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ABSTRACT

A faecal enterobacterial strain, P-20, isolated from pigs, was shown

to owe its trimethoprim resistance to two different plasmid/transposon

mediated resistance genes. One gene, mobilised by RP4, was located on a 4

- 6 kb transposon designated Tn4135, and resulted in the mediation of

transferable high level trimethoprim resistance of greater than 1000

ug/ml. Biochemical investigation of the transposon gene product revealed

a close resemblence between the trimethoprim resistant dihydrofolate

reductase (DHFR) of Escherichia coli J62(RP4::Tn4135) and that of the type

I plasmid enzyme, encoded by RP4::Tn7_. Despite the differences in

transposon size, this marked similarity between the two DHFRs suggests a

similar evolutionary origin for the two transposons and reiterates the

potential of trimethoprim resistance transfer between animal and human

resevoirs.

Detailed biochemical and genetic studies indicated that the second

trimethoprim resistance gene of the pig isolate, P-20, mobilised by Sa-1

(Sa-1::Tn4135ORI), bore very little similarity with any previously

isolated DHFR. The specific activity of the enzyme was 10 fold lower than

that of the type I-like enzyme encoded by RP4::Tn4135, and this, coupled

with differences in enzymic properties and the failure to hybridize with

type I or type II gene probes, suggests the presence of a new enzyme - a

type VI - of distinct evolutionary origin.

The incompatibility group W plasmid, Sa, was investigated for its role

as a stable recipient for amplifiication studies of Tn4135, but molecular

weight determination, resistance testing and restriction enzyme analysis
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revealed that this plasmid was not as stable as expected. This plasmid

appeared in two forms, Sa-1 and Sa-2; the former being 15 kb smaller, which

resulted from a deletion of DNA encoding the chloramphenicol resistance

gene. This instability was further reflected in the size variations of Sa

plasmid DNA harbouring trimethoprim resistance transposons. Examination

of transconjugants from the transfer of Tn4135 from RP4 to Sa-1, in

contrast with transfer to Sa-2, indicated that this transposon could

transfer in an aberrant fashion, resulting in the formation of an enlarged

plasmid species (Sa-1::Tn4135a). The mechanism(s) behind the generation

of such a large species were obscure, but appear to involve a combination

of multiple transposition, gene amplification, replicon fusion and

transposon-mediated transfer of plasmid DNA. Examination of Tn7

transposition to Sa-2 indicated that this transposon was also capable of

generating aberrant forms, and reiterated the similarity between the

RP4::Tn7_ and RP4::Tn4135 encoded genes.
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'Your success is determined by your efforts and not by

results, and you may come to realise that the most

important journey is the journey inwards.'

The Adventure Alternative

Colin Mortlock 1984
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INTRODUCTION

Trimethoprim (Tp) (2,4,-diamino-5-(3',4',5'-trimethoxybenzyl)-

pyrimidine) is one of a series of compounds, first fully described by Roth

et al (1962), possessing both antimalarial and antibacterial activity. It

has been used in combination with sulphonamides (Co-trimoxazole) since

1968 (Burcball and Hitcbings, 1968) for the treatment of a wide spectrum

of infectious deseases in human and veterinary medicine (Wormser, 1978;

Salter, 1982). It is active against a wide range of gram negative and

gram positive aerobic bacteria, is readily absorbed by the oral route

(Schwartz and Ziegler, 1969) and is widely distributed in body fluids and

tissues with few side effects (Brogden et al, 1982). Among anaerobic

bacteria, at least partial resistance to Tp is a widespread feature; the

basis of which is not yet understood. Clostridia are resistant in most

cases (Then and Angehrn, 1979), Pseudomonas aeruginosa are not susceptible

at most concentrations attainable in the body tissues, blood or urine

(Grey and Hamilton - Millar, 1977; Kasanen et al, 1978), and Bacteroides

fragilis and lactobacillus are relatively insensitive (Then and Angehrn,

1979) to Tp requiring high concentrations for inhibition. As a single

agent Tp has been used in the treatment and prophylaxis of acute

uncomplicated urinary tract infections, caused mainly by Escherichia coli

(review: Brogden et al, 1982), but has been found to be less effective in

the treatment of complicated and recurrent urinary tract infections.
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As a synthetic analog of the natural substrate, dihydrofolate (DHF),

Tp acts as a potent competitive inhibitor of bacterial diydrofolate

reductase (DHFR) by binding to the hydrophobic substrate binding pocket

(Baker et al, 1981) of this enzyme. It binds 1000 times more strongly to

this active site than does the natural substrate (Amyes and Smith, 1978)

and is capable of descriminating between mammalian and bacterial DHFR's,

since it has a far lower affinity for the former enzyme (Burchall, 1973).

DHFR catalyses the NADPH dependent reduction of DHF to tetrahydrofolate

(THF) (Figure i); a stage in the sequence leading to the synthesis of

purines and ultimately of DNA, and its inhibition is thus toxic to cells.

Although both mammalian and bacterial cells reduce DHF to THF by the

enzyme DHFR (Figure i) , the ability to synthesize THF from basic

constituents is confined to bacteria. However, the mammalian DHFR can

reduce dietary folic acid to DHF; a function not possessed by the

bacterial enzyme, and this fortunate biochemical distinction forms the

basis of the therapeutic potential of antifolates. Few bacteria can

absorb preformed folic acid (Wood et al, 1961) and therefore have to

synthesize their own.

The stage inhibited by Tp immediately follows that blocked by the

sulphonamides (Su) (Brown,1962), hence the strongly synergic effect of the

combination of Su and Tp (Bushby and Hitchings, 1968). Whilst the action

of Su is purely bacteriostatic that of the combination was found to

exhibit bacteriocidal properties (Darrell et al, 1968) and it was

therefore hoped that the use of this combination would reduce the

incidence of bacteria able to resist both drugs (Bushby and Hitchings,

1968). However, when co-trimoxazole was first used widely, the bacterial

population already contained a high percentage of sulphonamide resistant

strains (Datta, 1969) and there have been reports of sulphonamide



FIGURE i: THE TETRAHYDROFOLIC ACID 3I0SYNTHETIC PATHWAY IN

MAMMALS AND BACTERIA

MAMMALIAN

Folic Acid

DHFR | C—. Tp
Dihydrofoiic Acid

DHFR I5- Tp
Tetrahydrofolic Acid

3ACTERIAL

2-amino-4-hydroxyl-
6-hydroxymethyl-pteridine

PABA
Sx

DHPS
Dihydropteroic Acid

Glutamic Acid

Dihydrofoiic Acid
Tp > | DHFR
Tetrahydrofolic Acid

DHPS: Dihydropteroate synthase; DHFR: Dihydrofolate reductase
Sx-»: Sulphamethoxazole inhibits; Tp—»: Trimethoprim inhibits
Tp<2~ : Trimethoprim does not inhibit.
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apppearing to antagonise the bacteriocidal effects of Tp (Anderson etal,

1973). Furthermore no synergistic effect was found between Tp and Su

against bacteria highly resistant to Su (MIC > 100 ug/ml) although there

was synergism against bacteria with moderate resistance to Su (Grey etal,

1979). A number of surveys have therefore questioned the rational for

combining Tp and Su (Grc\4berg, 1979; Amyes, 1982) as its use has not

obviously prevented the emergence of Tp resistant strains in urinary tract

infections (Amyes etal, 1981). In addition the choice of media is now

known to be a crucial factor in determining the sensitivity of organisms

(Amyes et al, 1981) and this will have undoubtably effected the accurac y

of reports on the benefits of co-trimoxazole usage.

Although Tp resistant gram negative bacteria were first reported

shortly after the introduction of co-trimoxazole, the emergence of
early

acquired resistance to Tp was infrequent during the years of its

therapeutic use. However, with the introduction of Tp alone in October

1979 there was concern about the rapid development of such resistance in

the absence of the Su moiety (Barry and Pattishall, 1983; Hamilton-Millar,

1984; Rich and Mee, 1985). Resistance to antibiotics in bacteria has

shown an explosive increase in recent years, which in some instances has

more than kept pace with the commercial production and clinical use of

antibiotics and chemotherapeutic agents. However, despite laboratory

surveys sugesting that resistance to Tp among enterobacteria was

increasing, there has been no convincing evidence to suggest that the use

of Tp alone in urinary tract infections has been associated with a 'rapid'

increase in the incidence of bacteria resistant to the drug ( Lacey, 1982;

Brumfitt et al, 1983). In Finland, where Tp has been used alone since

1973 (Burman, 1980), the frequency of resistant E coli causing urinary

tract infections remained fairly constant between 1972 and 1977 (Kasanen
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et al, 1978) and the results of Towner et al (1986) for Enterobacteriacea

isolated from patients with urinary tract infections, seem to suggest that

the overall incidence of resistance has been only slightly affected in

strains of E coli. However this may vary with environmental conditions

(country) and may reflect the continuing use of co-trimoxazole, despite

the availability for use of Tp alone. Although there appears to have been

no overall increase in Tp resistance there is an increased proportion of

Tp resistant bacteria with high level resistance to the drug, suggesting

the continuing spread of plasmid or transposon mediated resistance

(Towner, 1982; Brumfitt et al, 1983). Further complicating the issue is

the possibility of resistance selection by other drugs. Amyes et al

(1981) indicated that Ap was particularly effective at selecting bacteria

that were not only Ap resistant but Tp resistant as well.

Although it is known that bacteria can mutate to become drug

resistant, this process is generally not thought to be responsible for the

resistance of clinical bacterial isolates to antibiotics. One reason for

this is perhaps because such mutants often exhibit reduced pathogenicity

(Knox and Smith, 1971). Most clinically significant antibiotic resistance

is determined by genes located on extrachromosomal DNA elements called

plasmids (Falkow, 1975; Broda, 1979; Hardy, 1981). Different species of

bacteria harbour characteristic types of plasmids, some of which can

mediate their own transfer, and thus the transfer of resistance genes,

(Akiba et al, 1960), by conjugation. In addition, resistance genes are

often incorporated into discrete genetic units called transposons

(Kleckner, 1981), which have the capacity to transpose from one DNA

molecule to another. This has undoubtably contributed to the rapid

dissemination of antibiotic resistance by providing an efficient

mechanisms for incorporating resistance determinants into new vectors
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which can transfer to and stabl replicate in diverse hosts. The

distinction between plasmid-encoded and chromosomally encoded resistance

can therefore become blurred because transposons can integrate into the

chromosome and have been found in this location in clinical isolates.

However, the two types of chromosomal resistance, transposon encoded and

mutational, can be readily distinguished by biochemical and genetic

tests.

There have been many mechanisms proposed by which bacteria may resist

antibacterial drugs (Goldstein et al, 1968; Davies and Smith, 1978; for

review see Foster, 1983). The mechanisms most favoured by bacteria are

lowering of the intracellular drug concentration (impermeability) ,

destruction or modification of the drug to an inactive form, alteration of

the target site of a drug so that it no longer binds the inhibitor,

increasing the synthesis of the target enzyme in excess of the inhibitor,

or the production of an alternative biochemical pathway by by-passing the

drug sensitive target site. Whilst resistance to B lactam antibiotics is

due to a drug inactivation mechanism (Richmond and Sykes, 1973; Sykes and

Mathew, 1976) resistance to Tp is largely due to the production of a

plasmid encoded Tp resistant DHFR (Amyes and Smith, 1974,1984; Skold and

Widh, 1974; Pattishall et al, 1977; Smith ,1980; Then ,1982; Acar and

Goldstein, 1983; Hamilton Miller, 1984), thus affecting a bypass of the

inhibited chromosomal enzyme. The discovery of such an enzyme on R388 was

thought to be the first example of an R factor conferring an altered

target site mechanism of resistance to a chemotherapeutic agent (Amyes and

Smith, 1974). An extensive search had been caried out to find specific

modifying enzymes or a plasmid determined mechanism that prevented drug

uptake, that would explain the resistance, but none had been found (Amyes,

1974). Since the inhibitors of enzymes involved in THF synthesis are
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synthetic, and not naturally occurring, it is unlikely that specific

inactivation enzymes could have evolved, but there has subsequently been a

report of plasmid mediated resistance due to reduced permeability (Amyes

and Smith, 1976). However, this appears to additionally involve a

chromosomal gene and Amyes and Smith have indicated that there may be

other R plasmid mediated resistance mechansisms, that involve a

combination of bacterial and chromosomal genes. Subsequent to the

discovery of the DHFR of R388, another plasmid conferring Tp resistance,

R483, was also shown to mediate the synthesis of a Tp resistant DHFR

(Skold and Widh, 1974). These enzymes were found to possess the ability

to differentiate between the substrate and its close structural analogue

methotrexate (mtx) (Amyes and Smith, 1976), which may have some serious

consequences in the search for new antibacterial inhibitors of DHFR. The

plasmid mediated bypass mechanism exhibited by R388 and R483 generally

results in high level resistance (MIC > 1000 ug/ml) whilst resistance to

low levels of Tp (4 - 512 ug/ml) results from mutations which either

decrease the susceptibility of the chromosomal DHFR to Tp (Poe et al,

1979; Then and Herman, 1981) or impair the penetration of the drug in the

cell (Glutman et al, 1985). (Plasmid mediated low level resistance has

been described (Anderson, 1980; Towner and Pinn, 1981; Acar et al, 1973))

but the mechanism is still controversial). The only example of a

chromosomally mediated bypass mechanism was in a mutant of Streptococcus

faecalis (SF/A) shown to produce two DHFRs. One resembled the wild type

enzyme, possessing similar physical properties, whilst the other had a

lower molecular weight and turnover number (Nixon and Blakely, 1968).
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The type of resistance mechanism described above would be unsuitable

for providing resistance to other antibiotics since the target sites of

many of these drugs are complex structures involved in such processes as

cell wall and protein synthesis. In the case of Tp, the target site is a

single enzyme in a vitamin biosynthetic pathway, and the production of an

additional resistant enzyme would be a neglig ble drain on the cell

resources. There are however, other mechanisms of acquired resistance to

Tp which are common to other antibiotics (Table ii), including

overproduction of the sensitive enzyme (Breese et al , 1975; Sheldon and

Brenner, 1976; Flensburg and Skold, 1984) and many diverse forms of

chromosomal resistance (Goldstein, 1977). Occasionally Tp resistant

strains causing urinary tract infection have a mutation in the gene

encoding thymidylate synthase (Stacey and Simpson, 1965) which causes a

thymine requiring phenotype and resistance to Tp because one of the major

cellular requirements for reduced folic acid is eliminated (Stacey and

Simpson, 1965).

With R plasmid mediated resistance to the B lactam antibiotics it was

found that, when the enzymological properties of the B lactamases mediated

by such R plasmids were analysed, an enzymic type termed TEM

predominated. It was concluded that 'the ubiquity of the structural gene

for the TEM like enzyme demonstrates its evolutionary success, which

probably results from its ability to be translocated from one replicon to

another (Hedges et al, 1974). Subsequently, this gene and other genes of

R plasmids (such as Tc, Cm and Ka) have been classified as transposons

(Shandler et al, 1979). The rapid spread of Tp resistance in France (Acar

et al, 1977), Italy (Romero and Peduca, 1977), England (Amyes et al, 1978;

Broad and Smith, 1982) and Scotland (Amyes et al, 1981) also suggests that

the Tp genes were being broadcast on transposons. Barth et al (1976)
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TABLE ii: MECHANISMS OF ACQUIRED RESISTANCE TO TRIMETHOPRIM

MECHANISM ORGANISM(S) STUDIED

Thymine requirement

Impaired penetration

Altered DHFR

Overproduction of DHFR

Additional trimethoprim
resistant DHFR (plasmid
or transposon mediated)

Enterobacteriaceae, Staphylococcus
Streptococcus

Klebsiella, Enterobacteriaceae,
Serratia

Enterobacteriaceae, Staphylococcus

Enterobacteriaceae

Enterobacteriaceae, Vibrio cholerae,
Acinetobacter, Pseudomonas aeruginosa
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showed that one of the early Tp R plasmids,R 483, carried a Tp resistance

gene on a 14 kb fragment of DNA known as Tn_7, that is able to integrate

into the chromosome as well as into other plasmids. Richards and Datta

(1981) found that TnJ7 was present in the majority of R plasmid-mediated Tp

resistant bacteria isolated from human infections in hospitals and in

general practice patients, and other Tp resistance transposons have since

been found in clinical isolates (Amyes et al 1982; Tietze et al, 1982).

Tp resistance in animal isolates is even more common than in human

patients (Smith, 1979) and enzymological and resistance studies suggest

that plasmids from these animal strains also possess Tn7 (Broad and Smith,

1982). It is hence possible that the source of Tp isistance in humans

could have arisen in animals and that transposition is the mechamism of

spread of this resistance, not only within bacterial populations, but also

between them.

Tp has been introduced since the discovery of R-plasmids, and

therefore provides a rare opportunity to monitor the initial development

of an R plasmid borne resistance, and study its evolution. The spread of

the Tp resistant determinant is uncharacteristic of conventional R

plasmids in that resistance can spread rapidly amongst R plasmids of

different incompatibility groups and thus through the bacterial

population. With respect to the epidemiology of Tp resistance, greatest

concern now centres ar.;ound transposon encoded resistance, and there are

now a number of different Tp resistance genes residing on transposons (and

therefore R plasmids) which require further characterisation to ascertain

their origins and relatedness. The purpose of this study was therefore to

characterise one such transposon, a small Tp resistance transposon of

animal origin, and its gene product(s), and to determine its relationship
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to Tn_7 by means of biochemical and molecular biological techniques. The

examination of such a system will give a clearer understanding of the

possible spread of resistance between resewoirs, and possibly the

mechanisms that control transposition in and out of the chromosome and its

stability. This information will be of value in preserving the efficacy

of trimethoprim.
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CHAPTER 1

COMPARISON OF RAPID SMALL SCALE TECHNIQUES FOR THE ISOLATION

AND RESTRICTION OF PLASMID DNA



lb

INTRODUCTION

Many experimental techniques and biological investigations require the

ability to purify plasmid DNA. In the past, the spread of plasmids

through the population was studied by examination of the characters that

the plasmid carried (ie. antibiotic resistance) and its genetics (ie.

incompatibility) (Datta and Hedges, 1971). More recently, molecular

biological techniques have been used to determine the size of plasmids

(Farrar, 1983). However, even a combination of these techniques may lack

the sophistication to follow the progress of plasmids through a clinical

population. This is especially true if it is considered that transposons

may readily insert copies of themselves into the plasmid and affect not

only the size of the plasmid but also its characteristics. Therefore, the

plasmid DNA has to be examined more rigorously. This may be achieved by

'fingerprinting' the plasmid, by digesting it with restriction

endonucleases, or by hybridising it with known radio-active probes. The

latter technique, favoured by many molecular biological groups, is

probably the best available but it is time-consuming and expensive.

Fingerprinting, on the other hand, is simple to perform and will probably

eventually win acceptance by many diagnostic laboratories.

The ability to restrict plasmid DNA successfully relies on the

consistent isolation of pure DNA. Until fairly recently this involved

centrifugation in caesium chloride - ethidium bromide density gradients

(Bauer and Vinograd, 1968) to separate plasmid DNA from chromosomal DNA.

Although efficient, this method is expensive, and time-consuming as

gradients often have to be spun for about 40 hours, and the plasmid DNA
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has to be extracted from the caesium chloride - ethidium bromide solution.

In addition, epidemiological investigations were hampered by the inability

of the currently available DNA preparation techniques to treat many

isolates at the same time. In order to overcome these problems a number of

rapid DNA isolation procedures were developed with a view that the

extracted DNA might be used directly in restriction endonuclease analysis,

in the absence of further purification procedures (Eckhardt, 1978;

Birnboim and Doly, 1979; Klein £t^ al, 1980; Kado and Liu, 1981; Sparks and

Elder, 1983; Orberg and Sandine, 1984; Voquang et al, 1985). These methods

exploit the physical characteristics of plasmid DNA to effect separation

ie. the relatively small size of plasmid DNA (1 - 200 kilobases (Maniatis

et al, 1982) compared with 4000 kb for the bacterial chromosome), its

covalently closed structure and the fact that plasmids are not bound to

other cellular components in a lysate.

A number of factors, such as the presence of large molecular weight

RNA, failure to remove certain inhibitory chemicals (eg. phenol) and pH

may be involved in determining whether a method successfully produces pure

enough plasmid DNA for restriction. However, any method should satisfy

the following conditions if it is to prove useful:- (i) the plasmid DNA

must be pure enough for direct restriction, (ii) results should be

reproducible, (iii) it should be possible to isolate sufficient DNA to

give clear sharp bands, (iv) The preparation method should not affect the

electrophoretic mobilities of the plasmid DNA, (v) it should be possible

to isolate both large and small plasmid DNA's if the method is to have

universal use, (vi) it should be applicable to as wide a range of bacteria

as possible eg. Enterobacteriaceae, Pseudomonas and Haemophilus, (vii) The

examination of a large number of cultures at the same time should be

possible and (viii) the presence of chromosomal DNA should be kept to a

minimum.



There are significant problems in studying plasmids of clinical

bacteria because many of the plasmid DNA isolation techniques were

developed for work with small plasmids, such as pBR322 (4.3 kb)(Bolivar et

al, 1977), which are easier to isolate than the larger clinical plasmids.

Thus their application in the clinical situation is largely untested. The

clinical bacteriologist therefore faces a dilemma; which of the many

techniques available could be applicable to the larger plasmids (50 - 100

kb) found in clinical bacteria and what are the critical steps in a

procedure? Recently there has been a move to try and draw some of the

different techniques together (Trevors, 1985; Mazza, 1986), outlining the

general principles of plasmid DNA isolation and separation by agarose gel

electrophoresis. Although he alluded to the variety of methods available,

Trevors (1985) made no comparison between them. Since clinical isolates

and their transconjugants would be examined later, the purpose of this

study was to compare a number of different methods for their ability to

quickly and easily produce 'pure' DNA from strains containing plasmids,

that would be involved in later resistance gene analysis (ie RP4 and

Sa-1), and to identify the crucial steps where errors can arise.
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MATERIALS AND METHODS

BACTERIAL PLASMIDS

The plasmids used in this study were R1, RP4, R6K and Sa-1 of size

range 30 - 90 Kb (See Table i). All plasmids were isolated from overnight

Mueller Hinton (Difco, USA) broth cultures of Escherichia coli.
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ISOLATION TECHNIQUES

Alkaline Denaturation

Plasmid DNA was prepared by the method of Birnboim and Doly (1979).

An overnight broth culture (1.5 ml) was harvested in a microfuge tube by

centrifuging for 1 minute (11500 g). The supernatant was discarded and

the pellet resuspended in 100 ul of solution 1 (lysozyme 2mg/ml; 50 mM

glucose; 10 mM EDTA; 25 mM Tris pH 8.0). After incubating at 0°C for 30

minutes, 200 ul of solution II (0.1 M NaOH; 1% weight/volume SDS) was

added. This was followed by gentle shaking until the solution became

clear and viscous. The tube was then maintained at 0°C for 5 minutes

before 150 ul of solution III (3 M sodium acetate, pH 4.8) was added. The

solution was gently mixed by inversion until a clot formed and then

maintained at 0°C for 1 hour, followed by centrifugation for 10

minutes. The clear supernatant was transferred to a second microfuge tube

and 1 ml of cold ethanol added. After mixing well DNA was precipitated by

incubation at -70°C for 15 - 30 minutes. The precipitate was collected

by centrifugation (5 minutes) and the supernatant discarded. The pellet

was dissolved in 100 ul of 0.1 M sodium acetate/0.05 M Tris pH 8.0 and

reprecipitated with two volumes of cold ethanol. After 10 minutes at

-70°C the precipitate was again collected by centrifugation and the

final pellet dissolved in 70 ul of 10 mM Tris; 1 mM EDTA pH 8.0.
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Alkaline Lysis - Ish-Horowitz and Burke (1981)

Plasmid DNA was prepared by a modification of the above Birnboim and

Doly (1979) method. The protocol was largely that of Ish-Horowitz and

Burke (1981) with a few modifications. One ml of a 1.5 ml overnight

culture, grown up in Mueller Hinton broth (Difco), was transferred to an

eppendorf tube and the cells pelleted by centrifugation (11500 g; 15

seconds). The medium was removed with a Pasteur and the pellet

resuspended in 100 ul of solution I (50 mM glucose; 10 mm EDTA, pH 7.5; 25

mM Tris/HCl, pH 8.0). After vortexing, 200 ul of solution II (0.2 M NaOH;

1% SDS, freshly prepared) was added and the tube rocked sharply to mix

solutions. The tube was left on ice for 5 minutes before adding 150 ul of

precooled solution III (5 M Sodium Acetate, pH 4.8, prepared as follows:

to 60 ml of 5 M Sodium Acetate add 11.5 ml of glacial acetic acid and 28.5

ml of water). The tube was mixed by inversion and brief vortexing and

left on ice for 5 minutes. After spinning for 1 minute, 360 ul of the

supernatant was transferred to a fresh eppendorf tube and 420 ul of

ethanol added with mixing. The tube was left at room temperature for 2

minutes before centrifuging for 2 minutes (microfuge, 11500 g). The

ethanol was poured off and the tube left in an inverted position to allow

the fluid to drain away. The pellet was washed with 500 ul of 70%

ethanol, vortexed briefly and recentrifuged (11500 g, 2 minutes). The

supernatant was removed and the pellet dried before resuspending in 50 ul

of TE (pH 8.0) containing DNase-free RNase (20 ug/ml).
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Kado and Liu

Cells were grown overnight in 5 mis of Mueller Hinton broth (Difco)

and harvested by centrifugation (3980 g for 15 minutes). The pellet was

resuspended in 1 ml of E buffer (40 mM Tris acetate; 2 mM sodium EDTA, pH

7.9). Lysing solution (3% SDS; 50 mM Tris pH 12.6) (2 ml) was added and

the sample mixed by brief agitation. After incubation for 20 minutes at

60°C, two volumes of phenol/chloroform (1:1) were added. The solution

was then shaken briefly and centrifuged for 30 minutes at 2544 g.

Avoiding the precipitate at the interface, the upper aqueous phase was

transferred to a fresh tube with a sawn off Pasteur pipette, ready for

loading on an agarose gel.

A further purification step was included if preparations were to be

restricted. Samples were extracted 2-4 times each with diethyl-ether to

remove any phenol. One hundred microlitres of 3 M Sodium Acetate and 800

ul of cold ethanol were added and the solution left on ice for 5 minutes.

Precipitated DNA was pelleted by centrifugation at 636 g for 5 mins. The

pellet was resuspended in 40 ul of distilled water and 20 ul aliquots were

used for restriction.
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McMasters

DNA was prepared by a modification of the McMasters et al (1980)

method. Bacteria were grown up overnight in 25 mis of Mueller Hinton

broth (Difco) and harvested by centrifugation at 3980 g for 20 minutes.

Two hundred microlitres of 25% sucrose in 50 mM Tris HC1 (pH 8.0) was

added and the solution vortexed. After transferring the sample to an

eppendorf tube, 20 ul of lysozyme (5 mg/ml in 250 mM Tris HC1, pH 8.0) was

added and the tube vortexed again. Forty microlitres of 250 mM EDTA; 10%

SDS was added with further vortexing followed by 20 ul of fresh 5N NaOH

and vortexing. After leaving at room temperature for 10 minutes, 20 ul of

1 M sodium acetate (pH 5.0) was added with vortexing. Phenol (400 ul) was

added, again with brief vortexing, followed by centrifugation for 10

minutes in a microfuge (11500 g). The aqueous phase was pipetted into a

new eppendorf tube and incubated at 37°C for 30 minutes with 5 ul of

RNase (10 mg/ml). Twenty microlitres of 5 M NaCl and 150 ul of

Polyethylene Glycol was added before incubating on ice for 2 hours.

