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Abstract 

The existence, nature and possible functions of double-stranded RNA (dsRNA) 
were studied in strains of Rhizoctonia solani anastomosis group (AG) 3, which infects 
potatoes, and in some other AGs of R. solani. The aim was to determine whether 
dsRNA might be exploited as a basis for reducing the virulence of R. solani strains, as 
occurs in Cryphonectria parasitica, a pathogen of chestnut trees. 

Isolates of R. solani AG 3 were obtained from potato tubers from a single field 
site, and from geographically distant sites. DsRNA was found to be ubiquitous, with 
multiple elements present in each strain, as determined by CF  1 cellulose 
chromatography. Similar gel banding patterns were observed between strains isolated 
from separate tubers within a single field site; however, banding patterns differed 
between isolates from diverse sources. All the AG 3 isolates were assessed as being 
weakly virulent in seedling assays on six host crops (carrot, cress, lettuce, onion, radish, 
tomato). Attempts to "cure" strains of dsRNA by repeated hyphal tip subculturing or by 
growing strains in the presence of cycloheximide were generally unsuccessful; although 
some individual dsRNA bands were lost, they sometimes reappeared, potentially 
indicating the presence of a chromosomally, integrated copy of the dsRNA. Partially 
cured strains were unaltered in virulence compared with their respective parental strains. 
To determine whether dsRNA elements might be transmitted throughout field 
populations by hyphal anastomosis, strains were paired in various combinations on agar 
and examined microscopically. Strains from single tubers were compatible with one 
another; but isolates from different tubers showed a high degree of incompatibility with 
one another, and isolates from separate fields were incompatible with each other. 

Pathogenicity-related enzymatic activities were compared between different 
strains. Activity of phenol oxidases and pectic enzymes was similar between dsRNA-
containing isolates. Cellulolytic activity varied up to 3 fold between isolates. Further 
examination of cellulolytic activity between isolates from all but two (AG 10 and BI) 
AGs of R. solani indicated different levels both within and between AGs. 

Plasmid pXH9 containing complementary DNA of hypovirus CHV1-713 of C. 
parasitica was used as a probe in hybridization studies with dsRNA of R. solani, to 
determine potential sequence similarity. At low stringency (42°C) no hybridization was 
observed, indicating no homology between C14VI-713 and dsRNA elements of R. 
solani. 

A protoplast production protocol, using Novozyme 234 with 1.0 M MgSO 4  as 
an osmotic stabilizer, was successfully developed for R. solani. The protoplasts were 
transformed with plasmids pES200 and pA)(HY2, both of which encode hygromycin B 
resistance. Following PEG-mediated transformation, the regenerated strains were 
hygromycin resistant. However, transformation was non-integrative, with the 
hygromycin resistance phenotype being lost upon subculture. 

Overall, the study indicated the ubiquity of dsRNA in R. solani strains, but no 
firm correlation could be found between the presence of dsRNA and the degree of 
virulence of strains. Moreover, vegetative incompatibility seen in this study would 
indicate the difficulty of achieving transmission of any hypovirulent dsRNA in field 
populations of R. solani AG 3. This would form a major barrier to the potential use of 
dsRNA for biological control of this important plant pathogen. 
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CHAPTER 1 

INTRODUCTION 



1. 	Introduction 

Rhizoctonia solani Kuhn (teleomorph Thanatephorus cucumeris (Frank) Donk) 

is an economically important plant pathogen, infecting a diverse array of crops e.g. field, 

ornamental, vegetable, nursery and greenhouse crops (Baker, 1970), causing seed decay, 

damping-off of seedlings, stem cankers, root rots, fruit decays and foliage diseases 

(Ogoshi, 1985). Currently control of Rhizoctonia-incited diseases is achieved using 

chemical treatments such as tolciofos-methyl and Vitavax. A more desirable alternative, 

especially for consumer products, would be a reliable and economical biocontrol 

strategy. A novel way of potentially achieving this in R. solani involves utilizing double-

stranded RNA (dsRNA) elements which reside naturally within some isolates. This has 

been achieved successfully with chestnut blight, caused by Cryphonectria parasitica 

(Murr.) Barr, and several other phytopathogens e.g. Ophiostoma ulmi (Buisman) Nannf. 

and Helminthosporium victoriae Link. might be controlled in a similar manner. 

1.1. General Introduction to Rhizoctonia solani 

The Basidiomycete genus Rhizoctonia (from the Greek "death of roots") was 

first described by De Cando lie in 1815 (Carling and Sumner, 1992), with the subsequent 

description of R. solani by Julius Kuhn in 1858 (Carling and Sumner, 1992). The 

amalgam of isolates characterized as R. solani form a species complex which share the 

following characteristics (Parmeter and Whitney, 1970). (i) Multinucleate cells with 

dolipore septa. (ii) Constriction at the point of right-angle hyphal branching. (iii) 

Formation of a septum near the origin of branch points. (iv) Absence of clamp 

connections. (v) Lack of conidia. (vi) Scierotial tissue not differentiated into rind and 

medulla. (vii) Vegetative cells 4-12 jLm diameter and 50-250 p.m length (Palo, 1926). 

(viii) Aerial and surface hyphae ranging in colour from hyaline through yellow to brown 

(Butler and Bracker, 1970). (ix) No rhizomorphs. 

1.2. Subdivision of the species complex Rhizoctonia solani 
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Isolates of R. solani are diverse with respect to pathogenicity, scierotial 

morphology, physiological characteristics, cultural appearance etc. Many efforts have 

been made to subdivide the species complex of R. solani into logical groups, for 

example by pathogenicity, ecology or morphology (Ogoshi, 1987). A lack of authentic 

cultures has led to repeated misidentifications, resulting in the use of anastomosis groups 

for subdivision of the R. solani species complex. 

1.2.1. What is an anastomosis group? 

An anastomosis group (AG) can be defined as a group of isolates capable of 

recognizing each other and subsequently undergoing hyphal anastomosis (Vilgalys and 

Cubeta, 1994). Experimentally this can be observed by placing isolates from the same 

anastomosis group 2 to 3 cm apart on agar plates. Hyphae as far apart as 100 p.m 

(Ogoshi, 1987) will show mutual attraction towards one another, with subsequent tip-

to-tip hyphal fusion (Figure 1. Ia). If hyphae are from differing AGs, neither attraction 

nor fusion will be observed (Figure 1. lb). Currently 12 AGs are recognized (Cubeta 

and Vilgalys, 1997); AG 1 to 11, plus the bridging isolate AG-BI, which fuses 

frequently with AG 2-2 and occasionally with AG 2-1, AG 3 and AG 6 (Kuninaga et al., 

1979). AG 2 is subdivided into AG 2-1 and AG 2-2 based on the frequency of 

anastomosis between isolates (Ogoshi, 1987), whereas AG 1, 3, 4, 6, 8 and 9 have 

subgroups which differ in one or more biochemical, genetic or pathogenic characteristics 

(Laroche et al., 1992; Lui et al., 1993; Lui and Sinclair, 1993; MacNish et al., 1993; 

Schneider et al., 1997). It is expected that with further research, the remaining AGs 

(AG 5, 7, 10, 11 and Bi) will have subgroups identified. 

Hyphal anastomosis reactions are categorized according to vegetative 

compatibility groups (VCG5). A vegetatively incompatible reaction results in 

vacuolation and death of several cells on each side of the fusion point, known as a 

"killing reaction" (Flentje et al., 1967). In contrast a vegetatively compatible reaction 

involves no cell death at the fusion point. Here cytoplasmic continuity exists which may 

potentially allow transfer of cytoplasmic elements such as double-stranded RNA 

(dsRNA) between isolates. Various terminologies have been proposed to characterize 

these reactions (Matsumoto et al., 1932; Flentje and Stretton, 1964; Parmeter et al., 
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1969). with the current classification being that of Carling etal. (1988). Four classes of 

reaction are recognized: CO (different AGs), Cl (hyphal contact occurs with no 

evidence of wall or membrane dissolution; this reaction may be accompanied by cell 

death), C2 (same AG, but different VCG i.e. "killing reaction") and C3 (perfect fusion, 

same VCG). 

 

• 	 . S 

	

II 	b n b n  
AGI 	AG1 

Secretion of attraction 	Mutual attraction 	Contact of hyphae and 	Dissolution of cell 

	

compounds (U ) 	 cessation of hyphal 	walls and fusion of 
growth 	 opposing hyphae 

 

•. :: ___ ___ 

AGI 	 AG3 	

AGI 

Secretion of attraction 	 Attraction compounds 
compounds (e  and*) 	 differ, no hyphal attraction 

Figure 1. 1 	Anastomosis reactions. (a) Isolates of the same anastomosis group (AG) 
release the same attractant compounds, leading to mutual attraction and fusion of hyphae 
(b) Isolates of differing AG perhaps release different attraction compounds, resulting in no 
attraction nor fusion of hyphae. 

1.2.2. Genetics of vegetative compatibility reactions 

Karyotyping of the genome of R.solani indicates that 11 to 16 chromosomes are 

present, with an estimated genome size of 39 to 46 Mb (Keijer el al., 1996), although 

the underlying genetic mechanism for the vegetative compatibility reactions (C2 and C3) 

in R. solani is undetermined. Vegetative compatibility is generally governed by several 

genetic loci (vic foci: vegetative incompatibility foci); for example in Cryphonectria 
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parasitica, 7-8 vic genes are involved which are scattered throughout the genome 

(Anagnostakis, 1995). This makes C3 compatible reactions less likely than C2 "killing 

reactions", because if, for example, 10 vic loci with two alleles per locus are segregating 

in a population, then over 1 000 different VCGs will be found in the offspring. In 

Podospora anserina Niessi, nine genetic loci are involved in vegetative compatibility 

(Esser, 1974; Labarere etal., 1974). Six of the loci have two alleles each and three loci 

have five, four and three alleles each, such that the expected offspring produced will be 

of 7680 genotypes. For a C3 reaction to occur, it is believed that two isolates would 

need to be identical (or near identical) at all the vic loci responsible for mediating 

compatibility reactions. The greater the differences within vic loci,, the greater is the 

possibility of an incompatible response, observed as a "killing reaction". It is interesting 

to note that in C. parasitica isolates that differ at a single vic locus, the killing reaction is 

slow enough that dsRNA associated with hypovirulence can be transmitted from one 

strain to another (Anagnostakis, 1987). The mechanism resulting in the killing reaction 

is undetermined. In P. anserina it is brought about by secreted proteases (Delettre and 

Bernet, 1976; Labarere and Bernet, 1977) and in Neurospora crassa it is mediated by 

pre-formed proteins (Wilson etal., 1961; Williams and Wilson, 1966). 

1.2.3. Are AGs "separate" biological species? 

A species can be defined as a group of morphologically similar organisms 

capable of undergoing genetic exchange with one another. Classification schemes over 

the years have resulted in 33 synonyms of R. solani, e.g. R. alli, R. dimorpha, R. napi 

(cited in Carling and Sumner, 1992). The isolates currently recognized as R. solani are 

classified as a single species divided into AGs, rather than several different species, due 

to their sexual states being indistinguishable (Ogoshi, 1987). However, since isolates 

from different AGs are not able to undergo hyphal fusion with one another, it has been 

proposed that AGs should be recognized as separate biological species due to the lack 

of genetic exchange between them (Anderson, 1982; Ogoshi, 1987; Vilgalys and 

Cubeta, 1994; Adams, 1996). This view has been supported by DNA-DNA 

hybridization studies (Vilgalys, 1988). Between isolates of different AGs, DNA 

hybridization values were usually low (< 25 %), whereas intragroup DNA hybridization 

was typically higher (> 70 %), again indicating that different AGs are genetically 
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isolated. However, if we consider the bridging isolates, some AG 8 and AG B! isolates 

are able to "bridge" with isolates of five other AGs, whereas some isolates of AGs 2, 3, 

6 and 11 are able to "bridge" with certain isolates from two other AGs (Figure 1. 2) 

(Carling, 1996). Thus, the only AGs which are genetically isolated from any other are 

AG 1, 4, 5, 7, 9 and 10. Potentially these could be recognized as individual species, 

with the amalgam of AGs connected by bridging isolates forming a separate species. 

However, it is not inconceivable that, given time, bridging isolates will be found which 

are capable of fusing between AG 1, 4, 5, 7, 9 and 10. Further opposition to defining 

AGs as separate biological species involves non-self-anastomosing isolates (NSAI). 

These isolates will anastomose with other isolates from their respective AGs 

(Hyakumachi and Ui, 1987), but not with themselves. It is then unreasonable to define 

their progeny as separate species due to lack of fusion, hence genetic exchange, with 

their parental colony. Tentatively, AGs should not yet be classified as separate 

biological species. 

Figure 1.2 	Bridging relationships between anastomosis groups (AG) which contain 
certain isolates capable of fusing with isolates from more than one AG (Carting, 1996). 
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Figure 1.3 	Disease symptoms caused by R. soluni over a range of crops. (a) Lesions on 
bean (Phaseolus vulgaris) pods by an AG 1-1 B isolate (b) Bare patch in tulip (Tulipa 
gesneriana) beds by an AG 2t isolate ( c) Bare patch in wheat (Triticum aestivum L.) incited 
by an AG 8 isolate (d) Black scurf of potato (Solanum tuberosum) incited by an AG 3 
isolate (Verma el al., 1996). 

1.3. Phytopathogenicity of R. solani 

The species complex R. solani is distributed worldwide causing more diseases 

over a wide range of crops than any other plant pathogenic species (Baker, 1970). 

Disease symptoms vary (Figure 1. 3) from seed decays through damping-off of 

seedlings, root rot, stem cankers and crown rot to aerial blight (Ogoshi, 1985). For 

example, in oilseed rape the disease manifests itself as a "brown girdling root rot" which 

circumscribes the tap root and lateral roots, subsequently resulting in poor pod 

development. In Alberta (1983-1984) this has reduced annual crop yields by 30 % 

(Verrna, 1996). In rice, sheath blight occurs as lesions on the sheaths of the lower 

leaves. R. solani currently infects 32 to 50 % of the total world rice fields (Hashiba and 

Kobayashi, 1996). Damping-off has been observed on a range of crops including conifer 

and broad-leaved trees e.g. Pinus, Ulmus and Eucalyptus sp. (Hietala and Sen, 1996). 
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The host range of individual isolates is varied, with certain AGs preferentially 

infecting different hosts. For example, AG 1 isolates characteristically infect 

Leguminosae and Gramineae; AG 2-1 infects Cruciferae, whereas AG 2-2 infects 

Chenopodiaceae and Gramineae; AG 3 infects Solanaceae, including potatoes (Solanum 

tuberosum), causing the economically important black scurf disease of potatoes; AG 8 

infects Graniineae causing stunting diseases of cereals (Ogoshi, 1987). 

1.3.1. Mechanism of infection 

Infection can be initiated from basidiospores or scierotia, both of which 

germinate into a mycelial phase, which subsequently causes infection. The overall 

infection mechanism typically involves: growth towards the plant, attachment to the 

plant, directed growth and formation of T-shaped branches leading to production of an 

infection structure, followed by penetration and ultimately tissue colonization. Between 

AGs there are slight variations in certain stages of the infection process, which are not 

observed between isolates from the same AG. 

Hyphae are initially attracted to the host plant by a combination of plant exudates 

such as amino acids, carbohydrates and phenolics. Once contact is achieved, attachment 

rapidly ensues. This can be visualized after 10 to 12 hours, when the round hyphae 

become flattened to the host surface (Armentrout and Downer, 1987). In some AGs 

(e.g. AG 1), attachment is aided by the production of a mucilaginous material 

(Matsuura, 1986). Following attachment, directed growth occurs along the anticlinal 

walls of epidermal cells (Dodman and Flentje, 1970; Armentrout and Downer, 1987). 

Side branches are then formed at right angles, and they branch again at right-angles to 

form "feet" structures (Armentrout and Downer, 1987). These form the basis of 

infection structures, which are of two types (Weinhold and Sinclair, 1996): (i) lobate 

appressoria characterized by further lateral branching, hyphal swelling and coiling and 

additional "feet" formation; (ii) dome-shaped infection cushions similar to lobate 

appressoria, except they are several cell layers thick. The infection structures tend to 

vary between AGs as opposed to within AGs. For example AGs 2 and 4 form dome-

shaped infection structures, whereas AG 1 isolates tend to form lobate appressoria 

(Matsuura, 1986). 
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The next stage involves penetration of the plant tissues. Again this varies 

between AGs and can be mechanical, enzymatic (See Section 1.3.2) or a combination of 

both. In general a mechanical response involves formation of thin infection pegs from 

tightly adhered, swollen hyphal tips. In AG 1 and AG 4 these pegs are 1-2 jim in 

diameter (Fukutomi and Takada, 1979; Matsuura, 1986). The infection pegs exert 

hydrostatic pressure, which in other fungi has been measured at > 8 mega Pascals 

(Howard et al., 1991). Penetration of the plant tissues is achieved as the strong 

adherence response generates counter-pressure. In AG 3, penetration is accompanied 

by enzymatic processes, which are observed as lighter coloured "halos" on scanning 

electron micrographs (Hofman and Jongebloed, 1988). Following penetration,, hyphae 

return to "normal" size, branch within the cell lumen and rapidly colonize neighbouring 

cells. The extent of this is variable depending on the plant host and fungal isolate. For 

example in potatoes infected with AG 3, penetration initially involves two cell layers, 

which gradually increases to ultimately reach the vascular bundle, girdling the sprout and 

causing death (Hofman and Jongebloed, 1988). The above describes the normal mode 

of penetration through healthy tissue. However, penetration can also occur through 

wounds, lenticels and stomata (Akino and Ogoshi, 1995; Keijer, 1996). 

1.3.2. Enzymes involved in pathogenicity 

Tissue invasion by R. solani is partly mechanical and partly enzymatic. The 

enzymes are released prior to mechanical penetration and include polygalacturonase 

(Bateman, 1963b), trans-eliminases (pectin lyase and pectate lyase) (Ayers et al., 1966), 

cutinase (Baker and Bateman, 1978; Trail and Koller, 1990), cellulases (Bateman, 

1964a) and hemicellulases such as arabinases, galactanases, galactomannases and 

xylanases (Bateman et al., 1969). The first to be released is polygalacturonase, for 

which a high correlation exists between the ability of isolates to produce this enzyme and 

their degree of pathogenicity (Barker and Walker, 1962; Bateman, 1963a). 

Polygalacturonase is released after the infection cushions have formed (t = 18 h), but 

prior to cuticle penetration (Brookhouser and Weinhold, 1979). Once released, 

polygalacturonase is responsible for "tissue maceration" (Bateman, 1963b; Bateman, 

1964b), by degrading the pectin of the middle lamellae of the plant cell walls. Although 
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"tissue maceration" is eliminated in the absence of polygalacturonase (Bateman, 1963a), 

it is thought that trans-eliminases aid the process considerably (Ayers et al., 1966). 

These degrade pectates and pectinates by breaking the glycosidic linkage at carbon 4 

and simultaneously eliminating the hydrogen from carbon 5, resulting in oligouronides 

that contain an unsaturated galacturonyl unit. It is noteworthy that Marcus et al. (1986) 

have reported that pectin lyase was present only in virulent but not hypovirulent isolates. 

Cellulase release follows that of polygalacturonase. This delay is observed in several 

other pathogenic species, for example, Colletoirichum sp. (English et al., 1971), 

Pyrenochaeta sp. (Horton and Keen, 1966) and Fusarium sp. (Jones et al., 1972). The 

delay in cellulase release is thought to result from cellulases adhering more strongly to 

the cell walls than polygalacturonases, as higher concentrations of buffers and more 

intensive washings are required to release cellulases in vitro (Lisker et al., 1975a; Lisker 

et al., 1975b). The release of polygalacturonases and cellulases is triggered by pectic 

substances in host exudates (Bateman, 1963; Brookhouser and Weinhold, 1979), 

although Gupta (1962) describes an isolate which produced polygalacturonase in the 

absence of pectic substances. 

Cellulose is the major structural component of plant cell walls, forming the 

microfibrillar structure of the primary and secondary wall. This is evidenced by 

microscopic examination of R. solani-infected hypocotyls, using polarized light, which 

showed that cell walls of infected hypocotyls lost their birefringent properties, indicating 

degradation of crystalline cellulose. Uninfected hypocotyls, however, were still 

birefringent due to the presence of intact cellulose (Bateman, 1964a). Subsequent 

studies indicate that cellulases are involved in intracellular penetration and the ultimate 

collapse of the cells following tissue maceration by polygalacturonase (Bateman, 1970). 

The role of enzymes in pathogenesis is limited due to the plant's defence 

mechanisms. Polygalacturonase action is prevented in two ways. Firstly, at the zone of 

infection, plant respiration increases which leads to an accumulation of calcium and 

other cations. These in turn release and activate host pectin methylesterases which 

demethylate the host pectin. The demethylated pectic substances subsequently form 

insoluble salts with calcium, which are then resistant to degradation by fungal 

polygalacturonases, thus forming a barrier to infection (Bateman, 1964b). A secondary 

mode of infection limitation is inhibition of polygalacturonase by oxidized phenolics 

secreted by the host (Cole, 1958). For example, catechin content in host plants 
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increases during infection, and it is subsequently oxidized. The oxidized catechin then 

inhibits polygalacturonase activity (Akino and Ogoshi, 1995). Older hypocotyls show 

further resistance to polygalacturonase action. Stockwell and Hanchey (1983) propose 

this to be due to a thicker cuticle, which reduces the amount of host exudates released, 

such that they no longer form a trigger for infection cushion formation and subsequent 

release of polygalacturonase. 

1.4. Control of Rhizoctonia-incited diseases 

Marketable yield losses from soil-borne plant pathogens result in an annual loss 

of $ 4 to 5 billion in the USA alone (Lewis et al., 1998). More specifically, in crops 

such as potatoes marketable yield losses of 30 % frequently occur due to Rhizoctonia 

infection (Caning et al., 1989; Read et al., 1989), which is of great agroeconomical 

significance, considering that potatoes form the staple diet of many western civilizations. 

Control of Rhizoctonia-incited diseases is achieved in a variety of ways using cultural, 

chemical, biological and integrated techniques. The oldest, most commonly used 

cultural technique is that of crop rotation. Ideally rotations of 3 years, or longer, are 

recommended for crops such as potatoes (Banville etal., 1996), with intervals of 5 years 

effectively eliminating damage from soil-borne sources of R. solani (Jager et al., 1991). 

A further cultural approach which is useful for small areas of high value crops, such as 

greenhouse and nursery crops, is soil sterilization via heat treatment. However, 

problems with re-infestation subsequently occur (Herr, 1995). An alternative method of 

achieving control is to use disease-free seed. This is usually established using chemical 

treatments, the exact nature of which is dependent on the country and the crop. Some 

fungicides commonly employed against R. solani include quintozene, tolciofos-methyl, 

carboxin, formaldehyde, benodamil, benomyl, triazoles (e.g. propiconazole, 

hexaconazole), triadimefon, fenpropimorph, pencycuron., validimycin A and PCNB 

(pentachloronitrobenzene) (Katania and Gisi, 1996). Of these, quintozene was most 

frequently utilized between 1935 and 1965 (Katania and Gisi, 1996), although toiclofos-

methyl (Rizolex; Schering-Aagrunol) and pencycuron (Monceren, Bayer AG) currently 

monopolize the market. Tolciofos-methyl acts by reducing the capacity of R. solani to 

penetrate sprouts, stems and stolons (Jager et al., 1991) and by inhibiting scierotia 
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germination (Yamada, 1986). This fungicide is popular as it is active against virtually all 

types of Rhizoctonia disease over a large number of crop species growing in diverse 

environments (Kataria and Gisi, 1996). This is in stark contrast to fungicides such as 

triadimefon which is highly inhibitory to R. solani at 22°C, but not at 27°C (Kataria and 

Gisi, 1989), and pencycuron which is active against R. solani AGs 1, 2-1, 2-2, 3, 6 and 

9, but inactive against AGs 5, 7 and 8 (Sumner, 1987). The main drawback with 

toiclofos-methyl is the appearance of fungicide-insensitive R. solani isolates (van 

Bruggen and Arneson, 1984). Validimycin A is highly effective in control of rice sheath 

blight, but to date is used solely in Japan (Kataria and Gisi, 1996). In Australia, 

formaldehyde is widely used to control Rhizoctonia diseases of potato. This has been 

shown to be highly effective in killing scierotia. However, 100 % death required 

treatment for 20 minutes in a 2 % formaldehyde solution (Wicks et al., 1995). The 

toxicity of formaldehyde subsequently leads to problems with handling and disposal. 

Although adequate control is currently established using chemical treatments, 

many problems arise from their usage. From an environmental viewpoint fungicides, 

either directly or indirectly, pose a certain risk to human health, livestock, local 

ecosystems and water quality. For example, tolciofos-methyl, as with other 

organophosphorus compounds, has toxicity towards mammals. Ingestion of toiclofos-

methyl results in inhibition of acetyl-cholinesterase which leads to accumulation of 

acetylcholine at nerve end-plates (Tomimaru etal., 1996). This condition can be treated 

with a combination of atropine and the acetylcholinesterase reactivator, pralidoxime 

(Taylor, 1990). In addition, many fungicides prevent the use of organic manures 

(Bandyopadhyay et al., 1982; Kataria and Sunder, 1985). Manures contain large 

amounts of humic and fülvic acids which sequester substantial amounts of fungicides, 

rendering them inaccessible for disease control. A further problem with many fungicides 

is that extensive, prolonged usage may result in resistance. This has already been 

observed in experimental conditions with toiclofos-methyl (van Bruggen and Arneson, 

1984). Therefore, if chemical control is to remain a viable option, two or preferably 

three fungicides should be available which elicit control in different ways to delay the 

onset of resistance. However, a more environmentally sound approach would be to 

utilize a successful biological control system. 
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1.4.1. Potential for biological control of Rhizoctonia-i n cited 
diseases 

Although biological control is more environmentally friendly than chemical 

control, surprisingly few products are available commercially due to high developmental 

costs, in relation to market value. In the USA microbial biological control agents must 

be registered as "microbial pesticides", and undergo extensive toxicological tests to 

determine potential health hazards. Registration routinely costs $US 100 to 200 

thousand (Cook, 1993), which is too great to justify development of many disease or 

environment specific agents. In certain circumstances registration can be avoided by 

marketing the product as a "plant growth improver" rather than a "microbial pesticide". 

In 1993 there were seven microbial biocontrol agents registered in the US for use 

against phytopathogens. These included (i) Agrobacterium radiobacter K-84 for use 

against crown gall (Kerr, 1980), (ii) Pseudomonas fluorescens marketed as Dagger G 

for use against Rhizoctonia and Pythium damping-off of cotton (Howell and Stipanovic, 

1979), (iii) Gliocladium virens marketed as GlioGard for use against seedling diseases 

of ornamental and bedding plants (Cook, 1993), (iv) Trichoderma harzianum marketed 

as F-Stop and used as a seed treatment to improve stands of corn, beans and other 

vegetable crops (Harman et al., 1991), (v) Trichoderma harzianuml polysporum sold 

under the tradename of BINAB T effective against wood decay (Ricard, 1981), (vi) 

Bacillus subtilis marketed as Kodiak for use as a seed treatment, being active against 

Rhizoctonia on beans, cotton, peanuts and soybeans (Cook, 1993), (vii) Burkholderia 

cepacia marketed as Blue Circle and used as a seed treatment which is active against 

Rhizoctonia on corn, melon, cotton and beans (Lewis and Kulik, 1996). Of these, Ps. 

fluorescens, B. subtilis, G. virens and B. cepacia show a certain degree of activity 

against Rhizoctonia isolates. G. virens is a suppressant of R. solani-incited damping-off 

diseases (Lumsden and Locke, 1989), although the suppression mechanism is 

undetermined. Howell et al. (1993) showed that viridin and gliovirin produced by G. 

virens had no effect, so subsequent studies by Howell and Stipanovic (1995) focused on 

gliotoxin produced by some strains of G. virens. The production of UV-induced 

gliotoxin mutants indicated that gliotoxin activity is not the primary mechanism of 

suppression. Later studies by Wilhite and Straney (1996) indicate that gliotoxin is 

produced only for a short 16 hour period during replicative growth, thus limiting its 
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biocontrol capacity. Ps. fluorescens is thought to exert control partly through the 

antibiotics pyrrolnitrin and pyoluteorin (Homma et al., 1989). B. subtilis controls R. 

solani on cotton in sub-tropical climates (McKnight, 1993), where the temperature 

favours bacterial growth and metabolism; however, Fiddaman and Rossall (1995) 

demonstrated that within temperate regions, where the soil temperature is lower, 

suppression was not achieved. B. cepacia is used in horticultural situations where it is 

employed as a suspension in polyfoam rooting cubes in the planting of Poinsettia 

(Euphorbia puicherrima Wifid.) (Cartwright and Benson, 1995). Unfortunately these 

developed biocontrol agents are limited to specific crops in addition to specific 

environments. Various other strategies are currently under investigation for their 

potential to suppress Rhizoctonia-incited diseases. For example, Laetisaria arvalis can 

prevent Rhizoctonia-incited damping-off of sugar beet (Odvody et al., 1980), peppers 

(Conway, 1986), seedling disease of cotton (Lartey et al., 1991) and fruit rot of 

cucumbers (Lewis and Papavizas, 1980). Two further highly promising avenues exist to 

developing further biocontrol strategies effective against Rhizoctonia. The first involves 

using the mycoparasite Verticillium biguttatum Gams. (Section 1.4.1.1) and the second 

by harnessing double-stranded RNA (dsRNA) genetic elements (Section 1.4.1.2). 

1.4.1.1. Verticillium biguttatum as a biocontrol agent 

The biotrophic mycoparasite (van den Boogert and Deacon, 1994) of R. solani, 

Verticillium biguttatum, is a common soil organism with worldwide distribution, being 

able to survive in different soil types ranging from purely mineral to peat soils (van den 

Boogert and Saat, 1991). Infection of R. solani involves trophic hyphae of Verticillium 

penetrating host hyphae (Figure 1. 4). The internal hypha becomes orientated along the 

axis of the host hyphae (van den Boogert and Deacon, 1994), where it interacts 

biotrophically with R. solani for a short period, following which it rapidly degrades the 

host cytoplasm. The septa of the invaded cell becomes plugged (van den Boogert et al., 

1989), such that further cells tend to be invaded from external clasping side branches of 

Verticillium formed at the penetration point. The main macroscopic effect of this 

interaction is a large reduction in scierotial production by R. solani (van den Boogert et 

al., 1994). The economically important black scurf disease of potatoes results from R. 
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solani scierotia forming scabs on the tuber surface, so the reduction in scierotial 

production by V. biguttatum, plus the ability of V. biguttatum to kill scierotia (Jager and 

Velvis, 1984), indicates that V. biguttatum may be a potential biocontrol agent. 

Figure 1. 4 	Infection of Rhizoctonia solani hyphae from three germinating spores of 
Vertidilium biguttatum. Bar = 10 p.m (van den Boogert and Deacon, 1994). 

This concept seems promising but, as with all proposed biocontrol mechanisms, 

problems arise. The main difficulty as indicated by Velvis and Jager (1983) is that the 

suppressive effect of V. biguttatum is dramatically decreased at temperatures below 

15°C and absent at 10°C (Table 1. 1). The lack of growth at low temperatures is 

problematic, as Rhizoctonia isolates can grow at temperatures as low as 4°C, so 

Rhizoctonia can initiate growth in the spring, when the temperature is too low to permit 

the suppressive activity and growth of V biguttatum. 

van den Boogert et al. (1994) have tried to overcome this setback using green 

crop harvesting. Daughter tubers develop Rhizoctonia scurf' lesions relatively late in 

the season. This formation can only occur once the tuber begins to form a melanized 

skin. Green crop harvesting involves lifting the potato crop while the tubers are still 

white, coating them with V. biguttatum and subsequently reburying them under fresh 

ridges, to enable development of the skins, which is independent of attachment to the 
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plant. This technique prevents black scurf developing, as the temperature of the soil is 

greater than 15°C enabling Verticillium to display its mycoparasitic effect. 

Temperature Inoculum Scierotia (%) showing the indicated numbers of emerging hyphae 
0 1-5 6-10 11-25 >25 

10°C None 11 6 8 29 46 

V.b. 14 6 13 24 43 

15°C None 15 5 13 18 49 

V.b. 94 4 0 0 0 

20°C None 19 20 6 12 43 

V.b. 95 4 0 1 0 

Table 1. 1 	Viability of scierotia after treatment with Verlidihium bigultalum M73 
(VA) following 7 weeks incubation at differing temperatures (Velvis and Jager, 1983). 

Green-crop harvesting appears to establish control so this could be used in 

conjunction with dsRNA-mediated control (Section 1.4.1.2). Morris et al. (1995) 

proposed that antifungal hydroxymethyl phenols produced by V. biguttatum may be 

responsible for scierotial suppression. However, studies by van den Boogert et al., 

(1994) showed that suppression could occur when hyphae of R. solani grew across a 

trench in agar plates and the mycoparasite V. biguttatum was inoculated on only one 

side of the trench. This indicates that the suppression is not due to volatile or water-

diffusible inhibitors. Indeed suppression is thought to be mediated via R. solani hyphae, 

as V. biguttatum could cause suppression in two adjoining vegetatively compatible 

isolates, but not in the adjoining colony if it was vegetatively incompatible. This led van 

den Boogert and Deacon (1994) to propose that infection by V. biguttatum generates a 

continuing nutrient sink within the mycelium of R. solani, such that nutrients are 

diverted from sclerotial production to V. biguttatum. Thus, if in field situations we have 

isolates of R. solani infected with dsRNA, it may be possible to use the nutrient 

mobilization effect of V. biguttatum to "pull" dsRNA through adjoining colonies of the 

R. solani mycelial network, and to establish dsRNA induced hypovirulence in a larger 

proportion of the field population. 

1.4.1.2. A potential biocontrol system using dsRNA 
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The biocontrol methods described so far require repeated applications, or 

complex cropping procedures. Ideally a biocontrol strategy should require one-time 

inoculation. For example Phyllachora huberi, which causes black crust on rubber 

foliage, is maintained in a suppressive state by the mycoparasites Cylindosporum 

concentricum and Dicyma pulvinata (Sutton and Peng, 1993). This was achieved by a 

single inoculation. A further example is that of control of Scierotinia minor by the 

mycoparasite Sporidesmium scierotivorum in lettuce monoculture in New Jersey 

(Adams, 1990). Again this was self-sustaining following inoculative release. A further 

intriguing example of self-sustaining biocontrol involves control of Cryphonectria 

parasitica, the causative agent of chestnut blight in Europe (Section 1.6). This strategy 

involved harnessing dsRNA naturally resident in certain C. parasitica isolates. The 

presence of dsRNA alters the phenotype of this fungal pathogen to a weakly virulent 

(hypovirulent) state. This strategy has the advantage that hypovirulent isolates are able 

to occupy the same ecological niche as virulent strains, thus it should not be an 

environment specific control system. The hypovirulent isolates were artificially released 

throughout infected chestnut coppices in Southern Europe, whereby dsRNA spread 

throughout natural field populations via hyphal anastomosis such that biological control 

of chestnut blight was achieved. This will be discussed in more detail in Section 1.6 as it 

forms the basis for a potential biological control that might be developed against R. 

solani. 

1.5. Double-stranded RNA (dsRNA) in fungi 

dsRNAs, of potential mycovirus origin, have a widespread incidence in fungi, 

being reported in all the major taxonomic groups (Buck, 1986). They occur either as 

encapsidated viral genomes or more rarely as naked unencapsidated molecules (Zhang et 

al., 1994). They are presumed to be of viral nature (mycoviruses), since they have 

RNA-dependent RNA polymerase (RDRP) activity associated with the encapsidated 

virions, or their sequence contains an RDRP-related open reading frame (ORF) (Rubio 

et al., 1996). Ghabrial (1998) proposed that mycoviruses should be classified within 

four groups: (i) Totiviridae, characterized by a single dsRNA (4.6-7 kbp) encapsidated 

in isometric particles of approx. 30 to 40 nm diameter, an example of which is the 
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Saccharomyces cerevisiae virus (ScV-L). (ii) Partitiviridae, characterized by several 

unrelated encapsidated dsRNA segments (1-3 kbp), the smaller of which are considered 

satellite dsRNAs. An example is the virus of Gaeumannomyces graminis (Sacc.) von 

Arx & Olivier var. tritici Walker. (iii) Hypoviridae which contain several dsRNA 

segments which have no virus capsid, but are enclosed in polymorphic vesicles 50 to 80 

rim in size. They are similar in genetic organization and expression strategy to plant 

viruses, the main example being hypovirus CHV 1-713 of C. parasitica. (iv) 

Unclassified viruses such as the La France isometric virus (LIV) associated with the La 

France disease of mushrooms. 

dsRNA elements are generally non-symptomatic, as occurs in many rust fungi 

(Zhang et al., 1994), but some have been reported to alter the fungal phenotype. For 

example, a study of 22 isolates of Phytophthora infestans de Bary from Mexico 

concluded that dsRNA-containing strains exhibited significantly higher levels of 

virulence than dsRNA-free isolates (Nuss and Koltin, 1990). However, from a 

biocontrol perspective, dsRNA-containing strains showing reduced virulence 

(hypovirulence) are of greater interest. Examples of this are found in Ophiostoma ulmi 

(Brasier, 1983), Gaeumannomyces graminis var. tritici (Nuss and Koltin, 1990), 

Cochliobolus victoriae (Ghabrial, 1994), Chalara elegans Nag Raj and Kendrick 

(Bottacin et al., 1994), Leucostoma persoonii (Hammar et al., 1989), C. parasitica 

(Nuss, 1992) and Scierotinia scierotiorum (Boland, 1992). Some of these will be 

discussed in further detail below. 

1.5.1. dsRNA and hypovirulence in phytopathogenic fungi 

1.51.1. 	Gaeumannomyces graminis 

Gaeumannomyces graminis var. tritici is the causative agent of take-all diseases 

in wheat (Triticum aestivum) and barley (Hordeum vulgare). Symptoms range from 

chiorosis of leaves in late spring to severe stunting of plants and heavy reduction of 

grain yield. Successive crops show an increase in disease to a maximum (often in the 

third crop), followed by a reduction in disease level in subsequent crops, which has been 

termed "take-all decline" (Slope and Cox, 1964). Initial reports by Lapierre et al. 

(1970) found that weakly virulent (hypovirulent) strains isolated during the third crop 

were associated with virus-like particles (VLP). This was confirmed by subsequent 
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studies by Lemaire et al. (1970) and Spire (1970) which indicated two types of G. 

graminis var. tritici isolates: (i) isolates containing VLP of 29 ± 2 nm which were 

hypovirulent and (ii) isolates without VLP which were strongly virulent. Rawlinson et 

al. (1973) contradicted this by reporting isolates containing virus particles of sizes 27, 

35 and 40 rim in diameter, which displayed no consistent correlation between presence 

of virus and virulence. The degree of virulence remained unchanged following curing of 

isolates of VLP with elevated temperatures (Rawlinson et al., 1973). Later studies on 

20 different isolates revealed that isolates contained multiple (1 to 12) dsRNA segments 

with molecular weights ranging from I to 3 x 106  daltons, with no two isolates 

containing identical dsRNA patterns (Almond et al., 1977). Thus, if hypovirulence is 

indeed mediated by dsRNA, it is probably the effect of specific segments, or an 

interaction between several segments. 

The potential for using hypovirulent G. graminis var. tritici isolates for 

biological control looks optimistic. In field conditions hypovirulent isolates occur 

naturally at low frequency (Naiki and Cook, 1983), and this increases gradually during 

the crop growing season concomitant with an increase in abundance of dsRNA 

(Rawlinson et al., 1973). To determine how effective these may be for biocontrol, 

virus-free virulent strains were mixed with hypovirulent, virus-infected isolates and 

applied to both greenhouse and field plots of French wheat (cited by Day and Dodds, 

1979). Disease severity was greatly reduced compared with that in control plots 

exposed to virus-free strains. Further studies by Duffy  and Weller (1996), in 

Washington, improved yield of spring wheat by 20.8 % using hypovirulent G. graminis 

var. tritici strain L108hv. For hypovirulent isolates to be effective biological control 

agents dsRNA must be transmissible. Day and Dodds (1979) propose that dsRNA 

transfer occurs between isolates by vegetatively compatible anastomosis reactions. 

However, spread throughout field populations is likely to be limited as G. graminis var. 

tritici does not spread far through soil (Wehrle and Ogilvie, 1956) and pathogenically 

dissimilar isolates rarely anastomose (Chambers and Flentje, 1967). Thus, application of 

several different G. graminis var. tritici isolates over large areas would be required for 

biological control to succeed. In addition, the interaction of dsRNA with the host 

fungus requires to be elucidated. How does dsRNA suppress fungal virulence? Is it 

mediated by a single dsRNA segment, or a complex interplay between products of 
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multiple dsRNA segments? A secondary level of control is achieved through 

competition, as hypovirulent isolates will compete for the same ecological niche as 

virulent isolates. In addition, hypovirulent isolates may trigger the plant defence 

mechanism resulting in greater lignification and suberization of the endodermis and 

xylem vessels, thus decreasing the degree of invasion of the vascular system and the 

pathogenic effect of fully virulent isolates (Duffy and Weller, 1995). 

1.5.1.2. Helminthosporium victoriae 

Helminthosporium victoriae (teleomorph Cochliobolus victoriae) is the causal 

agent of Victoria blight of oats (Puccinia coronata). A "diseased" form of the pathogen 

is observed which is characterized primarily by lysis of aerial mycelium and reduced 

levels of the toxin "victorin" (Lindberg, 1960). In addition, reduced growth rate, 

hypovirulence and excessive sectoring are observed (Ghabrial, 1986). Studies by 

Sanderlin and Ghabrial (1978) reported the diseased forms to contain virus particles 

designated 190S and 145S, both of which are isometric particles of 40 rim diameter 

(Ghabrial, 1994). The 190S particle contains a single dsRNA segment of 5178 bp 

(Huang and Ghabrial, 1996), whereas the 145S particle contains four dsRNA segments 

of 2.6, 2.8, 3.0 and 3.4 kbp (Ghabrial, 1994). It is thought that the 145S particle is 

responsible for the "diseased" state of H. victoriae. Two lines of evidence support this: 

(i) diseased isolates always contained 145S, whereas normal, healthy isolates were either 

virus-free or contained only the 190S particle and (ii) healthy colonies prepared from 

colonies using protoplast techniques, always lacked the 145S particle (Sanderlin and 

Ghabrial, 1978). The virus-particles were shown to be cytoplasmically-transmissible 

concomitantly with the diseased state (Ghabrial, 1986). Isolates which acquire both the 

190S and 145S particles secrete a broad-spectrum antifungal polypeptide (6-8 KDa), 

designated "victoriocin" (Ghabrial, 1994), being responsible for the death of aerial 

mycelium in H. victoriae. This is thought to be dsRNA-encoded, but the exact 

mechanism is yet to be determined. The 190S particle, which is a member of the family 

Totiviridae (Ghabrial et al., 1995), has been sequenced and found to encode two open 

reading frames (ORFs); ORF1 encodes coat proteins and ORF2 encodes an RNA-

dependent RNA polymerase (RDRP) (Huang and Ghabrial, 1996). Other Totiviruses 

20 



express these two gene products via a translational frame shift, but the 190S particle 

differs, as it lacks the heptamer slippery site and pseudoknot structures required (Huang 

and Ghabrial, 1996). It is thought the RDRP is expressed using a fungal host factor 

(Huang et al., 1997). No evidence of coding capacity for the "diseased" state was found 

on 190S, thus re-affirming that it may be encoded on the 145S dsRNA segments. Work 

is currently underway to sequence these elements (Ghabrial, 1994). Isolates containing 

145S particles in the absence of 190S particles have not been reported. It may be that 

these are "satellite" dsRNA segments dependent on 190S particles for function 

(Ghabrial, 1994). If "vitoriocin" is dsRNA encoded, it may be analogous to killer 

systems reported in yeasts (Wickner, 1986), with diseased H victoriae isolates being 

analogous to "suicide" strains of yeast, which are sensitive to the toxin they produce 

(Buck, 1986). If this is the case, not only will it form the first example of a dsRNA-

mediated "killer" system in filamentous fungi, but also a highly effective means of 

biological control against Victoria blight of oats may be established. 

1.5.1.3. Ophiostoma ulmi 

Ophiostoma ulmi is the causative agent of Dutch elm (Ulmus procera) disease. 

The disease is initiated by bark beetles (Coleoptera: Scolytidae) which feed in the 

crotches of twigs during spring and summer. This results in deposition of 0. ulmi 

ascospores, which germinate and invade the xylem. The xylem rapidly becomes blocked 

and death of the tree ensues. During this century two pandemics have occurred: the 

first, during 1920 to 1940, caused by 0. ulmi (Buisman) Nannf., and the second from 

1940 to the present day, caused by 0. novo-ulmi (Brasier, 1991). 0. novo-ulmi is a 

highly aggressive pathogen and is split into two biotypes; (i) the North American (NAN) 

race and (ii) the Eurasian (EAN) race. These two races are partially reproductively 

isolated and differ in a range of morphological, physiological and molecular 

characteristics, as well as differing in geographical distribution (Jeng et al., 1988). 

