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Abstract

This thesis is composed of three chapters, which can be read independently.

In the first chapter, we revisit the El Farol bar problem developed by Brian

W. Arthur (1994) to investigate how one might best model bounded rationality in

economics. We begin by modelling the El Farol bar problem as a market entry game

and describing its Nash equilibria. Then, assuming agents are boundedly rational in

accordance with a reinforcement learning model, we analyse long-run behaviour in the

repeated game. We then state our main result. In a single population of individuals

playing the El Farol game, reinforcement learning predicts that the population is

eventually subdivided into two distinct groups: those who invariably go to the bar

and those who almost never do. In doing so we demonstrate that reinforcement

learning predicts sorting in the El Farol bar problem.

The second chapter considers the long-run behaviour of agents learning in finite

population games with random matching. In particular we study finite population

games composed of anti-coordination pair games. We find the set of conditions for



the payoff matrix of the two-player pair game that ensures the existence of strict

pure strategy equilibria in the finite population game. Furthermore, we suggest that

if the population is sufficiently large and the two-player pair games meet certain

criteria, then the long-run behaviour of individuals, learning in accordance with the

Erev and Roth (1998) reinforcement model, asymptotically converges to pure strategy

profiles of the population game. These are equilibria where all individual agents play

pure strategies, while in aggregate the frequencies of pure strategies played in the

population mimic the mixed strategy equilibrium in the pair game. In addition we

gather further evidence through computer simulations.

The third chapter investigates some of the theoretical predictions of learning

theory in anti-coordination finite population games with random matching through

laboratory experiments in economics. Previous data from experiments on anti-

coordination games has focused on aggregate behaviour and has evidenced that

outcomes mimic the mixed strategy equilibrium. Here we show that in finite

population anti-coordination games, reinforcement learning predicts sorting; that is,

in the long-run, agents play pure strategy equilibria where subsets of the population

permanently play each available action.
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Chapter 1

The El Farol Bar Problem

Revisited:

Reinforcement Learning in a

Potential Game
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1.1 Introduction

The El Farol bar problem was introduced by Brian W. Arthur (1994) as a framework

to investigate how one models bounded rationality in economics. It was inspired by

the El Farol bar in Santa Fe, New Mexico, which offered Irish music on Thursday

nights. The original problem was constructed as follows:

"A people decide independently each week whether to go to a bar that
offers entertainment on a certain night. For correctness, let us set N at
100. Space is limited, and the evening is enjoyable if things are not too
crowded - specifically, if fewer than 60 percent of the possible 100 are

present.- There is no sure way to tell the numbers coming in advance;
therefore a person or an agent goes (deems it worth going) if he expects
fewer than 60 to show up or stays home if he expects more than 60 to
go."1

Arthur's (1994) preliminary results from the field of computational economics show

that the number of people attending the bar converges quickly and then hovers around

the capacity level of the resource.

Our contribution to the literature on the El Farol bar problem and theory of

learning in games is fourfold. First, we apply the Erev and Roth (1998) model of

reinforcement learning to the El Farol framework. We believe the Erev and Roth

(1998) model of reinforcement learning is the most appropriate individual learning

model to apply in this instance, because in general people who stay at home do not

know what payoff they would have received if they had gone to the bar. We then
1Arthur (1994), pp 409.
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prove analytically that long-run behaviour will converge asymptotically to the set of

pure strategy Nash equilibria of the El Farol stage game.2 In other words the number

of people attending the bar converges and then hovers around the capacity level

of the resource. Furthermore, models of learning, including reinforcement learning

and fictitious play, predict sorting in the El Farol bar problem; that is, in a single

population of individuals playing the El Farol game, reinforcement learning predicts

that the population is eventually subdivided into two distinct groups: those who

invariably go to the bar and those who almost never do.3

Second, we demonstrate that the El Farol bar problem may be modelled as a

market entry game with boundedly rational reinforcement learners. We build upon

the work of Duffy and Hopkins (2005), who have proved that in market entry

games, where payoffs are decreasing in a continuous manner with respect to the

number of other market entrants, the only asymptotically stable Nash equilibria are

those corresponding to pure Nash profiles. Our main result also proves asymptotic

convergence to those equilibria corresponding to pure Nash profiles in the market

entry game. In addition our result also proves that this is the case when payoffs

are decreasing in a discontinuous way with respect to the number of other market

entrants.

2This is in contrast with Franke's (2003) use of numerical simulations of reinforcement learning
applied to the El Farol bar problem.

3It is worth noting the distinction between learning models and the theory of learning. The latter
can be interpreted as a process while the former captures this dynamic. Thus, any implications from
learning models carry to the theory on the assumption that processes have been captured in the
model.
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Third, Sandholm (2001) has proved that, under a broad class of evolutionary

dynamics, behaviour convergences to Nash equilibrium from all initial conditions

in potential games with continuous player sets. Sandholm's (2001) convergence

results assume that individual behaviour adjustments should satisfy what was termed

positive correlation; meaning any myopic adjustment dynamic that exhibits a positive

relationship between growth rates and payoffs in each population. Our result

contributes to this literature by proving that, for the evolutionary dynamics associated

with Erev and Roth's (1998) model of reinforcement learning, long-run behaviour

converges in potential games with finite sets of players.

Finally, there is a contribution to be made to the extensive literature on the

El Farol bar problem and its associated problem, the Minority Game in the field

of complex systems.4 Currently, it would appear that the opportunity to apply

convergence results from models of individual learning to situations like those

represented by the El Farol bar problem has been overlooked.

We will begin by using the tools of game theory to model the El Farol bar

problem as a non-cooperative coordination game in which payoffs are determined

by negative externalities. We then model the El Farol bar problem as a repeated

market-entry game with boundedly rational agents. Analysis of the stage game

will show that there are a large number of Nash equilibria. Therefore, equilibria

refinement/coordination becomes problematic. In order to refine the equilibria set,

4See http://www.unifr.ch/econophysics/minority/ for research on the Minority Game.
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we allow players to learn from experience. The analytical tools developed in Duffy

and Hopkins (2005), Hopkins and Posch (2005) and Monderer and Shapley (1996)

will be employed to study the predicted outcome of play under the Erev and Roth

(1998) model of reinforcement learning.

Reinforcement learning assumes that individuals only have access to the atten¬

dance figures of the bar for each week that they attend.5 The long-run behaviour

of agents under this adaptive rule will then be considered, and it will be shown

that under this learning process, play will converge to the set of pure strategy Nash

equilibria with probability one.

The intuition behind our main result is that in the El Farol bar problem

reinforcement learners who do not regularly attend are more often than not

disappointed when they do choose to do so. Similarly, those who regularly attend

always seem to have a good time, and thus are more likely to attend in the future.

A good way to think about this outcome is to imagine that all players in one

week play a mixed strategy. It is quite likely that the bar actually turns out to be

busy. Therefore, all agents who attended will be reinforced with the lower payoff.

This will reduce their propensity to attend in the future. The following week the

probability of the bar being overcrowded will be diminished. Those who do attend

will most likely receive high payoff reinforcement from attending and their propensity

5However, the results presented here within are easily extended to allow for the more generic set¬
up where all individuals learn attendance figures whether they attend or not. This is often referred
to as hypothetical reinforcement or fictitious play learning.
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to attend in the future will increase again while that of the players who stayed away

will be reduced. Therefore, we have two positive feedback loops. One causes those

who attend regularly to do so more often. The other leads those who stay at home to

be more likely to do so in the future. We can therefore see that any mixed strategy

Nash equilibrium is asymptotically unstable under the dynamics of Erev and Roth

(1998) reinforcement learning.

In Section 1.2 we review the El Farol bar problem as introduced by Arthur (1994).

We set out his modelling approach to bounded rationality in the El Farol bar problem

and summarise the initial results from his computational experiments. We discuss

the use of the inductive thinking approach to modelling bounded rationality, both in

the El Farol bar problem and its closely related problem, the Minority Game. We

then outline our motivation for the application of the individual learning approach

to capturing the bounded rationality of decision makers and suggest a reinforcement

learning model for the El Farol framework. In Section 1.3 we introduce our model of

the El Farol bar problem, define the El Farol stage game and characterise the set of

Nash equilibria, set out in detail the Erev and Roth (1998) model of reinforcement

learning within the El Farol framework, and write down an expression for player's

expected strategy adjustment. In Section 1.4 we state and prove our main result; that

in the El Farol bar problem a population of boundedly rational agents who behave in

accordance with the Erev and Roth (1998) reinforcement learning model are sorted

into those who always attend the El Farol bar and those who always stay at home.
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Finally, we provide some concluding remarks in Section 1.5.



1.2 The El Farol Bar Problem

8

The El Farol bar problem was created by Arthur (1994) as a device to investigate

how one might best model bounded rationality in economics. It was inspired by the

El Farol bar in Santa Fe, New Mexico, which offered Irish music on Thursday nights.

The problem is set out as follows: there is a finite population of people and every

Thursday night all of the them want to go to the El Farol bar. However, the El Farol

bar is quite small, and it is not enjoyable to go there if it is too crowded. So much

so, in fact, that the following rules are in place:

• If less than 60% of the population go to the bar, those who go have a more

enjoyable evening at the bar than they would have had had they stayed at

home.

• If 60% or more of the population go to the bar, those who go have a worse

evening at the bar than they would have had had they stayed at home.

Unfortunately, it is necessary for everyone to decide at the same time whether they

will go to the bar or not. They cannot wait and see how many others go on a particular

Thursday before deciding to go themselves on that Thursday.

The important characteristic of the El Farol bar problem is that if there was an

obvious method that all individuals could use to base their decisions on, then it would
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be possible to find a deductive solution to the problem. However, no matter what

method each individual uses to decide if they will go to the bar or not, if everyone

uses the same method it is guaranteed to fail. Therefore, from the point of view of

the individual, the problem is ill-defined and no deductive rational solution exists.

Situations like those represented by the El Farol bar problem highlight two specific

reasons why perfect deductive reasoning might fail to provide clear solutions to some

theoretical problems. The first is simply a question of the cognitive limitations of the

mind. Beyond a certain level of complexity, logical capacity fails to cope. The second

is that in complex strategic situations individuals cannot always rely on persons

they are interacting with to behave under assumptions of perfect rationality. In

situations like the El Farol bar problem, individuals are forced into a world where

they must choose their strategies based on guesses of their opponents' likely behaviour.

Without objective, well-defined, shared assumptions, these types of problems become

ill-defined and cannot be solved rationally.

The question that arises is how does one best model bounded rationality in

economics when perfect rationality fails? Given the defining characteristic of the

El Farol bar problem, namely that finding a deductive rational solution is impossible,

it follows that the problem itself could provide a useful framework to explore models

of bounded rationality in general.
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1.2.1 Inductive Reasoning in the El Farol Framework

Arthur (1994) notes that there is a consensus among psychologists that in situations

that are either complicated and/or ill-defined, humans tend to look for patterns in

order to develop internal models on which they can base their decisions. These

methods are inherently inductive. In the El Farol bar problem, Arthur (1994) follows

this line of thought and postulates that individuals decide whether they will go to

the bar or not by employing mental models to predict expected future attendance. In

other words they create forecasting models. If an individual using a specific forecasting

model predicts attendance to be low then, based on that model, that individual would

attend and vice-versa if attendance is predicted to be high.

As previously discussed, and deriving from the ill-defined nature of the El Farol

bar problem itself, we can conclude that no forecasting model can be employed by all

individuals and be accurate at the same time. We can easily demonstrate this fact

by assuming that a forecasting model exists that predicts that the attendance in the

coming week, given attendance in past weeks, is going to be high. If all individuals

use this forecasting model to base their decisions on, then nobody will go to the

bar.6 This then renders the forecast invalid and implies that there exists no single

forecasting model that all individuals can use upon which to base their attendance

decisions. No deductive solution exists to this problem.

6This is reminiscent of Yogi Berra's famous comment, "Oh, that place. It's so crowded nobody
goes there anymore."
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The Inductive Thinking Approach

Arthur's (1994) approach to modelling bounded rationality in the El Farol bar

problem is to assume that each individual has access to a number of forecasting

models which they use to make their decisions. Furthermore, they score and rank

these models at the end of each week according to their accuracy in order to determine

which particular model they should base their decision on.

Formally, Arthur (1994) imagines that each individual utilises a number of

forecasting models, denoted sk, to predict attendance in the coming week. Each

model forecasts attendance for the coming week given the history of attendance over

the last d weeks, denoted d E D, where D is the set of all possible attendance

profiles for the last d weeks and d is an exogenously fixed parameter. Then, following

the disclosure of the number of individuals who attended the El Farol bar on the most

recent Thursday night, a score is associated with each forecasting model. Specifically,

the score, denoted Ut (sk), is calculated by computing the weighted average of the

score of the same model in the previous week and the absolute difference between the

forecasting model's last prediction, denoted sk (d (ht-i)), and the most recent realised

turnout, denoted yt. Equation (1.1) formulises this calculation.7

Ut (sk) = XUt-i (sfc) + (1 — A) |sfc {d (ht-i) — yt)\ (1.1)
7It should be noted that I have taken specific care to outline the El Farol bar problem and

Arthur's proposed model of the problem as he originally formulated it. This has been possible due
to the work of Zambrano (2004) who re-analysed Arthur's original code.
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In each week the forecasting model with the highest score is referred to as the active

predictor. On each Thursday individuals undertake the action of either attending

the El Farol bar or not in accordance with their active predictor. If an individual's

active predictor forecasts the attendance on the coming evening to be high, then

that individual will choose not to go to the bar. Conversely, if the active predictor

forecasts attendance to be low, then that individual will deem it worthwhile going

to the bar and they will anticipate an enjoyable evening of Irish music. Once all

individuals have made their decisions, i.e. whether to attend the El Farol bar or not,

they are then informed of the actual turnout at the bar. This information is made

know publicly to all individuals. Each individual then realises their payoffs, updates

the score for all their available forecasting models, and confirms their active predictor

for next Thursday's decision.

Agent-Based Computer Simulations

Arthur (1994) investigated this model of the El Farol bar problem through the use of

computational experiments. He designed artificial agents and simulated their dynamic

interaction over time.

In Arthur's (1994) computer simulations, as in the original formulation of the

problem, the size of the population, N, is set to 100 and the enjoyable capacity of the

El Farol bar, C, is set to 60. Arthur (1994) then creates a finite set of diverse
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Figure 1.1: Attendance According to Arthur's (1994) Simulations.

forecasting models, or predictors, which map attendance histories to a predicted

bar attendance for the coming week. These models were doled out uniformly and

randomly, such that each agent was endowed with a non-transferable set of K

forecasting models.8 Each simulation experiment was then run for 100 periods with

the combined runs totalling to 10,000 periods.

The first thing to note about the results of these computer experiments is that,

given the starting conditions and the fixed set of predictors available to each simulated

agent, the dynamics are completely deterministic. Nevertheless, the simulations

produce some interesting results. Two observations become immediately apparent.

8This did not preclude the possibility that the agents' predictor sets might overlap.



14

First, mean attendance always converges to the capacity of the bar. Second,

on average 40% of the active predictors forecasted attendance to be higher than

the capacity level and 60% below. Arthur (1994) expands on these observations by

noting that, "the predictors self organise into an equilibrium pattern or 'ecology'."9

An example of the attendance rates from a typical run of 100 periods can be seen in

Figure 1.1.

The Minority Game

There has been much interest in the El Farol bar problem as a system to study agents

in market-like interactions. This has led to the definition of a similar problem called

the Minority Game which embodies some basic market mechanisms, while keeping

mathematical complexity to a minimum.

The Minority Game is a repeated game where N agents have to decide between

two actions, such as buy or sell or attend or not. With N odd this procedure identifies

a minority action as that chosen by the minority. Agents who take the minority action

are rewarded with one payoff unit. Agents cannot communicate with one another and

they have access to publicly available information on the history of past outcomes

for a fixed number of periods. As in the El Farol bar problem, the set up requires a

prohibitive computational task and, from a strategic point of view, the problem is ill-

defined. Again it is postulated that in such complex strategic interactions, agents may
9Arthur (1994), pp.409.



prefer to simplify their decision tasks by seeking out behaviour rules, or heuristics,

that allocate an action for each possible observed history of outcomes.

The literature on the Minority Game concludes, through both agent-based and

analytical models, that there exists a cooperative phase of play when the ratio of the

number of unique possible histories to the number of agents, N, is large enough. That

is, with respect to the so-called 'random agent' state, in which each agent chooses

their action by flipping a coin, agents are better off because the system moves to a

sort of 'coordinated' state. The analytical research on the Minority Game employs

techniques borrowed from statistical physics in order to describe the game as a spin

system, thus enabling the system's properties to be outlined. It should be noted that

this avenue of investigation does not enable the study of individual behaviour, but

only the system as a whole.

One aspect of this approach, and indeed Arthur's (1994) original investigations, to

the El Farol bar problem and bounded rationality is that the theory does not explicitly

detail the predictors that should/would be available to each individual/agent. In

reality there most likely exists an evolutionary process that regulates the set of

predictors as a whole and their availability to each individual agent. Arthur (1994)

draws on the following metaphor to make the point: "Just as species, to survive

and reproduce, must prove themselves by competing and being adapted within the

environment created by other species, in this world hypothesis, to be accurate and



therefore acted upon, must prove themselves by competing and being adapted within

and environment created by other agents' hypothesis."10

1.2.2 Individual Learning in the El Farol Framework

The El Farol bar problem represents a complex strategic environment where rational

deductive thinking fails to provide any clear solutions. The question we wish to

address is what we should put in place of perfect rationality. In the previous section,

we reviewed the literature reporting work that has been directed at achieving this

goal within the El Farol framework through the use of inductive reasoning. Suppose

instead that individuals in the El Farol bar problem can find their way to an optimal

solution by trial and error, i.e. learning.11 In effect we propose that this is the

role that, loosely speaking, the predictors fulfil in Arthur's (1994) original paper on

inductive reasoning and bounded rationality in the El Farol bar problem. Recall that

if a predictor correctly forecasts attendance, it is more likely to be used as an active

predictor. If not, it will not be used. Following this argument it seems reasonable

to consider the El Farol bar problem as one with boundedly rational agents who

gradually adjust their behaviour over time, until there is no longer any room for

improvement in their payoffs.

In game theory the techniques for modelling this type of adaptation process are

10Arthur, (1994), pp. 408.
11A player cannot adapt to situations that are only encountered once. With this in mind, we must

consider players learning equilibria in an identically repeated game environment.



closely related to replicator dynamics. The idea of replicator dynamics was introduced

by Maynard Smith (1974) to model dynamic processes in the biological sciences.

Essentially, replicator dynamics says that if an individual of a certain type earns

an above average payoff, then that individual type's frequency in the population

rises. When modelling an individual learning process in a repeated game, we modify

this interpretation of replicator dynamics to the following: if an individual who has

a propensity to use a particular strategy earns an above average payoff from that

strategy, then the propensity to use that strategy in the future increases.

The El Farol bar problem will now be modelled as a repeated market entry

game where players adhere to a pre-specified learning process. The manner in

which individual learning is modelled in repeated games is simple and quite intuitive.

Essentially, individual learning is an algorithm that each player follows in each period

of play. Imagine that each individual in the El Farol bar problem, whether they go

to the bar or not, keeps an urn by their side. In the urn there are a number of balls

coloured either green or red. We can consider these balls to be replacing the function

of Arthur's (1994) predictors in the El Farol bar problem.12 Instead of each individual

making their action choice dependent on the forecast of their active predictor, players

will choose a ball from their urn and obey its colour coding. In other words if a green

ball is selected that individual will go to the bar and if a red ball is chosen they will

stay at home. Once a ball is drawn and the corresponding action is taken, the ball is
12This is not to be taken literally, but they will provide the same decision function as the predictors

do in Arthur's formulation.



then placed back into the urn.

The learning model is then specified by an updating rule. This is the set of

instructions that dictates how many balls and of what colours should be added to the

urn after each round of play. Using this framework we can describe each player as

having propensities for each action. The propensity to undertake a certain action is a

function of the number of correspondingly coloured balls in the urn.13 The probability

that a ball of a certain colour will be chosen from a particular individual's urn is

determined by the choice rule, which is a mapping from propensities to a number in

the unit interval. To find the equilibrium, we calculate in the limit, as the number

of repetitions of the game tends to infinity, the probability that each action will be

taken.

Let us now recall in detail the motivation for employing an individual learning

model of bounded rationality in the El Farol bar problem. As previously stated,

the complexity of the problem makes it reasonable to assume that individuals suffer

from cognitive limitations. Furthermore, we have already demonstrated that the

complexity of beliefs means that, from a strategic viewpoint, individuals are unable

to employ deductive reasoning to identify optimal/coordinated strategies. Given these

constraints we suppose that individuals find their optimal strategies in the El Farol bar

problem through repeated interaction and the application of an adaptive algorithm.
13 It is also dependent on the choice rule specified in the learning model which shall be expanded

on later in the paper.



It will be assumed that any adaptive algorithm will adhere to some basic principles

of individual learning.

First, the law of effect: choices that have led to good outcomes in the past

are more likely to be repeated in the future. Second, the power law of practice:

learning curves should initially be steep and then later they should be flatter. This is

paramount to assuming that in any adaptive process the adjustments become smaller

over time. Finally, choice behavior should be probabilistic. This is a basic assumption

in most mathematical learning theories proposed in psychology. Erev and Roth (1998)

have developed a robust model of reinforcement learning which incorporates all these

principles that shall be applied to our model of the El Farol bar problem.



1.3 A Model of the El Farol Bar Problem

The El Farol bar problem is essentially a repeated simultaneous move game. There are

N players with identical preferences who attempt to coordinate their actions of either

going to the bar or staying at home in such a way as to maximise their individual

payoffs, subject to the crowding externality from going to the bar. Players need to

coordinate their actions, independently and without prior communication, such that:

• when a player decides to go to the bar, i.e. deems it worthy of going to the bar,

they can look forward to a payoff that is greater than what they would have

received had they stayed at home and

• when a player decides to stay at home, i.e. deems it not worthy of going to the

bar, they can look forward to a payoff that is greater than what they would

have received had they not stayed at home.

The El Farol bar problem can be interpreted as a market entry game (Franke 2003).

In general market entry games are interpreted as truncated two-stage games (Selten

and Gtith 1982). In the first stage, players simultaneously choose either to enter or

stay out of the market. Then, in the second stage, the payoffs of the entrants are

determined from their market actions. Usually these payoffs are negatively related

to the number of market entrants in a continuous way. However, in the El Farol
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bar problem, payoffs to players entering the bar are related to the number of bar

attendants in a discontinuous manner.

Alternatively, the El Farol bar problem may be viewed as a congestion model

and thus can be modelled, a la Rosenthal (1973), as a congestion game.14 It is

a congestion game, because each player's payoff depends on the number of other

players who choose to utilise the same resource, namely the El Farol bar. This

interpretation has been referred to in many studies of the El Farol bar problem in

the literature (e.g. Greenwald, Mishra, and Parikh 1998, Bell and Sethares 1999, Bell

and Sethares 2001, Bell, Sethares, and Bucklew 2003, Farago, Greenwald, and Hall

2002, Zambrano 2004), but has rarely been developed.

In this paper we shall initially interpret the El Farol bar problem as a market entry

game. Later on in our discussions we shall return to the idea of congestion games,

because they have important properties that are useful in understanding the long-run

behaviour of boundedly rational agents learning in accordance with a reinforcement

model in the El Farol bar problem.

1.3.1 The El Farol Stage Game

Let C, a positive no-zero integer, represent the capacity of the bar. If less than C

players choose to go to the bar, then the payoff they receive is allied with the notion

14Clearly market entry games are a subset of the larger class of congestion games.



that ex post those players deemed it worthwhile going. They receive a payoff strictly

greater than the payoff they would have received had they stayed at home. On the

other hand, if C or more players choose to go to the bar, then the payoff the bar

entrants receive is allied with the notion that, ex post, those players did not deem it

worthwhile going to the bar. In other words they receive a payoff strictly less than

the payoff they would have received had they stayed at home.

Go to the Bar
Player i

Stay at Home

Figure 1.2: State Dependent Payoff' for Player i in the El Farol stage game.

The payoff function for each player i consists of an unconditional payoff for staying

at home, denoted by S, and a conditional payoff, denoted by G or B, dependent on

the state of the bar. There are two states of the bar, crowded or not crowded, and

the state is determined by the remaining N — 1 players. To ensure the strategic

form of the game, the payoffs must be strictly ordered such that G > S > B. The

State

Uncrowded Crowded

G B

S S

where G> S> B
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payoff structure for representative player i for an isolated Thursday in the El Farol

bar problem can be represented by the following payoff matrix (see Figure 1.2).

Given the above preliminaries, we can now define the El Farol stage game as a single-

stage market entry game with discontinuous, but weakly monotonic, payoffs in other

players' actions.

Definition 1.1 Define the El Farol stage game as the one shot strategic game T =<

N,A,nl > consisting of,

• N players indexed by i € {1,2,,..., IV},

• a finite set of actions A = (0,1} indexed by 5, where 5l = 1 denotes player i's

action 'go to the bar' and 6l = 0 denotes player i's action 'stay at home' and15

• a payoff function 7Tj : 8l x 5~l —■> R = (S1, B, G}, such that G > S > B, where

defines the state of the bar.

Formally we can write the payoff function as,

7T
* (<r)

G if Si = 1 and 6j < C

B if <T = 1 and 6j > C

S if 6i = 0

15It should be noted that although we employ the notation A to denote the set of only two actions
available to each player, we do so only to indicate how the reinforcement learning model would be
extended to games with more than two distinct actions.
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where C € Z.

Nash Equilibria in the El Farol Stage Game

Let us now characterise the equilibria of the El Farol stage game. The first thing to

note is that the number of Nash equilibria in the El Farol stage game is large and rises

quickly as N increases. Furthermore, the number of Nash equilibria is maximised for

any given N when C ~ N/2. There are essentially three types of Nash equilibria,

namely:

• Pure Strategy Nash Equilibria

Nash equilibria where all players play a pure strategy.

• Symmetric Mixed Strategy Nash Equilibria

Nash equilibria where all players play a mixed strategy.