Precipitated material was then collected by centrifugation (microfuge, 30

minutes) and the pellet resuspended in 200 ul of 50 mM Tris-HCl, pH 8.0

containing 5 mM EDTA. After extracting with chloroform, and precipitating

for 30 minutes at -70°C with cold ethanol, the DNA pellet was

resuspended in 70 ul of 10 mM Tris HC1 (pH 8.0) containing 1 mM EDTA.



22

Rapid boiling method

Plasmid DNA was prepared by a modification of the Holmes and Quigley

(1981) method. Five millilitres of Mueller Hinton broth (Difco) was

inoculated with a single bacterial colony and incubated overnight with

vigorous agitation on a Gallenkamp orbital incubator at 140 rpm.

Approximately 1.5 mis of this was transferred to an eppendorf tube and

centrifuged for 1 minute. The medium was removed with a Pasteur pipette

leaving the pellet as dry as possible. The pellet was resuspended in

0.35 mis of lysing solution ( 8% sucrose; 0.5% Triton X-100; 50 mM EDTA;

10 mM Tris HC1, pH 8.0), and 25 ul of a freshly prepared lysozyme solution

(10 mg/ml in 10 mM Tris HC1, pH 8.0) was added and the solution vortexed

for 3 seconds. The tube was placed in a boiling water bath for 40 seconds

before centrifuging for 10 minutes at room temperature in an eppendorf

centrifuge (11500 g). After removing the pellet with a toothpick, 40 ul

of 2.5 M sodium acetate and 420 ul of isopropanol was added to the

supernatant and mixed by vortexing. The preparation was stored on ice for

15 minutes followed by 15 minutes centrifugation. The pellet was dried,

resuspended in 70 ul of Tris-EDTA (pH 8.0) containing Dnase free Rnase (50

ug/ml) and the solution incubated at 37°C for 10 minutes, to remove any

RNA.



TAKAHASHI TECHNIQUE

23

Cells were grown up overnight in 5 mis of Mueller Hinton broth (Difco)

at 37°C and harvested by centrifugation (bench: 3980 g for 15 minutes).

The cells were thoroughly resuspended in 200 ul of Buffer A (40 mM Tris

acetic acid; 2mM disodium EDTA, pH 8.0) and then transferred to an

eppendorf tube. Four hundred microlitres of lysing solution (4% SDS/100

mM Tris solution made up in double distilled water, to which was added an

equal volume of freshly prepared 0.4 N NaOH solution) was added and the

tube gently inverted 5-10 times. After allowing to stand at room

temperature for 5 minutes the solution was neutralised with 300 ul of cold

Buffer B (3 M sodium acetate, pH 5.5) and gently mixed by inversion 10-20

times. The solution was maintained at 0°C for 5 minutes before

centrifuging at room temperature (Microfuge: 2576 g for 5 minutes) and the

supernatant transferred to another tube by decantation. Chloroform (0.7

mis) was added and emulsified by inversion 5-10 times. After centrifuging

at 0°C for 5 minutes (microfuge: 2576 g), 500 ul of the upper aqueous

phase was carefully transferred to another tube with a micropipette tip

which was cut so that it had a diameter of more than 5 mm in diameter.

Cold ethanol (1 ml) was added to this and the solutions mixed by inversion

5-10 times. After maintaining at 0°C for 5 minutes the precipitate was

collected by centrifugation at 0°C (Microfuge: 2576 g for 5 minutes).

The pellet was resuspended in 100 ul of Buffer C (1 M sodium acetate; 10

mM Tris acetic acid; 2 mM disodium EDTA, pH 8.0) giving a final volume of

approximately 130 ul.



The Takahashi method requires additional purification steps before

the DNA can be digested with restriction endonucleases. Buffer C ( 350 ul

of 10 mM Tris acetic acid; 2 mM disodium EDTA, pH 8.0) and Buffer D (50 ul

of 1 M sodium acetate; 10 mM Tris acetic acid; 2 mM disodium EDTA, pH 8.0)

was added to each sample. One millilitre of cold ethanol was then added

and the tube inverted 5-10 times. DNA was then precipitated at 0°C for

5 minutes and collected by centrifugation at 0°C (5 minutes; 2576 g).

The supernatant was completely removed and the pellet resuspended in 40 ul

of sterile distilled water.
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AGAROSE GEL ELECTROPHORESIS

Electrophoresis was performed in horizontal slab gels of 0.7% agarose

(BDH Chemicals Ltd., Poole, Dorset) dissolved in Buffer A (40 mM Tris

acetic acid; 2mM disodium EDTA, pH 8.0) following the method of Meyers et

al (1976). Figure 1.1 illustrates the set up used. The apparatus

comprises a plastic tray with platinum wire electrodes running along

either end. The gel former is made of perspex as is the well comb. The

sides of the gel former are made of bonded perspex whereas the ends are

removable pieces, held together by clips whilst the gel is poured, and

removed before it is run. Thirty microlitres of undigested DNA samples

were mixed with 10 ul of bromophenol blue (0.025 mM; 50% glycerol) before

loading with an eppendorf pipette. The gels were run overnight at 60 -

100 v in Buffer A and stained for 30 minutes with Ethidium Bromide (5

mg/ml). After destaining for 30 minutes in distilled water the gels were

examined under UV light (330 nm) and the clarity of bands, presence of

chromosomal DNA and relative mobilities of the plasmids observed.

Electrophoretic patterns were photographed under UV light.
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.FIGURE 1.1: EXPLODED VIEW OF HORIZONTAL GEL APPARATUS
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RESTRICTION ENZYME ANALYSIS

METHOD 1

Samples prepared by each of the methods were restricted with a number

of restriction enzymes [Hind III and Bgl II (Boehringer Corporation Ltd.)

and Pst I (NBL Enzymes Ltd.)]. Twenty microlitres of each sample was

mixed with 2.2 ul of the appropriate restriction buffer (10 x strength),

prepared according to the manufacturers instructions, before restricting

with the enzymes [Hind III - 32 u; Bgl II - 20 ul; Pst I - 24 u]. All

samples were incubated for 1 hour at 37°C before stopping the reaction

with 15 ul of stopping buffer (4 M urea; 50% sucrose; 50 mM EDTA, pH 7.0;

0.1% bromophenol blue weight/volume). Fragments were separated on 1%

agarose gels run at 140 v for 4 hours in Buffer A (40 mM Tris acetic acid;

2 mM disodium EDTA, pH 8.0). The molecular weight of each fragment was

compared with X DNA fragments (Boehringer Corporation Ltd.) restricted

with Hind III as above. DNA was also restricted with Bgl II and Pst I

to check the enzyme activity.
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Method II

Ten microlitre samples, prepared as for method 1, except for an

additional drying step (all traces of alcohol were removed by drying under

vacuum before resuspending the pellet) were dispensed into sterile

eppendorf tubes. Solutions were then added in the following order: 2 ul

lOx strength Hind III reaction buffer (NBL Enzymes Ltd), 7 ul distilled

water and 1 ul (16 units) Hind III (NBL Enzymes Ltd). (A. DNA was also

digested with Hind III to act as molecular size markers). Tubes were

mixed thoroughly and centrifuged briefly (1 second). After incubating for

2 hours at 37°c , 5 ul of loading buffer (30% sucrose; 10 mM EDTA; 1%

bromophenol blue) was added and samples loaded immediately on a 1% gel.

Electrophoresis was carried out in Buffer A overnight at low voltage (40 -

60 V) or for 3-4 hours at high voltage (140 V).
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RESULTS

COMPARISON OF THE DIFFERENT TECHNIQUES FOR THEIR ABILITY TO PRODUCE

PLASMID DNA.

DNA was isolated from overnight broth cultures of Escherichia coli

strains harbouring the plasmids R1, RP4, R6K and Sa by the methods of

Birnboim and Doly (1979), McMasters et al (1980), Holmes and Quigley

(1981), Ish-Horowitz and Burke (1981), Kado and Liu (1981) and Takahashi

and Nagano (1984). The DNA was separated by agarose gel electrophoresis

on 0.7% gels for 16 hours at between 70 and 100 V, the results of which

are shown in Figure 1.2.

Chromosomal DNA is clearly visable in both the Birnboim and Doly and

the Ish-Horowitz and Burke preparations, but is greatly reduced in the

other two (Figures 1.2b and 1.2c). The methods of Holmes and Quigley and

McMasters both failed to produce any results, despite modifications to the

volume of culture used, the length of the precipitation step and the

amount of PEG added to the latter method. Of•the methods which allowed

DNA resolution, only the Kado and Liu technique failed to give adequate

results: only R6K producing a significant band.
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FIGURE 1.2: A COMPARISON OF THE DIFFERENT SMALL SCALE TECHNIQUES

FOR THE PREPARATION OF PURE PLASMID DNA

TRACK 1. Rl; TRACK 2. RP4; TRACK 3. R6K; TRACK 4. Sa

a. BIRNBOIM AND DOLY b. KADO AND LIU

CHROMOSOME

C. TAKAHASHI AND NAGANO d. ISH-HOROWITZ AND BURKE



MODIFICATIONS TO THE TAKAHASHI AND NAGANO PROCEDURE TO IMPROVE CLARITY

The Takahashi and Nagano procedure was repeated with E coli cultures

harbouring Sa. However, the concentration of NaOH in the lysing solution

was varied to find the optimum for removing chromosomal DNA and still

maintain clarity of plasmid bands. The results and concentrations of NaOH

used are shown in Figure 1.3. As the molarity of NaOH is increased the

intensity of the chromosonal band increases. The clarity of the plasmid

band is only affected by concentrations of NaOH at the higher end of the

scale: 0.56 - 0.64. These high concentrations also appear to affect the

molecular size of Sa but the plasmid band is uniform compared with

concentrations of NaOH in the middle of the range ie. there is only one

molecular species (band).
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FIGURE 1.3: EFFECT OF NaOH CONCENTRATION ON THE PREPARATION OF

Sa PLASMID DNA BY THE TAKAHASHI AND NAGANO METHOD

NaOH CONCENTRATION

CD CD CD CD CD CD CD CD

CD h-* txj OJ U1 CTi
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CHROMOSOME
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REGRESSION ANALYSIS

The distance travelled by each of the plasmids Rl, RP4, R6K and Sa was

correlated with the corresponding molecular weight for each experiment

performed. A comparison of the different preparation methods for their

accuracy, as measured by the ability of the standard plasmids to lie on a

straight line, is shown in Figure 1.4. (For raw data see Appendix 1.1).

There is no significant difference in the relative sizes of plasmid bands

obtained by the different preparation techniques. The coefficients of

correlation for each set of data were determined and are shown in Table

1.1 along with their standard errors. They are generally high, indicating

a high correlation between molecular weight and distance travelled, but

the errors are large.

The Takahashi and Nagano and the Ish-Horowitz and Burke methods were

repeated 9 and 4 times respectively, to determine the consistency of the

method. Molecular weights were correlated with distance travelled, for

each set of data, by plotting log 10 molecular weight against distance

travelled (Figures 1.5 and 1.6) and by determining coefficients of

correlation (Tables 1.2 and 1.3). (For raw data see Appendix 1.2)

The correlations between molecular weights and distance travelled were

redetermined for the Takahashi and Nagano data, using only 3 of the 4

standards each time, to determine whether a particular plasmid is

responsible for the inaccuracies. (Figure 1.5 would indicate that RP4 may

be inaccurate). The results were plotted (Figure 1.7) and coefficients of

correlation computed (Table 1.4) for data from experiment 1 (see Appendix

1.1). The coefficient of correlation is greatest in the absence of RP4.

From the computerised correlation data in Table 1.4 the molecular weight

of each plasmid, for each set of data, was estimated (Table 1.5).



FIGURE 1.4: -COMPARISON OF SMALL SCALE TECHNIQUES FOR THE

DISTANCE TRAVELLED (cm)

• - Takahashi and Nagano ■ - Kado and Liu
^ - Birnboim and Doly ♦ - Ish-Horowitz and Burke
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TABLE 1.1 THE COEFFICIENTS OF CORRELATION AND
STANDARD ERRORS FOR EACH DNA PREPARATION
METHOD

METHOD CORRELATION STANDARD
COEFFICIENT ERROR

Birnboim and Doly

Ish-Horowitz

Takahashi and Nagano

0.655 0.17779

0.944 0.08800

0.955 0.6950
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FIGURE 1.6: THE CONSISTENCY OF TEE ISH-HQROWITZ AND BURKE METHOD

FOR PREPARING PLASMID DNA
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TABLE 1.2 CORRELATION COEFFICIENTS FOR
REPEATED TAKAHASHI AND NAGANO
PREPARATIONS

EXPERIMENT

NUMBER

CORRELATION
COEFFICIENT

STANDARD
ERROR

1 0.955 0.0695

2 0.9378 0.08169

3 0.946501 0.0759

4 0.952610 0.07086

5 0.957741 0.06789

6 0.912336 0.09635

7 0.967417 0.05958

8 0.99465 0.0243

9 0.09701 0.057057

TABLE 1.3 CORRELATION COEFFICIENTS FOR
REPEATED ISH-HOROWITZ AND BURKE
PREPARATIONS

EXPERIMENT
NUMBER

CORRELATION
COEFFICIENT

STANDARD
ERROR

1 0.944 0.088

2 0.760 0.120

3 0.913 0.086

4 0.977 0.06479
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FIGURE 17: PLOT OF THE ELECTROPHQRETIC MOBILITIES OF PLASMID

DNA. PREPARED 3Y THE METHOD OF TAKAHASHI AND

NAGANO, TC DETERMINE WHICH OF TEE PLASMIDS IS

RESPONSIBLE FOR THE INACCURACIES
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TABLE 1.4 CORRELATION COEFFICIENTS FROM TAKAHASHI AND
NAGANO PREPARED DNA (EXPERIMENT 1), UTILISING
DIFFERENT PLASMID SETS TO DETERMINE WHICH
PLASMID(S) IS RESPONSIBLE FOR THE ERRORS.

DATA SET PLASMIDS CORRELATION STANDARD
COEFFICIENT ERROR

1 ALL 0.955 0.0695

2 Rl, RP4, R6K 0.931 0.0978

3 RP4, R6K, Sa 0.993 0.0172

4 Rl, RP4, Sa 0.949 0.0960

5 Rl, R6K, Sa 0.999 0.0263
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TABLE 1.5 ESTIMATED PLASMID MOLECULAR WEIGHTS FOR
EACH DATA SET

DATA SET R1 RP4 R6K Sa

1 79.49 62.98 36.59 33.07

2 79.77 62.82 35.97 32.43

3 61.32 52.76 36.84 34.46

4 79.57 62.52 35.61 32.08

5 90.48 69.63 37.78 33.73

PUBLISHED MW 90 52 38 33
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Molecular weights are most accurate ie are closest to published figures

when RP4 is absent from the calculation (data set 5), confirming that RP4

is not running as predicted.

ASSESMENT OF THE DIFFERENT TECHNIQUES FOR THEIR ABILITY TO PRODUCE DNA

SUITABLE FOR RESTRICTION

Twenty microlitre samples of Rl, RP4, R6K and Sa DNA, prepared by the

methods of Birnboim and Doly (1979), Ish-Horowitz and Burke (1981), Kado

and Liu (1981) and Takahashi and Nagano (1984), were restricted with Hind

111 and Pstl or Bgl 11, by method 1. Fragments were separated by agarose

gel electrophoresis in 1% horizontal gels run for 4 hours at 140 v (Figure

1.8).

No results were obtained for the restriction of Ish-Horowitz prepared

DNA, and only unrestricted DNA was present in samples prepared by the

method of Kado and Liu: the single band in Figure 1.8b track 5 corresponds

to unrestricted R6K DNA. A comparison of Figure 1.8a and 1.8c indicates

that DNA has been restricted in both cases but undigested DNA is still

found in the Birnboim and Doly preparations. An uncharacteristically

large number of small DNA fragments are also apparent in both

preparations, indicative of some non specific cleavage.
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THE EFFECT OF ALTERING CONDITIONS ON THE CLARITY OF RESTRICTION ENZYME

DIGESTS.

In order to ascertain the conditions optimal for digestion, various

modifications were made both to the preparation of DNA and to the

restriction mixture itself. Samples were freed of ethanol by drying under

vacuum before resuspending in distilled water, and the ratios of enzyme to

DNA were altered. With all the concentrations of enzyme and DNA tested,

method II proved most successful (Figure 1.9). A comparison of Figure

1.9a and 1.2c indicates a greater clarity of plasmid bands, with little

trailing, and restriction digests (Figure 1.9b) lack the large numbers of

small bands, present in figure 1.8c. Therefore, the ratio of enzyme units

to quantity of DNA sample, utilised in method II, is approaching that

required for optimal digestion and therefore optimal clarity.
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FIGURE 1.3. PLASMID DNA PREPARED BY THE TAKAHASHI AND NAGANO

METHOD AND RESTRICTED ACCORDING TO METHOD II

a. UNRESTRICTED DNA
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0.7% agarose gel run 5

80 v for 16 hours

b. HIND III RESTRICTED DNA
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3. R6K

4. Sa-1

5. Sa-2

6. A DNA

1% agarose gel run at
60 v for 16 hours
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DISCUSSION

As more methods become available for the rapid isolation of plasmid

DNA there is a need to characterise them according to their use. Most of

these methods have been developed in studies with small easily isolatable

plasmids but as the applications of recombinant DNA technology become more

widespread the need arises to focus attention on the clinical environment,

where plasmids are generally larger.

Techniques must be accurate, consistent and easy to carry out if they

are to become universally accepted. Horizontal gels were therefore used

throughout, despite their disadvantages, as they are much easier to handle

than vertical gels and the equipment is more simple to prepare. In

addition, vertical systems have their own inherant problems eg.

inconsistencies in separation (BRL users manual).

For the rapid preliminary screening of strains the electrophoresis of

a total cell lysate is probably adequate. Bacteria are lysed with sodium

dodecyl sulphate (SDS) within a well of the agarose gel (Eckhardt, 1978)

and whilst the plasmid DNA species will generally migrate as a discrete

band, the fate of the chromosomal DNA will depend on the method of

preparation. Defragmented chromosomal DNA will not enter the gel, whereas

fragments tend to migrate as a rather broader band of about 10 kb, easily

distinguishible from plasmid DNA. Methods like these were initially

developed for small high copy number plasmids (Barnes, 1977; Telford

al, 1977) but they have no major advantages over current methods that

remove the majority of chromosomal DNA prior to electrophoresis.
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(Whichever method of rapid preparation is used there will inevitably be

some contamination with chromosomal DNA but for most purposes ie.

restriction or transformation, trace amounts do not seem to be

inhibitory.) The electrophoresis of total cell lysates may, however, have

one advantage in that it allows the separation of high molecular weight

plasmids that might otherwise be lost, as a result of shearing forces

generated during manipulations. This method has resolved plasmids larger

than 450 kb (Casse et al, 1979) and because of its simplicity should work

for most Gram negative bacterial species. However its use as a preparative

method for plasmid DNA suitable for restriction is minimal, as extraction

of DNA from the gel would be required and this is difficult to achieve.

A second approach to the separation of plasmid from chromosomal DNA is

the cleared lysate technique, first adopted by Clewell and Helsinki (1969)

and Klein et al (1980). This involves lysis of the bacteria and removal of

chromosomal DNA prior to electrophoresis. Lysis can be effected by

detergents such as Triton X-100 and SDS or by EDTA and lysozyme. Some

organisms eg E. coli are relatively easy to lyse whereas others require

more specialised treatment, such as the use of lysostaphin for

staphylococci (Nahaie et al, 1984). The method of Holmes and Quigley

(1981) combines lysozyme and detergent treatment with incubation in

boiling water; a procedure which releases DNA and permanently denatures

non circular DNA. As plasmids are covalently closed circular (ccc)

molecules they renature rapidly on cooling and can be separated, by

centrifugation, from chromosomal DNA which forms an insoluble clot.

Although it is a very rapid method, convincing results could not be

obtained with the standard plasmids by the method of Holmes and Quigley,

which suggests that this method lacks predictability with large plasmids.

The problem arises from the length of the heating period, which is

critical, as the DNA can easily be irreparably denatured. Several
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modifications (MacNeil, 1986) have, however, been made to the Holmes and

Quigley method, enabling its use in the isolation of plasmids from gram

positive organisms. Although these methods do generally give good yields

with relatively small high copy number plasmids, the recovery of large low

copy number plasmids can be very poor, which probably results from their

increased susceptibility to heat denaturation. Speed is the main advantage

of the cleared lysate methods but the major drawback is that the lysis

conditions that give the best yield of plasmid DNA, and least

contamination with chromosomal DNA, vary from strain to strain and can

even be affected by the plasmid involved.

The most general methods, reported to be applicable to a wide range of

bacterial species, involve complete cell lysis, usually with SDS, followed

by selective precipitation of chromosomal DNA. This precipitation step has

been achieved in a number of ways. Guerry et al (1973) utilised

coprecipitation of SDS and chromosomal DNA at high ionic strength, in the

cold. Birnboim and Doly (1979) have effected separation by selective

alkaline denaturation of high molecular weight chromosomal DNA whilst ccc

plasmid DNA remains double stranded, as a result of topological bonding.

On neutralization, the chromosomal DNA forms an insoluble clot, leaving

the plasmid DNA in the supernatant. This method works well (Fig 2a) for

the large plasmids, although chromosomal DNA and RNA are still clearly

visible. (The incorrect mobility of Sa and RP4 is probably due to the

presence of salts interfering with electrophoresis). It is reported to be

applicable to small plasmids also, as the harsh lysis conditions destroy

any plasmid - chromosome or plasmid - membrane associations which might

decrease the yield of low copy number plasmids. It is virtually

independent of the particular bacterial strain or species too, so long as

there is suitable enzyme to degrade the cell wall.
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Ish-Horowitz and Burke (1981) have modified the Birnboim and Doly

method, essentially to remove some of the RNA and decrease the preparation

time. However, these alterations do not appear to lead to an improvement

(Fig 1.2d). Chromosomal DNA is still present and bands trail although, in

this case, it could be attributed to overloading. The mechanism by which

DNA fragments are separated during gel electrophoresis is very complex and

a number of factors such as DNA concentration, buffer composition, gel

composition and chemical modification of the agarose may affect the

clarity of separation (Smith et al, 1983). Therefore, poor resolution may

not result from the isolation technique itself, but rather from the use of

incorrect conditions, such as overloading, during electrophoresis.

However, repetition of this method did give inconsistent results, as

indicated by the variation in correlation coefficients (Table 1.3).

The method of Kado and Liu (1981) is a modification of the alkaline

denaturation method of Birnboim and Doly combined with phenolic

extraction. Chromosomal DNA is removed by heating in an alkaline

environment and proteins and cellular debris are removed by a phenol

chloroform extraction. The lysis step is crucial and small differences in

pH affect the plasmid recovery. At pH's lower than 12, the supernatant

becomes increasingly more viscous and very difficult to remove from the

phenol layer and load onto the gel. However, at pH's approaching the

recommended value of 12.6, SDS precipitates. Therefore, a compromise has

to be reached to achieve a pH as near to 12.6 as possible but without

allowing precipitation of SDS. The resolution of large plasmids by this

method is poor (Figure 1.2b) and, as with other workers, difficulty was

had in obtaining reproducible results.
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The fifth method investigated was that of McMasters et al (1980). This

method is also a modification of basic techniques, utilizing high pH,

followed by neutralization and phenolic extraction in the presence of

sodium chloride to effect separation. Plasmid DNA, however, is

precipitated with polyethylene glycol (PEG), as opposed to ethanol. PEG

concentrates small amounts of DNA (Humphreys et al, 1975) whilst

eliminating small pieces of RNA. Despite the fact that the procedure

involves minimal handling of the DNA, with the single step separation of

proteins (pellet), chromosomal DNA (particulate interphase) and plasmid

DNA, results were difficult to achieve. Attempts to modify the procedure

by changing the volume of culture, the length of the precipitation step

and the amount of PEG added failed to improve the results. Apart from the

inability to isolate large plasmid DNA, this method is time consuming

compared w? the other methods and involves a phenol chloroform extraction

step. Grinsted and Bennett (1984) believe chloroform extraction is

unnecessary and the unpleasant involvement of the phenol extraction steps

makes these methods less attractive.

Whilst the lack of success with the last three methods may be

attributable to the fact that they are not applicable to the plasmids

under study, (whilst still being perfectly suitable for other plasmids

and/or bacterial species), it is significant to note that in many of the

published techniques, cultures which were used to isolate DNA from, were

amplified by chloramphenicol challenge. The quantity of DNA present in the

starting material is therefore greater. Whilst amplification may be

possible in some cases, its use in undefined systems may lead to more

problems. Amplification of clinical plasmids is rarely feasible, another

factor contributing to the unsuitability of some of these methods for

looking at clinical material.



The final method under investigation was that of Takahashi and Nagano

(1984), which combines some of the features of Birnboim and Doly (1979)

with others from Kado and Liu (1981) to try and produce a reliable,

reproducible, universal technique. As with the method of Kado and Liu

(1981), the pH is crucial and it may often be necessary to make up

solutions with double glass distilled water to reduce acidity.

Chromosomal contamination was minimal with this technique (Figure 1.2c)

and it was the most reliable. It gave bands which separated according to

their size so that the correlation coefficient was as good as 0.999 +

0.005 (Tables 1.2 and 1.4) and the variation was minimal, compared with

the coefficients for Ish-Horowitz and Burke prepared DNA. The accuracy of

molecular size determination was further increased by removing RP4 from

the calculations. This plasmid was found to be consistently inaccurate

(Table 1.4 and Figure 1.7). The conditions which were found to give the

least contamination with chromosomal DNA, however were not the same as

those published by the original workers. In contrast to the results of

Takahashi and Nagano (1984), it was found that the proportion of

chromosomal DNA increases as the concentration of sodium hydroxide is

raised to 0.56 mM (Figure 1.3). In addition, RNA production was found to

increase with increasing sodium hydroxide concentration. However these

differences may be attributable to plasmid or strain characteristics. The

clarity of results is comparable ■ those of Birnboim and Doly ( 1979) but

the method is less time consuming. It eleviates the need for complicated

steps such as ether extraction of phenol (Klein et al_, 1980) and a 5

minute pre-centrifugation of the neutralised mixture was found to increase

the yield of supernatant.

It is possible that the resolution of plasmid bands could be improved

still further with the use of wedge-gels. Rochelle et al (1986) have
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reported that banding patterns are more uniform, there is increased

linearity in the relationship between log of molecular size and log 10 of

relative mobility, variation about the regression line is decreased and

estimation of molecular size is more accurate with this type of gel.

The first stage in restriction enzyme analysis depends on the ability

to produce suitable DNA, quickly and easily, and then a consistent

protocol is required for the DNA restriction itself. The Takahashi and

Nagano (1984) method takes about 1 hour for molecular weight determination

and an additional 20 minutes to prepare the DNA for restriction, whilst

the Birnboim and Doly (1979) method takes slightly longer. Of these two

methods, however (Figure 1.8), it is not possible to determine which, if

any, produces DNA more suitable for restriction as conditions were not

optimal for digestion. However, digestion of Takahashi and Nagano

preparations might be considered slightly better as all the DNA has been

restricted. Undigested high molecular weight DNA was found in the

restricted samples prepared from DNA extracted by the Birnboim and Doly

method.

