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Abstract 

Background 

Atlantic salmon (Salmo Salar) is a key aquaculture species in several countries. 

Since its critical role in economic sector and scientific research, this species has been 

relatively extensively investigated, in comparison with other farmed and wild aquatic 

species. However, the genetic components associated with growth and fillet-related 

traits are lack consistency, and the issue of sea louse disease in both wild and famed 

salmon is still unsolved. 

 

Objectives 

Overall aim of this project was to understand the genetic basis of growth-related 

traits and host resistance to sea lice using three large commercial farmed salmon 

populations. Specifically, the method of quantitative trait loci (QTL) mapping, 

genome-wide association study (GWAS), and genomic prediction (GS) were utilized 

to dissect the genetic architectures associated with traits of interest in our 

experimental populations. Prior to this, linkage mapping was performed to construct 

a high-density linkage map for Atlantic salmon. 

 

Results 

Linkage map 

A linkage map was firstly constructed underlying a SNP array containing 132 K 

validated SNPs. 96,396 SNPs were successfully assigned to 29 chromosomes that 

correspond to the linkage group number of European Atlantic salmon. 6.5 % of 

unassigned contigs, which was equal to 1 % of recent whole genome reference 

assembly (GCA_000233375.4) anchored to exist chromosomes by referring to 

linkage mapping result.  

 

Genetic components associated with growth traits 

Heritabilities of growth-related traits were about 0.5 to 0.6 in adult and juvenile 

farmed salmon. The QTL mapping and GWAS suggested the growth-related traits 

are likely a polygenic genetic architecture with no major QTL segregating. The 

prediction accuracy estimated by genomic prediction showed that approximately 
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5,000 SNP markers could achieve the highest accuracy in body weight and length in 

juvenile salmon within population. 

 

Genetic components associated with lice resistance 

The heritability of lice resistance was 0.22 to 0.33 using pedigree and genetic 

relationship matrices respectively. GWAS indicated that the host resistance to sea 

lice was likely polygenic with no individual SNP surpassed the genome-wide 

significance threshold. Genomic prediction showed that about 5 to 10 K SNPs was 

able to achieve the asymptote of accuracy in closely related animals, while the 

greatest advantage of genomic prediction was observed in non-sibling test within 

population.  

 

Conclusions 

As the growth-related traits and lice resistance are both likely polygenic and 

population-specific, the genomic prediction is an efficient approach to capture the 

genetic variances of the traits in selection candidates in experimental population, 

especially for traits with low heritability such as flesh colour and lice resistance. 

Family-based selection method is the better choice than mass selection to accumulate 

the genetic effects in corresponding SNP platform. Given the high cost of genotyping 

and field data collection, the genotyping-by-sequencing and genotype imputation are 

likely the way to make significant improvements in relevant research.  
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1.1 Overview 

 

Selective breeding programs applied in livestock and crop species have continuously 

improved industry productivity for decades. However, only approximately 9 % of 

aquaculture production is derived from selective breeding [1]. The use of molecular 

genetic information in breeding programs has transformed livestock and crop breeding, 

and is at a relatively formative stage for a few aquaculture species. With the advances in 

nucleic acid sequencing technology and bioinformatics, a large number of studies have 

been conducted to identify the quantitative trait loci (QTLs) associated with phenotypes 

with economical and biological importance in livestock and aquaculture species [2]. Due 

to the high economic value and scientific interest of Atlantic salmon [3], the primary 

goal of this thesis was to apply several molecular and quantitative genetic approaches to 

investigate the genetic architecture and improvement of different traits of economic 

interest in commercial farmed salmon populations. 

 

1.2 Atlantic Salmon 

 

1.2.1 Atlantic Salmon (Salmo salar) and Farming 

 

Atlantic salmon (Salmo salar) is an anadromous species in the family Salmonidae, 

which was initially found in the northern Atlantic Ocean. With the migration of human 

beings and activities, Atlantic salmon were also documented in northern Pacific areas. 

Several distinct life stages are observed in this species, from eggs hatch to juveniles, 

which takes roughly one to three years in natural freshwater environment. At the smolt 

stage, salmon typically start a long distance migration, from native rivers to the ocean. 

While growing up as the grilse phase in the ocean, fish groups typically return to the 

same freshwater tributary where they were hatched, for mating and spawning (Figure 1-

1). 
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Figure 1-1. Life cycle of Atlantic salmon (Salmo Salar). The illustration was adapted 

from http://www.nefsc.noaa.gov/press_release/2011/SciSpot/SS1107/ 

 

For Atlantic salmon farming, the industry is still relatively young compared to terrestrial 

animal farming such as poultry and livestock, with the first organized salmon breeding 

programs established in the early 1970s in Norway. Data reported by Food and 

Agriculture Organization (F.A.O.) indicate that the major producing countries of 

Atlantic salmon are Norway, Chile, Canada, and Scotland, as well as minor numbers in 

Ireland, New Zealand, Australia, and the United States. Recently, aquaculture was 

recognized as the fastest growing source of animal protein production in the world 

(Table 1-1). Atlantic salmon production is a major contributor to global aquaculture, and 

the current consumption of farmed salmon is nearly three times higher than 1980s [4]. 

 



4 

 

Table 1-1. The annual production of terrestrial and aquatic farmed animals from 

2011 to 2013. This table was adapted from Gjedrem et al. [5]. 

Species Annual 

improvement 

in growth (%) 

2011 

(million tons) 

2012 

(million tons) 

2013 

(million tons) 

Aquaculture 5.7 62.7 66.3 69.6 

Pig meat 2.5 109.2 112.7 114.6 

Poultry meat 2.0 102.6 104.9 106.8 

Beef meat 0.2 67.3 67.4 67.5 

Fishing -1.8 93.5 90.6 90.1 

 

 

1.2.2 Genetic Basis of Growth Performance in Salmon 

 

For most farmed animal breeding programs, growth rate is the major criterion due to its 

economic importance, which is directly related to the profits of the industry. A higher 

growth rate is associated with a good feed conversion rate and shorter time to harvest. 

Selective breeding has been implemented to enhance the genetic improvement in growth 

performance and fillet traits in several aquaculture species since 1970s [1, 6]. A review 

written in 1980s showed that the growth traits are heritable, the heritabilities of body 

weight and length at early stage (~ 6 months) of farmed Atlantic salmon were estimated 

at approximately 0.15 to 0.17 using pedigree information, and about 0.45 at 3.5 year 

post-hatching [7].  

 

Benefitting from the availability of genomic resources in salmon and improvement of 

computing methods, trait heritabilities can be estimated using genomic-based methods in 

addition to pedigree methods. At present, the heritabilities of growth-related traits have 

been estimated at 0.5 to 0.6 in both young and adult fish by fitting genomic information 

in the animal model [8], and the genetic gain obtained for body weight in farmed 
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Atlantic salmon in a breeding program is notably high, at 12.7 % per generation [5]. The 

growth rate of individuals is considered as a part of the complex regulatory processes 

which are typically regulated by multiple controlling networks involving several genes 

and metabolic pathways. So far, there is no major or consistent QTL reported associated 

with fillet production and growth-related traits. As such, the current consensus is that 

growth traits are highly heritable, and the genetic gain is generationally increased by 

long term genetic improvement, but the traits have a highly polygenic architecture [9]. 

 

1.2.2.1 Genetic Basis of Sea Lice (Lepeophtheirus salmonis) Resistance in 

Farmed Salmon 

 

Salmon lice have caused large negative effects on both wild and farmed salmon for 

many years. There are two major species of sea louse impacting on farmed salmon in 

European areas, namely Lepeophtheirus salmonis (Kröyer, 1837) and Caligus elongatus 

(von Nordmann, 1832) (Figure 1-2), of which L. salmonis is the primary problem for 

commercial production. Caligus rogercresseyi is the major parasite of salmon in Chile 

[10]. Controlling outbreaks of these parasites is essential for the economics of salmon 

farming, and also from an animal welfare and environmental perspective. 

 

The first literature documenting the sea louse as a parasitic copepod was based on wild 

Atlantic salmon [11], and farmed salmon in Norway in 1960s [12, 13]. While in 1970s, 

sea louse was soon addressed as a major parasitic threat to commercial salmon farming 

(e.g. net cage salmon farming) [14], and has persisted and worsened in recent years [15, 

16]. 
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Figure 1-2. Outward appearance of Lepeophtheirus salmonis and Caligus 

elongatus. Credits: Lars Hamre, Sea Lice Research Centre, UIB. The illustration was 

adapted from http://www.slrc.no/about-sea-lice/what-is-a-sea-louse/ 

 

Sea lice infection can be diagnosed from the surface of fish skin; the symptoms include 

skin damage, osmotic imbalance, and increased susceptibility to other infections (e.g. 

secondary bacterial or fungal infection), as a result it can induce host immune 

suppression, slower host growth rate and even death [17]. All of these can reduce the 

gross production by approximately 5 %, while combining with relevant treatment cost, 

sea lice have caused about £25 million financial losses in Scottish salmon industry 

annually [18].   

 

Several approaches have been proposed and implemented to control sea lice disease. 

Currently, chemotherapeutant treatment is the primary way that the farmers combat 

outbreaks of sea lice, and the most widespread chemical drug for sea lice control is to 

use SLICE®  (emamectin benzoate), an avermectin drugs used as in-feed manner [13]. 
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However, frequent chemical treatment may result in certain environmental and human 

health implications, and the emergence of resistance amongst the parasites. As such, the 

usage of chemical drug has been regulated in most salmon farming countries. For 

example, in the U.K., the Scottish salmon producers are authorized to administer the 

chemical treatments with prescribed discharge consent annually for specific 

chemotherapeutants. However, chemotherapautants alone are often insufficient to 

control lice outbreaks, and alternative control measures are required to combat this 

major issue for both authorities and industries.   

 

Encouragingly, studies conducted in both sea-cage and experimental tank environment 

challenge trials demonstrate that the heritability of sea lice resistance was about 0.2 to 

0.3 [15, 19–21], implying that selective breeding can contribute to sustainable sea lice 

control. As such, breeding for improving host resistance to sea lice in farmed salmon has 

become an increasingly important component of sea lice disease control [20, 22], and is 

likely to help the industry reduce the usage and cost of chemical treatments.  

 

1.3 Atlantic Salmon Genomic Resources and Linkage 

Mapping 

 

Genetic and physical maps of the genomes of farmed animal species are essential tools 

for mapping and utilizing genetic variation underpinning traits of economic importance. 

Rather than physical maps, which the marker position is determined by the specific 

physical distance along the corresponding chromosomes, a linkage map is constructed 

based on the recombination frequencies between the molecular markers during the 

crossover of homologous chromosomes. At present, linkage maps are available in 

around fifty fish species, and most of them are aquaculture species with economic 

importance, although the density of genetic maps is typically lower than most terrestrial 

livestock and commercial crops [23]. Construction of a high density linkage map can 

improve the quality of de novo genome sequence assembly, and also assist in high 
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resolution mapping of QTLs associated with phenotypes of importance due to their 

commercial value or scientific interest [24–26]. Benefitting from the advances of next-

generation sequencing technologies and latest genotyping approaches (e.g. genotyping-

by-sequencing (GBS) and restriction site-associated DNA (RAD) sequencing), medium 

to high density genetic maps for aquatic species with commercial importance are 

increasingly available (e.g. Rainbow trout [27], Atlantic salmon [3, 26], Channel catfish 

[28], Turbot [29], Nile tilapia [30] and European seabass [31]). Amongst all aquaculture 

species, the genomic resources of Atlantic salmon are the most extensive, due to its role 

in both economic and scientific interest. Several sparse to high genetic maps were 

developed using different forms of molecular markers, including amplified fragment 

length polymorphisms (AFLPs), microsatellites, and SNPs [32–34]. In the past five 

years, large amount of SNPs in Atlantic salmon were discovered [35, 36], making high 

density genetic map become increasingly available [25, 26]. More recently, the whole 

genome assemblies of Atlantic salmon and Rainbow trout have been published [3, 27], 

offering valuable genomic resources for a wide range of evolutionary and aquaculture 

genetic research in different disciplines. 

  

1.4 Application of Genomics to Selective Breeding of 

Salmon 

 

Traditional breeding programs were based on the phenotypic performances of the 

selection candidates consisting of the genetic and environmental component [37]. 

However, there are several traits that cannot easily be measured on selection candidates 

themselves, such as disease resistance, fillet quality, and growth / survival in commercial 

environments. As such, breeders utilize the candidates‘ pedigrees, measuring relevant 

traits on individuals related to the candidates, in order to select the candidates for mating 

and breeding. However, selection relying on pedigree records still limits the accuracy of 

selection as it is not possible to distinguish between offspring from the same full-sibling 
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family, e.g. one can only utilize between-family genetic variation and not within-family 

genetic variation. 

 

In a typical commercial salmon aquaculture breeding program, the high fecundity of the 

species results in large nuclear families, comprising thousands of offspring. Therefore, 

using within-family genetic variation is critical for maximizing genetic improvement for 

key traits. With recent advances in molecular genetics, information at the DNA level 

(e.g. molecular markers) have recently been exploited in the breeding programs, in 

addition to pedigree methods. By selecting directly for favorable alleles within families, 

breeders can significantly improve genetic gain, which is known as marker-assisted 

selection (MAS). Applying molecular markers in the breeding program offers the 

potential to distinguish between full-sibs more efficiently, and can also be applied to 

traits that cannot be measured directly on the candidates.  

 

Large numbers of molecular markers have become available for certain aquaculture 

species in recent years, expedited by the development of high-throughput sequencing 

technology and bioinformatics tools. When these markers are genotyped for animals 

with performance trait records, it is possible to detect and map genes or genomic regions 

associated with target traits. For Atlantic salmon, due to its high economic value for 

aquaculture, which have been better studied than other salmonid species, and has a more 

extensive genomic toolbox [3]. Previous studies have indicated that growth and host 

resistance to disease are heritable traits [38], and several have investigated the QTLs or 

QTNs associated with growth performance [8, 39], flesh colour [9] and disease 

resistance [38, 40–42] in salmonid species. However, with the exception of the major 

QTL affecting resistance to the IPN virus, there is typically a lack of consistency for 

QTL results across studies and populations (e.g. QTLs associated with body weight).   

 

With the availability of high density SNP arrays [25, 26, 35] and recent reference 

genome assemblies [3, 27], it is now relatively straight forward to gather extensive 

genome-wide SNP genotypes in salmonids. These have enabled genome-wide 
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association studies (GWAS), whereby the association between SNPs dispersed across 

the genome, and traits of interest are tested at a population-wide level. To date, GWAS 

has been employed to understand the genetic basis of traits related to disease and growth 

performance in Atlantic salmon [16, 43–45]. The results of these studies highlight the 

genetic architecture of these production traits, and identify individual SNPs that may 

explain a small proportion of the underlying genetic variation. However, the application 

of individual SNPs associated with polygenic traits is unlikely to be of great importance 

in marker-assisted selection, due to the very small proportion of genetic variation 

explained. 

 

Genomic selection approaches are alternative means of utilizing genome-wide markers 

in modern selective breeding programs, especially for those phenotypes controlled by 

many QTLs of small effect. Rather than testing the significance of all individual SNP by 

using GWAS, genomic prediction uses information from all markers to estimate genetic 

merit of a selection candidate, aiming to increase the genetic gains per generation via 

prediction of genomic estimated breeding values [46]. Since many factors have been 

reported to affect the prediction accuracy, such as homogeneity of population [47–49] 

and relatedness between validation and training population [50, 51], several prediction 

methods have been proposed to improve the prediction accuracy in genomic prediction 

under different types of breeding programs (e.g. reviewed by [52]). However, the 

optimal models to use for genomic prediction are still under debate. Currently, most 

genomic prediction studies conducted in aquaculture species used simulated population 

data [53], but relatively few have used experimental data, partly due to high cost [22]. 

The cost of genotyping is still a barrier for industries and researchers to extensively 

study and apply genomic prediction and GWAS to aquaculture species. However, early 

results indicate that genomic prediction is a reliable way to predict the breeding values 

of traits in selection candidate in both simulation studies and experimental population in 

aquaculture research [22, 53]. As such, genomic selection is likely to be of critical 

importance to aquaculture breeding and, meanwhile, maximizing prediction accuracy 

with minimal cost for SNP genotyping is an important goal. 
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1.5 Outline of Thesis 

 

The overall aim of this thesis was to develop and utilize genomic approaches to 

understand the genetic factors associated with growth traits and host resistance to sea 

lice in farmed Atlantic salmon. Specifically, the objectives of each chapter are listed 

below, along with the corresponding manuscripts in each chapter, respectively. 

 

In chapter 2, to provide a genomic resource for trait mapping and genomic selection, I 

constructed a salmon linkage map comprising approximately 100 K SNP markers across 

the entire salmon genome, and integrated the results with the updated reference genome 

assembly (Genbank Accession GCA_000233375.4, [3]). 622 individual salmon from 62 

nuclear families were genotyped using developed Affymetrix SNP array [35]. 111,908 

SNPs passing through the quality control (QC) were retained in the linkage mapping 

analysis. The Lep-Map2 software [54] was used to assign SNPs to 29 linkage groups 

that correspond to the karyotype of European Atlantic salmon, and to estimate the most 

likely order of those QC-SNPs. Several of the previously unmapped reference genome 

contigs were anchored to possible chromosome / region by referring to the linkage 

mapping result. The recombination pattern of male and female salmon across the entire 

genome was also compared to investigate the difference between sexes. 

 

In chapter 3, I mapped QTL associated with performance and quality traits in a large 

commercial salmon population. The fish were approximately 3 years post-hatching when 

measured. The heritabilities of 12 traits recorded at harvest processing were estimated 

and compared. Due to the large disparity in recombination rate between male and female 

salmon [55], a two-step approach was employed to efficiently perform the QTL 

mapping. Firstly, the sire-based mapping was applied with sparse SNPs (2 to 3 SNPs per 

chromosome, [26]) to detect the putative QTLs associated with traits of interest. 

Secondly, the candidate chromosomes / QTLs that were detected in sire-base stage were 



12 

 

confirmed and fined the genomic position using denser SNP platform (10 SNPs per 

candidate chromosome, [26]) in dam-based mapping.  

 

In chapter 4, I applied a GWAS to evaluate the genetic association of individual SNPs 

on a high density SNP array [35] containing approximately 132 K SNPs, with body 

weight (g) and length (mm) in juvenile Atlantic salmon. The pedigreed fish population 

was around 1 year post-hatching (n = 622 including 534 offspring, 28 sires, and 60 

dams). The heritabilities of traits were estimated by genomic data and pedigree 

information respectively. Candidate genes harbouring significant SNPs evaluated by 

GWAS were identified. Secondly, I also performed genomic prediction with ascending 

marker densities (0.5 K, 1 K, 5 K, 10 K, 20 K, 33 K and 112 K) to assess the utility of 

genomic prediction for both growth traits using best linear unbiased prediction (BLUP) 

fitting genomic (GBLUP) and pedigree relationship matrix (PBLUP) respectively.  

 

In chapter 5, I extended results from chapter 3 and 4 to verify SNPs associated with 

growth in salmon. In this chapter, I addressed the concern that the significant SNPs 

identified in GWAS are likely to contain a mix of true associations and false positives in 

those polygenic growth traits. Thus, I selected two candidate SNP markers from 

genome-wide significant QTL regions (p < 0.05, chapter 3) and fourteen nominal 

significance SNPs identified by GWAS (p < 0.001, chapter 4) to verify these SNPs' 

effects on growth traits in a separate commercial population. The genes harbouring the 

significant SNPs were identified by alignment to the salmon assembly reference genome 

(GCA_000233375.4, [3]), and were discussed in the context of their potential role in 

underpinning genetic variation in salmon growth. 

 

In chapter 6, I investigated the genetic architecture of host resistance to sea louse 

(Lepeophtheirus salmonis), and tested genomic prediction approaches for this trait. Two 

pedigreed populations were sampled from 2007 (n = 621 comprising 531 offspring, 30 

sires and 60 dams) and 2010 (n = 874 comprising 588 offspring, 98 sires, and 188 dams) 

year groups, and genotyped with 132 K and 33 K genome-wide distributed SNP 
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platforms respectively. The heritability of resistance was estimated by genomic and 

pedigree relationship matrices respectively. The genetic architecture was investigated 

using a GWAS. To predict the breeding values of traits in individual underlying 

different marker densities, all SNPs (33 K) were randomly chosen to construct ascending 

low-marker-density genomic relationship matrices (20 K, 10 K, 5 K, 1 K, and 0.5 K). 

Five-fold cross validation analyses were employed in four scenarios where the degree of 

relationship between the training and validation sets varied [(i) within population 

random selection, (ii) within population full-sibling, (iii) within population non-sibling, 

and (iv) across two populations]. 

 

1.6 References 

 

1. Gjedrem T, Robinson N, Rye M: The importance of selective breeding in aquaculture 

to meet future demands for animal protein: A review. Aquaculture 2012, 350-353:117–

129. 

2. Yáñez JM, Newman S, Houston RD: Genomics in aquaculture to better understand 

species biology and accelerate genetic progress. Front Genet 2015, 6(April):128. 

3. Lien S, Koop BF, Sandve SR, Miller JR, Matthew P, Leong JS, Minkley DR, Zimin 

A, Grammes F, Grove H, Gjuvsland A, Walenz B, Hermansen RA, Schalburg K Von, 

Rondeau EB, Genova A Di, Samy JKA, Vik JO: The Atlantic salmon genome provides 

insights into rediploidization. Nature 2016, 533:200–205. 

4. F.A.O: FAO Yearbook.Fishery and Aquaculture Statistics. Rome; 2014. 

5. Gjedrem T, Robinson N: Advances by selective reeding for aquatic species: a review. 

Agric Sci 2014, 05:1152–1158. 

6. Gjedrem T: Disease Resistant Fish and Shellfish Are within Reach: A Review. J Mar 

Sci Eng 2015, 3:146–153. 

7. Trygve Gjedrem: Genetic variation in quantitative traits and selective breeding in fish 



14 

 

and shellfish. Aquaculture 1983, 33:51–72. 

8. Houston RD, Bishop SC, Hamilton A, Guy DR, Tinch AE, Taggart JB, Derayat A, 

McAndrew BJ, Haley CS: Detection of QTL affecting harvest traits in a commercial 

Atlantic salmon population. Anim Genet 2009, 40:753–5. 

9. Baranski M, Moen T, Våge DI: Mapping of quantitative trait loci for flesh colour and 

growth traits in Atlantic salmon (Salmo salar). Genet Sel Evol 2010, 42:17. 

10. Boxshall, GA; Bravo S: On the identity of the common Caligus (Copepoda : 

Siphonostomatoida : Caligidae) from salmonid netpen systems in southern Chile. 

Contrib TO Zool 2000, 69:137–146. 

11. White HC: ―Sea lice‖ (Lepeophtheirus) and death of salmon. J Fish Res Board 

Canada 1940, 5:172–175. 

12. Hastein T, Bergsjo T: The salmon lice Lepeophtheirus salmonis as the cause of 

disease in farmed salmonids. Riv Ital di Piscic e Ittiopatologia 1976, 11:3–5. 

13. Frenzl B: Understanding key factors associated with the infection of farmed Atlantic 

salmon by the salmon louse Lepeophtheirus Salmonis. PhD Degree Thesis. University of 

Stirling; 2014. 

14. Heuch PA, Bjørn PA, Finstad B, Holst JC, Asplin L, Nilsen F: A review of the 

Norwegian ―National Action Plan Against Salmon Lice on Salmonids‖: The effect on 

wild salmonids. Aquaculture 2005, 246:79–92. 

15. Gharbi K, Matthews L, Bron J, Roberts R, Tinch A, Stear MJ: The control of sea lice 

in Atlantic salmon by selective breeding. J R Soc Interface 2015, 12:0574. 

16. Correa K, Lhorente JP, Bassini L, López ME, Di Génova A, Maass A, Davidson 

WS, Yáñez JM: Genome wide association study for resistance to Caligus rogercresseyi 

in Atlantic salmon (Salmo salar L.) using a 50K SNP genotyping array. Aquaculture 

2016. In Press. 



15 

 

17. Frazer LN, Morton A, Krkosek M: Critical thresholds in sea lice epidemics: 

evidence, sensitivity and subcritical estimation. Proc R Soc B Biol Sci 2012, 279:1950–

1958. 

18. Costello MJ: The global economic cost of sea lice to the salmonid farming industry. 

J Fish Dis 2009, 32:115–118. 

19. Kolstad K, Heuch PA, Gjerde B, Gjedrem T, Salte R: Genetic variation in resistance 

of Atlantic salmon (Salmo salar) to the salmon louse Lepeophtheirus salmonis. 

Aquaculture 2005, 247:145–151. 

20. Gjerde B, Ø degård J, Thorland I: Estimates of genetic variation in the susceptibility 

of Atlantic salmon (Salmo salar) to the salmon louse Lepeophtheirus salmonis. 

Aquaculture 2011, 314:66–72. 

21. Houston, R.D., Bishop, S.C., Guy, D.R., Tinch A.E., Taggart, J.B., Bron, J.E., 

Downing, A., Stear, M.J., Gharbi, K., Hamilton A: Genome Wide Association Analysis 

for Resistance to Sea Lice in Atlantic Salmon: Application of a Dense SNP Array. In 

Proc 10th World Congr Genet Appl to Livest Prod. Vancouver; 2014:10–12. 

22. Odegård J, Moen T, Santi N, Korsvoll SA, Kjøglum S, Meuwissen THE: Genomic 

prediction in an admixed population of Atlantic salmon (Salmo salar). Front Genet 

2014, 5(November):402. 

23. Yue GH: Recent advances of genome mapping and marker-assisted selection in 

aquaculture. Fish Fish 2014, 15:376–96. 

24. Wang L, Wan ZY, Bai B, Huang SQ, Chua E, Lee M, Pang HY, Wen YF, Liu P, Liu 

F, Sun F, Lin G, Ye BQ, Yue GH: Construction of a high-density linkage map and fine 

mapping of QTL for growth in Asian seabass. Sci Rep 2015, 5:16358. 

25. Gonen S, Lowe NR, Cezard T, Gharbi K, Bishop SC, Houston RD: Linkage maps of 

the Atlantic salmon (Salmo salar) genome derived from RAD sequencing. BMC 

Genomics 2014, 15:166. 



16 

 

26. Lien S, Gidskehaug L, Moen T, Hayes BJ, Berg PR, Davidson WS, Omholt SW, 

Kent MP: A dense SNP-based linkage map for Atlantic salmon (Salmo salar) reveals 

extended chromosome homeologies and striking differences in sex-specific 

recombination patterns. BMC Genomics 2011, 12:615. 

27. Berthelot C, Brunet F, Chalopin D, Juanchich A, Bernard M, Noël B, Bento P, Da 

Silva C, Labadie K, Alberti A, Aury J-M, Louis A, Dehais P, Bardou P, Montfort J, 

Klopp C, Cabau C, Gaspin C, Thorgaard GH, Boussaha M, Quillet E, Guyomard R, 

Galiana D, Bobe J, Volff J-N, Genêt C, Wincker P, Jaillon O, Roest Crollius H, Guiguen 

Y: The rainbow trout genome provides novel insights into evolution after whole-genome 

duplication in vertebrates. Nat Commun 2014, 5:3657. 

28. Liu S, Li Y, Qin Z, Geng X, Bao L, Kaltenboeck L, Kucuktas H, Dunham R, Liu Z: 

High-density interspecific genetic linkage mapping provides insights into genomic 

incompatibility between channel catfish and blue catfish. Anim Genet 2016, 47:81–90. 

29. Wang W, Hu Y, Ma Y, Xu L, Guan J, Kong J: High-density genetic linkage 

mapping in turbot (Scophthalmus maximus L) based on SNP markers and major sex- 

and growth-related regions detection. PLoS One 2015, 10:1–16. 

30. Guyon R, Rakotomanga M, Azzouzi N, Coutanceau JP, Bonillo C, D‘Cotta H, Pepey 

E, Soler L, Rodier-Goud M, D‘Hont A, Conte M a, van Bers NEM, Penman DJ, Hitte C, 

Crooijmans RPM a, Kocher TD, Ozouf-Costaz C, Baroiller JF, Galibert F: A high-

resolution map of the Nile tilapia genome: a resource for studying cichlids and other 

percomorphs. BMC Genomics 2012, 13:222. 

31. Palaiokostas C, Bekaert M, Taggart JB, Gharbi K, McAndrew BJ, Chatain B, 

Penman DJ, Vandeputte M: A new SNP-based vision of the genetics of sex 

determination in European sea bass (Dicentrarchus labrax). Genet Sel Evol 2015, 47:68. 

32. Gilbey J, Verspoor E, McLay A, Houlihan D: A microsatellite linkage map for 

Atlantic salmon (Salmo salar). Anim Genet 2004, 35:98–105. 



17 

 

33. Moen T, Hoyheim B, Munck H, Gomez-Raya L: A linkage map of Atlantic salmon 

(Salmo salar) reveals an uncommonly large difference in recombination rate between the 

sexes. Anim Genet 2004, 35:81–92. 

34. Moen T, Hayes B, Baranski M, Berg PR, Kjøglum S, Koop BF, Davidson WS, 

Omholt SW, Lien S: A linkage map of the Atlantic salmon (Salmo salar) based on EST-

derived SNP markers. BMC Genomics 2008, 9:223. 

35. Houston RD, Taggart JB, Cézard T, Bekaert M, Lowe NR, Downing A, Talbot R, 

Bishop SC, Archibald AL, Bron JE, Penman DJ, Davassi A, Brew F, Tinch AE, Gharbi 

K, Hamilton A: Development and validation of a high density SNP genotyping array for 

Atlantic salmon (Salmo salar). BMC Genomics 2014, 15:90. 

36. Yáñez JM, Naswa S, López ME, Bassini L, Correa K, Gilbey J, Bernatchez L, Norris 

A, Neira R, Lhorente JP, Schnable PS, Newman S, Mileham A, Deeb N, Di Genova A, 

Maass A: Genomewide single nucleotide polymorphism discovery in Atlantic salmon 

(Salmo salar): validation in wild and farmed American and European populations. Mol 

Ecol Resour 2016, 16:1002–11. 

37. Falconer DS, Mackay TFC: Introduction to Quantitative Genetics. 4th edition. 

Harlow, Essex, UK.: Longmans Green; 1996. 

38. Yáñez JM, Houston RD, Newman S: Genetics and genomics of disease resistance in 

salmonid species. Front Genet 2014, 5(November):415. 