Within both of these races, diseased isolates are reported which display slow growth 

rate, abnormal "amoeboid" morphology, reduced production of the hydrophobin cerato-

ulmin, reduced viability of conidia, impairment of sexual reproduction, production of a 

red-brown pigment and reduced infection potential (Brasier, 1983; Sutherland and 
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Brasier, 1997). In addition, large reductions in the levels of mitochondrial cytochrome 

oxidase occur (Rogers et al., 1987), and the de novo generation of DNA plasmids from 

mitochondrial DNA (Charter et al., 1993) is observed in diseased isolates. The factors 

that cause the diseased states are referred to as d-factors, of which many have been 

identified, and are numbered sequentially from & to d' (Brasier, 1986). The diseased 

state was found to be cytoplasmically transmissible via hyphal anastomosis (Rogers et 

al., 1986). Both healthy and diseased isolates were found to contain dsRNA genetic 

elements, but transmission of a set often of these elements (3.49, 3.03, 2.69, 2.43, 2.33, 

2.21, 0.95, 0.92, 0.48 and 0.33 kbp respectively) resulted in a healthy, uninfected 

recipient displaying the "d2" diseased phenotype (Rogers et al., 1986; Rogers et al., 

1988). These elements were not transmitted during sexual reproduction and progeny 

displayed a healthy phenotype (Rogers et al., 1988). Observations of isolates where not 

all dsRNA segments were transmitted indicated that the diseased phenotype is invoked 

by segments 4 (2.43 kbp), 7 (0.95 kbp) and 10 (0.33 kbp), acting either individually or 

in combination (Rogers et al., 1988). Of these, segments 7 and 10 have recently been 

sequenced (Hong etal., 1998). 

Since diseased isolates display poor pathogenicity, they may form good 

biocontrol agents. This is exemplified by in vitro studies which indicate that 500 to 

1000 spores of healthy 0. novo-ulmi are required to cause xylem infection in the English 

elm (Ulmusprocera) (Webber, 1987; Webber, 1993; Sutherland and Brasier, 1997). In 

contrast d6  and d' 3  diseased isolates required 5 000 and 50 000 spores, respectively, to 

elicit infection (Webber, 1987; Webber, 1993). Further studies by Sutherland and 

Brasier (1997) grouped d-factors into four categories according to their ability to reduce 

xylem infection of U procera; (i) minimal effect as in d' isolates, (ii) mild effect as in d 4  

isolates (NAN), (iii) moderate effect as in d 5  to d8, d10, d" (EAN) and d' 2, d' 3  (NAN), 

and (iv) severe effect as displayed by d 2  (NW, d3  and d9  (EAN). Spore numbers 

required for infection by isolates exerting a moderate and severe effect, are greater than 

the number of spores carried by the majority of vector beetles (Webber, 1987). For 

example, in Europe only about 25 % of Scolytus scolytus beetles commonly carry more 

than 5 000 spores, with only 15 % carrying more than 10 000 spores (Webber, 1990; 

Webber, 1993). In the USA, these figures are greatly reduced due to the smaller size of 

the S. multistriatis beetle (Sutherland and Brasier, 1997). The success of control in this 

manner is increased on U x hollandica cv. 'Commelin', which is a hybrid showing 
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moderate resistance to Dutch elm disease. For d 2  and d9  infected 0. novo-ulmi to elicit 

infection, 50 000 to 500 000 spores would be required (Sutherland and Brasier, 1997). 

Thus it is hoped that release of artificially bred beetles carrying diseased 0. novo-ulmi 

isolates will establish control. Following release they should subsequently convert 

natural, healthy isolates to the diseased phenotype, thus limiting further infection. 

It is believed that diseased isolates have reduced the effect of the current 

pandemic of Dutch elm disease (Brasier, 1988; Brasier, 1991). However, limitations to 

using diseased isolates as artificially introduced biocontrol agents are expected. The 

main barrier will be a limitation in the transmission of the diseased phenotype due to 

vegetative compatibility groupings (VCGs). In regional collections of 0. novo-ulmi, 

most isolates belong to differing VCGs (Buck, 1988). Since spread of d-factors occurs 

in only 4 % of incompatible reactions (Brasier, 1984; Brasier, 1986) this is likely to 

severely limit dissemination. However, in other cases v-c supergroups exist where the 

majority of isolates are all vegetatively compatible. For example, in Portugal and Poland 

more than 90 % and 47 % respectively, belong to the same VCG (Buck, 1988). Where 

incompatibility is a problem, it may potentially be overcome by releasing isolates of 

several different VCG and including bridging isolates in the release, thus making 

diseased isolates a highly promising potential means of biocontrol. 

1.5.2. Biological control using dsRNA 

dsRNA genetic elements have been shown to reduce the pathogenicity of various 

fungal phytopathogens (Buck, 1988; Nuss and Koltin, 1990; Nuss, 1992). Many of 

these have the potential to be good biological control agents, as previously discussed. 

The main problem to be overcome in many potential systems lies in the dissemination of 

dsRNA which occurs via hyphal anastomosis. Transmission occurs readily when isolates 

contain vegetative compatibility (vic) genes which are the same at every locus. With 

increasing numbers of different vic genes, the frequency of dsRNA transmission 

decreases. For a fully incompatible reaction, transmission frequency has been reported 

at only 4 % in Ophiostoma novo-ulmi (Brasier, 1984; Brasier, 1986). Some fungal 

pathogens have simple population structures, such as Helicobasidium mompa and 

Rosellinia necatrix (Matsumoto, 1998). However, since many natural fungal 

populations contain diverse VCGs, vegetative compatibility is likely to pose a problem. 
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To a certain extent, these barriers can be overcome, for example, by applying several 

hypovirulent isolates from differing VCGs, in addition to "bridging" isolates. More 

elaborate means could involve suppressing vegetative incompatibility reactions using 

anti-sense messenger RNA (niRNA) (Benedetti et al., 1987), which can block the 

expression of vic genes. In C. parasitica, these drawbacks have been circumvented, 

such that a highly successful dsRNA-mediated biocontrol strategy might be developed 

against chestnut blight, which is discussed in detail below. 

1.6. Chestnut blight: a model biocontrol system 

1.6.1. Chestnut blight 

Chestnut blight is caused by the wound pathogen Cryphonectria parasitica 

(initially called Diaporthe parasitica, then renamed as Endothia parasitica) which 

infects branches and stems, then grows in and under the bark, resulting in a canker 

(Figure 1. 5a), which gradually spreads around the branch! stem. This girdling results in 

death of everything distal to the canker. The roots, however, are not infected and the 

stumps retain the ability to resprout. 

1.6.2. Control of chestnut blight in Europe 

Chestnut blight was first reported on the European chestnut (Castanea sativa 

Mill.) in 1938 near Genoa and Avellino in Italy, and by 1950 it was widely distributed 

throughout the northern and southern chestnut plantations of Italy (Anagnostakis, 

1992). In 1951, Biraghi discovered a chestnut coppice that looked "surprisingly 

healthy" despite 85 % of the shoots being infected (Biraghi, 1953). In this coppice, 

superficial cankers (Figure 1. 5b) formed where the fungal mycelium was restricted to 

the outer layers of the bark. Prior to 1964, it was assumed this was due to a resistant 

variety of chestnut; however, Grente (1965) isolated altered forms of C. parasitica from 

the healing cankers. These new forms displayed lower pigmentation (Figure 1. 6), 

sporulation and virulence. They were termed hypovirulent by Grente, because when 

they were inoculated onto chestnut trees, the resulting canker spread so slowly that the 

trees' natural defences had time to contain the infection. When hypovirulent strains 
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were coinoculated with heavily virulent isolates on agar, the virulent strain was 

converted to hypovirulent form. Thus, hypovirulence is cytoplasmically controlled, with 

dsRNA subsequently being shown by Day et al. (1977) to be the causative agent. In 

Italy, natural spread of hypovirulence has led to a substantial reduction in the incidence 

of chestnut blight, such that it is no longer a problem (Mittempergher, 1978). It is 

proposed that the hypovirulent isolates were disseminated naturally by wind, birds, 

insects, timber movement and tree climbing slugs (gastropods: Lehmannia marginata 

Muller) (Turchetti and Chelazzi, 1984; Heiniger and Rigling, 1994). Following natural 

control in Italy, Grente in the 1960s initiated a biological control program of chestnut 

blight in France. The program involved successive treatments of 10 cankers per hectare 

for a 3 year period, followed by treatment of 5 cankers per hectare for 2-3 years. This 

cured plantations of virulent cankers within a 10 year period (Grente and Berthelay-

Sauret, 1978), thus proving to be an effective biocontrol system. To date, chestnut 

blight has spread throughout most of central Europe, including Portugal, Switzerland, 

Germany and Greece (Heiniger and Rigling, 1994). However, in many of these 

plantations, the frequency of hypovirulent isolates is high. For example, in chestnut 

coppices in Switzerland 59 % of isolates recovered were hypovirulent (Bissegger et al., 

1997), therefore chestnut blight is no longer a major problem in Europe. 

1.6.3. Control of chestnut blight in the USA 

In America, chestnut blight was first reported in 1904 on American chestnut 

(Castanea dentata (Marsh.) Borkh.) trees in Bronx zoo, New York City (Merkel, 

1905). Here, as in Europe, the pathogen was thought to have been imported from Asia 

(Newhouse, 1990) such that American trees had no natural resistance, enabling the 

pathogen to spread rapidly through American chestnut stands, destroying several billion 

mature trees within a 50 year period (Anagnostakis, 1982). Initial attempts to prevent 

chestnut blight becoming established involved pruning and spraying using Bordeaux 

mixture (Murrill, 1906). This failed to control the disease, and it spread rapidly 

throughout American chestnut plantations. Following the success in controlling 
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Figure 1. 5 	Canker development caused by Cryphonectria parasilica on chestnut 
(Castanea saliva). (a) Canker resulting from infection with a fully virulent isolate of C. 
parasilica. (b) Healed canker, following infection with a hypovirulent C. parasitica strain 
(Heiniger and Rigling, 1994). 

Figure 1. 6 	Hypovirulent (white) and virulent (orange/ brown) forms of Cryphonectria 
parasitica (Heiniger and Rigling, 1994). 
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chestnut blight in Europe, it was hoped that the same could be achieved in the USA. 

Anagnostakis and Jaynes (1973) found that European hypovirulent strains could 

diminish the growth of cankers in greenhouse seedlings. This led to field trials involving 

300 trees being inoculated with an American hypovirulent strain derived from the 

original French strain (Jaynes and Effiston, 1980). This proved successful in that 86 % 

of the inoculated cankers were controlled after one year. However, new cankers 

forming at other points on the trees were not cured and were lethal. Virulent infection 

levels, therefore, remained high with long-term survival of trees and natural 

dissemination not being achieved. 

The movement of dsRNA between hypovirulent and virulent isolates depends on 

the vegetative compatibility of the isolates (MacDonald and Fuibright, 1991). 

Vegetative compatibility is controlled by vic (yegetativeincompatibility) genes, which 

are estimated to be at 7-8 loci (Anagnostakis, 1995). If two strains have the same alleles 

at all of the vic genes then anastomosis will occur. The ability to undergo viable 

anastomosis decreases with the increasing number of alleles which differ. This has been 

shown by Lui and Milgroom (1996) who found that the frequency of transmission 

between groups differing by one vic gene was 0.49, and that transmission frequency 

decreased to 0.13 when vic genes differ at two loci. When more than two vic genes 

differ, then the transmission frequency decreased to 0.03. It has been shown that 

American isolates possess a great deal of vegetative incompatibility with more than 100 

vegetative compatibility groups present, compared to only a handful of such groups in 

Italy (Newhouse, 1990). This complex population structure is thought to have limited 

the dissemination of dsRNA in field trials under natural conditions in the Eastern United 

States, thus preventing dsRNA being used as a successful biological control agent, as 

occurred in Europe. 

1.6.4. Molecular basis for hypovirulence 

When dsRNA elements associated with C. parasitica were examined, it was 

found that the number of segments, size and sequence homology differed greatly 

between isolates (Dodds, 1980; L'Hostis et al., 1985). For example, dsRNA elements 

from different C. parasitica populations throughout Europe appear to represent a single 

species, which does not hybridize to North American dsRNA elements (Enebak et al., 

1994; Peever et al., 1997). Within the North American continent, some similarity is 
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observed; for example, dsRNA from Michigan isolates has been observed to cross-

hybridize with dsRNA from Ontario isolates (Meizer et al., 1997). This variability has 

led to the European-derived hypovirulent strain EP7 13 being utilized as a type strain. 

EP713 harbours several dsRNAs, of which the largest is termed L-dsRNA (12 712 bp), 

and also several smaller segments termed M-dsRNA (8-10 kbp) and S-dsRNA (0.6-1.7 

kbp) (Hiremath etal., 1986; Shapira et al., 1991a). The M- and S- dsRNA elements are 

reported by Shapira et al. (1991a) to be internally deleted forms of L-dsRNA, thus 

indicating that all the genetic information resides within L-dsRNA. L-dsRNA (CHV1-

713) was recently shown to contain two contiguous open reading frames (ORFs); 

ORFA (622 codons) and ORFB (3165 codons) (Shapira et al., 1991b), both of which 

encode polyproteins that undergo autoproteolytic processing during translation (Choi et 

al., 1991). 

To determine whether hypovirulence was due to a general debilitation of fungal 

metabolism, or due to dsRNA specifically altering the expression of certain fungal genes, 

Choi and Nuss (1992b) transformed virulent C. parasitica EP155 with the vector 

pAXHY2 (Figure 1. 7a). This vector contains the ORFA coding domain of L-dsRNA. 

The control vector pAXHY5 (Figure 1. 7b) contained ORFA in the reverse orientation. 

Transformation with pAX}{Y5 resulted in no phenotypic alterations. However, 

transformation with pAXHY2 resulted in decreased pigmentation, reduced laccase 

accumulation and suppressed conidiation, similar to that of natural dsRNA- containing 

hypovirulent strains. They were not, though, reduced in virulence, indicating an 

apparent uncoupling of hypovirulence-associated traits from hypovirulence. ORFA only 

represents 16 % of the coding capacity of CHV1-713, thus hypovirulence may be 

conferred by a different segment. This was demonstrated by Choi and Nuss (1992b) 

who transformed virulent C. parasitica strains with a cDNA copy of CHV1-713 in the 

vector pXH9 (Figure 1. 7c), which resulted in the expression of both hypovirulence and 

hypovirulence-associated traits e.g. reduced pigmentation and suppressed conidiation. 

The uncoupling of hypovirulence from associated traits is highly significant, as it raises 

the possibility that specific properties of hypovirulent isolates can be altered. For 

example, it may be possible to engineer hypovirulent strains which sporulate abundantly 

as opposed to the decreased sporulation levels of naturally hypovirulent isolates, in 

addition to displaying increased hypovirulence. 
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pA)(HY2 	 Pgpd 	(+)ORFA 	I Tgpd—ljp-pC  f hygB TtrpC 
pUC19 	 pUCI9 

pAXFIY5 	I Pgpd  I 	(-)ORFA 	I TgpdH PtrpC hygB TtrpC 
pUCI9 	 pUC19 

pXH9 	 Pgpd 	+)ORFA (+)ORFB Tgpd H PtrpC hygB TtrpC 
pUCI9 	 pUC19 

Figure 1. 7 Transformation vectors utilized for transforming virulent Cryphonectria 
parasitica isolates. (a) Plasmid pAXIIY2 contains ORFA, flanked by the C. parasitica 
glyceraldehyde-3-phosphate dehydrogenase gene promoter (Pgpd) and terminator (Tgpd). 
The plasmid also contains the E. coil hygromycin B phosphotransferase gene (hygB) 
preceded by the A. nidulans trpC promoter (PtrpC). (b) Plasmid pAXHY5 is the same as 
pAXHY2 except that ORFA is in the antisense direction. (c) Plasmid pXH9 is the same as 
pAXHY2 except that ORFA is substituted by the entire L-dsRNA sequence, which includes 
ORFA and ORFB (Choi and Nuss, 1992b). 

1.6.5. A novel means of biological control 

Choi and Nuss (1992b) have successfully transformed virulent C. parasitica 

strains with cDNA copies of CHV1-713, producing hypovirulent strains. These novel 

strains contain a chromosomally integrated copy of the viral RNA as well as cDNA-

derived cytoplasmic dsRNA forms, which are fully transmissible via anastomosis. The 

presence of the chromosomally integrated copy of the viral RNA enables the potential 

additional transmission routes via conidia and via ascospores through nuclear 

inheritance. Chen et al. (1993) have demonstrated that the integrated viral cDNA is 

stably maintained through repeated rounds of conidiation and can be faithfully 

transmitted to asco spore progeny. This breakthrough overcomes the previous barrier to 

dissemination posed by vegetative compatibility, as CHVI-713 cDNA can be engineered 

into field isolates representing the range of vegetative compatibility groups present in a 

given ecosystem. The subsequent engineered strains due to the novel means of 

transmission should have improved dissemination and persistence. 
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As mentioned earlier, it should be possible to manipulate the viral cDNA to 

generate novel hypovirulent strains. Initial studies by Craven et al. (1993) have shown 

this to be possible by constructing strains possessing increased conidiation levels, and 

remaining hypovirulent. 

The L-dsRNA copy may find broader usage as a biological control agent. 

Recent studies by Chen et al. (1994; 1996) indicate that CRV 1-713 cDNA can be 

transformed into other species. The fungi tested were C. cubensis (Bruner) Hodges, C. 

havanensis (Bruner) Barr, C. radicalis (Schw. Ex Fries) Barr and Endothia gyrosa 

(Schw. Ex Fries) Fries, none of which contain natural dsRNA elements. Upon 

transformation, isolates displayed altered morphology, reduction in phenol oxidase 

production (except E. gyrosa) and attenuation of fungal virulence. Subsequent studies 

indicated C. cubensis and E. gyrosa were unable to elicit infections, indicating that 

biocontrol could be successfully achieved in several other species using cDNA derived 

from CHV1-713. Again the cDNA transformants have additional transmission routes 

via ascospore progeny and asexual spores. 

dsRNA seems to be able to elicit hypovirulence in closely related species, so an 

interesting and important factor to be elucidated is: how does the presence of dsRNA 

lead to the phenotypic traits of hypovirulence, reduced laccase accumulation, reduced 

comdiation, lower pigmentation etc.? 

1.6.6. How does dsRNA alter fungal phenotype? 

Infection of C. parasitica with dsRNA leads to certain altered phenotypic traits; 

for example, decreased pigmentation, suppressed conidiation, hypovirulence and 

reduced laccase accumulation. It has recently been reported that several genes (e.g. 

lad encoding phenol oxidase laccase, vir2 encoding a putative pheromone, cbhl 

encoding cellobiohydrolase I and cpgl encoding a G-protein cc-subunit), are down-

regulated in hypovirulent isolates compared with virulent isolates (Rigling and van 

Alfen, 1991; Larson et al., 1992; Zhang et al., 1993; Choi et al., 1995; Wang and Nuss, 

1995). Of these cpgl encodes a heterotrimeric guanidine nucleotide binding protein (0 

protein) CPG1. G-proteins are a family of regulatory proteins which play an essential 

role in the response of eukaryotic cells to a variety of environmental stimuli, so it was 

proposed that CPGI is involved in virulence attenuation. This was examined by 
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transforming sense and antisense copies of cpgl into virus-free C. parasitica isolates. 

Transformants were assessed for their degree of virulence using standard assays on 

chestnut stems (Choi et al., 1995). Transformants containing sense copies of cpgl 

produced lesions of similar size to hypovirulent isolates (0.61 cm), whereas 

transformants containing antisense copies of cpgl produced lesions of similar size to 

virulent isolates (7.13 cm). These results indicated that a G protein mediated 

regulatory pathway is affected by dsRNA elements resulting in reduced fungal virulence. 

Subsequent studies by Wang and Nuss (1995) indicate that down-regulation of the 

virulence enzyme cellobiohydrolase (cbhl) upon dsRNA infection is dependent upon 

cpgl being down-regulated. Thus CPG1 may down-regulate several virulence factors in 

a regulatory cascade as proposed by Kazmierczak et al. (1996). To determine whether 

this is the case Chen et al. (1996) proposed that CPG1 may be a member of the G 1  

family of G protein a subunits, which inhibit adenylyl cyclase, and consequently reduce 

intracellular cAMP levels. Measurements of intracellular cAMP levels in virulent and 

hypovirulent isolates confirmed this by indicating a four fold greater level of cAIv[P in 

virulent strains (Chen etal., 1996). This, combined with evidence obtained by Larson et 

al. (1992) and Larson and Nuss (1994) which indicated that laccase production was 

suppressed following disruption of an inositol triphosphate/ Ca 2 / calmodulin signalling 

pathway, led Gao and Nuss (1996) to propose a model for hypovirus-mediated 

suppression of virulence. In a virulent virus-free C. parasitica isolate (Figure 1. 8a), an 

unknown ligand binds a transmembrane receptor, activating Gia (cpgl encoded), which 

in turn negatively regulates adenylate cyclase, such that intracellular cAMP is decreased. 

Protein kinases are then inactive, so no inhibition is placed on phospholipase C, and 

phospholipase C can then convert phosphatidylinositol (P1) 4-5 phosphate (PIP 2) to 

inositol 1, 4, 5 trisphosphate (1P3). 1P3  then activates virulence genes such as laccase. 

In hypovirulent C. parasitica isolates (Figure 1. 8b), G i  is not produced, due to down-

regulation of cpgl, such that adenylate cyclase is not activated and intracellular cAMP 

levels are therefore high. This leads to protein kinases being activated, which in turn 
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Figure 1. 8 Proposed mechanisms for virulence and hypovirulence in C. parasitica (a) In virulent 
isolates, a ligand binds a receptor, activating an inhibitory heterotrimeric G-protein. Gja  
(encoded by cpgl) negatively regulates adenylyl cyclase, such that expression of virulence genes 
e.g. foci can occur (b) In hypovirulent isolates Gk,  (cpgl) is not produced, such that adenylyl 
cyclase is permeantly active, generating cAMP. This in turn activates a protein kinase, which 
inhibits phospbolipase C, resulting in no IF3  generated, which would otherwise enable joel 
transcription. 
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de-activate phospholipase C. This results in a decrease in 1P 3 , preventing virulence 

genes from being transcribed, so the isolate is hypovirulent. It is likely that similar 

modifications of signaling cascades are resposible for the phenotypic changes observed 

when C. cubensis, C. havanensis, C. radicalis and E. gyrosa were successfully 

transformed with eDNA generated from L-dsRNA from C. parasitica. 

This forms a highly plausible model. However, direct linkage between CPG1 

and the 1P3/ Ca2  transcription pathway of virulence genes is yet to be established. 

1.7. dsRNA and R. solani 

dsRNA was first reported to be associated with R. solani by Castanho and 

Butler (1978a). Their studies first described a degenerative disease of R. solani termed 

Rhizoctonia decline, characterized by slow growth, fewer scierotia, loss of 

pigmentation, presence of dsRNA and reduced virulence compared with normal isolates. 

Of 16 isolates tested by Castanho and Butler (1978b) 13 lacked dsRNA and were 

virulent, whereas the remaining 3 contained dsRNA of variable sizes, and were avirulent. 

They also found that the disease causing factor of the hypovirulent isolate 189a could be 

transferred by hyphal anastomosis to the healthy isolate 1 89HT5. This prompted studies 

in which sugar beet (Beta vulgaris) seeds were disinfected in 1 % sodium hypochiorite 

for 10 minutes and subsequently coated with both isolates 189a and 189 HT5. This 

resulted in suppression of damping-off of seedlings and indicated a potential for 

biocontrol. Further studies by Zanzinger et al. (1984) indicated that dsRNA was highly 

abundant in R. solani isolates. Of 50 strains tested, 49 contained dsRNA ranging from 

0.6 kb to over 8.4 kb. They found no consistent correlation between degree of virulence 

and presence of dsRNA. Studies by Bharathan and Tavantzis (1990) tested isolates 

from five different AG, and again found no correlation between degree of virulence and 

dsRNA. These results, contradicting those of Castanho and Butler (1978b), are further 

supported by the results of Hyakumachi et al. (1985), Washington and Martin (1991) 

and Kousik et al. (1994), all of which found dsRNA to be ubiquitous in natural 

populations of R. solani and there was no apparent correlation between the presence of 

dsRNA and the degree of pathogenicity. In further contradiction to the studies 
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mentioned is that of Finider et al. (1985) which suggests that dsRNA is associated with 

virulence. This study examined 139 Israeli isolates. Of these, 23 % were hypovirulent, 

and dsRNA was only detected in the virulent group. In further support, transmission 

studies indicated that hypovirulent isolates could be converted to the virulent phenotype 

upon transmission of dsRNA (Finkler et al., 1988). Recent studies by Ran et al. (1997) 

and Ran et al. (1998) are in support of this, and indicate that the presence, or 

acquisition, of a 6.4 kb dsRNA segment leads to enhanced virulence. Thus, it seems 

that any relationship between dsRNA and the degree of virulence is part of a complex 

genetic phenomenon, which warrants further investigation. It is likely that the 

relationship is similar to that in Ophiostoma ulmi (Nuss and Koltin, 1990) where many 

isolates contain dsRNA but only 3 of 10 segments are required to maintain the 

hypovirulent state, whereas strains lacking the critical 3 segments are virulent. 

In R. solani, it may be that certain segments lead to virulence; for example, the 

6.4 kb segment reported by Ran et al. (1998); whereas other segments may result in the 

hypovirulent phenotype. Several other dsRNA segments may have no effect on 

virulence. To determine the amount of genetic variability between dsRNAs and thus try 

to ascertain whether there were common segments associated with hypovirulence, 

Bharathan and Tavantzis (1990) and Bharathan and Tavantzis (1991) determined the 

degree of cross hybridization of dsRNA from 51 isolates of AGs 1-5. They found that 

in all but one case, cross hybridization did not occur between isolates of different AGs 

(but within an AG, cross hybridization occurred), which is consistent with the theory 

that the AGs of R. solani are genetically isolated (Anderson, 1982). The exceptions 

were 3 dsRNA segments (1.8, 2.3 and 6.4 kb) which cross-hybridized from isolates Rhs 

47 (AG 2), Rhs 1A1 (AG 3) and Rhs 1 (AG 5) respectively. All three isolates were 

hypovirulent suggesting that their common sequence may be responsible for their 

hypovirulence. 

Thus it is hoped that R. solani dsRNA segments can be used to exert biological 

control, in the same way as was achieved for C. parasitica, following the example of 

control in Europe or in the USA. Prior to control being achieved, factors such as the 

vegetative compatibility of field populations requires to be studied to determine whether 

it will pose a barrier to dissemination of dsRNA. In addition, the effects of individual, 

and combinations of, dsRNA elements requires to be elucidated. This can be examined 

via curing of isolates, although an alternative approach would be to introduce cloned 
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dsRNA into R. solani. However, a suitable transformation system requires to be 

developed before these studies can be completed. 

1.8. Aims of the Thesis 

Biological control has been achieved against C. parasitica in Europe using 

dsRNA elements naturally resident within the fungus (reviewed by Nuss, 1992). dsRNA 

has been reported in R. solani, although there is much controversy regarding its effect 

on the host phenotype (Castanho and Butler, 1978b; Zanzinger et al., 1984; Finkler et 

al., 1985; Bharathan and Tavantzis, 1990; Kousik et al., 1994). The work of this study 

aims to examine the presence and abundance of dsRNA within natural field isolates of R. 

solani. Subsequent work aims to generate isolates either partially or fully cured of 

dsRNA, such that a potential correlation between dsRNA and host virulence can be 

drawn. Host virulence involves a battery of enzymes which will be examined in several 

dsRNA-containing AG 3 isolates, with a view to comparing levels with cured isolates to 

determine whether any alterations of the enzyme levels are attributable to dsRNA. A 

secondary approach to elucidating the function of dsRNA in R. solani involves 

comparison to dsRNA elements which have been previously characterized. This work 

examines the relationship between hypovirus CHV1-713 of C. parasitica and dsRNA 

from R. solani. 

For dsRNA elements to form a successful biological control agent against R. 

solani, dsRNA must be transmissible throughout field populations. dsRNA transmission 

is reported to occur following compatible anastomosis (Finider et al., 1988), with 

transmission frequency reported to decrease to only 4 % of incompatible anastomosis 

reactions in Ophiostoma novo-ulmi (Brasier, 1984; 1986). This work, therefore, aims to 

examine the vegetative compatibility structure of natural field isolates of R. solani, to 

determine whether dsRNA transmission would be impeded. 

To establish a biological control strategy against R. solani using dsRNA, it may 

be possible to transform cDNA of hypovirus CFIV1-713 into R. solani, and have the 

hypovirulent phenotype expressed. However, prior to this, a suitable transformation 

procedure needs to be developed for R. solani, which this work aims to do. 

Additionally this would enable cDNA of dsRNA from R. solani to be re-introduced into 
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R. solani isolates devoid of dsRNA and thus provide direct evidence for the role of 

dsRNA in R. solani. 
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CHAPTER 2 

MATERIALS AND METHODS 
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2. 1. Materials 

All chemicals, unless otherwise stated, were analytical grade and were purchased 

from one of the following suppliers: Sigma (Poole, Dorset, UK), British Drug Houses 

(BDH) (Poole, Dorset, UK), Gibco-BRL (Paisley, UK), Fisons (Loughborough, UK), 

Rathburn (Walkerburn, UK) or Pharmacia (Milton Keynes, UK). Enzymes for nucleic 

acid manipulations were purchased from Boehringer Mannheim (Lewes, East Sussex, 

UK). a-32P dCTP (3000 Ci mM1 , 10 tCi m1 1 .) was purchased from Amersham ( Little 

Chalfont, Buckinghamshire, UK), as were nucleic acid hybridization membranes 

(Hybond N). 

2.2. Media 

All media was sterilized by autoclaving at 121°C for 20 minutes. 

2.2.1. Fungal growth media 

Rhizoctonia Selective Agar 

Oxoid agar no. 3 (20 g), K 2HPO4  (1 g), MgSO4 .7H20 (0.5 g), KC1 (0.5 g), 

FeSO4.7H20 (10 mg), NaNO2  (0.2 g) and gaffic acid (0.4 g) were dissolved in distilled 

water (dH20) to give a final volume of 1 litre. After autoclaving, filter-sterilized stock 

solutions of streptomycin and chioramphenicol were added to give final concentrations 

of 50 mg r' each. 

Potato Dextrose Agar 

Oxoid potato dextrose agar (39 g) was added to dH 20 to give a final volume of 

1 litre. 

Cellulose Minimal Agar 

Cellulose powder (5 g) was added to NaNO 3  (2 g), KH2PO4  (1.23 g), KC1 (0.5 

g), MgSO4 .7H20 (0.5 g), FeCl3 .6H20 (0.001 g), ZnSO4 .7H20 (0.0009 g), Mn50 4 .4H20 

(0.0004 g) and Oxoid no. 3 agar (20 g). These were dissolved in dH 20 to give a final 

volume of I litre. 
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Starch Minimal Agar 

Soluble starch (3.88 g), NaNO3  (2 g), KH2PO4  (1.23 g), KC1 (0.5 g), 

MgSO4 .71-120 (0.5 g), FeC13 .61420 (0-001 g), Zn504 .7H20 (0.0009 g), MnSO 4 .4H20 

(0.0004 g) and Oxoid no. 3 (20 g) agar were dissolved in dH 20 to give a final volume of 

1 litre. 

Agar-Coated Microscope Slides 

Oxoid no. 3 agar (20 g) was added to dH 2 0 to give a final volume of 1 litre. 

After autoclaving, sterile microscope slides were thinly coated with agar by briefly 

immersing them in the hot agar. Excess agar was allowed to drip off then the agar 

coated slides were placed on water agar plates. 

Water Agar 

Oxoid no. 3 agar (20 g) was added to dH 2 0 to give a final volume of 1 litre. 

Cellulose Film Overlaid Agar 

7 cm diameter discs of Rayophane Pu525 were immersed in water and 

autoclaved. Following autoclaving, single discs were placed upon water agar plates. 

Mineral Nutrients 

NaNO3  (5 g), K2HPO4  (1 g), MgSO4 .7H20 (0.5 g) and Oxoid yeast extract (0.1 

g) were added to dH20 to give a final volume of 1 litre. 

Potato Dextrose Charcoal Agar 

Oxoid potato dextrose agar (39 g) and activated charcoal (5 g) was added to 

d112 0 to give a final volume of 1 litre. 

Rhizoctonia Broth 

Oxoid malt extract (5 g), Oxoid yeast extract (5 g) and D-glucose (5 g) was 

added to dH20 to give a final volume of 1 litre. 

Pectin Enzyme Broth 
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(NFI4)2 SO4  (2.64 g), K2HPO4  (0.34 g) and MgSO4 .7H20 (0.14 g) were 

dissolved in 500 ml of dH20. Citrus pectin (10 g) was added to the solution with 

vigorous magnetic stirring. Once dissolved, dH20 was added to give a final volume of 1 

litre. 

Cycloheximide Agar 

Oxoid potato dextrose agar (39 g) was added to dH 20 to give a final volume of 

1 litre. After autoclaving, a filter sterilized cycloheximide stock solution was added to 

give a final concentration of 100 tg m1'. 

Gallic Acid Agar 

Oxoid malt extract agar (50 g) was dissolved in 1 litre of dH 20 containing 0.5 % 

gaffic acid solution adjusted to pH 4.5. 

Cellulose Agar 

Cellulose powder (20 g) was suspended in 1 litre of water agar. 

Pectin Agar 

Citrus pectin (20 g) was dissolved in 1 litre of water agar. 

2.2.2. Bacterial Growth Media 

Luria Broth (LB) 

Tryptone (10 g), Bacto yeast extract (5 g) and NaCl (10 g) were added to dH 20 

to give a final volume of I litre. After autoclaving, filter sterilized solutions of thiamin 

and glucose were added to provide 35 mg 1' and 1 g l.i,  respectively. 

Luria Agar 

Oxoid no. 3 (15 g) agar was added to 1 litre of Luria broth. 
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2.3. Molecular Biology Solutions 

Tris-CI 

Tris base (tris (hydroxymethyl) aminomethane) was dissolved in dH 20 and the 

pH adjusted to the desired value by the addition of concentrated hydrochloric acid, with 

the final volume adjusted with dH20 to I litre. 

EDTA 

EDTA (ethylenediaminetetra amino acid, disodium salt) was prepared as a 0.5 M 

stock solution in dH 20. The pH was adjusted to pH 8.0 using 5 M NaOH. 

CF11 Cellulose 

CF1 1 cellulose was prepared as a 70 % (w/v) autoclaved solution in dH 20 

TB 

TB was prepared by adding PIPES (Piperazine-N, N'-bis [2-ethanesullonic 

acid]) (0.6048 g), CaCl 2  (2.205 g) and KC1 (3.7275 g) to 100 ml dH20. The 

components were dissolved by adjusting the pH to pH 6.7 with KOH and then MnC1 2  

(2.1769 g) was added and the volume adjusted to 200 ml. The solution was filter-

sterilized and stored at 4°C. 

TBE 

TBE was prepared as a 10 fold stock solution and stored at room temperature. 

Tris base (108 g), boric acid (55 g) and 40 ml 0.5 M EDTA solution were used in a final 

volume of 1 litre dH20. The stock solution was diluted to the appropriate concentration 

prior to use. 

MITO 

SSC was made as a 20 fold stock solution by adding NaCl (175 g) and sodium 

citrate (88.2 g) to dH 20 to give a final volume of I litre. The stock solution was diluted 

to the appropriate concentration prior to use. 
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STE 

STE was prepared as a 10 fold stock solution by adding NaCl (58.44 g), Tris 

(60.57 g) and EDTA (2.92 g) to dH 20 to give a final volume of 1 litre. The stock 

solution was diluted to the appropriate concentration prior to use. 

Denhardts solution 

Denhardts solution was prepared as a 100 fold stock solution by adding BSA 

(bovine serum albumin) (20 g), Ficoll (20 g) and PVP (polyvinylpyroilidone) (20 g) to 

dH20 to give a final volume of 1 litre. 

Phenol-chloroform-isoamyl alcohol (25:24:1) 

Water-saturated phenol was equilibrated to pH 8.0 by the addition of an equal 

volume of 1.0 M Tris-CI (pH 8.0) plus 0.2 % (w/v) 8-hydroxyquinoline (which prevents 

oxidation of the phenol, inhibits RNase activity and chelates metal ions; Kirby, 1956). 

This was mixed by vigorous magnetic stirring for 15 minutes, followed by overnight 

equilibration at 4°C. The top phase was discarded and equilibration repeated twice with 

an equal volume of 0.1 M Tris-CI (pH 8.0). Chloroform and isoamyl alcohol were 

added in the appropriate ratio and the mixture equilibrated twice with 0.1 M Tris-CI (pH 

8.0). The equilibrated mixture was stored under 0.01 M Tris-CI (pH 8.0) at -20°C. 

Potassium Acetate Buffer 

Potassium acetate (3 M) was dissolved in half volume dH 20 then the pH 

adjusted to pH 5.2 with glacial acetic acid; dH20 was added to give a final volume of 1 

litre. 

Ethidium Bromide 

A stock solution was prepared by adding ethidium bromide (0.1 g) to 10 ml 

dH20 and stored at room temperature. 

Loading Buffer for Agarose Gel Electrophoresis 
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A 6 fold stock solution was prepared with 60 % (w/v) sucrose, 6 mM disodium 

EDTA and 0.025 % (w/v) bromophenol blue dissolved in 6 X TBE. 

2.4. Fungal Methods 

2.4.1. Isolation, Maintenance and Preservation of Strains 

Origins of Rhizoctonia solani strains are indicated in Table 2. 1. Isolation of 

strains from potato tubers was achieved by transferring black scabs from the tuber 

surface onto Rhizoctonia selective agar (1 g K 2HPO4 , 0.59 M9SO4 .7H20, 0.5g KC1, 10 

mg FeSO4 .7H20, 0.2 g NaNO2 , 0.4 g gallic acid, 50 mg chioramphenicol, 50 mg 

streptomycin, 20 g Oxoid no. 3 agar in a final volume of I litre dH 20). Their 

anastomosis grouping was confirmed by pairing strains with known tester strains using 

standard methods (Parmeter et al., 1969). Strains were maintained on potato dextrose 

agar (PDA) and preserved at 4°C under sterile distilled water and in addition at -70°C 

under 10 % (w/v) glycerol. Verticillium biguttatum strains (M 73, M 92 to 100) were 

obtained from Dr. P.J.H.F. van den Boogert, Netherlands. These were maintained on 

PDA and preserved at -70°C under 10 % (w/v) glycerol. Cryphonectria parasitica Cp 

38755 and Cp 52571 were obtained from Dr. V. Rubio, Spain and maintained on PDA. 

2.4.2. Microscopy 

Microscopy was carried out using a Leitz Orthoplan microscope, with Plano 

objectives (x 10, x 25, x 70, x 90) and Periplan (x 10) eyepieces. 

Video microscopy was completed using a colour Panasonic video camera (VW 

CL-350) attached to the above microscope. The camera was attached to a Toshiba 

video recorder (DV80B), which was connected to a Sony Trinitron 14" colour monitor 

(1460 UB). Black and white images were obtained using a Mitsubishi P6IB video copy 

processor. 

2.4.3. Anastomosis Reactions 

Anastomosis was observed using two different techniques. 

43 



Rhizoctonia Strain Anastomosis Group (AG) Source 

OIROI 1-IA ATCC 76121 

01R02 1-lB ATCC 76122 
OlR03 I-iC ATCC 76123 
01R04 I Carting, D.E., Alaska 
*1 to *49 1 Julian, M.C., Spain 
21R01 2-1 ATCC66154 
021-14 2-1 Rubio, V., Spain 
21-14 2-1 Rubio, V., Spain 
21-41 2-1 Rubio, V., Spain 
21-F16L 2-1 Rubio, V., Spain 
2tR105 2-tulip Schneider, J.H.M., Netherlands 
2tRl 18 2-tulip Schneider, J.H.M., Netherlands 
2tR144 2-tulip Schneider, JJ-LM., Netherlands 
2024 2-tulip Rubio, V., Spain 
2001 2-tulip Rubio, V., Spain 
GRI 2-2 van den Boogert, P.H.J.F., Netherlands 
22R02 2-2 ATCC 76125 
VR5 2-2 van den Boogert, P.H.J.F., Netherlands 
B12 2-2 van den Boogert, P.H.J.F., Netherlands 
23R01 2-3 Naito, S., Japan 
3R4 3 Jager, G., Netherlands 
3R8 3 Jager, G., Netherlands 
3R9 3 Jager, G., Netherlands 
3R41 3 Jager, G., Netherlands 
FT1-20 3 Potato tubers, Scotland 
FF1 00-104 3 Potato tubers, Scotland 
FF200-204 3 Potato tubers, Scotland 
FT300-304 3 Potato tubers, Scotland 
FT400-404 3 Potato tubers, Scotland 
WI -4 3 Potato tubers, Scotland 
MK 1-2 3 Potato tubers, Scotland 
APA 1-2 3 Potato tubers, Scotland 
APB 1-3 3 Potato tubers, Scotland 
APC1-2 3 Potato tubers, Scotland 
04R22 4 Doornik, Netherlands 
4/51 4 Deacon, J.W., Scotland 
4/41 4 Deacon, J.W., Scotland 
Me8-2 4 INIA, Spain 
521 4 ATCC 64643 
PAl 4 Papavizas, G.C., USA 
Papa 4 McCabe, P.M., Scotland 
05R01 5 ATCC 76128 
R470 5 Deacon, Scotland 
06R01 6 ATCC 76129 
07R01 7 Rubio, V., Spain 
08ROl 8 ATCC 76106 
09R01 9 ATCC 62804 
I1ROI 11 ATCC 90857 

Table 2. 1 	Origins and anastomosis groupings of Rhizoctonia solani strains. 
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Water agar slides. Sterile glass coverslips (44 x 64 mm.) were coated with a thin 

film of 2 % agar (Oxoid no. 3) and placed upon water agar plates. Slides were 

inoculated with two opposing blocks of fungi approximately 20 mm apart. 

Following 24 hours incubation at 23°C, the coverslips were inverted onto 

observation chambers consisting of glass capillaries stuck to microscope slides (51 x 

86 mm) (Figure 2. 1) and examined microscopically, through the coverslip and thin 

layer of agar. 

Cellophane overlaid agar. Sterile 7 cm diameter discs of transparent cellulose film 

(autoclaved in d1120) were placed upon 2 % water agar plates. Fungi were 

inoculated approximately 30 mm apart and incubated at 23°C for 4 to 5 days and 

subsequently examined microscopically. 

Agar coated coverslip 
(inverted) 

Vaseline coated glass 
capillaries 

Glass slide 

Figure 2. 1 	Observation chamber for microscopic examination of anastomosis reactions. 

2.4.4. Susceptibility of Rhizoctonia so/an! to Vert!ciII!um 

bigutta turn 

The method used was based on that of van den Boogert and Deacon (1994). 

Preparation of V. biguttatum conidial suspension 
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Conidial suspensions were obtained by rinsing 14 day old colonies with sterile 

dH20 and passing the washings through two layers of sterile cheesecloth. This was 

repeated a further two times, with the collected eluate being centrifuged for 15 minutes 

at 3000 g. The conidia were finally resuspended in sterile dH 20 and their concentration 

determined using a Neubaeur counting chamber; levels were adjusted to approximately 7 
X  107 conidia per ml. 

Interactions on cellulose agar 

Agar discs of R. solani (6 mm diameter) were inoculated upon glass coverslips 

which were centrally located on plates of cellulose agar (MnSO 4 .7H20 (0.0004 g), 

ZnSO4 .7H20 (0.0009 g), FeCI3 .6H2 0 (0-001 g), MgSO4 .7H20 (0.5 g), KC1 (0.5 g), 

KH2PO4  (1.23 g), Oxoid agar no. 3 (20 g), NaNO 3  (2 g), cellulose powder (5 g) per litre 

dH20). 40 p.! of V. biguttarum conidial suspension was inoculated in a straight line (2 

cm long) at the periphery of the plate (Figure 2. 2). Plates were incubated for 14 days at 

18°C, with the number of scierotia being recorded at 2 day intervals. Each interaction 

was examined in triplicate. 

Cellulose agar 

40 p.1 V. biguttatum conidial 
suspension inoculated in a 2 
cm long line 

Glass coverslip to 
prevent leaching of 
nutrients into the 
cellulose agar 

6 mm diameter inoculum 
disc of R. solani 

Figure 2.2 	Inoculum positions of Rhizoctonia solani and Verticihium 
biguttalum when studying interactions between the two fungi. 
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Interactions on starch agar 

Interactions were also observed on starch agar (as for cellulose agar, but with 

cellulose replaced with 3.88 g starch) using the method described above. Due to the 

increased abundance of scierotia on these plates, scierotial area was estimated using a 

PC-based image analysis package with Optimas version 5.2 and Excel version 5.0. 

Images were obtained using a Nikon 55 millimetre macro lens connected to a Sony CCD 

camera. 