There are a large number of factors that determine the proper

functioning of restriction endonucleases eg the presence of cofactors

(Smith, 1979), salt concentration and pH. It is the purpose of the

additional steps in the Takahashi and Nagano (1984) method to control the

sodium ion concentrations. If the conditions are altered away from the

optimum, the specificity of DNA recognition by a restriction enzyme is

relaxed i.e. an enzyme recognises a reduced number of nucleotides within

the canonical recognition sequence normally characteristic for the enzyme

under optimal conditions. This effect was first described for EcoRl



(Polisky at al_, 1975) and results in an increase in the number of shorter

length fragments. It is believed to result from changes in conformation

of the quarternary structure of the active enzyme. The results obtained

for both Birnboim and Doly and the Takahashi and Nagano methods are

characteristic of relaxed specificity ie the presence of a large number of

small fragments (Figure 1.8). The incubation conditions of relaxed

specificity are characterised by low salt concentration, high pH values

and extremely high enzyme activity and glycerol concentrations. The

addition of excess enzyme can therefore produce results as poor as those

obtained by adding too little. Thirty-two units of Hind III per 20 ul of

DNA sample was used in the above restrictions. However, reducing this

amount had no effect on the results which suggested other factors are

involved. Relaxed specificity can also result from the addition of organic

solvents (Woodhead et al, 1981) eg alcohol; thus a critical step in the

preparation of DNA for restriction is the removal of all traces of ethanol

by vacuum desiccation. The effect of the inclusion of this desiccation

step, on the clarity of plasmid bands, can be seen by comparing Figure

1.8c and Figure 1.9b. The large number of small faint bands,

characteristic of non specific cleavage, are not present in Figure 1.9b.

The individual bands are noticeably sharper although the smaller fragments

are faint. The ratio of enzyme to DNA is identical (16 units to 10 ul) but

the alcohol has been removed. In addition the volume was maintained at 20

ul and the buffer volume (2 ul lOx strength) kept constant by altering the

amount of distilled water. Such a strict adherance to a constant volume

was not maintained in the previous experiment (Figure 1.8) and the ion

concentration may well have varied, contributing to the relaxed

specificity. The increased sharpness of bands may also be due to a

reduction in the amount of DNA loaded; overloading can be a problem In
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both restriction and molecular weight determination but altering buffer

and gel concentration may help to counteract this (Smith et al, 1983).

Spectrophotometric determination of DNA concentrations per sample would

help to find the best loading concentration and would also aid in the

calculation of how much enzyme to use. These values will vary depending on

size and copy number of the plasmid, and therefore a certain amount of

experimentation will be required for each case, to find the appropriate

amounts needed.

Accuracy and reproducibility are also important when attempting to

determine molecular weight by summation of restriction fragments: the loss

of small fragments off the end of the gel or nonspecific cleavage will

drastically affect the results. The fragments do not sum to the predicted

molecular weights in the initial experiments carried out with Takahashi

and Negano or Birnboim and Doly prepared DNA (Figure 1.8), indicating not

only that conditions are not optimal but also that this is not the best

method for measuring molecular weight. However, there are disadvantages in

running undigested preparations to determine molecular weight: although

conditions are chosen to maximise ccc DNA, open circular or linear DNA may

be present in varying amounts depending on the handling conditions and the

plasmid. It is therefore not possible to be entirely sure that similar

molecular species are being compared and, in the case of transfer studies,

whether one or more plasmids are present. The obvious solution is to

restrict plasmid DNA with an enzyme that cuts once and this method has

been adopted by many researchers. All DNA therefore becomes linear and can

thus be compared and there is no longer the problem of losing small

fragments. Conditions, however, still need to be suitable for correct

cleavage. Although useful, this does not help when dealing with

uncharacterised plasmids and transposons. With no knowledge of particular
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restriction sites this is not a feasible solution to obtain greater

accuracy. Until detailed maps are determined the only option is to run

undigested DNA, prepared by a method that minimises the amount of linear

and open circular DNA.

In conclusion, only the Birnboim and Doly (1979) and Takahashi and Nagano

(1984) methods, of the six studied, proved consistent in preparing plasmid

DNA in the range 30 to 90 kb from E. coli. Of the two, the latter was the

quickest and easiest to perform and resulted in the least chromosomal

contamination. The removal of all traces of ethanol is essential to the

clarity of bands, particularly of restriction fragments, and every attempt

should be made to maximise the conditions optimal for digestion with each

enzyme. These conditions will vary with the plasmid size, the preparation

method used and thus the DNA concentration, the enzyme used and the amount

of sample loaded. It may therefore be necessary to try several preliminary

sets of conditions to ensure that the most appropriate one is used .

Most methods have their limitations and as yet there does not appear

to be a universal method that accurately and consistently isolates a range

of plasmid DNA sizes from a variety of organisms. In organisms like

Lactobacilli conventional cell lysis and plasmid purification have been

reported to be unsatisfactory (Klaenhammer, 1984) and our attempts to

successfully isolate plasmid DNA from Pseudomonas aeruginosa isolates by
_ —- - -

original
the method of Takahashi and Nagano (1984) failed despite the authors

success. Although this latter method would appear to have more widespread

use than most, the choice of the best method to use does depend on the

organism, the size of the plasmid, the amount of DNA required and the

desired purity. However, as a method to begin studies with, the Takahashi
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and Nagano technique fulfils most of the essential requirements, and has

been successfully used to isolate DNA of plasmids ranging from 30 to 90

kb. This technique was therefore used for all subsequent rapid analysis

of R plasmids and Tp resistance transposons.
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CHAPTER 2

THE STABILITY OF THE INCOMPATIBILITY GROUP W PLASMID Sa
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INTRODUCTION

The plasmid Sa was isolated from Shigella flexneri in 1962 (Watanabe

et al, 1968) and was found to be a member of the incompatability group W

plasmids. Other members of this group include R388 (Datta and Hedges,

1972) and R7K (Coetze et al, 1972). These plasmids represent the smallest

naturally occurring group of R factors and range in size from 29 kb to 38

kb. They are conjugative plasmids, displaying a broad host range [Inc W

plasmids have been isolated from different enteric species from around the

world (Datta and Hedges, 1971; Datta, 1974) ], and carry a variety of drug

resistance genes (Jacob et al, 1977; Datta et al, 1979). Gorai et al

(1979) have shown there to be extensive homology between the Inc W group

plasmids and have examined the physical distribution of genes on the

plasmid genomes. Like the Inc P broad host range plasmids (DePicker et

al, 1977; Barth and Grinter, 1977; Grinsted et al, 1978; Thomas et al,

1980) the antibiotic resistance genes lie in the region dense in

restriction enzyme sites and this is possibly of evolutionary significance

(Thomas et al, 1980).

Sa has been reported by Ward and Grinsted (1982) to have a molecular

size of 37 kb but there has been a suggestion that Sa may exist in more

than one form, with variable molecular size. Gorai et al (1979) utilised

a spontaneous deletion mutant of Sa (molecular size 29 kb), which had lost

the chloramphenicol resistance determinant but retained the other drug

resistance markers (ie Km, Sm and Su), to determine the location of the

chloramphenicol resistance gene. These workers also report that Sa has a

molecular size of 34 kb as opposed to 37 kb. Other mutants have been

found (this laboratory, unpublished results), and Ireland (1983)
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identified a spontaneously deleted derivative of the Crown Gall

suppressive Inc W plasmid, pSa, which also lacked chloramphenicol

resistance, and ranged in size from 26 to 39 kb (Falkow et al, 1974;

Meyers et al, 1976; Farrand et al, 1981; Tait et al, 1982). This

phenomenon of variable size may not therefore be restricted to Sa, but may

be a property of the Inc W plasmids as a whole. R388 has been observed as

a 44 kb spieces (personal communication) as well as in it's published 29

kb form (Datta and Hedges, 1972). In some instances, however, different

techniques were used for determining molecular size (ie. agarose gel

electrophoresis, sucrose density gradients and Electron Microscopy

measurements) and this might account for some of the variability observed.

Since the plasmid Sa was to be used in amplification studies and as a

'host' for transposon characterisation, it was imperative to investigate

the possibility that the molecular size of this plasmid could vary.

Undetermined changes in molecular size, or resistance markers of Sa, would

hamper the interpretation of data refering to the size of inserted

transposons and /or their amplification. It seemed of particular

importance, therefore, to obtain information on the physical and

functional differences between the published Sa (Ward and Grinsted, 1982)

and chloramphenicol sensitive Sa plasmids isolated during repeated drug

testing of E. coli J53(Sa), and strains harbouring trimethoprim-encoding

transposons inserted into Sa.
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MATERIALS AND METHODS

BACTERIAL STRAINS AND PLASMIDS

The properties and the source of the 'Sa' plasmids utilised in this

study are summarised in Table 2.1. The standard strains used were as in

Table i. E coli was the host for all plasmids. Resistance to antibiotics

was assayed on DST agar (Oxoid) containing appropriate antibiotics at 10

ug/ml, unless otherwise stated.

PLASMID DNA PREPARATION

Plasmid DNA was prepared by the method of Takahashi and Nagano (1984)

as described in chapter 1.

RESTRICTION ENZYME DIGESTION

DNA was prepared for restriction (as described in chapter 1) and

resuspended in 60 ul of distilled water containing RNase at 50 ug/ml.

After incubating at 37°C for 30 minutes, 10 ul aliquots were

restricted. Hind III, Bam HI and Pst I were purchased from NBL Enzymes

ltd, along with dilution and reaction buffers. Digestion of plasmid DNA

was carried out as described ifY method II (chapter 1) utilising either 9u

Hind III, 6u Bam HI or 12u Pst 1. Reactions were stopped and analysed on

0.1% agarose gels as described previously (chapter 1). XDNA (Sigma) was

restricted with the above enzymes to act as molecular size markers.
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TABLE 2.1: PROPERTIES OF PLASMIDS USED IN THIS STUDY

PLASMIDS SOURCE RESISTANCE PUBLISHED
MARKERS MOL. SIZE kb

mutant
Sa-1 Spontaneous Sm Su Ka -

derivative

Sa-2 Watanabe Sm Su Ka Cm 33

etal, 1968
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RESULTS

RESISTANCE TESTING

E. coli strains harbouring Sa, plus suitable controls, were tested for

their resistance to kanamycin, streptomycin, chloramphenicol and

sulphonamide (100 ug/ml). Two resistance patterns were found; some

strains carried all four resistance determinants whereas the rest had lost

their chloramphenicol resistance. The Sa plasmid carried by these latter

chloramphenicol sensitive strains was designated Sa-1 and the

chloramphenicol resistant colonies were designated Sa-2.

COMPARISON OF MOLECULAR SIZES OF Sa-1 AND Sa-2

DNA preparations of Sa-1 and Sa-2 were electrophoresed for 16 hours at

70 v in buffer A (chapter 1) on 0.7% agarose gels. Their sizes, compared

with known standards, can be seen from Figure 2.1. Sa-2 is larger than

Sa-1: 35.84 kb as compared with 30.15 kb for Sa-1. Subsequent repetitions

of these preparations revealed that there was often a variation in

molecular size, especially for Sa-1, and that this latter plasmid was

often present in two forms (Figure 2.2). These forms correspond to

molecular sizes of 29 and 44 kb.
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FIGURE 2.1: COMPARISON OF THE MOLECULAR SIZES OF Sa-1 AND Sa-2

1 2 3 4 5

FIGURE 2.2: MULTIPLE FORMS OF Sa-1

1 2 3 4 5

TRACK 1. R40a

2. R1

3. RP 4

4. R6K

5. Sa-1
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RESTRICTION ANALYSIS OF Sa-1 AND Sa-2

In order to discover how the DNA of Sa-1 and Sa-2 differed,

restriction analysis of these plasmids was undertaken; the results of

which are indicated by Figures 2.3 and 2.4. Initial restriction

(Experiment 1) with Hind III and Bam HI (Figure 2.4) indicated differences

between the two plasmids. Hind III was found to restrict Sa-2 three times

and Sa-1 once, whilst Bam HI cut both plasmids twice but the size of

restriction fagments was different (Table 2.2). The larger fragment from

the Bam HI digest of each plasmid was similar (20.15 kb compared with

20.73 kb), but the smaller fragment of Sa-2 was twice the size of Sa-1.

Subsequent repetitions of these digests (Experiment 2: Table 2.2)

confirmed the above findings, and further restriction with Pst I (Figure

2.5), which cuts Sa three times (Ward and Grinsted, 1982), served to

substantiate the view that Sa-1 and Sa-2 were different. Variations in

the number of fragments after Pst I digestion of Sa-1 and Sa-2 were again

apparent (Figure 2.5), suggesting that the differences between the two

plasmids lie in the region between the two Bam HI sites. This region is

known to contain the chloramphenicol resistance gene of Sa (Ward and

Grinsted, 1982).
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FIGURE 2.3: HIND III RESTRICTION OF Sa-1 AND Sa-2

2 3

23-7 Mf ** TRACK 1. Hind III digested A
2. Hind III digested Sa-1
3. Hind III digested Sa-2

. 1.26

-1.53

FIGURE 2.4: BAM HI RESTRICTION OF Sa-1 AND Sa-2

2 3

TRACK 1. Hind III digested A
2. Bam HI digested Sa-1
3. Bam HI digested Sa-2
4. Bam HI digested A
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TABLE 2.2: MOLECULAR SIZES OF RESTRICTION FRAGMENTS FROM Hind III,
Bam HI AND Pst I DIGESTION OF Sa-1 AND Sa-2

EXPERIMENT PLASMID Hind III Bam HI Pst I

Sa-1 24.82 20.73
4.02

Sa-2 24.82 20.15
3.18 8.40
2.42

Sa-1 21.02 21.02 23.14
4.26

Sa-2 21.02 21.02 23.14
2.98 9.05 3.34
2.20 2.48

All sizes are expressed in kb
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FIGURE 2.5: PST I RESTRICTION OF Sa- AND Sa-2

1 2 3 4

TRACK I. Hind III digested A
2. Pst I digested Sa-1
3. Pst I digested Sa-2
4. Pst I digested A
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DISCUSSION

The data presented here permit the preliminary restriction mapping of

a spontaneous chloramphenicol sensitive mutant of Sa (designated Sa-1),

and its comparison with the published Sa (Ward and Grinsted, 1982)

(designated Sa-2 in this study).

The isolation of spontaneous chloramphenicol sensitive mutants, such

as those identified in this study, would not appear to be unusual (Gorai

et al, 1979; Ireland, 1983). Chloramphenicol sensitive mutants of the

protype Inc W plasmid, pSa, have been identified by Ireland (1983), and

^°ra^ et al (1979) utilised an Sa chloramphenicol sensitive mutant plus a

genetically manipulated derivative of Sa to establish the location of the

chloramphenicol resistance gene. The difference in molecular size

observed for Sa-1 and Sa-2 in this study (5 kb) is in agreement with the

findings of Gorai et al (1979) and suggests that the lack of resistance to

chloramphenicol is due to loss of DNA containing some or all of the

chloramphenicol resistance gene, ie. Sa-1 is a spontaneous deletion mutant

of Sa-2. Previous evidence has suggested that the chloramphenicol

resistance gene of pSa, and therefore possibly other Inc W plasmids, is on

a deletable element (Hedges and Datta, 1971; Farrand et al, 1981) but the

nature of this element Is uncertain. Inc W plasmids carry antibiotic

resistance genes (Cm, Ap, Tp and Km) similar to those reported to be on

transposons but, despite the high rate of spontaneous deletion (loss of

chloramphenicol resistance from pSa has been shown to occur at a frequency

of 1% in E coli J53-1 after 8 logs of growth), the chloramphenicol

resistance gene of pSa (and probably other Inc W plasmids) would appear

not to be identical to the chloramphenicol resistance transposon, Tn9_
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(Rosner and Gottesman, 1977). A comparison of the restriction map of the

chloramphenicol resistance determinant of pSa with that of Tn9_ (Ireland,

1983) disclosed major differences and preliminary hybridisation results

revealed no homology. In addition attempts to detect transposition of

chloramphenicol resistance in rec A strains was unsuccessful.

(Transposition of transposons is independent of the rec A function

(Kleckner, 1981) ).

Preliminary restriction enzyme analysis of Sa-1 and Sa-2 (Figure 2.4)

mapped the deletion to the smaller Bam HI fragment and it is this

fragment, according to the map of Ward and Grinsted (1982) (Figure 2.6)

that contains the chloramphenicol resistance gene. Hind III restricts Sa

five times but the two smaller fragments (Table 2.3) are easily lost from

a gel. Restriction of Sa-2 is therefore in agreement with the findings of

Ward and Grinsted (1982), but digestion of Sa-1 results in one fragment

only (Figure 2.3). This would suggest that the deleted fragment contains

at least two Hind III sites. However, the deletion, which lies within the

9 kb Bam HI fragment and includes some or all of the 2.7 kb

chloramphenicol resistance gene region, is only 5 kb in size and the Hind

III sites span 6.11 kb. It is therefore possible that the deletion has

not removed the Hind III sites but has resulted in fragments too small to

detect. In order to locate the deletion more precisely, Sa-1 and Sa-2

were digested with Pst I (Figure 2.5), which cuts the smaller Bam HI

fragment three times - once at either end of the chloramphenicol

resistance gene (Figure 2.6). Sa-1 was shown to lack the two smaller Pst

I fragments (3.34 and 2.48 kb) of Sa-2, the sum of which is equivalent to

the difference in size between the smaller Bam HI fragments of the two

plasmids concerned, and the difference in overall molecular size. It

would thus appear (Figure 2.7) that Sa-1 has arisen from Sa-2 by
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FIGURE 2.6: PHYSICAL AND FUNCTION MAP DF Sa

Ail sizes are in kb
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TABLE 2.3: COMPARISON OF THE OBSERVED RESTRICTION FRAGMENT SIZES
WITH PUBLISHED RESULTS

RESTRICTION WARD AND Sa-1 Sa-2
ENZYME GRINSTED (1982)

Hind III 0.32 21.02 2.20
0.47 2.98
2.08 21.02
3.22

30.91

Bam HI 9.26 4.26 9.05
27.74 21.02 21.02

Pst I 2.11 23.14 2.48
3.19 3.34

31.70 23.14
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spontaneous deletion of the two smaller Pst I fragments, causing a

decrease in size of 5-6 kb. The loss of this DNA would result in the loss

of two Hind III sites - leaving Hind III fragments of approximately 0.32,

0.47 and 30.89 kb in size, according to the map of Ward and Grinsted

(1982). Hind III digestion of Sa-1 produced one fragment which is in

agreement with the above hypothesis, if it is assumed that the two smaller

fragments are too small to be detected.

Of possible significance to the sponta neous deletion of DNA carrying

the chloramphenicol resistance gene, is the finding that the regions at

either end of the deleted DNA have the same pattern of restriction sites

(Figure 2.6). Ireland (1983) indicated a similar finding with the

chloramphenicol sensitive deletion mutant of pSa (Figure 2.8) and

postulated that these direct repeats were responsible for the high

frequency of spontaneous deletion. Generalised recombination at these

sites, requiring the rec A function, would produce deletions (Sherratt et

al, 1981). This type of recombination would leave behind one set of the

repeated sequences, and this is what is indicated by Figure 2.7: one Pst I

site and one Hind III site are lost.

The difference between Sa-1 and Sa-2 is thus due to a spontaneous

deletion of an a .proximate S kb Pst I fragment, containing the

chloramphenicol resistance gene, brought about by generalised

recombination at the site of direct repeats.
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FIGURE 2.8: LINEAR RESTRICTION ENZYME MAP OF PLASMID pSa:
DETAIL WITHIN 3.3 Kb Bam H.1 FRAGMENT
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CHAPTER 3

EXAMINATION OF A PORCINE FAECAL ENTEROBACTERIAL STRAIN

EXPRESSING TRIMETHOPRIM RESISTANCE
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INTRODUCTION

Since the Swann Report (1969) there has been considerable controversy

surrounding the use of antibacterial drugs in animal husbandry, because of

the potential transfer of resistant bacteria from animals to man (National

Academy of Science Report, 1980; Lyons et al, 1980). It was found for

instance, that the continuous feeding of pigs on a diet containing Tc's

gave rise to large populations of E coli organisms with transferable Tc

resistance (Smith, 1980) and that Enterotoxigenic E coli were a common

cause of diarrhoeal illness in both humans and animals (Sack, 1978;

Soderlind and Molby, 1979; Rowe, 1979). In addition, Tp resistant

Salmonella typhimurium strains, isolated from an outbreak in cattle in

Britain in 1977, were found by 1979 to cause infections in humans

(Threlfall et al, 1980) and a Tp resistant Salmonella krefeld serotype was

isolated from both humans and animals in the United States, although it

was not common (Mathewson and Murray, 1983). The work of Levy et al

(1976), Linton et al (1977a,b) and Davies and Stewart (1978) suggested a

flow of resistant E coli between animals and man; an idea that has been

reviewed by Feinman (1984). Whilst it was commonly believed that the

indiscriminate use of antibacterial drugs contributed to the spread of

antibiotic resistance among E coli strains, the Swann report concluded

that antibacterial drugs used in medical practise should not be used as

growth supplements, but it did not restrict their use in the treatment of

infectious diseases in animals. It is this use that still causes concern,

as the nature of animal husbandry is such that there is considerable

exposure to the same drugs that are used to treat human infections.

Studies by Kanai et al (1983), however, indicated the problems facing the



livestock industry, with regards the use of antibiotics. Whilst a large

type of housing with automatic devices, such as that used in the broiler

industry, simplifies management and leads to efficient mass production,

the risks of mass disease are intensified, necessitating the use of

antibacterial drugs. Thus, apart from their administration to sick

animals, a variety of antibiotics have been given to groups of healthy

animals in the hope of protecting them from contracting diseases (Smith,

1980). This policy is much more likely to result in the emergence of

antibiotic resistant organisms because the bacterial flora of a much

larger number of animals will be exposed to the selection pressure

provided by the antibiotics. Despite the implementation of the Swann

Report with regard to some antibacterial drugs, eg the prohibition of Tc in

1971 (Smith, 1980) and Cm in 1979 (Jorgensen, 1983) the levels of

resistant E coli with conjugative ability remained high (Smith, 1973,

1975). Thus there has been very little demonstrable effect on the genetic

constitution of the plasmid family, indicating the profound and lasting

ecological changes that can be brought about by administering antibiotics

to animals. However the strong discouragement to use antibiotic treatment

for Salmonellosis in veterinary practise in Denmark, may have contributed

to the lack of multiresistance (Jorgensen, 1986) in this spjE-ci'SD.
Several studies on the ecology of plasmid - borne antibiotic

resistances in gram negative bacteria have been concerned with assessing

this potential for exchange of resistance plasmids between humans and

animals. Studies of faecal coliforms by Hartley et al (1975) and

Bettelheim et al (1976) indicated that E coli from calves and humans

shared many common 0 antigen types and other studies suggested

similarities between plasmid populations in man, farm animals and pets on

the basis of common resistance patterns (Smith, 1975) and incompatability
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groups (Bezanson et al, 1981; Davies and Stewart, 1978). Anderson et al

(1975), from molecular weight and DNA homology studies of R-plasmids from

enteric bacteria of human and animal origin, indicated that there was a

common pool of R-plasmids in man and animals . Studies by Towner and Wise

(1983), by Wise et al (1985) and Towner et al (1986) on Tp R-plasmids

found in the local Nottingham animal and human populations substantiated

this view. The majority of plasmids isolated from animal strains of E

coli were found to belong to the same incompatibility groups and carry the

same range of antibiotic resistance determinants as those from the human

community. Similar results were obtained by Mee and Nikoletti (1983) and

Campbell et al (1986) in Australia but work by Amyes (1986) on Tp

R-plasmids from human and porcine isolates in the Edinburgh area revealed

that most porcine plasmids were unlike their human counterparts. Although

contradicting the theory of a common pool of R-plasmids, these findings

did not rule out the possibility of genetic exchange altogether.

Possible routes for the interchange of plasmids between humans and

animals do exist in the environment (Linton, 1986). It has been clearly

shown that contamination of animal carcasses with gut contents is a normal

occurance at commercial abattoirs (Howe et al, 1976; Howe and Linton,

1976; Linton et al, 1976) thus providing a possible route for contact with

humans. Spread could also be effected through domestic and agricultural

effluents into enviromental water bodies (Abdul and Venables, 1986). In

addition, it has been shown that a reduction in faecal E coli serotypes

occurs in humans fed a sterile diet, suggesting that food is a source of

new E coli strains (Bettelheim et al, 1977). Contaminated food as a

source of antibiotic resistance bacteria has also been documented by

Rolland et al (1985), Cooke et al (1970) and Levy (1984).



The impact of antibiotic usage in animals on the potential spread of

resistance may depend on the nature of the antibiotic. According to Smith

(1980) the pig population of the UK will remain an enormous reservoir of

Tc resistance in E coli with conjugative ability for many years, due to

the indescriminate use of Tc. In contrast, the incidence and amount of

Ap, Cm, Nm and Fur resistant E coli in faecal specimens appears to be

stable. The emergence and persistance of these latter resistances is

probably due to veterinary use only and therefore, if this does not

increase greatly, the present state will probably remain. The impact of

veterinary antibiotic use, however, has been quite different as far as Sm

Su resistant organisms are concerned. They have become more prevalent and

in the 1979 survey (Smith, 1980) vied with Tc resistance ones as the

commonest antibiotic resistant E coli.

In contrast to the progressive increase of Tp R-plasmid - bearing

enterobacteria from clinical isolates, (Amyes et al, 1978; Romero and

Perduca, 1977; Acar et al , 1977; Towner et al, 1980) the spread of Tp

R-plasmids has been slower in animal strains (Smith, 1980). Tp containing

products were first introduced for medical and veterinary use in 1968 and

1969 respectively. In the following years there were a number of reports

of differing forms of resistance (Jobanputra and Datta, 1974; Towner et

al, 1978; Towner et al, 1982 ) and there were investigations into the Tp

resistance found in bacterial isolates of animal origin, particularly pigs

(Fleming, 1973; West and White, 1979; Bannatype et al, 1980; Mee and

Nikoletti, 1983). It has become clear that plasmids confering Tp

resistance have spread throughout a range of coliform isolates in animals

and to Klebsislla, Enterobacter, Citrobacter and Acinetobacter species in

man (Mee and Nikoletti, 1983). Studies on isolates from animals other

than pigs have concentrated mainly on Tp resistant plasmids found in



strains of Salmonella typhimurium (Richards et al, 1978; Ward et al, 1982;

Threlfall et al, 1983). Both West and White (1979) and Wise et al (1985)

found a high prevalence of Tp resistance in bovine isolates from farms in

England, suggesting that calves were a major resewoir of Tp resistance

amongst farm animals. Whilst levels of resistance in E coli from pigs and

lambs were lower, they still constituted significant resevoirs of Tp

resistance. The examination of faecal specimens from pigs, sheep and

cattle entering the Edinburgh city market, on the other hand, indicated

that the only significant emergence of Tp resistant faecal enterobacteria

in farm animals occurred in pigs (Amyes, 1986). This difference in the

major resevoir of Tp R-plasmids is reflected in the intensity of farming

in different areas and thus the potential for infection and the economics

of antibacterial drug use (Amyes, 1987). (The effects of different

management policies on antibiotic resistance levels has been documented

for other antibiotics (Hinton et al, 1985).). Whilst cattle in Scotland

are grazed more often and less densely than in England , pigs are

generally confined, leading to the rapid spread of infection. Whilst

Amyes (1986) found that a much larger proportion of the porcine resistant

population were resistant to high levels of Tp, compared with clinical

strains from a concurrent study, a much lower percentage of these strains

possessed transferable Tp resistance. This revealed a more pronounced

movement of genes away from plasmids to the bacterial chromosome.

Although the Tp resistant plasmids of human and porcine strains in the

Edinburgh area appeared different (Amyes, 1986), the transposons

responsible for the Tp resistance were very similar. The ubiquitous Tn7_,

was prevalent in pig isolates (Amyes, 1986) and a few carried a smaller

transposon, Tn4132, previously found in some human strains (unpublished



observations). This transposon is thought to be closely related to Tn7_

(Young and Amyes, 1985a), and it's finding in an animal isolate implicates

the transfer potential of resistance genes, as opposed to the whole

R-plasmid, from animal and human resevoirs. Tn_7 was first described in

human isolates of enterobacteria (Barth et al, 1976) and was also reported

in a Salmonella typhimurium strain of bovine origin (Richards et al,

1978). Due to the possibility that the animal population may harbour more

clues as to the evolution of Tp resistance genes and their spread, Tp

resistant porcine isolates were studied further.
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MATERIALS AND METHODS

RESISTANCE TESTING

Resistance testing was carried out on Diagnostic Sensitivity Test agar

(DSTA) (Oxoid, Basingstoke) containing antibacterial drugs at the above

concentrations. A 10-^ dilution of overnight broth cultures (10^

cfu/ml) was prepared in single strength Davis Mingioli media (Davis and

Mingioli, 1950) without supplements (DM base) and multiply inoculated on

to appropriate plates with a Mast Multiple Inoculator. Growth at the

point of inoculation defined resistance to the included compound.