• Asymmetric Mixed Strategy Nash Equilibria

Nash equilibria where some players play a pure strategy and the remaining play

a mixed strategy.
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Let Y denote the set of Nash equilibria of the El Farol stage game. It can be

shown that Y contains a finite number of elements. In Proposition 1.1 we state the

number of pure strategy Nash equilibria, denoted Yp. Next, we show via Propositions

1.2 and 1.3 that there exists a unique symmetric mixed strategy Nash equilibrium,

denoted Ys- And finally in Proposition 1.4, we show that the number of asymmetric

mixed strategy Nash equilibria, denoted Ya, is countable. Therefore, the number of

Nash equilibria in the El Farol stage game is finite.16

Proposition 1.1 The number of pure strategy Nash equilibria in the El Farol stage

game with N € N players and a capacity of C G N is,

C

TV!

C\{N -C)\
/

Proof See Section l.A.l in Appendix l.A. ■

The following two propositions together demonstrate that a symmetric mixed

strategy Nash equilibrium exists and is unique. In Proposition 1.2 we prove that

there is a symmetric mixed strategy Nash equilibrium where all players play the

same mixed strategy and that it is unique. In Proposition 1.3 we then prove that if

all players are playing a mixed strategy they must be playing the same mixed strategy.

16Note that Y = YP U Ys U ?A.
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Therefore, we have a unique symmetric mixed strategy Nash equilibrium in the El

Farol stage game.17

Proposition 1.2 In the El Farol stage game there is a symmetric mixed strategy

equilibrium where all players play the same mixed strategy defined by the strategy

tuple (a, [1 — a)), where a denotes the probability of going to the bar and [1 — a]

denotes the probability of staying at home. Furthermore, a is uniquely defined by the

following relationship:

S-B

G-B

c-1

E
m=0

(
N — 1

m

\

am [1 - a]
N—1—771

(1.3)

Proof See Section 1.A.2 in Appendix l.A. ■

Proposition 1.3 In a Nash equilibria in the El Farol stage game where all players

employ a mixed strategy, all agents must play the same mixed strategy.

Proof See section l.A.3 in Appendix l.A. ■

Let us now consider the asymmetric mixed strategy Nash equilibria. Given that

we can calculate the number of pure strategy Nash equilibria from (1.2) and that

there is a unique symmetric mixed strategy Nash equilibrium, an approach can be
17A similar result has been proved by Cheng (1997).
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tabled to demonstrate that the number of asymmetric mixed strategy Nash equilibria

is finite.

Proposition 1.4 The number of asymmetric mixed strategy Nash equilibria in the

El Farol stage game is countable.

Proof See Section 1.A.4 in Appendix l.A. ■

We have now characterised the Nash equilibria of the El Farol

Furthermore, we have shown that the number of Nash equilibria is finite

will be employed later in proving our main result.

1.3.2 The El Farol Game

For completeness we define the El Farol bar problem as the repeated El Farol stage

game with boundedly rational agents who learn in accordance with the Erev and Roth

(1998) reinforcement learning model. Let us begin by defining the El Farol game.

stage game.

. This finding

Definition 1.2 The El Farol game is the infinitely repeated El Farol stage game.
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1.3.3 Erev and Roth (1998) Reinforcement Learning

We now set out the procedure for the Erev and Roth (1998) reinforcement learning

model in detail.18 In this learning model, each player i has a propensity to undertake

each action in each period, denoted q\ (5). The timeline of the learning procedure is

that in each period t each player i chooses to undertake one of their available actions

8 € A = {0,1} in accordance with a mapping from the propensities to the unit interval

[0,1]. This mapping is defined by the choice rule. The player i then undertakes the

action dictated by the choice rule and receives a payoff in that period associated

with that action. Player i then updates his propensities. The updating procedure

is determined by the updating rule. In the Erev and Roth (1998) reinforcement

learning model, the only propensities to be updated are those corresponding to the

actual action taken. We can now define the model formally. The learning procedure

comprises of three components: the initial conditions, a choice rule and an updating

rule.

Initial Conditions

Let q\ (5) be player i's propensity to play action 8 £ A in period t. In the initial

period, t = 0, we assume that all players have positive propensities for all possible
18It is worth noting that when all payoffs are positive, as they are in our model of the El Farol bar

problem, then the Erev and Roth (1998) model of reinforcement learning is equivalent to the Roth
and Erev (1995) basis model (without modifications); that is, the Updating Rule/Reinforcement
Function are equivalent.
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actions. That is,

q\ (J) > 0 for t — 0 and for all i G N and 6 € A (1.4)

This assumption, along with positive payoffs, will also ensure that q\ (S) > 0 for all t

and 6 € A.

Choice Rule

Each player i has positive a propensity, qlt(5), to take action S € A = {0,1} in

period t. In models of reinforcement learning, the choice rule provides a mapping

from propensities to strategies. Let {y\, [1 — y}}) represent player z's mixed strategy

in period t with two possible actions <5 € A = {0,1}, where y\ is the probability

placed by agent i on action 5 = 1 in period t and [1 — y\] is the probability placed by

agent i on action S = 0 in period t. The choice rule employed in the Erev and Roth

(1998) reinforcement learning model is often referred to as the simple choice rule. It

is a straightforward probability mapping from propensities to the unit interval [0,1].

That is,

(1.5)

where Q\ = J2seA It W-19
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Updating Rule

Let a1 (S't, rap) denote the realised increment to player z's propensity in period t from

taking action 6 G A = {0,1} given the aggregate actions taken by the remaining

iV — 1, denoted by rap where rap = To complete, and most crucial to,

our reinforcement learning model, we must state the means by which players update

their propensities. Specifically, in the Erev and Roth (1998) reinforcement learning

model, it takes the form that if agent i takes action 6 in period t, then the agent's

<5th propensity is increased by an increment equal to agent i's realised payoff in that

period. All other propensities remain unchanged. In other words only realised payoffs

act as reinforcers. We thus have the following updating rule,20

qUi (S) = <?t W + ? for all (5 € A = {0,1} (1.6)

1.3.4 Reinforcement Learning in the El Farol Game

We will now model the El Farol bar problem as the El Farol game with boundedly

rational agents who learn according to the Erev and Roth (1998) reinforcement

learning model. To study the long-run dynamics of the El Farol game with bounded
20Note that this updating rule reveals why in this model of reinforcement learning all payoffs must

be positive. Otherwise, there would be a possibility of propensities becoming negative and thus
leading to choice probabilities that are undefined.



rational agents learning in accordance with the Erev and Roth (1998) reinforcement

model, we need to first write the expected motion of the ith player's 6 = 1 strategy

adjustment. In order to accomplish this task, we must first define player Vs expected

payoff increment.

Let a1 (<5j,yp) denote the expected increment to player z's propensity in period

t from taking action <5 given the aggregate actions taken by the remaining N — 1

players, denoted by yp, where yp is a vector strategy profile. Note that the updating

rule in the Erev and Roth (1998) reinforcement learning model is a function of

realised payoffs. However, the expected motion of the ith player's <5=1 strategy

adjustment will be a function of expected payoff increments. This is quantitatively

and qualitatively different from realised payoff increments.

Expected Strategy Adjustment in the El Farol Game

To obtain analytical results from the application of Erev and Roth (1998) reinforce¬

ment learning model to the El Farol game, we make use of results from the theory of

stochastic approximation. In essence we investigate the behaviour of the stochastic

learning model by evaluating its expected motion as t —> oo. In the case of the

Erev and Roth (1998) learning model defined by the choice rule (1.5) and updating

rule (1.6), we can write down the expected motion of the ith player's <5=1 strategy

adjustment through the following proposition:
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Proposition 1.5 Given the choice rule (1.5) and the updating rule (1.6), the expected

motion of the ith player's 5 = 1 strategy adjustment in the repeated El Farol game is:

E[rLM - y\ = (jivl I1 -»«'] [r(i.wr*)- •»' (».»')]
+°fe) (L7)

Proof See Section l.B.l in Appendix l.B. ■
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1.4 Long-run Behaviour in the El Farol Game

We now arrive at our main result. We consider the behaviour of the expected motion

of the players' 5=1 strategy adjustment as t —> oo. We begin by stating the main

result.

Theorem 1.1 (Main Result) If agents in the repeated El Farol game as defined

employ the choice rule (1.5) and reinforcement updating rule (1.6) for all of N £ N

and C 6 N such that C < N — 1 and payoffs such that G > S > B > 0, with

probability one the Erev and Roth (1998) reinforcement learning process converges to

a pure Nash equilibrium of the one-shot El Farol game. That is,

Pr (limt—,00 yt eYP} = 1,

where yt = {yj, y(,..., yf}, yt G Y, is a strategy profile for the N agents and Yp is

the set of pure Nash equilibrium profiles.

Now we prove the main result, Theorem 1.1. In the El Farol game with

identical boundedly rational agents, learning according to the Erev and Roth (1998)

reinforcement learning model, long-run behaviour converges asymptotically to the set

of pure strategy Nash equilibria of the El Farol stage game. This result is established

by studying the convergent behaviour of the discrete time stochastic process (1.7)

describing the expected strategy adjustment of player Ts action of going to the bar.

In essence we wish to investigate the limit of this process as t —> 00.
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We accomplish this task in two main stages: a positive convergence statement

and a negative one. Drawing these two results together we prove our main result.

Each stage employs results from the literature on stochastic approximation. First, a

result of Benai'm (1999, Corollary 6.6) is employed to demonstrate that the stochastic

process will, in the limit as t —> oo, converge asymptotically to one of the fixed

points of the adjusted replicator dynamics. Second, two results of Hopkins and Posch

(2005, Proposition 2 and 3) are utilised to demonstrate that the stochastic process

describing the expected strategy adjustment of player i's action of going to the bar

will not converge asymptotically to any fixed points that do not correspond to a Nash

equilibria of the El Farol stage game or to any corresponding Nash equilibria that

are unstable under the adjusted replicator dynamics. These two stages combined

will imply that the discrete time stochastic process describing the expected strategy

adjustment of player i's action of going to the bar converges asymptotically to the

set of pure strategy equilibria of the El Farol stage game.

1.4.1 Proof of Main Result: First Stage

In the first stage of the proof, we show that the discrete time stochastic process (1.7)

converges with probability one to one of the fixed points of the standard replicator

dynamics.

Consider for a moment the behaviour of the following stochastic process (Benveniste,
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Metivier, and Priouret 1990):

xt+i -xt = 7J (xt) + 7tvt (xt) + O ([7t]2) (1.8)

where xt lies in RN, E [r/t (xt) \xt] — 0 and 7( defines the nature of the gain in this

adaptive process. For our purposes is interpreted as the step size of the learning

algorithm. In our analysis we wish to study the generic convergence properties of

It turns out that the nature of the gain is important in determining what inferences

can be made about the behaviour of (1.8) in the limit. In fact the stronger results from

the theory of stochastic approximation apply to adaptive algorithms with decreasing

gain, that is stochastic processes with decreasing step size.

Definition 1.3 The stochastic process (1.8) is said to have decreasing gain if

('yt)a < oo for some a > 1 where 7( = +oc
t t

For example a common step size of 7t = 1/t would ensure that (1.8) has decreasing

gain. It emerges that as t —> oo there is a close relationship between the behaviour

of stochastic processes (1.8) with a decreasing gain and the mean or averaged ordinary

differential equation of the stochastic process.

stochastic processes of this form as t —> oo.

x = f(x) (1.9)
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In particular it can be shown via Benai'm (1999, Corollary 6.6) that if (1.9) meets

certain criteria, the stochastic process (1.8) must converge with probability one to

one of the fixed points of the mean or averaged ordinary differential equation (1.9).

Theorem 1.2 (Benaim (1999, Corollary 6.6)) If the dynamic process (1.9) ad¬

mits a strict Lyapunov function and processes a finite number of fixed points, then

with probability one the stochastic process (1.8) converges to one of these fixed points.

We now have a method of illustrating that the long-run behaviour of boundedly

rational agents, adjusting their strategies according to the Erev and Roth (1998)

reinforcement learning model, in the El Farol game converges to one of the fixed

points of mean or averaged differential equation (1.9) associated with the vector of

player's expected strategy adjustments.

In order to apply this general result, we must first identify the mean or

averaged differential system associated with players' expected strategy adjustment.

Furthermore, it must be shown that the mean or averaged differential system admits

a strict Lyapunov function. And finally, we must establish that the mean or averaged

differential system possesses a finite number of isolated fixed points. In the next three

subsections we purport to demonstrate just that.
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The Joint Dynamic System

One might hope that the standard replicator dynamics represent the mean or averaged

differential system derived from the discrete time stochastic process (1.7).

Unfortunately, the standard replicator dynamics (1.10) do not for two simple reasons.

First, in the Erev and Roth (1998) model, the step size is endogenous; that is, it is

determined by the accumulation of payoffs, and thus is not exogenously fixed. Second,

the step size is not a scalar.

In order to account for these discrepancies, let us introduce a common step size

of 7t = l/t and N new variables fi\, such that:

We can now substitute for 1 /Q) in our discrete time stochastic process (1.7)

and arrive at the following corrected expected motion of the zth player's strategy

adjustment of going to the bar:

Since we have assumed that all payoffs in the El Farol game are positive to ensure

that choice probabilities are well defined, it follows that fi\ is bounded away from

yl = y% [i - y1} [°l (1 ,y l) - (o,y ')] (1.10)

E [vi+M - yl = iAv\ [1 - yl\ [°l (i>vt l) - (°. % *)]

+ 7tit (yl) +°{i7tl2) (1.11)



zero. Furthermore, since pj — t jQ) equals the inverse of the average payoff in the

limit as t —> oo, it follows that the associated mean or averaged differential equation

(1.9) associated with the corrected discrete time stochastic process (1.11) is:

In equilibrium this amounts to the standard definition of the adjusted replicator

dynamics. This is extremely useful because there are many results in the literature

on the equilibrium behaviour of the adjusted replicator dynamics (see Fudenberg and

Levine 1998, Hopkins 2002). We shall revisit some of these findings later in this proof

of the main result.

Because each pj varies over time, we require a further set of N equations describing

the discrete time stochastic process of pj. Using the method we previously employed

to write player z's expected strategy adjustment of going to the bar, we now find the

expected change player z's step size.

Lemma 1.1 Given the choice rule (1.5) and the updating rule (1.6), the expected

motion of the ith player's step size in the El Farol game is:

yl = pV [l-y*] [<t* (l, y-*) — ai (O.jT4)] (1.12)

E [/4+il/4] - hi = 7th\ - 71 [hi]2 ox (0, yp)

+ it [hl]2yl [pl (0,yp) - (l,yp)]

+ 7Pt {y\) +C([7z]2) (1.13)
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Proof First, imagine that player i chooses to attend the bar in period t. The

expected change in the player step size can be written as:

i i (f\ t + 1 tMt+1 Ah \ / . " i (-i — i\ /~\iQl + v (i,yt ) Qt

= i - PtP (i,vp) + 0(7t)

Now consider the expected change in step size if player i stays at home.

i i (f\ _ t + 1 t*t+1 ~M j ~ Qi + a* (o,yp) " Ql
= i - pP (o, yp) + o (jt)

The expected motion of each player i's step size given /i\ can now be written as the

expected motion in the step size given y\ times the step size in period t.

E [Pt+il/4 (<)] - Pt (*) = ItPVt f1 - pP {liVP) + 0 (7t)]

+ itPt t1 - vi] t1 - PPl (o, yp) + o (7J]

and after some more algebraic manipulation we arrive at (1.13). ■

The mean or averaged differential equation derived from the discrete time

stochastic process (1.7) has now been corrected for the endogenous and non-scalar

step size. Therefore, we have the following mean or averaged differential system

consisting of 2N differential equations with 2N endogenous variables:

yl = Pyl [i - yl] [P (l, y'1) - P (o, y~1)] (1.14a)

P = P[1- P [P (0,y_i) + P [P (0,2/-') - P (l,y_i)]]] (1.14b)
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Let us refer to this as the joint dynamic system describing the evolution of player i's

strategy adjustment of going to the bar in the El Farol game.

Admission of a Strict Lyapunov Function

We must show that the associated mean or averaged ordinary differential system, the

joint dynamic system (1.14), admits a strict Lyapunov function. Let us begin with

some definitions.

Definition 1.4 Let (1.9) be an ordinary differential equation defined on some subset

Y ofRN. Let V : Y —» R be a continuously differentiable function. Furthermore, let

y be a fixed point of V (y). V (y) is a Lyapunov function if,

V (y) > 0, V y G E and (1.15a)

V(y) = 0, V y e 6 (1.15b)

where 6 is the set of fixed points of (1.9).

Definition 1.5 A strict Lyapunov function is a Lyapunov function V (y) such that:

V (y) > 0, V y id . (1.16)
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In general it can be difficult and time consuming to identify a suitable Lyapunov

function for a particular system. It is often a process of trial and error. An approach

to this aspect of the problem developed in the existing literature on the convergence of

learning models in games (see Duffy and Hopkins 2005) has been to explicitly derive

a suitable function for V (y) and then show that it admits a strict Lyapunov function.

In theory, but not always in practice, this can be accomplished by first assuming that

V (y) indeed admits a strict Lyapunov function. If this is the case, then the partial

derivative dV (y) /dyl represents the expected payoff increment to player i from going

to the bar.

= (1.17)

It should then just be a question of integrating dV (y) /dyl with respect to yl in order

to find a suitable V (y) and checking that both conditions (1.15) and (1.16) defining

strict Lyapunov functions are met.

The difficulty with this approach is in explicitly finding a function V (y).

Expressing d* (l,y~%) — (0, y~l) in a compact form is not as straightforward as

one might first hope. This can be demonstrated by examining dV (y) /dyl further.

Note that (1.17) can be expressed as:

= E [n<\S = 1] — E [*<|« = 0]

= [B - 5] + $ [G - B)
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where

c-i

4> = J]Pr (rri?=j) (1.18)
3=0

0 is the probability that C — 1 players or less of the remaining N — 1 players choose

to go to the El Farol bar. It is writing out this latter probability expression (1.18) for

4> that is unfortunately problematic and can get cumbersome very quickly. Therefore,

this turns out to be an intractable method of demonstrating that the joint dynamic

system (1.14) admits a strict Lyapunov function.

An alternative approach is to employ a result of Monderer and Shapley (1996,

Theorem 3.1) from the theory of potential games to demonstrate that the joint system

(1.14) admits a strict Lyapunov function. The argument is as follows: the El Farol

game is a congestion game therefore it is a potential game and thus admits a potential

function. The properties of potential functions are similar to those of strict Lyapunov

functions and therefore, it follows that the joint dynamic system (1.14) admits a strict

Lyapunov function.

Let us now begin with some definitions and a restating of Monderer and Shapley

(1996, Theorem 3.1).

Definition 1.6 Let T (N,Yl,nl) be a game in strategic form. T is called a potential

game if it admits a potential function.
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Definition 1.7 a function p : Y —> R is a potential function for T, if for every

i E N and for every y~l E Y~l

i? {x,y~l) - TTl (x',y~l) = p (x,y~l) - p (x',y~l) V x,x'EYl

Theorem 1.3 (Monderer and Shapley (1996, Theorem 3.1)) Every congestion

game is a potential game.

Now we can show that the joint dynamic system (1.14) admits a strict Lyapunov

function.

Lemma 1.2 The joint dynamic system (1.14) admits a strict Lyapunov function.

Proof The El Farol stage game is a congestion game and therefore by Theorem

1.3, Monderer and Shapley (1996, Theorem 3.1), it is a potential game. Thus, there

exists a function p : 6l x 5~l —> R for every i E N and for every 5~l E A-' such that:

7r<(i,ri)-7r<(o,<y-<) = p(i,<y~<)-p(o,<y_<) v JeA = {o,i}

Given that there is a continuous set of mixed strategies, we can write the potential

function p (y) as a smooth function with respect to the strategy space y E [0,1]^.

p (y) is therefore continuously differentiable. Therefore, for every i E N and for every

x~l E [0, l]^"1,

7T* (x, y~l) - 7I-1 (x', y~l) = p (x, y~l) - p (x', y'1) V x,x'e[0,1]
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Now choose x and x' equal to 0 and 1 respectively and take expectations of both

sides. It follows that for every i € N and for every y~'1 € [0,1]A'~\

d* (1, y-') - dl (0, y-*) =P( 1, y"4) - P (0, y"4)

Or otherwise stated,

Furthermore,

= °l (iiiT*) - (o,y~z) yl
= mV [i - y<] [ai (i,y-4) - (j* (o, y_i)]2 > o

By assumption, /T > 0 and y* € [0,1]. Since [d-1 (l,y-*) — d-1 (0, y-4)]2 > 0 we

have that P (y) is non negative. Additionally, at any fixed point y € 9 either yl = 0,

(1 — yl) — 0 or [d-1 (1, y~l) — a1 (0, y~1)] = 0. Thus P (y) admits a Lyapunov function.

At any y ^ 0, yl ^ 0. It should be obvious that:

P (y) = /i4y4 (1 - y>) [d4 (1, y~4) - a1 (0, y"4)]2 > 0.

Therefore, P (y) admits a strict Lyapunov function. It follows that the joint dynamic

system (1.14) admits a strict Lyapunov function. ■
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Fixed Points of the Joint Dynamic System

Definition 1.8 The fixed points of the joint dynamic system (1.14) are defined as

x = (y, fi) such that y — 0 and f = 0.

Lemma 1.3 The joint dynamic system (1.14) possesses a finite number of isolated

fixed points.

Proof Consider the joint dynamic system (1.14). The fixed points of the N

equations describing the evolution of the step size occur when either:

^ °'
[pl (o,2/p) + vl (o,yp) - °~l (i»yV)]]

By assumption, all payoffs are positive therefore jj1 is bounded away from zero. This

means that the fixed points of the joint dynamic system (1.14) with Jil — 0 are

always unstable (see Hopkins 2002, Duffy and Hopkins 2005) and therefore are never

asymptotic outcomes. We can thus concentrate on the latter case.

Consider the first N equations of the joint dynamic system (1.14). Once we substitute

for fd and multiply both sides by the denominator we have:

yl C1 - yl] i&111- yt l) - &l (°. vo1)] =0

In other words the fixed points of the joint dynamic system (1.14) are exactly the

same as those under the adjusted replicator dynamics (1.12) and, consequently, the
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standard replicator dynamics (1.10). The characterisation of the fixed point of the

standard replicator dynamics (1.10) is well known (see Weibull 1995) and consists of

the union of all pure states and Nash equilibria of the underlying game.

The number of pure states is obviously finite and, as proved in Propositions 1.2-1.4,

the number of Nash equilibria in the underlying El Farol game is countable. Therefore,

the joint dynamic system (1.14) possesses a finite number of fixed points points. ■

Just to be absolutely clear, the fixed points of the joint dynamic system (1.14)

consist of the following:

• Pure strategy Nash equilibria

These are the pure states of the joint dynamic system (1.14) that correspond

to the pure strategy Nash equilibria of the underlying game.

• Symmetric mixed strategy Nash equilibrium

This is the full interior state of the joint dynamic system (1.14) that corresponds

to the symmetric mixed strategy Nash equilibria of the underlying game. That

is, the Nash equilibrium where all players play a unique mixed strategy best

response.

• Asymmetric mixed strategy Nash equilibria



These are boundary states of the joint dynamic system (1.14) that correspond

to asymmetric mixed strategy Nash equilibria of the underlying game. By

boundary states we mean those where a subset of the N players play a unique

mixed strategy best response while the remainder play a pure strategy.

• Fixed points that are not Nash equilibria

Not all fixed points of the joint dynamic system (1.14) correspond to Nash

equilibria of the underlying game. There are pure states of the joint dynamic

system (1.14) that do not correspond to pure strategy Nash equilibria of the

underlying game. Note that it is not possible to have interior fixed points or

fixed points on some boundary of the state space of the joint dynamic system

(1.14) that do not correspond to Nash equilibria of the underlying game.

Positive Convergence Result

Proposition 1.6 The discrete time stochastic process (1.7) converges with probability

one to one of the fixed points of the standard replicator dynamics (1.10).

Proof By Lemma 1.2 the joint dynamic system (1.14) admits a strict Lyapunov

function. By Lemma 1.3 the joint dynamic system (1.14) possesses a finite number of

fixed points which are identical to those of the standard replicator dynamics (1.10).

Therefore, by Theorem 1.2, Benai'm (1999, Corollary 6.6), the discrete time stochastic
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process (1.7) converges to one of the fixed points of the standard replicator dynamics

(1.10). ■

1.4.2 Proof of Main Result: Second Stage

In the second part of the proof of the main result, we show that the discrete time

stochastic process (1.7) does not converge to any equilibria corresponding to Nash

equilibria of the underlying game which are unstable under the adjusted replicator

dynamics (1.12) or equilibria that do not corresponding to a Nash of the underlying

game. We tackle this in two steps.

First, we show that the stability properties of a fixed point of the joint dynamic

system (1.14) are entirely determined by the stability properties of the corresponding

fixed point under the adjusted replicator dynamics (1.12). We then determine the

stability properties of the Nash equilibria under the adjusted replicator dynamics

(1.12). We conclude that only the pure strategy Nash equilibria are stable under the

adjusted replicator dynamics (1.12). Finally, we employ Hopkins and Posch (2005,

Proposition 2) to show that the discrete time stochastic process (1.7) cannot converge

to any fixed points unstable under the adjusted replicator dynamics (1.12).

Second, we employ Hopkins and Posch (2005, Proposition 3) to demonstrate that

the discrete time stochastic process (1.7) cannot converge to any fixed point not
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corresponding to a Nash equilibria under the underlying game. Therefore, we have

our negative convergence result.

Unstable Equilibria in the Adjusted Replicator Dynamics

Definition 1.9 A fixedpointx = (y,p) of the joint dynamic system (1.14) is unstable

if its linearisation evaluated at x has at least one eigenvalue with a positive real part.

Theorem 1.4 (Hopkins and Posch (2005, Proposition 2)) Let x be a Nash

equilibrium that is linearly unstable under the adjusted replicator dynamics (1.12).

Then the Erev and Roth (1998) reinforcement learning process defined by the choice

rule (1.5) and the updating rule (1.6) asymptotically converges to one of these points

with probability zero.

Lemma 1.4 The stability properties of the fixed points of the joint dynamic system

(1.14) are entirely determined by the stability properties of the corresponding fixed

points of the adjusted replicator dynamics (1.12).

