R E R(U) such that P F1  G[t/x] for all t E 

R, and so by the hypothesis T°'(11), P 	G[t/x] Vt e R, i.e. 

T'"(I1),P ft=-  IxG. 

VxG: 1. P F, VxG if 31? E R(U) such that P F, C[t/x] for all t 

1?, and so by the hypothesis T"(I1), p 	G[t/x} Vt e R, i.e. 

Tw(I±),P 	VxG. 

2. P F1  VxG if P Ff  C{t/x] for some t E U, and so by the hypothesis 

T°'(Ij,P ft= C[t/x], i.e. Tw(11),P ft VxG. 
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D' D C: I. (D, N) I- D' D G if (D U {D'}, N) F- C and names(heads(D')) c 
ass(N), and so by the hypothesis Tw(I±), (D U {D'}, N) ft= C, i.e. 

T"(I1), (D, N) 	D' :) G. 

2. (D, N) I- D' D G if (D U {D'}, N) F- j C and names(heads(D')) c 
ass(N), and as 	C is negatable, C is negatable, and so by the 

hypothesis T(I1), (DU{D'}, N) H= C, i.e. T(I1), (D, N) 	D' D 

C. 

FEW 

Note that this result may be thought of as demonstrating the compactness 

of F-s and F-1, in that if P I- C, then Tw(I±), p ft G, and by Lemma 5.3.9 

Tk(I), p + C for some k, and similarly for H1 when Gis negatable. 

Next we show that operational provability is complete with respect to the 

Kripke-like model. 

Proposition 5.4.4 Let (P, G) be a DHHF_ derivation pair where P = (D, N). 

Then 

Tw(I±),P =+G=.PH3 G 

T'(I),P H= GPHJ G 

Proof: By lemma 5.3:9 we have that 

T"(I1), p ft + G 3k such that T'(I1), p + C 

T'(11), P j= C 3k such that T'(I1), P 	C 

In each case, let k be the smallest such number. 

We proceed to show 1 & 2 simultaneously by formal induction on the ordinal 

measure w.k + n, where n is the number of connectives in C. 

The base case occurs when n 	k = 0. T°(I jj, p 	+ A implies that 

A -< (D),. i.e. A e (D), and hence P H3 A. T°(Ij,P J= A implies that 

VBE(D) and VCDBE(D),B~kA, and sopHjA. 
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Hence we assume that the proposition is true for all programs and goals for 

which w.k + n does not exceed a certain value. 

There are seven cases: 

A: 	1. Tk(I1),  p 	A implies that 2G D A E (D) such that T'(I1), P 	C, 

and by the hypothesis, P F 9  C, and so P F 9  A. 

2. Tk(Ij,P 	A implies that \/B E (D) B ç A and VG ,B E 

(D) such that B oc A, we have Tk_l(I±),  P Jj= G, and by the 

hypothesis, P F1  C, and so P F1  A. 

-'A: 1. T'(Ij, P J= -A implies that T"(I1), P 	A, and so VB e (D) 

B ç A and VG D BE (D) such that B oc A, TIc_l(Ij,P  j_ C 

and name(A) E den(N). By the hypothesis this implies that P F1  

A and name(A) e den(N), i.e. P Fs  -'A. 

2. Tlc(I±),  P = -'A implies that T'(I1), P 	A, and so 2G D A e 

(D) such that T' 1(I1), P ft= C. By the hypothesis this implies 

that P F 3  A, and so P F1  -IA. 

C1  V C2: 1. Tk(Ij,  p + G1  V C2  if Tk(I±),  P 	G1  or Tk(I1),  p 	C2  

and by the hypothesis this implies that P F3  C1  or P F C2, i.e. 

PF,G1  VG2 . 

2. Tk(I±),P ft= G1 VG2  if Tk(I1),P = C1  and Tk(I±),P ft C2  

and by the hypothesis this implies that P F1  C1  and P F 1  C21  i.e. 

P 	C1  V C2. 

C1  A C2: 1. Tk(I1),  p 	C1  AG2  if Tk(11),  p + C1  and Tk(I±),  p ft +  C2  

and by the hypothesis this implies that P F 8  C1  and P F 3  C2, i.e. 

PF 3  C1  AG2 . 

2. Tk(I1), P 	G1  A C2  if Tk(I1),  P 	C1  or Tk(I±),  P 	C2  

and by the hypothesis this implies that P F G1  or P Ff  C 2 , i.e. 

P F1  C1  A C2. 

dxC: 1. Tk(11),  P ft= xC if Tk(11),  p 	+ G[t/x] for some t E U, and 

by the hypothesis this implies that P F 3  G[t/x], i.e. P F 3  IxG. 
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2. T'(11), P ft= 3xG iff 3R E R(U) such that T'(I1), P 	G[t/x] 

for all t e R, and by the hypothesis this implies that P H j G[t/x] Vt e 

R, i.e. P F-1 3xG. 

VxG: 1. T'(I1), p I:i= VxG if 3R e R(U) such that Tk(Ij, p ft + G[t/x] 

for all t E R, and by the hypothesis this implies that P F- 5 G[t/x] Vt e 

R, i.e. P F-3 VxG. 

2. Tk(I1), P f= VxG if Tk(I±), P 	G[t/x] for some t e U, and 

by the hypothesis this implies that P F-i. G[t/x], i.e. P H1 VxG. 

D' D G: 1. Tk(11), (D, N) H= D' D G if Tk(Ij, (D U {D'},N) f= G and 

(D U {D'}, N) ~! (D, N), and by the hypothesis this implies that 

(DU {D'}, N) I-i C and names(heads(D')) C ass(N), i.e. (D, N) H3 

D'jG. 

2. Tk(I1), (D, N) H= D' D G if T'(I1), (D U {D'}, N) j= C and 

(D U {D'}, N) ~! (D, N), and by the hypothesis this implies that 

(DU{D'}, N) F-1 G and names(heads(D')) c ass (N), i.e. (D, N) H1 

D' G. 

I. 

We now come to the main theorem. 

Theorem 5.4.5 Let P = (D, N) be a DHHF derivation state and let C be a 

GHHF_ goal formula. Then 

1. PH8 GTW(Ii),P I:=+ C 

If C is negatable, then P H1 C = T'(I1), P 	C 

PH j C = Tw(I1), P = G 

Proof: Follows directly from propositions 5.4.3 and 5.4.4. 	 11 
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5.5 Comparative Results 

Although we have been concerned with the powers of T themselves, rather than 

interpretations in general and fixpoints, it may be instructive to investigate the 

precise nature of the relationship between our presentation and the traditional 

approach. Below we give a result which may be thought of as characterising the 

fixed point nature of T"(11) without finding a particular operator of which this 

interpretation is a fixed point. 

We also show how we may define a version of the T operator "in isolation", as 

is done in the traditional case, i.e., T(I) is defined in terms of the interpretation I 

and that the T operator so defined is continuous. As mentioned above, we cannot 

apply the Knaster-Tarski fixed point theorem used in [77] to derive that Tc)(I±) 

is the least fixed point of T. However, the fact that F is a chain-complete partial 

order on interpretations together with the monotonicity of the operator means 

that the least fixpoint will indeed be T'(11) [60,1]. It is also not hard to show 

directly that T"(11) is the least fixpoint. 

First we show the result that gives the implicit characterisation of T(I) as a 

fixed point. 

Proposition 5.5.1 Let P = (D, N) be a DHHF_ derivation state, and let A be 

an atom. Then 

T(I1),P 	A T°(11),P 	A or 3G D A e (D) such that Tw(I±),P 	C 

Tw(11), P = A T°(11), P ft= A or VB E (D), B ç A and VC D B E (D) 

such that B cx A, T(I1), P H---  C, and name(A) E den(N) 

Proof: 

1(=): T"(I1), p + A if for some i we have Tt (Ij, p 
ft A by lemma 

5.3.9, and so either i = 0, i.e. T°(11), P J= A, or i > 0 and 

3G D A E (D) such that T''(11), p jj +  C, which implies that 

T'(I1),P H= C. 
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(=): T°(11), p 	A = T'(I1), P H= A by lemma 5.3.2. By lemma 

5.3.9, if T-(11),  p 	C then T 2 (11), p 	+ C for some i, and so 

T2+l(11),  p + A, and hence Tw(I±), 	A by lemma 5.3.2. 

Tw(I±), P = A if for some i we have T'(11), P ft= A by lemma 

5.3.9, and so either i = 0, i.e. T°(11),P 	A, or i >0 and,VB E 

(D) B A and VG D B e (D) such that B oc A, T 1(I1), P H= C 

and name(A) e den(N), and so by lemma 5.3.2 T"(I1),P I= G. 

(=): T°(11),P H= A = 13 Tw(I±),P 	A by lemma 5.3.2. By 

lemma 5.3.9, if Tw(I±),  P ft= G, then T'(11), P H= G for some 

i, and as YB E (D) B A, we have T 1(I1), P 	A, and so by 

lemma 5.3.2 T'(11),  P ft= A. 

A 

Thus we may think of Tw(11)(P) as a fixed point of the definition of the powers 

of T, in that replacing Tk44(I1) on the left by Tw(I±)  and T"(11) on the right by 

T"(11) results in a valid equation. 

Next, we show how to define our T operator "in isolation", i.e. define' • what 

T does to an arbitrary interpretation. This is not a definition in which we are 

particularly interested; it is included for purposes of comparison. The operator, 

which we will call S, is defined as follows. 

Definition 5.5.1 Let I be an interpretation, and let w = (D,N) be a DHHF 

derivation state. Then we define 

pos(S(I))(w) = {A I A E (D) or 3G D A E (D) such that I, w 	G} 

neg(S(I))(w) = {A I name(A) e den(N) and YB e (D) B 91 A and 

VG D Be (D) such that B oc A we have I,w H= C } 

S-(I) = US'(I) 

Note that in our earlier definition, we had T°(11), p 	+ A if A E (D). Here 

we have S(11), PH--  A if A e (D). No confusion should arise from this, as we 

are mainly concerned with T''( I1) and S"(11). 



Chapter 5. Semantics and Model Theory 	 185 

Below we show that S is indeed a mapping from interpretations to interpreta-

tions. 

Lemma 5.5.2 Let I be an interpretation. Then S(I) is an interpretation. 

Proof: Let P be an arbitrary DHHF_ derivation state. 

A E pos(S(I))(P) = A E (D) or 3G D A E (D) such that ] P J:=+ C. 

A e neg(S(I))(P) #- VB e (D) B çk A and VC D B E (D) such that B cx A, 

I,P 	C. 

Hence, it is clear that inst(pos(S(I))(P)) fl inst(pos(S(I))(P)) = 0. 

Let P1  = (D1, N1) and P2  = (D21  N2) be DHHF_ programs. Let P1  P2. If 

A E pos(S(I))(P1), then either A E (D1) and hence A e (D2), or IG D A E 

(D1) (and hence G D A E (D2)) such that I, P1 J= C, and by lemma 5.3.1 

we have I, p2 	+ C, i.e. A e pos(S(I))(P2). 

If A E rieg(S(I))(P1), then name(A) E den(N1), \/B E (D1), B çk A, and 

VG 	B E (D1) such that B cx A, I, P1  tz= C, and by lemma 5.3.1, 

I, P2 	G. Now as P1  P2, we have VC E (D2)\(D1), name(head(C)) E 

ass(N1) and as ass(N1) 9 ass(N2), we have name(A) e den(N2 ) and name(head(C)) 

den(N1). Hence we have that VB e (D2), B çk A and VC D B E (D2) such 

that B cc A, we have I, P2 H= C, and so A E neg(S(I))(P2). 

Hence 5(I) is an interpretation. 

El 

Next we show that S is monotonic and continuous, as claimed above. 

Lemma 5.5.3 Let 11  and 12  be interpretations. Then 

I1 EI2 S(J1)E5(I2) 

Proof: Let P be a DHHF_ derivation state. 
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If A e pos(S(11))(P), then A E (D) or 3G D A E (D) such that 1 p ft G, 

and by lemma 5.3.2 we have that 12 p + C, and so A E pos(S(12))(P). 

If A E neg(S(11))(P), then name(A) E den(N) and VB e (D) B çÃ A and 

VG D B e (D) such that B x A, I, P ft= G, and by lemma 5.3.2 we have 

that 12,P ft G, and so A E neg(S(12))(P) 

Hence S(11) E S(12). 

Lemma 5.5.4 Let I E 12 	... be an increasing sequence of interpretations. 

Then 

U 1 S(I3 = S(LJ 1 I) 

Proof: 	: I 	U1 I, and so by lemma 5.5.3, we have that S(I) S(U1 I) 

for any j, and hence U1 S(I) S(LJ 1 13. 

: If A e pos(S(IJ 1 11))(P), then either A E (D), in which case A E 

S(12)(P) for all j ~! 0, or 3G D A e (D) such that U001 ]. p 	C, 

which by lemma 5.3.9 implies that Ij,P 	C for some  > 0, and so 

A E pos(S(13))(P). In either case.we have A E pos(Ljr1 S(13)(P). 

If A e neg(S(LJ 1 I))(P), then name(A) e den(N) and VB E (D) 

B ç A and VG D B E (D) such that B x A, Li°°1 I, P 4= C, 

which by lemma 5.3.9 implies that 13, P ft= C for some j > 0, and so 

A e neg(S(13))(P). Hence A e neg([J°1 S(11))(P). 

Hence, S(L1r1 I) ti:1 S(13. 

00 Hence S([] I) 
=

S(11). 

Next we show that S and T define the same sequence of interpretations. 

Proposition 5.5.5 Let the interpretations S(I1) and T3(11) be as defined above. 

Then for any k > 0 
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Tk(I±) = S'' (I1) 

Proof: We proceed by induction on k. Let P = (D, N) be an arbitrary DHHF_ 

derivation state. 

For the base case, it is clear that A e pos(T°(I j ))(P) if A e (D) if A e 

pos(S(11))(P). Similarly (as there is no goal G such that I = C), we 

have that A E neg(T°(11))(P) if name(A) E den(N) and YB E (D) B ç A 

and VG D B E (D) B $ A if A Eneg(S(11))(P). 

Hence the induction hypothesis is that for all 0 < k < n, T'(I1) = 8k+1(11)  

Consider T'+1(Ii) and Sn-f 2(Ii). 

A E pos(T 1(I1))(P) if A e pos(T'(I1))(P) or RG D A e (D) such 

that T'(I1), P 	C, and by the hypothesis this is equivalent to A E 

pos(S' 1(I1))(P) or 3G D A e (D) such that S 1  (Ii), P f= C, and as 

S''(,1) S' 2(11), in either case we get that A e pos(S 2(I1))(P). 

A E pos(S' 2(I1))(P) implies that A E (D) or 3G D A E (D) such 

that S'1(I1),P J= G. If A e (D), then A E pos(T°(11))(P), ;'nd so 

by lemma 5.3.2, we have that A E ps(T'(I1))(P). Otherwise, by the 

hypothesis we have 3G D A E (D) such that T'(I1), p 	G, and so 

A E pos(T 1(I1))(P). 

A E neg(Thl+i(I±))(P) if A E neg(T'(I1))(P) or name(A) E den(N) and 

YB e (D)B ç A and YG D BE (D) such that B X Awe have T'2(11),P = C, 

which by the hypothesis is equivalent to A e neg(S'' (,_L)) (p)
or name(A) e 

den(N) and YB E (D) B 9E A and VG B E (D) such that B x A we have 

S"(I1),P J= C, and as S'(I1) 	S 2(I1), in either case we have 

A E neg(S' 2(I1))(P). 

A E neg(S 2(I1))(P) if name(A) e den(N) and YB e (D) B ç A and 

VG D B E (D) such that B cx A we have S(I1),P 	C, and by the 

hypothesis, this implies that name(A) E den(N) and YB E (D) B ç A and 

VG D B E (D) such that B cx A we have T'(I1),P = G, which implies 

that A E neg(T'1(I1))(P). 
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It follows directly from this lemma that the two interpretations Sw(I±) and 
T'(11) are the same. 

Corollary 5.5.6 Let S''(I) and T"(I) be defined as above. Then 

Sw(I±) = T°'(11) 

+ It is also clear that from proposition 5.5.5 and lemma 5.3.2 that S (Ii), P ft= G = 

S3(11),P 	C for any j > i and hence S2(11),P 	G = Sw(I±),P 	G. 

Similarly, S'(11), P J= C = S1(11), P H= C for any j > i and hence 

S(I1), P I:1= C 	Sw(I±),  P I:I= C. 

As mentioned above, it follows from the monotonicity of S and the fact that 

is a chain-complete partial order that the least fixed point of S is S"(I) [1, 

60], which by the above corollary is the same as T"(11). However it is not hard 

to establish the same result directly, and as it is somewhat informative, we do so 

below. 

Lemma 5.5.7 Let S be defined as above, and so 

00  Sw(11) = US1(11) = 51(I) U S2(11) u S3(11) U... 

Then S"(11) is a fixed point of S, i.e. S(Sw(11)) = ScI(I±). 

Proof: Let P = (D, N) be any DHHF_ derivation state. By propositions 5.5.1 and 

5.5.5, we know that 5"(I), p ft +  A 	A E (D) or 3G D A E (D) such 

that S"(I),P ft A, which is equivalent to S(S"(11)) ft A. 

By the same propositions we have S"(I), PH---  A if name(A) e den(N) 

and \/B e (D) B çk A and VG D B e (D) such that B x A, 5'(J),  P ft= G, 

which is equivalent to S(Sw(11)), P j=  A. 

Hence we have that S"(11) = S(Sw(I)), i.e. that Sw(I) is a fixed point of 

S. 

Li 
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Next we show that S'(I1) is the least fixed point of S, so that if J is any fixed 

point of S, then S'(11) F J 

The key lemma needed to prove that Sw(I±) ç J is given below. 

Lemma 5.5.8 Let J be any fixed point of S. Then for any i ~! 1, 52(J) J. 

Proof: Clearly Ij 	J, and as S is monotonic, we have S(11) 	S(J), and so 

S2(11) S(J). 

Now as J is a fixed point of S, we have that J = S(J) = S2(J) = ... S2(J), 

and so 5i(J) C J. 	 0 

From this lemma we may easily derive the desired result, given below. 

Theorem 5.5.9 S(I1) is the least fixed point of S. 

Proof: We already have that S'(I1) is a fixed point of S from lemma 5.5.7, so let 

J be any fixed point of S. By lemma 5.3.2 it will be sufficient to show that 

S(I1),P :j=+ AJ,P ft A 

S'(Ij,P = A=.J,P = A 

Now by lemma 5.3.9 we have that S" (I), P ft= A implies that S/C(I±) p ft A 

for some k > 1, and so as Sc(I1) C J by lemma 5.5.8, by lemma 5.3.2 we 

have J,P ft A. 

Similarly, by lemma 5.3.9 we have that Sw(I±),P 1J= A implies that S"(J1),P H= A 

for some Ic > 1, and so as S'(I1) C J by lemma 5.5.8, by lemma 5.3.2 we 

have J,P H= A. 

Hence we have that 

5w(J1)p 	A=J,P 	A 

Sw(I±),P = A=J,P j= A 
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for any DHHF_ derivation state P, and so S°(I1) E J, where J is any fixed 

point of S, and so S"(11) is the least fixed point of S. 

D 

Thus even though our partial order does not form a lattice, our operator is 

continuous and Sw(I±) is its least fixed point. Whilst we prefer to think of the 

powers of T without reference to arbitrary interpretations, this result may be 

seen as evidence that our approach does not stray too wildly from the traditional 

methods. 

5.6 Problems with Inconsistency 

The above results were obtained for the following class of programs: 

D:=AIVXDID1 AD2 JGJA 

G:=AI -1AIBXGIVXGIG1AG2IG1VG2JDJG 

A natural extension to this class of programs is the one given below. 

D:=LIVXDJD1AD2IGJL 

G:= L I3xG I VxC 1G1 AG2  1G1 VG, I  DC 

This class of programs is an obvious generalisation of the class given in [77] 

in that programs and goals are built up from literals rather than atoms, and so 

positive and negative information is treated symmetrically. This may thought of 

as allowing "negation in the head", in that clause heads are now literals rather 

than just atoms. 

As discussed in chapter 2, an obvious problem with such an extension is the 

problem of inconsistency, and we cannot dodge this difficulty by restricting our 

attention to consistent programs because of the similarity between 
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-'A I- A D C 

and 

-AAAF3  C 

In this section we discuss the possibility of allowing programs to be inconsistent, 

and show briefly how our framework is not really suitable for this purpose. 

As in [77] and chapters 2 and 3, we assume that there is a distinguished atom 

I which stands for a contradiction and is computed in the same way as any other 

atom. 

As mentioned above (and discussed in [77]), there is a choice to be made - 

are inconsistencies considered global, as in intuitionistic logic, so that if P F3  I 

then P F3  G for any goal G, or are they local, in that when P F3  A A -IA, we wish 

to deal with the inconsistency rather than continue to make deductions from the 

program? Whichever approach is taken causes significant technical problems for 

our framework. 