PLASMID DNA PREPARATION AND RESTRICTION

Plasmid DNA was prepared by the method of Takahashi and Nagano (1984)

and analysed by agarose gel electrophoresis, as described in Chapter 1.

Single digests were performed with Hind III (9u), Bam HI (6u) and Pst I

(12u). The restriction procedure was that utilised in the restriction

mapping of Sa-1 and Sa-2 (Chapter 2). Molecular sizes of the smaller

fragments were estimated by comparison with those obtained for lambda DNA

following digestion with Hind III (Murray and Murray, 1975).
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STANDARD CONJUGAL MATING PROCEDURE

Nutrient broth cultures (4.5 ml) of donor and recipient were grown up

overnight. The donor culture (0.1 ml) was mixed with 1 ml of recipient in

4.5 ml of prewarmed nutrient broth and incubated statically at 37°C for

between 1 and 5 hours. After vortexing, the mating mixture was

centrifuged (2544 g for 15 minutes) and resuspended in 5.6 ml of DM base.

Neat, 10"*, 10~2 and 10"-^ dilutions (0.1 ml) were plated onto

appropriate selective plates and incubated at 37°C for up to 72 hours.

The donor culture was diluted 10-^ in DM base and 0.1 ml plated on

Maconkey agar (Oxoid) for a viable count. Donor and recipient cultures,

centrifuged (2544 g for 15 minutes) and resuspended in 4.5 mis of DM, were

utilised as controls. An aliquot (0.1 ml) of each was plated neat on

selective plates, which were incubated at 37°C for upto 72 hours.

Transconjugants were purified by restreaking on selective plates. The

frequency of plasmid transfer was expressed per viable donor cell, as

described by Amyes (1974).
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PREPARATION OF SELECTIVE PLATES

Selective plates for transfer studies were prepared using DM base and

antibacterial drugs at the following concentrations, unless otherwise

stated: ampicillin, chloramphenicol, kanamycin, nalidixic acid,

streptomycin, tetracycline and trimethoprim - 10 ug/ml; rifampicin - 25

ug/ml; sulphamethoxazole and spectinomycin - 100 ug/ml. For the

selection of E. coli strain J53 transconjugants, 1 ml proline (5 mg/ml), 1

ml methionine (5 mg/ml), 1.4 ml glucose (20%) and the appropriate amount

of antibiotic were added to 50 mis of double strength DM media and the

volume made up to 60 mis with distilled water. This was added to 40 mis

of hot bacteriological agar (Oxoid) and plates poured immediately. Media

for the selection of E. coli J62 were prepared in a similar way except

methionine was replaced with 1 ml histidine (5 mg/ml) and 2.5 ml

tryptophan (2mg/ml).
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BACTERIAL TRANSFORMATION

A 4.5 ml culture of E.coli C600 was grown up overnight in Luria Broth

(LB) (5g yeast extract, lOg sodium chloride, lOg tryptone made up in 1

litre of distilled water, to which was added 1 ml of 20% filter sterilised

glucose per 100 ml broth). One hundred ml of fresh LB broth was

inoculated with 1 ml of overnight culture and incubated at 37°C
mis

(shaking) for 2 hours. Forty of this culture was transferred to a 50 ml

polypropylene centrifuge tube and cooled on ice before spinning down the

cells at 5211 g for 5 minutes (Sorvall: Dupont Rc-5B superspeed). The

supernatant was poured off and the cells resuspended in 4 ml of cold 0.1 M

calcium chloride. After leaving on ice for 20 minutes the cells were

pelletted as before, and resuspended in 0.8 ml of 0.1 M cold calcium

chloride. With a sterile 1 ml pipette, 0.2 ml aliquots of cell suspension

were placed in sterile glass bottles. Fifty microlitres of DNA was added

to each bottle and left on ice for 30 minutes before transferring to a

waterbath at 42°C for two minutes. The bottles were cooled on ice

before adding a 2 ml aliquot of fresh LB broth to each. Cultures were

grown, shaking, for 2 hours at 37°C to allow time for plasmid

establishment. A 1 in 10 dilution of each culture was prepared in sterile

distilled water and for each sample, diluted and undiluted suspensions

were plated on LB plates containing appropriate selective antibiotics.

Plates were incubated overnight at 37°C.
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PREPARATION OF DNA FOR ELECTROELUTION

Small Scale Method

DNA was prepared by the method of Takahashi and Nagano (1984) (see

Chapter 1) from 2 x 9 ml nutrient broth cultures, per sample. The two

tubes of each sample were combined and alcohol precipitated again, before

resuspending in 100 ul of Buffer C (10 mM Tris acetic acid; 2 mm disodium

EDTA, pH 8.0).

Large Scale Method

Plasmid DNA was purified by a modification of the method described by

Birnboim and Doly (1979). Cells were grown in 150 ml of Luria Broth Base

(Gibco Labs, Madison) and pelleted in a Beckman JA - 14 rotor at 11100 g

for 10 minutes. Cells were resuspended in 2.5 ml of solution I (50 mM

glucose, 10 mM EDTA, 0.25 M Tris, pH 8.0 and 2 mg/ml lysozyme - made fresh

daily). After incubation on ice for 30 minutes, 5 ml of solution II (0.2

N NaOH, 1% SDS) was slowly mixed in. Following a further 5 minute

incubation on ice, 3.75 ml of solution III (3 M sodium acetate, pH4.8) was

added. The lysate was incubated on ice for 1 hour, followed by

centrifugation for 15 minutes at 18900 g (Beckman JA - 14 rotor). The

supernatant was ethanol precipitated by the addition of two volumes of

cold 95% ethanol, and kept at -20°C overnight. DNA was recovered by

centrifugation at 13300 g for 10 minutes. The pellet was resuspended in 9

ml of TE buffer (50 mM Tris, pH 8.0; 10 mM EDTA) and treated with

RNase at a final concentration of 50 ug/ml for 20 minutes at 37°C.

The plasmid DNA was purified in CsCl ethidium bromide density

gradients using a single banding step. Ten grams of 99.9% pure //CsCl

(Terochem Ltd., Edmonton, Canada ) was added to each sample and gently



mixed, before transferring to a Beckman quick seal cetrifuge tube

(Beckman, California). In semi-darkness, 150 ul of EtBr (10 mg/ml) was

added per tube and the tubes filled up to the top with CsCl blank (lg/ml),

taking care to remove all bubbles. After sealing, the tubes were loaded

(still in semi-darkness) into a Beckman TI-70 fixed angle rotor. The

gradients were spun at 3 1139 g for 20 - 24 hours at 20°C. The plasmid

DNA was viewed under a UV light source and removed from the gradients, in

semi-darkness, using a elongated pasteur pipette. The DNA was extracted 3

to 4 times with iso-amyl alcohol and precipitated at -20°C for 20 - 30

minutes (maximum) with 70 % ethanol. After centrifugation the pellet was

resuspended in 100 ul of TE buffer and washed with 200 ul (2 x volume) of

95% ethanol. The precipitate was collected by centrifugation, after

freezing at -20°C for 30 minutes, and dried under vacuum. The DNA was

resuspended in an appropriate volume of TE buffer.
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ELECTROELUTION

Large and small scale preparation were loaded on to 0.7% agarose gels

and electrophoresis was carried out at 50 V for 16 hours. Gels were

stained in EtBr before eluting fragments by a technique derived from the

methods of Winberg and Hammarskjold (1980) and Dretzen et al (1981). A

strip of wetted DEAE membrane (Schleicher and Schuell, NA- 45) was placed

in an incision just ahead of the band of interest. Electrophoresis was

continued at twice the standard running voltage until binding was

complete, as judged by ethidium bromide fluorescence using long wave UV.

The strip was freed of residual agarose by thorough shaking in a tube

containing 1.5 ml of TE buffer (10 mM Tris; 1 mM EDTA). After repeating

this washing the membrane was totally immersed in 300 ul of high salt

solution (1 M NaCl; 1 mM EDTA; 20 mM Tris , pH 8.0) in an eppendorf tube.

The tube was gently shaken, and after ensuring the strip was still totally

submerged, the tube was incubated at 65°C for 45 minutes. The buffer

was then removed to a fresh tube and a further 300 ul of high salt

solution was added to the strip. The process was repeated. The DNA was

precipitated from both tubes of removed buffer with 95% ethanol. The

precipitate was dissolved in 50 - 100 ul of TE and reprecipitated with 70%

ethanol before resuspending in a final volume of 30 - 50 ul of TE,

depending on the amount of DNA.
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RESULTS

PRELIMINARY CHARACTERISATION OF THE PIG ISOLATE, P-20

In order to determine the plasmid profile of the original pig isolate

DNA was isolated from overnight broth cultures by the method of Takahashi

and Nagano (1984) (Chapter 1). (The P-20 isolate had been stored 'frozen'

in a glycerol/broth solution at - 70°C, prior to experimentation).

Agarose gel electrophoresis was carried out at 70 V for 16 hours on a

0.7% gel; the results of which are indicated in Figure 3.1. The P-20

isolate possesses 5 (and possibly 6) plasmids. The sizes of the smaller

bands can not be determined accurately, as the standard plasmids run

concurrently with this experiment are no smaller than 38 kb. The larger

plasmid has a molecular size of 107 kb. P-20 was also tested for its

resistance to various antibiotics and results indicated that this strain

was resistant to Tp and Tc only.

TRANSFERABILITY OF PLASMIDS FROM THE PIG ISOLATE - P-20

In order to separate the P-20 plasmids and assess their

transferability , 5 minute and 5 hour standard matings were set up between

the pig isolate, P-20, and E. coli J62, selecting on DM plates containing

the J62 supplements, plus rif (25 ug/ml) and Tp (10 ug/ml). The transfer

frequencies were low: 2.37 x 10-^ transconjugants per donor cell after a

5 minute mating and 9.02 x 10-^ after 5 hours. Transconjugants were

tested for their resistance to unselected markers (Table 3.1) and their

DNA was examined by agarose gel electrophoresis (Figure 3.2).
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FIGURE 3.1: PLASMID PROFILE OF THE ORIGINAL PIG ISOLATE - P

1 2 3 4 5

1. R1

2. R1010

3. R6K

4. R751

5. Sa-2

6. ORIGINAL PIG
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TABLE 3.1: RESISTANCES OF E COLI J62-2 TRANSCONJUGANTS CONTAINING
PLASMIDS FROM THE ORIGINAL PIG ISOLATE, P-20

TRANSCONJUGANT LENGTH OF RESISTANCES

HI 5 minutes Tp
H2 5 hours Ka Tp ( Sp/ Sm)
H3 5 hours Ka Tp ( Sp/ Sm)
H4 5 hours Ka Tp ( Sp/ Sm)
H5 5 hours TP

Resistances present, but not always expressed are given in
parenthesis
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FIGURE 3.2: PLASMID PROFILES OF TRANSCONJUGANTS FROM THE

CONJUGATION OF THE PIG ISOLATE - P-20, WITH

E COLI J62-2 (BEFORE STORAGE)

1 2 3 10

TRACK 1. R1 6. HI

2. RP4 7. H2

3. R6K 8. H3

4. Sa-1 3. H4

5. R1010 10. H5
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All transconjugants were resistant to Tp but 3 transconjugants

displayed additional resistance to Ka; which was not expressed in the

original pig isolate, P-20. Subsequent retesting revealed that

transconjugants H2, H3, and H4 sometimes expressed Sp/Sm resistance also.

Initial examination of DNA from the above transconjugants indicated

that a 5 minute mating allowed the transfer of the large plasmid band but

not the small plasmids (Figure 3.2) whilst a longer mating time (5 hours)

resulted in the appearance of more than one plasmid band in the

transconjugants. Reexamination of the DNA of these transconjugants after

storage at -70°C, however, revealed discrepancies from the initial

findings, suggestive of instability. After 1 months storage DNA from HI,

H3 and H5 was analysed (Figure 3.3) and only one large plasmid band was

evident in each transconjugants. H3 would appear to have lost the smaller

plasmid bands but acquired a plasmid slightly smaller than the single

plasmid of HI and H5. These 3 transconjugants were restored at -70°C

and reexamined along with the original stored transconjugants (HI - H5) a

further month later (Figure 3.4). Variation in the numbers and sizes of

bands was again apparent and the sizes of the small plasmid bands present

in the transconjugants differed from the sizes of the small plasmids

found in the original pig isolate, P-20.
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FIGURE 3.3: PLASMID PROFILES OF TRANSCONJUGANTS HI, H3 AND H5

AFTER ONE MONTHS STORAGE

TRACK 1. R40a/Sa-1
2. R1

3 . RP 4
100 kb

4. R6K

60 Jcb 5 . Sa-2

6. HI

7 . H3

8 . H5

FIGURE 3.4: PLASMID PROFILES OF TRANSCONJUGANTS HI - H5 AFTER

TWO MONTHS CONTINUOUS STORAGE AND AFTER FREEZING

AND RESTORAGE

1 2 3 4 5 3 10 11
TRACK 1. P-20f

7 R6K/R751
3. Rl/'Rl 010
4. H5 t
5. H3 t
6. HI +
7. H5 *
8. H4 *■
3. H3*"
10. H2 *
11. HI *

* Two months continuous

storage

f One month storage -

thaw and refreeze -

one month storage
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RESTRICTION ANALYSIS OF THE LARGE PLASMID OF TRANSCONJUGANT HI AND IT'S

COMPARISON WITH THE PLASMID R483

In order to determine whether the Tp resistance of HI was due to a Tn7_

like transposon, restriction enzyme analysis of the plasmid of

transconjugant HI and the Inc la plasmid, R483, was carried out utilising

Hind III, Bam HI and Pst I. As can be seen from Figure 3.5 the

restriction patterns are very different. The characteristic 2.47 and 2.10

kb Hind III fragments of Tn7_ (Datta et al, 1979) are absent from the

digest of transconjugant HI.
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FIGURE 3.5: RESTRICTION DIGESTS OF PLASMID DNA ISOLATED FROM

E COLI J6 2(R483) AND TRANSCONJUGANT HI

1

-2.47 kb

■2.10 kb

(a) (c)

(a) DNA digested with Hind III
(b) DNA digested with Bam HI

(c) DNA digested with Pst I
TRACK 1. Hind III digested A DNA

2. Transconjugant HI DNA
3. R483 DNA



EFFECT OF STORAGE CONDITIONS ON P-20 ISOLATES

The previous transfer results indicate that storage of isolates at

-70°C may affect plasmid stability (eg. the storing of transconjugant H3

appeared to result in the loss of the multiple bands and the appearance of

one plasmid band not present in the original P-20 isolate.). Therefore,

the resistance markers and plasmid profiles of the original P-20 isolate,

stored in glycerol/broth at - 70°C- designated P-20^ (where F =

frozen) - and on agar slopes - designated P-20s (where s = slope)- were

analysed and compared. Resistance testing indicated that whilst P-20^

expressed resistance to Tp and Tc, P-20s lacked Tc resistance. The

MIC's of Tp for the two strains were found to be similar ie greater than

1000 ug/ml. Examination of DNA prepared by the method of Takahashi and

Nagano (1984) (see Chapter 1) revealed differences between the two

differently stored isolates (Figure 3.6). The P-20 culture stored frozen,

prior to investigation, had an additional plasmid band, which could be

responsible for this strains resistance to Tc, compared with P -20^.
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FIGURE 3.6: EFFECT OF STORAGE CONDITIONS ON THE PLASMID

PROFILE OF P-20

1 2 3 4 5
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EFFECT OF MEDIA ON PLASMID PROFILES

Due to the finding that some transconjugants from the transfer of

P-20f plasmids to J62 expressed Ka resistance, whilst P20^ itself

appeared to be sensitive to Ka, overnight cultures of P20^ and P20^ in

Isosensitest broth, Isosensitest broth + Ka at 20 ug/ml and Isosensitest

broth with Tp at 500 ug/ml were analysed for plasmid DNA content.

(Cultures grown in nutrient broth, as before, were used as controls).

Whilst both cultures failed to grow in the presence of Ka the results of

DNA analysis (Figure 3.7) indicated a media affect on plasmid number and

possibly size. Growth in Isosensitest broth resulted in loss of the large

plasmid band, or possibly the splitting up of this band, (Tracks 7 and 10

compared with 8 and 11, respectively), whilst the small plasmids of

P20^, grown in Isosensitest broth (Track 7) appear to be slightly larger

than the corresponding plasmids in nutrient broth (Track 8). All

strains, irrespective of growth media were resistant to Tp and the P20*"

cultures were additionally resistant to Tc.

In order to quantify the effects of isosensitest broth on the stable

maintenance of these plasmids, the two strains P20^ and P20^ were

grown up overnight in 4.5 ml of nutrient broth, Isosensitest broth,

isosensitest broth + Tp at 500 ug/ml and Isosensitest broth containing

Thymidine at 50 ug/ml. The growth of these two strains in the different

culture media again had no effect on drug resistance, but the results of

analysis of plasmid DNA (Figure 3.8) appeared to differ from the initial

findings. All tracks show evidence of the large plasmid whilst two of the

smaller bands appear to be very faint or missing. Growth of P-20^ in

Isosensitest broth, as compared with nutrient broth, has caused a

reduction in the intensity of the large plasmid band, although not
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FIGURE 3.7: EFFECT OF MEDIA ON PLASMID PROFILES

12345 6783 10 11

1. R1 6. P-20s Tp
2. R1010 7. P-20s Iso

3. RP4 8. P-20s NB

4. R6K 3. P-207 Tp
5. R751 10. P-20' Iso

11. P-20' N3
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FIGURE 3.8: EFFECT OF ISOSENSITEST BROTH ON PLASMID PROFILES

1 2 3 4 5 6 7 8 9 10 11 12

30 kb

57 kb

38 kb

1. R1 5 . P-20s NB 9. P-2 0F NB

2 . R1010 6 . P-20s Iso 10. P-2 0F Iso

3. R6K 7. i hO CD tfl
ISO + Tp 11. CDCNJ1PH Iso +

4. R751 8. P-20s Iso + Thy 12 . P-20f Iso +
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eliminating it all together, as previously found. Growth in isosensitest

broth containing Tp (Tracks 7 and 11) would appear to enhance the

intensity of the smallest band, suggesting that this small plasmid may

encode a Tp resistance gene, that is amplified during growth in medium

containing Tp.

MOBILISATION OF THE SMALL PLASMIDS OF P-20 UTILISING THE INC W PLASMID Sa

Sa-2 was introduced into the HI transconjugant, from E coli J53, in

order to determine whether the small plasmids present in transconjugants

H2, H3, H4 and the original pig isolate, P20, were present in an

integrated form in transconjugant HI. Selection was carried out on DM

plates containing J62 supplements and Cm at 10 ug/ml. Sa-2 transferred

into E coli J62 (HI) with a frequency of 2.02 x 10-^ per donor cell.

Examination of the DNA from these transconjugants (Figure 3.9) indicated

that the small plasmid bands, absent in HI, had reappeared, but they did

not correspond to the plasmids in the original pig isolate.

To test for the possible integration of the small plasmids into the E

coli chromosome, P20^ and P20F were used as donors in 5 hour matings

with a Rec A strain, E coli PB 1150, that expresses high level Sm

resistance. Selection was made on DSTA plates containing Tp at 20 ug/ml

and Sm at 2000 ug/ml. No transconjugants were obtained in this

experiment, nor in a similar transfer study carried out between these

strains for 16 hours.
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FIGURE 3.3: MOBILISATION OF THE SMALL PLASMID BANDS

1 23 45 6 7 8 3 10 11 12

1. R1 7.

2. R1010 8.

3. R6K 3.

4. RP4 10

5 . R751 11

6 . Sa-2 12

Original Pig isolate - P-20
(Sa-2;HI)F
(Sa-2;HI)F
Original Pig isolate - P-20s
E coli J62(Sa-2, original pig plasmid]
E coli J62(Sa-2, original pig plasmid)

This strain was formed by conjugating P-20r with E coli J62
and introducing Sa-2 into the resulting transconjugant

This strain was formed by conjugating P-20s with E coli J62
and introducing Sa-2 into the resulting transconjugant
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CHARACTERISATION OF THE MOBILISED PLASMIDS

A J62(Sa-2, HI) transconjugant, now containing small plasmids + Sa-2,

was used as a donor in a 5 minute and a 5 hour mating with E coli J53, to

see if these smaller Sa-2-mobilised bands could be separated and

characterised. Selection was made on DM plates with J53 supplements plus

Tp, Cm or Tp and Cm. In addition , the same donor transconjugant was

subcultured twice, before carrying out a 5 minute mating with E coli J53.

The transfer frequencies of these matings are indicated in Table 3.2.

Examination of the resistance markers of transconjugants from these

matings revealed three types of colony. The predominant colony type from

all three transfers was resistant to Ka, Sm, Sp, Cm and Tp, whilst the 5

minute mating after subculture produced one colony resistant to Tp and Tc

only, and the 5 minute and 5 hour matings, prior to subculture, both

generated one or two colonies resistant to Tp only

Examination of the DNA of representative transconjugants from matings,

prior to subculture (Figure 3.10), indicated that all strains possessed a

large plasmid of approximately 70 kb, a small plasmid of approximately 4 -

5 kb and a very much smaller plasmid. Those expressing Cm, Ka, Sm, and Sp

resistance also had plasmid bands characteristic of Sa-2. Examination of

DNA of transconjugants from the transfer of subcultured J62(Sa-2, HI) to E

coli J53, (Figure 3.11), indicated that, whilst most samples possessed

bands indicative of Sa-2, and the large and small plasmids of the HI

family of transconjugants, one colony (Track 11) possessed only a very

small plasmid band. This band corresponded to the small plasmid of the

original pig isolate, P20, and since this transconjugant was found to be

Tp resistant, there is the suggestion that this band may carry an

additional Tp resistance gene.



106

TABLE 3.2: TRANSFER FREQUENCIES FROM MATINGS BETWEEN E COLI
J62(Sa-2, HI) AND E COLI J53

TRANSFER TIME TRANSFER FREQUENCY PER DONOR CELL AFTER SELECTION ON
Tp Cm Tp Cm

5 minutes 1.60 x 10"4 1.09 x 10~4 5.38 x 10~7
5 hours 8.60 x 10~2 6.46 x 10"5 1.07 x 10~6
5 minutes 2.39 x 10~4 1.47 x 10~4 2.21 x 10"^
(after subculture)
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FIGURE 3.10: AGAROSE GEL ELECTROPHORESIS OF TRANSCONJUGANTS

FROM THE TRANSFER OF (Sa-2, HI) TO E COLI J53

(WITHOUT SUBCULTURE)

1 2 3 4 5 6 7 9 10 11 12 13

1. R1 5

2. R1010 6

3. R6K 7

4. R751 8

9.

5 hour 10. 5 minute - Tp
transfer - Tp only 11. transfer

- Tp only 12.
13 .
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FIGURE 3.11: AGAROSE GEL ELECTROPHORESIS OF TRANSCONJUGANTS

FROM THE TRANSFER OF (Sa-2, HI) TO E COLI J53
AFTER SUBCULTURE

1 2345 6 7 8 9 10 11 12 13

70 kb

55 kb

33 kb

TRACK 1. R1 9.

2. R1010 10 .

3. R6K 11.

4. R751 12 .

5 . Sa-2 13 .

6 . Original Pig - P-20r
7 . H5

8 . HI

5 minute

transfer - Tc Tp only
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CHARACTERISATION OF THE PIG ISOLATE PLASMIDS BY TRANSFORMATION

Due to the possibility that the smaller plasmid bands may be

responsible for Tc and Ka resistance, and may also encode Tp resistance

genes, further experiments to separate the individual bands were set up.

C600 was transformed directly with DNA from the original pig isolates and

also with DNA from individual plasmid bands eluted from an agarose gel.

Direct transformation with P20 DNA resulted in one transformant,

resistant to Tp only. This transformant did not possess either the large

or the small plasmids, thought to be responsible for Tp resistance, which

have been found in the original pig strain and other transconjugants

(results not shown).

Electroelution resulted in the extraction of 16 individual bands

(Figure 3.12) and 30 ul of each sample was used to transform E coli C600,

selecting for Tp and Tc. The resistances of purified colonies transformed

with this DNA are given in Table 3.3. DNA was isolated from 8 different

transformants resistant to Tc only, and compared with DNA from P20 to

ascertain whether the plasmid band was the same size as that used to

transform E coli C600. No plasmid bands were observed after

electrophoresis at 70 v for 16 hours (Figure 3.13, suggesting that this

piece of DNA may have inserted into the chromosome.

Further examination of transformants substantiated the view that the

plasmids of the original pig isolate were unstable (Figure 3.14).

Transformants 1, 6 and 7 (Figure 3.14: tracks 4, 7 and 8 respectively)

were all transformed with DNA from single bands of differing sizes, yet

each appears to possess a band of identical size. This may correspond to

a plasmid band in the original pig isolate (Tracks 2 and 3) although it's

position is indicative of chromosomal DNA. These three transformants are
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Numbersrepresentplasuudbandsextractedfromthegel
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TABLE 3.3: RESISTANCE MARKERS OF TRANSFORMANTS

PLASMID*
BAND NO

PIG ISOLATE DNA PREPARATION
METHOD

Tp Tc Sm/ Sp

1 P-20f small __ + _

2 P-20f small - +

3 P-20f small - + -

4 P-20f small + + +

5 P-20f small - + +

+ - +

6 P-20f small - +

7 P-20f large - +

8 P-20f large + - -

- + -

9 P-20f large + -

10 P-20f large + - -

- + -

11 P-20s small + -

12 P-20s small + -

13 P-20S small + -

14 P-20s small + -

15 P-20s large + -

16 P-20s large +

F - Frozen
S - Slope
*

- numbers correspond to plasmid bands (Figure 3.12)
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FIGURE 3.13: AGAROSE GEL ELECTROPHORESIS OF Tc RESISTANT

TRANSFORMANTS

1 234567 89 19 11 12

TRACK 1. R1

2. RP4

3. R6K

4. P-2 0F

Numbers refer to

5. Tc 5

6 . Tc 6

7. Tc 6

8 . Tc 7

plasmid bands

9. Tc 7

10. Tc 9

11. Tc 9

12. Tc 10

extracted from the gel



113

FIGURE 3.14: AGAROSE GEL ELECTROPHORESIS OF TRANSFORMANTS

1 2 3 4 5 6 7 8 9 10 11 12 13

30 kb

38 k±>

TRACK 1. R1/R6K 4. T-l Tc 9. T-8 Tc Tp
2. P-20r 5. T-4 Tc Tp 10. T-9 Tp
3. P-20s 6. T-5 Tc 11. T-10 Tc Tp

7. T-6 Tc 12. T-l1 Tp
8. T-7 Tc 13. T-l2 Tp

Numbers refer to plasmid bands extracted from the gel (Figure 3.12)
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all resistant to Tc only, suggesting this plasmid band is responsible for

expression of Tc resistance. Track 10 contains DNA from plasmid band no

9. Despite the extraction of a single plasmid band from the original gel,

this transformant possesses atleast 7 discernable bands. The same

result was obtained after transformation with plasmd bands equivalent to

band 9 ie. band 16, indicating that this single band may have split up to

give a mumber of smaller fragments.
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DISCUSSION

It has been suggested for some time that there is a linkage between

drug resistance in animal bacteria and clinical strains (Anderson et al,

1975; Bezanson et al, 1981; Mee and Nikoletti, 1983). Although there is

some doubt as to the similarity and therefore relatedness of plasmids from

animal and human sources, the levels of Tp resistance occuring in both

environments follow similar trends (Amyes, 1987) and the transposons

responsible for the resistance are very similar (Richards et al, 1978).