Proof The linearisation of the joint dynamic system (1.14) at any fixed point, x,

will be of the form:

(dy dy\
dy dp
dp dp
\dy dp J

(1.20)
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Consider the partitions of the above matrix (1.20) evaluated at a fixed point of the

joint dynamic systems (1.14) in turn, dy/dy is obviously the null matrix.

dyi 0 for all i,j (1.21)

Given (1.21), every eigenvalue of the matrix (1.20) is an eigenvalue for either dy/dy

or dy/dy. The latter matrix is diagonal.

dy1
dyi

0 for i ^ j

!^0f°ri = i
And the diagonal elements are all negative.

dyi
dy1

1 - 2yl [a1 (0,yt ') + yl [a1 (0,yt 1) - a1 (l,yt ')]] < 0

Therefore, all the eigenvalues of dy/dy are negative. Now consider the elements of

dy/dy. This is the linearisation, or otherwise referred to as the Jacobian, of the

adjusted replicator dynamics (1.12).

J =

( °yL dy1 dy1 \
dy1 dy2 dyN
dy2 dy2 dy2
dy1 dy1 dyN

dyN dyN dyN
V dy1 dy2 dyN J

If the linearisation of the adjusted replicator dynamics (1.12) has one or more positive

eigenvalues, then the fixed point of the joint dynamic system (1.14) at which the
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Jacobian is evaluated is unstable for the joint dynamic system (1.14). Otherwise, the

fixed point is asymptotically stable for the joint dynamic system (1.14). ■

Now consider the stability properties of the fixed points of the adjusted replicator

dynamics (1.12) that correspond to Nash equilibria in the El Farol game.

Lemma 1.5 The fixed points of the adjusted replicator dynamics (1.12) correspond¬

ing to the pure strategy Nash equilibria of the El Farol stage game are asymptotically

stable.

Proof Given that the pure strategy Nash equilibria are strict, they constitute

an evolutionary stable strategy of the El Farol stage game. By Weibull (1995), all

evolutionary stable strategies are asymptotically stable under the replicator dynamics.

■

Lemma 1.6 The fixed point of the adjusted replicator dynamics (1.12) corresponding

to the symmetric mixed strategy Nash equilibrium of the El Farol stage game is

asymptotically unstable.

Proof The fixed point of the joint dynamic system (1.14) corresponding to the

symmetric mixed strategy Nash equilibria of the El Farol stage game is unique and

is a fully mixed equilibrium. Furthermore, at this fully mixed fixed point of the joint
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dynamic system (1.14), yl = if. Let us consider the diagonal elements of J:

= 0 if yl = y

Since all the diagonal elements of J equal zero, the trace of J is zero. Now consider

the off diagonal elements:

Since all players earn the same payoff in this fully mixed symmetric equilibrium,

we have that f = /A and therefore, J is symmetric. Therefore, J has no complex

eigenvalues. With a zero trace, the real eigenvalues sum to zero. Therefore, there

must be at least one eigenvalue which is positive. Hence, x is linearly unstable with

respect to the joint dynamic system (1.14). ■

Lemma 1.7 The fixed points of the adjusted replicator dynamics (1.12) correspond¬

ing to the asymmetric mixed strategy Nash equilibria of the El Farol stage game are

asymptotically unstable.

= pi [1 - 2yi] [a1 (1, yt 1) - f (0, yt <)]

Proof At the fixed points of the joint dynamic system (1.14) corresponding to

the asymmetric mixed strategy Nash equilibria, N — j — k players randomise over

entry while the remaining j + k players play a pure strategy. One can then calculate
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the Jacobian, J, evaluated at this fixed point which is of the form:

(a b)J =

v°c)
where A is a (N — j — k) x (N — j — k) matrix of the form found at the symmetric

fixed point as described in Lemma 1.6.

It is easily verified that C is a diagonal matrix of negative elements. By the

same argument as put forward in Lemma 1.6, A is a mixture of positive and negative

eigenvalues. Therefore, J has at least one positive eigenvalue and it follows that

the fixed point associated with the asymmetric mixed strategy Nash equilibrium is

unstable under the adjusted replicator dynamics (1.12). ■

Non-Nash Fixed Points of the Joint Dynamic System

Theorem 1.5 (Hopkins and Posch (2005, Proposition 3)) Letx be a fixed point

of the replicator dynamics (1.10) which is not a Nash equilibrium. Then the Erev

and Roth (1998) reinforcement learning process defined by choice rule (1.5) and the

updating rule (1.6) asymptotically converges to one of these points with probability

zero.

Therefore, the discrete time stochastic process (1.7) cannot converge to any fixed

point not corresponding to a Nash equilibrium under the underlying game.
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Negative Convergence Result

Proposition 1.7 The discrete time stochastic process (1.7) converges with probability

zero to equilibria corresponding to Nash equilibria of the underlying game unstable

under the adjusted replicator dynamics (1.12) or equilibria not corresponding to a

Nash equilibrium of the underlying game.

Proof The result follows from Theorem 1.4, Hopkins and Posch (2005, Proposi¬

tion 2), and Theorem 1.5, Hopkins and Posch (2005, Proposition 3). ■

1.4.3 Proof of Main Result: Concluding Stage

Proposition 1.8 In the El Farol game with identical bounded rational agents learning

in accordance with the Erev and Roth (1998) reinforcement learning model, long-run

behaviour converges asymptotically to the set of pure strategy Nash equilibria of the

El Farol stage game.

Proof The result follows directly from our positive convergence result, Proposition

1.6, and our negative convergence result, Proposition 1.7. ■
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1.5 Conclusion

The results obtained from modelling the El Farol bar problem as a repeated game

with boundedly rational agents implies that people tend to minimise bad experiences

and maximise good ones. This is exactly what is assumed by the Erev and Roth

(1998) reinforcement learning model.

The application of the Erev and Roth (1998) reinforcement learning model implies

that the average attendance converges to the capacity of the El Farol bar as in Arthur's

(1994) 'inductive thinking' approach to modelling boundedly rational agents. The

difference lies in who, in the long-run, attends the bar. The most salient aspect of

this result is that in the El Farol game the population of boundedly rational agents,

who behave in accordance with the Erev and Roth (1998) reinforcement learning

model, are partitioned into those who always attend the El Farol bar and those who

always stay at home. This differs from the outcome of Arthur's (1994) model where

agents are differentiated by the forecasting methods, not by attendance.

The main result implies sorting and is crucially dependent on the fact that the

game in question is a potential game. It can be shown that the result is robust when

compared to other variants of reinforcement learning. In fact Duffy and Hopkins's

(2005) paper shows how this would be the case with stochastic fictitious play. It is

also possible to derive some general results for an extension to this treatment where

players have idiosyncratic payoff functions. Milcataich (1996) shows that any multi-
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player coordination game with two identical pure actions for each player admits a

potential function and by definition, is a potential game. Therefore, even if one

considers players in the El Farol game with heterogenous preferences, it appears that

reinforcement learning will lead to sorting.
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Appendix l.A

l.A.l Proof to Proposition 1.1

Proof The number of pure strategy Nash equilibria in the one-shot El Farol game

is the number of ways C different players can be chosen out of the set of N players

at a time. ■

l.A.2 Proof to Proposition 1.2

Proof Existence

Define the binary state of the bar, either uncrowded or crowded, as a binomial

distribution, denoted Pl (N, C, a), over the number of players in the game, denoted

by N, the capacity of the bar, denoted by C, and the mixed strategies employed by

player i, denoted by the probability a of attending and (1 — a) of staying at home.

In particular in a mixed strategy equilibria, each player i should be indifferent between

going to the bar and staying at home.

E [y|<S = 1] = E [y|(5 = 0] , V i € {1,2,...,N}

We have that:

E [tPIJ = 1] - G ■ Pi (N, C, a) + B ■ [1 - Pl (N, C, a)}
(1.22)

E[^\5 = 0} = S
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where Pl (N, C, a) denotes the probability of the bar being in the uncrowded state or

otherwise stated as the probability that less than C other players out of the (N — 1)

remaining players choose to attend the bar.

Given that players are homogeneous in preferences and the El Farol game is symmetric

in payoffs, we may write:

Pl (N, C,a) = P (N, C, a) for all i G {1,2,N} .

Returning to (1.22), we can now substitute P (N, C, a) for P' (N, C, a) and solve for

P (N, C, a).

where P (N, C, a) is defined by the following binomial probability:

P (N, C, a) = J2 C^am (1 - .
m=0

Therefore, we have (1.3).

Uniqueness:

P(N,C,a) is continuous and well defined over the closed interval [0,1]. Given that

limQ_*o P (N, C, a) = 1 and lim^i P (N, C, a) = 0, (1.3) has a unique solution if the
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partial derivative of P (N, C, a), denoted Pa (N, C, a), is less than zero.

Pa (N,C,a) =
\m=0

\m=l

- (N - 1) C%~2am (1 - a)((^-b-m)-i
\m=0

Now let k = (m — 1).

(C—2J2C?-2ak(l-a)N~2-kk=0

-(JV-l) C^a" (1 - a)"-2"™
\771=0

- (N-l)(-l)C^am-L(l-a)Ar-1"m

< 0

Hence (1.3) has a unique solution and thus the number of mixed strategy Nash

equilibria where all agents employ the same 'mixing' is one. ■

1.A.3 Proof to Proposition 1.3

Proof Here we use the fact that there are only two pure strategies available to

each player. We show via contradiction that if no players employ a pure strategy, all

players must play the same mixed strategy.

First, assume that here are two players, say i and j, who employ different mixed



strategies in a mixed strategy equilibrium in which their probabilities of attending the

bar are at and a3 respectively, where a, ^ ctj. Note that the remaining N — 2 players

also play mixed strategies. Since player i uses a mixed strategy in equilibrium, it must

be that the probability of less than C attending the bar is (S — B) / (G — B) given

a.j and the mixed strategies employed by the (N — 2) remaining players. Likewise

if player j uses a mixed strategy in equilibrium, it must be that the probability of

less than C attending the bar is (S — B) / (G — B) given a, and the mixed strategies

employed by the (N — 2) remaining players. If al ^ cij, both these statements cannot

be true.

Consider the case where cq > ctj. The probability of less than C attending the bar

is (S — B) / (G — B) given a3 and the mixed strategies employed by the (N — 2)

remaining players. It is then impossible to have the probability of less than C

attending the bar, given a» and the mixed strategies employed by the (N — 2)

remaining players equal (S — B) / (G — B). We have the similar argument for

oti < ctj. Recall that agents have only two possible pure strategies.

This contradiction tells us that in an equilibrium where all players play a mixed

strategy, they must all play the same mixed strategy. ■

1.A.4 Proof to Proposition 1.4

Proof Recall that an asymmetric mixed strategy Nash equilibria is a Nash



equilibrium where players from a subset of the population play either of the available

pure strategies, and the remaining players play the symmetric mixed strategy which

supports the asymmetric mixed strategy Nash equilibria. In an asymmetric mixed

strategy equilibrium, we require at least two players to play a mixed strategy and at

least one player to play a pure strategy. Given that all the players playing a mixed

strategy are playing the same mixed strategy, we can simply count the number of

asymmetric mixed strategy Nash equilibria. ■
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Appendix l.B

l.B.l Proof to Proposition 1.5

Proof First, suppose that in period t player i chooses to attend the bar. The ith

player's strategy adjustment of going to the bar given that player i chooses to go to

the bar is,

E [yi+1\6i = 1] - yl q\(l) + a\(l ,yr) q'(l)
Qi+&i(i,yr) Qi
[! — 2/tl (!,vrl)

Qi

[i - %']
-i\\2(vU^Vt*))

Qi (QI + &1 {hyt z))
I1 (i. vt') , Q ( i

Qt ' ~ \(Q\f )
Similarly, the ith player's strategy adjustment of going to the bar given that player i

chooses to stay at home is,

E\yi+1\6it = 0]-yi =
Ql( 1) ai)

Qi + ai(0,yr) Qt
(o, vt *)
Qi

-y\°\ (o. yp
Qi

yt

+ o

(pi (°.yt'))
Qi (Qi + &o)
i \

21

(QlY

Recall that by definition player i goes to the bar with probability y\ and stays at

home with probability [1 — y\\. Therefore, the expected motion of the ith player's



<5=1 strategy adjustment in the repeated El Farol game is,

[1 -yj\ a] (1 ,yp)e [yi+M - vi = vi

+ [i - vi]

Qi

-y\o\ (o. yt-i)
Q\

+

and after further algebraic simplification we arrive at (1.7).



Chapter 2

Why People Don't Play Mixed

Strategies:

Learning in Finite Population

Games



2.1 Introduction

Randomisation is central to mixed strategies. One interpretation as to how individuals

implement mixed strategies is that they make their choices based on a random lottery.

However, this view has its critics as people are generally considered to be poor

at generating random outcomes. An alternative interpretation of mixed strategies,

imagines that players represent a population of agents. Each of the agents chooses a

pure strategy and the payoff depends on the fraction of agents choosing each strategy.

The mixed strategy then represents the distribution of pure strategies chosen by each

population.

The issues of interpretation becomes particularly problematic in games with only

mixed strategy equilibria. In tackling this question we investigate games with mixed

strategy equilibria and random matching. The addition of random matching allows

for both interpretations of mixed strategies to coexist. Random matching allows

for the second interpretation of mixing, but equally each agent could still choose to

randomise their individual choices. Therefore, they have the choice as to how the

'mixing' is implemented.

When modelling games with mixed strategy equilibria and random matching,

there are effectively two game interpretations: the two-player game individuals play

once they are matched and the larger game, which involves a population of players

matched into pairs, all of whom play the two player game simultaneously.
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In this paper we study the long-run behaviour of a single finite population of

boundedly rational agents learning in accordance with a reinforcement learning model,

randomly matched to play a symmetric two-player game. Our model comprises four

component elements: the population setting, the matching technology, the assumed

individual learning model, and the two-player games played once individuals are

matched into pairs. Our overall objective is to determine, using the tools of learning

theory, the long-run convergence of play in the finite population game as defined

below. We find that, for a large class of games that only have mixed equilibria,

reinforcement learning predicts that, under random matching, individual behaviour

will converge to play of fixed pure strategies.1

Our contribution to the literature on population games and the theory of learning

is fourfold. First, we apply the Erev and Roth (1998) model of reinforcement learning

to finite population games with random matching. We believe that there are genuine

contributions to be made in this area. Once the long-run behaviour convergence

results are proved for individuals learning in accordance with the Erev and Roth

(1998) model of reinforcement learning, these results can be easily extended to other

models of individual learning. We provide much of the structure to prove analytically

that long-run behaviour will converge asymptotically to the set of pure strategy

Nash equilibria of the one-shot finite population game corresponding to the mixed

strategy Nash equilibrium in the population game. In other words, in aggregate, the
xOn reflection this result should not be surprising, as we would expect convergence to this set of

equilibria in games with strict pure strategy equilibria.
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distribution of pure strategy players in the finite population game will correspond to

the evolutionary stable equilibrium in the corresponding population game. Our work

suggests that in finite anti-coordination population games, learning theory predicts

sorting. In a single finite population of players who are learning in accordance with

the Erev and Roth (1998) model of reinforcement learning, theory suggests that the

population will eventually be subdivided into distinct groups; each group specialising

and invariably choosing to play one pure strategy action.

Second, we provide an alternative interpretation of results from experiments of

population games with random matching. Friedman (1996), amongst others, has

carried out a number of laboratory experiments in economics to test predictions of

evolutionary game theory. One of the most consistently tested population games in

laboratory environments is the Hawk-Dove game. Evolutionary game theory predicts

that play in the population should converge to the symmetric mixed strategy Nash

equilibrium of the Hawk-Dove game. Interestingly, replicator dynamics, as introduced

by Maynard Smith (1974), assumed that all individuals are hard wired to play a

specific type of strategy, and it is the frequency of strategy types that evolves in the

population. Crucially, this analysis assumes an infinite population pool from which

players are drawn. However, in a laboratory setting this is not a practical or easily

incorporated design feature. Therefore, most of the predictions of evolutionary game

theory on population games are actually tested on finite populations. Although the

experimental evidence broadly supports the predictions of evolutionary game theory
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on aggregate, there are notable departures once individual behaviour is examined.

There is consistent evidence to suggest that, on an individual level, players do seem

to favour one pure strategy or another. Friedman (1996) suggests that Harsanyi's

purification approach might provide an explanation for these observations (Harsanyi

and Selten 1988). Our work suggests an alternative interpretation as to why some

players usually play Hawk and others Dove; namely the finite population aspect of

the experimental design.

Third, we wish to highlight the importance of random matching in population

games. Our results appears to indicate that random matching actually takes on

the role of randomisation. Instead of individuals randomising their choices, such as

playing mixed strategy profiles, the random matching effectively takes on this task

that would be left to individuals in the same two-player games with fixed matching.

We believe this is an important observation, as it indicates that the appropriate

modelling of matching protocols in any theoretical or applied economic application

has significant effects on predictions of models, and therefore, provides lessons for

policy makers.

Finally, we wish to bring to the attention of economic theorists and experimental

researchers, existing literature from the field of complex systems; namely, Borkar,

Jain, and Rangarajan (1998), Borkar, Jain, and Rangarajan (1999) and Borkar,

Jain, and Rangarajan (2002). It is a well-known phenomenon that a wide variety
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of complex adaptive systems exhibit, on the micro or component level, a high degree

of specialisation, while maintaining, in a macro sense, ever-increasing diversity. In

our work we make progress in demonstrating that in finite population games with

random matching, composed of two-player games with opposing interests, the theory

of individual learning suggests that environments will naturally evolve to exhibit both

greater diversity and specialisation.

The intuition behind our results is that the matching protocol and population

setting can transform a strategic game with interior evolutionary stable strategies

to one with strict pure strategies which have been shown in the literature to be

evolutionarily stable (see Weibull 1995).

In Section 2.2 we review the finite population game framework. We define the finite

population game and discuss the four defining components of our model framework

in detail. We also suggest particular finite population games that exhibit properties

that are attractive for further study. In section 2.3 we state and develop a proof of our

main result; that is, with probability one, the Erev and Roth (1998) reinforcement

learning process converges to a strict pure Nash equilibrium of the one-shot finite

population game with random matching. In Section 2.4 we present evidence from

computer simulations supporting out main result. Finally, in Section 2.5 we provide

some concluding remarks.
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In this paper we study the long-run behaviour of a single finite population of

boundedly rational agents learning in accordance with a reinforcement-learning

model, randomly matched to play a symmetric two-player game. Our model shall

consist of four component elements: the population setting, the matching technology,

the assumed individual learning model, and the two-player games played once

individuals are matched into pairs. Our overall objective is to determine, using the

tools of learning theory, the long-run convergence of play in the finite population

game as defined below.

Definition 2.1 Define the S x S finite population game with random matching as the

infinitely repeated game where in each period all individuals from a finite population

N € 2N are randomly matched into pairs to play the one-shot symmetric two-player

game T =< A, n > consisting of,

• a finite and identical set of actions for each player, denoted by A and indexed

by 5

• a payoff function 7t1 : 8l x 8~l —* K

where 8l denotes the action taken by player i and 8~l denotes the action taken by

player i's opponent.
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Let us begin by discussing the components of this model framework in further

detail, starting with the population setting.

2.2.1 Population Setting

In principle there are two population settings that researchers have considered in this

type of model framework, infinite and finite. The use of the infinite population is

the more traditional assumption and the more widely used for two reasons. The first

is tractability and the second is that in many economic applications this might be a

reasonable assumption to make.

The paramount implication of assuming that the population is infinite is that

economists are really assuming that individuals perceive their actions as having no

effect on the average play or frequencies in the larger population game. This is

a very important simplification for two reasons. First, it allows for tractability in

understanding the overall dynamics in the population game. Second, it removes

strategic motivations from the level of the individual agents. In population games

with infinite populations, researchers are generally interested in the evolution of the

frequency of type of player in the population over time. In essence individuals in

the infinite population are hard-wired to be of a certain type, and it is the evolution

of their frequency, i.e. the frequency of each type of player in the population, that

researchers are interested in studying.
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In this study we do not make this infinite population assumption. Specifically,

we assume that the number of individuals in the population is finite. Furthermore,

the population size is small enough so that individual players realise that there is a

difference between the overall average play in the population and the average play

of those other individuals they are likely to be matched with to play the two-player

game. Obviously, if the finite population is very large, it is reasonable to assume that

individuals would treat these two different measures as the same. It is for this reason

that the infinite population assumption is justified in most economic applications.

The salient aspect of this component of the population game model is that

individuals are drawn from a common pool, or single finite population, and matched

pair wise, according to a pre-specified matching technology, to play the two-player

game. One of the contributions of this paper is that we demonstrate that the

long-run outcomes of players drawn from finite populations are both qualitatively

and quantitatively different from those outcomes where individuals are drawn and

matched into pairs from an infinite population.

In particular this proves to be the case for the much studied Hawk-Dove game

which is discussed in detail later in this paper. Standard results from evolutionary

game theory prove that the interior mixed strategy equilibrium is an evolutionarily

stable strategy (ESS). In our analysis, assuming a finite population, we show that

while this might be the case in aggregate, i.e. the frequency of types is interior in
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equilibrium, on an individual level everyone in the population will actually be playing

a pure strategy and the population game will evolve to a pure strategy Nash state

over time.

An interesting issue to address at this point is the general interpretation of mixed

strategies in population games (Hofbauer 2000). It is true that in the population

game framework, as devised by Maynard Smith (1974), it is effectively assumed that

individual players are playing pure strategies. In the work presented here, we arrive at

the same outcome at the individual level, but we do so without making any assumption

as to the type of player each individual in the population is. It is the result of the

ecology of the dynamic system that all players in equilibrium will play pure strategies;

all individuals will, in the end, be 'type cast' in equilibrium. This result arises without

any preemptive hard wiring of individual's strategies.

There is one final matter with regard to our assumptions over the population

setting that requires explanation. Given that in our model, all players are matched

into pairs in each period, it is convenient to assume that the finite population

size, N, is an element of the even integers. If this were not the case, certain

matching technologies might leave some individuals unmatched in each round. This

would add unnecessary complication to the application of our learning model. It

is felt that leaving some players unmatched would add few further insights to the

research and it would be best to maintain some flexibility as to which matching
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technology is assumed. Different matching schemes could possibly offer advantages

or disadvantages in economic applications and experimental settings. This brings us

on to the next component of our framework, the matching technology.

2.2.2 Matching Technology

The principle matching technology that we shall consider throughout this paper is

random matching. This is a commonplace assumption in the literature on learning

and evolution. However, as pointed out by Hopkins (1999) there are several ways of

modelling this type of interaction.

Random Matching

Fudenberg and Kreps (1993) proposed three alterative random matching schemes.

Scheme 1 At each date t, one pair of players is selected to play a one-shot two-player

game. Once the game is played, their actions are revealed to all potential players.

Those who played at date t are then returned to the pool of potential players.

Scheme 2 At each date t there is a random matching of all players, so that each

player is paired with another player with whom the game is played. At the end of
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the period, it is reported to all players how the entire population played. The play of

any particular player is never revealed.

Scheme 3 At each date t there is a random matching of the players into pairs and

each pair of players then plays the game. Each player recalls at date t what happened

in the previous encounters in which he was involved, without knowing anything about

the identity or experience of his rivals.

It is worth pointing out that the scheme assumed as the basis of replicator

dynamics is Scheme 3. Boylan (1992) has shown that when a population is assumed

to be infinite, the dynamics are deterministic. The beauty of this scheme is that it is

decentralised in the sense that it does not, as opposed to Scheme 1 or 2, require any

public announcements. However, Hopkins (1999) notes that there are other matching

technologies similar to Scheme 2 that which do not require any public announcements,

namely:

Scheme 2a In each round, players are matched according to Scheme 1 or 3 an

infinite number of times.

Scheme 2b In each round there is a "round-robin" tournament, where each player

meets each of his potential opponents exactly once.



As Hopkins (1999) points out, Scheme 2a and Scheme 2b have been widely

employed in the learning literature primarily for reasons of tractability. In addition

they ensure a deterministic result to the matching technology even when the

population is finite. Furthermore, with Schemes 2, 2a and 2b, all players know the

exact distribution of strategies in the population when choosing their next strategy.

This is not necessarily the case with Scheme 3. Hopkins (1999) shows that both

Schemes 2 and 3 have the same continuous time limit when an infinite population is

assumed.

Given these properties it is convenient to employ one of the variants of Scheme 2

in our analysis. Variants of Scheme 2 also provide a suitable framework to test any

theoretical results in an experimental laboratory.2

2.2.3 Individual Learning Model

Now we turn our attention to the learning model we shall assume individual agents

adhere to when updating their strategies from period to period. The contribution we

wish to make to the literature on population games is that in finite population games

with random matching, reinforcement learning predicts that long-run behaviour in

the population will, in aggregate, mimic the evolutionary stable equilibrium and, on

the individual level, all players will always play pure strategies.
2It is also worth noting that there are other possible matching schemes. In fact, it is quite likely

the case that our chosen matching technology - being a variant of random matching - is not suitable
or a reasonable approximation of actual interaction in some economic and social situations.



The benchmark for this type of analysis is the replicator dynamics. Indeed,

we shall study the replicator dynamics for our finite population games in detail.

However, as previously alluded to, this paper aims to bring some of the results from

learning theory to the study of finite population games. Finite populations games

often represent complex strategic environments where rational deductive thinking

fails to provide any clear solution. This could be the case for a variety of reasons,

including cognitive limitations and/or equilibrium refinement/coordination. We posit

that in environments that are either complicated and/or ill-defined, individuals adopt

inherently inductive methods or heuristics to maximise payoffs.

The theory of individual learning represents one of the frameworks that aims to

model decision making where perfect rationality fails. In addition there is ample

anecdotal and experimental evidence supporting the notion that humans do not

always make choices using perfect rationality. Learning theory postulates that

individuals find their way to an optimal solution via trial and error. Effectively,

we wish to model the boundedly rational agents in our finite population games as

individuals who gradually adjust their behaviour over time until there is no longer

room for improvement. Therefore, these individuals find their optimal strategies

through repeated interaction and the application of an adaptive algorithm.

We assume that any adaptive learning algorithm adheres to some basic principles

of individual learning. First is the law of effect: choices that have led to good outcomes
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in the past are more likely to be chosen again in the future. Second is the power law

of practice: learning curves should initially be steep and then later they should be

flatter. This is paramount to assuming that in any adaptive process the adjustments

become smaller over time. Finally, choice behaviour should be probabilistic. This is

a basic assumption in most mathematical learning theories proposed in psychology.

