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“For every complex problem there is a solution that is simple, neat, and wrong.”

H. L. Mencken



Abstract

Of central importance in the dissection of the components that govern complex traits is un-
derstanding the architecture of natural genetic variation. Genetic interaction, or epistasis,
constitutes one aspect of this, but epistatic analysis has been largely avoided in genome wide
association studies because of statistical and computational difficulties. This thesis explores
both issues in the context of two-locus interactions.

Initially, through simulation and deterministic calculations it was demonstrated that not only
can epistasis maintain deleterious mutations at intermediate frequencies when under selection,
but that it may also have a role in the maintenance of additive variance. Based on the epistatic
patterns that are evolutionarily persistent, and the frequencies at which they are maintained, it
was shown that exhaustive two dimensional search strategies are the most powerful approaches
for uncovering both additive variance and the other genetic variance components that are co-
precipitated.

However, while these simulations demonstrate encouraging statistical benefits, two dimensional
searches are often computationally prohibitive, particularly with the marker densities and sam-
ple sizes that are typical of genome wide association studies. To address this issue different
software implementations were developed to parallelise the two dimensional triangular search
grid across various types of high performance computing hardware. Of these, particularly ef-
fective was using the massively-multi-core architecture of consumer level graphics cards. While
the performance will continue to improve as hardware improves, at the time of testing the speed
was 2-3 orders of magnitude faster than CPU based software solutions that are in current use.

Not only does this software enable epistatic scans to be performed routinely at minimal cost,
but it is now feasible to empirically explore the false discovery rates introduced by the high
dimensionality of multiple testing. Through permutation analysis it was shown that the sig-
nificance threshold for epistatic searches is a function of both marker density and population
sample size, and that because of the correlation structure that exists between tests the threshold
estimates currently used are overly stringent.

Although the relaxed threshold estimates constitute an improvement in the power of two dimen-
sional searches, detection is still most likely limited to relatively large genetic effects. Through
direct calculation it was shown that, in contrast to the additive case where the decay of estimated
genetic variance was proportional to falling linkage disequilibrium between causal variants and
observed markers, for epistasis this decay was exponential. One way to rescue poorly captured
causal variants is to parameterise association tests using haplotypes rather than single markers.
A novel statistical method that uses a regularised parameter selection procedure on two locus
haplotypes was developed, and through extensive simulations it can be shown that it delivers a
substantial gain in power over single marker based tests.

Ultimately, this thesis seeks to demonstrate that many of the obstacles in epistatic analysis

can be ameliorated, and with the current abundance of genomic data gathered by the scientific

community direct search may be a viable method to qualify the importance of epistasis.
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Chapter 1

General introduction

A fundamental objective of genetics is to forge a connection between phenotype and

genotype. But with the complexity that ubiquitously governs biological systems this can

be a daunting task, and it could be argued that the biggest failure in biological sciences

over the past decade has been in the mapping of phenotypic variation to variation in

the genome. This has prompted much debate regarding the fundamental nature of

genetic variation, a question of crucial importance to the advancement of many fields

such as medicine, animal and crop breeding, and evolutionary theory. This thesis seeks

to develop novel methods for the detection of genetic variation that impact phenotypes

with a particular emphasis on mapping interacting genetic factors. In this chapter the

current understanding of the architecture of genetic variation is discussed, following a

brief introduction of the historical paths that lead to today’s practices in quantitative

genetics.

1.1 Historical foundations

Prior to the rediscovery of Mendel’s theory of genetic inheritance in 1900, there ex-

isted a division in the scientific community regarding the nature of evolution and the

1



General introduction 2

mechanisms that governed natural variation. Darwin’s The Origin of Species (1859) is

celebrated today for first describing the mode of evolution in terms of natural selection,

and creating the framework for the “gradualist” school of thought, but it was not im-

mediately accepted, and the emergence of several other major concepts were required

before these ideas would eventually become solvent. At the time the alternative view

was that evolutionary changes occurred not continuously but in discrete steps, and this

“saltatory” theory was often the more popular school of thought. Perhaps the biggest

scientific criticism of gradualism was that it was incompatible with the then prevailing

understanding of the transmission of hereditary material, blending inheritance. Under

the theory of blending the variance of a character would disappear by a factor of a half

each generation thus eventually insufficient variation would remain for gradual selection

to act upon. In contrast, proponents of saltation were largely supported by cases from

botanists and horticulturalists who often observed the sudden origin of deviant types

in crops in agriculture.

Post rediscovery of Mendelism, for a time the acrimony actually only deepened. The

particulate nature of genetic material was intuitively appealing to the saltatory per-

spective, and for a time it was a common position to believe that Mendelism had

destroyed Darwinism. It was not until the mathematical treatment of Mendelian in-

heritance in populations was developed through the Hardy-Weinberg principle in 1908

(Hardy, 1908; Weinberg, 1908) that the theories of Mendelism and Darwinism were

reconciled. It demonstrated that excluding any external forces, namely selection, the

transmission of genetic variance through generations was shown to be stable - that is

to say that the expected frequencies of neutral alleles for the next generation are equal

to the observed frequencies in the current generation. As such, the criticisms applied

to Darwinism in the context of blending inheritance were no longer pertinent under

Mendelian inheritance, because genetic variation will be maintained. Buttressing the

gradualism paradigm was the proposal of the infinitesimal paradigm (Fisher, 1918),

which modelled adaptation on the assumption that mutations with large effects would
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likely be deleterious and thus rapidly purged from the population, and that adaptation

occurred through the action of innumerable minute effects.

Still today the maintenance of genetic variation is not fully understood, and the evolu-

tionary perspective of saltation, now more commonly referred to as punctuated equilib-

rium, has not been resolved. But the generic mechanism that underlies the relationship

between genotype and phenotype had been established fairly convincingly and the foun-

dations for population and quantitative genetics had been laid. The next section will

follow the progress that has led from identifying the first molecular markers for genetic

variation, to the situation today where whole genomes are being sequenced.

1.2 Genetic variation

The human genome comprises approximately three billion base pairs but surprisingly,

with current predictions for the total number of genes at 20-25 thousand, only 1.5% of

this encodes for proteins (International Human Genome Sequencing Consortium, 2004).

Estimates for the total proportion of the genome that is functional vary, but generally

remain extremely low with comparative analysis suggesting a range of only 2.5 - 5%

(Chiaromonte et al., 2003; Lunter et al., 2006; Waterston et al., 2002). These numbers

are remarkably small, yet paradoxically they do in many ways suggest that the genome

is actually more complex than was previously imagined. For example, if there were a

much higher number of protein coding genes, and a large proportion of the genome was

functional then one could propose a granularity in the operations of each component

(Piatigorsky and Wistow, 1989). But in reality proteins seldom act independently, and

many proteins are members of several independent complexes, playing different roles in

separate aspects of the cell machinery (Jeffery, 2003), under the governance of multiple

levels of spacial and temporal regulation. And so although the exact number of proteins

is small, combinatorially the number of potential complexes is astronomically large. It

is the ubiquity of protein interaction that belies the complexity of the genome.
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The impact of mutation on such a system is widely studied, but the architecture of

genetic variation in natural populations is largely unknown. With advances in geno-

typing technology it is now becoming possible to tackle such questions. Each individual

gains approximately 60 de novo mutations through meiosis in both parents (Conrad

et al., 2011), and on average 1 in every 1200 base pairs will differ between any two

individuals (Sachidanandam et al., 2001). Indeed, given the mutation rate of ∼ 10−9

it is expected that each generation a mutation at every base pair occurs somewhere in

the human population, and over evolutionary time the forces of selection and neutral

drift cause some of these mutations to become common polymorphisms in the popu-

lation. The ability to measure genetic variation is of great utility to many aspects of

biology but perhaps the most common goal is to understand phenotypic variation in

terms of genetic mutation. Because of the potential medical and agricultural benefits

that can be gained from this endeavour there has been over the last few decades a rapid

development in the technology.

An important conceptual addition to simple Mendelian inheritance is linkage. For-

malised by Morgan (1911) following the initial discoveries by Bateson (1905) and Pun-

nett (1905), linkage is the tendency for certain characteristics to be inherited together

more frequently than by chance due to limited recombination between them. This can

be defined probabilistically as a function of the number of recombination events that

are expected to occur between two positions on a chromosome based on the distance

separating them. An early example was presented in 1923 where it was shown that size

differences in Phaseolus vulgaris could be predicted by their seed coat pigmentation

(Sax, 1923). While discoveries of linkage between molecular variation and phenotypic

variation continued for some time (e.g. colour-blindness and haemophilia (Bell and

Haldane, 1937), blood types and disease (Lawler and Renwick, 1959)), perhaps the first

attempts to link genetic variation with phenotypes were through karyotype analysis,

the direct observation of chromosomal abnormalities through the use of staining tech-

niques. Though low resolution, it is possible to identify large structural abnormalities
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given a reference set of natural chromosomes. The first successful case of mapping a

human disease phenotype to alterations in genetic material was presented by Nowell

and Hungerford (1960). Known as the “Philadelpha chromosome”, it was found that

a reciprocal translocation between chromosome 9 and 22 was associated with chronic

myelogenous leukemia. Subsequently there have been many structural chromosomal

abnormalities or aneuploidies discovered to be associated with various diseases, and

through identification and study of the interrupted genes advancements have been made

in the understanding of the aetiology of these conditions.

The journey toward a finer resolution of genetic variation continued with the discovery

and isolation of restriction endonucleases, enzymes that cleave DNA at specific short

sequences (Danna and Nathans, 1971). Because inevitably there will be variation in

the positions of the restriction sites in different individuals, the resulting digested DNA

fragments will also vary in length. Through gel electrophoresis these differences can be

characterised, and linkage between a restriction fragment length polymorphism (RFLP)

and a phenotype was first demonstrated by Grodzicker et al. (1974). Subsequently their

usage increased and by 1980 a putative genetic map of the human genome had been

produced (Botstein et al., 1980). The eventual first genome-wide search for quantitative

trait loci (QTL) in experimental organisms (Paterson et al., 1988) heralded a significant

conceptual breakthrough in detecting regions of the genome that may be involved in the

genetic control of variation without any prior knowledge of where to begin the search.

Many other methods also exist and have been used effectively, but the next major

breakthrough in assaying variation in populations was enabled by combining discoveries

from several areas: the ability to amplify DNA polymerase chain reaction (PCR), the

discovery of evolutionarily conserved sets of PCR primers, the routine sequencing of

short regions of DNA, and the discovery of microsatellite variation. Microsatellites are

short (1-6 base pairs), repeating sequences of DNA that encapsulate many desirable

features of a genetic marker. Their utility comes from the combination of many features:
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they are co-dominant, usually selectively neutral and widely distributed throughout the

genome, highly informative because each locus can have multiple alleles, and relatively

cost effective (Jarne and Lagoda, 1996; Sunnucks, 2000). Genetic maps composed of

microsatellites were developed for many species, including humans (Weissenbach, 1993)

and several livestock species (Groenen et al., 1998; Rohrer et al., 1994; Womack, 1993).

Through least squares adaptations (Haley and Knott, 1992; Haley et al., 1994) of the

original maximum likelihood formulation for linkage analysis (Lander and Botstein,

1989) it became computationally tractable to construct more sophisticated QTL models

in a multiple regression framework.

Today the principle measurement of variation is through biallelic markers known as sin-

gle nucleotide polymorphisms (SNPs). Although individually microsatellites are more

informative by virtue of being multiallelic, SNPs are vastly more abundant, and so

along with providing more thorough coverage of the genome, an important requirement

in non-structured populations, when used as a set of features they are significantly more

informative also. The Human HapMap project was created with the goal of creating a

catalogue of human genetic variation from four populations with African, Asian, and

European ancestry, with a view to understanding the distribution of common poly-

morphisms between and within populations, and how they are involved in phenotypic

variation (The International Hapmap Consortium, 2005). The 1000 genomes project

has a similar goal (The 1000 Genomes Project Consortium, 2010), and together with

the advent of high-throughput genotyping and sequencing techniques a very detailed

index of human genetic variation is being compiled.

Because of the abundance of SNPs in the genome and the rapidly growing availability of

this type of data, they form the focus of the studies in this thesis. But it should be noted

that other types of sequence variation are coming under scrutiny also. For example,

copy number variants (CNVs) - alterations in the number of copies of large sections of

DNA ranging from 1 kilobase (kb, 1000 nucleotide bases) to many megabases (mb, 1
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million nucleotide bases) - are estimated to account for 12% of the genome (Armengol

et al., 2009; McCarroll, 2010). And to complicate things further, genetic variation

can exist beyond alterations in the actual DNA sequence, for example methylation of

cytosines has an inhibitory effect on transcription and these molecular modifications

can be inherited through the germline (genetic imprinting) (Danchin et al., 2011; Heard

et al., 2010; Petronis, 2010).

We are beginning to construct an image of a highly variable genetic code, and although

cheap sequencing of entire genomes is fast becoming a reality it should be noted that

while this has the potential to accurately survey all variation in one dimension, DNA

exists in a complex three dimensional structure (Duan et al., 2010) that suffers from

somatic mutations and modifications over time (Pleasance et al., 2010). Nevertheless,

with the availability of whole sequence data for large samples of the population immi-

nent, a realisation that has been a century in the waiting, this is an exhilarating time

in genetics. The statistical techniques and experimental designs have changed with the

evolution of the data, and will be required to change again, and the next section will

introduce some of these concepts.

1.3 Phenotypic variation

1.3.1 Simple Mendelian traits

Traditionally, structured populations have been used in the mapping of causal genetic

variants to phenotypes. In the case of experimental organisms it is possible to cre-

ate genetically uniform strains in order to fix for particular characteristics, and then

through cross breeding one can begin to search for putative regions of interest through

linkage analysis. The same principle applies in non-experimental organisms where the

expected genetic correlations of relatives can be exploited as a contrast to the weaker

between-family relationships. Briefly, linkage analysis predicates upon the differences
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in covariances between the identity-by-decent (IBD) statuses of candidate loci, and

depends on these types of population structures to maintain linkage between causal

variants and observed markers, the co-segregation being liable to breakdown after rel-

atively few meioses. Thousands of such studies have been performed over the last few

decades and they are particularly effective at identifying the underlying polymorphisms

involved in “simple Mendelian traits” - phenotypes that, through pedigree studies, can

be shown to depend only on a single genetic factor.

There have been many notable successes in human studies using linkage analysis, the

first of which occurring even before the commencement of the Human Genome Project.

Cystic Fibrosis was known to be a recessive autosomal disease and through linkage

analysis a region of chromosome 7 was identified as the causative locus (Kerem et al.,

1989). Through chromosome walking (Rommens et al., 1989) and positional cloning

(Riordan et al., 1989) the protein that is mutated in patients, dubbed CFTR (cystic

fibrosis transmembrane regulator), was discovered. While this was a huge milestone in

genetics, it should be noted that to call the genetic variation underlying cystic fibrosis

“simple” is somewhat misleading from both a genetic and a phenotypic perspective.

For instance, by 2002 more than 1000 causative mutations within this gene had been

identified in different patients (Salvatore et al., 2002), and the variation in the severity

of the disease amongst patients can range from male infertility being the only symptom

to multiple organ disruption, and from survival for many decades to death within the

first 10 years. The extent of this variation cannot simply be explained by the CFTR

mutant type, and while affected siblings tend to exhibit similar pancreatic symptoms

(Corey et al., 1989) the severity of pulmonary disease is highly variable (Kerem et al.,

1990). Multiple genetic factors in addition to environmental factors are likely to be

involved. For example susceptibility to infection, itself under strong genetic control, has

been shown to have an important role in pulmonary status of cystic fibrosis patients,

and so while the broad phenotype is simple the prediction of severity and prognosis is

potentially highly complex.
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1.3.2 Complex traits

Indeed, such complexities within simple Mendelian diseases are the rule rather than

the exception (Summers, 1996). Along with severity and prognosis, other variable fac-

tors can include penetrance, pleiotropy, and environmental specificity. Most commonly

these attributes are outside the control of the major disease locus, and may comprise

multiple genetic and environmental factors. Indeed it may be thought curious to dis-

cover an important phenotype to be under the control of a single locus because they

should be eradicated through purifying selection. In the cases where they are found,

one example being CFTR mutants in cystic fibrosis, the polymorphism is likely to be

maintained through some form of balancing selection, such as heterozygote advantage

(Jorde and Lathrop, 1988). Most major diseases in developed nations are complex

in nature, as is the case for many phenotypes important in agriculture, and therefore

with a large number of factors contributing to the variance, each effect will be small.

As demonstrated by Risch and Merikangas (1996), linkage studies are poorly suited

to detecting small effects, and a more powerful approach is to use association analy-

sis. Rather than depending on linkage, the dynamic model of co-segregation between

markers and QTLs, association studies exploit linkage disequilibrium (LD) between ob-

served markers and causal variants on ancestral haplotypes. LD is the assortment of

alleles in combinations that are more or less frequent than would be expected based

on population frequencies of the individual alleles. In the case that a marker is in high

LD with a causal variant then the allelic or genotypic effect will be similar, and so the

statistical framework for such analyses is fairly straightforward. Ostensibly it is based

upon testing for differences in the effects on the trait for different genotype classes,

with the implicit assumption being that the marker under test is either the causal locus

itself, or else is very close by such that the effect estimate is a good approximation of

the true effect.
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While conferring greater statistical power to detect small effects in structured popula-

tions, in conjunction with the rapidly growing density of population SNP data, associ-

ation style statistical approaches can be applied to studies where the population based

samples are largely unstructured. In unstructured populations there are likely to have

been a high number of meioses since the time of the last common ancestor between any

two individuals, so long range associations are disrupted and the LD will decay rapidly

as markers become more distant from one another. To be sure of capturing a sufficiently

large proportion of the population’s genetic variation it is necessary to have a very dense

array of markers. Typically 300,000 markers and above are used in human genome wide

association studies (GWAS) (although fewer are sufficient for other species with more

recent population bottlenecks), giving an average physical distance of 10kb or less be-

tween markers. But of importance is not only SNP density, but allelic spectra also.

The distribution of allele frequencies in natural populations is typically ‘U’ distributed,

there being many more rare variants than there are common ones. However, the princi-

ple under which GWAS operates follows the common disease-common variant (CDCV)

hypothesis. CDCV was proposed (Lander, 1996) following the observation that several

common polymorphisms (> 5% frequency in the population) were already known to

confer increased risk for complex phenotypes such as Alzheimer’s disease (Apolipopro-

tein E, Strittmatter et al. (1993)), heart disease (ACE, Kreutz et al. (1995)), and HIV

susceptibility (CKR-5, Liu et al. (1996)). In addition there were practical reasons for

concentrating on common variation in the first instance. It is much easier to catalogue

common polymorphisms in the population through resequencing as it requires a much

smaller sample, and from a statistical perspective LD between markers is maximised

when the frequencies of the two markers are identical (Schork et al., 2000). So in effect,

when SNP genotyping arrays began emerging with a near-uniform distribution of minor

allele frequencies, typically ranging from 0.05 - 0.5, an implicit prior assumption was

being imposed on GWAS that the causal variants for the phenotype under study were

also common.
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1.4 Partitioning the variance

1.4.1 Heritability estimation

Over the last decade hundreds of large scale GWASs have been performed (Hindorff

et al., 2010), and thousands of variants have been discovered for a plethora of com-

plex human traits. However the proportion of the variation that is predicted to exist

in these traits is typically dramatically higher than the proportion explained by the

mapped variants (Maher, 2008). Although the focus of this thesis is on the detection of

genetic interactions, and their potential impact on the problem of the so-called ‘missing

heritability’ is discussed in detail in chapter 2, other factors may also play an important

role, and these are discussed below.

The underlying premise for any GWAS is that contributing to the variance of the phe-

notype are both genetic and non-genetic factors, and as one of the general aims is to

map the variance that comprise the genetic component it is therefore necessary to esti-

mate the proportion of the phenotypic variance that is genetic. The simplest approach

to calculate the total genetic variance as a proportion of the total phenotypic variation,

or the broad-sense heritability (H2), is often performed in plant studies (Nordborg and

Weigel, 2008; Soleri and Smith, 2002; Xu et al., 2009). Here several different varieties

of a species are cloned, the within variety variance of the trait becomes an estimate

of the environmental contribution and the between variety variance is considered the

proportion of the variance that is genetic. However, there are two major problems with

this type of study. Firstly, clonal experiments cannot be performed easily for most an-

imal species; and secondly, the broad sense heritability when estimated in this manner

provides no clues as to the mode of action of the genetic factors. For any SNP with

an effect on a trait the mode of action can be parameterised into two components: the

additive allelic effect a, classically defined as half the difference between the opposing

homozygotes; and the dominance interaction d, or the within locus interaction between
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alleles, calculated as the deviation from the mid-homozygote value. The additive vari-

ance of the locus can be estimated as

σ2
A = 2pq[a+ d(q − p)]2 (1.1)

and the dominance variance

σ2
D = (2pqd)2 (1.2)

where p and q = 1−p are the frequencies of the two alleles. Consequently, the estimated

variance of a locus is heavily dependent upon the frequencies in the population, as is

the estimated ratio of additive to dominance variance.

Further complications arise when considering the joint effect of two or more loci, in

the context that the sum of the marginal variances of each locus may be less than the

estimate of the total genetic effect of all loci when considered jointly. This synergistic

relationship is known as epistasis, or gene interaction, and it typically arises when the

phenotype manifested by a locus depends on the genotypes at other loci (Carlborg and

Haley, 2004). Extending the parameterisation to explicitly include epistatic compo-

nents, rather than treating all non-marginal effects as a single residual genetic compo-

nent, can be performed directly. Kempthorne (1954) introduced a partitioning method

for a two locus bi-allelic system comprising 4 interaction terms, additive × additive,

additive×dominance, dominance×additive and dominance×dominance, in addition

to the 4 marginal effects at two loci described above, whereby each interaction term

was the deviation from the underlying marginal terms. For example, the estimated

additive× dominance effect would be the deviation from the joint effects of the allelic

effect at the first locus and the genotypic effect at the second. An alternative early

parameterisation modelled the 8 genetic components as orthogonal contrasts of the

genotypic values (Cockerham, 1954). Both assumed equal allele frequencies (e.g. from

an F2 population), Hardy-Weinberg equilibrium, and linkage equilibrium between inter-

acting loci. By creating an easily interpretable statistical framework for the estimation
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of the synergy that might exist between loci it became possible to begin characterising

the types of genetic effects that exist in nature.

As experiment design has developed so have the statistical frameworks for epistasis.

Kimura (1965) created the first parameterisation that orthogonally estimated the ad-

ditive variance in a two locus model when the markers were in LD, and Mao et al.

(2006) extended the Kempthorne parameterisation to account for both LD and Hardy-

Weinberg disequilibrium. Another important revision was the NOIA parameterisation

(natural and orthogonal interactions) (Alvarez-Castro et al., 2008; Alvarez-Castro and

Carlborg, 2007), which created a general extension of the Cockerham model to be or-

thogonal at all frequencies and under Hardy-Weinberg disequilibrium for any number

of interacting loci. These important developments have made the estimation of genetic

effects in a GWAS context statistically soluble, albeit extremely computationally diffi-

cult. However the problem of partitioning the total genetic variance in a trait remains

problematic.

There are several methods in general use that estimate the genetic component of a phe-

notype, but crucially they are predicated upon the estimation of additive variance only,

or the narrow-sense heritability (h2). This is true for several reasons. From a theoreti-

cal point of view it is common for quantitative trait values of offspring to correlate with

the mid-parent mean (Fisher, 1918). From a practical point of view, estimating the

additive variance is relatively easy in non-clonal populations, and in particular when

pedigree information is available. The covariance between two individuals is

cov(x, y) = Θx,yσ
2
A + ∆x,yσ

2
D +

Θ2
x,yσ

2
AA + Θx,y∆x,yσ

2
AD + ∆2

x,yσ
2
DD +

σ2
C (1.3)

where Θ is the coefficient of kinship - the probability that an allele chosen at random

will be IBD between x and y, and ∆ is the coefficient of fraternity - the probability
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of both alleles at a random locus being IBD (Fisher, 1918; Jacquard, 1974). In the

equation above the first line represents the marginal components, the second line the

interaction terms and the third line the common environment between x and y. In

human genetics the classic method of estimating σ2
A is through twin studies. Briefly,

monozygotic (MZ) twins are expected to be genetically identical, so they will share

the same additive and dominance variance, and a very similar common environment.

Dizygotic (DZ) twins on the other hand will on average share only 50% of alleles and

25% of genotypes. Assuming the classical additive model and ignoring other variance

components it is expected that the correlation of phenotypes between MZ twins will be

twice that of DZ twins. Many twin studies have been performed that indeed confirm

this model, but it may be premature to discount other forms of variances. For example

(ignoring epistatic components for simplicity) through the following equation

covDZ(x, y)

covMZ(x, y)
=

1
2σ

2
A

covMZ(x, y)
+

1
4σ

2
D

covMZ(x, y)
+

σ2
C

covMZ(x, y)
(1.4)

one would expect the ratio to equal 0.5 if the genetic variance was entirely additive.

However, if the ratio is greater than 0.5, then there would be the expectation of a

shared environment component, but if less than 0.5 then one might expect dominance

effects (and/or other non-additive genetic components) contributing to the phenotypic

variance. If both non-additive genetic components and σ2
C contribute to the trait then

the ratio will tend toward 0.5, and one might incorrectly conclude that the genetic af-

fect is purely additive. So heritability estimates performed through twin studies alone

can be criticised because estimating both σ2
D and σ2

C simultaneously is negatively con-

founded (Evans et al., 2002). Another criticism is that twins may differ from singletons,

so the estimation of genetic variance may not generalise to the population (Petterson

et al., 1993; Phillips, 1993; Record et al., 1970), but interestingly it has also been sug-

gested that such differences are eventually overcome after early development (Posthuma

et al., 2000), suggesting a mechanism of ‘canalisation’ during development (Wadding-

ton, 1942). In any event, although common practice, it is perhaps insufficient to base
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the estimate of additive variance on such studies alone, and it has been suggested that

if large pedigrees are available then using other types of relationships that will have

differing expected coefficients of variation for different components (Hill, 1982) may be

one way to tease apart the confounded factors (Haley and Last, 1981).

Yet even with more informative pedigree studies there are several factors that have the

propensity of resulting in biased overestimates of the additive genetic component. One

major effect that is extremely difficult to measure is gene × environment interaction

G × E. Statistically such factors result in heteroscedasticity because for example the

variance in one environment where the effect of some genetic factor is released will be

larger than in other environments where the effect may be masked. A related prob-

lem, GE correlation, occurs when groups of individuals with a certain genotype have

the tendency to segregate in similar environments. Naturally this causes an increased

resemblance amongst relatives and will inflate the estimate of genetic variation. Fi-

nally, statistical models for estimating heritability typically depend on the assumption

of random mating. However for many traits, particularly a problem in human stud-

ies more than controlled animal breeding, there is likely to be (positive) assortative

mating - the tendency for individuals to mate with those with a similar phenotype.

This causes an increase in homozygosity of the underlying genetic factors for the trait,

should they exist, and also causes directional pseudo-LD (Kimura, 1965). Both factors

lead to an increase in the additive variance as they increase the phenotypic correlation

between parents. Ostensibly, heritability estimates are a ratio of variances, and as such

the magnitude of effects are not considered. As genetic factors may have impacts in

one environment while being neutralised in others, it must be remembered that such

estimates are often highly subjective.
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1.4.2 The missing heritability

Ultimately, there are a myriad of complications in estimating the genetic variance of

a trait, and in decomposing the genetic variance. Many of these complications result

in an overestimate of the additive variance, and GWASs have been almost exclusively

performed under the assumption of a polygenic additive model. An alternative method

of estimating h2 is to use dense SNP information in unrelated populations. However,

with incomplete coverage of the genome this approach is liable to lead to an underesti-

mate of the total genetic variation as some proportion of the causal variants will not be

tagged by the observed SNPs. Estimation of the kinship matrix based on the sharing

of alleles IBD at hundreds of thousands of markers can be used to construct genomic

additive relationships ΘG, even in the absence of pedigree information, and REML

estimates of σ2
A can be made in this fashion. Unfortunately, although some of the con-

cerns of confounding are potentially less prevalent amongst unrelated samples, because

the coefficient of fraternity is typically much smaller than the coefficient of kinship the

dominance variance is extremely difficult to estimate stably, as is the case for the higher

epistatic components (e.g. A × A is the square of ΘG). Nevertheless, when estimates

of the heritability are performed using the genomic relationship in unstructured popu-

lations they are typically much smaller than those from structured populations using

pedigree based relationship matrices. For example, height has a pedigree based esti-

mate of h2 ≈ 0.8− 0.9 (Fisher, 1918; Macgregor et al., 2006; Visscher et al., 2007), but

a genomic based estimate of only h2 ≈ 0.45 as estimated from an unrelated population

(Yang et al., 2010). Clearly one source of this discrepancy could arise from inflation

of the pedigree based estimate. However while SNP information is extremely dense

it is still an incomplete representation of the total genomic variation, and combined

with the ascertainment bias in the distribution of allele frequencies there may also be a

deficit in the genomic based estimate. Extrapolating, if the genomic relationship matrix

fails to capture the genetic variance simply because neutral SNPs in the observed array

have a different distribution to causal variants then this is one potential reason for the
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poor performance of GWAS. Indeed several studies have suggested that rare variants

(frequency < 1%) may be more important for complex traits than common variants

(Eyre-Walker, 2010).