The finding of both Tn7_ and a smaller Tp resistance transposon, Tn4132, in

both animal and human isolates from the Edinburgh area (Amyes, 1986)

prompted the further examination of porcine isolates for evidence of the

continueing evolution of the Tp resistance gene.

As with the majority of porcine isolates from the Edinburgh area

(Amyes, 1987), P-20 expressed high level Tp resistance ( > 1000 ug/ml),

normally indicative of Tp resistance plasmids or transposons (Towner et

al, 1983). Despite the fact that only a small percentage of pig isolates

from the survey of Amyes (1987) were shown to harbour Tp resistance

plasmids and were thus able to transfer Tp resistance, initial examination

of P-20 by agarose gel electrophoresis indicated an array of plasmids, and

Tp resistance was found to be transferable. The largest of these plasmids

was similar in size, 107 kb, to the previously isolated plasmid, pUK555

(Amyes, 1987), which was found to encode both Tp and Tc; the resistances

expressed by P-20. (Subsequent molecular weight analysis revealed that

this plasmid had a size range of 90 - 110 kb). Conjugation studies showed

this large pUK555-like plasmid to be transferable to E coli J62-2 (after a
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5 minute mating), resulting in a transconjugant (HI) resistant to Tp

only. (For flow diagram of experimental stages in the characterisation of

P-20 see Figure 3.15). The lack of the small plasmids, present in P-20,

and the lack of Tc resistance suggested that this latter resistance marker

was encoded by one of the smaller plasmids. Multiple bands were however,

visible in DNA preparations of transconjugants H2, H3 and H4 from longer

transfers (5 hours), but these additional bands were not indicative of the

small plasmids of P-20F. It is possible that they were fusion products

of the smaller bands, a phenomenon described by Bennett et al (1986).

However, this coupled with the observation that the large pUK555-like

plasmid in these latter three transconjugants was of reduced intensity,

suggests that the plasmids of P-20 may be unstable. Wilshaw et al (1979)

have indicated the possibility of fragmentation, cointegration and other

DNA rearrangements accompanying DNA transfer, and Berthold et al (1986)

indicated the potential for rearrangments in the multiresistant plasmid

pBP16.

This instability was further evidenced when the DNA of these

transconjugants was analysed after storage. Whilst bands similar to those

initially present in H2, H3 and H4, and therefore indicative of plasmid

instability, were apparent, some of the transconjugants appeared to

possess plasmids of a size just larger than the smaller bands of the

original P-20F isolate. These same bands also appeared in

transconjugant H5, after storage, which was originally believed to have

possessed only one plasmid. Their presence can not be accounted for by

fragmentation of the approximately 100 kb large plasmid as this is still

present; however, it is possible that these small plasmids may have arisen

from the chromosome. They may therefore have the capability of

integrating and reexcising themselves from the bacterial chromosome.
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Stuy (1980) reported that the chromosomal integration of conjugative

plasmids was common in antibiotic resistant Haemophilus influenzae. Their

variability in size from those of the P-20^ isolate could be explained

by the fact that excision is not a precise process (Kleckner, 1981) and

may result in deletion and insertions. The fact that all five

transconjugants initially possessed the large plasmid, irrespective of the

number or size of smaller plasmid bands also present, would suggest that

the absence of these latter plasmids in transconjugants HI and H5 could be

a result of their integration into the chromosome. Their existence and

potential for mobilisation from the chromosome is exemplified by their

reappearance in transconjugant HI after the introduction of Sa-2. The

sizes of these bands, whilst different from those of P-20^, were similar

to those in the initial transconjugants after storage, indicating the

likelyhood of aberrant excision from the chromosome. An attempt to

qualify the hypothesis that these small plasmids were integrated into the

chromosome of transconjugants HI and H5 , by carrying out transfers from

P-20 to a recombinant deficient strain, was unsuccessful .

The variability in plasmid size and number is not confined to E coli

J62-2 transconjugants: repeated examination of the P-20 isolate stored

under different conditions indicated similar anomalies. The appearance of

an additional plasmid band, probably encoding Tc resistance in P-20^ as

compared with P-20^, could be accounted for by contamination on storage.

(After collection isolates were initially stored on slopes before transfer

to - 70°C.). However, subsequent reexamination of DNA revealed that

this band was not always absent in the P-20^ isolate (although Tc

resistance was never expressed), indicating the possibility for movement

of the smaller plasmids in and out of the chromosome. The effects of
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media on the plasmid profiles of P-20 and P-20 , while difficult to

interpret, suggest that growth medium may affect plasmid stability. The

effect of medium, in particular thymidine, on bacterial sensitivity to Tp

is well documented (Koch and Burchall, 1971; Amyes and Smith, 1974; Amyes

and Smith, 1978a,b; Escamilla et al, 1986). The apparent loss of the

large pUK555-like plasmid after growth of P-20 in Isosensitest broth,

which lacks thymidine - a potent antgonist of Tp and sulphonamide action

(Amyes and Smith, 1976) - and its reappearance in the presence of

thymidine, could be explained in a number of ways. This large plasmid may

require thymidine for its replication and stable maintenance, and

therefore the lack of it in isosensitest broth, whilst not preventing the

growth of the bacterial host, would after a number of generations, lead to

the loss of this plasmid. Alternatively, the P-20 culture may consist of

two populations of cell; one harbouring this large plasmid and one lacking

it. The absence of thymidine in the culture media may preferentially

select the strain lacking this plasmid which will then become dominant in

the culture. This latter hypothesis is favoured by subsequent repetitions

of the above experiment which indicated a marked reduction in the number

of copies of this large plasmid in P-20^ cultures grown in isosensitest

broth, not a total loss. The fact that this result was not mirrored in

the retesting of the P-20^ culture is not clear, but may further

indicate the unstable nature of this system and the coincidental loss of

the large plasmid from cultures grown in Isosensitest broth, as opposed to

any metabolically determined loss.

Characterisation of the individual plasmids of P-20, to determine the

location of resistance markers, proved difficult. The additional

expression of Ka resistance, and occasionally Sm/Sp resistance, by H2, H3

and H4 could be accounted for by the presence of the additional bands in
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these three transconjugants. Alternatively the splitting up of a plasmid,

leading to DNA rearrangements, or just its transfer to another strain

could result in derepression of resistance genes and their subsequent

expression. Differential expression of resistance genes in different

organisms has been reported by Smith (1969), who found that the level of

expression of penicillinase in P mirabilis was one twentieth that in E

coli K12. It is known that pieces of DNA can act as novel switches by

integration and excision (Kleckner, 1981) and this could explain the

absence of Tc resistance in transconjugant HI and its reappearance, along

with the small plasmid bands, on the introduction of Sa-2. Alternatively,

the Tc resistance determinant may be capable of conjugal transfer in the

absence of a plasmid, in a similar manner to that reported in

Streptococcus faecalis (Franke and Clewell, 1981). However, continued

analysis of resistance markers of P-20 and its transconjugants indicated

that their presence was generally irrespective of plasmid profile: the

appearance of the smaller bands was not always accompanied by expression

of resistance genes.

Although conjugation studies (after mobilisation with Sa-2) to

separate individual plasmid bands indicated that the smallest plasmid band

of P-20^ may encode a Tp resistance gene, the carriage of Tp resistance

by the large PUK555-like plasmid can only be assumed. (The finding of Tp

resistance on a small non conjugative plasmid was suggested by Kraft et

al, 1983). Restriction enzyme analysis indicated that the large plasmid

did not carry a Ih7-like transposon, as the two characteristic internal

Hind III fragments of Tn_7 were missing. The results, however, do not rule

out the possibility of carriage of other Tp transposons. Alternatively,

Tp resistance may be due to a plasmid encoded resistance gene, similar to

that of R388 (Amyes and smith,1976). The ability of the small plasmids to
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integrate into the chromosome (or another plasmid) coupled with the

continued expression of any resistance markers once integrated, hampered

any analysis of the determinants of the pUK555-like plasmid. (Strains

apparently harbouring the large plasmid only, could owe their Tp

resistance to a gene on this plasmid or to chromosomally located genes, as

a result of the integration of the small plasmids). The shift of

resistance genes, notably Tp resistance, from Resistance plasmids to the

bacterial chromosome is not uncommon. Recent investigations have

indicated an increase in high level non self transferable Tp resistance in

both porcine and clinical strains (Towner, 1981; Steen and Skold, 1985;

Amyes, 1987). Studies with transformed DNA were unable to clarify the

situation, but only reiterated the capabilities of the small plasmid bands

to integrate, and the instability of the system. No plasmid DNA was

isolated from Tc resistant transformants, and E coli C600 bacteria,

transformed with a single plasmid band, carried a diversity of plasmid

bands.

In conclusion it would appear that the original pig isolate consists

of one large plasmid of approximately 90- 110 kb similar to pUK555 and 3

to 4 smaller plasmids which are unstable and capable of integrating into

the chromosome (or another plasmid) and possibly fusing together. These

plasmid insertions into the chromosome may be mediated by transposons or

by other insertion sequences. These integrated forms can be excised from

the chromosome by mobilisation (with Sa-2) or by conjugational transfer,

but their excision may not be precise. Regions of chromosomal DNA may be

excised with the original insert, leading to plasmids of slightly larger

size than those of the original P-20 isolate. The expression of

resistance markers carried by these smaller replicons, ie Tc, may or may

not be affected by this integration. A transposon (or transposons) may
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provide the region of homology required to link some of these smaller

plasmids together, giving rise to the observed variation in band size.

The intermittent expression of Sm/Sp along with Tp suggests the presence

of a Tn7_-like transposon. Richards and Nugent (1979) reported that the

presence of the Tp resistance gene in a wide range of bacterial groups

came about by the dissemination of the Sp/Sm Tp transposon, Tn7, and the

finding of Tp resistance within P-20 may be due to a similar transposon.

Tp resistance would appear to be encoded by the smallest of the P-20

plasmid bands, and probably also by the largest plasmid, although this

latter resistance, if present, is not due to a Tn_7-like transposon. The

location of the Tc resistance gene is uncertain although its presence on

many of the small bands used for transformation could be explained by

multiple transposition.
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FIGURE 3.15: FLOW DIAGRAM ILLUSTRATING THE EXPERIMENTAL STAGES

IN THE CHARACTERISATION OF THE TRIMETHOPRIM

RESISTANCE OF P-20

Sa-2

mobilisation

ORIGINAL PIG ISOLATE - P-20F

Tp Tc
5 or 6 plasmid bands - largest 100 kb

J62-2

(5 minute
mating)

HI

one band

Tp
not Tn7 like

(Sa-2, HI

multiple bands
differing in
size from P-20

Instability!
small band

integration and
aberrant excision!

J53

SMALL PLASMID OF P-20

Tp only

(5 hour
mating)

H2 H3 H4 H5

one band

multiple bands - Tp
different in size

from P-20

Tp Ka (Sm/Sp)

MULTIPLE BANDS - differing in
size from p-20

Instability!
Fragmentation of 100 kb plasmid!
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CHAPTER 4

CHARACTERISATION OF THE TRIMETHOPRIM RESISTANCE TRANSPOSON Tn4135



12k

INTRODUCTION

Insertion sequences (IS) and transposons, along with the transposing

phages Mu and D108 (class III), are collectively known as transposable

elements, and were first described by Mclintock in 1951. Transposons are

discrete pieces of DNA that can insert at many different, non-homologous

sites in the genomes of prokaryotic and eukaryotic cells, promoting

deletions, inversions and fusion of replicons (Galas and Chandler, 1981;

Shapiro, 1983). According to Kleckner (1981), transposons can generally

be divided into two main classes: class II elements, like Tn_3 and Tn21,

with short inverted repeats at their ends, and composite class I

transposons which carry IS elements at their flanks, in either direct or

inverted orientation, such as Tn9^ TnlO, Tn_5 or Tn903. IS sequences only

encode determinants relevant to their own transposition (Kleckner, 1981)

whilst transposons encode functions such as antibiotic and metal

resistance, enterotoxin synthesis or novel metabolic enzymes favourable to

the host under certain environmental conditions. These latter elements

are larger (2.5 kb to 40 kb) than IS elements (./ 2 kb) (Schmitt et al,

1985) and are therefore able to carry sufficient genetic information for

several additional proteins.

Current interest in transposable elements can be attributed to (i)

their ubiquity (ii) the novel DNA sequence recognising, cleavage and

joining reactions that their movement entails (iii) the insertion

mutations, genome rearrangements and changes in gene expression they cause

(iv) their role in genome evolution and (v) their usefulness in the

genetic analysis and manipulation of many different organisms (Berg et al,

1984).
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Considerable attention has focused on the structure of transposons in

order to understand the DNA rearrangements generated by transposition

(Schmitt et al, 1979; Berg, 1983; Arthur and Sherratt, 1979) and their

evolution. Three structural features are common to essentially all

transposable elements: (i) they have inversely repeated ends (IR) of up to

40 bp (Ptashne and Cohen, 1975; Berg et al, 1975; Heffron et al, 1975;

Kopecko and Cohen, 1975) eg. the IR of Tn7_ are 28 bp in length

(Gosti-Testu and Brevet, 1982); (ii) these IR's flank a central region

containing transposition genes and, for transposons, additional

determinants (eg drug resistance); and (iii) upon transposition, they

generate a short duplication of target DNA that flanks the inserted

element as direct repeats (Kleckner, 1981; Schoffl et al, 1981). For the

Tn3_ family the transposition genes include tnpA, the structural gene for

the transposase enzyme, and tnpR, the resolvase enzyme (Heffron et al,

1979; Altenbuchner and Schmitt, 1981). However, work by Hassan and Brevet

(1983) and Hauer and Shapiro (1984) suggest that Tn7_ does not have a

resolvase activity analogous to that encoded by members of the TA3 family.

The inverted orientation of the repeats found at the ends of most

transposons, possibly constituting recognition sites (Berg et al, 1984),

was thought to be essential to transposition. Transposons have, however,

been isolated with repeats in a direct orientation eg. Tnl525

(Labigne-Roussel et al, 1983), Tn2680 (Iida et al, 1982) and Tn2440 (Nies

et al, 1985). In most instances where transposons have been flanked by

direct repeated copies of IS elements, IS1 has been identified as the

element providing the transposition functions (Nies et al, 1985).

However, since IS sequences themselves terminate in inverted repeats, a

transposon flanked by direct repeats of an IS element will still be

flanked by inverted repeat sequences.
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The mechanisms by which transposition takes place are complex and vary

with transposon family. The Tn3 family (Kleckner, 1981) transpose through

the obligatory formation of a cointegrate structure. However, Ouartsi et

al (1985) suggested that the transposition of Tn_7 was different, as no

cointegrates could be found. Other transposons encoding trimethoprim

resistance may also fall into this latter category, depending on their

evolutionary origins. Since there is no iri vitro system for studying

transposition, models of the molecular mechanisms must rely on

interpretation of in vivo experiments and they therefore remain rather

speculative. Two mechanisms have been postulated to intepret the

experimental data: conservative transposition and replicative

transposition. Conservative transposition probably results from a

concerted set of reactions that include recognition of the element and

target DNA by transposase, cleavage of the target, and cutting of one or

both strands at each element-vector junction. Tn_5, TnlO, IS elements and

a number of moveable elements of eukaryotic cells appear to transpose in

this way (Berg, 1983). Replicative transposition, as illustrated by the

TnJ3 family, involves cutting one or both ends of the transposon,

replication of the element, and fusion to the donor and target molecules

at the site of insertion. A copy of the transposon appears at each

junction between the donor and target DNA (Kleckner, 1981). This

cointegrate structure is stable in recA cells unless an element-encoded

protein, resolvase, is present. The site, res, at which resolvase acts

to catalyse site specific recombination, is located between the two

divergently transcribed genes involved in the transposition reaction

(Altenbuchner and Schmitt, 1981). Resolution of the cointegrate by site

specific recombination results in donor and target both with a copy of the

transposon (Bennet et al, 1976; Feenegald and Shapiro, 1979; Klaer et al,
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1980; Read et al, 1980; Reed, 1981). It was often assumed that all

transposition was replicative: the evolutionary argument for this being

the concept that transposons were selfish pieces of DNA driven to develop

transposition mechanisms to increase their copy number relative to all

other genomic sequences (Sapiena and Doolittle, 1981). Two alternative

models, symmetric and asymmetric, have been proposed for replicative

transposition; depending on the use of both IR's simultaneously, or on a

processive mode starting at one IR (Hershey and Bukhari, 1981). The

findings that only one of the IR present may be active at any one time,

that one end is more competent at initiating transposition than the other,

possibly because of unequal binding of transposase to either end, and that

truncated single ended derivatives of Tnl721 and Tn21 (Motsh and Schmitt,

1984, Schmitt et al, 1984) can still transpose, all favour the model of

as ymetrical replicative transposition. The latter finding was contrary

to the work of Heffron et al (1979); Foster et al (1981a) and Isberg and

Syvanen (1981), who indicated that deletion of one or both ends produced a

non-complementable transposition defect. Galas and Chandler (1981)

suggested that the original models proposed by Shapiro (1979) and Arthur

and Sherratt (1979) were inadequate to explain the behaviour of some

transposons. They therefore proposed a rolling circle type model to

accommodate all known properties of the transposition process, including

the apparent dichotomy between the conservative and replicative pathways.

The ubiquitous behaviour of transposons is well documented, but this

potential for spread poses problems for those trying to combat the

dissemination of bacterial drug resistance. Not all replicons, however,

can act as transposon acceptors (Barth et al, 1976) and not all

transposons posess the same specificity of insertion. Tn3 possesses a low

specificity of insertion (Rubens et al, 1976), and is thus capable of
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inserting into the plasmid RSF1010 at a minimum of 12 distinct sites. In

contrast, Tn7 can only insert once into the chromosomes of E coli (Barth

et al, 1976; Lichtenstein and Brenner, 1981, 1982) and of Caulobacter

crescentus (Ely,1982) and inserts preferentially into the ilv gene cluster

of the chromosome of Vibrio species (Thomson et al, 1981). This limited

potential of Tn7 to insert into chromosomal sites may prevent any increase

in trimethoprim resistance by multiple transposition, but may also

preferentially select for the evolution of gene amplification as an

alternative means of increasing resistance. However, Tn_7 does have the

potential to insert into many plasmid sites (Fennewald et al, 1979),

notably RP4 (Barth and Grinter, 1977). The specificity of Tn_7 insertion

is also different from other transposons, in that Tn7_ always transposes

into a particular replicon in the same orientation (Barth and Grinter,

1977; Moore and Krishnapillaie, 1982; Lichtenstein and Brenner, 1981).

Although there are many potential sites of insertion for a transposon

(Cohen, 1976, Cohen and Kopecko, 1976; Kleckner, 1977) the distribution of

these sites is not random: there are often regions with many sites ('hot

spots') and other regions where the frequency of transposition is much

lower (Grinsted et al, 1978). Thus although Tn_5 inserts into many sites

some regions are preferential (Berg et al, 1984). Such regional

specificity has been shown for the insertion of TnlO into the lacZ gene

(Foster, 1977) , of Tn_3 into the R plasmid R6-5 (Kretschmer and Cohen,

1977), of Tn^ into Col El (So et al, 1975), of Tnl into Col El (Dougan and

Sherratt, 1977) and of Tn_7 into RP4 (Barth and Grinter, 1977). This

specificity of insertion may occur through recognition of some relatively

common, but specific DNA sequence, although there is the suggestion that

selection depends solely on the specificity of transposase for target DNA

and not on the sequence of the vector. Base pairs at the ends of
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duplicated segments may play a role. Although a particular sequence of

DNA may have potential sites for the insertion of a particular transposon,

it does not follow that that sequence will be used for transposition at

high frequency. Other factors such as transposition immunity may influence

transposition. This phenomenon was defined by Robinson et al (1977) as

the inability of a plasmid already carrying one copy of a transposon to

acquire a second one by transposition. It has been described for Tn_3

(Robinson et al, 1977), Tn501 (Stanisch et al, 1977) and Tnl721 (Schmitt

et al, 1984) but TnlO (Bennet et al, 1977) and Tn_7 (Hassan and Brevet,

1983) have not been shown to exhibit transposition immunity. Transposon

immunity does not result from the instability of plasmids carrying two

copies of Tn^3 (Robinson et al, 1977), as plasmids with two copies have

been isolated. It is the inability of a plasmid to obtain copies of the

same plasmid sequentially, as opposed to together. Immunity takes time to

establish and it is this delay in the establishment of the first Tn3 which

allows the transposition of a second Tn3 to occur at low frequency. The

molecular mechanisms involved in this process are unclear. Insertion

frequencies may also be affected by the size of sequence between the

inverted repeats (Chandler et al, 1982). The observation that the 11 kb

tetracycline resistance region of the plasmid N3 does not transpose at a

detectable frequency ( <^ 3x 10^; Brown et al, 1984) is consistent with

this view. However, Ouartsi et al (1985) report that the transposition

frequency of Tn_7 derivatives is independent of the size of the

transposable DNA. (Derivatives from 8.4 to 23 kb were analysed).

Much interest has centred arround the evolution of transposons but it

is not known whether these elements evolved in bacteria or were

transmitted to them from another type of organism. They may have evolved

as natures tool for genetic engineering, because of their ability to
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rearrange other DNA sequences, or the reason for their existance may lie

solely in their ability to overreplicate in a host. Schmitt et al (1984)

have looked at possible ways in which genes could have been incorporated

in to transposons. The finding that transposons were flanked by IS

sequences (Ptashne and Cohen, 1975) suggested that transposons were the

end result of insertion of two identical IS sequences bracketing a

sequence of DNA, which contained in part, an antibiotic resistance gene

(Rubens et al, 1976). Chromosomal (non-transposon) markers could thus be

flanked by duplicate copies of an IS element in direct or inverted

orientation. Such composite elements could subsequently undergo

modification, by deletion or point mutation, to eliminate unnecessary or

deleterious portions and to refine the expression and regulation of the

determinants required for transposition, and accessory genes. However,

Tn3 was found to be flanked by very short IR (140 bp) which were found not

to correspond to any known IS sequence (Rubens et al, 1976). It is

possible that Tn_3 was initially flanked by much larger inverted repeats

which have subsequently become deleted, leaving only a 140 bp region.

The time scale in which these steps have shaped present-day transposons

is not known. In view of the highly efficient recombination mechanisms

that govern the incorporation and rearrangement of resistance markers,

these processes can be rapid and it is conceivable that such events may

have occurred recently and are still active in shaping new transposons.

Just as transposons are thought to have evolved by the occurance of IS

sequences flanking potentially useful genes, so it is reasonable to

presume that bacterial genomes have evolved by transposition of a

transposon, encoding drug resistance, onto a plasmid lacking any other

resistance markers. Transposons can alter both the organisation and the

expression of prokaryotic genes at a frequencey equal to or greater than
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mutation events affecting a single or a few base pairs. They are capable

of affecting • the expression of neighbouring genes by virtue of the

transcriptional start and stop signals they carry (Calos and Miller, 1980;

Berg et al, 1980) eg insertion of Tn3 at a site adjacent to the origin of

replication causes an increase in plasmid copy number (Rubens et al,

1976). Transposon induced alterations can occur in several ways

(Kleckner, 1981; Schmitt et al, 1985). Insertion of a transposable

element into a gene is an immediate event, frequently resulting in the

inactivation of the gene. It has been reported (Chao and Mcbroom, 1985)

that insertion of a transposon (in this case Tn_5 or TnlO) can infer a

selective growth advantage on E coli in chemostat competition, possibly by

enhancing the mutation rate of the host bacterium, thus increasing the

chances of a favourable mutation. The evolutionary role of transposons as

mutator genes is more appealing than allocating them the role of parasitic

DNA (Sapienza and Doolittle, 1981). The insertion of a transposon is a

precise mechanism with identical sequences inserted each time and

generally with no loss of recipient DNA: although small deletions have

been reported after transposon insertion into RP4 (Barth et al, 1978;

Datta et al, 1979; McCombie et al, 1983). Excision on the other hand is

rarely precise and often results in the deletion of DNA. Excision of Tn_5

and TnlO has been examined in some detail (Botstein and Kleckner, 1977;

Berg, 1977; Ross et al, 1979; Foster et al, 1981b; Egner and Berg, 1981).

Most if not all excision by these elements occurs by pathways which are

independent of recA function and of transposon encoded functions. Two

elements inserted in opposite orientation into a chromosome, frequently

leads to inversion of intervening DNA and duplications occur when two

elements flank the region of interest in direct orientation.

Translocation can occur when a DNA fragment is flanked by two identical
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transposons and the whole unit acts as a compound transposon. It is

therefore possible for transposons to take adjacent chromosomal or plasmid

genes across with them to recipient plasmids. It Is because of this

ability of transposons to rearrange DNA sequences in a variety of ways

that interest has focused on them as in vivo genetic engineering tools

(Kleckner et al, 1977).

The accretion of useful genes, such as antibiotic resistance genes

(Campbell, 1981; Hartl et al, 1984), by transposons on plasmids adapted to
u

a particular host, is likely to be a continous process leading to

widespread dissemination of generally useful genes. Transposons provide

an efficient mechanism for incorporating resistance determinants into new

vectors which can transfer to and stably replicate in diverse hosts.

Many different antibiotic resistance genes have been found to reside

on transposons eg. Ap (Hedges and Jacob, 1974; Heffron et al, 1975;

Kopecko and Cohen, 1975; Bennett and Richmond, 1976), Tc resistance

(Kleckner et al, 1975), several forms of Ka resistance (Berg et al, 1975)

and Cm resistance (Gottesman and Rosner, 1975), so the implication of

these genetic elements in the carriage of Tp resistance genes is not

suprising. The most extensively studied Tp resistance transposons have

been Tn_7 (Barth et al, 1976) and Tn402 (Shapiro and Sporn, 1977). Tn7,

isolated from R483, is a 12 - 14 kb transposon (Barth et al, 1976;

Gosti-Testu et al, 1983) mediating resistance to streptomycin/

spectinomycin, as well as Tp, and has accounted for a large proportion of

the high level, non-transferable resistance to Tp. Tp resistant bacteria,

isolated since 1978 in Finland (Fling et al, 1982; Elwell et al, 1979),

Sweden (Steen and Skold, 1985) and the United Kingdom (Datta et al, 1979;

Richards et al, 1978; Towner et al, 1982; Richards and Nugent, 1979), owed

their Tp resistance to chromosomal or plasmid located Tn7. Tn402, on the
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other hand is smaller than Tn_7, 7 kb, and is resistant to Tp only. It has

not been transposed from other specimens except R751 and there is no

genetic evidence for relatedness to Tn_7, although some early studies on

enzymic properties have indicated that Tn402 and Tn7 were related. One

transposon may therefore be the ancestor of the other as suggested by

Shapiro and Sporn (1977). In addition to these two transposons mediating

Tp resistance, transposons that are identical to Tn_7 - Tnl527 (Goldstein

et al, 1986), Tnl824 (Tietze et al, 1982), Tn71 and Tn72 (Barth and Datta,

1977a) and Tn79 and Tn80 (Richards and Nugent, 1979; Palenque et al, 1983)

- and transposons that have evolved from Tn_7 - ie. Tn78 (Datta et al,

1981) - have been described. Preliminary evidence suggested that the Tp

resistance gene of R388 may also reside on a transposon (Amyes and Smith,

1977), although this, and also whether Rss28 and Rss42 (Amyes and Smith,

1978) contain transposons, has not been proven.