Erev and Roth (1998) have developed a robust model of reinforcement learning, which

incorporates these principles. We shall apply this model to our finite population games

with random matching.

Note that in addition to Erev and Roth's (1998) model of reinforcement learning,

there are other available alternatives. Before we outline Erev and Roth's (1998) model

of reinforcement learning in detail, it is worth mentioning some of the advantages of

this particular individual learning model. First is that once we have established

some results in finite population games assuming Erev and Roth's (1998) model of

reinforcement learning, we can easily extend these results to other models of individual

learning such as hypothetical reinforcement learning (also referred to as fictitious play

learning). Second, there is a body of results on learning already in existence that we

can apply to our research to further understand the long-run convergent behaviour of

individuals in finite population games with random matching. We shall set out our

methodology in detail in Section 2.3.
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Erev and Roth (1998) Reinforcement Learning

We now set out the procedure for the Erev and Roth (1998) reinforcement learning

model in detail. In this learning model, each player i has a propensity to undertake

each action in each period, denoted q\ (8). The timeline of the learning algorithm is

that in each period t, each player i chooses to undertake one of their available actions

8 € A in accordance with a mapping from the propensities to the unit interval [0,1].

This mapping is defined by the choice rule. The player i then undertakes the action

dictated by the choice rule and receives a payoff in that period associated with that

action. Player i then updates his propensities. The updating procedure is determined

by the updating rule. In the Erev and Roth (1998) reinforcement learning model, the

only propensities to be updated are those corresponding to the actual action taken.

We can now define the model formally. The learning procedure comprises of three

components: the initial conditions, a choice rule and an updating rule.

Initial Conditions Let q\ (8) be player Vs propensity to play action 8 E A in period

t. In the initial period, t = 0, we assume that all players have positive propensities

for all possible actions. That is,

q\ (8) > 0 for t = 0 and for alii € IV and <5 € A (2-1)

This assumption, along with positive payoffs, will also ensure that q\ (<5) > 0 for all t

and 8 G A.
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Choice Rule Each player i has a positive propensity, q\ (<5), to take action 5 E A

in period t. In models of reinforcement learning, the choice rule provides a mapping

from propensities to strategies. Let (y\, [1 — y\)) represent player i's mixed strategy

in period t with two possible actions 6 E A = {0,1}, where y\ is the probability

placed by agent i on action 5=1 in period t and [1 — y\\ is the probability placed by

agent i on action 5 = 0 in period t. The choice rule employed in the Erev and Roth

(1998) reinforcement learning model is often referred to as the simple choice rule. It

is a straightforward probability mapping from propensities to the unit interval [0,1].

That is,

Pr (5=l) — yi— ^ ill — (2 2)

where Q\ = E4€a (^)-3

Updating Rule Let denote the realised increment to player i's

propensity in period t from taking action 6 E A given the aggregate actions taken

by the remaining N — 1, denoted by mp where mp = To complete,

and most crucial to, our reinforcement learning model, we must state the means

by which players update their propensities. Specifically, in the Erev and Roth (1998)

reinforcement learning model, if agent i takes action 5 in period t, then the agent's
3Note that when there are only two possible actions for each player i we can write



5th propensity is increased by an increment equal to agent i's realised payoff in that

period. All other propensities remain unchanged. In other words only realised payoffs

act as reinforcers. We thus have the following updating rule,4

Ql+1 (8) = q\ (5) + a* (81, mp) for all 5 € A = {0,1} (2.3)

2.2.4 Pair Game

The final component to our finite population game is the two-player game individuals

play once they are matched. To avoid any confusion we shall refer to this game as

the pair game.

The class of two-player games consists of both symmetric and asymmetric games.

Furthermore, there are two-player games where players have access to a finite or

infinite set of strategies. We shall only consider two-player games where players have

a finite set of actions available. We begin our analysis with definitions of symmetric

and doubly symmetric two-player games.

Definition 2.2 A two-player game is a symmetric game if both players have the

same strategy set and the second player's payoff matrix, B, is the transpose of the
4Note that this updating rule reveals why in this model of reinforcement learning all payoffs must

be positive. Otherwise, there would be a possibility of propensities becoming negative and thus
leading to choice probabilities that are undefined.
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first player's, A; that is,

B = A1 (2.4)

As Weibull (1995) points out, the requirement that the second player's payoff

matrix be the transpose of the first player's is equivalent to the symmetry requirement

in pure strategy payoffs for a two-player game T = (N, S, n) where = S'2; that is,

71"! («2, si) = 7t2 (si, s2) for all (si,s2)eS (2.5)

Definition 2.3 A symmetric two-player game is doubly symmetric if A = AT.

We first consider symmetric finite strategy two-player games. We study symmetric

games because the analysis of asymmetric games in our finite population game

framework adds complications due to the different roles that exist, i.e. the row and

column players have different payoff matrices. Furthermore, with asymmetric games

additional technical difficulties arise in the matching schemes. Given that players are

assumed to be drawn from a single finite population, the addition of separate roles

would require the matching technology to allocate these roles, i.e. whether a player is

a row or a column player, as well as randomly matching individuals in the population.
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Incorporating asymmetric games into our framework would be advantageous in

deriving results applicable to all finite population game, but it is our belief that taking

this approach would cause a pivotal aspect of the finite population setting to be lost;

namely, that individual players can discount their own play from the information

about average play of the entire population that is available to all players. In general

in order to be able to model asymmetric finite population games, it is necessary to

assume a multi-population set-up. In this approach one assumes that players fulfilling

different roles are drawn from separate populations. Therefore, the average play of

the population players that is relevant to, say, a row player, is the average play of the

entire population of column players. Note that the row player is not a member of the

population of column players.

Second, we focus on games with finite action sets for reasons of tractability, and

because it is these games that have been examined in detail in experimental settings.

Recall that one of the objectives of this research is to contribute to the literature on

population games by showing that experimental studies designed to test theoretical

findings of evolutionary game theory on populations games have, for practical reasons,

done so with finite populations. We wish to provide an additional justification to the

experimental evidence that suggests individual players seem to play pure strategies

in these experimental designs.

We will begin by considering the full class of symmetric 2x2 games, followed by
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consideration of a subset of the class of symmetric S x S anti-coordination games.

Finally, we study in further detail a sub-class of symmetric 3x3 anti-coordination

games.

2x2 Symmetric Pair Games

Consider a generic symmetric 2x2 game with the following payoff matrix:

A =

( \
an a12

«21 &22

(2.6)

We can normalise matrix A by subtracting an from the first column and a22 from

the second column, arriving at the following dynamically equivalent payoff matrix:

A' =

( \
0 a\

\ a2 0
(2.7)

The first thing to note is that the new matrix is symmetric. Therefore, and according

to Definition 2.3, we have a doubly symmetric 2x2 game with the payoff matrix

A'. It follows directly that any symmetric 2x2 game can be represented by a point

a = (ai,a2) E R2 on the plane. Therefore, we can easily categorise all symmetric

2x2 games into one of the following three categories (See Weibull 1995):5

5The cases where one or more inequalities are actually equalities are not considered, as they are
non-generic. As pointed out by (Borkar, Jain, and Rangarajan 1998), these cases are not difficult
to handle in the subsequent analysis.
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Dominant Strategy Games This corresponds to symmetric 2x2 games in the

northeast and southwest quadrant of the ai x a2 plane, i.e. where «ia2 < 0. It is

evident that in any symmetric 2x2 game of this type, strategy two strictly dominates

strategy one or vice versa. Therefore, all such games are strictly dominance solvable

and thus there exists a unique Nash equilibrium in pure strategies in the pair game.

The prototype example of a dominant strategy symmetric 2x2 game is the Prisoner's

Dilemma Game.

Example 2.1 Prisoner's Dilemma Game.

Player 2

Cooperate Defect

Player 1 Cooperate 4,4 0,5

Defect 5,0 3,3

The Prisoner's Dilemma Game is characterised by the dominant strategy of defect for

both players. Thus, there exists a unique Nash equilibrium in pure strategies, namely

(Defect, Defect).

Coordination Games This corresponds to symmetric 2x2 games in the southeast

quadrant of the oi x a2 plane, i.e. where a\ < 0 and a2 < 0. All such games in this

category have two symmetric pure strategy Nash equilibria and one asymmetric mixed

strategy Nash equilibrium where players play the mixed strategy (ai+a2' at+a2)'
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(57+aJ' a7+aj) resPectively- A well known example of this category of symmetric
2x2 game is the Stag-Hunt Game.

Example 2.2 Stag-Hunt Game

Hunter 2

Stag Rabbit

Hunter 1 stag 5,5 0,4

Rabbit 4,0 3,3

The Nash equilibria of the Stag-Hunt Game are {Stag,Stag), (Rabbit,Rabbit),

((|Stag, |Rabbit) , (\Stag, |Rabbit)).

Anti-Coordination Games This corresponds to symmetric 2x2 games in the

northwest quadrant of the a\ x a2 plane, i.e. a\ > 0 and a2 > 0. Again in this category

no strategy is dominated. However, here a player's best reply to a pure strategy is

to play the other pure strategy. Therefore, these games have two asymmetric strict

Nash equilibria and one symmetric mixed-strategy Nash equilibrium. The prototype

example in this category is the Hawk-Dove Game.
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Example 2.3 Hawk-Dove Game6

Player 2

Player 1 Fight

Fight Yield

(V~C) (V~C)
,, n

2 ' 2

Yield

The Nash equilibria of the Hawk-Dove Game are {Fight, Yield) , (Yield, Fight),

Remark It is this final category of symmetric 2x2 games that is predominantly

of interest. Using the standard analysis of evolutionary game theory, both dominant

strategy and coordination games have pure strategy evolutionary stable strategies

(ESS). In the 2x2 anti-coordination games, the ESS is strictly interior. In general

we shall now refer to anti-coordination games as those for which the following anti-

coordination condition holds:

Condition 2.1 The symmetric two player pair game with payoff matrix

Fight, Yield) , Fight, ^ Yield)).

( \
an <212 ais

<221 <222 <225
A = (2.8)

y <251 <252 ' ' " <255 J
6We presume that the cost of a fight exceeds the value of victory: c > v.
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is said to be an anti-coordination game if and only if it is diagonally subdominant.

That is, if

aaa < aap for all a ^ /3 and a, (3 € S (2.9)

There are two things worth noting about 2x2 symmetric pair games. The first is

that, as we have already addressed, all 2 x 2 symmetric pair games are in fact doubly

symmetric. This is a very important property that we shall make use of to show that

the finite population game with random matching, consisting of a 2 x 2 symmetric

pair game, admits a potential function and is, therefore, is a potential game (See

Section 2.3.1).

This crucial result allows us prove the convergence of behaviour in the population

game with boundedly rational agents learning in accordance with Erev and Roth

(1998) reinforcement learning (See Proposition 2.2).

The second point is that any 2x2 symmetric pair game that satisfies the anti-

coordination condition, Condition 2.1, has a fully interior ESS.

We shall see that these characteristics do not necessarily hold for all symmetric

anti-coordination pair games that satisfy Condition 2.1 and are larger than the

2x2 case. Specifically, although any finite population game with random matching

consisting of a double symmetric pair game can be shown to admit a potential
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function, for games with dimension three and greater this precludes the existence

of a fully interior mixed strategy ESS in the pair game. Furthermore, even if we relax

the double symmetry condition on the pair game, the anti-coordination condition does

not guarantee that the mixed strategy ESS of the pair game is indeed fully interior.

SxS Symmetric Pair Games

We can see from our study of the complete class of 2 x 2 pair games that the interesting

case is that of the anti-coordination game. Given this observation there is value in

determining if some of the same results apply to finite population games with larger

symmetric anti-coordination pair games.

Consider the generic symmetric SxS anti-coordination pair game, satisfying

Condition 2.1, with payoff matrix (2.8).

If this is the case, we can normalise matrix A by subtracting aaa from each column

a, for a = 1,2,...,S, without effecting the incentive dynamics, and arrive at the

following equivalent matrix:

( \

A' =

0 (O12 — CI22) • • •

(a2i — an) 0

1 (osi — O11) (ds2 — 022) • • •

(ois - ass)

(«2s ~ ass)
(2.10)
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where all payoff entries off the diagonal and strictly greater than zero, i.e. (apa — aaa) >

0 for every a and (3, a 8.7 Now let us consider the conditions for which there exists

a unique, interior, symmetric mixed strategy equilibrium to the symmetric S x S

anti-coordination pair game. First we must begin with the following definition.

Definition 2.4 Let denote the (5 — 1) x (S — 1) dimensional matrix where each

element ofQ, denoted by ojap, is a linear combination of elements from A.

— (®a/3 ®(a+l)/j) ®(a+l).s) (2-12)

The definition of fI is relevant because it allows us to explicitly state the conditions

on A that ensure the existence of a unique, interior, symmetric mixed strategy

equilibrium to the symmetric S x S anti-coordination pair game. We begin by stating

our two conditions on Q (and therefore on A).

Condition 2.2

detft^O (2.13)

This condition ensures that a mixed strategy equilibrium exists, although it could

exist on one of the boundaries. It is clear that in the case of the 2x2 anti-coordination

7Note that, as opposed to the generic symmetric 2x2 game, the normalised payoff matrix for
the generic symmetric 3x3 game is not necessarily doubly symmetric. The symmetric 3x3 game
is doubly symmetric if and only if a\ = — a22, 02 = «5 and 04 = a^, i.e.

/ 0 ai «2\
A' = ar 0 a4 I (2.11)

\ a2 a4 0 J
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pair game det £1 ^ 0; in fact it is always negative. This is not necessarily the case for

larger symmetric pair games.

Condition 2.3 For a — 1,2,... (5 — 1)

where Ca/3 (f2) denotes the (a,f3) cofactor of fh

This condition ensures that the symmetric mixed strategy is interior and is

equivalent to the condition on cofactors of an enlarged matrix as set out in Borkar,

Jain, and Rangarajan (2002).

We then follow by stating our proposition and proving that, if indeed these two

conditions are met, then the symmetric 5x5 anti-coordination pair game has a

unique, interior, symmetric mixed strategy equilibrium.

Proposition 2.1 The symmetric two player 5x5 anti-coordination pair game,

satisfying Condition 2.1 with payoff matrix (2.8), has only one mixed strategy Nash

equilibrium which is symmetric if, and only if, Condition 2.2 is satisfied. Furthermore,

the unique, symmetric mixed strategy equilibrium is a fully interior symmetric mixed

strategy equilibrium if Condition 2.3 is satisfied.8

8In addition it can be shown that symmetric mixed strategy equilibrium is the only Nash
equilibrium of the symmetric two player S x S anti-coordination pair game if suitable conditions
relating to the relative size of elements of the payoff matrix are satisfied.

(2.14)
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Proof We begin by calculating the symmetric mixed strategy equilibrium of the

two person game with payoff matrix A. By definition this occurs when the expected

payoff from playing each pure strategy is equal.

Therefore, the symmetric mixed strategy Nash equilibrium is precisely the solution

to the following simultaneous system:

As pointed put out by Hofbauer and Sigmund (1998), there exists one or no such

solution to this simultaneous system (2.15). Now note that:

(^X)a = E (2-16)
7=1

represents the expected payoff from playing pure strategy a given x. Since there are

only S strategies, we can substitute xs with 1 — E7=i xi and re-express (2.16) in the

following terms:

s-1

(Ax)q {cia-y ®as) *£7 T n«s
7=1

So the solution to the simultaneous system (2.15) occurs when:

s-i s-i

El iflai ®7 T &aS El ^fl01 ^0s) ~f" ®/3S

(Ax)i = (Ax)2 = ••• = (Ax)s (2.15a)

+ h X5 = 1 (2.15b)

xa > 0 for a = 1, 2,..., 5 (2.15c)



93

for all a, (3 £ S, a ^ (3. We can reduce the number of conditions by setting (3 = a + 1

for a = 1, 2,..., S — 1, namely:

s-1 s-i

yi (®a7 "I" <2.c*S (®(a+l)7 ®(a+l)s) •£7 ~t~ ®(a+l)S
7=1 7=1

Following some simplification we arrive at:

5-1

^ ^ [(<^0:7 *^(0+1)7) (^aS ^(a+l)s)] *^7 ®(a+l)S ^aS
7=1

Now note that for 1 < a, 7 < S — 1, a, 7 £ N, (aa7 — a(a+1)7) — (aas — «(a+i)s) is the

(a, 7) element of the (5 — 1) x (S — 1) dimensional matrix Q. Therefore we have:

(ft*)Q — U(q+1)5 — O-aS

If Condition 2.2 is satisfied, then fl has an inverse and therefore there exists a unique

solution for xa for a = 1, 2,, S1 — 1, namely:

1 5-1
•E°t

(lot 11 ^ J ^£*7 (^) (®(a+l)5 @as) (2*17)
7=1

If Condition 2.3 holds then:

xa > 0

for all a = 1, 2,, S — 1 and the symmetric pair game with payoff matrix (2.8) has a

unique interior mixed strategy Nash equilibrium. ■
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2.3 Learning in Finite Population Games

In this section we set out our methodological procedure to study finite population

games with random matching and boundedly rational agents who learn in accordance

with the Erev and Roth (1998) reinforcement learning model. To achieve this goal, we

first need to write down the expected motion of the ith player's strategy adjustment.

To achieve this task we begin by defining player f's payoff increment.

Let a1 (<f), yp) denote the expected increment to player z's propensity in period t

from taking action 5 given the aggregate actions taken by the remaining N— 1 players,

denoted by yp, where yp is a vector strategy profile. Note that the updating rule

in the Erev and Roth (1998) reinforcement-learning model is a function of realised

payoffs. However, the expected motion of the fth player's S strategy adjustment will

be a function of expected payoff increments. This is quantitatively and qualitatively

different from realised payoff increments.

To obtain analytical results from the application of the Erev and Roth (1998)

reinforcement learning model to finite population games with random matching, we

make use of results from the theory of stochastic approximation. In essence we

investigate the behaviour of the stochastic learning model by evaluating its expected

motion as t —> oc. In the case of the Erev and Roth (1998) learning model defined

by the choice rule (2.2) and updating rule (2.3), we can write down the expected

motion of the ith player's 5 strategy adjustment.
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Having accomplished this step, we can now state our main results.

Theorem 2.1 If agents in the finite population game with random matching consist¬

ing of the:

• 2 x 2 or,

• S x S column

anti-coordination pair game satisfying Conditions 2.1 to 2.3, employ the choice rule

(2.2) and reinforcement updating rule (2.3), then, with probability one, the Erev and

Roth (1998) reinforcement learning process converges to a pure Nash equilibrium of

the one-shot finite population game with random matching.

Furthermore, if the population size, N, is larger than a threshold level, N, then, with

probability one, the Erev and Roth (1998) reinforcement learning process converges to

a pure Nash equilibrium of the one-shot finite population game with random matching

that corresponds to the mixed strategy equilibrium of the pair game.

Theorem 2.2 If agents in the finite population game with random matching consist¬

ing of the S x S doubly symmetric anti-coordination pair game satisfying Conditions

2.1 to 2.2, employ the choice rule (2.2) and reinforcement updating rule (2.3),

then, with probability one, the Erev and Roth (1998) reinforcement learning process

converges to a pure Nash equilibrium of the one-shot finite population game with

random matching.



Furthermore, if the population size, N, is larger than a threshold level, N, then, with

probability one, the Erev and Roth (1998) reinforcement learning process converges to

a pure Nash equilibrium of the one-shot finite population game with random matching

that corresponds to the mixed strategy equilibrium of the pair game.9

Conjecture 2.1 If agents in the finite population game with random matching

consisting of the anti-coordination pair game satisfying Conditions 2.1 to 2.3, employ

the choice rule (2.2) and reinforcement updating rule (2.3), then, with probability

one, the Erev and Roth (1998) reinforcement learning process converges to a pure

Nash equilibrium of the one-shot finite population game with random matching.

Furthermore, if the population size, N, is larger than a threshold level, N, then, with

probability one, the Erev and Roth (1998) reinforcement learning process converges to

a pure Nash equilibrium of the one-shot finite population game with random matching

that corresponds to the mixed strategy equilibrium of the pair game.

In order to prove results of this type, we need to study the convergent behaviour

of the discrete time stochastic process, describing the expected strategy adjustment

of player z's choosing each of the actions available to them. In essence we need to

investigate the limit of this process as t —•» oo.

9The statement of Theorem 2.2 differs from Theorem 2.1 because, for doubly symmetric pair
games larger than 2x2, the unique symmetric mixed strategy Nash equilibrium of the pair game
is not fully interior; that is, it is on one of the boundaries of the strategy space. In these games the
symmetric mixed strategy equilibrium involves mixing over some, but not all, of the available pure

strategies.



To accomplish this task, we need to establish two main results: one positive and

one negative. Drawing these two results together will allow us to confirm our main

results, Theorems 2.1 and 2.2, and Conjecture 2.1, outlined above.

The first result we need to establish is the positive convergence result. Here we use

a result of Benai'm (1999, Corollary 6.6) to show that the stochastic process describing

the expected strategy adjustment of player z's choosing each of the actions will, in the

limit as t —> oo, converge asymptotically to one of the fixed points of the adjusted

replicator dynamics.

The second result we need to establish is the negative convergence result. We

employ two results of Hopkins and Posch (2005, Proposition 2 and 3) to demonstrate

that the stochastic process describing the expected strategy adjustment of player

z's choosing each of the actions will not converge to any fixed points that do not

correspond to a Nash equilibria of the one-shot finite population game with random

matching or to any corresponding Nash equilibria that are unstable under the adjusted

replicator dynamics.

Combined, these two results imply that the discrete time stochastic process

describing the expected strategy adjustment of player z's choosing each of the actions

will converge to the set of strict pure strategy equilibria of the one-shot population

game with random matching.
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2.3.1 Positive Convergence

In this stage we show that the discrete time stochastic process describing the

expected strategy adjustment of player i's choosing each of the actions converges

with probability one to one of the fixed points of the standard replicator dynamics.

Consider for a moment the behaviour of the following stochastic process (Benveniste,

Metivier, and Priouret 1990):

xt+1 -xt = 7tf (xt) + jtr/t (xt) + O ([7t]2) (2.18)

where xt lies in RN, E [rjt (xt) \xt] = 0 and 7( defines the nature of the gain in this

adaptive process. For our purposes 7t is interpreted as the step size of the learning

algorithm. In our analysis we wish to study the generic convergence properties of

stochastic processes of this form as t —> oo.

The nature of the gain is important in determining what inferences can be made

about the behaviour of (2.18) in the limit. The stronger results from the theory of

stochastic approximation apply to adaptive algorithms with decreasing gain; that is

stochastic processes with decreasing step size.

Definition 2.5 The stochastic process (2.18) is said to have decreasing gain if,

53 < 00 for some a > 1 where ^^71 = +00
t t
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For example a common step size of 7t = 1 /t would ensure that (2.18) has

decreasing gain. It emerges that as t —> oo, there is a close relationship between

the behaviour of stochastic processes (2.18) with a decreasing gain and the mean or

averaged ordinary differential equation of the stochastic process.

± = f(x) (2.19)

In particular it can be shown via Benai'm (1999, Corollary 6.6) that if (2.19) meets

certain criteria, the stochastic process (2.18) must converge with probability one to

one of the fixed points of the mean or averaged ordinary differential equation (2.19).

Theorem 2.3 (BenaTm (1999, Corollary 6.6)) If the dynamic process (2.19)

admits a strict Lyapunov function and processes a finite number of fixed points, then

with probability one the stochastic process (2.18) converges to one of these fixed points.

We now have a method of illustrating that the long-run behaviour of boundedly

rational agents, adjusting their strategies according to the Erev and Roth (1998)

reinforcement learning model, in the finite population game with random matching

converges to one of the fixed points of the mean or averaged differential equation

(2.19) associated with the vector of players' expected strategy adjustments.

In order to apply this general result, we must first identify the mean or

averaged differential system associated with players' expected strategy adjustment.

Furthermore, it must be shown that the mean or averaged differential system admits
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a strict Lyapunov function. Finally, we must establish that the mean or averaged

differential system possesses a finite number of isolated fixed points. In the next

three subsections we aim to demonstrate just that.

The Joint Dynamic System

One might hope that the standard replicator dynamics represent the mean or averaged

differential system derived from the discrete time stochastic process. Unfortunately,

the standard replicator dynamics do not for two simple reasons. First, in the Erev

and Roth (1998) reinforcement learning model the step size is endogenous. That is,

it is determined by the accumulation of payoffs and thus is not exogenously fixed.

Second, the step size is not a scalar.

In order to account for these discrepancies, let us introduce a common step size

of 7t = 1/t and N new variables filt, such that:

^t = Ql

We can now substitute itn\ for 1 jQ\ in our discrete time stochastic process describing

the expected strategy adjustment of player i's choosing each of the actions and arrive

at a corrected expected motion of the zth player's strategy adjustment.

Given Condition 2.1, suitable additions to columns can be made to allow all

payoffs in the symmetric pair game, and therefore the finite population game, to
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be positive. This ensures that choice probabilities are well defined, and it follows

that /j,\ is bounded away from zero. Furthermore, since n\ = t/Q\ equals the inverse

of the average payoff in the limit as t —> oc, it follows that the associated mean

or averaged differential equation (2.19) associated with the corrected discrete time

stochastic process is equivalent to the adjusted replicator dynamics in equilibrium.

This is extremely useful because there are a variety of results in the literature on

the equilibrium behaviour of the adjusted replicator dynamics (see Fudenberg and

Levine 1998, Hopkins 2002). We shall revisit some of these findings later in proving

Theorems 2.1 and 2.2, and establishing our evidence for Conjecture 2.1.

Because each /ilt varies over time, we require a further set ofN equations describing

the discrete time stochastic process of /i\. Using the method we previously employed

to write player i's expected strategy adjustment of each action, we need to find the

expected change player i's step size.

Once the mean or averaged differential equation, derived from the discrete time

stochastic process describing the expected strategy adjustment of player i's choosing

each of the actions, has been corrected for the endogenous and non-scalar step size, we

arrive at a corrected mean or averaged differential. This system consists of 2N (S — 1)

differential equations with 2N (S — 1) endogenous variables describing the evolution

of player i's strategy adjustment in the finite population game with random matching.

Let us refer to this as the joint dynamic system.



102

Admission of a Strict Lyapunov Function

We must show that the associated mean or averaged ordinary differential system, the

joint dynamic system, admits a strict Lyapunov function. Let us begin with some

definitions.