39. Boulding EG, Culling M, Glebe B, Berg PR, Lien S, Moen T: Conservation 

genomics of Atlantic salmon: SNPs associated with QTLs for adaptive traits in parr from 

four trans-Atlantic backcrosses. Heredity (Edinb) 2008, 101:381–91. 

40. Houston RD, Haley CS, Hamilton A, Guy DR, Mota-Velasco JC, Gheyas AA, Tinch 

AE, Taggart JB, Bron JE, Starkey WG, McAndrew BJ, Verner-Jeffreys DW, Paley RK, 

Rimmer GSE, Tew IJ, Bishop SC: The susceptibility of Atlantic salmon fry to 

freshwater infectious pancreatic necrosis is largely explained by a major QTL. Heredity 



18 

 

(Edinb) 2010, 105:318–27. 

41. Gheyas AA, Houston RD, Mota-Velasco JC, Guy DR, Tinch AE, Haley CS, 

Woolliams JA: Segregation of infectious pancreatic necrosis resistance QTL in the early 

life cycle of Atlantic Salmon (Salmo salar). Anim Genet 2010, 41:531–536. 

42. Gonen S, Baranski M, Thorland I, Norris A, Grove H, Arnesen P, Bakke H, Lien S, 

Bishop SC, Houston RD: Mapping and validation of a major QTL affecting resistance to 

pancreas disease (salmonid alphavirus) in Atlantic salmon (Salmo salar). Heredity 

(Edinb) 2015, 115:1–10. 

43. Sodeland M, Gaarder M, Moen T, Thomassen M, Kjøglum S, Kent M, Lien S: 

Genome-wide association testing reveals quantitative trait loci for fillet texture and fat 

content in Atlantic salmon. Aquaculture 2013, 408-409:169–174. 

44. Gutierrez AP, Lubieniecki KP, Davidson EA, Lien S, Kent MP, Fukui S, Withler 

RE, Swift B, Davidson WS: Genetic mapping of quantitative trait loci (QTL) for body-

weight in Atlantic salmon (Salmo salar) using a 6.5K SNP array. Aquaculture 2012, 

358-359:61–70. 

45. Correa K, Lhorente JP, López ME, Bassini L, Naswa S, Deeb N, Di Genova A, 

Maass A, Davidson WS, Yáñez JM: Genome-wide association analysis reveals loci 

associated with resistance against Piscirickettsia salmonis in two Atlantic salmon (Salmo 

salar L.) chromosomes. BMC Genomics 2015, 16:1–9. 

46. Meuwissen THE, Hayes BJ, Goddard ME: Prediction of Total Genetic Value Using 

Genome-Wide Dense Marker Maps. Genetics 2001, 157:1819–1829. 

47. Hayes BJ, Bowman PJ, Chamberlain AC, Goddard ME: Invited review: genomic 

selection in dairy cattle: progress and challenges. J Dairy Sci 2009, 92(2):433-43. 

48. de Roos APW, Hayes BJ, Spelman RJ, Goddard ME: Linkage disequilibrium and 

persistence of phase in Holstein-Friesian, Jersey and Angus cattle. Genetics 2008, 

179(3):1503-12. 



19 

 

49. Ibánẽz-Escriche N, Fernando RL, Toosi A, Dekkers JCM: Genomic selection of 

purebreds for crossbred performance. Genet Sel Evol 2009, 41:1–10. 

50. Clark SA, Hickey JM, Daetwyler HD, van der Werf JHJ: The importance of 

information on relatives for the prediction of genomic breeding values and the 

implications for the makeup of reference data sets in livestock breeding schemes. Genet 

Sel Evol 2012, 44:1–9. 

51. Habier D, Fernando RL, Dekkers JCM: The impact of genetic relationship 

information on genome-assisted breeding values. Genetics 2007, 177:2389–2397. 

52. Daetwyler HD, Calus MPL, Pong-Wong R, de los Campos G, Hickey JM: Genomic 

prediction in animals and plants: Simulation of data, validation, reporting, and 

benchmarking. Genetics 2013, 193:347–365. 

53. Sonesson AK, Meuwissen THE: Testing strategies for genomic selection in 

aquaculture breeding programs. Genet Sel Evol 2009, 41:37. 

54. Rastas P, Calboli FCF, Guo B, Shikano T, Merilä J: Construction of ultra-dense 

linkage maps with Lep-MAP2: stickleback F2 recombinant crosses as an example. 

Genome Biol Evol  2016. In Press. 

55. Hayes BJ, Gjuvsland A, Omholt S: Power of QTL mapping experiments in 

commercial Atlantic salmon populations, exploiting linkage and linkage disequilibrium 

and effect of limited recombination in males. Heredity (Edinb) 2006, 97:19–26. 

 

 

 

 

 



20 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



21 

 

 

 

 

 

 

Chapter 2 

Construction and annotation of a high 
density SNP linkage map of the Atlantic 

salmon (Salmo salar) genome 
 

Hsin Y. Tsai, Diego Robledo, Natalie R. Lowe, Michael Bekaert, John B Taggart,  

James E Bron and Ross D Houston 

DOI: 10.1534/g3.116.029009 

 

RDH, JEB, and JBT conceived and designed the study; NRL performed laboratory 

experiments; HYT (linkage mapping), DR (transcriptome analysis), and MB analysed 

data; HYT, DR, and RDH wrote the manuscript. 

 

This chapter has been published in G3 at the following URL: 

http://www.g3journal.org/content/6/7/2173.full 

 

 

http://www.g3journal.org/content/6/7/2173.full


22 

 

2.0 Introduction 

 

Linkage maps and a reference genome sequence are now available for Atlantic salmon. 

However, these two resources have not yet been integrated, and the major objective of 

this chapter was to build up a high density genetic map using a public available Atlantic 

salmon SNP array containing 132 K markers. Based on this map, an additional objective 

of the project was to align and integrate the results with recent high quality Atlantic 

salmon reference genome assembly. Having both a linkage map and a physical map of a 

species‘ genome is advantageous for modern genetic analysis, which will help to refine 

QTL mapping (chapter 3), identify the loci of interest using GWAS (chapter 4), perform 

the association analysis and putative gene identification (chapter 5), and more recent 

widely applied method in aquaculture breeding schemes, to build up the platform of 

SNPs for genomic selection (chapter 6). In addition, the integrated genetic map allows 

characterization of the recombination landscape of the Atlantic salmon genome, and 

comparison between the sexes. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



23 

 

2.1 Abstract 

Background 

High density linkage maps are useful tools for fine-scale mapping of quantitative trait 

loci, and characterisation of the recombination landscape of a species‘ genome. Genomic 

resources for Atlantic salmon (Salmo salar) include a well-assembled reference genome 

and high density SNP arrays. Our aim was to create a high density linkage map, and to 

align it with the reference genome assembly. 

Results 

Over 96 K SNPs were mapped and ordered on the 29 salmon linkage groups using a 

pedigreed population comprising 622 fish from 60 nuclear families, all genotyped with 

the ‗ssalar01‘ high density SNP array. The number of SNPs per group showed a high 

positive correlation with physical chromosome length (r = 0.95). While the order of 

markers on the genetic and physical maps was generally consistent, areas of discrepancy 

were identified. Approximately 6.5 % of the previously unmapped reference genome 

sequence was assigned to chromosomes using the linkage map. Male recombination rate 

was lower than females across the vast majority of the genome, but with a notable peak 

in sub-telomeric regions. Finally, using RNA-Seq data to annotate the reference genome, 

the mapped SNPs were categorised according to their predicted function, including 

annotation of ~ 2.5 K putative non-synonymous variants. 

Conclusions 

The highest density SNP linkage map for any salmonid species has been created, 

annotated, and integrated with the Atlantic salmon reference genome assembly. This 

map highlights the marked heterochiasmy of salmon, and provides a useful resource for 

salmonid genetics and genomics research. 
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2.2 Chapter Introduction 

 

Linkage maps are valuable tools for the investigation of the genetic basis of complex 

traits in farmed animal species. For several decades, linkage maps have enabled the 

mapping of quantitative trait loci (QTL), and formed the basis of attempts at positional 

cloning of these QTL in both terrestrial [1] and aquatic farmed species [2]. High 

throughput sequencing technologies have now expedited the discovery of millions of 

single nucleotide polymorphism (SNP) markers [3]. These SNPs form the basis of 

modern, high-resolution genetics studies, and underpin genomic selection for faster 

genetic improvement in terrestrial livestock and, laterally, aquaculture breeding 

programmes [4–8]. Scoring of genome-wide SNPs in large populations is achieved 

either through genotyping by sequencing [9], or by creation and application of SNP 

arrays (e.g. [10]). High density linkage maps based on these SNP datasets can aid in 

high resolution mapping of loci underpinning complex traits in farmed animals (e.g. [11, 

12]), improvements in assembly of reference sequences [13], and knowledge of the 

recombination landscape of the genome (e.g. [14, 15]). 

 

Reference genome assemblies are now available for several aquaculture species, 

including Atlantic salmon [16, 17]. Once anchored and annotated, these genome 

assemblies provide invaluable physical maps of the genome. Due to a recent whole 

genome duplication, and the relatively high frequency of long and diverse repeat 

elements [16–18], assembly of the Atlantic salmon genome has been challenging, with ~ 

22 % of the current assembly (NCBI GCA_000233375.4) yet to be assigned to 

chromosome. Salmonid species exhibit marked heterochiasmy, with males showing very 

low recombination rates across much of the genome, but with much higher 

recombination rates thought to occur in telomeric regions (e.g. [19–23]). This 

phenomenon may be related to the pairing and recombination between homeologous 

regions of the genome, particularly in males [24–26]. Several high density SNP arrays 

exist for Atlantic salmon [10, 27], and integrated linkage maps based on those arrays 

would facilitate detailed interrogation of the unusual recombination landscape. Further, 
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while the high density SNP arrays have been applied for GWAS and genomic prediction 

[7, 28, 29], such studies would be enhanced by annotation of the SNPs according to their 

genomic position, nearby genes, and their predicted effects.  

 

Therefore, the purposes of this study were: (i) to construct a linkage map of the SNPs 

contained on the publicly available high density Affymetrix Atlantic salmon SNP array 

‗ssalar01‘ [10]; (ii) to align and compare the linkage map to the latest Atlantic salmon 

reference genome assembly (Genbank assembly accession GCA_000233375.4); (iii) to 

assign previously unmapped reference genome contigs and genes to chromosomes; (iv) 

to investigate and compare patterns of male and female recombination across the 

genome; and (v) to annotate the SNPs according to their position relative to putative 

genes, including prediction of variant effects. 

 

2.3 Methods 

 

2.3.1 Animals 

 

The population used for the linkage analysis was a subset of those described in Gharbi et 

al. [30], purchased from Landcatch Natural Selection (LNS, Ormsary, UK). The juvenile 

fish used in the current study were from the 2007 year group of the LNS broodstock and 

were from 60 full sibling families (28 sires and 60 dams) comprising at least six progeny 

per family. The trial (which focussed on resistance to sea lice) was performed by Marine 

Environmental Research Laboratory (Machrihanish, UK) and under approval of ethics 

review committee in the University of Stirling (Stirling, UK). Full details of the trial and 

the population used have been described previously [28, 30, 31].  

 

2.3.2 SNP Array Genotyping 
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Genomic DNA from each sample was extracted (Qiagen, Crawley, UK) and genotyped 

for the ‗ssalar01‘ Affymetrix Axiom SNP array containing ~ 132 K validated SNPs. 

Details of the creation and testing of the SNP array are given in Houston et al. [10]. 

Details of the quality control filtering of the genotypes are given in Tsai et al. [28]. 

Briefly, the Plink software was used to filter the validated SNPs by removing individuals 

and SNPs with excessive (> 1 %) Mendelian errors, and SNPs with minor allele 

frequency (MAF) < 0.05 in this dataset. In total, 111,908 SNPs were retained for 622 

fish (534 offspring, 28 sires and 60 dams). Details of all the SNP markers are available 

at dbSNP [32] (NCBI ss# 947429275 - 947844429.). 

 

2.3.3 Linkage Analysis 

 

Lep-Map2 [33] was used to construct the linkage maps. The ‗Filtering‘ function was 

applied to the initial input dataset, with ‗MAFLimit‘ set at 0.05 (consistent with filtering 

described above), and ‗dataTolerance‘ set at 0.001 to remove markers exhibiting 

significant segregation distortion. The ‗SeparateChromosomes‘ function was applied to 

cluster markers into linkage groups, with the LOD threshold of 36 applied (chosen 

because this is the level at which 29 groups were formed, consistent with the expected 

karyotype of European Atlantic salmon). The function ‗JoinSingles‘ was applied to 

assign additional single SNPs to existing linkage groups. Subsequently, the function 

‗OrderMarkers‘ was applied to estimate the marker order within each linkage group. 

Using parallelised computing, this step was repeated several times to assess consistency 

of marker order between replicates. Sex-specific linkage maps were generated because 

of the known difference in recombination rate between male and female Atlantic salmon 

[20, 23, 34, 35]. To compare the genetic and physical maps, the flanking sequence for 

each SNP locus (35 bp either side) was aligned with the Atlantic salmon reference 

genome assembly (Genbank assembly GCA_000233375.4) [16], and only complete and 

exact matches to the reference genome (e-value = 3 x 10
-29

) were retained. In cases 

where the SNP flanking sequence aligned exactly with > 1 genomic region, the 
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alignment corresponding to the chromosome that was consistent with the linkage 

mapping of the SNP was retained. 

 

2.3.4 RNA Sequencing  

 

Atlantic salmon fry samples from two different families from the Scottish breeding 

nucleus of Landcatch Natural Selection Ltd were selected for RNA sequencing, 

corresponding to families ‗B‘ and ‗S‘ in Houston et al. [36]. Full details of the library 

preparation and sequencing are given in Houston et al. [10] (although for the current 

study, only two of the three families previously sequenced were used for assembling the 

transcriptome. This was because the third family ‗C‘ had large variation in sequence 

coverage between samples). Briefly, a total of 48 individual fry were homogenised in 5 

mL TRI Reagent (Sigma, USA) using a Polytron mechanical homogeniser (Kinemetica, 

Switzerland). The RNA was isolated from 1 mL of the homogenate, using 0.5 vol. RNA 

precipitation solution (1.2 mol/L sodium chloride; 0.8 mol/L sodium citrate 

sesquihydrate) and 0.5 vol. isopropanol. Following re-suspension in nuclease-free water, 

the RNA was purified using the RNeasy Mini kit (Qiagen, UK). The RNA integrity 

numbers from the Bioanalyzer 2100 (Agilent, USA) were all over 9.9. Thereafter, the 

Illumina Truseq RNA Sample Preparation kit v1 protocol was followed directly, using 4 

μg of RNA per sample as starting material. Libraries were checked for quality and 

quantified using the Bioanalyzer 2100 (Agilent, USA), before being sequenced in 

barcoded pools of 12 individual fish on the Illumina Hiseq 2000 instrument (100 base 

paired-end sequencing, v3 chemistry) and all sequence data were deposited in the 

European Nucleotide Archive under accession number ERP003968. 

 

2.3.5 Transcriptome Assembly  

 

The quality of the sequencing output was assessed using FastQC 

(http://www.bioinformatics.babraham.ac.uk/projects/fastqc/; version 0.11.2). Quality 

filtering and removal of residual adaptor sequences was conducted on read pairs using 
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Trimmomatic v.0.32 [37]. Specifically, residual Illumina specific adaptors were clipped 

from the reads, leading and trailing bases with a Phred score less than 15 were removed, 

and the read trimmed if a sliding window average Phred score over four bases was less 

than 20. Only paired-end reads where both sequences had a length greater than 36 bases 

post-filtering were retained. The most recent salmon genome assembly (ICSASG_v2, 

ncbi assembly GCA_000233375.4) was used as a reference for read mapping. Filtered 

reads were mapped to the genome using Tophat2 v. 2.0.12 [38] that leverages the short 

read aligner Bowtie2 v.2.2.3 [39], allowing a maximum of two mismatches.  Using 

Cuffdiff v.2.2.1 [40], the aligned reads were merged into a transcriptome assembly. The 

transcriptome was annotated against NCBI‘s non-redundant protein and nucleic acid 

databases using local Blast v.2.3.0+ [41] with a cut-off e-value of 10
-5

. The 

completeness of the salmon transcriptome was evaluated using Blast searches with a cut-

off e-value of 10
-25

 against a set of 248 core eukaryotic genes [42]. 

 

2.3.6 SNP Annotation 

 

For every gene, the most highly expressed transcript variant was selected to identify 

candidate coding regions using Transdecoder v.2.0.1 

(http://transdecoder.sourceforge.net/). Open Reading Frames (ORF) were predicted for 

every transcript, requiring a minimum of 100 amino acids (to reduce the number of 

potential false positives). All the predicted proteins were aligned against the manually 

curated UniRef90 database using local Blast v.2.3.0+ [41] with a cut-off e-value of 10
-5

, 

discarding ORFs without positive matches. Finally, the longest ORF was selected as the 

canonical protein for each transcript. The final set of coding regions was used to build a 

genome annotation file which was used to predict the functional significance of all the 

SNPs on the ‗ssalar01‘ SNP array using SnpEff v.4.2 [43].  

 

 

 

http://transdecoder.sourceforge.net/
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2.4 Results and Discussion 

 

2.4.1 Linkage Map Construction 

 

A pedigreed population of 622 individual Atlantic salmon (534 offspring, 28 sires and 

60 dams) were successfully genotyped using the high density Affymetrix SNP array 

‗ssalar01‘ [10]. SNPs were assigned to putative linkage groups and then ordered on each 

linkage group using Lep-Map2 [33]. A total of 111,908 SNPs were retained following 

QC filtering, of which 96,396 (86 %) were assigned and ordered on the 29 linkage 

groups (which correspond to the karyotype of European Atlantic salmon). The number 

of SNPs per chromosome varied from 1128 to 6080, and was positively correlated with 

the number of SNPs per chromosome in previously published Atlantic salmon SNP 

linkage maps of Lien et al. [20] (r = 0.94), and Gonen et al. [23] (r = 0.87). The flanking 

sequences of the SNPs on the linkage map were aligned to the salmon reference genome 

assembly (GCA_000233375.4) to determine their putative physical position (Additional 

File 1). There was a high positive correlation between the genetic map position and the 

reference sequence position of the SNPs (Table 2-1), and the number of SNPs per 

chromosome was dependent on chromosome sequence length (Figure 2-1). SNP density 

for the successfully genotyped and mapped markers from the ‗ssalar1‘ array is relatively 

constant across the genome, with an average of 1 SNP per ~ 23 kb in the assembled 

chromosomes, and 1 SNP per 0.05 cM (male) and 0.07 cM (female) in the full linkage 

map. 
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Figure 2-1. Comparison of the number of SNPs in corresponding chromosomes and 

physical length retrieving from recent reference assembly (Genbank assembly 

reference GCA_000233375.4). The correlation was approximately 0.95. 
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Table 2-1. The characteristics of the physical and genetic maps of the 29 Atlantic 

salmon (pairs of) chromosomes (Genbank reference GCA_000233375.4). 

        Male        Female 

Chr. SNPs 

Physical  

Length 

(MB)* 

Physical Length  

of Unassigned  

Contigs (MB)* 

Max 

(cM) 

 

Correlation
$
 

Max 

(cM) 

 

Correlation
$
 

1 6,080 159 1.6 428.8 0.97 551.3 0.98 

2 3,506 73 3.1 173.5 0.80 404.4 0.85 

3 4,013 93 2.2 332.2 0.84 467.7 0.96 

4 4,173 82 1.1 156.6 0.82 183.6 0.95 

5 3,916 81 1.9 274.4 0.91 529.9 0.93 

6 4,073 87 2.3 264.2 0.88 689.1 0.89 

7 2,875 59 1.2 183.7 0.85 249.0 0.97 

8 1,128 26 0.6 181.6 0.87 326.4 0.97 

9 4,774 142 1.7 278.8 0.77 392.2 0.81 

10 4,146 116 0.9 82.83 0.79 166.8 0.97 

11 3,953 94 2.8 166.2 0.79 291.0 0.81 

12 4,321 92 2.6 95.65 0.80 239.5 0.80 

13 4,472 108 1.3 178 0.62 213.8 0.91 

14 3,878 94 1.4 96.4 0.73 123.5 0.92 

15 4,335 104 1.9 77.34 0.64 136.9 0.91 

16 3,316 88 2.3 141.9 0.80 137.7 0.90 

17 2,607 58 2.0 171.2 0.90 307.2 0.96 

18 3,196 71 1.4 91.68 0.85 105.9 0.92 

19 3,210 83 1.5 74.49 0.76 103.2 0.90 

20 3,687 87 1.5 96.52 0.82 112.5 0.93 

21 2,355 58 0.7 93.2 0.80 159.1 0.84 

22 2,634 63 0.4 73.64 0.74 78.0 0.88 

23 2,670 50 0.6 77.53 0.65 84.4 0.96 

24 2,538 49 0.3 379 0.91 458.2 0.97 

25 2,332 51 0.7 147 0.92 175.3 0.96 

26 2,063 48 2.2 166.2 0.92 161.8 0.95 

27 2,458 44 0.4 73.31 0.72 72.6 0.91 

28 1,878 40 0.7 143.1 0.94 156.0 0.99 

29 1,809 42 0.6 70.24 0.73 76.4 0.88 

Total 96,396 2,242 41.9 4769 - 7153.2 - 

Avg 3,324 77 1.4 164.5 0.81 246.7 0.92 

 *: The physical length is taken from the latest Atlantic salmon genome assembly [Genbank reference GCA_000233375.4 [16]], and 

‗unassigned contigs‘ are those that were unplaced on the reference assembly but mapped to the chromosome in the linkage map. 
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$: The correlation between the genetic distance of SNPs (cM) on the linkage map and the physical distance (bp) according to the 

reference genome assembly. 

 

The most recent Atlantic salmon reference genome assembly (GCA_000233375.4) 

contains 2,240 MB of sequence contigs anchored to chromosomes (78 % of total 

assembly), and 647 MB of contigs that are not yet assigned to chromosome (22 % of 

total assembly). Linkage mapping was used extensively to orientate reference genome 

contigs and scaffolds, and identify putative misassemblies in the recently-published 

salmon genome paper [17]. However, those linkage maps are unpublished. In the current 

study, a total of 4,581 previously unassigned contigs comprising 41.9 MB of sequence 

were tentatively mapped to the 29 salmon chromosomes (Table 2-1, Additional File 2). 

While additional experiments would be required to confirm the correct position of these 

genome contigs, this linkage map has enabled an additional ~ 1 % of the entire reference 

genome assembly to be tentatively mapped to chromosomes, corresponding to ~ 6.5 % 

of the previously unassigned genome assembly. These contigs were spread across all 29 

chromosome pairs (Table 2-1; details given in Additional File 1). Novel potentially 

misassembled regions were also identified in the reference sequence via regions of 

discordance between the linkage and physical maps, an example of which is between ~ 

11.5 MB and 11.8 MB on Chromosome 26 (Additional File 3).  

 

There were substantial differences in the patterns of recombination between the sexes. 

The female linkage map covered 7,153 cM (ranging from 72.6 to 689.0 cM per 

chromosome) whereas the male linkage map covered 4,769 cM (ranging from 70.2 to 

428.8 cM per chromosome) (Table 2-1). Overall, the female map was ~ 1.5 × longer 

than the male map, consistent with previous Atlantic salmon SNP linkage maps [20, 23]. 

The pattern of recombination across the genome was notably different between the sexes, 

with female recombination rates being higher across much of the genome, except for 

some subtelomeric regions where male recombination was substantially higher (e.g. 

Figure 2-2). This phenomenon has been observed in several previous salmonid linkage 

maps [19–21, 23, 44], but the availability of the reference genome enables a more 

detailed investigation. Therefore, linkage and physical maps were aligned and a proxy of 
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recombination rate (number of centimorgans per megabase) was estimated at regular 

intervals on each chromosome, with each interval corresponding to 2 % of the total 

chromosome‘s physical length. The average recombination rate for each corresponding 

interval on the 29 chromosomes was calculated and graphed against the distance from 

the nearest telomere (Figure 2-3). The results highlight the phenomenon of markedly 

high male recombination in some sub-telomeric regions, on average ~ 10 × higher than 

regions of the genome nearer the middle of the chromosome (Figure 2-3). 

 

Figure 2-2. A comparison between genetic and physical maps of a representative 

chromosome (Chr 22), reflecting the recombination pattern difference between 

males and females. Details of genetic distance and physical distance for all mapped loci 

are given in Additional File 1.  
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Figure 2-3. A comparison of male and female recombination level (cM / Mb) 

graphed according to physical distance from the nearest chromosome end 

(expressed as a percentage of total chromosome size in megabases). 

 

 

2.4.2 Transcriptome Assembly and Annotation 

 

To annotate the mapped SNPs and predict their function according to their position 

relative to putative genes, an annotated reference transcriptome was created. RNA-seq of 

48 individual salmon fry yielded 927 M raw paired-end sequence reads, of which 93 % 

remained after trimming and filtering. Filtered reads were aligned to the most recent 

Atlantic salmon reference genome assembly (GCA_000233375.4; 82.2 % concordant 

pair alignment) to generate a reference transcriptome. The alignment resolved 202,009 

putative transcripts corresponding to 65,803 putative genes, consisting of 36,846 single 

transcript genes and 28,957 multi-transcript genes (Table 2-2, Additional File 4). The 

average length of the transcripts was 4,127 bp with an N50 of 5,710, an N90 of 2,323 

and > 90 % of transcripts longer than 500 bp. The assembled transcripts were annotated 

using BLASTx and BLASTn searches against the NCBI non-redundant protein and 

nucleic acid databases respectively. Of the 65,804 total putative genes, 58,416 (88.8 %) 
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showed significant similarity to known proteins, while an additional 2,732 (4.2 %) 

showed significant similarity to nucleotide entries in the NCBI non-redundant nucleotide 

database (Additional file 5). The proportion of unannotated genes was higher for the 

shorter transcript sequences (Additional file 6), but all transcripts were retained (since a 

relevant minimum size threshold was not apparent). The completeness of the 

transcriptome was evaluated against a set of 248 core eukaryotic genes described in 

Parra et al. [42] ; 247 of these genes were found in our transcriptome (BLASTn e-value 

< E10
-25

), 222 of which had at least 90 % coverage, and 153 of which were fully 

covered. A total of 53,950 identified genes were located within chromosomes on the 

Atlantic salmon genome assembly, while the remaining 11,853 were aligned to 

unassigned contigs. Of these 11,853 genes, 1,647 (13.9 %) were located in contigs 

assigned to chromosomes using the linkage map of the current study (Table 2-1; 

Additional file 7). 

Table 2-2. Summary statistics for the Atlantic salmon RNA-seq transcriptome 

assembly. 

Transcriptome assembly details Number 

Transcripts 202,009 

Genes 65,803 

Single transcript genes 36,846 

Multi-transcript genes 28,957 

Genes in assembled chromosomes 53,950 

Genes in unassigned contigs 11,853 

Average transcript length 4,127 

N50 5,710 

N90 2,323 

Transcripts > 500 bp 195,224 

Genes annotated using protein database 58,416 

Genes annotated using DNA database 2,732 
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2.4.3 SNP Annotation 

 

The RNA-seq based transcriptome described above was used to predict open reading 

frames and protein sequences in order to annotate the SNPs present on the ‗ssalar01‘ 

array (Table 2-3, Additional file 8). A total of 106,424 SNPs (95 %) matched a single 

genome location, while 2,857 SNPs matched two different genomic positions, related in 

part to the salmonid specific genomic duplication.  An additional 880 SNPs mapped to 3 

or more genome locations, indicative of repetitive elements or protein domains. It should 

be noted that filtering of SNPs during the design process for the array would have 

removed the majority of SNPs mapping to two or more locations [10]. The tentative 

annotation of all SNPs is given (Additional file 6), but only those mapping to unique 

genomic regions are described below. Of these 106,424 unique SNPs, 48,842 (45.9 %) 

were located in putative genes, with the remainder mapping to intergenic regions. Of the 

genic SNPs, the majority were in putative intronic regions (34,534 – 70.7 %), although 

483 of these were associated with splicing regions and therefore have a higher likelihood 

of being functionally relevant. The remaining genic SNPs were mapped to putative 

UTRs (8,091), with a larger amount of SNPs in the 3‘ UTR than expected (6,224 vs 

1,867 5‘UTR); and to putative exons (5,856). A total of 2,465 putative non-synonymous 

SNPs were identified, in addition to 39 SNPs predicted to cause gain / loss of start / stop 

codons, which have a high likelihood of functional consequences (Additional File 8). As 

an example, a premature stop codon was found in phospholipase D, an enzyme which 

produces the signal molecule phosphatidic acid which is also a precursor for the 

biosynthesis of many other lipids [45]. The distribution of the SNP functional categories 

across the 29 chromosome pairs is given in Table 2-4. It is important to note that these 

predicted SNP effects will contain a proportion of false positives due to inevitable errors 

in the predicted structure of the genes. Nonetheless, their annotation combined with their 

linkage and physical mapping provides a valuable resource for users of the high density 

‗ssalar01‘ array in particular, and for salmonid genomics researchers in general.  
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Table 2-3. Predicted numbers, location and effect of the mapped SNPs according to 

their position on the annotated reference genome. 

Summary of annotated SNPs 

Intergenic 57,582     

Genic 48,842 UTR 8,091 5‘ 1,867 

3‘ 6,224 

Intron 34,534 Splice region 483 

Non splice region 34,051 

Exon 5,856 Synonymous 3,352 

Non-synonymous 2,465 

Gain or loss of start / stop codon 39 
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Table 2-4. Number of predicted genes and functional categories of SNPs split 

according to chromosome. 