2.4.5. Growth rates of Rhizoctonia solani 

Discs (6 mm diameter) were excised from 7 day old R. solani cultures and 

centrally inoculated on either; potato dextrose agar, water agar, or water agar 

supplemented with either 2 % (w/v) cellulose or 2 % (w/v) citrus pectin. Linear 

extension rates were recorded as daily increments in colony diameter at 23°C. Three 

replicate plates per strain were inoculated and extension rates were recorded on two 

axes. 

2.4.6. Plant pathogenicity tests 

Plant pathogenicity tests were based on the method of Ichielevich-Auster et al. 

(1985). Pathogenicity was observed using the following host plants: tomato 

(Lycopersion esculentum), radish (Raphanus sativus), carrot (Daucus carota), lettuce 

(Lactuca sativa), cress (Barbarea praecox) and onion (A ilium cepa). Discs (6 mm 

diameter) were excised from 7 day old cultures and centrally inoculated on water agar 

plates and incubated for two days at room temperature. Ten replicate plates were 

inoculated per strain. Five seeds (disinfected in 1 % sodium hypochlorite for 10 

minutes) were placed around the periphery of each colony. Subsequent incubation was 

at room temperature for 10 days, following which disease severity was recorded on a 

scale of 0 to 5 based on the relative size of necrotic area on the shoots or roots as 

follows: O=no disease; I = 1 - 10%;2 =  11 -30%; 3 = 31 - 50%;4 = 51 -80% and 

5 = entire hypocotyl infected. Isolates with a mean infectivity between 0 and 1 were 

considered non-pathogenic. 
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2.4.7. Pectic zymograms 

Detection of pectic enzymes on pectin-containing polyacrylamide gels was based 

on the method of Cruickshank and Wade (1980) and Sweetingham etal. (1986). 

Preparation of enzyme sample 

A 10 mm diameter agar disc of R. solani was inoculated into 5 ml of pectic 

enzyme broth (2.64 g (Nth)2SO4, 0.34 g K21-IPO4, 0.149 MgSO4 .71120, 10 g citrus 

pectin per litre dH 20) and incubated at 25°C for 10 days. One ml of culture supernatant 

was removed and Sephadex G25-150 was added to a concentration of 50 mg ml' to aid 

sample loading. In addition, bromophenol blue was added to a final concentration of 

0.05 % and 30 p.1 of sample loaded onto a polymerized pectin acrylamide gel. 

Pectin acrylamide gel electrophoresis 

Using a BioRad PROTEAN II xi 2-D vertical electrophoresis tank, a pectin 

acrylaniide gel (10.25 % acrylamide, 2.5 % bis-acrylamide, 0.1 % citrus pectin), 

buffered to pH 8.7 with citric acid buffer (0.525 g citric acid, 4.598 g tris base per litre 

dH20, pH 8.7) was prepared. Polymerization of the gel was carried out by the addition 

of 0.35 p.! ml' TEMED (N, N, N', N'- tetramethylethylenedianiine) and 0.7 mg ml' 

ammonium persulphate. Electrophoresis was completed at 4°C using 70 V for 1 hour in 

the following tank buffer: 7.22 g boric acid and 15.75 g sodium tetraborate decahydrate 

per litre dH20. 

Gel staining 

Following electrophoresis, gels were incubated in 0.1 M D,L-malic acid (pH 2) 

for 2 hours at room temperature. During this period, malic acid slowly reduces the pH 

of the gel from approximately pH 8.0 to pH 3.0, which enables each pectic enzyme to 

act at its optimal pH (Cruickshank and Wade, 1980). Gels were subsequently stained in 

0.02 % (w/v) ruthenium red overnight at 4°C and destained in SDW for 3 to 5 hours. 

Enzyme action was determined as follows: pectin esterase produced zones with darker 

staining than background, polygalacturonase produced colourless or pale zones, pectin 

lyase produced yellow zones or clear zones bordered by a yellow margin. 

2.4.8. Pectic enzyme assays 

Preparation of enzyme sample 
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A ¼ oz. bijoux bottle containing 2 ml of either pectin broth ( ( Nth)2SO4 (2.64 

g), K2HPO4  (0.34 g), MgSO4 .7H20 (0.14 g), citrus pectin (10 g) per litre dH 20), 

polypectate broth (as pectin broth with 10 g sodium polypectate substituting 10 g citrus 

pectin) or glucose broth (10 g glucose substituting 10 g citrus pectin), was inoculated 

with an 8 mm diameter agar disc of R. solani and incubated at 25°C. Cultures in 

glucose broth were included as controls. Following 5 days incubation, 500 p.l of culture 

supernatant was removed and added to an equal volume of either pectin lyase buffer (50 

p.M tris-Ci, pH 8.3, 0.01 M CaCl2, 1 % citrus pectin) (Pitt, 1988) or polygalacturonase 

buffer (45 mM sodium acetate buffer containing 1 % sodium polypectate) (Ayers et al., 

1966). Samples were mixed and 100 p.1 removed, which was boiled to inactivate the 

enzymes. Enzyme activities were measured using the thiobarbituric acid assay. 

Samples were prepared on days 5 to 9 of culture incubation. 

Thiobarbituric acid assay 

The thiobarbituric acid assay was based on the method of Warren (1960). The 

assay measures the production of 4,5 unsaturated oligogalacturonides from the 

breakdown of pectin and the increase in reducing groups with dinitrosalicycic acid from 

the substrate sodium polypectate. 

100 p.1 of enzyme and buffer mixture was boiled for 5 minutes to inactivate the 

enzymes. Reagent A (125 p.1, prepared from 200 p.118 M sulphuric acid and 0.535 g 

periodic acid per 100 ml dH20) was added and the mixture incubated for 10 minutes at 

room temperature. Reagent B (250 p.1, prepared from 5 ml 11.6 M HC1, 2 g sodium 

arsenite made up to 100 ml in dH20) was added and incubation continued for a further 2 

minutes. Subsequently 1 ml of Reagent C (0.3 g thiobarbituric acid in 100 ml dH 20) 

was added and the resultant mixture was boiled for 10 minutes and then held at 50°C 

until spectrometry. The production of 4,5 unsaturated oligogalacturonides was 

measured at a wavelength of 549 nm, whereas the increase in dinitrosalicycic reducing 

groups was measured at a wavelength of 530 nm. Reference cuvettes in both cases 

contained the same reagents, except no fungal mycelia was added. 
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2.4.9. Phenol oxidase production 

R. solani was centrally inoculated on agar containing 1.5 % malt extract, 2 % 

Oxoid agar no. 3 and either 0.5 % gallic acid or 0.5 % tannic acid (adjusted to pH 4.5 

with NaO}1) and incubated for 7 days at 25°C in the dark. Phenol oxidase production 

was indicated in both cases by a change in agar colour from light brown to dark brown. 

The diameter of the resulting colonies was recorded. 

2.4.10. Cellulose degradation 

Stacks of five filter papers (7 cm diameter, Whatman no. 3), weighed accurately 

to 4 decimal places, were placed in 250 ml Erlenmeyer flasks with 10 ml nutrient 

solution. The basal nutrient solution contained K 2HPO4  (1 g), MgSO4 .71120 (0.5 g) and 

Oxoid yeast extract (0.1 g) per litre dH 20. In addition either NaNO 3  (5 g) or asparagine 

(3.88 g) (equivalent N content) was added, and some experiments contained a 

supplement of 3.4 meq Ca 2 , as calcium chloride. Discs (10 mm diameter) were 

inoculated at the periphery of each stack of filter papers. Flasks were incubated at 27°C 

for 22 days, then their contents placed in pre-weighed tins, oven-dried for 5 days at 

80°C and re-weighed. Four replicate flasks were inoculated per isolate, in addition to 

six control flasks (no fungal inoculum) were used in each experiment. 

The mean loss in weight from control flasks represented the difference between 

the original air-dry weight and oven-dry weight of the filter papers. This weight was 

subtracted from the difference in weight recorded between original filter paper weight 

and dried filter paper weight of the individual treatments, the resultant value being the 

amount of cellulose respired to carbon dioxide and water. 

2.4.11. Heterokaryon formation 

Homokaryotic isolates were placed 6 cm apart on potato dextrose charcoal agar 

(PDCA) (39 g Oxoid potato dextrose agar supplemented with 0.5 % (w/v) activated 

charcoal per litre dH20). Following 14 days incubation at 23°C, the plates were 

examined for tuft formation at the boundary of the two colonies. Where tufts had 

formed, fragments of hyphae were removed from the tufts using sterile forceps and 

placed on water agar plates and then incubated at 23°C. As soon as colonies began to 
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form, hyphal tips were transferred onto potato dextrose agar. Once colonies were 

established, confirmation that heterokaryons were formed was obtained using the test 

proposed by Adams and Butler (1982). This involved the colonies generated being 

paired to both parental homokaryons on PDCA plates. Lack of tuft formation with both 

parental homokaryons, following 14 days incubation at 23°C, was considered to be 

adequate evidence that heterokaryons had been successfully established. 

2.4.12. dsRNA isolation 

Isolation of dsRNA was completed using a modification of the methods of 

Morris and Dodds (1979) and Hoch et al. (1985). 

Rhizoctonia broth (300 ml, containing 5 % glucose, 5 % malt extract, 5 % yeast 

extract) was inoculated with multiple plugs of R. solani and incubated aerobically for 

10-14 days at 23°C. Approximately 10 g mycelia (dry weight) was ground to a powder 

with liquid nitrogen and mixed with the following reagents: 40 ml of pH 8.0 Tris-

equilibrated phenol-chloroform-isoamylalcohol, 40 ml GPS buffer (0.1 M Na 2HPO4 , pH 

9.5; 0.6 M NaCl; 0.2 M glycine), 1 ml 10 % sodium dodecyl sulphate (SDS) and 200 j.tl 

-mercaptoethanol. The mixture was homogenized for 3 minutes using an Ultra-Turrax 

T25 (Janke and Kunkel, IKA Labortechnik) and then incubated aerobically at 23°C for 

1.5 hours. Cell debris was removed by centrifugation for 15 minutes at 10 000 rpm in a 

GSA rotor in a Sorvall Superspeed centrifuge (DuPont). The supernatant was phenol-

chloroform extracted three times by mixing for 1 minute with an equal volume of 

phenol-chloroform-isoamylalcohol and subsequently centrifuging for 5 minutes at 10 

000 rpm in a SA600 rotor in a Sorvall Superspeed centrifuge. The final supernatant 

phase was ethanol precipitated in silanized Corex tubes overnight at 4°C with 0.1 

volume 3 M potassium acetate pH 5.2 and 2.5 volumes ethanol. Nucleic acids were 

precipitated by centrifugation for 15 minutes at 7 500 rpm in a SA600 rotor, with the 

resultant pellets resuspended in a total volume of 7.5 ml STE (0.1 M NaCl; 0.05 M tris; 

0.001 M EDTA pH 7.0), containing 15 % ethanol (STE-OH). The sample was loaded 

onto a CF11 cellulose column pre-equilibrated with 2 volumes STE, followed by 3 

volumes STE-OH. ssRNA and DNA were eluted with 3 volumes STE-OH, and dsRNA 

was eluted with 2 volumes STE. Nucleic acids were concentrated by ethanol 
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precipitation overnight at -20°C, with the final pellet being resuspended in 100 ,tl SDW. 

Nucleic acid content was visualized using either agarose gel electrophoresis (Section 

2.5.3) or polyacrylamide gel electrophoresis (Section 2.5.10). 

2.4.13. Partial curing of dsRNA 

Partial curing of dsRNA was achieved by repeatedly excising hyphal tips from 

young colonies grown on potato dextrose agar (PDA) containing the RNA synthesis 

inhibitor cycloheximide (Bottacin et al., 1994; Elias and Cotty, 1996) at concentrations 

of; 0, 10, 50, 100, 400 p.g mf'. Hyphal tips were left to regenerate for 7-14 days on 

fresh PDA at 23°C. 

2.5. Molecular Methods 

2.5.1. Removal of proteins by phenol-chloroform extraction 

Nucleic acid samples were thoroughly mixed with an equal volume of pH 8.0 

Tris-equilibrated phenol-chloroform-isoamylalcohol and centrifuged for 2 minutes at 13 

000 rpm in a MSE Micro Centaur microfuge. The upper nucleic acid containing phase 

was retained and nucleic acids concentrated by ethanol precipitation (Section 2.5.2). 

2.5.2. Ethanol precipitation of nucleic acids 

Nucleic acids were precipitated from solution by addition of 0.1 volume 3M 

potassium acetate pH 5.2 and 2.5 volumes ethanol. Following thorough mixing, 

samples were incubated at -70°C for 15 minutes or -20°C for 30 minutes. Nucleic acids 

were pelleted by centrifugation at 13 000 rpm in a MSE Micro Centaur microfuge for 15 

minutes. The resulting pellet was washed in 70 % ethanol and centrifuged for 5 minutes 

at 13 000 rpm and resuspended in a small volume of SDW. 
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2.5.3. Agarose gel electrophoresis 

Prior to loading, DNA samples were mixed with one-sixth volume of loading 

buffer (60 % (w/v) sucrose, 6 mM disodium EDTA, 0.025 % (w/v) bromophenol blue in 

6 x TBE). DNA fragments were separated in a 0.7 to 1.0 % (w/v in TBE) agarose gel 

(electrophoresis grade) containing 0.5 tg m1' ethidium bromide, with I X TBE (0.089 

M iris, 0.089 M boric acid, 0.02 M EDTA) as running buffer. Molecular size markers 

used were Hindlil digested bacteriophage lambda. DNA was visualized using a UV 

transilluminator (UV Products Inc., California) and photographed with a IJVP camera 

and black and white pictures were obtained with a Mitsibushi P65B video copy 

processor. 

2.5.4. Restriction digests 

Restriction digests were completed with commercially available enzymes in their 

supplied buffers. Approximately 15 tl of DNA was digested in a total volume of 20 j.il 

consisting of: 1 X restriction enzyme buffer, 10 units of restriction enzyme and SDW, 

for ito 16 hours at 37°C. 

2.5.5. Production of competent Escherichia coil cells 

Escherichia coil strain TG 1 or DL-5 was incubated on Luria broth (LB) agar 

overnight at 37°C, and from here a single colony was inoculated into 5 ml Luria Broth 

(LB). This was incubated overnight at 37°C with vigorous shaking and subsequently 

inoculated into 200 ml of LB, which was incubated at 18 to 23°C until the optical 

density at 600 nm reached 0.6. Cells were placed on ice for 10 minutes and then 

pelleted by centrifugation for 10 minutes at 4°C at 4250 rpm in a GSA rotor in a Sorvall 

Superspeed centrifuge (DuPont). The pelleted cells were resuspended in 20 ml of ice 

cold TB (10 mM PIPES, 55 mM MnCl2 , 15 mM CaCl2 , 250 mM KCI) and DMSO 

(dimethylsulfoxide) added to a final concentration of 7 %. Cells were left on ice for 10 

minutes, aliquoted and frozen in liquid nitrogen. The resulting competent cells were 

stored at -80°C until required. 
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2.5.6. Transformation of competent Escherichia coli cells 

Suspensions (200 i.tl) of competent E. coli cells plus up to 10 .t1 of DNA were 

added to a chilled eppendorf tube and incubated on ice for 30 minutes. The cells were 

heat shocked at 42°C for 30 seconds and returned to ice for 5 minutes. Soc (800 tl 

consisting of 2 % tryptone, 0.5 % yeast extract, 10 mM NaCl, 2.5 MM KC1, 10 MM 

MgSO4, 10 mM MgCl2 , 20 mM glucose) was added and the mixture incubated 

aerobically at 37°C for 1 hour, before being spread on LB agar supplemented with 5 jig 

MIA ampidilhin. 

2.5.7. Small scale plasmid preparation 

Five ml of an overnight culture grown in LB broth supplemented with ampiciffin 

(5 ml") was harvested by centrifugation at 3 000 rpm in a MSE Centaur 2 benchtop 

centrifuge, and the pelleted cells resuspended in 100 .tl TEG (25 mM tris-Cl pH 8.0, 10 

mM EDTA, 50 mM glucose), then 0.2 ml 0.2 M NaOH and 1 % SDS were added. 

Cells were vortexed and left on ice for 5 minutes, then 0.15 ml 3 M sodium acetate pH 

5.0 added. Following 5 minutes incubation on ice, cell debris was removed by 

centrifugation in a MSE Micro Centaur microfuge at 13 000 rpm, 4°C for 10 minutes. 

The supernatant was extracted with 0.5 ml phenol-chloroform-isoamylalcohol, and then 

with 0.5 ml chloroform. DNA was precipitated with 0.9 ml ethanol for 5 minutes at 

room temperature, followed by centrifugation for 10 minutes at 4°C at 13 000 rpm. 

Pelleted DNA was dried and resuspended in 50 p.1 SDW. 

2.5.8. Purification of DNA from agarose gels 

DNA fragments were purified from agarose gels using the Geneclean II kit 

(BIO101 Inc., La Jolla, USA). DNA was excised from the gel while being illuminated 

by long-wave UV light (302 nn). The excised fragment was mixed with 4.5 volumes of 

6 M sodium iodide and 0.5 volumes of TBE modifier, then heated at 45°C to 55°C for 5 

minutes to dissolve the agarose. GLASSMILK (5 p.1) was added and the solution 

incubated on ice for 5 minutes to allow binding of the DNA to the silica matrix. Bound 

DNA was pelleted by centrifugation at 13 000 rpm for 5 seconds and subsequently 
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washed three times with 500 jtl of New Wash, centrifuging for 5 seconds each time. 

DNA was eluted from the GLASSMIELK by incubating the pellet at 45°C to 55°C for 5 

minutes with 5 to 20 tl SDW. GLASSMILK was removed by centrifugation at 13 000 

rpm for 30 seconds and the DNA-containing supernatant retained. 

2.5.9. Purification of DNA from acrylamide gels 

To visualize DNA the gel was stained for 5 to 10 minutes with 0.2 % (w/v in 

dH20) methylene blue and destained in SDW. DNA was excised from the gel and 

placed upon silanized glass wool contained in a sealed blue Gilson pipette tip. Elution 

buffer (300 jtl, consisting of 0.5 M ammonium acetate, 1 mM EDTA) was added and 

the apparatus incubated overnight at 30°C with agitation. Acrylamide was removed by 

cutting the sealed part off the blue tip, placing the tip in an eppendorf tube and placing 

this apparatus in a 50 ml Falcon tube, which was centrifuged at 3 000 rpm for 5 minutes 

in a MSE Centaur 2 benchtop centrifuge. A further 200 tl of elution buffer was added 

to the tip and the centrifugation repeated. The eluted nucleic acid was phenol-

chloroform extracted (Section 2.5.1) and then extracted with ether by vortexing for 1 

minute, followed by centrifugation at 13 000 rpm for 3 minutes. The upper ether phase 

was removed and the lower nucleic acid-containing phase was left at room temperature 

for 5 minutes to enable evaporation of traces of ether. DNA was concentrated by 

ethanol precipitation at -80°C for 30 minutes with 45 j.tl of 3 M sodium acetate pH 5.2, 

4.5 .tl of 1 M magnesium chloride and 1 ml of ethanol, with the final pellet resuspended 

in 5-20 jil SDW. 

2.5.10. Polyacrylamide gel electrophoresis (PAGE) 

PAGE was undertaken using a BioRad PROTEAN II xi 2-D vertical 

electrophoresis tank, with 15 x 15 cm glass plates separated by 1 mm spacers. A 5 % 

polyacrylamide gel was prepared using a mixture of 16.6 ml Easi-Gel (30 % (w/v) 

acrylamide/ 1.034 % (w/v) bisacrylamide), 20 ml 5 X TBE, 0.7 ml 10 % ammonium 

persulfate and 62.7 ml dH 2O. Polymerization was achieved by adding 35 j.il of TEMED 

(N, N, N', N'-tetramethylethylenediamine) immediately prior to pouring the gel. 

Following polymerization (1 hour), the electrophoresis tank was filled with 1 X TBE 
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and the nucleic acid samples loaded (mixed with one-sixth volume of 6 X loading 

buffer). Electrophoresis was completed at 100 V for 4-5 hours. Nucleic acids were 

detected by staining the gel in 0.5 .tg m1' ethidium bromide in I X TBE for 45 minutes 

at room temperature and visualized using UV light. 

2.5.11. Nucleic acid hybridization 

Nucleic acid hybridization was completed using a modification of the original 

method described by Southern (1975). 

Nucleic acid preparation 

Nucleic acids were separated by electrophoresis on a 0.7 to 1.0 % (w/v) agarose 

gel in 1 X TBE (Section 2.5.3). Nucleic acids were visualized and photographed using 

UV light and then denatured by placing the gel in denaturing solution (0.5 M NaOH, 1.5 

M NaCl) for 40 minutes at room temperature with gentle shaking. The gel was rinsed 

and placed in neutralizing solution (0.5 M Tris-CI pH 7.5, 3 M NaCl) for 40 minutes at 

room temperature with gentle shaking. Nucleic acids were then transferred to Hybond- 

N nylon membranes by capillary transfer. 

Capillary transfer of nucleic acids to membranes 

To enable capillary transfer an inverted, shallow tray was placed in a second tray 

containing a reservoir of 20 X SSC (3 M NaCl, 0.3 M sodium citrate). A wick was 

formed on the inverted tray using two sheets of Whatman 3MM filter paper soaked in 

20 X SSC, with their ends resting in the reservoir. The inverted gel was placed on the 

wick (ensuring no trapped air bubbles) and a piece of Hybond-N nylon membrane 

matching the gel dimensions was placed on top. Two sheets of Whatman 3MM filter 

paper, cut to gel dimensions, were placed upon the nylon membrane. A 7 cm high stack 

of absorbent paper towels was rested upon the filter paper and pressed down by a 2 kg 

weight (Figure 2. 3). Capillary transfer proceeded overnight, following which the nylon 

membrane was removed and nucleic acids fixed to the membrane, either by baking for 2 

hours at 80°C or by UV crosslinking for 2 minutes on a UV Stratalinker 1800 

(Stratagene) at 254 tim. 

Low stringency hybridization 

Fixed membranes were placed in rollers containing 25 ml of pre-hybridization 

solution (7.5 ml 20 X SSC, 1.25 ml Denhardts solution, 1.25 ml 10 % SDS, 0.5 ml of 1 

56 



mg ml- ' denatured salmon sperm. 14.5 ml dH20) and incubated for 1 hour at 42°C in a 

Techne Hybridization }{B- 1 oven. The pre-hybridization solution was replaced with 25 

ml of fresh pre-hybridization solution and the radiolabelled probe (Section 2.5.12) 

added. Hybridization was completed at low stringency (42°C) overnight. Membranes 

were then washed firstly in 2 X SSC, 0.1 % SDS for 10 minutes at room temperature, 

and secondly in 1 X SSC, 0.1 % SDS for 10 minutes at 42°C. Membranes were 

removed and wrapped in Saran wrap prior to autoradiography. 

Autoradiography 

Membranes, wrapped in Saran wrap, were placed within autorad cassettes, with 

a sheet of Agfa Cunx X-ray film. Cassettes were placed at -70°C, with intensifying 

screens, for 4 to 48 hours. Films were developed using a Compact X2 automatic 

developer (X-Ograph Ltd., Wilts,UK). 

2.5.12. Nucleic acid radioloabelling 

Random primed labeling of DNA 

This method was first described by Feinberg and Vogeistein (1983;1984). 

Radiolabelling was completed using the Boehringer Mannheim "High Prime DNA 

Labelling Kit". Contaminating RNA and proteins were cleaned from the DNA solutions 

as described in section 2.5.8, prior to radiolabelling. DNA (8 j.tl) to be labeled was 

denatured at 100°C for 10 minutes and chilled quickly on ice, then mixed with 4 p1 high 

prime reaction mixture (random primers, Kienow polymerase, 5X reaction buffer in 

glycerol), 1 p1 dATP, 1 p1 dGTP, 1 gtl dTTP and 5 p1 a-32P dCTP (50 tCi; 3 000mCi 

mmol'). The reaction was incubated at 37°C for 10 minutes and stopped by addition of 

2 111 0.2 M EDTA pH 8.0. Sterile dH 20 (180 p1) was added prior to purification of 

radio labelled DNA. 

Purification of radiolabelled nucleic acid 

Radiolabelled DNA was separated from unincorporated radio-nucleotides using 

a Sephadex G-50 (Pharmacia) matrix size exclusion column. This was prepared by 

plugging a 1.0 ml syringe with siliconized glass wool and filling the syringe with 

Sephadex G-50 in TE buffer (1 M tris-Cl, 0.5 M EDTA adjusted to pH 7.5). The 

syringe was placed through a hole in the lid of a 50 ml Falcon tube and an eppendorf 
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Figure 2. 3 	Assembly of capillary blot apparatus. 

58 



tube placed at the bottom of the syringe. The unpurified radiolabelled probe was added 

to the column, and centrifuged at 3 000 rpm for 4 minutes in a MSE Centaur 2 benchtop 

centrifuge. The radiolabelled probe was contained in the eluate collected in the 

eppendorf tube. To check that labeling was successful, the radioactivity was checked 

using a Geiger counter (> I x 108  cpm 

2.5.13. Preparation of cDNA from Rhizoctonia solani dsRNA 

First and second strand synthesis 

dsRNA (1 pig) was purified from a polyacrylaniide gel (Section 2.5.9) and 

denatured by incubation for 20 minutes at 37°C with 4 p.1 100 mM methyl mercuric 

hydroxide and 6 p.! DEPC-treated SDW. Subsequently 1.5 p1 RNasin (RNase inhibitor) 

was added and the methyl mercuric hydroxide was inactivated by incubation at room 

temperature for 15 minutes with 2 p.1100 mM 3-mercaptoethanol. First-strand synthesis 

was completed at 37°C for 1 hour using 1 p.! BRL random primers, 30 p.1 DEPC-treated 

SDW, 10 p.1 5 X first strand buffer, 2.5 p.! 10 mM dNTPs and 2.5 p.1 MMLV (Moloney 

murine leukemia virus) reverse transcriptase. Second strand synthesis was completed at 

15.5°C for 2 hours using 25 p.1 of first strand reaction, 20 p.1 polymerase I buffer, 146.75 

p1 DEPC-treated SDW, 3.25 p.1 dNTP mix, 5 p.1 polymerase I. 

Purification of cDNA 

Nucleic acids were purified using the Gene Clean II kit (BIO101 Inc., La Jolla, 

USA). Samples from the second strand synthesis were mixed with 100 p.1 of 6 M 

sodium iodide and 5 p.1 GLASSMILK then incubated for 5 minutes at room temperature 

to allow binding of the DNA to the silica matrix. Bound nucleic acid was pelleted by 

centrifugation for 5 seconds at 13 000 rpm and subsequently washed three times with 

400 p.1 New Wash, centrifuging for 5 seconds between washes. DNA was eluted from 

the GLASSMILK by incubating the pellet at 45 to 55°C with 20 p.! DEPC-treated 

SDW. GLASSMIILK was removed by centrifugation at 13 000 rpm for 30 seconds, and 

the nucleic acid containing supernatant retained. This was mixed with 20 p.! 'One Phor 

All' buffer, 59 p.! DEPC-treated SDW and 1 p.1 RNase H and incubated for 20 minutes 

at 37°C and the nucleic acid purified by phenol extraction (Section 2.5.1) and ethanol 

precipitation (Section 2.5.2) before being used in ligation reactions. 
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Blunt ended ligation 

pUC 18 was used as a vector for the cDNA insert. pUC 18 (2 jil) was prepared 

for ligation by digesting with Smal for 1 hour at 30°C in the following: 23 tl SDW, 3 p1 

10 X buffer A, 2 p1 Smal. The reaction was stopped by heating at 60°C for 10 minutes. 

Ligation was completed by mixing 3 p1 SDW, 10 p1 cDNA insert, 3 jil Smal digested 

pUC18, 2 jtl 10 X ligation buffer and 2 p1 T4 DNA ligase. Reactions were stopped by 

heating at 70°C for 10 minutes. Resulting plasmids were transformed (Section 2.5.6) 

into competent DL-5 E. coil cells and spread on LB agar supplemented with 40 p1 X-

Gal (20 mg ml'), 4 p1 IPTG (100 mM) and 25 p1 ampicilhin (10 mg mt'). 

2.5.14. Nuclease sensitivity tests 

To confirm that the extracted nucleic acids were dsRNA, nuclease sensitivity 

tests were completed. Sample aliquots were incubated in each of the following. (i) SAM 

buffer (50 mM sodium acetate, 5mM magnesium sulphate, pH 5.0) with 20 jig! ml 

RNase-free pancreatic DNase I. (ii) High salt buffer (10 mM Tris-Ci, 0.3 M NaCl, pH 

7.2) with 20 jig/ ml pancreatic RNase A. (iii) Low salt buffer (10 mM Tris-CI pH 7.2). 

Each sample was incubated at 30°C for 30 minutes, then phenol extracted (Section 

2.5.1) and ethanol precipitated (Section 2.5.2), prior to agarose gel electrophoresis 

(Section 2.5.3). To confirm the dsRNA nature, the nucleic acid should be resistant to 

both DNase activity and RNase activity at high salt concentration. However, incubation 

with RNase at low salt concentration should result in degradation of dsRNA. 
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CHAPTER 3 

CELLULOSE DEGRADATION BY RHIZOCTONIA SOLANI 
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3. 1. Introduction 

Cellulose forms a major constituent of the plant cell wall (Figure 3. 1), so 

cellulolytic enzymes are likely to have a crucial role in the pathogenicity of R. solani 

(Barker and Walker, 1962; Bateman, 1963a). Despite this, few studies on the 

cellulolytic activities of R. solani have been completed. The first of these studies by 

Blair (1943) examined eleven isolates, all of which failed to grow on cellulose filter 

paper moistened with a complete solution of nitrogen and mineral salts. This was 

attributed by Garrett (1956) to be due to a low 'inoculum potential'. Several further 

studies have demonstrated cellulolytic activity of R. solani either in soil or in pure 

culture; Tribe (1960) showed that R. solani could colonize cellophane film buried in 

cultivated soil; Bateman (1964b) demonstrated decomposition of cotton fibres; Garrett 

(1962) showed that R. solani could decompose filter paper and Chung et al. (1988) 

showed that hardwood bark compost did not support R. solani growth, whereas bark 

compost supplemented with 20 % (w/w) cellulose did support growth. Although these 

studies demonstrate that R. solani possesses cellulolytic activity, the individual studies 

utilized only a few isolates; for example Garrett (1962) used only three isolates (from 

swede, potato and lettuce), whereas Bateman (1964b) used only one isolate. However, 

R. solani is a diverse species complex comprised of twelve anastomosis groups (AGs) 

(Cubeta and Vilgalys, 1997), with each AG being equivalent to a separate biological 

species (Anderson, 1982; Ogoshi, 1987; Vilgalys and Cubeta, 1994; Adams, 1996), 

many of which preferentially infect different crops (Ogoshi, 1987). The few isolates for 

which cellulolytic activity has been examined are not categorized into anastomosis 

groups, despite the anastomosis group concept being introduced in 1937 by Schultz 

(1937). The isolates were from a diverse array of crops e.g. bean, potato and swede, 

and thus are likely to represent several AGs, possibly AG 1, 3 and 2-1 respectively. 

Since cellulolytic enzymes probably have a role in the early stages of plant infection, 

there may be variations in cellulolytic activity between anastomosis groups with differing 

host ranges. 

In view of the potential variation in phenotype, both between and within 

individual AGs, cellulolytic activity of a wide range of isolates from differing AGs was 

assessed to determine whether cellulolytic activity is consistently associated with AG or 
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host range of the isolates. In addition, the cellulolytic activity of homokaryons, 

compared with their parental heterokaryotic isolate was examined. 
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Figure 3. 1 Diagrammatic representation of the plant cell wall, indicating basic composition 
of different layers. 

3.2. Materials and Methods 

Cellulolytic activity was assessed as described in Section 2.4. 10 for diverse R. 

so/ani isolates. Stacks of five filter paper discs were inoculated in the presence of 

various mineral nutrients containing different nitrogen-sources and levels of calcium. 

Isolates examined were from a range of AGs and sources, as indicated in Table 2.1. In 

addition 29 homokaryotic strains denoted *1  to  *30  were assessed for cellulolytic 

activity. These isolates were derived from single basidiospores of the heterokaryotic 

Thanalephorus cucumeris (R. solani) isolate I R4 (AG-I), and were provided by M.C. 

Julian (CSIC, Madrid). Homokaryons were used to generate several heterokaryotic 

isolates as indicated in Section 2.4.11. 
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3.3. Results 

3.3. 1. Effect of Ca 21  on cellulose degradation 

Calcium was found not to be essential for R. solani growth (Tyner and Sanford, 

1935); however, since calcium accumulates at plant surface lesions sites (Bateman and 

Lumsden, 1965), the presence of calcium may either enhance or decrease the cellulolytic 

activity of R. solani. For three isolates, representing AG 2-2, 4 and 5, cellulose 

degradation was examined with either nitrate or asparagine as nitrogen source, in the 

presence or absence of 3.4 meq Ca2  (Section 2.4.10). The addition of calcium to 

asparagine-containing medium had no significant effect on the cellulolytic activity of 

strains 04R22 (AG 4), 05R01 (AG 5) and GR1 (AG 2-2) (Table 3. 1). The presence of 

calcium in nitrate-containing media significantly (P < 0.02) enhanced cellulolysis by 

isolate 05R01, but had no effect on the cellulolytic activity of isolates 04R22 and GR1. 

Calcium was not included in further studies of cellulolytic activity. 

Cellulolytic activity (mg cellulose respired over 22 days) on 
various supplementary nutrients*  

Strain NO3 NO3 + Ca 2+ 
 Asn Asn + Ca2  

04R22 152.2 ± 19.6 171.5 ± 15.1 229.9 ± 18.6 233.0 ± 17.8 

05R01 109.2 ± 11.4 158.3 ± 8.7 146.0 ± 7.8 155.0 ± 10.8 

GR1 37.1 ± 3.9 38.8 ± 1.2 133.6 ± 38.3 1 	140.1 ± 39.1 

* Means of 4 replicates ± SEM 

Table 3. 1 Cellulolytic activity (mg cellulose respired over 22 days) of three Rhizoclonia 

solani strains incubated on filter paper with nitrate (NO3) or asparagine (Mn) in the 
presence or absence of 3.4 meq Ca2 . 

3.3.2. Effect of nitrogen source on cellulose degradation 

Cellulose degradation was examined in the presence of either asparagine or 

nitrate as nitrogen source for strains 04R22, 05R01 and GR1 (Table 3. 1). All three 

isolates degraded significantly (P <0.05) more cellulose in the presence of asparagine 

than of nitrate. The largest response was that of isolate GR1 (AG 2-2) which grew 

poorly on nitrate nitrogen, respiring 37.1 ± 3.9 mg cellulose over 22 days compared 

with 133.6 ± 38.3 mg cellulose respired over 22 days on asparagine as the nitrogen 
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source. Further studies encompassing isolates from ten anastomosis groups indicate that 

overall there was a highly significant (P < 0.001) increase in cellulose degradation in the 

presence of asparagine, compared with nitrate, as nitrogen source (Table 3. 2). 

However, the responses of individual isolates varied considerably: some isolates showed 

much higher activity with asparagine than nitrate (e.g. isolates 0IR01, VR5, 3R41, 

09R01), whereas others showed no response (e.g. 01R03) and occasionally the activity 

was less in the presence of asparagine than nitrate (e.g. 01R02, 2tRl05). Within 

anastomosis groups, all four isolates of AG 2-2 showed more cellulolytic activity in the 

presence of asparagine compared with nitrate, with overall means of 150.5 and 32.1 mg 

cellulose respired over 22 days respectively. The same trend was observed for all four 

AG 3 isolates. In contrast, all four isolates of AG 2-1 showed no significant increase in 

cellulose degradation on asparagine compared with nitrate, with the mean levels of 

degradation for the four isolates being 121.5 and 142.7 mg on asparagine compared 

with nitrate. 

The heterokaryotic strain 1R4 showed no significant difference in cellulose 

degradation in the presence of asparagine as opposed to nitrate (Table 3. 3). The thirty 

homokaryotic isolates (*I to 30) derived from strain 1R4 can be split into three 

categories with respect to cellulose degradation in the presence of nitrate compared with 

asparagine (Table 3. 4). (i) Some showed enhanced cellulose degradation in the presence 

of asparagine compared with nitrate. (ii) Some resembled the parental strain 1R4 and 

showed no significant difference between asparagine and nitrate. (iii) Some isolates 

showed significantly decreased activity in the presence of asparagine as opposed to 

nitrate. The majority of isolates (*13,  5, 7, 9-18, 22-24, 26) fell into the first category, 

showing a highly significant increase (P < 0.001) in cellulose degradation with 

asparagine as opposed to nitrate. Of the remaining isolates, eight (*6,  8, 19, 20, 25, 29, 

30) fell into the second category showing no significant difference between nitrate and 

asparagine. The remaining three isolates (*21,  27, 28) fell into the third category of 

displaying a significant reduction in cellulose degradation in the presence of asparagine 

compared with nitrate. 

65 



Cellulolytic activity (mg cellulose respired over 22 
days)* 

Strain Anastomosis group NO3  as nitrogen source Asparagine as nitrogen 
source 

OIROI 1A 69.5±17.1 168.3±50.1 

01R02 lB 191.6±30.1 110.1±33.3 

01R03 IC 207.3 ± 14.2 228.0 ±70.0 

21R01 2-1 69.2 ± 17.8 82.0 ± 27.8 

21-14 2-1 135.1± 16.7 179.4±21.8 

21-41 2-1 154.0 ± 8.3 138.4 ± 14.3 

21-F16L 2-1 127.8±13.2 171.0±24.3 

2tR105 2t 49.8 ± 9.4 14.5 ± 7.1 

2tRl 18 2t 56.0 ± 19.0 90.7 ± 26.3 

2tR144 2t 89.0 ± 16.3 158.5 ± 6.5 

2t124 2t 56.2 ± 18.5 75.3 ± 16.9 

2001 2t 81.0±8.4 146.6±30.9 

GRI 2-2 29.7 ± 4.9 152.4 ± 36.5 

22R02 2-2 23.5 ± 8.5 54.3 ± 6.6 

VR5 2-2 30.6± 10.4 211.0±37.6 

B12 2-2 44.6± 11.7 184.4±11.7 

23R01 2-3 30.1 ±8.7 88.2 ±25.4 

3R04 3  32.4± 13.1 68.6 ±20.7 

3R08 3  133.2 ± 14.2 160.3 ± 15.2 

3R09 3 43.8 ± 8.7 94.7 ± 28.7 

3R41 3 57.8 ± 10.0 278.4 ± 36.8 

04R22 4 144.2 ±23.5 277.3 ± 51.3 

4/51 4 245.1 ± 6.0 288.8 ± 18.2 

4/41 4 168.2±35.2 197.8±46.1 

Me8-2 4 157.8 ± 8.1 107.3 ± 10.1 

521 4 216.4±23.0 255.5±30.9 

05R01 5 142.4 ± 8.5 185.9 ± 7.1 

06R01 6 87.9 ± 7.0 54.2 ± 4.5 

07R01 7 136.7± 16.1 178.4± 15.1 

08R01 8 31.4±3.7 75.2±9.8 

09R01 9 122.5±16.4 335.4±41.8 

1IROI 11 24.4±9.9 52.7±3.6 

* Means of 4 replicates ± SEM 

Table 3. 2 Cellulolytic activity (mg cellulose respired over 22 days) of Rhizoctonia solani 
strains incubated on filter paper with nitrate or asparagine, as nitrogen source, in the 
absence of a calcium supplement 
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Cellulolytic activity (mg cellulose respired over 22 
days) of strain 1R4 

Replicate NO3  as nitrogen source Asparagine as nitrogen 
source 

1 158.6 224.3 

2 177.7 200.2 

3 150.8 215.1 

4 233.4 200.9 

Table 3. 3 Cellulolytic activity (mg cellulose respired over 22 days) of the Rhizoctonia 
solani heterokaryotic strain 1114 when incubated on cellulose filter paper plus either sodium 
nitrate or asparagine and mineral nutrients. 

3.3.3. Variation of cellulose degradation between and within AGs 

Examination of cellulolytic activity from differing anastomosis groups indicates 

that isolates from all the anastomosis groups tested, i.e. AG 1, 2-1, 2t, 2-2, 2-3, 3 to 9 

and 11, are able to degrade cellulose, in the presence of either sodium nitrate or 

asparagine as sole nitrogen source (Table 3. 2). The level of cellulose degradation 

showed a significant (P <0.001) degree of variation, both in the presence of asparagine 

and nitrate, ranging from 14.5 ± 7.1 to 335.4 ± 41.8 and from 23.5 ± 8.5 to 245.1 ± 6.0 

mg cellulose respired over 22 days respectively. Within each anastomosis group where 

more than one isolate was studied (i.e. AG 1, 2-1, 2t, 2-2, 2-3, 3 and 4) the individual 

isolates showed no consistent level of cellulose degradation when asparagine was 

present as nitrogen source. The variation was greatest in AG 2t, where cellulolytic 

activity for isolate 2tR105 was less than a tenth of that for isolate 2tR144, and not so 

pronounced in anastomosis groups 1 and 2-1, where only a two-fold difference between 

isolates was observed. When sodium nitrate was incorporated as nitrogen source, with 

the exception of AG 2t and AG 2-2, again variability was displayed between isolates of 

the same anastomosis group. Within AG 2t and AG 2-2, the isolates show a 

consistently low level of cellulolytic activity, with mean levels of 66.4 and 32.1 mg 

cellulose respired over 22 days respectively. Sodium nitrate therefore does not enable 

efficient cellulose breakdown in AG 2t and AG 2-2. 
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Cellulolytic activity (mg cellulose respired over 
22 days)t 

Strain NO3  as nitrogen source Asparagine as nitrogen 
source 

Group 1 
*1 97.0 ±3.7 182.1 ± 37.4 
*2 113.6±5.4 167.8±42.7 
*3 100.0 ± 8.6 158.6 ± 4.2 
*5 53.7 ± 4.6 116.4 ± 12.0 
*7 65.4±3.6 121.2±6.7 
*9 121.5 ± 15.9 230.6 ± 5.6 
*10 108.1 ±2.8 224.4 ±32.8 
*11 146.6± 12.6 225.0± 11.6 
*12 158.4 ± 1.3 227.0 ± 5.2 
*13 99.0± 12.4 207.5 ±47.8 
*14 138.1 ±4.3 301.0 ±3.2 
*15 77.4±8.4 189.8±28.0 
*16 144.6±15.2 192.3±21.8 
*17 118.9± 11.4 188.1±38.6 
*18 116.6±15.8 217.9±35.2 
*22 169.1 ± 6.6 252.8 ± 12.4 
*23 174.7 ± 11.9 230.2 ± 8.3 
*24 131.6±8.4 198.2±21.8 
*26 162.8 ± 20.5 204.4 ± 33.4 

Group 2 
*6 57.8±3.4 61.0±4.8 
*8 107.3 ± 9.3 123.4 ± 24.4 
*19 264.5 ± 39.6 247.1 ± 32.5 
*20 179.9±20.5 199.8± 13.8 
*25 150.7 ± 17.7 176.2 ± 36.2 
*29 259.9 ± 32.2 253.9 ± 64.2 
*30 112.1 ±6.7 122.2 ±2.9 

Group 3 
*21 163.1±23.6 117.3±16.0 
*27 123.3 ± 8.5 13.0 ± 7.3 
*28 218.6±21.5 145.4±53.7 

t Means of 4 replicates ± SEM 

Table 3. 4 Cellulolytic activity (mg cellulose respired over 22 days) of Rhizoctonia solani 
homokaryotic strains, derived from the parental strain 1R4, incubated on cellulose filter 
paper plus either sodium nitrate (NO3) or a.sparagine (Asn) and mineral nutrients. 
Isolates are split into three groups: Group 1 showed enhanced cellulose degradation in the 
presence of asparagine as opposed to nitrate, group 2 isolates showed no significant 
difference in cellulose degradation between asparagine and nitrate mineral nutrients and 
group 3 showed significantly decreased activity in the presence of asparagine as opposed to 
nitrate. 
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3.3.4. Variation of cellulose breakdown between homokaryons 
derived from a single heterokaryotic isolate 

Many field isolates of R. solani are assumed to be heterokaryons (Flentje and 

Stretton, 1964; Flentje et al., 1970; Anderson ci al., 1972; Bolkan and Butler, 1974), 

with the basidiospores formed by many isolates being binucleate, so they are able to 

maintain a heterokaryotic condition (Flentje et al., 1963). Given appropriate 

environmental conditions, heterokaryons can be induced to produce ellipsoidal, 

uninucleate basidiospores, which germinate to form colonies displaying diversity of 

colour and patterns of sclerotium formation (Whitney and Parmeter, 1963; Bolkan and 

Butler, 1974). Cellulolytic activity between homokaryotic strains *1  to  *30,  generated 

from a single heterokaryotic strain, was examined to determine their variability in 

cellulolytic activity. The homokaryotic isolates displayed a diverse array of phenotypes, 

with respect to sclerotia colour and distribution (Figure 3. 2). 
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Figure 3. 2 	Phenotypic appearance of homokaryotic isolates derived from the 
heterokaryotic isolate 1 R4, following 28 days incubation at 23°C. 
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Each homokaryotic isolate derived from the heterokaryotic strain 1R4 was able 

to degrade cellulose (Table 3. 4), both in the presence of asparagine and of nitrate. 