Definition 2.6 Let (2.19) be an ordinary differential equation defined on some subset

Y of RiV. Let V : Y —» R be a continuously differentiable function. Furthermore, let

y be a fixed point ofV (y). V (y) is a Lyapunov function if,

V (y) > 0, V y € Y and (2.20a)

V(y) = 0, V yeO (2.20b)

where 9 is the set of fixed points of (2.19).

Definition 2.7 A strict Lyapunov function is a Lyapunov function V (y) such that:

V(y)> 0, V y£9 (2.21)
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In general it can be difficult and time consuming to identify a suitable Lyapunov

function for a particular system. It is often a process of trial and error. An approach

to this aspect of the problem developed in the existing literature on the convergence

of learning models in games has been to explicitly derive a suitable function for

V (cci) and then show that it admits a strict Lyapunov function. In theory, but not

always in practice, this can be accomplished by first assuming that V (xi) admits a

strict Lyapunov function. If this is the case, then the partial derivative dV (x\) /dx\

represents the expected payoff increment to player i from Strategy 1.

Proposition 2.2 The finite population game with random matching consisting of

2x2 symmetric pair games admits a strict Lyapunov function, a potential function,

and therefore is a potential game.

Proof The replicator dynamics for a 2 x 2 population game consisting of the

symmetric 2x2 pair game admits the Lyapunov function Vo (x\).

N

x\ < 1(7.1 -t- n.r,)

i=1

V (Xl) = 1 (fll +0t2)

dV (x\)

\ /

a<2

(ai + af)

dx\
— («i + ^2) N -I

xJ -

ai

(ai + 02)

(2.22)

(2.23)

Furthermore, the system admits a strict Lyapunov function since it is easily verified

that for any fixed point of the replicator dynamics V (x\) = 0 and for all other points
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V{x[) > 0.

Tw i\ dV (x\) .iv^ = -£r'Xi
(ai + 02) N — 1 E xJ —

02

= x1! (l - x\) («! + a2) N -

(ai + 02)

^tE ^j _

&2

i/i (ax + a2)
> 0 (2.24)

This is a very important result for finite population games with random matching

comprising of 2 x 2 symmetric pair games. Critically, the result depends on the fact

that the payoff matrix of the pair game is symmetric. It is possible to extend this

result to all population games with random matching that involve doubly symmetric

pair games.

Proposition 2.3 Any finite population game with random matching comprising a

doubly symmetric pair game is a potential game.

Proof Given that any potential game admits a potential function, the admission

of a potential function is equivalent to the admission of a strict Lyapunov function.

Consider the following function:

N

n = J^xMx-i (2.25)
i=i

where >1 = AT, x* = (sj, x\,..., xjj, x-i = {x^\xf\ ...,x~Nl) and xj* = 7731 xr
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If II (x*) represents a strict Lyapunov function for the finite population game with

random matching, then Conditions (2.20) and (2.21) will be satisfied. Note that:

+ (f^T) <2-26'j^i

By assumption A = A'1, therefore x3A = Ax3,

N
an

<9x®
jA

= AST* + A

= A*~' +E-^GvTT
jA /

= Ax-* + Ax~*

= (2A) xT*

Since A = AT, A — 2A is a doubly symmetric matrix:

S-^
It is easily verified that n (x®) satisfies both Conditions (2.20) and (2.21),

m-g*

= x"Mx' [(Ax'*) - x®^*"*]

= 5TV (A ■ A) x~* - x—®x® (A ■ A) x®x—® > 0

and, therefore, any finite population game with random matching comprising of a

doubly symmetric pair game is a potential game. ■
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Furthermore, it can be shown that all finite population games with random

matching comprising of column anti-coordination pair games, admit a potential

function.

Definition 2.8 A column anti-coordination pair game is defined as a symmetric two-

player pair game satisfying Condition 2.1 where all elements of each column off the

diagonal are equal.

( \

A

an a?

a\ a22

as

as

y ai a2 ••• ass j

(2.27)

Proposition 2.4 Any finite population game with random matching comprising a

column anti-coordination pair game is a potential game.

Proof Begin by noting that the payoff matrix for any column anti-coordination

pair game (2.27) can re-scaled by subtracting the diagonal element in each column

from that column, and then subtracting the common value off the diagonal in each
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column for every column. We arrive at a the following diagonal matrix:
/ \
(in — ®i 0 0

0 a22 — 0,2 0

\
0 0 ... ass — os i

By assumption the payoff matrix for the column anti-coordination pair game (2.27)

satisfies Condition 2.1. Therefore, each element on the diagonal is less than zero.

The structure of the payoff matrix now defines a pure congestion game, and it follows

directly from the result of Monderer and Shapley (1996, Theorem 3.1) that the column

anti-coordination pair game is a potential game and, therefore, admits a potential

function. Furthermore, any finite population game with random matching comprising

a column anti-coordination pair game is a potential game. ■

We do not have such a result for the larger class of symmetric pair games that

are not doubly symmetric or column anti-coordination pair games. We do, however,

have the following conjecture:

Conjecture 2.2 All finite population games with random matching comprising of

anti-coordination pair games satisfying Condition 2.1 are isomorphic to congestion

games.

The ability to prove Conjecture 2.2 to be true would be a significant step

towards providing a general result for the application of the Erev and Roth (1998)
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reinforcement learning model to finite population games with random matching and

symmetric anti-coordination pair games. This follows directly from the result of

Monderer and Shapley (1996, Theorem 3.1).

Fixed Points of the Joint Dynamic System

Definition 2.9 The fixed points are the rest points of the joint dynamic system.

We now need to show that the joint dynamic system possesses a finite number

of isolated fixed points. The fixed points of the N (S — 1) equations describing the

evolution of the step size occur when either the step size is zero or a value which is an

inverse function of the average play of the remaining (N — 1) players and expected

payoff increments. By assumption, all payoffs are positive, therefore JiL is bounded

away from zero. This means that the fixed points of the joint dynamic system with

/? = 0 are always unstable (see Hopkins 2002, Duffy and Hopkins 2005) and, therefore,

are never asymptotic outcomes. We can now concentrate on the case where the step

size is an inverse function of the average play of the remaining (N — 1) players and

expected payoff increments.

Consider the first N (S — 1) equations of the joint dynamic system. Once we

substitute for JT and multiply both sides by the denominator, we arrive at a reduced

form of the joint dynamic system consisting of N (S — 1). This implies that the

fixed points of the joint dynamic system are exactly the same as those under the
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adjusted replicator dynamics and, consequently, the standard replicator dynamics.

The characterisation of the fixed point of the standard replicator dynamics is well

known (see Weibull 1995) and consists of the union of all pure states and Nash

equilibria of the underlying game.

We also need to demonstrate that the set of all Nash equilibria of the underlying

game, the one-shot finite population game with random matching, is finite. Note that

there are three types of Nash equilibria of the underlying game, namely:

• Pure Strategy Nash Equilibria

Nash equilibria where all players play a pure strategy.

• Symmetric Mixed Strategy Nash Equilibria

Nash equilibria where all players play a mixed strategy.

• Asymmetric Mixed Strategy Nash Equilibria

Nash equilibria where some players play a pure strategy and the remaining play

a mixed strategy.

If the set of all Nash equilibria of the underlying game is finite, the joint dynamic

system will possess a finite number of fixed points. To be absolutely clear, the fixed

points of the joint dynamic system consist of the following:
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• Pure strategy Nash equilibria

These are the pure states of the joint dynamic system that correspond to the

pure strategy Nash equilibria of the underlying game.

• Symmetric mixed strategy Nash equilibrium

This is the full interior state of the joint dynamic system that corresponds to

the symmetric mixed strategy Nash equilibria of the underlying game. That is,

the Nash equilibrium where all players play a mixed strategy best response.

• Asymmetric mixed strategy Nash equilibria

These are boundary states of the joint dynamic system that correspond to

asymmetric mixed strategy Nash equilibria of the underlying game. By

boundary states we mean those where a subset of the N players play a mixed

strategy best response, while the remainder play a pure strategy.

• Fixed points that are not Nash equilibria

Not all fixed points of the joint dynamic system correspond to Nash equilibria

of the underlying game. There are pure states of the joint dynamic system that

do not correspond to pure strategy Nash equilibria of the underlying game.

Note that it is not possible to have interior fixed points or fixed points on some
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boundary of the state space of the joint dynamic system that do not correspond

to Nash equilibria of the underlying game.

Positive Convergence

Once we have shown that the joint dynamic system admits a strict Lyapunov function

and that it possesses a finite number of fixed points which are identical to those

of the standard replicator dynamics, we can apply Theorem 2.3, Benai'm (1999,

Corollary 6.6). Application of this theorem proves that the discrete time stochastic

process describing the expected strategy adjustment of player z's choosing each of the

actions converges to one of the fixed points of the standard replicator dynamics.

2.3.2 Negative Convergence

In the second part of the proof of the main results, we show that the discrete

time stochastic process describing the expected strategy adjustment of player z's

choosing each of the actions does not converge to any equilibria corresponding to Nash

equilibria of the underlying game which are unstable under the adjusted replicator

dynamics or equilibria that do not correspond to a Nash of the underlying game. We

show this in two steps.

First, we show that the stability properties of a fixed point of the joint dynamic

system are entirely determined by the stability properties of the corresponding fixed
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point under the adjusted replicator dynamics. We then determine the stability

properties of the Nash equilibria under the adjusted replicator dynamics. We conclude

that only the strict pure strategy Nash equilibria are stable under the adjusted

replicator dynamics. We then employ Hopkins and Posch (2005, Proposition 2) to

show that the discrete time stochastic process, which describes the expected strategy

adjustment of player Vs choosing each action, cannot converge to any fixed point that

is unstable under the adjusted replicator dynamics.

Second, we employ Hopkins and Posch (2005, Proposition 3) to demonstrate that

the discrete time stochastic process describing the expected strategy adjustment of

player z's choosing each of the actions cannot converge to any fixed point that does

not correspond to a Nash equilibria of under the underlying game. Therefore, we

have our negative convergence result.

Unstable Equilibria in the Adjusted Replicator Dynamics

Definition 2.10 A fixed point of the joint dynamic system is unstable if its

linearisation evaluated at x has at least one eigenvalue with a positive real part.

Theorem 2.4 (Hopkins and Posch (2005, Proposition 2)) Let x be a Nash

equilibrium that is linearly unstable under the adjusted replicator dynamics. Then the

Erev and Roth (1998) reinforcement learning process defined by choice rule (2.2) and
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the updating rule (2.3) asymptotically converges to one of these points with probability

zero.

Lemma 2.1 The stability properties of the fixed points of the joint dynamic system

are entirely determined by the stability properties of the corresponding fixed points of

the adjusted replicator dynamics.

What this series of result implies is that in order to determine the stability

properties of the fixed points of the joint dynamic system, we only need to study

are the stability properties of the fixed points of the adjusted replicator dynamics

that correspond to Nash equilibria of the underlying game.

Lemma 2.2 The fixed points of the adjusted replicator dynamics corresponding to

the strict pure strategy Nash equilibria of the one-shot finite population game are

asymptotically stable.

Proof Given that the pure strategy Nash equilibria are strict, they constitute

evolutionary stable strategies of the one-shot population game with random matching.

By Weibull (1995), all evolutionary stable strategies are asymptotically stable under

the replicator dynamics. ■

Lemma 2.2 is very useful as we can show that finite population games with

random matching, comprising a symmetric anti-coordination game satisfying certain
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Conditions 2.1 to 2.3 plus an additional condition on the structure of the payoff

matrix (2.8), will generically admit a strict pure strategy. If there exists a division

of the population that is close enough to the mixed strategy Nash equilibrium of the

anti-coordination pair game, then there exists a strict pure strategy Nash equilibria

in the one-shot finite population game with random matching.

The following theorem demonstrates that the 2x2 finite population game with

random matching consisting of the 2x2 anti-coordination pair game admits a strict

pure strategy Nash equilibrium in pure strategies.

Theorem 2.5 Consider the symmetric 2x2 anti-coordination pair game with the

following payoff matrix:

A =

y a2 0
, where aj > 0 Vj (2.28)

There exists a strict pure strategy Nash equilibrium in the finite population game with

N players, N e 2N, who are randomly matched to play the pair game if there exists

4> € N such that

xl(N-l) <0<x;(JV-l) + l (2.29)

where (x\, (1 — #J)) denotes the symmetric mixed strategy Nash equilibrium of the pair

game.
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Proof Begin by assuming that all players in a population of N players are playing

pure strategies. Let <p= (<£h > V2) be the proportion of players playing pure strategy

1 and 2 respectively. Given that there are only two pure strategies, tp2 = (1 ~ ¥>i)-

Note that N<p1,N(p2 € N represents the number of players playing pure strategy 1

and 2 respectively in the finite population game.

In order to demonstrate that there exists a pure strategy Nash equilibrium in the

finite population game with N players, N € 2N, who are randomly matched to play

the symmetric 2x2 anti-coordination pair game, it is necessary to demonstrate the

existence of a pure strategy profile in the population such that each player playing

each pure strategy has no incentive to deviate.

We begin by stating the expected payoff to players playing each strategy and then

the payoff they would expect to receive if they deviated to the other pure strategy.

The expected payoff to a player playing pure strategy 1 is equal to the probability

that they will be matched with a player playing each pure strategy times the payoff

they would receive from each match.

Formally, the expected payoff to a player playing pure strategy 1 given the pure

strategies played by the remaining (N — 1) players is10

10Note that the probability of being matched with a player playing each pure strategy is a function
of (N — 1) because the player in question knows which one of the two pure strategies they are playing
themselves.
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Similarly, the expected payoff to pure strategy 1 players deviating to pure strategy 2

is

E[tti^alv] = /) a2

Therefore, a player playing pure strategy 1 has no incentive to deviate to pure strategy

2 if and only if E [dlv] > E [7Ti_2|<£>], 1-e-

(ai + a2) Vi < °i ^1 — ~^J + (ai + a2) (2.30)
Now let us consider the incentives for a player playing pure strategy 2. The expected

payoff to a player playing pure strategy 2 is

E[TT2\<P\ = °2

Similarly, the expected payoff to players playing pure strategy 2 deviating to pure

strategy 1 is

Sbr2~,M=(JY(1~!'11>~1)<»1
Therefore, a player playing pure strategy 2 has no incentive to deviate to pure strategy

1 if and only if E [7r2|y>] > E [7r2_i|y>], i.e.

(ai + a2) (fii > oq ^1 — — ^ (2-31)
Since by assumption, Oi + a2 > 0, we can divide both inequality (2.30) and (2.31) by

d + a2, which implies that for a pure strategy Nash equilibrium to be supported in
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the finite population game

Given that i? = 'f1 , it follows that:1 a\+az'

(^v) + (v)
In conclusion a pure strategy Nash equilibrium in the finite population game may be

supported if there is no incentive for players playing either pure strategy to deviate

from playing their chosen pure strategy. In other words a strict pure strategy Nash

equilibrium exists in the population game if there exists a division of the population

of players playing each pure strategy that is sufficiently close to the symmetric mixed

strategy Nash equilibrium of the pair game, i.e. if there exists cj> e N, such that

x\{N - 1) < 0 < x* (N - 1) + 1, where 0 < 0 < N (2.32)

We have proven the existence of a strict pure strategy Nash equilibrium in the finite

population game consisting of N players, N £ 2N, who are randomly matched to play

the pair game with payoff matrix (2.28). ■

Theorem 2.5 says that if there exists a division of the population that is close

enough to the mixed strategy Nash equilibrium (x\,l — x\) of the symmetric 2x2

anti-coordination pair game, then there exists a strict pure strategy Nash equilibrium

in the finite population game.11
nNote that if this is not the case, i.e. in a non-generic set-up where (N — 1) and (N - 1)+ 1 €

N, then there exists an infinite number of asymmetric mixed strategy Nash equilibria where all players
except one play an appropriate pure strategy and the final player is indifferent between each pure
strategy. In this case any pure strategy Nash equilibria are non-strict.
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We have proven that the one-shot 2x2 finite population game with random

matching comprising of the 2x2 anti-coordination pair game admits strict Nash

equilibria in pure strategies. Given this observation it would be interesting to

determine if this result extends to finite population games with random matching

comprising of larger symmetric anti-coordination pair games.

The next stage of our analysis is to state the set of conditions which will ensure

that the one-shot finite population game with random matching composed of the

S x S anti-coordination pair game admits a strict pure strategy Nash equilibrium.

Theorem 2.6 Let n = (711,71,2,713,...,ns), where na € N and na — N, denote a

pure strategy profile of the finite population game consisting of N players randomly

matched into pairs to play the symmetric S x S anti-coordination pair game with the

following payoff matrix:

(

A =

\
an ai2 a-is

&21 &22 • • • 025

y asi as2 j

The pure strategy profile n = (rii, n^) n%,..., ns) is a strict Nash equilibrium of the

one shot S x S anti-coordination finite population game if, for every pure strategy a,

such that na 7^ 0, the following lS^2~1^ double-inequality conditions are satisfied for all

ass
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0 ^ a:

a0a < {An)a - {An)0 < aa0 - a00 (2.33)

Proof By assumption n = (m, n2, n3,ns), where na € N and ^2S na =

denotes a pure strategy profile of the finite population game consisting of N players

randomly matched into pairs to play the symmetric two player S.xS anti-coordination

pair game with payoff matrix A.

Given the pure strategies played by the other players in the population, the payoff

a player playing pure strategy a would expect to receive, denoted E [irQ |n], is equal

to the payoff a player playing pure strategy a would receive if they were matched

with a player playing pure strategy 7 times the probability that a player playing pure

strategy a is matched with a player playing pure strategy 7 summed over all possible

matches. Therefore,

s

E [7tq |n] = aai Pr (a player is matched with a 7 player |n)
7=1

Therefore
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Assuming the remaining players in the population continue to play their respective

pure strategies, the payoff a player playing pure strategy a deviating to pure strategy

P would expect to receive, denoted E [7Ta->p |n], is

Thus, a player playing strategy a has no incentive to deviate to strategy j3 if and only

E[na |n] > E [na^ |n]

It follows that the pure strategy profile n is a strict pure strategy Nash equilibrium

if, for every pure strategy a, the following conditions are satisfied for all ft ^ a:

(An)a - {An)p > (aaa - a0Oc)

Given that the term (An)Q — (An);3 appears in the condition that requires that a

player playing strategy a has no incentive to deviate to strategy /3 and vice versa,

s

E [na-,/3 |n] = a/37 Pr (/3 player is matched with a 7 player |n)
7=1

Therefore,

if
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we can express the S (S — 1) inequality conditions as the s^s„ ^ double inequality

conditions (2.33).

We have now stated the set of double inequality conditions that must be satisfied

to ensure the existence of a strict pure strategy Nash equilibrium in the population

game
12

Condition 2.4 For any payoff matrix A that satisfies Condition 2.1, and for all

a, f3 such that \a — f3\> I, let
3-1

^ y ^(7+1)7 If ^ P
&OC0 F: <

7=a
0-1

^ V ^7(7+1)
7=a'

This condition ensures that for any symmetric two player S x S anti-coordination

pair games the sum of the elements on the upper or lower diagonal is always greater

to or equal to the elements in the upper or lower corners of the payoff matrix A,

i.e. those elements of payoff matrix A not in either diagonal adjacent to the centre

diagonal. This condition is important because it allows us to generalise our proof of

the existence of strict pure strategy Nash equilibria in S x S anti-coordination finite

population games for pair game payoff matrices with dimensions higher than 3x3.
12For doubly symmetric pair games not satisfying Condition 2.3, it is actually a subset of the

S (S — 1) inequality conditions that must be satisfied to support a strict Nash equilibria in the
corresponding finite population game with random matching.
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At this point it is interesting to note that although Borkar, Jain, and Rangarajan

(2002) provide evidence that larger than 3x3 anti-coordination finite population

games admit strict pure strategy Nash equilibria, they never explicitly state that

Condition 2.4 must be satisfied for these 5 x 5 anti-coordination pair games. The

following theorem will show that this is a necessary condition in order to reduce the

s^s2~^ double inequality conditions (2.33) to the 5—1 double inequality conditions

for a = 1,2,..., 5—1.

We now state our next result which allows us to reduce the double inequality

conditions (2.33) to the 5—1 double inequality conditions for a — 1,2,..., 5—1.

r

Theorem 2.7 If for payoffmatrix A, Condition 2-4, is satisfied we can represent the

s^s~^ double inequality conditions (2.33) with the following 5—1 double inequality

conditions for a = 1, 2,..., 5 — 1:

^(a-f-l)a ^ (An)Q — (-^n)^ ^a(a-1-1) ^(a-t-l)(o-f-l) (2.34)

Proof Begin by letting P — a+1, where a — 1,2,..., 5— 1, in the double inequality

conditions (2.33). This gives us the 5 — 1 double inequality conditions (2.34), where

a = 1,2,...,5- 1.

It should be apparent that this smaller set of double inequality conditions do not, on
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their own, ensure that the original set of double inequality conditions (2.33) hold for

every pure strategy a, such that na 7^ 0, and every pure strategy /3, such that (3 ^ a

and (3 ^ a + 1. In fact the 5—1 double inequality conditions (2.34) only ensure that

the double inequality conditions (2.33) hold for all a and j3 where (3 = a + 1.

Let us assume that this is not the case and that (3 — a + S, where S £ N. To support

a strict pure strategy Nash equilibrium, the following condition, among others, would

have to be satisfied:

Q/(a+S)a ^ ®a(a+5) ®(a+5)(oi+i5) (2.35)

By summing over the 5 — 1 double inequality conditions (2.34) we can re-write (2.35)

as

P~ 1 P-1 / X P-1

^2 (o77 — a(7+i)7) < ^2 ((^n)7 — (-^n)(7+i) J < ^2 (a7(7+i) ~' a(7+i)(7+i)) (2.36)
7=a 7=a 7=a

From the double inequality conditions (2.33) we know that
P-1

®/3Q ^ ^ ^ (fl77 d(7^_i)7)
n (2-3?)

aa/3 — aPP 5 ^ ^ (a7(7+l) — fl(7+l)(7+l))
7=a

Given that (2.37) are satisfied by Condition 2.4 for any payoff matrix which satisfies

Condition 2.1, it follow that the double inequalities must hold (2.35) if the

5—1 double inequality conditions (2.34) are satisfied. ■

Since not all n7 are independent, we can rewrite the above double inequality

conditions (2.34) in terms of n = (ni, n?, n3,..., ris-i) by substituting for ns =
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A,r — (rii + ri2 + n3 + • • • + ns-1). This gives us the following 5 — 1 double inequality

conditions:

Note by Definition 2.4,

5-1

fin ^ ^ ((^cry ^<(<*+1)7) (®a5 ®(a+l)5)) ^7 (2.39)
7=1

where fl is a S — 1 dimension square matrix. If fl has an inverse, we can isolate for n

and obtain 5—1 double inequality conditions bounding na. Note that fl"1 existence

depends only on the payoff matrix A, and not on N. Furthermore, by Proposition

2.1, fl does in fact have an inverse since Condition 2.2 must be satisfied. We can now

solve explicitly for na for a = 1,2,, 5 — 1.

(®aa a+Vjot) (®aS ^(a+ljs) N
5-1

(2.38)
7=1

(®a(a!+l) (aa5 ®(a+l)5) -N

7=1

< na <

5—1

7=1
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^ s-1 5-1
det Q <~7*7 (a7s a('y+1)s) ^ det Q ^Q7 (^) (a7(7+l) a(7+l)(7+l))

7=1 7=1

< na <

^ s-1 ^ 5-1
q ^£*7 (^) (a7S ~~ ®(7+l)S) ^ — detfj^ <^'0:7 ^°77 ~~ a(7+1b)

7=1 7=1

We can now substitute equation (2.17) from the proof of Proposition 2.1 to arrive at

1 ^XaN —
^ Ca7 (^) (a7(7+l) — a(7+l)(7+l))

7=1

<na< (2.40)

1 S_1
XaN — ^ " Gary (^) (fl77 ~ ^(7+1)7)

7=1

We can then rewrite (2.40) so that we have na bounded in a finite interval, whose

location is dependent on the number of players, N, and whose size is depends only

on the payoff matrix A, and not N.
5-1

det Q
Xa (N 1) + y ' Ca7 (f2) ((u7S ^(7+1)5) (fl7(7+l) a(7+l)(7+l)))

7=1

< na <

1 5-1
Xa (JV-1) + det E Ca-y (fl) ((a^s a(7+l)s) (U77 Cl(7-|-1)7))

7=1

At this stage we have demonstrated that there are a set of conditions on the payoff

matrix of the pair game that guarantee the existence of strict Nash equilibria in the

finite population games with random matching.

Finally, we must show that all the remaining Nash equilibria in the one-shot

finite population game with random matching are asymptotically unstable under
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the adjusted replicator dynamics. This set consists of the fully symmetric mixed

and asymmetric mixed strategy Nash equilibria in the one-shot population game

with random matching and any other pure strategy equilibria of the one-shot finite

population game with random matching that do not correspond to the mixed strategy

equilibrium of the pair game in frequencies.

First, we show that all fully symmetric mixed and asymmetric mixed strategy Nash

equilibria in the one-shot population game with random matching are asymptotically

unstable under the adjusted replicator dynamics. Fortunately, it is not difficult to

show that this is the case (see Weibull 1995).

Second, we need to demonstrate that if N is large enough, N > N, then any other

pure strategy equilibria of the one-shot finite population game (that do not correspond

to the mixed strategy equilibrium of the pair game in frequencies) are unstable under

the adjusted replicator dynamics. Borkar, Jain, and Rangarajan (1998) have made

some progress with regard to this issue for 3 x 3 anti-coordination pair games.

Example 2.4 This is what the general bounds on na for the 3x3 anti-coordination

matrix look like:

*(IST Fi (ai3 ~ 1112 ~ a23)(°23 + °32)xiV-'v l) +

< Hi < (2.41)

x{(N- 1) + det f2
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x'2(N-l) + (a 13 — ai2 — Q-23) (0*21 — a-23 ~ Q31)
det 12

<n2 < (2.42)

x$(JV-l) + (a3i — q2i — 0,32) (^23 ~ Q13 ~ Q2i)
det 12

Remark It is useful to mention here that the existence of the two double inequality

conditions for the finite population game comprising of the 3x3 anti-coordination

game does not necessarily imply a unique, strict, pure strategy Nash equilibrium

profile. It would be possible to add further restrictions onto the structure of the

payoff matrix on the pair game to ensure the profile is unique.