Currently circulating are many alternative explanations too. Perhaps the simplest re-

visits Fisher’s infinitesimal model (Fisher, 1918) and suggests that the polygenicity is

too high, so correspondingly the effect of each factor is very small, thus requiring sample

sizes much larger than the ones in general current use for detection. More esoteric con-

siderations can also be made. Li and Leal (2008) notes that although individually each

rare variant can explain very little of the variance of a trait, collectively rare variants are

extremely common, and that given sufficient polygenicity such polymorphisms could

account for the large genetic variances. With the possibility of widespread pleiotropy

such an assumption is tenable and indeed, the rare variant hypothesis has been shown

to be particularly cogent for traits under selection, relative to CDCV (Eyre-Walker,

2010). A similar idea has been proposed by Eichler et al. (2010) but in the context

of non-SNP polymorphisms. While large polymorphisms, (e.g. ≥500kb deletions or

duplications) are individually rare, they are collectively common, existing in ∼ 8% of

European populations (Itsara et al., 2009). Invoking ideas of epistatic canalisation or

capacitance (Bergman and Siegal, 2003; Waddington, 1942) it has been suggested that

the variance of most alleles are only released in the presence of certain large polymor-

phisms, so attempts at mapping without this consideration will be underpowered and

incorrectly parameterised. Other arguments that suggest a role for interactions in the

additive variance have also been made. Haig (2011) postulated that if certain epistatic

variants are in LD with one another then some configurations can manifest purely

additive variance, while the SNP effects will be undetectable through an additively

parameterised GWAS. Perhaps even more complicated is the potential role of epige-

netics. Interactions between DNA methylation sites and genetic polymorphisms could

have similar capacitance effects, and they could also act in a purely additive manner

that would contribute to the heritability independent of genetic variation (Petronis,
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2010). Currently the molecular basis for epigenetic inheritance is unknown but it is

likely to be modulated through relatively poorly understood genetic material such as

small RNA molecules. To summarise, the once consensus view of genetic variance being

mostly comprised of an additive component consisting of common, independent addi-

tive polymorphisms was invoked using the principle of Occam’s razor. The infinitesimal

model accommodates this type of architecture, but many of the prevailing thoughts on

the matter invoke much more complex mechanisms. Perhaps the observation of the

existence of additive variance is symptomatic of a more complex underlying genetic

architecture, and this leads to an often neglected question - what comprises the re-

maining phenotypic variation? It must be noted that there is a dearth of information

regarding potential non-additive genetic variation for traits of importance, and with

current variance components techniques unable to accurately gauge the extent of their

importance there is a need to develop tools and methodology in this area.

1.5 Epistasis

Soon after the emergence of Mendelism it was frequently observed that genetic factors

did not act independently. Literally translating to “standing upon”, epistasis was first

defined by Bateson in 1908 to describe the observation that in the segregation ratios of

comb types in chickens one particular type only manifested in the rare double recessive

homozygote class. Subsequently many other exotic segregation ratios were discovered,

again only explainable using two Mendelian loci (table 1.1, after Snyder (1931) and

Phillips (1998)).

This framework for identifying epistasis, also known as functional or physiological epis-

tasis, is more broadly defined today as being the phenomenon that a particular geno-

type’s effect is dependent on its genetic background. But as discussed above an alter-

native interpretation is also in common use where epistasis is defined as the statistical

deviation from the summed or multiplied (depending on the phenotypic scale) marginal
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Table 1.1: Early discoveries of two locus segregation ratios

Interaction typea A-B- A-bb aaB- aabb

Classical ratio 9 3 3 1

Dominant epistasis 12 3 1

Recessive epistasis 9 3 4

Duplicate gene with cumulative effect 9 6 1

Duplicate dominant genes 15 1

Duplicate recessive genes 9 7

Dominant and recessive interactionb 13 3 -
a Additive case (no interaction)
b Class aabb segregates with A-B- / A-bb class

effects of each locus (Fisher, 1918; Kempthorne, 1954). For the purposes of understand-

ing natural variation it is perhaps necessary to consider both views, as the ground they

cover are somewhat different. While the functional framework has the advantage of

describing the underlying mode of action in a biologically understandable manner, the

statistical framework assigns the degree of importance of the interaction term through

the partitioning of variance. Crucially, partitioning in the statistical sense will depend

on allele frequencies, and the qualitative result of the significance of the interaction

terms is liable to change in different populations (Greene et al., 2009).

From a functional perspective, the highly integrated structure of molecular interac-

tions that comprise cell, tissue and organism level systems would ostensibly suggest a

strong predilection toward the manifestation of interactions between polymorphisms.

However, the explicit modelling of epistasis in simulated biological systems does not

necessarily precipitate large proportions of non-additive variation in a statistical frame-

work. Keightley (1989) demonstrated that for enzymatic pathways governing metabolic

flux, where enzyme activity is under genetic control, significant dominance variance is

manifested when frequencies are low, and the elevation of interaction terms requires

multiple locus interactions and relatively large allelic differences. In essence, the ad-

ditive variance can dominate even when non-additive functions are being specifically

modelled. This conclusion was echoed in a more recent study (Gjuvsland et al., 2007)
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that modelled a similar style of dynamic pathway system, but this time representing

gene regulatory networks. Most simple models of multi-parameter regulatory networks

create variance in gene expression that are mostly explained by additive variance, and

only by introducing more exotic features such as positive feedback mechanisms does

epistasis become a significant statistical component of the variation.

Macro evolutionary modelling involving epistasis has a much longer history. Since first

being incorporated by Wright (1931) into evolutionary modelling it has remained promi-

nent largely because of the enigmatic behaviour of genetic variation in life history traits,

where typically genetic improvement cannot be made even with significant heritability

estimates (Hansen and Houle, 2004). This approach forms the focus of chapter 2, and

a more thorough overview of evolutionary modelling is detailed there.

Although illuminating, it is often difficult to ascertain strong conclusions from these

types of simulation studies simply because the biologically ‘correct’ values for the under-

lying parameters are generally unknown. However, occasionally biological examples can

be found for some of the abstract models that are postulated. One such case is the con-

cept of ‘canalisation’, or the buffering of variation. First coined by Waddington (1942),

it initially postulated that, even in the face of environmental and genetic variation,

developmental end-points tended to exhibit surprisingly small amounts of variation,

particularly when compared to developmental mid-points. It is now common to refer

to canalisation to mean phenotypic robustness in general, the tendency for phenotypes

to be robust to genetic and environmental variation, and it is an important concept

in terms of system networks and pathway redundancy (Avery and Wasserman, 1992;

Thomas, 1993). Convincing examples exist from population based studies, for instance

Bergman and Siegal (2003) demonstrated (in Drosophila and Arabidposis) that genetic

variation in several pathways can accumulate benignly and it is not until the Hsp90

gene, an important hub in the network of protein interactions, is compromised that

pleiotropic phenotypic variation is released. Similarly, Carlborg et al. (2006) showed
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that for crosses between chicken lines divergent for body weight the effects of five loci

important for growth were only observed in a specific background of a sixth locus,

which acted as a capacitor for the release of genetic variation. Convincing examples

are beginning to emerge in human studies too, classic patterns of canalisation being

discovered for psoriasis (Strange et al., 2010) and ankylosing spondylitis (Evans et al.,

2011).

While at the population level these types of discoveries are relatively uncommon (per-

haps because they are seldom searched for) and the genetic effects that are discovered

could be argued to be largely additive (Hill et al., 2008), at the molecular level perhaps

the converse is true. Through mutation studies, particularly in haploid organisms but

also common in Drosophila and C. elegans models, it is routine to encounter mutations

that have dominant or recessive effects, and often these can be suppressed (reverted to

wild type) by mutations at independent loci (Hara and Han, 1995; Wu and Han, 1994).

Suppressor screens specifically search for such mutant strains, and the propensity for

their success is high (Madigan and Brock, 2009). A similar case can be made for en-

hancer mutations, those that synergistically intensify the independent effects of each

locus, and essentially these types of studies signpost the widespread redundancy within

biological networks (Brookfield, 1997). But in the wider context of genetic variation,

the significance of this is debatable. Firstly, the variants generated in mutation studies

are unlikely to be representative of the genetic variation in natural populations. Sec-

ondly, with multiplicative effects like those manifested in many enhancer mutations, by

rescaling the phenotype the mutations could lose the synergistic relationship, and be

entirely explainable statistically without the need for an interaction term, so it is ques-

tionable as to whether this constitutes epistasis or not. Thirdly, the extent to which

these types of interactions contribute to statistical epistasis is dependent on population

frequencies, and there is a dearth of information regarding this.

Ultimately our understanding of the importance of epistasis today comes mainly from
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anecdotal evidence and indirect inference. But with the explosion in genomic data now

being generated the opportunity to assay the architecture of genetic variation directly

and to explicitly mine for epistasis is finally here. To summarise the discussion above,

precedence for the search for genetic variance through an additive parameterisation

exists, but it is likely overstated, and it has so far been difficult to gauge how much

non-additve variation actually exists. This thesis seeks to address this problem from

three main aspects: exploration of the potential role of epistasis in the maintenance of

genetic variance from an evolutionary perspective, development of computational tools

for data mining, and development of statistical methods for improving the power of

epistatic variant mapping. To summarise the objectives of the proceeding chapters:

• Chapter 2 explores the impact of epistasis on the additive variance in complex

fitness related traits from an evolutionary perspective and concludes that there

is precedence for the theory that epistasis is important in the maintenance of

additive genetic variation. It goes on to explore the most statistically powerful

GWAS parameterisation for the mapping of the types of genetic variation that is

likely to be maintained under selection.

• Chapter 3 discusses current data mining techniques for epistasis, and presents

new parallel software that overcomes the computational burden for these types

of analyses.

• Chapters 4 and 5 address the statistical problems associated with the search

for epistasis. Chapter 4 introduces the problems associated with the ‘curse of

dimensionality’ and presents empirical testing thresholds for standard epistatic

GWASs. The statistical power for detection in GWAS is discussed in chapter

5, and a novel haplotype based method for detection and mapping of epistatic

variants is presented.



Chapter 2

An evolutionary perspective on

epistasis and the missing heritability

2.1 Abstract

While some studies have pointed out the failings of genome wide association studies for
fitness traits, and thrown doubt upon the common disease-common variant paradigm,
several others have nominated epistasis as a potential mechanism to reconcile these
problems, and as a source of the ‘missing heritability’. This study sought to investigate
these claims in the context of two-locus functional epistasis in traits under selection.
A genetic algorithm was used to create two-locus genotype-phenotype maps that were
optimised to maximise high additive variance sustained over long evolutionary peri-
ods. The deterministic expectations for allele frequency trajectories, genetic variance
partitions, and detection power for different association strategies for these patterns
and others were calculated. The impact of drift was also considered through stochas-
tic simulations. Overall it was shown that while substantial genetic variance could be
maintained at intermediate frequencies under selection, only a very small proportion of
this was comprised of additive variance, diminishing the role of epistasis in the prob-
lem of ‘missing heritability’. Results from the power analysis were highly stratified,
favouring one dimensional scans when linkage disequilibrium between causal variants
and observed SNPs was low, and exhaustive pairwise scans when LD was high. Under
the model of abundant epistasis contributing to complex fitness traits, the common
disease-common variant hypothesis appears tenable. For fitness traits in particular, pa-
rameterising association studies to identify additive effects, even when the main purpose
is to detect additive variance, is likely to be less powerful than parameterisations that

23
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include dominance, or strategies that expand the search to two dimensions to search
for epistasis.

2.2 Introduction

Our understanding of the mechanisms behind complex traits is gradually improving

with the widespread use of genome wide association studies (GWASs), through the

identification of putative causative genes (Hindorff et al., 2010). However this type of

analysis has thus far only uncovered a small fraction of the additive variation (narrow-

sense heritability, h2) that is estimated to exist (Maher, 2008), and it explicitly ignores

other forms of genetic variance. Consequently, prediction accuracy when restricted

to these findings is low (Purcell et al., 2009), and the systems underlying phenotypic

variation, as well as the depths to their complexity, remain an enigma.

Epistasis is often cited as a potential source of this undetected variation (Frazer et al.,

2009; Manolio et al., 2009), and this can be mined by extending the association search

to two or more dimensions. But the extent to which this could be the case is unknown,

and a thorough examination into the potential role of epistasis in maintaining genetic

variation is required if one is to legitimately defend the assumptions behind the design

of GWASs.

It can be argued that most complex traits contribute toward fitness either directly

or through pleiotropic variants (Merilä and Sheldon, 1999), which is important when

considering the long standing paradox of how additive genetic variance is maintained.

We expect purely additive variants under selection to be driven to fixation, or very

low frequencies where they can be maintained by drift. But under these conditions

each variant must exhibit very large effects in order to precipitate much variance, the

logical conclusion being that traits with high h2 must be extremely polygenic (Lande,

1975; Phillips, 2007). Under these assumptions, variance may be maintained through

a mutation-selection balance, whereby extinction is matched by the acquisition of new



Chapter 2. Epistasis under selection 25

variants through mutation (Hill, 1982). Alternatively, modes of balancing selection,

such as antagonistic pleiotropy, over-dominance, and canalisation, may provide mecha-

nisms through which standing mutations can simultaneously be maintained while also

releasing variation (Bergman and Siegal, 2003; Kaneko, 2009; Lynch, 1990; Siegal and

Bergman, 2002; Waddington, 1942).

A recent theoretical examination of the problem demonstrated that under the model

of a mutation-selection balance most additive variation at any point in time will only

be comprised of very many rare additive effects (Eyre-Walker, 2010). Since associ-

ation studies are designed in accordance with the common disease-common variant

paradigm (Peng and Kimmel, 2007), the natural conclusion is that insufficient LD will

exist between the common polymorphisms on the SNP panel and the rare underly-

ing causal variants (Schork et al., 2000), and that in any case the variance associated

with each variant is too low to be significantly detected. However the problem of

maintaining genetic variance is complicated further when considering the observation

of stasis, where fitness traits, often with abundant genetic variation, tend to exhibit

a poor response to selection (Bradshaw, 1991). Again, this can be ascribed to some

mechanism of balancing selection. For example, phenotypic constraint, whereby traits

become precluded from evolvability as they approach some morphological threshold,

could offer some explanations through mechanisms of pleiotropy or epistasis (Galis and

Metz, 2007; Walker, 2007). But it is less likely that it could result solely from a process

of mutation-selection balance (Barton and Keightley, 2002), granting reason to explore

the potential contribution of non-additive genetic determinants.

There is experimental evidence that supports the evolution and persistence of domi-

nance in fitness traits. For example, inbreeding depression and heterosis is relatively

common amongst life history traits compared to morphological traits (DeRose and Roff,

1999), and dominance variance estimates are generally higher also (Crnokrak and Roff,

1995). This is logical, as the erosion of dominant variants is likely to be much slower
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than that of additive variants, while there is no reason to presume one type of variation

will naturally arise more frequently than the other. The contribution of epistasis has

not had the same experimental attention as dominance, but it has earned its place as

being potentially relevant. Under the assumption of a highly polygenic trait the like-

lihood of epistatic interactions occurring between variants is substantially improved,

and some convincing reports of its existence have been made (Carlborg et al., 2006).

Further, for traits associated with fitness, h2 estimates are generally much lower than

relatively neutral morphological traits (Mousseau and Roff, 1987). This gives license

to speculate that interactions could exist, because after accounting for measurable ad-

ditive variance other genetic components may be comfortably accommodated within

the remaining phenotypic variance. Finally, while direct estimates of epistatic varia-

tion are difficult to make, it has also been demonstrated that epistatic interactions can

potentially generate substantial additive variation, at least in the context of neutrality

(Greene et al., 2009; Hill et al., 2008).

From a macro-evolutionary perspective, the shifting balance theory (Wright, 1931) ex-

plicitly requires epistasis to explain the paths taken by a population between local

maxima in an adaptive fitness landscape. Epistasis has a smaller emphasis in Fisher’s

view of the adaptive fitness landscape, wherein a single fitness peak exists and the rate

of decay from the optimum is moderated by the epistatic component (Fisher, 1930).

Following Fisher’s model several examinations of the potential efficacy of epistasis in

reconciling some of the theoretical problems with the maintenance of variation have

been made. Parameterising for a multi-linear model of epistasis (Hansen and Wagner,

2001), Carter et al. (2005) concluded that gene interactions could play an important role

in determining the evolvability of a trait, while Liberman and Feldman (2005) demon-

strated that interactions can be positively selected for in variants exhibiting pleiotropy,

and Hansen and Houle (2004) demonstrated that multi-locus additive-by-additive ge-

netic interactions could be maintained in populations. Furthermore, with canalisation
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being a special case of epistasis, it has implicitly featured in several studies that dis-

cuss genetic robustness and the release of genetic variation from extant polymorphisms

(Bergman and Siegal, 2003; Gros et al., 2009).

Most of these studies treat epistasis in its statistical form, and tend to limit the param-

eterisation to only the magnitude and sign of additive-by-additive effects. One reason

for this is due to adopting the simplified parameterisation in the original adaptive fit-

ness landscape postulations, but perhaps a more important reason is to attempt to

neatly generalise the inevitable complexities of the epistatic genotype-phenotype map

across multiple loci, through the relatively simple extension of the independent additive

case. Aside from these studies choosing to exclude dominance, a potential issue with

this approach is that translation to a range of biologically feasible genotype-phenotype

maps becomes difficult. In this study the potential importance of epistasis on main-

taining genetic variance, and in contributing toward the ‘missing’ h2, among common

polymorphisms with regards to the common disease-common variant hypothesis, is as-

sessed from a functional perspective (Alvarez-Castro and Carlborg, 2007; Cheverud

and Routman, 1995). This is achieved by heuristically searching the parameter space

of genotype-phenotype maps to maximise persistent additive variation, and by assaying

a range of simple, biologically feasible two-locus genotype-phenotype maps both deter-

ministically and through simulation. Following on we seek to evaluate the power of

various association methods for the detection of functional genotype-phenotype maps

at evolutionarily stable frequencies, these being shown to be most relevant as potential

contributors toward fitness related traits.
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2.3 Methods

2.3.1 Deterministic simulations

The evolutionary fate of an arbitrary two locus epistatic fitness pattern can be char-

acterised by the allele frequencies and recombination fraction of the two loci as a

Markovian process. Therefore it is straightforward to calculate the trajectory of al-

lele frequencies over evolutionary time for a wide range of epistatic patterns. For

each genotype-phenotype map, deterministic simulations were performed with vary-

ing conditions for initial allele frequencies (25 initial allele frequencies enumerating the

set {0.1, 0.3, ..., 0.9} over both loci) and linkage disequilibrium between the linked and

causal SNPs (r2 = {1, 0.85, 0.7}). Variance components and expected test statistics for

different parameterisations and under different assumed search strategies were calcu-

lated.

2.3.1.1 Two locus frequency calculations

For a two locus gametic fitness pattern Gij , where each value of G represents the mean

phenotypic value for individuals with haplotypes i and j,

AB Ab aB ab

AB G11 G12 G13 G14

Ab G21 G22 G23 G24

aB G31 G32 G33 G34

ab G41 G42 G43 G44,
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assuming that Gij = Gji, this can be related to the two-locus genotype-phenotype map

Wij as:

AA Aa aa

BB W11 = G11 W12 = G13 W13 = G33

Bb W21 = G12 W22 = G14 = G23 W23 = G34

bb W31 = G22 W32 = G24 W33 = G44.

We can calculate the expected haplotype frequencies fAB, fAb, faB, fab after one genera-

tion based on selection using Kimura (1956) and Lewontin and Kojima (1960). Here, the

haplotype frequencies of the current generation are represented ci where i = {1, ..., 4}

denotes each haplotype in the order listed above, and c′i is the haplotype frequency of

the next generation:

c′i = (ciGi + ηiRG22(c2c3 − c1c4))/Ḡ. (2.1)

Here

Gi =
∑
j

Gij , (2.2)

η1 = η4 = 1, η2 = η3 = −1, R is the recombination fraction between the two loci

(R = 0.5 denotes the two loci are effectively on separate chromosomes) and

Ḡ =
∑

ciGi. (2.3)

If the minor allele from at least one locus l breaks the condition

1/2N ≤ fl, (2.4)

where N is the population size (arbitrarily set to 1000 for these simulations), the

epistatic pattern is considered fixed. While this condition is satisfied, expected variance

decomposition and statistical power are assessed on the system at each generation.
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2.3.1.2 Variance decomposition

As the allele frequencies change due to selection, while the functional epistatic pattern

remains the same the variance components are liable to change. The following calcula-

tions, taken from Ewens (2004), can be used to calculate the marginal additive variances

at each locus in a pairwise epistatic interaction for populations at each generation of

the simulations. Given marginal fitnesses at the three genotypes at locus A

ui = f2
BW1i + 2fBfbW2i + f2

bW3i, (2.5)

and at locus B

vi = f2
AWi1 + 2fAfaWi2 + f2

aWi3, (2.6)

the marginal additive variance at locus A is

2fAfag
2
A (2.7)

and the marginal additive variance at locus B is

2fBfbg
2
B (2.8)

where

gA = fAu1 + (1− 2fA)u2 − fau3 (2.9)

and

gB = fBv1 + (1− 2fB)v2 − fbv3. (2.10)

However, because linkage disequilibrium can be generated between interacting loci un-

der selection (figure A.4) it is incorrect to quantify the additive variance as the sum

of the two marginal variances. Instead, we use the decomposition method detailed in

Kojima and Kelleher (1961) and Kimura (1965) to calculate the total additive genetic
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variance in a two locus system as

VA = 2
(
fAfah

2
A + 2hAhBd+ fBfbh

2
B

)
(2.11)

where

hA =

(
gA −

dgB
fAfa

)(
1− d2

fAfafBfb

)−1

, (2.12)

hB =

(
gB −

dgA
fBfb

)(
1− d2

fAfafBfb

)−1

, (2.13)

and

d = fAB − fAfB. (2.14)

It should be noted that these calculations assume Hardy-Weinburg equilibrium, and se-

lection is likely to generate pseudo LD between unlinked markers, as well as favour cer-

tain genotypes over others that results in a violation of this assumption. However there

is currently no known two-locus variance decomposition method that maintains orthog-

onality when the two loci are under linkage disequilibrium and Hardy-Weinburg dise-

quilibrium (Alvarez-Castro and Carlborg, 2007), therefore correct estimates of variance

components often cannot be made. However, given that current testing strategies still

use the incomplete extant methods, we can examine their behaviour without the require-

ment of orthogonality between the non-additive components. We use the NOIA method

of decomposition (Alvarez-Castro and Carlborg, 2007) to calculate total genetic vari-

ance (VG) and the 8 variance components, {VA1, VA2, VD1, VD2, VAA, VAD, VDA, VDD}.

2.3.1.3 Detection of additive variance

By specifying the broad-sense heritability H2 of a fitness trait at generation 0 for

each simulation it is possible to calculate expected F-test performances under different

parameterisations and scan strategies. During the simulation selection can modify VG

by changing allele frequencies, but the non-genetic variance, VE , remains constant as a
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function of VG0 , the genetic variance at initial allele frequencies:

VE =
VG0

H2
− VG0 . (2.15)

We wanted to find, given a GWAS testing strategy wherein a SNP’s contribution to the

narrow-sense heritability is only considered if the test statistic exceeds some stringent

threshold, how best to parameterise the hypothesis tests to maximise the expected

amount of additive variance significantly identified for any given simulation time point.

Using an F-test,

F =

(
Vexplained

k

)(
VE

N − k + 1

)−1

∼ F (k,N − k + 1), (2.16)

whereN is the sample size and k is the number of parameters in the model, we compared

different parameterisations of Vexplained for exhaustive one and two dimensional scans

by quantifying how much of the total additive variance in the two locus system was

detected using different GWAS strategies.

2.3.1.3.1 One dimensional testing strategies Tests for purely additive effects (Vexplained =

VAi; k = 1) or complete marginal effects (Vexplained = VAi + VDi; k = 2) where per-

formed at each locus i. A significance threshold of 0.05/300000 = 1.7 × 10−7 was set.

If exceeded at only one locus i then VAi additive variance was considered detected. If

exceeded at both loci then the total additive variance VA was considered detected.

2.3.1.3.2 Two dimensional testing strategies Three parameterisations were com-

pared under the conditions of an exhaustive two dimensional scan. These were for

purely marginal effects across both loci (Vexplained = VA1 + VD1 + VA2 + VD2; k = 4),

purely epistatic effects (Vexplained = VAA + VAD + VDA + VDD; k = 4), and for to-

tal genetic variance (Vexplained = VG; k = 8). The significance threshold was set at
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0.05/(3000002/2 − 300000) = 1.1 × 10−12. If the pairwise test exceeded this threshold

then, for the purposes of understanding the efficacy of two dimensional strategies at

detecting narrow sense heritability, the total additive variance VA across both loci was

deemed to have been detected.

2.3.1.4 Incomplete LD between causal variants and observed SNPs

We considered how variance decomposition and testing strategies were affected when

the observed SNPs were at different levels of linkage disequilibrium with the causal vari-

ants (r2 = {1, 0.85, 0.7}). To do this, we performed the above variance decomposition

calculations on the expected epistatic fitness map at the observed SNPs W̃ij , assuming

that

c̃j = cj (2.17)

where c̃j are the gametic frequencies of the observed SNPs. For simplicity, only the

causal variants were inherited from one generation to the next, with new linked SNPs

being composed at each new generation. The matrix W̃ij is calculated as

W̃ij =

 3∑
j

3∑
k

3∑
l

DAikDBjlWkl

 (fAifBj)
−1 (2.18)

where the four gametic frequencies Dm. for the causal locus m = {A,B}, and its linked

SNP were calculated as:

Dm1 = r2f2
m(1− fm)2 + f2

m (2.19)

Dm2 = Dm3 = fm(1− fm)− r2f2
m(1− fm)2 (2.20)

Dm4 = r2f2
m(1− fm)2 + (1− fm)2, (2.21)
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the matrix Dm.. is then defined as


D2
m1 2Dm1Dm2 D2

m2

2Dm1Dm3 2(Dm2Dm3 +Dm1Dm4) 2Dm2Dm4

D2
m3 2Dm3Dm4 D2

m4

 (2.22)

and the frequencies fmi are the expected genotype frequencies for the m causal variants

A and B, such that

fAi =


f2
A, i = 1

2fAfa, i = 2

f2
a , i = 3

(2.23)

and

fBi =


f2
B, i = 1

2fBfb, i = 2

f2
b , i = 3.

(2.24)

2.3.2 Genetic algorithm for generating epistatic patterns

The purpose of genetic algorithms is to heuristically search a large solution domain for

optimal model parameters whilst avoiding an exhaustive search (Holland, 1975). In

this case, the algorithm is used to generate two-locus epistatic fitness patterns W that

simultaneously maximise additive genetic variance and avoid fixation through selection,

whereW is a 3×3 genotype-phenotype map whose values represent the fitness associated

with each two locus genotype.

2.3.2.0.1 Initialisation Initially a set W of nW randomly generated candidate pat-

ternsW are created by sampling values for each of the 9 cells from a uniform distribution

and then scaling all values so that the maximum and minimum values for each W are

1 and 0 respectively.
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2.3.2.0.2 Selection The candidate patterns are assessed based on two rounds of

selection: expected time to fixation and expected level of additive variance generated.

A set Σ of simulations are initialised given sets of ΦA and ΦB initial allele frequencies

for loci A and B respectively, such that nΣ = nΦAnΦB (e.g. 25 simulations initialised

by enumerating all combinations of the sets ΦA = ΦB = {0.1, 0.3, 0.5, 0.7, 0.9} across

two loci). Allele frequency changes and fixation are measured as in equations (2.1) and

(2.4) respectively at each generation γ for Γ generations. For the candidate pattern

to be considered for selection at least τ of its simulations must remain unfixed after

Γ generations. For each candidate pattern the total additive genetic variance σTA is

calculated by summing the joint additive variance for both loci (VA) after generation

ν, across all simulations:

σTA =

n
ΦA∑
i

n
ΦB∑
j

Γ∑
γ=ν

Θ(W,ΦA
i ,Φ

B
j , γ) (2.25)

Where Θ(W,ΦA
i ,Φ

B
j , γ) is the additive variance at generation γ of simulation Σij . The

nΛ candidate patterns with the largest total additive variances are selected for the next

round, comprising the set Λ, or if no candidate patterns reach the threshold τ then all

patterns are randomly initialised again.

2.3.2.0.3 Reproduction The set of W′ candidate patterns for the next round of

selection is comprised of the Λ patterns selected from the current round, a set of MΛi

mutations for each selected pattern Λi, and a set of Π random patterns produced as

in the initialisation step, thus W′ = {Π,Λ,M1, ...,MnΛ}. Mutation is performed by

adjusting each element of the candidate pattern:

W ′ij = Wij + ε (2.26)

where

ε ∼ N(0, σ) (2.27)
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and then scaling to the boundaries 0 and 1 as in the initialisation step.

2.3.2.0.4 Termination The algorithm is performed for ρ rounds. Because the set Λ

candidate patterns from the previous round are always included in the following round,

the maximum score will never decrease. Therefore the optimal epistatic pattern is the

considered to be the highest scoring candidate pattern in the final round. Different

patterns can be generated by rerunning the entire process with different random seeds.