Genes and SNPs per chromosome 

Chromosome Genes Exonic SNPs Intronic SNPs 
UTR 

SNPs 
Intergenic SNPs 

 

1 3,507 181 877 206 4,717 
 

2 2,711 222 1,116 284 1,630 
 

3 2,741 225 1,209 312 2,026 
 

4 2,255 246 1,301 309 2,066 
 

5 2,286 220 1,184 299 2,030 
 

6 2,441 217 1,286 312 2,006 
 

7 1,526 152 928 192 1,455 
 

8 875 44 335 67 525 
 

9 3,062 244 1,415 374 2,563 
 

10 2,568 217 1,341 300 2,140 
 

11 2,308 162 1,168 249 2,207 
 

12 2,672 268 1,398 349 2,088 
 

13 2,524 276 1,516 328 2,181 
 

14 2,343 236 1,154 314 2,034 
 

15 2,400 271 1,415 294 2,138 
 

16 2,205 193 1,003 253 1,721 
 

17 1,770 144 744 206 1,307 
 

18 1,767 142 1,041 205 1,654 
 

19 1,694 125 1,013 203 1,743 
 

20 2,072 211 1,093 257 1,830 
 

21 1,056 129 700 160 1,252 
 

22 1,398 153 811 189 1,416 
 

23 1,138 142 863 192 1,400 
 

24 1,040 146 860 187 1,238 
 

25 1,032 113 585 133 1,431 
 

26 1,372 102 606 128 1,082 
 

27 1,096 129 828 195 1,221 
 

28 912 92 593 147 992 
 

29 821 88 598 120 937 
 

Total 55,592 5,090 28,981 6,764 51,030  

Avg 1,917 176 999 233 1,760  
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2.5 Chapter Conclusions 

 

A linkage map comprising > 96 K SNPs from the ‗ssalar01‘ array was created, annotated 

and integrated with the reference genome assembly. This represents the highest density 

SNP linkage map for any salmonid species. Alignment of the linkage and physical maps 

revealed good agreement between genetic map, and the mapping allowed a further circa 

1 % of the salmon reference genome assembly to be tentatively assigned to 

chromosomes. Marked heterochiasmy was observed, with male recombination rate 

substantially lower than females across much of the genome, but with a notably high 

level in some sub-telomeric regions. Finally, the mapped SNPs were annotated and 

categorised according to their predicted function. The map will be another useful 

resource for salmonid genomics research. 
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2.6 Conclusions 

 

In this chapter, I successfully constructed a high density genetic map comprising 

approximately 100 K SNPs across 29 linkage groups. The results characterized the 

unique recombination landscape in male and female salmon, and also assigned 6.5 % of 

previously unmapped reference genome to genomic regions in corresponding 

chromosomes. This new map provides valuable genetic information to investigate the 

loci or QTLs associated with target traits that are studied in later chapters. Specifically, 

the linkage map integrated with the physical map will help to accurately select markers 

for QTL mapping, loci and gene identification associated with the traits studied, and 

SNP panel construction used for routine genomic selection breeding program. The 

outcomes of these analyses will be discussed in later chapters, including chapter 3 to 

chapter 6.  
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2.7 Additional Files 

 

Additional file 1. Details of the linkage map of the 29 chromosomes. The file 

includes SNP IDs, their position on the linkage map (cM), their position on the reference 

genome (contig ID and position in bp), the flanking sequence and the two SNP alleles. 

There are separate sheets for each of the 29 chromosomes. Link: https://goo.gl/LoNajr 

 

Additional file 2. Unassigned genome contigs. The position of each of the previously 

unassigned reference genome contigs (Genbank assembly reference GCA_000233375.4, 

[16]) on the 29 linkage groups. Link: https://goo.gl/9Jq1Si 

 

Additional file 3. Potential misassembly in reference genome. A graph of the linkage 

map versus the physical map for the first 20 MB of chromosome 26, highlighting a 

potential misassembly of a region between 11.5 and 11.8 MB. 

 

 

Additional file 4. Reference transcriptome sequence (fasta). All the sequences of the 

Atlantic salmon transcriptome in fasta format. Link: https://goo.gl/StCveN  

 

Additional file 5. Reference transcriptome annotation. The position of every putative 

gene in the genome (chromosome or scaffold, start and end positions, and DNA strand), 

https://goo.gl/LoNajr
https://goo.gl/9Jq1Si
https://goo.gl/StCveN
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length in base pairs and annotation against NCBI‘s databases (description of the best 

match, e-value and similarity) are shown. Link: https://goo.gl/jgHkat 

 

Additional file 6. Length distribution of annotated and unannotated genes. Length 

distribution (bin width = 100bp) for the annotated and unannotated genes of the 

transcriptome.  

 

 

Additional file 7. Number of previously unmapped genes assigned to chromosomes 

using the linkage map. Number of unmapped genes (placed in previously unassigned 

genome contigs), assigned to each Atlantic salmon chromosome using the linkage map. 

Link: https://goo.gl/89fjDL 

 

Additional file 8. SNP annotation. The position of each SNP in the Atlantic salmon 

genome, the SNP-array ID, the genomic and the alternative variants, the effects of the 

alternative variant and, if applicable, the affected protein, gene and its annotation are 

shown. In some cases two different genes / proteins are affected by the SNP due to them 

being overlapping and transcribed from different DNA strands. SNPs aligning with more 

https://goo.gl/jgHkat
https://goo.gl/89fjDL


43 

 

than one region of the genome assembly are given in separate worksheets. Link: 

https://goo.gl/kyvSOe 
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3.0 Introduction 

 

Growth traits are likely to be polygenic in nature, but highly heritable, compared with 

disease resistance traits. Previous literature indicates that QTLs affecting growth 

phenotypes in salmon vary between different populations. The main objectives of this 

chapter were to characterize the genetic basis of growth traits in a large (n = ~5000) 

commercial farmed salmon population containing 198 full-sibling families, and to 

estimate the heritabilities of growth and muscle-related traits, and to map the QTLs 

using two-stage QTL mapping analysis. The advantages of a two-stage QTL mapping 

applied in salmon breeding is primarily because of the large recombination ratio 

difference between male and female salmon, which has been characterized in their 

linkage maps described in chapter 2. Initially, the lower recombination rate in male 

salmon can provide relatively higher power and lower genotyping cost to identify the 

potential QTLs and linkage groups of interest in sire-based analysis. Subsequently, the 

QTLs of target will be confirmed using additional molecular markers aiming to aid the 

QTL mapping resolution using dam-based analysis. Finally, the findings of this chapter 

can help to understand the genetic basis of growth traits, not only in fish production via 

salmon farming, but also in evolutionary and conservation biology in salmonids, as the 

QTL mapping results will be compared with other closed species (e.g. rainbow trout 

(Oncorhynchus mykiss)). 
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3.1 Abstract 

Background 

Performance and quality traits such as harvest weight, fillet weight and flesh color are of 

economic importance to the Atlantic salmon aquaculture industry. The genetic factors 

underlying these traits are of scientific and commercial interest. However, such traits are 

typically polygenic in nature, with the number and size of QTL likely to vary between 

studies and populations. The aim of this study was to investigate the genetic basis of 

several growth and fillet traits measured at harvest in a large farmed salmon population 

by using SNP markers. Due to the marked heterochiasmy in salmonids, an efficient two-

stage mapping approach was applied whereby QTL were detected using a sire-based 

linkage analysis, a sparse SNP marker map and exploiting low rates of recombination, 

while a subsequent dam-based analysis focused on the significant chromosomes with a 

denser map to confirm QTL and estimate their position. 

 

Results 

The harvest traits all showed significant heritability, ranging from 0.05 for fillet yield up 

to 0.53 for the weight traits. In the sire-based analysis, 1,695 offspring with trait records 

and their twenty sires were successfully genotyped for the SNPs on the sparse map. 

Chromosomes 13, 18, 19 and 20 were shown to harbor genome-wide significant QTL 

affecting several growth-related traits. The QTL on chr. 13, 18 and 20 were detected in 

the dam-based analysis using 512 offspring from ten dams and explained approximately 

6 – 7 % of the within-family variation in these traits. 

 

Conclusions 

We have detected several QTL affecting economically important complex traits in a 

commercial salmon population. Overall, the results suggest that the traits are relatively 

polygenic and that QTL tend to be pleiotropic (affecting the weight of several 

components of the harvested fish). Comparison of QTL regions across studies suggests 

that harvest trait QTL tend to be relatively population-specific. Therefore, the 

application of marker or genomic selection for improvement in these traits is likely to be 
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most effective when the discovery population is closely related to the selection 

candidates (e.g. within-family genomic selection). 
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3.2 Chapter Introduction 

 

Traditional selective breeding has rapidly improved economically important traits in 

aquaculture species, such as growth and disease resistance in aquaculture species [1]. 

Atlantic salmon have been more extensively studied than most other aquaculture species  

due to its high economic value and the significant scientific interest in salmonid species 

[2]. However, the genetic factors affecting some complex traits of economic importance, 

such as size, morphology and composition, are not yet well known. The limitations to 

detecting and defining these genetic factors may include a previous lack of genomic 

resources, the polygenic nature of the traits in question, and the relatively recent whole 

genome duplication (e.g. [3, 4]) in the salmonid lineage.  

 

Genomic resources for salmonids are rich in comparison to most aquacultural species 

[5]. Benefitting from the development of next generation sequencing (e.g. [6]), abundant 

genetic markers have been discovered in most salmonid species (e.g. [7–10]). Many 

other genomic resources and salmonid-specific databases are available, e.g. the 

Genomics Research on All Salmon (GRASP, http://web.uvic.ca/grasp/) and SalmonDB 

(http://salmondb.cmm.uchile.cl/). Furthermore, the genomes of rainbow trout [3] and 

Atlantic salmon [2] have been sequenced and assembled, which provide reference 

sequences for genomic studies of these and other salmonid species [11].   

 

Understanding the genetic basis of phenotypic variation is a fundamental goal of 

biological research. Quantitative genetic analysis has been widely used to apportion 

variation in the traits of interest into genetic and environmental factors [12]. A further 

goal is to ascertain the genetic architecture of these traits, and quantitative trait loci 

(QTL) mapping is useful for this purpose. This approach has been widely applied in 

most farmed animal and plant species to improve genetic breeding programs [13–16]. To 

date, QTL mapping relating to the growth performance of farmed salmonid species have 

been undertaken in Atlantic salmon [17–21], Coho salmon [22, 23], Arctic char [24], 

Chinook salmon [25] and Rainbow trout [26, 27]. The loci associated with these 

http://web.uvic.ca/grasp/
http://salmondb.cmm.uchile.cl/
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apparently polygenic growth traits tend to vary between studies, which may reflect 

population differences or gene by environment interaction.  

 

Traits of economic interest in aquaculture species include those pertaining to the 

efficient production of high quality fillets. As such, overall growth rate is important, 

alongside the relative proportion of particular components of the fish (fillet, guts, and 

head, etc.). Ultimately, fillet weight is a key economic trait, and variation in this 

characteristic significantly depends on the proliferation and composition of white and 

red muscle. Muscle cell development and proliferation are part of a complex regulatory 

process and intricately linked with the development of the skeleton. These processes are 

typically controlled by networks involving many genes and biological pathways [28]. As 

such, a polygenic architecture of variation in this trait may be expected. Previous studies 

have shown that the less desirable parts of Atlantic salmon (e.g. head weight and 

vertebral weight) have a significant positive correlation with desirable traits such as 

harvest and fillet yields [29]. By detecting and selecting haplotypes at specific QTL, it 

may be possible to improve the proportion of fillet within the fish for any given growth 

rate (albeit caution should also be applied to ensure overall wellbeing and robustness of 

the fish).  

 

The objective of this study was to detect and characterize QTL affecting growth and 

fillet characteristics in farmed salmon, using SNP markers genotyped in several large 

families reared under commercial aquaculture conditions. Due to the lower 

recombination rate observed throughout much of the genome in male salmon, compared 

to female salmon [30], the efficiency of QTL detection is increased by using a two stage 

analysis. In this strategy, QTL are first detected in a sire analysis using few markers per 

chromosome, and the chromosomes harbouring significant QTL are then genotyped for 

additional markers and analysed using dam mapping parents. Here, we use this approach 

with the overall target of improving understanding of the genetic regulation of growth 

and fillet characteristics in Atlantic salmon, and providing candidate regions for 
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potential application in marker-based selection to capture within-family variation in 

these traits. 

 

3.3 Methods 

 

3.3.1 Animals and Phenotype Measurement 

 

A commercial salmon population comprising 198 full-sibling families derived from 136 

sires and 198 dams (Landcatch Natural Selection, Ormsary, UK) was utilized in this 

experiment. Details of this population have been previously published [31–33]. Briefly, 

approximately 5,000 fish were harvested at ~ 3 years of age and measured for overall 

and component weight traits: harvest weight (kg), gutted weight (kg), deheaded weight 

(kg), fillet weight (kg), gutted yield (%), fillet yield (%), head weight (kg), gut weight 

(kg), body waste weight (kg) and total waste weight (kg), fat percentage [% as estimated 

using a Torry Fatmeter (Distell Ltd, Aberdeen, Scotland)]; and fillet color [assessed 

visually using the Roche SalmoFan scale (Hoffmann-La Roche, U.K.), ranging from 20 

(Yellow) to 34 (Red)]. Details of trait measurements at harvest are given in Powell et al. 

[29]. A fin clip sample of each fish was retained for DNA extraction. All animals were 

reared and harvested in accordance with all relevant national and EU legislation 

concerning health and welfare. Landcatch are accredited participants in the RSPCA 

Freedom Foods standard, the Scottish Salmon Producers Organization Code of Good 

Practice, and the EU Code-EFABAR Code of Good Practice for Farm Animal Breeding 

and Reproduction Organizations. The traits of fat percentage and gut weight were log10 

transformed to approximate a normal distribution. Two generation pedigree records were 

available for all fish and the sex of the offspring was not observable at harvest and 

processing. Heritability estimates for some of the traits have been estimated previously 

in the larger population from which the QTL families were sampled [31, 32]. For gut, 

head, waste and total waste weight, the polygenic heritability was estimated in this larger 

population using a simple animal model, Yij = μ + Ai + eij, where Yij is the trait value 
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measured in the individual i, μ is the overall mean value of the trait, Ai is the additive 

genetic effect of the individual based on the pedigree information and eij is the residual 

error. The heritability for each of the traits was estimated using the above model, and the 

procedure was described in Tsai et al. [32]. 

 

3.3.2 SNP Marker Selection and Genotyping 

 

To account for the large differences in recombination rate between male and female 

salmon, a two-stage QTL detection and mapping strategy was employed [30, 34]. Stage 

1 used sire mapping parents (low recombination), with few markers per chromosome to 

detect chromosomes containing putative QTL. Stage 2 used dam mapping parents, with 

a denser marker coverage, to confirm QTL on significant chromosomes and estimate 

QTL position. For stage 1, the twenty sires in the population with the most progeny were 

chosen for analysis (total n = 1,695). The sparse panel of SNP markers described in 

Gonen et al. [35], largely taken from Moen et al. [36], were provided to LGC Genomics 

(Herts, U.K.) for the design of Kompetitive Allele Specific PCR (KASP) assays (see 

details at http://www.lgcgroup.com/products/kasp-genotyping-chemistry/kasp-technical-

resources/#.VVUKo_1waM8) for genotyping. From these, a total of 51 informative 

SNPs, with one to three SNPs per chromosome, were genotyped in all 1,695 offspring 

(Table S1). Stage 2 aimed to confirm the QTL detected in stage 1 and to estimate their 

position on the chromosome. Therefore, stage 2 focused on three putative QTL-

containing chromosomes (chr. 13, 18, and 20) detected in stage 1. Thirty additional 

segregating SNP markers (Table S1) [9] were chosen to be  positioned at regular (~ 10 

cM) intervals across the candidate chromosome according to published linkage maps. As 

such, it was anticipated that this marker density would be sufficient to estimate 

approximate position of QTL on chromosomes. These SNPs were selected for 

genotyping in the ten dams with the largest number of offspring. A total of ten, eight and 

eight informative SNPs from chr. 13, 18 and 20 respectively were genotyped in the 512 

offspring of these dams (which were a subset of the offspring genotyped offspring in 

stage 1).  
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3.3.3 Linkage and QTL Mapping 

 

Sex-specific genetic maps were constructed using Crimap version 2.4 [37]. The 

‗prepare‘ option was used to create the input files (markers had previously been assigned 

to linkage groups based on a LOD score of > 4.0), followed by the ‗build‘ option to 

estimate marker order, and ‗fixed‘ option to estimate the map distance between the 

markers. Where relevant, the ‗flipsn‘ option was used to test different order 

permutations and determine the most likely marker order.  

 

For both sire and dam based QTL detection, a two stage linear regression-based linkage 

analysis was performed using the GridQTL software [38]. The conditional probability of 

inheriting a particular haplotype from the sire or dam was inferred from the marker 

genotypes in all offspring, at 1 cM intervals. Subsequently, the trait value was regressed 

on the probability that a particular haplotype allele was inherited from the sire (stage 1) 

or the dam (stage 2). At each genomic location, the model containing a single QTL is 

compared to a model with no QTL resulting in an F Ratio statistic. The chromosome-

wide significance thresholds for each trait were computed by permutation using 10,000 

iterations per chromosome. With 29 chromosomes, the expected number of false 

positive was 1.45 at the 5 % significance threshold, and 0.29 at the 1 % significance 

threshold per genome scan respectively. The genome-wide thresholds were determined 

by applying the Bonferroni correction [39] to 29 independent chromosomes. In addition, 

in the stage 2 dam-based analysis, the confidence intervals for the QTL were estimated 

using bootstrapping with 10,000 permutations. In order to estimate the size of the effect 

of the significant QTL on the traits, the within-family variation explained by the QTL 

(PVE) was calculated using the following equation: h
2

QTL = 4[1-(MSEfull / MSEreduced)] 

for sire-based analysis. For the dam-based analysis, because the dams were nested 

within sires (full-sibling families), the estimated equation was revised to h
2

QTL = 2[1-

(MSEfull / MSEreduced)], where the MSEfull is the mean square error of the performed 

model including the QTL and MSEreduced is the model including the family mean only.  
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For traits related to the component weights of the fish, the QTL analyses were repeated 

including harvest weight as a covariate in the analysis. This was done to assess and 

distinguish QTL associated with an overall growth effect on the fish, versus QTL 

associated with proportional growth of specific components (e.g. fillet and waste, etc.). 

 

3.4 Results 

 

Trait records of 1,695 offspring derived from twenty sire families were obtained from a 

larger dataset of ~ 5,000 salmon measured at harvest (~ 3 years old). The heritability of 

the weight traits was significant and consistent with previous estimated (h
2
 = 0.52 to 

0.53). For the traits not previously analysed in this population (i.e. gut, head, waste and 

total waste weight) the heritabilities ranged from 0.15 to 0.32. Summary statistics from 

the QTL-mapping offspring and population-wide estimates of heritability for these traits 

are given in Table 3-1-a. The weight traits showed a high phenotypic and genetic 

correlation (Table 3-1-b) and fitting overall harvest weight as a covariate in the animal 

model reduced the estimated h
2
 for the component traits to 0.02 – 0.05 (although these 

were still significantly different from zero).  
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Table 3-1-a. Summary statistics and heritabilies for the phenotypes used in this 

study. 

Trait Sample Size
†
 Mean (SD) Heritability (SE) [29]  

Harvest Weight 1524 2.57 (0.63) 0.52 (0.05) 

Gutted Weight 1616 2.35 (0.58) 0.53 (0.05) 

Gutted Yield 1447 0.92 (0.02) 0.04 (0.01) 

Deheaded Weight 1604 2.06 (0.52) 0.52 (0.05) 

Fillet Weight 1516 1.70 (0.42) 0.53 (0.05) 

Fillet Yield 1363 0.66 (0.04) 0.05 (0.02) 

Fat Percentage 1679 12.2 (5.58) 0.18 (0.03) 

Fillet Colour 1322 29.0 (0.73) 0.14 (0.03) 

Head Weight 1475 0.32 (0.08) 0.21 (0.03)* 

Gut Weight 1447 0.42 (0.08) 0.30 (0.04)* 

Body Waste Weight 1426 0.33 (0.12) 0.15 (0.02)* 

Total Waste Weight 1422 0.65 (0.17) 0.32 (0.04)* 

 

Gut weight (kg) = harvest weight - gutted weight; Head weight (kg) = gutted weight - 

deheaded weight.  

Waste weight (kg) = deheaded weight - fillet weight (weight of vertebrae and caudal 

fin); Total waste weight (kg) = head weight + body waste weight. 

*: The heritability was estimated in this study and the used population was the same as 

Tsai et al. [32]. 

 †
: Only the number of individuals used in the calculation is shown, after removal of 

missing data. 

 

In total, 51 SNP markers dispersed over all 29 chromosomes were successfully 

genotyped in the parents and offspring. In the sire-based QTL mapping analysis, a total 

of 13 chromosomes showed suggestive evidence for a QTL (chromosome-wide p < 

0.05), while four chromosomes showed a significant effect on growth-related traits at the 

genome-wide leve1 (chr. 13, 18, 19, and 20; Table 3-2, Figure
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The QTL typically affected several of the weight measurements and, given the high 

phenotypic correlations between these traits (r ~ 0.97-1.00), it is plausible that these 

results reflect single pleiotropic QTL on each chromosome, rather than distinct linked 

QTL. Interestingly, when harvest weight was fitted as a covariate (as a proxy for an 

overall measure of growth), the QTL affecting the component traits on chr. 18, 19 and 

20 were no longer significant, suggesting these QTL affect overall growth of the fish. In 

contrast, on chr. 13, most of the QTL effects for the component traits remained after 

fitting the covariate, suggesting putative proportional differences in the growth of 

components of the fish. In addition, four new QTLs (chr. 12, 22, 23, and 25) reached 

chromosome-wide significance in the sire-based analysis with the inclusion of harvest 

weight as a covariate in the analysis (Table 3-2). The proportion of within-family 

phenotypic variance explained (PVE) varied between 8 and 10 % for the genome-wide 

significant QTL in the sire-based analysis, suggesting QTL of moderate but not large 

effect in this population.  

 

Three of the genome-wide significant QTL in the sire-based analysis (chr. 13, 18, and 

20) were tested in a dam-based analysis using 512 offspring from ten dams, and a denser 

SNP marker map of the significant chromosomes (Table S1). The genome-wide 

significant QTL affecting gutted, deheaded and total waste weight on chr. 20 was 

confirmed in the dam-based analysis and mapped to a best estimated position of 21, 19 

and 14 cM respectively, although the 95 % confidence intervals encompassed the entire 

linkage map for this chromosome (Table 3-3). The evidence for QTL on chr. 13 and 18 

was not as strong in the dam-based analysis, with only gut weight (chr. 13) and gutted 

weight (chr. 18) showing chromosome-wide significance (in the analysis with harvest 

weight included as a covariate).    
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Figure 3-1. The distribution of PVE according to chromosome in the sire-based 

analysis for the representative weight trait of gutted weight. Gray represents the 

chromosome showing genome-wide significance (p < 0.05) in sire-based analysis. 

Chromosome 20 also showed chr-wide significance in dam-based analysis (p < 0.05).  

 

For the chr. 20 QTL, there were three sires and three dams segregating for a QTL 

affecting at least one weight trait, and the average size of the allelic substitution effect 

for deheaded weight of the salmon in segregating parents was consistent across all 

segregating parents, with an average effect of 620 grams (Table 3-4).  
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Table 3-1-b. Genetic and phenotypic correlation of traits using in this study.  

                     Genetic 

Phenotypic 

Harvest 

Weight 

Gutted 

Weight 

Gutted 

Yield 

Deheaded 

Weight 

Fillet 

Weight 

Fillet 

Yield 

Fat 

Percentage 

Fillet 

Colour 

Gut 

Weight 

Head 

Weight 

Body 

Waste 

Weight 

Total 

Waste 

Weight 

Harvest Weight - 1.00 0.16 1.00 1.00 0.35 0.84 -0.17 -0.96 0.97 1.00 0.98 

Gutted Weight 1.00 - 0.19 1.00 1.00 0.33 0.83 -0.20 -0.95 0.98 0.99 0.99 

Gutted Yield -0.02 0.06 - 0.19 0.20 0.53 0.05 -0.27 0.13 0.08 0.06 0.09 

Deheaded Weight 0.98 0.98 0.06 - 0.99 0.37 0.83 -0.19 -0.95 0.97 1.00 0.98 

Fillet Weight 0.97 0.97 0.05 0.97 - 0.41 0.82 -0.20 -0.95 0.95 1.00 0.98 

Fillet Yield 0.02 0.06 0.31 0.08 0.27 - 0.21 -0.15 -0.21 0.09 0.23 0.19 

Fat Percentage 0.41 0.41 0.04 0.41 0.42 0.07 - -0.19 -0.82 0.76 0.84 0.80 

Fillet Colour -0.08 -0.08 -0.02 -0.07 -0.08 0.03 -0.06 - 0.10 -0.24 -0.13 -0.12 

Gut Weight -0.77 -0.72 0.56 -0.71 -0.72 0.12 -0.30 0.05 - -0.94 -0.99 -0.96 

Head Weight 0.61 0.62 0.04 0.47 0.92 -0.09 0.21 -0.11 -0.45 - 0.99 1.00 

Body Waste Weight 0.62 0.61 0.09 0.63 0.41 -0.65 0.25 -0.04 -0.42 0.63 - 1.00 

Total Waste Weight 0.83 0.83 0.08 0.83 0.67 -0.48 0.31 -0.07 -0.59 0.88 0.93 - 
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Table 3-2. Results of sire-based QTL mapping analysis and proportion of phenotypic variance explained by each chromosome. 

 Harvest 

Weight 

Fillet Weight Gutted Weight Deheaded Weight Fillet Yield 

    covariate$  covariate$   covariate$   covariate$ 

Chr F ratio PVE F ratio PVE F ratio PVE F ratio PVE F ratio PVE F ratio PVE F ratio PVE F ratio PVE F ratio PVE 

1 - - 1.88* 0.047 - - - - - - - - - - - - - - 

6 - - - - - - 1.96* 0 - - - - - - 1.90* n.a.† 1.89* n.a.† 

7 - - - - - - 2.03* 0.057 - - 2.07* 0.06 1.79* 0.037 - - - - 

9 - - 2.04* 0.055 - - 2.12* 0.056 - - 2.26* 0.062 - - - - - - 

10 - - 2.08* 0.053 - - - - - - - - - - - - - - 

11 2.10* 0.065 2.27* 0.077 2.26** 0.071 1.96* 0.055 - - 1.91* 0.052 - - 2.32* n.a.† 2.31** n.a.† 

12 - - - - - - - - - - - - 2.05* 0.078 - - - - 

13 2.49** 0.074 2.53** 0.075 1.90* 0.07 2.78** 0.083 - - 2.67** 0.08 1.81* 0.034 2.37* n.a.† 2.37** n.a.† 

15 2.12* 0.076 - - - - 2.24* 0.077 - - 2.43* 0.091 - - - - - - 

16 2.23* 0.06 - - - - 2.06* 0.048 - - 2.19* 0.055 - - - - - - 

17 2.22* 0.082 2.47* 0.096 - - 2.10* 0.069 - - 2.37* 0.085 - - - - - - 

18 2.59** 0.083 2.76** 0.092 - - 2.89** 0.092 - - 2.82** 0.089 - - - - - - 

19 2.00* 0.05 2.62** 0.078 - - 2.00* 0.046 - - 2.00* 0.049 - - - - - - 

20 2.66** 0.09 2.42* 0.077 - - 2.76** 0.087 - - 2.76** 0.09 - - - - - - 

21 - - - - - - 1.72* 0.034 1.89* 0.114 - - - - - - - - 

22 - - - - - - - - - - - - 1.95* 0.063 - - - - 

23 - - - - 1.86* 0.033 - - - - - - - - - - - - 

24 2.52* 0.068 2.58* 0.07 - - 2.66* 0.07 2.45* n.a.† 2.84* 0.079 2.56* 0.066 - - - - 

27 1.77* 0.039 - - - - - - - - - - - - - - - - 

28 1.88* 0.043 - - - - - - - - - - - - - - - - 

29 - - 1.97* 0.06 - - 2.31* 0.078 - - 2.32* 0.079 - - - - - - 
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Table 3-2. Continued. 

 Head Weight Gut Weight Body Waste 

Weight 

SalmoFan  

Scale 

Total Waste Weight 

   covariate$   covariate$       covariate$ 

Ch

r 

F ratio PVE F ratio PVE F ratio PVE F ratio PVE F ratio PVE F ratio PVE F ratio PVE F ratio PVE 

1 1.76* 0.07 - - - - - - - - - - 1.80* 0.068 - - 

3 - - - - - - - - - - 2.30* 0.088 - - 3.20** 0.154 

6 2.12* 0.074 - - - - - - - - - - 2.05* 0.078 - - 

7 - - - - 1.73* 0.044 1.72* 0.048 2.01* 0.063 - - 2.49* 0.075 - - 

9 2.05* 0.07 - - - - - - - - - - - - - - 

11 1.96* n.a.† - - - - - - - - - - - - 2.00* 0.099 

13 2.72** 0.072 - - - - - - - - - - 2.44* 0.046 1.91* 0.052 

16 - - - - 1.98* 0.044 - - - - - - - - - - 

17 - - - - 2.16* 0.093 - - - - 2.11* 0.085 - - - - 

18 2.11* 0.069 - - - - - - - - - - 1.88* 0.047 - - 

19 2.49** 0.068 - - - - - - - - - - 2.22* 0.033 - - 

20 2.02* 0.067 - - 2.19** 0.063 - - - - - - 1.99* 0.048 - - 

21 - - 1.72* n.a.† - - - - 1.85* 0.03 - - 1.76* 0.046 - - 

22 - - 1.90* 0.4 - - - - - - - - - - - - 

24 2.24* 0.068 - - 3.03** 0.094 3.13** 0.126 - - - - - - - - 

25 - - 1.97* 0.4 - - - - - - 2.04* 0.067 - - - - 

*: chromosome-wide significance at p<0.05 ; **: genome-wide significance at p<0.05; PVE: proportion of phenotypic variance for half-sib analysis  

†
: Due to the MSEfull value being equal to MSEreduced.   

$: Harvest weight was fitted as covariate. 
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Table 3-3. Results of dam-based QTL mapping analysis and proportion of phenotypic variance explained for significant 

trait/chromosome combinations.   

 

*:chromosome-wide significance at p < 0.05; 
†
:
 
 QTLs found in the analysis fitting harvest weight as covariate.      

PVE: proportion of phenotypic variance for full-sib analysis.  

 

 

 

 

 

 

 

 

Chr Trait Dam F-ratio PVE Average QTL  

position (cM) 

95% C.I.   

for QTL Position (cM) 

20 Gutted Weight 2.48* 0.06 20.8 0.0 - 43.0 

 Deheaded Weight 2.71* 0.07  19.4 

Total Waste Weight 2.35* 0.06 14.0  

Body Waste Weight 2.18* 0.06 12.4  0.0 - 40.0  

13
†
 Gut Weight 2.49* 0.07 42.0 0.0 - 64.0 

18
†
 Gutted Weight 2.62* 0.07 20.2 0.0 - 39.0 
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Table 3-4. The QTL effect on growth traits and associated absolute T values in segregating individual parents for the 

significant QTL at chr. 20.  