Cellulolytic activity varied significantly (P <0.001) between isolates, ranging from 13.0 

± 7.3 to 301.0 ± 3.2 on asparagine and from 53.7 ± 4.6 to 264.5 ± 39.6 mg cellulose 

respired over 22 days on nitrate. 

3.3.5. Cellulose degradation by reconstituted heterokaryotic 
strains 

Homokaryotic isolates * 14 and * 19 displayed high cellulolytic activity on 

asparagine (Table 3. 4) at 301 ± 3.2 and 247 ± 32.5 mg cellulose respired over 22 days 

respectively, whereas isolates *21  and *7  displayed low cellulolytic activity on 

asparagine, with 117.3 ± 16.0 and 121.2 ± 6.7 mg cellulose respired. Isolates *7, *14, 

* 19 and *21  were paired together in all possible combinations on potato dextrose 

charcoal agar (PDCA) to generate heterokaryons (Section 2.4.11). Heterokaryon 

formation is characterized by tuft formation at the boundaries of opposing colonies on 

PDCA (Figure 3. 3). This is controlled, in AG 1 and AG 4, by two closely linked 

genetic loci termed the H-factor for heterokaryon incompatibility factor (Anderson et 

al., 1972). Isolates which carry H factors differing at one or both loci are able to form 

heterokaryons, whereas isolates that have the same H-factors are unable to form 

heterokaryons. Of the isolates examined, heterokaryons were formed by the following 

combinations (Table 3. 5): *21  with either * 19 or *14;  * 7 with either * 19 or * 14. Thus 

*19 and * 14 evidently contain the same H-factors, which differ from the H factors of * 7 

and *21.  Isolates *7  and *21  both contain the same H-factors. The reconstituted 

heterokaryons were then tested for cellulolytic activity, as described in Section 2.4.10. 

Heterokaryon formation was confirmed using the test proposed by Adams and Butler 

(1982). The heterokaryons generated fell into two broad categories: high and low, with 

respect to their cellulolytic activity (Table 3. 6). Heterokaryons 21 * 19 (1), 21 * 19 (2) 

and 7* 19 displayed high cellulolytic activity of more than 286 mg cellulose respired over 

70 



22 days, whereas heterokaryons 21*  14, 7* 14 (1) and 7* 14 (2) displayed low cellulolytic 

activity of less than 80 mg cellulose respired over 22 days. 

(a) 
	

(b) 

Figure 3. 3 Heterokaryon formation on potato dextrose charcoal agar (PDCA). (a) No 
heterokaryon formation, as indicated by the lack of tuft formation, following pairing of two 
identical homokaryons (*14  with  *14)  from the same sexual compatibility group and (b) 
heterokaryon formation indicated by tuft formation at colony boundaries, following pairing 
of two isolates (*7 with *14)  from opposing sexual compatibility groupings. 

Homokaryon 
strains 

Celluloytic 
activityf 

Heterokaryon 
formation 

*21 x *14 L x H Yes 
*7 x *14 L x H Yes 
*7 x *19 L x H Yes 
*21 x *19 L x H Yes 
*19 x *19 H x H No 
*14 x *14 HxI-1 No 
*19 x *14 H x H No 
*7 x *7 L x L No 
*21 x *21 L x L No 
*7 x *21 L x L No 

t H = High cellulolytic activity (*14 = 301.0 and *19 = 247.1 mg cellulose degraded over 22 days) 
L = Low cellulolytic activity (*21 = 117.3 and *7 = 121.7 mg cellulose degraded over 22 days) 

Table 3. 5 Combinations of homokaryons used to generate heterokaryons on potato 
dextrose charcoal agar (PDCA), with an indication of their cellulolytic activity in the 
presence of asparagine; high activity displayed by isolates *14  and  *19  and low activity by 
isolates *21  and *7 
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Heterokaryon 
strain 

Cellulolytic activity (mg cellulose 
degraded over 22 days)* 

HIGH  
21*19(1) 286.4±40.4 
21*19(2) 288.9±17.1 
7* 19 314.6±25.6 

LOW  
21*14 63.0±2.7 
7*14(1) 65.9±9.8 
7*14(2) 79.2± 10.8 

* Mean of 4 replicates ± SEM 

Table 3. 6 Cellulolytic activity of reconstituted heterokaryotic strains on asparagine-
containing medium (mg cellulose degraded over 22 days). 

3.4. Discussion 

Cellulose is composed of chains of f3 (1,4) linked glucose molecules which form 

crystalline fibres held together by hydrogen bonds. These are generally embedded within 

a matrix of lignin and hemicelluloses within the plant cell wall (Figure 3. 1). 

Degradation of cellulose requires a complex of enzymes, collectively termed "cellulase", 

which,, in fungi, are categorized into three major groups (Beguin, 1990): (i) 

cellobiohydrolases which degrade cellulose stepwise from the non-reducing end, 

generating cellobiose subunits, (ii) endoglucanases which randomly cleave internal - 

glucosidic bonds of cellulose molecules and (iii) [3-glucosidases which hydrolyze 

cellobiose subunits and other low molecular weight cellodextrins. The overall cellulose 

degradation pathway is summarized in Figure 3. 4. Cellulose degradation is repressed in 

most organisms, including R. solani, by the presence of high concentrations of readily 

metabolized carbon sources such as glucose (Weinhold and Bowman, 1974; Merivuori 

et al., 1984; Johnson et al., 1985). A secondary level of control often exists. For 

example, in Trichoderma sp. cellulase synthesis is induced by cellulose degradation 

compounds, such as cellobiose or sophorose (2-0-0-D-glucopyranosyl-D-glucose). 

These are generated from cellulose by low levels of cellulases and [3-glucosidases which 

are produced constitutively (Stewart and Leatherwood, 1976; Kubicek, 1987). 
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Previous reports (Tribe, 1960; Barker and Walker, 1962; Garrett, 1962; 

Bateman, 1964a; Chung et al., 1988) indicate that R. solani can be induced to degrade 

cellulose, although individual studies examined only one or two isolates. The work of 

this chapter examined isolates from all the major anastomosis groups of R. solani, 

except for AG 10 and the bridging isolate AG B 1. It was shown that all isolates degrade 

filter paper cellulose to a certain extent. However, the degree of cellulolytic activity 

varied considerably between the isolates. In the presence of sodium nitrate as sole 

nitrogen source, activity ranged from 29.7 to 245.1 mg cellulose respired over 22 days, 

and substituting sodium nitrate with asparagine resulted in cellulolytic activity ranging 

from 14.5 to 335.4 mg cellulose respired over 22 days. 

CH2OH 

Cellulose: P (1,4) linked glucan 

CI-120H 	 CH,OH 

Exo- and endo-f3 (1,4) D glucanase 

Mixed length P (1,4) glucan chains 

P (1,4) D glucan cellobiohydrolase 

CH2OH 

Dissaccharide cellobiose 

CH2OH 

(1,4) glucosidase 

Glucose 

QO 
CH,OH 

Figure 3. 4 Cellulose degradation by fungi. 

73 



Within any single anastomosis group, there was considerable variation in 

cellulolytic activity (with either nitrate or asparagine). For example, there was more 

than two fold variation between strains in AG 2-1 or in AG 4, more than three fold 

variation between AG 2 strains from tulip plants, almost four fold variation within AG 2-

2 and more than four fold within AG 3. This level of variation within AGs was at least 

as great as the variation between AGs. The levels of cellulolytic activity and the degree 

of variation are consistent with previous studies. Daniels (1963) examined 14 isolates for 

cellulolytic activity on cellulose filter paper, cellulose film and flax fibres and found a 

high degree of variation between isolates as well as in ability to decompose different 

cellulose sources. Matsumoto (1921) examined six isolates and found considerable 

variation in celluloytic activity. 

The levels of cellulolytic activity obtained are, however, fairly low for cellulolytic 

organisms. In comparison, Rhizoctonia oryzae degraded approximately 375 mg 

cellulose over the same time interval (Mulligan, 1993). Although this is higher than the 

levels obtained for the majority of R. solani isolates, it is low in comparison to many 

thermophilic organisms such as Chaetomium thermophile which shows a weight loss of 

approximately 1200 mg cellulose over a 3 week period (Deacon, 1985). The levels 

obtained for R. solani are consistent with low-activity cellulose degraders such as 

Humicola grisea and Fusarium sp. which degrade approximately 150 mg cellulose over 

a 22 day period (Mulligan, 1993). The Rhizoctonia isolates which are endophytes of 

orchids may be expected to have high cellulolytic activity. These isolates degrade 

cellulose and translocate the soluble carbon released into orchid seedlings enabling them 

to grow (Anderson and Rasmussen, 1996). However, no endophytes were examined in 

the present study. 

McCabe (1994) reported that isolates of R. solani show much higher levels of 

cellulolytic activity than those in the present study. Following four weeks incubation on 

nitrate-containing media, four isolates were reported to have cellulolytic activity of 

1114.2 ± 161.2, 917.6 ± 52.4, 994.3 ± 25.4 and 1153.1 ± 166.5 mg cellulose respired, 

whereas two isolates respired 310.9 ± 26.6 and 382.1 ± 20.0 mg. McCabe attributed 

these differences to the presence or absence of dsRNA within the isolates. The two 

isolates showing low cellulolytic levels contained dsRNA, whereas the four isolates 

showing high cellulolytic activity were reportedly cured of dsRNA by serial subculturing 
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of hyphal tips. Several isolates included in the present study contain dsRNA elements; 

for example isolates 021-14, 021-41, 2tR1 18, 3R8, 3R9, Me8-2, 521, 04R22, 05R01 

(V. Rubio, pers. comm.; p.  91, chapter 4). The isolates displayed cellulolytic activity 

which varied five fold, ranging from 43.8 to 216.4 mg cellulose respired. The levels 

obtained were much lower than those reported by McCabe (1994) for dsRNA-free 

isolates. No isolates reported as being dsRNA-free were included in the present study, 

so no comparison with the high cellulolytic levels obtained by McCabe (1994) can be 

made. 

The fluctuations in cellulolytic activity between isolates may be the result of 

alterations in mycelial branching patterns. Using interference-microscopy, Isaac (1964) 

reported that cellulose degradation occurs around short, branched hyphae in the older 

parts of the mycelium, but not in the trunk hypbae, nor in the younger hyphae. Similar 

results were obtained by Daniels (1963). The short branch hyphae bear some 

resemblance to the highly branched infection cushions formed during plant attack 

(Dodman and Flentje, 1970). Thus differences in cellulolytic activity may be due to 

variations in the control of branching by different isolates. The degree of hyphal 

branching is partially affected by temperature. Some isolates show higher degrees of 

branching with increasing temperatures, whereas others show decreased branching with 

increased temperature. Since the temperature was maintained at 27°C throughout the 

present study, differing isolates may show varying degrees of branching depending on 

their optimal growth temperatures. In addition, since the short, branched hyphae 

resemble infection cushions, their formation might be triggered by plant host exudates. 

These exudates also enhance cellulase release from the fungal cell wall (Lisker et al., 

1 975a,b). Thus the cellulolytic activities obtained in these in vitro studies may be much 

lower than levels induced in vivo. 

The different nitrogen sources supplied in this study led to different levels of 

cellulolytic activity of the isolates examined. In general, nitrogen sources greatly 

influence utilization of a given carbon source, such that fungi can be divided into three, 

or possibly four, categories with respect to nitrogen utilization (Lilly, 1965): Class 1 

fungi utilize organic nitrogen, ammonium,, nitrite, nitrate and were suggested to fix 

atmospheric nitrogen, although no unequivocal evidence has been reported regarding 
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dinitrogen fixation by fungi (Garraway and Evans, 1984); class 2 fungi utilize nitrate, 

nitrite, ammonium and organic nitrogen; class 3 fungi utilize only ammonium and 

organic nitrogen and class 4 fungi only grow using organic nitrogen. The majority of 

fungi, including R. solani, belong to class 2 and can grow efficiently using either organic 

or inorganic sources of nitrogen (Sherwood, 1970; Garraway and Evans, 1984). The 

Rhizoctonia endophytes of the orchid Arundia chinensis seem to be one exception in 

that they can utilize ammonium and organic nitrogen, but not nitrates, and thus belong 

to the class 3 category (Stephen and Fung, 1971). The lack of nitrate utilization usually 

results from an inability to synthesize nitrate reductase (Whitaker, 1976). R. solani, as a 

species, utilizes both inorganic and organic sources of nitrogen; however, the majority of 

isolates examined in this study showed varying degrees of cellulolytic activity depending 

on the nitrogen source present. The AG 2-2 isolates grew poorly on sodium nitrate 

compared with asparagine. This may be a specific response to sodium nitrate in terms of 

cellulose utilization or may be an indication of a general inability of AG 2-2 isolates to 

utilize nitrates effectively. In most isolates examined (27 out of 32) organic nitrogen 

supplied as asparagine increased cellulose degradation compared with degradation in the 

presence of nitrate nitrogen. Variation in nutrient assimilation depending on the 

nitrogen source is widespread in fungi, with no individual nitrogen source being better 

or worse for every isolate (Akai et al., 1960). For example, Deshpande (1959) 

examined the ability of R. solani to utilize various nitrogen sources in minimal media 

containing MgSO4, KH2PO4  and glucose as a carbon source. Nitrogen sources included 

peptone, asparagine, ammonium nitrate, ammonium sulphate, ammonium chloride, 

sodium nitrate and calcium nitrate. Growth of R. solani was obtained in all cases, with 

the greatest yield on peptone (172 mg dry weight) and the least on ammonium chloride 

(36 mg dry weight). Greater growth occurred on media containing asparagine (150 mg 

dry weight) as nitrogen source than on sodium nitrate (99 mg dry weight), as was 

observed for the majority of isolates in this study where cellulose was the sole carbon 

source. In Leucostoma persoonii, a similar trend is observed where asparagine enhances 

growth compared to sodium nitrate, with mean dry weights obtained of 339.9 ± 26.5 mg 

and 167.7 ± 19.8 mg respectively (Jensen and Adams, 1995). 

The differences in nutrient assimilation depending on the nitrogen source can 

sometimes be explained by alterations in pH level during growth. Nitrogen sources such 
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as ammonium, whose uptake results in increased acidity of the medium can inhibit 

growth unless the medium is well buffered (Deshpande, 1959), whereas nitrates usually 

serve as a "sponge", mopping up free protons and reducing equivalents, such that the 

pH rises. 

The ability to metabolize a given nitrogen source can affect the pathogenicity of 

fungal isolates, with specific amino acids having an inhibitory or stimulatory effect (van 

Andel, 1966; Weinhold et al., 1969; Huber and Watson, 1974). For example, ripening 

blueberry fruits contain an increased content of histidine, which reportedly makes them 

more susceptible to infection by Glomerella cingulata (Stretch and Cappelini, 1965), 

whereas potato tubers grown at low potassium levels become more resistant to infection 

by Phytophthora infestans due to a reportedly increased arginine content of the tubers 

(Alten and Orth, 1941). Several reports on R. solani indicate that pathogenicity is 

increased in response to greater asparagine and ammonia levels, compared with 

pathogenicity when nitrate is present (Glynne, 1951; Papavizas and Davey, 1960; Huber 

and Watson. 1970). This present study shows that the majority of isolates have 

increased cellulolytic activity in the presence of asparagine compared to nitrate, which 

may, in part, explain the increased pathogenicity reported by the above authors for R. 

solani. Pectolytic enzyme activity may also be enhanced by levels of amino acids, thus 

acting synergistically with cellulolytic enzymes to enhance pathogenicity. 

The response of pathogenicity-related enzymes to varying levels of amino acids 

may be crucial in host specificity of fungal pathogenicity. In response to stress and 

pathogen attack, nitrogen levels within plants undergo large changes. Many plants show 

large increases in asparagine levels (e.g. Steward et al. (1959); Nowakowski and Byers 

(1972)). However many other alterations can occur. For example, rice plants attacked 

by leaf hoppers (Nilaparrata lugons Stal.) show great increases in asparagine, arginine, 

lysine, proline and tryptophan content (Cagampang et al., 1974), whereas proline 

accumulates in chlorine-deficient plants, showing a fifty-fold increase in cauliflower 

(Freney et al., 1959). Thus the host specificity of R. solani may be related, in part, to 

differences in inhibitory/ stimulatory amino acids released by plants during infection, and 

these may in turn affect cellulolytic/ pectolytic enzyme activities. In Rhizopus fruit rot, 

cellulolytic and pectolytic enzymes have been demonstrated to be inhibited by a specific 

form of nitrogen (Spalding, 1969). In Rhizoctonia-incited diseases, isolates of AG 2-2 

characteristically infect Chenopodaceae, which contain high levels of glycine betaine 
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(Storey et al., 1977) which may trigger enhanced cellulolytic activity and account for the 

specificity. In the present study, nitrates supported particularly poor cellulolytic activity 

in AG 2-2 isolates, compared with isolates from other AGs. This may partially explain 

the results obtained by Elmer (1997), who reported decreased pathogenicity of R. solani 

AG 2-2 on table beets (Beta vulgaris), following the addition of calcium nitrate. A 

further example of infection being related to amino acids is reported for tomato varieties 

and infection by differing races of Cladosporium (Lowther, 1964). In the tomato 

variety Potentate, high levels of glutamine and sucrose are present, making Potentate 

highly susceptible to Cladosporium, whereas other tomato varieties contain low levels 

of sucrose and glutamine and are resistant to infection. 

Many fungi show enhanced growth in the presence of calcium (Garraway and 

Evans, 1984). For example, calcium at 500 ng per litre results in a three-fold increase in 

the growth of Saccharomyces carisbergensis (Lotan et al., 1976). Reports on calcium 

requirements of R. solani are conflicting. Tyner and Sanford (1935) concluded that 

calcium was not essential for growth of R. solani, whereas Young and Bennet (1922) 

reported calcium ions to be indispensable for growth. However, since calcium is highly 

abundant at infection sites (Bateman, 1963a Bateman, 1964b), calcium ions were 

included in initial trials to determine their effect on cellulolytic activity. The addition of 

calcium to asparagine-containing medium had no significant effect on the cellulolytic 

activity of the three isolates (04R22, 05R01 and GR1) examined. The presence of 

calcium in nitrate-containing media enhanced cellulolytic activity by isolate 05R01, but 

had no effect on cellulolytic activity of isolates 04R22 and GR1. In some species, the 

extent to which calcium is required has been shown to be dependent on the composition 

of the growth medium. For example, in studies on Phytophthora parasitica, calcium is 

absolutely required for growth when nitrates are the sole nitrogen source, but in the 

presence of L-asparagine as nitrogen source, calcium is not required, even though its 

presence enhances growth (Hendrix and Guttman, 1970). Thus since calcium was not 

an absolute requirement, it was not incorporated in further studies. In the presence of 

sodium nitrate, calcium enhances growth by some isolates. This may potentially be due 

to alterations in the branching patterns of some isolates in response to calcium. 

Mycelium of Fusarium graminearum growing in the presence of 14 nM calcium were 

highly branched in comparison to isolates grown at other calcium concentrations 
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(Robson et al., 1991). Since Isaac (1964) reported that cellulolytic activity was 

localized around terminal, short branched hyphae when R. solani is grown on cellulose 

filter paper, it may be that induction of additional branching in response to calcium is 

responsible for the increase in cellulolytic activity observed by some isolates. The short, 

branched hyphae observed by Isaac (1964) were similar to the branching formation 

observed to form during infection cushion formation,, where calcium levels are high. 

In order to further investigate the variation in cellulolysis by R. solani, a 

heterokayotic field strain (1 R4) of AG 1 was examined in addition to 29 homokaryotic, 

single spore isolates (SSI) of strain 1R4. These SSI showed diverse variation in 

phenotype with respect to colour, growth rate, abundance of aerial mycelia and 

sclerotial morphology. Similar morphological variations in SSI have been reported by 

several authors (Sims, 1960; Whitney and Parmeter, 1963; Flentje and Stretton, 1964; 

Papavizas, 1965). For example Hawn and Vanterpool (1953) reported that growth rates 

of SSI varied from a trace to 12.5 mm day1 , compared with 13 mm day' for the 

heterokaryotic parent. Papavizas (1965) obtained similar results for the growth rates of 

sixty SSI from one isolate of Pelliculariapraticola, with rates varying from 0.03 to 0.71 

mm hour'. In the present study, the cellulolytic activity of the heterokaryotic parent 

isolate was good on both nitrate and asparagine. The levels of activity of the SSI ranged 

from 54 to 247 and from 13 to 254 mg cellulose respired on nitrate and asparagine, 

respectively. The SSI could be divided into three categories regarding their cellulolytic 

activity: (i) those which showed enhanced cellulose degradation in the presence of 

asparagine compared with nitrate (ii) those which resembled the parental strain 1R4 and 

showed no significant difference between asparagine and nitrate and (iii) isolates 

showing significantly decreased activity in the presence of asparagine as opposed to 

nitrate. Papavizas and Ayers (1965) reported similar variation in pectic enzyme activity 

amongst SSI. For example, pectin methylesterase activity of isolate RI 18-42 was 

tenfold that of RI 18-43 and four fold that of the parental isolate RI 18. Virulence of 

SSI was also highly variable, but no relation between enzyme activity and virulence was 

observed. This immense variation in morphology, cellulolytic activity and pectolytic 

activity amongst SSI is likely to arise during basidiospore formation. R. solani cells are 

multinucleate, containing 2 to 18 nuclei (Domsch et al., 1980). Prior to basidia 

formation, the nuclei in the vegetative cells pair, and the pairs become separated by 
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septa. These binucleate cells form the basidia. Within the basidium, the nuclei fuse, 

forming a diploid, which undergoes meiosis to form haploid nuclei, which separate to 

form four uninucleate basidiospores (Flentje et al., 1970). These basidiospores show 

variation in their phenotype. In addition, aberrations can occur during basidiospore 

formation. For example recombination frequently occurs during meiosis, which leads to 

increased variation in the phenotype of the basidiospores. Mutation and the presence of 

any transposable genetic elements further increase the degree of variation observed in 

basiodiospore progeny. 

Once basidiospores are formed, they can be paired to reform heterokaryotic 

isolates. Heterokaryon formation is controlled by two closely linked loci termed the H-

factor (Anderson et al., 1972). Isolates which carry H factors differing at one or both 

loci are able to form heterokaryons, whereas isolates that have the same H factors are 

unable to form heterokaryons. The present study, which examined homokaryotic 

isolates * 7, *14, *19 and * 21 found two groups; isolates *19  and * 14 contained one 

type of H factors, whereas isolates *7  and *21  contained a second set of H factors. 

Heterokaryons were formed in the following combinations: 21* 14, 7*  14, 7*19  and 

21*19. Heterokaryon formation was confirmed using the test proposed by Adams and 

Butler (1982). Cellulolytic activity, when determined for the reconstituted 

heterokaryons, led to the recognition of two groups: (a) high cellulolytic activity of 

isolates 21 * 19(1), 21 * 19(2), 7*19  and (b) low cellulolytic activity of isolates 21 * 14, 

7* 14(l), 7* 14(2). Thus for cellulolytic activity the heterokaryons tend to resemble the 

phenotype of one of the contributing SSI. This is in contrast to results obtained by 

Whitney and Parmeter (1963) who found that the re-formed heterokaryons were 

culturally distinct from those of the contributing SSI. Cubeta et al. (1993) similarly 

obtained re-formed heterokaryons that were morphologically distinct from either SSI. 

In addition Whitney and Parmeter (1963) found that their re-formed heterokarons 

displayed characteristics resembling those of the original parental heterokaryon. The 

work in this study contradicts this, in that the re-formed heterokaiyons differed in their 

cellulolytic activity not only from each other, but also from the original parental 

heterokaryon. Field isolates are assumed to be heterokaryotic (Flentje and Stretton, 

1964; Flentje et al., 1970; Anderson et al., 1972; Bolkan and Butler, 1974). If re-

formed heterokaryons resemble the original parental isolates as reported by Whitney and 

Parmeter (1963), then this would tend to decrease the variation in field isolates, and thus 
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their survival ability. However, the present study indicates that re-formed heterokaiyons 

can differ from parental heterokaryons in their cellulolytic activity and this may in part 

account for the enormous variation in cellulolytic activity of field isolates. 

R. solani has been demonstrated by several authors to grow successfully as a 

saprotroph in soil (Blair, 1943; Tribe, 1960; Garrett, 1962; Chung etal., 1988), and can 

increase its biomass and production of scierotia at the expense of soil organic matter 

(Christias and Lockwood, 1973). Cellulose is the most abundant utilisable organic 

compound in soil (Alexander, 1964) and R. solani utilizes this for saprotrophic growth, 

translocating the obtained nutrients throughout the mycelial network. This saprotrophic 

growth in soil and over the host surface forms an important precursor to infection by R. 

solani (Hayman, 1969). In stunting diseases of cereals, by R. solani AG 8, the extensive 

myceial network is thought to facilitate infection, giving rise to the characteristic "bare 

patch" symptoms in crops. Since R. solani utilizes cellulose for saprotrophic growth, 

these in vitro cellulolytic trials may give some indication of the saprotrophic ability of 

isolates. For example, AG 8 isolates may potentially show high cellulolytic activity, to 

enable extensive growth upon decaying cereal residues prior to infection. However, the 

AG 8 isolate examined in this study had poor cellulolytic activity on both asparagine and 

nitrate. Drawing any assumptions about the relationship between cellulolytic activity 

and saprotrophic ability from this study should be done with caution, as the saprotrophic 

ability of R. solani in vivo is regulated by several factors. The saprotrophic ability of R. 

solani depends on a variety of factors including non-biotic soil determinants such as 

temperature, moisture, soil aeration etc. and the ability to outcompete other soil micro-

organisms, which is in turn dependent upon resistance to toxins and antibiotics produced 

by other organisms. Rao (1959) reported that R. solani shows poor competitive 

saprotrophic abilities compared with other root parasites, partially due to low tolerance 

of antifungal agents. In the absence of competition, R. solani is a highly efficient 

saprotroph. Garrett (1956) indicates the saprotrophic ability is positively correlated to 

growth rate. This is supported by Papavizas (1964) who examined several SSI and 

found that the saprotrophic ability was correlated to the growth rate. The SSI examined 

were highly variable in their saprotrophic ability and Papavizas hypothesized that 

"cellulose decomposition may vary from very feeble to very strong". This indeed has 

been shown to be the case for the SSI examined in the present study, with cellulolytic 
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activity ranging from 13.0 to 253.9 mg cellulose respired over 22 days on asparagine 

mineral nutrients. 

In vivo saprotrophic activity decreases in the presence of abundant cellulose, due 

to poor competitive 'saprotrophic' ability of R. solani (Chung et al., 1988), with other 

highly active cellulolytic organisms out-competing R. solani. Once cellulose levels 

decline, then R. solani shows good saprotrophic growth due to decreased competition. 

Several other saprotrophic organisms show similar growth phases. For example 

mushroom spawn will not 'run' satisfactorily until composts have undergone the initial 

stages of decomposition in which saprotrophic sugar fungi are present and highly active 

(Garrett, 1962). 

Papavizas and Davey (1961) found that saprotrophic growth was slow when 

cellulose was the sole organic carbon source. This activity, though, could be enhanced 

by the addition of sodium nitrate and calcium. In the present in vitro studies, cellulolytic 

activity was generally less in the presence of sodium nitrate compared with asparagine, 

and calcium did not significantly increase the cellulolytic activity. 
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CHAPTER 4 

CHARACTERIZATION OF dsRNA-CONTAINING ISOLATES 
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4. 1. Introduction 

Mycoviruses (dsRNA elements) are present within several phytopathogenic 

fungal species and are subdivided into four groups (Ghabrial, 1998): Totiviridae, 

Partiviridae, Hypoviridae and those remaining unclassified. In many cases, the presence 

of dsRNA alters the fungal phenotype. For example, in Ophiostoma ulmi the presence 

of specific dsRNA elements have been correlated with a "diseased" phenotype of the 

host. These isolates display reduced growth rate, poor virulence, abnormal "amoeboid" 

morphology, impaired sexual reproduction, reduced production of cerato-ulmin and 

alteration in pigmentation (Brasier, 1983; Sutherland and Brasier, 1997). In 

Cryphonectria parasitica, dsRNA alters the phenotype to a weakly virulent 

(hypovirulent) state, characterized by lower pigmentation, sporulation and virulence, 

enabling dsRNA to be used successfully as a biocontrol agent (reviewed by Nuss, 1992). 

R. solani has been reported by several authors to harbour dsRNA (Castanho et al., 

1978; Zanzinger et al., 1984; Finkler et al., 1985; Bharathan and Tavantzis, 1990; 

Bharathan and Tavantzis, 1991; Kousik et al., 1994; Ran et al., 1997; Ran et al., 1998). 

However, there is much controversy over whether dsRNA is consistently associated 

with increased or decreased virulence. Castanho et al. (1978) reported dsRNA to be 

associated with hypovirulence, whereas Finider et al. (1985) associated dsRNA with 

increased virulence. Several other studies found no consistent correlation between the 

degree of virulence and the presence of dsRNA (Zanzinger et al., 1984; Bharathan and 

Tavantzis, 1990; Kousik et al., 1994). It is likely that certain dsRNA segments lead to 

increased virulence, whereas other segments result in the hypovirulent phenotype. Thus, 

for dsRNA to be used in a biocontrol strategy against R. solani, the segments potentially 

resulting in hypovirulence must be determined. In addition, for biocontrol to be 

effective, the dsRNA must be transmissible throughout field populations. Transmission 

occurs via compatible hyphal anastomosis reactions (Finkler et al., 1988). This 

transmission may conceivably be enhanced by the mycoparasitic activities of Verticil!ium 

biguttatuin, which forms a "nutrient sink" within the mycelium of R. so!ani (van den 

Boogert and Deacon, 1994) strong enough to reverse the direction of net cytoplasmic 

flow (Deacon, 1996). Thus, it may be possible to use the nutrient mobilization effect of 
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V. biguttatum to "pull" dsRNA through adjoining vegetatively compatible colonies, 

within a R. solani mycelial network. 

The work of this chapter examines the dsRNA content of isolates from a single 

field site and characterizes them with respect to virulence, growth rate, pectic and 

cellulolytic enzyme activities, phenol oxidase activity and vegetative compatibility 

reactions. In addition, their susceptibility to mycoparasitism by V. biguttatum was 

examined. 

4.2. Results 

4.2.1. dsRNA in Rhizoctonia solani 

4.2.1.1. Isolation of dsRNA 

dsRNA was isolated from R. solani using a modification of the methods of 

Morris and Dodds (1979), loch et al. (1985) and McCabe (1994), as indicated in 

Section 2.4.12. Total nucleic acid was extracted by homogenization with liquid 

nitrogen, followed by phenol-chloroform extraction. Nucleic acids were separated using 

CF 11 cellulose chromatography, in the presence or absence of 15 % ethanol: DNA and 

ssRNA were eluted in the presence of 15 % ethanol and dsRNA was eluted in the 

absence of 15 % ethanol. Initial studies lacked liquid nitrogen in the extraction 

procedure, which resulted in nucleic acid degradation, visualized as "smears" on agarose 

gels (Figure 4. 1). The visualization of large molecular weight segments was further 

improved by separation of nucleic acids using polyacrylamide gel electrophoresis 

(Section 2.5.10) as opposed to agarose gel electrophoresis (Section 2.5.3) (Figure 4. 2). 

Isolated nucleic acid was shown to be dsRNA by nuclease sensitivity tests, as 

described by Kim et al. (1990) (Section 2.5.14). dsRNA was resistant to both DNase 

plus RNase A when used at high salt concentration, but sensitive to RNase A when used 

at low salt concentration, thus confirming the dsRNA nature (Figure 4. 3). As a further 

control to confirm that the extraction procedure was repeatable, dsRNA was extracted 

from Aspergillus foetidus IMI 041 871 (Figure 4. 3). Five segments of approximate 

sizes 5.0, 4.0, 3.5, 2.5 and 2.0 kb were visualized upon agarose gel electrophoresis, 

which correlated with those described by Banks et al. (1970). The dsRNA sizes are, 

however, approximations since DNA size standards were used throughout this study. 
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Figure 4. 1 Visualization of dsRNA extracted from Rhizoctonia solani and separated by 0.8 
% (w/v) agarose gel electrophoresis (a) dsRNA extracted using liquid nitrogen prior to 
phenol extraction and CFI  cellulose chromatography. Lane 1 shows ). DNA digested with 
Hindu!; sizes of respective bands are indicated on the left side of the photograph. Lane 2 
shows multiple segments of dsRNA extracted from R. solani isolate FIB. Lane 3 shows X 
DNA digested with BsEI. (b) Nucleic acids obtained by phenol extraction followed by CFI I 
cellulose chromatography, without the inclusion of liquid nitrogen. Lane 1 shows ?. DNA 
digested with Hind!!!; sizes of respective bands are indicated on the left side of the 
photograph. Lane 2 shows degraded dsRNA extracted from R. solani following dsRNA 
extraction without using liquid nitrogen. 
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Figure 4. 2 Visualization of dsRNA extracted from Rhizoclonia solani isolates FT 203 and 
FT 204 following separation by (a) 0.8 % agarose gel electrophoresis and (b) 
polyacrylamide gel electrophoresis. Larger segments are shown with more clarity on 
polyacrylamide gel electrophoresis compared with agarose gel electrophoresis. Lane I 
contains A. DNA digested with Hindill. Lane 2 and 3 contain multiple segments of dsRNA 
extracted from isolate VU 203. Lane 4 shows dsRNA extracted from isolate VU 204. 
Approximate sizes of segments are indicated to the right of each photograph. 
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Figure 4. 3 Visualization of nucleic acids extracted from Aspergillusfoelidu.s IMI 041871. 
Lane I shows X DNA digested with Hindill; sizes of visible bands are indicated on the left 
side of the photograph. Lane 2 shows extracted nucleic acids digested with DNase. 
Multiple segments of dsRNA are visible. Lane 3 shows nucleic acids following RNase A 
digestion at low salt concentration. DsRNA is susceptible to RNase A degradation at low 
salt concentration, thus no dsRNA segments are visible. Lane 4 shows nucleic acids 
following digestion with RNase A at high salt concentration. DsRNA is resistant to 
digestion with RNase A at high salt concentration, thus multiple dsRNA segments are 
visible. 
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Figure 4. 4 dsRNA segments electrophoresed on a 0.8 % (w/v) agarose gel from 
Rhizoctonia solani AG 3 isolates obtained from a single field site. A DNA digested with 
Hindtll was used as a molecular marker, with sizes indicated to each side of the gel. 
DsRNA was extracted by homogenization with liquid nitrogen, phenol extraction and CF 11 
cellulose chromatography. Segments were shown to be dsRNA by nuclease sensitivity. 

4.2.1.2. dsRNA in R. solani isolates from a single field 
site 

To determine the abundance of dsRNA in natural field isolates of AG 3, strains 

were isolated from potato tubers harvested from a single field site near Carnoustie, 

Scotland (Section 2.4.1). DsRNA was subsequently extracted using CF 11 cellulose 

chromatography (Section 2.4.12). Each isolate examined contained two or more 

segments of dsRNA (Figure 4. 4). Segments ranged in size from 0.3 to 15 kb, and can 

be classified into three broad size categories, as proposed by Bharathan and Tavantzis 

(1990): (1) large (L) being 4.6 kb or greater, (ii) medium (M) in the range 1.1 to 4.5 kb 

and (iii) small (5) being 0.5 to 1.0 kb. Each isolate contained at least one large (L) 

segment of dsRNA of a size comparable to the hypovirulence-encoding L-dsRNA of C. 

parasilica (12 712 bp). 
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4.2.1.3. dsRNA in R. solani isolates from a single 
potato tuber 

dsRNA content was examined (Section 2.4.12) in three AG 3 isolates. FT 201, 

FT 203 and FT 204, harvested from a single potato tuber. All three isolates contained 

multiple segments of dsRNA (Figure 4. 5); however, isolates varied in the size of 

segments present. Isolates FT 203 and FT 204 contained segments of the same size, 

9.5, 8.0, 6.5, 3.0, 1.6, 1.0 and 0.8 kb, whereas isolate FT 201 lacked the 8.0 and 0.8 kb 

segments, but contained an extra segment of 1.3 kb size. Again every isolate contained 

at least one L-dsRNA segment of a size comparable to the hypovirulence-encoding L-

dsRNA of C. parasitica, previously reported by Shapira et al. (1991 a). 
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Figure 4. 5 dsRNA segments extracted from Rhizoewnia solani Mi 3 isolates obtained 
from a single potato tuber. Ds RNA was separated by agarose (0.8%) gel electrophoresis. 
Lane I shows X DNA digested with HindlIl; sizes of respective bands are indicated on the 
left side of the photograph. Lanes 2 to 4 show multiple dsRNA segments extracted from 
isolates FT 203, FT 204 and FT 201 respectively. 
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4.2.1.4. dsRNA in R. solani isolates of differing 
anastomosis groups 

R. solani isolates examined in Sections 4.2.1.2 and 4.2.1.3 all belonged to AG 3. 

Isolates of other anastomosis groups were therefore examined to determine whether 

dsRNA was present in the same abundance. Extraction of dsRNA from the following 

isolates 021-41 (AG 2-1), 04R22 (AG 4), PAl (AG 4), Papa (AG 4) and 05R01 (AG 

5), indicated that dsRNA was present in all isolates examined (Figure 4. 6). Isolates 

contained between one and four segments of sizes between 0.8 and 10.0 kb. Each 

isolate contained one segment of L-dsRNA, which presumably has coding capacity. 
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Figure 4. 6 dsRNA segments extracted from Rhizoclonia solani isolates of differing 
anastomosis grouping, visualized following electrophoresis on a 0.8% agarose gel. Lanes I 
to 5 show dsRNA extracted from isolates 041122 (AG 4), PAl (AG 4), Papa (AG 4), 05R01 
(AG 5) and 02141 (AG 2-1) respectively. Lane 6 shows X DNA digested with Hindill, 
sizes of respective bands are indicated on the right side of the diagram. 
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4.2.2. Pathogenicity of dsRNA-containing isolates 

Previous reports on dsRNA-containing phytopathogens have linked dsRNA to 

increased or decreased virulence in the fungal host (Nuss and Koltin, 1990; Castanho et 

al., 1978). Plant pathogenicity trials were therefore completed on the AG 3 isolates 

from Carnoustie, to determine the variability in pathogenicity between dsRNA-

containing isolates. Trials were completed as described in Section 2.4.6 using the 

following host plants: tomato (Lycopersicon esculentum), radish (Raphanus sativus), 

carrot (Daucus carota), lettuce (Lactuca sativa), cress (Barbarea praecox) and onion 

(A ilium cepa). Following 10 days incubation pathogenicity was recorded, on a disease 

index scale from 0 to 5, based on the relative size of the necrotic area on the root as 

follows: O=no disease; 1 = 1 - 10%;2 =  11 -30%; 3 = 31 - 50%; 4 = 51-80% and 

5 = entire root infected. Isolates with a mean infectivity between 0 and 1 were 

considered non-pathogenic. 

Examination of roots indicated that for each strain the disease index was low, 

with the mean index for the six host crops ranging from 1.5 to 2.6, and with an overall 

mean of 2.0 (Table 4. 1). Analysis of variance indicated no significant differences 

between strains regarding overall disease severity. The susceptibility of individual hosts 

to the isolates examined was significantly different (P < 0.001). Radish was highly 

susceptible to infection (mean disease index = 4.5), whereas, overall, isolates were non-

pathogenic towards cress seedlings (mean disease index = 0.6). 

Infection of shoots was much less severe (Table 4. 2). All isolates were, overall, 

non-pathogenic to the six host crops, with mean infection levels ranging from 0.1 to 0.5. 

Analysis of variance indicates no significant difference between strains regarding disease 

severity on shoots. A significant difference (P <0.001) of susceptibility was observed 

between host crops; however, they were all scored resistant to R. solani infection in the 

10 day assay. 
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Disease index on host plants* 

Strain Carrot Onion Lettuce Cress Tomato Radish Mean 

FT  3.3±0.3 0.6±0.3 1.4±0.2 0.4±0.2 0.8±0.2 4.6±0.1 1.9 
Fr  1.8 ± 0.3 0.8 ± 0.2 0.8 ± 0.2 0.7 ± 0.2 1.1 ± 0.2 4.0 ± 0.2 1.5 
F117  4 3.1 ±0.3 1.2±0.3 1.4±0.2 0.5±0.2 1.7±0.3 3.5±0.2 1.9 
Fr 7 2.4 ± 0.3 1.2 ± 0.3 1.0 ± 0.2 0.4 ± 0.1 0.9 ± 0.2 4.2 ± 0.2 1.7 
FF8 2.0 ± 0.3 1.4 ± 0.3 1.2 ± 0.2 0.1 ± 0.1 1.2 ± 0.2 4.7 ± 0.1 1.8 
Fr 10 2.2 ± 0.3 1.5 ± 0.4 1.0 ± 0.2 0.4 ± 0.2 1.7 ± 0.3 4.3 ± 0.2 1.8 
Fr 14 2.6 ± 0.3 1.3 ± 0.4 2.1 ± 0.2 1.6 ± 0.3 1.8 ± 0.3 4.7 ± 0.1 2.4 
FT 15 2.7 ± 0.3 1.2 ± 0.3 2.4 ± 0.2 0.8 ± 0.2 3.8 ± 0.2 4.8 ± 0.1 2.6 
Fr 17 3.1 ± 0.3 1.5 ± 0.3 1.0 ± 0.2 0.6 ± 0.2 1.4 ± 0.2 4.8 ± 0.1 2.0 
FT 18 3.6±0.3 1.8±0.4 2.2±0.2 1.5±0.3 1.4±0.3 4.8±0.1 2.6 
Fr 19 2.6 ± 0.3 0.9 ± 0.3 2.6 ± 0.2 0.3 ± 0.1 0.6 ± 0.2 4.5 ± 0.1 1.9 
Fr 20 2.3 ± 0.3 0.5 ± 0.2 11.9 ± 0.2 0.5 ± 0.2 0.7 ± 0.2 4.0 ± 0.2 1.7 
FT 201 1.9±0.3 0.7±0.2 1.3±0.2 1.0±0.3 1.5±0.3 4.6±0.1 1.8 
FT 203 3.1 ±0.3 1.3±0.3 1.2±0.2 0.6±0.2 0.8±0.2 4.8±0.1 2.0 
Fr 204 2.6 ± 0.3 1.2 ± 0.4 1.4 ± 0.2 0.1 ± 0.1 1.2 ± 0.3 4.6 ± 0.1 1.9 

Mean 2.6 1.2 1.5 0.6 1.4 4.5 2.0 

* Means of 50 replicates ± SEM 

Table 4. 1 Disease index for Rhizoctonia solani (AG 3) on roots over six host crops. 
Disease index was recorded for 50 seedlings after 10 days incubation at 22°C. Disease 
index was recorded on a scale of 0 to 5; 0= no disease; 1 = 1-10 %; 2= 11-30 %; 3=31-50 
%; 4 = 51-80 % and 5 = entire root infected. Isolates with a mean infectivity between 0 
and 1 were considered non-pathogenic. 
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Disease index on host plants* 

Strain Carrot Onion Lettuce Cress Tomato Radish Mean 

FT 2 0 0.3 ± 0.2 0.5 ± 0.2 0 0 0.1 ± 0.1 0.2 

FT 3 0 0.6 ± 0.2 0.1 ± 0.1 0 0.1 ± 0.1 0.4 ± 0.1 0.2 

FT 4 0 1.4 ± 0.4 0.7 ± 0.2 0 0 0.1 ± 0.1 0.4 

FT 7 0 0.6 ± 0.3 0.4 ± 0.2 0 0 0.2 ± 0.1 0.2 

FT 8 0 0.4 ± 0.2 0.6 ± 0.2 0 0 0.2 ± 0.1 0.2 

FT 10 0 0.8 ± 0.4 0.3 ± 0.1 0 0 0.5 ± 0.2 0.3 

FT 14 0 1.3 ± 0.4 0.9 ± 0.2 0 0.1 ± 0.1 0.3 ± 0.15 0.4 

FT 15 0 0.1 ± 0.1 0.6 ± 0.2 0 0.3 ± 0.2 0 0.2 

FT 17 0 0.2 ± 0.2 1.4 ± 0.3 0 0 0.8 ± 0.2 0.4 

FT18 0 0.7±0.3 1.0 ±0.2 0 0.1 ±0.1 0.1 ±0.1 0.3 

FT 19 0 0.4 ± 0.3 0.9 ± 0.2 0 0 0.5 ± 0.2 0.3 

FT 20 0 0.3 ± 0.2 2.4 ± 0.3 0 0.1 ± 0.1 0.3 ± 0.2 0.5 

Fl 201 0 0 1.0 ± 0.2 0 0.1 ± 0.1 0.2 ± 0.1 0.2 

FT 203 0 0.9 ± 0.3 0.3 ± 0.1 0 0 0.3 ± 0.1 0.2 

FT204 0 0.4±0.2 0.1 ±0.0 1 	0 1 	0 0.1 ±0.1 0.1 

Mean 0 0.5 0.7 0 0.1 T 	 0.2 0.3 

* Means of 50 replicates ± SEM 

Table 4. 2 Disease index of Rhizoctonia solani infection on shoots of six potential host 
species. Disease index was recorded for 50 seedlings after 10 days incubation at 22 °C. 
Disease index was recorded on a scale of 0 to 5; 0 = no disease; 1 = 1-10 %; 2 = 11-30 0/;  3 
= 31-50 %; 4 = 51- 80 % and 5 = entire shoot infected. Isolates with a mean infectivity 
between 0 and 1 were considered non-pathogenic. 