2.3.3 Population simulations

To consider the potential impact of genetic drift and random noise on the conclusions

from the deterministic simulations, similar conditions were recreated heuristically on

randomly generated populations. For each epistatic pattern we generated 300 popu-

lations of 1000 individuals. Each individual has a two locus genotype xijxik and a

corresponding phenotype yi such that

yi = Wxijxik + ε (2.28)

where

ε ∼ N(0, VE) (2.29)

and xij and xik were the fitness values for indvidual i corresponding to the genotype-

phenotype map Wjk. The non-genetic variance of the trait was defined at generation

0 as in equation 2.15 and remained constant at each generation. The heritability, H2,

was set to 10% at generation 0. Each generation 500 individuals were sampled from

a discrete probability distribution where the individual’s phenotype was the relative

probability of being sampled, and from these 250 random pairings were made to produce

1000 offspring for the next generation. Phenotypes for each new individual were created
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Figure 2.1: Genotype-Phenotype maps. 1. Independent additive effects at locus A and
B; 2. Dominant pattern of canalisation; 3. Recessive pattern of canalisa-
tion; 4-6. Patterns generated by a genetic algorithm optimising for max-
imised additive variance and long-term survival at intermediate frequency.

at each generation as in equation 2.28, and simulations continued until at least one locus

reached fixation.

2.4 Results

2.4.1 Epistatic patterns that sustain additive variance

Two observations influenced the optimisation strategy used to identify potential genotype-

phenotype maps. Firstly, it is assumed that the plausibility and opportunity of the

occurrence of independent additive effects is relatively high, for example the actions

of many genes are dosage dependent and this prescribes an additive mutation model

for their regulation mechanisms (Hedrich et al., 2001). Conversely, while the biological

feasibility of some epistatic patterns is fairly high, such as patterns 2 and 3 in figure 2.1,

for which numerous molecular examples exist (Kafri et al., 2009; Li et al., 2010; Nowak

et al., 1997), most arrangements of genotype-phenotype maps will not easily describe
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current observations of variation. Although this could be ascribed to an incomplete un-

derstanding of molecular biology, in general the occurrence of epistasis can be said to be

rare relative to independent mutational effects. Thus for epistasis to form a significant

contribution toward genetic variance it must compensate by persisting over a relatively

long period of time, allowing many rare mutation events to accumulate. Secondly, be-

cause h2 estimates are relatively constant for traits associated with fitness (Bradshaw,

1991; Mousseau and Roff, 1987), it can be hypothesised that evolutionarily persistent

epistatic patterns may sustain some additive genetic effects at frequencies that are

stable under selection. Using a genetic algorithm to heuristically search the large pa-

rameter space of a genotype-phenotype map, a cohort of patterns were generated that

locally maximise these conditions, and the three cases that maintained the highest pro-

portion of additive variance (Figure 2.1 patterns 4-6) are examined here. While it is

difficult to generalise the behaviour of all possible two-locus genotype-phenotype maps,

an examination of the potential impact of epistasis from six genotype-phenotype maps

was made deterministically and using population simulations, with the same analysis

performed on an extended range of maps in the appendix (Li and Reich, 2000).

Two important results were obtained from the genetic algorithm simulations. First, a

diverse range of two-locus genotype-phenotype maps can sustain genetic variance un-

der balancing selection. The significance of this is that while spontaneous occurrence

of epistasis may be relatively rare, a reasonable proportion of the two-locus parame-

ter space could effectively mask genetic variance from selection. Furthermore, many

of the theoretical models of epistasis under selection discussed previously depend on

multi-locus (> 2) systems to temper the erosion of variance, but by extending param-

eterisations beyond solely additive-by-additive effects this assumption can be relaxed.

Second, the vast majority of this variance is non-additive. While additive variance may

be generated at some frequencies, the frequencies that are evolutionarily stable tend to

reduce additive variance substantially, relative to the total genetic variance.
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2.4.2 Allele frequencies under selection

To assess the potential of epistatic loci maintaining genetic variance at intermediate

allele frequencies, thus fulfilling the criterion of the common disease-common variant

hypothesis, we analysed the trajectory of the expected allele frequencies under selection

over the period of 200 generations (figure 2.2). Twenty-five deterministic simulations

(figure 2.2(a)) were performed with different initial allele frequencies at both loci, such

that all two-locus combinations of the frequencies 0.1, 0.3, 0.5, 0.7 and 0.9 were enu-

merated. Purely additive effects (pattern 1) are purged rapidly as expected, but in

contrast epistatic patterns generally persist over a sustained period (see also figures

A.2 and A.3). In particular, patterns 4-6 stabilise at intermediate frequencies.

To accommodate the effects of random drift and incomplete penetrance, further anal-

yses were performed by observing the allele frequencies of the causal loci in simulated

populations of 1000 individuals under selection for the same length of time where the

genetic variance of the causal loci at generation 0 was 10% of the total phenotypic vari-

ance. The simulations were repeated 50 times with the initial allele frequency set to

0.5 at both loci. A crucial effect of drift is that allele frequency paths can depart from

deterministic trajectories, allowing for epistatic variation to persist at intermediate fre-

quencies, even when deleterious effects are large. Here epistasis appears necessary to

fulfil the common disease-common variant paradigm.

Another important consequence is that the perceived rarity of occurrence of epistatic

polymorphisms is offset by the inability of selection to purge them from the popula-

tion, supporting the notion that epistasis could be relatively abundant should such

interactions have accumulated over long time periods. In addition, in the context

of mutation-selection balance models, since deleterious mutations are fixed slowly for

many genotype-phenotype maps, the dependence on a high mutation rate and a highly

polygenic architecture to maintain genetic variance is reduced (Phillips, 2007).
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(a) Deterministic

(b) Simulated

Figure 2.2: Allele frequencies for two-locus genotype-phenotype maps. (a) The ex-
pected trajectory of allele frequencies for epistatic fitness patterns (figure
2.1) with initial frequencies of 0.1, 0.3, 0.5, 0.7 and 0.9 enumerated over
both loci. (b) The path of allele frequencies in simulated populations com-
prising 1000 individuals and H2 = 10% at generation 0. Boxes represent
the different genotype-phenotype maps from figure 2.1.
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2.4.3 Quantifying additive variance

The effect of selection on the variance generated by these interactions over time was

examined deterministically (figure 2.3). For those genotype-phenotype maps that reach

a stable equilibrium (patterns 4-6) genetic variance is sustained at high levels (figure

2.3(a)), and these types of interactions could be one mechanism by which many fitness

traits in experimental situations fail to respond to selection through balancing selection

(Hansen and Houle, 2004). Also considered was the additive variance precipitated by

these interactions. As a component of the total genetic variance, the relative magnitude

of additive variance is prone to large fluctuations. At some frequencies, particularly

early generations or as frequencies approach fixation, most of the variance is expected

to be additive, but as the frequencies approach equilibrium the additive variance is

mostly lost. Given that one of the optimisation criteria for genotype-phenotype maps

generated by the genetic algorithm (patterns 4-6) was to maximise additive variance

we can infer that the majority of two-locus epistatic patterns that persist at high

intermediate allele frequencies through balancing selection are unlikely to contribute

significantly to h2 in fitness traits.

It is also observed that if the variance of the causal variants is being estimated through

incomplete linkage disequilibrium (LD) with neighbouring SNPs, then variance esti-

mates are strongly affected. Not only do the estimates of genetic variance drop rapidly

with decreasing LD, but the proportion of the remaining estimated variance that ap-

pears additive increases (figure 2.3(b)). Most association studies parameterise for ad-

ditive effects, and this may be beneficial for improving detectability, but conclusions

about the underlying architecture of these traits may be premature.

In light of this, the performances of different association strategies in identifying the

additive variance associated with each of the genotype-phenotype maps under different

conditions of linkage disequilibrium were compared (figure 2.4). Also compared was

the power of one dimensional analyses, typical of GWASs, against two dimensional
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Figure 2.3: Deterministic change in variance components of genotype-phenotype maps
under selection, with initial frequencies of 0.1, 0.3, 0.5, 0.7 and 0.9 enu-
merated over both loci. The variance decomposition was performed at the
causal locus (r2 = 1), and at SNP pairs that were in incomplete LD with
the causal loci. Boxes represent the different genotype-phenotype maps
from figure 2.1.
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analyses where each SNP is tested for interaction with all other SNPs. Here, the

power is defined as the proportion of the total additive variance across the populations

that is explained. For the one dimensional scans p-values were calculated from linear

regression analyses parameterised for purely additive effects, as is routine for GWASs,

or full genotype effects (additive + dominance). These were tested for significance by

applying a Bonferroni threshold assuming a multiple testing penalty incurred by using

a 300k SNP chip (1.7×10−6) at the 5% family-wise significance level. Two dimensional

scans were performed in a similar vein, the tests being parameterised in three ways

(additive and dominance effects at both loci, only interaction terms, or all terms), and

a Bonferroni testing threshold imposed (1.1× 10−11).

With the goal of detecting variants comprising h2, it is intuitive to perform association

scans using an additive model, but perhaps other parameterisations would be more

suitable if the persistence of additive variation was maintained by a more complicated

genetic architecture. Several testing parameterisations were compared for their power

to explain the additive variance of the genotype-phenotype map. For one dimensional

scans additive models were compared against the 2 degree of freedom additive + dom-

inance effects, and for two dimensional scans the efficacy of looking for solely marginal

effects (4 degrees of freedom), solely interaction terms (4 degrees of freedom) (Cordell,

2002), or the full two locus genetic effect (8 degrees of freedom) were compared.

There are two immediately noticeable results from these analyses. First, there is no

single approach that generally performs the best in all situations (figures 2.4(a) and

A.7). Second, it is clear that parameterising the test as an additive model is rarely

the most powerful approach. Of the 55 non-neutral patterns in figure A.1, when LD

between causal variants and observed SNPs is high the two dimensional full genetic test

is most powerful for 44 of them. This performance decays rapidly with reduced LD, to

being most powerful only 3 times at r2 = 0.7. Instead, at lower LD, parameterising for

additive + dominance in one dimension is most powerful for 36 of the patterns. The
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marginal and interaction parameterisations of the two dimensional scans were seldom

as powerful as the full genetic test.

A more detailed recording of the change in power over time under selection is shown in

figure 2.4(b). Of total additive variance summed across all simulated populations, the

fluctuations of the proportion detectable by the two most powerful methods, full genetic

in one dimension and full genetic in two dimensions, is tracked. While patterns 2 and

3, examples of canalisation, do persist for relatively prolonged periods, the majority of

this time is spent at low frequencies such that insufficient variance is generated to be

detectable. When limited to the two-locus case, canalisation may be less important at

maintaining phenotypic variation than has been suggested in other studies based on

multiple loci (e.g. Carter et al., 2005).

The results of the power comparison between patterns 4-6 in figure 2.4(b) can be ex-

plained logically to some extent from the results in figures 2.3(b) and 2.5. The first

problem encountered by the two dimensional test is that as LD between causal variants

and observed SNPs is reduced there is a dramatic decline in the total genetic vari-

ance, this is irreconcilable with a heavy multiple testing penalty. The second problem

is that the remaining genetic variance is increasingly heavily represented by additive

variance as the LD drops (as demonstrated in figure 2.5), such that the trade off be-

tween variance explained and the number of degrees of freedom becomes detrimental.

The converse is true for the one dimensional test, where the exclusion of higher order

variance components loses relevance.

2.5 Discussion

While some studies have pointed out the failings of genome wide association studies,

and thrown doubt upon the common disease-common variant paradigm, several others

have nominated epistasis as a potential mechanism to reconcile these problems, and as
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a source of the ‘missing heritability’ (Frazer et al., 2009; Manolio et al., 2009). This

study sought to investigate these claims in the context of two-locus functional epistasis

in traits under selection.

Initially it was investigated whether or not deleterious mutations could be maintained as

common polymorphisms. By assaying a large sample of potential genotype-phenotype

maps (Li and Reich, 2000), and artificially selecting for new maps using a genetic al-

gorithm, it was demonstrated that a substantial improvement in the maintenance of

genetic variance at intermediate frequencies could be made compared to independent

additive effects (figures A.2 and A.3). This finding is in agreement with theories of bal-

ancing selection (Hansen and Houle, 2004), and the potential for epistatic interactions

between polymorphisms is increased under fitness related traits because of their more

polygenic architecture (Lande, 1975).

Following on, the potential for these interactions to maintain additive genetic variance

was explored. It was clearly demonstrated that even in the best case scenario, where

genotype-phenotype maps were generated to maximise additive variance, total genetic

variance was mostly composed of non-additive components (figures 2.3(b) and A.6).

This finding is in disagreement with a recent study (Hill et al., 2008), which showed

that for various two-locus epistatic models, the deterministic partitions of genetic vari-

ance calculated across different frequency distributions were largely dominated by the

additive component. This study finds that those allele frequencies at which additive

variance is high (a large proportion of the frequency spectrum), are evolutionarily un-

likely, thus should epistatic variants be affecting fitness traits it is reasonable to believe

that the majority of the variance will be non-additive. Ultimately there is no simple

mechanism whereby two-locus epistasis will significantly contribute toward the missing

heritability, unless h2 estimates have been contaminated by non-additive components

(e.g. full-sib based estimates).
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Another observation regarding the perceived contribution of additive variance can also

be made. When partitioning the variance components of the genotype-phenotype maps

through the proxy of markers in incomplete linkage disequilibrium with the true causal

variants, there is a danger of overestimating the relative contributions of additive to

non-additive variance. Weir (2008) shows that the decay in additive variance is linear

with decreasing r2 but quadratic for dominance variance. For more complex genotype-

phenotype maps that include higher order variance components it is more complicated

(figure 2.5), but in general the decay of non-additive variance is much more rapid than

additive. Resultantly, those markers that are detected in GWAS may appear more

additive than the dominant or epistatic causal variants with which they are associated.

The simulations suggest that we should expect significant levels of non-additive variance

in fitness traits. While non-additive variances are often considered to be nuisance

terms in quantitative genetics, perhaps their existence, the variance lurking beneath the

surface, can be levered to actually improve the detection of additive variance whilst also

acquiring knowledge of the non-additive components. Power comparisons were made

between one and two dimensional scans, as well as different testing parameterisations,

with a view to detecting variants under selection at evolutionarily likely frequencies.

Surprisingly, the simplest and most widely used parameterisation, modelling for additive

effects in one dimension, was seldom the most powerful approach. On the contrary,

because other forms of genetic variance are co-precipitated along with additive variance,

by parameterising the tests to include them the power was seen to improve. However,

it was observed that even with modest reductions in LD between causal variants and

observed SNPs all testing strategies tended to decline in performance rapidly. This

leaves researchers in a difficult situation, where the strategy of increasing SNP panel

densities as an intuitive response to improve LD coverage comes at a quadratic cost (in

the two-locus case) in computation time and multiple testing penalties.
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Figure 2.5: Relationship between genetic variance of observed SNPs (y axis) and their
linkage disequilibrium with causal variants (x axis). Observed SNPs have
the same allele frequency as their linked causal variants, and there is no
linkage disequilibrium between causal variants or between observed SNPs.
Blue line represents a purely additive genotype-phenotype map, faint black
lines each represent the 55 dominant or epistatic genotype-phenotype maps
in figure A.1, and the black dashed line represents the smoothed aver-
age of all black lines. Allele frequencies of genotype-phenotype maps are
represented by boxes, the frequency of locus A horizontally and locus B
vertically.
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Nevertheless, some optimism can be derived from the observation that many genotype-

phenotype maps are capable of sustaining common variants for relatively prolonged time

scales, and various strategies can be employed to improve the power of their detection.

For example, in order to improve the power of one dimensional scans, it appears expedi-

ent to increase the parameterisation to two degrees of freedom by including dominance

(figures 2.4(a) and A.7). It may also be worth considering the use of multiple-marker

methods, such as haplotype associations, as a means to curtail the loss of information

through insufficient LD (Schaid, 2004). Further, the multiple testing penalties here

assume a family of independent tests, however given the correlation structure within a

SNP panel the effective number of tests is likely to be lower (Dudbridge and Gusnanto,

2008). How much lower when the search is expanded to two dimensions is unknown,

but if taken into consideration this could significantly improve the performance.

Although the intention behind the genetic algorithm was to explore the potential for a

two-locus system to maintain additive variance, rather than to necessarily identify bio-

logically feasible maps, those maps that emerged did not appear biologically untenable.

In fact they can be supported by reports in the literature due to their tendencies for

exhibiting heterozygote advantage (Comings and MacMurray, 2000; Luo et al., 2001).

The example of the single locus case, overdominance, is central to processes of heterosis

and inbreeding depression (Luo et al., 2001; Moll et al., 1965), and has been identified in

molecular studies also (Chen et al., 1994; Miskimins et al., 1986). Indeed, heterozygote

advantage plays an important role in evolutionary theory, as it confers segregational

load on a population, and this type of load cannot be purged due to balancing selec-

tion, potentially rendering populations susceptible to accumulating a critical mass of

such polymorphisms (Dobzhansky, 1970). The idea of a critical mass of deleterious

mutations has been widely explored in amictic haploid populations, particularly in the

context of Muller’s ratchet, and in this case synergistic epistasis has been suggested

as a mechanism that could alleviate the problem in some situations (Butcher, 1995;

Kondrashov, 1994). This study may offer a similar answer for the analogous problem of
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segregational load in diploid populations, because it can be observed that while patterns

of overdominance (figure A.3, pattern 55) form a stable equilibrium, small perturba-

tions to this genotype-phenotype map through the introduction of an interacting locus

(e.g. patterns 45, 47, 53) could destabilise the equilibrium and lead to eventual fixation.

Much debate has been granted towards the ‘missing heritability’ in complex traits,

and while it is an important issue for both understanding genetic systems and moving

towards applications in genetic prediction, perhaps the broader problem of the ‘missing

genetic variance’ has been unfairly marginalised. On expanding considerations beyond

purely additive effects it becomes apparent that while theory suggests an important

role for dominance and epistasis for fitness traits (Bergman and Siegal, 2003; Gao

et al., 2010; Gjuvsland et al., 2007; Kaneko, 2009; Lane and Martin, 2010; Siegal and

Bergman, 2002; Waddington, 1942), not only are these types of causal variants seldom

searched for, but estimates of these types of variation are seldom being made. Ignoring

the higher components of the architecture of complex traits will potentially restrict

understanding of these genetic systems and have a detrimental impact on prediction

accuracy.



Chapter 3

Parallelisation of exhaustive

two-dimensional searches

3.1 Abstract

A central problem with detecting epistasis is in overcoming the computational prob-
lems associated with a high dimensional search space. For example, the computational
burden for a pairwise search of p SNPs is O(p(p − 1)/2). The growing availability of
multi-core personal computers, large scientific compute clusters, and massively multi-
core consumer level graphics processing units (GPUs) now offer several avenues for the
parallelisation of the search space, and for each of these architectures scalable software
was written to distribute the workload of the search space. The CPU based architectures
successfully scale almost linearly with the number of cores available, with relatively little
modification of the serial algorithm required. For the GPU implementation, with recent
hardware an increase in speed of two orders of magnitude against optimised serial code
was achieved through substantial manipulation of the original algorithm. Ultimately,
the software can be implemented cheaply to make exhaustive pairwise searches compu-
tationally tractable for dense SNP chips or even sequence data. The software is open
source, platform independent, GPU vendor independent, and made freely available at
http://sourceforge.net/projects/epigpu.
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3.2 Introduction

Examination of the literature reveals an interesting disparity: the volume of work on

the theoretical exploration of epistasis dwarfs the amount of actual empirical research

performed, particularly in the context of human genetics. One of the major causes for

this is likely to be the absence of reliable tools that will address the computational

burden of expanding the search space from one dimension, as in traditional genome

wide association studies, to two or more dimensions that are required to detect inter-

actions. Stemming from this body of theoretical work, reviews on the subject have

emerged periodically over the years (e.g. Carlborg and Haley (2004); Cordell (2002);

Moore (2005); Phillips (1998); Wagner and Zhang (2011)), largely advocating the in-

clusion of epistasis in complex trait analysis and its importance therein. However this

enthusiasm is only very recently being matched with software that might make such

analyses tractable, and of the recent releases most concentrate on binary traits, ignoring

quantitative traits entirely. This chapter describes three new software implementations

that have been written to parallelise a pairwise search on different types of hardware

for quantitative traits.

3.2.1 Computing hardware

Computing performance in terms of processing speed and memory capacity are strongly

dependent upon the number of transistors that can be integrated into a circuit. For

several decades this number has doubled approximately every 18 months, a phenomenon

known as Moore’s Law (Moore, 2006). While Moore’s law is expected to continue to

be accurate for several more years, its relationship with processing speed is no longer

holding. The abrupt departure from a historically exponential speed improvement is

clearly shown in figure 3.1. As transistor density increases the power required by the

circuit increases also, such that inadequate heat dissipation leads to increased circuit

resistance and instability. Cooling systems are not improving at a sufficient rate to
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Figure 3.1: Box and whisker plot showing progress in clock speed on a log
scale, measured as millions of instructions per second (MIPS), over
time in years. Data comprises processor speeds for Intel chips
for most years since 1978, sourced from McKenney (2011) and
http://csgillespie.wordpress.com/2011/01/25/cpu-and-gpu-trends-over-
time/.

nullify this problem, such that researchers can no longer simply wait for hardware

improvements to abrogate their computationally intensive problems.

Because processing speed is unlikely to improve with current architectures, the alterna-

tive solution, which is in wide use today, is to use many processing cores in parallel. The

expected speed improvement from this strategy is predicted using Amdahl’s law (Am-

dahl, 1967), which defines M , the maximum speed-up obtained from parallelisation,

http://csgillespie.wordpress.com/2011/01/25/cpu-and-gpu-trends-over-time/
http://csgillespie.wordpress.com/2011/01/25/cpu-and-gpu-trends-over-time/
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as

M ≤ 1

(1− P ) + P
C

(3.1)

where P is the proportion of the time of the serial programme that could be paral-

lelised and C is the number of cores across which the parallelisable section it is to be

distributed. In the context of exhaustive pairwise searches for epistasis, P ≈ 1 so the

potential value of parallelisation is high.

The disadvantage of this strategy is that to harness the additional hardware perfor-

mance often requires programmes to be restructured from the serial version significantly.

Many different hardware architectures have been developed to enable parallelisation,

but the three most widely used are multi-core CPUs, scientific compute clusters, and

graphics cards. Multi-core CPUs mostly comprise two or four processing cores, with

six cores recently becoming available also. Further, some motherboards can house two

multi-core processors, so at most the speed improvement from this strategy is 12x faster

than serial code.

Alternatively, at the cost of fast communication and shared memory between cores,

Beowulf compute clusters scale the number of processing cores more economically by

using many cheaper two- or four- core processors that communicate through ethernet.

Many researchers have access to at least moderately sized clusters of this type.

Graphics cards have developed rapidly over the last decade and now incorporate hun-

dreds of processing cores. GPU cores are much simpler than CPU cores, having been

designed to simply calculate pixel colour values for graphical output, with little need

for inter-core communication or sophisticated hardware implementations such as large

memory cache or instruction controls. Nonetheless, many scientific computational prob-

lems are now being resolved through the various software implementations that enable

‘general purpose’ graphics processing. Programming for these types of devices is, at

the current stage of development, more challenging than writing efficient code for CPU

architectures for several reasons. Most CPUs now have large memory caches (e.g.
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> 2MB) that are rapidly accessible by processing cores, but GPUs can only house

their many cores by sacrificing these large memory caches, so memory management

is critical. GPU kernels must be optimised manually because current kernel compil-

ers are extremely primitive compared to their CPU counterparts. Also, with several

hardware vendors using their own architectures, and older and newer versions of these

architectures having different design features, making a programme that runs well on

all graphics cards for all operating systems becomes difficult, forcing the programme

to use the most generic hardware features in order to maintain compatibility. Yet

despite these challenges some scientific computational problems have been alleviated

effectively by GPUs, and in fact the most powerful supercomputers in the world are

now designed to cluster many GPUs instead of CPUs, so this type of architecture is a

natural candidate for parallelising epistatic scans.

3.2.2 Currently available parallelised software

For the purposes of genome-wide association studies, many software packages have been

published and are made freely available, but they are almost exclusively concerned with

independent locus effects. What follows over the next two sections is a brief summary of

a number of colourfully named applications that are now making the search for epistasis

a computational reality. Where timings for exhaustive scans are mentioned, they refer

to the total time to search across 300000 SNPs comprising 1000 individuals, and where

rates of tests per second are mentioned, it refers to the effective number of pairwise

interactions for 1000 individuals.

One of the most widely used tools for GWAS, PLINK (Purcell et al., 2007), has the option

to perform exhaustive pairwise epistatic searches for both binary and quantitative traits.

Yet, despite wide availability it is unlikely to be used due to prohibitive computational

times. For example, because it evaluates approximately 5000 pairwise interactions per

second, to perform an exhaustive pairwise search on 1000 individuals across 300,000
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SNPs it would take approximately 300000×299999/2
5000×60×60×24 ≈ 200 days. This increases to around

3 years for 1,000,000 SNPs. A more recent implementation called FastEpistasis was

implemented by Schüpbach et al. (2010), a module for which is now available on PLINK,

that both optimises the baseline code and parallelises across Beowulf clusters. This

implementation parameterises the search for additive+additive×additive effects, and

in serial can calculate approximately 36000 pairwise interactions per second, scaling

linearly with the number of cores across which it is parallelised.

A few GPU implementations for binary traits have also become available recently.

The parallelisation of a multifactor dimensionality reduction (MDR) scan (Sinnott-

Armstrong et al., 2009) was the first to appear in the literature, citing a 50x speed

improvement against serial CPU code. However, its absolute speed still seems relatively

slow, performing only 4100 pairwise interactions per second, making it unsuitable for

dense SNP chips. Two more implementations that use a more traditional testing frame-

work are also available, and they appear to be quite successful in achieving the kinds of

speeds that would make analysis routinely possible. EPIBLASTER (Kam-Thong et al.,

2010) operates in two stages, the first involves an exhaustive pairwise scan that screens

for differences between Pearson correlations between cases and controls, this generates a

small subset of potential interacting pairs that are then tested more rigorously using the

more computationally expensive logistic regression calculation. This software performs

approximately 1.5 million pairwise calculations per second, allowing the completion of

an epistatic scan in approximately 24 hours. A second piece of software that uses a

similar approach, SHEsisEPI (Hu et al., 2010), achieves a similar efficiency, completing

a scan in 27 hours. All benchmarks were performed using a NVIDIA GeForce GTX295

GPU.
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3.2.3 Statistical approaches

It is possible to avoid the brute force approach using feature selection methods, where

the large set of parameters are filtered to make a small subset prior to the main anal-

ysis, such that although the dimensionality of the search space remains the same (two

dimensional in this case), the magnitude of the dimensions are substantially reduced

(here, offering a quadratic reduction in the search space, and therefore substantially

reducing the multiple testing penalty also). Such methods have been investigated, but

while being vastly superior in terms of computational time, exhaustive methods are

generally more powerful (Evans et al., 2006; Marchini et al., 2005), and perhaps more

importantly it can be demonstrated that replicating discoveries in different populations

from filtered subsets is severely underpowered (Greene et al., 2009).

Alternative machine learning methods have also been suggested, but again these are

largely tailored for binary phenotypes. An interesting idea is to use a support vector

machine where formally the computational burden of a brute force search of ∼ O(p2)

is transformed to ∼ O(n3), where p is generally in the hundreds of thousands and n

is frequently several orders of magnitude smaller, however several approximations can

be made to significantly reduce the formal complexity estimate (Bordwardt 2011?).

A drawback of this approach is that the feature selection is restricted to a set of a

few predefined functional genotype-phenotype maps, thus vastly reducing the scope of

what can be detected. Another feature selection method, random forests, has been

implemented as a generic library in R, R/randomForest, and as an optimised version

designed to search for two locus epistasis, Random Jungle (Schwarz et al., 2010). This

is an extremely fast approach, completing a scan within 13 hours. However it may

not be suitable for a problem such as epistasis where the number of true features is

extremely small relative to the high dimensionality of the search space (Segal, 2004).

A non-parametric method, MDR, seeks to heuristically reduce the 3 × 3 contingency

table for a binary phenotype to a set of two classes that is then scored by its prediction
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error from a k-fold cross validation. Though it has been used quite extensively for

relatively sparse SNP panels it is computationally very intensive, and appears to be

substantially less statistically efficient than traditional logistic regression approaches.

Other approaches that involve improving the efficiency of brute force searches by ap-

proximating the standard likelihood ratio tests may be of greater efficacy. For example

TEAM (Zhang et al., 2010) sidesteps the problem of generating test statistics, and instead

approximates contingency tables for all pairwise SNPs through the use of minimum

spanning trees derived from a small subset of the individuals in the sample. Another

algorithm, BOOST (Wan et al., 2010), approximates the conventional odds ratio test to

a linear entropy model, which is then tested for divergence from linearity to indicate

‘synergistic’ interactions, thereby reducing the test parameterisation to purely interac-

tion terms. In doing so the model becomes faster to calculate, and further optimisation

is achieved by bit-packing the data for low level CPU processing.

With the brute force approach, as demonstrated in the few examples mentioned above

there are numerous ways to parameterise a statistical test for pairwise epistasis, and

there is no real consensus on what may be the ‘correct’ approach. Classically, the ge-

netic variance of the genotype-phenotype map can be partitioned into smaller compo-

nents: additive, dominance, additive× additive, additive× dominance, dominance×

dominance, and higher order terms for higher dimensional interactions (Cockerham,

1954; Jana, 1971). FastEpistasis limits the search to only include 3 degrees of free-

dom - additive at both loci and additive × additive by performing a test of allelic

association - however as demonstrated in chapter 2, these are the variance components

that are least likely to persist over evolutionary time, so it may be premature to ex-

clude other variance components at the genome scan stage. An alternative approach,

as suggested by Cordell (2002) and as used by EPIBLASTER, is to base the statistical

test only on interaction terms, excluding the marginal effects. While this specifically

tests for epistasis, results from chapter 2 also show that this is substantially underpow-

ered. Furthermore, with shifting allele frequencies between populations replication will
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again become problematic because the partitioning of variance components are likely

to change significantly (Greene et al., 2009).