If we take the approach of intuitionistic logic, so that if P F31. then P F3  C 

for any goal G, then we would wish this to be reflected in the model theory, i.e. 

that if T"(I1), P 	I then Tw(I±),  p ft +  G for any goal C. However, our 

definition of an interpretation makes this impossible, as for any interpretation 

I, we must have that inst(pos(I)(P)) fl inst(neg(I)(P)) = 0, and so we cannot 

have I,P ft A A -IA, as there can be no atom A such that A -< pos(I)(P) 

and A -.< neg(I)(P). So the first thing to do is to generalise the notion of an 

interpretation so that we may have inconsistent interpretations. This would be 

done by dropping the condition of internal consistency, so that the definition of 

an interpretation would become 

An interpretation is any function I: P -+ 71' x 11' such that for all worlds w1, w2  

for which w1  <w2  and I(w1) = (S, F), i = 1,2 then S1  -< S2  and F1  -< F2. 

This more general notion of an interpretation will allow us to consider the 

desired interpretation above. In fact, we really only desire one extra interpretation: 
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this is the interpretation IT where IT(p) 
= ('1-i', 1-1') for any program P. This 

may be thought of as a dual to the null interpretation I which is such that 

11(P) = (0,0), and so we think of this as "topping" the lattice of interpretations. 

In this way it is conceivable that we may model inconsistent programs by setting 

T"(11)(P) = IT(p) whenever P is an inconsistent program. 

One complication for an inconsistent program (D, N) is introduced by the 

necessity that if every goal is provable, then every goal of the form D' D G' must 

be provable, so that 

T"(Ij,(D,N) 	D' jC' 

for all choices of D' and G'. In order to obey the rules of H=+ , we must have that 

(DU{D'}, N) ~! (D, N) for any definite formula D', including clauses whose heads 

have names in common with den(N), i.e. clauses which extend the completely 

defined predicates of the program. Hence, for our relation between worlds to have 

any meaning,' either we must separate the inconsistent worlds from the consistent 

ones or we must have that den(N) = 0 and ass(N) = 0 for inconsistent programs. 

This per se may not seem a bad thing; after all no goal can fail when the program is 

inconsistent, and so the notion of completely defined predicates seems out of place. 

However, this may cause problems when a consistent program is inconsistently 

extended. 

For example, let P = (D, N) be a consistent program with den(N) 0, and 

A be an atom whose name does not occur anywhere in D and name(A) ass(N). 

Now according to the accessibility relation between worlds given above, both 

(D U {A}, N) and (D U {-iA}, N) are accessible from (D, N), as both are con-

sistent with (D, N). However, the inconsistent program (D U {A} U {-iAl, (0, 0)) 
is accessible from neither world. This may be seen to be reasonable, in that the 

choice made at the 'world (D, N) needs to distinguish between two mutually incon-

sistent alternatives, and so the inconsistent world should not be accessible. This 

'Recall that this proposed extension must be conservative in that the previous results 

on consistent programs must still hold. 
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view then leads us to the conclusion that there is are really two lattices of worlds - 

one of consistent worlds and one of inconsistent worlds, and no inconsistent world 

is accessible from any consistent world, with the exception that the bottom world 

(0, (0,0)) can access both consistent and inconsistent worlds. As there seems to 

be two distinct lattices, it seems more natural to separate the consistent programs 

from the inconsistent ones more formally, which is basically what was done above 

when we assumed that all programs were consistent. 

The main objection to be made against this scheme is that it moves very much 

away from the close association between extensions of the program and accessi-

bility between worlds. If we imagine the programming process as commencing at 

the empty world and progressing up the "cone" of worlds, it seems natural to con-

sider an inconsistent extension to a program in the same context as a consistent 

extension. Naturally we will want to distinguish between the two, as we would 

normally think of an inconsistent extension as a dead end from which we need to 

backtrack so that a different choice can be made somewhere further down and the 

programming process resumed, hopefully terminating at a consistent program. In 

order for such a process to work, it is necessary that inconsistent programs be 

accessible from consistent ones, and so it is difficult to see how the framework 

given above can be made useful for such a scheme. 

One possible modification that may be helpful is to take a minimal approach 

to inconsistency, rather than the full intuitionistic one. As discussed in [77], pro-

gramming considerations suggest that the minimal approach is more appropriate, 

as it places the emphasis on detection of inconsistency, rather than trying to make 

sense of an inconsistent program. Also, as discussed in chapter 2, it is difficult 

to see how an inconsistency in the definition of the append predicate should force 

carcinogen (chocolate) A -'carcinogen(chocolate) to be true. Again the notion of 

interpretation would need to be extended in the manner described above, but this 

time there will not just be one inconsistent interpretation of interest, but many. A 

related question is how to interpret J p 	A when A e pos(I)(P) fl neg(I)(P). 

One answer may be to modify the rules for J p + A and I, P 	A as follows: 
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I. J, p 	+ A if A inst(pos(I)(P))\inst(neg(I)(P)) 

2. I, P J= A if A E inst(pos(I)(P))\inst(neg(I)(P)) 

The other rules would be left the same, with the exception of the rule for goals 

of the form D' D G', which would take the simpler form 

	

I, (D, N) I4= D' D G' if I, (D u {D'}, N) 	C' 

This has the effect of pushing the consistency check inwards, in that ft 
can only prove things from the consistent part of the program, and so whilst 

(D U {D'}, N) may be an inconsistent program, G' may still be provable from it 

in the above sense, in that the inconsistency may not "affect" C'. In this way the 

emphasis is on whether C' depends on the inconsistency (if any) or not, rather 

than on whether the extended program is consistent. 

One obvious "safe" but rather uninteresting way to avoid such problems is to 

restrict the class of goals as follows: 

G:=AJ -'AIxGlVxGlG1vG2iGAG 

so that no implications can occur in goals. 	Less drastic restrictions are 

obviously desirable, but a full answer can only really be given by dealing with 

inconsistent programs in a manner similar to that of consistent ones, so that the 

model theory for both sorts of programs may be integrated. 



Chapter 6 

Semantic Properties of Hereditary Harrop 

Formulae 

In this chapter we consider some semantic properties of first-order hereditary Har-

rop formulae. One important question is the precise strength of the class of formu-

lae involved. In order to investigate this, we consider the redundant features of the 

language of [77], and show how they may be removed. This leads to a discussion 

of equivalence for this class of programs, and we show how intuitionistic logic is 

not quite strong enough for questions of equivalence, and we develop notions of 

equivalence for goals and programs based on a slightly stronger (but not classical) 

logic. 

6.1 Structural Properties of Programs 

In [63] it was shown how arbitrary first-order formulae may be converted into sets 

Of DHorn_ and GHorn_ formulae, where equivalence is interpreted in classical logic. 

This means the Horn clauses may be thought of as a normal form for formulae of 

first-order classical logic, and so an interpreter for DHOrn  programs and GHorfl _ 

goals may use this translation to interpret programs and goals of full first-order 

classical logic. This conversion relies on the fact that it is possible to define the 

connectives V, V and D in terms of 3, A and - in classical logic, and so once the 

latter trio have been implemented, as in G ff0rn_, then the other three may be 

195 
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implemented without extending the underlying programming engine. In this way 

first-order classical logic may be used for programming, rather than just DH,,,,-. 

This approach is not possible in intuitionistic logic, as the equivalences needed 

to prove the correctness of the interdefinability results are not intuitionistically 

valid. Given that intuitionistic logic seems to be a better context in which to 

interpret hereditary Harrop formulae, we may conclude that the approach using 

classical logic may be seen as more significant for automated theorem proving than 

for the semantics of logic programming and extensions to Horn clauses. 

This, of course, does not mean that normal forms cannot exist for hereditary 

Harrop formula, when interpreted in intuitionistic logic. We may think of the 

translation of [63] as exploiting the redundancy of the connectives in classical 

logic. Here we examine what redundancies there may be in hereditary Harrop 

formula, in order to derive some kind of normal form. 

An example of this redundancy may be given by the question of quantification 

in Horn clauses. We may consider all variables which appear in a Horn clause as 

being universally quantified at the front of the clause, e.g. 

VxVy q(x,y) Dp(x) 

However, we may also consider variables which do not appear in the head of 

the clause as being existentially quantified at the front of the body, so that the 

above clause is equivalent to 

Vx(yq(x,y)) D p(x) 

Thus we may consider Horn clauses to be defined in the latter style (i.e. in 

which existential quantifiers are allowed in the bodies of clauses), implement the 

former language (i.e. in which existential quantifiers are not allowed in the bodies of 

clauses) and use the equivalence of the former and latter clauses to allow program 

of either definition to be used. 

We can generalise this line of thought to a more general class of programs 

provided that we can perform a similar process of removing 3 and V from the 
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bodies of clauses. One step in this direction was given in [77], in which it was 

shown how disjunctions may be removed from Dmod programs. This result was 

established by showing that for any program which contains a disjunction, there 

is a program with the same operational behaviour, which, although usually much 

larger, contains no disjunctions. We may think of this as exploiting the structure of 

the program so that programs may be given a simpler definition, in that there is a 

smaller class of formulae with the same expressive power. We extend this result to 

the case when negations may be present, and also show how existential quantifiers 

may be similarly removed from programs. We may think of the transformed 

program as a normal form. 

In this section, we will be considering Dmod_ and Gmod.... formulae, i.e. D for-

mulae and C formulae of the form 

D:=AIVXDJD1AD2IGJA 

G:=Al -1AI ]XCIC1AC2JC1VC2IDJC 

Using DHHF_ and CHHF_ formulae present some technical difficulties which 

are discussed in section 7.2. 

The process of removing disjunctions is inspired by the intuitionistic equiva-

lence 

(C1 vG2)A 1 (GI  DA)A(G2  DA) 

A similar process for removing existential quantifiers is specified by the corre-

spoiiding equivalence 

(xG) D A Vx(G D A) 

where x does not appear in A. 

The first of these two equivalences is proved in Appendix A, and the second is 

given in [51]. 

The formal definition of both of these processes are given below. 
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As in [77], dnf and dfnf denote respectively the disjunctive normal form of a 

goal, and the disjunction-free normal form of a program. The definitions in [77] 

are given in a slightly modified form here, so that we may consider dnf(G) as a 

formula, rather than a set. We introduce along similar lines the existential normal 

form of a goal and the existential-free normal form of a program, here denoted by 

enf and efnf respectively. We will assume that each existentially quantified variable 

is unique, so that a goal such as (xp(x))A(xq(x)) is written as 3xp(x)Ayq(y). 

Definition 6. 1.1 Let D be a Dmod_ formula, G be a Gmod_ goal formula, and 

be all the existentially quantified variables of G. Then we define dfnf(D), efnf(D), 

dnf(G) and enf(G) as follows: 

dnf(G) 	= Vdnf'(G) 

dnf'(A) 	= {A} 

dnf'(-IA) 	= {-'A} 

dnf'(G1  V G2) = dnf'(G1 ) U dnf'(G) 

dnf'(G1  A G2) = {G' A G" I C' € dnf'(G1), C" E dnf'(G2)1 
dnf'(xG) 	= {RxC' I G' E dnf(G)} 

dnf'(D D C) = {dfnf(D) D G' I C' E dnf'(C)} 

dfnf(A) 	= A 

dfnf(C D A) = AIG'D A I C' E dnf'(G)} 

dfnf(D1  A D2) = dfnf(D1 ) A dfnf(D2 ) 

dfnf(VxD) 	= \fx dfnf(D) 

enf(G) = 3i enf'(G) 

enf'(A) = A 

enf'(-iA) = 
enf'(C1  V G2 ) = enf'(C1 ) V enf'(G2 ) 

enf'(G1  A C2 ) = enf'(C1 ) A enf'(G2 ) 

enf'(axG) = enf'(G) 

enf'(D D G) = efnf(D) D enf'(G) 
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efnf(A) 	= A 

efnf(G D A) = V (enf'(G) D A) 

efnf(VxD) 	= Vx efnf(D) 

efnf(D1 AD2)= efnf(D1)Aefnf(D2 ) 

We define dfnf({D1,. . . D,}) = U 1dfnf(D1), and efnf({D1,. . D,}) = U.1efnf(D). 

We may think of the process described by dnf(G) as pushing all disjunctions to 

the top level of the goal, so that dnf(G) is a disjunction of disjunction-free formulae. 

We may then apply the identity above to dnf(G) D A to obtain the disjunction-

free program. A similar remark applies to enf(G); all existential quantifiers are 

pushed to the top of the formula, and so we may apply the corresponding identity 

to enf(G) D A to obtain a program free of existential quantifications. Thus the 

above equivalences imply that 

dfnf(G D A) = V1 G' D A I C' e dnf'(G)} 	dnf(G) D A 

efnf(G D A) = V(enf'(G D A)) j enf(G) D A 

where i are all the existentially quantified variables of C. 

In this way we may specify the program equivalent to D which contains no 

occurrences of 2 or V as efnf(dfnf(D)). Note that there may be a slight syntactic 

difference between efnf(dfnf(D)) and dfnf(efnf(D)). For example, consider the 

program D below. 

r C (2xp(x) V 3y q(y)) 

It is easy to see that dfnf(D) and efnf(D) are just 

dfnf(D) 	 efnf(D) 

2xp(x) D r A 3xyp(y) D r 	VxVy (p(x) V p(y)) D r 
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and so efnf(dfnf(D)) and dfnf(efnf(D)) are as follows: 

efnf(dfnf(D)) 
	

dfnf(efnf( D)) 

(Vxp(x) D r) A (Vy q(y) D r) 
	

VxVy (p(x) D r) A (q(y) D r) 

Note also that the two processes only alter the bodies of clauses, possibly 

replacing a rule by several rules, and do nothing to facts. This is formally stated 

in the lemma below. 

Lemma 6.1.1 Let P be a Dmod derivation state. Then 

A € (D) 	A E (dfnf(D)) A E (efnf(D)) 

G D A E (D) s Gi  D A E (dfnf(D)) for all i 	A E (efnf(D)) 

where dnf(G) = G1  V . .. V G and enf(G) = 

Proof: Obvious. 

It is easy to see from the definitions that 

dnf(G1  V C2) = dnf(G1 ) V dnf(G2 ) 

and that 

dnf(G1  A C2) = V{G' A G" I G' E dnf'(G1), G" e dnf'(C2)} 

Similarly it is clear that 

enf(D D 3x G) = 3x enf(D G) 

This equivalences will be useful in the proofs below. 

The formal results which establish the operational properties of D, dfnf(D) 

and efnf(D) are given below. 
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Proposition 6.1.2 Let (D, N) be a Dmod_ derivation state, and let G be a Gmod_ 

goal formula. Then 

(D, N) F, G ,  (dfnf (D), N) I- G 	(D, N) F-, dnf(G) 

(D, N) F1  G <> (dfnf (D), N) F- f  C <=> (D, N) k f  dnf(G) 

Proof: We proceed by induction on the depth of the 0-derivation of C. 

In the base case G is an atom A. It is then easy to see that both 1 and 2 

follow, as dnf(A) = A and A E (D) 	A e dfnf (D). A similar argument 

establishes 2 in this case. 

Hence we assume that 1 and 2 are true for all programs and for all goals 

whose 0-derivation is less than a given size. There are six cases: 

A: 	1. As dnf(A) = A, it suffices to show that (D, N) F, A (dfnf (D), N) F, 

A. 	Now if the base case does not hold, then (D, N) F, A if 

G 	A e (D) such that (D, N) F-, C and by the hyppthesis 

this is -equivalent to (dfnf (D),N) F, dnf(G), i.e. (dfnf (D),N) F, 

C1  V ... V G,, which is just (dfnf (D), N) F, G• for some i. Now 

as G  A E (D) if C2  D A E (dfnf (D)) for all 1< i < n where 

dnf(G) = C1  V... VG, this is equivalent to G' i A e dfnf (D) such 

that (dfnf (D), N) F, G' which is equivalent to (dfnf (D), N) F, A. 

2. As dnf(A) = A, it suffices to show that (D, N) 1-1  A 	(dfnf (D), N) F 

A. 	Now if the base case does not hold, then (D, N) F1  A if 

VB 	(D) B çk A and VG D B e (D) such that B oc A we 

have (D, N) F1  C and by the hypothesis this is equivalent to 

(dfnf (D),N) F- f  dnf(G), i.e. (dfnf (D),N) F1  C1  V ... V G, which 

is just (dfnf (D), N) F1  C2  for all i. Now as C D A E (D) if C2  D 

A E (dfnf (D)) for all 1 <i <n where dnf(G) = C1  V ... V G, this 

is equivalent to VB' E (dfnf (D)) B' çk A and VG' D B' e (dfnf (D)) 

such that B' x A we have (dfnf (D), N) F f  C', which is equivalent 

to (dfnf (D), N) F1  A. 
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-'A: 1. As dnf(-'A) = -'A, it suffices to show that (D, N) F- -'A < 

(dfnf(D),N) F-, -IA. Now (D,N) H, -'A if name(A) € den(N) 

and (D, N) F-, A, and by the hypothesis this is equivalent to 

(dfnf(D), N) H f  A, which is just (dfnf(D), N) H, -'A. 

2. As dnf(-'A) = -'A, it suffices to show that (D, N) F-1  -'A 

(dfnf(D),N) H -'A. Now (D, N) H -'A if (1), N) H, A, and 

by the hypothesis this is equivalent to (dfnf(D), N) H, A, which is 

just (dfnf(D), N) F- f  -'A. 

G1  VG2: 1. (D, N) H, G1  VG2  if (1), N) F-, C1  or (D, N) I-., G. 

By the hypothesis this is just (dfnf(D), N) 1-, C1  or (dfnf (D), N) 

G2, which in turn is just (dfnf(D), N) F-, G1  V G2 . 

From the hypothesis we may also deduce that the above is equiv-

alent to (D, N) F-3  dnf(G1) or (D, N) F-, dnf(G2) which is just 

(D, N) F-, dnf(G1) V dnf(G2 ), i.e. (D, N) F-, dnf(G1  V G2 ). 

2. (D, N) H1  G1 V C2  if (D, N) H G1  and (D, N) H1  C2. 

By the hypothesis this is just (dfnf(D), N) F-1  C1  and (dfnf(D), N) F-1  
C2, which in turn is just (dfnf(D), N) H f  C1  V G2. 

From the hypothesis we may also deduce that the above is equiv-

alent to (D, N) F-i  dnf(G1) and (D, N) F-1  dnf(G2 ) which is just 

(D, N) F-1  dnf(G1) V dnf(G2 ), i.e. (D, N) H f  dnf(G1  V C2). 

C1  AC2: 1. (D, N) F-, C1  AG2  if (D, N) F-, C1  and (D, N) F-, C2. 

By the hypothesis this is just (dfnf(D),N) F-, G1  and (dfnf(D),N) 

C2, which in turn is just (dfnf(D), N) H, C1  A C2 . 

From the hypothesis we may also deduce that the above is equiv-

alent to (D, N) H, dnf(G1) and (D, N) F-, dnf(C2) which is just 

(D, N) I-, dnf(G1)Adnf(C2), i.e. (D, N) I-, (V{ G' I C' e dnf'(C1)})A 

(V{G" I C" E dnf'(G2 )}) which is equivalent to (D, N) F-, V{G' A 

G" I G' E dnf'(G1), G" € dnf'(C2)11  which is just (D, N) 

dnf(G1  A C2 ). 

2. (D, N) F-1  C1  AG2  if (D, N) V, C1  or (1), N) H f  C2. 
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By the hypothesis, this is just (dfnf(D),N) H1  C1  or (dfnf(D),N) F-1  

G2, which in turn is just (dfnf(D), N) t- C1  A G2 . 

From the hypothesis we may also deduce that the above is equiv-

alent to (D, N) I- dnf(G1) or (D, N) H1  dnf(G2 ) which is just 

(D, N) I- dnf(G1) A dnf(G2), and as we saw above, this is just 

(D, N) V3 dnf(Gj  A G2 ). 

2xG: 1. (D, N) F-3  IxG if (D, N) H3  G[t/x} for some t E U. 

By the hypothesis this is equivalent to (dfnf(D), N) H3  G[t/x], 

which is just (dfnf(D), N) F-3  3xG. 

From the hypothesis we may also deduce that the above is equiv-

alent to (D,N) F-3  dnf(G[t/x]), which is (D,N) H3  V{G' I C' e 

dnf'(G[t/x])} which in turn is equivalent to (D, N) I- G'[t/x} for 

some G' E dnf'(G), and this is clearly equivalent to (D, N) I- 3xG' , 

which in turn is just (D,N) I- V{axG' I C' E dnf'(G)}, i.e. 

(D, N) L dnf(xG). 

2. (D, N) I- axc if 3R E 7?(U) such that (D, N) F-1  G[t/x] for all 

tER. 

By the hypothesis this is equivalent to (dfnf(D), N) F-1  G[t/x] for 

all t E R, which is just (dfnf(D), N) F-1  xG. 