4.2.3. Pathogenicity-related enzymes of dsRNA-containing 
isolates 

As noted in Section 4.2.2, pathogenicity is reported to be linked to the presence 

or absence of dsRNA in certain fungal hosts (reviewed by Nuss and Koltin (1990)). 

Enzymes that have been implicated in pathogenicity include cellulases, pectic lyase, 

polygalacturonase and phenol oxidases, as described in Section 1.3.2. These were 

examined for a range of isolates containing multiple dsRNA segments (as described in 

Section 4.2.1), to seek any consistent associations. 

4.2.3.1. Cellulolytic activity 

Cellulase is a secondary enzyme in the pathogenic response of R. solani, being 

released following polygalacturonase and pectic lyase (Ayers et a!, 1966; Bateman, 

1970). In C. parasitica, cellulase activity is suppressed in the presence of dsRNA 

(Elliston, 1985; Rigling et al., 1989; Hillman et al., 1990), so cellulolytic activity was 

examined for twelve of the AG 3 isolates which contained dsRNA. Cellulolytic activity 

was assayed by inoculating stacks of cellulose filter paper with R. solani and 

subsequently recording the amount of cellulose respired over a 22 day period (Section 

2.4.10). All isolates were capable of cellulose degradation (Table 4. 3). This was 

significantly greater (P <0.001) in mineral nutrients containing asparagine as opposed to 

nitrates as the sole nitrogen source. Between isolates, in the presence of either 

asparagine or nitrate there were significant differences in cellulolytic activity at P <0.01 

and P <0.001, respectively. 

4.2.3.2. Phenol Oxidase Activity 

Phenol oxidases are widely distributed in fungi (Matsubara and Iwasaki,1972; 

Kojima et al., 1990), including R. solani (Tolmshoff, 1970), and include the copper-

containing laccases (Lerch et al., 1978). These enzymes oxidize a large variety of 

organic substrates (Bollag et al., 1978; 1988), such as tannic acid and gallic acid, and 

this can be observed using Bavendamms' tests (Bavendamm, 1928 a, b). Phenol 
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oxidases are reported to be suppressed in the presence of dsRNA in species such as C. 

parasitica (Rigling et al., 1989) and Diaporthe ambigua (Smit et al., 1996), thus 

dsRNA-containing isolates of R. solani were examined for their production of this 

enzyme. Assays involved inoculating isolates on malt extract agar containing either 

tannic acid or gallic acid (Section 2.4.9). Production of phenol oxidases on gaffic acid 

agar is indicated by a change in colour of the agar from orange/ brown to dark brown! 

black (Figure 4. 7). All fifteen isolates examined grew, and produced a strong colour 

reaction, on gallic acid agar following four days incubation at 27°C (Table 4. 4). On 

tannic acid agar, no change in agar colouration occurred (Figure 4. 8) for any isolate 

examined (Table 4. 4). Isolates grew poorly or not at all on tannic acid agar (Table 4. 4). 

Cellulolytic activity (mg cellulose respired over 22 days)* 

Strain NO3  as nitrogen source Asparagine as nitrogen source 

FT  123.3 ±7.6 187.6±4.1 	- 

FT  51.4±8.1 119.9±15.9 

FT 4 60.9 ± 9.5 160.3 ± 7.2 

FT 7 94.8 ± 17.8 144.6 ± 24.7 

FT 14 63.3 ± 7.8 106.6 ± 5.1 

FT 17 120.9 ±28.1 152.9±35.9 

FT 18 118.2±31.9 239.4± 19.9 

FT 19 112.4± 15.3 181.0±4.4 

FT 20 63.0 ± 22.1 159.6 ± 10.9 

FT 201 72.2±5.6 150.2± 12.8 

Fr 203 44.9±7.5 130.7±24.5 

FT 204 40.9 ± 4.7 1 	134.0 ± 19.1 

* Means of four replicates ± SEM 

Table 4. 3 Cellulolytic activity (mg cellulose respired over 22 days) of Rhizoctonia solani 
(AG 3) strains incubated on filter paper with nitrate (NO 3) or asparagine (Asn) as nitrogen 

source. 
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Figure 4. 7 Growth of a Rhizoctonia solani AG 3 isolate on gallic acid agar for four days at 
27°C. The change in agar colour from orange/ brown to dark brown indicates phenol 
oxidase production. 

Figure 4. 8 Inoculation of Rhizoctonia solani AG 3 isolates on tannic acid agar resulted in 
little or no growth following 14 days incubation at 27°C. Alteration of agar colour, which 
would indicate phenol oxidase production, was not observed. 
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Inoculation on gallic acid agar Inoculation on tannic acid agar 

Strain Colony diameter 
(mm) after 4 days 

incubation 

Colour 
reaction 

Radial growth (mm) 
after 14 days 

 incubation  

Colour 
reaction 

FT   60 + 4 0 

FF3 42 + 4 0 

Fr   8 + 0 0 

FT  44 + 2 0 

FT  55 + 0 0 

FT 10 57 + 4 0 

FT 14 60 + 4 0 

FT 15 45 + 2 0 

FT 17 36 + 0 0 

FT 18 48 + 2 0 

FT 19 55 + 4 0 

FT 20 8 + 0 0 

FT 201 48 + 6 0 

FT 203 57 + 4 0 

FT 204 27 + 1 	0 0 

Table 4. 4 Colony diameter of Rhizoclonia solani AG 3 isolates on gallic acid and tannic 
acid agar following 4 and 14 days incubation, at 27°C, respectively. A colour change in the 
agar indicated the production of phenol oxidases in response to gallic acid or tannic acid. 

4.2.3.3. Pectic enzyme production 

Pectic enzymes are the first enzymes produced during pathogenic attack by R. 

solani and are responsible for "tissue maceration" (Bateman, 1963a). Their production 

in vitro is readily observed using pectic zymograms. This technique detects 

polygalacturonase, pectin lyase and pectin esterase by differential staining of pectin-

containing polyacrylamide gels with ruthenium red. Polygalacturonase activity is 

detected as clear zones in the gel, pectin lyase activity is observed as yellow or clear 

zones surrounded by a yellow fringe, and pectin esterase is observed as zones which 

stain darker than the background colour of the gel. 

Cultures were incubated for 10 days in broth containing 1 % citrus pectin to 

induce pectic enzymes. Culture filtrates, in addition to pure enzymes as controls, were 

loaded onto zymograms containing 1 % citrus pectin (Section 2.4.8). On these 

zymograms, only polygalacturonase could be detected, with minor differences observed 

between isolates (Figure 4. 9). The presence of I % citrus pectin in the culture broth 

resulted in the residual pectin reducing the resolution of the zymograms (Cruikshank and 
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Wade, 1980), so the concentration of citrus pectin was reduced from 1.0 % to 0.1 % in 

the culture media. This resulted in greater resolution, with the isolates being split into 

two groups regarding pectic enzyme production (Figure 4. 10). Filtrates of isolates FT 

7, FT 20 and FT 203 formed two bands of polygalacturonase/ pectin lyase activity and 

one band of pectin esterase activity. The remaining isolates (FT 2, FT 3, FT 4, FT 8, FT 

10, FT 14, FT 15, FF17, FT 18, FT 19, FT 201 and FT 204) produced three bands of 

polygalacturonase/ pectin lyase activity and a pectin esterase band. Control reactions 

could not distinguish between polygalacturonase and pectin lyase activity, as no yellow 

fringe was observed around the zone of clearing for pectin lyase activity. 

4.2.3.4. Pectic enzyme activity 

The zymograms of Section 4.2.3.3 indicated the presence or absence of pectic 

enzymes, but did not distinguish between pectin lyase and polygalacturonase production, 

so enzyme assays were completed. Polygalacturonase activity was determined using 

spectrophotometry to measure the increase in reducing groups with dinitrosalicycic acid 

(Urbanek et al., 1975; Marcus and Shejter, 1983) following degradation of sodium 

polypectate to oligogalacturonic acid and galacturonic acid. Pectin-lyase activity was 

determined by following the appearance of A 4,5-unsaturated bonds following the 

cleavage of a-1,4 glycosidic linkages of citrus pectin (Byrde and Fielding, 1968). 

Cultures were incubated for five to nine days in broth containing either sodium 

polypectate or citrus pectin, to measure polygalacturonase or pectin lyase activity 

respectively (Section 2.4.8). Control reactions consisted of cultures incubated in broth 

containing glucose, which represses pectic enzyme activity (Weinhold and Bowman, 

1974). Each day, an aliquot of culture supernatant was removed, and tested for 

production of polygalacturonase and pectin lyase using the thiobarbituric acid assay. All 

isolates produced both pectin lyase (Table 4. 5) and polygalacturonase (Table 4. 6). 

Pectin lyase activity was generally low, being significantly (P < 0.001) less than 

polygalacturonase activity. No significant difference was observed between isolates, for 

either pectin lyase or polygalacturonase activity over the five to nine day period. Pectic 

enzyme activity was totally suppressed in the glucose controls. 

99 



4.2.4. Linear extension rates of dsRNA-containing isolates 

Linear growth after 72 hours incubation was examined upon a range of agars 

(Section 2.4.5): potato dextrose agar (PDA), water agar, cellulose agar and pectic agar. 

Growth of isolates, assessed as colony diameter, was significantly different (P <0.001) 

on each type of agar (Table 4. 7), with PDA supporting the greatest growth. The 

addition of cellulose to water agar (cellulose agar) had no significant effect on the 

growth of the isolates. Growth was significantly reduced (P <0.001) by the addition of 

citrus pectin to water agar (pectic agar), with an, overall, mean colony diameter of 12.7 

mm growth compared with 35.0 mm growth for water agar. Between isolates no 

significant difference was detected in growth. 

Ff203 FF20 FF4 FTI8 Ff19 FTIO Ff3 Ff204 FTI4 

Gel front 

Figure 4. 9 Diagram of a pectic zymogram, loaded with culture supernatant (containing 1 
% citrus pectin) from 10 day incubations with the Rhizoctonia solani isolates shown above. 
Residual pectin in the culture supernatant was high, resulting in poor resolution of gels 
visualized as "smears", as opposed to distinct bands. Polygalacturonase should be 
observed as clear zones, pectin lyase as clear zones surrounded by a yellow fringe, and 
pectin esterase as zones which stain darker than background. 
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PG PE PL 7 20 203 2 3 4 8 10 14 15 17 18 19 201 204 

Gel front 

Figure 4. 10 Diagram of a pectic zymogram, loaded with culture supernatant (containing 
0.1 % citrus pectin) from 10 day incubations with the Rhizoctonia solani Fl isolates 
indicated. PL, PG and PE indicates control lanes for pectin lyase, potygalacturonase and 
pectin esterase activity, respectively. Polygalacturonase should be observed as clear zones 
and pectin lyase as clear zones surrounded by a yellow fringe; however the two activities 
could not be differentiated. Pectin esterase stains as zones a darker pink than the 
background colour. 
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Pectin lyase activity* 

Days of incubation in citrus pectin broth at 27°C  

Strain 5 6 7 8 9 

FT  4.7± 1.8 0 42.3 ±2.0 2.3 ± 1.2 0 

FT 3 9.3 ± 3.0 13.7 ± 1.9 27.3 ± 2.7 4.0 ± 2.3 0 

FT  21.3±0.9 0.7±0.7 4.0±2.0 0 3.7±0.9 

FT 7 44.3 ± 2.0 0 3.0 ± 1.0 0 0.7 ± 0.7 

FT 8 16.3 ± 1.7 60.7 ± 1.9 2.3 ± 2.3 22.3 ± 0.3 0 

FT 10 9.3±1.2 52.3±4.3 8.0±2.1 3.7±2.7 15.0±4.0 

FT 14 48.7 ± 1.8 0 69.3 ± 3.0 12.7 ± 1.8 34.7 ± 1.4 

FT 15 14.0±2.6 25.3 ±4.4 0 12.0±1.5 11.3±0.9 

FT 17 7.3 ± 1.8 5.3 ± 3.3 . 	7.0 ± 1.5 0 0 

FT 18 18.7±2.3 31.3 ±2.0 0.7±0.7 34.0 ±3.2 0 

FT 19 17.0 ± 2.6 5.3 ± 3.5 0 40.3 ± 4.1 0 

FT 20 24.3 ± 5.2 0 18.7 ± 1.9 21.3 ± 3.3 0 

FT201 12.7± 1.8 38.3± 1.7 0 0 0 

FT 203 14.3 ± 2.7 13.3 ± 2.7 19.7 ± 2.3 33.7 ± 1.9 0 

FT 204 19.3 ± 0.7 52.0 ± 4.0 25.0 ± 1.5 34.3 ± 0.3 0 

*Means of three replicates ± SEM 

Table 4. 5 Pectin lyase activity of Rhizoclonw solani isolates following five to nine days 
incubation in broth containing citrus pectin. Culture supernatant was removed and 
substrate degradation assessed using the thiobarbitunc acid assay. One unit indicates an 
increase in absorbance of 0.01 at 549 nm. 
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Polygalacturonase activity* 

Days of incubation in sodium polypectate broth at 27°C 

Strain 5 6 7 8 9 

FT  45.0±2.9 26.7± 1.2 0.7±0.3 26.0±4.2 18.0±3.6 

FT 3 44.3 ± 2.9 15.0 ± 1.7 97.7 ± 1.4 67.7 ± 2.9 0 

FT  20.3±0.3 21.7±2.0 14.7± 1.4 35.7±0.9 21.0±3.5 

FT  31.3±2.3 63.3±6.1 73.7±0.7 80.0±4.3 96.7±2.3 

FT  25.0±3.2 47.7±9.5 29.0±3.6 45.0±3.2 111.0±4.9 

FT10 73.7 ± 2.9 15.0 ± 3.8 42.7 ± 3.5 0 125.7 ± 3.0 

FT14 20.7±2.7 15.7±2.3 61.7±2.4 61.3±4.1 45.0±6.1 

FT15 9.3 ± 2.3 23.7 ± 0.7 55.3 ± 3.8 39.3 ± 5.2 37.3 ± 5.2 

FT 17 78.3 ± 7.0 48.3 ± 0.7 155.3 ± 4.3 3.0 ± 1.7 0 

FT 18 26.3 ±4.7 47.7±4.1 2.0 ±2.0 3.0 ±3.0 16.7±1.8 

FT 19 69.3 ± 3.5 56.0 ± 3.5 83.0 ± 4.0 39.3 ± 6.7 65.0 ± 2.1 

FT 20 4.3±1.8 48.3±1.8 45.7±1.2 16.0±2.3 57.3±3.5 

FT 201 31.3±2.2 76.3±2.0 118.3±6.1 59.0±9.2 84.7±4.4 

FT 203 27.7 ± 6.2 68.3 ± 7.3 39.7 ± 3.0 0.7 ± 0.7 0 

FT 204 39.3 ± 2.9 53.0 ± 4.6 109.3 ± 2.4 38.0 ± 4.7 0 

* Means of three replicates ± SEM 

Table 4. 6 Polygalacturonase activity of Rhizoctonia solani isolates following five to nine 
days incubation in broth containing sodium polypectate. Culture supernatant was removed 
and substrate degradation assessed using the thiobarbituric acid assay. One unit indicates 
an increase in absorbance of 0.01 at 530 urn. 
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Colony diameter (mm) on various agars after 72 hours incubation* 

Strain FDA Water Cellulose Pectic 

FT2 48.7 ± 0.5 20.3 ± 0.3 20.7 ± 0.9 10.3 ± 0.6 

FT  60.0±1.7 37.8±2.1 33.0±2.0 18.0±0.3 

FT 4 63.5 ± 0.6 23.5 ± 1.3 22.7 ± 1.4 7.3 ± 0.6 

FT 7 64.2 ± 1.0 40.8 ± 1.2 37.5 ± 1.3 21.2 ± 1.0 

FT 8 64.7 ± 0.8 33.3 ± 2.8 31.8 ± 1.3 10.2 ± 0.2 

FT 10 64.5 ± 0.4 33.8 ± 1.4 31.0 ± 1.0 15.7 ± 0.3 

FT 14 45.8 ± 0.9 40.2 ± 1.1 39.0 ± 1.2 9.0 ± 1.0 

FT 15 62.2 ± 2.6 35.8 ± 1.0 28.5 ± 0.5 8.8 ± 1.2 

FT 17 55.7± 1.0 24.7±1.3 23.3±0.3 9.3±0.8 

FT 18 60.5±1.1 38.8 ±2.0 35.7± 1.7 11.7±0.4 

FT 19 66.8±0.9 36.0± 1.1 31.0±1.1 16.8±0.3 

FT 20 45.3±2.1 20.5±0.3 20.0±0.6 7.3±0.3 

FT 201 55.5 ± 1.2 33.8 ± 0.8 30.2 ± 2.0 12.8 ± 0.3 

FT 203 55.5 ± 1.5 39.0 ± 1.0 33.0 ± 1.5 15.8 ± 0.4 

FT 204 54.7 ± 0.9 36.0 ± 1.3 32.2 ± 1.3 16.3 ± 1.1 

Mean 57.8 1 	35.0 30.0 1 	12.7 

* Means of four replicates ± SEM 

Table 4. 7 Colony diameters (mm), following 72 hours incubation at 23°C, of dsRNA-
containing Rhizoctonia solani (AG 3) isolates on four agar types; potato dextrose agar 
(PDA), water agar (2 % Oxoid no. 3) and water agar supplemented with either 2 % 
cellulose (cellulose agar) or 2 % citrus pectin (pectic agar). 

4.2.5. Anastomosis of field isolates 

4.2.5.1. Anastomosis reactions 

Anastomosis is observed as hyphal fusion between opposing isolates. Pairing of 

colonies led to three types of interactions: hyphae of isolates of different anastomosis 

groups grew up to or past each other without contact (Figure 4. 11 a);  isolates of the 

same anastomosis group underwent hyphal fusion followed by a compatible reaction 

where cytoplasmic fusion occurs (Figure 4. 1 lb); isolates of the same anastomosis group 

underwent hyphal fusion followed by an incompatible reaction, where cell death to each 

side of the fusion point occurs (Figure 4. 1 ic). This killing reaction was variable: in 

some reactions only one cell to each side of the fusion point died, whereas in other 

reactions death was more extensive, with up to twelve or more cells on each side of the 
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fusion point dying. Hyphal anastomosis reactions were limited to hyphal tip cells of side 

branches. Main hyphae were never observed to undergo hyphal fusion. 

II 

(a) 
	

(b) 

(c) 

Figure 4. 11 Anastomosis reactions of Rhizoctonia solani: (a) No reaction where isolates of 
different anastomosis groups show no hyphal attraction (b) Vegetatively compatible 
reaction indicated by cytoplasmic continuity following hyphal fusion and (c) Vegetatively 
incompatible reaction where hyphal fusion was followed by death of hyphal cells to each 
side of the fusion point. Death extended to the septa indicated by the arrows. 

Anastomosis reactions were observed on both water agar-coated slides and on 

cellophane-overlaid water agar (Section 2.4.3). Water agar-coated slides were generally 

less suitable for observation of anastomosis reactions, as incubation periods of more 

than 60 hours generally led to widespread vacuolation and death of hyphae, sometimes 

prior to contact of the two colonies. Growth on cellophane-overlaid water agar was 

more stable and anastomosis reactions could be readily observed for a longer period (up 

to 3 weeks). In addition, both macroscopic and microscopic manifestations of 

vegetative compatibility could be observed on cellophane-overlaid plates. Macroscopic 
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reactions were visualized as a barrage reaction, at the point where two opposing 

incompatible colonies meet, compared with a compatible reaction, where no barrage 

reaction is observed. 

4.2.5.2. Compatibility of isolates from single potato 
tubers 

dsRNA can be transmitted during vegetatively compatible anastomosis reactions; 

however, in vegetatively incompatible reactions, a transmission frequency of 4 % has 

been reported for Ophiostoma novo-ulmi (Brasier, 1984; 1986). Dissemination of 

dsRNA thus requires high levels of vegetative compatibility in natural field populations, 

before a dsRNA-based biocontrol strategy would be effective. Initial studies examined 

the vegetative compatibility reactions (Section 2.4.3) of isolates harvested from 

individual potato tubers. Five isolates from each of three tubers were paired in all 

possible combinations, and the reactions examined microscopically. Triplicate plates 

were used for each pairwise combination. Isolates harvested from individual tubers 

were found to be fully compatible with one another (Figure 4. 12), indicating that over a 

small 'geographical' distance, vegetative compatibility should not pose a barrier to 

dissemination of dsRNA. 

4.2.5.3. Compatibility of isolates from a single field site 

Following from the previous tests (Section 4.2.5.2), eighteen isolates collected 

from within a single field site were examined, in pair-wise combinations, for their 

vegetative compatibility to determine the degree of vegetative compatibility over a larger 

area. Reactions were determined microscopically in triplicate (Section 2.4.3). Of the 

total 153 pairings of strains (excluding self reactions), 31 showed incompatible reactions 

in all three replicates and 44 showed incompatible reactions in 2 of 3 replicates. Overall, 

a high proportion (44 %) of the total reactions were incompatible reactions (Figure 4. 

13), which may be limiting to the dissemination of dsRNA. Reactions were completed 

in triplicate and within these, a high degree of variability occurred, with many pair-wise 

combinations showing two compatible and one incompatible reaction and vice versa. 
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R. solani FT isolate no. 	 R. solani FT isolate no. 	 R. solani FT isolate no. 
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Figure 4. 12 Vegetative compatibility groupings of Rhizoctonia solani AG 3 isolates 
harvested from three different potato tubers within a single field site. Five isolates were 
harvested per tuber, and paired against one another and their compatibility reaction 
recorded in triplicate. 

4.2.5.4. Compatibility of isolates from diverse 
locations 

Isolates harvested from a single field site showed a high degree of vegetative 

incompatibility with each other, so isolates were examined from diverse locations within 

Scotland to determine the degree of vegetative compatibility. All pair-wise 

combinations examined were vegetatively incompatible (Figure 4. 14). Scottish isolates 

were then paired with four isolates from the Netherlands (03R04, 03R08, 03R09 and 

03R41), to determine vegetative compatibility over a larger geographical distance. All 

isolates were found to be incompatible with one another (Figure 4. 15). 
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Figure 4. 13 Vegetative compatibility reactions of Rhizoclonia solani AG 3 isolates 
harvested from different potato tubers within a single field site. One isolate was harvested 
per tuber, and these were paired against one another and their compatibility reaction 
recorded in triplicate. 
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Figure 4. 14 Vegetative compatibility groupings of Rhizoclonia solani AG 3 isolates 
harvested from different potato tubers grown throughout Scotland. One isolate was 
harvested per tuber, and paired against every other, with their compatibility reaction 
recorded in triplicate. 
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Figure 4. 15 Vegetative compatibility groupings of Rhizoctonia solani AG 3 isolates 
harvested from potato tubers grown throughout Scotland (JP 1-4, APC 1-2, APB1-3, APA 
1-2, MIK 1-2) paired against isolates from the Netherlands (3114, 3118, 3119, 31141). 
Compatibility reactions were recorded in triplicate. 
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4.2.6. Interaction of Verticillium biguttatum with R. solani 

Verticillium bigutlalum is a biotrophic mycoparasite of R. solani (van den 

Boogert and Deacon, 1994). V. biguttatum infection proceeds in four stages (van den 

Boogert et al., 1989): (i) germination of the mycoparasite (ii) coiling and appressed 

growth along the host hyphae (iii) penetration of the host hyphae and (iv) internal 

growth and subsequent sporulation outside the host. The main macroscopic effect on R. 

solani of this interaction is a reduction in the number of sclerotia at least 75 mm away 

from the site of parasitism (van den Boogert and Deacon, 1994). In addition, adjoining 

vegetatively compatible colonies have scierotial suppression when only one of the 

colonies is inoculated with V biguttatum. Adjoining vegetatively incompatible colonies 

show no suppression in sclerotial numbers in the non-inoculated colony. Sclerotial 

suppression alone makes V. biguttatum a good prospective biocontrol agent especially 

for diseases such as black scurf of potato. A secondary level of biocontrol may also be 

potentially achieved, van den Boogert and Deacon (1994) hypothesize that V. 

biguttatum represents a nutrient sink, diverting nutrients throughout the Rhizoctonia 

colony and any adjoining vegetatively compatible colonies. This hypothesized diversion 

of cytoplasmic contents may potentially "pull" dsRNA from one colony of R. solani to 

other colonies upon anastomosis. This led to the susceptibility of R. solani to V. 

biguttatum being examined by determining the reduction in sclerotial numbers following 

mycoparasitism by V. biguttatum. 

4.2.61. Effect of V. biguttatum isolates on R. solani 

To determine which V. biguttatum isolate gave greatest suppression of sclerotia 

formation by R. solani, four V biguttatum isolates (M 73, M 92, M 95 and M 98) were 

examined for sclerotia reduction of eight R. solani isolates. Interactions were examined 

on cellulose agar following 14 days incubation at 23°C (Section 2.4.4). No significant 

difference between V. biguttatum isolates in their degree of sclerotial suppression was 

observed (Table 4. 8). V. biguttatum isolate M 92 was selected for further study, as the 

overall mean for sclerotia suppression was marginally higher, being 69.6 %, compared 
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with 36.5 %, 56.2 % and 45.9 % suppression for isolates M 73, M 98 and M 95 

respectively. 

4.2.6.2. Effect of V. biguttatum on dsRNA-containing 
isolates 

The effect of V. biguttatum isolate M 92 on dsRNA-containing AG 3 isolates 

was examined on cellulose agar, following 14 days incubation at 23°C (Section 2.4.4). 

V. biguttatum M 92 had a highly significant effect (P <0.001) on sclerotia formation 

(Table 4. 9). Scierotia formation was suppressed to levels between 96.8 % and 100 % 

in the presence of V. biguttatum M 92. 

% suppression of scierotia formation by isolates of V. 
bigultalum  

Rhizoctonia strain Anastomosis group M 73 M 92 M 95 M 98 

01R03 1 25.0 54.0 0 31.8 

2tR105 2 tulip 47.7 29.8 0 58.9 

JP2 3 17.1 86.8 70.2 33.4 

03R04 3 81.1 94.8 85.5 77.1 

Sc222 3 61.3 100 69.9 72.9 

03R09 3 46.3 90.7 65.0 82.1 

AG-3 3 0 40.0 36.6 49.5 

04R22 4 13.4 60.4 40.2 44.0 

Mean  36.5 69.6 45.9 56.2 

Table 4. 8 Percentage suppression of scierotia formation of Rhizoctonia solani isolates 
when inoculated with Verticihium biguttatum isolates and incubated for 14 days on cellulose 
agar at 23°C. Mean of three replicates. 



Number of sclerotia  
Rhizoclonia strain Rhizoclonia alone Rhizoctonia plus 

Verticililum 
% Scierotia 
suppression 

FT  76.7±5.8 0 100 

FT 3 85.7 ± 9.4 2.7 ± 2.7 96.8 

FT 7 44.0 ± 6.5 0.3 ± 0.3 99.3 

FT  74.0±3.8 0 100 

FT 10 90.0 ± 35.6 2.0 ± 0.6 97.8 

FT 14 165.3 ± 37.5 0.7 ± 0.3 99.6 

FT 17 127.3 ± 11.6 0.7±0.3 99.5 
FT 19 107.3 ± 13.9 0.3 ± 0.3 99.7 

FT 20 32.7 ± 20.0 0.3 ± 0.3 99.1 

Table 4. 9 Suppression of scierotia formation of dsRNA-containing Rhizoctonia solani AG 
3 isolates by Verlidihium biguttatum M 92 following 14 days incubation on cellulose agar at 
23°C. Mean of 3 replicates. 

4.2.6.3. Effect of V. biguttatum on different 
anastomosis groups 

Previous studies by Jager and Velvis (1983 a, b) indicate that V. biguttatum 

populations increase on Rhizoctonia infected potato tubers, whereas other crops do not 

permit multiplication of the V. biguttatum population to the same extent. Since 

Solanaceae are characteristically infected by AG 3 isolates (Ogoshi, 1987), this may 

indicate that the mycoparasite V biguttatum does not interact in the same manner with 

the other anastomosis groups. V. biguttatum M 92 was shown to significantly (P < 

0.001) suppress the formation of scierotia of R. solani AG 3 isolates (Table 4. 10). 

Examining sclerotia suppression by V. biguttatum on other AGs indicated that the 

degree of suppression varied between AGs (Table 4. 11). AG 2-2 isolates showed no 

significant difference in scierotia formation in the presence and absence of V. biguttatum. 

AGs 2-1, 2-3, 3, 5, 8 and 11 were shown to have significant (P < 0.05) scierotia 

suppression (> 70 %) (Table 4. 11). AGs 1, 2t, 4, 6 and 9, showed no significant 

difference in sclerotia formation in the presence and absence of V. biguttatum. 
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Number of sclerotia  
Rhizoctonia strain Rhizoctonia alone Rhizoctonia plus 

Vertidihium  
% suppression 

03R04 134.7±49.7 0 100 

03R08 2.0±2.0 0 100 

03R09 313.7±57.6 29.3 ±4.3 90.7 

03R41 136.0±73.2 0 100 

JPI 53.3 ± 30.9 9.7 ± 8.2 81.8 

JP2 226.7 ± 25.5 30.0 ± 13.9 86.8 

JP3 213.0 ± 50.5 53.7 ± 9.8 74.8 

JP4 508.0 ± 54.4 3.7 ± 2.0 99.3 

Sc222 150.7±58.6 0 100 

MK1 66.0 ± 27.8 0.3 ± 0.3 99.5 

MIK2 160.0 ± 60.0 0.7 ± 0.7 99.6 

APB1 159.7 ± 24.0 9.3 ± 3.0 94.2 

AP132 68.0 ± 49.8 0.3 ± 0.3 99.6 

AP133 98.3 ± 5.8 0 100 

APAI 97.7 ± 19.9 0 100 

APA2 66.0±23.6 0 100 

APC1 48.0 ± 9.5 0 100 

APC2 336.3 ±63.0 0 100 

FT1 1 136.3± 8.4 1 	9.3 ± 2.9 93.2 

FT13 125.3 ±60.3 1 	0 100 

Table 4. 10 Suppression of scierotia formation of Rhizoctonia solani AG 3 isolates by 

Verticillium biguttatum M 92 following 14 days incubation on cellulose agar at 23°C. 
Means of 3 replicates. 

113 



Number of scierotia  
Rhizoctonia 
strain 

Anastomosis 
group 

Rhizoclonia 
alone 

Rhizoctonia plus 
Verlicillium  

% suppression 

OIROI 1 13.7±8.4 1.7±0.9 87.6 

01R02 1 1385.0±93.0 776.0±57.9 43.8 

01R03 1 189.0±65.0 87.0±21.1 54.0 

21R01 2-1 342.0±53.7 112.0±35.7 76.8 

2tR105 2t 239.0±53.7 8.0±4.2 96.7 

2tR118 2t 169.3 ± 26.9 88.7± 17.6 47.6 

2tR144 2t 147.3 ± 76.2 20.7 ± 3.8 86.0 

VR5 2-2 102.3 ± 9.7 90.3 ± 10.0 10.7 

B12 2-2 66.3 ± 17.6 66.0 ± 14.4 0.5 

GR1 2-2 21.0 ± 1.7 21.0 ± 7.1 0 

22R02 2-2 119.0± 18.0 115.7±45.9 3.4 

23R01 2-3 32.3 ± 4.7 4.0 ± 4.0 87.6 

2-3/144 2-3 280.7 ± 53.2 0 100 

03R04 3 182.3 ± 75.7 9.5 ± 0.3 94.8 

03R09 3 210.5 ± 33.8 15.3 ± 8.2 92.7 

JP3 3 213.0 ± 50.5 53.7 ± 14.7 74.8 

FT 13 3 125.3±60.3 0 100 

04R22 4 291.0 ±47.4 115.3 ± 32.8 60.4 

4/41 4 274.3 ± 31.3 57.3 ± 16.8 79.1 

c-233 4 424.7±53.5 0 100 

05R01 5 413.7± 6.3 114.0± 15.0 72.4 

06R01 6 441.0 ± 90.4 266.0 ± 22.2 39.7 

08R01 8 76.0 ± 27.2 0 100 

09R01 9 348.5 ± 144.0 178.0 ± 55.7 48.9 

11 R01 11 219.0±31.8 37.3±11.8 83.0 

Table 4. 11 Suppression of scierotia formation of Rhizoctonia solani isolates from differing 
anastomosis groups by Vertidihium biguttatum M 92 following 14 days incubation on 
cellulose agar at 23°C. Means of 3 replicates. 
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4.2.6.4. Effect of V. biguttatum on starch agar plates 

For three strains of R. solani, 03R04, 01R03 and 2tRl44 the susceptibility to 

parasitism by V. biguttatum was examined on starch agar as opposed to cellulose agar 

(Section 2.4.4). Here scierotia formation was more abundant, so the quantity of 

scierotia was calculated using Optimas and Excel 5 computer packages (Table 4. 12). 

Greyscale values did not give an effective indication of differences between control and 

V. biguttatum inoculated plates, as the differences were small. The area covered by 

sclerotia gave a better indication. This showed a reduction in sclerotia area for the three 

strains in the presence of V biguttatum; however, the difference was not significant. 

This method was validated by calculating the ratio of scierotia numbers on V. biguttatum 

to control plates for strain 01R03 (the only plate where scierotia numbers were 

countable) at 62.6 %, and the ratio of the areas covered by sclerotia was 67.2 % Thus 

the two methods appear to be consistent. Comparing these results with those obtained 

on cellulose, the degree of suppression is of a similar level. For example, isolate 01 R03 

showed 67.2 % suppression of sclerotia on starch and 46.0 % on cellulose, whereas 

isolate 03R04 showed 12.6 % suppression on starch and 5.2 % on cellulose. 

Area of sclerotia (cm2) 
G reysca le* 

Rhizoctonia 
strain 

Rhizoctonia 
alone 

Rhizoctonia plus 
Verlidihium 

Rhizoctonia 
alone 

Rhizoctonia plus 
Verticihlium 

03R04 (AG 3) 9.8 ± 2.5 1.2 ± 0.1 145.2 ± 2.4 153.5 ± 2.3 
01R03 (AG 1) 0.7 ± 0.3 0.4 ± 0.1 167.5 ± 2.4 168.9 ± 1.8 
2tR144 (AG 2t) 4.2 ± 0.6 1.6 ± 2.6 156.9 ± 0.8 156.2 ± 5.0 

Table 4. 12 Area (cm2) covered by Rhizoctonia solani sclerotia on starch agar plates and 
the corresponding greyscale values for the plates. Greyscale values range from 44 as black 
to 255 as white, and were calculated using Optimas and Excel 5. Measurements were taken 
following 14 days incubation at 23°C. Mean of three replicates. 
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4.3. Discussion 

dsRNA mycoviruses are widespread in fungi, with many isolates harbouring 

multiple infections (Buck, 1986; Nuss and Koltin,, 1990; Ghabrial, 1994). For example, 

isolates of Saccharomyces cerevisiae commonly harbour the L-A and L-BC totiviruses, 

in addition to the 20S(W) and 23S(T) RNA replicons (Wickner, 1996). These viruses 

can co-exist as they rely on different replication proteins (Buck, 1998). Although many 

fungal species harbour dsRNA, the distribution within isolates is highly variable. For 

example, 72 % of Botrytis cinerea isolates contained 1 to 8 segments of dsRNA (Howitt 

et al., 1995), whereas only 7 % of Aspergillus (Section nigri) and Aspergillus (Section 

flavi) isolates contained dsRNA (Varga et al., 1994; Elias and Cotty, 1996). The 

present study examined the abundance of dsRNA mycoviruses in R. solani, using CF1 1 

cellulose chromatography, followed by agarose gel electrophoresis. Each AG 3 isolate 

harvested from separate tubers within a single field site contained multiple dsRNA 

segments, ranging in size from 0.3 to 15 kb. Every isolate examined from other 

anastomosis groups (AG 2-1, 4 and 5), contained dsRNA. This study indicates that 

dsRNA may be ubiquitous within R. solani field populations. However, previous 

studies indicated dsRNA distribution to be highly variable. Castanho et al. (1978) and 

McCabe (1994) reported dsRNA to be much less abundant, with only 23 % and 20 % of 

isolates containing dsRNA, respectively. Kousik et al. (1994) extracted dsRNA from 54 

% of isolates and Zanzinger et al. (1984) found dsRNA in 98 % of isolates examined. 

These studies examined isolates collected from diverse geographic locations, as opposed 

to the single field site used in the present study. Similar variation has been reported in 

C. parasitica isolates, depending on the geographical distribution (Peever et al., 1997). 

In a survey of 595 isolates, 28 % contained dsRNA. However, the incidence was highly 

variable, with all isolates from County Line in Michigan containing dsRNA, whereas 

isolates from New Hampshire and Ontario contained no dsRNA. In China, 172 isolates 

were examined, with only 2 % containing dsRNA. Similar results were obtained for 

Phytophthora infestans where 36 % of Mexican isolates contained dsRNA, but it was 

not detected in any of the European or North American isolates examined (Nuss and 

Koltin, 1990). 

The number and sizes of dsRNA segments found within isolates is highly 

variable. Isolates in the present study contained I to 8 segments of dsRNA ranging in 
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size from 0.8 to 15 kb. These can be divided into three broad size categories, as 

proposed by Bharathan and Tavantzis (1990): (i) large (L) being 4.6 kb or greater (ii) 

medium (M) in the range 1.1 to 4.5 kb and (iii) small (S) being 0.5 to 1.0 kb. Each 

isolate contained at least one large (L) segment of dsRNA. Similar diversity in dsRNA 

distribution is observed in other species. For example Cryptococcus hungaricus CBS 

6569 contained two segments of sizes 5.0 and 1.7 kb (Pfeiffer et al., 1998), whereas in 

other species dsRNA is more abundant. Ophiostoma novo-ulmi isolate Ld contains 10 

segments ranging in size from 0.33 to 3.49 (Rogers et al., 1986; 1987). In many rust 

fungi, the number of segments present is much greater. Puccinia sorghii contains at 

least 10 segments of 4.0 to 6.5 kb, and at least 10 medium to small size segments 

(Zhang et al., 1994). 

The banding patterns of dsRNA were highly variable, with some isolates 

containing the same segmentation. Of the isolates harvested from separate tubers, FT 3, 

FT 8 and FT 17 contained three large segments with the same electrophoretic mobility, 

FT 10 and FT 18 contained four similar sized segments and FT 16 and FT 20 contained 

two segments of equal size. Strains FT 203 and FT 204 from the same tuber contained 

seven segments of identical size. Since the isolates were harvested from a small locality, 

and contained similar banding patterns, it is likely that some of the segments may be the 

same, possibly the result of horizontal transmission by vegetative anastomosis. To 

determine whether the segments are related, northern hybridization studies are required. 

These, however, have not been completed in the present study. Previous work indicates 

sequence homology between dsRNA segments extracted from R. solani isolates of the 

same anastomosis group, but not from different anastomosis groups (Bharathan and 

Tavantzis, 1987). This, though, is not unexpected since the differing anastomosis 

groups are genetically isolated, due to their lack of hyphal fusion (Vilgalys and Cubeta, 

1994; Adams, 1996). Subsequent work, however, has indicated a limited degree of 

dsRNA homology between AGs. Bharathan and Tavantzis (1990) reported cross 

hybridization between three segments of size 1.8, 6.4 and 2.3 kb from isolates Rhs47 

(AG 2), RhslAl (AG 3) and Rhs (AG 5), which may indicate a common dsRNA 

progenitor. Bharathan and Tavantzis (1991) subsequently examined homology between 

isolates of the same AG that were geographically distant. No hybridization was 

observed between Japanese and American isolates from AG 1, 2, 4 and 5. Isolates 

located from within Maine, however, showed a certain degree of cross-hybridization, 
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both with each other and also towards isolates from Colorado. They concluded that the 

degree of homology decreased with increasing distance, so it is of interest to determine 

the level of homology at the field/ tuber level. A high degree of homology may be 

indicative of extensive transmission of dsRNA via hyphal anastomosis, which is a pre-

requisite for any biocontrol strategy based on possible dsRNA-mediated hypovirulence. 

Within other species, dsRNA elements show varying degrees of homology. For 

example, in Chalara elegans Nag Raj and Kenchick, a 2.8 kb band was found to 

hybridize between eight isolates of differing geographic origin, but no hybridization was 

observed towards high molecular weight dsRNA (Bottacin et al., 1994). In C. 

parasitica, the diversity of dsRNAs have been extensively characterized, with several 

types recognized: CHV1-EP713, CHV2-NB58 and CHV3-GH2 (Peever et al., 1998). 

In addition to these, various others have been reported including reovirus-like dsRNAs 

from isolate C18 of West Virginia (Enebak et al., 1994) and dsRNA within the 

mitochondria of isolate NB63 1 from New Jersey (Polashock and Hillman,, 1994). 

Additionally, Peever et al. (1997) found further dsRNA segments from C. parasitica 

isolates of New Jersey that did not cross-hybridize with any known dsRNAs. Within R. 

solani, many hybridization groups can be expected, as each AG is essentially genetically 

isolated. Within each AG, several hybridization groups may be present due to the lack 

of homology between dsRNA segments from R. solani reported to date. Of the 

characterized C. parasitica dsRNAs, some are widespread geographically, while others 

are found in relatively localized regions. For example, CHV1-EP713 is only found in 

Europe (L'Hostis etal., 1985; Paul and Fuibright, 1988; Heiniger and Rigling, 1994) and 

China (Liang et al., 1992; Quan et al., 1994). In eastern North America, dsRNA of 595 

isolates was examined and found to belong to three hybridization groups (Peever et al., 

1997). Interestingly, none of the isolated dsRNA segments hybridized to European 

CHV1-EP713, despite CHV1-EP713 being previously released in numerous locations 

for biocontrol purposes. These debilitated isolates, with slow growth rate and decreased 

sporulation., are presumably unable to persist alongside their healthy counterparts. 

The present study did not examine the localization and encapsidation of the 

dsRNA segments. Previous reports indicate dsRNA of R. solani to reside in the 

mitochondrial fraction (Tavantzis, 1994; Ban et al., 1997). Similarly dsRNA of C. 

parasitica and 0. novo-ulmi has been found in the mitochondria (Rogers et al., 1987; 

Polashock el al., 1994). Mycoviruses tend to either be encapsidated in protein capsids 
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or alternatively associated with lipid-rich cytoplasmic vesicles, e.g. C. parasitica 

hypovirus (Fahima et al., 1993) and Alternaria solani (Zabalgogeazcoa et al., 1997). 

Castanho et al. (1978) were unable to detect encapsidated viral particles in R. solani. 

Subsequent studies, however, reported isometric particles of 33 nm diameter (Finkler et 

al., 1985; Finlder et al., 1988; Tavantzis, 1994). However, dsRNA from all isolates may 

not necessarily be encapsidated. In C. parasilica, the majority of dsRNA elements are 

associated with lipid-rich vesicles, but some have recently been reported to be 

encapsidated in 60 nm isometric particles (Enebak et al., 1994). 

DsRNA elements are generally non-symptomatic, as in many rust fungi (Zhang et 

al., 1994), but some have been reported to alter the fungal phenotype. For example, 

Chalara elegans shows reduced growth rate and virulence, and an increase in 

phialospore production in the presence of dsRNA (Bottacin et al., 1994). C. parasitica 

isolates become hypovirulent, in addition to showing reduction of pigmentation, reduced 

conidiation, loss of female fertility, and down-regulation of several virulence-associated 

proteins including oxalate, laccase, cryparin, cellulase, cutinase, protease and 

polygalacturonase. Previous reports have tried to correlate dsRNA in R. solani with 

altered phenotype. Initial reports by Castanho and Butler (1978a) indicated that the 

presence of dsRNA resulted in a hypovirulent phenotype. However, Finkler et al. 

(1985) subsequently contradicted this by reporting dsRNA to be associated with virulent 

isolates of R. solani. Several subsequent reports indicate dsRNA to be ubiquitous 

within R. solani, with no apparent correlation between the presence of dsRNA and the 

degree of pathogenicity (Zanzinger et al., 1984; Hyakumachi et al., 1985; Bharathan 

and Tavantzis, 1990; Bharathan and Tavantzis, 1991; Washington and Martin, 1991; 

Kousik et al., 1994). It is likely that specific dsRNA elements give rise to certain 

phenotypes. A similar situation occurs in 0. novo-ulmi where many isolates contain 

multiple dsRNA segments, with three specific segments (2.43, 0.95 and 0.33 kb) being 

required to invoke the hypovirulent phenotype in the host (Rogers et al., 1986; 1988). 

Likewise Stanway and Buck (1984) surveyed over a hundred Gauemannomyces 

graminis isolates, finding no correlation between the presence of dsRNA and virulence. 

They concluded that hypovirulence may be linked to the presence of specific dsRNAs. 