3.2.4 Summary

Several potentially useful implementations exist for the epistatic analysis of binary

phenotypes. However it is unclear how the various methods might compare to a tradi-

tional exhaustive search that performs a standard logistic regression. The approxima-

tion methods, BOOST and TEAM, ostensibly offer an extremely computationally efficient

manner for exhaustive scans, but a rigorous investigation into a potential loss of sta-

tistical efficiency is warranted, and indeed this may not be viable yet with the GPU

implementations also resorting to approximations instead of standard testing.

The approach that appears to be the most powerful for two dimensional searches is to

test for whole pair genetic effects, as shown in chapter 2 and also supported by Marchini

et al. (2005). While a significant two-locus genetic effect does not necessarily constitute

a significant epistatic effect, upon sequestering a set of candidate pairs from a genome

wide scan the true contribution of epistasis can be assessed more rigorously. In any

case, if the phenotype is corrected for large marginal effects prior to the epistatic scan

it is unlikely that any candidate hits will be without epistasis. In summary, it appears

it would be expedient to adhere to a policy of including all information for statistical

efficiency, and implementing parallelisation methods for computational efficiency at

this stage of our understanding. To this end, three programmes were developed that

geometrically parallelise the exhaustive scan comprising linear regression against full

pairwise genotype effects across desktop multi-core CPUs (episcan), Beowulf clusters

(epiMPI), and consumer level GPUs (epiGPU).
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3.3 Methods

3.3.1 Statistical tests

All three programmes perform an exhaustive scan for pairwise interactions, such that

each SNP is tested against all other SNPs for statistical association with the phenotype.

Three different tests can be performed using the software, either treating the pairwise

genotype classes as factor effects, parameterising the class means as only marginal

effects, or parameterising the class means to exclude any marginal effects thus testing

for only interaction terms.

There are 9 possible genotypes resulting from combining a pair of SNPs, assuming two

alleles for each SNP. By treating the genotype classes as a fixed effect an 8 d.f. F-test

can be performed that tests the following hypotheses:

H0 :
3∑
i=1

3∑
j=1

(x̄ij − ȳ)2 = 0; (3.2)

H1 :
3∑
i=1

3∑
j=1

(x̄ij − ȳ)2 > 0; (3.3)

where ȳ is the phenotype mean and x̄ij is the pairwise genotype class mean for genotype

i at locus A and genotype j at locus B. This type of statistical test does not parameterise

for specific types of epistasis, rather, it tests for the joint genetic effect at two loci.

The software is, however, capable of reducing the test to 4 d.f., parameterising for

interaction terms only (Cordell, 2002). This is achieved by removing the marginal

additive and dominance effects from each locus, testing the following hypotheses:

H0 :

3∑
i=1

3∑
j=1

(x̄ij − x̄i − x̄j + ȳ)2 = 0; (3.4)
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H1 :

3∑
i=1

3∑
j=1

(x̄ij − x̄i − x̄j + ȳ)2 > 0; (3.5)

where x̄i (x̄j) is the marginal class mean for genotype i (j) at locus A (B).

Alternatively, there may be some reason to believe that when LD between causal vari-

ants and observed SNPs is low the interaction variance components shrink much faster

than marginal components. Indeed, the marginal components may actually increase as

they begin to capture some of the higher order components (see chapter 2). This can

be parameterised as a 4 d.f. test using the following hypotheses:

H0 :
3∑
i=1

3∑
j=1

(x̄i + x̄j − ȳ)2 = 0; (3.6)

H1 :
3∑
i=1

3∑
j=1

(x̄i + x̄j − ȳ)2 > 0. (3.7)

Because the computationally intensive aspect of the calculation is calculating the sums

of squares it is possible to calculate all three parameterisations simultaneously with

little memory or time cost relative to the calculation of the full parameterisation. The

F test is then performed as normal:

F =

(
SS(model)

d

)(
SS(y)− SS(model)

n− d− 1

)−1

∼ F (d, n− d− 1) (3.8)

where d is the number of degrees of freedom, n is the number of individuals, and

SS(model) is the sum of squares for a model parameterised as in equations (3.2-3.7),

for example for equation (3.2)

SS(model) =
3∑
i=1

3∑
j=1

nij(x̄ij − ȳ)2, (3.9)

where nij is number of individuals for the pairwise genotype class.
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3.3.2 Single node CPU optimisation

The source for episcan is written in ANSI C for ease of compilation on multiple plat-

forms, computational efficiency, and extensibility. All benchmarking is performed on

compilations made by GCC version 4.3.4, using -O2 optimisation controls.

Because the number of tests is likely to run into many billions, saving all test statistics

is not convenient. For example, a 300k SNP chip where F values are stored as single

precision floating values will require 4.5×1010×32/(10243) = 1341 gigabytes of storage.

Instead, the programme only stores the F values from the scan that exceed a relatively

low threshold.

Most modern desktop computers and laptops have multi-core architectures. For paral-

lelisation within a single node the OpenMP (open source multi-processing) specification

was used. Briefly, the application programming interface (API), allows the programmer

to use pre-processor directives, such that upon compilation the code is automatically

refactored to distribute the work load across several threads. Usually the programme

creates as many threads as there are processing cores, so that all cores are occupied

continually. But on some more recent processors where hyperthreading is an option,

each core can have two threads each, the advantage being that as a task from one thread

is being processed, memory latencies can be eliminated on the other thread.

Specifically, for the main computational challenge of iterating through all pairwise F

values, where the programme is effectively populating the lower triangle of a p×p matrix

(where p is the number of SNPs), is parallelised using the OpenMP API. To facilitate

memory concurrency the search grid is broken into rows, such that each thread’s task

is to perform all F tests for a row of the matrix. A queue of all p − 1 tasks is created

such that a new task is distributed to the next available thread.

episcan can be directed to run in serial mode or parallel mode by the user.
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3.3.3 Multiple node CPU optimisation

Because the parallelisation requires little communication between processors, distribut-

ing the workload across multiple nodes in a Beowulf cluster is relatively straightforward.

The OpenMPI (open source message passing interface) API was used to write epiMPI

because of its availability on most scientific clusters. In order to make the distribution of

work scale linearly with the number of cores available it is important to evenly balance

the number of tests to be performed. This can be done in realtime, by using message

passing to retrieve a work item in realtime, or by defining the section of the work grid

that each node will perform prior to beginning the scan. Because the communication

between nodes is relatively slow on most clusters, the latter approach was used.

Algorithm 1 Exhaustive pairwise search algorithm

i := bi
for j := bj to bi − 1 do
Fij := f(y, xi, xj) {Beginning overhang}

end for
for i := bi to ei − 1 do

for j := 1 to i− 1 do
Fij := f(y, xi, xj) {Body of scan}

end for
end for
i := ei
for j := ej to ei do
Fij := f(y, xi, xj) {Ending overhang}

end for

The total number of tests T = p(p − 1)/2 to be performed in an exhaustive pairwise

search can be represented as in Algorithm 1, where f(y, xi, xj) is the calculation of the

F value for the linear regression of SNP xi and SNP xj on the phenotype y, i is the

matrix row, j is the matrix column, bi(j) is the matrix row (column) to begin the scan

and ei(j) is the matrix row (column) to end the scan.

For example to perform the scan in serial on a single core, bi := bj := 1 and ei := ej := p,

such that the ‘overhang’ sections of code can be ignored. However, to distribute across c
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cores, each core must calculate its beginning and end coordinates within the matrix, and

iterate through the rows in between. These coordinates can be calculated theoretically

using Algorithm 2 where C is the number of cores and c is an identifier for an arbitrary

core (in the range of 1...C); and the function

g(c, C, p) = b1 +
√

1 + 8bcp(p− 1)/2Cc − kc (3.10)

where k = 1 if the square root value is an integer, or 0 otherwise, calculates the row

position in the F matrix; and the function

h(i, c, C, p) = bcp(p− 1)/2Cc − i(i− 1)/2 (3.11)

where, b·c takes the floor of the value, calculates the column position. However, while

this is the most direct way of partitioning the search space, in practice this solution

is not viable for realistic SNP densities because the floating point precision of most

processors will not be sufficiently accurate to test if the square root value in equation

(3.10) is an integer.

To sidestep this problem, the original version of the programme approached the work

load distribution from another approach and used a heuristic scheduling algorithm

known as Longest Processing Time (LPT). This was simply accomplished by partition-

ing the search space into chromosome-by-chromsome scans, such that for 23 chromo-

somes there would be 23×(23+1)/2 = 276 blocks, and they could be distributed across

the available cores. Naturally, chromosome lengths differ, and scanning the SNPs be-

tween chromosomes would create a rectangular work space while scanning the SNPs

within chromosomes would create a triangular work space, ultimately creating a set of

jobs with widely variable work sizes. LPT heuristically packs the cores with the work

blocks in an efficient manner. It orders the blocks according to estimated processing

time and then sequentially distributing the largest available block to the core with the

smallest accumulated work size. Here the estimated processing time is simply the area
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Algorithm 2 Theoretical balanced partitioning of triangular matrix across arbitrary
number of cores

if c = 1 then
bi := 1
bj := 1
ei := g(c, C, p)
ej := h(ei, c, C, p)

else if c = C then
bi := g(c− 1, C, p)
bj := h(bi, c, C, p)
ei := p
ej := p

else
bi := g(c− 1, C, p)
bj := h(bi, c, C, p)
ei := g(c, C, p)
ej := h(ei, c, C, p)

end if
if bi = (bj + 1) then
bi := bi + 1
bj := 1

else
bj := bj + 1

end if
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Figure 3.2: Example of the recoding of the search space coordinates from a triangular
to rectangular grid for efficient distribution across multi-core CPU clusters
for 11 SNPs, as detailed in algorithm 3. The upper and lower triangular
matrices are symmetrical, so only the shaded area is scanned (left). As the
scan proceeds through the rectangular grid (right) iterating through rows
i = {7, ..., 11} and columns j = {1, ..., 11}. If i > j then the SNPs tested
are chosen according to the corresponding coordinates in red. If i ≤ j then
the coordinates in blue are chosen.

of the work block. While this is a widely used approach, in the majority of situations

it will be unable to perfectly distribute the work load across the cores. Indeed, it has

been shown that the efficiency of LPT, in terms of trying to minimise the maximum

partition size is at worst 4
3 −

1
3C times the optimal value (Graham, 1969).

While the LPT achieves good efficiency, particularly with a very large number of avail-

able cores, it can be improved further. Here an alternative algorithm is devised that

restructures the search grid to enable a computationally tractable and theoretically bal-

anced work load across an arbitrary number of cores. First, the lower triangular matrix

is partitioned into two sections by bisecting along the row i = dp/2e. By rotating the

upper section (triangular matrix), and adjoining its diagonal with the diagonal on the

lower section, a new rectangular matrix R is created with dimensions dp/2e rows and

p + l columns, where l is 1 if p is even, and 0 otherwise (figure 3.2).The search space

is then simply distributed amongst cores by evenly partitioning the rows. Algorithm 3

maps from the refactored rectangular matrix R back to the coordinates of the original
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triangular matrix F , where the function

u(p, c, C) = dcp/C(bp/2c+ 1)e (3.12)

defines the row position of R.

Algorithm 3 Rectangularisation and parallel distribution of triangular matrix

if c = 1 then
bi := bp/2c+ 1
ei := u(p, c, C)

else if c = C then
bi := u(p, c− 1, C) + 1
ei := p

else
bi := u(p, c− 1, C) + 1
ei := u(p, c, C)

end if
if odd(p) then
l := 1

else
l := 0

end if
for i := bi to ei do

for j := 1 to p− l do
if j < i then
Fij := Rij := f(y, xi, xj)

else
i′ := p− i+ 2− l
j′ := p− j + 1− l
Fi′j′ := Rij := f(y, xi′ , xj′)

end if
end for

end for

3.3.4 GPU optimisation

The scan follows a single instruction-multiple data (SIMD) model, such that a fairly

intensive kernel (the F test) is performed repeatedly on a large grid of data. The

OpenCL (open source computing language) has been developed to allow multi-core
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architectures to generically parallelise such analyses. Of particular use is the ability of

OpenCL to harness the massively multi-core architecture of modern graphics processing

units (GPUs). Another such API, CUDA (compute unified device architecture), can

also be used, however it is restricted to NVIDIA devices only. OpenCL was chosen

for use in epiGPU because it is open source and avoids the problem of being hardware

vendor specific.

While most GPUs have hundreds of cores, performance doesn’t necessarily scale pro-

portionally, and not all algorithms will benefit from GPU parallelisation (e.g. Davis

et al., 2011). The main performance limiting factor is the memory input/output (I/O)

bandwidth between processing cores and video memory. The computational kernel that

runs on the GPU cores restructures the regression algorithm, making efficient use of

the video memory hierarchies and this was necessary for achieving significant speed

improvements. Several steps were necessary to limit the kernel I/O operations whilst

maximising its efficiency, as outlined below.

3.3.4.0.5 Distribution strategy The processing cores of the GPU are divided into

groups of 8, known as streaming multiprocessors (SMs). These spawn and enqueue

multiple threads for the execution of the kernel function, each thread being an F test

for a different SNP pair. Ideally the number of threads per SM should be made as large

as possible in order to minimise communications between CPU and GPU, and to reduce

the number of kernel initialisations. However, for most operating systems the SM must

not be occupied for more than 5 seconds (to allow other graphical devices to function),

so the number of possible threads is restricted. The lower triangular p× p search grid

must, therefore, be partitioned into a dense grid, such that each grid element can be

sent to the GPU and executed within the allotted time.

3.3.4.0.6 Memory layout GPUs partition their memory into four sections (in de-

creasing order of size, increasing order of speed): RAM, cache, local memory (L2), and
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private (L1). It is of primary importance to minimise time in piping data from various

memory regions to the processing cores in order to achieve efficiency. The genotype

data comprises the bulk of the information for performing the scan. This had to be

mapped to the video random access memory (RAM), which is hierarchically the largest

memory space but also the slowest to access. The phenotype is read only and, compris-

ing a single vector of single precision floating point values, is stored in a smaller section

of RAM that has faster access. Ideally this would be stored in L2 or L1 memory be-

cause it is accessed by every core for every F test, however these sections are extremely

small, restricting this possibility. L2 and L1 share 16 kilobytes (kb) within each SM,

effectively allowing 2kb per core. This was used to accrue the calculations for the nine

genotype class means, xij , in e.g. equation (3.2) for each concurrent thread.

3.3.4.0.7 Use of on-line algorithms Calculating the sum of squares of y is conven-

tionally done as

SS(y) =
n∑

(y − ȳ)2 (3.13)

where n is the number of individuals. However, this would be problematic because of the

requirement to first calculate the mean value of y before being able to calculate its sum

of squares. This isn’t a problem when there are no missing values in the genotypes,

because these values would not change, and they could be passed as precalculated

values to the kernel. However, with missing values existing (as is often the case) an

alternative method was devised. On-line algorithms are such that they can process the

data incrementally in the order that the input is fed to them. In contrast, equation

(3.13) is an off-line algorithm because it requires to have had access to all data prior to

the calculation in order to calculate ȳ. This calculation was restructured to be made

on-line based on Welford (1962), where ȳ and SS(y) for the entire cohort were passed

to the kernel (calculated once for the whole scan on the CPU), and for every missing

genotype value the individual’s contribution was omitted according to Algorithm 4,

where the function missing(Xik) tests if the kth individual’s genotype at SNP xi is



Chapter 3. Parallelisation of exhaustive two-dimensional searches 70

missing, and ñ is the number of individuals with no missing genotypes for the pair of

SNPs under test.

Algorithm 4 On-line algorithm for updating SS(y) and ȳ

ñ := n
˜SS(y) := SS(y)

˜̄y := ȳ
for k := 1 to n do

if missing(Xik) ∪missing(Xjk) then
˜SS(y) := ˜SS(y)− (yk − ˜̄y)(yk − (ñ˜̄y − yk)/(ñ− 1))

˜̄y := (ñ˜̄y − yk)/(ñ− 1)
ñ := ñ− 1

end if
end for

3.3.4.0.8 Vectorising phenotype reads The two major hardware vendors of graphics

cards, ATI and NVIDIA, have both implemented hardware level vectorisation capabil-

ities. Theoretically this means that 4, 8 or 16 array elements can be fetched from video

RAM to L2 memory in the time that fetching a single array element would take using

the non-vector form. These memory channels were used to read the phenotype values

by the kernel.

3.3.4.0.9 Bit-packing genotype data Each genotype is encoded as 0, 1, 2 to denote

the number of minor alleles, or 3 to denote a missing value. Therefore only two bits are

required to store a single genotype, such that even by storing them as char data types,

the smallest native data type in ANSI C at 8 bits, is relatively wasteful of bandwidth

when the kernel fetches the data from RAM to L2. A beneficial trade-off could be made

whereby encoding the genotype array to bit-pack 16 genotypes into an int data type

(32 bits) would increase transfer rates sufficiently even with the small cost of the kernel

having to unpack the data upon its arrival for processing. For example, say the geno-

types for an individual are {0, 1, 2,missing}, when encoded as normal, using an array

of char data types this would be stored as {00000000, 00000001, 00000010, 00000011},
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but the corresponding encoding when bit-packed would be a single char element com-

prising the last two bits of each array element, {00011011}. Another obvious benefit

is that the genotype data requires much less space in video RAM, so even extremely

large datasets could be comfortably accommodated on most GPUs.

3.4 Results

The software produced geometrically parallelises exhaustive searches for pairwise epistatic

associations with quantitative traits. Large scale analyses were performed on simulated

data, typical in scale of those that would be expected based on GWASs already pub-

lished, on several different software and hardware systems. The performance tests show

that against the baseline system (serial code running on a modern CPU) graphics cards

can perform the same analysis almost two orders of magnitude faster and at minimal

expense (Table 3.1), such that an analysis that would take over 4 days to complete

using episcan in serial mode could be performed in just over an hour by using software

utilising a graphics card. It is demonstrable that to achieve comparable speeds using

CPU cores would require a large compute cluster, for which the cost to acquire and

administer could be prohibitively expensive.

Compared to existing software, these implementations appear to perform favourably.

Comparing episcan against FastEpistasis, both running in serial, episcan runs ap-

proximately 3.5× faster, performing 128200 tests per second. Both programmes scale

almost linearly with the number of cores. EPIBLASTER is the most efficient GPU based

implementation currently available, and epiGPU (using the values from the Nv GTX285,

a similar card to the one used by Kam-Thong et al. (2010)) performs almost 4× faster

in terms of tests per second.

The use of graphics cards as tools for scientific research is a rapidly emerging industry

that has manifested staggering improvements in performance over the last few years.
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Table 3.1: Parallelisation performance and cost comparison

Parallelisation Hardware Cost Time Relative Cost

/ £d / min e Speed f benefit g

None Baseline CPU a - 5860 1.0 -

Multi-core CPU 6-core CPU b 760 986 5.9 1.6

8-core CPU c 1600 763 7.7 1.0

CPU cluster c 16-core cluster - 398 14.7 -

32-core cluster - 195 30.0 -

64-core cluster - 96 61.0 -

GPU Nv Fermi GTX580 367 63 91.6 51.9

ATI Radeon 6970 300 86 68.1 47.2

Nv Tesla S1070 960 146 40.1 9.0

Nv GTX285 230 145 40.1 36.2

Nv 8800GT 72 613 9.6 27.7

a Baseline equipment, Intel i7 970 3.2GHz, running in serial
b Intel i7 970 3.2GHz
c Dual Intel Xeon E5472 3.0GHz
d Approximate cost for equipment above baseline. Cost estimates for large compute

clusters are too subjective for realistic comparisons
e Total user time to complete the analysis (300,000 SNPs, 1000 individuals)
f Time relative to baseline time
g Cost benefit calculated as Speed / Cost, figures shown are adjusted relative to the cost

of the best performing desktop CPU alternative (8-cores).

However it is still in its infancy, and as reflected in figure 3.3, the level of manual

optimisation required by developers to harness this power is considerable. Furthermore,

while a very heterogeneous array of devices can be used for OpenCL applications,

differences in their architectures inevitably results in different responses to optimisation

strategies. Figure 3.3 shows that without careful optimisation, even the most recent

GPUs will appear to offer little to no advantage over CPU implementations.

3.5 Discussion

Quantitative genetics has long been occupied with the theoretical contribution of ge-

netic variants to complex traits. The last decade has seen a global effort to start
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E5472). Speeds are for calculating 8 d.f. F tests with 1000 individuals.
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investigating this empirically on a large scale, yet epistasis remains largely unexplored.

Computing exhaustive pairwise epistatic scans is an important step in making tractable

the understanding of non-additive genetic effects in complex traits. Shown in this study,

this can be achieved efficiently by using consumer level graphics cards, an established

technology that is cheap and widely available. In its current implementation, epiGPU

is limited to performing linear regression on quantitative traits, but the parallel de-

composition framework is sufficiently generic to allow its extension to other pairwise

statistical analyses relatively easily, such as Chi-square testing for case-control data.

Another central problem with epistasis scans is the heavy multiple testing penalty in-

curred by stringent significance thresholds. Computationally straightforward methods

such as the Bonferroni correction are likely to penalise for an overestimated number

of independent tests, and this is particularly problematic with epistasis where the di-

mensionality of the search is increased. However, with the growing availability of GPU

clusters (Fan et al., 2004), it is now becoming feasible to perform two-dimensional

genome-wide permutation analyses to generate more accurate estimates of family-wise

false discovery rates (Churchill and Doerge, 1994), a potentially critical step toward

understanding the contribution of epistasis towards complex traits.

It should also be noted that there is no consensus on how traditional brute force tech-

niques might compare against the emerging machine learning methods, based on tech-

niques such as random forests or support vector machines. To effectively evaluate

statistical performances of these methods, computational problems must be minimised

in order to perform meaningful simulations and to generate accurate family wise false

discovery rates.
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Significance thresholds for

exhaustive two dimensional testing

4.1 Abstract

Genome wide association studies impose a heavy multiple testing penalty which is
detrimental to their power, so the question of significance thresholds is important. In
one dimensional scans this has been explored deeply, and it can be demonstrated that
because of correlation between the SNPs being tested, the effective number of tests is
much lower than the actual number performed. But the degree to which this is the
case in two dimensional searches for epistasis has been difficult to determine because of
computational obstacles. With the emergence of GPGPU clusters, such investigations
are now feasible and using the epiGPU software (described in chapter 3) thousands of
permutations were performed to estimate empirically the effective number of tests in
two dimensional scans and a function to estimate thresholds for arbitrary SNP densities
and sample sizes was derived. It is shown that previous estimates of the effective number
of tests have been overestimated, and that while statistical parameterisation used in
the analysis has little influence on the empirical threshold for significance, population
sample size and SNP density are important. Through simulation it is also shown that
inflation of the type 1 error rate as a consequence of non-normality of the response
variable is a function of allele frequencies, with liability increasing as the smallest class
sizes of SNP pairs decrease.

75
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4.2 Introduction

The aim of this chapter is to investigate the distribution of test statistics produced

by exhaustive two-dimensional searches for very large sets of parameters. Specifically,

it seeks to examine the effects of different conditions on the 5% significance level for

association between pairwise epistatic loci and phenotypes of interest.

4.2.1 Multiple testing and the curse of dimensionality

The human genome is approximately 3 billion base pairs in length. This comprises

around 20 thousand genes, and while in European populations each individual is likely

to differ from some reference sequence at around 3 million positions (The 1000 Genomes

Project Consortium, 2010), there are probably over 12 million common (with > 1%

allele frequency) single nucleotide polymorphisms (SNPs) within populations (Altshuler

et al., 2010). So in the context of genome wide association studies (GWASs), which aim

to give equal weight to all genomic loci, even when the number of observed SNPs in the

study are a fraction of those that might be segregating in the population there are an

extremely large number of features to evaluate for association with the trait of interest.

Herein lies the problem of multiple testing. In the frequentist sense, a p-value denotes

the probability of obtaining a test statistic at least as extreme as the one obtained

from the data sample, given that the model assumptions and the null hypothesis are

true. Therefore when testing a large set of SNPs for departure from the null hypothesis,

that the variance of the phenotype explained by the SNP is zero, extreme p-values will

necessarily be obtained as multiple draws are taken from the underlying distribution of

the test statistic. One of the challenges of the multiple testing problem is in defining

a statistical threshold whereby those signals that we deem to be significant are truly

associated with the phenotype at a reasonable level of certainty.
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Ultimately, employing a strategy that tests for everything has been costly for power. To

significantly reject the null hypothesis an association must comprise an extremely large

effect, its magnitude being a function of the effective number of tests being performed.

While expanding the density of a GWAS to improve genome coverage ostensibly the

effect size required for significance will increase also and this is particularly problematic

for highly polygenic traits. Supposing that a very large number of variants have real

effects, it may be the case that it would be impossible for any of them to have a

significant effect because the amount of variance that they can explain is constrained

by the number of effects that exist. Such a phenomena is fairly robust to the distribution

of causal effect sizes (Daetwyler et al., 2008), and the unexpectedly poor performance of

GWAS has often been attributed to this hypothesised infinitesimal model of polygenicity

(Park et al., 2010).

This problem is magnified in the case of epistasis. By increasing the search space to two

or more dimensions, the accompanying inflation in multiple testing results in extremely

stringent thresholds. This problem, the so-called ‘curse of dimensionality’ (Bellman,

1957), is intrinsic to many aspects of data mining and machine learning. With multiple

statistical testing the issue is clear, the exponential increase in the multiple testing

with the increase in dimensionality calls for an exponential increase in the magnitude

of test statistics in order to confidently reject the null hypothesis. It is entirely possible

that the current mode of study of the highly polygenic architecture underlying complex

traits is rendered intractable by this. Another common problem is in the relationship

between testing dimensionality and sample size. For typical sample sizes in GWAS most

pairwise genotype-phenotype maps will comprise sufficient individuals per genotype

class to ascertain a reasonable estimate of class effect, but for lower frequency SNPs this

will not be the case. With missing genotype classes in the sample estimates cannot be

made, and therefore the utility of such an approach for prediction is diminished. While

pairwise SNPs only comprise nine genotype classes, this problem becomes universal to

all SNP frequencies as the dimensionality increases - there being 27 genotype classes
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for three-way maps and 81 genotype classes for four-way maps. Known as the Hughes

effect (Hughes, 1968), the only solution is to have extremely large sample sizes and while

extremely costly for some traits, for others there may not even be sufficient numbers in

the population.

The stark reality is that the search for epistatic variants is truly cursed by the problem of

dimensionality. Simulations show that marginal effects are often insufficient to detect

epistatic variants even when the multiple testing correction is at a lower dimension

(Marchini et al. 2005; Chapter 2), and with the problem of polygenicity causing even

one dimensional scans to be intractable then two dimensional searches may be out of

the question. Understandably, there has been extensive investigation into the question

of how to suitably define significance thresholds in one dimensional GWASs, with a view

to optimise the balance between false positives and false negatives. With the advances

in computational methods described in Chapter 3 it is now possible to translate these

methods to two dimensional searches.

4.2.2 Threshold strategies in one-dimensional studies

Consider a dataset upon which a family of tests are performed, each of which seeking

to test the same hypothesis. Given some nominal type 1 error threshold, α = 0.05,

assuming that all the tests are independent, the probability of incorrectly finding at

least one of the tests from the family to be significant is (1− the probability that none

of the tests in the family are significant), or αF = 1− (1− α)t, where t is the number

of tests (or SNPs) in the family. The Šidák correction (Sidák, 1967) rearranges this

equation to deliver a significance threshold such that the family-wise error rate, αF , is

equal to the initial nominal type 1 error,

αsidak = 1− (1− αF )
1
t . (4.1)
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A common approximation to this is the Bonferroni correction, which can be derived

from equation 4.1 as the first linear term of its Taylor expansion (Holm, 1979), is

marginally more stringent,

αbonf =
α

t
≤ αsidak, (4.2)

but much more widely used, most likely because of historically being computationally

simpler. Both of these approaches are threshold measures, they design a significance

level at which a reasonable family-wise error rate is permitted, such that the probability

of a false positive from within a family of tests is αF . An alternative approach is to

control the expected proportion of errors amongst the tests that reject the hypothesis,

or to calculate the false discovery rate for the treatment of a family of tests. A popular

method, the Benjamini-Hochberg correction (Benjamini and Hochberg, 1995) details a

procedure whereby all p-values from the family of tests are sorted into ascending order

P = {p1 ≤ pi ≤ ... ≤ pt}, and the largest i = i∗ that satisfies

pi ≤
i

t
α (4.3)

denotes the set of P1...i∗ amongst which the probability that a hypothesis is falsely

rejected is α. This approach may be particularly useful where there are expected to be

a reasonably large number of true positives.

However, both adjustment styles are lower bound estimates of the true αF when the

assumption of independence between tests is violated. Although commonly used in

GWAS, the correlation structure between markers in a SNP panel is strong, and so using

a correction based on t alone is overly stringent. This is intuitive because if two SNPs

are in complete LD then in effect only one hypothesis is being performed. Similarly, if

LD is incomplete but greater than 0 then a proportion of the variance in the first SNP

is being included as part of the hypothesis in the second SNP, so it can be supposed

that somewhere between 1 and 2 tests are effectively being performed. Many attempts

have been made to adapt multiple testing correction methods to take into consideration
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the correlation structure within SNP panels. They can be broadly divided into three

groups - controlling the false discovery rate, calculating the effective number of tests,

and calculating the underlying distribution of family-wise test statistics.