From the hypothesis we may also deduce that the above is equiv-

alent to (D, N) F-1  dnf(G[t/x]) for any t e R, and by a similar 

argument to that above, this is equivalent to (D, N) H1  dnf(xG). 

D' D G: 1. (D, N) F-3  D' j C if names(heads(D)) c ass(N) and (DU{D'}, N) H3  

C. 

By the hypothesis this is equivalent to names(heads(D)) c ass(N) 

and (dfnf(DU{D'}),N) F-3  G, which is just (dfnf(D)U{dfnf(D')},N) H3  

G, which by another application of the hypothesis is the same as 

(dfnf(D) U {D'}, N) H3  C, i.e. (dfnf(D), N) H3  D' D C. 

From the hypothesis we may also deduce that the above is equiv-

alent to names(heads(D)) C ass(N) and (D U {D'}, N) H3  dnf(G) 

which by another application of the hypothesis is equivalent to 
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(D U {dfnf (D')}, N) F-3  dnf(G), which is just (D, N) F3  dfnf(D') D 

dnf(G). 

This in turn i equivalent to (D, N) F3  dfnf(D') D V{G' I G' E 

dnf'(G)} which is just (D, N) F3  V{dfnf(D') D G' I G' E dnf'(G)}, 

which is equivalent to (D, N) F3  dnf(D' D G). 

2. (D, N) F f  D' D C iff names(heads (D)) c ass(N) and (DU {D'}, N) H f  

G. 

By the hypothesis this is equivalent to names(heads(D)) c ass(N) 

and (dfnf(DU{D'}),N) F1  G, which is just (dfnf(D)U{dfnf(D')},N) F1  

G, which by another application of the hypothesis is the same as 

(dfnf(D) U {D'},N) F1  C, i.e. (dfnf(D),N) F1  D' D C. 

From the hypothesis we may also deduce that the above is equiv-

alent to names(heads(D)) ç ass(N) and (D U {D'}, N) F-f  dnf(G) 

which by another application of the hypothesis is equivalent to 

(D U {dfnf(D')}, N) F1  dnf(G), which is just (D, N) F- f  dfnf(D') 

dnf(G), and as above, this is equivalent to (D, N) F1  dnf(D' D C). 

II 

An immediate consequence of this result is given in the corollary below. 

Corollary 6.1.3 Let (F, C) be a Dmod_ derivation pair where P = (D, N). Then 

(D, N) F3  C (dfnf (D), N) F3  dnf(G) 

(D, N) F1  C (dfnf(D), N) F- f  dnf(G) 

Proof: Follows immediately from proposition 6.1.2. 	 * 	0 

This result, in the absence of negation, was shown in [77], but the result cor-

responding to proposition 6.1.2 was not. 

Note that the stronger statement D j dfnf(D) is not true. A counterexample, 

due to Dale Miller [75], is given by the program D below. 
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(r D (p V q)) D s 

It is clear that dfnf(D) is 

((rDp) Ds)A((rDq) Ds) 

Whilst D Ij dfnf(D), the converse is not true. The reason is that the two goals 

G1  = r D (p V q) and G2 = (r D p) V (r D q) are not intuitionistically equivalent, 

as C1  I/ C2. This will be discussed more fully in a later section. 

We now turn to the corresponding result for existential quantifications. 

Note that the statement corresponding directly to Proposition 6.1.2 does not 

hold. Essentially, this is due to the way that failure for existentially quantified 

goals is defined. For example, consider the program P = (D, (0, {p}))  where D 

consists of the clauses below: 

p(a) 

p(f(a)) 

Vxp(f(f(x))) 

2x-'p(x) J q 

It should be clear that P I- q, as -'p(a), -'p(f(a)) and -'p(f(f(y)))  all fail, and 

so P F-f  3x-'p(x). Consider now efnf(D), given below. 

p(a) 

p(f(a)) 

Vx p(f(f(x))) 

Vx (-lp(x) q) 

Here -'p(f(y)) j qE efnf(D), and (efnf(D), {p}) VI -ip(f(y)), as (efnf(D), {p}) i/ 

p(f(y)). Hence, (efnf(D), {p})  F/1  q. 

This discrepancy is essentially due to the fact that (D) contains all instances 

of the clauses in D, and so contains all possible representations of those clauses, 
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whereas the failure of an existentially quantified goal requires only the failure of 

one representation. Hence, to show that q fails in the original program requires 

only that one representation fails, whereas to show that q fails in the transformed 

program requires that all representations fail. 

However, it can be shown that (D, N) and (efnf(D), N) have the same opera-

tional behaviour provided that D does not contain any negations, which is done 

below. 

Proposition 6.1.4 Let (F, G) be a Dmod derivation pair where P = (D, N). Then 

(D, N) F 3  G (efnf(D), N) H3  G (D, N) I- enf(G) 

(D, N) I- G (efnf(D), N) 1-1  G (D, N) Fj  enf(G) 

Proof: As above, we proceed by induction on the depth of the 0-derivation of G. 

In the base case G is an atom A. It is then easy to see that both 1 and 2 

follow, as enf(A) = A and A E (D) A E efnf(D). 

Hence we assume that 1 and 2 are true for all goals whose 0-derivation is 

less than a given size. There are five cases: 

A: 	1. As enf(A) = A, it suffices to show that (D, N) H3  A < (efnf (D), N) F-,9  

A. If the base case does not hold, then (D, N) H,5  A if RC D A E 

(D) such that (D, N) F-3  G which by the hypothesis is equivalent to 

3G D A e (D) such that (efnf(D), N) F-3  G. Now by the hypothe-

sis, this is equivalent to (efnf(D), N) H3  enf(G), i.e. (efnf (D), N) F-3  

MG which is just (efnf(D), N) H, G" where G" is some instance 

of G'. Now as 3G D A e (D) if HG"D A E (efnf(D)) where 

enf(G) = 3G' and G" is an instance of C', this is equivalent to 

A E (efnf(D)) such that (efnf(D), N) H3  C", which is just 

(efnf(D), N) H3  A. 

2. As enf(A) = A, it suffices to show that (D, N) H1  A s (efnf(D), N) Hf  

A. If the base case does not hold, then (D, N) H1  A if VB E (D) 
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B ç A and VG Be (D) such that B DC A we have (1), N) F-i. G 

which by the hypothesis is equivalent to VB e (D) B 	A and 

VG D B e (D) such that B oc A we have (efnf(D), N) I- G, 

which by the hypothesis is equivalent to (efnf(D), N) H enf(G), 

i.e. (efnf(D), N) F f  IiG', which is just that there is a represen-

tative set of instances R of C' such that (efnf(D), N) H1  C" for 

all C" E R. Note that without loss of generality we may assume 

that none of the variables of R occur free or bound in D or C. 

Hence by Proposition 2.3.4 this is equivalent to (efnf(D), N) H1  C" 

for all instances C,,  of GI 	
i such that no variables free n CI,  occur 

bound in D or C'. Now as 	A E (D) if HG" D A e (efnf(D)) 

where enf(G) = 3.G' and C" is an instance of G', this is equiv-

alent to VB E (efnf(D)) B ç A and VG B e (efnf(D)) such 

that B oc A we have (efnf(D), N) I f  C, which is equivalent to 

(efnf(D),N) F-1  A. 

G1  VG2: 1. (D, N) F3  G1  VG2  if (D,N)F-8  C1  or (D,N)f-8  C2. 

By the hypothesis this is just (efnf (D), N) I 9  C1  or (efnf(D), N) H3  

G2, which in turn is just (efnf(D), N) H3  G1  V C2. 

From the hypothesis we may also deduce that the above is equiv-

alent to (D, N) H enf(G1) or (D, N) H3  enf(G2) which is just 

(D, N) 1-3  enf(G1) V enf(G2 ), and this is the same as (D, N) H3  

3i enf'(G1) V enf'(G2). Now without loss of generality, we may 

assume that the variables in g do not occur bound or free in C1, 

and similarly for i and C2, and so this is equivalent to (D, N) H3  

enf'(G1  V G), which is just (D, N) H3  enf(C1  V G2)- 

2. (D, N) H f  C1  V G2  if (D, N) H f  C1  and (D, N) H1  C2. 

By the hypothesis this is just (efnf(D), N) H C1  and (efnf(D), N) H1  

C2, which in turn is just (efnf(D), N) H f  C1  V C2. 

From the hypothesis we may also deduce that the above is equiv-

alent to (D, N) H enf(G1) and (D, N) H1  enf(C2 ) which is just 
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(D, N) I-i  enf(G1) V enf(G2), and as above, this is equivalent to 

(D, N) F-1  enf(G1  V C2). 

C1  AG2: 1. (1), N) I 9  C1  AC2  if (D, N) F- 9  G and (D, N) F-3  G2. 

By the hypothesis this is just (efnf(D), N) F-3  G1  and (efnf(D), N) F- 5  

G21  which in turn is just (efnf(D), N) F- 5  G1  A C2. 

From the hypothesis we may also deduce that the above is equiv-

alent to (D, N) F-3  enf(G1) and (D, N) F-3  enf(G2) which is just 

(D, N) F-3  enf(G1) A enf(G2 ), and this is the same as (D, N) F-3  

EIi enf'(G1) A enf'(G2 ). Now without loss of generality we may 

assume that the variables in g do not occur bound or free in G!, 

and similarly for i and C2, and so this is equivalent to (D, N) F-3  

enf'(G A C2 ), i.e. (D, N) F-3  enf(G1  A G2)- 

2. (D, N) F- f  C1  AG2  if (D,N)F-1  C1  or(D,N) F-1  C2. 

By the hypothesis, this is just (efnf(D), N) F-1  C1  or (efnf(D), N) F-1  

C2, which in turn is just (efnf(D), N) F-1  C1  A G2 . 

From the hypothesis we may also deduce that the above is equiv-

alent to (D, N) F-1  enf(G1) or (D, N) F-1  enf(G2) whichis just 

(D, N) F-1  enf(G1) A enf(G2), and as we saw above, this is just 

(D, N) F- f  enf(G1  A C2). 

xG: 	1. (D, N) F-3  3xG if (D, N) F-3  G[t/x] for some t e U. 

By the hypothesis this is equivalent to (efnf(D),N) F-3  C[t/x], 

which is just (efnf(D), N) F-3  2xG. 

From the hypothesis we may also deduce that the above is equiva- 

lent to (D, N) F-3  enf(G[t/x]), i.e. (D, N) F-3 	enf'(G[t/x]), which 

is equivalent to (D, N) F-3  3i3x enf'(G), which is just (D, N) F-3  

enf (C). 

2. (D, N) F-1  axG if 3R E R(U) such that (D, N) F- G[t/x] for all 

tER. 

By the hypothesis this is equivalent to (efnf(D), N) F- G[t/x] for 

all t E R, which is just (efnf(D), N) F- f  dxC. 

From the hypothesis we may also deduce that the above is equiva- 
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lent to 317 € R(U) such that (D, N) H f  enf(G[t/x]) for any t E R., 

and by a similar argument to that above, this is equivalent to 

(D, N) Ij  enf(xG). 

D' D G: 1. (D, N) F-3  D' D G iff names(heads(D)) 9 ass(N) and (DU{D'},N) F-3  

G. 

By the hypothesis this is equivalent to names(heads(D)) c ass(N) 

and (efnf(DU{D'}),N) F 3  C, which is just (efnf(D)U{efnf(D')},N) f-s  
G, which by another application of the hypothesis is equivalent to 

(efnf(D) U {D'}, N) F-3  G, i.e. (efnf(D), N) F-3  D' D G. 

From the hypothesis we may also deduce that the above is equiv-

alent to names(heads(D)) 9 ass(N) and (D U {D'}, N) F-3  enf(G) 

which by another application of the hypothesis is equivalent to 

(D U {efnf(D')}, N) I- enf(G), which is just (D, N) F-3  efnf(D') D 

enf(G), i.e. (D, N) 1-8  efnf(D') D 3(enf'(G)) which is equivalent to 

(D, N) I-, (efnf(D') D enf'(G)) which is just (D, N) I- enf(D' 

G). 

2. (1), N) F-1  D' j G iff names(heads(D)) 9 ass(N) and (DU{D},N) F 

G. 

By the hypothesis this is equivalent to names(heads(D)) 9 ass(N) 

and (efnf(DU{D'}),N) F-1  C, which is just (efnf(D)U{efnf(D')},N) H f  

G, which by another application of the hypothesis is the same as 

(efnf(D) U {D'}, N) F-1  C, i.e. (efnf(D), N) F-1  D' D G. 

From the hypothesis we may also deduce that the above is equiv-

alent to names(heads(D)) fl N = 0 and (D U {D'}, N) H f  enf(G) 

which by another application of the hypothesis is equivalent to 

(D U {efnf(D')}, N) I- enf(G), which is just (D, N) H1  efnf(D') D 

enf(G), and as above this is equivalent to (D, N) F- enf(D' D C). 

r 

Note that this result depends upon Proposition 2.3.4, i.e. that all sets of repre-

sentative instances of a goal fail if a single representative set of instances of it fails. 



Chapter 6. Semantic Properties of Hereditary Harrop Formulae 	 210 

The lack of a corresponding result for success is what necessitates the restriction 

to programs which do not contain negations. 

As in the previous case, the generalisation of the corresponding result in [77] 

now follows immediately. 

Corollary 6.1.5 Let (P, G) be a Dmod derivation pair where P = (D, N). Then 

(D, N) F3  G (efnf (D), N) F3  enf(G) 

(D, N) F- f  G 	(efnf(D), N) F- f  enf(G) 

Proof: Follows immediately from Proposition 6.1.4. 	 FE- 

As As may be expected in the aftermath of corollary 6.1.3, the stronger statement 

D 	j efnf(D) is not true. A counterexample is given by the program D below. 

(p D xq(x)) D r 

It is clear that efnf(D) is 

Vx((p D q(x)) D r) 

Whilst D F1  efnf(D), the converse is not true. The reason is that the two goals 

C1  = p D 3x q(x) and G2 = 3x p D q(x) are not intuitionistically equivalent, as 

C1  F/1  C2. This will also be discussed more fully in a later section. 

Note that a consequence of propositions 6.1.2 and 6.1.4 is that P F3  C if 

P F3  dnf(G) if P F3  enf(G) when P is a Dmod program and C is a Gmod goal. 

It may be possible to strengthen Proposition 6.1.4 somewhat. For example, 

any derivation pair (F, C) for which efnf(P) = P and enf(G) = G will clearly have 

this property, whether they contain negations or not. 

Clearly the definition of failure for existentially quantified goals affects whether 

Proposition 6.1.4 will hold for Dmod.. programs or not. It seems clear that if 3xG 
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were to fail precisely when G[t/x] fails for all t E T, then Proposition 6.1.4 would 

indeed hold for Dmod_ programs and Gmod_ goals. Hence the failure of the efnf 

transformation to preserve operational equivalence under Negation as Failure is a 

consequence of the compactness properties of our definition of failure. 

We now come to the result which shows the operational equivalence (for Dmod  

programs) of the original program and the program with the disjunctions and 

existential quantifications removed. 

Theorem 6.1.6 Let (P, G) be a Dmod derivation pair where P = (D, N). Then 

(D, N) F G s (efnf(dfnf(D)), N) F-, G 

(D, N) H1  G 	(efnf(dfnf(D)),N) I-i  G 

Proof: Follows immediately from propositions 6.1.2 and 6.1.4. 

U 

Thus the theorem above not only ensures that for any Dmod  program there 

exists another program free of disjunctions and existential quantifications which 

is equivalent to the original, but also shows how such a program may be derived 

from the original one. 

We may interpret the above result as showing that the class of programs in 

which universal quantifiers cannot occur positively in goals is of no greater expres-

sive power than the core programs. This may be seen by the fact that any program 

in this class which contains neither 3 nor V is a core program, and the above re-

suit shows that for any program containing 3 or V there is an equivalent program 

with no such occurrences. In fact this class of programs is strictly less expressive 

than the core programs, as a core program may contain a positive occurrence of a 

universal quantifier in a goal, i.e. in the body of a clause. 
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6.2 Normal Forms and Representation 

In the light of the above results, we may think of Dobject  programs as a normal 

form for Dmod programs. In other words, for any Dmod program D, there is an 

operationally equivalent Dobject  program D', where D' satisfies 

D:=AIVxDID1 AD2 IQJA 

Q:=AIQ1 AQ2 IDDQ 

Note that the Q formulae are only used to define D'; the queries remain the 

same as before, i.e. Gmod formulae, which may be given as 

G:=AIG1 VG2  IG1 AG2  I.xGID D G 

where D is a Do&ject  formula. 

Computation takes place in the same way as before, in that we search for a 

proof of a goal G from a program P = (D, N), and so we may think of the above 

processes as statically converting the program into a more specific form. 

As noted above, these computations take the form of searching for uniform 

proofs of goal formulae, but it is interesting to note that a successful search for a 

uniform proof of a goal G may be thought of as converting C into a more definite 

statement. Naively, we may think of this, as converting G into a D formula. For 

example, it is well-known that the usual unification methods used to implement 

the search for a proof of a goal of the form 3xG will return an answer substitution 

0 which not only provides a witness, i.e. a term t e U such that G[t/x] succeeds, 

but where 0 is such that any instance of GO succeeds, so that we may in fact 

conclude V(GO). Thus the search process "converts" the 3 quantifier into a number 

(possibly zero) of V quantifiers. In this way we may view the result of a successful 

computation not as "yes with the answer substitution 0", but as "V(GO)", in the 

sense that V(GO) H1  3xG.' 

'We assume that U is not empty, and so this will always be true. 
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It is easy to see that a similar property holds for disjunction, in that a uniform 

proof of G1  V G2  will prove one of the disjuncts, and so we may consider the proof 

search process as determining which of the disjuncts is true, and so we again get 

that G• Ij G1  V G2, where i is either 1 or 2. Now if we carry out this conversion 

procedure for each positive occurrence of 3 and V in the goal, then it is easy to 

see that the resulting formula looks very much like a definite formula. 

For example, consider the program P = (p(a) A q(b), 0). It is easy to see that 

the goal C = 2x p(x) V 2y q(y) succeeds, i.e. P F, C, as both p(a) and q(b) succeed. 

Now we may think of either of these as an "answer form" of the original goal, in 

that not only does the computation process supply witnesses for the existential 

quantifications, but also determines which of the disjuncts holds. In this way we 

may think of p(a) and q(b) as realizers of C in the sense of Kleene [51], in that 

either supplies sufficient information "missing" from the statement that P F, G so 

that intuitionistic truth is established. We may think of these realizers as the real 

objects of computation, in that the search process may be considered to operate 

by establishing that p(a) succeeds, and from that deducing that the success of 

p(a) implies the success of 3xp(x) V ayq(y). A similar remark applies to q(b). 

In this way the computation process finds a goal G' which contains no existential 

quantifiers or disjunctions such that P F, G' and G' F1  G. The analogy should not 

be pushed too far, but it seems intriguing that the answer forms may be thought 

of as supplying the information needed to establish the truth of the goal, and in a 

computational way. 

As noted above, this formula G' contains no disjunctions nor existential quanti-

fiers, but it may contain universal quantifiers. For example, consider the program 

P = (D, (0, 0)) where D is Vx p(f(x)). The goal 2y p(y) succeeds with the answer 

substitution being y - f(x), and so the answer form of the goal is Vs p(f(x)). 

A more specific definition of the possible answer forms for a goal may be given 

by another of the results above, namely that the success of C is equivalent to the 

success of enf(dnf(C)), which we may write as 

(Q1 v ... vQ) 
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where each of the Q• are goals which contain no disjunctions nor existential quan-

tifications, and so are just Q formulae (defined above). Thus any answer form for 

G must be just V(Q10) for some 1 < i < n and some substitution 0, and so we 

may consider a successful search for a proof of C from P as finding an i and a 0 

such that 

P F-3  V(Q10) and V(Q0) H1  C 2  

In this way an answer form plays a similar role to a cut formula (in the proof-

theoretic sense), in that in order to establish that P I 3  G, we find a formula V(Q10) 

such that P F- V(Q0) and V(Q0) F-i G, but in our case we know that the second 

statement is trivially established, whereas the first may take considerable effort to 

derive. Thus this is really a special case of the cut rule, in that C defines a finite 

number of possible choices for Q, and so we do not need to search for an arbitrary 

formula, and that one of the two sub-derivations will require no effort to establish. 

Hence we may view this form of computation as a restricted form of the cut rule. 

In order to view an answer form V(Q2 0) as a definite clause, the main difficulty 

is to accommodate the different classes of formulae which may appear on either 

side of the D connective. For example, D D Q is a Q formula, and hence a possible 

answer form, but it is not necessarily a D formula. However, it is clear that it 

is not far away from one in some sense, and so it should not be too difficult to 

convert an answer form into an equivalent D formula. This process is defined 

formally below. 