The majority of Tp resistance transposons so far isolated have encoded

linked Tp/Sp resistance and only a few have been found to be resistant to

Tp only ie. Tn402, Tn78 and transposons from four clinical E coli isolates

in the Nottingham area (Towner et al, 1982). These latter transposons

were thought to be related to Tn78 (which may in turn be related to Tn7),

as they were capable of transposing to other plasmids and the bacterial

chromosome as efficiently as Tp/Sm encoding transposons. In 1983, an

additional transposon, Tn4132, encoding Tp only, was isolated from the

Edenhall Hospital, near Edinburgh during a three year survey (Young and

Amyes, 1983). This transposon, like Tn402, was found to be smaller than

Tn7_ (approximately 3 kb) but studies of its gene product (Young and Amyes,

1985a) suggested it was related to Tn7_.

In a concurrent study of enterobacteria in farm animals, Tp resistance

transposons were isolated from porcine strains (Amyes, 1987) by
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mobilisation with the Inc P plasmid, KP4. The ubiquitous Tn7 was

prevalent and a few strains (ie. original pig strain P-20) carried a

smaller Tp only transposon. This smaller transposon, Tn4135, was thought

to have evolved from Tn7 by deletion of the region encoding Sm/Sp

resistance. In order to ascertain the relationship between this smaller

transposon and Tn7^, its properties were studied, initially in the RP4

plasmid background.
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MATERIALS AND METHODS

TRANSFER OF TRANSPOSONS BETWEEN PLASMIDS

In order to transpose a gene from one plasmid to another, the

following approach was adopted. A suitable strain was selected which

contained the donor plasmid harbouring the transposon. A recipient

plasmid was introduced into this bacterium and selection was made both for

a genetic marker on this recipient plasmid and a marker on the

transposon. After selection and in order to promote transposition the

transconjugant containing both plasmids was subcultured twice by

transferring one colony into 10 ml of nutrient broth, incubating overnight

at 37°C and transferring 0.01 ml of this to another 10 ml of nutrient

broth. This culture was incubated overnight at 37°C, before streaking

out on the same selective plates as above. A single colony was used as a

donor in a standard mating with a plasmid-free strain; selecting for the

genetic marker on the transposon-recipient plasmid, the genetic marker on

the transposon and the two markers together. Transconjugants from this

mating were subcultured twice and restreaked on the same selective

plates. If necessary the plasmid and transposon were transferred back

into a suitable bacterial strain in a standard mating. All

transconjugants were tested for unselected markers to confirm that the

recipient plasmid had indeed only picked up the markers of the required

plasmid and transposon.
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RESISTANCE TESTING

The procedure used to test bacteria for their resistance to various

drugs has been described in Chapter 3.

DETERMINATION OF TRIMETHOPRIM MIC's

Overnight 4.5 ml nutrient broth cultures were diluted 10-^ in DM

base, to give approximately 10^ organisms per ml, and multiply

inoculated on to DSTA plates containing doubling concentrations of Tp

(from 2.5 ug/ml to 1280 ug/ml).

PLASMID DNA PREPARATION AND RESTRICTION

Plasmid DNA was prepared by the method of Takahashi and Nagano (1984)

and analysed by agarose gel electrophoresis, as described in Chapter 1.

Single digests were performed with Hind III (9u), Bam HI (6u), Pst I (12u)

and Pvu I (4u) and a double digest was carried out in Hind III buffer (NBL

Enzymes Ltd) with Hind III and Pvu I. The restriction procedure was the

same as that used in the restriction mapping of Sa-1 and Sa-2 (Chapter

2). Molecular sizes of the smaller fragments were estimated by comparison

with those obtained for lambda DNA following digestion with Hind III

(Murray and Murray, 1975).
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RESULTS

TRANSFER OF Tn7 FROM R483 TO RP4

For comparative purposes, Tn4135 and To7 were required in the same

plasmid background. Therefore Tn7_ was transferred to RP4 using the

exclusion property of Proteus mirabilis NC6197 toward the Inc la plasmid

R483. No Inc la plasmids are maintained within P. mirabilis, therefore by

conjugating: this species with a culture of E coli harbouring a mixture of

plasmid forms (RP4, RP4::Tn_7, and/or R483::Tn7_) and selecting on Tp

containing plates, only those Proteus cells to which RP4::Tn_7 has

transferred, will be viable.

The plasmid RP4 was introduced into E. coli J53(R483::Tn7) in a 5 hour

standard mating, selecting for Tp and Tc resistances. (The transfer

frequency is shown in Table 4.1, mating 1). Transconjugants were purified

and their resistance markers checked. After promoting transposon transfer

by subculture, a single transconjugant colony carrying the resistance

determinants to Ap, Ka, Tc, Sm, and Tp, was used as a donor in a standard

mating with a rifampicin resistant mutant of P mirabilis NC 6197.

Selection was carried out on DSTA plates containing Tp and Rif (Table 4.1,

mating 2). Resistances of transconjugants were again checked and a single

colony, resistant to Ap, Ka, Tc, Tp, Sm amd Rif, was identified. This

strain was used as a donor in a standard mating with E. coli J53.

Selection was carried out on DM plates containing the supplements for

strain J53 plus Tp and Ka (Table 4.1, mating 3). A colony was identified

and purified which conferred resistance to Ap, Ka, Tc, Tp and Sm and this

strain was used as a donor to transfer RP4::Tn7 back to J62-2. Selection
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TABLE 4.1: TRANSFER FREQUENCIES FOR THE TRANSFER OF Tn7 FROM
R483 TO RP4

MATING SELECTION MEDIA TRANSFER FREQUENCY
PER DONOR CELL

1 DMJ53 Tp Xc 2.24 X 10"2

2 DSTA Tp Rif 5.46 X 10~4

3 DMJ53 Tp Ka 1.30 X 10-5

4 dmJ62-2 Tp Tc 8.30 X 10"4

dmJ62-2 Tp Rif 3.63 X 10~3

dmJ62-2 xc Rif 3.73 X 10-3

DM333 _ DM base with J53 supplements
DmJ62-2 - dm base with J62 supplements
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was performed on DM plates with J62 supplements to which had been added

Rif and either Tp, Tc or Tp and Tc together (Table 4.1, mating 4).

Transconjugants were purified and found to confer resistance to Ap Ka Tc

Tp Sm/Sp and Rif. This inferred the presence of plasmid RP4 into which

had been inserted Tn7_.

DETERMINATION OF THE RESISTANCE PATTERN OF E COLI J62(RP4::Tn4135)

Characterisation of Tn4135 initially involved the determination of its

resistance pattern. E coli J62(RP4;;Tn4135) was tested for its

resistance to Tp, Su, Cm, Ka, Ap, Tc, Rif and Sp. Initial tests indicated

that this strain was resistant to Ap, Ka, Tc and Tp and sensitive to the

remaining drugs. However, subsequent retesting indicated that E coli

J62(RP4::Tn4135) sometimes expressed additional resistance to Sm, and when

this occurred, the strain was also resistant to Sp.

MINIMUM INHIBITORY CONCENTRATIONS

Tn4135 was further characterised by analysing the level of Tp

resistance conferred by this transposon on E coli J62. The MIC of Tp was

determined for J62(RP4:;Tn4135) and compared with MIC's for E, coli J62

strains harbouring RP4, RP4::Tn7_, R751: ;Tn402 and R388 and for the

original pig isolate, P-20. All strains, except J62(RP4), were found to

be resistant to levels of Tp greater than 1280 ug/ml.
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MOLECULAR SIZE OF Tn4135 IN RP4

The molecular size of Tn4135 was determined by comparing the DNA of

RP4:;Tn4135 with the DNA of known standards, including RP4. Samples were

electrophoresed at 60V for 16 hours on 0.7 % gels (Figure 4.1) and the

increase in molecular weight of RP4, after transposition of Tn4l35, was

taken as representative of the size of the Tp resistance transposon.

RP4::Tn4135 was found to have a molecular size of 56.55 kb, indicating

that Tn4135 has a molecular size of 4.35 kb. (The molecular size of RP4

alone is 52.2 kb.) This compared with 12 - 14 kb for Tn_7.

COMPARATIVE RESTRICTION PATTERNS OF Tn4135 AND Tn7

In order to assess the relatedness of Tn4135 to Tn7_, restriction

enzyme analysis was carried out. Figure 4.2 indicates the results of

restricting RP4, RP4::Tn4135 and RP4::Tn_7 with Hind III, Bam HI and Pst

I. RP4 was cut only once by Hind III, but the insertion of either Tn_7 or

Tn4135 increased the number of Hind III fragments, indicating that both

these transposons contain Hind III sites. The number of sites varied

however: RP4::Tn_7 was cut 4 times by Hind III whilst RP4: :Tn4135 was cut

only 3 times. Tn_7 thus appeared to contain an extra 6.63 kb fragment

(Table 4.2) in addition to the 2.47 and 2.10 kb fragments found in

Tn4135. Results of the Bam HI digestion (Figure 4.2b) suggest that this

enzyme does not cut Tn4135: both RP4 and RP4::Tn4135 possess only one Bam

HI fragment, compared with the two of RP4::Tn_7. Restriction with Pst I

(Figure 4.2c) substantiates the view that Tn4135 and Tn_7 are different:

the latter transposon having an additional 7.26 kb fragment.
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TABLE 4.2: RESTRICTION FRAGMENT SIZES FROM HIND III, BAM HI AND
PST I DIGESTION

PLASMID Hind III Bam HI Pst I
TRANSPOSON

RP4 23.52 24.07 21.90
20.59
6.09
3.00

RP4::Tn4135 23.52 24.07 22.98
2.47 21.92
2.10 20.59

6.09
3.00

RP4: :Tn7_ 23.52 24.07 22.98
6.63 20.88 21.92
2.47 20.59
2.10 7.26

6.09
3.00

All sizes are expressed in kb
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The three plasmids were additionally digested with Pvu I, and Pvu I

and Hind III together (Figure 4.3), in order to characterise further the

difference between Tn_7 and Tn4135. Pvu I restricts both transposons, but

the sizes of the fragments differ (Table 4.3). In addition to the small

Pvu I fragments attributable to RP4 (5.26 kb, 4.59 kb and 2.17 kb)

RP4::Tn7_ possesses three fragments of 9.36 kb, 2.32 kb and 3.72 kb, whilst
the equivalent fragments of Tn4135 are only 7.52 kb, 1.91 kb and 3.72 kb.

The largest fragments probably correspond to some unrestricted DNA, in

linear, open circular and covalently closed circular form, whilst the 24

kb band is indicative of the large restriction fragment of RP4. Double

digestion further emphasizes the differences between the two transposons.
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FIGURE 4.3: SINGLE AND DOUBLE DIGESTS OF RP4, RP4::Tn4135 AND
RP4::Tn7 DNA WITH Pvu I AND Hind III
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TABLE 4.3: RESTRICTION FRAGMENT SIZES FROM SINGLE AND DOUBLE

DIGESTS WITH HIND III AND PVU I

PLASMID Hind III Pvu I Hind IIl/Pvu I
TRANSPOSON

RP4 32.46 30.29 30.29
28.27 28.27
24.62 24.62
22.98 22.98
19.11 19.11
5.26 5.26
4.59 4.59
2.17 2.17

RP4: :Tn_7 32.46 28.27 28.27
6.78 24.62 24.62
1.98 19.11 19.11

9.36 9.36
5.26 8.15
4.59 5.26
3.73 4.59
2.32 3.73
2.17 2.32

2.17
1.98

RP4::Tn4135 32.46 30.29 30.29
1.98 28.27 28.27
1.59 24.62 24.62

22.98 22.98
19.11 19.11
7.52 7.79
5.26 6.48
4.59 5.26
3.73 4.59
2.17 3.73
1.91 1.98

All sizes are expressed in kb
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DISCUSSION

Since the first report of the 12 - 14 kb transposon, Tn7_, encoding Tp

and Sm/Sp resistance (Barth et al, 1976) a number of other Tp resistance

transposons have been isolated, both from human and animal sources (Barth

and Datta, 1977a; Shapiro and Sporn, 1977; Towner et al, 1982; Young and

Amyes, 1983; Palenque et al, 1983). Whilst some of these isolates have

proved to be identical to Tn_7 (Tietze et al, 1982; Goldstein et al, 1986)

or have evolved from Tn7_ (Datta et al, 1979) there appears to be an

emergence of small transposons, apparently resistant to Tp only. Young

(1984) and Young and Amyes (1983) isolated three such transposons:

Tn4132, Tn4133 and Tn4134, all of about 3 kb that were resistant to Tp

only. Molecular size analysis estimated Tn4135 to have a size equivalent

to these three transposons, approximately 3 - 6 kb, which is considerably

smaller than Tn_7. In one or two experiments RP4: :Tn4135 was found to be

smaller than RP4 alone: a phenomenon experienced when other small Tp

transposons were inserted into RP4 (Young, 1984). The apparent variation

in the size of Tn4135, as determined by an alteration in size of an RP4

transposon-containing derivative, may be due to small deletions, caused by

the transposition process. Previous reports have shown that the insertion

of Tn7_ (Barth and Grinter, 1977) and other small transposons (Barth et

al, 1978; Datta et al, 1979; McCombie et al, 1983) into RP4, can cause

small deletions at the site of insertion, making the accurate

determination of molecular size difficult. Weisberg and Adhya (1977) have

indicated that deletions occur by spontaneous loss of fragments during or

immediately after the insertion process.
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Initial studies with E coli J62(RP4:;Tn4135) indicated that this

transposon lacked Sm/Sp resistance, suggesting that it may have evolved

from Tn7 by loss of the region encoding these resistant determinants. As

with Tn4132, Tn4133 and Tn4134 (Young, 1984), but unlike Tn78 (Datta et

al, 1979), subsequent retesting of resistances indicated that Sm/Sp

resistance could be expressed. This indicates that Tn4135 has not evolved

from Tn7 by deletion of the Sm/Sp encoding region, but a deletion in the

controlling region of these resistance determinants could explain the lack

of continous expression of these genes. Tn4135 could therefore carry

Sm/Sp resistance genes in a dormant, switched off state. It is

conceivable that the insertion of Tn4135 in RP4 may have occurred, in some

instances, adjacent to a resident IS element that could act as a 'switch'

for the expression of Sm/Sp resistance, complementing the loss of control

caused by deletion. The role of IS elements as a mobile promotor

resulting in the switching on or off of bacterial genes has been suggested

previously by Glansdorff et al (1980).

Restriction enzyme analysis has been used to ascertain the

evolutionary relatedness of Tp transposons to Tn7, by virtue of the fact

this transposon possesses two charactertistic internal Hind III fragments

of aproximately 1.9 and 2.3 kb (Barth and Grinter, 1977). Tn78 (Datta et

al, 1979) was found to contain these two fragments whilst Young (1984)

could demonstrate only the smaller of the two fragments in the small

Tp-only transposons, Tn4132, Tn4133 and Tn4134. Hind III digestion of

Tn4135 generated two fragments of 2.47 and 2.10 kb indicating a greater

similarity of this transposon with Tn78 than with the other small

transposons. The fact that the Tp transposons so far studied all appear
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to possess the smaller of the two Hind III fragments, may be significant

to evolution. This 2.2 kb region is thought to encode a gene required for

transposition (Smith and Jones, 1984) and has thus been conserved whilst

other less essential regions have been deleted. The finding of small Tp

only transposons with differing restriction patterns may be indicative of

the potential of transposons to mediate their own evolution. It is

conceivable that Tn_7 (and probably other transposons) has the potential to

delete different regions of its DNA, possibly by virtue of possessing

homologous 22 base pair long regions in the same orientation at several

locations along its length (Lichtenstein and Brenner, 1981), resulting in

a family of smaller transposons. Tn4132, Tn4133, Tn4134, Tn4135 and Tn78

may all have arisen from Tn_7 by deletion of different regions of DNA.

However, although Tn4135 was found to have these two internal fragments,

the number of restriction fragments produced by Hind III digestion of

RP4: :Tn4135 was one less than digestion of RP4: :Tn_7 with the same enzyme.

The deletion of a Hind III site would explain this finding, but would also

result in the loss of one of the characteristic Hind III fragments

observed. Insertion of Tn4135 into the single Hind III site of RP4

(Grinsted et al, 1977) would also reduce the number of Hind III fragments

but would result in the loss of Ka resistance. (RP4::Tn4135 still

expresses Ka resistance). An alternative explanation is that Tn4135 has

in fact, lost a Hind III site by deletion, but this has been complemented

by insertion close to the Hind III site of RP4 (Figure 4.4). Tn4135 may

therefore be similar to Tn4132, Tn4133 and Tn4134 and the variable

restriction patterns may be attributable to the site of insertion into

RP4.
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The location of relavent R?4 restriction sices and genes are as

specified by 3ar~h and Grinter (1377). The solid line represents
Tn4135 DNA whilst dotted lines correspond to regions of the Tn-7
genome thought to be .deleted in the evolution of Tn4135. For the
localisation of Tn7 restriction sites see Gosti-testu et al (1383).

All coordinates are expressed in kb.
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Digestion with Bam HI, substantiates the view that a deletion has

occurred at the right hand end of Tn7. Bam HI cuts Tn_7 on either side of

the right hand Hind III site (10.7 kb) (Figure 4.5) to give an internal

fragment of less than a kb (probably too small to observe by the method

employed) and cuts RP4 once (Barth and Grinter, 1977). RP4::Tn7_ digestion

yielded two large fragments, the sizes of which are not accurate, because

of the inability to measure fragments of molecular weight greater than 11

kb by this method (Grinsted et al, 1977). Digestion of RP4::Tn4135 with

Bam HI yielded only one fragment suggesting that one or both of the Bam

HI sites of Tn7 had been deleted to give Tn4135. Depletion of both Bam HI

sites would result in a linear molecule (ie. one fragment) similar to the

digestion of RP4 alone with this enzyme. Loss of one restriction site,

however, would give rise to two fragments, the sizes of which would depend

on the site of insertion of Tn4135. The Bam HI site of RP4 is directly

opposite that of Hind III, so if it is assumed that Tn4135, with one Bam

HI site, inserts close to this Hind III site of RP4 (Figure 4.4), two

fragments of approximately equal size would be produced. Closer

examination of the Bam HI fragments of RP4 and RP4;;Tn4135, separated by

agarose gel electrophoresis (Figure 4.1b), does reveal differences between

the single plasmid bands present in each digest, suggesting that the

thicker band of RP4::Tn4135 may be due to two fragments of identical size.

Pst I digestion of plasmid DNA reiterated the view that the right hand

end of Tn4135 and Tn_7 differ: Tn4135 appeared to lack the Pst I cut site

of Tn_7. The fact that this right hand region of DNA is outwith the region

coding for the resistance determinants (Barth and Grinter, 1977a; Fling

and Richards, 1983; Smith and Jones, 1984) substantiates the view
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FIGURE 4.5: RESTRICTION ENDQNUCLEASE AND FUNCTIONAL MAP OF Tn7

[~tT
Sp/Sm

J Li L

14

tnp 7 A

tnp 7B

tnp 7C

Restriction enzyme cleavage sites are in kb and are located as

indicated by Gosti-Testu et al (1983) and Hauer and Shapiro
(1984). Functions are located according to Hauer and Shapiro
(1984). Tnp 7A, tnp 7B and tnp 7C indicate regions encoding
transposition functions.



that a control region, perhaps encoding an inducer enzyme for the

expresion of Sm/Sp, may have been deleted, not the genes themselves.

Deletion of this right hand end alone , however, would only account for a

reduction in size of a few kb, since it is unlikely that the 28 base pair

terminal repeats, essential for transposition (Kleckner, 1981), would have

been deleted as well. Work with deletion mutants of Tn_7 (Ouartsi et al,

1985) has indicated that a fragment larger than the 42 base pair terminal

sequence, containing this 28 base pair IR at its end, is required for

transposition, and have located functions essential to transposition in a

region, greater than 2.5 kb, on the right hand end of Tn7. (The Pst I

site of Tn_7_ lies outside the 42 base pair terminal region.) It is

therefore likely that these regions are still intact in Tn4135.

Pvu I digestion was utilised to define the deletion at the right hand

end and to locate any deletions elsewhere in the Tn_7 genome that could

account for the size differences observed. Pvu I restricts Tn7_ once

between the Bam HI and Pst I sites, thought to be deleted in Tn4135, and

once in the left hand end of Tn7, giving an internal fragment of

approximately 8 kb. The number of fragments generated by Pvu I digestion

of RP4: :Tn4135 and RP4::Tn_7 are identical indicating that the Pvu I cut

site at the right hand end of Tn7_ is still present in Tn4135. This site

lies within the proximal one third of the four 22 base pair contiguous

direct repeats (Ouartsi et al, 1985) thought to play an important cis

acting role in transposition. This finding again reiterates the

importance of certain regions in transposition and thus their conservation

in DNA evolution. It also indicates that more than one deletion is

involved in shaping the right hand end of Tn4135, since the two

restriction sites, Pst I and Bam HI, on either side of the intact Pvu I

site are thought to be missing.
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Young (1984) postulated that the small transposon Tn4134 had evolved

from Tn_7 as a result of deletion in the right hand end of the transposon,

leading to loss of a Hind III restriction site, and a deletion in the

resistance determinant region at the left hand end. Evidence presented

here for Tn4135 suggests this transposon is genetically similar to Tn4134

and further defines the deletion of the right hand end of the transposon

(Figure 4.6), giving possible reasons for the conservation of surrounding

regions of DNA. These results, however, do not rule out the possibility

that Tn4135 and Tn4134 have evolved independently from each other via

separate deletions of the Tn7 molecule.
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FIGURE 4.6: PROPOSED MODEL FOR THE EVOLUTION OF THE SMALL

TRIMETHOPRIM-ONLY TRANSPOSONS FROM Tn7

TRANSPOSON Tn7

I
Pv

I
H H

J
TT,

IR Tp Sm

SPONTANEOUS

DELETIONS

I
H H
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]
IR Tp Sm

TRANSPOSON Tn4134

I

IR
Pv H
i I

B H B Pv Ps

Hi i i

1
IR

H
i

1
IR Tp Sm IR

TRANSPOSON Tn4135

IR = inverted repeat; Tp = trimethoprim resistance gene; Sm =

Sm/Sp resistance gene; H = Hind III site; B = Bam HI site;
Pv = Pvu I site; Ps = Pst I site;
giving rise to Tn4134;'

= suspected deletions
= possible deletions giving rise to

Tn4135.

Note - diagrams not to scale.



156

CHAPTER 5

BEHAVIOUR OF TRIMETHOPRIM RESISTANCE TRANSPOSONS DURING

TRANSFER TO AND FROM DIFFERENT REPLICONS
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INTRODUCTION

The evolutionary response of bacteria to the selective pressures

imposed by the medical and veterinary use of antibiotics has been

witnessed over the past four decades and studies on the emergence and

dissemination of drug resistance genes have vividly illustrated the

genetic flexibility of bacteria. The introduction of each new group of

antibiotics has lead to the emergence of resistance plasmids conferring

resistance to these drugs (Anderson, 1968; Mitsuhashi, 1969). However, it

has become clear that a number of organisms contained transferable

plasmids long before the antibiotic era and these have provided the

resevoir of plasmids available for the acquisition of resistance genes

(Datta and Hughes, 1983).

Trimethoprim was introduced, in combination with sulphamethoxazole

(cotrimoxazole), in the United Kingdom in 1969 and in France in 1971.

Initial resistance to the combination remained low: less than 3%

(Gruneberg, 1976) in E coli isolated from urinary tract infections two

years after the introduction of cotrimoxazole, but after three years, R

factors confering high levels of resistance were detected in clinical

strains of bacteria (Fleming et al, 1972; Datta and Hedges, 1972). The

first R factor of this type was designated R388 (Amyes and Smith, 1976)

and was found to be resistant to Su as well. When cotrimoxazole was

introduced there was already a high percentage of bacteria harbouring R

plasmids within the clinical population and most of these R plasmids

contained determinants for sulphonamide resistance (Datta, 1969).
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Trimethoprim was marketed in Britain as a single agent in September

1979, after 10 years of use in combination with sulphamethoxazole. This

was despite views that its use alone in the treatment of urinary tract

infections would lead to the rapid development of aquired resistance once

the protective sulphonamide moiety was removed (Bushby and Hitchings,

1968; Barry and Pattishall, 1983; Rich and Mee, 1985). However, the

possibility of devising an adequate scientific test to prove or disprove

these views would be almost impossible (Hamilton-Millar, 1984) because of

different practices in drug prescription, the clinicians desire to have a

choice of drugs and because of difficulties in making allowances for the

selection of Tp resistance with other drugs eg. Ap (Amyes et al, 1981).

This misstrust of Tp as a single drug was based partly on the ready

production of resistance to Tp, following exposure of heavy inocula, of

initially sensitive bacteria, to increasing concentrations of Tp _in vitro

(Darrell et al, 1968), but was challenged by a number of reports (Anderson

et al, 1974; Brumfitt and Hamilton Millar, 1979; Greenwood, 1979; Amyes et

al, 1981). These fears of increased resistance were not unequivocally

substantiated by reports from Finland, where Tp alone has been used since

1973 (Kasanen and Sandquast, 1982): the frequency of resistant E coli,

causing urinary tract infections, remained fairly constant in Finland at

about 10% between 1972 and 1977. This was despite the use of Tp alone

(Kasanen et al, 1978), although the levels of Tp resistance were higher

than in Sweden (Huovinen and Toivanen, 1980) where Tp alone was not

commercially available, and Helsinki where the drug had been used less.

Additionally the levels of resistance in Edinburgh , where the combination

of Tp and Su had been used exclusively since 1969, were found to be

approaching those in Finland (Amyes et al, 1981), suggesting there was

little difference in the use of Tp alone or in combination with Su. It
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would appear, however, that Tp resistant organisms other than

Enterbacteriaceae (eg Pseudomanas and Acinetobacter species) emerged more

often in patients (58%) receiving Tp alone than in those on cotrimoxazole

(22%) (Brogden et al, 1982). Lacey (1982) and Brumfitt et al (1983)

reported little rise in the overall incidence of Tp resistant bacteria

since the intoduction of Tp alone, although the incidence of high level Tp

resistance had increased (Brumfitt et al., 1980; Towner, 1981; Kraft et

al, 1984). Huovinen et al (1986) , in contrast, support the view that

emergence of Tp resistance is linked to changes in the consumption of both

Tp and cotrimoxazole, although Skold et al (1986) found more than one

third of Tp resistance carrying patients, from a study in Jamtland, never

to have been exposed to Tp. A similar finding of spread to individuals

not being treated with antibiotics was encountered by Rydberg and

Cederberg (1986).

Resistance to Tp has been reported from many parts of the world (Table

5.1) and has involved many bacterial species (Rowe and Threlfall, 1981)

(Table 5.2). Resistance is now extending from E coli to other gram

negative bacteria such as Vibrio cholerae (Threlfall et al, 1980;

Goldstein and Acar, 1985; Gerbaud et al , 1985; Goldstein et al, 1986;

Young and Amyes, 1986b), Acinetobacter sp (Goldstein et al, 1983),
*•

Pseudomonas aeruginosa (Moilleau-batt et al, 1987) and even

phytopathogenic bacteria such as Pseudomonas syringae (Leary and

Trollinger, 1985).

The prevalence of resistance to Tp varies from species to species,

from country to country (Table 5.3) and may depend on local

epidemiological factors (such as the type of patient, antibiotic

pressure), location and time (Dornbusch and Toivanen, 1981; Huovinen et

al, 1982; Pulkinen et al, 1984; Kraft et al, 1985; Huovinen et al, 1986).