Building on the philosophy of the Benjamini-Hochberg method, the proportion of false

positives (PFP) method (Fernando et al., 2004) also aims to calculate what proportion

of significant hits in a family of tests are false positives for some family-wise threshold

α. Theoretically it is an extension of the posterior type 1 error rate (PER) method

(Morton, 1955) which was designed to find the probability of non-linkage between a

causal locus and a marker given that linkage was declared. PFP avoids explicitly cor-

recting for multiple tests by constructing a probability of all significant hits based on

the expected power of the experiment and the proportion of tests which are true nega-

tives. Thus, provided that these parameters can be calculated (e.g. Mosig et al. 2001;

Allison et al. 2002; Storey and Tibshirani 2001) thresholds can be adjusted accordingly.

Alternatively, if the effective number of tests being performed in a GWAS were known,

then more appropriate family-wise significance thresholds could be imposed simply by

replacing t with the effective number of tests in the Bonferroni or Šidák approaches,

and there have been several attempts to do this. Localised permutation analysis of the

HapMap data showed that on average in CEU populations approximately 150 indepen-

dent tests were being performed for every 500kb region of the genome, thus suggesting

a family-wise threshold of 5.5×10−8 for the entire genome (The International Hapmap

Consortium, 2005). A less stringent threshold of 5 × 10−7 was used by The Wellcome

Trust Case Control Consortium (2007), where the posterior odds of hits being true

associations were calculated to be 10:1 in favour, however such a statistical framework

requires accurate estimates of power and underlying trait architectures (as with the

PFP method), and these may not be easily ascertained. The threshold of 5 × 10−7

was based on there being 1 × 106 independent regions in the genome, there being 10

underlying genes per trait, and estimated power for detection at 50%, but assuming a
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highly polygenic model or a smaller sample size would elevate this threshold. Numerical

approaches can also be used, for example Patterson et al. (2006) proposed a method

where the effective number of tests were calculated by summing the moment estima-

tors for the chromosomal eigenvalues. Similar methods have also been proposed (Gao

et al., 2008; Li and Ji, 2005; Moskvina and Schmidt, 2008; Nyholt, 2004), however Dud-

bridge and Gusnanto (2008) and Salyakina et al. (2005) have shown that although these

methods are useful and computationally efficient indicators of the correlation structure,

generally they are not sufficiently robust to be used to derive consistent thresholds.

What is widely regarded as being the most robust method to find family-wise signif-

icance thresholds for non-independent parameters, permutation analysis, is also the

most computationally intensive. Initially introduced by Fisher (1935) and adapted to

linkage studies by Churchill and Doerge (1994), permutation analysis seeks to sample

from the tail of the distribution of test statistics for a family of tests. This is achieved by

performing the genome-wide analysis N times, randomly shuffling the response variable

for each set of tests, and recording the most extreme p-value achieved each time. These

are sorted into ascending order and the family-wise threshold is then set to be the p-

value found at the (αN)th position in the list. Critically, it has the feature of preserving

the structure within the genome and the distribution of the phenotype but severing the

biological link between the two, giving an empirical estimate of how extreme the test

statistics are likely to go by chance alone. Although designed with the intention for

use on a per-experiment basis, permutation analysis has since been invoked to attempt

to uncover the effective number independent regions in the entire genome. By resam-

pling SNPs across a continuum of densities Dudbridge and Gusnanto (2008) inferred

the point at which introducing more SNPs no longer increased the permutation based

thresholds to be 693138 independent regions. To be specific, this is not to say that this

many SNPs will provide full coverage of the genome, rather it means that in general

as SNP density increases the coverage of these regions will tend towards completion.
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Thus it is argued that all one-dimensional scans should use the corresponding family-

wise threshold of 7.2 × 10−8 because even though certain studies might use sparser

panels, the intention is always to achieve genome-wide coverage, and a standardised

threshold allows the comparison between different marker panels and the extension to

imputed SNPs.

4.2.3 Extensions to two-dimensional searches

All of these methods invoke different philosophies and their merits can be debated.

Yet it is unknown how accurately or easily they can be applied to two dimensions.

The consensus approach is to simply use the conservative Bonferroni correction, but

recently an attempt has been made to calculate the effective number of tests being per-

formed in an exhaustive pairwise scan. Becker et al. (2011) used permutation analysis

on Monte Carlo simulations where the family of tests are partitioned into two types:

the correlation structure between interactions comprising a single SNP against an in-

dependent region of correlated SNPs (type A), and between two independent regions of

correlated SNPs (type B). Using 5600 individuals genotyped at 495000 SNPs with mi-

nor allele frequencies greater than 0.05, permutation analysis in one dimension resulted

in an effective number of tests to be approximately 250000, giving a scalar correction

factor of 250000
495000 ≈ 0.5. Assuming the same correlation structure exists between type

A and type B tests they initially speculated that the expected number of tests to be

0.5× 0.5× t(t− 1)/2, however it was shown that while type A correlations are identical

to the correlation structures in one-dimensional tests, type B are much less correlated,

leading to an estimated number of effective tests of 0.44× t(t− 1)/2.

Philosophically this is at odds with most of the one dimensional non-independence

procedures, because it simply scales the Bonferroni correction without considering the

increased correlation structure amongst SNPs as the density increases. In addition there

are a few other concerns that an inference method will fail to address. One possibility
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is that as the search increases in dimensionality, particularly for small sample sizes

the combinatorial enumeration of the partitioning of phenotype values across genotype

classes reaches exhaustion. That is to say that the most extreme assortment of indi-

viduals into genotype classes will inevitably occur eventually if the number of genotype

combinations is sufficiently large, such that any true biological signal will be at best

only as good as the combinatorially optimum configuration. At which point this may

start to happen is difficult to calculate, as it depends on several factors including the

distribution of class sizes and the dimensionality of the test. Nonetheless, small class

sizes amongst small sample sizes are likely to maximise the chance of this occurring.

Another important issue is the impact on the distribution of p-values should violations

in the assumptions of the test statistic occur. Many studies have documented the prob-

lems associated with departure from parametric assumptions for parametric tests and

of particular interest in exhaustive searches is the extent to which such violations will

impact results under different conditions (e.g. Boneau (1960); Cribbie and Keselman

(2003); Sawilowsky and Blair (1992)). A major concern is that there may exist an infla-

tion in the type 1 error, and this can result in two possible outcomes. Firstly, without

knowledge of the behaviour of test statistics when violating parametric assumptions

experiments are liable to return a higher rate of false positive results. Secondly, with

correction for type 1 error inflation, for example by adjusting experiment wise signif-

icance thresholds, the power may be affected, causing an increase in type 2 errors.

An interesting conundrum that may arise with high dimensional searches often occurs

when significant effects are discovered where genotype classes with few observations but

extreme effects explain most of the genetic variance. One might be inclined to accept

the validity of such a result from an evolutionary perspective because extreme effects

are expected to be rare in the population. But there may also be skepticism regarding

the artificial inflation of test statistics involving small genotype class sizes. This can

be problematic because for example if the most ‘believable’ result from a biological
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perspective is the least believable from a statistical perspective then the objective of

an exhaustive search comes into question. Resolution in this area is required.

With the growing availability of GPGPU clusters epiGPU can be used to begin explor-

ing genome wide permutation tests for two dimensional scans. This study attempts to

explore empirically the ‘gold standard’ of significance thresholds, permutation analy-

sis, in two dimensional tests, and attempts to understand the impact of violating the

assumptions of normality in such searches.

4.3 Methods

This study is divided into two parts. The first part seeks to explore the impact of using

non-normalised response variables in two dimensional searches through simulation, with

respect to allele frequency dependent behaviour. The second part uses GPGPU clusters

to enable the calculation of permutation based false discovery thresholds under differing

sample sizes and SNP densities.

4.3.1 Monte Carlo simulations

A simple Monte Carlo simulation was performed to ascertain the impact on the distri-

bution of p-values for two dimensional scans as a function of the minor allele frequencies

at both loci. The simulation proceeded as follows:

1. Two SNPs, x1 and x2 ∈ {0, 1, 2}, are simulated in Hardy-Weinberg equilibrium

with allele frequencies drawn from the set of pairwise frequency bins f1 = f2 =

{0.05, 0.10, ..., 0.50}.

2. A normally distributed phenotype y is simulated with σ = 1 and the mean ad-

justed such that min(y) = 2.
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3. An 8 d.f. F-test is performed to calculate the p-value for association between the

SNP pair and the phenotype.

4. The test is repeated, this time using log10 y as the response variable, to simulate

non-normality. This generates skewness such that the third standardised moment

≈ 0.015, a similar value to the skewness in the raw BMI values described below.

This procedure is performed for sample sizes of n = {500, 1000, 2000} individuals, and

each simulation is repeated 105 times. The resulting distribution of p-values from each

pairwise frequency bin is summarised as the 95th percentile most extreme test statistic.

4.3.2 Permutation based thresholds of two-dimensional searches

4.3.2.1 Data

The data used for the empirical permutation analysis combines three cohorts from ge-

netically isolated populations and has been previously described by Vitart et al. (2008).

Recruitments were made from the Croatian islands of Vis and Korcula (approved by the

Ethical Committee of the Medical School, University of Zagreb and the Multi-Centre

Research Ethics Committee for Scotland), and the Italian villages in the South Tyrol

province (approved by the ethical committee of the Autonomous Province of Bolzao).

All participants gave written informed consent.

Body mass index (BMI) was calculated from their height and weight measurements.

Outliers from the sample (BMI > 50kg/m2) were removed from the study and the

BMI values were corrected for age and sex, and normalised using rank transformation.

To correct for polygenic effects, following the method developed by Aulchenko et al.

(2007), a linear model fitting the kinship matrix as a random effect was performed,

using the polygenic() function in R/GenABEL (Aulchenko et al., 2007). The residual

values from this model were used for all subsequent analysis.
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Table 4.1: Cohort sizes

Cohort Sex a Count b

Vis 0.43 1083

Korcula 0.36 876

South Tyrol 0.44 513

Total 0.41 2476

a Ratio of males to females in the
sample

b Sample size after quality control

The Illumina Infinium HumanMap300v1/v2 SNP bead microarrays were used to geno-

type DNA samples and BeadStudio software was used for their processing. Following

quality control, where the criteria for inclusion were 98% SNP call rate, 95% individual

call rate, within population Hardy-Weinberg equilibrium confidence of p ≤ 10−10 and

minor allele frequency ≥ 2%, there remained 2476 individuals and 283971 autosomal

SNPs (polymorphic in all cohorts). The sample sizes are outlined in table 4.1. To

obtain sample sizes of 1250 and 625 individuals they were randomly sampled (without

replacement) from the initial pool of 2476.

4.3.2.2 Imputation

The chip used for the genotyping comprised 300k SNPs, and with denser genotype data

being unavailable one way to assess the relationship between density and thresholds is

to perform the permutation analysis on imputed genotype data. The reference data

used was HapMap Phase II release 21 (Frazer et al., 2007), and the original dataset was

imputed to a density of approximately 3.1 million SNPs using MaCH software (Li et al.,

2010, 2009). Subsequently all imputed SNPs with r2 < 0.30 (as calculated by MaCH)

were excluded and the remaining SNPs were trimmed to 600k by sampling to keep

chromosome proportions and minor allele frequency distributions consistent with the
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original 300k dataset. Similarly, to obtain the 150k dataset 150000 SNPs were sampled

randomly from the original 300k dataset.

4.3.3 Permutations

The software epiGPU, described in chapter 3, was used to perform the permutation

analyses, applying the method developed by Churchill and Doerge (1994) to two di-

mensional scans. Nine different conditions were considered, wherein population size and

SNP density varied for each condition as summarised in table 4.3. For each condition

the permutation analysis proceeded as follows.

1. The phenotype is randomly reordered.

2. An exhaustive two dimensional scan is performed against the reordered pheno-

type.

3. The most extreme pairwise interaction was recorded.

4. Repeat from step 1 until 1000 different permutations are performed.

The 100 top hits from each scan typically represent a very small proportion of all

tests performed (e.g. 100/(3000002/2) = 2.2 × 10−9), and these are used to evaluate

the allele frequency distribution of the interactions that comprise the tail of the test

statistic distribution.

To generate a threshold accounting for the effective number of tests being performed in

the scan, the lowest p-value for each permutation is listed in ascending order and the

50th (5th percentile) value becomes the threshold estimate.

Permutations were performed for two different statistical tests, parameterising for full

genetic effects (8 d.f.) or interaction terms only (4 d.f.). These are described in detail in

chapter 3. While 8 d.f. tests can be applied for any range of allele frequencies, the 4 d.f.
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test is restricted to SNP pairs where there are individuals representing all 9 pairwise

genotype classes because the algorithm depends on estimates of all homozygote classes

to accurately calculate the marginal effects of the pairwise interaction.

4.3.4 Compute resources

Performing multiple exhaustive searches on dense SNP sets with large sample sizes

was a significant computational undertaking. Two GPGPU clusters were used for

the majority of the analysis: cseht at Daresbury Laboratory, comprising thirty-two

NVIDIA S1070 cards; and eddie, provided by the Edinburgh Compute and Data Fa-

cility (ECDF), comprising eight NVIDIA S2080 cards. The average time taken for each

of the tests for the different cards is shown in table 4.3. For the scans with the highest

SNP density, although a reasonable number of permutations are performed, there are

fewer than might be desired simply due to time constraints.

4.4 Results

4.4.1 The impact of non-normalised phenotypes on false discovery rates

Many studies have documented the problems associated with departure from parametric

assumptions for parametric tests and of particular interest in exhaustive searches is

the extent to which such violations will impact results under different conditions (e.g.

Boneau (1960); Cribbie and Keselman (2003); Sawilowsky and Blair (1992)). A major

concern is that there may exist an inflation in the type 1 error, and this can result in

two possible outcomes. Firstly, without knowledge of the behaviour of test statistics

when violating parametric assumptions experiments are liable to return a higher rate of

false positive results. Secondly, with correction for type 1 error inflation, for example by
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adjusting experiment wise significance thresholds, the power may be affected, causing

an increase in type 2 errors.

A recurring problem in biology is that phenotype distributions are seldom exactly nor-

mal, most commonly due to skewness. Figure 4.1 shows the results from Monte Carlo

simulations that were performed to acquire the distribution of test statistics for two

dimensional tests both in accordance and in violation of the assumption of normality.

Here it is evident that the tail of the distribution of test statistics is more extreme as

allele frequencies become rare when outliers in the distribution are introduced through

skewness, but that under normality there is no such inflation of the type 1 error. Fur-

ther exploration of this trend demonstrates that type 1 error inflation occurs more

specifically when there are genotype classes with few samples while regressing against

a non-normal phenotype (figure 4.2). The results indicate that when there are at least

40 observations in the smallest genotype class size then the test statistic inflation due

to this level of deviation from normality is eliminated. However, the required minimum

class size is likely to be a function of the skewness of the data.

The original dataset used for the permutation analysis (described in section 4.3.2.1) has

been extensively analysed for genetic variation in BMI (Wei et al. 2011, in preparation),

and the results from these simulations may be important in their interpretation. Raw

BMI values are generally skewed, resembling the log transformed distributions that

were used as an example for the violation of normality in figure 4.1, and in general

the most robust method to correct for non-normality is to use the method of rank

transformation. Table 4.2 demonstrates the liability for false positives to occur when

normality is violated in this manner. Most notably, many pairwise interactions were

mined with − log10 p-values sufficiently extreme to surpass the stringent Bonferroni

correction of 11.95. However, upon reanalysis following rank transformation of the

phenotype these test statistics are significantly diminished. While few observations in
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Figure 4.1: Results from Monte Carlo simulations showing the effect of allele frequency
(x- and y-axes) on the inflation of test statistics (z-axis) when assumptions
of normality are violated. The values of the wireframe plot are the 5th per-
centile of the most extreme − log10 p values from 105 pairwise tests with
null models simulated at two loci with frequencies corresponding to the x-
and y-axes. The top row of boxes shows the effect of using a log-normally
distributed phenotype, and the bottom row when using a normally dis-
tributed phenotype. Columns of boxes represent different sample sizes.
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Figure 4.2: The effect of the minimum non-zero genotype class size (x-axis, log scale)
on the inflation of the test statistic for 8 d.f. epistatic tests. Data is taken
from figure 4.1, demonstrating a clear trend between small class sizes and
inflated test statistics for non-normal phenotypes.
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Table 4.2: False positives from epistatic searches in BMI

SNP 1 SNP 2 MGC a Raw p-value (− log10) b Corrected p-value (− log10) c

rs10789450 rs1857985 6 13.82 9.87

rs1217394 rs826911 7 12.47 8.59

rs9809255 rs1857985 3 12.23 7.79

rs10758713 rs1857985 3 12.06 8.74

rs1857985 rs7342676 3 12.60 8.56

rs1857985 rs12927233 6 12.74 9.60

rs755647 rs2267271 4 12.61 8.08

a Minimum genotype class size (non-zero)
b Returned from scan using non-normalised phenotype
c Returned from scan using rank transformed phenotype

certain genotype classes result in inflation, as in this case, it is important to note that

under conditions of normality there is no such liability.

4.4.2 Permutation analyses

Currently, there are very few exhaustive searches for epistasis being performed, and

when they are being used they typically employ very conservative significance thresh-

olds, such as the Bonferroni correction. Some efforts have been made to adjust this

based on the estimated number of effective tests being performed (Becker et al., 2011),

but in reality the behaviour of the extreme tail of the distribution when a very high

number of multiple tests is being performed is unknown, nor is the true genomic corre-

lation structure amongst these tests. Here, permutation analysis was used as the most

direct way for answering these questions.

The results from the permutation analysis are shown in figures 4.4 and 4.3, and table

4.3. There are several important conclusions that can be drawn from this analysis.

Most importantly, the Bonferroni correction is shown to be overly conservative, and

that using a scalar correction factor as in Becker et al. (2011) does not fully account



Chapter 4. Significance thresholds for exhaustive two dimensional testing 93

SNP density

−
lo

g 1
0p

10.8

11.0

11.2

11.4

11.6

11.8

4df

●

●

●

●

● ●

●

●

●

150 300 600

8df

●

●
●

●

●

●

●

●
●

150 300 600

Sample size

● 625

● 1250

● 2500

Figure 4.3: As depicted in figure 4.4, the 5% family-wise FDR based threshold can
be calculated from the distribution of maximum values from permutations
(central dots). Through bootstrap analysis (10,000 resamples per permuta-
tion set) two-tailed 5% confidence intervals were obtained for each threshold
estimate.

for the asymptotic behaviour of the effective number of tests as SNP density increases

(as shown in Dudbridge and Gusnanto (2008)).

Secondly, there is no significant inflation of low frequency SNPs among the permuted

searches. Figure 4.5 shows that the distribution of allele frequencies comprising the

top 100 SNP pair hits from each permuted scan is similar to the distribution of all

SNPs in the SNP panels. This is an important result, because it allows researchers

to have equal confidence in hits comprising SNPs with rare frequencies as with those

with intermediate frequencies, at least from the perspective of there being no artificial

statistical inflation.

Thirdly, in most cases there is no discernible impact of the test parameterisations on the

thresholds. When the sample size is smallest there is a slight decrease in the estimated

threshold for 4 d.f. tests. This is expected because the actual number of tests performed
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Figure 4.5: The frequency density of the SNP chip (“expected”, solid lines) is plotted
along with the density of frequencies of the 100 most significant SNPs
obtained from each permutation for 8 d.f. tests (“observed”, dotted lines).
Columns of boxes represent sample size, and rows represent SNP density
(×1000).
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is expected to drop because SNP pairs that do not have observations for all 9 genotype

classes are omitted from the scan for 4 d.f. tests, but not for 8 d.f. tests.

Finally, increasing sample size has an increasing effect on the threshold. While the

data is insufficient to make a strong statement about this, there is a tendency for the

elevation of the threshold from 625 to 1250 observations to be larger than from 1250

to 2476, and this may indicate an asymptotic relationship (figure 4.3). To speculate on

the reason for this relationship is difficult, but the following observations can be made

regarding the three variables involved in the test statistic: the actual sample size n,

the average variance explained by all tests in the scan SSW /(SSW + SSB), and the

average number of parameters per test g (this will vary when small sample sizes have

more missing genotype classes). In a background of two factors remaining fixed, the

approximate behaviours of the third factors can be described as:

− log

(
f

(
SSW (g − 1)−1

SSB(n− g)−1
; g − 1, n− g

))
∝ n (4.4)

∝ SSW /(SSW + SSB) (4.5)

∝ − log(g) (4.6)

where f(x; d1, d2) is the probability density function for some random F -distributed

variable x with numerator and denominator degrees of freedom d1 and d2 respectively.

First of all smaller values of n require more extreme data in order to achieve the same

level of significance as those from larger sample sizes, however the actual distribution

of SSW /(SSW +SSB) from an exhaustive scan with respect to sample size is unknown,

although one could intuitively suggest an inverse correlation. Secondly, the relationship

between sample size and the number of parameters will follow an asymptotic function

lim
n→∞

ḡ = 9 (4.7)
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so as sample size increases, the increase in ḡ will oppose the propensity to achieve

extreme p-values due to increased sample size. The relationship is complex and without

knowing the underlying distribution for each variable it is difficult to deterministically

support the empirical observation of the effect of sample size on the threshold. For

the purposes of the following analysis it is assumed that it is indeed a product of some

asymptotic function, although further analysis will be required to confirm this.

Although the relaxation of significance thresholds when calculated from permutation

is fairly modest in these examples, the conclusion may have a further reaching util-

ity. For each of the 18 permutation sets (3 sample sizes × 3 SNP densities × 2 test

parameterisations; table 4.3) bootstrap analysis was performed to ascertain confidence

intervals for the 5% family-wise FDR (figure 4.3). Naturally, the number of permu-

tations performed here are constrained by computational resources, and so the results

provide an approximation to the effective number of tests that will become more ro-

bust with more permutations. Nevertheless, it may be useful to attempt to derive an

empirical relationship between the threshold, SNP density, and sample size. Assuming

that the effect on the threshold from SNP density and sample size are independent of

one another, and that they each follow an exponential asymptotic relationship toward

some theoretical maximum number of tests given infinite SNP density, non-linear least

squares (NLS) were performed to ascertain the parameters to the model, using the data

from the 10000 bootstrap samples for each of the 18 permutation sets.

The limit to the asymptote (the maximum number of tests with infinite SNP density

and sample size) was estimated theoretically (rather than as a parameter in the NLS

calculation). From the result in Dudbridge and Gusnanto (2008) the effective number

of independent regions in a one dimensional GWAS is estimated to be 693138, therefore

the effective number of independent tests in a two dimensional GWAS at infinite SNP

density is 693138×693137
2 = 2.4 × 1011, giving a theoretical maximum − log10 p-value of
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12.68. From this, for n sample size and M SNPs in the array the family-wise threshold

pT was modelled as

− log10(pT ) = a− a
(
s1 exp

(
ln(n)

s2

)
+ s3 exp

(
ln(M)

s4

))−1

(4.8)

where the asymptotic limit was set to a = 12.68, and the following parameter estimates

from NLS were obtained:

s1 = 0.0258

s2 = 1.72

s3 = 0.0379

s4 = 2.33.

This relationship is depicted in figure 4.6.

4.5 Discussion

The question of where to set significance thresholds for whole genome searches is a

long standing problem, and while the solutions are still perhaps incomplete in the one

dimensional case, very little attention has been directed specifically to the context of

epistasis. This chapter assesses the impact of non-normality on the inflation of type 1

errors in epistatic scans, presents the results from permutation analyses on exhaustive

two dimensional searches, and attempts to derive significance thresholds that accurately

reflect the effective number of tests being performed.

The first main conclusion is that it is imperative that a normal phenotype is used in

order to be confident of avoiding type 1 error inflation. Specifically, the simulations here

were concerned with the impact of outliers on the distribution of test statistics mainly

because this was representative in the case of searches for epistatic variants contributing
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Figure 4.6: The wireframe maps the empirically derived relationship obtained in equa-
tion 4.8. The z-axis represents the estimated threshold for some given
combination of sample size (x-axis) and SNP density (y-axis), and tending
towards an asymptotic limit of 12.68.
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to the BMI variance in populations (Wei et al. 2011, in preparation). It was shown

that SNP pairs with low genotype counts were susceptible to type 1 error inflation, but

such was not the case when the distribution of the phenotype was normalised using

rank transformation.

In terms of the permutation analysis, the broad conclusion that can be based on these

results is that the correlation structure between SNPs, as well as between pairwise tests,

is relatively high, with the most extreme case showing a reduction in the threshold from

the Bonferroni by almost an order of magnitude. However, although the Bonferroni

approach is most conservative, the magnitude of multiple testing as estimated through

permutation is still extremely high. It is perhaps not until the SNP array becomes very

dense (e.g. > 300000 SNPs), and permutation thresholds become constrained by the

asymptote (figure 4.6 and equation 4.8), that the use of permutation thresholds will

constitute a significant advantage in power as the Bonferroni thresholds will continue to

grow quadratically. Indeed, at lower SNP densities the approximate thresholds derived

by Becker et al. (2011) that simply scale the number of multiple tests linearly (by

0.44) are reasonably accurate. Incidentally, the permutation results that most closely

matched the Becker threshold came from the 300000 SNP density, however the Becker

threshold was based on a 500000 SNP array. It could be argued that the method of

performing Monte Carlo draws on relatively small sections of the genome resulted in an

underestimate of the long range correlation structures, where although each long range

SNP pair will be lowly correlated, there is an extremely large volume of these pairs in

total.

Performing the permutations, even with the availability of GPU compute clusters, was

extremely computationally demanding, and most researchers will not have access to

this type of hardware. Furthermore, even with such hardware, as the SNP density

increases the computational time required becomes unmanageable, and ostensibly at

the higher densities the permutation based thresholds are of most utility. By using
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the general function (equation 4.8) to estimate significance thresholds for larger sized

studies, it should be possible to impose a meaningful statistical threshold that takes

into consideration the effective number of tests being performed in the scan as well

as the impact of sample size. However there are some potential issues with using

an empirically derived function. First, there are significant differences in LD structure

between species, SNP manufacturers (e.g. Affymetrix and Illumina (Becker et al., 2011;

Gao et al., 2010), tagging or non-tagging SNPs (Halperin et al., 2005; Stram, 2004)), and

human ethnicities (The International Hapmap Consortium, 2005). Second, imputation

was used for the acquisition of the 600000 SNP array, and one potential issue that might

arise from this is that the imputation algorithm may not capture local recombination

events or population specific polymorphisms, and therefore cause an overestimation of

the between-SNP correlation structure. Although the estimate of the asymptotic limit

is unlikely to increase for common variation, the overestimation of correlation will result

in a gentler growth toward the limit, and systematically underestimate thresholds for

all densities above ∼ 300000 SNPs. While the latter problem can be resolved simply

by using more data points and using only directly genotyped data rather than imputed

data, the former problem is less easily amenable. Perhaps the most direct method would

be through extensive permutation analyses under the varying conditions. Finally, the

threshold estimates from the permutations are unlikely to be particularly accurate

because they are based on only 1000 (or 500) randomisations. Desirable would have

been to increase these numbers by an order of magnitude, and then perhaps the assumed

asymptotic relationships within sample size (should they be real) and SNP densities

would become more robust.

A third potential issue is that the estimate of the asymptotic limit a = 12.68 may

be overly stringent, because as alluded to in Becker et al. (2011) the effective number

of tests being performed in a two dimensional scan depends on two principles - the

number of independent regions, and the correlation between tests that involve one SNP,

i, against M other SNPs. The estimate of a accounts for the first principle, but it does
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not consider the second. Intuitively this may be quite significant, because for example

the marginal effect of SNP i will be tested M times. Although the correction factor

for this was estimated to be fairly close to 1 (i.e. relatively insignificant correlations),

a more formal investigation into this could be made. For example, a Monte Carlo

based simulation that compared the Bonferroni threshold against a permutation based

threshold using a panel of completely uncorrelated SNPs should find no difference if

this latter type of correlation is low.

From a different perspective, one concern with high dimensional testing is that of ex-

hausting the possible combinations of genotype-phenotype maps. For example, in the

example of canalisation, where there are ostensibly two groups of individuals - those

homozygous mutant at both loci (e.g. high phenotype), and those who are not (low

phenotype) - in a sample size of n = 100 where r = 10 are the double homozygotes the

possible number of combinations is C(100,10) = 1.73× 1013, where

C(n,r) =
n!

r!(n− r)!
. (4.9)

so given sufficient effective number of tests, the most extreme assortment of phenotypes

into high and low groups will inevitably occur, such that no true biological interaction

of the same map could possibly be more statistically extreme. Counteracting this is

straightforward, as sample size increases the number of combinations expands rapidly,

for example C(1000,10) = 2.63 × 1023, but this may remain a problem for very high

dimensional searches (e.g. with four way interactions, 5000004 = 6.25 × 1022), and

several approaches that do attempt to explore higher order interactions, albeit not

exhaustively, may be liable to such an issue. Relatedly, to partition the phenotypes

according in the most extreme manner, such that the highest values are in one group

and the lowest in another group, there is only one unordered arrangement where this

could occur. But the number of arrangements with only a certain proportion of the

more extreme phenotypes being assorted, rather than the exact set of the most extreme,
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into a single group will be large, so the combinatorial eventuality of ‘good’ evidence

for interaction may still be present. If such a process were at work, it would be most

visible in the situation with the densest SNPs and the smallest sample size where one

would expect to see many extreme results elevating the threshold, however there is

clear evidence that the permutation threshold is actually reduced when sample size is

reduced, suggesting that the search is not becoming saturated in combinatoric terms.