There is one other potential difficulty, and that is the possible occurrence of a 

negation in an answer form, which precludes it from being a D formula. We can 

circumvent this problem by allowing negated atoms as definite formula under the 

restriction that negation is still only applied to completely defined predicates and 

that if -'A is a clause in a program F, then P H f  A. This process will be discussed 

'This is a slight abuse of notation, as we do not allow universal quantifiers in goals. 

This matter will be dealt with shortly. 
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more fully in a later section, but for now we note that we are mainly interested in 

the structure of the answer forms, and that we may think of an answer form as 

being stored in a cache somewhere, and hence is separate from the program itself. 

In this way we can allow a limited form of negation in the known consequences 

of the program without allowing this form of negation to appear in the original 

program. 

The process of re-writing an answer form to make it a definite formula is given 

below. For convenience we use the extended form of Dobject_ formulae, in which the 

conclusion of an implication in a program may be an arbitrary D formula rather 

than just an atom. As remarked previously, this does not increase the power of 

the language. 

Definition 6.2.1 Let D be an extended Dobject_ program and a Q an extended 

Gobject _ goal, that is, D and Q belong to the class of formulae defined below. 

D:=AVxDjD1 AD2 JQD 

Q:=AJ-'AIQ1 AQ2 IDDQ 

We define defp(D) and defq(Q) as follows: 

defp(A) = A 

defp(VxD) = Vx defp(D) 

defp(D1  A D2) = defp(D1) A defp(D2 ) 

defp(Q D \/xD') = Vx defp(Q D D') 

defp(Q D (D1  A D2)) = defp(Q D D1) Adefp(Q D D2) 

defp(Q D (Q' D D')) = defp((Q A Q') D D') 

defp(Q D A) = defq(Q) D A 

defq(A) 	 = A 

defq(-'A) 	 = -'A 

defq(Q1  A Q2) 	= defq(Q1) A defq(Q2) 

defq(D D (Q1 A  Q2)) = defq(D D Q1) A defq(D D Q2) 
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defq(D D (D' Q')) = defq((D A D') D Q') 

defq(D D A) 	= defp(D) D A 

defq(D D -A) 	= defp(D) D -'A 

Note that we assume that all bound variables are unique and distinct from 

all free variables, so that we do not need to worry about variable capture when 

moving quantifiers around. 

Proposition 6.2.1 Let D be an extended Dobject_ program, and let Q be an ex-

tended Gobjeci.... goal. Then 

D defp(D) 

Q defq(Q) 

Proof: We proceed by simultaneous induction on the structure of D and Q. The 

base case occurs when D is an atom and when Q is a literal. It is obvious 

that in this case D 	defp(D) and Q 	defq(Q). 

Thus the hypothesis is that for all D and Q formulae of no more than a given 

size, D 	defp(D) and Q 	defq(Q). There are several cases to examine. 

The cases for D: 

VxD: By the hypothesis, D 	defp(D), and so \/xD = \/x defp(D), which 

is just defp(VxD). 

D1  A D2: By the hypothesis, D1  A D2 	defp(D1) A defp(D2), which is just 

defp(D1  A D2). 

Q' D D': There are four sub-cases here. We proceed via an inductive argument 

on the size of D'. The base case occurs when D' is just an atom A. By 

the hypothesis Q' 	defq(Q'), and so Q' D A 	defq(Q') D A, which 

is just defp(Q' D A). 

Hence we will assume, in addition to the main hypothesis, that for all 

Q formulae with less connectives than Q' D D' and for all D formula 

of no more than a given size that Q D D 	defp(Q D D). 

The three inductive subcases are given below 
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Q D VxD: It is clear that Q D VxD 	Vx Q D D as x is not free in Q, and 

by the hypothesis, this is equivalent to Vx defp(Q D D), which is 

just defp(Q D VxD). 

Q D (DI  A D2): Q D (D1 AD2) is clearly equivalent to (Q D D1)A(Q D D2), and by 

the hypothesis this is equivalent to defp(Q D D1 ) A defp(Q D D2), 

which is just defp(Q (D1  A D2)). 

Q D  (Q"  D D): Q D  (Q"  D D) is equivalent to (QAQ") D D, and as QAQ" clearly 

has less connectives than Q D  (Q" D D), by the hypothesis this is 

equivalent to defp((Q A Q") D D), which is just defp(Q D (Q" 

D)). 

Thus we establish the result for any formula of the form Q D D. 

The cases for Q: 

Qi A Q2: By the hypothesis, Q1 A  Q2 	defq(Q1) A defq(Q2), which is just 

defq(Q1  A Q2). 

D' D Q': There are four cases here, and as above, we use an inductive argument 

to establish the overall case. The base case occurs when Q' is a literal 

L, and so by the hypothesis, D' D L j defp(D') D L, which is just 

defq(D' D L). 

Hence we will assume, in addition to the main hypothesis, that for 

all D formulae with less connectives than D' j Q' and for all extended 

Gobject _ formulae of no more than a given size that D D Q j defq(D D 

Q). 

There are two sub-cases: 

D D (Q1 A Q 2): It is clear that D D (Q1 AQ2) is equivalent to (D D Q1 )A(D D 

and by the hypothesis this is equivalent to defq(D D Q1 )Adefq(D D 

Q2), which is just defq(D D Q1 A  Q2). 

D D (D" D Q): D D (D" D Q) is clearly equivalent to (DAD") D Q, and as DAD" 

must have less connectives than D D (D" D Q), by the hypothesis 

we have that this is equivalent to defq((D A D") D Q), which is 

just defq(D D (D" D Q)). 
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Thus we establish the result for any formula of the form D D Q. 

FEW 

It is clear from the above proof that for any program in the larger class there 

is an equivalent program in the smaller class, i.e. the class defined by using Q D A 

in place of Q D in the above definition. 

For the smaller class of programs, consider defq(D D Q). The only changes 

that the process can make are made by the defq process rather than the defp 

one, as there can be no sub-formulae of D of the form Q D D' unless D' is just 

an atom. Hence, defq(D D Q) will be just AdD1  D L} for some object level 

programs Di  and literals L2. The important observation is that each D1  must have 

less connectives than D D Q, although it may contain more than D. This is due 

to the fact that any D• of greater size than D must have "gained" the relevant 

connectives from Q, and so cannot exceed this number. 

Recall that Dmeta  and Gmeta  formulae may be defined as follows: 

L:=AJ-'A 

D:=LIVXDJD1AD2IGDL 

G:= L IG1 A C2  I G1 v C2  I3xG IVxG ID 

Recall also that an Mmeta  formula is any formula satisfying 

M:=LIVXMIM1 AM2 IMJL 

so that any Mmeja  formula is both a Dmeta  formula and a Gmeja  formula. 

Proposition 6.2.2 Let D be an Do&ject _ program, Q be a Cobject_ goal. Then 

defp(D) is a Qmeta  formula. 

defq(C) is a Dmeta  formula. 
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Proof: We will show that defp(D) and defq(Q) are both Mmeta  formulae. 

We proceed by simultaneous induction on the structure of D and Q. The 

base case occurs when D is an atom and when Q is a literal. It is obvious 

that in this case that both defp(D) and defq(Q) are Mmeia  formulae. 

Thus we assume that for all D and Q formulae of no more than a given size, 

defp(D) is an Mmeja  formula and defq(Q) is an Mmea  formula. We then 

proceed by cases as follows. 

There are three cases for D: 

\/xD': defp(VxD') = Vx defp(D'), and by the hypothesis, defp(D') is some 

core formula M, and so defp(VxD') is just VxM, and it is clear that 

VxM is a core formula. 

D1  A D2: defp(D1  A D2) = defp(D1) A defp(D2), and by the hypothesis, 

defp(D1) and defp(D2) are core formulae M1  and M2, and so defp (DI  A 

D2) is M1  A M2, which is obviously a core formula. 

Q D A: defp(Q D A) = (defq(Q)) D A, and by the hypothesis defq(Q) is a 

core formula M, and so defq(Q D A) is M D A, which is clearly a 

core formula. 

There are two cases for Q: 

Qi A Q2: defq(Q1AQ2) = defq(Q1)Adefq(Q2), and by the hypothesis defq(Q1) 

and defq(Q2) are core formulae M1  and M2, and so defq(Q1  AQ2) = 

M1  A M2, which is transparently a core formula. 

D' i Q': There are four cases here, and as above, we use an inductive argu-

ment to establish the overall case. The base case occurs when Q' is 

a literal L, and so defq(D D L) = defp(D) D L, and by the hypoth-

esis defp(D) is a core formula M, and so defq(D D L) = M 3 L, 

which is clearly a core formula. 

Hence we will assume, in addition to the main hypothesis, that for 

all D formulae with less connectives than D' j Q' and for all Q 

formula of no more than a given size that defq(D 3 Q) is a core 

formula. 
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There are two remaining cases: 

D D (Q1 A Q2): defq(D D (Q1 A  Q2)) = defq(D D Q1) A defq(D D Q2), and by 

the hypothesis this is just M1  A M2  where M1  and M2  are core 

formulae, and obviously so is M1  A M2 . 

D D (D" D Q): defq(D D (D" D Q)) = defq((D A D") D Q) and by the hy-

pothesis this is a core formula M. 

Thus we establish the result for any formula of the form D D Q. 

FM- 

This result shows that we may consider computation as converting Gmod_ for-

mulae into definite clauses of a certain form, which may then be stored in addition 

to the program, in that a Gmod_ goal C may be re-written as (Q1 V ... V Q,j 

where each Q• is a G0bj€t_ formula, and if the goal succeeds, we get an answer 

form V(QO) for some 1 < i < n and so V(defq(Q)O) = V(defq(QO)) is a Dmeta  

formula. 

It is interesting to note that Horn clauses have a similar property. Consider 

the class of DH0rnV  programs and GHornV goals, i.e. .D and G formulae satisfying 

D:=AID1AD2IVxDIGJA 

G:=AIGi AG2 jGi VG2 IiG 

As noted above, an equivalent class of programs is given the programs for which 

D and C formulae are given by 

D:=AID1 AD2 JVXDJGDA 

G:=AJG1 AG2  

Now in this case, for any GH0rnV  goal C, enf(dnf(G)) may be written as ](G1  V 

V C,1), and so any answer form is of the form V(CO), where the G• are the G 

formulae above. As C1  can only be a conjunction of atoms, it is obvious that 

V(G10) is a DHorn  formula. 
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In this way we may see the above results as restoring properties lost when 

generalising from Horn clauses to the class of programs defined above. Not sur-

prisingly, this required a more sophisticated approach than for Horn clauses, but 

this more complex approach still retains the essential features of the original class 

of programs in a natural way. 

6.3 Minimal Conditions for Operational Equiva-

lence 

For the rest of this chapter, we omit consideration of negation for the sake of sim-

plicity. There is no obvious problem in incorporating negation into what follows, 

but the required detail would obscure the salient points of the discussion. 

Note that F-8  and F-i, coincide on Dmod programs and Gmod goals when there 

are no completely defined predicates. 

One way to interpret the results of section 6.1 is that they define two program 

transformations which preserve the operational behaviour of programs, in that the 

original program and the transformed program are indistinguishable if the only 

available method of inspection is the evaluation of goals. If two programs produce 

the same results, i.e. the same goals succeed and fail, then we say that the two 

programs are operationally equivalent. An interesting question which arises is the 

question of "minimal testing" for observational equivalence. More formally, the 

question is what is the smallest class of goals for which operational equivalence 

needs to be established in order to show operational equivalence for all goals. It 

is easy to see that this smallest class must properly include all atomic goals. The 

reason that atomic goals alone are not sufficient is demonstrated by the following 

example. 

p 	 p 

r D q 	 q D r 
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It is clear that for both programs p succeeds and all other atoms fail, but that 

the goal q r succeeds from one program but not the other. 

An "upper bound" for this minimal class is given in the lemma below. 

Lemma 6.3.1 Let Q formulae be defined by 

Q:=AIDjQ 

where D is any DHHF formula. 

Let D1  and D2  be sets of DHHF definite formulae, and let G range over GHHF 

goal formulae. Then 

(VQ D1 FS Q=D2 F3 Q)=. (VG D1 H3 G=D2 F8 G) 

Note that the Q formulae defined above are not a subclass of Gobject  formulae, 

as the implications in the Q formulae may be DHHF formulae, rather than D066  ct 

formulae. 

Proof: Assume that VQ D1  1-3  Q = D2  F-, Q. 

First note that from the assumption we may derive that 

VQ VD D1 u {D} I-, Q D U {D} H, Q 

as for any Q formula and for any DHHF program D, D Q is a Q formula. 

Wewill show that VG VD D1  U {D} H, G = D2  U {D} H, G. It is clear that 

this will establish the result.3  

Assume that D1  U {D} F-, G. We proceed by induction on the structure of 

G. 

3  W allow the possibility that D may be the empty program. 



Chapter 6. Semantic Properties of Hereditary Harrop Formulae 	 223 

The base case occurs when G is an atom A, and it is clear from the initial 

assumption that D2  F-3  A. 

Hence the induction hypothesis is that the lemma is true for all programs D 

and for all goals of less than a given size. 

There are five cases: 

G1  V G2: D1  U {D} F-s  C1  V G2  if D U {D} F-3  C1  or D1  U {D} F-  C2, and by 

the hypothesis this implies D2  U {D} F3  C1  or D2  U {D} F3  G21  i.e. 

D2 u{D}F3  G1 vG2 . 

C1  A C2: D1  U {D} F3  C1  A C2  if D1  U {D} F-3  C1  and D1  U {D} F3  G2, and by 

the hypothesis this implies D2  U {D} F-3  C1  and D2  U {D} F-3  C2 , i.e. 

D2 U{D}F3  G1 AG2. 

axG: D1  U{D} F3  3x G if D1  U{D} I-s  G[t/x] for some tEU, and by 

the hypothesis this implies D2  U {D} F3  C[t/x] for some t E U, i.e. 

D2  U {D} F3  3x C. 

VxG: D1  U {D} l- Vx C if 3R E R(U) such that D1  U {D} F3  G[t/x]for all 

t E R, and by the hypothesis this implies D2  U {D} F8  G[t/x] for all 

t 	R, i.e. D2  U {D} 1-3  Vx G. 

D' j G': D1  U {D} F3  D':) G' if D1  U {D} U {D'} I-s  G', and by the hypothesis 

this implies D2  U {D} U {D'} F3  C', i.e. D2  U {D} F5  D' D G'. 

t 

We may think of the above result as establishing that operational equivalence 

for atoms and implications is sufficient to establish operational equivalence for all 

GHHF goals. We shall see in section 6.4 how this result is useful in another context. 

A stronger result may be possible, in that operational equivalence for a smaller 

class of goals than those in the above lemma may imply operational equivalence 

for CHHF goals. Whilst such a result seems to be true, it will take more work to 

establish, and, as discussed in 6.4, the above is usually adequate. 
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Alternatively, the above result may be interpreted as stating that if we can 

establish that all extensions of two programs enable the same atoms to be derived, 

then we have established operational equivalence. Thus if we cannot distinguish 

between two programs by arbitrary mutual extensions of them, even when the only 

goals which may be asked are atomic, then the two programs are operationally 

equivalent. There may be weaker conditions under which operational equivalence 

holds, but it would seem that any weakening of this condition would come from 

restricting the extensions that may be made to the programs. 

6.4 	Notions of Equivalence 

The above deliberations involve detailed consideration of the precise relationship 

between the relations F-3  and I-I . Whilst we know that D F-3  G if D F1  G for Dmod 

and Gmod formulae, we may use I- between programs, i.e. we may ask whether 

D1  F-1  D2  or not, but we cannot use F- in the same way unless D2  is a G formula. 

Thus the greater restriction placed upon the relationship l- may have some- subtle 

affects, and so it seems worthwhile to investigate the relationship between the two 

more closely. 

One way to explore this relationship is to consider different ways in which 

consequence relations give rise to equivalence relations between programs. Maher 

[67] has shown that there are several meaningful conceptions of equivalence be-

tween logic programs; here we consider two such notions. One is the operational 

equivalence referred to above, so that two programs D1  and D2  are operationally 

equivalent if for every goal G, D1  F- G .@ D2  F-, C. This may be thought of as 

treating the programs as two black boxes, so that the only way that we may dis-

tinguish between them is by how they react to queries from the outside world. We 

will denote the operational equivalence of two programs D1  and D2  as D1 	- 

Another obvious notion of equivalence is given by the consequence relation F1 , so 

that two programs D1  and D2  are considered equivalent if D1  =_ 1  D2 . We may 

think of this as logical equivalence. 
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A natural question which then arises is whether these two notions of equivalence 

coincide, i.e. whether two programs D1  and D2  are operationally equivalent if D1  

and D2  are logically equivalent. It is easy to see that logical equivalence implies 

operational equivalence, as if D1  F1  D2  and D2  F3  C, then as D2  F3  C implies 

that D2  F1  C, we have that D1  F1  C, i.e. D1  F3  C. The corresponding case 

for D2  F1  D1  is similar. Hence, the question is whether operational equivalence 

implies logical equivalence. 

It is known that for full first-order hereditary Harrop formulae under the "new 

constant" interpretation of the universal quantifier, the notions of equivalence do 

not coincide. A counterexample, due to Frank Pfenning, is given by the two 

programs D1  and D2  given below. 

D1 	 D2  

Vs (p(x) V q(x)) D r 
	

(Vs p(x)VVx q(x)) Dr 

Let C1  = Vs (p(x) V q(x)), C2  = Vxp(x) V Vs q(x). It is clear that C2  F1  C1, 

and so C1  D r F-I  C2  D r, i.e. D1  F1  D2. However, C1  F/i C2 , and so D2 F/1  D1. 

All that remains is to show that VG D1  F3  C D2  F- G (the converse is obvious 

from the fact that D1  F1  D2). From the operational interpretation of V as a new 

constant, it is clear that we may equivalently re-write D1  and D2  as D'1  and D 

as follows: 

DI 	 DI  

(p(c) V q(c)) D r 	 (p(c1) V q(c)) D r 

It should now be clear that any goal provable from D'1  is provable from 

under the operational rules given. This is because the goal Vs (p(x) V q(x)) can 

only succeed when either Vs p(x) succeeds or when Vs q(x) succeeds, due to the 

fact that in the goal p(c) Vq(c) the new constant c is treated in the same way as an 

"old" constant, rather than as a meta-variable. Hence there can be no interaction 

between the two disjuncts, which is necessary to prove Vs p(x) V q(x) in the case 

when neither Vxp(x) nor Vxq(x) succeed. 
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w3  = {r,p,s} 	 W2 =  jr, q,s} 

= 0 

Figure 6-1: Kripke model in which D4  is true but D3  is not 

This still leaves the question open for the class of programs in which universal 

quantifiers are not allowed in goals, as well as for full first-order hereditary Harrop 

formulae under the extensional interpretation of the universal quantifier. How-

ever, operational equivalence does not imply logical equivalence for either class 

of programs, as is shown by the following counterexample (mentioned earlier in 

another context): 

D3  

(r D (p V q)) Ds 	((rD p) D s) A ((r D q) D s) 

Whilst D3 	D4  due to the fact that D4  = dfnf(D3), D3  and D4  are not 

logically equivalent. A Kripke model in which D4  is true but D3  is not is given in 

Figure 6-1. The reason that D3  is not true is that w1 	r D (p V q), and so for 

D3  to be true in w1, we require that s be true in w1, which it is not, and so D3  is 

not true in w1. On the other hand, we have that w1  r D p and w1  V= r D q, and 

so for D4  to be true in w1, we do not require that .s be true in w1, and in fact D4  

is trivially true in w1, as w, K r. Hence D4  is true for every world in the model, 

whereas D3  is not true in world w1. 

Thus operational equivalence is not strong enough to establish (intuitionistic) 

logical equivalence. One way to interpret this result is that the natural choice of 
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= {p, q(a), r} 	 w2 = {p, q(b), r} 

Wi = 0 

Figure 6-2: Kripke model in which D6  is true but D5  is not 

logic for programming in this context needs to have a stronger consequence relation 

than F-1, so that operationally equivalent programs are logically equivalent. Thus 

some intermediate logic is required, as D3 	D4, and we saw earlier that F-C  was 

too strong to be suitable in this context. 

Not surprisingly, there is a property dual to that above which involves exis-

tential quantification, in that the programs D5  and D6  below are operationally, 

equivalent but not logically equivalent. 

D6  

(p D 3x q(x)) D r 	 'v'x ((p D q(x)) D r) 

Note that D6  = efnf(D5), which establishes the operational equivalence, but 

whilst D5  f-1  D61  the converse is not true. A Kripke model in which D6  is true 

but D5  is not is given in Figure 6-2. As in the previous case, it is easy to see 

that both formulae are true in worlds w2  and w3, but whilst D6  is true at w1, (as 

p D q(x) and so the condition that if 3xp D q(x) is true then r is true is 

satisfied), D5  is not true at w1, as w1  J= p D 3x q(x) but w1  K r. 