Sire-based analysis Traits QTL effect estimate (SE)* (g)  Absolute T value 

J9L2M0088 Harvest Weight -580 (170) 3.43 

 Fillet Weight -430 (110) 4.01 

 Gutted Weight -650 (150) 4.41 

 Deheaded Weight -580 (130) 4.41 

 Head Weight -80 ( 20) 3.61 

 Total Waste Weight -140 (50) 2.98 

J9L2M0091 Harvest Weight -360 (160) 2.19 

J9L3M3080 Total Waste Weight 170 (70) 2.29 

    

Dam-based analysis    

J9L2F0144 Gutted Weight 570 (170) 3.36 

 Deheaded Weight 480 (150) 3.28 

 Total Waste Weight 140 (50) 2.53 

J9L2F1295 Gutted Weight 590 (250) 2.35 

 Deheaded Weight 480 (200) 2.35 

 Body Waste Weight 200 (60) 3.56 

 Total Waste Weight 270 (80) 3.52 
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J9L2F0695 Deheaded Weight -940 (400) 2.32 

   

* The sign + or – is arbitrary when compared across families but indicates the direction of the allelic effect within families (e.g. an 

allele decreasing harvest weight in sire J9L2M0088 also decreased fillet, gutted, deheaded, head and total waste weight.)
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3.5 Discussion 

 

In this study, the genetic basis and architecture of growth-related traits was investigated 

in a large commercial population of Atlantic salmon using a two-stage QTL mapping 

approach. All traits measured showed significant evidence for heritability and significant 

weight-related QTLs were observed on chr. 13, 18, 19 and 20 in the sire-based analysis. 

These QTL typically affected several of the weight measurements taken at harvest, 

which reflects the high positive correlation between these traits and suggests that their 

effect is related to overall size of the fish. However, the QTL on chr. 13 may have 

effects on the weight of components of the fish independent of an overall growth effect, 

as indicated by an analysis including harvest weight as a covariate. 

 

A QTL affecting several of the growth-related traits on chr. 20 was confirmed in the 

dam-based analysis. This chromosome has previously been shown to harbor QTL 

affecting body weight of Atlantic salmon at younger age (10 months; [16]). However, a 

comparison of the QTL detected in the current study with those observed in previous 

studies (Table 3-5) shows that, even amongst populations of salmon measured at similar 

age, QTL tend to be rather population-specific. This may reflect differing underlying 

quantitative trait nucleotide affecting growth of the populations, genotype by 

environment interaction, or simply that a proportion of QTL identified in most studies 

are likely to be ‗false positives‘. The weight traits measured at harvest had high positive 

genetic and phenotypic correlations (r ~ 0.97-1.00 in phenotypic and ~ 0.99-1.00 in 

genetic correlation), and this is generally reflected in the QTL results, because individual 

QTL tended to affect the weight of several components of the fish. This is a 

phenomenon observed in several other studies (e.g. [18]) and suggests that improvement 

of the growth of all components of the fish in breeding programs can be made by simply 

measuring overall harvest weight. This will improve harvest weight, the most important 

trait, but is likely to also improve potentially undesirable traits such as gut weight. 

Achieving different rates of gain in individual components of the fish using QTL or 

conventional family-based selection is likely to be challenging and may require more  
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Table 3-5. Comparison of harvest weight QTL chromosomes in Atlantic salmon 

from this and previous studies.  

 Gutierrez  

et al. [17] 

Baranski  

et al. [18] 

Houston  

et al. [19] 

This study 

Sire Dam 

Age 

 

Chr 

~27 

months 

~38 

months 

~36 

months 

~30 

months 

~36 months 

1  C C    

2 G C  C/G   

3    C   

4   G    

5 C C G    

6    C   

7   C    

8 C   C   

9 C      

10 C  G    

11   C  C  

12       

13   C C/G G  

14       

15 C C   C  

16  C C  C  

17     C  

18   C  G C 

19 C    C  

20     G C 

21 C   C   

22   C    
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23   C    

24     C  

25  C C    

26  G     

27  C   C  

28     C  

29 C  C    

C: chromosome-wide significance; G: genome-wide significance 

 

detailed or accurate measures of these component traits. However, the existence of QTL 

affecting fillet weight seemingly independent of overall harvest weight (e.g. chr. 11) 

suggests that there are potentially some genes affecting component traits partially 

independently of harvest weight that could be targets for further study. 

 

Atlantic salmon are closely related to rainbow trout and previous studies in trout have 

reported several QTLs affecting body mass [25, 40-41]. There was some overlap 

between these QTL and the genome-wide significant QTL identified in the current 

study, in particular for body mass QTL mapped to trout chromosomes 1q and 16q/12p 

[26], chr. 9p and 21p [42] and chr. 16q [40], which correspond to chr. 13 and 18 in 

salmon. In addition, corresponding QTL regions showing chromosome-wide 

significance with body weight were also discovered between Chinook salmon (chr. 25) 

[25] and Atlantic salmon (chr. 28) (this study). These results raise the possibility that 

some of the QTL affecting complex growth traits may be conserved across salmonid 

species. However, clearly some overlap between studies will occur by chance and the 

likelihood of the underlying QTL being common in both species will become more 

apparent with further studies and a finer mapping resolution. The confidence intervals 

associated with the QTL in the current study were large which precluded the meaningful 

identification of potential underlying candidate genes. However, known candidate genes 

explaining a small percentage of variation in growth in this population (myostatin [31] 

and IGF1 [32]) do not coincide with the QTL identified here. 
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The size of the QTL effects in the current study was typically around 5-9 % and 6-7 % 

of the within-family phenotypic variance in the sire and dam-based analysis 

respectively. While this may be an overestimate due to the Beavis effect [41], it is 

certainly plausible that markers linked to these QTL may be of use in selective breeding 

programs. However, the confidence intervals were large and this indicates that while the 

two-stage mapping approach employed appears to be effective at detecting QTL, the fine 

mapping to smaller chromosome regions in the dam analysis may benefit from 

additional markers. The results of this and other studies support the hypothesis that 

complex traits such as weight are polygenic, which may reflect the involvement of 

diverse regulation pathways related to energy balance, muscle cell proliferation and 

skeletal growth. The fact that the proportion of variation explained by the QTL is 

smaller than in previous studies (e.g. [19]) is probably due to the large sample size of the 

current study (i.e. ~ 1700 offspring for the sire-based analysis), and hence potentially 

more reliable estimates of QTL effect size [41]. Further, the two-step approach provided 

some degree of within-study validation for the detected QTL on chr. 18. The traits of 

most commercial interest in salmon production, such as fillet weight were affected by 

the QTL on chr. 13, 18, 19, and 20 (genome-wide significance) in the sire-based 

analysis. Notably, except chr. 19 in sire-based analysis - for which further study may be 

merited - all of these QTL regions showed a significant effect on gutted weight and 

deheaded weight.  

 

No QTL affecting fat content were detected in our study. Interestingly, components of 

fat content of salmon, such as n-3 long chain polyunsaturated acid, are highly heritable 

[43]. Therefore, perhaps more consideration could be given to the investigation of the 

genetic architecture of the specific components of the fat content of the fillet, as opposed 

to a more crude overall measure of fat levels. Naturally, this refinement of phenotype 

would incur a greater cost. In addition, only three QTL (chr. 3, 17 and 25) were shown 

to affect fillet colour at the chromosome-wide significance level. Chromosomes 3 and 26 

have previously been suggested to harbor QTL associated with fillet colour traits [18]. 

The heritability of this trait is relatively low in this study (h
2 

~ 0.1 - 0.2) when compared 
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with weight related traits in Atlantic salmon [44], although recently published studies 

have given higher heritabilities [45] and fillet color has been suggested to show a 

significant association with a single locus SCAR marker [46]. It has also been suggested 

that fillet colour is positively correlated with overall body weight in farmed Coho 

salmon (r ~ 0.4 ± 0.5) [46] and Atlantic salmon (r ~ 0.49) [47]. This may be related to 

the inclusion of dietary additives such as astaxanthin, canthaxanthin and carotenoid, 

which are included in feed to enhanced fillet pigmentation [48]. As such, protein / 

muscle gains may be accompanied by an associated increase in colour additives. 

However, we did not observe a correlation between harvest weight and fillet colour in 

our study. In part, this may be due to a lack of fillet colour variation observed in the 

population (coefficient of variation ~ 0.025). Of the putative colour QTL in the current 

study, only chr. 17 showed some evidence for an effect on growth-related traits, while 

chr. 3 and 26 were associated with fillet colour independent of the other traits measured. 

Given the economic importance of this trait, further study of these putative QTL and 

other aspects of the genetic regulation of colour are merited.  

 

Marker-assisted selection has been applied in the salmon aquaculture industry for 

several traits, the foremost example being resistance to the Infectious Pancreatic 

Necrosis virus [34, 49-50]. However, the genetic architecture of resistance to this disease 

was unusually monogenic, with a single QTL explaining most of the genetic variation. 

For more typical complex traits such as growth or fillet component traits, the optimal use 

of markers in selective breeding programs has yet to be established. Clearly, the 

advantages of using markers in selection for aquaculture are maximal where the traits 

are difficult or impossible to measure on the selection candidates themselves, and some 

of the harvest traits fall into this category. However, due to the lack of large-effect QTL 

and the putative population-specificity of those QTL, it is unlikely that QTL-targeted, 

across population marker-assisted selection will be a highly effective tool for breeding. 

With the recent development of high density SNP arrays (e.g. [7]), genomic selection 

may be a more effective (albeit expensive) means of capturing variation at QTL of small 

effect, but is likely to be the most effective when the training and selection population 
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are closely related. Within family genomic selection using lower marker density may be 

a more cost-effective method of capturing the within-family genetic variation associated 

with QTLs that are relatively population-specific [51]. The large full-sibling family sizes 

and routine sib-testing in salmon breeding schemes makes such approaches feasible and 

powerful. 
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3.6 Chapter Conclusions 

 

This study investigated the genetic basis of traits measured at harvest in a large 

commercial population of Atlantic salmon. The traits showed significant heritability and 

four genome-wide significant QTL were identified on chr. 13, 18, 19 and 20. The QTL 

on chr. 20 had relatively large effects on several weight-related traits that were consistent 

in the sire and dam analysis. The abundant putative QTLs provide a broad view of the 

genetic architecture of body weight and component traits in salmon. It is likely that 

weight traits in salmon are controlled by a finite number of partially population-specific 

loci of moderate-effect, in addition to a large polygenic component. These factors should 

be accounted for when considering the optimal methods of applying genomic markers in 

selective breeding programs. 
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3.7 Conclusions 

 

In this chapter, the heritabilities of weight-related traits were approximately 0.5. 

Multiple QTLs were detected associating with growth-related traits. The chromosome 

13, 18, and 20 were shown to harbor significant QTL in both sire and dam-based 

analysis, explaining 6 to 7 % of within-family variation in growth traits in the 

population. Unfortunately, the QTL affecting growth traits is still lack of consistency 

between previous and current studies in farmed and wild Atlantic salmon. In addition, 

there was little evidence for colocation of QTL on synetic regions of chromosomes from 

evolutionary closely related species such as rainbow trout. However, this chapter offers 

certain valuable indicative genomic regions which potentially can be confirmed by 

GWAS in chapter 4, and reflects the fact that the genomic selection may be an 

appropriate approach for selective breeding in salmon, especially for polygenic traits – 

of which growth is an example. 
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3.8 Additional Files 

 

Supplementary Table 1: Details of the SNP markers used in this study. Link: 

https://goo.gl/q9IjHt  
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4.0 Introduction 

 

A high density genetic map was constructed in chapter 2. A QTL mapping analysis was 

performed in chapter 3 to study the QTLs associating with growth traits in a 3-year-old 

salmon population. In this chapter, I apply the genome-wide genetic markers to estimate 

the significance level of individual SNP using genome-wide association analysis, and to 

predict the estimated genetic merits of individuals using genomic and pedigree-based 

prediction. Both methods aim to investigate the genetic architecture of complex growth 

traits in a 1-year-old salmon population. In chapter 3, chromosomes 13, 18, and 20 were 

shown to be associated with growth traits in adult salmon. The GWAS conducted in this 

chapter can help to verify the results identified in chapter 3 using a different 

methodology with a more comprehensive coverage of genome-wide markers. 
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4.1 Abstract 

Background 

The genetic architecture of complex traits in farmed animal populations is of interest 

from a scientific and practical perspective. The use of genetic markers to predict the 

genetic merit (breeding values) of individuals is commonplace in modern farm animal 

breeding schemes. Recently, high density SNP arrays have become available for Atlantic 

salmon, which facilitates genomic prediction and association studies using genome-wide 

markers and economically important traits. The aims of this study were (i) to use a high 

density SNP array to investigate the genetic architecture of weight and length in juvenile 

Atlantic salmon; (ii) to assess the utility of genomic prediction for these traits, including 

testing different marker densities; (iii) to identify potential candidate genes underpinning 

variation in early growth. 

 

Results 

A pedigreed population of farmed Atlantic salmon (n = 622) were measured for weight 

and length traits at one year of age, and genotyped for 111,908 segregating SNP markers 

using a high density SNP array. The heritability of both traits was estimated using 

pedigree and genomic relationship matrices, and was comparable at around 0.5 and 0.6 

respectively. The results of the GWA analysis pointed to a polygenic genetic 

architecture, with no SNPs surpassing the genome-wide significance threshold, and one 

SNP associated with length at the chromosome-wide level. SNPs surpassing an arbitrary 

threshold of significance (P < 0.005, ~ top 0.5 % of markers) were aligned to an Atlantic 

salmon reference transcriptome, identifying 109 SNPs in transcribed regions that were 

annotated by alignment to human, mouse and zebrafish protein databases. Prediction of 

breeding values was more accurate when applying genomic (GBLUP) than pedigree 

(PBLUP) relationship matrices (accuracy ~ 0.7 and 0.58 respectively) and 5,000 SNPs 

were sufficient for obtaining this accuracy increase over PBLUP in this specific 

population. 
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Conclusions 

The high density SNP array can effectively capture the additive genetic variation in 

complex traits. However, the traits of weight and length both appear to be very 

polygenic with only one SNP surpassing the chromosome-wide threshold. Genomic 

prediction using the array is effective, leading to an improvement in accuracy compared 

to pedigree methods, and this improvement can be achieved with only a small subset of 

the markers in this population. The results have practical relevance for genomic 

selection in salmon and may also provide insight into variation in the identified genes 

underpinning body growth and development in salmonid species.   
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4.2 Chapter Introduction 

 

Atlantic salmon (Salmo salar), an anadromous species found primarily in the northern 

Atlantic Ocean, is widely known for its importance in both wild fishing and aquaculture. 

According to statistics from the Food and Agriculture Organization (FAO), the 

estimated global economic value of this species in 2010 was approximately $7.8 billion 

[1]. Atlantic salmon is also a model for genomic studies of salmonid species with 

extensive genomic resources and a recent availability of an assembled reference genome 

sequence [2]. Atlantic salmon breeding programs are the most advanced of all 

aquaculture species and routinely incorporate genomic information to construct 

pedigrees, and to improve selection accuracy via marker-assisted or genomic selection 

[3].  

 

Genome-wide association studies (GWAS) are employed to assess the association 

between DNA sequence variants (typically SNPs) dispersed throughout the genome and 

complex traits of interest. To date, abundant GWAS have been conducted on human [4] 

and terrestrial livestock species [5, 6], resulting in the discovery of several genes and 

underlying mutations affecting traits of medical and economic importance. However, 

despite the contribution of GWAS to terrestrial livestock and human medical research, 

relatively few GWAS have been undertaken in aquaculture species to date, and have 

typically utilized relatively sparse SNP chips [7–9]. Recently, a high density publicly 

available SNP chip containing ~132 K verified SNP markers was developed [10] and 

gives the opportunity to apply GWAS at a resolution previously not possible in salmon. 

Commercially important traits for salmon farming such as growth and disease resistance 

are a major focus for scientific research, with several QTL mapping studies performed 

for growth performance (e.g. [11–13]) and disease resistance (summarized in [14]). 

Studies of the genetic basis of growth related traits using QTL linkage mapping 

identified chromosome regions of interest; however, there is a lack of consistency 

between the location of the QTL in different populations [11, 13, 15]. Potentially, 

GWAS may be able to address some of the drawbacks of QTL mapping, such as the 
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possible omission of QTL due to inadequate marker density [16]. Additionally, since 

GWAS detects SNPs in population-wide linkage disequilibrium with QTL affecting the 

trait, the potential for applying these markers directly in selective breeding is greater. 

While single marker-assisted selection is of limited value for polygenic traits, genomic 

estimated breeding values (GEBVs) can be calculated for candidate breeding animals 

using marker data, even in the absence of trait and / or pedigree information [17]. 

Studies using simulated data have shown the accuracy of prediction of breeding values 

using genomic data was significantly higher than using pedigree records alone [18, 19]. 

Few studies of genomic prediction using real data have been performed in aquaculture 

species, although one  recent  analysis of a recently admixed farmed Atlantic salmon 

population suggests that a genomic prediction approach can be effective at improving 

the accuracy of selection compared to pedigree records alone [20]. 

 

The objectives of this study were (i) to use the high density (~ 132 K) SNP array to 

estimate genetic parameters for weight and length of juvenile farmed salmon and 

compare to those based on pedigree; (ii) to detect individual SNPs / chromosomes 

associated with these traits; (iii) to estimate breeding values and prediction accuracy for 

the two traits by applying the pedigree and the genomic relationship matrix across 

different marker densities; (iv) to identify putative growth candidate genes by annotating 

the most significant markers from transcribed regions of the genome.  

 

4.3 Methods 

 

4.3.1 Ethics Statement 

 

All animals were reared in accordance with the U.K. Home Office regulations regarding 

the use of animals in experiments. The trial was carried out at the Marine Environmental 

Research Laboratory (Machrihanish, UK) and approved by the ethical review committee 

in the University of Stirling (Stirling, UK). Fish were purchased from Landcatch which 

are accredited participants in the RSPCA Freedom Foods standard, the Scottish Salmon 
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Producers Organization Code of Good Practice, and the EU Code-EFABAR Code of 

Good Practice for Farm Animal Breeding and Reproduction Organizations. 

 

4.3.2 Animal and Phenotype Measurement 

 

The population used in the current study was a subset of those described in Gharbi et al. 

[33]. Briefly, eggs from the 2007 cohort of Landcatch Natural Selection (LNS, Ormsary, 

UK) broodstock fish were hatched and reared in separate family tanks in freshwater. At 

the post-smolt stage, fish were transferred to sea water environment (Machrihanish, UK). 

The one-year-old post-hatch fish from 62 full sibling families were PIT-tagged and 

transferred to a single tank. All fish were measured for body weight (g) and body length 

(mm). Parents and offspring of families represented by a minimum of 6 fish in the 

population (712 fish from 61 full sibling families) were selected for genotyping. The PIT 

tags were used to assign offspring to parents and construct the pedigree.   

 

4.3.3 SNP Array Genotyping 

 

DNA from the 712 fish was extracted using the DNeasy-96 tissue DNA extraction kits 

(Qiagen, Crawley, UK) and then genotyped for the Affymetrix Axiom SNP array 

containing ~ 132 K validated SNPs [10] 

(http://www.affymetrix.com/support/technical/datasheets/axiom_salmon_genotyping_ar

ray_datasheet.pdf). Starting with these validated SNPs, filtering of SNP data was 

performed using the Plink software [34] to remove individuals and SNPs with excessive 

(> 1 %) Mendelian errors and SNPs with minor allele frequency (MAF) < 0.05 in this 

dataset. A total of 111,908 remaining SNPs were retained for 622 fish (534 offspring, 28 

sires and 60 dams). The phenotypic sex of the offspring was unknown and, therefore, the 

Y-specific probes on the array were used to predict the genetic sex of the fish based on 

the putative sex determining gene [35], as described in Houston et al. [10].   
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4.3.4 Statistical Analysis 

4.3.4.1 Heritability Estimation 

 

Genetic parameters for the weight and length traits were tested fitting animal as a 

random effect. The estimation was performed using a REML analysis assuming the 

following model:  

y = Xb + Zu + e          (1) 

where y is the observed trait, b is the fixed effect of sex, u  is the vector of additive 

genetic effects, e is the residual error and X and Z the corresponding incidence matrices 

for fixed effects and additive effects, respectively. The covariance structure for the 

genetic effect was calculated either using pedigree (A) or genomic (G) information (i.e. 

u ~ N(0, Aσa
2
) or N(0, Gσa

2
)). Hence, the narrow sense of heritability was estimated by 

the additive genetic variance and total phenotypic variance, equaling to:  

h
2

a = σ
2
a/ σ

2
p         (2) 

where σ
2

a is the additive genetic variance and σ
2

p is the total phenotypic variance which 

is a sum of σ
2

a + σ
2

e. 

The analysis was implemented using the ASReml 3.0 software [36]. The genomic 

relationship required for the analysis was calculated using the Genabel ‗R‘ package [37] 

and method of VanRaden [38], and then inverted applying the standard ‗R‘ function. 

 

4.3.4.2 Genome-wide Association Study  

 

The GWAS was performed using the two-step GRAMMAR method implemented in 

Genabel [37]. Firstly, the trait data were corrected for the fixed effect and polygenic 

effects (fitting the genomic relationship matrix) using model (1) above. Secondly, the 

association between the individual SNPs and the residuals from model (1) was applied 

using the ‗mmscore‘ method [39]. The genome-wide and chromosome-wide significance 

thresholds were determined by Bonferroni correction (0.05 / N), where N represents the 

number of QC-filtered SNPs across the entire genome (genome-wide) and on each 

chromosome (chromosome-wide).  
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Subsequently the allelic substitution effects of SNPs from the GWA analysis surpassing 

an arbitrary relaxed threshold (P < 0.005, ~ top 0.5 % of all markers) were estimated 

using ASReml 3.0 [36] fitting the mixed model (1) as previously described plus the SNP 

as the fixed effects.   

The SNP additive effect (α) was calculated as half the difference between the predicted 

phenotypic means of the two homozygotes, (AA-BB)/2, and the dominance effect (δ) 

was AB – [(AA+BB)/2], where the AB represents the predicted phenotypic mean of the 

heterozygote. The proportion of genetic variance explained (PVE) by the SNP was 

estimated using the following equation: 

 PVE = [2pq (α + δ (q − p))
2
]/VA        (3) 

where α and δ are the additive and dominance effect respectively, the p is the frequency 

of the major allele and q is the frequency of the minor allele, and VA is the total additive 

genetic variance of the trait obtained when no SNP effects are included in the model. For 

certain markers containing two genotypes, the dominance effect (δ) was not included in 

the equation (Appendix 1).  

 

4.3.4.3 Genomic Prediction 

 

Estimated breeding values were obtained using the pedigree relationship (PBLUP) or the 

genomic one (GBLUP). These predictions were compared in terms of their accuracy to 

predict an unknown phenotype. In order to do so, a five-fold cross validation analysis 

was performed using the individuals with genotype data and phenotypes in both traits. 

The individuals were randomly divided into five non-overlapping subsets (i.e. each 

subset contains one fifth of the data corresponding to ~ 106 individuals). One subset of 

data was then used as a validation set and the reminder of the data [four fifths (n ~ 425)] 

was used as the training population. The phenotype recorded in the validation population 

was then masked and breeding values were estimated using ASReml 3.0 assuming 

model (1). Accuracy was calculated as the correlation between the predicted EBVs of 

the validation set and the actual phenotypes divided by the square root of the heritability 
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[~ r(y1,y2)/h] using all individuals. The whole procedure was independently replicated 

five times and average accuracy values were calculated.   

 

4.3.4.4 Comparison of Different SNP Densities 

 

We compared the use of different SNP marker densities of 0.5 K, 1 K, 5 K, 10 K, 20 K, 

33 K, and 112 K (full dataset) for GEBV calculation. Firstly, as part of a pipeline for 

designing a lower density SNP genotyping platform for routine genomic evaluations, a 

subset of ~ 33 K SNPs were selected from the ~ 132 K array as follows: (i) only 

polymorphic high resolution SNPs were retained as defined using Affymetrix software, 

(ii) only one SNP per genome contig in the salmon genome assembly was retained 

(NCBI Assembly GCA_000233375.1), (iii) removed one of every pair of SNPs with r
2 
> 

0.65 based on the Landcatch Natural Selection samples from the test plate of samples as 

described in Houston et al. [10], (iv) removed any remaining SNPs with a MAF < 0.1 

and ‗missingness‘ > 0.03 in the above samples and (v) added any SNPs not included 

above that reached a nominal significance threshold in a genome-wide association 

analysis for disease resistance (data not shown). From this reduced set of ~ 33 K SNPs, 

further subsets were taken at random to create SNP densities of 0.5 K, 1 K, 5 K, 10 K, 

and 20 K markers. 

 

4.3.4.5 Putative Gene Identification 

 

Based on the result of the GWA analysis, the SNPs surpassing the relaxed significance 

threshold (P < 0.005 in model (1), ~ top 0.5 % of markers) were chosen to identify those 

located within or proximal to genes. Firstly, the flanking sequence of all the significant 

markers were aligned (using blastn) with an Atlantic salmon fry transcriptome database 

from RNA-seq of salmon fry in a separate study in which a large proportion of the SNPs 

on the array were discovered (described in Houston et al. [10]). Only markers whose 

flanking sequences exactly matched exactly with reference transcriptome database at the 

SNP position were selected. These transcripts were used to align (using blastx) with 
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human (Homo sapiens), mouse (Mus musculus), and zebrafish (Danio rerio) peptide 

reference database respectively (downloaded from http://www.ensembl.org/index.html; 

May 2014), from which a stringent criterion of e-value ≃ 0 were used as evidence for 

homology. Secondly, for each unique peptide in each of the species, the corresponding 

gene id, associated gene name, chromosome position, and gene ontology (GO) were 

retrieved from ensembl biomart database (retrieved from 

http://www.ensembl.org/biomart; Jun. 2014) respectively. The corresponding 

chromosome of SNP markers were identified by aligning the marker and its flanking 

sequence with salmon reference genome sequence (AKGD00000000.4) and existing LG 

mapping [10].  

 

4.4 Results 

 

4.4.1 Summary Statistics and Heritability 

 

The final dataset used for the GWAS consisted of ~ 112 K QC-filtered SNPs 

successfully genotyped in 622 fish (from 61 full sibling families) with weight and length 

measurements taken approximately 1 year post-hatching. Sex of the fish was predicted 

based on the Y-specific probes on the SNP array (as described in Houston et al. [10]) 

and the population was evenly split between males and females (1:1.03). The weight and 

length traits were highly correlated at the phenotypic and genetic level (r ~ 0.96 in both). 

The overall heritability for both traits, as estimated by the genomic relationship matrix 

was ~ 0.6, compared to ~ 0.5 using the pedigree relationship matrix (Table 4-1).  

 

 

 

 

 

 

http://www.ensembl.org/index.html
http://www.ensembl.org/biomart
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Table 4-1. The heritability and summary statistics of the weight and length 

phenotypes. 
 Weight (g) Length (mm) 

Mean (std dev) 112.0 (24.0) 214.1 (16.1) 

Heritability*(std err):   

  G-matrix 0.60 (0.07) 0.61 (0.07) 

  A-matrix 0.48 (0.10) 0.51 (0.11) 

*: Heritability was estimated by the genomic relationship matrix (G-matrix) and 

pedigree-based relationship matrix (A-matrix) respectively. 

 

4.4.1 Genome-wide Association Analysis  

 

To determine which individual SNPs were associated with weight and length, a GWAS 

was performed on all markers. No SNPs reached the genome-wide significance level 

(using the stringent Bonferroni correction), whereas one SNP mapping to chromosome 

17 surpassed the chromosome-wide significance level for length and was estimated to 

explain ~ 7 % of the additive genetic variation (Table 4-2). 684 of the 111,908 SNPs 

surpassed an (arbitrary) relaxed threshold [nominal P < 0.005 from model (1)] and were 

used for determining putative candidate genes (Appendix 2 and Table 4-3). The p-value, 

allele frequency, additive and dominance effect, and proportion of additive genetic 

variance due to the SNP for the top ten markers for weight and length are given in Table 

4-2. Full lists of the SNPs surpassing the relaxed threshold are given in Appendix 1. The 

proportion of genetic variation explained by the top ten markers ranged between 0.003 

to 0.12. Approximately 40 K SNPs had been assigned to corresponding chromosome 

using sire-based linkage mapping performed by Crimap software [21] as described in 

Houston et al. [10] and using the reference genome sequence (AKGD00000000.4). The 

quantile-quantile (Q-Q) plots generated using model (1) in the GWA analysis for weight 

and length are given in Appendix 3. 
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Table 4-2. The p-value, allele frequency, additive (α) and dominance (δ) effect, and 

proportion of additive genetic variance explained for the top ten SNP markers 

associated with weight and length. 

Weight 

Marker P-value  
Allele 

Frequency 

Additive 

effect (s.e.) 

Dominance 

effect (s.e.) 
PVE 

Chromosome 

  p q    (Unknown: n/a) 

   
   

*AX87944147 2.8 e-05 0.69 0.31 4.97 (1.88) 8.76 (2.09) 0.003 n/a 

*AX87934338 6.4 e-05 0.61 0.39 7.22 (2.00) 3.22 (2.08) 0.08 16 

AX87992121 9.5 e-05 0.54 0.46 7.55 (1.97) 0.18 (2.11) 0.08 n/a 

AX87888225 1.0 e-04 0.94 0.06 7.00 (6.28) 23.83 (6.66) 0.06 n/a 

AX87943138 1.2 e-04 0.69 0.31 8.34 (2.07) 2.65 (2.29) 0.10 21 

AX88223695 1.2 e-04 0.80 0.20 3.32 (2.76) 16.54 (3.02) 0.04 28 

AX87959413 1.3 e-04 0.58 0.42 7.34 (1.81) 3.61 (1.96) 0.08 28 

AX88127533 1.4 e-04 0.59 0.41 7.43 (1.84) 2.71 (1.98) 0.07 28 

*AX87963258 1.4 e-04 0.57 0.43 5.80 (1.47) 2.00 (2.04) 0.05 17 

AX88282141 1.5 e-04 0.56 0.44 6.68 (1.77) 0.56 (1.96) 0.07 21 

  

Length 

Marker P-value  
Allele 

Frequency 

Additive 

effect (s.e.) 