The present study examined the virulence of fifteen R. solani field isolates, in an attempt 

to correlate virulence with the presence/ absence of specific dsRNA elements. Each 

isolate contained multiple dsRNA segments, with some isolates containing segments 
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which were identical in electrophoretic mobility. Between the isolates, no significant 

difference in virulence upon six host crops was observed. Similar results were obtained 

by van den Boogert et al. (1998b) who reported that pathogenicity of AG 2-2111B field 

isolates showed little intrafield variation, but differed significantly between fields. This 

may indicate that the coding capacity of dsRNA contained within these isolates is 

similar, which would not be unexpected since the isolates were harvested from a small 

geographical locality. Northern hybridization studies, however, would be required for 

confirmation. The disease severity, obtained in the present study, was fairly low, 

ranging from 1.5 to 2.6, on a scale of 0 to 5. Mean levels between 0 and 1 are taken to 

indicate hypovirulence (Ichielevich-Auster et al., 1985). Potentially, the low disease 

severity may be the result of dsRNA-encoded functions. However, to determine this, 

isolates without dsRNA in the same host genetic background are required. The work of 

chapter 5 examines approaches to curing isolates of their dsRNA, in an attempt to 

specifically correlate dsRNA with virulence. 

The enzymes underlying pathogenicity are widely reported to vary in the 

presence of dsRNA (Buck, 1998). In R. solani several enzymes are released during 

tissue invasion, including polygalacturonase, trans-eliminases, cutinase, phenol oxidases, 

cellulases and hemicellulases (Bateman, 1963a, 1964; Ayers et al., 1966; Bateman et al., 

1969; Baker and Bateman, 1978). The pectic enzymes, cellulases and phenol oxidases 

were examined to determine whether fluctuation exists between the dsRNA-containing 

isolates. No comparisons to isolates lacking dsRNA were made, due to the lack of 

availability of cured isolates. 

Pectic enzymes include polygalacturonase and the trans-eliminases (pectin lyase 

and pectin esterase). Polygalacturonase is the first enzyme released during tissue 

invasion, being responsible for "tissue maceration" (Bateman, 1963a), a process which is 

aided by trans-eliminases (Ayers et al., 1966). Previous reports on pectic enzymes 

indicate that they are produced by both highly virulent and avirulent strains of R. solani 

(Sherwood, 1966). Marcus et al. (1986) examined the individual enzymes and their 

relationship to virulence. They found polygalacturonase to be produced by both virulent 

and hypovirulent isolates, whereas pectin lyase was absent from hypovirulent isolates, 

and only produced by virulent isolates. Similar results were obtained in the present 

study, which indicated both polygalacturonase and pectin lyase to be produced by 15 

weakly virulent isolates. The levels of pectin lyase produced were significantly lower 
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than that of polygalacturonase. The lack of pectin lyase production by hypovirulent 

isolates in the study of Marcus et al. (1986) may potentially be related to the presence or 

absence of dsRNA. The present study examined only isolates containing dsRNA, due to 

the lack of availability of dsRNA-free isolates. McCabe (1994) examined pectic enzymes 

of two isolates, PAl and 113, both of which contained dsRNA. Removal of dsRNA 

from PAl resulted in increased polygalacturonase and pectin lyase activity, whereas no 

alteration in enzyme activity was observed for strain 113 upon removal of dsRNA. This 

may indicate that the dsRNA elements present in PA! (2.1 and 2.3 kb) and 113(2.0 and 

2.2 kb) encode different functions. The study by Marcus et al. (1986) made no attempt 

to correlate pectin lyase production with the presence of dsRNA. However, it is 

interesting to note that virulent isolate 82 produced pectin lyase, and has since been 

reported to harbour dsRNA (Finkler et al., 1985), whereas hypovirulent isolate 521 

contains no dsRNA (Finkler et al., 1985) and does not produce pectin lyase. In further 

support that dsRNA may affect pectin lyase expression, Finkler et al. (1988) transferred 

dsRNA via hyphal anastomosis from a virulent to a hypovirulent R. solani isolate. The 

converted strain subsequently displayed endo-pectin lyase activity. This may be the 

result of a regulatory cascade triggering the production of several virulence-associated 

enzymes. Further investigation into the relationship of pectic enzymes and dsRNA 

content is warranted. 

Pectic enzymes are the initial enzymes released during plant tissue invasion by R. 

solani. Subsequently cellulases are released which are involved in intracellular 

penetration and the ultimate collapse of the cells (Bateman, 1970). Cellulase secretion 

in C. parasitica is altered in the presence of dsRNA. Isolates containing dsRNA failed 

to produce cellulase when grown on cellulose as sole carbon source, whereas those 

lacking dsRNA readily secreted cellulases (Wang and Nuss, 1995). Initial studies by 

McCabe (1994) examined two R. solani isolates (PAl and 113), which degraded 310.9 

± 26.6 and 382.1 ± 20.0 mg cellulose over 4 weeks, respectively. Curing these isolates 

of dsRNA resulted in a three to four fold increase in cellulolytic activity. Three 

derivatives of PA! were examined giving 1114.2 ± 161.2, 917.6 ± 52.4 and 994.3 ± 

25.4 mg cellulose respired over 4 weeks, whereas one derivative of 113 respired 1153.1 

± 166.5 mg cellulose over 4 weeks. The present study examined cellulolytic activity of 

dsRNA-containing isolates of AG 3, and found activity to vary significantly between the 
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twelve isolates examined. The high degree of variability was not unexpected, as studies 

presented in chapter 3 of this thesis found that cellulolytic activity was highly variable 

between isolates, and is likely to be more important in the saprotrophic phase rather than 

the pathogenic phase of R. solani. Again further investigation is warranted between 

dsRNA and dsRNA-free isolates, to confirm the initial results obtained by McCabe 

(1994). This work initially aimed to further examine the relationship, but was hampered 

by the lack of dsRNA-free isolates. 

In other species further traits are reported to show altered expression in the 

presence of dsRNA. These traits include loss of phenol oxidase activity, alteration of 

cryparin levels, reduction in growth rate and reduction of gallic and tannic acid oxidation 

(Anagnostakis, 1987; Ghabrial, 1994). Again no significant differences were found 

between isolates in the present study regarding oxidation of both gaffic acid and tannic 

acid. Linear growth rate was constant between the isolates examined. Prior studies by 

McCabe (1994) found no alteration in growth rate between strains containing dsRNA 

and those cured of dsRNA. This is in contradiction to the isolates examined by 

Castanho and Butler (1978b), which showed a ten-fold increase in linear extension upon 

curing the isolates of dsRNA. In further contradiction, Zanzinger et al. (1984) found 

that isolates cured of dsRNA showed an increase in growth rate. This again may be an 

indication that different segments of dsRNA have different effects on fungal virulence. 

Of the phenotypic properties examined, excluding cellulase activity, there were 

no significant differences in expression between the isolates, despite the diversity in 

dsRNA banding patterns. This may indicate that either: (i) the dsRNA does not encode 

factors which alter the host phenotype with respect to pathogenic characteristics or (ii) 

the genetic information encoded by the dsRNA in the different hosts is the same. If this 

was the case, it may be that the virulence, and hence the pathogenic enzymes involved, 

are only being expressed at a fraction of their original levels, or indeed, that the isolates 

were previously avirulent, and the dsRNA has triggered a pathogenic response in the 

fungal isolates. To determine this, however, isolates cured of dsRNA are required. The 

work presented in chapter 5 examines the curing of isolates. 

For a dsRNA-mediated biocontrol strategy to be successful, dsRNA transfer 

between isolates must occur. Transmission is generally limited to horizontal modes via 

hyphal anastomosis. The efficiency of this process is assisted by the high concentration 

of dsRNA near the hyphal tips, brought about by continual protoplasmic streaming from 
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the older regions of the hyphae towards the tip cells. In R. solani, direct microscopical 

evidence of dsRNA transfer between cells during hyphal anastomosis has not been 

observed. However, several circumstantial reports indicate that transfer does occur. 

Castanho and Butler (1978a) reported pairing an isolate containing dsRNA (189a) with 

a cured dsRNA-free isolate (189HT3) on Y-plates. Following anastomosis, all colonies 

re-isolated contained dsRNA, indicating successful transmission,, plus dissemination of 

dsRNA throughout the mycelial network. Jian et al. (1997) conducted similar 

experiments to transfer either a 6.4 or 3.6 kb dsRNA segment to dsRNA-free genetic 

backgrounds. Finider et al. (1985) used a different approach involving a virulent isolate 

containing dsRNA, which was benomyl resistant and sensitive to another compound, 

codenamed BTN. The hypovirulent isolate lacked dsRNA and was benomyl sensitive 

and resistant to BTN. Following anastomosis, virulent colonies were obtained which 

contained dsRNA, but were benomyl sensitive and BTN resistant. This was taken to 

indicate that dsRNA transfer had occurred into the previously hypovirulent isolate. In 

these studies, transfer has been demonstrated following compatible anastomosis 

reactions. However, anastomosis is frequently followed by an incompatible anastomosis 

reaction, where dsRNA transfer is less efficient. In 0. novo-ulmi transfer occurs slowly 

at a negligible rate of 4 % following an incompatible anastomosis reaction (Brasier, 

1984, 1986). Developing a dsRNA-mediated biocontrol strategy for C. parasitica was 

successful in Europe, but unsuccessful in the U.S.A. (reviewed by Nuss (1992)). This 

was due to a low number of VCGs in Europe, such that dsRNA dissemination via hyphal 

anastomosis was successful, whereas in the U.S.A., a greater number of VCGs were 

present such that the majority of hyphal anastomosis reactions were followed by 

incompatible reactions. This is exemplified by studies by Anagnostakis et al. (1986) 

who found only 2 VCGs throughout both Greece and Germany and 8 in Croatia. Within 

Modena in Italy, only 4 VCGs were present (Zamboneffi and Zechini d'Aulerio, 1986). 

Within single field sites, only one VCG was usually found (Grente, 1981). In stark 

contrast; in West Virginia and Connecticut, 27 and 48 different VCGs, respectively, 

were reported in single small clear-cut plots (Anagnostakis and Kranz, 1987; Milgroom 

et al., 1991). This greatly limited dissemination of dsRNA, as the majority of 

anastomoses between neighbouring mycelial networks were incompatible. It is, 

therefore, empirical for biocontrol to determine the VCGs of field populations of R. 

so/an i. 
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In the present work, at the tuber level, isolates of R. solani were fully compatible 

with one another, indicating that dsRNA dissemination should not be impeded. 

However, the degree of incompatibility increased greatly when isolates from differing 

tubers from within a single field site were examined, with 44 % of the total reactions 

being incompatible. This increased to 100 % of pair-wise combinations being 

incompatible when isolates were harvested from differing areas of Scotland, and indeed 

from differing countries. Similar results were obtained by van den Boogert et al. 

(1998a) who found that compatible reactions occurred at a frequency of < 1 % when 

pairing AG 2-2 IIIB isolates from distant plants. In contrast, isolates from single or 

neighbouring plants showed a high frequency of compatible fusions. Studies by 

MacNish et al. (1993) also showed similar results. AG 8 isolates from the same patch 

were fully compatible with one another, but incompatible with isolates from other 

patches. Additionally isolates from south Australia were incompatible with isolates from 

both America and western Australia. From these combined results, dissemination of 

dsRNA throughout natural field populations of R. solani is likely to be limited to small 

areas, with no widespread transmission beyond adjoining colonies. Potentially, this 

could be overcome by using isolates from multiple VCGs. However, due to the lack of 

compatibility between any isolates from diverse sources, this may not be entirely 

successful. This lack of vegetative compatibility is not observed to the same extent in 

other species. For example, in 0. novo-ulmi, 90 % and 47 % of isolates belong to the 

same VCG in Portugal and Poland, respectively. In North American C. parasitica 

populations the VCG diversity is high. This led to the need to produce eDNA from 

hypovirus CHV1-713 (Choi and Nuss, 1992b), which was then successfully transformed 

and expressed in virulent C. parasitica isolates, converting them to the hypovirulent 

phenotype. These novel strains contain a chromosomally integrated copy of the viral 

RNA, in addition to cDNA-derived cytoplasmic dsRNA forms, which are fully 

transmissible via anastomosis. The presence of the chromosomally integrated copy of 

the viral RNA enables the potential additional transmission routes via conidia and via 

ascospores through nuclear inheritance, therefore overcoming the previous barrier to 

dissemination posed by vegetative compatibility. Further studies indicate that the 

CHV 1-713 cDNA can be transformed into other species, which including C. cubensis, 

C. havanensis, C. radicalis and Endothia gyrosa (Chen et al., 1994, 1996). Upon 

transformation, isolates displayed altered morphology, reduction in phenol oxidase 
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production (except E. gyrosa) and attenuation of fungal virulence. Subsequent studies 

indicated that transformed C. cubensis and E. gyrosa strains were unable to elicit 

infections, indicating that biocontrol could be successfully achieved in several other 

species using cDNA derived from CHV 1-713. Indeed, it may be possible that the 

cDNA can be transformed into R. solani isolates, with subsequent expression of the 

hypovirulent phenotype. However, a suitable transformation system is first required. 

The work of chapter 6 involves development of a transformation protocol, and 

transformation with cDNA derived from CHV 1-713. 

An alternative means of circumventing the problems associated with VCGs 

would be to suppress the vegetative incompatibility reactions using antisense mRNA to 

block the vie gene expression (Benedetti et al., 1987). 

An interesting anomaly in the vegetative compatibility results of the present 

study is the lack of reproducibility between isolates from differing tubers, where one 

compatible result could be followed by two incompatible results and vice versa in 

triplicate tests. Similar inconsistencies were reported by Julian et al. (1996) when single 

spore isolates (SSI), derived from an AG 1 isolate, were paired either with their parent 

of other SSI from the group. Vegetative compatibility is essentially controlled by two 

factors. (i) Environmental factors such as nutrient stress leads to the majority of hyphal 

anastomoses, including self-reactions, being incompatible fusions. This, however, 

cannot account for the variability reported here, as the media and growth conditions 

used throughout were unaltered. Further environmental factors which may alter the 

vegetative compatibility response in R. solani include ultra-violet light, which has been 

shown to cause instability of VCGs in C. parasitica (Rizwana and Powell, 1992). (ii) 

Genetical events underlying vegetative compatibility are highly complex, and as yet 

uncharacterized in R. solani. In Podospora anserina, nine genetic loci control 

vegetative incompatibility (Esser, 1974; Labarere et al., 1974); six of these loci have 

two alleles each, and three of them have three, four and five alleles. The total number of 

genotypes possible from such an arrangement would be 7680. For isolates to be fully 

compatible they must be identical at each genetic locus, with a difference at one locus 

being enough to produce an incompatible reaction. Due to the close similarity of 

phenotypic characteristics (e.g. virulence and pectic enzymes) of the FT field isolates 

used in this study, they are likely to have a similar genetic background, with isolates 

from a single potato tuber presumably being clonal, hence their compatible anastomosis 
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reaction. Assuming radial spread of R. solani from a point source, the longer growth 

has occurred, the greater is the probability of mutagenesis occurring within the 

vegetative compatibility loci, in addition to alteration in nuclear content. Indeed 

successive laboratory subculture may also result in modification, which may lead to 

variation in vegetative compatibility responses. However, reports indicate that many 

VCGs are stable throughout laboratory manipulations (Leslie, 1993). For example, 

Anagnostakis (1977) found no evidence for instability of VCGs in C. parasitica. In 

Neurospora crassa, alteration in VCG was associated with gross genomic re-

organization as opposed to single loci mutations (Pittenger, 1964). In addition, since 

death during incompatibility responses is a gradual response, a single locus mutation 

could cause only a weak incompatible response, which may be observed following 48 

hours, or in other cases after 200 hours. A difference in two loci, however, may cause a 

stronger reaction, such that death occurs quickly in every case. However, M.C. Julian 

(pers. comm.) found that both compatibility and incompatibility reactions were stable for 

up to 3 to 4 weeks incubation on cellophane-overlaid water agar plates. 

A further source of variation which may influence vegetative compatibility gene 

expression includes epistatic genes, modifiers and suppressors (Julian et al., 1996). 

Potentially the dsRNA viruses produce DNA copies which then insert into the host 

genome, possibly within the vegetative compatibility loci. This would then lead to gene 

disruption and hence an incompatibility reaction following anastomosis. Evidence of 

genomic incorporation of dsRNA into R. solani has been reported by Lakshnian and 

Tavantzis (1994) and Tavantzis (1994). Similarly, sequence homology has been 

reported between dsRNA elements and nuclear DNA within various plant species. 

With respect to using V. biguttatum as a dsRNA mobilizing agent, isolate M 92 

gave a high degree of scierotial suppression on AG 3 isolates, but not so high with 

isolates from other anastomosis groups. Since it is thought that V. biguttatum exerts its 

effect on R. solani by forming a continuing nutrient sink throughout the mycelial 

network (van den Boogert and Deacon, 1994), this would then prevent the formation of 

scierotia by diverting nutrients away from sclerotial production to the V. biguttatum 

inoculum. Microscopic observations of the interaction between R. solani and V 

biguttatum indicate that rapid cytoplasmic streaming of 8 to 11 tm sec' occurs towards 

V. biguttatum (Deacon, 1996). Thus, the differences in sclerotial suppression between 
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the AGs could be due to a lower rate of V. biguttatum-induced cytoplasmic streaming, 

thus enabling differing proportions of nutrients to be re-diverted into the sclerotia. If 

this is the situation, then increased dissemination of dsRNA in the presence of V 

biguttatum may be limited in some isolates (e.g. 2tR1 05, which shows 29.8 % scierotial 

suppression), but greater in isolates showing greater suppression (e.g. 08R01 which 

shows 100 % scierotial suppression in the presence of V. biguttatum). 
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CHAPTER 5 

EFFECTS OF dsRNA ON FUNGAL PHENOTYPE 
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5. 1. Introduction 

dsRNA elements are present within R. solani in varying degrees of abundance. 

What effect these elements have on the host phenotype is still a cause of controversy. 

Initial reports indicated that the presence of dsRNA was associated with a hypovirulent 

phenotype (Castanho and Butler, 1978a). However, this was subsequently contradicted 

by Finkler et al. (1985), who reported that dsRNA was associated with virulent isolates 

of R. solani. Several subsequent reports indicated dsRNA to be ubiquitous within R. 

solani, with no apparent correlation between the presence of dsRNA and the degree of 

virulence (Zanzinger et al., 1984; Hyakumachi et al., 1985; Bharathan and Tavantzis, 

1990; Bharathan and Tavantzis, 1991; Washington and Martin, 1991; Kousik et al., 

1994). It is likely that specific dsRNA elements give rise to certain phenotypes. A 

similar situation occurs in Ophiostoma novo-ulmi where many isolates contain multiple 

dsRNA segments, with three specific segments (2.43, 0.95 and 0.33 kb) being required 

to invoke the hypovirulent phenotype in the host (Rogers et al., 1986; Rogers et al., 

1988). To try and correlate dsRNA with a certain phenotype, various approaches are 

available. Curing of isolates can be completed, such that the presence/ absence of 

dsRNA segments can be studied in the same genetic background. Alternatively, cDNA 

can be constructed and subsequently transformed into a dsRNA-free isolate. This, 

though, requires the development of a transformation procedure. In addition, cDNA 

could be used for sequence determination, to determine the coding capacity, and 

potential intracellular functions. 

The work in this chapter aimed to cure isolates of dsRNA and subsequently 

correlate the alteration with virulence. Additionally, hybridization studies were 

completed to determine whether homology exists between dsRNA of R. solani and 

hypovirus CIIV 1-713 of C. parasitica. 

5.2. Results 

5.2.1. Curing by hyphal tip subculture 
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Initial attempts were made to cure isolates of dsRNA used hyphal tip subculture. 

This technique has been reported to give curing frequencies of 25 % (McCabe, 1994). 

Three AG 3 isolates, FT 10, FT 201 and FT 204, were grown on potato dextrose agar 

(PDA) and the young hyphal tips repeatedly excised to fresh PDA. Each generation 

formed was examined for dsRNA content (Section 2.4.12). The parental FT 10 isolate 

contained four dsRNA segments of sizes 10.0, 9.0, 1.0 and 0.8 kb. After the third 

successive hyphal tip subculture the progeny were unaltered in dsRNA content 

compared with the parental isolate (Table 5. 1). Isolate FT 204 contained seven dsRNA 

segments of 9.5, 8.0, 6.5, 3.0, 1.6, 1.0 and 0.8 kb. Ten successive generations were 

examined for dsRNA content and again all derivatives contained the same dsRNA 

segments as the parental isolate (Table 5. 1). A third isolate FT 201 was examined over 

ten successive generations from hyphal tips. The parental isolate contained five dsRNA 

segments of 9.5, 6.5, 1.6, 1.3 and 1.0 kb. The 1.3 kb segment was lost following the 

second hyphal tip subculturing (Table 5. 1), but there was no further alteration in 

dsRNA content up to the tenth generation. 

DsRNA segments (Kb) in isolates 

Generation 
number  

FT 201 FT 204 Fr 10 

PARENT 9.5, 6.5, 1.6, 1.3, 1.0 9.5, 8.0, 6.5, 3.0, 1.6, 1.0, 
0.8  

10.0, 9.0, 1.0, 0.8 

i As parent As parent As parent 

2 Lost 1.3 kb segment As parent As parent 

3 Lost 1.3 kb segment As parent As parent 

4 Lost 1.3 kb segment As parent 

5 Lost 1.3 kb segment As parent 

6 Lost 1.3 kb segment As parent 

7 Lost 1.3 kb segment As parent 

8 Lost 1.3 kb segment As parent 

9 Lost 1.3 kb segment As parent 

10 Lost 1.3 kb segment As parent 

Table 5. 1 Attempted curing of dsRNA from Rhizoctonia solani AG 3 isolates. Isolates 
were grown on potato dextrose agar (PDA), and the young hyphal tips excised to fresh 
PDA for up to ten times before the dsRNA content was examined using CF11 cellulose 
chromatography. 
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5.2.2. Vegetative compatibility of hyphal tip subcultures 

The vegetative compatibility of hyphal tip derivatives was examined to determine 

whether partially or fully cured isolates would be useful for dsRNA-transfer studies. 

Four hyphal tip subcultures from each generation were paired with their respective 

parental strains on cellophane-overlaid water agar, and examined microscopically for 

anastomosis reactions (Section 2.4.3). Each reaction was examined in triplicate. For 

isolates FT 10 and FT 204, a high degree of vegetative incompatibility of hyphal tip 

subcultures towards the parental isolates was observed (Figure 5. 1). Vegetative 

incompatibility reactions accounted for 73 % and 49 % of total observations for isolates 

FT 10 and FT 204, respectively. After the 
7th  and 8th generations, for isolates FT 204 

and FT 10 respectively, all hyphal tip progeny showed triple incompatibility reactions 

with their parental isolates. Hyphal tip derivatives of isolate FT 201 showed much less 

incompatibility with their parental isolate, with only 7 % of total reactions being 

incompatible (Figure 5. 2). After the tenth generation, all four hyphal tip derivatives 

showed triple compatible reactions with the parental isolate. 

5.2.3. Effect of cycloheximide on R. solani 

Cycloheximide inhibits protein synthesis by inhibiting cytosolic peptidyl 

transferase activity of the 60S ribosomal subunit (Stryer, 1988). Organellar protein 

synthesis is not inhibited (Alberts et al., 1989). A secondary effect of cycloheximide is 

inhibition of RNA synthesis, which has been reported to cure isolates of dsRNA in other 

species (Bottacin etal., 1994; Elias and Cotty, 1996). Four isolates, PAl, Papa, FT 201 

and FT 204, were therefore plated on potato dextrose agar (PDA) containing various 

concentrations of cycloheximide (Section 2.4.13). In each case ten replicates were 

incubated at 23°C for 2 weeks. For all isolates, a decrease in growth rate was observed 

with increasing cycloheximide concentration (Figure 5. 3). The morphology of colonies 

was also altered in response to cycloheximide (Figure 5. 4). 
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Figure 5. 1 Vegetative compatibility reactions of four hyphal tip subcultures (a-d), per 
generation, with their parental isolates, FT 10 and FT 204. Observations were made 
microscopically, in triplicate, on cellophane-overlaid water agar plates. 4 denotes the 

isolates used to generate successive subcultures. 

dsRNA content was examined for a selection of the above isolates from differing 

cycloheximide concentrations. Following two weeks incubation five cultures of PAl 

and two cultures of Papa were unaltered in their dsRNA content compared with their 

parental isolates (Table 5. 2). Three cultures of cycloheximide-treated FT 201 were 

examined. One was partially cured, losing two of five dsRNA segments (Table 5. 2). 

Parental isolates were re-exposed for a four week period, to determine whether greater 

curing could be attained. Ten cultures were examined, of which six had undergone 
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partial curing (Table 5. 3). Cultures generally lost the smaller dsRNA segments, i.e. 1.6, 

1.4 and 1.0 kb; however, one isolate of FT 201 lost a larger segment of size 6.5 kb. Due 

to the increased curative effect of a longer exposure time, parental isolates were 

incubated for an 8 week period on cycloheximide. Ten cultures were examined, with 

four showing partial curing (Table 5. 4). Three of these cultures lost 1.4 and 1.0 kb 

segments and one culture lost a 1.6 kb segment. One culture of strain Papa had gained 

two dsRNA segments of sizes 1.0 and 0.8 kb (Table 5. 4). Its corresponding parent 

contained only a single 12 kb dsRNA segment. This suggests that the smaller dsRNA 

elements may be formed from internal deletion events of larger dsRNA segments, in a 

similar manner to that occurring with dsRNA of C. parasitica (Shapira et al., 1991 a). 
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Figure 5. 2 Vegetative compatibility reactions of four hyphal tip subcultures (a-d), per 
generation, with their parental isolate FT 201. Observations were made microscopically, in 
triplicate, on cellophane-overlaid water agar plates. 4 denotes the isolates used to 
generate successive subcultures. 
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Figure 5. 3 Colony diameters of R. solani isolates when grown on PDA containing 0 to 400 
jig ml' cycloheximide for 15 days at 23°C. Isolates are as follows: (a) PAl (b) FT 201 (c) 
Papa and (d) FT 204. 

134 



(a) 
	

(b) 

(c) 
	

(d) 

(e) 

Figure 5. 4 Change in morphology of Rhizocionia solani strain PAl, when exposed to 
cycloheximide at the following concentrations: (a) 0 tg ml' (b) 10 jig mE' (c) 50 p.g mE' (d) 
100 p.g ml' and (e) 400 ig ml'. Plates photographed after 14 days incubation at 23°C. 
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Isolate Cycloheximide 
concentration (jtg ml- ') 

dsRNA segments (kb) 

PAl 0 12, 1.4, 1.0 

PA! -CT2a 10 As parent 

PA! -CT2b 10 As parent 

PAI-CT2c 50 As parent 

PA 1 -CT2d 400 As parent 

PAI-Me 400 As parent 

Papa 0 12 

Papa-CT2a ioo As parent 

Papa-CT2b 100 As parent 

201 0 9.5, 6.5, 1.6, 1.3, 1.0 

201-CT2a 50 Lost 6.5, 1.6 kb segments 

201-CT2b 50 As parent 

201-CT2c so As parent7-771  

Table 5. 2 Partial curing of dsRNA from Rhizoctonia solani isolates, following 2 weeks 
exposure to differing concentrations of cycloheximide. DsRNA content was determined 
using CF11 cellulose chromatography. CT2 denotes subcultures exposed to cycloheximide 
for 8 weeks, a to e indicates separate replicates of each parental isolate. 

Isolate Cycloheximide 
concentration (tg ml') 

dsRNA segments (kb) 

PAl parent 0 12, 1.4, 1.0 

PA1-CT4a 400 Lost 1.4, 1.0 kb segments 

PA 1 -CT4b 400 As parent 

PA1-CT4c 400 Lost 1.4, 1.0 kb segments 

PA 1 -CT4d 400 Lost 1.4, 1.0 kb segments 

Papa parent 0 12 

Papa-CT4a 400 As parent 

Papa-Mb 400 As parent 

201 parent 0 9.5, 6.5, 1.6, 1.3, 1.0 

201-CT4a 50 Lost 6.5, 1.6 kb segments 

201 -CT4b 50 Lost 1.6 kb segment 

201-CT4c 100 Lost 1.6 kb segment 

201 -CT4d 100 As parent 

Table 5. 3 Partial curing of dsRNA from Rhizoctonia solani isolates, following 4 weeks 
exposure to differing concentrations of cycloheximide. DsRNA content was determined 

using CF11 cellulose chromatography. CT4 denotes subcultures exposed to cycloheximide 
for 4 weeks, a to d indicates separate replicates of each parental isolate. 
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Isolate Cycloheximide 
concentration (jig mr') 

dsRNA segments (kb) 

PAl 0 12, 1.4, 1.0 

PA  -CT8a 10 Lost 1.4, 1.0 kb segments 

PA I -CT8b 10 As parent 

PA I -CT8c 50 Lost 1.4, 1.0 kb segments 

PAI-CT8d so As parent 

PAI-Me 400 As parent 

PAI-CT8f 400 Lost 1.4, 1.0 kb segments 

Papa 0 12 

Papa-Ma 400 Gained 1.0, 0.8 kb segments 

Papa-Mb 400 As parent 

201 0 9.5, 6.5, 1.6, 1.3, 1.0 

201-CT8a 50 As parent 

201-CT8b 50 Lost 1.6 kb segment 

Table 5. 4 Partial curing of dsRNA from Rhizoctonia solani isolates, following 8 weeks 
exposure to differing concentrations of cycloheximide. DsRNA content was determined 
using CF11 cellulose chromatography. CT8 denotes subcultures exposed to cycloheximide 
for 8 weeks, a to f indicates separate replicates of each parental isolate. 

5.2.4. Vegetative compatibility of isolates exposed to 
cycloheximide 

Subcultures from isolates exposed to cyclohexiniide for 2, 4 and 8 weeks were 

paired with their parental isolates and their vegetative compatibility examined on 

cellophane overlaid water agar (Section 2.4.3). Pair-wise combinations were examined 

in triplicate. Following two weeks exposure to cycloheximide, 76.7 % of the total 

reactions were vegetatively compatible reactions (Table 5. 5). Subcultures of Papa and 

FT 201, when exposed to 100 i.g m1' and 50 jig ml' cycloheximide respectively, 

showed triple compatible reactions. Subcultures of PAl exposed to 10 pg ml' 

cycloheximide displayed triple compatible reactions, whereas subcultures exposed to 

400 jtg ml showed triple incompatible reactions. Following four weeks exposure to 
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cycloheximide, the degree of vegetative compatibility had decreased sharply to 40 % of 

the total reactions (Table 5. 6). Subcultures of Papa exposed to 400 tg ml' showed 

triple incompatible reactions, as did three subcultures of PAl exposed to 400 tg ml' 

cycloheximide. Isolates of FT 201 exposed to 50 p.g ml' cycloheximide showed triple 

compatible reactions. Following eight weeks exposure to cycloheximide, only 10 % of 

total reactions were vegetatively compatible (Table 5. 7). No pair-wise combinations 

gave triple compatible reactions. Prolonged exposure to cycioneximiue inereiorc 

decreases the probability of a vegetatively compatible reaction with the respective 

parental isolate. 

Compatibility with 
parental_isolate 

Strain Cycloheximide 
concentration (tg ml')  

1 2 3 

PAl 0 C C C 

PA1-CT2a 10 C C C 

PAI-Mb 10 C C C 

PA1-Mc 50 C C I 

PA1-CT2d 400 I I I 

PAI-CT2e 400 I I I 

Papa 0 C C C 

Papa-CT2a 100 C C C 

Papa-CT2b 100 C C C 

201 0 C C C 

201-CT2a 50 C C C 

201-CT2b 50 C C C 

201-CT2c 50 C C C 

Table 5. 5 Vegetative compatibility reactions of subcultures exposed to cycloheximide for a 
two week period, when paired with their parental isolates. Vegetative compatibility 
reactions were observed microscopically, in triplicate, on cellophane overlaid water agar 
plates. C = compatible reaction and I = incompatible reaction. C'F2 denotes subcultures 
exposed to cycloheximide for 8 weeks, a to e indicates separate replicates of each parental 

isolate. 
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Compatibility with 
parental_isolate 

Strain Cycloheximide 
concentration (g mr  

1 2 3 

PAl 0 C C C 

PAI-CT4a 400 C C C 

PA1-CT4b 400 I I I 

PA1-CT4c 400  

PAI-CT4d 400 I I I 

Papa 0 C C C 

Papa-CT4a 400 I I I 

Papa-CT4b 400 I I I 

201 0 C C C 

201-CT4a 50 C C C 

201-CT4b 50 C C C 

201-CT4c 100 C C C 

201-CT4d 100 I I I 

Table 5. 6 Vegetative compatibility reactions of subcultures exposed to cycloheximide for a 
four week period, when paired with their parental isolates. Vegetative compatibility 
reactions were observed microscopically, in triplicate, on cellophane overlaid water agar 
plates. C = compatible reaction and I = incompatible reaction. CT4 denotes subcultures 
exposed to cycloheximide for 4 weeks, a to d indicates separate replicates of each parental 

isolate. 
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Compatibility with 
parental_isolate 

Strain Cycloheximide 
concentration (jig m11)  

1 2 3 

PAl 0 C C C 

PAI-CT8a 10 C I I 

PAI-CT8b 10 1 I I 

PA1-CT8c 50 1 1 I 

PAI-CT8d 50 C C I 

PAI-CT8e 400 1 1 I 

PAI-CT8f 400 I I I 

Papa 0 C C C 

Papa-CT8a 100 I I I 

Papa-CT8b 100 I I I 

201 0 C C C 

201-CT8a 50 I I I 

201-CT8b 50 1 I I 

Table 5. 7 Vegetative compatibility reactions of subcultures exposed to cycloheximide for a 
eight week period, when paired with their parental isolates. Vegetative compatibility 
reactions were observed microscopically, in triplicate, on cellophane overlaid water agar 
plates. C = compatible reaction and I = incompatible reaction. CT8 denotes subcultures 
exposed to cycloheximide for 8 weeks, a to f indicates separate replicates of each parental 

isolate. 

5.2.5. Effect of partial curing on pathogenicity 

Previous reports have linked the presence of specific dsRNA-segments to 

increased or decreased virulence of the fungal host (Castanho et al., 1978; Buck, 1986; 

Nuss and Koltin, 1990). In Section 5.2.3, isolates obtained following four weeks 

exposure to cycloheximide were partially cured of dsRNA. These isolates, plus isolates 

exposed to cycloheximide showing no change in dsRNA content, were examined for 

their pathogenicity and compared with parental isolates. Trials were completed as 

described in Section 2.4.6 using the following host plants: tomato (Lycopersion 

esculentum), radish (Raphanus sativus), carrot (Daucus carota), lettuce (Lactuca 

saliva), cress (Barbareapraecox) and onion (Allium cepa). Pathogenicity was recorded 

following 10 days incubation, on a disease index scale ranging from 0 to 5 based on the 

relative size of the necrotic area on the hypocotyl as follows: 0 = no disease; 1 = I - 10 
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%;211 3O%;331-50%;451 80% and 5 entire hypoCOtY1infected. 

Isolates with a mean infectivity between 0 and I were considered non-pathogenic. 

Examination of roots indicated that for PAl, the disease index was fairly high, 

with the mean index for the six host crops ranging from 2.5 to 3.8, and an overall mean 

of 3.4 (Table 5. 8). Analysis of variance indicated no significant differences between the 

isolates regarding disease severity. Thus, for isolate PAl, loss of the 1.4 and 1.0 kb 

segments, plus exposure to cycloheximide with no change in dsRNA content, had no 

effect on overall fungal pathogenicity. For isolate FT 201, the disease index was low, 

with the mean index for the six host crops examined ranging from 1.2 to 1.5, and an 

overall mean of 1.3 (Table 5. 8). Again, no significant differences occurred between the 

isolates regarding disease severity. Thus the 6.5 and 1.6 kb segments have no significant 

effect on overall fungal pathogenicity. 

Infection of shoots was less severe than root infection for both FT 201 and PAl 

(Table 5. 8 and Table 5. 9). Analysis of variance indicated no significant difference 

between strains regarding disease severity for both PAl and FT 201 (Table 5. 9). 

Disease  index on host crops*  

Isolate Tomato Carrot Lettuce Onion Cress Mean 

PAl 0.5±0.1 3.7±0.3 3.6±0.2 3.9±0.4 4.6±0.2 3.5 

PA1-CT4a 
R4.7±0.1 

0.7±0.2 4.5±0.2 4.1+0.2  4.1 ±0.5 4.9±0.1 3.8 

PA1-CT4b 0.2±0.1 40±0.3 3.5±0.3 4.0±0.6 5.0±0 3.6 

PAI-CT4c 0.3 ± 0.1 4.1 ± 0.3 4.2 ± 0.2 4.3 ± 0.3 4.6 ± 0.1 3.7 

PA1-CT4d 0.4±0.1 2.4±0.3 3.6±0.2 2.3±0.7 1.4±0.2 2.5 

FF201 4.5 ±0.1 1.0±0.2 0.8±0.2 1.0±0.2 0.6±0.2 0.4±0.2 1.4 

201-CT4a 4.5 ± 0.1 2.0 -±0.3 1.3 ± 0.2 0.6 ± 0.2 0.6 ± 0.4 0.3 ± 0.2 1.5 

201-CT4b 4.6±0.1 1.2±0.2 0.9±0.2 0.2±0.1 0.4±0.3 0 1.2 

201-CT4c 4.5 ± 0.1 0.8 ± 0.2 0.5 ± 0.1 1.2+0.2 0.6+0.4 0.4 ± 0.2 1.3 

201-CT4d 4.4±0.1 I 	1.0±0.2 0.8±0.2 1 	0.9±0.2 0.2±0.2  

* Means of 50 replicates 

Table 5. 8 Disease index on roots over six host crops, of isolates PA! and F1' 201 following 
4 weeks exposure to varying concentrations of cycloheximide. Disease index was recorded 
for 50 seedlings after 10 days incubation at 22°C. Disease index was recorded on a scale of 
0 to 5; 0 = no disease; 1 = 1-10 %; 2 = 11-30 %; 3 = 31-50 %; 4 = 51- 80 % and 5 = entire 
root infected. Isolates with a mean infectivity between 0 and 1 were considered non-
pathogenic. CT4 denotes subcultures exposed to cycloheximide for 4 weeks, a to d indicates 
separate replicates of each parental isolate. 
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Disease index on host crops  

Isolate Radish Tomato Carrot Lettuce Onion Cress Mean 

PAl 2.6 ± 0.2 0.5 ± 0.2 1.7 ± 0.4 2.5 ± 0.4 0 4.0 ± 0.3 1.9 

PAI-CT4a 2.5±0.3 0.2±0.1 2.2±0.4 2.4±0.4 0 4.9±0.1 2.0 

PA1-CT4b 2.1±0.3 	1 0.2±0.1 1.7±0.4 1.6±0.4 0 4.4±0.2 1.7 

PAI-CT4c 3.2 ± 0.3 0.5 ± 0.2 2.4 ± 0.5 3.3 ± 0.4 0 4.1 ± 0.3 2.3 

PA1-CT4d 1.1±0.2 0.1 ±0.1 0.6±0.3 1.1±0.3 0 0.8±0.3 0.6 

FF201 0.7±0.2 0 0 0 0 0 0.12 

201-CT4a 0.9 ± 0.3 0.1 ± 0.1 0 0 0 0.2 ± 0.1 0.2 

201-CT4b 0.6±0.2 0.1 ±0.1 0 0 0 0.2±0.1 0.1 

201 -CT4c 0.7 ± 0.2 1 	0-2±0-1 0 0 0 0.2 ± 0.1 0.2 

201-CT4d 0.6±0.2  0.1 ± 0.1 0 0 0 0 0.1 

* Means of 50 replicates 

Table 5. 9 Disease index on shoots over six host crops, of isolates PAl and FT 201 following 
4 weeks exposure to varying concentrations of cycloheximide. Disease index was recorded 
for 50 seedlings after 10 days incubation at 22°C. Disease index was recorded on a scale of 
0 to 5; 0 = no disease; 1 = 1-10 %; 2 = 11-30 %; 3 = 31-50 %; 4 = 51- 80 % and 5 = entire 
shoot infected. Isolates with a mean infectivity between 0 and 1 were considered non-
pathogenic. CT4 denotes subcultures exposed to cycloheximide for 4 weeks, a to d indicates 
separate replicates of each parental isolate. 

5.2.6. Comparison of dsRNA from R. solani and C. parasitica 

Partial curing of segments ranging in size from 1.0 to 6.5 kb from isolates FT 

201 (AG 3) and PAl (AG 4) resulted in no change in fungal virulence (Section 5.2.5). 

Further attempts to elucidate the role of dsRNA in R. solani used cDNA of CHV 1-713 

from C. parasitica in low stringency hybridization studies (Section 2.5.11). The plasmid 

pXH9, which contains the complete cDNA sequence of CHV 1-713 (12 712 bp) (Figure 

1.7c), was used as a radiolabelled probe (Section 2.5.12). Initial comparisons used 

dsRNA extracted from four isolates, FT 204 (AG 3), FT 201 (AG 3), PAl (AG 4) and 

Papa (AG 4). No hybridization was observed between R. solani dsRNA and CHV1-713 

from C. parasitica at low stringency (Figure 5. 5). Hybridization only occurred towards 

pAXHY2 and pX}19 (both constructed using sequence from CHV1-713) and dsRNA 

isolated from C. parasitica. Further isolates were examined from a broader range of 
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anastomosis groups encompassing AG 2-1, 3, 4 and 5. Again no hybridization was 

observed between C1-IV 1-713 and R. solani at low stringency (Figure 5. 6). 

12345 	6789 
- 

II 

Figure 5. 5 Low stringency hybridization (42°C) of pXH9 (cDNA of CHVI-713 extracted 
from C. parasitica) to dsRNA from Rhizoctonia solani isolates from anastomosis groups 3 
and 4. Lanes 1 to 10 contain: lane 1, A.DNA digested by Hindu!; lane 2, pXH9; lane 3, C. 
parasitica dsRNA; Jane 4, pAXHY2; lane 5, FT 204; lane 6, F1' 201; lane 7, PAl; lane 8, 
Papa; and lane 9 FT 201. The two plasmids are constructed from hypovirus CHVI-713 of 
C. parasitica. 
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I 	- 1 

Figure 5. 6 Low stringency hybridization (42°C) of pXH9 (cDNA of CHVI-713 extracted 
from C. parasitica) to dsRNA from Rhizoclonia solani isolates from anastomosis groups 2-

1, 3, 4 and 5. 



A secondary approach in determining function of dsRNA would be to sequence 

the dsRNA. Initial attempts to construct cDNA, to facilitate sequencing, were 

unsuccessful. Reactions involved constructing ssDNA from dsRNA using moloney 

murine leukemia virus (MMLV) reverse transcriptase. Second strand synthesis was 

completed using polymerase I, with any cDNA inserts formed being ligated into blunt-

ended pUCl 8 vectors. Plasmids formed were transformed into competent DL-5 

Escherichia coil cells and plated onto LB agar supplemented with ampicihin, IPTG and 

X-Gal. X-Gal/ IPTG provides a blue/ white screen for transformed colonies resistant to 

ampicillin. Colonies containing re-ligated pUC 18 were differentiated by their blue 

colour, from those containing the ligated cDNA insert which were white in colour. The 

transformation reaction was highly inefficient, with only five white colonies forming. 

These along with three of the blue colonies (re-ligated pUC 18) were examined for 

plasmid content. Plasmids were extracted using mini-preps (Section 2.5.7) and the 

resulting DNA separated using agarose gel electrophoresis. Only re-ligated pUC 18 

could be detected (Figure 5. 7), indicating that eDNA construction had been 

unsuccessful. 

1 2 3 4 5 6 7 8 9 10 11 12 13 

23.1 
9.4 
6.6 

2.3 
2.0 

Figure 5. 7 DNA isolated from Escherichia coli DL-5 colonies. Colonies were previously 
transformed with plasmids constructed from pUCI8 and cDNA inserts of dsRNA from 
Rhizoclonia solani. Lane 1 contained ?.. DNA digested with HindIH, lanes 2 to 10 contained 
DNA extracted from transformed colonies, lane 12 contained pUC18 DNA and lane 13 
contained X DNA digested with BsiI. All colonies contained pUCI8 re-ligated to itself, with 
no eDNA insert. 
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5.3. Discussion 

To compare phenotypic characteristics, and try and correlate them with the 

presence or absence of dsRNA, isolates cured of dsRNA are required. Initial attempts 

used hyphal-tip subculturing as a means of eliminating dsRNA. This technique relies on 

dsRNA not being located in the hyphal tip cells, which has been shown by electron 

microscopy to be the case in many fungal species, including R. solani (Buck, 1986; 

Varga et al., 1994). However, for some species, such as Cryphonectria parasitica, this 

is not the case and dsRNA predominates in the tip cells (Newhouse et al., 1983). 