Thus any intermediate logic, say I', appropriate for this application will need 

to satisfy the following equivalences: 
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D D (G1 v G2 ) =P  (D C 1 ) V (D D C2) 

Dj*cG j,3xDjG 

where x is not free in D. Note that the = direction of both equivalences hold in 

intuitionistic logic. These equivalences are natural ones to choose given that we 

expect that goals which are operationally equivalent are logically equivalent. We 

will see in section 6.5 that this is indeed the case. 

The 	. directions of these rules are known as the Independence of Premise 

axioms [109], and although there are some results regarding the addition of these 

and similar axioms to Heyting arithmetic [109], not much seems to be known about 

the logic obtained by adding these rules to intuitionistic logic. 

We may think of such a logic as a logic of "present choice", in that the choice 

of witness for the existentially quantified variable cannot be postponed; if we can 

ever choose such a witness, then we can do so immediately, without investigating 

future worlds. Similar remarks apply to the disjunctive case, in that if we can ever 

choose between the two alternatives we can do so immediately, without waiting to 

see what will happen in the future. This immediacy is reflected in the computation 

process by the fact that in order to establish the truth of r from either D 5  or 

we do so by trying to prove the body of the clause, rather than considering 

possible future choices. In this way the knowledge which we may use to make the 

relevant choice is already present in the program, and so it is merely a matter of 

seeing if such a choice can be made. If it cannot, then we have no other way to 

proceed. Hence, the logic of present choice will reflect the fact that we can only 

use information encoded in the program. 

We consider the precise nature of the desired logic in section 6.5; for now, we 

look at the properties of such a logic. 

The feature which causes the failure of operational equivalence to imply equiv-

alence in intuitionistic logic is the mutual interaction of D with 3 or V. Not 

surprisingly, when one or the other of these is absent from the body of clauses 

in programs, then we do have that operational equivalence implies equivalence in 

intuitionistic logic. It is easy to see this when D1  is a core formula as if 
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VG D1  F3  G D2  FS  G 

then as D1  is a G formula, it immediately follows that D2  F 9  D1, and so D2  F1  D1. 

Similarly, it is not hard to show that if there are no implications in the body 

of a clause in D1, then 

D1  dfnf(D1) efnf(D) 

and this gives D1  FAr defp(dfnf(efnf(D1))) which may be similarly used to derive 

that D2  F1  D1. 

Hence, intuitionistic logic performs precisely as computational intuition would 

suggest when there is no "mixing" of D and either 3 or V, but otherwise some 

stronger logic, whose nature seems difficult to elucidate, is needed. 

Naturally we expect a similar result to hold in the presence of such mixing 

for an intermediate logic I' in which the equivalences mentioned above hold. We 

may think of this requirement on I' as demanding that all connectives be treated 

similarly, since the corresponding equivalences for the other connectives, given 

below, are intuitionistically valid. 

DD(G1 AG2 ) I (DDG1)A(DDG2 ) 

D j (D' G) (D A D') D G 

DDVxG 1 Vx(DDG) 

where x is not free in D. 

In any such logic I', it may be shown that D 	dfnf(D) and D p efnf(D). 

This is done below. 

Proposition 6.4.1 Let D be a Dmod definite formula and G be a Gmod  goal for-

mula. Then 

D dfnf(D) 

G 	, dnf(G) 
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Proof: We proceed by mutual induction on the structure of D and C. When D 

is an atom, D = dfnf (D), and when C is an atom, C = dnf(G), and so the 

proposition is obviously true for the base case. 

Hence the hypothesis is that for all D and G formulae with less than a given 

number of connectives, the proposition holds. 

There are three cases for D: 

VxD': By the hypothesis D' 	dfnf (D'), and so VxD' is equivalent to Vx dfrif(D'), 

which is just dfnf(VxD'). 

D1  A D2: By the hypothesis each D1  is equivalent to dfnf(D1), and so D1  A D2  is 

equivalent to dfnf(D1) A dfnf(D2 ), which is just dfnf(D1  A D2). 

G D A: By the hypothesis C D A is equivalent to dnf(G) D A, which in turn 

is just (V{C' I C' E dnf'(G)}) D A. This is equivalent to A{C' D A 

E dnf'(G)}, i.e. dfnf(G D A). 

There are four cases for C: 

C1  V C2: By the hypothesis each Gi  is equivalent to dnf(C), and so C1  V C2  is 

equivalent to dnf(G1) V dnf(G2) which is just dnf(C1  V G2)- 

G, A C2: By the hypothesis each Gi  is equivalent to dnf(C), and so C1  A C2  is 

equivalent to dnf(C1)Adnf(G2), which is just (V{G' I C' E dnf'(C1)})A 

(V{(3' J C' E dnf'(C2)}). This is equivalent to V{C A C'2  I C'1  E 

dnf'(G1), C'2  E dnf'(G2)}, which in turn in just dnf(C1  A C2). 

xG: By the hypothesis C is equivalent to dnf(G), and so 3xG is equivalent 

to axdnf(C), which is just 3x V{G' I C' e dnf'(C)} which in turn is 

equivalent to V{xC' I C' E dnf'(G)}, i.e. dnf(xC). 

D' D C': By the hypothesis D' D G' is equivalent to dfnf(D') D dnf(C'), which 

is just dfnf(D') D V{C" I C" e dnf'(G')}. Due to the equivalence in I' 

of D D (C1  V C2) and (D D C1) V (D C2), this in turn is equivalent 

to V{dfnf(D') D C" I C" E dnf'(G') 1, i.e. dnf(D' D C'). 

EM 
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The corresponding result for the existential case is given below. 

Proposition 6.4.2 Let (D, N) be a Dmod definite formula, and let G be a Gmod  
goal formula. Then 

D j efnf(D) 

G p enf(G) 

Proof: We proceed by mutual induction on the structure of D and C. When D 

is an atom, D = efnf(D), and when G is a literal, G = enf(G), and so the 

proposition is obviously true for the base case. 

Hence the hypothesis is that for all D and G formulae with less than a given 

number of connectives, the proposition holds. 

There are three cases for D: 

VxD': By the hypothesis D' 	efnf(D'), and so VxD' is equivalent to Vx efnf(D'), 

which is just efnf(VxD'). 

D1  A D2: By the hypothesis D1  A D2  is equivalent to efnf(D1) A efnf(D2), which 

is just efnf(D1  A D2). 

G D A: By the hypothesis C D A is equivalent to enf(G) D A, which in turn 

is just ( 	(enf(G))) D A. This is equivalent to Vi enf'(C) i A, i.e. 

efnf(G D A). 

There are four cases for G: 

G1  V C2: By the hypothesis G1  V C2  is equivalent to enf(C1) V enf(C2), which 

is just (Ji enf'(G1)) V ( 	enf'(G2)), which in turn is equivalent to 

(enf'(G1) V enf'(G2)),  i.e. enf(C1  V G2). 

C1  A C2: By the hypothesis G1  A G2  is equivalent to enf(G1 ) A enf(G2 ) which 

is just (3i enf'(C1)) A ( 	enf'(G2)), which is in turn equivalent to 

(enf'(G1) A enf(G2 )), i.e. enf(C1  A G2). 
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xG: By the hypothesis G is equivalent to enf(G), which is just Eh enf'(G), 

and so 3xG is equivalent to 3x Eli enf'(G), i.e. enf(xC). 

D' D C': By the hypothesis D' D G' is equivalent to efnf(D') D enf(G'), which is 

just efnf(D') 	enf'(G'). Due to the equivalence in I' of D 	xG 
and x D G, this in turn is equivalent to 3.i efnf(D') D enf'(G'), i.e. 
enf(D' D C'). 

We will see later how these two results may be seen as stronger versions of 

propositions 6.1.2 and 6.1.4 for a particular choice of I'. 

It is clear from proposition 6.2.1 that D' j,  defp(D') when D' contains no 

existential quantifiers or disjunctions. Thus from propositions 6.4.1, 6.4.2 and 

6.2.1 we have that 

D 	j,  defp(efnf(dfnf(D))) 

We will abbreviate the latter formula by core(D). From proposition 6.2.2 

we have that core(D) may be considered as a C formula if we allow universal 

quantifications in goals. This gives us a method for establishing that operational 

equivalence implies logical equivalence. A precise statement and proof is given 

below. 

Theorem 6.4.3 Let D1  and D2  be Dmod programs, and let C range over Cmod 

goals. 

Then 

(VC D1  1-8  C D2  F3  C) = D2  , D1  

Proof: We will show that if VG D1  F8  G = D2  F C, then D2  F1, D1. It is clear 
that this will establish the result. 

Assume that VC D1  F3  C = D2  F8  C. From lemma 6.3.1, we know that this 

implies that VC' D1  l- C' = D2  F8  G', where C' ranges over GHHF goals. 
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As mentioned above, we know from propositions 6.4.1, 6.4.2 and 6.2.1 that 

D 	p core(D), and from proposition 6.2.2 that core(D) is a GHHF formula, 

as it contains no negations. Thus we have that D1  H3  core(D1), and so 

D2  H 9  core(D1), which gives us that D2  F-P  core(D1 ), i.e. D2  Hp D1 . 

Thus for any such logic I', operational equivalence implies logical equivalence. 

As the two desired equivalences are true classically, this property also holds for 

classical logic. 

An interesting interpretation of this result it is that for any such logic I', if two 

programs D1  and D2  differ, i.e. D1 j, D2, then there is a goal which distinguishes 

the two. More precisely, from the contrapositive of theorem 6.4.3 we have that if 

D2  I/i, D1, then there is a goal G such that D1  I 3  C but it is not the case that 

D2  I- G. 

6.5 	Choice of Intermediate Logic 

Whilst theorem 6.4.3 holds when I' is interpreted as classical logic, it is clear from 

earlier discussions that this is not an ideal choice, and so the desired logic I' lies 

strictly between intuitionistic logic and classical logic. 

One intermediate logic of interest in this context is the extension of intuition-

istic propositional calculus (IPC) called lc by Gabbay [36]. This may be charac-

terised by adding to IPC the rule (in a Hilbert-style proof system) 

(pD(qVr))D((pDq)v(pDr)) 

However, ic appears to be too strong, as it loses the disjunctive property, 

i.e. it is not true that if A V B is provable then either A is provable or B is 

provable. Also, some of the alternative characterisations of ic do not fit in well 

with computational intuition. For example, another way to characterise this logic 

is to add the following rule to IPC: 



Chapter 6. Semantic Properties of Hereditary Harrop Formulae 	 234 

(p D q) V (q D p) 

This does not seem to be a rule which can be justified in terms of computation, 

especially due to the restrictions which first-order hereditary Harrop formulae place 

on implications. In addition, the models are characterised as all finite partially 

ordered sets for which Vxy (x < y V y < x), and hence are linear in that any 

given worlds w1  and w2  must be related by either w1  w2  or w2  w1. This is 

in direct contradiction with the Kripke-like model theory given in [77], in which 

it is certainly not true that all worlds are comparable. Thus it seems that the 

best way to proceed is to use the Kripke-like model theory as the guiding intuition 

for the particular choice of logic P. This is particularly relevant since we are not 

interested in all first-order formulae, but only in hereditary Harrop formulae, and 

so the fact that all models of ic are linear only shows that it is not of great interest, 

rather than indicating problems. 

The Kripke-like model clearly relies heavily on the fact that the formulae in-

volved are hereditary Harrop formulae and not arbitrary first-order formulae. An 

interesting observation is that programs have similar properties to prime theories 

(also known as saturated theories) [21,107] which are used in the proof of the 

completeness of intuitionistic provability with respect to Kripke models. This sug-

gests that hereditary Harrop formulae are of interest as the worlds of some special 

kind of Kripke model. Further work in this area would presumably indicate more 

precisely the relationship between hereditary Harrop formulae and full first-order 

logic, particularly in relation to the Independence of Premise rules. 

As mentioned in the previous chapter, another intermediate logic of interest 

is the logic of constant domains. As the domain is constant for all worlds in the 

Kripke-like model, it is clear that any results which we derive for the Kripke-like 

model will hold for the logic of constant domains. 

One way to analyse the nature of I' is to explore the relation H 9  c V x Cj 

in terms of a relation on V x V and a relation on g x g. The main obstacle 

to viewing F- directly as a consequence relation in the traditional sense is that 

such relations are usually defined on .1 x .T where .1 is the set of all well-formed 



Chapter 6. Semantic Properties of Hereditary Harrop Formulae 	 235 

(first-order) formulae. Hence, as is done in [77], we may view F as the restriction 

of 1-1  to V x G, as it is known that D F0  C if D F- I  G [77] , and as F0  and F3  

coincide on Dmod X Gmod  when there are no completely defined predicates, this 

implies D F3  G if D F1  G. However, we cannot use F3  directly for questions of 

equivalence between programs or between goals, and so for such equivalences we 

need to use F. 

An important property of the Kripke-like model is that whilst worlds are D 

formulae, the formulae which are provable from a given world are G formulae. 

Nevertheless, there is still an underlying notion of truth for D formulae in a given 

world. As discussed in the previous chapter, we may think of this second notion 

of truth along the lines of "D is assumed in world w", rather than "C is provable 

in world w". In this way there is already an implicit relation on W x V. Also 

in the same chapter we saw how we may find an interpretation T'(11) such that 

T"(11), PH-- G if P F3  G. We may think of this as a semantic characterisation 

of the relation F3. In order to think of this in terms of a relation on V x g, we 

will write Tw(I±),  P 	G as just P H= G. 	In this way we fix the choice of 

interpretation I in the triple of I,P and C, as we do not wish to consider arbitrary 

interpretations, but to investigate the nature of F3. This makes it possible to 

interpret the Kripke-like model directly as a Kripke model, as we can now consider 

which worlds prove which goals, and we may abbreviate Vw w 	G as J= G 

as is usually done. We then have that H= D D C if Vw w 	D D G if 

Vw w U {D} 	C. Now from the access relation between worlds we know that 

this is just Vw > D w 	C, as wU{D} > D for all worlds w. This in turn is 

just DH-- C, which is not surprising given that we consider. = as a semantic 

characterisation of F3. However, in a Kripke model one expects w j= D D C to 

be equivalent to Vw'> w w' = D = w' = G for some relation H. As mentioned 

above, in our case we need to consider two different consequence relations, and so 

4Strictly we should write j= T(I), to denote our choice of interpretation, but it will 

always be clear from the context what is meant. 
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we interpret this as Vw' > w w' =D  D = w' 	G, for some appropriate definition 

Of I=D An obvious choice is given below. 

Definition 6.5.1 Let D1  and D2  be Dmod  programs. Then 

D1 I=D  D2  iffT(I j )(D2 ) E Tw(11)(D1 ) 

The results below show that =D  behaves in the expected manner. 

Lemma 6.5.1 Let D1  and D' be Dmod programs and let C be a Gmod goal. 

If D1  = C and D2  J=D  D1  then D2  = C 

Proof: From D2  I=D  D1  we have that Tw(11)(D1 ) Tw(11)(D2), and so by lemma 

5.3.2 T°'(11), D1 H= C = T"(11), D2  j= C. Hence, as D1  j= G, we have 

that D2 	G. 

F. 

In this way =D  respects operational equivalence, as a consequence of the above 

result is that if two programs D1  and D2  are such that D1  ED D2, then the 

programs are operationally equivalent. Another interesting property of =D  is 

given in the lemma below. 

Lemma 6.5.2 Let D be a Dmod  program and C be a Gmod  goal: Then 

Proof: 

(): w > D implies that {D} c w and so T°'(11)(D) 	Tw(Ij)(w), i.e. 

W J=D D. Hence w J=D D = w Jj= C implies that w > D =:> w = C. 

(=): Vw w > D = w J= C implies that D H= C, and so if w I=D  D, then 

by lemma 6.5.1 we have that w ft= G, and so we have Vw w =D  D 

wJ=G. 

101 
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Having defined a model-theoretic notion of consequence for programs, we next 

look for a proof-theoretic consequence relation which matches this one, so that 

we expect D1  F I, D2  if D1 F=D  D2. As mentioned above, we want I-I, to include 

all intuitionistic consequences (i.e. Ii  C H11), but also for the Independence of 

Premise rules to hold, i.e.: 

DjxGH11axDjG 

D D (GI  vG2)H11(D D GI ) v(D D G2 ) 

Note that the converses of both these rules hold in intuitionistic logic. 

The simplest way to define Ip is to add the two rules above to the deduction 

rules of first-order intuitionistic logic. A sequent-style proof system for I' is given 

below. This is the standard sequent system for intuitionistic logic augmented by 

the two desired rules. 

B, C, -f F 
A-L 

BAC,FF  

B,F-4F C,F—*F 
V-L 

BVC,FF  

F — B C,F —*F 

B D C,F -p F 
D-L 

F,B[t/x] -* F 
V-L 

F,VxB -* F 

F, B[y/x] -* F 

F,xB-4F 

F—B F—+C 
A-R 

F -* BA C 

FBvC FBvC V
-R 

B,F—+C 
D-R 

F -)BDC  

F '  B[y/x] V-R 

F —*VxB 

F -* B[t/x] 

F - 	xB 

F— DjxG 

F -f axD C 
F---D (GI  vC2) 

v- j 
F—(DG1)v(DC2 ) 

I-R 
F—B 
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The rules V-R and -L have the side condition that y is not free in F, B or F, 

and the rule 3-D has the side condition that x is not free in D. 

We also include the standard structural rules of interchange, contraction and 

thinning. As is done in [77], we may omit the interchange and contraction rules 

if we allow the antecedents of sequents to be sets.*' Thinning may be introduced 

by a technique of antecedent thinning described in [77], but it is not vital to the 

discussion here. 

An initial sequent is a sequent F -* F where F is either an atomic formula or 

I and F E F. A proof for the sequent F -* F is a finite tree, constructed using 

the above rules, whose root is F -) F and whose leaves are initial sequents. 

We refer to proofs in the above system as I'-proofs. 

Note that the two extra rules are only applicable when the consequents are 

a particular kind of C formulae, but that the extra rules ensure that there are 

programs D1  and D2  for which D1  I/ D2  but D1  F-1, D2. For example, p D 
xq(x) I-I,  3Xp D q(x), and so (3xp D q(x)) D r i-fl  (pD Bxq(x)) 

The relation F1, then gives us both the desired relation on V x V and on g x g. 

One important feature of the above proof rules is that the restriction of F-11 to V x  

is precisely F3. In this way we have not altered the way that goals are derived 

from programs, but strengthened the provability relation between programs and 

between goals. A formal proof of this property is given below. 

The following lemmas are analogous to lemmas 9 and 10 in [77], and are ex-

tended to include I'-proofs. 

'The succedent can only be a singleton set, and so we write succedents as single 
formulae. 
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Lemma 6.5.3 Let F be a set of Dmod and Gmod  formulae. Then there is no I'-

proof Of r,  —) 1. 

Proof: Suppose there is such a proof of F -p I for some F. 

We proceed by induction on the height of . Clearly there is no initial 

sequent for which I E F. 

Hence the hypothesis is that for all sets F of D and C formulae, there is no 

I'-proof of F -* I of a given height or less. 

Consider the possibilities for the final rule in E. None of V-R, A-R, V-R, 

D-R, -R, 3-D and V-D are applicable, as the consequent in the resulting 

sequent must be just I. 

This leaves the following cases: 

A-L: For this rule to be applicable, the previous sequent must be B, C, F -f 

I, and as B A C is a D or C formula if B and C are both D formulae 

or both C formulae, this contradicts the induction hypothesis. 

V-L: For this rule to be applicable, the previous sequent must be B, F—L, 

and as B V C is a D or a C formula if B and C are G formulae, this 

contradicts the induction hypothesis. 

V-L: For this rule to be applicable, the previous sequent must be F, B[t/x] - 

I, and as VxB is a D or C formula if B[t/x] is a D formula, this con-

tradicts the induction hypothesis. 

B-L: For this rule to be applicable, the previous sequent must be F, B[y/x] -i 

I, and as 3xB is a D or C formula if B[y/x} is a G formula, this con-

tradicts the induction hypothesis. 

D-L: For this rule to be applicable, the previous two sequents must be F -f 

B and C, I' -f I. Now as B C must beaDor a G formula, there 

are two cases. 

In the first case, B must be a goal G and C must be an atom A, 

making the two prior sequents F -f G and A, F -f I respectively, 

which contradicts the induction hypothesis. 
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In the second case, B must be a program D and C must be a goal C, 

making the two prior sequents F -f D and C, F -f I respectively, 

which contradicts the induction hypothesis. 

I-R: For this rule to be applicable, the previous sequent to F -f I must be 

just F - ..L, which contradicts the induction hypothesis. 

Thus there can be no proof of F -) I when F is a set of D and C formulae. 

L 

As we often wish to restrict our attention to V x g, the following notion will 

be useful. 

Definition 6.5.2 A sequent F -p F is an O-sequent if F is a set of Dmod 

formulae and F is a Cmod formula. 

The following lemma is analogous to lemma 9 in [77]. 