Dominance 

effect (s.e.) 
PVE 

Chromosome 

  p q    (Unknown: n/a) 

   
   

*AX87963258 1.7 e-05 0.57 0.43 4.42 (0.99) 1.27 (1.37) 0.07 17 

AX88141678 5.3 e-05 0.77 0.23 6.84 (1.88) 1.74 (1.98) 0.07 5 

*AX87944147 5.4 e-05 0.69 0.31 3.19 (1.27) 5.77 (1.40) 0.003 n/a 

*AX87934338 7.3 e-05 0.61 0.39 4.91 (1.34) 1.71 (1.40) 0.08 16 

AX87959512 9.1 e-05 0.68 0.32 5.46 (1.48) 0.21 (1.55) 0.08 20 

AX88083269 1.0 e-04 0.59 0.41 4.76 (1.16) 1.99 (1.40) 0.08 n/a 

AX88089073 1.6 e-04 0.70 0.30 4.77 (1.62) 1.07 (1.65) 0.05 20 

AX88048182 1.6 e-04 0.78 0.22 6.65 (1.88) 1.96 (2.00) 0.12 5 

AX88267406 1.6 e-04 0.78 0.22 6.65 (1.88) 1.96 (2.00) 0.12 5 

AX88287764 1.7 e-04 0.85 0.15 3.33 (3.38) 12.33 (3.47) 0.04 n/a 

Bold: chromosome-wide significance (p < 0.05).   

*:  SNP appears in the lists for both traits. 
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4.4.3 Genomic Prediction within Population  

 

The use of the SNP markers for genomic prediction (GBLUP) of the weight and length 

traits was assessed and compared to the equivalent model using the pedigree to define 

relationships between the animals (PBLUP) using a five-fold cross validation design. 

The accuracy of the GBLUP model was approximately 20 % higher than PBLUP for 

both traits when using all markers in the model, reaching a value of approximately 0.7 

within this population. Interestingly, while the prediction accuracy was improved by 

approximately 20 % with increased marker density from 0.5 K to 5 K SNPs, there was 

very little or no improvement in accuracy of prediction with increased marker density 

beyond this level. At the lowest marker density analyzed (0.5 K), the accuracy of 

GBLUP and PBLUP had the similar performance in both traits (Figure 4-1). However, it 

should be noted that the training and validation populations used for this analysis will 

contain closely related animals. 

 

Figure 4-1. The estimated prediction accuracy of the (a) length and (b) weight traits 

when applying GBLUP and PBLUP across different marker densities (from 0.5 K 

to 112 K SNPs). 
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4.4.4 Putative Gene Identification 

 

A large proportion of the SNPs on the 132 K Axiom array were derived from an RNA-

Seq experiment and, therefore, are likely to be located within genes. 109 of the 684 

SNPs surpassing a nominal significance threshold were matched with salmon fry 

transcriptome data using blastn alignment. From these 109 transcripts, twelve, seven, 

and fifteen corresponding unique peptides were identified from human, mouse, and 

zebrafish database respectively using strict alignment criteria (E ≃ 0). Five genes were 

identified in all reference species, while ten, seven, and two genes were detected 

specifically in the zebrafish, human, and mouse databases respectively. Details including 

the associated gene name, putative chromosome in Atlantic salmon, gene ontology (GO), 

transcript id and gene id are given in Appendix 2. Summaries of the identified genes are 

given in Table 4-3 while the effects associated with these genetic markers are given in 

Appendix 1. 

 

The single marker that surpassed the chromosome-wide significance level for length 

(and also appears to have similar association with weight; Table 4-1) was annotated as 

Retinoic acid-induced protein 2 (RAI2; Table 4-3). Retinoic acid is a critical regulator of 

development, cellular growth, and differentiation [22] although the specific role of this 

RA induced gene is unknown. 
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Table 4-3. Summary of the putative homologous genes associated with SNPs 

surpassing the relaxed threshold (P < 0.005), the associated SNP name and 

predicted chromosome location on the salmon genome. The details of corresponding 

transcript id and SNP effect are given in Appendix 1 and 2. 

Marker ID Gene Chromosome*  Reference Species  

AX88089073 POMT1 20 Human / Mouse / Zebrafish 

    AX87884170 MYH9 03 Human / Mouse / Zebrafish 

AX88052896 GAPDH (GAPDHS) 05 Human / Mouse / Zebrafish 

AX87900517 NOTCH3 06 Human / Mouse / Zebrafish 

AX88070408 WDR35 01 Human / Mouse / Zebrafish 

AX88276725 WDR35 01 Human / Mouse / Zebrafish 

AX88067081 AGRN 15 Human / Mouse / Zebrafish 

AX87963258** RAI2 17 Human / Mouse 

AX87914686 KNDC1 01 Human / Mouse  

AX87934385 TXNRD3 12 Human / Mouse  

AX87906812 ARHGEF7 16 / 17 Human / Zebrafish 

AX88009559 DLG5 01 Human / Zebrafish 

AX87895800 KLHL42 17 Human / Zebrafish 

AX87913460 GUCY2F 13 Human 

AX87934385 TXNRD1 12 Zebrafish 

AX88060914 MYO18AB 20 Zebrafish 

AX87883353 SYTL5 21 Zebrafish 

AX87913460 GC3 13 Zebrafish 

AX88168740 SI:CH211-181D7.1 03 Zebrafish 

AX88009559 DLG5A 01 Zebrafish 

AX88254864 PGBD4(5 OF 8) 02 Zebrafish 

AX88049616 PGBD4(5 OF 8) 02 Zebrafish 

*: Corresponding chromosome was based on the Atlantic salmon reference genome (AKGD00000000.4) 

and the chromosome assignments given in Houston et al. [10], see methods for additional details.  

**: Chromosome-wide significance. 

AGRN: agrin; ARHGEF7: Rho guanine nucleotide exchange factor (GEF) 7; GAPDH: Glyceraldehyde-

3-Phosphate Dehydrogenase; DLG5: Discs, Large Homolog 5 (Drosophila); RAI2: Retinoic acid-induced 

protein 2; KNDC1: Kinase Non-Catalytic C-Lobe Domain (KIND) Containing 1; GUCY2F: Guanylate 

Cyclase 2F, Retinal; POMT1: Protein-O-Mannosyltransferase 1; GC3: guanylate cyclase 2D, membrane 

(retina-specific); KLHL42: kelch-like family member 42; TXNRD1: Thioredoxin Reductase 1; TXNRD3: 

Thioredoxin Reductase 3; WDR35: WD repeat domain 35; MYH9: myosin, heavy chain 9, non-muscle; 

NOTCH3: notch 3; MYO18AB: myo18ab; SYTL5: synaptotagmin-like 5. 
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4.5 Discussion 

 

4.5.1 Genome-wide Association Study 

 

A high density SNP array [10] was applied to estimate genetic parameters and map 

SNPs associated with early growth of farmed salmon, as reflected by weight and length 

measurements at 1 year of age. The estimates of trait heritability when using the 

genomic relationship matrix was comparable but slightly higher than the equivalent 

model using the pedigree relationships (~ 0.6 vs ~ 0.5). While no SNPs surpassed the 

stringent genome-wide significance threshold, one SNP surpassed the chromosome-wide 

threshold for length (p < 0.05). Therefore, the GWAS results suggest that early growth 

in salmon is highly heritable but with a polygenic architecture and no evidence for major 

QTL. Based on previous linkage mapping and the current salmon reference genome 

assembly (AKGD00000000.4), the individual SNPs with the lowest P value for the 

growth traits were located on chr. 5, 16, 17, 20, 21 and 28. QTL associated with growth 

traits have been reported on the same chromosomes in some (but not all) previous 

studies in Atlantic salmon (e.g. [11–13, 15]). The proportion of variance explained (PVE) 

by each individual marker was relatively small (up to 12 %) for the growth traits. The 

data in the current study support previous studies suggesting that there is a lack of 

consistent, cross-population, major QTL affecting growth in Atlantic salmon. Previous 

studies have performed GWA analyses to identify genetic variants associated with 

complex traits such as flesh texture, fat content and sexual maturation by using a ~ 6 K 

SNP array in farmed Atlantic salmon [7, 9]. In the current study, we used a substantially 

higher density of SNPs (~ 112 K), which may have facilitated the detection of QTL in 

regions not covered by previous lower density SNP platforms.  
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4.5.2 Assessment of Genomic Prediction 

 

Due to practical and financial limitations, such as the previous lack of a high density 

genotyping platform, relatively few studies into genomic prediction have been 

undertaken using real data in aquaculture species. A recent study by Odegard et al. [20] 

showed prediction accuracies of 0.34 and 0.36 for the traits of sea lice resistance and 

fillet colour respectively when using PBLUP, whereas GBLUP improved the accuracies 

by 32 % to 51 % for sea lice resistance, and up to 22 % for fillet colour. Previous studies 

applying simulated data have also indicated that GBLUP would have significantly 

higher accuracy compared to the equivalent model using pedigree records in the typical 

half / full-sibling family structure of salmon breeding programs (e.g. [20, 23]). Our 

results also show that the BLUP model applying genomic data had higher accuracy than 

using pedigree information for both the weight and length traits, with an improvement of 

approximately 20 % to values close to 0.7. This is promising for the application of 

genomic prediction within salmon breeding programs, where it may be most effective 

for traits evaluated in siblings or other close relations of the selection candidates. 

 

It is also noteworthy that ~ 5000 high quality informative SNPs are sufficient to achieve 

this increase in prediction accuracy in this population. Genotyping and field data 

collection are costly and the relative advantage of using SNP data in selection depends 

on these costs versus the value of the extra improvement in the traits of interest. 

Therefore, while the high density SNP array is more than adequate for within-population 

genomic prediction, the use of a cheaper and lower density SNP platform is likely to be 

most cost-effective. The cost-benefit is also likely to be most favourable for traits with 

high economic value and that cannot be measured directly on the selection candidates 

(e.g. disease resistance or fillet quality traits). However, it is important to note that (i) 

this is a relatively small dataset for assessing genomic prediction and (ii) the training and 

validation population will contain closely related animals. As such, genomic prediction 

in this dataset will be based on both linkage and linkage disequilibrium information, 

which is likely to result in increased accuracy of prediction and reduced need for high 
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density markers compared to scenarios where the training and validation populations are 

distantly related to each other. It is plausible that with more distant relationships 

between the populations, a higher marker density and larger sample size would be 

required to achieve improvements in selection accuracy over traditional BLUP. Further, 

the high levels of linkage disequilibrium will result in greater power to detect QTL via 

GWAS, but lower resolution to estimate QTL position. Simulation studies are generally 

consistent with the results based on real data presented in the current study: Vela-Avitua 

et al. [23] reported that the prediction accuracy using sparse genomic data was 

equivalent or lower than using the classical pedigree model with sparse markers (10 – 20  

SNPs / M) across traits with different heritabilities (h
2 

~ 0.1, 0.3 and 0.8), while Hickey 

et al. [24] demonstrated that increasing marker density above ~ 10 K results in little or 

no improvement in prediction accuracy in maize populations, while the results of 

Gorjanc et al. [25] also show only minor increases in accuracy above this level in 

simulated livestock datasets. Finally, Odegard et al. [20] detected little increase in 

accuracy with increases in marker density above 22 K for fillet colour or lice resistance 

in a commercial salmon population.  

 

4.5.3 Putative Gene Identification  

 

The single SNP exceeding the chromosome-wide significance level for length was 

mapped to chr.17, and its predicted location is within the retinoic acid-induced protein 2 

gene (RAI2). Although the function of RAI2 is not yet clear, this gene is suggested to be 

involved in the control of cellular growth and embryo development [26]. Retinoic acid is 

well established as a key regulator of growth and differentiation in early life [22], and is 

involved in the regulation of bone formation and mineralization in salmon [27]. 

Therefore, RAI2 can be considered both a positional and a biological candidate for an 

effect on regulation of growth in juvenile salmon. Genes associated with the other 

markers discovered surpassing the arbitrary relaxed significance threshold (P < 0.005) 

were also identified by aligning with human, mouse, and zebrafish databases (Table 4-3). 

Amongst these was a SNP in POMT1 (Protein-O-Mannosyltransferase 1) which 
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produces the POMT enzyme complex, dysregulation of which can contribute to the 

formation of abnormal basement membranes, which can lead to muscular dystrophy [28]. 

Interestingly, the AGRN (agrin) gene also appears to have a key regulatory role in 

basement membranes of neuromuscular junctions, and is involved in the inhibition, 

storage, activation of varied growth factors [29], clustering of voltage-gated sodium 

channels, and G-protein coupled acetylcholine receptor signaling pathway [30], all of 

which are essential for fundamental cell development. In addition, NOTCH3 (notch 3) 

and the NOTCH3 receptor have critical roles in the development and maintenance of 

vascular smooth muscle cells [31, 32]. Finally, genes associated with ATP binding and 

motor activity, such as MYH9 (myosin, heavy chain 9) and MYO18AB were also 

identified amongst the nominally significant markers. While a proportion of the 

nominally significant SNPs (and therefore the genes identified) will clearly be false 

positives, highlighting these genes provides the opportunity to cross-reference with 

future studies to identify with higher confidence the putative candidates underlying 

growth in salmon. 
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4.6 Chapter Conclusions  

 

The results of the current study show that early growth traits are highly heritable in 

farmed Atlantic salmon, and that the heritability can be estimated by using either the 

genomic or the pedigree relationship matrix. The GWA analysis showed that there are 

likely to be small effect QTL on several chromosomes, but there was no evidence for 

major QTL and these traits appear to be highly polygenic in nature. A SNP in the 

retinoic acid-induced protein 2 gene on chromosome 17 reached chromosome-wide 

significance, and is a plausible positional and functional candidate gene. Other genes 

identified from nominally significant SNPs will be useful for cross-referencing with 

similar studies in salmon and may form candidates for follow up studies to assess their 

function in regulation of growth in salmon. For breeding value prediction using genomic 

and pedigree data, GBLUP had better accuracy than PBLUP in general with accuracy of 

~ 0.7 attained for early growth traits using GBLUP in this population. As few as 5 K 

SNPs gives close to maximal accuracy within population, suggesting that only moderate 

marker density is likely to be suitable for GS breeding programs for similar highly 

heritable but polygenic traits where the discovery populations have close relationships 

with the selection candidates. However, it is important to note that increased marker 

density is likely to be advantageous, alongside larger sample size, when attempting to 

predict genomic breeding values in more distantly related animals. 
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4.7 Conclusions  

 

The heritabilities of body weight and length in juvenile fish were around 0.5 to 0.6 

estimated by genomic and pedigree-based method. GWAS suggested both growth traits 

are controlled by multiple loci, with no SNP surpassing the stringent genome-wide 

significance threshold. A SNP reached chromosome-wide significance was located on 

chromosome 17 and its putative gene is RAI2. In general, the QTLs associated with 

growth traits in this study were not notably consistent with the linkage-based study in 

chapter 3. This may reflect a combination of (i) different lifecycle stages, (ii) the 

polygenic nature of the traits, and (iii) the different genetic backgrounds. However, 

genomic prediction applying genomic BLUP showed that approximately 5 K SNPs was 

able to obtain the highest prediction accuracy in both traits in within population. Those 

accuracies were superior to the pedigree-based method, highlighting that genomic 

selection is likely able to make a significant contribution to salmon breeding. The 

significant markers identified in this chapter will be used for verification of SNP-trait 

association in chapter 5. 
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4.8 Additional Files 

 

Appendix 1. Summary of significant markers, their p-values, allele frequencies, 

additive and dominance effects, and proportion of genetic variance due to the SNPs, 

for weight and length respectively. Link: https://goo.gl/OBsCQn 

Appendix 2. List of identified putative gene name, chromosome position, gene 

ontology (GO), transcript id and gene id of three reference species databases. Link: 

https://goo.gl/SqkOsT 

Appendix 3. The Q-Q plots of weight and length generated in GWA analysis. Link: 

https://goo.gl/WFPzfg 
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5.0 Introduction 

 

In chapter 3 and 4, I discovered several QTLs and SNPs significantly associated with 

growth and weight-related traits in adult and juvenile salmon population. Due to 

relatively low sample size in the association analysis, genetic architecture and 

population differences (e.g. linkage disequilibrium, environments, ages, and sex), the 

previous results may contain the mix of true associations and false positives. In this 

chapter, I select sixteen SNPs based on the results of the front chapters to verify the 

genetic effect of identified SNPs with a separate population. The sixteen SNPs will be 

selected from top 0.5 % significant marker identified by GWAS in chapter 4, and QTLs 

targeted in chapter 3, which are listed in the method section in this chapter. Identifying 

the association between SNPs and phenotypes of interest across different populations 

can offer more robust evidence in the association analysis. When the association is 

confirmed, the putative gene within the vicinity of the significant SNPs will be 

identified, which can help to study the potential function of significant genes, with 

implications for both wild and farmed Atlantic salmon.  
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5.1 Abstract 

 

Understanding the relationship between genetic variants and traits of economic importance 

in aquaculture species is pertinent to selective breeding programmes. High-throughput 

sequencing technologies have enabled the discovery of large numbers of SNPs in 

Atlantic salmon, and high density SNP arrays now exist. A previous genome-wide 

association study (GWAS) using a high density SNP array (132 K SNPs) has revealed 

the polygenic nature of early growth traits in salmon, but has also identified candidate 

SNPs showing suggestive associations with these traits. The aim of this study was to test 

the association of the candidate growth-associated SNPs in a separate population of 

farmed Atlantic salmon to verify their effects. Identifying SNP-trait associations in two 

populations provides evidence that the associations are true and robust. Using a large 

cohort (N = 1152), we successfully genotyped eight candidate SNPs from the previous 

GWAS, two of which were significantly associated with several growth and fillet traits 

measured at harvest. The genes proximal to these SNPs were identified by alignment to 

the salmon reference genome and are discussed in the context of their potential role in 

underpinning genetic variation in salmon growth. 
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5.2 Chapter Introduction 

 

The Food and Agriculture Organization (FAO) reported that the worldwide production 

of farmed finfish was approximately 66.6 million tonnes from 2011 to 2012, an increase 

of 26 % compared with 2008 to 2009 [1]. The demands for high quality animal proteins 

are continuously expanding due to global economic development and human population 

increase. Aquaculture has a major role in fulfilling the increased requirement of protein 

consumption, and the continuous improvement of farming scale, sustainability and 

efficiency is required. Selective breeding for key production traits (such as feed 

efficiency and disease resistance) in finfish and shellfish species is an essential 

component of this improvement. However, aquaculture breeding schemes are generally 

fewer and less developed than terrestrial livestock and plants [2,3]. Gjedrem et al. [4] 

indicated that less than 10 % of aquaculture production was based on genetically-

improved stock. Notably, the annual genetic gain in selective breeding programmes of 

aquaculture species is typically higher than that of farmed terrestrial species [4], 

highlighting that genetic improvement of the key economic traits can be readily 

achieved. 

 

The development of high throughput sequencing technologies has expedited the 

discovery of millions of genome-wide SNPs, particularly for salmonid species, which 

have high economic values; e.g., Atlantic salmon [5,6], rainbow trout [7,8] and sockeye 

salmon [9]. To date, for Atlantic salmon, traits, such as fillet colour, sexual maturation 

and fat percentage, have been initially studied using genome-wide association (GWA) 

analyses using an SNP array with approximately 6 K markers [10,11]. Additionally, 

GWAS for host resistance to sea lice [12], host resistance to Piscirickettsia salmonis 

[13] and early growth traits [14] have been performed using higher density SNP chips 

(50 or 132 K SNPs). Around 70 to 100 million years ago, the ancestor of modern 

salmonids underwent a whole genome duplication (WGD) event [15,16], which was 

followed by extensive modifications of both the genome and transcriptome and is still 

under the process of returning to diploidy [17,18]. The relics of the duplicated genomes 
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generated by WGD complicate the discovery and interpretation of genomic variation, 

partly due to the difficulty in distinguishing true segregating polymorphism from 

paralogous variation [17]. Nonetheless, the vast majority of SNPs discovered to date in 

salmonid species segregate in a diploid manner [19]. 

 

The heritability of growth traits, such as body weight and length, in Atlantic salmon is 

moderate to high (e.g. [10,20,21]); but these complex traits are usually considered highly 

polygenic, and the underlying physiological basis for growth is likely to involve 

networks of many interacting genes. Typically, functional networks regulating growth-

related traits involve hundreds of candidate genes [22,23]. Detecting and investigating 

the function of each individual gene within such complex networks is practically 

unfeasible. However, clues to the possible roles of particular candidate genes can be 

determined by associating genomic variation within or close to the gene with phenotypic 

variation in the trait of interest on a population scale. Herein lies the potential of GWAS 

to inform the underlying biology of the trait in question, in addition to providing 

potential markers for selective breeding programmes. Several previous studies of the 

association between candidate gene polymorphisms and phenotypic variation in salmon 

populations have focused on well-known candidates with previously-demonstrated 

physiological roles in the trait of interest (e.g. [19,24,25]). With the advent of high 

density and high throughput genotyping assays, GWAS and subsequent alignment to a 

reference genome [26] can identify positional candidate genes in a more systematic 

manner. However, with all association studies, it is important to assess the robustness of 

any putative significant result by testing the association between the SNP and the trait in 

a separate population / study. Therefore, the aims of this study were (i) to test the 

association of a subset of the most significant SNPs associated with weight and length of 

juvenile salmon [14] in another large cohort of fish and (ii) to identify and discuss 

putative candidate genes proximal to the SNPs that may directly contribute to variation 

in the growth phenotypes. 
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5.3 Methods 

5.3.1 Animals 

 

The GWAS used to identify the SNPs with putative association with growth in 

commercial salmon populations was based on the 2007 year group population of the 

Landcatch Natural Selection (LNS; Ormsary, UK) broodstock that were measured for 

weight and length at the end of the freshwater period (~ 1 year old; ―Population 1‖) [14]. 

To test the candidate SNPs in a new population, 1152 individuals were randomly 

selected from a larger population (n ~ 5000) comprising the 1999 year group of LNS 

broodstock that were measured for weight and other fillet traits at harvest (―Population 

2‖). The 1152 genotyped fish were across 191 full sibling families from 131 sires and 

185 dams. The phenotypes were measured by LNS at harvest (approximately 3 years 

old), including overall harvest weight (kg), gutted weight (kg), deheaded weight (kg), 

fillet weight (kg), head weight (kg), gut weight (kg), body waste weight (kg) and total 

waste weight (kg), fat percentage (% as estimated using a Torry Fatmeter (Distell Ltd., 

Aberdeen, Scotland)) and fillet colour (assessed visually using the Roche SalmoFan 

scale (Hoffmann-La Roche, West Sussex, UK), ranging from 20 (Yellow) to 34 (Red)). 

The body waste weight was calculated as deheaded weight minus fillet weight (weight 

of vertebrae and caudal fin), and total waste weight was by head weight plus body waste 

weight. Details of the population and phenotype measurement are given in Tsai et al. 

and Peñaloza et al. [20,25]. An adipose fin tissue sample of each individual was clipped 

and retained for DNA extraction using DNeasy-96 tissue DNA extraction kits (Qiagen, 

Crawley, UK). 

 

All animals were reared in accordance with all relevant national and EU legislation 

concerning health and welfare. Landcatch is an accredited participant in the RSPCA 

(Royal Society for the Prevention of Cruelty to Animals) Freedom Foods standard, the 

Scottish Salmon Producers Organization Code of Good Practice and the EU Code-

EFABAR (http://www.responsiblebreeding.eu/) Code of Good Practice for Farm Animal 

Breeding and Reproduction Organizations. 
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5.3.2 SNP Selection and Genotyping  

 

The candidate SNPs were selected based on two relevant studies [14,20]. Firstly, a 

GWA analysis was performed in Population 1 to select the candidate markers for 

genotyping [14], and a proportion of the SNPs surpassing a nominal significance (p ~ 

10
−3

) were selected. Secondly, chromosome 20 was identified as containing loci 

affecting growth and fillet-related traits in Population 2 [20]. Therefore, two SNPs with 

nominally significant association with weight and length (p ~ 10
−2

) [14] from this QTL 

region were also included in the shortlist for further investigation. The details of 

candidate SNPs are given in Table S1. In total, sixteen candidate SNPs were selected for 

assay design and genotyping in Population 2, of which eight were successfully 

genotyped and showed segregation. Candidate SNP markers and their flanking 

sequences were provided to LGC Genomics (Herts, UK) for the design of ―kompetitive 

allele-specific PCR (KASP)‖ assays (see KASP technique details at [38]) for genotyping 

with 1152 offspring in Population 2. 

 

5.3.3 Statistical Analysis  

 

5.3.3.1 Heritability Estimation and SNP Associations 

 

The heritability of the traits was calculated as described previously [20]. The simple 

animal model (Model (1)) was used to estimate the additive genetic effect of each SNP 

genotype (G): 

Y = μ + G + A + e (1) 

where Y represents the observed phenotype, μ is the overall mean of the trait, G is the 

fixed effect of the SNP genotype, A is the additive genetic effect and e is the residual 

error.  
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For estimating heritability, the equivalent model was used, but without the SNP effect 

(G) using the model: 

h
2

a = σ
2

a/ σ
2
p (2) 

where σ
2

a is the additive genetic variance and σ
2
p is the total phenotypic variance. The 

analysis was performed by ASReml 3.0 [39]. 

 

5.3.3.2 Allelic Substitution Assessment 

 

The allelic substitution effects of informative SNPs were estimated using Model (1) 

performed by ASReml 3.0 [39]. The SNP genotype was fitted as the fixed effect in the 

analysis. The additive effect of the candidate marker was calculated as the difference of 

the predicted phenotypic means of two homozygotes divided by two, which was given 

as (AA − BB)/2, and the dominance effect was AB − ((AA + BB)/2), where the AB 

represents the predicted phenotypic means from heterozygote and AA or BB are from 

homozygote in the statistical analysis. The proportion of genetic variance due to SNP 

(PVE) was also estimated, by the following equation [40]: 

PVE = [2pq (α + δ(q − p))
2
]/VA (3) 

where α and δ are the additive and dominance effect, respectively, p is the frequency of 

the most frequent allele, q is the frequency of the minor allele and VA is the total additive 

genetic variance of the trait obtained when no SNP effects are included in the model. 

 

5.3.3.3 Candidate Gene Identification 

 

To identify candidate genes near the significant SNPs, the flanking sequence was 

aligned to the Atlantic salmon reference genome assembly (GCA_000233375.4), and the 

corresponding genome contig and position of the SNPs were noted. Approximately 20 

kb of sequence surrounding the SNPs were repeat masked (retrieved from [41]), and a 

BlastX analysis was used to detect putative genes within the vicinity of the SNPs. 
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5.4 Results 

 

5.4.1 Heritability Estimation 

 

The population used in the analysis was a random subset of a larger population 

(Population 2) measured for overall and component weight traits, colour and fat content. 

Heritabilities of fillet-related traits were moderate to high (0.52 to 0.53), whereas the 

waste weights (e.g. head weight) were approximately 0.3. The heritability of fat 

percentage and fillet colour was slightly lower (0.14 to 0.18). The phenotypic and 

genetic correlations were high for all of the weight-related traits (r ~ 0.96 to 0.99), but 

with little correlation between weight traits and fillet colour (r = −0.08). A summary of 

the heritability estimation and general statistics are given in Table 5-1, and they were 

consistent with estimates made on the larger population analysed previously [19]. 

 

5.4.2 Association between SNPs and Traits of Interest 

 

Based on the results of the 2007 year group (Population 1) GWA analysis, 16 nominally 

significant SNPs were selected for genotyping in the 1999 year group (Population 2). 

These SNPs were chosen from QTL regions on chromosomes 16, 21 and 28 for weight 

and chromosomes 5, 16, 17 and 20 for length (Figures 5-1 and 5-2). Assays failed for six 

SNPs, and two more were monomorphic (details of selected markers were tabulated in 

Table S1). Of the remaining eight successfully genotyped SNPs, two were significantly 

associated with several growth traits (Table 5-2). 
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Table 5-1. The summary statistics and heritability estimates for the harvest traits. 

Traits Mean (SD) Heritability (SE) 

Harvest weight (kg) 2.65 (0.72) 0.52 (0.05) 

Head weight (kg) 0.30 (0.12) 0.21 (0.03) 

Body waste weight (kg) 0.34 (0.15) 0.15 (0.02) 

Total waste weight (kg) 0.67 (0.21) 0.32 (0.04) 

Gutted weight (kg) 2.42 (0.65) 0.53 (0.05) 

Deheaded weight (kg) 2.11 (0.57) 0.52 (0.05) 

Fillet weight (kg) 1.76 (0.48) 0.53 (0.05) 

Fat percentage (%) 13.2 (5.98) 0.18 (0.03) 

Fillet colour (20–34) 28.9 (0.74) 0.14 (0.03) 

Gut weight (kg) 0.22 (0.08) 0.30 (0.04) 

 

The SNP AX88270804 was significantly associated (p < 0.05) with most of the fillet and 

waste traits, including a suggestive association with fat content (p < 0.1). The adenine 

allele corresponds to higher trait means for the carcass weight and fatness traits. The 

SNP AX88141678 was associated with overall harvest weight, head weight and gutted 

weight (p < 0.05). At this SNP, the adenine allele was also associated with higher trait 

means for the carcass and overall weight traits. The estimation of the additive genetic 

variation explained by the SNPs indicated that AX88270804 explained a small 

percentage of the overall variation in fillet traits (~ 1 %), waste traits (2 % to 3 %) and 

fat percentage (4 %). The SNP AX88141678 explained approximately 1 % of the 

additive genetic variation in the weight-related traits (Table 5-2). To account for 

variation in the overall size of the fish when analysing component traits, Model (1) was 

preformed, including harvest weight as a covariate. In this analysis, most of the SNP-

trait associations were no longer significant, but SNP AX88270804 showed an 

association with body waste weight and total waste weight. 
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Figure 5-1. The Manhattan plot of body weight in the GWAS of Population 1 

[14]. The Bonferroni genome-wide significance threshold is p ~ 4.50 × 10
-7

. 

 

 

Figure 5-2. The Manhattan plot of body length in the GWAS of Population 1 

[14]. The Bonferroni genome-wide significance threshold is p ~ 4.50 × 10
-7

. 

 

 

 

5.4.3 QTL Regions Characterization and Putative Gene Identification 

 

The corresponding flanking sequences for the two significant SNPs were aligned with 

the reference genome (assembly GCA_000233375.4), and the putative genes proximal 

to the SNPs were identified, indicating that the loci AX88141678 (chr. 5) and 

AX88270804 (chr. 16) were located within MEP1A (meprin A subunit beta-like) and 

PCNT (pericentrin), respectively. AX88270804 was located in an exon (non-

synonymous), whereas AX88141678 was in a non-coding region (Table 5-2). The 

details of all SNPs tested in the current study are given in Table S1. The main results of 

the GWA analysis in Population 1 are given in Tsai et al. [14]. However, due to the 

recent availability of a chromosome-anchored reference genome sequence assembly for 
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Atlantic salmon (GCA_000233375.4), we used BlastN to align the flanking sequence of 

the SNPs on the array with the assembly to identify their putative chromosome and 

position. This information was used to draw Manhattan plots to view the QTL regions 

from which the candidate SNPs were chosen (Figures 5-1 and 5-2). 