* Manuscript in press
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TABLE 5.1: REPORTS OF TRIMETHOPRIM RESISTANCE IN DIFFERENT COUNTRIES

COUNTRY % OF STRAINS

RESISTANT TO Tp
REFERENCE

BRITAIN

FRANCE

BRAZIL

BANGLADESH

FINLAND

ITALY

CANADA

UNITED STATES

5-20

17 - 36

44.4 (Enteric)

36 (Cholerae)

9.4

20

3 (Shlgellae)

5-14

Amyes et al (1978); Brumfitt et al (1983);
Hedges et al (1972); Datta et al (1981)

Goldstein et al (1986)

Tiemans et al (1984)

Threlfall et al (1980a)

Huo.vinen et al (1983)

Romero and Perduca (1977)

Bannatyne et al (1980)

Mayer et al (1985)
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TABLE 5.2: SPREAD OF PLASMID-MEDIATED, HIGH-LEVEL TRIMETHOPRIM RESISTANCE
INTO VARIOUS BACTERIAL SPECIES

ORGANISM COUNTRY YEAR FIRST REFERENCE
ISOLATED

Escherichia coli UK 1971 Fleming et al, 1972
Klebsiella species UK 1971 Fleming et al, 1972
Proteus mirabilis UK 1972 Datta and Hedges , 1972
Indole +ve Proteus UK 1973 Jobanputra and Datta,1974
species
Citrobacter species UK 1973 Amyes and Smith, 1978
Enterobacter sp. UK 1973 Grey et al, 1979
Serratia sp UK 1974 Coulanges, 1981
Salmonella typhi FRANCE 1975 Goldstein et al, 1984
Salmonella sp UK 1975 Threlfall et al, 1980

Shigella sp CANADA 1978 Bannatyne et al, 1980
Vibrio cholerae BANGALADESH 1979 Threlfall et al, 1980
Acinetobacter sp FRANCE 1982 Goldstein et al, 1983

Pseudomonas FRANCE 1983 Acar et al, 1973
aeruginosa



TABLE5.3CHANGESINTHELEVELSOFTRIMETHOPRIMRESISTANCESINCE1973 NOOF

ZSTRAINS
ZSTRAINS

ZHIGHLYRESISTANT
NOOFTp

CITY

STRAINS

RESISTANT
WITHHIGHLEVEL

STRAINSCAPABLEOF
RESISTANCE

[YEAR(S)]

REFERENCE(S)

ISOLATED

TOTp

RESISTANCETOTp
RESISTANCETRANSFER

PLASMIDS

PARIS

Goldsteinetal(1986)
1974-75

10,105

17.5

44.9

31.2

92

1978-79

10,189

23.2

75.3

48.3

84

1980-81

10,246

38.6

83.6

62.6

71

1982-83

10,823

35.4

91.9

44.3

116

1984

5,494

24.3

95.4

50.0

31

PAVIA

Romero&Perduca(1977)
(ITALY) 1973-75

670

20.7

-

16.2

32

LONDON

Amyesetal(1978)
1973-75

Dattaetal(1980)
-

3.2

10.0

-

-

1975-77

Hamilton-Millaretal
1,651

9.4

-

11.5

18

1977

(1981)

1,618

13.0

27.4

23.3

18

1973-75

Brumfittetal(1983)
3,129

4.3

20.3

-

-

1978-79

4,773

11.5

60.0

24.7

72

1981

-

12.2

78.0

-

-

1985

-

24.2

81.0

-

-

NOTTINGHAM
Towner(1979)

1978

Towneretal(1979)
3,998

4.8

17.1

12.5

24

1979

Towneretal(1980)
4,069

2.9

57.6

34.7

41

Towner&Wise(1983)
EDINBURGH

Amyesetal(1981)
1978-81

Amyesetal(1986)
359

21

5.0

5.0

-

1981

200

64

25.0

11.0

-

1982-84

-

16.5

12.0

5.0

-

TURKU,

Huovinen&Toivanen
FINLAND

(1980)

1979

Toivanen(1980)

222

41.0

60.4

13.0

6

1980-81

Huovinenetal(1983)
560

35.4

68.7

20.0

27

1980-81

Huovinenetal(1986)
633

9.0

38.6

19.0

4

1983

-

32

-

-

-

1984

-

35

-

-

_
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Levels of Tp resistance in Greece (Saroglou et al, 1980), Finland

(Huovinen and Toivanen, 1980; Huovinen et al, 1982; Huovinen et al, 1983)

and Italy (Romero and Perduca,1977) are reported to range from 20% to

40%. In contrast levels of 5 - 8% have been reported for similar periods

in the UK (Towner et al, 1980; Chirnside et al, 1985), Denmark

(Fruensgaard and Korner, 1974) and the United States (Mayer et al, 1985).

Whilst the prevalence of Tp resistant E coli increased from 2% to 6% in

Boston during 1978 -1981 (Mayer er al, 1985) and from 8% to 30% in Paris

(Papadopoulou et al, 1986), the prevalance of Tp resistant P mirabilis

during the same period was 1% in Boston (Mayer et al, 1985) and 20 - 25%

in Paris (Goldstein et al, 1984), thus indicating differences in Tp levels

with respect to both organism and location. Different trends in the

development of Tp resistance have with out doubt emerged (Brumfitt et al,

1983; Towner and Wise, 1983; Amyes et al , 1986): in London between 1981

and 1983 there was a marked increase in the level of transferable Tp

resistance (Chirnside et al, 1985) whereas in Edinburgh there was a

decrease "(Amyes et al, 1986). Between 1979 and 1981 there was an emergence

of low level transferable Tp resistance (Anderson, 1980; Towner and Pinn,

1981) which was thought to be a possible precursor of the high level Tp

resistance that had been observed. The incidence of Tp resistant bacteria

is especially high in developing countries eg 44% of E coli in Chile and

40% in Thailand were observed to be Tp resistant (Murray et al, 1985) and

64% in India (Young et al, 1986). However, despite the variation in

overall prevalence of Tp resistance between countries, an increase in the

relative % of high level resistance, presumably encoded by R plasmids or

transposons, is common to the different countries (Table 5.3). Increases

were observed in London between 1973 and 1981 (Amyes et al, 1978; Datta et

al, 1981; Brumfitt et al, 1983), in Nottingham from 1978 to 1979 (Towner
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et al, 1979; Towner et al 1980) and in Paris an increase from 40.2% to

95.4% was observed between 1972 and 1984 (Goldstein et al, 1986). Similar

increases have also been observed in Mexico, Chile and Thailand (Murray et

al, 1982; Rudy and Murray, 1984; Murray et al, 1985).

The diversity of organisms now resistant to Tp and the changing levels

of Tp resistance can be related to the spread of transposons and R

plasmids. Since the first report in 1972 many epidemics of Tp resistant

bacteria with plasmid mediated resistance have been described (Table

5.4). The first epidemic of Tp resistance encoded by an R plasmid

occurred in London in 1971 (Fleming et al, 1972) and was due to a single

plasmid of incompatability group W (Jobanputra and Datta, 1974). (During

this time extensive studies in Bristol (Lacey et al, 1972) and in Dublin

(Moorhouse and Farrell, 1973) failed to indicate any emergence of Tp

resistant plasmids. By 1977, however, other hospitals in London and in

Bristol were reporting the isolation of these plasmids (Brumfitt et al,

1977; Grey and Hamilton Millar, 1977; Marks et al, 1977).). This

situation was mirrored by results from a hospital in Boston (Mayer et al,

1985) where Tp resistance amongst Enterobacteriaceae, was due to the

dissemination of a single conjugative plasmid. The situation observed in

Paris in 1974, however, was quite different (Goldstein et al, 1975; Acar

et al, 1977); Tp R plasmids belonged to 6 different Inc groups.

Subsequent reports from Italy and the UK (Table 5.5) have indicated that R

plasmids from a wide range of Inc groups are now responsible for Tp

resistance, although initially, in Italy, almost all plasmids belonged to

the M Inc group (Romero and Perduca, 1977). The emergence of R plasmid Tp

resistance seems to have been more rapid in France and Italy than in the

UK. The spread of Tp resistance genes to plasmids of such a wide variety
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YEAR

1971

1974

1976

1977

1979

1980

1981

1982

1983

1984
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EPIDEMICS OF TRIMETHOPRIM RESISTANT BACTERIA DUE TO
TRANSFERABLE Tp PLASMIDS

COUNTRY REFERENCE

UK Flenmiing et al (1977)

France

Italy
Japan

United States
Canada
Greece
New Zealand

Acar et al (1977)

Romero and Perduca (1977)
Terakado et al (1980)

O'Brien et al (1982)
Bannatyne et al (1980)
Saroglou et al (1980)
Anderson (1980)

Finland
East Germany
Bangladesh
Southeast Asia

Madagascar

Peru

UK

Spain

Huovinen et al (1983)
Tietze et al (1982)
Threlfall et al (1980)
Agarwal et al (1981); Butler et al
(1982); Goldstein et al (1986)

Coulanges (1981)

Goldstein et al (1986)
Amyes et al (1981)

Palenque et al (1983)

Brazil

Kenya
Tanzania

Algeria
Thailand
Indonesia

Goldstein et al (1983)
Gerboud et al (1983)
Goldstein et al (1986)

Ivory Coast
Zaire

Goldstein et al (1985)
Goldstein et al (1985)
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TABLE 5.5 INCOMPATIBILITY GROUPS OF PLASMIDS CONFERRING RESISTANCE TO
TRIMETHOPRIM IN DIFFERENT COUNTRIES

CITY REFERENCE PERIOD
NO OF
PLASMIDS

INCOMPATIBILITY
GROUPS

Paris Acar et al

(1980)
1974-75 91 C, Fll, N, M, I,

B

Pavia, Italy Romero & Perduca 1973-75

(1977)
32 Fll, N, M, S

London Datta et al

(1980)
1977

Nottingham, UK Towner (1979) 1983

18

52

C, Fll, N, I ,

W, P, X, H2

Fll, I , I , K,
M, B, P, W, X

Lima, Peru Goldstein et al 1981-82 34
(1986)

Hi
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°f Inc groups is likely to be due to transposable elements and would

suggest an analogy with the spread of Ap resistance (Richards et al,

1978). The ubiqiity of the TEM J5 lactamase gene (Hedges et al, 1974) has

been shown to result from its ability to transpose from replicon to

replicon (Heffron et al, 1975), and Hedges and Jacob (1974) later

confirmed the presence of this gene on a transposon, thus accounting for

its rapid transmission through populations of bacteria and between

bacterial families eg to N gonorrhoeae (Elwell et al, 1977) and H

influenzae (Laufs and Kaufers, 1977). As previously mentioned (Chapter 4)

a number of Tp resistant transposons have been identified; Tnl527

(Goldstein et al, 1986), Tnl824 (Tietze et al, 1982), Tn71 and Tn72 (Barth

and Datta 1977a,b), Tn79 and Tn80 (Richards and Nugent, 1979), Tn78 (Datta

et al, 1979) and Tn4132 (Young and Amyes, 1983), but the most extensively

studied have been Tn7_ (Barth et al, 1976) and Tn402 (Shapiro and Sporn,

1977). Tn402 has been transposed from R751 but it does not appear to

integrate into the chromosome or other plasmids (Amyes, 1979).

(Preliminary evidence suggested that the resistance gene of R388 might

also reside on a transposon (Amyes and Smith, 1977), but it has not been

proven, nor has the suggestion that Rss28 and Rss42 might carry Tp

transposons (Amyes and Smith, 1978).). Various reports have indicated the

ease with which Tn7 transfers between replicons (Barth et al, 1978; Hassan

and Brevet, 1983; Taylor, 1983; Ouartsi et al, 1985), eg Tn_7 has been

shown to insert at multiple sites of some plasmids, such as RP4 (Barth et

al, 1978), occasionally inactivating existing resistance characters or

inducing transfer defective mutants (Taylor, 1983).

A large proportion of the high level resistance to Tp can be

attributable to Tn_7; Tp resistant enterobacteria isolated since 1978 in

the UK (Richards et al, 1978; Datta et al, 1979; Richards and Nugent,
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1979; Datta et__al, 1981; Richards and Datta, 1982; Towner et al, 1982;

Towner and Wise, 1983), Sweden (Steen and Skold, 1985) and Finland

(Pulkkinen et al, 1984) owed their Tp resistance to chromosone or plasmid

located Tn7.

The observed increase in the incidence of high level non transferable

resistance to Tp (Towner et al, 1980; Hamilton Millar et al, 1981; Towner

et al, 1982; Amyes et al, 1986; Amyes, 1986) is disturbing. This could be

due to the spread of plasmids incapable of transfering into standard E

coli K12 recipient strains or due to the transpostion of Tp genes to the

chromosome. Tn7_ has been shown to transpose into the chromosome of E coli

at a specific site (Barth et al, 1976; Lichtenstien and Brenner, 1981) and

has also been found located in the chromosomes of other enteric bacteria

(Goldstein et al, 1986), Vibrio species (Thomson et al, 1981; Goldstein et

al, 1986), Agrobacterium (Hernalsteens et al, 1978) and Caulobacter (Ely,

1982), inducing mutagenesis in some cases. This integration of resistance

genes is not uncommon, Richmond and Sykes (1972) found that the TEM B

lactamase gene was capable of integration into the bacterial chromosome.

This is a potentially disquieting trend, however, since this resistance is

inherantly more stable than plasmid mediated resistance and not likely to

be lost once the selective pressure is removed. An integrated transposon

also retains the ability to spread amongst further plasmids which may

enter the cell. Towner (1981) indicated an increase in non transferable

high level Tp resistance from 4.7% in 1978 to 22.9% in 1979; results which

suggested that transposable Tp resistance, in the absence of a conjugative

Tp resistant plasmid, was probably fairly common in hospitals of the

Nottingham area of the UK. Non transferable Tp resistance seemed to be

particularly common in strains of Proteus species (Towner and Wise,
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1983). This shift is also being observed in other areas (Kraft et al,

1984; Steen and Skold, 1985).

Clearly there have been changes in the distribution of Tp resistance

genes in the environment over the last decade, brought about by the spread

of trasnposons, such as Tn7_. The emergence of Tp only transposons, such

as Tn4132 (Young and Amyes, 1983) and Tn4135 (unpublished results) has

lead not only to speculation about the evolution of the resistance genes

but also the changes that are likely to occur over the next decade, with

regards spread of Tp resistance. In order to understand the events that

have occurred so far; the increase in high level resistance and the

movement of transposons, and thus resistance genes, into the chromosome,

there is a need to monitor the changes that occur at the molecular level.

The purpose of this study was therefore to delineate the transfer

potential , and the genetic aspects associated with transposition of the

Tp only transposon - Tn4135 - in comparison with Tn7 transposition.
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MATERIALS AND METHODS

The experimental procedures for plasmid transfer, preparation of

selection plates and resistance testing have been described previously

(chapter 3). The method adopted for transposon transfer was that utilised

in chapter 4 and DNA was prepared by the method of Takahashi and Nagano

(1984) as outlined in chapter 1.

REPLICA PLATING

Purified colonies were either spotted onto nutrient agar plates, in a

grid like manner with sterile sticks, or alternatively, 0.1 ml of suitably

diluted nutrient broth cultures were spread on nutrient agar plates. All

plates were incubated at 37°C overnight. Replica plating (Lederberg and

Lederberg, 1952) was achieved by inverting the incubated plates over a

square of sterile velvet held on to a cylindrical rubber block (8 cm in

diameter) by a perspex collar. The agar surface was pressed gently

against the pile and removed. Replica plates, containing suitable

antibiotics and marked for subsequent orientation, were inverted in turn

over the fabric and the colonies transferred from pile to plate by gentle

pressure on the back of the inverted plate. The plates were incubated at

37°C overnight.
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PHAGE OVERLAYS

Agar overlays were prepared by dissolving 0.7 g of ion agar (Oxoid) in

100 ml of nutrient broth (oxoid no 2). Aliquots (2 ml) were dispensed

into bijoux bottles, autoclaved and kept molten in a water bath at

45°C. Cultures to be tested were grown up overnight in nutrient broth

and phage preparations were diluted in nutrient broth as appropriate.

Three drops of bacterial culture were added to a warm overlay, followed by

100 ul of the appropriate phage suspension. The bijoux was rolled quickly

in the hands to mix, being careful not to create any air bubbles, and

poured onto a nutrient agar plate. Plates were incubated at 37°C

overnight.

PHAGE SELECTION FOR LOSS OF PLASMID DNA

Phage PRR1 was used to test cultures for the presence or absence of

the Inc P plasmid RP4. (This phage is specific for Inc P plasmids - Olsen

and Thomas, 1973 - lysing any cells harbouring one of these plasmids).

Bacterial cultures were grown up overnight in Isosensitest broth

containing an appropriate drug and subcultured in the same medium. A

phage overlay was set up with one drop of bacterial culture and 100 ul of

either a neat, 10~1 or 10" 2 diluted PRR1 phage. Colonies growing

through the phage plaques (ie those lacking RP4 and therefore not lysed)

were transferred by sterile stick onto appropriately supplemented DM

plates, and DM plates containing one of the drugs to which the unwanted

RP4 plasmid was resistant. All drug sensitive colonies were then tested

for desirable resistance determinants.
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RESULTS

TRANSFER OF Tn4135 FROM RP4 TO Sa-1 AND ANALYSIS OF THE RESULTING

TRANSCONJUGANTS

When Tn4135 was transposed into the Inc P plasmid RP4, the plasmid was

found to be unstable when the host strain was grown in medium containing

Tp. Therefore, Tn4135 was transferred to the Inc W plasmid Sa - a

naturally occurring plasmid of clinical and experimental relevance and

commonly used as a standard in molecular biology.

i. Transfer

The plasmid Sa-1 was introduced into E coli J62-2(RP4::Tn4135) in a 5

hour standard mating and selection was made for Tp and Sm resistance

(Table 5.6; mating 1). Transconjugants were purified and their resistance

markers checked, before promoting transposon transfer by subculturing

twice in nutrient broth. A single transconjugant colony carrying the

resistance determinants for Tp, Ka, Tc, Tp, Sm and Su was used as a donor

in a standard 5 hour mating with E coli J53 (Table 5.6; mating 2).

Selection was carried out on DM plates containing supplements for strain

J53 and Tp, Sm or TpSm together. Resistances of transconjugants were

again checked and a single colony, conferring resistance to Ka, Su, Sm and

Tp, was used as a donor to transfer Sa-1::Tn4135 back to E coli J62 (Table

5.6; mating 3). Selection was carried out on DM plates, supplemented for

strain J62 and containing Tp, Sm or Tp and Sm.
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TABLE 5.6: TRANSFER FREQUENCIES FOR THE TRANSFER OF Tn4135 FROM RP4 TO Sa-1

MATING SELECTION MEDIA TRANSFER FREQUENCY PER DONOR CELL

1 Tp Sm 1.73 x 10~1

2 Tp 1.74

Sm 1.14

Tp an 9.80 x 10"1

3 Tp 1.40 x 10"1

Sm 8.40 x 10-2

Tp Sm 1.73 x 10~2
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a.

ii. Preliminary Analysis of E coli J62(Sa-1::Tn4135)

DNA from E coli* J62(Sa-l;:Tn4135)a was prepared by the method of

Takahashi and Nagano (1984) and analysed by agarose gel electrophoresis,

in comparison with DNA isolated from standard plasmids. Figure 5.1

indicates the results of electophoresis on 0.5% gels run at 70 v for 16

hours. The plasmid Sa-1;:Tn4135 was found to have a molecular size of

approximately 60 kb, which does not correspond to single copies of Sa-1 (

33 kb) and Tn4135 (3-6 kb). Repeated examination of the DNA of E coli

J62(Sa-1;:Tn4135)a confirmed this unusually large size. This

transconjugant strain was tested for its resistance to a number of

antibiotics and was found to be resistant to Tp, Sm and Sp only ,

suggesting that neither RP4 nor Sa-1 were present, although DNA analysis

had indicated the presence of plasmid DNA.

To avoid confusion transconjugants from the initial transfer shall be

designated E coli J62(Sa-1::Tn4135)a and those from the second transfer

E coli J62(Sa-l::Tn4135)b.
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FIGURE 5.1: AGAROSE GEL ELECTROPHORESIS OF E COLI J62

(Sa-1::Tn4135)a DNA

90 kb

57 kb- - d -

TRACK 1. R1

2. RP4

3. R6K

4. Sa-1

5. (Sa-1::Tn4135
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iii. Repeat transfer of Tn4135 to Sa-1 from RP4

In order to check the validity of the initial tranfer result, and

confirm that the large molecular species of E coli J62(Sa-l::Tn4135)a

was as a result of the transfer, and not due to contamination, the above

transfer was repeated. Su was used instead of Sm to select for the

plasmid Sa to circumnavigate the possibility that Tn4135 may also encode

low-level Sm resistance. The transfer frequencies are shown in Table 5.7

and indicate that Tp and Su are not being co-transferred. Transconjugants

were found to be resistant to both Ap and Tc, indicating that RP4 has not

been lost from the bacterium.

Repeated subculturing, to induce transposon transfer, followed by 5

hour conjugal matings with E coli J53 and J62-2 failed to produce a

transconjugant encoding Tp and Su on the same molecular species. After

subculturing twice, strain E coli J62-2(Sa-l, RP4:;Tn4135)b was

therefore conjugated with E coli J53 for one hour, (Table5.71), selecting on

DM plates containing J53 supplements plus Tp, Su or TpSu. Analysis of

these transconjugants indicated that, like E coli J62-2(Sa-l:;Tn4135)a,

E coli J53(Sa-l::Tn4135)b was resistant to Tp, Sm and Sp, but was

additionally resistant to Ap, suggesting the presence of the Ap transposon

from RP4. Repeated transfers failed to eliminate Ap resistance.

Therefore 100 purified colonies of E coli J53(Sa-1::Tn4135)b were

transfered on to nutrient agar plates with sterile sticks and replica

plated on to DM plates supplemented for J53 and containing Ap, to look for

loss of Ap resistance. All colonies were found to be resistant to Ap. No

conclusive results could be drawn from plasmid DNA analysis of E coli

J53(Sa-1::Tn4135)b transconjugants, because of the presence of the Ap

transposon, but the results would appear to indicate the presence of a

plasmid of comparable size to that of E coli J62-2(Sa-l::Tn4135)a,

indicating the genuine finding of an unusually large molecular species.
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TABLE 5.7a: TRANSFER FREQUENCIES FOR THE REPEAT TRANSFER OF Tn4135 FROM
RP4 TO Sa-1

MATING SELECTION MEDIA TRANSFER FREQUENCY PER DONOR CELL

1 Tp Su 6.70 X 10"5

2 Tp 1.85 X t-H1

o

Su 8.54 X 10"6

Tp Su 9.49 X
I

oH

3 Tp 2.10 X 10-1

Su 2.20 X 10-5

Tp Su 1.00 X 10"6

TABLE 5.7b: TRANSFER FREQUENCIES FROM THE CONJUGATION OF E COLI J62-2
(Sa-1::Tn4135)b WITH E COLI J53

MEDIA TRANSFER FREQUENCY

TP

Su

Tp Su

4.0 x 10_1

1.5

2.8 x 10"1
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TRANSFER OF Tn4135 FROM THE ORIGINAL PIG ISOLATE, P-20, TO Sa-1

As a result of the unusually large size of the molecular species

harboured by E coli J62(Sa-1::Tn4135)a, and due to the possibility that

the presence of RP4 may have contributed to this result, Tn4135 was

mobilised directly from the original pig isolate, P-20, with Sa-1.

Sa-1 was transferred into P-20^ in a 5 hour mating selecting on DSTA

plates containing Ka (Table 5.8, mating 1). After purification and

subculturing of transconjugants a single colony was used as a donor in a 5

hour mating with E coli J62-2, selecting on DM plates containing

supplements for the J62 strain plus Rif and Tp, Ka or TpKa together (Table

5.8, mating 2). Resistances of transconjugants were checked and a single

colony conferring resistance to Ka, Sm, Sp, Su, Tp and Rif was used as a

donor to transfer Sa-1;:Tn4135 to E coli J53 (Table 5.8, mating 3).

(Sa-1;:Tn4135 was also transferred back to E coli J62, transfer

frequencies not shown.). E coli J62 transconjugants designated

J62( Sa-1: :Tn413[5)ORI, to distinguish them from similar transconjugants

formed by the transfer of Tn4135 from RP4 to Sa-1 (E coli

J62(Sa-l::Tn4135)a), were resistance tested and plasmid content analysed

by agarose gel electrophoresis. E coli J62(Sa-1: ;Tn4135)(-)R--*- was found

to be resistant to Ka, Sm, Sp, Su and Tp, and harbour a plasmid of

molecular size 40 kb, characteristic of Sa-1 plus a copy of Tn4135 (Figure

5.2, track 6). This does not compare with the molecular size of the

plasmid harboured by J62(Sa-1::Tn4135)a (Figure 5.2, track 5),

suggesting that RP4 is in some way involved in the formation of the large

molecular sized species of J62(Sa-1;:Tn4135)a.
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TABLE 5.8: TRANSFER FREQUENCIES FOR THE TRANSFER OF Tn4135 DIRECT
FROM THE ORIGINAL PIG ISOLATE, P-20F, TO Sa-1

MATING MEDIA TRANSFER FREQUENCY

1 DSTA Ka 3.11 x 10-6

2 J62 Rif Tp 4.20 x 10~6
Rif Ka 4.66 x 10"7

Rlf Tp Ka 9.30 x 10~7

3 J53 Tp 2.40 x 10~3

Ka 8.00 x 10"4

Tp Ka 1.04 x 10-4
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FIGURE 5.2: COMPARISON OF THE PLASMIDS HARBOURED BY E COLI

J62 (Sa-1: :Tn4135)a AND E COLI J6 2 (Sa-1 : : Tn4135 )0RI

1 2 3 4 5 6

TRACK 1. R1

2. RP4

3. R6K

4. Sa-1

5. (Sa-1::Tn4135)a
6. (Sa-1: :Tn4135)ORI
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TRANSFER OF Tn4135 FROM RP4 TO Sa-2

As a result of the inherant variability of Sa-1 with regards molecular

size and absence of the Cm resistance determinant normally associated with

this plasmid, and in order to determine whether this contributed to the

anomalies observed in J62(Sa-1::Tn4135)a, Tn4135 was transferred from

RP4 to Sa-2. The experimental procedure leading to the formation of E

coli J62(Sa-2:;Tn4135) was identical the formation of E coli

J62(Sa-l:;Tn4135)a except Cm was used for selection instead of Sm.

Initial transfers were met with problems with the persistance of the Ap

transposon of RP4 (results not shown), as experienced with the latter

transfers of Tn4135 from RP4 to Sa-1. Replica plating onto DSTA and DSTA

plates containing Tp, Cm, and Ap failed to select any colonies that had

lost Ap resistance. Transfers were therefore repeated. Table 5.9

indicates the transfer frequencies from a repeated experiment leading to

the formation of E coli J62(Sa-2::Tn4135). Resulting transconjugants were

found to be resistant to Ka, Sm, Sp, Cm, Su and Tp, characteristic of Sa-2

containing Tn4135, and DNA analysis revealed a plasmid of molecular size

48 kb, also characteristic of the above molecular species. The plasmid

Sa-1, as opposed to Sa-2, would therefore appear to play a role in the

formation of the large plasmid species harboured by E coli

J62(Sa-1::Tn4135)a.



182

TABLE 5.9: TRANSFER FREQUENCIES OF CONJUGATION EXPERIMENTS LEADING
TO THE FORMATION OF E COLI J62(Sa-l::Tn4135)a

MATING SELECTION MEDIA TRANSFER FREQUENCY

INTRODUCTION OF Sa-2 Tp Sm 6.72 x 10~6

TRANSFER TO E COLI J53 Tp 1.14 x 10"1

Cm 8.17 x 10"5

Tp Cm 4.54 x 10"7

TRANSFER TO E COLI J62-2 Tp 1.44 x 10"2

Cm 2.62 x 10~2

Tp Cm 2.45 x 10~3
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TRANSFER OF Tii4135 FROM THE ORIGINAL PIG ISOLATE TO Sa-2

Due to difficulties in finding suitable selective markers for transfer

studies with Sa-1 (Cm resistance is absent, Su is not a good selection

marker, Sm may be expressed on Tn4135 and Ka may be expressed on some of

the smaller plasmids of the original pig isolate, P-20 - Chapter 3), Sa-2

was used to mobilize Tn4135 from P-20^ in a similar manner to the

mobilisation with Sa-1. No transconjugants were obtained, indicating the

problems of introducing a 'standard' plasmid into a clinical isolate of

unknown restriction and modification background.