Lemma 6.5.4 Let I' be a set of Dmod formulae, C be a Gmod  goal and E be an 

I' -proof of F -p G. Then contains no instances of the rules V-L, -L or VLR, 

and all sequents which appear in are 0-sequents. 

Proof: We proceed by induction on the height of E. It is clear that if the root 

sequent is initial, then the antecedent must be a set of D formulae and 

the consequent just an atom A, which is clearly an O-sequent, and so the 

property holds when has height 1. 

So the inductive hypothesis is that the property holds for all I'-proofs whose 

height is less than a given value. Consider the last rule used in the proof 

of the sequent F -f C. 

It is clear that the final rule used in EE cannot be V-L, i.-L or V-R as the 

sequent resulting from such a rule will not be an 0-sequent. By lemma 

6.5.3, we need not consider the I-R rule either. 
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It only remains to show that applying the remaining rules to 0-sequents 

results in O-sequents, as then we know that the last rule used in is applied 

to an 0-sequent, to which we may apply the hypothesis. 

The cases are: 

A-L: For this rule to be applicable, we must have that B A C is a Dmod  

formula and that F is a Gmod formula, and so B and C must both be 

Dmod  formulae, and so the previous sequent is an 0-sequent. 

A-R: For this rule to be applicable, we must have that B A C is a Gmod  

formula, and so B and C must both be Gmod  formulae, and so the 

previous sequents are O-sequents. 

V-R: For this rule to be applicable, we must have that B V C is a Gmod  

formula, and so B and C must both be Gmod  formulae, and so the 

previous sequents are 0-sequents. 

D-L: For this rule to be applicable, we must have that B is a Gmod formula, 

C is an atom and F is a Gmod formula, and so the previous sequents 

are 0-sequents. 

D-R: For this rule to be applicable, we must have that B D C is a Gmod  

formula, and so B is a Dmod formula and C is a Gmod  formula, and so 

the previous sequent is an O-sequent. 

V-L: For this rule to be applicable, we must have that VxB is a Dmod formula, 

and so B[t/x] is a Dmod  formula, and so the previous sequent is an 0-

sequent. 

-R: For this rule to be applicable, we must have that 3xB is a Gmod  formula, 

and so B[x/t] is a Gmod formula, and so the previous sequent is an 0-

sequent. 

-D: Clearly 3xD.D C is a Gmod formula if D D 3xG is a Cmod formula, 

and so the previous sequent is an 0-sequent. 

V-D: Clearly (D D G1 ) V (D D C2 ) is a Cmod  formula if D D (C1  V C2 ) is a 

Cmod  formula, and so the previous sequent is an 0-sequent. 
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FEW 

An easy extension to this result is given below. 

Definition 6.5.3 A sequent F -f F is an I'-sequent if every element of F is 

either a Dmod or Gmod  formula, and F is either a Dmod formula or a Gmod formula. 

Note that F may contain both Dmod and Gmod  formulae, so that 

{Vxp(x), 3xq(x)} -b p(a) A p(b) 

is an I'-sequent. 

Lemma 6.5.5 Let F -p F be an I'-sequent and let E be a proof of F -+ F. 

Then every sequent which appears in is, an I'-sequent. 

Proof: We proceed by induction on the height of E. It is clear that the base case 

holds, as then F - F must be an initial sequent. Hence the property holds 

when has height 1. 

So the inductive hypothesis is that the property holds for all I'-proofs whose 

height is less than a given value. Consider the proof EE of the sequent F -* F. 

Consider the final rule used in 

The are a number of cases: 

A-L: For this rule to be applicable, the previous sequent must be B, C, F -f 

F, and as B A C is a D or G formula if B and C are both D formulae 

or both C formulae, this is clearly an I'-sequent. 

A-R: For this rule to be applicable, the previous sequents must be F - B 

and F - C, and as B A C is a D or C formula if B and C are both 

D formulae or both C formulae, these are both clearly I'-sequents. 

V-L: For this rule to be applicable, the previous sequents must be B, F -p F 

and C, F -) F, and as B V C is a D or G formula if B and C are both 

C formulae, these are both clearly I'-sequents. 
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V-R: For this rule to be applicable, the previous sequent must be either 

F -p B or F -p C, and as B V C is a D or G formula if B and C are 

both G formulae, in either case it is clearly an I'-sequent. 

-L: For this rule to be applicable, the previous sequents must be F -p B 

and C, F - F. now as B D C must be a D or a G formula, there are 

two cases. 

In the first case, B must be a G formula, and C must be an atom, and 

as F must be either a D or a G formula, clearly both prior sequents are 

I -sequents. 

In the second case, B must be a D formula, and C must be a G formula, 

and as F must be either a D or a G formula, clearly both prior sequents 

are I'-sequents. 

-R: For this rule to be applicable, the previous sequent must be B, F -f C. 

As B D C must be a D or G formula, there are two cases. 

In the first case, B must be a G formula, and C must be an atom, and 

so clearly the previous sequent is an I'-sequent. 

In the second case, B must be a D formula, and C must be a G formula, 

and so clearly the previous sequent is an I'-sequent. 

V-L: For this rule to be applicable, the previous sequent must be F, B[t/x] -+ 

F, and as VxB is a D or C formula if B is a D formula, the previous 

sequent is clearly an I'-sequent. 

V-R: For this rule to be applicable, the previous sequent must be IF, -f 

B[y/x], and as VxB is a D or G formula if B is a D formula, the 

previous sequent is clearly an I'-sequent. 

ThL: For this rule to be applicable, the previous sequent must be F, B[y/x] - 

F, and as 3xB is a D or G formula if B is a C formula, the previous 

sequent is clearly an I'-sequent. 

-R: For this rule to be applicable, the previous sequent must be F -f 

B[y/x], and as *rB is a D or C formula if B is a C formula, the 

previous sequent is clearly an I'-sequent. 
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-D: For this rule to be applicable, the previous sequent must be F -f D 

G, which is clearly an I'-sequent. 

V-D: For this rule to be applicable, the previous sequent must be F -f D D 

(C1  V C2), which is clearly an I'-sequent. 

I —R: By lemma 6.5.3, this rule cannot occur in E. 

t 

As noted above, the Kripke-like model incorporates features of the logic of 

constant domains, and so we desire I' to be at least as powerful as this logic. The 

standard proof-theoretic way to enhance intuitionistic logic in this way is to add 

the following rule (in a Hilbert-type proof system): 

Vx (cV&(x)) D (qfVVx(x)) 

We may incorporate this rule into the sequent system for I' by adding the 

following inference rule: 

F 	Yx (0 V (x)) CD 

We refer to the extended proof system as 

However, if we restrict our attention to D and C formulae, then this rule can 

never be used, as neither of the above two consequents are D formulae, and as 

we do not allow universal quantification in goals, they are not G formulae either. 

Hence, this rule will not affect the provability relations between D formulae or 

between C formulae. We give a formal proof of this result below. 

Proposition 6.5.6 Let F -* F be an I'-sequent. Then any I'CD-proof of 

F -f F is an I'-proof. 

Proof: We need only show that the CD rule is never used in 

We proceed by induction on the height of E. It is clear that the base case 

holds, as the formula Vx (0 V &(x)) is not an atom. 
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Hence we the induction hypothesis is that all ID  proofs of F -p D or 

F - C of no more than a given size contain no occurrences of the CD rule. 

Consider the final rule used in . As 0 V Vx '(x) is neither a D formula nor 

a G formula, the final rule cannot be the CD rule. Hence by lemma 6.5.5 

all the previous sequents must be I'-sequents, and so by the hypothesis, the 

CD rule is not used in the sub-proofs of any of the prior sequents. 

Hence by induction we get that the CD rule does not occur anywhere in E, 

and so is an I'-proof. 

101 

Next we show that when we restrict Ip to V x G,  we get precisely I-s , i.e. that 

our extension to intuitionistic logic does not affect the provability relation between 

programs and goals. 

Proposition 6.5.7 Let D be a Dmod program and C be a Gmod goal. Then 

DF JIGDF3 G 

Proof: AsDFs GDHj G and I-i CHi,,we only need to show that DH11G. 

D l- G. Let be an I'-proof of D -p C. By lemma 6.5.4, all antecedents 

in 	are sets of D formulae, and so the only uses of the rules 	and V- 

are of the form 

IF 	D' DxG 
	

F -i D' D (C1  vG2 ) 
F -p xD' D C' 
	

F -f (D' D C1) V (V' D  C2 ) 

where F is a set of D formulae. It is clear that we may view F as either a 

set of D formulae or as a conjunction of D formulae. 

Now 

F F1  D' D 3x G' F F3  D' j 3xG' 

IF, D' k., axG' 

<=> F, D' F3  G'[t/x] for some term t U 
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4 IF, D'[t/x] F 5  G'[t/x] as x is not free in D' 

4 F F D'[t/x] D G'[t/x] 

F H8  IxD' D G' 

4 F H1  3xD' D C' 

Similarly 

FF-1 D' D (G1 vG2)FH3  (D' (C1  vG2 ) 

r, D' H3  C1  vG2  

r, D' H 9  C1  or r, D' I 3  C2  

r, D' D G or F H 9  D' D C2  

FH3 (D' D GI ) v(D'DC2 ) 

FH1 (D' DG1)v(D' D C2) 

Hence the forms of the two rules -D and V-D are derived rules of intuition-

istic logic on the fragment V x Q, and so any I'-proof of D - G is an 

I-proof of D -f C, i.e. D In C D F-I  G. 

In this way I' proves the desired equivalences between programs and between 

goals, but does not affect computations, i.e. the consequence relation between 

programs and goals. This property is also reflected in the following two corollaries 

of the above proposition. 

Corollary 6.5.8 Let D1  and D2  be Dmod programs and let C be a Cmod goal. 

If D1  H8  G and D2  H11 D1  then D2  H3  G 

Corollary 6.5.9 Let D be a Dmod  program and let G1  and C2  be Gmod goals. 

If D H3  C1  and C1  H11 G2  then D H5  C2  

Thus the same goals may be derived from programs which are provably equiv-

alent in I', and goals which are provably equivalent in I' behave identically. 
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We are now in a position to prove the equivalence of the two relations on D 

formulae. 

Theorem 6.5.10 Let D1  and D2  be Dmod  programs. Then 

D1  F-1, D2  D1 D  D2 

Proof: 

(=.): D1  F-1, D2  implies that 

VGD2 I-JIG=D1 I- JIG 

and by proposition 6.5.7 this is equivalent to 

VGD2 F-3 G=D1 H3 G 

which in turn is equivalent by theorem 5.4.5 to 

VGT(I1),D2  ft=G=7T(I1),D1  H=G 

Now in particular, we have that 

T"(Ij,D2  I=A=T"(I1),D1  H=A 

for any atom A, and so 

A E pos(T)(I1)(D2) = A E pos(Tw)(Ii)(Di) 

i.e. 

DI I=D D2 

(=): D1 	D2  implies that T"(I1)(D2) 	Tw(I±)(D1), and so by lemma 

5.3.2 we have 

VG T(I1), D2 4= G = Tw(11), D1 ft= C 

which is equivalent by theorem 5.4.5 to 

VG D2  H3  G = D1  H3  C 
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and by theorem 6.4.3 this implies that D1  1-1, D2. 

El 

The corresponding result for Gmod formulae is more problematic. One way 

to derive a model-theoretic notion of equivalence between goals is to consider two 

goals to be equivalent if there is no program on which they behave differently. 

This is a natural dual to theorem 6.4.3, as we may interpret that result as stating 

that if there is no goal which behaves differently for two given programs, then 

the programs are equivalent. For these reasons the following definition seems a 

natural way to define HG 

Definition 6.5.4 Let G1  and G2  be Gmod  goals. Then 

It is easy to show an analogous lemma to lemma 6.5.1. This is done below. 

Lemma 6.5. 11 Let G1  and C2  be Gmod  goals and let D be a Dmod program. Then 

If D = G1  and C1 G  G2  then D 4= C2  

Proof: C1 =G  C2  implies DH-- C1  = D = C2, and so clearly the result holds. . 
We also expect the analogous result to theorem 6.4.3 to hold. A formal state-

ment is given below. 

Conjecture 6.5.12 Let C1  and G2  be Gmod  goals. Then 

(VD DI-3 G1 	DH3G2)G1H11C2 
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The problem in proving this result is deriving the analogous result to lemma 

6.3.1; in particular we require that the operational equivalence of C1  and C2  over 

all Dmod programs is sufficient to establish the operational equivalence of C1  and 

C2  over all DHHF programs. The difficulty is that in the corresponding case for 

the operational equivalence of programs, there was a simple way to decompose 

goals into simpler goals, and so there was a straightforward induction argument. 

However programs are not so easily decomposed, and so it seems unlikely that an 

inductive argument will work. A model-theoretic argument seems to be the most 

promising, but has not borne fruit yet. 

If we had such a result, then we may expect a proof of the above conjecture to 

run as follows: from VD D I-, G1  = D F- C2, by the assumed result and propo-

sition 6.2.1 we may conclude that defp(V(QO)) I-s  C2, where V(QO) is an answer 

form of G1. From this, proposition 6.5.7 and another application of proposition 

6.2.1, we get that V(Q10) Ip G2, i.e. that any answer form of G1  is also an answer 

form of G2, and as this must hold for any answer form of C1, we conclude that 

G1  F- C2 . 

A further conjecture is that the two notions of consequence for C formulae 

coincide. One direction may be easily shown, and the other follows from the 

above conjecture. 

Proposition 6.5.13 Let G1  and G2  be Gmod goals. 

If G F-1, C2  then C1 hG  C2 

Proof: If D I-i, G1  then by proposition 6.5.7, D F-3  C1, and so by corollary 6.5.9, 

if D H 3  C1  and C1  H1, C2  then D F-3  C2 . By theorem 5.4.5 this in turn is 

just D H= C1  and C1  }-, C2  implies D 	C2, and so C1  F-I, C2  implies that 

G1 	G  C2. 

II 

The conjecture below is the converse to proposition 6.5.13, and follows imme-

diately from the conjecture above. 
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Conjecture 6.5.14 Let C1  and G2  be Gmod goals. 

If G G C2  then G1  I — jiG2  

6.6 Discussion 

We have seen that the natural logic in which to express the equivalence of Dmod  

programs and Gmod goals is slightly stronger than intuitionistic logic, but still 

less than classical logic, and is at least as strong as the logic of constant domains. 

However the properties of interest are affected by the fact that we are interested in 

only a fragment of first-order logic - namely the Dmod  and Gmod  formulae, although 

it is desirable to extend this fragment to include DHHF and GHHF formulae. 

Looking at a restricted class of formulae means that the possible worlds need 

not necessarily have a linear relation between them, as is suggested by ic. The 

Kripke-like model seems to be the best way to investigate I', as it is relatively 

well understood. One problem with the proof theory outlined above is that it is 

obviously hacked to derive the required results, rather than inherently natural. It 

is clearly desirable to find a more informative proof system. 

An interesting result reported in [34] says that for formulae which do not 

contain 3 or V, the logic of constant domains is equivalent to intuitionistic logic, 

and so the extensional interpretation of V is then a natural way to implement 

universal quantification. This also suggests that our choice of I' is a natural one. 

One way to think of the difference between I' and intuitionistic logic is to 

think of I' as preserving the constructive spirit of intuitionistic logic but using a 

slightly stronger proof system in order to allow a more uniform method of finding 

proofs, and so being more amenable to implementation. The main problem with 

intuitionistic logic for first-order hereditary Harrop formula is the treatment of the 

connectives on either side of D, as specified by the five equivalences below. 

D j (xG) , x(D D G) 
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D D (VxC) =p Vx(D D G) 

D D (C1  V C2) =P  (D C1) V (D D C2) 

DD (GI  AG2 ) 11(DJG1)A(DDC2 ) 

D (D' C) (DAY) DG 

As the first and third equivalences are not intuit ionistically valid, this uni-

formity is not maintained in intuitionistic logic. We may think of this uniform 

property as reflecting the underlying structure of the formulae involved. A uni-

form proof proceeds by decomposing the structure of the goal, and when the 

simplest structural component, i.e. an atom, is reached, the usual unification and 

backtracking methods may be used to generate another goal, which is then struc-

turally decomposed, and so on. Clearly this process relies on the fact that atomic 

goals may be easily handled, and hence uses a particularly restricted form of con-

sequent (i.e. the right hand side of ) in programs. In this way it is the structural 

properties of the formulae used as programs that leads to a proof system which is 

sufficiently straightforward that it may be interpreted directly as computation. 

As the result of section 6.1 suggest, the class of formulae used may have the 

same expressive power as a larger class of formulae, and so may be used as an 

implementation vehicle for the larger class of formulae. As mentioned earlier, we 

may allow C D D as a definite formula, as we know that we can re-write such 

a formula as a conjunction of definite formulae in which the conclusions of all 

implications are just atoms. In this way the smaller class of formulae represents 

a compromise between expressive power and feasibility, in that we can express 

the same information in a more restrictive language, which is all that is necessary 

to be implemented. This principle of maximality of information seems important 

when discussing the semantic nature of P. From programming principles, it seems 

intuitively clear that it is best if the ratio of information to structure is as large as 

possible. This not only leads to greater feasibility, but also presumably to greater 

clarity. 

This principle of maximality of information may also be used to explain the 

choice of formulae. Due to the fact that we may define D formulae in either of the 

following ways, 
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D:=AJVxDID1 AD2 IGJA 

D:=AIVxDDi AD2 ICDD 

if we were to allow 3xD and D1  V D2  as definite formulae, then all formulae of the 

positive fragment of first-order logic may be used as programs. However, neither of 

the formulae 3xD and D1  V D2  may be considered to convey a maximal amount of 

information, as if 3xD is true, there must be an instance t of x such that D[t/x] is 

true, and so if the programmer knew such a t, more information would be conveyed 

by the program D[t/x] than by the program 3xD. Similarly, in order that D1  V D2  

be true, it must be the case that either D1  or D2  is true, and so either of the latter 

two programs will convey more information than the former program. In this way 

hereditary Harrop formulae force the programmer to give the maximal amount of 

information. 

From the point of view of possible worlds, we may think of this property as 

minimising the necessity to examine future worlds in order to prove something 

about the current world. This is clear from the definitions of truth under ft= for 

D 	G, -A and VxG when compared to their counterparts in a Kripke model. The 

only time it is necessary to move to a world above the current one is in order to 

prove an implication, and the only world that is considered is the extension to the 

current world given by assuming the antecedent of the implication. In this way our 

philosophical thrust is somewhat different from that of intuitionistic logic. The 

Kripke model semantics is usually motivated by the idea of an ideal mathematician 

who increasingly builds up knowledge and who has unlimited resources. We may 

think of this ideal mathematician as answering the question "What is true?", 

and hence searching for truth in a timeless fashion. If a given statement involves 

examining several possible futures, then he, not unlike the approach of a brute 

force chess program, explores them all and comes to a conclusion. 

This is not really in keeping with the notion of programming, which is more 

concerned with finding out what is known now, rather than what is currently 

known and what will be discovered in the future. In contrast with the global 

approach of the ideal mathematician, who starts from no assumptions and aims 
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to explore all possible worlds eventually, we think of exploring the possible worlds 

from within, in that we envisage our explorer setting out from a given spot in the 

partial order and seeing what may be deduced from there. Hence our exploration 

is a part of the overall exploration, but is local rather than global in nature. 

The difference in perspective seems to be reflected in the difference between in-

tuitionistic logic and the intermediate logic I'. In the former case, we are concerned 

with a particular logical system, and wish to explore a variety of possibilities. In 

the latter case, we are concerned with a particular class of formulae, and we are 

thus able to come to stronger conclusions than is possible in intuitionistic logic. 

We do not wish to consider all possible models, but generally only the models of a 

particular program. In this way we are generally more interested in consequence 

in I' than theoremhood in I', and as such we are able to use a more interesting 

model theory than is given by related intermediate logics such as ic. Overall, the 

fact that we have a narrower motivation than that of intuitionistic logic means 

that we can derive appropriately stronger results. 



Chapter 7 

Meta-programming Features of Hereditary 
Harrop Formulae 

In this chapter we use some results from the previous chapter to allow memoisation 

to take place for a large class of programs. Due to the kind of formulae needed to 

memoise goals, this leads to a natural separation into an object level and a meta-

level. This separation may be used for several common programming tasks, and 

seems to be a natural way to explore memoisation properties. We also disçiss the 

possibilities for extending memoisation to full first-order hereditary Harrop formu-. 

lae, which would allow a greater degree of flexibility at the object level. Another 

issue is the use of implication in the bodies of clauses as a meta-programming 

device. Whilst there are many meta-programming tasks which require the use of 

programs as objects, and are hence necessarily higher-order, there are some which 

may be performed in a first-order framework. We give several examples of how 

this may done. 