The estimation of threshold values based on sample size has been discussed previously

(The Wellcome Trust Case Control Consortium, 2007), where the logic has been that as

sample size decreases then power decreases, so evidence for association should be more

conservative. The results from these permutations suggest otherwise, that as sample

size decreases the most extreme p-values that occur by chance are smaller. Further

work is required to ascertain the underlying cause for this.

Anecdotally, the most extreme result from all permutations gave a p-value of 3.9 ×

10−16, and many were an order of magnitude more extreme than even the Bonferroni

correction. It should be noted that family-wise thresholds only promise that from a set

of multiple comparisons the chance of finding exactly one more extreme result is some

value of α, and they do not inform the distribution of p-values that comprise the α false

discoveries. Therefore, in this context further calculation is required in order to believe

a particularly extreme result with any greater level of confidence than the nominal α

value.

To summarise, the computations performed here demonstrate that Bonferroni correc-

tions are overly conservative, and the Becker et al. (2011) approximation is only valid

at low SNP density. Yet, the presumably more accurate empirical distributions of test

statistics from exhaustive pairwise scans are still very stringent. Although their use

will improve power to some extent over existing practices, particularly with sequence

data, the most effective direction is to increase sample sizes, and to focus on improving

the power of the statistical methodology.



Chapter 5

Methods of haplotype

parameterisations for statistical

detection of epistatic variants

5.1 Abstract

Perhaps the biggest challenge in detecting epistatic variants is in garnering sufficient
statistical power to exceed the strict significance thresholds that result from high di-
mensional testing. In genome-wide association studies haplotype methods have been
employed in an additive context to rescue detection of causal variants when linkage dis-
equilibrium (LD, r2) between causal variants and observed SNPs is incomplete. While
additive variance decreases linearly with incomplete LD, non-additive variance suffers
exponentially, so methods that alleviate the problem of incomplete LD are likely to be
particularly effective when applied to epistasis. Here, haplotype methods are tested in
two broad contexts. First, unsupervised clustering methods are used to improve LD
between observed SNPs in SNP panels and unknown causal variants. Second, super-
vised parameter reduction techniques are used for diploid haplotypes to alleviate the
cost of using extremely high numbers of degrees of freedom in order to capture variance.
Overall, the unsupervised methods do not improve upon single SNP methods, but a
significant improvement in power over standard single SNP testing is achieved when a
LASSO feature selection method is used in a two dimensional sliding window search
strategy.
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5.2 Introduction

The previous chapters have demonstrated that although two dimensional scans using

single SNPs generally exhibit more power than one dimensional approaches, and that

they can now be considered computationally tractable, the overall power of epistatic

detection is still likely to be low. This chapter presents the results from simulations

that test various haplotype-based methods designed to improve the power to detect

epistatic variants over the standard ‘single SNP’ approach. Where ‘single SNP’ is

mentioned in this chapter, it refers to the typical two dimensional scan wherein one SNP

from each locus is used to test for interaction. This section introduces the theoretical

challenges of detecting non-additive variance, the advantages of using haplotypes in

hypothesis testing and their applications in additive variance detection, and finally the

strategies employed to extend these methods to the epistatic case. Brief introductions

to the various machine learning approaches used in the simulations are presented in the

methods section.

5.2.1 Assaying natural variation

The detection of additive variants in genome-wide association studies is routinely per-

formed using single SNPs. This testing framework depends on there being sufficient

linkage disequilibrium between observed SNPs in the panel of markers and unknown

causal variants for the observed SNPs to confer significant association. Otherwise, even

though the causal variant itself may have a large effect it will remain undetected.

When estimating the variance of mutations that affect a trait additively it is directly

proportional to the linkage disequilibrium between the marker SNP and the causal

mutation (Weir, 2008). However, non-additive variance diminishes more rapidly. Weir

(2008) demonstrated that the fall in dominance variation was quadratically related with

the fall in linkage disequilibrium, and this may have important consequences on how
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we view the overall landscape of natural variation. For example, while a large number

of SNPs have been shown to be associated with complex traits through GWAS, and

the majority of these have been deemed to act additively (e.g. Hindorff et al., 2010),

without knowing the true causal variants there will be a tendency to overestimate the

abundance of purely additive variants compared to other forms.

The relationship between the genotype-phenotype map between causal variants, and

the observed genotype-phenotype maps observed between SNPs in incomplete LD with

the causal variants was derived in chapter 2. It is employed here to qualify the changes

in epistatic pattern estimates with varying degrees of LD, and it can be shown that

two important biases are introduced (figure 5.1). Firstly, the higher order variance

components (rows 3-5) rapidly haemorrhage genetic variance, such that even at a fairly

reasonable LD of 0.5 the genotype class means are close to identical. This means that

detection is strongly dependent upon high LD, even when effect sizes are large, so

most epistatic mutations will remain undetected and their prevalence underestimated.

Secondly, with the patterns of canalisation (rows 1-2), while some genetic variance is

maintained it appears entirely additive. Thus functional maps that confer epistatic

effects that can be detected at relatively low LD are likely to be assayed as additive.

A general point that can be made from these observations is that a realistic under-

standing of the abundance and diversity of natural variation is strongly biased by the

methods that are routinely employed for the detection of causal variants, particularly

through genome-wide association studies. Using single SNPs as proxies for causal vari-

ants exposes these types of assays to the risk of missing most non-additive effects, while

the few non-additive effects that might be detected are likely to be interpreted as addi-

tive. This chapter explores the potential of constructing haplotypes from phased SNPs

to bridge the gap between causal variants and marker panels in searches for epistasis.
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Figure 5.1: Different genotype-phenotype maps of causal variants (rows of graphs) de-
terministically calculated from neighbouring SNPs in different levels of link-
age disequilibrium (columns of graphs). The vertical axis for all graphs is
the mean phenotypic values for individuals with the corresponding 2 locus
genotypes. All SNP and causal variant frequencies are set to 0.5. Rows
1-2: Canalisation; 3: A×A; 4: A×D; 5: D ×D.
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5.2.2 Functional and evolutionary principles of haplotypes

Haplotypes, strings of consecutive alleles that comprise chromosomal segments, have

the property of encoding genetic information in the form in which they are inherited.

This is in contrast to using raw SNP data because the loss of phase partially scrambles

the information between SNPs. Maintaining the phase for analysis is intuitively useful

because under certain scenarios the absence of a causal variant from a SNP panel may

not necessarily preclude it from being accurately captured by the incomplete informa-

tion available. For example, if the causal variant is an ancestral mutation then it will

likely be unambiguously present on one or several haplotypes in the population and

absent from the rest. Such segregation allows for the causal variant to be explicitly

included in a statistical model, whereas relying on independent SNPs alone creates a

model based on proxies that are incompletely correlated to the causal variant. The

only way that informative segregation will not occur amongst haplotypes in this sit-

uation is through a double recombination event, or through a restorative mutation.

Unfortunately, mutations that have arisen more recently are unlikely to segregate so

informatively. For example, if the mutation occurred on a common haplotype then in

the absence of a recombination event carriers and wild type individuals will be indis-

tinguishable. In this case haplotypes are unlikely to confer an advantage over single

SNPs, however neither approach is likely to be particularly powerful.

A second way in which haplotype parameterisations may have advantages over inde-

pendent SNPs is through the implied inclusion of non-additive terms in the statistical

models. By considering a string of alleles jointly, not only is each allele’s independent

effect being modelled jointly, but also included are all interactions amongst alleles,

as well as the phase of the allele. As postulated in several publications (e.g. Haig,

2011; Schaid, 2004; Clark, 2004), because haplotypes are functional units of genes,

the tertiary structures that they ultimately form as proteins are directly related to the
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primary structures comprising those chromosomal segments. Interactions between non-

synonymous mutations in these primary structures may be critical in protein folding,

stability or function of the proteins and they are explicitly encoded as units of inher-

itance in the form of haplotypes. Such interactions could have interesting effects on

the gap between pedigree-derived heritability estimates and those based on SNP-based

relationship matrices in unrelated populations, because while the pedigree approach

will consider the inheritance of a pair of interacting SNPs to be effectively a single

additive allele, should low LD exist between those mutations then the SNP-based ap-

proach will fail to capture such terms when treating them independently. Indeed, many

examples of such cis-epistasis exist in the literature. They have been demonstrated in

the human lactase gene (Hollox et al., 2001), human lipoprotein lipase (Clark et al.,

1998), apoE in association with cardiovascular disease (Fullerton et al., 2000), and for

association between the risk of prostate cancer and the HPC2/ELAC2 gene (Tavtigian

et al., 2001). In each of these cases haplotypes behave like ‘super alleles’, explaining

significantly more variation than the SNPs that comprise them do alone. In addition,

other evolutionary features support the case for the existence of cis-epistasis, such as

population specific linkage disequilibrium clines of the major histocompatibility com-

plex region (Cavalli-Sforza et al., 1994) and the RET region (Chattopadhyay et al.,

2003). In general, statistical models become more complex when dealing with haplo-

types because of the increased number of parameters, but as discussed in the following

section this may be a reasonable trade off for an evolutionarily or biologically more

realistic solution.

5.2.3 Haplotype methods in current practice

A wide range of haplotype association methods have been successfully developed for one

dimensional scans. A convenient approach is to use a ‘sliding-window’ framework. Here

the haplotype test is sequentially applied to one fixed length of SNPs after another,
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with the ‘window’ sliding to a new position (often one SNP at a time) after each test is

performed. In general the window size is restricted to around 12 SNPs for two reasons,

firstly the computational burden for haplotype methods often grows exponentially;

and secondly, haplotypes that extend over long distances begin to incorporate SNPs

in low linkage disequilibrium with the others. Thus chromosome structures are no

longer represented, and extra parameters merely add noise. From a modelling point

of view the advantages of haplotypes over independent SNPs (and even multiple SNPs

considered jointly) are clear. However, from a statistical aspect and in a GWAS context

it is slightly more ambiguous because there will always exist a trade-off between the

variance explained by the model and the number of degrees of freedom used to explain

it. Although many different methods have been published in the literature, there are

ostensibly three main categories of haplotype testing: standard haplotype regression,

haplotype clustering, and ancestral haplotype inference. These methods are discussed

below.

It is technologically impractical to record haplotypes from DNA samples directly, rather

single SNPs are typically measured independently with the heterozygotes among them

having unknown phase, and haplotype reconstruction becomes a numerical problem.

Excoffier and Slatkin (1995) developed an expectation-maximisation (EM) algorithm

that estimates haplotype frequencies in unrelated diploid populations, that were then

applied in a case-control context through the construction of likelihood ratio statistics.

This method has subsequently been adapted to quantitative traits by Powell et al.

(2011) and Floyd (2011). In this context, the treatment of each haplotype is analogous

to the treatment of an allele in an additive parameterisation of a multi-allelic (> 2)

marker.

Because with the EM algorithm approach uncertainty generally exists as to an indi-

vidual’s true haplotype state at heterozygous markers, the X matrix in the regression

is encoded to be a set of quantitative features, with each parameter representing the
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sum of the probability of each individual having that haplotype at each chromosome.

This approach does not include haplotype phase because there is no distinction made

between opposing haplotype heterozygotes, but it will incorporate the cis-epistatic in-

teractions, in addition to potentially improving the association with untyped variants.

An important breakthrough in phasing algorithms was developed by Kong et al. (2008),

which allows the rapid and accurate estimation of SNP phase over much longer distances

through an entirely heuristic method. With the availability of tools that rapidly phase

entire genomes using this method (Hickey et al., 2011) it is now more computation-

ally practical and statistically straightforward to employ haplotype-based methods in

GWAS.

Particularly in the context of binary traits, a parallel cohort of methods exist that

sidestep the issue of multiple degrees of freedom through clustering methods. An ex-

ample of such a method was developed by Browning (2006) in the form of the widely

used BEAGLE software (Browning and Browning, 2007). Here, rather than defining a

fixed width window, a variable length markov chain is employed to grow the window

size until a ‘sensible’ haplotype block is defined, such that too many parameters in

low LD are not included (reducing noise), and the model is not restricted to too few

parameters in high LD (insufficient information content). A Fisher’s exact test is then

performed on the clustered haplotypes for case-control status. This method builds on

several other similar clustering methods that use graphical models (Thomas, 2005), or

hidden markov models (Greenspan and Geiger, 2004), but has the advantage of adaptive

window sizes and relative computational efficiency.

Another clustering approach is to exploit the evolutionary structure of haplotypes. Dur-

rant et al. (2004) used a cladistic approach, whereby the inferred evolutionary history

of the haplotypes of a particular window in the population are reconciled into a single

rooted cladogram, with each branching point representing a time point where a new

haplotype (or haplotype ancestor) arose. The inferred haplotypes at each time point
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are then tested for association with the trait. This multiplies the already high multiple

testing penalty by the sliding window size, but for a one dimensional scan this will not

impart a significant impact on the order of magnitude of multiple tests. Because the

within-clade haplotypes are structured there is likely to be redundancy between the

tests and a Bonferroni correction will be overly stringent, however the most robust way

to estimate the effective multiple testing penalty, through permutation, may become

computationally difficult. Nevertheless, even with the Bonferroni correction this evo-

lutionarily cogent approach imparts significant power improvements over independent

single SNP methods. Other methods that cluster based on ancestry also exist. McPeek

and Strahs (1999), for example, used a hidden markov model, and Zollner et al. (2005)

used MCMC to sample from the space of possible coalescent paths. Although these

clustering methods are generally designed with case-control studies in mind, they can

be adapted for use on quantitative traits relatively easily.

5.2.4 Extensions to epistasis

How can haplotype methods be extended to improve the power to detect epistatic

variants? This simulation study tries to address the problem from two different angles.

Ideally, a haplotype method, when employed for epistasis, should take into consideration

the following attributes:

Computational efficiency Haplotype methods tend to be computationally intensive,

so one way to employ haplotypes in a computationally tractable manner would be

to use a strategy where haplotype procedures can be implemented independently

at each locus.

Degrees of freedom It is important to avoid a negating trade-off of increased asso-

ciation with causal variants against many extra degrees of freedom.
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Locus specific window sizes If interacting loci are in independent genomic regions

then it is unlikely that a single haplotype window size will perform best in both

locations.

Unsupervised learning Using the response variable to inform haplotype procedures

may result in an inflated false discovery rate.

Multiple testing Many haplotype methods designed for additive effects perform mul-

tiple tests per haplotype window (e.g. Durrant et al., 2004). This is impractical

for epistasis because the multiple testing penalty will increase quadratically, as

will computational demand.

Statistical interpretability Translating haplotype parameters in order to reconstruct

the underlying genotype-phenotype map is of particular importance for purposes

of prediction and biological understanding.

The first approach attempts to fulfil all these guidelines. It uses a sliding window scan

whereby unsupervised clustering is applied to the haplotypes in each window to reduce

the high dimensional chromosomal segments to a binary vector that can then be treated

as a single phased ‘latent SNP’. If this latent SNP has a higher correlation with the

hidden causal variant than any individual SNP in the SNP panel, then theoretically

an improvement in power will be achieved when applying to a two-dimensional ‘latent

SNP’ scan.

The second approach is quite different, as it uses haplotype information in the statistical

models directly. One problem with haplotype information in an epistatic context is that

it is analogous to a multiallelic genetic marker, in the sense that each diploid individual

will have two haplotypes at a particular window of SNPs, and to encode this information

one simply parameterises the test based on the additive effect of each haplotype. Thus,

extending this framework to two dimensions to search for epistasis, it is impossible to

parameterise for anything other than the additive× additive effects (thus ignoring the
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other 3 interaction terms, and restricting the search to a rather narrow range of possible

epistatic effects). To parameterise for whole genotype effects, pairs of haplotypes are

coded into a diploid state (Schaid, 2004), thus creating sliding windows of diplotypes.

Two locus diplotypes are then synthesised to model for trans-epistasis. The other

major challenge is the number of degrees of freedom in each test. Naturally, such an

encoding will lead to an explosion in the number of degrees of freedom, particularly in

the general case where the interacting loci are unlinked. To overcome this a feature

selection method is used to shrink the high dimensional design matrix to an optimum

level of sparsity. Extensive simulations are performed to assess the potential benefits

of such approaches over the single SNP method in a two-dimensional genome-wide

context.

5.3 Methods

The simulations described here operate in a fairly standard manner, with the pur-

pose of creating population-genomic scenarios where different tests can be applied and

compared for their efficacy at detecting ungenotyped (or in the case of simulation, arti-

ficially ‘hidden’) causal variants. For the parametric reduction methods (section 5.3.3)

two chromosomes are simulated, and from these chromosomes a set of SNPs are chosen

to be the SNP panel and a mutually exclusive second set of SNPs form a panel of QTLs

to sample from. For various testing conditions a SNP is chosen from each chromosome

to form an interacting QTL pair, and the SNPs comprising the SNP panel are used to

scan for the absent epistatic interaction. A similar procedure is used for the clustering

methods except all simulations are performed on a single chromosome in one dimension

(section 5.3.2).
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5.3.1 Genome simulation

The two main methods for the simulation of population level genomic data, forward-

in-time and coalescent based, have been widely compared (Carvajal-Rodŕıguez, 2008;

Cyran and Myszor, 2008; Di Ventura et al., 2006). In general it is considered more com-

putationally efficient to use coalescent approaches, but more evolutionarily accurate to

use forward-in-time simulation. Of principle concern in this study is the evolutionarily

realistic construction of haplotypes for a large number of individuals at sequence level

resolution. To this end, the forward-in-time FREGENE software tool (Chadeau-hyam

et al., 2008; Hoggart et al., 2007) was used. FREGENE simulates the evolution of a

monoecious, diploid single chromosomal population over non-overlapping generations,

allowing parameters for mutation, recombination, and demographic and selection pro-

cesses to be defined by the user. The simulation template involves a list of sites on

the chromosome at which polymorphisms exist, such that a sequence level resolution of

mutations in the population can be achieved. For this study two 20 megabase chromo-

somes were simulated over two rounds of evolution. First, for 300 generations, beginning

from a ‘null’ population with no diversity, with no recombination hotspots and all sites

neutral. This was then repeated, but this time with the output from the first round

comprising the base population for the second round.

A SNP chip comprising two chromosomes was generated from this output, with each

chromosome comprising 6670 SNPs to achieve the effective density of a million SNPs

across the genome (1000000
3000/20 ≈ 6670). SNPs were selected such that a uniform distribu-

tion of minor allele frequencies (MAFs) ≥ 0.05 comprised the panel. An exclusive QTL

panel was also generated for each chromosome in the same manner, with the underlying

frequency distribution also being uniform. SNP and QTL panels had no missing values,

and phase was known.
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5.3.2 Methods in unsupervised haplotype clustering

An advantage of unsupervised machine learning methods is that by avoiding training

the parameters with a response variable there is no inflation of the type I error rate,

and there is no further increase in the multiple testing penalty. Both features are

particularly desirable in the context of epistasis as the consequences of these issues

are likely to hamper power quadratically. Here, clustering methods were applied to

haplotype data with the purpose of reducing the large number of parameters involved

in testing haplotypes to a binary vector that can be treated as a single ‘latent SNP’.

If the clustered haplotype is more closely correlated with untyped causal variants than

single SNPs in the panel then both the power of their detection and the accuracy of

genotype-phenotype map estimation will improve. This hypothesis was tested using

simulations where a single SNP in a SNP panel was selected as an unknown variant,

and its correlation against other SNPs in the panel was compared against its correlation

with clustered haplotypes.

So to clarify the intention of this approach, if a causal SNP is absent from the SNP

panel in a GWAS, the ability to detect the true effect of the SNP is related to the

maximum LD between the causal SNP and the observed SNPs. In the context of

non-additive variance components, in particular higher order epistatic components,

this dependence increases (figure 5.1). While single SNPs may be out-performed at

capturing the variance of the causal variant by haplotypes, this is at the cost of many

more degrees of freedom. This section seeks to employ unsupervised clustering methods

to reduce haplotypes to binary variables. If these binary variables are more strongly

correlated with the missing causal variants than single SNPs then both single and two

dimensional GWASs will have improved power.

Many established unsupervised clustering methods exist for continuous data, but there

are fewer available for categorical data, with many of those that do exist designed with

a focus on specific scenarios that are not necessarily applicable to haplotype clustering.
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5.3.2.1 k-modes algorithm

Perhaps the most widely used clustering algorithm is k-means. This takes a non-

hierarchical, partitioning approach, such that for a set of continuous variables compris-

ing the matrix X, and a desired number of clusters k, the rows of X are grouped to

form k partitions, or clusters (MacQueen, 1967). Each row of X = {X1, X2, ..., Xn}

is called an ‘object’ (or in this case a haplotype), each element of the object Xi =

{xi1, xi2, ..., xim} is termed an ‘attribute’ (or a SNP allele), and each column of X,

{A1, A2, ..., Am}, is an attribute of length n (the total number of unique haplotypes

in the sample). The basic objective is to cluster all of these objects into just k < n

classes, where the classification is performed by choosing some way to stratify objects

according to some measure of similarity (or dissimilarity).

In the traditional k-means case, each object’s distance from all other objects’ distances

are calculated to compose a n × n distance matrix D. Most commonly, the distance

metric used is the Euclidean distance, such that D is calculated by

Di1i2 = d(xi1,j , xi2,j) (5.1)

where

d(xi1,j , xi2,j) =

√√√√ m∑
j=1

(xi1,j − xi2,j)2. (5.2)

The clustering is then performed on D, such that given a hypothetical set of k new

objects, Q, a matrix of size k ×m, the expression

k∑
l=1

∑
Xi∈Cl

d(Xi, Ql) (5.3)

is minimised, where Cl is the set of objects in cluster l.
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While this framework can be used as a reasonable approximation for nominal cate-

gorical variables, like those comprising haplotypes, the treatment of discrete values as

continuous can have significantly detrimental impacts on the clustering accuracy. An

alternative formulation, the k-modes algorithm, deals with some of the limitations di-

rectly (Huang, 1998). Firstly, D is calculated using a dissimilarity measure, rather than

a numerical function such as the Euclidean distance. The dissimilarity measure used

here is simply

δ(Xi,l, Xj,l) =


0 Xi,l 6= Xj,l

1 Xi,l = Xj,l,

(5.4)

with δ(·, ·) replacing d(·, ·) in equation (5.1). This simply measures the number of

mismatches between two haplotypes, if there are fewer mismatches then the haplotypes

are more similar, and more likely to be clustered together.

Secondly, in k-means Ql is calculated to be the geometric centre of the objects within

each cluster Cl, and naturally this results in a set Q comprised of continuous attributes.

Alternatively, k-modes calculates Ql to be the mode of the set of objects in Cl, thus

preserving the categorical meaning of each cluster.

Thirdly, the goodness-of-fit of the clusters in k-means is obtained by treating the at-

tributes as continuous by estimating the within group sum of squared errors. However

the k-modes formulation treats the attributes as categorical by instead using a fre-

quency based minimisation, such that the clusters are optimal when the inequality is

satisfied for all j = {1, 2, ...,m} and where qj 6= cl,j :

fr(Aj = qj | X) ≥ fr(Aj = cl,j | X) (5.5)



Chapter 5. Haplotype methods in epistasis 120

where

Fr(Aj = qj | X) =
nqj
n
, (5.6)

Fr(Aj = cl,j | X) =
ncl,j
n
, (5.7)

(5.8)

and nqj and ncl,j are the counts of allele Aj in matrix Q and Cl, respectively.

As the goal of the clustering is to reduce a large number of haplotypes to a single phased

SNP, the number of clusters k = 2. Clustering the D matrix, even to only two clusters

is NP-hard (Aloise et al., 2009), and the algorithm used, described in He et al. (2006),

is an iterative approximation whose results depend upon the randomly selected starting

conditions. To avoid random artefacts, the algorithm is repeated five times, taking the

best fitting clustering set as the solution. This is unlikely to be the optimal solution,

and as is the nature of NP-hard problems it is difficult to validate the accuracy, but

nevertheless it is a reasonable approximation (He et al., 2006).

5.3.2.2 Modified ROCK algorithm

Another approach for clustering categorical data is the ROCK algorithm (Guha et al.,

2000) which was developed to address clustering problems with categorical data used

for large scale market transactions. The problem lies in the fact that most clustering

algorithms require that if records are to be clustered together then they explicitly

share more features than those records that are not clustered together. However with

the data that Guha et al. (2000) were using, there were extremely large numbers of

features, and many of these features would fall into categories. So while two records

might share many categories in common, they might not share any features in common

at all, and so standard clustering algorithms will incorrectly assign them to separate

clusters.
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The proposed solution to this problem was to try to link records together by supposing

that while two records with similar categories would have no features shared, a third

record that comprises similar categories might share features with both the first and

second records, thereby linking them indirectly. The ROCK algorithm attempts to

utilise this information by considering how many such links two records might share.

While the translation to haplotype data is not immediately possible the concept applies

well. For example, recent mutations are likely to generate divergent haplotypes, but

these can be linked by recombination events to unify ancestral haplotypes. In its original

form, the algorithm is concerned with how many of the chosen items from a large set of

attributes are the same between transactions and uses the Jaccard similarity coefficient

as the initial distance calculation, however with genotype data the informative value

of each genotype allele is equal. For a window of w phased SNPs from a sample of

2n chromosomes there will exist m unique haplotypes, H = {H1, H2, ...,Hm}, where

h1,...,w ∈ {0, 1} such that 1 represents the major allele, and 0 the minor. A weighted

distance matrix is calculated as

Dij =
w∑
l=1

γ(Hil, Hjl) (5.9)

where

γ(Hil, Hjl) =


0 Hil 6= Hjl

1− q Hil = Hjl = 1

q Hil = Hjl = 0

(5.10)

where q is the minor allele frequency of SNP l. Subsequently, a matrix of global

relatedness L is created first by reducing D to a matrix of ‘links’ such that

D̃ij =


0 Dij < D̄

1 Dij ≥ D̄
(5.11)
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where D̄ is the mean of the values in the lower triangle of D, and then summing the

number of ‘links’ shared between each pair of haplotypes H,

L = D̃D̃. (5.12)

Thus L is a symmetrical matrix, where the lower (or upper) triangle values represent the

number of haplotypes that each haplotype pair have ‘links’ with in common. Grouping

into two clusters is then performed in the standard manner of the original ROCK

algorithm, maximising values of L within clusters whilst minimising between clusters,

such that the most connected haplotypes are grouped together.

5.3.2.3 Latent class modelling

An established method for the reduction of categorical data into k categories is the

latent class model, which seeks to relate the set of discrete multivariate variables to

a set of orthogonal latent variables (or clusters), such that for each of the k clusters

the probability of membership to each cluster is assigned to each individual. Here the

output is continuous, and therefore unfeasible to apply as anything other than additive

(or additive by additive etc.) genetic parameters. To overcome this problem each

individual was clustered according to their estimated mode latent class (i.e. the latent

class with the highest probability). The theory is described in Goodman (1974), and

the implementation used was from the R package R/e1071.

5.3.2.4 Cladistic clustering

It is possible to treat the evolutionary history of the haplotype diversity in a sample

more explicitly by inferring an evolutionary path from the hypothetical common ances-

tor to all contemporary haplotypes (those that exist in the data). A cladistic approach

described by Durrant et al. (2004) attempts to do this, such that the haplotypes are
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clustered backwards in time through w clades so at each time point increasingly diverse

haplotypes are clustered together and individuals are assigned a new set of ancestral

haplotypes. The authors use each time point’s cluster as an independent test, thus

increasing the genome wide multiple testing penalty by w. However, in terms of power

such an approach is unfeasible when increasing the dimensionality of the search to in-

clude epistasis, so in this case only the oldest ancestral clustering sets (k = 2) are used.

This is achieved by using the distance metric in equation (5.10) in the construction of

the D matrix through the k-modes method.

5.3.2.5 Simulation strategy

The accuracy and power of GWAS is, ostensibly, constrained by the correlation between

unobserved causal variants and observed SNPs in the panel. The simulations in this

study were composed to compare the efficacy of the unsupervised haplotype clustering

methods against single SNP markers.

SNP panels were simulated for a single 20 megabase chromosome to have the effective

density of 100k, 300k, 500k, 700k or 900k SNP chips, and for each QTL panels were

generated such that the maximum minor allele frequency was limited to 0.1, 0.2, 0.3,

0.4 or 0.5 (the minimum frequency for all scenarios was 0.05, and frequencies were

uniformly distributed). Therefore, 25 different genomic conditions were assessed.

For each genomic condition, 500 QTLs were drawn from the QTL panel, and the dif-

ferent clustering strategies were tested. For each haplotype clustering method a sliding

window comprising {2, 4, ..., 12} SNPs were tested at 11 positions flanking the QTL,

such that the central two SNPs in the window flank the QTL at the 6th position. Simi-

larly 5 markers up and down stream in the SNP panel were tested for the single marker

analysis (figure 5.2). The haplotypes were clustered to biallelic variables (SNPs) as

described above, and the r2 with the causal SNP recorded for each sliding window.
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Figure 5.2: Simulation strategy for unsupervised haplotype clustering methods. Causal
variants are selected from the QTL panel, and the flanking SNPs in the SNP
panel comprise the search space. Searches are performed in one dimension,
and while the range changes according the size of the sliding window, the
number of tests remains the same (11 sliding windows per search). In the
graphical example blue motifs represent tests based on a 2 SNP sliding
window, red motifs represent a 6 SNP sliding window, and green circles
represent tests based on single SNPs. The greyscale gradient of the flanking
SNPs represents the expected increase in LD with the causal variant as
distance decreases.