Non-Nash Fixed Points of the Joint Dynamic System

Theorem 2.8 (Hopkins and Posch (2005, Proposition 3)) Letx be a fixed point

of the replicator dynamics which is not a Nash equilibrium. The Erev and Roth (1998)

reinforcement learning process, defined by the choice rule (2.2) and the updating rule

(2.3), asymptotically converges to one of these points with probability zero.

Therefore, the discrete time stochastic process describing the expected strategy

adjustment of player z's choosing each of the actions cannot converge to any fixed

point not corresponding to a Nash equilibrium under the underlying game.
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Negative Convergence Result

Proposition 2.5 The discrete time stochastic process describing the expected strategy

adjustment of player i's choosing each of the actions converges with probability zero

to equilibria corresponding to Nash equilibria of the underlying game which are

unstable under the adjusted replicator dynamics or equilibria not corresponding to

Nash equilibria of the underlying game.

Proof The result follows from Theorem 2.4, Hopkins and Posch (2005, Proposi¬

tion 2), and Theorem 2.8, Hopkins and Posch (2005, Proposition 3). ■
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2.4 Simulations

It has not been possible to arrive at a definitive result proving that long-run behaviour

of boundedly rational agents, learning in accordance with the Erev and Roth (1998)

reinforcement learning model, converges to a pure strategy state in finite population

games with random matching comprising of anti-coordination pair games. Therefore,

we must now explore further, through the use of simulations, the convergence

properties of the discrete time stochastic process describing the expected strategy

adjustment of player z's choosing each of the actions. Borkar, Jain, and Rangarajan

(1998) take this approach and have produced evidence from simulations that suggests

that in finite population games with random matching, learning does converge to the

set of pure strategy equilibria.

Under certain conditions our evidence from simulating the learning environment

suggests individual agents tend to specialise. Each pure strategy is played by at least

one agent, therefore the population as a whole retains its diversity so as the aggregate

outcome in the population mimics the mixed strategy equilibrium of the pair game

in frequencies.

In the following three subsections we present some indicative data from our

simulations for 2 x 2 and 3x3 anti-coordination finite population games with random

matching.
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2.4.1 2x2 Anti-Coordination Finite Population Games

Consider the Hawk-Dove pair game with c = 6 and v = 2.

Player 2

Fight Yield

Player 1 Fight -2,-2 2,0

Yield 0,2 1,1

Once we normalise the payoff matrix to ensure that all elements are positive we have

'
A =

0

2 0

We know that the symmetric mixed strategy equilibrium in the pair game is (§,§)•

Therefore, with a finite population of six players we would expect two players in the

population to converge to the pure strategy 'fight' and four to 'yield'. We can see

that in the following simulation with a step size of 0.15 and one-hundred repetitions

this is indeed the outcome (See Figure 2.1).

Simulations were run for a whole series of 2 x 2 anti-coordination finite population

games with random matching, and the outcome in all case was that long-run behaviour

converged to pure strategy states.
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Figure 2.1: Simulation of the Hawk-Dove Finite Population Game

2.4.2 3x3 Anti-Coordination Finite Population Games

Consider the 3x3 anti-coordination pair game with the following normalised payoff

matrix:

/ \
0 108 324

432 0 108

108 405 0

Engle-Warnick and Hopkins (2006) have show in their experimental paper inves¬

tigating learning with fixed matching that the pair game has a unique interior mixed

strategy equilibrium with relative probabilities (17,20,24)/61 ~ (0.279,0.328.0.393).

It can he shown that there exists a pure strategy profile in the finite population game
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with random matching and eighteen players. This profile sees five players converge to

playing the first pure action, six to the second and seven to the third; which is what

we see in the simulations. An example run with a step size of 0.01 and one-hundred

and fifty repetitions can be seen in Figure 2.2.

Figure 2.2: Simulation of the 3x3 Anti-Coordination Finite Population Game

As can be seen from these example simulations and other simulations that we

have run, long-run behaviour consistently converges to the pure strategy profile of

the one-shot finite population game with random matching.^
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2.5 Conclusion

The intuition behind our results is that the choice ofmatching protocol and population

setting can transform a strategic game with interior evolutionary stable strategies

to one with strict pure strategies which have been shown in the literature to be

evolutionarily stable.

The main conjecture implies sorting and is crucially dependent on the fact that

the finite population games with random matching that we study are potential games.

Although we have demonstrated that 2x2 anti-coordination finite population games

are potential games, further work is required to extend these findings to general anti-

coordination finite population games. Given the evidence provided by our simulations,

we believe that there is a real possibility that a result could be proved which extends

to general anti-coordination finite population games.

We have shown that in 2 x 2 anti-coordination finite population games, learning

theory does predict sorting. We believe that this is an important conclusion, which

contributes to the literature. We feel that this prediction should be a consideration

when analysing data from laboratory experiments in economics on populations games.
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Appendix 2.A MATLAB Code

2.A.1 Code for 2x2 Finite Population Game Simulation

T= [Number of Periods];

N=[Population Size];

s=[Step Size];

A=[Pair Game Payoff Matrix];

all=A(l,1);

al2=A(l,2);

a21=A(2,1);

a22=A(2,2);

bl=all-a21-al2+a22;

b2=al2-a22;

x=zeros(T,N);

xib=zeros(1,N);

x(l,:)=rand(l,N);

for t=l:T

for i=l:N
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xib(i)=(sum(x(t,:))-x(t,i))/(N-l);

end

x(t+l,:)=x(t,:)+s*x(t,:).*(l-x(t,:)).*(bl*xib+b2);

end

plot(x(l:T,:))
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2.A.2 Code for 3x3 Finite Population Game Simulation

T=[Number of Periods];

N=[Population Size];

s= [Step Size];

A=[Pair Game Payoff Matrix];

all=A(l,1);

al2=A(l,2);

al3=A(l,3);

a21=A(2,1);

a22=A(2,2);

a23=A(2,3);

a31=A(3,1);

a32=A(3,2);

a33=A(3,3);

bl=(all-al3)-(a31-a33);

b2=(al2-al3)-(a32-a33);

b3=al3-a33;

b4=(a21-a23)-(a31-a33);

b5=(a22-a23)-(a32-a33);
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b6=a23-a33;

x=zeros(T,N);

y=zeros(T,N);

xib=zeros(l,N);

yib=zeros(l,N);

x(l,:)=rand(l,N)/2;

y(l,:)=rand(l,N)/2;

for t=l:T

for i=l:N

xib(i) = (sum(x(t,:))-x(t,i))/ (N-l);

yib(i)=(sum(y(t,:))-y(t,i))/(N-l);

end

x(t+l,:)=x(t,:)+s*(x(t,:). *(l-x(t,:)).

*((bl.*xib+b2.*yib+b3)))-s*(x(t,:).*y(t,:).*((b4.*xib+b5.*yib+b6)));

y(t+l,:)=y(t,:)+s*(y(t,:).*(l-y(t,:)).

*((b4.*xib+b5.*yib+b6)))-s*(x(t*y(t,:).*((bl.*xib+b2.*yib+b3)));

end

plot(x(l:T,:),y(l:T,:))
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This paper is an experimental study of individual learning in two types of finite

population games with random matching under two different information treatments.

The two games consist of a Hawk-Dove anti-coordination finite population game and

a 3 x 3 anti-coordination finite population game. Both of these games use random

matching and involve pair games that admit a unique symmetric mixed strategy

equilibrium. The pair games represent the two player games that are played once

subjects are matched into pairs.

Theories of learning are frequently being subjected to tests using data from

controlled laboratory experiments with paid human subjects. In our work we

contribute to this growing body of literature by testing how well the long-run

predictions of the Erev and Roth (1998) model of reinforcement learning, applied to

anti-coordination finite populations games with random matching, track the actual

behaviour of participants in laboratory environments.

We show that the theory of learning predicts that, under certain conditions,

play in finite population games with random matching should not only converge

to Nash equilibria, but that it should only converge to pure strategy Nash equilibria

of finite population games with random matching.1 These equilibria correspond, in

frequencies, to the symmetric mixed strategy Nash equilibrium of the pair game if

Specifically, we show that this is the case for all finite population games consisting of symmetric
2x2, doubly symmetric 5x5 and column 5x5 anti-coordination pair games.
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the pair game is an anti-coordination game and if the payoff matrix satisfies certain

conditions, as discussed in Chapter 2 and to be revisited in Section 3.2.

In the experiments subjects were allocated randomly and anomalously into groups,

or finite populations, to play a repeated finite population game with random pairwise

matching. In each round of the finite population game, subjects within each group

were randomly matched into pairs to play the symmetric two-player anti-coordination

game. This process was repeated over one-hundred rounds.

In total we ran six finite population games with random matching consisting of

one-hundred rounds for both the 2x2 Hawk-Dove anti-coordination game and the

3x3 anti-coordination game. These twelve games were run under the aggregate

information setting, where minimal feedback information was available to subjects.

We then ran five finite population games with random matching consisting of one-

hundred rounds for both the 2x2 Hawk-Dove anti-coordination game and the 3 x

3 anti-coordination game under a full information treatment, where more detailed

feedback information was available to subjects.

As one would expect, we found that behaviour varied across the games. In

aggregate in the populations, average frequencies of play converged very quickly to

the evolutionary stable strategies in the corresponding pair game. That is, average

frequencies of play looked very similar to those generated by Nash equilibrium play.

Previous experiments have reported similar findings; see for example, Friedman
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(1996), Cheung and Friedman (1998). Up to now, however, no studies that we are

aware of have explicitly looked for evidence that repeated play leads to convergence

to pure strategy Nash equilibrium in finite population games with random matching.

We investigate the hypothesis that, given sufficient repeated play and adequate

feedback, individual participants in experimental finite population games should learn

equilibrium behaviour. As Duffy and Hopkins (2005) point out, this type of claim

naturally raises the following two questions: what in practice is a sufficient number of

repetitions to allow participants to learn equilibrium behaviour and what is adequate

information to allow this process to occur?

With regards to the first question, in our experimental design we have chosen to

repeat the interactions one hundred times. This number of repetitions was chosen

based on the advice of other experimenters in the field, and because it is the most

rounds of play that could be carried out in a session without unduly pressurising

subjects to make choices, while still ensuring that we had a common number of

rounds across sessions and treatments. This number of rounds also allowed us to

complete our sessions within the time limit detailed by the recruitment rules of the

laboratory where we conducted our experiments.

Concerning the second question about adequate information, we followed the

experimental design as set out in Duffy and Hopkins (2005). In their research they

show that a simple reinforcement learning model and a more sophisticated model,
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referred to as stochastic fictitious play or hypothetical reinforcement learning have

the same long-run predictions, given a suitable number of repetitions. The two models

differ in terms of their sophistication, but under both play must converge to a pure

strategy equilibrium, commonly referred to as a sorting outcome. A sorting outcome

occurs when some players always choose one of the alternatives and others always

chose other alternatives, where no players play a mix over several of the alterative

actions. The reader should be reminded that even if these learning models accurately

predict decision behaviour, there is no guarantee that we will be able to see these

predicted outcomes in the time available in our experiment. It is entirely possible

that these predicted outcome would only be observable after several hundred, if not

several thousand, repetitions.

With this in mind, we adopted the following information treatments. First,

an aggregate information treatment where subjects were given information on the

number and share of members of their group who chose each available action. Second,

a full information treatment where subjects were given the precise decisions made by

each member of their group without identifying any group member individually. In

Duffy and Hopkins's (2005) investigations of market entry games, evidence suggests

that convergence occurs faster under the full information treatment than the aggregate

information treatment.

Previous experimental investigations of finite population games with random
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matching have focused on testing whether the mixed strategy equilibrium of the pair

game characterises the average frequencies of play in finite population games. The

data from some of these experiments (Friedman 1996) suggests a more heterogeneous

outcome, with some participants mixing between several choices and some playing a

pure strategy. However, the average frequencies of play in the finite population games

do converge to the mixed strategy equilibrium of the pair game.

In another relevant experiment in economics, Erev and Rapoport (1998) reported

that, in market entry games, for which learning theory also predicts convergence to a

sorting outcome, the speed of convergence towards Nash equilibrium levels increases

the more feedback information is available.

To summarise, in both the 2x2 Hawk-Dove finite population game with random

matching and the 3x3 anti-coordination finite population game with random

matching, and under both information treatments, we are testing the hypothesis

that individuals' play will converge to pure strategies. In other words we expect

to see a sorting outcome in the finite population. Furthermore, we are testing the

hypothesis that if more feedback information is available to individual participants,

then convergence to the predicted outcome will be faster.

Overall, evidence has been found to support our first hypothesis in the 2x2

aggregate information treatment. However, the strength of this evidence diminishes

as we move to the 3x3 aggregate information treatment and both the 2x2 and 3x3
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games under the full information treatment. We do, however, still see some evidence

in all four treatments of players converging to playing pure strategies. We hypothesise

that the complexity of the games themselves might be limiting our ability to observe

convergence to sorting outcomes in the time available.

The next section, Section 3.2, of the paper details our theoretical predictions of

learning theory in finite population games with random matching consisting of 2 x 2

and 3x3 anti-coordination pair games. In Section 3.3 we detail the experimental

design and procedure. In Section 3.4 we present our results. In the final section,

Section 3.5, we discuss our results in further detail and provide some concluding

remarks.
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Before we outline our theoretical predictions for the long-run behaviour of individuals

in anti-coordination finite population games with random matching who learn in

accordance with the Erev and Roth (1998) model of reinforcement learning, let us

formally define the finite population game and anti-coordination finite population

game.

Definition 3.1 The finite population game with random matching is defined as the

infinitely repeated game where, in each period, all members of a finite population of

players are randomly matched into pairs to play a symmetric two-player simultaneous

move game. All players realise their payoffs and are returned to the population pool,

to play the same symmetric two-player game again in the next period against another

randomly drawn player.

Definition 3.2 The anti-coordination finite population game with random matching

is defined as the finite population game with random matching where the pair game

satisfies the following conditions:

Condition 3.1 The payoffmatrix of the pair game is diagonally sub-dominant. That

is, for payoff matrix A,

&aa < o-aB for all a ^ and a, fi € S (3.1)
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where a and (3 denote pure strategies from the set of all pure strategies, S.

Condition 3.2 The pair game admits an interior mixed strategy Nash equilibrium.

Condition 3.3 The elements of the payoff matrix of the pair game satisfy the

following inequalities for all a,/3 where \a — /3\ > 1,

3-1

^a0 — *

^ / ^(7+1)7 if & 0
7=Q
0-1

^ ^ ^7(7+1) if ot fd
T-1 (3-2)

7=a

where aap denotes the payoff to a row if that player chose pure strategy a and the

column player chose pure strategy (3.

For 2x2 symmetric pair games satisfying Condition 3.1, Conditions 3.2 and 3.3

are automatically satisfied. For larger symmetric pair games satisfying Condition

3.1, this is not necessarily the case, and Conditions 3.2 and 3.3 must be checked

independently.

Recall from our study in Chapter 2 that the long-run behaviour of boundedly

rational agents in finite population games with random matching, who learn in

accordance with the Erev and Roth (1998) model of reinforcement learning, converges

to the set of pure strategy Nash profiles of the one-shot finite population game with

random matching if,
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• the symmetric pair game satisfies Conditions 3.1 to 3.3; and,

• the one-shot finite population game with random matching admits a potential

function and is, therefore, a potential game.

In Chapter 2 we proved that any finite population game with random matching

consisting of a 2 x 2 symmetric pair game admits a potential function. Furthermore, we

showed that any finite population game with random matching consisting of a doubly

symmetric pair game admits a potential function. However, any doubly symmetric

pair game larger than 2x2 does not satisfy Condition 3.2. This has important

consequences for our theoretical predictions in these experiments as it implies that

we will only have definitive predictions for the 2x2 treatment cases.

Our convergence result for the long-run behaviour of boundedly rational agents

learning in finite population games with random matching, in accordance with the

Erev and Roth (1998) model of reinforcement learning, is crucially dependent on

our ability to show that the finite population game with random matching admits a

Lyapunov function. By definition all potential games admit a potential function and,

given the continuous set of mixed strategies in finite population games with random

matching, we can express the potential function as a smooth function with respect

to the strategy space. From here it is easy to prove that the joint dynamic system

describing the expected strategy adjustment of player z's choosing each of the actions
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in finite population games with random matching admits a Lyapunov function (see

Chapter 1, Lemma 1.2).

While we cannot apply this theoretical prediction with the same rigor to the

3x3 treatment cases, there is still value in testing these game treatments in an

experimental setting. Recall the simulation results presented in Chapter 2, which

provided evidence that models of reinforcement learning do lead to sorting outcomes

in 3 x 3 anti-coordination finite population games with random matching.

Finally, despite the fact that the learning model considered here predicts no effect

from the availability of additional information, experimental evidence from Duffy

and Hopkins's (2005) indicates that the provision of additional information leads to

a higher tendency towards sorting in market entry games. In our research we wish

to investigate the validity of this observation in alternative game treatments. This

brings us to our two hypotheses:

Hypothesis 3.1 In anti-coordination finite population games with random match¬

ing, the long-run behaviour of boundedly rational agents learning in accordance with a

model of reinforcement learning, converges to the set of strict pure strategy equilibria.

That is, reinforcement learning predicts sorting.

Hypothesis 3.2 In anti-coordination finite population games with random match¬

ing, the speed of convergence to the set of pure strategy equilibria increases with the



149

availability of information. That is, convergence to a sorting outcome happens faster

in the full information treatments than the aggregate information treatments.
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3.3 Experimental Design and Procedure

3.3.1 Experimental Design

The experiment is a 2 x 2 design consisting of a game treatment (2x2 and 3x3

anti-coordination finite population game) and an information treatment (aggregate

or full information). As discussed in the previous section, both the 2x2 and 3x3

anti-coordination pair games that constitute the respective finite population games

with random matching have unique, interior, symmetric mixed strategy equilibria.

Furthermore, both the pair games satisfy Conditions 3.1 to 3.3. Given the structure

of the payoff matrices of the pair games, it can be proven that both the 2x2 and 3x3

anti-coordination finite population games admit a strict pure strategy Nash profile,

which approximates the unique, interior, symmetric mixed strategy equilibria of the

pair game.

A

B

Figure 3.1: Payoff Matrix for the 2x2 Anti-Coordination Pair Game

A B

80 260

360 120
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Consider the payoff matrix for the 2x2 (Hawk-Dove) anti-coordination pair game

(see Figure 3.1). There are three Nash equilibria for the 2x2 anti-coordination

pair game, two asymmetric pure strategy Nash equilibria and one symmetric mixed

strategy Nash equilibrium with relative probabilities (1, 2)/3 ~ (0.333,0.667). In the

finite population game with six players, there is a unique, interior, symmetric mixed

strategy Nash equilibrium where each player in the population plays the same mixed

strategy Nash equilibrium as in the pair game. There are also a number of asymmetric

mixed strategy Nash equilibria where a subset of the population play pure strategies

and the remainder play mixed.

Both the symmetric and asymmetric mixed strategy equilibria in the finite

population game with random matching are unstable under the adjusted replicator

dynamics. In addition there is a set of strict pure strategy Nash profiles where

two members of the population play action A and four play action B. Since the

elements of this set of pure strategy profiles are strict Nash, they are asymptotically

stable under the adjusted replicator dynamics. Furthermore, given that the 2x2

anti-coordination pair game with random matching is a potential game, the long-

run behaviour of subjects learning according to the Erev and Roth (1998) model of

reinforcement learning, converges to the set of strict pure strategy Nash profiles of the

2x2 anti-coordination pair game with random matching; that is, where two members

of the population play action A and four play action B.
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A B C

A

B

C

Figure 3.2: Payoff Matrix for the 3x3 Anti-Coordination Pair Game

Consider the payoff matrix for the 3x3 anti-coordination pair game (see Figure

3.2). There is a unique, interior, symmetric mixed strategy Nash equilibrium

in the 3x3 anti-coordination pair game with relative probabilities (2,3, l)/6 ~

(0.333,0.5,0.167). In fact this is the only Nash equilibrium in this particular pair

game. In the finite population game with six players, there is a unique, interior,

symmetric mixed strategy Nash equilibrium where each player in the population

plays the same mixed strategy Nash equilibrium as in the pair game. There are

also a number of asymmetric mixed strategy Nash equilibria where a subset of the

population play pure strategies and the remainder play mixed.

Both the symmetric and asymmetric mixed strategy equilibria in the finite

population game with random matching are unstable under the adjusted replicator

dynamics. In addition there is a set of strict pure strategy Nash profiles where

two members of the population play action A, three play action B and one plays

80 200 260

480 120 180

160 280 100
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action C. Since the elements of this set of pure strategy profiles are strict Nash,

they are asymptotically stable under the adjusted replicator dynamics. Furthermore,

our conjecture that the 3x3 anti-coordination pair game with random matching

is a congestion game and, therefore, a potential game, means that the long-run

behaviour of subjects learning in accordance with the Erev and Roth (1998) model of

reinforcement learning, converges to the set of strict pure strategy Nash profiles of the

3x3 anti-coordination pair game with random matching; that is, where two members

of the population play action A and three play action B and one plays action C.

3.3.2 Experimental Procedure

We ran the four different treatments over eight sessions, two sessions for each

treatment. The four treatments consisted of a 2 x 2 and a 3 x 3 aggregate information

treatment and a 2 x 2 and a 3 x 3 full information treatment. Thirty-six subjects

(six groups of six) participated in each of the 2x2 and 3x3 aggregate information

treatments, and thirty subjects (five groups of six) participated in each of the 2x2

and 3x3 full information treatments. No subject participated in more than one

session.

The rules of the game were common knowledge to all participants (see Sections

3.B.1 to 3.B.3 in Appendix 3.B and Sections 3.C.1 to 3.G.4 in Appendix 3.C for

the full experimental script and treatment instructions) who were given complete
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information regarding their opponent's behaviour in each round of play. Depending

on the information treatment being tested, participants were also given information

regarding the behaviour of all members of their group, including themselves.

Figure 3.3: An example 2x2 full information screen layout

In the upper-right hand of their computer screen, the subjects were presented with

either a 2 X 2 or 3 x 3 payoff matrix depending on the game treatment. Participants

were then asked to make a decision and click the relevant button to record their

decision. The computer interface presented payoff information to all participants as

if they were the row player, with the screen revealing only the subject's payoff in

each cell; opponents payoffs were not revealed.2 On the left side of the computer

2Note that most theories of learning, including those to be considered here, do not assume any

knowledge of opponents' payoff.
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screen, subjects could scroll through the entire history of their decisions, as well as

the decisions of the opponent to whom they were matched within each round of the

experiment. At the bottom right of the screen, subjects were shown, depending on

treatment type, either aggregate information or full information on the play of all the

members of their group in each round.

In the aggregate information treatment, for both the 2x2 and 3x3 game

treatments, a tally and share figure was presented, detailing the number of group

members who chose each available action in each round. In the full information

treatments, a full decision history for each member of each group was presented. This

information was presented in a format that ensured that no individual participant

could be individually identified. Again, participants could scroll through the entire

history of their group's decisions. The historical information was then updated after

each round of decision making.

Subjects were told that they would make one-hundred decisions over the course

of one-hundred rounds, and that other participants with whom they were randomly

grouped together, and would subsequently be matched with in each round, would

remain the same throughout the entire session. They were also told that they would

be paid for ten periods of play to be randomly determined by the computer. The ten

randomly selected periods would be drawn independently for each participant.

Participants were not quizzed to ascertain if they understood how to read the
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Figure 3.4: An example 3x3 aggregate information screen layout

earnings table prior to the sessions commencing. This decision was taken for three

reasons. First, the subject pool was a mature one, with many of the participants

having had previous experience as subjects in experiments in economics. Second,

we were investigating individual behaviour in a symmetric game, therefore, each

participant in each game treatment faced the same earnings table. Finally, it was

felt that ample instruction was provided in explaining how to read the payoff matrix

on a whiteboard prior to the start of each session.3

A total of one-hundred and thirty-two subjects, all of whom were English-speaking

university students in Montreal, participated in the four experimental treatments.

3Furthermore, the payoff matrix remained on the whiteboard throughout the session so

participants could refer to it as and when required.
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Twenty-two groups of six subjects, of whom forty-eight percent were male and fifty-

two percent were female, were recruited using the ORSEE Recruitment System

(Greiner 2004). The experiment was programmed and conducted with the software

z-Tree (Fischbacher 2007). The experiments were run in August and September 2007

at the Bell Experimental Laboratory for Commerce and Economics at the Centre for

Research and Analysis on Organizations (CIRANO). Subjects earned CAD $10.00

(GBP £5.00) for showing up on time. This show-up fee reflected the fact that the

laboratory was not on campus and, therefore, an additional incentive was required to

recruit subjects for the sessions.

Participants also earned an average of CAD $21.04 (ranging between $13.20 and

$28.80 with a median of $21.00 and a mode of $20.20) for the results of their decisions

and the decisions of their opponents. Alternative opportunities for work in Montreal

pay approximately CAD $8.00 per hour. Our sessions never lasted more than two

hours.
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For each of the finite population game treatments we present the results in graphical

form, see Appendix 3.A. Four figures have been included for each of the twenty-two

game treatments.

In the first figure, for all game treatments, we present one or two smaller graphs

depicting the number of subjects in each anti-coordination game choosing each action

in each period, the red lines. For the 2x2 game treatments, this is achieved using a

single graph detailing the number of subjects choosing action B. For the 3x3 game

treatments, two graphs are presented: one detailing the number of subjects choosing

action A and the other action B. Overlaid on these graphs is the average number of

subjects in each game choosing each action in each period, the green lines, and the

predicted number of subjects who should choose each action in each period, the blue

lines.

In the second figure, six smaller graphs depict the actual decisions subjects made

during the course of the session for all game treatments. For the avoidance of

confusion, players are denoted by colour. Starting in the first row and first column

of the array of six graphs, moving right along the top row and then from left to right

along the bottom row, the players in each game are called BLUE, BROWN, GREEN,

ORANGE, TURQUOISE and RED.

The third and fourth figures represent different quantities depending on the game
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treatment. For the 2x2 game treatments, they depict the average play every ten

periods on the third figure, and the moving average of play every ten periods on the

fourth figure. The colours of the lines correspond to the names of the players. In

other words the average play every ten periods and the moving average of play every

ten periods of the BLUE player is represented by the blue lines.