7.1 Memoisation Properties 

In chapter 5 we gave a Kripke.-like model for DHHF_ programs, that is 

D:=AlVxDID1 AD2 tGJA 

G:=Al -'AlxGtVxGIGi AC2 IGi VG2 IDDG 

254 
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As has been mentioned above, the Kripke-like model naturally incorporates a 

notion of program development in the form of the reachability relation between 

worlds. We have seen how the reachability relation given above may be thought of 

as requiring that all extensions of the current program be consistent. We may use 

this notion to study the programming process, as we may consider the programmer 

to begin at the bottom world and work his way up to the final program via the 

access relation. In order to carry out such a process, the programmer needs some 

specification of the desired program's behaviour, which we may think of as some 

particular interpreted world, i.e. (S, F) where S is the set of atoms which the 

programmer desires to succeed, and F is the set of atoms which the programmer 

desires to fail. We can then think of the development /debugging process as finding 

a program P such that T"(I1)(P) = (8, F). Naturally one way to specify (5, F) 

is via an interpretation I and a program P such that 1(P) = (5, F). In this 

way our framework may be an interesting one in which to study formal program 

development. 

At the conclusion of the development of the program, so that we now have 

T(I1)(P) coinciding with the program's specification in the above sense, we may 

consider that the programmer passes the program to the machine so that deduc-

tions may be made from the knowledge encoded in the program. These deductions 

take the form of searching for uniform proofs of goal formulae, but it is interesting 

to note that a successful search for a uniform proof of a goal G may be thought 

of as converting C into a more definite statement. 

As discussed in chapter 6, we may think of this process as searching for in-

formation to complete our knowledge of the truth of the goal G. We saw that if 

(D, N) I- C, then in many cases the extra information that has been computed 

enables us to express the success form of G as a definite formula D. 1  We may 

then record this information as a larger program (DU {D'}, N) which has the same 

consequences as (D, N). This larger program may lead to shorter proofs than the 

'The exceptions are the cases where the failure of Proposition 6.1.4 in the presence 

of negation is relevant. 
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smaller one, as we may use previous computations in subsequent proofs, rather 

than recompute known results. Thus the larger program has the same meaning, 

but may be more efficient, as we can record the results of previous computations, 

rather than throwing them away. 

This technique is known as memoisation [72], and is known to be useful for 

avoiding redundant computation, as it allows known results to be stored for later 

use, thus reducing the amount of work that must be done. In our case, this consists 

of storing consequences of the program, so that the proof search process need not 

start from scratch each time that a new goal is presented. This is akin to the 

way that a mathematical theory is built up; one starts from the axioms of a given 

theory, and derives some basic results. Subsequent proofs then refer to this list 

of results, rather than resort to the axioms each time, and in so doing often re-

discovering known proofs. In this way the reasoning process produces an increasing 

set of consequences of the axioms, and later proofs refer to this set of consequences, 

rather than the original axioms alone. Some aspects of memoisation for Dmod 

programs were discussed in [77], where the emphasis was on the memoisation of 

atomic goals. 

We saw in the previous chapter how we may think of the computation process 

as removing disjunctions from goals and replacing existential quantifiers with zero 

or more universal quantifiers, which is very similar to the processes described in 

section 6.1 which exploit the structure of programs to show that disjunctions and 

existential quantifiers are not necessary. Thus the memoisation process seems to 

be a natural extension of this process of "tightening up" the program. 

However there are some technical difficulties with the answer form of the goal. 

As shown above, this is of the form V(G10) where G• is a 	formula 2  i.e. 

Gi  is of the form 

20f course, if the goal contains a negation, it may not have such an answer form, 

due to the failure of Proposition 6.1.4 for such goals. However, for the purposes of this 

discussion we will assume that such an answer form exists. 
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G:=Aj -'AIG1 AG2 IDJG 

D:=AIVXDID1 AD2 IGJA 

It is clear that V(G9) is very close to a D0bi t .. formula. That is, by proposition 

6.2.2 we have that defq(G10) is a Dmeta  formula and so we may memoise V(GO) by 

adding V(defq(GO)) to the program if this is a D0 b t _ formula, and by proposition 

6.2.1 this is equivalent to the original formula. 

There are two possibilities which may ensure that Vdefq(G10) is not such a 

formula: the possible occurrence in G1  of a subformula D' D G', and the possible 

occurrence of a negation in G1. The first possibility will require that universal 

quantifiers be allowed in goals, as whilst D D A is a Gobject _ formula, in order to 

view it as a D formula, we need to allow the possibility that D contains universal 

quantifiers. The second possibility will require that we treat negated literals in a 

symmetric way to positive literals (i.e. atoms). 

For example, if we find that the goal (Vxp(x)) D -'q succeeds, then we cannot 

store this formula as a clause due to the fact that the conclusion is not an atom, 

and the premise is not a G,, 0d_ formula. 

The first possibility destroys the property of the proof search process that 

disjunctions are not necessary in any answer form of a goal, as in a goal such as 

Vx even(x) V odd(x), the disjunction cannot be removed as it was previously. As 

discussed in section 2.4.3, the second possibility involves non-trivial questions of 

consistency. These considerations would tend to imply that there is no appropriate 

memoisation property for Dm0 d_ formulae. 

Fortunately, this does not seem to be the case. We imagine that the program-

mer desires the greatest amount of flexibility possible when writing programs, and 

so whilst any program he or she writes which contains existential quantifiers or 

disjunctions may be re-written as an operationally equivalent program which con-

tains neither connective, the programmer would presumably wish to use the more 

general form for writing programs and the more restrictive one for proving prop-

erties of programs and so forth, which may be easier in the more restrictive case. 

In this way there are two ways to view the program: the human view, in which we 
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desire as great a degree of generality and flexibility as possible, and the machine 

view, in which we desire as great a degree of specific information as possible. The 

precise level of generality desired in each view is not the issue here; what is impor-

tant is that the programmer and the machine tend to have two different attitudes 

towards the same program. 

These two different views may be characterised as an object level and a meta-

level. The programmer is generally concerned with the data which the program 

will manipulate, and so thinks of the program as a way to capture and describe 

the properties of the real objects of his or her concern. On the other hand, the 

machine sees the same program as an object which will require certain resources, 

so that the program itself, rather than the objects it manipulates, is the prime 

concern. 

As we envisage memoisation being performed by the system and not by the 

programmer, a natural way to resolve the above difficulties is to define object level 

programs as above, but to allow a more general class of programs as meta-level 

programs, i.e. Dmeta  formula, which may be defined as follows: 

D:=AJ —lAIVxDIDiAD2jGJAIGD - A 

G:=AI -'AIxGJVxG JG1  AG2  1G1  VG2  I'D D G 

Whilst we allow some potentially more troublesome programs at the meta-

level, memoising the object level programs will not "use" all the possibilities. One 

example of this is given by theorem 6.1.6, which states that existential quantifica-

tion and disjunction are redundant constructs in Dobject  programs. Also, the fact 

that we allow negations in the heads of clauses in meta-level programs may lead 

to inconsistent programs, but as we shall see, memoising object level programs 

can never lead to an inconsistency. Thus we wish any program which satisfies 

the appropriate definition to be an object level program, but we do not wish for a 

corresponding property for meta-level programs. This is due to the fact that meta-

level programs are constructed in a known way from object level programs. Hence, 

any meta-level program will satisfy the above definition, but we do not necessarily 

wish to consider anything which satisfies the definition as a meta-level program, 
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as we will only consider meta-level programs which arise from the memoisation of 

object level programs. So in this case the only genuine difference between the two 

classes of programs will be that in meta-level programs, universal quantifiers may 

appear in the body of clauses and negations may occur in the heads of clauses. 

The combination of these two properties will then allow us to consider the answer 

form V(GO) of a goal G as a program clause, and so we may consider that the 

program at the meta-level is now (D U {Vdefq((GO))}, N). 

This seems a natural way in which to view memoisation, in that the program 

has not changed, and so the programmer's view of it should be the same, whereas 

the machine's view has been extended, in that some of the consequences of the 

program have been calculated and then reflected back into the program. Hence the 

internal knowledge contained in the program remains the same; external knowledge 

about the program has been increased. 

For example, consider the program 

p(f(a)) : q 

r(f(a)) 

where r is completely defined. The goals (Vx p(x)) D q and —r(a) both succeed, 

and so the memoised meta-level program is 

p(f(a)) D q 

r(f(a)) 

(Vxp(x)) :: q 

-r(a) 

It is obvious that V(A) and V(-A) are both meta-level programs. Note also that 

for V(-A) to be an answer form, we must have that every instance of -'A succeeds, 

i.e. that every instance of A fails, and so there can be no inconsistency arising 

from memoising negated formulae in this way. Thus we do not allow any new 

form of negation at the meta-level; all we are concerned with here is memoising 

the object level program, and so whilst -IA may appear in a meta-level program, 
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we still require that negation only be applied to completely defined predicates. 

It is this restriction that allows the negations in the meta-level programs to be 

consistent, as then we may apply the NAF rule, and it is obvious that if A fails it 

is consistent to add -iA to the program. 

In this way we do not expect the programmer to use negated atoms as defi-

nite clauses, but that the memoisation procedure may, and so whilst we may not 

extend completely defined predicates positively, we may extend such predicates 

negatively, provided that the extension is consistent with the program. For exam-

ple, if P = (D, N) is the standard append program (so that append e den(N)), 

then we wish to be able to memoise \/x -append([], [] [x]), and so we desire that 

the program P' = (D U {Vx -'append([], []' [x])}, N) be accessible from P. Note 

that the goal append([], [], [1,2]) D G will cause no problems, because the program 

(D U {Vx-append([], [], [x])} U {append([], [], [1, 2])}, N) is not accessible from P', 

due to the fact that the larger program extends the positive definition of a com-

pletely defined predicate of F', and so append([], [], [1,2]) D G will fail. Thus the 

access relation between worlds needs only to look at the positive extensions to a 

completely defined predicate, as all negative extensions which are addedin the 

safe way described above are consequences of the program. 

Now that we have a precise description of how memoisation may be performed 

in this context, we may consider the computation process as a natural continuation 

of the programming process, which started from the empty program and proceeded 

to larger and larger worlds as the process went on. After this phase is concluded, 

we may consider the process of moving upwards in the cone of worlds to continue, 

as we may memoise each successful goal, and so move to successively larger worlds 

which are accessible from (and hence consistent with) the original program. Thus 

computation in this setting is envisaged in precisely the same way as the ideal 

mathematician of the intuitionistic school; a process of ongoing acquisition and 

assimilation of knowledge. 
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7.2 	Memoisation for Larger Classes of Programs 

The results of sections 6.1 and 6.2 depend crucially on the fact that we are using 

Gmod formulae and not GHHF formulae as goals. We may interpret these results as 

indicating that the above class of programs and goals is in some sense maximal, as 

any extension to the class of goals (other than extending the negative fragment) 

will lose the memoisation property. We cannot extend the above approach in the 

obvious way to the case when universal quantification is allowed in goals. The 

problem is that a universal quantifier may "block" the process of pushing the 

disjunctions outward. For example, consider the piogram below. 

(Vxp(x) V q(x)) D r 

There is no way to move the disjunction outside the universal quantification, 

as there was previously. 

An alternative conclusion is that the above class of programs needs,,._to be 

extended so that goals such as 

Vx even(x) V odd(x) 

may be memoised. This requires a significant extension to the class of programs 

defined above. 

Such an extension seems undesirable, as an essential property of uniform proofs 

is that they depend only on the structure of the goal, and so a large goal may be 

systematically broken down into smaller goals (possibly increasing the program 

along the way), resulting eventually in an atomic goal, which may then be matched 

against the head of a clause in the program, and a new goal generated. To allow 

the above goal as a clause would mean that this systematic method of searching 

for a proof of a goal would break down, in that the search for a proof of the goal 

even(0) V odd(0) may need to do more than search either for a proof of even(0) 

or for a proof of odd(0). It is not clear that such a search procedure still retains 
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the flavour of logic programming due to the fact that uniform proofs will not be 

complete for these programs. Whilst the approach of disjunctive databases has 

been along these lines [83,98], these are designed to deal with uncertain information 

rather than as a programming language per Se. In this way we need to keep our 

information certain in order to maintain the property that uniform proofs are 

complete. 

One important observation about clauses is that they represent information in 

a maximal way. For example, given the program 

even(0) 

Vs even(s) D even(.s2(x)) 

odd(s(0)) 

Vs odd(s) D odd(s2(x)) 

it is clear that even(s(0)) Vodd(s'(0)) succeeds for all ii > 0, but it is not possible 

to derive the above program from the statement Vs even(s) V odd(s). In this way 

the fact that the heads of clauses are just atoms allows us to build up to formulae 

of arbitrary depth, and so we can use the program to analyse goals of an arbitrary,  

size. If however the heads of the clauses were of some larger complexity, e.g. 

containing at least three logical connectives, then it is not clear how we could 

ascertain the truth or otherwise of an atomic goal. In this way clauses allow us, 

indeed require us, to express information in a manner which allows the greatest 

number of conclusions to be reached, and it is this maximality property which 

allows us to use uniform proofs, rather than arbitrary proofs. 

Thus in order to allow DHHF programs to have the memoisation property, we 

need to find some way of expressing goals such as Vs even(s) V odd(s) in a clausal 

form. 

One method of deriving results similar to those of section 6.1 in the presence of 

universal quantifiers in goals is to interpret universal and existential quantifiers as 

shorthands for an infinite conjunction or disjunction respectively. In this way the 

versions of the program which do not contain disjunctions or conjunctions need 
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not be finite. The infinitary version of the program is not particularly interesting 

in its own right, as we cannot hope to write it down explicitly, but it may serve as 

a useful way to manipulate the program. Hence, our interest in these constructs is 

restricted to those infinitary programs which are generated from finite first-order 

hereditary Harrop formula programs in a certain way, just our interest in meta-

level programs was restricted to the meta-level programs which were generated 

from memoisation of object level programs. 

Under this scheme a program such as 

(Vx p(x)) D q 

may be considered equivalent to 

(Ap(t)) : q  
tET 

and similarly a program 

3xp(x)q 

may be considered equivalent to 

(Vp(t)) D q  
tET 

which in turn is just 

tET 

Once we have replaced the quantifiers which occur negatively in the program 

(i.e. those which occur as part of a goal) by such infinitary constructs, we then 

need to remove the disjunctions from the program. This is a little more tricky 

than in the previous case, as we may need to use an infinite number of infinitary 

conjunctions or disjunctions. For example, consider the goal 

Vxyp(x,y) 
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We replace the universal quantifier by an infinite conjunction to get 

A 3Y At, y)) 
t€T 

so that we have 

A( 'V At ,  t' ))) 
tET VET 

Now in order to push the infinitary disjunction outside the conjunction, we 

require an infinite number of infinitary disjunctions, as we need to represent all 

mappings of T to itself, i.e. p(t, f(t)) for any such map f. This we need to allow 

not only the infinitary constructs, but to allow them to be used infinitely often. 

Hence, the size of the "formulae" involved is considerable, and so this approach, 

whilst retaining some attractive features, does not appear to be the best solution 

to the problem. 

An alternative solution is to use Skolem functions to push existential quantifi-

cations outwards, and so the problem with the interaction between universal and 

existential quantifiers may be resolved by using quantification over functions as 

well as variables. This allows us to use Skolem constants in the standard way, so 

that the goal 

Vx 3y  p(x;y) 

may be re-written as 

f Vx p(x, f(x)) 

This function f is considered semantic rather than syntactic, in the sense that f 

is not necessarily one of the functions named in the signature, but represents a 

functional relationship between terms in T, and so dealing with such a function 

will involve considering all mappings of T to itself. 

This requires an extension to the usual unification procedure, but such an 

extension should not incorporate any unusually difficult problems, as it is "essen-

tially" first-order [74]. 

This approach will not help us memoise goals such as 
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Vx even(x) V odd(x) 

and so one way to tackle the problem may be to combine the two approaches, 

so that the Skolem functions are used to replace existential quantifications within 

universal quantifications, and infinite disjunctions are used to replace disjunctions 

within universal quantifications. 

Note that the first approach may be considered as an explicit form of Skolemi-

sation, in that rather than giving a name to the semantic function mapping T to 

itself, we consider all possibilities for the value of such a function. This is really 

a different side of the same coin: in the implicit case, the work is done in the 

extension to the unification process; in the explicit case, the work is done in ma-

nipulating the program generated. Either way we need to consider the possible 

mappings of T to itself. 

7.3 Programming at the Meta-Level 

There has been much attention given recently to meta-programming issues in logic 

programming [2]. An obvious setting for meta-level logic programming is higher-

order logic. This has the natural advantage that all computation, at the object 

or meta-level, may be thought of as logic programming, rather than being logic 

programming at the object level, and some other programming paradigm at the 

meta-level, and possibly in a significantly different meta-language. Given that the 

meta-language itself may be interpreted as some logic, then we may claim that 

any features explained by the meta-language but not by the object level have been 

given a logical interpretation, thus giving a more appropriate semantics to a logic 

programming language. Better still, if the meta-language is a logic programming 

language, then we may easily program at the meta-level, with a natural and well-

understood relation to the object level. 

A computational form of a higher-order logic has been given in [79], and is based 

on a subset of higher-order intuitionistic logic known as higher-order hereditary 
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Harrop formulae. Some other approaches in this area may be found in [91,47,97, 

92,102]. There are some features of the meta-theory of Horn clauses which require 

the use of programs as first-class objects, and thus are necessarily higher-order. 

One such feature is that of program transformation, and has been studied in [44]. 

However, there are aspects which may be studied in a first-order setting, i.e. by 

using first-order hereditary Harrop formulae as a meta-language. 

An example of such an aspect was given by Gabbay et al. In [37] it is shown how 

some procedural control rules for Horn clauses may be given a logical explanation in 

N-Prolog, an extension of Prolog, which is similar to first-order hereditary Harrop 

formulae. We show how the same explanation will hold for first-order hereditary 

Harrop formulae. One example of such a control rule is the restriction that a goal 

may only use certain clauses in the program. As the meta level represents a subset 

of first-order intuitionistic logic, seemingly non-logical or procedural operations at 

the object level, such as adding a clause to a program or specifying that only 

certain clauses are to be used in the computation of a particular goal, may be 

given a logical interpretation at the meta level. 

Meta-theoretic aspects of logic programming have been considered byBowen 

and Kowalski [10], Bowen and Weinberg [111,- and Gallaire and Lasserre [40]. The 

approach by Bowen and Kowalski, extended by Bowen and Weinberg, is centred 

around a Demo predicate, which takes a program as its first argument and a goal 

as its second, and Demo(P, G) is true if the derivation of the goal G from the 

program P is successful. This approach is strictly higher-order, as it involves the 

use of programs as objects. However, we can achieve something equivalent in 

hereditary Harrop formulae by the use of implication. 

An interesting consequence of the results of chapter 6 is that we may use 

the techniques described above to achieve a similar function to that of the Demo 

3Note that for Horn clauses (i.e. DHorn  formulae), classical logic and intuitionistic 

logic coincide, so that the fact that we use intuitionistic logic and Bowen and Kowalski 

use classical logic makes no difference to this discussion. 
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predicate for a wider class of programs and goals than Horn clauses - namely Dmod 

programs and Gmød  goals. Now as we know for such programs that D F3  G if there 

is an answer form V(G10) such that efnf(dfnf(D)) F3  V(G10) and V(GO) F1  G (when 

considered as meta-level programs), if we can memoise the formula efnf(dfnf(D)) D 

V(GO), then this is effectively representing the Demo predicate in our language. 

We know that we can indeed memoise this formula, as we know that 

efnf(dfnf(D)) D V(GO) 

is intuitionistically equivalent to 

defp(efnf(dfnf(D))) D V(defq(G10))) 

and we may clearly write this formula as Dmeja  clause, as indicated by proposition 

6.2.2. 

Thus whilst our conception of object and meta level does not amalgamate the 

two, as is done in [10], it can achieve the same end. 

A further observation that may be made in the light of proposition 6.2.2, as 

Dmod  programs may be interpreted as meta-level goals and Gmod  answer forms may 

be interpreted as meta-level programs, is that we may represent the equivalence 

of object level programs as meta-level programs. For example, if (D1 , N) and 

(D2, N) are Dmod programs, then the formula D1  D D2  may be re-written as a 

Gmeta  formula provided that D2  may be re-written as a Gmeta  formula, and by 

proposition 6.2.2 we know that this is the case. Similarly, the same formula may 

be considered as a Dmeta  formula provided that we may re-write D1  as a Gmeta  

formula, which we know is possible, and we may then use the techniques suggested 

by the definition of defp to produce the desired Dmeta  formula. This means that 

we may ask D1  D D2  as a goal, and if it succeeds, we may state it as a program. 

In this way we have not only a method for determining the equivalence of object 

level programs, but also a way to record the equivalences so derived. Thus we may 

use our conception of object level and meta-level programs as a calculus for the 

determining the equivalence of object level programs. 
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For example, let D1  be 3xp(x) D q and D2  be p(a) D q. Then D1  D D2  is 

(xp(x) D q) D (p(a) D q), and it should be clear that this is a Gmeta  formula as 

D2  is a Gmeta  formula. Now D1  may be re-written as Vx(p(x) D q), which is a 

Gmeta  formula, and hence D1  D D2  is equivalent to a Dmta  formula. 