Hyphal tip subculturing has been reported to give curing frequencies of 25 % in R. 

solani (McCabe, 1994), so this technique was employed initially. The present study 

examined dsRNA of three isolates following successive hyphal-tip subculturing. Isolate 

FT 10 contained four dsRNA segments which were unaltered following three successive 

subcultures and isolate FT 204 was unaltered in dsRNA content following ten successive 

subcultures. Isolate FT 201 lost a 1.3 kb segment following the second subculture, with 

no further alteration in dsRNA content following a further nine subcultures. Difficulty in 

curing isolates by this technique has been reported previously. Castanho and Butler 

(1978b) examined 150 hyphal tip cultures, of which only 6 grew to form healthy 

cultures, devoid of dsRNA, giving a curing frequency of 3 %. Finkler et al. (1985) 

obtained a curing frequency of 1 % for AG 4 isolates, although the isolates studied were 

not fully cured of dsRNA: isolate 53 lost all the major segments of dsRNA, whereas 

isolate 82 lost two dsRNA segments. These changes, however, were sufficient to alter 

the host phenotype from virulent to hypovirulent. Tavantzis (1994) also reported partial 

curing by hyphal tip subculture, eliminating three of four segments from the AG 3 isolate 

Rhs4 1. 

The lack of curing by hyphal tip subculture in the present study led to 

incorporation of cycloheximide in the growth medium. Cycloheximide inhibits protein 

synthesis by inhibiting cytosolic peptidyl transferase activity of the 60S ribosomal 

subunit (Stryer, 1988); however, a secondary effect of cycloheximide is inhibition of 

RNA synthesis, which has been reported to cure isolates of dsRNA in other species 

(Bottacin et al., 1994; Elias and Cotty, 1996). Following two weeks incubation on 
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cycloheximide, five isolates of PAl (AG 4) and two isolates of Papa (AG 4) were 

unaltered in their dsRNA content compared with their parental isolates. One of two 

isolates of FT 201 (AG 3) was partially cured, losing two (6.5 and 1.6 kb) of five 

segments. Isolates were re-exposed for a four week period, to determine whether 

greater curing could be attained. Ten isolates were examined, with six being partially 

cured. The isolates had generally lost the smaller dsRNA segments, i.e. 1.6, 1.4 and 1.0 

kb; however, one isolate of FT 201 lost a larger segment of size 6.5 kb. Consistent with 

this finding, Fuibright (1984) found that increasing the exposure times to four weeks 

increased the degree of curing of dsRNA in Endo(hia (= Cryphonectria) parasitica. 

Due to the increased curative effect of a longer exposure time, isolates were re-

incubated for an eight week period on cyclohexiniide. Four of ten isolates showed 

partial curing, involving the 1.6, 1.4 and 1.0 kb segments. One isolate (Papa) had 

gained two dsRNA segments of sizes 1.0 and 0.8 kb, providing evidence that internal 

deletion events might have occurred. Internal deletions of L-dsRNA elements giving 

rise to smaller dsRNA segments has previously been reported in C. parasitica (Shapira 

et al., 1991a). Additionally, Bharathan and Tavantzis (1990) provide evidence for 

internal deletions in R. solani, in that the 1.8 kb dsRNA element of Rhsl 1 cross-

hybridized to three other segments from the same isolate. 

Therefore, partial curing of R. solani seems to be readily attainable following 

cycloheximide exposure. Partial curing has been reported frequently following 

cycloheximide exposure in other species. For example, Castillo and Cifuentes (1994) 

obtained partial curing of dsRNA in the yeast Phaffia rhodozyma. The extent of curing 

is greatly affected by the concentration of cyclohexiniide used. Fulbright (1984) 

struggled to remove dsRNA segments from C. parasitica using 10 p.g mf' 

cycloheximide, whereas 20 p.g ml4  was highly effective in eliminating dsRNA. This, 

however, was not the case in the present study, as a range of cycloheximide 

concentrations (0 to 400 p.g mf) were used, and 400 p.g m1 1  inhibited growth of all 

isolates. The curing achieved in the present study was restricted to the smaller sized 

segments e.g. 1.0, 1.4, 1.6 and 6.5; the larger elements, such as the 10 to 12 kb 

segments, were unaffected. Differential curing of specific segments has previously been 

reported by Bottacin et al. (1994). Upon cycloheximide exposure, isolates of Chalara 

elegans lost the large size bands, with a small 2.8 kb band always remaining. The 
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intensity of the 2.8 kb band increased following loss of larger segments, possibly 

indicating fragmentation of the larger segments. 

Various other methods have been reported to eliminate dsRNA from fungi. 

Castanho and Butler (1978b) used a variety of techniques to cure R. solani of dsRNA, 

with varying degrees of success. Antibiotics such as streptomycin, tetracycline, 

chioramphenicol and gentamycin had no curative abilities. Elevated temperatures of 

30°C led to a 3 % curing frequency, whereas temperatures of 52°C had no curative 

effect. Acridine dyes, which can cure fungi of plasmids (Fink and Styles, 1972) gave a 

2.5 % recovery frequency (Castanho and Butler, 1978b). Similarly, use of acridine dyes 

in ZygosaccharomyceS bailli gave unsuccessful curing (Radler et al., 1993). These 

methods, generally, were not promising and were therefore not examined here. 

It is possible that the difficulties in curing R. solani of dsRNA in the present 

study may have arisen from a resident, integrated DNA copy of the dsRNA elements. 

Finider ci' al. (1985) found no evidence of similarity between the host DNA and the viral 

genome. However, subsequent studies by Tavantzis (1994) and Lakshman et al. (1998) 

indicated homology between dsRNA segments and the host genome of R. solani. In 

further support of this argument, McCabe (1994) reported isolate Papa to be cured of 

dsRNA segments. However, re-isolation of dsRNA from this isolate in the present 

study indicated the presence of a 12 kb segment, perhaps because a resident DNA copy 

was present, or alternatively poor experimental technique. The isolation procedure 

employed by McCabe (1994) frequently resulted in faint smearing at high molecular 

weight positions, which were resolved to form distinct bands when the isolation 

procedure indicated in Section 2.4.12 was employed. However, in further support of 

the possibility of a resident DNA copy, Koltin et al. (1987) re-examined the isolates of 

Castanho and Butler (1978b) which were reported dsRNA-free, and found them to 

contain dsRNA. An integrative state may have evolved, as the dsRNA may have a role 

to play in the host lifestyle. This is supported by A. Finkler (pers. comm.) who found 

that isolates cured of dsRNA were unstable upon subculture. McCabe (1994) also 

obtained similar results, with one of four cured derivatives not being maintained upon 

subculture. 

As previously mentioned in chapter 4, the presence/ absence of dsRNA can 

affect fungal virulence. Since alteration of fungal virulence may require only single 
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segments or sequences of dsRNA, the virulence of isolates exposed to cycloheximide for 

four weeks was examined. For isolate PAl, loss of the 1.4 and 1.0 kb segments had no 

effect on overall fungal pathogenicity. Similarly for isolate FT 201, loss of the 6.5 and 

1.6 kb segments had no significant effect on overall fungal pathogenicity. However, 

since these may be internal deletions of the larger dsRNA segments, the genetic 

information affecting virulence may still remain, in which case no change in virulence 

would be expected. Bharathan and Tavantzis (1990) have previously reported evidence 

for internal deletions, with low molecular weight segments cross-hybridizing to larger 

segments in the same isolate. In the present study, the loss of individual segments did 

not alter virulence; however, a recent report by Ran et al. (1997) indicates that 

individual dsRNA segments can affect virulence of R. solani. Removal of a 6.4 kb 

segment (Ml) by hyphal tip subculture resulted in a loss of virulence, whereas 

acquisition of this segment led to increased virulence. In contrast acquisition of a 3.6 kb 

segment (M2) was associated with a decline in virulence. Direct evidence linking these 

two genes to virulence, though, is required via transformation studies. Chapter 6 

outlines the development of a transformation protocol. 

In an attempt to determine the potential coding capacity of the dsRNA elements 

used in the present study, and those reported in chapter 4, hybridization studies were 

completed using pXH9 as a radiolabelled probe. No hybridization was observed at low 

stringency between any dsRNA from R. solani and pXH9, indicating that no homology 

exists between R. solani dsRNA and hypovirus CHVI-713 from C. parasitica. In 

contrast, Lakshman et al. (1998) found M2 dsRNA to be phylogenetically related to the 

RNA-dependent RNA polymerase (R1I)RP) of a mitochondrial dsRNA associated with 

hypovirulence in C. parasitica strain N13631. This relation is likely to be segment 

specific with other unrelated dsRNA elements of R. solani occurring, some of which 

may indeed show sequence homology to C14V1-713. Earlier studies by Finkler et al. 

(1985) failed to show any homology between dsRNA from Ustilago maydis and R. 

solani. 

Thus any attenuation of virulence in these R. solani isolates by dsRNA is 

mediated by a separate mechanism than that of CHV 1-713 in C. parasitica. To 

elucidate the function of these dsRNA elements, sequencing would ideally be required. 

This initially involves the construction of cDNA, which is subsequently used for 

sequencing. This was attempted as described in Section 5.2.6; however, construction 
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was unsuccessful. Very recent reports by Jian el al. (1998) and Lakshman et al. (1998) 

were successful in constructing cDNA and report the sequences of Ml and M2 dsRNA, 

respectively. 

The entire sequence of Ml consists of 6390 bp, with six proposed ORFs, as 

indicated in Figure 5. 8. Ml does not contain RDRP activity, and is consistently found 

associated with L2 dsRNA (22 kb). L2 dsRNA contains RDRP activity, so Ml is 

presumably dependent upon L2 for replicative functions (Jian, 1997). L2 shows 

sequence similarity to dsRNA from C. parasitica NB63 1, and to the two enzymatic 

domains of the penta functional AROM gene from yeast and filamentous fungi 

(Lakshman et al., 1998). Of the six ORFs of Ml, no significant homology was reported 

between ORF 1, 3, 4 or 6 and sequence databases (Jian et al., 1998). Regarding the 

remaining ORFs, ORF 5 shows sequence homology to the cytochrome c oxidase 

assembly factor (CcOAF) and ORF 2 shows homology to the broad bean mottle virus 

and other plant Bromoviruses (Jian et al., 1998). This includes six conserved helicase-

related domains, which contain the NTP binding site motif. In addition, homology exists 

between ORF 2 and the conserved regions for a zinc finger. Jian et al. (1998) propose 

that ORF 5 leads to extra CcOAF being produced, which in turn increases the amount of 

cytochrome c oxidase present, which may enhance ATP synthesis in the cell. This 

would then partly explain why the Mi-containing isolates show enhanced vigour. It is 

noteworthy that hypovirulent isolates of 0. novo-ulmi contain low levels of cytochrome 

oxidase in the mitochondria (Rogers et al., 1987). Potentially, dsRNA elements are 

similar between MI-containing R. solani isolates and 0. novo-ulmi isolates, eliciting 

opposing effects within the mitochondria upon cytochrome c oxidase. 

ORF 2 
(808-6048 bp) 

ORFI 
(9-671 bp) 

p 

4- 
ORF 6 

4 
ORF 5 

4 
ORF 4 

4 
ORF 3 

(5226-4832 bp) (3732-3301 bp) (2754-2356 bp) (1374-538 bp) 

Figure 5. 8 Diagrammatic representation of the open reading frames (ORFs) encoded by 

the MI double-stranded RNA of R. solani (Jian et aL, 1998). 
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The entire sequence of M2 consisted of 3570 bp, with one major proposed ORF 

(ORF A) and four minor ORFs (ORF I to 4), as indicated in Figure 5. 9. ORFA 

encodes 754 amino acids, with a specific stretch showing 72 % sequence identity with a 

region of hypovirulence-associated mitochondrial dsRNA from C. parasitica NB63 1 

(Lakshman et al., 1998). This is surprising, as little similarity has previously been 

observed between dsRNA viruses from either the same family or genera (Ghabrial, 

1998). In addition, the segment from 190 to 517 amino acids is phylogeneticalty related 

to two domains (3-dehydroquinase, AroD, and shikamate dehydrogenase, AroE) of the 

pentafunctional polypeptide AROM from Saccharomyces cerevisiae. AROM forms a 

mosaic of five domains which complete steps two to six of the shikimate acid pathway 

(Duncan et al., 1987). This pathway enables the formation of the aromatic amino acids 

(phenylalanine, tyrosine and tryptophan) from phosphoenol pyruvate and erythrose-4-

phosphate via shikimic acid. Lakshman et al. (1998) propose that ORF A interferes with 

specific steps of the shikimate pathway resulting in reduced levels of phenylalanine. 

Phenylalanine is phytotoxic and responsible for some of the Rhizoctonia disease 

symptoms on potato, including root necrosis, leaf curling, stunting and leaf margin 

chiorosis. Therefore, reduced levels of phenylalanine may, in part, explain the reduction 

in virulence associated with isolates harbouring the M2 dsRNA element. 

ORFI 	 ORF2 
(422-2683 bp) 	 2743-3027 

ORF5 	ORF4 	ORF3 
(3114-2863 bp) (2631-2365 hp) (2351-2052 bp) 

Figure 5. 9 Diagrammatic representation of the open reading frames (ORFs) encoded by 
the M2 double-stranded RNA of R. solani. 
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During attempted curing of isolates in the present study, the vegetative 

compatibility of derivatives was observed. Hyphal tip subculturing of isolates FT 10 and 

FT 204 resulted in a high degree of incompatibility in the subcultures, being 73 % and 

49 %, respectively. Vegetative compatibility within hyphal subcultures of FT 201 was 

more stable, with 93 % of reactions being compatible. Hyphal tip subcultures of an AG 

4 isolate yielded 8 of 78 colonies that were incompatible with the parental colony, 

whereas a second colony produced less than 1 % of incompatible daughter colonies 

(McCabe, 1994; Deacon, 1996). In the study of McCabe (1994) no daughter 

incompatible isolates were obtained for hyphal tip subcultures of AG 3 isolates. 

When using cyclohexiniide in attempts to cure strains of dsRNA, the longer the 

exposure and the greater the concentration of cyclohexiniide, led to increased 

incompatibility of the subcultures. This, however, is not unexpected as cycloheximide is 

a protein synthesis inhibitor, causing altered phenotype of the isolates. With respect to 

vegetative compatibility reactions, it may prevent translation of proteins required for 

self-recognition, as uninhibited ribosomes will be involved in translating genes essential 

for cell survival. Alternatively, the ratio of nuclei may alter to favour those containing 

genes which provide a degree of resistance to cycloheximide. Ultimately, these 

alterations in vegetative compatibility are indicative of changes in the genotype of the 

host, which may indicate that direct comparisons of isolates lacking dsRNA may not be 

strictly valid. This also impedes dsRNA transfer, which requires compatible 

anastomoSiS. 
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CHAPTER 6 

PROTOPLAST GENERATION AND TRANSFORMATION 
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6. 1. Introduction 

To study the structure and regulation of genes within R. solani, a suitable 

transformation system needs to be developed. In addition, this would enable further 

elucidation of the effects of dsRNA on the phenotype of R. solani, both by transforming 

dsRNA from R. solani and by examining whether cDNA constructed from dsRNA of C. 

parasitica is able to elicit hypovirulence in R. solani. 

A wide variety of transformation protocols exist, which use differing types of 

cells; however, osmotically-sensitive protoplasts are most frequently used. These are 

generated by degradation of the fungal cell walls, which would otherwise form a barrier 

to the uptake of macromolecules such as DNA. Protoplasts can be generated from cells 

at different stages of development, with conidiospores being preferentially used when 

available, as they generate uninucleate protoplasts. Hyphal cells can also be used for 

species which lack a conidial phase, such as Podospora anserina (Brygoo and Debuchy, 

1985), although the protoplasts generated tend to be multinucleate (Goosen et al., 

1992). In addition, basidiospores and oidia are sometimes used (Munoz-Rivas et al., 

1986; Binninger et al., 1987). The choice of cell type is usually biased by the type which 

is most readily obtained. Protoplasts can be generated from most fungi, although 

different species, and even different isolates of the same species, vary greatly in the 

conditions required for protoplast generation. Therefore, finding the optimal conditions 

for protoplast production is empirical (Peberdy, 1976). The key factors which can be 

varied to attain optimal protoplast production include lytic enzymes, osmotic stabilizer 

systems, enzyme digestion time, temperature, pH, age and concentration of fungal 

material (Fincham,, 1989; Hashiba, 1992). Unfortunately, development of protoplast 

production protocols usually relies on trial and error (Gadau, 1992; Hashiba, 1992). 

Once protoplasts are obtained, exogenous DNA may be added by transformation. 

Subsequently, suitable media must be selected to enable selection plus regeneration of 

protoplasts to the mycelial phase. 

Various techniques for transformation of filamentous fungi exist. These include 

the following (Goosen et al., 1992): (i) Fusionogenic methods whereby protoplasts are 

incubated with DNA and calcium chloride, prior to the addition of polyethylene glycol 

(PEG) as a fusionogenic medium. PEG causes the protoplasts to clump together, which 
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facilitates the trapping of DNA (Fincham, 1989). (ii) Electroporation, where strong 

electric fields are applied to protoplasts, resulting in structural rearrangements of the cell 

membrane, creating temporary pores for the uptake of DNA (Weaver, 1995). (iii) 

Physical damage, although this method is not particularly successful (Goosen et al., 

1992). A newer approach involves using biolistic transformation whereby cells are 

bombarded with microprojectiles coated with DNA (Klein et al., 1987; Johnston et al., 

1988). 

The work of this chapter outlines the development of a protoplast generation 

protocol, and subsequently describes a transformation procedure for R. solani. 

6.2. Materials and Methods 

A range of commercial lysing enzymes was used to determine which enzymes 

generated protoplasts from the mycelia of Rhizoctonia solani strain 3R8. Following 

successful protoplast production, various parameters of the protocol were altered to 

achieve optimum conditions for protoplast release. Section 6.2.1 describes the protocol 

developed for optimal production of R. solani protoplasts and Sections 6.2.1.1 to 

6.2.1.5 describe the experiments used to determine optimal conditions. 

6.2.1. Production of protoplasts from R. solani 

Rhizoctonia broth (200 ml, consisting of 5 % glucose, 5 % malt extract, 5 % 

yeast extract) was inoculated with multiple plugs of 4 to 7 day old R. solani, and 

incubated aerobically for 3 days at 23°C. Mycelia were harvested by filtration through a 

double layer of sterile muslin and subsequently washed with 100 ml of cold (4°C) 0.6 M 

MgSO4  solution. Mycelia were transferred to a 500 ml Erlenmeyer flask containing 40 

ml osmotic medium (OM) (consisting of 980 ml 1.0 M MgSO 4, 16.8 ml 0.5 M 

Na2HPO4, 3.2 ml 0.5 M NaH2PO4) and 10 ml Novozyme enzyme solution (3 mg ml -1  

OM). Flasks were incubated with shaking (80 rpm) for 2.75 hours at 30 to 33°C. 

Mycelia were removed by filtration through a double layer of sterile muslin and washed 

with 200 ml STC (1.0 M sorbitol, 10 mM tris-Cl pH 7.5, 50 mM CaC12), with the eluate 

forming a protoplast suspension. Protoplasts were sedimented by centrifugation at 4°C 
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for 10 minutes at 1 800 rpm in a MSE Mistral 4L centrifuge. Pellets were resuspended 

in I ml of STC and the number of protoplasts determined using a Neubaeur counting 

chamber. For protoplast regeneration, aliquots were added to 6 ml of cooled 

regeneration medium (Rhizoctonia broth containing 2 % Oxoid agar no. 3, plus 1.0 M 

mannitol as an osmoticum) containing 240 p1 of antibiotics (50 mg streptomycin 

sulphate, 50 mg chioramphenicol, 50 mg penicillin, 50 mg bacitracin dissolved in 20 ml 

48 % (v/v) ethanol). The cooled mixture was subsequently mixed and poured into 75 

mm diameter Petri dishes and incubated at 27°C for 4 to 7 days to enable protoplast 

regeneration. 

6.2.1.1. Lysing enzymes 

Commercial lysing enzymes were used as indicated in Table 6. 1, to determine 

which, if any, led to the release of protoplasts from R. solani 3R8. Combinations of 

enzymes were also examined as indicated in Table 6. 2. 

Mycelia were standardly produced (Section 6.2.1) following 45 hours aerobic 

incubation at 23°C, harvested by filtration and washed with 0.6 M MgSO4 solution. 

Mycelia were added to flasks containing 40 ml OM, 10 ml enzyme solution (as indicated 

in Table 6. 1 and Table 6. 2), plus 1.2 mg m1' BSA (bovine serum albumin). Enzyme 

incubation was for 3 hours at 30 to 33°C, following which protoplasts were harvested 

and counted as indicated in Section 6.2.1. 

The dry weight of mycelial inoculum was determined after oven-drying the 

inoculum in pre-weighed tins at 80°C for 2 days. 

6.2.1.2. Optimal concentration of osmotic stabilizer 

To determine the optimal concentration of osmotic stabilizers, the osmotic 

solutions OM and STC were adjusted using MgSO4 and sorbitol, respectively, to 

concentrations of 0.4, 0.6, 0.8, 1.0 or 1.2 M. Protoplasts were prepared as described in 

section 6.2.1.1. 
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Enzyme Concentration Source Organism pplier 

(mg _ml') 

;Miles Cellulase 5 Trichoderma viride  Kali-Chemie, Hannover, 

_____
ermany  

Cellulase C 5 ? Rohm enzyme, Philadelphia, 
USA 

Cellulase "onozuka" 5 
_______ 

Trichoderma viride Yakult Pharmaceutical Ind. 
Co. Ltd., Tokyo, Japan 

Driselase 5 Basidiomycetes Sigma Chemical Co., St. 
Louis, USA 

Finizym 2004 5 	tl ml-' ? Novo Industries AS, 
Copenhagen, Denmark 

Glucanase GV-L 5 il ml' Grindsted Products AS, 
Denmark 

3-Glucuronidase 5 Helix pomatia Miles Laboratories (PTY) Ltd., 
South Africa 

Hemicellulase 5 Aspergillus niger Miles Kali-Chemie, Hannover, 
Germany 

Lysing enzymes 5 Rhizoctonia solani Sigma Chemical Co., St. 
Louis, USA 

Lysing enzymes 5 Trichoderma Sigma Chemical Co., St. 
harzianum Louis, USA 

Maxazym CL 5 ? 
Gist-Brocades nv, Industrial 
Products, Delif, Holland 

Novozyme 234 5 Trichoderma Interspex Products Inc., 
harzianum California 

Pectinase 0.056 Aspergillus niger Sigma Chemical Co., St. 
Louis, USA 

Rhozym HP 150 5 ? Rohm & Haas Co., 
Philadelphia, USA 

Table 6. 1 Commercial lysing enzymes tested for ability to produce protoplasts from 

Rhizoctonia solani strain 3118. 
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Enzymes used (mg ml') ______________________ Sample no. 
2 	__ 3 

1 Cellulase 1.67 Hemicellulase 1.67 Maxazym 1.67 

2 Cellulase 1.67 Hemicellulase 1.67 Novozynie 1.67 

3 Cellulase 2.50 Hemicellulase 2.50  

4 Novozyme 2.50 Maxazym 2.50  

5 Maxazym 2.50 Cellulase 2.50  

6 Maxazym 2.50 - Hemicellulase 2.50  

7 Rhozym 2.50 Cellulase 2.50  

8 Pectin esterase 2.50 Hemicellulase 2.50  

9 Maxazym 2.50 Pectinase 2.50  

10 Novozyme 2.50 Cellulase 2.50  

Table 6. 2 Combinations of lysing enzymes tested to determine optimal release of 

protoplasts from Rhizoctonia solani strain 3118. 

6.2.1.3. Optimal period of enzyme digestion 

To determine the time course of protoplast release, enzyme digestion was 

terminated following 0, 1, 1.5, 2, 2.5, 3, 3.5, 4 or 5 hours incubation at 30 to 33°C. 

Protoplasts were prepared as described in Section 6.2.1.1, either with or without the 

incorporation of BSA. 

6.2.1.4. Optimal mycelial age 

To determine the optimal mycelial age for protoplast release, mycelia was 

incubated at 23 °C in Rhizoctonia broth for varying time periods between 0 and 86.5 

hours. Mycelia was harvested and protoplasts were subsequently prepared as indicated 

in Section 6.2.1. 

6.2.1.5. Regeneration of protoplasts 

Protoplasts prepared as described in section 6.2.1 were placed in 6 ml of cooled 

Rhizoctonia broth either with or without 2 % Oxoid no. 3 agar. Liquid media contained 

either mannitol or sucrose as an osmotic stabilizer at concentrations of 0.6, 0.8, 1.0 or 

1.2 M. Solid media contained sorbitol, mannitol, sucrose, or NaCl as an osmotic 

stabilizer at the concentrations noted above. Antibiotics were also incorporated as 
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described in Section 6.2.1. Aliquots were mixed and poured into 75 mm diameter Petri 

dishes and incubated at 27°C for 2 to 4 days to enable protoplast regeneration. 

6.2.1.6. Protoplast sensitivity to fungicides 

Protoplasts were prepared as described in section 6.2.1 and 100 000 protoplasts 

were plated onto selective regeneration media which consisted of an underlay agar 

(Rhizoctonia broth containing 2 % agar and 0 to 750 pg ml' hygromycin B) and an 

overlay agar (Rhizoctonia broth containing 2 % agar, antibiotics (described in section 

6.2.1), and 1.0 M mannitol). Alternatively, protoplasts were plated onto a nitrogen-free 

underlay/ overlay agar system. Overlay agar (250 ml) consisted of 0.05 % glucose, 0.05 

% fructose, 2 % sorbose, 5 ml 50 X Vogels salt solution, 0.5 % proline and 1.0 M 

mannitol. Underlay agar contained the above, with 1.0 M mannitol being substituted 

with 0 to 750 tg ml' ignite. In both cases, protoplasts were added to the cooled 

overlay agar and incubated for 4 days, before colonies were counted. 

6.2.2. Transformation of protoplasts 

Protoplasts (approximately 5 x 106  in 100 .t1) were prepared as described in 

Section 6.2.1, mixed with 20 j.il of piasmid DNA suspended in dH20 and 1 j.il of 1 M 

aurintricarboxylic acid (a DNase inhibitor), and incubated on ice for 25 minutes. 

Subsequently 250 .tl of 60 % (w!v) polyethylene glycol (PEG) was added and the 

contents mixed gently. This step was repeated and followed by an addition of 850 j.tl of 

60 % PEG which was again mixed gently. Following 20 minutes incubation at 10°C, 12 

ml of STC was added. Transformed protoplasts were sedimented by centrifugation at 

4°C for 10 minutes at 1 800 rpm in a MSE Mistral 4L centrifuge. Protoplasts were 

resuspended in 200 j.il STC, and plated on selective regeneration agar consisting of an 

underlay agar (Rhizoctonia broth containing 2 % agar and 50 ig ml' hygromycin B) 

and an overlay agar (Rhizoctonia broth containing 2 % agar, 1.0 M marmitol plus 

antibiotics, as described in Section 6.2.1). Plates were incubated at 27°C for 3 days and 

regenerated transformed protoplasts transferred to potato dextrose agar (PDA) plates 

containing 75 p.g ml' hygromycin B. 
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6.3. Results 

6.3.1. Effect of different lysing enzymes 

The ability of several lysing enzymes to release protoplasts from Rhizoctonia 

solani strain 3R8 was examined following a 3 hour enzyme incubation period (Section 

6.2.1.1). Using single enzyme preparations, only Novozyme 234 and Lysing enzymes 

(from Trichoderma harzianum) released protoplasts, yielding 202 ± 10.6 and 15.6 ± 2.4 

X 104  protoplasts per ml respectively (Table 6. 3). Rhozym BPI 50, Pectinase, Finizym 

2004, Glucanase GV-L, -g1ucuronidase, cellulase C, Maxazym CL, Cellulase (from T. 

viride), lysing enzymes (from R. solani), Driselase, Hemicellulase and cellulase 

"onozuka" were all inactive. Increasing enzyme concentration from 1 mg m1' to 4 mg 

m1' for the enzymes Maxazym CL, Cellulase (from T. viride) and cellulase "onozuka" 

yielded no protoplast release (Table 6. 4). Alteration of the enzyme incubation period 

from 3 hours to 2 or 4 hours incubation for both Maxazym and cellulase "onozuka" 

resulted in no protoplast release (Table 6. 5). 

Enzyme preparation Concentration 
(mg ml') 

Number of protoplasts (x 
104  per ml.) 

Cellulase (I viride) 1 0 

CellulaseC 1 0 

Cellulase "onozuka" 1 0 

Driselase 1 0 

Finizym 2004 1 iI m1 0 

Glucanase GV-L I 	iI mI 0 

-G1ucuronidase 1 0 

Hemicellulase 1 0 

Lysing enzymes (R. solani) 1 0 

Lysing enzymes (T. harzianum) 1 15.6 ± 2.4 

Maxazym CL 1 0 

Novozyrne 234 1 202 ± 10.6 

Pectinase 1.1 x 10-2 0 

RhozymHPlSO 1 0 

Table 6. 3 Number of protopLasts produced (x 10 4  per ml) following 3 hours incubation of 

Rhizoctonia solani 3118 mycelia with differing enzymes. Data presented as means of 4 

replicates ± SEM. 
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Enzyme preparation 
(No. of protoplasts produced per ml enzyme solution) 

Concentration (mg mil Cellulase "onozuka" Cellulase (T. viride) Maxazym CL 

1 1 	0 0 0 

4 0 0 0 

Table 6. 4 Number of protoplasts produced (x 10 4  per ml) following 3 hours incubation of 

Rhizoctonia solani 3R8 mycelia with differing enzymes at low (1 mg nit') and high (4 mg 
ml') enzyme concentrations. Data presented as means of 4 replicates ± SEM. 

Enzyme preparation 
(No. of protoplasts produced per ml enzyme 

solution) 

Enzyme incubation 
time (hours) 

CeUulase "onozuka" Maxazym CL 

2 0 0 

3 0 0 

4 0 0 

Table 6. 5 Number of protoplasts produced (x 10 per ml) following 24 hours incubation of 
Rhizoctonia solani 3R8 mycelia with cellulase "onozuka" and Maxazym CL at 1 mg n1 1 . 

Data presented as means of 4 replicates ± SEM. 

6.3.2. Effect of combinations of lysing enzymes 

The effectiveness of various combinations of lysing enzymes to release 

protoplasts was examined (Section 6.2.1.1). The enzyme mixture of Novozym 234 and 

Maxazym CL (Sample no.4) produced 4.7 ± 1.6 x 10 4  protoplasts per ml (Table 6. 6). 

This yield was lower than that for Novozyme 234 alone, which produced 202 ± 10.6 x 

iø protoplasts per ml (Table 6. 3). Each of nine further enzyme combinations produced 

no protoplasts. Due to a high yield of protoplasts, Novozyme 234 alone was selected 

for further study. 
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Sample Enzyme p reparation* Number of protoplasts (x 
to_per_ml.) 

1 2 3 

Cellulase Hemicellulase Maxazym CL 0 

2 Cellulase Hemicellulase Novozyme 234 0 

3 Cellulase Hemicellulase  0 

4 Novozyme 234 Maxazym CL  4.68 ± 1.6 

5 Maxazym CL Cellulase  0 

6 Maxazyrn CL Hem icellulase  0 

7 Rhozym HP 150 Cellulase  0 

8 Pectin esterase Hemicellulase 0 

9 Maxazym CL Pectinase  0 

10 Novozyme 234 Cellulase  0 

* At a total concentration of 1 mg ml' evenly divided between enzyme types. 

Table 6. 6 Number of protoplasts produced (x 10 4  per ml) following 3 hours incubation of 

Rhizoclonia solani 3R8 mycelia with combinations of enzymes, at a total concentration of 1 
mg ml'. Data presented as means of 4 replicates ± SEM. 

6.3.3. Effect of different osmotic concentrations 

The concentration of osmotic stabilizers was varied from 0.4 to 1.2 M to 

determine the concentration for optimal protoplast production using Novozyme 234 

(Section 6.2.1.2). Concentrations of 0.4 to 0.6 M resulted in no protoplast production 

by Novozyme 234 (Table 6. 7), whereas concentrations of 0.8 to 1.2 M yielded 

protoplasts. 1.0 M solutions were the most effective yielding 54.7 ± 2.8 x 104  

protoplasts per ml, compared with 2.0 ± 0.7 and 7.75 ± 1.1 x 104  protoplasts per ml for 

0.8 and 1.2 M solutions respectively. 

Osmotic stabilizer 
concentration (M) 

Protoplast yield (x 104 per 
ml.) 

0.4 0 

0.6 0 

0.8 2.00 ± 0.7 

1.0 54.7±2.8 

1.2 7.75±1.1 	I 

Table 6. 7 Protoplasts produced (x 10 4  per ml) following 3 hours incubation of Rhizoctonia 

solani 31R8 mycelia with Novozyme 234 using MgSO4 as an osmotic stabilizer, at 
concentrations ranging from 0.4 to 1.2 M. Data presented as means of 4 replicates ± SEM. 
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6.3.4. Effect of enzyme incubation time 

The number of protoplasts produced was examined during a 5 hour enzyme 

(Novozyme 234) incubation period, to determine when the maximum yield occurred 

(Section 6.2.1.3). Protoplast yield gradually increased during the first 2.5 hours of 

enzyme incubation, reaching a peak of approximately 40 x 104 protoplasts per g dry 

weight at 2.5 to 3 hours incubation (Figure 6. 1). Between 3 to 3.5 hours, protoplast 

numbers rapidly declined from 41.0 ± 1.7 to 2.4 ± 0.4 x 10 4  protoplasts per g dry 

weight. Between 3.5 and 5 hours, protoplast yield remained low, fluctuating between 

2.4 ± 0.4 and 6.9 ± 0.6 x iO4  protoplasts per g dry weight. 

6.3.5. Effect of BSA on protoplast production 

BSA (Bovine serum albumin) was incorporated during enzyme incubation at a 

concentration of I mg mf', as it is reported to stabilize protoplasts upon formation 

(Solis et al., 1996). Protoplast yield was examined over a 5 hour Novozyme 234 

incubation period (Section 6.2.1.3). Protoplast production was similar both in the 

presence and absence of BSA, with peak yield occurring at 2.5 to 3 hours incubation 

(Figure 6. 1). Following maximal yield of protoplasts, the presence of BSA had no 

stabilizing effect, with protoplast numbers declining rapidly, between 2.5 and 3.5 hours, 

from 49.9 ± 2.8 to 1.8 ± 0.9 protoplasts per g dry weight. Between 3.5 and 5 hours, 

protoplast yield remained low, irrespective of whether BSA was incorporated. BSA 

was therefore not included in the final protocol. 

6.3.6. Effect of mycelial age on protoplast yield 

Mycelia were harvested at differing ages between 0 and 86.5 hours to determine 

the age for optimal protoplast production using Novozyme 234 (Section 6.2.1.4). 

Mycelial age greatly affected protoplast yield (Figure 6. 2). Mycelia less than 38 hours 

old produced negligible levels of protoplasts with the yield gradually rising from 0 to 6.1 

± 0.6 protoplasts per g dry weight. Protoplast yield rapidly increased with mycelia older 

than 38 hours, to reach a peak at 63.5 hours with 120.1 ± 8.2 protoplasts produced per 
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Figure 6. 1 Time course of protoplast release from Rhizoctonia solani strain 3118 following 

incubation with Novozyme 234 (0.6 mg ml'), both in the presence and absence of BSA 

(bovine serum albumin). 
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Figure 6. 2 The effect of mycelial age on protoplast yield (x10 4  per g dry weight) from 

Rhizoclonia solani strain 3118, following 3 hours incubation with Novozyme 234 (0.6 mg ml 
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g dry weight. Following this, protoplast yield remained high, with only a slight decrease 

to 92.6 ± 7.8 protoplasts produced per g dry weight, with mycelia 86.5 hours old. 

6.3.7. Regeneration of protoplasts 

To determine the optimal conditions for protoplast regeneration, protoplasts 

were mixed with the following osmotic stabilizers mannitol, sorbitol, sucrose or sodium 

chloride at concentrations of 0.6 to 1.2 M. Osmotic stabilizers were incorporated in 

Rhizoctonia broth, either with or without 2 % Oxoid no. 3 agar (Section 6.2.1.5). 

6.3.7.1. Protoplast regeneration in liquid media 

In liquid media, sucrose and mannitol at concentrations of 0.6, 0.8 and 1.0 M 

were examined for protoplast regeneration. In both cases, at all concentrations, 

protoplast regeneration was highly inefficient following 4 days incubation at 27°C. 

Protoplasts incubated in sucrose at 0.6, 0.8 and 1.0 M showed 0 % regeneration. Upon 

microscopic examination very few protoplasts remained, with those present displaying a 

"sickly" phenotype characterized by cell contents which had shrunk away from the cell 

membrane (Figure 6. 3). Protoplasts incubated in 0.6 and 0.8 M mannitol did not 

survive the first 24 hours incubation. Incubation in 1.0 M mannitol resulted in 5 % 

regeneration following 4 days incubation at 27°C. Microscopic examination indicated 

that protoplasts unable to regenerate were highly vacuolated (Figure 6. 4a), whereas 

regenerated protoplasts had a healthy phenotype (Figure 6. 4b). 

6.3.7.2. Protoplast regeneration on solid media 

On agar, the osmotic stabilizers sodium chloride, mannitol and sorbitol at 

concentrations of 0.6, 0.8, 1.0 and 1.2 M were used for protoplast regeneration. 

Protoplast regeneration frequencies were highly variable depending on the osmotic 

stabilizer and concentration used (Figure 6. 5). Using sodium chloride, protoplast 

regeneration was not observed at any of the four concentrations examined after 4 days 
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Figure 6. 3 Microscopical (x 250) appearance of Rhizoclonia solani 3118 protoplasts. (a) A 
"sickly" protoplast following incubation for 4 days in 1.0 M sucrose regeneration broth and 
(b) healthy protoplasts suspended in 1.0 M osmotic stabilizer (STC). 

(a) 	 (b) 

Figure 6. 4 Microscopical (x 250) appearance of Rhizoctonia solani 3R8 protoplasts, 
following 4 days incubation in 1.0 M mannitol regeneration broth. (a) Highly vacuolated 
protoptasts unable to undergo regeneration and (b) re-generated protoplast with no 
vacuoles visible. 

incubation (Figure 6. 5a). On sucrose agar, protoplast regeneration was poor (Figure 6. 

Sb), with a maximum regeneration frequency of 12.7 ± 0.7 % after 4 days incubation in 

1.2 M sucrose regeneration agar. For sorbitol regeneration agar, maximum regeneration 

frequency of 75.3 ± 2.4 % was observed using 0.6 M sorbitol after 4 days incubation 

(Figure 6. Sc). This frequency gradually decreased to 15.3 ± 4.4 % regeneration as the 

concentration of sorbitol was increased to 1.2 M. Using mannitol as an osmotic 

stabilizer, maximum regeneration frequencies occurred at 0.8 and 1.0 M showing 87.3 ± 

3.9 % and 83.3 ± 4.8 % regeneration respectively (Figure 6. 5d). At 0.6 and 1.2 M, 
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regeneration was less efficient showing 38.3 ± 1.7 and 46.7 ± 3.0 % regeneration 

respectively. 

Mannitol regeneration agar at a concentration of 1.0 M was selected for further 

studies. 
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Figure 6. 5 Protoplast regeneration frequencies, following 2-4 days incubation at 27°C on 
Rhizoclonia broth agar containing 0.6, 0.8, 1.0 or 1.2 M concentrations of (a) sodium 
chloride (b) sucrose (c) sorbitol or (d) mannitoi Red, green and blue Lines indicate % 
regeneration after 48, 72, 96 hours respectively. 

6.3.8. Protoplast sensitivity to fungicides 

To select for protoplast transformants, a suitable selective medium is required, 

upon which untransformed protoplasts do not survive. Transformed protoplasts survive 

due to a selectable marker, often drug resistance, encoded by the transformed plasmid. 
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R. solani 3R8 protoplasts were therefore screened for their sensitivity towards Ignite 

(Hoechst-Roussel Agri-Vet Company, Somerville, New Jersey, USA) and Hygromycin 

B at varying concentrations (Section 6.2.1.6). Ignite acts as an inhibitor of glutamine 

synthetase (Pall and Bruneffi, 1993), whereas hygromycin B inhibits protein synthesis by 

causing mistranslation (Gonzalez, 1978) and by interfering with protein translocation 

(Singh, 1979). Resistance to hygromycin B is encoded by the bacterial hygromycin B 

phosphotransferase gene hygBR (Punt et al., 1987) whereas the bar gene of 

Streptomyces hygroscopicus encodes resistance to Ignite (Avalos et al., 1989). 

R. solani 3R8 protoplasts showed a high level of natural resistance to Ignite, 

requiring a concentration greater than 750 pg m1 for 100 % death (Table 6. 8). At 

lower concentrations, i.e. 50 to 250 p.g m1', the number of colonies formed ranged from 

234 to 419 per plate. Ignite would therefore not form a suitable selection strategy for R. 

solani 3R8 protoplasts. 

Incorporation of hygromycin B into protoplast regeneration media (Section 

6.2.1.6) was highly effective in preventing protoplast regeneration (Table 6. 9). At low 

concentration (50 j.tg mr'), only 4 protoplasts successfully formed colonies following 6 

days incubation. Increasing the concentration to 100 tg m1 1  or greater resulted in 100 

% suppression of protoplast regeneration Thus hygromycin B forms a highly effective 

selection strategy for R. solani 3R8 transformants. 

Ignite concentration 
(pg ml') 

Colonies formed following 6 
days incubation at 27°C 

0 >1000 
50 419 
200 234 
250 293 
500 29 

I 	750 10 

Table 6. 8 Effect of Ignite, at varying concentrations, on the ability of protoplasts to 
regenerate into colonies. 100 000 protoplasts were inoculated per plate and incubated at 

27°C for 6 days. 
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Hygromycin B 
concentration 

(jtg mr) 

Colonies formed 
following 6 days 

incubation 

0 >1000 

50 4 

100 0 
150 0 
250 0 

Table 6. 9 Effect of Hygromycin B, at varying concentrations, on the ability of protoplasts 
to reform colonies. 100 000 protoplasts were inoculated per plate and incubated at 27°C 
for 6 days. 

6.3.9. Transformation of R. solani protoplasts with pES200 

Protoplasts were produced from R. solani isolate 3R8 as described in Section 

6.2.1. These with plasmid pES200 (Figure 6. 6) were used to develop the PEG-based 

transformation procedure described in Section 6.2.2. This plasmid contains the bacterial 

hygromycin B phosphotransferase gene driven by a trpC promoter from Aspergillus 

nidulans (Staben et al., 1993). This enables positive selection of transformants, as R. 

solani 3R8 is sensitive to low concentrations of hygromycin B (Section 6.2.1.6). In 

initial studies the DNase inhibitor, aurintricarboxylic acid (ATA), was not incorporated 

in the first 25 minutes incubation period and transformants were not obtained. 

Examination of plasmid concentration after 0, 10 and 20 minutes incubation at 4°C 

indicated an approximate 55 % reduction in plasmid concentration every 10 minutes 

(Table 6. 10). This led to incorporation of ATA, in addition to a ten fold increase in the 

quantity of plasmid used. Transformed protoplasts were subsequently obtained. 

Successful transformation occurred when the second incubation period was 10 to 12 °C, 

whereas temperatures in excess of 15°C prevented successful transformation. 
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Figure 6. 6 Structure of pES200, containing the bacterial hygromycin resistance gene 
(hygBr) downstream from the Aspergilus nidulans trpC start codon, denoted PtrpC. 
pBR322 formed the vector sequence, which is indicated by the circle. Unique cloning sites 
are indicated in blue. 

Time of incubation 
(min at 4°C) 

Quantity of pES200 present 
(ng) 

0 723 
10 419 
20 238 

Table 6. 10 Reduction in quantity of vector (pES200) during transformation of R. solani 

3118. Reduction occurred during the initial 25 minute incubation period at 4°C, prior to 

uptake of pES200. 

Transformed protoplasts were initially plated onto selective regeneration agar 

containing 100 jig ml-1  hygromycin. This enabled germination of transformants, but 

death of the cells rapidly ensued. Colonies grew, branched several times, but never 

exceeded overall diameters of 1 to 2 mm. Microscopic examination indicated that tip 

cells of the hyphae primarily died and this was followed by death of the whole colony 

(Figure 6. 7). Subsequent experiments decreased the hygromycin B concentration on 
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Figure 6. 7 Germinated protoplast colony on agar containing 100 tg mE' hygromycin B. 
Growth was slow reaching about I to 2 mm diameter after 14 days incubation, following 
which tip cells died first, as indicated by the arrows, rapidly followed by the rest of the 
colony. 
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Figure 6. 8 Appearance of hyphae after 14 days incubation at 27°C on agar containing (a) 

100 p.g nit' and (b) 50 tg mE '  hygromycin B. Colonies on 100 ,tg ml- ' reached a maximum 
growth of 1 to 2 mm diameter, following which death occurred. Colonies on 50 .tg ml' 
grew to form colonies reaching approximately 20 mm diameter over 14 days incubation. 
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selection plates from 100 to 50 ptg mt'. Protoplasts germinated readily, and hyphal 

structure was healthy in comparison to that on 100 jig mY' (Figure 6. 8). No 

germination of untransformed protoplasts was observed on 50 p.g hygromycin m1'. 

Colonies were fairly slow growing reaching a diameter of approximately 20 mm 

following 14 days incubation at 27°C. Later growth was even slower, with the colonies 

formed having a stressed phenotype, with an abundance of vertical aerial mycelium. 