The maximum r2 between the causal SNP and the individual SNPs in the SNP panel

was also recorded.
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5.3.3 Methods in supervised parameter reduction

The object of clustering is to reduce high numbers of parameters into smaller groups of

parameters. Supervised parameter reduction approaches the problem from a different

perspective, as it actually eliminates variables that are uninformative. As discussed

earlier, it is theoretically beneficial to use haplotype information as they may capture

the variance of hidden variants more accurately than single SNPs alone, but parameter-

ising epistatic searches using haplotype encodings may only serve to restrict the scope

of the test. Therefore, the full genotypic information of the haplotypes is utilised by

encoding them as diplotypes. The resultant high number of parameters is then reduced

by one of two methods, using penalised parameter reduction (LASSO), or treating the

diplotypes as a single genetic variance components (REML).

The power of these two methods are tested using through simulation against the stan-

dard approach of single marker based two-dimensional scans (as in the software imple-

mentations in chapter 3, using the 8 d.f. parameterisation), or against the raw diplotype

parameters (with no parameter reduction applied, and therefore with very high degrees

of freedom).

5.3.3.1 Encoding phased SNPs into diplotype parameterisation

For a three dimensional array, X ∈ {0, 1}, if xisk is the sth SNP for the ith individual

on chromosome k, where k = 1 represents the paternal and k = 2 the maternal chro-

mosomes, then haplotypes are classed into discrete, non-heirarchical categories that

effectively take the binary sequence of alleles in the haplotype and convert into a base

10 integer:

uik =

w∑
s=1

xisk2
w−s (5.13)

where w is the SNP window size, i = {1, 2, ..., n} where n is the number of individuals,

and the haplotype class u ∈ {1, 2, ..., 2w}. With relatively high LD between adjacent
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SNPs in a window, as is natural in SNP panels, there will likely be many fewer hap-

lotypes than the number of possible combinations, such that the number of observed

haplotypes pu ≤ 2w. The design matrix U with dimensions n× pu× 2 can then be con-

structed from u. Fitting haplotypes will essentially parameterise for additive terms, to

incorporate the full genetic effect of a locus (including dominance) the model must pa-

rameterise for diplotypes. There are theoretically 2w(2w+1)/2 possible diplotypes for a

window of length w, so for example in the two locus case where the first and second loci

comprise diplotypes from 6 SNP windows each, there are 212 × (212 + 1)/2 = 8390656

possible diplotypes. Naturally the actual number of diplotypes is limited by the number

of individuals n, and when linkage disequilibrium exists between SNPs within a window

then this number reduces significantly again. Each individual’s diplotype can be coded

from their haplotypes as

vi =


ui1 > ui2 ui1(ui1 + 1)/2 + ui2

ui1 < ui2 ui2(ui2 + 1)/2 + ui1

ui1 = ui2 (ui2 + 1)(ui2 + 2)/2− 1,

(5.14)

such that

qj =
1

n

n∑
i=1

vi ∩ j (5.15)

where qj is the frequency of the jth diplotype. This diplotype encoding strategy can be

used for various supervised statistical strategies.

5.3.3.2 Treating diplotypes as fixed effects

The diplotype design matrix V , of size n×pv where pv is the number of observed diplo-

types, is constructed for standard least squares regression such that the first column is
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V.1 = 1n, and for the remaining columns j = {2, 3, ..., pv}

Vij =


vi = j qj

vi 6= j 1− qj .
(5.16)

The effect of each diplotype, treated as fixed, is then calculated through ordinary least

squares

b̂ = (VTV)−1VTy (5.17)

and analysis of variance is performed to obtain a p-value for the F -test

(
1

pv − 1

n∑
i=1

(ŷi − ȳ)2

)(
1

n− pv

n∑
i=1

(yi − ŷi)2

)−1

∼ F (pv − 1, n− pv) (5.18)

where

ŷ = b̂V (5.19)

and ȳ is the mean of y.

5.3.3.3 LASSO regression

Of principal concern with performing fixed effects analysis with diplotypes is the large

number of degrees of freedom employed to explain what is expected to be a very small

proportion of the phenotypic variance. Ostensibly the power of such an approach

is unlikely to be particularly high when analysed using ordinary least squares. One

approach to overcome this problem is to use shrinkage methods that will reduce the

V matrix to a sparse subset of parameters V∗. LASSO regression (least absolute

shrinkage and selection operator) is one such method that is widely used (Tibshirani,

1996). As a regularisation method, its objective is to perform feature selection without

overfitting. The danger of overfitting in this case is that the data will effectively inform

the hypothesis, inflating the probability of rejecting a true null hypothesis. LASSO
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achieves regularisation by constraining the coefficients with an L1-Norm, such that the

ordinary least squares estimate

β̂ = argmin
β

n∑
i=1

yi − α− pv∑
j=1

vijβj

2

(5.20)

is constrained subject to
pv∑
j=1

|βj | ≤ t (5.21)

where β̂ is the LASSO estimate and t ≥ 0 is a tuning parameter. Such a procedure

is useful in this context because it has the value of reducing a very large number of

diplotypes to a much smaller subset of relevant diplotypes without bias, thus avoiding

an inflation in the type I error rate while potentially increasing the power of the test.

Equations 5.20 and 5.21 can be reconciled for direct calculation as

β̂ = argmin
β


n∑
i=1

yi − α− pv∑
j=1

vijβj

2

+ λ

pv∑
j=1

|βj |

 (5.22)

where β̂ is the LASSO estimate and λ ≥ 0 is a tuning parameter such that when λ = 0

then the LASSO estimate is identical to ordinary least squares, and β̂ = b̂. Otherwise,

as lambda increases the parameters with the smallest coefficients are dropped from the

model, and the remaining coefficients shrink towards 0. The entire shrinkage path can

be calculated efficiently via coordinate descent using the R/glmnet package (Friedman

et al., 2010). Ultimately, a set of nλ estimates of β̂ are made for Λ = {λ1, λ2, ..., λnλ},

such that B̂ = {β̂1, β̂2, ..., β̂nλ}. Ordinarily, to select the set of coefficients to be fitted

in the final model k-fold cross validation is performed, using the element of Λ that

minimises the mean squares error. However, for the sake of computational efficiency

this was approximated by choosing the value of Λ that minimised the residual sum of

squares,

λ∗ = argmin
λ∈{1,...,nλ}

n∑
(y −Vβ̂λ)2, (5.23)
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thus the regularised least squares estimate can then be tested in the standard manner

as in equation 5.18, where ŷ is replaced by

ŷ∗ = Vβ̂λ∗ (5.24)

and the term pv, the number of degrees of freedom denoting the number of parameters

in the model, is replaced by

p∗v =

pv∑
j=1

β̂λ∗j 6= 0. (5.25)

5.3.3.4 Random regression using REML

As an alternative to fitting each diplotype parameter as fixed effects, they can be treated

as random effects that compose a single genetic variance component. This potentially

circumvents the problem of high dimensionality in terms of statistical power, as an

analysis of variance can be performed that treats the variance component as a single

degree of freedom.

The random diplotype effect is tested for significance in a standard unbalanced random

effects model. For the i = {1, 2, ..., pv} diplotypes in the sample, and n =
∑pv

i=1 ni

individuals, where ni is the number of individuals with the ith diplotype, the ragged

matrix

Yij =



y1,1 y1,2 · · · y1,n1

y2,1 yi,j · · · y2,n2

...
...

. . .
...

ypv ,1 ypv ,2 · · · ypv ,npv


(5.26)

where yij is the jth individual with the ith diplotype, is modelled as

Yij = µ+ Ui +Wij (5.27)
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where Ui is the random effect of the diplotypes and Wij is the individual-specific error.

Restricted maximum likelihood (REML) estimates of the variances for these terms, τ2

and σ2 respectively, are made and these using the R/lme4 package, and can be tested

for significance using a one degree of freedom F-test by

σ2 + n0τ
2

σ2
∼ F (1, n0 − 1) (5.28)

where

n0 =
1

pv − 1

(
n− 1

n

pv∑
i=1

n2
i

)
. (5.29)

5.3.3.5 Simulation strategy

The objective of these simulations is to test the performances of the different methods

under varying conditions of epistatic patterns, genetic variances and genomic architec-

tures in the context of two-dimensional exhaustive scans.

• Two patterns of canalisation and additive× additive, additive× dominance and

dominance× dominance patterns were simulated (NP = 5, figure 5.1).

• Each pattern was simulated such that they explained VG/VP = H2 = {0.5%, 1%,

2%, 3.5%, 5%} of the phenotypic variance, NH2 = 5.

• Genomic architecture varied according to

– Number of individuals = {1000, 2000, 4000}, Nn = 3.

– QTL minor allele frequencies were uniformly distributed, with maximum

frequencies = {0.1, 0.2, 0.3, 0.4, 0.5}, NQ = 5.

– Effective SNP chip density = {100000, 300000, 500000, 700000}, ND = 4.

Enumerating all combinations listed above there are NPNH2NnNQND = 1500 different

‘scenarios’ in total. Using the two simulated chromosomes (section 5.3.1), for each
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scenario 100 ‘causal variants’ were sampled from each QTL SNP panel and a phenotype

was simulated corresponding to the conditions of that scenario. The SNPs in the SNP

panel that neighbour the sampled QTLs were then tested for association with the

simulated phenotype using the following methods:

• Standard 8 d.f. standard pairwise test of association

• Diplotypes of window size = {2, 4, 6} at each chromosome treated as fixed effects

(section 5.3.3.2)

• Diplotypes of window size = {2, 4, 6} at each chromosome fitted using the LASSO

method (section 5.3.3.3)

• Diplotypes of window size = {2, 4, 6} at each chromosome treated as random

effects (section 5.3.3.4)

Each method/window size combination was treated as an independent ‘scanning method’

(3 × 3 + 1 = 10 scanning methods). Four neighbouring windows for each chromosome

were scanned, such that for each causal variant a 5× 5 neighbouring grid was scanned

for association with the simulated phenotype and maximum p-values were recorded for

each scan (figure 5.3).

In addition to the above, for each causal variant simulated at each scenario a null test

was also performed, such that all conditions remained the same except the genetic

variance was set to 0. The distribution of p-values from these null models were used

to generate thresholds based on false discovery rates for each scanning method, from

which estimates of power can be made.
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Figure 5.3: Simulation strategy for supervised haplotype reduction methods. Causal
variants are selected from the QTL panel from each chromosome, and the
flanking SNPs in the SNP panel comprise the search space. Search grids
change in size depending on the 2D sliding window size, but the number of
tests per search remain the same (5×5 = 25). Examples of search grids for
2× 2 (red) and 4× 4 (blue) SNP sliding windows are shown. As in figure
5.2 the greyscale gradient of the flanking SNPs represents the expected
increase in LD with the causal variant as distance decreases.
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5.4 Results

5.4.1 Unsupervised haplotype clustering

Incomplete LD between observed markers and causal SNPs results in the rapid decay

of estimated genetic variance, the misrepresentation of genotype-phenotype maps, and

a prohibitory reduction in statistical power of detection (figure 5.1). To rescue this

incomplete LD, unsupervised clustering methods were applied to haplotype data, and

the large number of haplotypes were clustered into two groups to artificially create a

binary variable that could be treated as a ‘latent SNP’ in a (one or two dimensional)

GWAS, with the hope that the it would be more highly correlated with unobserved

causal variants than single SNPs in the SNP panel.

The overall results of this simulation are shown in figure 5.4. There is no single cluster-

ing approach that captures the variance of untyped causal variants as consistently as

simply using neighbouring single SNPs. A general trend can be seen across all methods

of improved detectability as SNP panel density increases and as the distribution of

causal variant frequencies becomes more similar to the distribution of SNP frequencies.

While there is variation between the performances of different clustering methods, there

is a tendency for haplotypes generated from smaller window sizes to perform better.

To assess the possible gain in detectability that could be achieved from the haplo-

type methods, the window size with the highest correlation with the causal SNP for

each haplotype method was recorded. Figure 5.5 shows how much improvement in

correlations could be gained if all window sizes were tested, including single SNPs,

against using single SNPs alone. The ROCK algorithm has the best performance, and

in particular when the distribution of frequencies of causal variants is most dissimilar

to the distribution of SNP frequencies the largest gain is seen. While some extreme

improvements are observed, the vast majority are fairly small, and it is unlikely that
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Figure 5.5: The improvement in correlation (y axis) with ‘untyped’ causal variants
compared to single SNPs when using the ‘best’ window size for a particular
haplotype clustering method in a particular QTL setting. Boxes represent
different clustering methods, and the frequency of causal variants is plotted
against the x axis. Box and whisker plots show the quartile bounds of 500
simulations, with midlines representing the median, whiskers representing
the 95th percentile value, and points representing outliers.

the increased multiple testing incurred would be offset by the performance gain, even

in a one dimensional GWAS context.

5.4.2 Supervised parameter reduction

Overall the results from the simulations showed quite clearly that in almost all situ-

ations the power to detect epistatic associations was significantly improved by using

the LASSO regression method on 2× 2 sliding window diplotypes. This performance is

sustained for most epistatic patterns and all tested genomic architectures, and power

improvements are particularly pronounced when the genetic variance of the causal vari-

ants is lowest, approximately in the range that is likely to exist in real studies. The

results are dissected in more detail below.

5.4.2.1 False discovery rates for different methods

The power of a scanning method, the rate of true associations discovered, can be cal-

culated in a frequentist context through the use of thresholds. These thresholds are
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developed to impose a low family-wise false discovery rate, such that in practice, on a

background of high multiple testing, the false positive rate is kept to some arbitrary

low level. Because the different scanning methods employ varying methods that train

parameters to the response variable, and then proceed to test the trained parameters

for significance, it is possible that false discovery rates will vary and that different

thresholds should be considered for different methods. Of particular concern is the

LASSO, where although the feature selection process is regularised to avoid false pos-

itive inflation, the λ selection step could risk the problem of using the data to inform

the hypothesis test.

For each scenario a repeat was performed where H2 = 0. A distribution of p-values

from these null models was collated (figure 5.6(a)). The effective SNP chip density

has a small effect on the distributions of all scanning methods. This is logical because

as density decreases the effective number of independent multiple tests increases. For

LASSO regression using 6×6 sliding window sizes this effect is more pronounced because

as LD decreases the number of diplotypes increases, such that as pv → n the LASSO

shrinkage allows (ŷ−ȳ)→ (y−ȳ). As such the false discovery rate is inflated. However,

in general there is relatively little difference between the fixed effects methods. − log10 p

values from random effects estimates are, however, much lower. This could be partly

due to most of the REML variance estimates converging at 0 for the null models.

The tails of the distributions are of principal concern for calculating thresholds for

power estimation. While figure 5.6(a) shows that the median values of p-values are

strongly affected by the sliding window size, closer examination of the distributions in

figure 5.6(b) suggests that the tails are not so disparate. Correspondingly, the 0.05%

family-wise false discovery thresholds used for the power analysis are shown in table

5.1. Overall the impact of window size is very small.
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Figure 5.6: (a) Box and whisker plots to show the distributions of − log10 p-values
for different scanning methods. Results are faceted by Test (large boxes),
sliding window size (coloured boxes), and effective SNP chip Density (x-
axis) as these factors had an impact on the distributions (p < 0.05). (b)
− log10 p value densities for single SNPs (window size = 1) and different
scanning window sizes for the LASSO method (windows 2, 4 and 6). Values
are taken from simulations with effective SNP density of 500000. The
sample size did not have a significant effect.



Chapter 5. Haplotype methods in epistasis 138

Table 5.1: Thresholds calculated from 0.5% false dis-
covery rate

Density a Test Window size

1 2 4 6

100000 Single 3.45 - - -

Fixed - 3.39 3.27 3.28

LASSO - 3.75 3.36 4.94

REML - 0.78 0.58 0.72

300000 Single 3.29 - - -

Fixed - 3.35 3.46 3.23

LASSO - 3.60 3.48 3.82

REML - 0.80 0.59 0.66

500000 Single 3.33 - - -

Fixed - 3.53 3.09 3.12

LASSO - 3.80 3.23 3.27

REML - 0.84 0.60 0.61

700000 Single 3.45 - - -

Fixed - 3.44 3.11 3.08

LASSO - 3.59 3.23 3.07

REML - 0.83 0.60 0.59

a Effective SNP density
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5.4.2.2 Power comparison of scanning methods

There are many dimensions to the analysis under which causal variants were simulated

and different testing methods were employed, comprising varying genotype-phenotype

maps, QTL frequency distributions, SNP densities, sample sizes, genetic variance of

QTLs and diplotype window sizes. Ultimately there was very little interaction between

these facets, and so analysis of each factor is considered independently below.

5.4.2.2.1 Window size choice for diplotype methods Prior knowledge of the best

window size to use for haplotype methods is difficult to ascertain. While perfect knowl-

edge of the best window size would likely improve association performance, as in figure

5.5, for the supervised methods on diplotypes considered in this section there is a clear

demarkation in performance between different window sizes (figure 5.7). So for the re-

mainder of the analysis only 2× 2 SNP sliding windows are employed for the diplotype

methods as they have a clear advantage over other window sizes.

5.4.2.2.2 Overall comparison of power for different genotype-phenotype maps

Figure 5.8 shows the power comparisons between the different diplotype methods and

the single SNP method. A significant gain in power from using the LASSO method can

be observed for four of the five genotype-phenotype maps simulated. Simulations in-

volving genotype-phenotype map 2 (figure 5.1, column 1, row 2) appear to be the only

scenarios where the LASSO method does not comprehensively outperform the other

methods. As observed in previous results (e.g. chapter 2, and Marchini et al. (2005)

and Evans et al. (2006)), the widely variable properties of different genotype-phenotype

maps makes it difficult to identify a single statistical framework that reliably outper-

forms others in all situations. One surprising observation is that the LASSO method

performs extremely well for genotype-phenotype map 3 (figure 5.1, column 1, row 3),

the additive×additive parameterisation. There is no obvious reason for this to happen
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Figure 5.7: Comparison of power between different window sizes (coloured lines) for
each diplotype based test (columns of graphs). Rows of boxes represent
different epistatic patterns correspond to genotype-phenotype maps in fig-
ure 5.1 (first column, r2 = 1).
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as the diplotype design does not specifically parameterise for this pattern, and there

doesn’t seem to be anything peculiar about his pattern compared to the others. Further

investigation may be required in this direction.

Treating the diplotype parameters as fixed effects with no shrinkage generally per-

forms poorly compared to using single SNPs. While such methods have been successful

when parameterised as haplotypes searching for additive effects, the exponential in-

crease in parameters when expanding to epistasis is unlikely to be counterbalanced by

a corresponding increase in variance explained over single SNP methods. Treating the

diplotypes as random effects is a more intuitive approach to avoid the problem of high

degrees of freedom, yet the performance is poor compared to all other methods. One

possible problem with this method is that inaccurate variance estimates will be made

when certain diplotype classes comprise of single or few individuals.

The magnitude of power for all methods drops when changing from an FDR based

threshold (figure 5.8(a)) to a Bonferroni based threshold (figure 5.8(b)) that assumes

a multiple testing penalty from an exhaustive two dimensional search. Generating a

corresponding FDR would be computationally impossible, so it is assumed that for the

LASSO and single SNP methods the tails of the distributions of p-values from the null

models will be the same. Under these assumptions the qualitative result remains the

same, in that LASSO regression on diplotypes offers significant improvement in power

over the typical method of choice that includes only single SNPs.

5.4.2.2.3 Effect of QTL frequency distribution on power The genetic variance sim-

ulated for each phenotype was not a function of the QTL frequencies, so any difference

in performance for different frequencies must be a result of genomic architecture. Fig-

ure 5.9(a) shows a clear improvement for the single SNP method as the distribution

of QTL frequencies becomes more closely matched to the distribution of frequencies in

the SNP panel. This is logical, as theoretical r2 values between causal variants and
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Figure 5.8: Comparison of power between different scanning methods (coloured lines)
for each epistatic genotype-phenotype map (boxes correspond to first col-
umn of figure 5.1), where thresholds for (a) are calculated from false dis-
covery rates, and for (b) from Bonferroni corrections corresponding to the
SNP chip density. The results are for sample sizes of 4000 individuals.
Power values are for overall power when amalgamating simulation results
from all maximum QTL frequency parameters and effective SNP density
parameters. Results are expanded to include these parameters in figure
5.9.
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observed SNPs are maximised when the frequencies are equal, and increasingly limited

as frequencies become more divergent (Schork et al., 2000). This is mostly the case

for LASSO regression also, however the relationship is reversed for the A × A map.

One possible explanation for this could be that lower frequencies could be favoured

by diplotype methods as the frequencies of diplotypes are likely to be low also. An-

other observation that may have an impact is that at more intermediate frequencies

the marginal effects in the model disappear, although it is unclear if or how this would

be the underlying reason for the reduction in power as the parameterisation should be

insensitive to this change.

5.4.2.2.4 Effect of SNP density on power An interesting paradox exists in search-

ing for epistasis, in that as shown in figure 5.1 and in chapter 2, there is a heavy

dependence on high LD between causal variants and observed QTLs, however the us-

age of denser SNP chips to increase LD inevitably causes a steep increase in multiple

testing corrections. This is reflected in figure 5.9(b), where increasing SNP chip den-

sity has very little improvement in power because it is offset by the increased multiple

testing penalty imposed through a Bonferroni threshold.

5.4.2.2.5 Effect of sample size on power The improvement in power conferred by

LASSO regression on diplotypes over single SNPs is mostly lost when the sample size

is reduced to 1000 individuals when the average power across all H2 is close to 0. The

relationship between power and sample size is close to linear for both testing methods,

however the improvement gained from LASSO is maximised when the sample size is

greatest. In terms of experimental design it is of high importance to incorporate large

sample sizes, the power to detect even reasonably large variants diminishing rapidly

with sample sizes that may be considered reasonable for one dimensional scans.
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Figure 5.9: Power performance with different maximum QTL frequencies (a), effective
SNP chip densities (b), and sample sizes (c), using the Bonferroni threshold
corresponding to the simulated SNP chip density. Boxes of graphs repre-
sent the genotype-phenotype maps in figure 5.1. Values are calculated by
averaging across all simulated values of H2.
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5.5 Discussion

There have been many successful attempts at improving the statistical power of detect-

ing additive genetic variants by moving from genome-scans based on independent single

markers, to those that test for associations with sliding windows of haplotypes. Yet

although one could argue that applying such methods to epistasis is theoretically likely

to offer an even greater improvement, no such methods currently exist in the litera-

ture. The advantages of using haplotypes are two fold, firstly they capture biologically

functional units of inheritance, intrinsically considering cis-epistatic relationships; and

secondly they may capture the genotypic states of untyped causal variants more accu-

rately if alternative alleles segregate among the haplotypes in a population. Only the

latter case was investigated in the simulations in this study - the potential improve-

ments made in capturing the variance of trans-epistatic interactions - so while these

results are fairly positive, even greater advantages could be gained when applying to

real data, should combinations of cis- and trans-epistatic effects exist.

5.5.1 Unsupervised haplotype clustering

Several clustering methods were proposed for adaptation to haplotype data in an

epistatic context. Ultimately, none of those tested could be practicably applied with

a gain in power over independent single SNPs. A hypothetical advantage in clustering

haplotypes to biallelic vectors that would have been desirable is that, as shown in figure

5.1, if the correlation between the clustered vector and the causal variant is increased

then the functional genotype-phenotype map is rescued. Unfortunately, although fig-

ure 5.5 shows promise due to the notion that in ideal circumstances often the extent to

which the LD is rescued is high, the issue of being unable to predict window size in an

unsupervised manner means that it is statistically impractical at this stage.
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From figure 5.4 the k-modes and cladistic methods appear to rival the single SNP

method the closest, however when translating to figure 5.5, where only the best win-

dow size is considered, the ROCK algorithm appears to offer the most advantage. This

observation suggests that the correlation of clustered vectors between window sizes

is very high, so considering each window size jointly does little to improve the pre-

dictability of the causal variant. However with the ROCK algorithm, although each

window performs poorly independently, they are more lowly correlated and therefore

when considered jointly have better predictive properties.

5.5.2 Supervised parameter reduction methods

The supervised parameter reduction methods have returned some interesting results, in

particular, the LASSO method appears to outperform all other methods, including the

single SNP method, by some margin. The results are difficult to explain at this stage,

however it can be argued that the results are statistically credible. Two aspects of this

result will be discussed below, firstly, the validity of this conclusion; and secondly, the

explanation for the improvement in statistical efficiency.

5.5.2.1 Validity of the results

Data mining, in general, has the objective of discovering features from a large set of

parameters. The results from this kind of search can only be viewed with confidence

if the false discovery rate for the experiment is known and kept sufficiently low, and if

the power of the method is sufficiently high for the features to be uncovered (Bishop,

2007). The simulations used for the analysis in this chapter were constructed in order

to enforce these rules.

The trade off between low false discovery rates and high true positive rates is a recur-

ring theme in data mining and inference, but in genetic analysis typically one uses a
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family wise error rate of α = 0.05 and then seeks to maximise power with respect to

this being fixed. A crucial aspect of the simulations performed here was to assess all

simulation conditions using null models, with a view to measuring the behaviour of the

different testing methods when no true genetic variation exists. It is expected that if

all assumptions of the test statistic are met then the FDR for all tests is equal, such

that the proportion of p-values residing in the extreme tail of the distribution are the

same between tests.

This is a crucial aspect of statistical inference, and it can be shown from figure 5.6(a)

that there appears to be no inflation of p-values under null models. This is a particularly

important result for the LASSO method which employs a mode of supervised subset

selection. A major problem with this form of parameter selection is that because only

the most significant parameters are being retained in the model, the information for

this process coming from the response variable, the test statistic is liable to inflation

because the data is driving the hypothesis (occasionally known as a type III error). This

can be prevented in various ways such as information criterion methods or adjusting

the effective number of degrees of freedom in the test, but the LASSO uses a shrinkage

method, such that as parameters are being dropped from the model the scale of the

existing parameters also shrinks towards zero. Crucially, it has been shown that the

effective number of degrees of freedom in the model following shrinkage is approximately

equal to the number of parameters that retain non-zero coefficients (Zou et al., 2007).

To a lesser extent, there also exists the problem of a type III error when deciding on the

choice of the tuning parameter, λ. Typically, type III errors are avoided in this respect

through k-fold cross-validation, where the value of λ that minimises the mean square

error over k partitions is selected for the model. Hastie et al. (2009) demonstrated that

a close approximation to this technique, and computationally much less demanding, is

to simply choose the value of λ that minimises the residual sum of squares in the model.
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Overall, there is strong evidence through the null model simulations that there is no

inflation in the false discovery rate, and thus we can have confidence in the thresholds

used in the subsequent power analyses. These simulations sought to assess the per-

formance of the different methods given varying conditions that might be encountered

in a real data situation. Specifically, levels of LD between SNPs and causal variants

were varied by simulating different SNP chip densities; different patterns of epistasis

were simulated; a range of effect sizes were simulated; and the distribution of allele

frequencies from which simulated QTLs were drawn were also varied. All combinations

of these conditions were simulated to rigorously assess the performance of the various

testing methods. In almost all combinations of simulations it was observed that the

LASSO outperformed all other methods, and so it can be said in a general sense that

supervised parameter selection as performed by LASSO regression on diplotypes is a

more statistically powerful method for detecting trans-epistatic genetic variation than

the methods based on single SNP parameterisations that are currently in use.

5.5.2.2 Understanding the supervised parameter reduction methods

In terms of power to detect epistatic variants, the central issue that haplotype based

methods seek to address is to rescue the LD between observed SNPs and causal vari-

ants (Clark, 2004; Schaid, 2004). This is achieved at the cost of increasing the number

of degrees of freedom in the model, and losing the ability to reproduce a meaningful

genotype-phenotype map. The latter is not an immediate problem in QTL mapping,

however the former problem leads to a trade off between the amount of variation ex-

plained by the model, and the number of degrees of freedom. This kind of balancing

act is common in data mining, where some measure of model complexity is used to

adjust for the possibility of over-fitting, and the evidence that the LASSO ameliorates

this issue is discussed above.



Chapter 5. Haplotype methods in epistasis 149

What is difficult to explain is the extent to which the LASSO appears to improves the

power of a 2D scan. One intuitive explanation concerns the evolutionary structure of

haplotypes in the population. For each two locus epistatic interaction there are nine true

genotype classes, but potentially hundreds of diplotype classes. The principle behind

haplotype-based methods is that some of these diplotypes will encode for chromoso-

mal segments that informatively segregate genotype classes, thus capturing the genetic

variance more accurately than single markers might when they are in incomplete LD

with causal variants.

In this instance, there will be a set of informative diplotypes that have fixed effects that

are large, and a set of uninformative diplotypes whose mean values will be close to the

phenotypic mean. Should the causal variants be ancestral then several diplotypes could

encode for a single genotype class, thus leading to multiple parameters in the model

that have the same fixed effect because they capture the variance of the same hidden

segregating genotype.

In these simulations phase was treated as known for all genotypes, and so the design

matrix, comprising dummy variables for each diplotype in the population, is orthogonal.

Ordinarily when LASSO regression is used, if there is redundancy in the model in the

form of correlated parameters then this is quickly eliminated by shrinking all correlated

variables to zero and retaining only uncorrelated parameters as the process of feature

selection progresses. However, because the design matrix is comprised of orthogonal

parameters, parameters will not be eliminated when they are genetically related (i.e.

segregating with the same causal genotype) because they are not statistically correlated.