Another possibility is to represent the information that two Dmod programs 

prove the same goal. We may rewrite the formula (1)1  D C) D (D2  D C) as a Gmeta  

formula by first re-writing it as ((D1  D C) A D2) D C, and then re-writing the first 

occurrence of Gas (G1  V ... VG), so that we get ((D1  D (Gi  V ... VG))AD2 ) 

C, which is operationally equivalent to V(D1  D (C1  V . . . Ga)) A D2  D C. This is 

turn is operationally equivalent to V((V(D1 D C1)) A D2) D C, which is clearly 

equivalent to Vu1((D1 D C) D C), and finally we get the Gm ja  formula 

V(/\((defq(D1  D C1) A D2) D C)) 

It is difficult to see how the original formula can be re-written as a Dmeta  for-

mula due to the possibility that there may be existential quantifiers or disjunctions 

occurring positively in C. However, it is not hard to see that if V(G10) is an answer 

form of C, then we may re-write the following formula as a Dmeta  formula 

(D1 	V(G10)) (D2  D V(C10)) 

This is done by moving D2  to the left of the D as is done above, and then using 

the defp technique to derive a Dmeta  formula. 

This is perhaps not surprising, given that we know that the existential quan-

tifier and disjunction are redundant constructs in Dmod  programs, and so Dmod 

programs may be considered equivalent to Dob ect  programs. These in turn are 

a sub-class of the meta-level core, i.e. those formulae which are both meta-level 

programs and meta-level goals, which may be given as 

M:= A I -' A I VxM  J M1 A M2  I M1  D M2  

Thus we are effectively dealing with programs which are within the core, and 

hence there is great potential for reflecting information back into the program. 
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Gallaire and Lasserre's approach, like that of Bowen and Kowalski, was also 

strictly higher-order, and used a system with a similar structure to Horn clauses 

to specify metarules. We shall see how we can imitate some similar features in 

hereditary Harrop formulae, especially clause ordering. 

The work of Gabbay et al. had a slightly different motivation, which was to 

extend the formulae available to the programmer, in a manner similar to the 

extension provided by hereditary Harrop formulae. It was shown in [37] that this 

extension allowed for the description of control information, and so the language 

was used to express some of its own meta-theory. In our approach, all such control 

information would be encoded at the meta level, thus allowing the clear separation 

of the (object level) program and the control information, and yet retaining a 

natural connection between the object and meta-level. 

Gabbay and Reyle [37] have shown how the meta-language property of first-

order hereditary Harrop formulae extended to include negated atoms may be put 

to good effect. This revolves around the trick of "naming" clauses, so that we 

write 

(D D name) Dname 

rather than just D, and similarly we write 

(G D name) j name 

in place of C, where name does not appear anywhere in either D or G. We may 

use this device to control which clauses are used in the computation and which 

are not, so that we may specify that the computation for the goal C may only use 

the clause D1  and not the clause D2  by renaming both.clauses as 

(D1  D name1) D name1  

(D2  D name2) D name2  

and the goal C as (C D name,) D name1, where name1  and name2  do not appear 

anywhere in D1 , D2  or C. The idea is that due to the fact that the names are 
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new, the computation of G can only gain access to the clause D1  and not to D2. 

The first step is to add G D name1  to the program, so that we get 

G D name1  

(D1  D name1) D name1  

(D2  D name2 ) D name2  

and the goal is now name1. As neither name1  nor name2  appear in C, the second 

clause cannot lead to a success, and so the only way for name1  to succeed is to 

use the first clause above, so that the goal is now 

D name1  

Now the program becomes 

D1  

C D name1  

(D1  D name1),D name1  

(D2  D name2) j name2  

and the goal is name1. Now provided that we can prevent name1  from matching 

against the third clause above and thus looping, the only possible match is the 

second clause, so that the goal becomes G. As neither name1  nor name2  appear 

in D1 , D2  or G, only D1  can be used in the computation of C, and not D2. 

It is then shown in [37] how a simple loop detection mechanism may be pro-

vided, so that the above process may work. However, it is possible to provide the 

same facility in such a way that the loop detection is not required. If we name the 

two clauses in the following manner 

(D1 	fire) D load1  

(D2 	fire) D load2 
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and the goal as (G D fire) D load1, where fire, load1  and load2  do not appear 

anywhere in D1 , D2  or C, then we may achieve the same effect. The computation 

may be performed as follows: first we add G D fire to the program, giving us 

Gfire 

(D1  D fire) D load1  

(D2  D fire) D load2  

and the goal load1. The only clause that this can match is the second one, and so 

the new program is 

D1  

G  fire 

(D1  D fire) D load1  

(D2  D fire) D load2  

and the new goal is fire. This can only match the second clause, and so the next 

goal is G, thus allowing G only to use D1  and not D2, as none of fire, load1  and 

load2  can match anything in G. 

In this way we can get a more straightforward implementation of deterministic 

exclusion, i.e. using one given clause but not another during computation. A 

refinement of the above idea can give non-deterministic exclusion, where it does 

not matter which clause is used, provided that once some clause is chosen, the 

other clause cannot be used. All we need to do is to use the same name for both 

clauses, so that D1  and D2  become 

(D1  D fire) D load 

(D2  D fire) j load 

and C becomes (C D fire) D load. The computation proceeds by adding the clause 

C D fire to the program and the goal is then load. Now there are two clauses it 
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may match, and so the next goal is D, j fire, where i = 1 or 2, which involves 

adding Di  to the program, and the next goal is C. Hence, which clause is added 

may be decided arbitrarily, but once it is chosen, only that clause and not the 

other may be used in the computation of G. 

If we consider the order of the clauses in the program to be significant (as 

happens in Prolog systems), then, as shown in [37], we may use this device to 

arbitrarily re-order clauses in the program. This is done by encoding the desired 

order of the clauses in a goal so that the clauses are added in the desired order 

before the goal is asked. For example, if there are three clauses 

(D1  D fire1) D load1  

(D2  D fire2) j load2  

(D3  D fire3) D load3  

and the desired order is D2  followed by D3  followed by D1, then this order may 

be achieved if we use the goal 

(((((G D fire2) D load2) D fire3) D load3) D firer ) j load1  

and we assume that clauses are added to the beginning of the program. Thus 

we first load D1, then D3, and finally D2, thus giving the required order, before 

the computation of C. Thus we represent the six different object level programs 

(as the order of the clauses is significant here) by the same meta-level program, 

but with six different goals, one corresponding to each arrangement of the clauses. 

This is intuitively attractive, as the meta-level program is the same in each case, 

but the way it is used in computation varies, which seems to capture our intuitive 

notion of the difference between the six object level programs, i.e. that they all 

represent the same declarative information, but vary on the operational details. 

Another possible application of this separation into an object level program 

and a meta-level program is to deductive databases. A deductive database often 

contains a set of conditions which must be satisfied at all times in order to guar-

antee that the information represented in the database is consistent and does not 
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get garbled. Such conditions are known as integrity constraints, and are usually 

checked after each database update to ensure that the changes will not render the 

database useless or redundant. Hence, the constraints are not themselves part of 

the database, but conceptually separate, and we consider a change to the object 

level program, i.e. a database update, to be conceptually very different from a 

change to the integrity constraints. By considering the integrity constraints as 

a meta-level program in the above sense, we get a natural representation of a 

database and its associated information. 

The integrity constraints may be represented by Gmea  formulae, and the 

database by two D0b t _ formulae D1  and D21  where D1  is the database before 

the change and D2  is the database after the change. Checking the integrity con-

straints then reduces to checking whether D2  Ij C, which specifies a meta level 

computation. If this succeeds, then the changes are allowed and the database is 

now D2. If this fails, then the changes are not allowed and the database remains 

D1. 

For example, consider a database containing information on student enrol-

ments. The institution has a rule that no student may be enrolled in both the 

Science faculty and the Arts faculty. This rule may be expressed by the fact that' 

the goal 

x enrolled(x, science) A enrolled(x, arts) 

must fail, and so if D is the (object level) database, we may think of the meta-level 

view of the program as 

D A (x enrolled(x, science) A enrolled(x, arts)) ic_violation 

After making a change to D, we then ask the goal ic_violation of the meta-level 

program, and if it succeeds, then the change is disallowed. If it fails, then the 

change is allowed. This computation is done at the meta-level, as the integrity 

constraints are not able to be changed by the user, and so should not be visible 

at the object level. Hence the "internal", or machine view of the database is the 
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meta-level one, whilst the "external", or user's view of the database is the object 

level one. 

The point of these examples is to show that the separation of computation 

into an object level program and a meta-level program seems to be a natural one, 

and this difference in level may be naturally studied in the context of hereditary 

Harrop formulae. This approach may be used to show how some typical program-

ming techniques, such as memoisation and clause re-ordering, may be given an 

explanation in terms of logic, rather than purely operational notions. One may 

think of the completion of a program, as defined in chapter 3, as a meta-level pro-

gram corresponding to an object level program, and hence interpreting Negation 

as Failure in a logical context. 

Clearly this approach cannot be a full answer to the problems raised, such as 

the fact that A is not necessarily commutative, as the order in which the conjuncts 

are selected may affect termination properties. However, it does show that such 

properties are not as "extra-logical" as may be initially thought. Fuller and better 

answers are probable using a higher-order approach, but it is interesting to note 

that "meta" and "higher-order" need not be synonymous. Rather thanrnerely 

let the meta-theory of logic programming be expressed in the (usually) informal 

language used by computer scientists to communicate with one another, we in-

terpolate a third level between the object level and this informal meta-level. As 

formulae of this new level may be given a computational interpretation, we may 

think of this as an executable meta-language, in which programming and to some 

extent meta-programming may both be accommodated. 



Chapter 8 

Conclusion and Further Work 

We have seen how first-order hereditary Harrop formulae may be used as basis 

for logic programming via the paradigm of uniform proofs. This notion of proof 

requires that we use intuitionistic logic as the semantic basis for the language, and 

allows us to expand the class of formulae which may be used as programs and 

goals whilst retaining features which are natural to a logic programming system. 

We have shown how negation may be incorporated into this system, and have 

shown how the usual techniques may be interpreted in a constructive framework. 

We also saw how to give a extensional interpretation of universally quantified 

goals. 

The model theory most appropriate in this context seems to be Kripke or 

Kripke-like models, and so we have explored model-theoretic issues in regard to 

negation and universal quantification. A closer examination of the model theory 

has shown how we may exploit the structure of the formulae to explore issues 

of equivalence, and this in turn led us to intermediate logics. Finally, similar 

considerations of structure allowed us to explore some issues of memoisation and 

meta-programming. 

More work remains to be done, and below we briefly summarise the various 

possibilities. 

275 
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8.1 	Completions and Inconsistencies 

As mentioned in chapter 3, it is important to restrict the class of programs so that 

the completion of every program is consistent. The completion is an explicit form 

of dealing with NAF, in that an explicit formula PC  is given for which PC  F-1  A L 

if P F 3  -IA. As NAF is inherently implicit, in that the programmer only writes 

down the definition of success rather than the definition of success and failure, 

this approach requires some restriction to be placed on the class of programs. 

There are less restrictive assumptions than that of local stratification, which will 

presumably lead to similar result to those reported here; there have been some 

efforts in this direction given by Przymusinska and Przymusinski [93], as well as 

Sato [103] and Cavedon [14]. 

It seems difficult to define precisely which class of programs leads to consistent 

completions, other than that it must exclude programs such as -'p D p. Whilst 

the precise definition of this exact class may be possible, an easier approach may 

be to use a weaker logic, in which inconsistencies are less problematic, such as 

minimal logic. Inconsistency is more of a problem for the choice of logic than from 

programming considerations, and so this latter approach has some appeal. 

One such method of dealing with inconsistent completions was given by Gabbay 

[36], in which, in essence, the failure of an atom A is perceived as the modal 

statement -'DA, i.e. that it is not necessary that A be true. This view of NAF 

as a modal operator means that the completion of the program -A D A becomes 

A -+ -IDA, and so whilst being locally inconsistent (i.e. nothing sensible can be 

said about A), the completion of P U {-'A D Al is not empty. Indeed, it has 

the nice property that comp(P1  A P2) = comp(P1) U comp(P2). In this way the 

completion may be inspected piece by piece and packed together, and so may be 

a useful way of dealing with the completion of non-locally stratified programs. 
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8.2 	The Role of Induction 

As mentioned in chapter 2, an inductive method of establishing the truth of Vx p(x) 

from the program 

p(a) 

Vx p(x) D p(f(x)) 

where the signature of p is {a/O, f/1} will be useful in order to implement a 

stronger form of extensional universal quantification in goals. This may be more 

useful at the meta-level than the object level, due to the nice memoisation proper-

ties of Gmod formulae. One obvious area of further work is to define the inductive 

strategy in an operationally feasible way. The methods of [12,13] may be useful in 

this regard. 

Another application of such an induction strategy is to the problem of finding 

answer substitutions -for existentially quantified goals. The methods of chapter 4 

had some difficulties with programs such as the one above. However, the methods 

used to find a proof of Vx p(x) and of x-ip(x) are closely related, in that we may 

consider both as looking for instances of p(x) which either succeed or fail. Hence, 

if the search for a proof of p(c), where c is a meta-variable (i.e. an arbitrary term) 

succeeds, then Vx p(x) succeeds and 2x -p(x) fails, whereas if p(c) fails due to the 

fact that p(t) fails, then a correct answer substitution for3x-p(x) is x +- t. For 

example, given the program 

p(a) 

Vx p(x) D p(f(x)) 

and the signature {a/0,b/0,f/1}, then the goal Vx p(x) fails, as p(b) fails, and so 

3x-p(x) succeeds. 

Clearly such an inductive method will make use of implications in goals, as 

often we would wish to add p(c) to the program (where c is a new constant), and 
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see if p(f(c)) succeeds from this larger program. This seems to give an elegant 

connection to lemma 6.3.1, in that one may consider the inductive method as 

showing that the two programs 

p(a) 	 Vxp(x) 

Vxp(x) D p(f(x)) 

are operationally equivalent for the signature {a/0, f/1}, and in order so to do it 

is usually necessary to look at certain extensions of the longer program. In this 

way, if we find that a few choice mutual extensions of the programs prove the 

same select goals, then we may conclude that the two programs are operationally 

equivalent for a certain class of goals. Hence the inductive method gives us a way 

of checking whether two programs are equivalent for a given goal, rather than for 

all goals, which may be thought of as a localisation, or top-down implementation, 

of the ideas expressed in lemma 6.3.1. 

Our approach to equivalence may be strengthened by using canonical programs 

[50,8], so that there is a stronger notion of equivalence between programs. 1t may 

be interesting to combine the notion of a canonical program with that of a normal 

form, which may lead to an interesting notion of equivalence. 

Another possibility is to explore the relationship between negation and the efnf 

transformation more closely, so that a stronger result than Proposition 6.1.4 may 

be shown. 

8.3 Model Theory 

The relation between the Kripke-like model of chapter 5 and standard Kripke 

models may be worthy of deeper investigation. It has recently been shown how 

the model theory of [77] may be extended to hereditary Harrop formulae under 

the "new constant" interpretation of the universal quantifier [76], and that this 

is also an S4 model. An investigation along these lines would make it easier to 
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identify the role of negation in the intermediate logic I', as well as leading to a 

better understanding of I' itself. This will presumably help in settling conjecture 

6.5.12 about the equivalence of F-1  and I=G  on Gmod formulae. The notion of 

increasing knowledge which is inherent in Kripke models may be useful for formal 

development of logic programs, and so this approach to model theory may have 

some interesting connections to program specification. 

It is well-known that intuitionistic logic may be interpreted in a topological 

space [64,21], and so another natural direction to take is to give a topological 

interpretation of first-order hereditary Harrop formulae. Just as classical proposi-

tional calculus is sound and complete with respect to interpretations over Boolean 

algebras, one may define a Heyting algebra over a topological space for which intu-

itionistic propositional calculus is sound and complete. The same line of thought 

may be extended to intuitionistic predicate calculus, and so it may be interesting 

to explore the difference between the interpretations of full first-order logic and 

hereditary Harrop formulae in this context. 

Kripke models may be thought of as a special case, in that the topologies in-

volved are restricted to be partially ordered sets. Hence, a less restrictive topology 

may allow us to use a more semantically meaningful structure than that given by 

Herbrand interpretations. 

This may also be useful in order to characterise I' more naturally. 

Clearly there is also the problem of constructing the Ti" interpretation when 

universal quantifiers are allowed in goals (under the inductive interpretation). This 

is not as straightforward as it may appear, as it is not clear how to build the 

interpretation within w steps. Naturally it may be possible to do so by using 

larger ordinals. 

Another possibility is that a more detailed analysis of the operational method 

of proving Vx p(x) may lead to a more subtle construction. In the above example, 

it is clear that by using induction it is possible to derive the truth of Vxp(x) in 

only a finite number of steps, and so the construction process may imitate such a 

derivation. 
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As mentioned earlier, intuitionistic logic may not be the most natural way 

to deal with inconsistencies. An alternative approach may be to use relevant 

logic [3,22,99], in which inconsistencies remain localised. A step in this direction 

has already been taken by Fitting [31], although the programs involved did not 

contain any inconsistencies. Another possibility is that such a logic may be able 

to incorporate the features of the Kripke-like model, so that there is no change for 

consistent worlds, but still deal with inconsistencies in a desirable way. 

A related issue is the side condition on implicative goals, i.e. that a goal D D 

G only succeeds or fails when the addition of D to the program only extends 

the definition of predicates which cannot be completely defined. As we saw in 

chapter 5, this restriction is made principally for model-theoretic reasons. Whilst 

this ensures that the Kripke-like model is significantly simplified and this approach 

does concur with programming intuitions, it seems desirable to remove this side 

condition. Not only would this be a conservative extension of the work of Miller 

[77], unlike the version above, it would also simplify the notion of an 0-derivation. 

Whilst the notion of separating predicates into completely defined and otherwise 

may correspond to programming intuition, there do not seem to be any: '-Strong 

proof-theoretic arguments against allowing arbitrary extensions of the program to 

be used; if a more sophisticated model theory can be found to deal more cogently 

with the problem of extending completely defined predicates, then there would be 

no point in keeping the side condition. Hence, if we can find a natural way to deal 

with inconsistencies in the manner discussed above, we will presumably be able to 

lift this restriction. 

8.4 Meta- and Higher-Order Programming 

It was seen in chapter 7 how certain meta-programming tasks may be handled in 

a first-order setting. However, there is clearly a limit to what may be done along 

these lines compared to a higher-order approach. We have seen how attempting 

to get a memoisation property for first-order hereditary Harrop formulae leads 
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naturally into higher-order issues. Higher-order logic programming is an expanding 

area, and there are several papers in the literature which deal with various issues, 

and hereditary Harrop formulae have been shown to be particularly amenable to 

higher-order extensions [27,44,45,79,87,80]. It would be interesting to see how the 

results reported here in the first-order case may be generalised to the higher-order 

case. One may view the thrust of this thesis as exploring to some extent the limits 

of what may be achieved in a first-order framework; this will presumably lead to 

a clearer idea of the precise advantages and pitfalls of a higher-order approach to 

logic programming. 
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Appendix A 

Proof of the Disjunctive Identity 

Lemma A.O.i (C1  V C2 ) D A = (C1  D A) A (G2  D A) 

Proof: 

(=): From figure A—i it is clear that 

G, (C1  D A), (C, D A) I- j  A 

when either i = 1,j = 2 or i = 2,j = 1. Thus we may derive the up-

permost sequents in figure A-2, which in turn clearly shows the result. 

(=): It is clear that the uppermost sequents of figure A-3 may be derived, 

as it is obvious that 

Ci Ii  Ci  V C2  

A, G2  F-1  A 

where i = 1, 2. Hence, the result follows. 

0 

A,G,CJ DA —A 

Gi,GiDA,Gj DA )A 

Figure A—i: Useful subproof 
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A,G2  A—+A 	G2,G1  DA,G2 D A—A 
r 

G1  vG2,G1  D A, G2  D A —+ A 

Gi DA,G2 DA(G1VG2)DA 

(G1  DA)A(G2 JA)—*(G1VG2)A 
A-L 

Figure A-2: Proof that (G1  D A) A (G2  D A) H 1  (G1  V G2 ) D A 

G1 —G1 vG2  A,G1 —*A G2 —G1 vG2  A,G2 —A 
D-L 

G1, (G1  vG2) A -p A 	 G2, (GI  vG2) A -+ A 
(G I  VG2)DAG1 DA 	(G I  VC2)DAG2 DA 

A-R (GI  VG2)DA—(G1  DA)A(G2 A) 

Figure A-3: Proof that (C1  VG2) D A H 1  (C1  D A) A (G2  D A) 