 

Table 5-2. Results of the association analysis including the predicted mean value 

(and standard error) and proportion of additive genetic variance due to SNP (PVE) 

for each trait and genotype class. 

Traits 

AX88141678 (Gene: MEP1A) AX88270804 (Gene: PCNT) 

A/A A/G G/G 
PVE 

(%) 
A/A A/G G/G 

PVE 

(%) 

# of fish n = 651 n = 436 n = 52 
 

n = 281 n = 581 n = 265 
 

Harvest weight 2.59 (0.04) 2.63 (0.05) 2.33 (0.1)** 0.3 2.66 (0.05) 2.60 (0.04) 2.50 (0.06)* 1 

Head weight 0.30 (0.01) 0.30 (0.01) 0.26 (0.02)** 1.3 0.31 (0.01) 0.3 (0.01) 0.28 (0.01)** 1 

Body waste weight 0.33 (0.01) 0.35 (0.01) 0.32 (0.02) 0.1 0.34 (0.01) 0.35 (0.01) 0.31 (0.01)** 3 

Total waste weight 0.65 (0.01) 0.67 (0.01) 0.61 (0.03) 0 0.66 (0.02) 0.67 (0.01) 0.61 (0.02)** 2 

Gutted weight 2.37 (0.04) 2.39 (0.04) 2.19 (0.09)* 0.2 2.41 (0.05) 2.38 (0.04) 2.28 (0.05) ** 1 

Deheaded weight 2.07 (0.03) 2.10 (0.03) 1.94 (0.08) 0.05 2.10 (0.04) 2.09 (0.03) 1.99 (0.04) * 1 

Fillet weight 1.71 (0.03) 1.76 (0.03) 1.59 (0.07)** 0 1.76 (0.04) 1.72 (0.03) 1.67 (0.04) 1 

Fat percentage 13.19 (0.27) 13.12 (0.31) 12.41 (0.84) 0.4 13.65 (0.39) 13.17 (0.28) 12.45 (0.4) * 4 

Fillet colour 28.96 (0.04) 28.90 (0.05) 29.03 (0.12) 0.1 28.98 (0.06) 28.90 (0.04) 28.97 (0.06) 0.02 

Gut weight 0.21 (0) 0.22 (0) 0.20 (0.01) 0.01 0.22 (0.01) 0.22 (0) 0.20 (0.01) ** 3 

* Overall SNP p < 0.1; ** overall SNP p < 0.05. 

 

5.5 Discussions 

 

Abundant SNPs discovered by modern sequencing technologies and bioinformatics tools 

have allowed us to better understand the association between genomic variation and 

production traits in aquatic species [27]. In a recent study, we applied a high density 

SNP array (~ 132 K) [6] to identify candidate markers associated with weight and length 

traits in a farmed salmon population measured at one year of age [14]. To test a subset of 

promising SNPs from the previous study in a different population, we successfully 

genotyped eight SNPs in a population of 1152 salmon with growth and harvest-related 

traits measured at three years of age. Two SNPs were found to be significantly 
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associated with several growth and harvest traits in the second population, implying that 

these SNPs are linked to QTL with effects on growth at multiple stages of the salmon 

production cycle. For the remaining six SNPs where no significant association was 

detected, this may reflect false positives in the initial study or false negatives in the 

current study. Alternatively, SNPs may have specific lifecycle stage-specific effects on 

growth that were not observed in both studies due to the difference in age at which the 

salmon were measured (one and three years respectively). While only weight and length 

were measured in the GWAS [14], there were eight fillet- and carcass-related traits 

measured in the current study. Therefore, for the two SNPs that were validated in the 

current study, the use of these additional measurements helps to determine a more 

specific growth phenotype associated with the SNP effects. For example, the SNP 

AX88270804 was associated with fat percentage in the current study, which indicates 

that the faster growth associated with the favourable allele also leads to increased fat 

content of the fish. 

 

Alignment of the SNP flanking sequences with the Atlantic salmon reference genome 

predicted that AX88270804 was a synonymous exonic SNP within the PCNT gene and 

showed a significant association with several muscle and skeletal growth traits (p < 

0.05) in Population 2 (current study) and growth traits (p ~ 10
—4

) in Population 1 [14]. 

The SNP explained between 1 % and 4 % of the genetic variation in various harvest 

traits. In humans, the PCNT gene encodes the centrosome protein pericentrin, which 

contributes to the organisation of the mitotic spindle for the segregation of the 

chromosomes during cell division, thus influencing cell cycle progression. Mitotic 

centrosome dysfunction caused by pericentrin mutations can be expected to cause 

disturbances in cell division and is known to result in seriously stunted growth of the 

body and brain [28,29]. Interestingly, the SNP within the PCNT gene in salmon also has 

a suggestive association with fat percentage, explaining approximately 4 % of the 

genetic variation. As expected, the allele associated with faster growth is also associated 

with increased fatness (Table 5-2). Major mutations in the PCNT gene in humans also 

affect adipocyte differentiation and can result in dyslipidemia as part of a wider insulin 
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resistance syndrome. The fact that PCNT function is necessary for normal growth and 

lipid regulation in humans raises the possibility that further minor genetic variation 

within and around the gene may contribute to phenotypic variation in these traits. 

However, the role of the pericentrin in salmonid species has not yet been established. 

 

The SNP AX88141678 was found in the intronic region of the MEP1A gene, which 

encodes meprin A subunit alpha. Meprins are zinc metalloendopeptidases that are 

predominantly found in kidney and intestinal brush border membranes in mammals and 

are known to play a role in protein metabolism [30]. Like PCNT, little is known about 

the function of MEP1A in Atlantic salmon, but interestingly, diet manipulation in 

another salmonid species (rainbow trout (O. mykiss)) has been shown to result in marked 

expression changes of MEP1A in the intestine [31]. In addition, MEP1A expression was 

shown to differ between domesticated and wild brook char (Salvelinus fontinalis) and its 

putative effect on growth factors was postulated to be the underlying mechanism for the 

higher expression in selected fish [32]. Therefore, while the association with growth 

traits may be due to variation in nearby candidate genes, the association of an SNP 

within the MEP1A gene and growth traits and its postulated functional connection to the 

growth traits raise the possibility that the causative effect underlying this association 

may be mediated via the MEP1A gene itself. It is worth noting that the genotype means 

for the SNP suggest an overdominance effect, which may explain why the additive 

variation explained is very small (Table 5-2). 

 

Loci AX88141678 and AX88270804 were mapped to chr. 5 and chr. 16 using sire-based 

linkage mapping, respectively [6], and alignment with the reference genome assembly. 

A recent quantitative trait loci (QTL) mapping study by our group [20] in the same 

population as the current study showed that chr. 16 harbours loci affecting several 

growth traits with chromosome-wide significance in a sire-based analysis, although no 

QTL were detected on chr. 5. To date, there is a lack of consistency between the 

locations of the QTL affecting growth traits in different studies and commercial salmon 

populations [20,33–35]; therefore, the growth traits are considered to be regulated by 
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population-specific and polygenic factors. Further, while the association between the 

PCNT and MEP1A candidate gene polymorphisms and growth-related phenotypes 

measured in two different populations of salmon is encouraging, the direction of the 

allelic effects between the two studies was generally not consistent (see Table S2). For 

both SNPs in the current study, fish carrying two copies of the adenine allele had better 

growth performance than other genotypes, whereas in Tsai et al. [14], this genotype was 

associated with lower weight and length values. This may be due to opposing effects in 

different lifecycles and environments (freshwater versus seawater). A genotype by 

environment interaction has been shown to be evident for the direction of association of 

individual SNPs (e.g. [36]). Alternatively, these SNPs may be marking QTL some 

distance away, and the relationship between marker and QTL may vary from population 

to population. The QTL regions identified in the GWAS cover a relatively large region 

of the chromosomes (Figures 5-1 and 5-2). As such, while identifying chromosomal 

regions and putative genes harbouring variation contributing to growth phenotypes in 

salmon is of biological interest, it is unlikely that specific marker-assisted selection for 

these individual loci will be of high value, in particular for growth traits, which are 

directly measurable on the selection candidates themselves. This is particularly the case 

because genomic prediction using relatively few genome-wide markers can lead to very 

accurate prediction of breeding values for complex traits, such as growth (e.g. accuracy 

~ 0.7 for juvenile weight and length in [14]). Therefore, genomic selection-based 

breeding schemes are likely to be increasingly utilised for the improvement of polygenic 

traits as genotyping technology becomes more affordable [14,37], especially for those 

traits with high economic value and that are difficult to be visualized (e.g. milk yield in 

dairy and fillet weight in fish). 
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5.6 Chapter Conclusions 

 

In genome-wide association studies of complex and polygenic traits, the significant 

SNPs identified are likely to contain a mix of true associations and false positives. 

Therefore, verification of GWAS findings in a separate population is an important 

validation step, and SNP associations identified in more than one population are more 

likely to be reflecting real QTL. We identified two (out of eight successfully genotyped) 

SNPs that showed an association with growth traits in two different populations, and two 

different lifecycle stages, in Atlantic salmon. The SNPs are within the pericentrin and 

meprin alpha genes, which both have potentially relevant functional connections to the 

growth and harvest traits studied. Further investigation of these candidate genes may be 

merited to identify putative causative variation. 
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5.7 Conclusions 

 

The heritabilities of growth traits are highly heritable, and comparable with the findings 

in chapter 3. Eight SNPs were successfully genotyped, and two of which showed 

significant associations with several weight-related traits across two populations. Loci 

AX88141678 and AX88270804 were mapped to chromosome 5 and 16, and the putative 

genes were MEP1A and PCNT, respectively. In comparison with results in chapter 3 and 

chapter 4, the linkage groups or genes showing significant association with targeted 

traits only have a little in common (e.g. chromosome 16 was identified in sire-based 

analysis only in chapter 3), implying the growth traits are regulated by population-

specific and polygenic factors. The results highlight that the effects of significant SNPs 

may be varying in different populations and studies. 
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5.8 Additional Files 

 

Supplementary Table 1. The markers selected from GWA analysis for verification. 

Link: http://goo.gl/F9oDB5 

Supplementary Table 2. The marker ID, p-value estimated by the GWA analysis, 

putative gene and flanking sequence of two informative SNPs. The results were 

given in Tsai et al. [14]. Link:  http://goo.gl/F9oDB5 
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6.0 Introduction 
 

In previous chapters (chapter 3 to chapter 5), I have applied QTL mapping, GWAS, and 

genomic prediction to uncover the genetic basis of growth traits. My results showed that 

the prediction accuracies of both body weight and length were high. Because the growth 

traits are highly heritable and relatively easier to be measured, the genomic prediction 

applied with growth trait is likely less useful in comparison with disease traits. The most 

commercially important trait is sea lice (L. salmonis) to date, which is thought as the 

most critical parasitic disease in salmon farming in European countries. According to 

statistics, sea lice have caused approximately £25 million financial losses annually in 

Scotland. As such, genomic prediction is likely able to provide more contributions 

especially for disease resistance traits in salmon breeding. In this chapter, I aim to 

understand the genetic architecture of host resistance to sea lice by using GWAS and 

genomic prediction. Specifically, the objectives are to estimate the heritability of lice 

resistance trait, and to assess the prediction breeding values of individuals using 

pedigree and genomic-based approach, and to identify the single SNP associated with 

lice resistance trait by performing GWAS. The locations of identified loci in the 

corresponding linkage map were identified by using data generated in chapter 2.   
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6.1 Abstract 

Background 

Sea lice have significant negative economic and welfare impacts on marine Atlantic 

salmon farming. Since host resistance to sea lice has a substantial genetic component, 

selective breeding can contribute to control of lice. Genomic selection uses genome-

wide marker information to predict breeding values, and can achieve markedly higher 

accuracy than pedigree-based methods. Our aim was to assess the genetic architecture of 

host resistance to sea lice, and test the utility of genomic prediction of breeding values. 

Individual lice counts were measured in challenge experiments using two large Atlantic 

salmon post-smolt populations from a commercial breeding programme, which had 

genotypes for ~ 33 K single nucleotide polymorphisms (SNPs). The specific objectives 

were to: (i) estimate the heritability of host resistance; (ii) assess its genetic architecture 

by performing a genome-wide association study (GWAS); (iii) assess the accuracy of 

predicted breeding values using varying SNP densities (0.5 to 33 K) and compare it to 

that of pedigree-based prediction; (iv) evaluate the accuracy of prediction in closely and 

distantly related animals. 

Results 

Heritability of host resistance was significant (0.22 to 0.33) in both populations using 

either pedigree or genomic relationship matrices. The GWAS suggested that lice 

resistance is a polygenic trait, and no genome-wide significant quantitative trait loci 

(QTL) were identified. Based on cross-validation analysis, genomic predictions were 

more accurate than pedigree-based predictions for both populations. Although prediction 

accuracies were highest when closely-related animals were used in the training and 

validation sets, the benefit of having genomic versus pedigree-based predictions within a 

population increased as the relationships between training and validation sets decreased. 

Prediction accuracy reached an asymptote with a SNP density of ~ 5 K within 

populations, although higher SNP density was advantageous for cross-population 
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prediction. 

Conclusions 

Host resistance to sea lice in farmed Atlantic salmon has a significant genetic component. 

Phenotypes relating to host resistance can be predicted with moderate to high accuracy 

within populations, with a major advantage of genomic over pedigree-based methods, 

even at relatively sparse SNP densities. Prediction accuracies across populations were 

low, but improved with higher marker densities. Genomic selection can contribute to 

lice control in salmon farming. 
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6.2 Chapter Introduction 
 

Genomic selection (GS) involves the prediction of individual breeding values for 

complex traits by combining statistical methods with genome-wide single nucleotide 

polymorphism (SNP) data. Relationships between SNPs and traits of interest are first 

determined within a reference (or training) population, and then they are used to identify 

selection candidates with high genetic merit in the absence of phenotype records [1, 2]. 

The feasibility of GS schemes depends on the availability of a high-quality SNP 

genotyping platform and on extensive trait records collected in the reference populations. 

Due to the increased availability of high-density SNP chips and the development of 

genotyping-by-sequencing for several economically important livestock and aquaculture 

species (e.g. [3–7]), GS has become a widely used approach, particularly for traits of 

economic and welfare importance (e.g. disease resistance). The accuracy of predicted 

breeding values based on genomic data is expected to be substantially higher than that 

based on pedigree records alone, but depends on many variables, including the genetic 

architecture of the trait, SNP density, sample size, and the degree of relationship 

between the reference and validation sets [8, 9]. 

In Atlantic salmon farming, ectoparasitic copepods, commonly known as sea lice 

(specifically Lepeophtheirus salmonis in Europe and Caligus rogercresseyi in Chile), are 

the primary threat to sustainable production, and have a negative economic, animal 

welfare, and environmental impact. Symptoms of L. salmonis infection include skin 

lesions, osmotic imbalance, and increased susceptibility to other infections as a result of 

host immune suppression and skin damage [10]. Frequent chemical treatments are 

required to control louse infections on commercial farms and result in large annual costs, 

potential environmental damage, and a high prevalence of drug-resistant lice [10, 11]. 

However, there is encouraging evidence from challenge trials that revealed heritabilities 

of approximately 0.2 to 0.3 for lice resistance, as measured by counts of lice on the fish 

(e.g. [11–14]), highlighting host genetic variation in resistance to lice. Therefore, 

selective breeding to improve host resistance to lice in farmed salmon populations is an 
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increasingly important component of disease control [9, 11]. Given the importance of 

the sea lice issue to the salmon industry, this trait is also a high priority candidate for GS 

to accelerate the production of stocks with increased resistance. 

The quantitative genetic models that underpin GS can be broadly split into two 

categories based on the assumptions that underlie the genetic architecture of the trait. 

The first category assumes an even distribution of the genetic variance across the 

genome and includes genomic best linear unbiased prediction (GBLUP) methods. The 

second category allows for heterogeneity in the contribution of the markers to the 

genetic variance, which is typically modelled using Bayesian methods (e.g. [15]). While 

the Bayesian methods (e.g. Bayes B) are generally more accurate than GBLUP on 

simulated data, particularly when the number of quantitative trait loci (QTL) that 

underlie the genetic variance is small [8], prediction accuracy using ‗experimental‘ data 

in livestock breeding schemes is often very similar with either of these two methods [16]. 

Genomic prediction using these models relies both on capturing linkage disequilibrium 

(LD) between SNPs and QTL and on accurate estimates of realised genetic relationships 

between individuals [9, 17]. In typical farm animal populations, prediction accuracy 

depends largely on the latter [18], but the persistency of prediction accuracy across 

generations and between unrelated populations depends on the LD between SNPs and 

QTL [2, 9, 17]. For most commercial aquaculture breeding programmes, the availability 

of large full-sib families facilitates extensive trait measurements on individuals that are 

closely related to the selection candidates. Therefore, within-population genomic 

prediction will capitalise on realised genetic relationships, and the role of LD between 

SNPs and QTL may be less crucial [9, 18]. However, for salmon with a discrete 3-or 4-

year generation interval, accuracy of prediction across adjacent year groups with limited 

genetic connectivity between them will depend more on LD, and is likely more 

challenging. 

Family-based selective breeding programmes for Atlantic salmon have traditionally 

focused on economically important traits that can be easily measured on the selection 

candidates (e.g. growth) and on traits that can be measured on close relatives (e.g. full 
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and half siblings), such as disease resistance and processing traits. Studies of GS in 

aquaculture using both simulated and ‗experimental‘ data have suggested that genomic 

prediction can result in more accurate breeding values than traditional pedigree-based 

approaches (e.g. [9, 19–21]). However, the cost-efficiency of GS is critical; both high-

density SNP arrays and extensive collection of trait data can be prohibitively expensive 

for routine genomic evaluations. Therefore, knowledge of the optimal design of 

reference populations and of the required SNP density is important, as well as 

quantification of the benefit that can be expected from the implementation of GS. 

The objectives of this study were to (i) estimate the heritability of host resistance to sea 

lice using both genomic and pedigree-based methods, (ii) analyse the genetic 

architecture of host resistance by performing a GWAS, (iii) assess the accuracy of 

genomic prediction using various SNP densities up to 33 K SNPs and compare it to that 

of pedigree-based prediction, and (iv) test genomic prediction accuracies in closely and 

more distantly related reference and validation populations. 

 

6.3 Methods 
 

6.3.1 Animal and Challenge Experiment 

The animals used in the study were taken from a commercial Atlantic salmon breeding 

programme (Landcatch, UK). Due to the four-year generation interval, the breeding 

program consists of four sub-populations (referred to as year groups), two of which were 

studied. Full details for population I (2007 year group, n = 624) were previously 

described in Tsai et al. [21]. Briefly, this population consisted of 531 genotyped 

offspring with complete phenotype and genotype information, derived from 61 nucleus 

families (30 sires and 59 dams). The families in population I were reared in separate 

tanks until approximately 9 months post-hatch, at which time they were mixed. 

Population II (2010 year group, n = 874) comprised 151 families (98 sires and 188 
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dams), with 588 offspring that were phenotyped and genotyped. The families in 

population II were mixed at first feeding and reared in a single common tank. The lice 

challenge trials were conducted at the Marine Environmental Research Laboratory 

(Machrihanish, UK) in 2007 and 2010, respectively. The challenge protocols were 

similar for both populations; the fish (approximately 1 year post-hatching) were 

challenged in a single tank with a moderate dose of copepodid larvae (90 to 96 larvae 

per fish) and then monitored daily until most lice had moulted into chalimus I. Sampling 

and measurements began on day 7 post-challenge and lasted one and 4.5 days for 

populations I and II, respectively (for population I, lice counts were shown to be stable 

between 7 and 17 days post-challenge [11]). Prior to lice counting, fish were euthanized 

with benzocaine as described in Gharbi et al. [11]. Phenotypes including weight (g), 

length (mm), and sea lice count [number of sea lice per fish, measured using a stereo-

microscope (Olympus SZ-40)] were recorded for each fish. An adipose fin clip was 

collected and stored in ethanol for DNA extraction. For population I, pedigree 

information for each individual was traced by using passive integrated transponder (PIT) 

tags. For population II, a standard parentage assignment panel of 108 SNPs was 

screened on a Sequenom platform (DNA LandMarks Inc., Canada) to construct the 

pedigree. 

All animals were reared in accordance with relevant national and EU legislation 

concerning health and welfare. The challenge experiment was performed by the Marine 

Environmental Research Laboratory (Machrihanish, UK) under approval of the ethics 

review committee of the University of Stirling (Stirling, UK) and according to Home 

Office license requirements. Landcatch are accredited participants in the RSPCA 

Freedom Foods standard, the Scottish Salmon Producers Organization Code of Good 

Practice, and the EU Code-EFABAR Code of Good Practice for Farm Animal Breeding 

and Reproduction Organizations. 
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6.3.2 SNP Genotyping 

 

DNA was extracted from fin tissue samples using the DNeasy 96 tissue DNA extraction 

kit (Qiagen, UK). Population I was genotyped with an Affymetrix Axiom SNP array that 

included ~ 132 K SNPs [22] and population II was genotyped with the custom 

Affymetrix Axiom ~ 35 K array described in Tsai et al. [21]. This 35 K array is used for 

routine genomic evaluations and includes a subset of high-quality SNPs of the 132 K 

array that were selected based on having a good distribution throughout the genome and 

minimal LD between pairs of SNPs [21]. Sex of the fish was predicted by using the Y-

specific probes on the 132 K array, as described by Houston et al. [22]. Filtering of SNP 

data was performed using the Plink software [23], excluding SNPs with Mendelian 

errors, with a minor allele frequency (MAF) lower than 0.1 and with a proportion of 

missing genotypes greater than 0.03. Finally, approximately 33 K SNPs were retained 

for analyses in both populations. 

 

6.3.3 Genetic Parameters for Lice Resistance 

 

6.3.3.1 Data Normalization 

The raw data for lice counts showed a positively skewed distribution [See Additional file 

1 Figure S1], thus to normalize this distribution, we transformed the data using a 

previously applied approach that also accounts for an approximation of the surface area 

of the fish [13]: 

,      (1) 

where  is the number of lice counted on the fish (plus one to avoid a computation 

error since some fish may have zero lice),  is an approximation of the whole 
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surface of the skin of each individual, where  represents the body weight (g) at the 

time of the sea lice challenges. A moderate correlation of 0.35 was found between body 

surface and lice count. 

 

6.3.3.2 Estimation of Genetic parameters  

 

The heritability of host resistance to sea lice count (and of weight and length traits) was 

estimated using both genomic and pedigree-based analyses for the two populations. 

Only fish with complete phenotype and genotype records were included, resulting in 531 

and 588 fish in populations I and II, respectively. Heritabilities were estimated by 

ASReml 3.0 [24] using genomic and pedigree-based relationship matrices (G-matrix and 

A-matrix, respectively) with the following mixed model: 

,        (2) 

where  is a vector of observed phenotypes,  is the overall mean of phenotype records, 

 is the vector of fixed effects,  is a vector of additive genetic effects distributed as 

~  or  where  is the additive (genetic) variance,  and  are the 

genomic and pedigree relationship matrices, respectively.  and  are the corresponding 

incidence matrices for fixed and additive effects, respectively, and e is a vector of 

residuals. If the SNPs applying sex as the fixed effect did not surpass the genome-wide 

significance threshold (Bonferroni correction (0.05/N), where N represents the number 

of QC-filtered SNPs across the entire genome), it was omitted from subsequent analyses. 

The genomic relationship matrix was constructed by the Genabel R package [25] using 

the method of VanRaden [26] and then inverted by applying a standard R function 

(https://www.r-project.org/). Narrow sense heritability was estimated as the ratio of 
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additive genetic variance to total phenotypic variance. Phenotypic correlations between 

traits were estimated using ASReml 3.0 [24] and genetic correlations were estimated 

using bivariate analyses implemented in ASReml 3.0 [24] as well. 

6.3.4 Genome-wide Association Study  

The two-step ‗GRAMMAR‘ approach was used to perform the GWAS using the 

GenABEL R Package [25]. The GWAS was performed in each population separately, 

and on the two populations combined. First, model (2) was applied to adjust the lice 

count data based on fixed (year group in the combined analysis) and polygenic effects 

(relationships between animals as measured by the genomic relationship matrix). 

Subsequently, the mmscore method [27] of GenABEL was applied to measure the 

association between individual SNPs and the residuals from model (2) (which are 

corrected for family relatedness). Significance thresholds were calculated using a 

Bonferroni correction to obtain genome-wide (0.05/number of all quality-control filtered 

SNPs, ~ 33 K) and chromosome-wide (0.05/number of SNPs on the corresponding 

chromosome) thresholds, respectively. For the SNPs that were closest to chromosome-

wide significance (i.e. those with the lowest P values), allele substitution effects were 

estimated using model (2) in ASReml 3.0 [24] by including the fixed effects of SNP 

genotype and population. The additive effect ( ) of the SNP was calculated as half the 

difference between the predicted phenotypic means of the two homozygotes, i.e. 

, and the dominance effect ( ) was calculated as , 

where the  represents the predicted phenotypic mean of the heterozygote. The 

additive genetic SNP variance ( ) was estimated using the following equation: 

                                               (3) 

where p and q are the frequency of the major and minor alleles at the SNP, respectively. 

The proportion of variance explained by the SNP is then given by: 
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                                        (4) 

where  is the total additive genetic variance of the trait when no SNP effects are 

included in the model. 

6.3.5 Assessment of Genomic Prediction  

The utility of genomic prediction for resistance to lice was assessed by cross-validation 

analyses under various scenarios (see below) in which (i) varying SNP densities (0.5 K, 

1 K, 5 K, 10 K, 20 K (all chosen at random), and 33 K (full dataset)) and (ii) varying 

degrees of relationships between training and validation sets were applied. 

6.3.5.1 Scenario (i): Random Selection 

Within each population (which correspond to discrete ‗year groups‘ of a commercial 

Atlantic salmon breeding programme), cross-validation analysis was performed by 

selecting five random non-overlapping training and validation sets as described 

previously [21]. At each SNP density (0.5 to 33 K SNPs), GBLUP was applied to 

predict the masked phenotypes of the validation sets and the resulting prediction 

accuracy was compared to that of pedigree-based BLUP (PBLUP), as described above. 

The average accuracy across the five cross-validation replicates for each SNP density 

was computed. 

6.3.5.2 Scenario (ii): Sibling 

Within each population, training and validation sets were established such that both sets 

contained representatives of each family. The same cross-validation analyses were 

performed as for Scenario (i). 

6.3.5.3 Scenario (iii): Non-sibling 

Within each population, training and validation sets were established such that full 
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siblings were not included in either set (i.e. different full-sibling families were used for 

training and validation sets). The resulting training and validation sets were more 

distantly related than for Scenarios (i) and (ii), although they did contain some half-sibs. 

The same cross-validation analyses were performed as for Scenarios (i) and (ii). 

 

6.3.5.4 Scenario (iv): Across Populations 

To assess prediction accuracy across populations per year group, population I was used 

as the training set and population II as the validation set, and vice versa. The same 

genomic prediction and cross-validation analyses were performed as for Scenarios (i) to 

(iii), but pedigree-based prediction was not possible since genetic links between the two 

populations were absent from the available pedigree. 

6.3.6 Cross-Validation 

The five-fold cross-validation analyses for each scenario described above were 

performed using the methods described in Tsai et al. [21]. Briefly, for the within-

population analyses, populations I and II were each divided into a training (80 %) and 

validation (20 %) set. Phenotypes (i.e. lice counts) of the samples in the validation sets 

were then masked and GBLUP or pedigree-based BLUP (PBLUP) was applied to 

predict the phenotypes of the masked individuals using model (2) implemented in 

ASReml 3.0 [24]. The Pearson correlation coefficient of the estimated breeding values 

(EBV) [either genomic EBV (GEBV) or pedigree-based EBV (PEBV)] with the adjusted 

phenotype of the masked validation set. Accuracy was calculated as the correlation 

divided by the square root of heritability using all individuals, and then averaged across 

the five replicates (Figures. 6-2 and 6-3). 
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6.4 Results 
6.4.1 General statistics and genetic parameters of resistance to lice and 

growth 

Estimated heritability for lice count was moderate (~ 0.3) and relatively consistent when 

using pedigree relationship matrix (Table 6-1). Estimates of heritability for the growth-

related traits (weight and length) were higher (~ 0.6), in line with previous estimates [21]. 

The two growth traits had a high positive phenotypic and genetic correlation with each 

other (~ 0.93 to 0.96), and correlations of the growth traits with lice count were either 

equal to zero or slightly negative (Table 6-2). 

Table 6-1. General statistics and heritability estimates for lice count and growth 

traits. 

 Population I Population II 

 Mean (SD) Heritability
1
 (SE) Mean (SD) Heritability

1
 (SE) 

Lice
2
 25.8 (12.3) 0.33 (0.08) / 0.27 (0.08) 18.3 (9.1) 0.22 (0.06) / 0.27 (0.08) 

Length 214.2 (16.1)
3
 0.61 (0.07) / 0.51 (0.11)

3
 206.2 (14.3) 0.51 (0.07) / 0.50 (0.10) 

Weight 112.0 (21.0)
3
 0.61 (0.07) / 0.49 (0.10)

3
 89.9 (19.9) 0.50 (0.07) / 0.50 (0.10) 

1
Heritability was estimated based on the G-matrix / A-matrix 

2
The lice count data (number of lice per fish) used here was without data adjustment 

3
The results are from Tsai et al. [21] 

SD is the standard deviation and SE is the standard error 

 

Table 6-2 Estimates of genetic and phenotypic correlations between lice count and 

growth traits in populations I and II. 

           Phenotypic correlation 

Genetic correlation 

    

Lice Length Weight  

Population I 

Lice - -0.04 -0.06  

Length 0.10 - 0.96  

Weight 0.11 0.96 -  

Population II 
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Lice - -0.1 -0.1  

Length -0.3 - 0.93  

Weight -0.3 0.95 -  

 

6.4.2 Genome-wide Association Study 

The results of the GWAS suggest that lice resistance is a polygenic trait, with no SNPs 

surpassing the Bonferroni-corrected significance thresholds (Figure 6-1). Indeed, when 

each population was analysed separately, there was little overlap between regions that 

had the lowest P values (Figure 6-1a and 6-1b). When the two populations were 

combined (Figure 6-1c), SNPs with the lowest P values were located on chromosomes 1, 

3, 9 and 23. The estimated proportion of additive genetic variance explained by these 

SNPs ranged from ~ 2 to 6 % each. The quantile-quantile (Q-Q) plots for each GWA 

analysis are in Figure S2 [See Additional file 2 Figure S2]. 
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Figure 6-1. Manhattan plots of the genome-wide association study for populations I 

(A), II (B), and I and II combined (C). Top markers are close to chromosome-wide 

significance (α < 0.05) but do not pass the threshold. 