For the 3x3 game treatments, it is not meaningful to calculate the average play

and the moving average of play every ten periods. Instead, we calculate a scaled

distance measure to determine the "purity" of the average play every ten periods and

the "purity" of the moving average of play every ten periods for each subject.

Note that whenever a player is playing a pure strategy, the "purity" measure

equals one. On the other hand, if a player is playing the symmetric mixed strategy,

the "purity" measure equals zero.4

In the following four subsections (Sections 3.4.1 to 3.4.4), we note the number of

subjects who appear to have converged to a pure strategy and to which pure strategy

they appear to have converged. In addition we summarise the treatment data by
4We employ a similar, appropriately scaled, "purity" function for the 2x2 game treatments in

our treatment summary representations.

(3.3)
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presenting graphs showing the mean decision purity averaged over 10 fixed rounds for

each game under each treatment.

3.4.1 2x2 Aggregate Information Treatment

2x2 Aggregate Information Treatment
Mean Decision Purity every 10 rounds for each game

Session 1, Group 1 Session 1, Group 2
Session 1, Group 3 Session 7, Group 1
Session 7, Group 2 Session 7, Group 3

Figure 3.5: 2x2 Aggregate Information Treatment: Mean Decision Purity every 10
rounds for each game.

In Session 1, Group 1, we see two players converge to pure strategies, one to A and

one to B. In Session 1, Group 2, we see three players converge to pure strategies,

one to A and two to B. In Session 1, Group 3, we see two players converge to pure

strategies, both to B. In Session 7, Group 1, we see two players converge to pure

strategies, both to B. In Session 7, Group 2, we see only one player converge to a
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pure strategy, B. In Session 7, Group 3, we see two players converge to pure strategies,

In the six 2 x 2 finite population games with aggregate information, we see at least

one player in each game converges to pure strategy B.

In order to further establish evidence of convergence to pure strategies we now study

the average purity across the treatment. In Figure 3.6, each data point represents

that mean decision purity every 10 period across the whole treatment.

both to B.

2x2 Aggregate Information Treatment
Mean Decision Purity every 10 rounds across sessions

O

10 20 30 40 50 60 70 80 90 100
Period

Figure 3.6: Average Putity in 2 x 2 Aggregate Information Treatment

In the 2x2 aggregate information treatment sessions the mean decision purity

increases over time with a coefficient of the linear regression model that is not quite



162

significant at the 10% level of significance. There is little evidence against the null

hypothesis that the coefficient is less than or equal to zero (Ha : Coef <= 0 :

p — value = 0.10526426).

We also investigate the variance of mean decision purity every 10 rounds in each

game (see Figure 3.7). We find strong evidence, at the 1% level of significance, that

the variance of mean decision purity is decreasing over time. There is strong very

strong evidence against the null hypothesis that coefficient is greater than or equal

to zero (H0 : coef >= 0 : p — value — 0.0080075). Together, these two pieces of

evidence provide encouraging support for the prediction that individual play should

converge to pure strategies.

Figure 3.7: Variance of Average Putity in 2 x 2 Aggregate Information Treatment

2x2 Aggregate Information Treatment
Variance of Decision Purity every 10 rounds across sessions

a

10 20 30 40 50 60 70 B0 90 100
Period
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3.4.2 2x2 Full Information Treatment

2x2 Full Information Treatment
Mean Decision Purity every 10 rounds for each game

o -

10 20 30 40 50 60 70 80 90 100
Period

Session 3, Group 1 Session 3, Group 2
Session 3, Group 3 Session 8, Group 1
Session 8, Group 2

Figure 3.8: 2x2 Full Information Treatment: Mean Decision Purity every 10 rounds
for each game.

In Session 3, Group 1, we see only one player converge to a pure strategy, B. In

Session 3, Group 2, we see two players converge to pure strategies, one to A and one

to B. In Session 3, Group 3, we see only one player converge to a pure strategy, B. In

Session 8, Group 1, we see only one player converge to a pure strategy, B. In Session

8, Group 2, we see only one player converge to a pure strategy, B.

In the five 2x2 finite population games with full information, we see at least one

player in each game converges to pure strategy B.

In order to further establish evidence of convergence to pure strategies we now study
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the average purity across the treatment. In Figure 3.9, each data point represents

that mean decision purity every 10 period across the whole treatment.

2x2 Full Information Treatment
Mean Decision Purity every 10 rounds across sessions

1 1 1 1 1 1 1 1 1-

10 20 30 40 50 60 70 00 90 100
Period

Figure 3.9: Average Putity in 2 x 2 Full Information Treatment

In the 2x2 full information treatment sessions the mean decision purity increase

over time with a coefficient of the linear regressing model that is significant at the

1% level of significance. We can reject the null hypothesis that the coefficient is less

than or equal to zero (H0 : Coef <— 0 : p — value = 0.00778238).

We also investigate the variance of mean decision purity every 10 rounds in each

game (see Figure 3.10). We find no real evidence against the null hypothesis that the

variance ofmean decision purity is increasing over time (H0 : Coef >= 0 : p—value —
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0.99120975). Therefore, both the mean decision purity across treatment sessions and

the variance of mean decision purity are increasing over time, which is contradictory

to out predictions.

2x2 Full Information Treatment
Variance of Decision Purity every 10 rounds across sessions

(J

1 1 1 1 1 1 1 1 r

10 20 30 40 50 60 70 80 90 100
Period

Figure 3.10: Variance of Average Putity in 2 x 2 Full Information Treatment

3.4.3 3x3 Aggregate Information Treatment

In Session 2, Group 1, we do not see any players converge to pure strategies. In

Session 2, Group 2, we see only one player converge to a pure strategy, B. In Session

2, Group 3, we do not see any players converge to pure strategies. In Session 6, Group

1, we see only one player converge to a pure strategy, C. In Session 6, Group 2, we
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3x3 Aggregate Information Treatment
Mean Decision Purity every 10 rounds for each game

'C
3
D_
c

o -

10 20 30 40 50 60 70 80 90 100
Period

Session 2, Group 1
Session 2, Group 3
Session 6, Group 2

Session 2, Group 2
Session 6, Group 1
Session 6, Group 3

Figure 3.11: 3x3 Aggregate Information Treatment: Mean Decision Purity every 10
rounds for each game.

see two players converge to pure strategies, both to B. In Session 6, Group 3, we see

only one player converge to a pure strategy, B.

In the six 3x3 finite population games with aggregate information, we see at least

one player in half the games converges to pure strategy B.

In order to further establish evidence of convergence to pure strategies we now study

the average purity across the treatment. In Figure 3.12, each data point represents

that mean decision purity every 10 period across the whole treatment.

In the 3x3 aggregate information treatment sessions the mean decision purity

increases over time with a coefficient of the linear regression model that is significant at
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3x3 Aggregate Information Treatment
Mean Decision Purity every 10 rounds across sessions

10 20 30 40 50 60 70 BO 90 100
Period

Figure 3.12: Average Putity in 3 x 3 Aggregate Information Treatment

the 1% level of significance. There is strong evidence to reject the null hypothesis that

the coefficient is less than or equal to zero (Ho : Coef <= 0 : p— value = 0.00283345).

We also investigate the variance of mean decision purity every 10 rounds in each

game (see Figure 3.13). However, there is little evidence to reject the null hypothesis

that the variance of mean decision purity is increasing over time (Ho : Coef >= 0 :

p— value = 0.29923019). Together, these two pieces of evidence provide encouraging

support for our predictions that individual play should converge to pure strategies.

3.4.4 3x3 Full Information Treatment
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3x3 Aggregate Information Treatment
Variance of Decision Purity every 10 rounds across sessions

o
1 1 1 1 1 1 1 1 r~

10 20 30 40 50 60 70 80 90 100
Period

Figure 3.13: Variance of Average Putity in 3 x 3 Aggregate Information Treatment

In Session 4, Group 1, we do not see any players converge to pure strategies. In

Session 4, Group 2, we only one player converge to a pure strategy, B. In Session

5, Group 1, we see two players converge to pure strategies, one to A and one B. In

Session 5, Group 2, we see only one player converge to a pure strategy, B. In Session

5, Group 3, we see only one player converge to a pure strategy, C.

In the five 3x3 finite population games with full information, we see at least one

player in over half the games converges to pure strategy B.

In order to further establish evidence of convergence to pure strategies we now study

the average purity across the treatment. In Figure 3.15, each data point represents

that mean decision purity every 10 period across the whole treatment.
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3x3 Full Information Treatment
Mean Decision Purity every 10 rounds for each game

o -

10 20 30 40 50 60 70 80 90 100
Period

Session 4, Group 1
Session 5, Group 1
Session 5, Group 3

Session 4, Group 2
Session 5, Group 2

Figure 3.14: 3x3 Full Information Treatment: Mean Decision Purity every 10 rounds
for each game.

Data from the 3x3 full information treatment sessions suggest similar behaviour as

in the 3x3 aggregate information treatment sessions, both, which are not consistent

with our predictions. In the 3x3 full information treatment sessions the mean

decision purity increase over time with a coefficient of the linear regressing model

that is significant at the 1% level of significance. In this treatment, there is strong

evidence reject the null hypothesis that the coefficient is less than or equal to zero

(H0 : coef <= 0 : p — value — 0.06100645).

We also investigate the variance of mean decision purity every 10 rounds in each

game (see Figure 3.16). Again, there is no or little evidence against the null hypothesis

that the variance of mean decision purity is increasing over time (Ha : coef >— 0 :
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3x3 Full Information Treatment
Mean Decision Purity every 10 rounds across sessions

Period

Figure 3.15: Average Putity in 3 x 3 Full Information Treatment

p— value = 0.83160843). Therefore, both the mean decision purity across treatment

sessions and the variance of mean decision purity are increasing over time.
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3x3 Full Information Treatment
Variance of Decision Purity every 10 rounds across sessions

Figure 3.16: Variance of Average Putity in 3 x 3 Full Information Treatment

3.5 Discussion & Conclusions

Let us now consider our experimental results in light of our hypotheses set out in

Section 3.2. First, we postulated that in all treatments long-run play should converge

to the set of strict pure strategy equilibria. This hypothesis is derived from our results,

which indicate that the long-run behaviour of boundedly rational agents in anti-

coordination finite population games with random matching converges to a sorting

outcome.

We believe that it is fair to say that the evidence from our experiments is less

than conclusive on this issue. Although we did witness, in all anti-coordination finite
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population games run in the laboratory, some subjects who appeared to have settled

on pure strategies, it is difficult to make any conclusive statements confirming that

behaviour in the population converged to the set of strict pure strategy equilibria of

the anti-coordination finite population game.

However, given the quality of the data, we feel there are opportunities for further

analysis. There is ample evidence in the literature that, for games with multiple Nash

equilibria, individual behaviour observed in the laboratory is often not consistent with

any of them, while at the same time, on aggregate, behaviour is close to the symmetric

mixed strategy Nash equilibrium. Our experimental results confirm this observation.

With this in mind, it worth noting that it would be possible to study the non-

equilibrium dynamics of play in our anti-coordination finite population games as

they also admit multiple equilibria. Convergence may have been slowed by the

complexity of the strategic environment or noise in the population.5 Genin and Katok

(2006) suggest that if non-equilibrium dynamics are considered, it can be shown that

aggregate behaviour is consistent with behaviour observed in the laboratory. In this

case it would be useful to measure the distance the actual play is from other Nash

equilibria, specifically the asymmetric mixed strategy Nash equilibria.

Our second hypothesis postulated that convergence to the predicted outcomes

would happen faster in the full information treatments than in the aggregate

5In our design we did try to counteract this issue by choosing payoff matrices that admitted strict
pure strategy Nash equilibria for a minimal population size.
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information treatments. Our experimental results do not provide any positive

evidence for this prediction. It should be noted that this has been the experience

in experiments of other games and, since there are no explicit models which provide

clear intuitions, it is difficult to make any progress in this direction.

Regardless, we believe that it would be instructive to further study the response

dynamics to the information flow. In our treatments we postulated that subjects

responded to payoffs; this is most likely the case for the aggregate information

treatments. However, the extra feedback information could possibly be effecting

the strength of the payoff reinforcement mechanism as participants respond to other

players' behaviour instead.

An alternative hypothesis incorporating a reinforcement feedback mechanism

might provide some intuition to our experimental data. Recall that the theoretical

predictions obtained from studying the long-run behaviour of boundedly rational

agents, learning in accordance with a reinforcement learning model, in anti-

coordination finite population games, implies that people tend to minimise bad

experiences and maximise good ones. In fact this is exactly what is assumed by

the Erev and Roth (1998) reinforcement learning model.

The idea is that participants behave in accordance with the tenants of a

reinforcement mechanism, although in a more heuristic manner. Note that in both

game treatments, and assuming the opponent is randomising their choice over all
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the alternatives, the option with the highest expected payoff is B. It is a striking

observation that where there were participants appearing to converge to a pure

strategy, it was, more often than not, to option B. It is quite possible that this

behaviour constitutes part of the story behind the non-equilibrium dynamics in anti-

coordination finite population games with random matching.

The purpose of this study was to employ the theory of learning in games to further

understand individual decision making in population games. We find, as previous

experimental studies have remarked, that, on aggregate, behaviour is close to the

symmetric mixed strategy Nash equilibrium predicted by evolutionary game theory.

Furthermore, we have produced experimental data that reasserts Friedman's (1996)

observation which originally motivated our study:

"...it appears that some players play 'Hawk', some play 'Dove' and others switch

back and forth."
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Appendix 3.A Experimental Data

3.A.1 2x2 Aggregate Information Treatment Data

Session 1, Group 1

2x2 Aggregate Information Treatment
Aggregate Decisions: Session 1 - Group 1

Period

Figure 3.17: 2x2 Aggregate Information Treatment (Session 1, Group 1): Aggregate
Decisions
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2x2 Aggregate Information Treatment
Actual Decisions: Session 1 - Group 1
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Figure 3.18: 2x2 Aggregate Information Treatment (Session 1, Group 1): Individual
Decisions
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2x2 Aggregate Information Treatment
Average Decision Every 10 Rounds: Session 1 - Group 1
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Figure 3.19: 2x2 Aggregate Information Treatment (Session 1, Group 1): Average
Individual Decision Every 10 Rounds
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2x2 Aggregate Information Treatment
Decsion Over a Moving Average of 10 Rounds: Session 1 - Group 1
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Figure 3.20: 2x2 Aggregate Information Treatment (Session 1, Group 1): Average
Individual Decision Over Moving 10 Rounds
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Session 1, Group 2

2x2 Aggregate Information Treatment
Aggregate Decisions: Session 1 - Group 2
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Figure 3.21: 2x2 Aggregate Information Treatment (Session 1, Group 2): Aggregate
Decisions
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2x2 Aggregate Information Treatment
Actual Decisions: Session 1 - Group 2
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Figure 3.22: 2x2 Aggregate Information Treatment (Session 1, Group 2): Individual
Decisions
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2x2 Aggregate Information Treatment
Average Decision Every 10 Rounds: Session 1 - Group 2
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Figure 3.23: 2x2 Aggregate Information Treatment (Session 1, Group 2)
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2x2 Aggregate Information Treatment
Decsion Over a Moving Average of 10 Rounds: Session 1 - Group 2

Period

Figure 3.24: 2x2 Aggregate Information Treatment (Session 1, Group 2): Average
Individual Decision Over Moving 10 Rounds
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Session 1, Group 3

2x2 Aggregate Information Treatment
Aggregate Decisions: Session 1 - Group 3

Period

Figure 3.25: 2x2 Aggregate Information Treatment (Session 1, Group 3): Aggregate
Decisions
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2x2 Aggregate Information Treatment
Actual Decisions: Session 1 - Group 3
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Figure 3.26: 2x2 Aggregate Information Treatment (Session 1, Group 3): Individual
Decisions
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2x2 Aggregate Information Treatment
Average Decision Every 10 Rounds: Session 1 - Group 3

Figure 3.27: 2x2 Aggregate Information Treatment (Session 1, Group 3)
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2x2 Aggregate Information Treatment
Decsion Over a Moving Average of 10 Rounds: Session 1 - Group 3

Period

Figure 3.28: 2x2 Aggregate Information Treatment (Session 1, Group 3): Average
Individual Decision Over Moving 10 Rounds
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Session 7, Group 1

2x2 Aggregate Information Treatment
Aggregate Decisions: Session 7 - Group 1

Period

Figure 3.29: 2x2 Aggregate Information Treatment (Session 7, Group 1): Aggregate
Decisions
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2x2 Aggregate Information Treatment
Actual Decisions: Session 7 - Group 1
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Figure 3.30: 2x2 Aggregate Information Treatment (Session 7, Group 1): Individual
Decisions
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2x2 Aggregate Information Treatment
Average Decision Every 10 Rounds: Session 7 - Group 1

Figure 3.31: 2x2 Aggregate Information Treatment (Session 7, Group 1): Average
Individual Decision Every 10 Rounds
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2x2 Aggregate Information Treatment
Decsion Over a Moving Average of 10 Rounds: Session 7 - Group 1

Figure 3.32: 2x2 Aggregate Information Treatment (Session 7, Group 1): Average
Individual Decision Over Moving 10 Rounds
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Session 7, Group 2

2x2 Aggregate Information Treatment
Aggregate Decisions: Session 7 - Group 2

Period

Figure 3.33: 2x2 Aggregate Information Treatment (Session 7, Group 2): Aggregate
Decisions
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2x2 Aggregate Information Treatment
Actual Decisions: Session 7 - Group 2
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Figure 3.34: 2x2 Aggregate Information Treatment (Session 7, Group 2): Individual
Decisions
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Figure 3.35: 2x2 Aggregate Information Treatment (Session 7, Group 2): Average
Individual Decision Every 10 Rounds
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2x2 Aggregate Information Treatment
Decsion Over a Moving Average of 10 Rounds: Session 7 - Group 2
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Figure 3.36: 2x2 Aggregate Information Treatment (Session 7, Group 2): Average
Individual Decision Over Moving 10 Rounds
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Session 7, Group 3

2x2 Aggregate Information Treatment
Aggregate Decisions: Session 7 - Group 3
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Figure 3.37: 2x2 Aggregate Information Treatment (Session 7, Group 3): Aggregate
Decisions
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2x2 Aggregate Information Treatment
Actual Decisions: Session 7 - Group 3
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Figure 3.38: 2x2 Aggregate Information Treatment (Session 7, Group 3): Individual
Decisions
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2x2 Aggregate Information Treatment
Average Decision Every 10 Rounds: Session 7 - Group 3
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Figure 3.39: 2x2 Aggregate Information Treatment (Session 7, Group 3): Average
Individual Decision Every 10 Rounds
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2x2 Aggregate Information Treatment
Decsion Over a Moving Average of 10 Rounds: Session 7 - Group 3

Period

Figure 3.40: 2x2 Aggregate Information Treatment (Session 7, Group 3): Average
Individual Decision Over Moving 10 Rounds
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3.A.2 2x2 Full Information Treatment Data

Session 3, Group 1

2x2 Full Information Treatment
Aggregate Decisions: Session 3 - Group 1

Period

Figure 3.41: 2x2 Full Information Treatment (Session 3, Group 1): Aggregate
Decisions
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2x2 Full Information Treatment
Actual Decisions: Session 3 - Group 1

Figure 3.42: 2x2 Full Information Treatment (Session 3, Group 1): Individual
Decisions
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2x2 Full Information Treatment
Average Decision Every 10 Rounds: Session 3 - Group 1

Figure 3.43: 2x2 Full Information Treatment (Session 3, Group 1): Average
Individual Decision Every 10 Rounds
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2x2 Full Information Treatment
Average Decision Over Moving 10 Periods: Session 3 - Group 1

o -

0 10 20 30 40 50 60 70 80 90 100
Period

Figure 3.44: 2x2 Full Information Treatment (Session 3, Group 1): Average
Individual Decision Over Moving 10 Rounds
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Session 3, Group 2

2x2 Full Information Treatment
Aggregate Decisions: Session 3 - Group 2
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Figure 3.45: 2x2 Full Information Treatment (Session 3, Group 2): Aggregate
Decisions
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2x2 Full Information Treatment
Actual Decisions: Session 3 - Group 2
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Figure 3.46: 2x2 Full Information Treatment (Session 3, Group 2): Individual
Decisions
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Figure 3.47: 2x2 Full Information Treatment (Session 3, Group 2): Average
Individual Decision Every 10 Rounds
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2x2 Full Information Treatment
Average Decision Over Moving 10 Periods: Session 3 - Group 2
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Figure 3.48: 2x2 Full Information Treatment (Session 3, Group 2): Average
Individual Decision Over Moving 10 Rounds
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Session 3, Group 3

2x2 Full Information Treatment

Aggregate Decisions: Session 3 - Group 3
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Figure 3.49: 2x2 Full Information Treatment (Session 3, Group 3): Aggregate
Decisions



208

2x2 Full Information Treatment
Actual Decisions: Session 3 - Group 3
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Figure 3.50: 2x2 Full Information Treatment (Session 3, Group 3): Individual
Decisions
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Figure 3.51: 2x2 Full Information Treatment (Session 3, Group 3): Average
Individual Decision Every 10 Rounds
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2x2 Full Information Treatment
Average Decision Over Moving 10 Periods: Session 3 - Group 3
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Figure 3.52: 2x2 Full Information Treatment (Session 3, Group 3): Average
Individual Decision Over Moving 10 Rounds
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Session 8, Group 1

2x2 Full Information Treatment
Aggregate Decisions: Session 8 - Group 1
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Figure 3.53: 2 x 2 Full Information Treatment (Session 8, Group 1): Aggregate
Decisions
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2x2 Full Information Treatment
Actual Decisions: Session 8 - Group 1
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Figure 3.54: 2x2 Full Information Treatment (Session 8, Group 1): Individual
Decisions
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2x2 Full Information Treatment
Average Decision Every 10 Rounds: Session 8 - Group 1
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Figure 3.55: 2x2 Full Information Treatment (Session 8, Group 1): Average
Individual Decision Every 10 Rounds
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Figure 3.56: 2x2 Full Information Treatment (Session 8, Group 1): Average
Individual Decision Over Moving 10 Rounds
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Session 8, Group 2

2x2 Full Information Treatment
Aggregate Decisions: Session 8 - Group 2
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Figure 3.57: 2x2 Full Information Treatment (Session 8, Group 2): Aggregate
Decisions
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2x2 Full Information Treatment
Actual Decisions: Session 8 - Group 2
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Figure 3.58: 2x2 Full Information Treatment (Session 8, Group 2): Individual
Decisions
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Figure 3.59: 2x2 Full Information Treatment (Session 8, Group 2): Average
Individual Decision Every 10 Rounds
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Figure 3.60: 2x2 Full Information Treatment (Session 8, Group 2): Average
Individual Decision Over Moving 10 Rounds



219

3.A.3 3x3 Aggregate Information Treatment Data

Session 2, Group 1

3x3 Aggregate Information Treatment
Aggregate Decisions: Session 2 - Group 1

Period

Period

Figure 3.61: 3x3 Aggregate Information Treatment (Session 2, Group 1): Aggregate
Decisions
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3x3 Aggregate Information Treatment
Actual Decisions: Session 2 - Group 1
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Figure 3.62: 3x3 Aggregate Information Treatment (Session 2, Group 1): Individual
Decisions
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Figure 3.63: 3x3 Aggregate Information Treatment (Session 2, Group 1): Average
Individual Decision Purity Every 10 Rounds
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Figure 3.64: 3x3 Aggregate Information Treatment (Session 2, Group 1): Average
Individual Decision Purity Over Moving 10 Rounds



223

Session 2, Group 2

3x3 Aggregate Information Treatment
Aggregate Decisions: Session 2 - Group 2
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Figure 3.65: 3x3 Aggregate Information Treatment (Session 2, Group 2): Aggregate
Decisions
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3x3 Aggregate Information Treatment
Actual Decisions: Session 2 - Group 2
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Figure 3.66: 3x3 Aggregate Information Treatment (Session 2, Group 2): Individual
Decisions
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3x3 Aggregate Information Treatment
Average Decision Purity Every 10 Rounds: Session 2 - Group 2
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Figure 3.67: 3x3 Aggregate Information Treatment (Session 2, Group 2): Average
Individual Decision Purity Every 10 Rounds
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3x3 Aggregate Information Treatment
Average Decision Purity Over Moving 10 Rounds: Session 2 - Group 2
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Figure 3.68: 3x3 Aggregate Information Treatment (Session 2, Group 2): Average
Individual Decision Purity Over Moving 10 Rounds
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Session 2, Group 3

3x3 Aggregate Information Treatment
Aggregate Decisions: Session 2 - Group 3

0 10 20 30 40 50 60 70 80 90 100
Period

Period

Figure 3.69: 3x3 Aggregate Information Treatment (Session 2, Group 3): Aggregate
Decisions
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3x3 Aggregate Information Treatment
Actual Decisions: Session 2 - Group 3
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Figure 3.70: 3x3 Aggregate Information Treatment (Session 2, Group 3): Individual
Decisions
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Figure 3.71: 3x3 Aggregate Information Treatment (Session 2, Group 3): Average
Individual Decision Purity Every 10 Rounds
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Figure 3.72: 3x3 Aggregate Information Treatment (Session 2, Group 3): Average
Individual Decision Purity Over Moving 10 Rounds
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Session 6, Group 1

3x3 Aggregate Information Treatment
Aggregate Decisions: Session 6 - Group 1
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Figure 3.73: 3x3 Aggregate Information Treatment (Session 6, Group 1): Aggregate
Decisions
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3x3 Aggregate Information Treatment
Actual Decisions: Session 6 - Group 1
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Figure 3.74: 3x3 Aggregate Information Treatment (Session 6, Group 1): Individual
Decisions
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Figure 3.75: 3x3 Aggregate Information Treatment (Session 6, Group 1): Average
Individual Decision Purity Every 10 Rounds
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Figure 3.76: 3x3 Aggregate Information Treatment (Session 6, Group 1): Average
Individual Decision Purity Over Moving 10 Rounds
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Session 6, Group 2

3x3 Aggregate Information Treatment
Aggregate Decisions: Session 6 - Group 2

0 10 20 30 40 50 60 70 80 90 100
Period

Period

Figure 3.77: 3x3 Aggregate Information Treatment (Session 6, Group 2): Aggregate
Decisions
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3x3 Aggregate Information Treatment
Actual Decisions: Session 6 - Group 2