6.3.10. Confirmation of pES200 transformation 

To confirm that protoplast-derived colonies had been successfully transformed, 

southern blots were performed (Section 2.5.11). Total DNA was harvested from 

mycelia by grinding mycelia-coated agar with liquid nitrogen, followed by 

homogenization as described in Section 2.4.12. Cell debris was removed by 

centrifugation, and the resulting supernatant was phenol-extracted three times and 

ethanol precipitated overnight at 4°C. Centrifuged nucleic acid pellets were 

resuspended in small volumes of dH 20, and separated by agarose gel electrophoresis 

(Section 2.5.3). Untransformed 3R8 nucleic acid was included as a control. 

At high stringency hybridization (60 1C), using pES200 as a radiolabelled probe 

(Section 2.5.12), hybridization occurred to nucleic acid from transformed 3R8 colonies, 

but not from untransformed colonies (Figure 6. 9). Nucleic acid hybridization occurred 

towards non-integrated plasmid corresponding in molecular migration to circular 

pES200 (approximately 12 kb). 

6.3.11. Transformation of R. solani protoplasts with pAXHY2 

Transformation was completed as described in Section 6.2.2. This yielded 

transformed protoplasts, which grew more rapidly than pES200 transformants. Again 

growth ceased following approximately 21 days incubation at 27°C. Overall diameter 

obtained was 55 to 65 mm, compared with 25 to 35 mm diameter for pES200 

transformants. Southern blots confirmed the presence of non-integrated pA)(HY2. 

Following prolonged incubation for 8 to 10 weeks no sectoring of the colonies occurred. 
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Figure 6. 9 Hybridization at 60°C of pES200 to total nucleic acid of (a) untransformed 3118 
and (b) 3118 transformed with pES200. in (a) lane 1 contains X DNA digested with 
Hindu, lanes 2 and 4 contain pES200, lanes 3 and 5 contain total nucleic acid extracted 
from untransformed 3118. In (b) lane 1 contains X DNA digested with HindIll, lanes 2 to 6 
contain total DNA extracted from transformed 3118, lane 7 contains pES200 and lane 8 
contains untransformed 3118. 

6.4. Discussion 

Protoplasts have been obtained from all the major taxonomic groups of fungi, 

with their production being highly variable depending on the species, and even the 

isolate, from which they are generated. The optimum conditions require to be 

determined empirically for each fungus, with several variable parameters being 

optimized prior to protoplast formation. These include: temperature, enzyme(s), 

osmotic stabilizer and concentration, p1-I, age of mycelia and enzyme incubation period. 

The range of commercial enzymes currently available for protoplast generation includes: 

helicase, -glucuronidase, glusulase, cellulases, streptozyme, driselase, chitinase, 

chitosanase, zymolase, Novozyme 234, snail (Helix pomalia) digestive juices and 

Rhozym HPI50 (Goosen el al., 1992; Hashiba, 1992). Rhozym HPI50 is more 

commonly used for plant, rather than fungal, protoplast production (Davey, 1983). 
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However in fungi with a mucilage layer such as Pseudocercosporella herpotrichoides 

(Fron) Deighton, Rhozym HPI 50 enhances protoplast production by degrading the 

mucilage, allowing greater access to the cell wall (Riess, 1971; Hocart et al., 1987). 

Various preparations of cellulases exist, such as cellulase "Onozuka" R-10 which 

effectively releases protoplasts from Coprinus cinereus (Akamatsu et al., 1983), and 

cellulase CP, which in combination with Novozyrn 234 releases protoplasts from 

Gaeumannomyces graminis (Stanway and Buck, 1984) and Fusarium oxysporum 

(Marriott et al., 1984). H. pomatia digestive juices were commonly used in the past 

(Gull et al., 1972; Fawcett et al., 1973; Ferenczy et al., 1974), whereas Novozyme 234 

is currently the most widely used preparation (Goosen et al., 1992). Novozyme 234 

contains a mixture of hydrolytic enzymes from Trichoderma harzianum, which includes 

endo 0-1,4-glucanase, cellobiose, 31,3-glucanase, protease, a-mannanase, a-

mannosidase and chitinase (Kolar et al., 1985). 

The lytic enzymes cellulase (from Trichoderma viride), cellulase C, cellulase 

"Onozuka", driselase, Finizym 2004, glucanase GV-L, -glucuronidase, hemicellulase, 

lysing enzymes (from R. solani), Sigma lysing enzymes (from T harzianum), Maxazym 

CL, Novozyme 234, pectinase (from Aspergillus niger) and Rhozym UP 150 were 

examined in the present study to determine which could release protoplasts from R. 

solani isolate 3R8. Only Novozyme 234 and Sigma lytic enzymes (from T. harzianum) 

produced protoplasts, following a 3 hour enzyme incubation period, with yields of 2.0 x 

106  and 1.6 x 105  per ml, respectively. Since Novozyme 234 is a preparation based on 

lytic enzymes from T harzianum (Kolar et al., 1985), it is likely to contain similar 

components to the Sigma lytic enzymes. Protoplast production by Novozyme 234 from 

R. solani has previously been reported by Yang et al. (1993b) in 1.0 M NaCl buffered at 

pH 5.7 with 0.1 M KHC814404-NaOH. Thus, Novozyme 234 is effective at generating 

protoplasts from R. solani in a variety of osmotic stabilizers and buffers. The lack of 

protoplast production by T. viride enzyme preparations has been observed previously by 

de Vries and Wessels (1973). de.Vries and Wessels (1973) used a T. viride enzyme 

preparation which released protoplasts from all species of basidiomycetes examined, 

with the exception of R. solani. Hashiba and Yamada (1982) reported protoplast 

production in R. solani isolate 0-0 using cellulase "Onozuka" R-10, Driselase or (3-

glucuronidase. No protoplasts were obtained in the present study with any of these 
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three enzyme preparations. Hashiba and Yamada (1982), however, used an osmotic 

stabilizer of 0.6 M mannitol at pH 5.2, which may be a more optimal system for these 

three enzymes. In addition, enzyme batches have highly variable effects and their ability 

to produce protoplasts varies between isolates (Wang et al., 1988; Fincham, 1989). For 

example, protoplast yield was good using Driselase for three isolates of Trichoderma 

reesei but for a fourth isolate a low protoplast yield was obtained (Kumari and Panda, 

1992). Additionally, variations in protoplast yields of 100 fold have been reported for 

differing batches of glusalase (Kinnaird el al., 1982; Kinsey and Rambosek, 1984). 

Combinations of enzymes were also examined, as they may act synergistically to 

enhance cell wall degradation, and thus increase protoplast yield. This has been 

reported in a wide range of species (e.g. Tilbum et al., 1983; Stasz et al., 1988; Solis et 

al., 1996). In this study, ten combinations were examined, with the only combination 

yielding protoplasts being Novozyme 234 with Maxazym CL. This yield was 

significantly lower than that of Novozyme 234 alone, being 4.7 x 10 protoplasts per ml, 

compared with 2.0 x 10 6  protoplasts per ml for Novozyme 234 alone. Additionally, 

Novozyme 234 combined with cellulase and Novozyme 234 combined with cellulase and 

hemicellulase yielded no protoplasts. Thus the cellulase used in this study appears to be 

inhibiting the action of Novozyme 234. These results indicate that R. solani is highly 

resistant to cell wall degradation, despite attempted digestion by a diverse array of 

enzymes. This is unusual, with several fungi releasing protoplasts much more readily. 

For example, Fusarium graminearum releases protoplasts in the presence of Driselase 

(from Basidiomycetes), Glucanex (from Trichoderma sp.), Sigma lytic enzymes (from R. 

solani), Novozyme 234, -glucurothdase (from H. pomatia) or ICN yeast lytic enzymes 

(from Arthrobacter luteus) (Wiebe et al., 1997). 

As previously mentioned, Novozyme 234 contains a mixture of hydrolytic 

enzymes from T. harzianum, including endo -1,4-glucanase, cellobiose, -1,3-

glucanase, protease, a-mannanase, a-mannosidase and chitinases (Kolar et al., 1985). 

T harzianum is a mycoparasite of R. solani and is an effective biocontrol agent. 

Mycoparasitism is achieved by coiling round the hyphae of R. solani, followed by 

penetration of the hyphal cell wall (Ridout et al., 1988). Of the lytic enzymes produced 

by T. harzianum, only P-1,3 glucanase, protease and chitinases are thought to be 

important in mycoparasitic degradation of the cell wall of R. solani. The chitinolytic 
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system present in T harzianum is a complex composed of six distinct enzymes (Haran et 

al., 1995): two -1,4-N-acetyl glucosamidases and four endochitinases. Therefore, 

chitinases, proteases and 3-1,3-g1ucanases are presumably the major factors in 

determining protoplast release from R. solani. This is further supported by studies 

examining the interaction between Gliocladium virens and R. solani. G. virens 

produced -1,3-glucanase, N-acetyl glucosamidases and proteinases during attack of R. 

solani (Vantilburg and Thomas, 1993) 

The ability of the enzymes to attack hyphal cells and release protoplasts depends 

upon the wall structure of the fungus. The walls are generally composed of 80 to 90 % 

carbohydrates, plus 10 to 20 % protein and lipids (Bartnicki-Garcia, 1968). These are 

organized into an inner fibrillar layer (composed mainly of chitin), and an outer 

amorphous layer (composed predominantly of glucans, proteins, and mannans). 

However, the composition varies greatly between species. For example, the Oomycetes, 

such as Phytophthora infestans, contain 20 % cellulose, 68 % other glucans, 1 % 

mannans and a trace of chitin, whereas the Chytridiomycetes, such as Allomyces, contain 

58 % chitin and 16 % glucans, with no cellulose (Bartnicki-Garcia, 1968). In addition, 

the wall composition varies depending on the life cycle and stage of growth of the 

species examined (Hunsley and Burnett, 1970; Goosen et al., 1992). The variation in 

enzymes required to release protoplasts, therefore, reflects the diversity of fungal cell 

wall structures. R. solani is a Basidiomycete, of which the typical wall composition 

consists of chitin and glucans (Bartnicki-Garcia, 1968). Indeed in mycoparasitic 

interactions, -1,3-glucanase is thought to primarily degrade the amorphous layer of the 

cell wall, subsequently exposing the chitin microfibrills (Elad, 1996). However, since de 

Vries and Wessels (1973) obtained protoplasts from a range of Basidiomycetes, 

excluding R. solani, with a T. viride enzyme preparation, this may indicate differences in 

composition of the cell wall of R. solani compared with other Basidiomycetes. 

Although the wall of R. solani is highly resistant to degradation, addition of 

compounds which alter the composition of the cell wall may increase enzyme 

susceptibility and hence enhance protoplast yield. For example, addition of thiol 

compounds reduces disulphide bonds in the cell wall, opening up the molecules, enabling 

penetration of the lytic enzymes (Anderson and Millbank, 1966). This has been used 

successfully with Cephalosporium acremonium (Fawcett et al., 1973), Histoplasma 
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capsulatum (Berliner and Reca, 1969) and Geotrichum candidum (Dooijewaard-

Kloosterziel et al., 1973). In Pythium species, the addition of Triton X- 100 removes a 

lipid layer, and subsequently improves protoplast yield (Sietsma and de Boer, 1973). 

From a wide range of osmotic stabilizers, the inorganic salts such as potassium, 

sodium and magnesium tend to be used for filamentous fungi, whereas sugars and sugar 

alcohols are used for yeasts (Peberdy, 1979). However, exceptions do exist. For 

example, 1.0 M sorbitol was used as the osmotic stabilizer for protoplast production 

from Fusarium culmorum 15902 (Curragh et al., 1992). pH in the range of 5.8 to 6.5 is 

reported to be suitable for a wide range of fungi (Peberdy et al., 1976; Curragh et al., 

1992), thus the present study used magnesium sulphate buffered to pH 5.9 as an osmotic 

stabilizer. Protoplast yield was determined at varying concentrations (0.6, 0.8, 1.0 and 

1.2 M), with 1.0 M MgSO4  producing the greatest yield. Yang et al. (1993b) obtained 

protoplasts from R. solani AG 8 using buffered 1.0 M NaCl, whereas Hashiba and 

Yamada (1982) produced protoplasts from R. solani isolate 0-0 using 0.6 M sucrose. 

Using the digestive enzyme Novozyme 234, the effect of enzyme incubation 

period was examined. The length of enzyme incubation period was found to be critical, 

with optimal protoplast yield occurring at 2.5 hours. Subsequently, protoplast yield 

rapidly declined to negligible levels. This is presumably due to proteolytic activity 

present in the Novozyme 234 lytic system (Mann and Jeffery, 1986; Kitamoto et al., 

1988) attacking the recently-formed protoplasts. This led to incorporation of BSA in 

the incubation period, in an attempt to stabilize protoplast yields. However, no 

stabilization occurred and protoplast yield declined just as dramatically. Similar declines 

in protoplast yields were obtained by Solis et al. (1996) using lytic enzymes from 

Arthrobacter luteus and T. harzianum. The decline in protoplast yield over time was 

less gradual using enzymes from Aspergillus species, which presumably have a lower 

proteolytic content. Previous results of Hashiba and Yamada (1982) found that maximal 

protoplast yield in R. solani occurred at approximately 2 hours incubation, with no 

decrease observed following 4 hours incubation. They used a combined enzyme system 

containing cellulase "Onozuka" R-10, macerozyme R-10 and -glucuronidase from H. 
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pomatia. Presumably, the proteolytic content of this enzyme system was negligible, and 

thus protoplasts remained stable. 

Enzyme incubation was completed at 30 to 33°C in the present study. 

Temperatures of 37°C, which have been previously reported for Novozyme 234 (Cullen 

et al., 1987), gave decreased protoplast yields from R. solani 3R8. Curragh et al. (1992) 

reported temperatures of 15 to 20°C to be inefficient compared with 30'C, whereas 

Kumari and Panda (1992) reported insufficient protoplast production below 30°C, with 

optimal yield at 30 to 31°C, and increasing the temperature beyond 31°C resulted in a 

rapid decline in protoplast yield. 

A further critical factor determining protoplast yield is mycelial age. Many 

species require young cultures 20 to 30 hours old to release high yields of protoplasts. 

For example, 21 to 24 hour old cultures produced high protoplast yields in F. culmorum 

(Curragh et al., 1992), Fulviafulva gave optimal yields with cultures 24 to 48 hours old 

(Harling et al., 1988), and Phytophthora parasitica required 48 hours incubation to 

yield high levels of protoplasts (Gu and Ko, 1998). However, in the present study, low 

yields of protoplasts were obtained with young mycelial cultures less than 40 hours old. 

The yield increased one hundred fold between 40 and 60 hours, reaching a peak of 1.2 x 

106 protoplasts per g dry weight. Between 60 and 85 hours, a slight decrease in 

numbers was observed. This differs from the work of Hashiba and Yamada (1982) 

where 20 hour old R. solani cultures gave optimal protoplast yields, and yields from 3 to 

4 day old cultures were very low. Yang et al. (1993b) found R. solani cultures of 48 

hours to be satisfactory. The differences in optimal ages of mycelia between species, 

and even between isolates, of R. solani, are readily explained. Several reports indicate 

that maximum yields of protoplasts are obtained from cultures nearing the end of 

exponential growth (Peberdy et al., 1976). During exponential growth phase, the 

mycelia show maximum branching and new cell wall formation, thus the greatest number 

of young hyphal tips are present (Peberdy, 1979). Protoplasts are released from small 

pores formed at the growing tip of the hyphae, where the walls are thin and actively 

growing (Ilocart and Peberdy, 1989). In R. solani the tip walls are approximately 80 

nm thick, whereas the older walls are more than 1 tm thick (Butler and Bracker, 1970). 
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Older walls are thicker and more resistant to digestion due to alterations in their 

composition. For example, deposition of a-1,3-glucans occurs in A. nidulans, which 

subsequently decreases protoplast yield (Zonneveld, 1973). The resistance of the older 

wall of R. solani to digestion is supported by the absence of "ghost-like" ungranular 

protoplasts formed from the empty, older hyphae. Thus, rapidly growing isolates may 

undergo exponential phase at around 20 hours, given a suitable growth media, whereas 

other slow-growing isolates may not reach exponential phase until 3 to 5 days. Indeed, 

in the present R. solani culture collection, isolate 3R8 grew slowly in comparison to the 

majority of isolates. This may partly explain the differences in optimal mycelial age 

observed between the present study and those of Hashiba and Yamada (1982) and Yang 

et al. (1993b). 

For protoplasts to be useful in transformation studies, successful regeneration 

must occur. Regeneration frequencies vary between species and strains, with the 

majority of filamentous fungal protoplasts showing reversion frequencies of 0.1 to 50 % 

(Stasz et al., 1988; Peberdy, 1991). Hashiba and Yamada (1982) obtained regeneration 

frequencies of 10 to 20 % from R. solani on water agar adjusted to 0.6 M with respect 

to mannitol. The present work initially examined regeneration in Rhizoctonia broth 

containing either sucrose or mannitol as osmotic stabilizers. Regeneration frequencies 

were negligible (0 to 5 %) following four days incubation, with the protoplasts 

remaining displaying "sickly" phenotypes. In sucrose broth, cell contents had shrunk 

away from the cell membrane, whereas in mannitol, protoplasts became highly 

vacuolated. A similar degree of vacuolation has been reported for several species in the 

presence of magnesium sulphate (Gascon and Villanueva, 1965; Sietsma and Wouters, 

1971). This enables a convenient means of purification of protoplasts from hyphal 

fragments, as the protoplasts become buoyant. 

In yeasts, such as Saccharomyces cerevisiae and Schizosaccharomyces pombe, 

high reversion frequencies of 50 to 90 % were obtained in agar-solidified media 

(Svoboda, 1966). Therefore, due to the poor regeneration obtained in liquid media, 

subsequent attempts used agar medium containing NaCl, sucrose, niannitol or sorbitol as 

osmotic stabilizers. The protoplasts were added to cooled agar and poured immediately. 

It was vitally important that this stage was done quickly using agar cooled just prior to 
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the point of solidification. Incorporation of agar seemed to protect the protoplasts such 

that regeneration frequencies of 90 % could be obtained. No regeneration was observed 

in agar containing NaCl. This was anticipated, as studies by Carrera (1951) indicated 

that R. solani was sensitive to high concentrations of sodium. In addition, regeneration 

was poor on sucrose. High levels, however, were obtained on sorbitol and mannitol. 

Deed and Seviour (1990) reported protoplast regeneration to be higher in organic than 

inorganic osmoticum although the reason for the differential response was not 

understood. The higher regeneration frequencies obtained in the present study, 

compared with those of Hashiba and Yamada (1982) on agar, may be due to protoplasts 

being incorporated in the agar. Hashiba and Yamada (1982) spread the protoplasts on 

the agar surface, which might have resulted in physical damage to the fragile protoplasts. 

Prior to transformation, a suitable selection strategy for transformants must be 

developed. Selection usually involves one of two methods. (i) Auxotrophic 

complementation systems, which require isolation of auxotrophic mutants and then 

transformation with the wild type gene. Successful systems include leu in Mucor 

circinelloides (van Heeswijk and Roncero, 1984) and pyr in A. niger (Goosen et al., 

1987; van Hartingsveldt et al., 1987). (ii) Dominant selectable markers, which usually 

involves transforming genes which give resistance to toxins. This procedure is generally 

more acceptable, as it does not require the time-consuming isolation of auxotrophic 

mutants. 

The present study examined the susceptibility of protoplasts to Ignite and 

Hygromycin B. Ignite is a tripeptide compound composed of two L-alanine residues 

and an analogue of glutamic acid known as phosphonothricin (PPT) (Thompson et al., 

1987). The two alanines are cleaved from PPT by endogenous cellular peptidases, 

producing a substance which is a potent inhibitor of glutamine synthetase (Straubinger et 

al., 1992). This leads to an accumulation of ammonia and cell death. Hygromycin B is 

an aminoglycoside that inhibits protein synthesis by causing mistranslation (Gonzalez, 

1978) and by interfering with protein translocation (Singh, 1979). R. solani isolate 3R8 

was resistant to high concentrations of Ignite (> 500 jig ml') and sensitive to low 

concentrations (< 100 tg ml - ') of Hygromycin B. Thus, Hygromycin B was used as a 

selection system to develop a transformation system for R. solani. 
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It should be possible to develop transformation systems for each and every 

species of fungus, although the major stumbling block is achieving the first successful 

experiment (Fincham, 1989; Upshall, 1992)! The present study developed a PEG! Ca 2  

based transformation technique for R. solani 3R8. Transformation is reported to occur 

due to PEG acting as a polycation, resulting in clumping of the protoplasts (Stewart, 

1981), with subsequent molecular bridges forming between adjacent membranes, 

trapping DNA intracellularly (Constabel and Kao, 1974). The transformation can then 

be either integrative or non-integrative, depending upon whether the plasmid is 

incorporated into the host chromosome. Three types of integrative transformation are 

recognized (Hinnen et al., 1978). Type I (addition) involves a single crossover event 

between homologous host and non-host DNA, resulting in linked duplications of the 

non-host DNA. Type 2 (ectopic) is where the non-host DNA integrates at non-

homologous sites by single crossover events. Type 3 (replacement) involves a double 

crossover where the host DNA is replaced by non-host DNA. 

Initial transformation was achieved with pES200 (Figure 6. 6), which contains 

the bacterial hygromycin resistance gene (hygBR) downstream from Aspergillus 

nidulans IrpC start codon. The hygBR gene has been used successfully in 

transformation of several species, including Fusarium culmorum (Curragh et al., 1992), 

Trichoderma harzianum (Thrane et al., 1995) and Fusarium graminearum (Wiebe et 

al., 1997). The initial attempts to transform R. solani failed due to highly active DNases 

secreted by R. solani. Washing the protoplasts prior to transformation is usually 

sufficient to remove contaminating nucleases. However, since DNase activity remained 

high, the nuclease inhibitor aurintricarboxylic acid was incorporated into the protocol, in 

addition to a ten fold increase in plasmid concentration. Successful transformation then 

occurred. When hygromycin B was incorporated at 100 p.g mY', protoplasts germinated 

and grew 1 to 2 mm, then hyphal tip death occurred, which was closely followed by 

death of the entire colony. The hygromycin B concentration was subsequently reduced 

to 50 tg mY', and transformants were readily obtained. Initially these displayed a 

"normal" phenotype, growing at a similar rate to protoplasts on non-selective agar. 

Following 14 to 18 days, growth rate declined dramatically, and colonies essentially 

stopped growth at 25 to 35 mm diameter. Transformation with pAXFIY2 was also 
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obtained, but again growth stopped following 14 to 18 days incubation, with a final 

diameter of approximately 55 to 65 mm. 

Non-integrative transformation is characterized by a slow growth rate of 

transformants, with 99 % of these isolates failing to grow upon subculture (Monke and 

Schafer, 1993). This is due to the DNA being able to replicate independently from the 

chromosomes; however, they are subject to frequent losses during growth. Some 

species, however, can maintain non-integrated plasmids indefinitely, for example Mucor 

circinelloides (van Heeswijk, 1986). Thus the phenotype of the transformants indicates 

that non-integrative (transient) transformation has occurred. This is supported by 

Southern blot analysis. Transient transformation has previously been reported for 

several species including F. oxysporum (Kistler and Benny, 1988), Penicillium 

roquefortii (Durand et al., 1991), Glomerella cingulata (Rikkerink et al., 1994) and 

Pyricularia oryzae (Kimura et al., 1995). Thus, it appears that the limiting step in 

transformation, for R. solani 3R8 and other species, is not the uptake of foreign DNA, 

but its incorporation into the chromosome. 

The length of time the plasmid remains in a non-integrated state appears to be 

highly variable, as determined by the duration of "normal" hyphal growth. R. solani 

3R8 grew for 14 days before growth became limiting, whereas Aspergillus nidulans 

grew for 5 to 6 days (Tilburn et al., 1983). Potentially, the prolonged growth observed 

in R. solani may be due to highly efficient hyphal translocation, which R. solani 

possesses for its saprotrophic lifestyle. This may then increase movement of either the 

hygromycin B phosphotransferase molecules, or the plasmid itself, towards the hyphal 

tip enabling growth to continue for 14 days, as opposed to the 3 to 5 days observed for 

many other species. This possibility is supported by the death of hyphal tips prior to the 

older mycelia, when plated onto media containing 100 p.g mf' hygromycin B. 

Aspergillus nidulans transformants, when grown in submerged culture, are sensitive to 

10 p.g mf' hygromycin, whereas when grown on the surface of media growth could be 

tolerated at> 1000 tg mf' hygromycin (Cullen et al., 1987). The continuing slow 

growth of 3 to 4 mm per week observed in R. solani after the initial 14 days may well be 

explained by a similar decrease in sensitivity towards hygromycin B when grown upon 

agar, as opposed to within agar. This is confirmed, as untransformed mycelial blocks 
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occasionally showed slight (<5 mm) growth upon agar containing 100 p.g hygromycin B 

ml', whereas submerged, untransformed protoplasts never showed growth. 

Transformants of R. solani containing pAXHY2 showed greater growth than 

transformants containing pES200. pAXHY2 contains HygB' flanked by the A. nidulans 

trpC promoter and terminator sequences (Choi and Nuss, 1992b), whereas pES200 

contains hygBR preceded by the trpC promoter, with the trpC terminator deleted 

(Staben et al., 1993). In Neurospora crassa, Staben et al. (1993) found the addition of 

the trpC terminator to pES200 (forming pDH25) did not affect the resistance to 

hygromycin B. However, in other species, such as A. niger, the lack of a terminator 

sequence greatly reduces expression (Punt et al., 1987). In R. solani 3R8, during non-

integrated transformation, the lack of terminator sequences appears to reduce the 

expression of HygB', and thus decreases the resistance of transformants to hygromycin 

Eli 

In the majority of transformation experiments, 99 % of transformants contain 

non-integrative DNA, and fail to grow on subculture (Liljeroth et al., 1993; Monke and 

Schafer, 1993). In the present study, 100 % of transformants failed to grow on 

subculture. However, transient transformants may produce sectors of vigorous growth. 

These sectors frequently arise from the centre of the inoculum, and contain integrated 

plasmid DNA (Tilburn et al., 1983). Following 8 to 10 weeks incubation, sectors were 

never observed in R. solani 3R8, transformed with either pES200 or pAXHY2. Since 

the possibility of integrative events is 1 %, increasing the number of transformants 

should increase the probability of obtaining stable transformants. One way could involve 

increasing the starting concentration of protoplasts (Fincham, 1989). However, this 

effect is not universal, as exemplified by transformation in Cochliobolus heterostrophus, 

where the number of transformants declined greatly when i0 7, as opposed to 106, 

protoplasts were used. Additionally, plasmid DNA can be constructed to include 

homologous DNA or ribosomal repeats. Ribosomal repeats have been reported to 

enhance transformation frequency in Aspergillus niger (O'Connell, 1998). 

Alternatively, transformation could be attempted using other methods such as 

electroporation or biolistics. 

Once stable transformants are readily obtained, it will be interesting to transform 

R. solani with eDNA of dsRNA from C. parasitica, to determine the effect it may have 
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on the phenotype. Since fungi are in many ways promiscuous in their ability to express 

foreign DNA, R. solani may well express C. parasitica cDNA and generate dsRNA. 

This has been shown to occur in several species phylogenetically related to C. 

parasitica, including C. radicalis, C. havanensis, C. cubensis and Endothia gyrosa 

(Chen et al., 1994; Chen et al., 1996). However, transformation with CF[V1-713 

cDNA in Leucostoma sp., was unstable, indicating the range may be limited (D. Nuss, 

pers. comm.). Thus, if C. parasitica cDNA can generate dsRNA in R. solani, and the 

transformants are subsequently hypovirulent, then an effective biological control 

strategy may potentially be developed. 
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7. 1. Concluding Discussion 

Currently, the majority of phytopathogens are controlled by chemical means, 

with few biological control strategies being employed. The main drawbacks with 

biological control are high developmental costs of the biocontrol agents in relation to 

their potential "market share", because many of the agents are either disease or 

environment specific. Ideally biocontrol agents should require a one-time inoculation to 

a site to maintain control; however, many need to be applied repeatedly, when and 

where they are needed. One example of a successful biocontrol strategy requiring one-

time inoculative release involves prevention of black crust on the foliage of rubber, 

caused by Phyllachora huberi. This is maintained in a cyclical state of suppression 

following application of the mycoparasites Cylindosporum concentricum and Dicyma 

pulvinata (reviewed by Sutton and Peng, 1993). A second example of a successful, sell-

sustaining biocontrol strategy is that against chestnut blight in Europe, caused by C. 

parasitica, using hypovirulent strains of the pathogen containing dsRNA genetic 

elements. 

Chestnut blight was first reported on the European chestnut (Castanea sativa) in 

1938 and by 1950 it was widespread throughout Southern Europe (Anagnostakis, 

1992). C. parasitica isolates which contained dsRNA were observed to have an altered 

phenotype which includes hypovirulence, reduction of pigmentation, reduced conidiation 

and down-regulation of virulence-associated proteins such as laccase, cellulase, cutinase, 

protease and polygalacturonase. When co-inoculated with virulent C. parasitica 

isolates, the dsRNA elements were cytoplasmically transmissible, converting the 

recipient to a hypovirulent phenotype (Day et al., 1977). Subsequently, a biological 

control program of chestnut blight was initiated in France. This involved successive 

treatments of ten cankers for a three year period, followed by treatment of five cankers 

per hectare for two to three years. The plantations were cured of chestnut blight within 

a ten year period (Grente and Berthelay-Sauret, 1978). To date, chestnut blight has 

spread throughout most of central Europe, including Portugal, Switzerland, Germany 

and Greece (Heiniger and Rigling, 1994). However, in many of these plantations, the 

frequency of hypovirulent isolates is high. For example, in chestnut coppices in 
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Switzerland, 59 % of isolates recovered were hypovirulent (Bissegger et al., 1997); 

therefore chestnut blight is no longer a major problem in Europe. 

In the USA, chestnut blight rapidly destroyed native chestnut (Castanea dentata) 

stands, following the first appearance of the disease in New York in 1904. Following 

the success in controlling chestnut blight in Europe, it was hoped that the same could be 

achieved in the USA. Anagnostakis and Jaynes (1973) found that European hypovirulent 

strains could diminish the growth of cankers in greenhouse seedlings. This led to field 

trials involving 300 trees being inoculated with an American hypovirulent strain derived 

from the original French strain (Jaynes and Elliston, 1980). This proved successful in 

that 86 % of the inoculated cankers were controlled after one year. Further field trials, 

however, were unsuccessful, with virulent C. parasitica infection levels remaining high 

and natural dissemination of dsRNA not being achieved. Upon examination of the 

population structure, it was found that American isolates of C. parasitica showed a high 

degree of natural incompatibility, with more than 100 vegetative compatibility groups 

present, compared to only a handful of such groups in Europe (Newhouse, 1990). This 

complex population structure is thought to have limited the dissemination of dsRNA in 

field trials, under natural conditions, in the eastern United States, thus preventing 

dsRNA being used as a successful biological control agent, as occurred in Europe. 

The work in this thesis examined the potential for developing biological control 

for Rhizoctonia-incited diseases, modelled upon the biological control attained against 

chestnut blight in Europe. The work first examined the natural distribution of dsRNA in 

R. solani AG 3 field isolates harvested from a single site in Scotland, in addition to 

isolates from differing anastomosis groups. The study found all isolates to contain at 

least one and up to eight dsRNA segments, ranging in size from 0.3 to 15 kb. Zanzinger 

et al. (1984) also found dsRNA to be present in 98 % of isolates examined in the USA. 

However, several other reports indicate dsRNA distribution to be more variable, with 

one study reporting 54 % of isolates to contain dsRNA (Kousik et al., 1994), whereas 

another failed to extract dsRNA from 77 % of isolates (Castanho et al., 1978). The 

banding patterns of extracted dsRNA in the present study were highly variable, with 

some isolates containing the same segmentation. Since the isolates were harvested from 

a small locality, and contained similar banding patterns, it is likely that some of the 

segments may be the same, possibly the result of horizontal transmission by vegetative 

anastomosis. To determine whether the segments are related, or are just similar sizes, 

187 



northern hybridization studies are required, which were not completed in the present 

study. Previous work indicates sequence homology between dsRNA segments extracted 

from R. solani isolates of the same anastomosis group, but not from different 

anastomosis groups (Bharathan and Tavantzis, 1987). This, though, is not unexpected 

since the differing anastomosis groups are genetically isolated, due to their lack of 

attempted hyphal fusion (Vilgalys and Cubeta, 1994; Adams, 1996). Bharathan and 

Tavantzis (1991) subsequently examined homology between isolates of the same 

anastomosis group that were geographically distant. No hybridization was observed 

between Japanese and American isolates from AG 1, 2, 4 and 5. However, isolates 

harvested from within Maine, USA, showed a certain degree of cross-hybridization of 

dsRNA, both with each other and also towards isolates from Colorado. The isolates 

from the present study were all from AG 3 and isolated from close proximity, so it 

would be interesting to determine the degree of cross-hybridization between them, 

which may be quite high. 

The mere presence of dsRNA in R. solani does not indicate it to be a useful 

biocontrol agent, as many dsRNA elements are non-symptomatic in their host fungi. For 

example, Puccinia sorghii contains at least twenty dsRNA segments, none of which 

alters the fungal phenotype (Zhang et al., 1994). Initial reports by Castanho et al. 

(1978) indicated that dsRNA was correlated with a hypovirulent phenotype in R. solani. 

However, a subsequent report by Finider et al. (1985) contradicted this by reporting 

dsRNA to be associated with increased virulence. Several subsequent reports indicate 

dsRNA to be ubiquitous within R. solani, with no apparent correlation between the 

presence of dsRNA and the degree of pathogenicity (Zanzinger et al., 1984; 

Hyakumachi et al., 1985; Bharathan and Tavantzis, 1990; Bharatban and Tavantzis, 

1991; Washington and Martin, 1991; Kousik et al., 1994). The present work shows that 

for fifteen dsRNA-containing, AG 3 isolates the virulence is low (mean 2.0), but not so 

low as to be regarded as hypovirulent. The virulence of a dsRNA-containing AG 4 

isolate was also examined and was found to be significantly higher than that of the AG 3 

isolates (mean 3.5). It is likely that specific dsRNA elements give rise to certain 

phenotypes. A similar situation occurs in Ophiostoma novo-ulmi where many isolates 

contain multiple dsRNA segments, but three specifically sized segments (2.43, 0.95 and 

0.33 kb) are required to invoke the hypovirulent phenotype (Rogers et al., 1986; Rogers 

et al., 1988). To determine this, isolates both fully and partially cured of dsRNA are 
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required. The present study attempted curing of R. solani isolates initially by hyphal-tip 

subculturing and secondly by exposure to cycloheximide, a known RNA synthesis 

inhibitor (Bottacin et al., 1994; Elias and Cotty, 1996). Hyphal tip subculturing has 

been reported to give curing frequencies of 25 % in R. solani (McCabe, 1994); 

however, total curing of dsRNA was not observed in the present study. Two isolates 

remained unaltered in dsRNA content following three and ten successive subcultures of 

excised hyphal tips. A third isolate lost one (1.3 kb) of five segments upon the second 

subculture, with no further alterations in dsRNA content following a further nine 

subcultures. Difficulty in curing isolates by this technique has been reported previously 

by Castanho and Butler (1978a), who obtained a 3 % curing frequency. Attempted 

curing by cycloheximide exposure was more successful, with several isolates being 

partially cured. The degree of curing increased with cycloheximide exposure time. The 

isolates generally lost smaller dsRNA segments, i.e. 1.6, 1.4 and 1.0 kb; however, one 

subculture of FT 201 lost a larger segment of 6.5 kb. The virulence of partially cured 

isolates was subsequently examined. For isolate PAl, loss of the 1.4 and 1.0 kb 

segments had no effect on overall fungal virulence. Similarly for isolate FT 201, loss of 

the 6.5 and 1.6 kb segments had no significant effect on overall fungal virulence. 

However, since these may be internal deletions of the larger dsRNA segments, the 

genetic information affecting virulence may still remain. To determine this, northern 

hybridization studies are required. 

To elucidate precisely the effects that these dsRNA elements have on fungal 

phenotype, isolates fully cured of dsRNA are required, such that segments can be 

individually transferred into a dsRNA-free background. It may be that the segments 

encode hypovirulence, as evidenced by the relatively low virulence of the fifteen 

dsRNA-containing isolates, or some segments may encode virulence, with others 

encoding hypovirulence. The two opposing effects may be maintained in a delicate 

balance following interaction with the host phenotype. 

The difficulties in curing R. solani of dsRNA in the present study may arise from 

a resident, integrated DNA copy of the dsRNA elements. Hybridization studies would 

be required to determine whether this is the case. Finkler et al. (1985) found no 

evidence of similarity between the host DNA and the viral genome. However, 

subsequent studies by Tavantzis (1994) and Lakshman et al. (1998) indicated homology 

between dsRNA segments and the host genome. In further support of this argument, 

189 



McCabe (1994) reported isolates to be cured of dsRNA, but re-isolation of the same 

isolates during the present study indicated dsRNA to be present. Additionally, Koltin et 

al. (1987) re-examined the isolates of Castanho and Butler (1978a) which were reported 

to be dsRNA-free, and found them to contain dsRNA. An integrative state may have 

arisen, as the dsRNA may have a role in the fungal host lifestyle. This is supported by 

A. Finkler (pers. comm.) who found that isolates cured of dsRNA were unstable upon 

subculture. 

Although removal of the dsRNA segments from isolates in the present study 

resulted in no alteration of the host phenotype, it is possible that the dsRNA present 

shows homology to hypovirus CHVI-713 of C. parasitica. Hybridization studies were 

completed to determine this. No hybridization was observed at low stringency between 

any dsRNA from R. solani and pXH9 (cDNA of C14V1-713), indicating that that no 

homology exists between R. solani dsRNA and hypovirus CHV1-713 from C. 

parasitica. In contrast, a recent study found homology between M2 dsRNA from R. 

solani isolate RlislAl and the RNA-dependent RNA polymerase (RDRP) of dsRNA 

associated with hypovirulence in C. parasitica strain NB63 1. It is likely that this 

relation is segment specific with several other unrelated dsRNA elements occurring 

within R. solani. Some of these may show sequence homology to C14V1-713. 

Thus the precise function of the dsRNA elements in the present study has not 

been elucidated. However, Ran et al. (1998) and Lakshman et al. (1998) have recently 

reported the sequence of two segments of dsRNA (Ml and M2) found in other R. solani 

isolates. Ml consists of 6390 bp and encodes six proposed ORFs, four of which show 

no significant homology with databases (Jian et al., 1998). ORF 5 shows sequence 

homology to the cytochrome c oxidase assembly factor (CcOAF) and ORF 2 shows 

homology to the broad bean mottle virus and other plant Bromoviruses (Jian et al., 

1998). M2 consists of 3570 bp, with one major proposed ORF and four minor ORFs 

(Lakshman et al., 1998). The major ORF shows significant homology to a region of 

hypovirulence-associated mitochondrial dsRNA from C. parasitica NB63 1, as well as to 

the pentafunctional polypeptide AROM from Saccharomyces cerevisiae (Lakshman et 

al., 1998). 

Direct evidence for the involvement of Ml, M2 and other dsRNA segments in 

virulence regulation can only be obtained by transformation of R. solani with eDNA 

copies of the respective dsRNA elements. The group of Victor Rubio (CNB, Madrid, 
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Spain) has been developing a transformation protocol for the past 7 to 8 years. They are 

currently trying transformation using boilistic transformation methods. The present 

study examined transformation of R. solani using a PEG! Ca2 -mediated transformation 

protocol. Once transformation is attained, it can be either integrative or non-integrative, 

depending upon whether the plasmid is incorporated into the host chromosome. Initial 

transformation was achieved with pES200 (Figure 6.6), which contains the bacterial 

hygromycin resistance gene (hygBR) downstream from Aspergillus nidulans trpC start 

codon. Transformation, however, was non-integrative, which is characterized by a slow 

growth rate of the transformants (Monke and Schafer, 1993). Subsequent 

transformation using pAXITY2 (cDNA of hypovirus CHV1-713) was slightly more 

successful in that greater growth occurred than with pES200 transformants. However, 

these cultures also failed to grow on subculture, indicating non-integrative 

transformation, with the increased growth displayed by pAXHY2 transformants 

potentially due to the presence of a terminator sequence following hygBR in pAXHY2, 

and not in pES200. In both cases, non-integrative transformation was confirmed by 

hybridization analysis. For the transformation protocol to be a viable tool for genetical 

manipulation, integrative transformation would be desirable. Various means exist to 

increase the possibility of integrative transformation. The possibility of integrative 

events is 1 % (Monke and Schafer, 1993), so increasing the number of transformants 

should increase the probability of obtaining stable transformants. The plasmids used in 

this study contained no DNA with known homology to the genome of R. solani. 

Therefore construction of plasmids containing homologous DNA should enhance the 

probability of obtaining integrative transformants. In addition, ribosomal repeats have 

been reported to enhance transformation frequency in Aspergillus niger (0' Connell, 

1998 http), so a similar situation may occur in R. solani. In addition, some isolates of R. 

solani harbour plasmid sequences (Miyasaka et al., 1990; Miyashita et al., 1990; Hongo 

et al., 1994). It may be possible to construct plasmids with homology to the resident 

plasmids, and in this manner obtain stable transformantion. 

Once stable transformants are readily obtained, it will be interesting to transform 

R. solani with cDNA of dsRNA from C. parasilica, to determine the effect it may have 

on the phenotype. Since fungi are in many ways promiscuous in their ability to express 

foreign DNA, R. solani may well express CHV 1-713 eDNA and generate dsRNA. This 

has been shown to occur in several species phylogenetically related to C. parasitica 
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including C. radicalis, C. havanensis, C. cubensis and Endothia gyrosa (Chen et al., 

1994, 1996). Thus, if CHVI-713 can generate dsRNA in R. solani, and the 

transformants are subsequently hypovirulent, then a highly effective biological control 

strategy may potentially be developed. However, this becomes a transgenic organism, 

which leads to additional problems with licensing for environmental release. 

It appears that dsRNA-mediated biocontrol may be possible in R. solani, due to 

the presence of segments, such as M2 from isolate RhslAl, encoding a hypovirulent 

response; however, for it to be successful, dsRNA transfer between isolates must occur. 

Transformation is generally limited to horizontal modes via hyphal anastomosis. Several 

reports indicate that dsRNA transfer occurs in R. solani (Castanho and Butler, 1978; 

Finkler et al., 1985; Ran et al., 1997); however, no direct microscopical evidence has 

been presented. This would require the elements to be labelled, possibly with radio-

isotopes, or alternatively with fluorescing dyes. In addition, the elements may be tagged 

with reporter genes, such as the Vibrio luciferase genes or green fluorescent protein 

(GFP) which emit light upon expression. A similar tagging system with GFP was 

applied to Potato Virus X, to study movement of this virus between cells (Santa Cruz et 

al., 1998). 

The development of a dsRNA-mediated biocontrol strategy for C. parasitica 

was successful in Europe, but largely unsuccessful in the USA (reviewed by Nuss, 

1992). This was due to a low number of VCGs in Europe, such that dsRNA 

dissemination via hyphal anastomosis was successful, whereas in the USA a greater 

number of VCGs were present, such that the majority of hyphal anastomosis events 

were followed by incompatible reactions. At the tuber level, isolates of R. solani were 

fully compatible with one another, indicating that dsRNA dissemination should not be 

impeded. However, the degree of incompatibility increased greatly when isolates from 

differing tubers from within a single field site were examined, with 44 % of the total 

reactions being incompatible. This increased to 100 % of pair-wise combinations being 

incompatible when isolates were harvested from differing areas of Scotland, and indeed 

from differing countries. It seems possible that dissemination of dsRNA throughout 

natural field populations of R. solani will be limited to small areas, with no widespread 

transmission beyond adjoining colonies. Potentially, this could be overcome by releasing 

isolates from multiple VCGs. Alternatively, it may be possible to suppress the 
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vegetative incompatible reactions using anti-sense mRNA to block vic gene expression 

(Benedetti et al., 1987). 

A further factor to be examined before a reliable biocontrol strategy is 

developed, is whether the hypovirulent isolates can persist in the environment. Ideally, 

they should succeed following a one-time inoculative release, as opposed to repeated 

releases each time they are required. Release of hypovirulent isolates of C. parasitica in 

Europe was self-sustaining following the initial release programme. In contrast, in the 

USA, following the release of hypovirulent C. parasitica containing CHVI-713 

throughout eastern North America, later studies failed to re-detect its presence (Peever 

et al., 1997). Since hypovirulent isolates tend to show reduced vigour, in addition to 

hypovirulence, problems with persistence are likely to arise. This can potentially be 

circumvented by altering the transformed DNA, such that hypovirulence is expressed 

without the reduction in vigour. For example, Craven et al. (1993) have constructed 

strains of C. parasitica possessing increased conidiation levels, which remain 

hypovirulent. In addition, Chen and Nuss (1998) constructed a cDNA clone from C. 

parasitica Euro7 (CHV1-Euro7). Isolates subsequently infected with CHV1-Euro7 

were hypovirulent, as well as being more aggressive in colonizing chestnut tissue, and 

less reduced in asexual sporulation than strains infected with CHV1-713. 
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