 

 

 

 

 

 



155 

 

6.4.3 Accuracy of Prediction Breeding Values  

The putative polygenic architecture of lice resistance in these populations means that 

genomic prediction may be a practical and effective method of predicting breeding 

values for lice resistance, which was tested using cross-validation analyses under 

different scenarios in which varying SNP densities and varying levels of relatedness 

between training and validation sets were applied (see ‗Methods‘ for details). Accuracy 

of prediction using the genomic relationship matrix (GBLUP) was generally higher than 

that using the pedigree relationship matrix (PBLUP). Greater SNP density tended to 

improve prediction accuracy, but the asymptote was generally reached at ~ 5 K SNPs for 

both populations (Figure 6-2). 

The results of genomic prediction under the ―random selection‖ (where training and 

validation sets were chosen at random), and ―sibling‖ (where full siblings from each 

family were deliberately included in both the training and validation sets) scenarios were 

very similar for both populations (Figures 6-2a to 6-2d). Therefore, including animals 

that share close relationships did not improve the accuracy of genomic predictions for 

these populations, which indicates that ―random selection‖ will result in the presence of 

several closely-related fish across the training and validation data sets by chance. In both 

cases, GBLUP resulted in more accurate predictions of lice count in the validation data 

than PBLUP, with a relative advantage of approximately 27 % for population I and 10 % 

for population II (Figures 6-2a to 6-2d). Increasing marker density to more than ~ 5 K 

randomly chosen SNPs had little impact on prediction accuracy, which may be expected 

when the training and validation sets are closely related [9].  
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Figure 6-2. Accuracy of genomic and pedigree-based prediction within populations. 

Comparison of prediction accuracy (Y-axis) of two populations using increasing SNP 

densities from 0.5 to 33 K (X-axis) assessed by cross-validation analyses. ―Random 

Selection‖ involved random assignment of individuals to training and validation sets (a) 

and (b); ―sibling‖ involved assigning full siblings from each family to both the training 

and validation sets (c) and (d); and ―non-sibling‖ involved avoidance of full-sibling 

animals in the training and validation sets (e) and (f). Panels (a), (c) and (e) represent 

results for population I and panels (b), (d), and (f) represent those for population II. 
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When the training and validation sets were less related, predictions of both pedigree- and 

genomic-based methods were less accurate, as expected. In the ―non-sibling‖ scenario 

(where no full-siblings were included in both the training and validation sets), accuracies 

of prediction obtained with both GBLUP and PBLUP were substantially lower than 

those in the previous two scenarios. However, the benefit of genomic prediction was 

greatest under this scenario, with prediction accuracies increasing 5-fold (population I) 

and 2.5-fold (population II) relative to pedigree-based prediction accuracies. Perhaps 

surprisingly, there was little benefit from increasing SNP density above ~ 5 K SNPs 

under this scenario as well (Figures. 6-2e and 6-2f). When the accuracy of genomic 

prediction was assessed across the two populations (corresponding to two year groups of 

the Landcatch broodstock), accuracies were markedly lower (0.05 to 0.11) than with all 

of the within-population scenarios (0.34 to 0.61). Increasing SNP density did seem to 

yield incremental (albeit small) increases in prediction accuracies when predicting 

across populations (Figure 6-3), which suggested that this scenario was likely to benefit 

most from a high-density SNP array. However, these two populations were probably too 

small to achieve high prediction accuracy for these distantly-related animals, and a more 

thorough test of across-population prediction in salmon should use larger sample sizes. 
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Figure 6-3. Accuracy of genomic prediction across populations. Based on setting 

population I as the training set and population II as the validation set and vice versa. 

Accuracy of prediction (Y-axis) for the two populations was estimated using increasing 

SNP density from 0.5 to 33 K (X-axis). 

 

 

6.5 Discussion 
 

Genomic selection is an increasingly important component of modern aquaculture 

breeding schemes, with simulated and applied studies highlighting its benefits over 

pedigree-based selection [9, 28]. However, the substantial cost of genome-wide 

genotyping means that the traits targeted by GS are likely to be those of high economic 

value, particularly those that cannot be easily measured on the selection candidates 

themselves. Currently, sea lice present the largest threat to the sustainability of salmon 

farming, which relies heavily on expensive and potentially environmentally-damaging 

chemical treatments [10]. Host resistance to sea lice has consistently been shown to have 

a substantial genetic component [11]. Therefore, resistance to lice is an ideal candidate 

trait for the application of GS. In our study, lice count data and genome-wide SNP 

genotypes were collected for two pedigreed salmon populations from a commercial 
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breeding programme to assess the utility of genomic prediction of host resistance to sea 

lice under different scenarios, including a comparison to predictions based on pedigree 

records alone. 

The heritability of resistance to lice was estimated at ~ 0.3 and 0.2 in populations I and 

II, respectively, which is similar to the findings of Gharbi et al. [11] (~ 0.3) and Gjerde 

et al. [29] (~ 0.2 to 0.3), and slightly higher than those of Ø degård et al. [9] (~ 0.13 to 

0.14). However, it should be noted that the challenge experiments that are reported in 

Gharbi et al. [11], Gjerde et al. [13], and in our study, were all conducted in controlled 

tanks conditions, whereas the study of Ø degård et al. [9] was based on challenges in a 

sea-cage environment, which may display greater environmental variation. Furthermore, 

it should be noted that the higher heritability estimates for all traits in population I may 

be due in part to confounding between genetic and common environmental effects due to 

the family-specific rearing of the fry (compared to population II, for which individuals 

were mixed into a single tank as first feeding fry). 

The GWAS indicated that host resistance to lice likely has a polygenic architecture, with 

no major QTL segregating in these populations (Figure 6-1). Therefore, it is likely that 

individual QTL for lice resistance explain only a small percentage of the genetic 

variance, and a proportion of the QTL may be population-specific. As such, GBLUP and 

similar methods of genomic prediction are likely to be suitable for predicting breeding 

values for host resistance to lice, particularly within populations. 

The degree of the genetic relationships between training and validation sets is critical for 

the efficacy of genomic prediction. In our study, genomic prediction was found to be 

highly effective and showed a significant advantage in terms of accuracy over pedigree-

based methods within populations (which correspond to year groups of a salmon 

breeding programme, Figure 6-2). The accuracy of prediction and the relative advantage 

of genomic prediction were lower for population II than for population I (Figure 6-2), 

which may reflect the lower estimated heritability in this population because a low 

heritability can contribute to low prediction accuracy [20, 30]. Also, the family structure 
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of population II was potentially less amenable to accurate prediction since it comprised a 

larger number of smaller families, which decreased the chance of having useful numbers 

of full siblings in the training and validation sets. Prediction accuracies were highest 

when training and validation sets were closely related, as was shown with the ―Random 

selection‖ and ―Sibling‖ scenarios. In addition, these results showed that deliberately 

including highly-related animals (i.e. full siblings) in the training and validation sets 

yielded little advantage over random assignment. This likely reflects the typical family 

structure of commercial salmon breeding populations, which consist of large full sibling 

families (thousands of fish per family) that result in close relationships between 

selection candidates and test individuals. However, the benefit of using genomic 

prediction over pedigree-based prediction was largest under the ―Non-sibling‖ scenario, 

in which training and validation sets were established such that no full-siblings were 

included (i.e. the sets were less related than would be expected by chance, Figure 6-2). 

Prediction across populations or year groups (for which genetic relationships are more 

distant) was substantially less effective, with relatively low prediction accuracies (Figure 

6-3). This may reflect, in part, inadequate sample size of the populations, or possibly 

differences in the experimental procedures between the two studies. However, our 

findings imply that either the GBLUP analyses did not efficiently capture short range 

LD between SNPs and QTL for resistance to sea lice, and/or that the QTL were 

population-specific. Therefore, in commercial salmon breeding schemes, regular 

phenotype data collection on animals that are closely-related to the selection candidates, 

combined with medium- or low-density (and cost) SNP panel genotyping appears to be 

the most effective means of using genomic prediction for resistance to lice. This strategy 

is supported by results from previous simulation studies (e.g. [28]). 

Using data collected from a challenge trial performed in a sea cage environment, 

Ø degård et al. [9] also showed that genomic prediction of breeding values for lice 

resistance was more accurate compared to pedigree-based prediction. As in our study, 

the observed improvements depended partly on SNP density with ~ 32 (1 K SNPs) and 

51 % (220 K SNPs) higher reliabilities than those obtained from predictions based on 
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pedigree records alone [9]. Interestingly, increasing SNP density above a threshold of 

around 5 K SNPs had little impact on accuracy of prediction in both studies (Figure 6-2, 

[9]). This may reflect the relatively close relationships between the training and 

validation sets, since higher SNP density did slightly improve the accuracy of cross-

population predictions, as shown in our study, up to ~ 33 K SNPs (the highest density 

tested) (Figure 6-3). However, it seems unlikely that linkage alone is underpinning the 

predictions, since predictions with low SNP densities (< 1 K) and predictions based on 

an IBD (Identity-by-descent) genomic relationship matrix were less accurate [9]. 

Therefore, short or long range LD between SNP and QTL alleles may be an important 

component of prediction. Obviously, such LD can be captured by a relatively sparse 

SNP set, a finding that may be related to the relatively close relationships between 

training and validation sets, recent population admixture [9], or slower decay of LD due 

to the lack of male recombination in male salmon across much of the genome [31, 32]. 

A difference between simulation studies and those performed on experimental data is 

often observed in genomic prediction studies. Previous simulation studies indicated that 

the accuracy of breeding value prediction can reach values of 0.8 to 1.0 if the reference 

population size is sufficiently large (e.g. more than 100,000) [2, 33]. However, in 

practice, due to financial and practical limitations, research programs that use 

‗experimental‘ data usually involve the analysis of relatively small reference populations 

[9, 21, 34]. It is likely that if we had used larger population sizes, higher accuracies of 

prediction would have been obtained, particularly for predictions across the two 

distantly-related populations (subject to sufficient SNP density). As such, cost-effective 

means of generating high-density SNP data remain a relevant goal, and genotype 

imputation is likely to be increasingly important, particularly now that the majority of 

the Atlantic salmon reference genome has been assembled and ordered onto 

chromosomes (Genbank assembly accession GCA_000233375.4, [35]). Genotyping-by-

sequencing may be crucial for reaching such high SNP density at moderate cost and its 

potential for genomic prediction in livestock has already been reported [36]. With a high 

SNP density across large sample sizes, one may expect to capture LD between SNPs and 



162 

 

QTL, and co-segregation of chromosome segments among related individuals, although 

the resolution of mapping causative variants may be hampered by the strong relationship 

structure in the population. Within populations/year groups, the requirement in terms of 

SNP density for accurate prediction is clearly lower and as few as 1 to 5 K informative 

SNPs are sufficient. However, while this points to the potential utility of cheaper and 

lower density genotyping platforms in aquaculture breeding, it is important to keep in 

mind that SNP informativeness can vary between populations. 
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6.6 Chapter Conclusions 
 

Genomic prediction is an effective method for predicting breeding values for host 

resistance to sea lice in Atlantic salmon populations from a commercial breeding 

programme. The GWAS results suggested that lice resistance is a polygenic trait. Cross-

validation tests of genomic prediction highlighted the substantial improvements in 

prediction accuracy compared to that of pedigree-based prediction. The accuracy of 

GBLUP was highest when training and validation sets were closely related but the 

relative advantage over pedigree-based prediction within a population was largest when 

relationships were more distant. Relatively low SNP densities (from 1 to 5 K SNPs) 

were sufficient for accuracy to reach the asymptote under most of the scenarios tested. 

Prediction accuracy is generally much lower across distantly-related populations, 

although a trend was evident that increased marker density was advantageous in such 

situations. Therefore, larger population sample sizes and high-density SNP genotypes 

are probably necessary to improve across-population prediction. Given the economic 

importance of resistance to sea lice, and the efficacy of genomic prediction, it is likely 

that selective breeding for this trait using genomic data will become an important 

component of sea lice control. 
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6.7 Conclusions 
 

Heritability of lice resistance traits was 0.2 to 0.3 in two separated populations, 

estimating by either genomic and pedigree relationship matrices. Genomic prediction 

showed that approximately 5 to 10 K SNPs can achieve the asymptote of accuracy in 

breeding value prediction in the within population containing closely related individuals. 

The accuracy was clearly improved by increased the markers in across two-population 

test, whilst the accuracy was apparently lower in comparison with within population test. 

Overall, the accuracy predicted by PBLUP was inferior to GBLUP in general. The 

Manhattan plots reflected the fact that lice resistance traits are polygenic, and may be 

population-specific. To conclude, genomic selection is likely to form an important 

component in sea lice control in salmon breeding.    
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6.8 Additional Files 
 

Additional file 1 Figure S1. Distributions of data for lice counts and after data 

normalization. Panels (a) and (c) represent results for population I, and panel (b) and (d) 

represent results for population II. 
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Additional file 2 Figure S2. Quantile-quantile (Q-Q) plot for the GWAS analysis. 

Three Q-Q plots are given in the file including population I (A), population II (B) and 

populations I and II combined (C).  
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Chapter 7 

General Discussion 
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7.1 Overview of Outcomes 

 

In this thesis, I generated and applied genomic tools to study the genetic basis of 

economically important traits in farmed Atlantic salmon populations. The major 

outcomes in each chapter were specifically listed below.  

 

In chapter 2, I constructed a high density linkage map using SNPs from a recently 

developed high density SNP array [1], and integrated the results with the most recent 

salmon reference genome assembly (Genbank Accession GCA_000233375.4, [2]). 

96,396 SNPs were successfully assigned to 29 linkage groups corresponding to the 

karyotype of European Atlantic salmon. The number of SNPs mapped on 29 LGs is 

highly correlated with previous salmon linkage map reported by Lien et al. [3] (r = 0.94) 

and Gonen et al. [4] (r = 0.87). The physical length of LG showed high correlation with 

the number of assigned SNP in every chromosome (r = 0.95). Approximately 6.5 % of 

the unassigned reference genome contigs were mapped to existed chromosomes by 

referring to the result of linkage analysis. The female map was around 1.5-fold longer 

than the male map, covering 7,153 and 4,769 cM respectively. Comparison of male and 

female recombination rates reflected the significant difference between the two sexes, 

with male showing about 2 times higher than female in putative sub-telomeric regions. 

 

In chapter 3, I performed a two-stage QTL mapping study to detect the chromosomes / 

QTLs associated with growth performance and quality traits in a large commercial adult 

salmon population (approximately 3 years post-hatching). The heritabilities of several 

fillet-related traits were significant and moderate to high (e.g. harvest and meat trait), 

ranging from 0.52 to 0.53. Chromosomes 13, 18, 19, and 20 were identified as 

harbouring QTLs affecting growth-related traits with genome-wide significance (p < 

0.05) in sire-based analysis. Secondly, chromosomes 13, 18 and 20 were verified in the 

dam-based analysis, and explained about 6 % to 7 % of the within-family genetic 

variation in the traits of interest. These QTL may harbor genes affecting growth or 

quality traits, and may be useful for selective breeding applications. 
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In chapter 4, I performed a genome-wide association analysis to assess the population-

wide association between individual SNPs on the SNP array, and juvenile growth traits 

in a commercial salmon population. 111,908 segregating SNPs passed through the 

quality control step were retained in the analysis. The heritability estimated by the model 

fitting the genomic relationship matrix was approximately 0.6 for body weight and 

length, while slightly lower using pedigree relationship matrix (~ 0.5). Results suggested 

that the genetic architecture associated with body weight and length of juvenile Atlantic 

salmon may be polygenic, with only one SNP surpassing the chromosome-wide 

significance in body length (p < 0.05). SNPs showing an arbitrary threshold of 

significance (p < 0.005, ~ top 0.5 % of markers) were selected for putative gene 

identification. Twenty candidate genes associated with growth traits were consequently 

identified. Genomic prediction was applied to predict the breeding values of traits in 

selection candidates, and the genomic BLUP approach was compared to the pedigree-

based BLUP approach. The prediction results showed that the accuracy of GBLUP was 

notably higher than PBLUP, numbering 0.7 and 0.58 respectively. Different SNP marker 

densities were evaluated and an asymptote was seen at the density of 5 K in both traits, 

implying that 5,000 SNPs was sufficient to capture the genetic variation of phenotypes 

in this breeding program population.  

 

In chapter 5, I selected sixteen candidate SNPs based on chapter 3 and 4, and to verify 

the association between the selected SNPs and performance traits in a separate 

population of farmed salmon. The population used was a subset of the QTL mapping 

population as described in chapter 3. The heritabilities of fillet-related traits were 

moderate to high, ranging from 0.52 to 0.53, which are identical with the results in 

chapter 3. Eight candidate SNPs were successfully genotyped with 1,152 fish across 198 

families, and two of eight SNPs were significantly associated with several growth traits 

(e.g. fillet weight) in the two separate populations. SNP AX88270804 (MEP1A gene) 

was mapped to chromosome 16, explaining a small percentage of the overall variation in 

fillet traits (~ 1 %), waste traits (2 % to 3 %) and fat percentage (4 %). SNP 
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AX88141678 (PCNT gene) was mapped to chromosome 5, explaining nearly 1 % of the 

additive genetic variation in the weight-related traits. These two SNPs were likely to 

affect growth traits directly or may cause genetic variations due to population-wide 

linkage disequilibrium, reflecting the possibility of applying them as the candidates for 

marker-assisted selection in the breeding program.  

 

In chapter 6, I used genomic prediction to estimate the breeding values of traits against 

sea lice in individuals in two separate populations. Estimation of genetic parameters 

suggested the trait of lice resistance was heritable (h
2
 ~ 0.22 to 0.33). The prediction 

accuracy using genomic-based prediction was higher than pedigree-based method in 

four scenarios in both populations. The highest accuracy (accuracy ~ 0.6) was achieved 

when the training and validation sets contained closely related animals (e.g. sibling test), 

while the greatest advantage of genomic prediction over pedigree-based prediction was 

observed in more distantly animals (e.g. non-sibling test).  The asymptote of accuracy 

was achieved at the marker density of 5 K to 10 K within population, which was similar 

to the results in chapter 4. Prediction accuracy across the two separate populations was 

lower, but improved with higher marker density. Finally, the GWAS showed that the 

lice resistance in the two populations were likely polygenic with no SNP surpassing the 

genome-wide significance threshold in a GWAS. 

 

7.2 Discussion 

 

7.2.1 Linkage Map 

 

In the past 12 years, the number of genetic markers available for Atlantic salmon has 

increased rapidly (Table 7-1) (e.g. [1, 5]). The recently published reference genome 

assembly (GCA_000233375.4, [2]) enables us to look into the genetic architecture of 

Atlantic salmon with greater detail. Building a high density genetic map for species of 

interest has been challenging until recently. Until the past decade, the approaches and 

tools implemented to construct linkage maps typically used small number of markers 
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and limited sample size, mainly due to the limitation of marker availability and 

computation (reviewed by [6]). Fortunately, large computer clusters and efficient 

algorithms have been gradually developed [7], allowing us to map, order and calculate 

the genetic distance (cM) between markers relatively quickly and accurately. For 

Atlantic salmon, the relatively recent WGD event results in high levels of sequence 

similarity between paralogous regions, making analyses of sequence data more 

challenging. In addition, there is a large recombination rate difference between the two 

sexes of salmon [2, 8], which presents a challenge to constructing a high density linkage 

map for this species. As such, I removed all possible duplicated SNPs from our dataset 

(reducing the number from 132 K to 100 K), and integrated the genetic map with recent 

salmon reference genome assembly, resulting in a high density map comprising ~ 100 K 

SNPs. Benefitting from the genetic map, as 22 % of recent salmon reference genome 

assembly was not yet assigned to chromosome [2], our linkage map was used to map 

these unassigned contigs to possible chromosomes, which accounts for approximately 1 

% of total reference genome assembly [9].  

 

 

Table 7-1. Comparison of Atlantic salmon linkage map in previous and current 

studies. 

Study Mapped molecular 

markers 

Sex recombination 

rate difference 

(M:F) 

Number of 

linkage group 

identified 

Gilbey et al. [10] 50 microsatellites 1:3.9 15 

Moen et al. [11] 54 microsatellites 

473 AFLP markers 

1:8.3 25 

Lien et al. [3] 5,650 SNPs 1:1.4 29 

Gonen et al. [4] 6,458 SNPs 1:1.5 29 

Current Study 96,396 SNPs 1:1.5 29 
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The unique recombination pattern along the chromosomes in salmonids and large 

difference in recombination rate between male and female salmon have been much 

discussed in the literature [3, 4, 12, 13]. To our knowledge, the mechanisms 

underpinning the recombination difference is still not yet clear, but may be related to the 

ancestral WGD. The recombination rate differences can affect the level of genetic 

variance, as higher recombination rate is likely able to increase the efficiency of 

breeding programs to turn genetic variation into genetic gain (response to selection) [14, 

15]. To characterize the recombination rate patterns between two sexes across the entire 

genome, a high resolution genetic map is of both scientific and applied interest, such as 

the evolutionary study and breeding in salmonids. In chapter 2, I studied the 

recombination rate across the entire genome, and compared the difference between two 

sexes in corresponding chromosome regions. The results indicated that sub-telomeric 

regions of the 29 pairs of chromosomes showed on average ten times higher 

recombination rate than the rest regions of the genome. However, this drastic variation 

was observed for males, and recombination rate was relatively stable in females across 

the 29 pairs of chromosomes. In addition, earlier studies reported that the overall map 

length in female was longer than male (Table 7-1), and our result was comparable to 

Lien et al. [3] and Gonen et al. [4].  

 

To conclude, in chapter 2, I built up a high resolution genetic map, this step facilitated to 

address the QTLs / loci associated with growth-related and disease resistance traits that I 

aimed to investigate in the later chapters (chapter 3, 4, 5 and 6). 

 

7.2.2 Genetic architecture of growth traits in farmed salmon 

 

In chapter 3, 4, and 5, I studied the molecular genetic basis of growth-related traits in 

Atlantic salmon. Abundant studies have been reported that the growth-related traits are 

moderate to high heritable in different Atlantic salmon populations (e.g. reviewed by   

[16] and e.g. [17–20]). Our results using both pedigree and genomic-based method also 

indicated that these traits are heritable with around 0.5 to 0.6 at heritability estimation at 
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juvenile and adult stage of fish (Table 7-2), but these traits are likely to have a polygenic 

genetic architecture.  

Table 7-2. Comparison of heritability of growth traits in two current studies.  

Study Current study 

Chapter 3* 

Current study 

Chapter 6 

Body weight (Juvenile) - 0.61 (2007 year group) 

0.50 (2010 year group) 

Body weight (Adult) 0.52 (1999 year group) - 

Body length (Juvenile) - 0.61 (2007 year group) 

0.51 (2010 year group) 

Body length (Adult) - - 

*The heritability was estimated using pedigree records, while the genomic-based method 

was used in chapter 6. 

 

7.2.2.1 Genetic Fillet-related Traits 

 

Chromosomes 13, 18, 19 and 20 were shown to harbor genome-wide significant QTLs 

affecting several growth-related traits in the sire-based analysis. Further, the 

chromosomes 13, 18 and 20 were confirmed in dam-based analysis in the 1999 year 

group. The reason to apply two-stage QTL mapping in salmon is due to the large 

recombination rate difference between two sexes of salmon [8], as it has been discussed 

in previous section. The advantage of initially using sire-based QTL analysis is that the 

characterization of lower recombination rate in male salmon can offer higher power to 

detect targeted QTLs with fewer SNPs per LG (e.g. ~ 2 markers per LG), then we are 

able to fine map the position of QTLs by dam-based QTL analysis with higher 

resolution of marker in potential LGs. This strategy enables us to reduce the cost of QTL 

mapping in Atlantic salmon, which has been applied in several relevant works (reviewed 

by [21]).  

 



180 

 

Compared the result with chapter 3 and 4, results in chapter 4 indicated that QTLs 

associated with growth traits were not exactly consistent with the separate population 

(2007 year group) and previous relevant studies [17-19], with only some of QTLs were 

commonly found in these studies (A review table was made in Table 3-5 in chapter 3). 

The GWA analysis showed those individual SNPs with the lowest P-value for growth 

traits were located on chromosomes 5, 16, 17, 20, 21, and 28, while no SNP surpassed 

the genome-wide significance threshold (p < 0.05). To verify the results from chapter 3 

and 4, I consequently selected SNP markers located on significant QTLs (chapter 3) and 

SNPs with the lowest P-value (chapter 4) to examine the previous findings. However, 

there were only 2 of 8 SNPs successfully found to be significantly associated with 

growth-related traits in both 1999 and 2007 year group (chapter 5). Comparing the 

studies (chapter 3, 4 and 5) with previous literature, it is worthwhile to note that the age 

(juvenile or adult), family structure (half or full-sibling), and environmental factors (sea 

cage, indoor tank, temperature, and feeding) of fish reared in these investigations were 

highly variable [17-19, 22]. Therefore, the aforementioned factors may influence the 

growth performance of fish. Nevertheless, all the published evidence and the results 

from the current studies point to that the fact that growth traits are likely polygenic, and 

population specific. The identified QTLs are likely pleiotropic, as the QTLs had affects 

across several component weight-related traits even the harvest weight (body weight) 

was set as the covariate to distinguish the QTLs linked with overall body weight, rather 

than only specifically associated with other component weight traits (e.g. head and gut 

weight) in our populations [17, 23].   

 

7.2.2.2 Flesh Colour and Fat Content 

 

The heritabilities for non-visual traits such as fat content and fillet colour were relatively 

low in comparison with weight-related traits, which were about 0.14 to 0.18 (Table 7-3). 

A relevant study indicated that the heritabilities of astaxanthin and canthaxanthin were 

highly correlated with flesh colour [24]. However, the major components of fat content, 

including crude lipid, percentage n−3 long-chain polyunsaturated fatty acids (n−3LC-
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PUFA) and absolute n−3LC-PUFA were significantly heritable (h
2
 = 0.69, 0.77, and 

0.34 respectively) [25]. Given that the major components of fat content are heritable, the 

heritability of fat content might have been expected to be higher than current result. The 

investigation in terms of the reason that causes the heritability difference between fat 

content and its components is of interest, and may be related to the methods of 

measuring fatness in salmon. 

 

Table 7-3. Comparison of heritabilities (SE) of fat content, fillet colour and their 

components in current and previous studies. 

 Quinton et al. [24] Leaver et al. [25] Current Study 

Fat Content (%) 0.19 (0.08) - 0.18 (0.03) 

Crude Lipid (g/100 g) - 0.69 (0.14) - 

Percentage n−3LC-PUFA - 0.77 (0.14) - 

Absolute n−3LC-PUFA (mg/100 g) - 0.34 (0.11) - 

Flesh Colour (20-34) 0.13 (0.07) - 0.14 (0.03) 

Astaxanthin (%) 0.09 (0.06) - - 

Canthaxanthin (%) 0.11 (0.06) - - 

 

 

There were no significant QTLs associated with fat content detected in chapter 3, but 

relevant studies reported that the putative QTLs were harbored with chromosomes 9 and 

10 [22]. A high genetic correlation between weight-related traits and fat content was 

observed (r = 0.82 to 0.84) in chapter 3. Interestingly, in chapter 5, a SNP marker 

(aligned on putative gene PCNT) affecting fat content was identified, explaining about 4 

% of the genetic variation. The role of PCNT is yet unclear in Atlantic salmon or even 

salmonids, but a research suggested that PCNT is involved in normal growth and lipid 

regulation in humans [26], raising the possibility that the sequence variants surrounding 

the gene PCNT may contribute to phenotypic variation in the growth and fat content-

related traits.  

 



182 

 

Chromosomes 3 and 26 were previously detected to harbor QTLs associated with fillet 

colour trait [17]. We also identified that chromosome 17 showed chromosome-wide 

significance with fillet colour in farmed Atlantic salmon in chapter 3. Notably, a single 

locus SCAR marker was found to link with muscle flesh colour significantly (p < 0.0001) 

in Coho salmon [27].  

 

 

Figure 7-1. Phylogenetic relationship of Atlantic salmon (Salmo Salar) and Coho 

salmon (Oncorhynchus kisutch). The green point marks the divergent position of 

Atlantic salmon and Coho salmon. This illustration was adapted from Lien et al. [2].  

 

Considering the phylogenetic relationship of Atlantic salmon and Coho salmon (Figure 

7-1) [2], and also the low heritability of flesh colour, the QTL harboring the ‗similar‘ 

SCAR marker in Atlantic salmon is of scientific and commercial interest. 

 

7.2.2 Genomic Prediction of Growth Traits 

 

Genomic prediction has been applied to predict breeding values associated with host 

resistance against disease in aquaculture species (e.g. [28–30]), but rarely for growth-

related traits [31]. As the polygenic architecture of growth traits in salmon, the GWA 
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analysis reflected the genetic variations affecting major growth traits (e.g. body weight) 

were explained by many SNPs of small effect [31, 32]. As such, in order to improve the 

performance of fillet-related traits (e.g. muscle weight) in salmon, the application of 

genomic prediction may be an effective approach to achieve the goal. In chapter 4, the 

utility of SNP dataset for genomic prediction of the body weight and body length of 

juvenile fish was subsequently implemented to estimate the breeding values of traits in 

selection candidates in the family-based breeding program. Further, the appropriate 

marker density to use for genomic prediction was evaluated. The outcomes reflected that 

the genomic prediction is an applicable approach for improving growth-related traits, as 

few as 5,000 SNPs gives the highest prediction accuracy (~ 0.7) in weight and length 

traits of individual within population, implying that only relatively sparse marker 

platform can achieve the asymptote of accuracy prediction using genomic information 

with BLUP model (GBLUP). Odegard et al. [30] also reported that the prediction 

accuracy of fillet colour fitting genomic data to BLUP model was improved up to 4.7 % 

when comparing with pedigree-based method in within population test. As such, for 

those traits with polygenic architecture or relatively low heritability (e.g. fat content and 

flesh colour), genomic prediction is likely a useful tool for capturing the genetic 

variations of phenotypes based on well-developed SNP panel.  