With shrinkage, the effects of parameters that are small (i.e. uninformative diplotypes)

are rapidly scaled to zero and are purged from the model, thus, eventually the only

remaining parameters will be informative diplotypes. If several orthogonal variables

remain in the model with large coefficients for each genotype class then the true genetic

variance of the two locus interaction is liable to be overestimated, and with relatively
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few degrees of freedom this can lead to extreme test statistics under the condition that

the evolutionary relationship amongst haplotypes exist.

This may be related to the reason that smaller sliding windows appear to be most

powerful. While the use of larger window sizes will potentially comprise higher numbers

of informative parameters, they will also include very many that are uninformative.

Therefore, the shrinkage parameter will be increased in order to eliminate a larger

proportion of the parameters, such that the increased number of informative parameters

will be offset by the increased shrinkage of each parameter, and concomitantly the

number of degrees of freedom in the model will potentially increase.

A slightly controversial continuation from the reasoning behind the LASSO-diplotype

method’s power is that their p-values may transpire to be more extreme than the p-

values from the causal variants themselves if tested as single SNPs (e.g. with the

availability of imputed or sequence data). As discussed in chapter 4 (equation 4.6)

the p-value from an F-test is a function of the sample size, the variance explained,

and the number of parameters in the model. In the case of sequence data the total

variance explained is typically limited to the true genetic variance of the causal locus.

Thus, if the LASSO-diplotype method can exceed this value, albeit inaccurately, then

it can also result in more extreme p-values. This is a useful feature for genome-wide

searches, particularly in the context of samples where sequence data is unavailable or

for populations and species where imputation reference panels can’t be used.

Ultimately, the behaviour of the LASSO-diplotype method is difficult to explain, and

although it appears that it will be useful given that the false discovery rate isn’t inflated

and the power is high, further simulations will be required to establish the underlying

mechanisms that result in the overestimation of genetic variance.

The alternative approach to addressing this issue is to treat diplotype effects as random,

rather than as fixed as in the LASSO. In terms of modelling it is perhaps more accurate

to consider the diplotypes that exist in a window to be a random sample of all possible
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diplotypes that exist in the population, so the REML approach is justifiable. However,

its performance was worse than all other methods, despite the statistical advantage of

tests comprising only one degree of freedom (figure 5.8(a)). A possible reason for this

could be that variance estimates of rare diplotype classes become unstable, thus models

may fail to converge even when they might otherwise have explained a significant pro-

portion of the variance. It could be possible to overcome this problem quite simply by

grouping rare classes together, or by employing a clustering step, and then performing

random regression on the clusters.

Another problem may be that although the F-test’s numerator degrees of freedom has

been dealt with, the denominator degrees of freedom will often be significantly lower

also, as in fixed effect tests this is a function of the number of observations, while in the

case of random effects it is rather the number of parameters, thus weakening the test

statistic. In addition, a recent simulation study (Struchalin et al., 2010) concluded that

while an increase in variance within genotype classes must necessarily be caused by

some underlying interaction (with other genetic or environmental factors), interactions

did not necessarily cause heterogeneity in variance. Thus the explicit test of testing for

differences in means may intrinsically provide greater coverage of all possible interaction

scenarios than a variance based metric such as the REML method used here.

5.5.3 Effects of genomic architecture

Of interest is how best to design the genome-wide association scan in terms of SNP

chip density and number of individuals under varying assumptions of the architecture

of the causal variants. Perhaps the most obvious observation is that sample size should

be maximised (figure 5.9(c)), natural advice with all large p small n problems. These

simulations show that none of the approaches were particularly robust to diminishing

sample size, and that indeed relatively high numbers (i.e. 4000 individuals) were re-

quired to achieve even modest power levels. An interesting observation is that in most
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situations the LASSO method lost power more rapidly than the independent single SNP

method. This is likely due to the fact that a very large number of parameters per test

are more heavily dependent on a large sample size in order to reduce standard errors

on coefficient estimates, with the problem accelerating faster as sample size drops than

when there are relatively few parameters as in the independent single SNP method.

A second problem that is of concern for searching for epistasis is that of SNP chip

density. Being heavily reliant upon high LD will likely encourage the use of denser SNP

chips, but figure 5.9(b) shows quite neatly that on average any gain in variance is offset

by elevated multiple testing penalties. This paradox is difficult to reconcile in practice.

From the perspective of haplotype methodology, at least in one dimensional scans, if the

LD between causal variants and observed SNPs is on average very high (e.g. very dense

SNP panels or sequence data) then single SNP methods will generally be more powerful.

If the LD is very low on the other hand then haplotypes become excessively noisy,

with high recombination rates destroying any QTL segregation structures, and again

single SNPs will be more powerful, although neither method will be especially powerful.

Haplotype methods are strongest somewhere in the middle of this LD continuum, where

single SNPs generally have loose correlations with the causal variants. With epistasis,

because the genetic variance decay is so much more rapid (figure 5.1 and chapter 2),

the range of this middle ground is likely to be larger than in the additive case. The

simulations performed look at the density range of 100000 SNPs to 700000 SNPs, it

is possible that if this were extended to more extreme values then relative differences

between haplotype and independent SNP methods will manifest.

Thirdly, it is prudent to ask how underlying causal variant frequency distributions will

inform experimental design. As shown by Schork et al. (2000) the level of LD that

can be achieved between two SNPs is highly dependent upon the similarity of their

allele frequencies, so if the distribution of observed SNP frequencies is particularly

disparate from that of causal variants then single SNP effects will suffer. From the
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unsupervised methods approach, the ROCK algorithm shows that there is a strong

relationship between its benefit over single SNPs and the maximum frequency of QTLs

simulated (figure 5.5), and indeed this has also been reported in several other studies

(e.g. Durrant et al., 2004; Browning and Browning, 2007; Schaid, 2004). This is likely

to do with the occurrence of low frequency haplotypes that can accurately segregate

with low frequency QTLs. Interestingly, only in one of the five epistatic patterns

echoed this result in the comparison between LASSO and single SNP methods (figure

5.9(a)). For the remaining four patterns, both methods performed worse as maximum

QTL frequency declined, however for A×A the improvement in power of LASSO over

single SNPs increased. Interestingly, Yang et al. (2010) showed that the observation

that heritability estimates obtained from genomic relationships based on SNP chips are

generally lower than those made from pedigree relationships could be attributed to the

common situation where QTLs generally have much lower frequencies than the SNPs

in a marker panel. Poor genome-wide association results could similarly be attributed

to this, and haplotype methods have been advocated to overcome this in the additive

case. From these simulations the advantage of diplotypes at low frequencies is not so

consistent, however they may still confer some advantages.

A note of caution should also be made. Though designed to mimic the construction of

populations of genomes in an evolutionarily realistic manner (Hoggart et al., 2007), it

is difficult to faithfully recreate the more chaotic haplotype structure that might exist

given the rather “noisy” LD patterns found in real data using deterministic simulations.

This is one reason that translating these simulations to real data might result in less

impressive results for the LASSO method. Another reason is that unlike in the case of

simulated data perfect phase will be unknown, as real data is unlikely to be completely

informative at every locus for methods such as long range phasing (Kong et al., 2008).

Though this is the first application of LASSO to haplotype parameter reduction in for

a quantitative response variable, methods have been previously described that employ
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a logit function to a binary response variable (case/control disease status). In the one

dimensional additive case Guo and Lin (2009) demonstrated that while an improvement

in power over single SNPs could be made with common variants, the most benefit

was achieved for detecting rare variants. Conversely, Li et al. (2010) found that the

application of this approach to 2 × 2 window diplotypes in the epistatic case was not

as powerful as single markers. One potential reason for this could be that they use an

EM algorithm to derive phase, thus resulting in a quantitative predictor matrix with

intrinsic correlation structures, and multi-collinearity causing a reduction in the total

variance explained following elimination during the parameter reduction step.

5.5.4 Computational viability

As demonstrated in chapters 3 and 4, the computational viability of exhaustive two

dimensional scans is now a reality. Problems arise, however, when the kernel being

parallelised becomes more sophisticated, as in LASSO regression. From the simula-

tions performed here, there was generally a rapid decline in computational speed as the

window sizes increased from 2 × 2 to 6 × 6 by many orders of magnitude. In terms of

statistical benefits one would naturally recommend the LASSO regression on 2×2 win-

dow diplotypes over independent single SNPs, but whereas single SNP regressions and

F-tests can be performed in the order of 128000 per second on a single CPU (chapter

3), the computational performance according to these simulations suggest that LASSO

regression will achieve only 30-40 tests per second (depending on the number of pa-

rameters). For an exhaustive scan on a 100000 SNP chip, this would require at best

∼ 1500 CPU days. This is perhaps tractable with access to a large compute cluster, and

further speed improvements can be made, because although the main computational

task of coefficient estimation performed using the R/glmnet package is highly efficient,
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having been written and optimised in FORTRAN (Friedman et al., 2010), the simu-

lation framework, diplotype design matrix construction, and test statistic calculation

were performed in R.

An alternative approach, although less statistically desirable, could be to consider using

single two stages. For example efficient single SNP methods could be used to identify

candidate regions based on a relaxed threshold in a two dimensional setting in an

initial stage, with LASSO regression being applied to interesting regions in the second

stage. By contrast, a haplotype or diplotype method could be implemented in a one

dimensional scan with the regions of interest being forwarded to a two dimensional

diplotype scan.



Chapter 6

General discussion

6.1 Objectives

After being predicated on a largely additive statistical paradigm, the disappointing

results of large scale genome wide association studies over the last decade have caused

the architecture of natural genetic variance to come into question (Eichler et al., 2010).

Epistasis has an established place in population and quantitative genetic theory, yet

since the advent of GWAS it has been largely neglected from empirical exploration.

There have been three major reasons for this. Firstly, estimates of genetic components

have frequently suggested that there is little statistical contribution from non-additive

effects (Hill et al., 2008). Secondly, with the acceleration in genotyping technology the

computational barrier of searching for genetic interactions soon became insurmountable

with standard programming techniques. And thirdly, while the statistical power to

detect small independent effects is already low, the problem becomes considerably more

acute when extending the search to interactions.

This thesis has attempted to address each of these issues. To briefly summarise, it was

shown that the maintenance of additive variation in fitness related traits can be achieved
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through epistatic interactions, and that the presence of additive variance may in fact be

symptomatic of a more complex genomic architecture. The computational challenges

of searching for these interactions exhaustively were mitigated through the use of an

emerging form of parallel programming based on cheap, consumer level graphics cards.

Indeed the performance of these devices is such that if using CPUs, the permutation

experiments performed in chapter 4 will have taken up to 200 compute years, but with

the availability of modestly sized GPGPU clusters this was completed in a few months

of user time. Finally, it was attempted to address some of the statistical challenges

by parameterising SNP data as haplotypes in order to rescue the LD with unobserved

causal variants, and through extensive simulations it can be shown that when com-

bined with penalised regression techniques this can effect a significant improvement in

statistical power.

6.2 Further considerations

6.2.1 Higher order interactions

The work presented here considers epistasis only from a fairly narrow perspective - that

of two locus interactions. The computational challenge of searching exhaustively in 3

dimensions or more is currently insurmountable with the density of marker information

required to adequately capture the variance of untyped causal variants, and perhaps

more to the point the tractability of exhaustive searching from a statistical point of view

is questionable, both in terms of the significance thresholds required and the potential

combinatorial problems that were discussed in chapter 4.

It may be the case that searching in higher than two dimensions is not necessary. For

example, the discovery of epistatic networks involving many loci can be made from two

dimensional searches alone (e.g. Carlborg et al. (2006)), and just as independent SNPs

can explain some of the variance of their joint effects, it would be interesting to explore
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how much of the variance of higher order interactions can be explained marginally in

two dimensions.

The evolutionary properties of higher order interactions are also difficult to predict, in

particular it may be the case that higher order interactions maintain additive variance

more effectively than the two locus interactions explored in chapter 2. Should this be

the case then it may be of practical importance to understand how best to map such

genetic factors. One potential approach could be to test for variance heterogeneity

within loci. While it has been shown that this is not as powerful for detecting two

locus interactions as the direct method of treating them as fixed effects (Struchalin

et al., 2010), the behaviour with regards to higher order interactions is unknown.

6.2.2 Phenomics

The number of genetic factors, or the polygenicity, governing heritable traits is fairly

variable. For example, susceptibility to infectious disease is speculated to be under the

control of relatively few polymorphisms with large effects (Diez et al., 2003; Min-Oo

et al., 2003), while other traits such as height, obesity, and red blood cell count appear

to be much more in the dominion of the infinitesimal model (Park et al., 2010; Valdar

et al., 2006), being controlled by very many variants of small effects. One approach

that is used to overcome the problem of high polygenicity is to expand the sample size

of the study. Perhaps the most extreme example of this to date is the meta-analysis

of human height performed by Lango Allen et al. (2010) which included over 180000

individuals in total. While this was effective at detecting many variants (> 180), the

proportion of phenotypic variance explained remained fairly low at around 10% overall.

To generalise, it could be said that the set of predictor variables in a GWAS, the fixed

genetic effects, are extremely well characterised, while the response variable is rarely

anything more than a single binary or quantitative variable. Perhaps a more effective
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way to overcome high polygenicity would be to redress this balance through the inclu-

sion of large-scale phenotyping (“phenomics”, Houle et al. (2010); Sabb et al. (2009)).

The argument for this approach is that one reason that high level disease phenotypes

are so polygenic is that they are the manifestation of many different lower level pheno-

types. If these lower level phenotypes are less polygenic then mapping genetic variation

to them may be more statistically tractable. Thus an overall understanding of the

genetic components contributing to high level disease trait of interest could then be

composed by reconstructing the relationships between lower level phenotypes.

Some success has already been achieved with this type of approach. For example ex-

pression QTL (eQTL) studies that aim to map genetic variation to variation in gene

expression levels, arguably a very low level phenotype, tend to uncover extremely large

effect sizes relative to the higher level morphological phenotypes that are more com-

monly used in GWAS. Resultantly, high proportions of the variance of expression can

be detected with relatively modest sample sizes (Bystrykh et al., 2005; Cookson et al.,

2009). Typically these types of studies are restricted to searching for additive cis-

QTLs and it is uncommon to extend the analysis to include genome-wide epistasis,

thus there is potential for these types of studies to expand in scope and begin to assay

the underlying architecture of genetic variation.

While the use of lower level phenotypes has the potential to overcome the problems

associated with the infinitesimal model, employing such an approach in an integrative

phenomics model may have its own set of problems. High throughput phenotyping is

currently possible for gene expression, proteomic and metabolic data, but the question

of implementation is still difficult. For example, a realistic assay of the phenome might

involve the collection of this type of data from multiple tissues at several time points.

Aside from being potentially invasive, this is most likely financially prohibitive. In addi-

tion, from a statistical point of view the problem of causality emerges. When construct-

ing relationships between low level phenotypes, assigning directionality to the effects
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in a network is difficult (Shipley, 2000), and this may be very limiting for prediction

accuracy. For example which low level phenotypes are upstream of the manifestation of

disease (causative), which are downstream (consequential), and which are simply con-

founded? Theoretically it is only the upstream events that will have predictive value for

the outcome of disease phenotypes (Shipley, 2000) and uncovering correlations alone in

the phenome will be insufficient for a realistic prediction model.

6.2.3 Threshold based searches

Though the broad goal is to identify causal variants, GWAS in its standard form is

generally only concerned with identifying regions of association. The question of the

direction of causality in genetic associations is undisputed, logically phenotypes cannot

‘cause’ a genetic variant. This is an uncommon feature in data mining in general, the

inference of causality often being difficult to ascertain in most statistical frameworks.

However the belief that the variant has a real biological association is disputable, even

after surpassing the stringent family-wise testing thresholds that are routinely em-

ployed. Indeed, the philosophical question of what level of evidence is sufficient in order

to be confident that a variant has a true biological effect is difficult to answer. But it

should be clear that in the context of complex traits, where many effects contribute

to the genetic variance, and each effect is supposedly small, statistical association in a

single study alone is insufficient.

One approach to validating a candidate signal is to search for the same effect in an

independent population and this is often a requirement for publication, although com-

monly the threshold for replication is relaxed. For example, Siontis et al. (2010) showed

that in a survey of 291 candidate SNPs, only 41 were replicated with p-value < 10−7,

and the Catalog of Published Genome-Wide Association Studies (Hindorff et al., 2010),

comprises 5845 significant associations, of which 2589 have not demonstrated any repli-

cation, and the median association p-value of (1× 10−7) is below the widely suggested
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comparison-wise threshold of 7.2× 10−8 (Dudbridge and Gusnanto, 2008). Even more

extreme, Hirschhorn et al. (2002) surveyed 166 variants that had been studied in three

populations, and found that only 6 were consistently replicated. Indeed Liu et al. (2008)

demonstrated that the probability of replication across multiple independent popula-

tions is very small when power of detection is not close to 1, even in the simplest case

where the true variant is purely additive.

Compounding the difficulty of replication, Greene et al. (2009) suggested that this prob-

lem is exacerbated further if the marginal effect is involved in a pairwise interaction.

The marginal effects of two locus interactions for functional genotype-phenotype map

tend to be highly dependent upon allele frequencies, and allele frequencies are liable to

fluctuate across populations. Thus, it can be argued that searching for marginal effects

alone will fail to replicate from one population to the next if they are involved in an in-

teraction. Greene et al. (2009) went on to suggest that two-dimensional searches would

alleviate this problem, and while this is true to some extent it also introduces other

potential complexities. First, power to detect epistatic interactions is generally lower

than marginal effects, so the problem of statistical replication, even with knowledge

of the true interaction terms, will be inflated. Second, extrapolating their argument,

the two-dimensional effects may be marginal to higher order interactions, in which case

they are liable to the same fluctuations in allele frequencies across populations as are

independent effects. And third, the interaction may be with environmental factors

rather than other genetic loci, and this is a very complicated problem to control when

comparing different populations.

In addition to these problems there are of course others. For example the initial associ-

ation may be in LD with the true causal variant in one population but not the other, or

the causal variant may simply not be segregating in other populations. Less stringent

definitions for what constitutes a replication could be made with regards to this. For

example, replication could entail searching for the same effect across all SNPs covering
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the same gene, all SNPs covering genes involved in the same pathway, or including the

same gene ontology (GO) terms (Cantor et al., 2010). If robust statistical corrections

are made for the increased multiple testing then this could ostensibly improve the power

of detecting genomic regions with relevant functions, however such an approach does

depart from the original problem of understanding genetic variation because without

validating a candidate variant then the estimate for its mode of action remains uncon-

firmed. As discussed in chapter 5, the problems associated with incomplete LD will

tend to inflate the importance of additive effects.

True variants are demonstrably difficult to replicate, but there is still some concern as

to whether replication is in itself a strong foundation for belief of biological function as

it can be shown that the probability of replication of a false positive can be fairly high

under certain situations (Liu et al., 2008). Consequently, replication in independent

populations, while commonly considered the gold standard of statistical association,

probably still does not go far enough to address the question of true biological effect.

Chanock et al. (2007) suggests that the more laborious procedure of candidate interval

sequencing and genotyping of all regional common and uncommon variants in multiple

populations should also be performed, followed by examination of functional conse-

quences, and gene and environment interaction effects. Of course functional effects in

situ may be different from those examined in laboratory conditions, and there is no easy

way to comprehensively measure the environmental conditions that may be involved.

Further, under these guidelines the dissection of even a single variant is likely to be

time consuming and costly, and ascertaining such levels of confidence for all variants

associated with highly polygenic traits is a daunting task.

6.2.4 Genetic prediction

Alternative approaches exist that simply bypass the problem of stringent thresholds.

The discovery of causal variants is important for two major reasons. First, it pinpoints
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areas of the genome that are functionally related to a phenotype of interest. Second,

one can use this information to predict phenotypic outcomes. While epistasis may be

important in the first instance in order to detect the causal variant and to understand

the context in which the function occurs, its significance in the second instance may

manifest in terms of the accuracy of the prediction.

In animal and crop breeding, where a principle objective is to select individuals with the

most beneficial characteristics for genetic contributions to future generations, genomic

selection has dominated quantitative genetic theory over the past decade. Whereas

GWAS treats each SNP independently as fixed effects, genomic selection attempts to

fit all genetic factors simultaneously as random effects in order to estimate the ge-

nomic breeding value (GEBV) of each individual (Meuwissen et al., 2001). This can be

achieved through many methods (Gianola et al., 2009). Though no single approach is

currently deemed superior above all others, particularly popular are those that param-

eterise all effects as additive and then use Bayesian sampling techniques in conjunction

with highly sparse prior distributions for the variances of all loci. Here, the identi-

fication of individual factors or regions is largely inconsequential, and thus problems

involving stringent thresholds are not relevant. Ultimately, genomic selection has been

fairly successful, improving upon methods that involved progeny testing and delivering

improved commercial productivity. For example, the accuracy of GEBVs in dairy cattle

for milk yield are around 67%, close to twice the accuracy of traditional pedigree-derived

breeding values (Harris et al., 2008), and genotyping of elite animals is now becoming

routine (Hayes et al., 2009).

Perhaps these types of studies can provide clues as to the statistical importance of epis-

tasis. For example, if functional epistasis is prevalent amongst causal variants for milk

yield, but prediction accuracy remains high with an additive parameterisation then this

may suggest that interaction terms make a relatively small contribution to the variance,

however without knowing the performance of such models in the hypothetical case that
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there are only epistatic terms contributing to the variance it is difficult to form any

strong conclusions. Perhaps one can also use the results from genomic selection to begin

to ascertain the polygenicity of a trait. A recent study attempted to apply genomic

selection techniques for prediction in human height (Makowsky et al., 2011). For this

trait, the REML estimate of the variance explained by the additive genomic relation-

ship matrix was approximately 45% (Yang et al., 2010), but both BLUP and Bayesian

LASSO estimates, when 10-fold cross validated, resulted in an average prediction ac-

curacy of less that 15%. It has been shown for an additive polygenic model that the

accuracy of prediction r2
gĝ is constrained by the ratio of number of individuals np to the

number of causal loci nG and the observed heritability h2 (Daetwyler et al., 2008):

rgĝ =

√√√√ np
nG
h2

np
nG
h2 + 1

. (6.1)

One interpretation of the poor performance in prediction could simply be that the trait

is highly polygenic. The study comprised 1493 individuals in the training set, so re-

arranging equation 6.1 to nG = r−2
gḡ (nph

2 − nph2r2
gḡ) gives an estimated nG = 3807.

Given that the training and testing sets were from the same population and the predic-

tion was based on cross validation one might expect that any systematic errors arising

from interaction between genetic or environmental factors might be minimised. Thus,

applying the estimated prediction model to other populations, where environmental

conditions and allele frequencies will differ, may provide insight into the prevalence of

interactions: if accuracy remains at 15% then the most effective way forward for this

particular trait would be to increase sample size, but if the accuracy drops then the

genetic model may require revision.

Assuming that the inclusion of epistatic components will improve this type of study it

still remains unclear how they might be incorporated into the prediction model. For

example, one approach might be to simply obtain estimates based on the interacting

pairs uncovered from two dimensional GWAS, however the variance explained of all
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significant factors combined would need to be high in order to achieve any reasonable

level of accuracy (Evans et al., 2009; Wray et al., 2007). Alternatively a relaxed thresh-

old could be used to allow a larger number of features with small effects to be utilised

for prediction. However this has previously offered only small advantages in prediction

for highly heritable traits such as schizophrenia (Purcell et al., 2009). Several methods

have been proposed that could include non-additive variance components directly (de

Los Campos et al., 2009; Gianola et al., 2006, 2009) and if the numerical difficulties

associated with their estimation from genomic relationship matrices may be overcome

with larger sample sizes then this may be an interesting direction to explore the global

statistical impact of non-additive terms.

6.3 Final remarks

That high level morphological characters are manifested by the combination of dis-

crete Mendelian processes implies an underlying granularity to the observed noisiness

of biological systems, and GWA style approaches attempt to dissect this directly. But

perhaps this is an overly simplistic representation, as stochasticity is likely to exist at

every level higher than the genetic factors themselves, and it appears that overcoming

this problem cannot be achieved without compromise. Genomic selection techniques

sacrifice detail for prediction accuracy, whereas migrating GWAS to lower level pheno-

types will sacrifice prediction accuracy for detail, and reconciling both approaches is

evidently not straightforward.

There are a wide range of opinions as to the reasons behind the problem of the missing

heritability (Eichler et al., 2010). While all valid, many of them are rather esoteric,

invoking such concepts as the rare variant hypothesis, copy number variations, genetic

imprinting, and non-additive genetic variance. But perhaps the most immediate prob-

lem is that with highly polygenic traits there is no strong basis to reject (or accept) the

common disease-common variant hypothesis or the additive genetic paradigm. It might
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be argued that for the purposes of understanding the architecture of genetic variation

genomic selection approaches are fairly subjective in terms of statistical interpretation.

On the other hand, integrating a phenomic approach into the GWA framework has clear

advantages for improving statistical power, and if the associated problems of causality

can be addressed (e.g. intsrumental variables McKeigue et al. (2010)), then one might

speculate that both detailed functional information as well as good prediction accuracy

could be obtained from genomic information.

Additive parameterisations have dominated the data mining techniques for causal ge-

netic polymorphisms in recent years but the question of the type of genetic variance

that underlies complex traits remains an important one to resolve. It is unlikely that a

single solution exists, and the architecture of one trait may be entirely different to the

architecture of another. Ultimately, epistasis may or may not have an important role

in complex traits, but a theoretical precedence for it has long been established. Today,

the necessary data is abundant and the data mining tools have been developed, so the

true importance of epistasis can now begin to be qualified empirically.
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Figure A.1: Extended set of genotype phenotype maps. 1 Neutral; 2-51 Enumeration
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as derived by Li and Reich (2000) (6 and 29 are non-episatatic); 52-56
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Figure A.2: Deterministic trajectory of allele frequencies as in figure 2.2(a), but for an
extended set of patterns (detailed in figure A.1)
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Figure A.3: Simulated trajectory of allele frequencies as in figure 2.2(b), but for an
extended set of patterns (detailed in figure A.1)
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Figure A.4: For the 25 deterministic simulations the expected quasi-LD between the
physically unlinked causal SNPs was calculated. It can be seen that signif-
icant levels are generated, such that orthogonal standard parameterisation
methods would not be orthogonal. Boxes represent different genotype-
phenotype maps from figure A.1.
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Figure A.5: Deterministic change in genetic variance for loci under selection exhibit-
ing various epistatic patterns (figure A.1), when LD between the causal
variants and observed SNPs varies. For clarity, only the results from ini-
tial frequencies of 0.5 at both loci are shown. Boxes represent different
genotype-phenotype maps from figure A.1.
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Figure A.6: As in figure A.5, but this time showing the proportion of the genetic vari-
ance that is additive.
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Figure A.7: As in figure 2.4(a), but for only three tests - Additive in one dimension (A
(1D)), genotype in one dimension (A+D (1D)), and full epistatic in two
dimensions (F (2D)). Each box has the additive variance detected across all
populations and generations as a proportion of the total additive variance
that was created for each test when the observed SNPs were in varying
levels of LD with the causal variants. For 44 patterns the full epistatic
test is most powerful when r2 = 1, but when r2 = 0.7 it is never the most
powerful, rather 39 patterns are best detected by the one dimensional
genotype parameterisation
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Smith, A., Mägi, R., Pastinen, T., Liang, L., Heid, I. M., Luan, J., Thorleifsson,
G., Winkler, T. W., Goddard, M. E., Sin Lo, K., Palmer, C., Workalemahu, T.,
Aulchenko, Y. S., Johansson, A., Zillikens, M. C., Feitosa, M. F., Esko, T. o., John-
son, T., Ketkar, S., Kraft, P., Mangino, M., Prokopenko, I., Absher, D., Albrecht,
E., Ernst, F., Glazer, N. L., Hayward, C., Hottenga, J.-J., Jacobs, K. B., Knowles,
J. W., Kutalik, Z., Monda, K. L., Polasek, O., Preuss, M., Rayner, N. W., Robertson,
N. R., Steinthorsdottir, V., Tyrer, J. P., Voight, B. F., Wiklund, F., Xu, J., Zhao,
J. H., Nyholt, D. R., Pellikka, N., Perola, M., Perry, J. R. B., Surakka, I., Tammesoo,
M.-L., Altmaier, E. L., Amin, N., Aspelund, T., Bhangale, T., Boucher, G., Chas-
man, D. I., Chen, C., Coin, L., Cooper, M. N., Dixon, A. L., Gibson, Q., Grundberg,
E., Hao, K., Juhani Junttila, M., Kaplan, L. M., Kettunen, J., König, I. R., Kwan,
T., Lawrence, R. W., Levinson, D. F., Lorentzon, M., McKnight, B., Morris, A. P.,
Müller, M., Suh Ngwa, J., Purcell, S., Rafelt, S., Salem, R. M., Salvi, E., Sanna, S.,
Shi, J., Sovio, U., Thompson, J. R., Turchin, M. C., Vandenput, L., Verlaan, D. J.,
Vitart, V., White, C. C., Ziegler, A., Almgren, P., Balmforth, A. J., Campbell, H.,
Citterio, L., De Grandi, A., Dominiczak, A., Duan, J., Elliott, P., Elosua, R., Eriks-
son, J. G., Freimer, N. B., Geus, E. J. C., Glorioso, N., Haiqing, S., Hartikainen,
A.-L., Havulinna, A. S., Hicks, A. a., Hui, J., Igl, W., Illig, T., Jula, A., Kajantie, E.,
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