50
Period

100 50
Period

100 50 100
Period

50
Period

0)
o

100 50
Period

H
9
Q 1

100 50
Period

100

Figure 3.78: 3x3 Aggregate Information Treatment (Session 6, Group 2): Individual
Decisions
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Figure 3.79: 3x3 Aggregate Information Treatment (Session 6, Group 2): Average
Individual Decision Purity Every 10 Rounds
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3x3 Aggregate Information Treatment
Average Decision Purity Over Moving 10 Rounds: Session 6 - Group 2
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Figure 3.80: 3x3 Aggregate Information Treatment (Session 6, Group 2): Average
Individual Decision Purity Over Moving 10 Rounds
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Session 6, Group 3

3x3 Aggregate Information Treatment
Aggregate Decisions: Session 6 - Group 3
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Figure 3.81: 3x3 Aggregate Information Treatment (Session 6, Group 3): Aggregate
Decisions
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3x3 Aggregate Information Treatment
Actual Decisions: Session 6 - Group 3
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Figure 3.82: 3x3 Aggregate Information Treatment (Session 6, Group 3): Individual
Decisions
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Figure 3.83: 3x3 Aggregate Information Treatment (Session 6, Group 3): Average
Individual Decision Purity Every 10 Rounds
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Figure 3.84: 3x3 Aggregate Information Treatment (Session 6, Group 3): Average
Individual Decision Purity Over Moving 10 Rounds
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3.A.4 3x3 Full Information Treatment Data

Session 4, Group 1

3x3 Full Information Treatment
Aggregate Decisions: Session 4 - Group 1
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Figure 3.85: 3x3 Full Information Treatment (Session 4, Group 1): Aggregate
Decisions
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3x3 Full Information Treatment
Actual Decisions: Session 4 - Group 1
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Figure 3.86: 3x3 Full Information Treatment (Session 4, Group 1): Individual
Decisions
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Figure 3.87: 3x3 Full Information Treatment (Session 4, Group 1): Average
Individual Decision Purity Every 10 Rounds
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3x3 Full Information Treatment
Average Decision Purity Over Moving 10 Rounds: Session 4 - Group 1
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Figure 3.88: 3x3 Full Information Treatment (Session 4, Group 1): Average
Individual Decision Purity Over Moving 10 Rounds
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Session 4, Group 2

3x3 Full Information Treatment
Aggregate Decisions: Session 4 - Group 2
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Figure 3.89: 3x3 Full Information Treatment (Session 4, Group 2): Aggregate
Decisions
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3x3 Full Information Treatment
Actual Decisions: Session 4 - Group 2
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Figure 3.90: 3x3 Full Information Treatment (Session 4, Group 2): Individual
Decisions
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3x3 Full Information Treatment
Average Decision Purity Every 10 Rounds: Session 4 - Group 2
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Figure 3.91: 3x3 Full Information Treatment (Session 4, Group 2): Average
Individual Decision Purity Every 10 Rounds
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3x3 Full Information Treatment
Average Decision Purity Over Moving 10 Rounds: Session 4 - Group 2
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Figure 3.92: 3x3 Full Information Treatment (Session 4, Group 2): Average
Individual Decision Purity Over Moving 10 Rounds
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Session 5, Group 1

3x3 Full Information Treatment
Aggregate Decisions: Session 5 - Group 1
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Figure 3.93: 3x3 Full Information Treatment (Session 5, Group 1): Aggregate
Decisions
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3x3 Full Information Treatment
Actual Decisions: Session 5 - Group 1
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Figure 3.94: 3x3 Full Information Treatment (Session 5, Group 1): Individual
Decisions
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3x3 Full Information Treatment
Average Decision Purity Every 10 Pariods: Session 5 - Group 1
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Figure 3.95: 3x3 Full Information Treatment (Session 5, Group 1): Average
Individual Decision Purity Every 10 Rounds
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3x3 Full Information Treatment
Average Decision Purity Over Moving 10 Pariods: Session 5 - Group 1
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Figure 3.96: 3x3 Full Information Treatment (Session 5, Group 1): Average
Individual Decision Purity Over Moving 10 Rounds
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Session 5, Group 2
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Figure 3.97: 3x3 Full Information Treatment (Session 5, Group 2): Aggregate
Decisions



256

3x3 Full Information Treatment
Actual Decisions: Session 5 - Group 2
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Figure 3.98: 3x3 Full Information Treatment (Session 5, Group 2): Individual
Decisions
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3x3 Full Information Treatment
Average Decision Purity Every 10 Pariods: Session 5 - Group 2
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Figure 3.99: 3x3 Full Information Treatment (Session 5, Group 2): Average
Individual Decision Purity Every 10 Rounds
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3x3 Full Information Treatment
Average Decision Purity Over Moving 10 Pariods: Session 5 - Group 2
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Figure 3.100: 3x3 Full Information Treatment (Session 5, Group 2): Average
Individual Decision Purity Over Moving 10 Rounds
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Session 5, Group 3

3x3 Full Information Treatment
Aggregate Decisions: Session 5 - Group 3

0 10 20 30 40 50 60 70 80 90 100
Period

Period

Figure 3.101: 3x3 Full Information Treatment (Session 5, Group 3): Aggregate
Decisions
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3x3 Full Information Treatment
Actual Decisions: Session 5 - Group 3
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Figure 3.102: 3x3 Full Information Treatment (Session 5, Group 3): Individual
Decisions
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3x3 Full Information Treatment
Average Decision Purity Every 10 Pariods: Session 5 - Group 3

Figure 3.103: 3x3 Full Information Treatment (Session 5, Group 3): Average
Individual Decision Purity Every 10 Rounds
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3x3 Full Information Treatment

Average Decision Purity Over Moving 10 Pariods: Session 5 - Group 3
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Figure 3.104: 3x3 Full Information Treatment (Session 5, Group 3): Average
Individual Decision Purity Over Moving 10 Rounds
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3.B.1 Session Introduction

Welcome. We thank you for coming here to participate in this session. My name is

Duncan Whitehead. I am here to answer your questions. Please feel free to ask any

question during the session.

At the end of today's session, you will all receive $10 for showing up. In addition

to the $10, you will have the opportunity to earn more money, depending on the

outcome of the activity that will be played out in this session.

Now let me tell you a little about our research project. We are interested in how people

make decisions. Thus, we will ask you to make a few decisions. All these decisions

are individual - that means that you should take your decisions individually.

The total amount of money that you will win at the end of the session is yours to

keep. We will pay you this money in addition to the $10 for showing up, but it should

be clear that this money is not ours. The money comes from the Social Sciences and

Humanities Research Council of Canada so that we can run this study.

Before we start, we would like to make a few points clear:

1. First, this is a study about how people make individual decisions. We ask that

you not look at or copy what others are doing. Please do not speak during
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this session, and do not tell others what decision you would make. This is very

important and we ask you to obey this rule.

2. Second, please listen carefully to all that we say during the session. We will

explain to you all that you will be required to do. In addition, I will respond to

all your questions during the entire session.

3. Finally, remember that you should always keep with you the number that we

gave you when you signed in. Keep it with you at all times. If you lose this

number, we will be unable to pay you.

We will now explain to you what you will be doing. Please pay very close attention.

(PROCEED WITH THE TREATMENT INSTRUCTIONS)
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3.B.2 Introduction to Consent Forms

Now that we've explained to you what you need to do, you must decide whether you

will stay and participate or if you wish to withdraw. If you choose to withdraw, you

will receive the $10 show up fee, but you lose the opportunity to win more money in

this experiment. If you choose to stay and participate, you will receive the $10 show

up fee PLUS whatever you win in the course of the experiment.

Once again, allow me to thank you for coming here today to participate in this session.

Please find the two copies of the Consent Form on your desk. We will now review the

contents of this document together.

The front side of the form provides general information about the study.

• The title of this study,

• The names and contact details of the study's investigators. Please feel free to

contact us at any time regarding any aspect of this study.

• A description of the study. Today's session will last 2 hours. You will not be

asked to fill out any questionnaire during today's session.

• The risks and benefits to you of participating in this study. There are no risks

or direct benefits to you from participating in this study.
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• The costs and payments of participating in this study. There are no costs to

participation and you will receive payments in the form of the $10 show up fee

plus whatever you win in the course of the experiment.

On the reverse side you will find important statements with respect to:

• Confidentiality. Information will be handled in a confidential manner.

• Right to Withdraw. You may withdraw from this study at any time.

• Voluntary Consent. This is your agreement to participate in the study.

The primary reason for asking you to sign this sheet is that it remains clear that you

have chosen to participate in this session, VOLUNTARILY. We wish to protect your

interests. That's why we need your signature to verify that you wish to be part of

this study. We will keep the form that you've signed, but we will also sign a copy for

you to take home with you.

If you agree to the terms in the consent form, please sign where indicated. One copy

is yours, the other is ours. I will collect the forms now.

(COLLECT SIGNED FORMS)
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3.B.3 Begin Session Script

We are now ready to start the session.

When you have finished making all your decisions, that is, once you have chosen your

preferred option in each round and have been informed of your average points earnings

over the ten selected periods and your final payment, you will then be directed to

collect your earnings. At this point, we will pay you. Once you have been paid, you

will be asked to sign a receipt. Once signed, you are free to go.

Feel free to raise your hand if you have a question during the session. We will do our

best to answer them. However, please remember that these decisions are personal, so

that we cannot help you choose among the options. Remember - it's YOUR decision!

Are there any more questions?

We are now ready. Please turn to your computer screens ready to begin making your

decisions.

(BEGIN SESSION)
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Appendix 3.C Treatment Instructions

3.C.1 2x2 Aggregate Information Treatment Instructions

Let us begin with a general overview of today's session.

You are about to participate in an experiment in the economics of decision-making.

If you follow these instructions carefully and make good decisions you might earn

a considerable amount of money that will be paid to you in cash at the end of the

session. If you have a question at any time, please feel free to ask the experimenter.

Once again we ask that you do not talk with one another for the duration of the

session.

Each of you is seated at a desk with a computer workstation, a blank receipt, two

blank consent forms, and a pen. You will use the computer workstation to enter

individual decisions when prompted to do so. When you have made a decision, you

will be given some feedback on the decision you made. Once you have made all your

decisions, you will be informed of the payment you will receive, instructed to fill in

your receipt, and then directed to collect your earnings for today's session.

Today's session will progress as follows:

1. At the beginning of today's session the computer will allocate you at random

and anomalously into groups. You will remain in these groups for the duration

of today's session.
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2. Then in each round you will be matched at random and anomalously with

another individual from your group.

3. Once matched, you will be asked to make a choice over several alternatives. You

will earn points that are jointly determined by your decision and the decision

of the individual who you are matched with.

4. Once all members of your group have made their decisions you will move onto

the next round. Here you will be informed of your decision, the decision of

the individual who you were matched with, and the points you received in the

previous round. You will also be provided with some information as to the

decisions made by your group as a whole.

5. Once you have made all your decisions, you will be informed of the payment

you will receive at the end of today's session.

Now let us look today's session in more detail.

Let us begin with the group allocation. There are 18 participants in today's session.

At the beginning of the session you will be allocated to one of 3 groups by the

computer. Each group will have exactly 6 members. Throughout today's session you

will remain in these initially allocated groups. The group allocation and the identity

of the individual group members will be anonymous.
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There are 100 rounds in today's session. In each round, you will be randomly and

anonymously matched with another individual from your group. You will be informed

for which round you are making a decision for on the top left hand side of you screen.

Once all players have made their decisions the computer will proceeds to the next

round.

How do you input your decisions?

In each round you will be asked to make a choice between two alternatives, either

action A or action B. You enter your decision by using the mouse to place the curser

over either button A or B in the Decision box on the right hand side of your screen

and clicking. Please be aware that once you click on one of these buttons your choice

for that round is final. Once all players have entered their decisions the experiment

will precede the next round.

How are your points earned in the round determined?

The decision you make and that of the individual who you were matched with

determine the points you earn in the round. On the board behind me you will see a

table depicting your points earned in each round given the choice of action you and

your opponent make.
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A B

A

B

• If you choose action A and your opponent chooses action A, your points earned

for the round is 80.

• If you choose action A and your opponent chooses action B, your points earned

for the round is 260.

• If you choose action B and your opponent chooses action A, your points earned

for the round is 360.

• If you choose action B and your opponent chooses action B, your points earned

for the round is 120.

This information shall stay up on the board for your reference throughout today's

session.

How your earnings are reported

Once all players have made their decisions and the session has proceeded to the next

round you will be informed of the points your earned resulting from your decision

in the previous round. Remember the points you earn in each round are jointly

80 260

360 120
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determined by your decision and the decision of the individual you are matched with.

You will be informed of the both your decision, the decision of the individual you

were matched with and the points you earned in each previous round in the Personal

History box on the left hand side of your screen.

How Group decisions are reported

Once all players have made their decisions and the session has proceeded to the next

round you will be informed of the decisions made by all members of your group

(including yourself) in the Group History box at the bottom of your screen. You will

be informed of the total and the share of individuals who choose each action in each

previous round.

How is you final take home payment calculated?

Following the completion of the 100 rounds your take home payment will then be

calculated. The payment you will receive at the end of the session will be equal to

the average number of the points you received in 10 random selected rounds times

the exchange rate of 1 Canadian dollar for every 10 points. The computer selects

10 rounds at random for each participant - each round has an equal chance of being

selected. You will be informed of your payment in the Payment box at the end of the

session.
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Once you have been informed of your earnings, you then will be directed to collect

your earnings. At this point, we will pay you. Once you have been paid, you will be

asked to sign a receipt. Once signed, you are free to go.
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3.C.2 3x3 Aggregate Information Treatment Instructions

Let us begin with a general overview of today's session.

You are about to participate in an experiment in the economics of decision-making.

If you follow these instructions carefully and make good decisions you might earn

a considerable amount of money that will be paid to you in cash at the end of the

session. If you have a question at any time, please feel free to ask the experimenter.

Once again we ask that you do not talk with one another for the duration of the

session.

Each of you is seated at a desk with a computer workstation, a blank receipt, two

blank consent forms, and a pen. You will use the computer workstation to enter

individual decisions when prompted to do so. When you have made a decision, you

will be given some feedback on the decision you made. Once you have made all your

decisions, you will be informed of the payment you will receive, instructed to fill in

your receipt, and then directed to collect your earnings for today's session.

Today's session will progress as follows:

1. At the beginning of today's session the computer will allocate you at random

and anomalously into groups. You will remain in these groups for the duration

of today's session.
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2. Then in each round you will be matched at random and anomalously with

another individual from your group.

3. Once matched, you will be asked to make a choice over several alternatives. You

will earn points that are jointly determined by your decision and the decision

of the individual who you are matched with.

4. Once all members of your group have made their decisions you will move onto

the next round. Here you will be informed of your decision, the decision of

the individual who you were matched with, and the points you received in the

previous round. You will also be provided with some information as to the

decisions made by your group as a whole.

5. Once you have made all your decisions, you will be informed of the payment

you will receive at the end of today's session.

Now let us look today's session in more detail.

Let us begin with the group allocation. There are 18 participants in today's session.

At the beginning of the session you will be allocated to one of 3 groups by the

computer. Each group will have exactly 6 members. Throughout today's session you

will remain in these initially allocated groups. The group allocation and the identity

of the individual group members will be anonymous.
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There are 100 rounds in today's session. In each round, you will be randomly and

anonymously matched with another individual from your group. You will be informed

for which round you are making a decision for on the top left hand side of you screen.

Once all players have made their decisions the computer will proceeds to the next

round.

How do you input your decisions?

In each round you will be asked to make a choice between two alternatives, either

action A, action B or action C. You enter your decision by using the mouse to place

the curser over either button A, B or C in the Decision box on the right hand side of

your screen and clicking. Please be aware that once you click on one of these buttons

your choice for that round is final. Once all players have entered their decisions the

experiment will precede the next round.

How are your points earned in the round determined ?

The decision you make and that of the individual who you were matched with

determine the points you earn in the round. On the board behind me you will see a

table depicting your points earned in each round given the choice of action you and

your opponent make.
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ABC

80 200 260

480 120 180

160 280 100

If you choose action A and your opponent chooses action A, your points earned

for the round is 80.

If you choose action A and your opponent chooses action B, your points earned

for the round is 200.

If you choose action A and your opponent chooses action C, your points earned

for the round is 260.

If you choose action B and your opponent chooses action A, your points earned

for the round is 480.

If you choose action B and your opponent chooses action B, your points earned

for the round is 120.

If you choose action B and your opponent chooses action C, your points earned

for the round is 180.
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• If you choose action C and your opponent chooses action A, your points earned

for the round is 160.

• If you choose action C and your opponent chooses action B, your points earned

for the round is 280.

• If you choose action C and your opponent chooses action C, your points earned

for the round is 100.

This information shall stay up on the board for your reference throughout today's

session.

How your earnings are reported

Once all players have made their decisions and the session has proceeded to the next

round you will be informed of the points your earned resulting from your decision

in the previous round. Remember the points you earn in each round are jointly

determined by your decision and the decision of the individual you are matched with.

You will be informed of the both your decision, the decision of the individual you

were matched with and the points you earned in each previous round in the Personal

History box on the left hand side of your screen.

How Group decisions are reported

Once all players have made their decisions and the session has proceeded to the next

round you will be informed of the decisions made by all members of your group
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(including yourself) in the Group History box at the bottom of your screen. You will

be informed of the total and the share of individuals who choose each action in each

previous round.

How is you final take home payment calculated?

Following the completion of the 100 rounds your take home payment will then be

calculated. The payment you will receive at the end of the session will be equal to

the average number of the points you received in 10 random selected rounds times

the exchange rate of 1 Canadian dollar for every 10 points. The computer selects

10 rounds at random for each participant - each round has an equal chance of being

selected. You will be informed of your payment in the Payment box at the end of the

session.

Once you have been informed of your earnings, you then will be directed to collect

your earnings. At this point, we will pay you. Once you have been paid, you will be

asked to sign a receipt. Once signed, you are free to go.
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3.C.3 2x2 Full Information Treatment Instructions

Let us begin with a general overview of today's session.

You are about to participate in an experiment in the economics of decision-making.

If you follow these instructions carefully and make good decisions you might earn

a considerable amount of money that will be paid to you in cash at the end of the

session. If you have a question at any time, please feel free to ask the experimenter.

Once again we ask that you do not talk with one another for the duration of the

session.

Each of you is seated at a desk with a computer workstation, a blank receipt, two

blank consent forms, and a pen. You will use the computer workstation to enter

individual decisions when prompted to do so. When you have made a decision, you

will be given some feedback on the decision you made. Once you have made all your

decisions, you will be informed of the payment you will receive, instructed to fill in

your receipt, and then directed to collect your earnings for today's session.

Today's session will progress as follows:

1. At the beginning of today's session the computer will allocate you at random

and anomalously into groups. You will remain in these groups for the duration

of today's session.
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2. Then in each round you will be matched at random and anomalously with

another individual from your group.

3. Once matched, you will be asked to make a choice over several alternatives. You

will earn points that are jointly determined by your decision and the decision

of the individual who you are matched with.

4. Once all members of your group have made their decisions you will move onto

the next round. Here you will be informed of your decision, the decision of

the individual who you were matched with, and the points you received in the

previous round. You will also be provided with some information as to the

decisions made by your group as a whole.

5. Once you have made all your decisions, you will be informed of the payment

you will receive at the end of today's session.

Now let us look today's session in more detail.

Let us begin with the group allocation. There are 18 participants in today's session.

At the beginning of the session you will be allocated to one of 3 groups by the

computer. Each group will have exactly 6 members. Throughout today's session you

will remain in these initially allocated groups. The group allocation and the identity

of the individual group members will be anonymous.
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There are 100 rounds in today's session. In each round, you will be randomly and

anonymously matched with another individual from your group. You will be informed

for which round you are making a decision for on the top left hand side of you screen.

Once all players have made their decisions the computer will proceeds to the next

round.

How do you input your decisions?

In each round you will be asked to make a choice between two alternatives, either

action A or action B. You enter your decision by using the mouse to place the curser

over either button A or B in the Decision box on the right hand side of your screen

and clicking. Please be aware that once you click on one of these buttons your choice

for that round is final. Once all players have entered their decisions the experiment

will precede the next round.

How are your points earned in the round determined?

The decision you make and that of the individual who you were matched with

determine the points you earn in the round. On the board behind me you will see a

table depicting your points earned in each round given the choice of action you and

your opponent make.
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A B

A

B

• If you choose action A and your opponent chooses action A, your points earned

for the round is 80.

• If you choose action A and your opponent chooses action B, your points earned

for the round is 260.

• If you choose action B and your opponent chooses action A, your points earned

for the round is 360.

• If you choose action B and your opponent chooses action B, your points earned

for the round is 120.

This information shall stay on the board for your reference throughout today's session.

How your earnings are reported

Once all players have made their decisions and the session has proceeded to the next

round you will be informed of the points your earned resulting from your decision

in the previous round. Remember the points you earn in each round are jointly

determined by your decision and the decision of the individual you are matched with.

80 260

360 120
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You will be informed of the both your decision, the decision of the individual you

were matched with and the points you earned in each previous round in the Personal

History box on the left hand side of your screen.

How Group decisions are reported

Once all players have made their decisions and the session has proceeded to the next

round you will be informed of the decisions made by all members of your group

(including yourself) in the Group History box at the bottom of your screen. You will

be informed of the individual decision each member of your group who made in each

previous round.

How is you final take home payment calculated?

Following the completion of the 100 rounds your take home payment will then be

calculated. The payment you will receive at the end of the session will be equal to

the average number of the points you received in 10 random selected rounds times

the exchange rate of 1 Canadian dollar for every 10 points. The computer selects

10 rounds at random for each participant - each round has an equal chance of being

selected. You will be informed of your payment in the Payment box at the end of the

session.

Once you have been informed of your earnings, you then will be directed to collect

your earnings. At this point, we will pay you. Once you have been paid, you will be

asked to sign a receipt. Once signed, you are free to go.
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3.C.4 3x3 Full Information Treatment Instructions

Let us begin with a general overview of today's session.

You are about to participate in an experiment in the economics of decision-making.

If you follow these instructions carefully and make good decisions you might earn

a considerable amount of money that will be paid to you in cash at the end of the

session. If you have a question at any time, please feel free to ask the experimenter.

Once again we ask that you do not talk with one another for the duration of the

session.

Each of you is seated at a desk with a computer workstation, a blank receipt, two

blank consent forms, and a pen. You will use the computer workstation to enter

individual decisions when prompted to do so. When you have made a decision, you

will be given some feedback on the decision you made. Once you have made all your

decisions, you will be informed of the payment you will receive, instructed to fill in

your receipt, and then directed to collect your earnings for today's session.

Today's session will progress as follows:

1. At the beginning of today's session the computer will allocate you at random

and anomalously into groups. You will remain in these groups for the duration

of today's session.
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2. Then in each round you will be matched at random and anomalously with

another individual from your group.

3. Once matched, you will be asked to make a choice over several alternatives. You

will earn points that are jointly determined by your decision and the decision

of the individual who you are matched with.

4. Once all members of your group have made their decisions you will move onto

the next round. Here you will be informed of your decision, the decision of

the individual who you were matched with, and the points you received in the

previous round. You will also be provided with some information as to the

decisions made by your group as a whole.

5. Once you have made all your decisions, you will be informed of the payment

you will receive at the end of today's session.

Now let us look today's session in more detail.

Let us begin with the group allocation. There are 18 participants in today's session.

At the beginning of the session you will be allocated to one of 3 groups by the

computer. Each group will have exactly 6 members. Throughout today's session you

will remain in these initially allocated groups. The group allocation and the identity

of the individual group members will be anonymous.
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There are 100 rounds in today's session. In each round, you will be randomly and

anonymously matched with another individual from your group. You will be informed

for which round you are making a decision for on the top left hand side of you screen.

Once all players have made their decisions the computer will proceeds to the next

round.

How do you input your decisions?

In each round you will be asked to make a choice between two alternatives, either

action A, action B or action C. You enter your decision by using the mouse to place

the curser over either button A, B or C in the Decision box on the right hand side of

your screen and clicking. Please be aware that once you click on one of these buttons

your choice for that round is final. Once all players have entered their decisions the

experiment will precede the next round.

How are your points earned in the round determined?

The decision you make and that of the individual who you were matched with

determine the points you earn in the round. On the board behind me you will see a

table depicting your points earned in each round given the choice of action you and

your opponent make.
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ABC

80 200 260

480 120 180

160 280 100

If you choose action A and your opponent chooses action A, your points earned

for the round is 80.

If you choose action A and your opponent chooses action B, your points earned

for the round is 200.

If you choose action A and your opponent chooses action C, your points earned

for the round is 260.

If you choose action B and your opponent chooses action A, your points earned

for the round is 480.

If you choose action B and your opponent chooses action B, your points earned

for the round is 120.

If you choose action B and your opponent chooses action C, your points earned

for the round is 180.
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• If you choose action C and your opponent chooses action A, your points earned

for the round is 160.

• If you choose action C and your opponent chooses action B, your points earned

for the round is 280.

• If you choose action C and your opponent chooses action C, your points earned

for the round is 100.

This information stay written up on the board for your reference throughout today's

session.

How your earnings are reported

Once all players have made their decisions and the session has proceeded to the next

round you will be informed of the points your earned resulting from your decision

in the previous round. Remember the points you earn in each round are jointly

determined by your decision and the decision of the individual you are matched with.

You will be informed of the both your decision, the decision of the individual you

were matched with and the points you earned in each previous round in the Personal

History box on the left hand side of your screen.

How Group decisions are reported

Once all players have made their decisions and the session has proceeded to the next

round you will be informed of the decisions made by all members of your group
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(including yourself) in the Group History box at the bottom of your screen. You will

be informed of the individual decision each member of your group who made in each

previous round.

How is you final take home payment calculated?

Following the completion of the 100 rounds your take home payment will then be

calculated. The payment you will receive at the end of the session will be equal to

the average number of the points you received in 10 random selected rounds times

the exchange rate of 1 Canadian dollar for every 10 points. The computer selects

10 rounds at random for each participant - each round has an equal chance of being

selected. You will be informed of your payment in the Payment box at the end of the

session.

Once you have been informed of your earnings, you then will be directed to collect

your earnings. At this point, we will pay you. Once you have been paid, you will be

asked to sign a receipt. Once signed, you are free to go.
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