 

Nevertheless, the explanation in terms of why relatively lower marker density can 

achieve the equivalent prediction accuracy as high density SNP platform is still not that 

clear. But we have to note that a relatively small and closely relatedness population were 

utilized to predict the estimated breeding values of candidates in our study, thus higher 

marker density (> 5 K) may be essential in the future tests, especially for those 

investigations underlying less closely individuals, larger population size and targeted 

traits with low heritability. On the other hand, several studies also pointed out that 

increasing marker density beyond certain number (e.g. 10 K SNPs) did not obviously 

improve the accuracy in genomic prediction in simulated maize [33] and livestock 

population [34, 35], the similar outcomes were also observed in real salmon population 

[30].  
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7.2.3 Genetic architecture of host resistance to sea louse 

 

The heritability of sea lice resistance (Lepeophtheirus salmonis) was moderate, which 

were around 0.2 to 0.3 using pedigree and genetic-based method respectively. Before 

calculating the heritability, I applied a formula (model (1) in chapter 6) to normalize the 

skewness observed in the data distribution of lice count in our population (corresponding 

result is given in additional file 1 in chapter 6). Gjerde et al. [36] estimated the 

heritability based on lice count and lice density respectively, pointing out the way to 

present phenotype to the animal model (y = Xb + Zu + e) to assess the heritability 

would result in different outcomes (Table 7-4). Given that the lice count showed 

skewness in the data distribution, the lice density is a better way to give accurate 

heritability, which was thus implemented in chapter 6. It is also worthwhile to note that 

the challenge trial in Odegard et al. [30] was conducted based on the sea-cage 

environment, which may potentially involve higher environmental effects while 

estimating the narrow sense heritability, as such, the heritability was relatively lower 

than the studies applying tank environment, such as current study (Table 7-4).  
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Table 7-4. Comparison of heritability of lice resistance using genomic (G-matrix) 

and pedigree relationship matrix (A-matrix) in the animal model in previous and 

current studies. 

Study Group Heritability Sample Size 

Gjerde et al. [36] Lice count  0.33 (A-matrix) 2206 

Lice density  0.26 (A-matrix) 

Gharbi et al. [37]  0.3 (G-matrix) 1479 

Odegard et al. [30]
$
 Test 1 0.13 to 0.14 

(G-matrix) 

1444 

Test 2 519 

Correa et al. [38]*  0.12 

(G-matrix) 

2628 

 

Current Study 

 

2007  

year group 

0.33 (G-matrix) 

0.27 (A-matrix) 

621 

2010 

year group 

0.22 (G-matrix) 

0.27 (A-matrix) 

874 

$
The lice challenge trial was conducted based on the sea-cage environment, and others 

were tank environment.  
*
The sea lice species used for challenge trial was Caligus 

rogercresseyi which is a species identified in Chile, and others were Lepeophtheirus 

salmonis. 

 

In chapter 6, the heritability of lice resistance in the 2007 year group was slightly higher 

than 2010 year group. The possible reason to explain the difference is that the 2007 year 

group was reared in family-specific tank at the fry stage, yet the 2010 year group was 

mixed together in single big tank, therefore, this disparity is likely due to the 

confounding of genetic variations with different common environment effects. 

Interestingly, Correa et al. [38] showed much lower heritability of Caligus rogercresseyi 

resistance in comparison with studies challenged with Lepeophtheirus salmonis, which 

implies that Atlantic salmon has different levels of resistance ability against two sea lice 

species, while further investigation may be required as different SNP platforms were 

implemented in these studies (Table 7-4).  
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The GWAS reflected that lice resistance (Lepeophtheirus salmonis) was a polygenic trait 

in both 2007 and 2010 year group, with no major QTL segregating. Similar results have 

been reported for host resistance against different sea louse species (Caligus 

rogercresseyi) in Chile, implying that resistance to both species is polygenic [28, 38]. 

Therefore, I employed genomic prediction as the tool to estimate the breeding values of 

lice resistance traits in selection candidates, and used different degrees of relatedness 

between training and validation sets to test the impact of genetic relationship on 

prediction accuracy. Overall, results showed that prediction accuracy was significantly 

altered by the genetic and pedigree relationship between training and validation sets. 

When the relationship between training and validation sets was close (e.g. full-sibling), 

the accuracy was apparently higher than those with less related populations. 

Nevertheless, the advantage of genomic prediction was clearly reflected in the tests with 

less related animals between training and validation sets (e.g. non-sibling). The accuracy 

measured by the prediction model fitting genetic relationship matrix was significantly 

higher than fitting pedigree relationship matrix in the within population test, highlighting 

the utility of genomic prediction is an applicable approach, in particular for the 

polygenic traits with several QTLs explaining only small proportion of genetic 

variations. A simulated study suggested that the family-based selection method is the 

most effective way to perform selective breeding in aquaculture breeding scheme [39]. 

As two experimental populations were involved in the analysis, the effect of family 

structure toward the prediction was also observed. Compared with 2007 year group, 

several small families existed in the 2010 year group, leading to some families with 

limited fish number were not able to provide sufficient information of relatedness to 

training and validation sets respectively (e.g. sibling test). As such, in order to maximize 

the prediction accuracy based on family-based selection method, the number of 

representative individual from each family is critical, when collecting the experimental 

samples from field.        

 

In chapter 6, I tested three different scenarios, which were carried out depending on 

‗within population‘ situation, showing the highest accuracy was achieved at around 5 K 
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to 10 K SNP density. The accuracy had a little improvement above a certain marker 

density, which was observed in previous study using experimental population (rather 

than simulated population), which the similar result was also seen in current study 

(Figure 7-2). The possible reason that causes this kind of phenomenon has been 

described in ―Genomic prediction of growth traits‖ section above.    

 

    

Figure 7-2. The tendency of accuracy from low to high marker density in Odegard 

et al. [30] (left) and current study (right). The left bar chart was adapted from 

Odegard et al. [30] and right line chart was adapted from chapter 6 in current study. The 

figure showed that there is only a little improvement in the accuracy when the marker 

density was over 22 K (left) and 10 K (right). 

 

A similar tendency was also shown in the across populations test in the current study 

(Figure 6-3 in chapter 6), while the accuracy was generally low as the relatedness 

between two populations were more distant. This implies that the accuracy gained from 

medium marker density is comparable to high marker density, and the linkage 

disequilibrium (LD) is able to be efficiently captured by relatively sparse marker 

platform when the close related animals between training and validation sets were 

implemented in the genomic prediction. 
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7.2.4 Gene Annotation and Gene Associated with Growth Traits 

 

In chapter 2, I successfully annotated 45.9 % of unique markers to putative genes, with 

11 % of the genic SNPs were mapped to putative exonic regions (5,856 of 48,842 

SNPs). In chapter 4 and 5, several markers associated with growth traits have been 

identified by means of GWAS. In order to address the potential function of these top 

markers and their predicted genes, I integrated the annotation result with the top markers 

that previously reported, which is summarized in Table 7-5.  

 

The exonic SNP AX87963258 appeared to affect body weight and length, and was 

predicted to be a non-synonymous variant causing an amino acid substitution. Non-

synonymous marker is a coding variant that may cause protein functional changes, and 

consequently result in phenotype alteration to individuals. Amino acid substitution 

within the same group (e.g. within hydrophobic group) are usually tolerable, while 

changing to other residues (e.g. hydrophobic group to polar or charged group) can be 

deleterious, leading to impact the protein function and structure.  

 

 

 

Figure 7-3. Structure of isoleucine, threonine, valine and leucine. The SNP 

AX87963258 (RAI2) caused amino acid alteration from hydrophobic residue (Ile) to 

polar uncharged residue (Thr). Other two amino acids alteration (Val and Leu) arisen by 

the SNP AX88089073 (POMT1) are belong to the same hydrophobic group.     
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The genotype A/G was characterized in the SNP AX87963258, therefore the predicted 

reading frame showed that the A/G genotype can have two different amino acids, 

including isoleucine (TAA, or represents as AUU in RNA form) and threonine (TGA, or 

represents as ACU in RNA form). Since it is known that the isoleucine is a hydrophobic 

amino acid while threonine is recognized as a polar uncharged amino acid, which 

reflects the alteration can result in protein function changes in corresponding gene RAI2. 

While the missense variant caused by another SNP AX88089073 were both in the same 

hydrophobic residue group, the substitution may be more tolerable than SNP 

AX87963258 (Figure 7-3).  

 

The function of RAI2 (AX87963258) and POMT1 (AX88089073) have been described 

in the discussion section in chapter 4. Briefly, the RAI2 is well known as the role in 

growth and differentiation in early life [40], and is involved in the regulation of bone 

formation and mineralization in Atlantic salmon [41]. POMT1 can secret the POMT 

enzyme complex that is associated with muscular dystrophy in mammals [42]. Since 

both genes are linked with growth, the predicted missense variants identified from two 

top SNPs may be of interest for in vitro and even in vivo investigations whereby newly 

gene editing technology, such as CRISPR, could be applied to test causality of these 

variants [43].  
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Table 7-5. The gene annotation and effect prediction of top SNPs identified in chapters studied on growth-related traits 

(chapter 2, 3, 4 and 5). 

Marker P-value Allele 

frequency 

 

Additive 

effect (s.e.) 

Dominance 

effect (s.e.) 

PVE Chromosome Genomic 

Variant 

Alternative     

Variant 

Effect Gene 

Annotation  

  p q         

Weight            

AX87888225 1.0E-04 0.94 0.06 7.00 (6.28) 23.83 (6.66) 0.06 28 C G Intron variant WAPL 

isoform x1 

AX88223695 1.2E-04 0.80 0.20 3.32 (2.76) 16.54 (3.02) 0.04 28 C T Intron variant Spata20 

AX87963258 1.4E-04 0.57 0.43 5.80 (1.47) 2.00 (2.04) 0.05 17 A G Missense variant: 

p.Ile218Thr 

RAI2 

            

Length            

AX87963258 1.7E-05 0.57 0.43 4.42 (0.99) 1.27 (1.37) 0.07 17 A G Missense variant: 

p.Ile218Thr 

RAI2 

AX87959512 9.1E-05 0.68 0.32 5.46 (1.48) 0.21 (1.55) 0.08 20 C T Intron variant POMT1 

AX88089073 1.6E-04 0.70 0.30 4.77 (1.62) 1.07 (1.65) 0.05 20 G C Missense variant: 

p.Val76Leu 

POMT1 

Bold: AX87963258 appears in both traits and surpasses the chromosome-wide significance level (p < 0.05). 

WAPL isoform x1: Wings apart-like protein homolog isoform x1 

Spata20: Spermatogenesis-associated protein 20 

POMT1: Protein o-mannosyl-transferase 1                      RAI2: Retinoic acid-induced protein



191 

 

7.3 References 

 

1. Houston RD, Taggart JB, Cézard T, Bekaert M, Lowe NR, Downing A, Talbot R, 

Bishop SC, Archibald AL, Bron JE, Penman DJ, Davassi A, Brew F, Tinch AE, 

Gharbi K, Hamilton A: Development and validation of a high density SNP 

genotyping array for Atlantic salmon (Salmo salar). BMC Genomics 2014, 15:90. 

 

2. Lien S, Koop BF, Sandve SR, Miller JR, Matthew P, Leong JS, Minkley DR, 

Zimin A, Grammes F, Grove H, Gjuvsland A, Walenz B, Hermansen RA, Schalburg 

K Von, Rondeau EB, Genova A Di, Samy JKA, Vik JO: The Atlantic salmon 

genome provides insights into rediploidization. Nature 2016, 533:200–205. 

 

3. Lien S, Gidskehaug L, Moen T, Hayes BJ, Berg PR, Davidson WS, Omholt SW, 

Kent MP: A dense SNP-based linkage map for Atlantic salmon (Salmo salar) reveals 

extended chromosome homeologies and striking differences in sex-specific 

recombination patterns. BMC Genomics 2011, 12. 

 

4. Gonen S, Lowe NR, Cezard T, Gharbi K, Bishop SC, Houston RD: Linkage maps 

of the Atlantic salmon (Salmo salar) genome derived from RAD sequencing. BMC 

Genomics 2014, 15:166. 

 

5. Yáñez JM, Naswa S, López ME, Bassini L, Correa K, Gilbey J, Bernatchez L, 

Norris A, Neira R, Lhorente JP, Schnable PS, Newman S, Mileham A, Deeb N, Di 

Genova A, Maass A: Genome-wide single nucleotide polymorphism (SNP) 

discovery in Atlantic salmon ( Salmo salar ): validation in wild and farmed American 

and European populations. Mol Ecol Resour 2016, 16:1002–11. 

 

6. Fierst JL: Using linkage maps to correct and scaffold de novo genome assemblies: 

Methods, challenges and computational tools. Front Genet 2015, 6. 

 

7. Rastas P, Calboli FCF, Guo B, Shikano T, Merilä J: Construction of ultra-dense 

linkage maps with Lep-MAP2: stickleback F2 recombinant crosses as an example. 



192 

 

Genome Biol Evol  2016. In Press. 

 

8. Hayes BJ, Gjuvsland A, Omholt S: Power of QTL mapping experiments in 

commercial Atlantic salmon populations, exploiting linkage and linkage 

disequilibrium and effect of limited recombination in males. Heredity (Edinb) 2006, 

97:19–26. 

 

9. Tsai HY, Robledo D, Lowe NR, Bekaert M, John B: Construction and annotation 

of a high density SNP linkage map of the Atlantic salmon (Salmo salar) genome. 

Genes Genomes Genet 2016, 6(July):2173–2179. 

 

10. Gilbey J, Verspoor E, McLay A, Houlihan D: A microsatellite linkage map for 

Atlantic salmon (Salmo salar). Anim Genet 2004, 35:98–105. 

 

11. Moen T, Hoyheim B, Munck H, Gomez-Raya L: A linkage map of Atlantic 

salmon (Salmo salar) reveals an uncommonly large difference in recombination rate 

between the sexes. Anim Genet 2004, 35:81–92. 

 

12. Moen T, Hayes B, Baranski M, Berg PR, Kjøglum S, Koop BF, Davidson WS, 

Omholt SW, Lien S: A linkage map of the Atlantic salmon (Salmo salar) based on 

EST-derived SNP markers. BMC Genomics 2008, 9:223. 

 

13. Volff J-N: Genome evolution and biodiversity in teleost fish. Heredity (Edinb) 

2005, 94:280–294. 

 

14. Mszros G, Gorjanc G, Jenko J, Woolliams JA, Hickey JM: Selection on 

Recombination Rate to Increase Genetic Gain. In 10th World Congr Genet Appl to 

Livostock Prod. Vancouver, Canada; 2014:021. 

 

15. Battagin M, Gorjanc G, Faux A-M, Johnston SE, Hickey JM: Effect of 

manipulating recombination rates on response to selection in livestock breeding 

programs. Genet Sel Evol 2016, 48:1–12. 



193 

 

 

16. Garcia de Leaniz C, Fleming I a, Einum S, Verspoor E, Jordan WC, Consuegra 

S, Aubin-Horth N, Lajus D, Letcher BH, Youngson  a F, Webb JH, Vøllestad L a, 

Villanueva B, Ferguson  a, Quinn TP: A critical review of adaptive genetic variation 

in Atlantic salmon: implications for conservation. Biol Rev Camb Philos Soc 2007, 

82:173–211. 

 

17. Baranski M, Moen T, Våge DI: Mapping of quantitative trait loci for flesh colour 

and growth traits in Atlantic salmon (Salmo salar). Genet Sel Evol 2010, 42:17. 

 

18. Houston RD, Bishop SC, Hamilton A, Guy DR, Tinch AE, Taggart JB, Derayat 

A, McAndrew BJ, Haley CS: Detection of QTL affecting harvest traits in a 

commercial Atlantic salmon population. Anim Genet 2009, 40:753–5. 

 

19. Gutierrez AP, Lubieniecki KP, Davidson EA, Lien S, Kent MP, Fukui S, Withler 

RE, Swift B, Davidson WS: Genetic mapping of quantitative trait loci (QTL) for 

body-weight in Atlantic salmon (Salmo salar) using a 6.5K SNP array. Aquaculture 

2012, 358-359:61–70. 

 

20. Powell J, White I, Guy D, Brotherstone S: Genetic parameters of production 

traits in Atlantic salmon (Salmo salar). Aquaculture 2008, 274:225–231. 

 

21. Yáñez JM, Houston RD, Newman S: Genetics and genomics of disease resistance 

in salmonid species. Front Genet 2014, 5(November):415. 

 

22. Sodeland M, Gaarder M, Moen T, Thomassen M, Kjøglum S, Kent M, Lien S: 

Genome-wide association testing reveals quantitative trait loci for fillet texture and 

fat content in Atlantic salmon. Aquaculture 2013, 408-409:169–174. 

 

23. Tsai HY, Hamilton A, Guy DR, Tinch AE, Bishop SC, Houston RD: The genetic 

architecture of growth and fillet traits in farmed Atlantic salmon (Salmo salar). BMC 

Genet 2015, 16:51. 



194 

 

 

24. Quinton CD, McMillan I, Glebe BD: Development of an Atlantic salmon (Salmo 

salar) genetic improvement program: Genetic parameters of harvest body weight and 

carcass quality traits estimated with animal models. Aquaculture 2005, 247:211–217. 

 

25. Leaver MJ, Taggart JB, Villeneuve L, Bron JE, Guy DR, Bishop SC, Houston 

RD, Matika O, Tocher DR: Heritability and mechanisms of n-3 long chain 

polyunsaturated fatty acid deposition in the flesh of Atlantic salmon. Comp Biochem 

Physiol Part D Genomics Proteomics 2011, 6:62–9. 

 

26. Rauch A, Thiel CT, Schindler D, Wick U, Crow YJ, Ekici AB, van Essen AJ, 

Goecke TO, Al-Gazali L, Chrzanowska KH, Zweier C, Brunner HG, Becker K, 

Curry CJ, Dallapiccola B, Devriendt K, Dörfler A, Kinning E, Megarbane A, 

Meinecke P, Semple RK, Spranger S, Toutain A, Trembath RC, Voss E, Wilson L, 

Hennekam R, de Zegher F, Dörr H-G, Reis A: Mutations in the Pericentrin (PCNT) 

Gene Cause Primordial Dwarfism. Sci  2008, 319 (5864 ):816–819. 

 

27. Araneda C, Neira R, Iturra P: Identification of a dominant SCAR marker 

associated with colour traits in Coho salmon (Oncorhynchus kisutch). Aquaculture 

2005, 247:67–73. 

 

28. Correa K, Lhorente JP, Bangera R, Yáñez JM: Evaluation of Genomic Selection 

for Sea Louse Resistance in Atlantic Salmon (Salmo salar L). In Plant Anim Genome 

Conf. San Diego, CA; 2016:P0461. 

 

29. Fragomeni BO, Misztal I, Lourenço DAL, Vallejo RL, Palti Y: Weighted 

ssGBLUP Improves Genomic Selection Accuracy for Bacterial Cold Water Disease. 

In Plant Anim Genome Conf. San Diego, CA; 2016:P0472. 

 

30. Odegård J, Moen T, Santi N, Korsvoll SA, Kjøglum S, Meuwissen THE: 

Genomic prediction in an admixed population of Atlantic salmon (Salmo salar). 

Front Genet 2014, 5(November):402. 



195 

 

 

31. Tsai HY, Hamilton A, Tinch AE, Guy DR, Gharbi K, Stear MJ, Oswald M, 

Bishop SC, Houston RD: Genome wide association and genomic prediction for 

growth traits in juvenile farmed Atlantic salmon using a high density SNP array. 

BMC Genomics 2015, 16:969. 

 

32. Gutierrez AP, Yáñez JM, Fukui S, Swift B, Davidson WS: Genome-Wide 

Association Study (GWAS) for Growth Rate and Age at Sexual Maturation in 

Atlantic Salmon (Salmo salar). PLoS One 2015, 10:e0119730. 

 

33. Hickey JM, Crossa J, Babu R, de losCampos G: Factors affecting the accuracy of 

genotype imputation in populations from several maize breeding programs. Crop Sci 

2012, 52:654–663. 

 

34. Vela-Avitúa S, Meuwissen THE, Luan T, Ø degård J: Accuracy of genomic 

selection for a sib-evaluated trait using identity-by-state and identity-by-descent 

relationships. Genet Sel Evol 2015, 47:9. 

 

35. Gorjanc G, Cleveland M a, Houston RD, Hickey JM: Potential of genotyping-by-

sequencing for genomic selection in livestock populations. Genet Sel Evol 2015, 

47:12. 

 

36. Gjerde B, Ø degård J, Thorland I: Estimates of genetic variation in the 

susceptibility of Atlantic salmon (Salmo salar) to the salmon louse Lepeophtheirus 

salmonis. Aquaculture 2011, 314:66–72. 

 

37. Gharbi K, Matthews L, Bron J, Roberts R, Tinch A, Stear MJ: The control of sea 

lice in Atlantic salmon by selective breeding. J R Soc Interface 2015, 12:0574. 

 

38. Correa K, Lhorente JP, Bassini L, López ME, Di Génova A, Maass A, Davidson 

WS, Yáñez JM: Genome wide association study for resistance to Caligus 

rogercresseyi in Atlantic salmon (Salmo salar L.) using a 50K SNP genotyping array. 



196 

 

Aquaculture 2016. In Press. 

 

39. Sonesson AK, Meuwissen THE: Testing strategies for genomic selection in 

aquaculture breeding programs. Genet Sel Evol 2009, 41:37. 

 

40. Niederreither K, Dollé P: Retinoic acid in development: towards an integrated 

view. Nat Rev Genet 2008, 9:541–553. 

 

41. Ø rnsrud R, Lock EJ, Glover CN, Flik G: Retinoic acid cross-talk with calcitriol 

activity in Atlantic salmon (Salmo salar). J Endocrinol 2009, 202:473–482. 

 

42. Manya H, Chiba A, Yoshida A, Wang X, Chiba Y, Jigami Y, Margolis RU, Endo 

T: Demonstration of mammalian protein O-mannosyltransferase activity: 

coexpression of POMT1 and POMT2 required for enzymatic activity. Proc Natl 

Acad Sci U S A 2004, 101:500–5. 

 

43. Sander JD, Joung JK: CRISPR-Cas systems for editing, regulating and targeting 

genomes. Nat Biotechnol 2014, 32:347–55. 

 

 

 

 

 

 

 

 

 

 

 

 



197 

 

 

 

 

 

 

Chapter 8 
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8.1 Objectives of Thesis 

 

The aim of the thesis was to apply different genetic approaches to identify the 

genetic parameters associated with growth traits and host resistance to sea lice 

disease in farmed salmon populations. A high density genetic map was constructed 

using a previous developed 132 K SNP array. Ultimately, the practical outcomes of 

the studies could be in selective breeding to shorten the time to harvest, reduce the 

losses arisen by sea lice infection, improve the animal welfare, and allow breeders to 

establish sustainable genetic gains to the industries by enhancing selective breeding 

in salmon aquaculture. 

 

8.2 Conclusions 

 

8.2.1 Linkage Map 

 

(i) I constructed a linkage map containing 96,396 SNP markers, and the number of 

mapped SNPs in every linkage map was highly correlated with the length of 

corresponding linkage map respectively (r = 0.95), indicating that the number of 

genetic variant is significantly associated with the length of corresponding 

chromosome.  

(ii) Our linkage mapping result contributed approximately 6.5 % of the unassigned 

genome assembly to be anchored to known 29 chromosomes, of which was equal to 

around 1 % of entire reference genome assembly (Genbank Accession 

GCA_000233375.4). 

(iii) The large recombination difference in male and female salmon was observed, 

with substantially higher recombination rate in sub telomeric regions in males. 

Overall, the ratio of male:female recombination rate was 1:1.5. However, the 

mechanism underlying these recombination rate differences is still not yet clear. 

 

 

 

 



199 

 

8.2.2 Genetic Parameters Associated with Growth and Lice Resistance 

 

(i) Based on the results of QTL mapping, GWA analysis and previous literatures, the 

growth, fillet-related and host resistance to lice traits in Atlantic salmon are likely a 

polygenic genetic architecture and population-specific. 

(ii) The identified QTLs tend to be pleiotropic as several weight-related traits were 

significantly associated with certain QTLs. However, there is no consistent QTL 

found to be associated with the traits according to current and previous studies.  

(iii) Genomic prediction is an effective approach to improve the traits using family-

based breeding schemes, as few as 5 to 10 K high-quality SNPs is able to reach the 

maximal prediction accuracy in growth and lice resistance traits when using GBLUP 

methods. The results show that BLUP with fitting genomic information is a better 

choice to estimate the breeding values of candidates than using traditional BLUP 

method with pedigrees.  
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8.3 Future Outlook 

 

The outcomes of this thesis showed that growth traits and sea lice resistance in 

farmed salmon are both heritable.  As such, genomic prediction can be a promising 

avenue for performing selective breeding. However, the remaining challenges are the 

cost of genotyping and the prediction accuracy of across population. 

 

Alternative methods for reducing the cost of genotyping  

The ultimate goal of the study is to enhance the growth rate and control the sea lice 

in farmed salmon. Since the cost of genotyping and sample collection are still the 

critical issues in performing selective breeding through genetic approach, the 

genotyping-by-sequencing (GBS) can obtain high density genotyping data at an 

affordable price in comparison with traditional methods. Additionally, genotype 

imputation based on LD and/or well-recorded pedigree information is also an 

alternative way to make contribution in genotype data collection. The GBS presents a 

relatively cost-effective method of discovering and genotyping numerous SNPs, and 

genotype imputation is able to impute uncharacterized genotypes with in silico 

manner. Both methods are developed to address the major limitation in genomic 

studies - the cost of genotyping. However, both the price of GBS and the correction 

rate of imputation require further optimization, which are the major goals of our 

future works.   

 

Enhanced accuracy across populations 

Even though the prediction accuracies of growth traits and lice resistance were robust 

and encouraging in the within population test, the accuracy of prediction across 

population test was still a challenge. Encouragingly, this accuracy clearly improved 

with increasing SNP density. The experimental results imply that genomic prediction 

can significantly improve the capture of genetic variations in those traits with 

polygenic architecture. The across-population prediction accuracy is likely to be 

higher with a larger reference population, and with incorporation of candidate 

causative SNPs rather than just anonymous markers. 
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Moving from association to causality  

Several candidate SNPs have shown significant associations with traits in this and 

previous studies (e.g. growth traits in chapter 3 to chapter 5, and lice resistance trait 

in chapter 6). When SNP of interest is targeted, a series of experiments can be 

performed to study the potential function of the SNP of interest. Our past experience 

shows that relatively fewer SNPs are characterized on coding regions in comparison 

with noncoding regions, of which are categorized into two types, including 

synonymous and nonsynonymous SNPs. The former category of mutation does not 

affect the amino acid sequence, whilst the latter mutation can alter protein sequence, 

and it may induce structural changes to the corresponding protein. The sequence 

variant located in the promoter region may be associated with gene expression, and 

the variant in the signal peptide domain can influence the cellular localization of the 

protein. To uncover the function of targeted variants, we can carry out several trials 

to verify our discoveries, as described below. 

 

For example, initially, we can use in silico approaches, such as protein structure 

analysis tools (e.g. http://www.ebi.ac.uk/Tools/structure/), to predict whether the 

mutation can induce any protein structural changes, and to map the variant with a 

possible domain to forecast its function changes toward the harboured salmon gene. 

Next, whereby in vitro studies, we are able to establish the stable cell line or primary 

cell line (e.g. salmon muscle cell), and to quantify the RNA expression levels of the 

gene containing the targeted SNP (e.g. by real-time PCR) to know its impact on gene 

function. Additionally, recombinant protein expression can be analysed, and SDS-

PAGE can be run to see if the SNP alters the post-transcriptional modification, and 

carry out semi-quantitative western blot to determine whether the variant may change 

the amounts of protein expression.  

 

Fusing a gene carrying different alleles and a tag protein gene (e.g. GFP, green 

fluorescent protein) allows us to visualize the corresponding variant and changes in 

its cellular localization. Using immunofluorescence and coimmunoprecipitation can 

also reveal whether the SNP can make the differences of interaction between the 

targeted protein and its functional regulation network. Luciferase reporter gene assay 
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is able to provide information in terms of how the SNP influences promoter activity, 

and electrophoretic mobility shift assays are able to understand whether the SNPs in 

transcription factor binding sites can impact the activity of enhancer. 

 

Lastly, the in vivo experiment, the generation of transgenic animals or cutting-edge 

gene editing technology can clarify the association between SNPs and phenotypic 

changes in real or model organisms. For instance, clustered regularly interspaced 

short palindromic repeats (CRISPR) technique can be used to edit the targeted allele 

and to examine its functional effect on phenotype in salmon (as well as in cell lines). 
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8.4 Summary 

 

Conventional methods of selectively breeding salmon rely on pedigree records and 

outer appearance to select the parental candidates for mating and breeding, of which 

may be applicable for physical traits such as body weight traits. However, traits that 

are economically important but cannot be detected by visual inspection such as 

disease resistance and muscle traits, both cannot be precisely phenotyped from 

parental performance, therefore, advanced genetic approaches are capable of 

improving the drawbacks of traditional selective breeding, by considering the DNA-

level information in the salmon breeding program. Chapter 2 of this thesis describes 

the high density linkage map used for high resolution mapping of SNPs underpinning 

the targeted traits we investigated in later chapters. Chapters 3-6 discuss how several 

established genetic methods, including QTL mapping, GWAS, and genomic 

prediction, were used to characterize the genetic architecture of growth, muscle-

related (chapters 3-5), and sea lice resistance traits (chapter 6) in several separate 

adult and fry salmon populations. The impact of chapter 2 is that, the genetic map 

can help researcher to identify the position of locus associated with traits of interest, 

and to better the quality of assembly of reference sequences in Atlantic salmon. By 

using QTL mapping and GWAS, our findings facilitate industry to underpin the 

SNPs or QTLs linked with weight-related traits (chapters 3-5), or with sea lice 

resistance (chapter 6), respectively. Genomic prediction was also used for weight and 

lice resistance traits, which provides an effective method to predict the performance 

of traits in candidate from the genomic information and training population. Using 

the proposed method, the genomic prediction can potentially avoid years of field data 

collection and reduce the cost of performing a salmon breeding program for the 

industry. Additionally, although Atlantic salmon has benefitted from modern 

selective breeding in comparison with most aquaculture species worldwide, only 

approximately 10 % of total aquaculture production is harvested from selective 

breeding via genetic-based approaches. The results of this thesis also provide an 

example of selective breeding for other freshwater and marine farming species in the 

foreseeable future. 
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Ultimately, based on our current results, and the in silico, in vitro, and in vivo 

approaches discussed above, all of which can be potentially utilized when the SNP / 

QTL of interest is identified via association analysis. The outcomes of this thesis 

improve understanding of the biological basis of key production traits and can aid 

genetic enhancement of Atlantic salmon for aquaculture breeding and production. 
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