TRANSFER OF Tn7 TO Sa-1 AND Sa-2 FROM R483 AND RP4

In order to ascertain whether Tn^ behaved in a similar manner to

Tn4135, on transfer to Sa-1 and Sa-2 from RP4 and R483 - the plasmid from

which Tn7 was originally isolated - the following transfers were set up.

The resulting transconjugants were analysed for resistance markers and

molecular size of plasmid content.

i. Transfer of Tn7 from RP4 to Sa-1

Table 5.10 indicates the transfer frequencies and the steps taken to

form E coli J62(Sa-l: :Tn_7)a. Plasmid exchange was initiated in 5 hour

standard matings and transposon transfer induced by subculturing. E coli

J62 and J53 transconjugants were tested for their resistance to unselected

markers and were found to be resistant to Ap, Ka, Tc, Sm, Sp, Su and Tp.
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TABLE 5.10: TRANSFER FREQUENCIES OF CONJUGATION EXPERIMENTS LEADING
TO THE FORMATION OF J62(Sa-1::Tn7)

MATING SELECTION MEDIA TRANSFER FREQUENCY

INTRODUCTION OF Sa-1 DM J62 Tp Su 5.7 x 10~5
INTO J62(RP4::Tn7)

TRANSFER TO E COLI J53 DM J53 Tp 1.20

Su 4.97 x 10"1

Tp Su 2.48 x 10~2
TRANSFER TO E COLI J62 DM J62 Tp 2.08 x 10~2

Su < 10

Tp Su < 10
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Due to the failure to eliminate RP4 by transfer, E coli J62(RP4::Tn7^

Sa-1) was analysed for spontaneous loss of RP4, utilising phage PRR1 and

by replica plating. E coli J62(RP4::Tn7, Sa-1) was subcultured twice in

Isosensitest broth containing Tp at 10 ug/ml and challenged with PRR1 in a

phage overlay. Resistant colonies were streaked out for single colonies

on nutrient agar, before transfering by sterile stick to J62 supplemented

DM plates, with and without Ap. All colonies were found to be resistant

to Ap indicating the presence of the Ap transposon of RP4. Replica

plating of 100 colonies of E coli J62(RP4: :Tn_7, Sa-1), purified from the

mating plates, substantiated this finding. Colonies were replica plated

on to DSTA, DSTA + Su and Tp together and DSTA + Tc. Those colonies that

were Su and Tp resistant, but sensitive to Tc, were replica plated on to

plates containing Ap and all were found to be Ap resistant, indicating the

presence of the ampicillin resistance transposon TnA. Agarose gel

electrophoresis of Ap, Tp and Su resistant colonies of E coli

J62(Sa-1: :Tn7_) , from the replica plates, indicated a plasmid species of

molecular size 53 kb which is indicative of Sa-1 (33 kb), a single copy of

Tn7_ (14 kb) plus a single copy of TnA (6 kb), the Ap transposon of RP4.

Resistance testing of these colonies for unselected markers indicated that

Ka resistance had been lost, suggesting that Tn7_ had inserted into the Ka

resistance gene of Sa-1.

ii. Transfer of Tn7 from R483 to Sa-1

Experiments to transfer Tn7 to Sa-1, by introducing Sa-1 into E coli

J53(R 483: :Tn_7) and utilising the Inc 1^ plasmid R64 to eliminate R483,

were unable to produce a transconjugant with a single plasmid band.

Repeated tranfers failed to eliminate R64, and Tp and Ka resistance

determinants were not found to be co-transferable.
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iii. Transfer of Tn7 to Sa-2 via RP4

Sa-2 was introduced into E coli J62(RP4::Tn7) in a standard 4 hour

mating, selecting on DM plates supplemented for J62 and containing Tp and

Cm (Table 5.11, mating 1). After purification and subculture a single

transconjugant was used as a donor to transfer Sa-2::Tn7_ into E coli J53,

selecting on plates containing Tp, Cm and TpCm together (Table 5.11,

mating 2). Resistance testing of E coli J53(Sa-2::Tn7)a colonies

indicated 3 different groups of transconjugants (Table 5.12) but the Ap

transposon was present in all three classes. Replica plating failed to

select any E coli J53(Sa-2: :Tn_7)a colonies that had lost Ap

resistance. Agarose gel electrophoresis of those colonies thought to

harbour Sa-2, Tn_7 and TnA indicated two plasmid bands - one of 33 kb in

size, characteristic of Sa, and one of 53 kb, indicative of Sa + Tn7 +

TnA. Interestingly, examination of DNA from transconjugants possessing

similar resistances to E coli J62(Sa-1::Tn4135)a, namely Sm, Sp, Tp plus

Ap, revealed a plasmid species of molecular size 74 kb. This size

compares favourably with the unusually large size of 60 kb for E coll

J62(Sa-1::Tn4135)a, if the Ap transposon is assumed to have a size of

approximately 6 kb (Hedges et al, 1974).

iv. Transfer of Tn7 form R483 direct to Sa-2

Tn_7 was transfered to Sa-2 using the exclusion property of Proteus

mirabilis for Inc la plasmids, such as R483. R483: :Tn_7 was introduced

into E coli J53(Sa-2) in a 4 hour mating, selecting on DM plates

supplemented for strain J53 and containing Ka and Tp (Table 5.13, mating
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a

TABLE 5.11: TRANSFER FREQUENCIES FOR THE FORMATION OF J53(Sa-2::Tn7)

MATING MEDIA FREQUENCY

1 Tp Cm 1.00 X 10-2

2 Tp 3.24 X 10"4

Cm 1.63 X 10-5

Tp Cm 2.50 X 10-6

TABLE 5.12: RESISTANCE MARKERS OF J53(Sa-2::Tn7)a

RESISTANCE MARKERS SUGGESTED DNA CONTENT

Ap Sm/ Sp Tp TnA + Tn7
Ap Ka Tc Sm/ Sp Cm Su Tp RP4 + Sa-2 + Tn7
Ap Ka Sm/Sp Cm Su Tp Sa-2 + Tn7 + TnA



TABLE5.13:TRANSFERFREQUENCIESFORTHEFORMATIONOFECOLIJ53(Sa-2::Tn7)0RI MATINGSELECTIONMEDIATRANSFERFREQUENCYPERDONORCELL
1DMJ53Tp5.13x10~3 2DSTAKaTpRif2.69x10~5 3DMJ62Tp2.13x10~4 Ka1.87x10~4 KaTp7.47x10"^

4DMJ53Tp7.60x10-4 Ka9.13x10~5 KaTp8.52x10~4
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1). After purification and subculture a single colony was used as a donor

to transfer (Sa-2::Tn_7, R483) to a Rif resistant mutant of P mirabilis in

a 4 hour mating. Selection was made on DSTA plates containing Tp, Ka and

Rif (Table 5.13, mating 2). Transconjugants were tested for their

resistance to unselected markers and a single colony conferring resistance

to Ka, Sm, Sp, Su, Tp and Rif was used as a donor to transfer Sa-2::Tn7_ to

E coli J62 (Table 5.13, mating 3) in a one hour mating. Transconjugants

from this transfer were found to be resistant to Ka, Cm, Sp, Sm, Su and

Tp, indicative of Sa-2 and Tn7. A single colony was used to transfer

Sa-2::Tn7 back to E coli J53 (Table 5.13, mating 4). Transconjugants were

found to be resistant to Ka, Sm, Sp, Su and Tp, suggesting that Tn2_ had

inserted into the Cm resistance gene of Sa-2, or that Sa-2 had been

converted to Sa-1 by loss of the Cm resistance gene. Agarose gel

electrophoresis of representative colonies proved difficult to interpret

because of the presence of a number of bands (Figure 5.3), which probably

corresponded to Sa alone and the Sa plasmid plus insertions of Tn7.

TRANSFER OF Tn4135 FROM J62(Sa-1::Tn4135)Ogj. TO RP4

As a result of peculiarities arising from the transfer of Tn4135 from

RP4 to Sa-1, the reverse transfer was set up to analyse suspicions that

RP4 may be responsible for the anomalies. RP4 was introduced into E coli

J62(Sa-l: :Tn4135)(->R-1- in a 5 hour mating, selecting on DM plates

supplemented for strain J62 and containing Tp and Tc. The transfer

frequency was found to be 5.55 x 10-^ per donor cell. Transconjugants

were tested for unselected markers and were found to be resistant to Tp

and Tc only. This suggested that Sa-1 and probably RP4 had been lost
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FIGURE 5.3: PLASMID DNA ANALYSIS OF E COLI J6 2 (Sa-1 : : Tn413 5 )0RI
TRANSCONJUGANTS

4 5 6

130 kb

1. R40a / Sa-2

2. Sa-1

3. RP4

4. R6K

5. J53(Sa-2::Tn7) transconjugant
6. J53(Sa-2::Tn7) transconjugant
7. J53(Sa-2::Tn7) transconjugant
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from the cell, despite the expression ot Tc resistance. Agarose gel

electrophoresis of these transconjugants, in comparison with the original

pig strain, P-20F and J62(Sa-l::Tn4135)ORI (Figure 5.4), revealed

further complications in transfer studies between P-20 and other

replicons,. Whilst E coli J62 (Sa-1;:Tn4135)ORI was initially found to

harbour one plasmid of molecular size 40 kb, its storage (before use in

this experiment) resulted in the appearance of a large plasmid (90 kb)

similar in size to the large plasmid of P-20F. The introduction of RP4

into this strain would appear to have mobilised some of the smaller bands

of P-20F, whilst not being stably maintained itself.

Due to the appearance of multiple bands in E coli

J62(Sa-l:;Tn4135)QRF after storage, rapid matings were carried out

between this strain and E coli J53 and J62, to eliminate the plasmid bands

of the original pig. This resulted in the production of a strain with one

plasmid band, corresponding to Sa-1 and a copy of Tn4135. This strain,

designated E coli J62( Sa-1: ;Tn4135)0RF(New) , was utilised as a recipient

for the introduction of RP4, as before, selecting on plates containing

TpTc, TcSu and Tp (Table 5.14). Purified colonies from Tp plates were

retested for their resistance to Tc, Tp and TpTc together. All colonies

were found to be resistant to Tp but sensitive to Tc, indicating that RP4

was not present in transconjugants. This suggested that the previous

finding of transconjugants resistant to Tp and Tc was due to the presence

of Tc resistance on one of the original pig plasmids. These

transconjugants additionally expressed Ka and Sm resistance, indicating
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FIGURE 5.4: EXAMINATION OF TRANSCONJUGANTS FROM THE INTRODUCT DN

OF RP4 INTO J62 (Sa-1 : :Tn4135)DRI

1 2 3 4 5 6 7 8

1. R40a 5. Sa-2

2. R1 6. original pig P-2.0r
3. RP4 7. (Sa-1::Tn4135)0M
4. R6K 8. (RP4 , Sa-1: : Tn4135 )0RI transconjugant
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TABLE 5.14: TRANSFER FREQUENCIES FOR THE INTRODUCTION OF
RP4 INTO J62(Sa-l::Tn4135)ORI<NEW>

SELECTION MEDIA TRANSFER FREQUENCY PER DONOR CELL

Tp Tc

Tc Su

Tp

< 2.5 x 10~3

1.04 x 10" 2

1.27 x 10~2
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the presence of Sa as well as Tn4135. Subsequent resistance testing of

purified colonies from the TcSu transfer plates indicated these

transconjugants to be resistant to Ap, Ka, Tc, Sm, Sp, Su but not Tp.

These results would suggest an incompatibility between RP4 and the Tp

encoding element: transconjugants harbour either RP4 and Sa, or Sa + the

Tp encoding element Tn4135, but never RP4 and Tn4135.
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DISCUSSION

The appearance of conjugally transferable resistance has been a

recognised consequence of the use of antibiotics for some 25 - 30 years

(Mitsuhashi, 1969). Resistance has been appearing in bacterial species

and genera in which it was at first quite unexpected. The use of any new

drug, to which resistance is intially unusual, provides an opportunity to

study the evolution and epidemiology of bacterial resistance and Tp is no

exception. In fact, the study of resistance plasmids conferring Tp

resistance has given a rare opportunity to observe the emergence and

development of a completely new plasmid borne resistance. The widespread

use of Tp has lead to the spontaneous emergence of resistance plasmids in

different areas, and lately Tp resistance determinants have been

recognised on transposons. The spread of the Tp resistance determinant is

uncharacteristic of conventional resistance plasmids, in that it can

spread rapidly amongst resistance plasmids of different Inc groups and

thus through bacterial populations of different genera . This promiscuity

has been attributed to its resi dence on transposons, leading to a high

degree of flexibility. Tn7_ has accounted for much of the high level

transferable and non transferable Tp resistance (Barth et al, 1976; Datta

and Richards, 1981).

Whilst the transfer potential of Tn7 is well documented, that of the

smaller Tp only transposons is uncertain. This study has revealed

anomalies, so far undescribed in Tn7 transposition, in the transfer of the

Tp only transposon - Tn4135 - to and from different replicons. Its

transfer from the Inc P plasmid RP4 to the incompatability group W

plasmid, Sa-1, resulted in a molecular species of size in excess of that
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characteristic of Sa-1 and a single copy of Tn4135. Whilst resistance

testing suggested that neither RP4 nor Sa-1 were present, and therefore

Tn4135 may have integrated into the chromosome, agarose gel

electrophoresis indicated that plasmid DNA of some kind was present.

There are a number of possible explanations for the appearance of a

molecular species of this size, which relate to events taking place at the

molecular level of both transposition, and plasmid transfer between

replicons. It is possible that Tn4135 has multiply inserted into the Sa-1

plasmid resulting in insertional inactivation of Ka and Su, the resistance

markers of Sa-1. Although possible this seems unlikely because of the

large increase in size: approximately 38 kb to over 60 kb. Alternativly a

natural amplification may have occurred resulting in an increase in

plasmid size, or Tn4135 may have picked up some of the RP4 genome (lacking

the RP4 resistance determinants), during aberrant excision, and

transferred this to Sa-1. The involvement of RP4 in the formation of

this large species, although not necessarily the cotransfer of RP4 DNA,

was confirmed by transferring Tn4135 direct from P-20 to Sa-1 without an

intermediary RP4 step. The plasmid species generated was that

characteristic of Sa-1 and a copy of Tn4135. The apparent instablility

of the Sa-1 plasmid could also help to explain the observations and, in

fact, the transfer of Tn4135 from RP4 to Sa-2 did reveal that Sa-1 not

only differed from Sa-2 in its expression of resistance markers, but also

in its involvement with Tn4135 transposition: Sa-2: :Tn4135 was of

predicted size. This implication that Sa-1 instability was involved,

however, was not substantiated by experiments with Tn_7, although it is

reasonable to assume that a combination of Sa-1 instability and the

presence ot the small Tp only transposon may be required to produce the

large molecular species. The transfer of Tn7 from RP4 to Sa-1 produced a
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plasmid species indicative of Sa-1 with 1h7 inserted into the Ka

resistance gene. Experiments with Sa-2, however, produced some

transconjugants with similar resistances to E coli J62(Sa-l::Tn4135)a ie

Sm/Sp Tp (plus Ap), and agarose gel electrophoresis indicated that the

plasmids were larger than those expected for Sa-2::Tn_7. This finding

coupled with the results for E coli J62(Sa-1;:Tn4135)a not only

indicates that both Tn7_ and Tn4135 are involved in the formation of

aberrant plasmid species, but is further evidence for the molecular

relatedness of these two transposons.

Other possibilities to explain the results are that the large plasmid

species is a contaminant or that it is a fusion product of either or both

RP4 and Sa-1 plasmids, mediated by Tn4135. Results of repeated transfers

Tn4135 to Sa-1 from RP4, to check the reproducibility of the

experiment, despite interference with Ap resistance, would tend to rule

out the former explanation, as the same large molecular species was

created again. Replicon fusion, on the other hand, with loss of the

resistance determinant regions of RP4 and Sa-1, could result in the

observed species. Bennett et al (1986) have suggested that there are

potential alternatives to 'conventional' transposition and reciprocal

recombination as a means to effect plasmid DNA rearrangements. The

existance in nature of dual replicons, constructed relatively easily in

the laboratory, have been suggested by Guerry et al (1974), Hedges et al

(1975), Jacoby et al (1976), Olsen and Wright (1976) and this is a

potential threat to the spread of resistance. A gene that is not

transposable and which resides on a non transmissable plasmid, could , by

replicon fusion, become part of another plasmid with a much wider host

range. The involvement of transposons ie Tn4135, in this replicon fusion

would be analogous to cointegrate formation (Grindley and Reed, 1985;
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Schmitt, 1986) or, alternatively, IS elements could mediate the fusion.

A comparison of transfer frequencies for Tn7_ and Tn4135, while not

conclusive, indicated that both these transposons transfer with a similar

frequency between RP4 and Sa plasmids. In both cases transfer takes place

100 fold more readily between RP4 and Sa-1 than between RP4 and Sa-2,

although why this should occur is uncertain. No firm conclusion can be

drawn, however, because of the interference and persistance of Ap

resistance. The presence of Ap resistance on a transposon - TnA - and its

world wide spread amongst bacteria of many different genera is now well

documented (Heffron et al, 1977). Ap Is heavily used in the community and

the increased use of Tp may result in analogous spread, although so far

Tn7_ is not as widely distributed.

Further evidence for the continuing diversity of drug resistance genes

and their transfer, arose from studies of the back transfer of Tn4135 ie

its transfer from (Sa-1::Tn4135)to RP4, as opposed to the transfer

from RP4 to Sa-1. The appearance of a large plasmid of 90 kb, on storage

of a 40 kb plasmid containing strain, E coli J62 (Sa-1::Tn4135),

further reiterates the instability of the P-20 system described in chapter

3. While it was assumed that Tn4135 had been mobilised by the intoduction

of Sa-1 into the original pig strain, it is possible that the smaller

plasmids of P-20 were comobilised. Their integration into the bacterial

chromosome, in a similar fashion to that in the transconjugant HI (Chapter

3), would explain the initial appearance of a 40 kb plasmid. Their

subsequent excision from the chromosome after storage and their fusion

with the 40 kb plasmid could then explain the observation of a 90 kb

plasmid. Reappearance of the small P-20 plasmids, probably by reexcision

from the 90 kb plasmid, occurrred on introduction of RP4, but RP4 itself

was conspicuous by its absence from the resulting Tp resistant
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transconjugants. This phenomenon of mobilisation of small plasmids by a

conjugative plasmid that is itself not detectable, has been described by

Flett et al (1981). The ability of transconjugants to harbour both Sa and

RP4, or Sa and Tn4135 but not RP4 and Tn4135, as determined by further

examination of colonies, suggests a transposon mediated incompatibility

function. This result is unexpected, since initial studies of Tn4135 were

performed with E coli J62(RP4:;Tn4135).

These results may be further evidence for the existence of two

different Tp resistance determinants in the original pig strain P-20

(chapter 3): one mobilised from P-20 by RP4 (E coli J62(RP4:;Tn4135) )

with similar transfer properties to Tn_7 and resulting in a plasmid of

unusually large molecular size on tranfer to Sa-1, and a second, mobilised

directly by Sa-1 which carries an incompatibility P function, preventing

its cohabitation in a strain with RP4. These genes are likely to reside

on the large P-20 plasmid and one of the smaller plasmids (Chapter 3).

®atta et al (1979) isolated an E coli strain with two unrelated Tp

resistance plasmids, so this finding is not new. It is probable,

therefore, that P-20 is an example of a strain possessing two systems for

the transfer of Tp resistance: transposition (possibly form the large

plasmid) and mobilisation of small non transferable plasmids. Datta and

Barth (1976) indicated that two methods were available to R483, the

plasmid from which Tn7 was first isolated, to manipulate the movement of

Tp markers - transposition and integration of R483 into the chromosone,

although this latter method was less flexible. (R751 has also been shown

to integrate into the chromosome of Bacteroides species - Shoemaker et al,

1986). Other reports (Towner, 1981; Towner et al, 1982; Popadopoulou et

al, 1986;) have also indicated the coexistance of two genetic systems
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(transposition and self-transmissible plasmids) which may have accounted

for the rapid dissemination of resistance to Tp in bacteria isolated from

human and veterinary specimens.

With the possibility that isolates may contain more than one system

for the transfer of Tp resistance, there is clearly a need to monitor the

effects of changing selection pressures on these systems. The transfer

systems are both complex and dynamic and are subject to the effect of many

selective pressures from within and external to the cell. The joint

existence of elements capable of transferring and transposing Tp

resistance, the particular properties of these elements, and the

widespread use of Tp in humans and animals help to explain the emergence

and continued spread of Tp resistance in different recipients.
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CHAPTER 6

DETERMINATION OF THE ORIGIN OF E.COLI J62(Sa-l:;Tn4135)a DNA
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INTRODUCTION

The evolution of resistance via plasmid DNA rearrangements is well

established and molecular studies of related, but different R plasmids

have clearly established the role of transposable elements (Chapter 4) in

many of these events. Transposition, together with reciprocal

recombination, using transposable elements (Schmitt, 1986) and other

regions of DNA (Peterson and Rownd, 1985) as units of DNA homology

provided an adequate explanation of the behaviour of plasmid complexes

(Labigne-Roussel et al, 1981, Nies et al, 1986). However, it has become

apparent that there are potential alternatives to conventional

transposition and reciprocal recombination as a means to effect plasmid

DNA arrangements and the generation of aberrant forms.

Rearrangements involving DNA sequences on two independent replicons

can generate dual replicons; defined as a single DNA molecule with two

independent origins of replication (Bennett et al, 1986). Such molecules

are likely to express dual incompatibility properties and probably

demonstrate unidirectional incompatibility towards plasmids similar to

either of the constituents, since their survival will not be dependent on

one specific origin of replication (Bennett et al, 1986). These replicons

are relatively easy to construct in the laboratory, and their existence in

nature has been attested by a few references to plasmids which have

arisen, or thought to have arisen, as the result of illegitimate

recombination between plasmids of different incompatibility groups (Guerry

et al, 1974; Hedges et al, 1975; Jacoby et al, 1976; Olson and Wright,

1976) and plasmids carrying two origins of replication (Crosa et al,

1975; Crosa et al, 1976; Clerget et al, 1982). Although such
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recombination events are expected to be rare, the potential of dual

replicons can not be ignored. The fusion of a non-transmissible plasmid,

carrying a non-transposable gene, with a plasmid of broader host range,

would have far reaching consequences to clinical medicine. Both Insertion

sequences (IS elements) (Kleckner, 1981; Grindley and Reed, 1985) and

transposons (Heritage and Bennett, 1985) can mediate the formation of such

hybrid replicons; that consist of both donor and target replicons with a

copy of the transposable element at each of the junctions formed between

the two plasmids. Such structures will inevitably show a degree of

instability (Nies et al, 1986) depending on the size of the transposable

element involved, (the larger the element, the greater the degree of

homology, and thus the greater the potential for resolution of the hybrid

replicon by reciprocal recombination) and the physical nearness of the two

participating elements on the cointegrate. When IS elements themselves

are involved, the cointegrates formed are relatively stable. R-plasmids

such as Rl, R6 and R100 have structures consistent with their formation

via IS1 mediated contegrate formation and Clerget et al (1982) have

demonstrated that both sections of these plasmids carry sequences capable

of functioning as replicative origins. However, cointegrates mediated by

transposons, such as Tn3, and formed as a normal consequence of the

transposition process (Arthur and Sherratt, 1979; Shapiro, 1979) are

normally only transient owing to the site specific recombination systems

encoded by the transposon. However, it has been reported that derivatives

of these elements lacking one of the short terminal inverted repeats, that

are characteristic of all transposons (Kleckner, 1981; Grindley and Reed,

1985; Schmitt, 1986), although no longer able to mediate normal

transposition, can mediate a transposition like recombination that

generates replicon fusions (Heritage and Bennett, 1985). Although this
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Tn3 like system is artificial a similar event has been shown to occur in

nature with the Km transposon of the small 8.6 kb pUB2380 plasmid,

isolated from a strain of E coli, obtained from farm sewage. The length

of DNA transposed, however, is not uniform, but a proportion of the

products are replicon fusions. There are also one or two reports of

recombination between plasmids via site specific recombination utilising

replication origins (Kilbane and Malany, 1980; Hirshel et al, 1982;

Clerget, 1984; O'Connor and Malamy, 1984).

An alternative means of generating DNA species of increased size is

afforded by DNA amplification: a mechanism whereby cells can alter their

phenotypic expression when increasing amounts of specific proteins are

required (eg during development) and, when faced by an environmental

challenge, can over produce specific proteins, thus conferring resistance

to otherwise lethal cytotoxic agents (Montogomery et al, 1983). The

duplication and amplification of DNA regions has played a relevant role in

evolution, but the significance of the phenomenon in gene regulation and

development has yet to be fully recognised. If the natural transfer of

genetic material is assumed to be a rare event, the advantages of

transferring high levels of resistance in one step are obvious and this

would have far reaching consequences on the administration of antibiotics;

effective chemotherapy would become even more limited. The beginings of

such an event may have been realised with the discovery of resistance

genes capable of amplification within a transposon. Eg. the 10.7 kb

transposon Tnl721 of the E coli plasmid pRSDl was found to form multiple

duplications of a 5.3 kb region specifying Tc resistance (Schmitt et al,

1979; Mattes et al, 1979; Wiebauer et al, 1981).
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The amplification of specific DNA segments has been observed both in

prokaryotes (Horiuchi et al, 1963; Rownd et al, 1975; Yagi and Clewell,

1976; Anderson and Roth, 1977; Meyer and Iida, 1979; Chandler et al,

1979; 1982; Fishman and Hershberger, 1983; Spies et al, 1983; Stark and

Wahl, 1984; Tlsty et al, 1984) and Eukaryotes (Schimke, 1982; Stark and

Wahl, 1984; Hamlin et al, 1984). It has been implicated in the

development of drug resistance in bacteria (Foster, 1983) and in

eukaryotic cells (Schimke, 1982; Scotto et al, 1986), eg. the

amplification of the mammalian DHFR gene is well documented (Alt et al,

1978; Federspiel et al, 1984). Additionally amplification has been shown

to be involved in normal cellular development (Long and Dawid, 1980;

Spradling and Mahowald, 1980; Chisholme, 1982) as well as in oncogenic

transformation (Delia Favera et al, 1982; Collins and Groudine, 1982;

George, 1984; Little et al, 1983) and in aging (Shmooklert Reis et al,

1983)

Some aspects of gene amplification in bacteria appear strikingly

similar to facets of gene amplification in higher cells (Schimke, 1982).

However, much of the work on DNA amplification has centred on bacterial

drug resistnce genes because of the suitability of this system for

investigating the genetic and molecular basis of the amplification

process, and because of the significance of this process to the spread of

bacterial drug resistance. The selective amplification of resistance

genes carried by bacterial plasmids - a phenomenon often called R-factor

transitioning (Peterson and Rownd, 1983; Rownd and Mickel, 1971) - and

some phages, has been observed in several genera, including E coli (Mattes

et al, 1979; Meyer and Iida, 1979), P mirabilis (Rownd and Mickel, 1971;

Rownd et al, 1975) and Streptococcus faecalis (Clewell et al, 1974; Yagi

and Clewell, 1976,1977). Gene amplification itself has been detected in
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most regions of the bacterial genome (Anderson and Roth, 1977; Edlund et

al, 1979; Young, 1984), although not at the same frequencey (Folk and

Berg, 1971), hot spots for amplification have emerged (Stark and Wahl,

1984). The integration of plasmids into the chromosome has also been

shown to lead to amplification (Gutterson and Koshland, 1983; Young,

1983), possibly by providing suitable homologous regions at which

recombination can take place. A positive correlation between the level of

drug resistance and gene dosage has often been observed (Rownd and Mickel,

1971; Uhlin and Nordstrom, 1977; Edlund et al, 1979; Meyer and Iida, 1979;

Clewell, 1981; Schmitt et al, 1981; Scott et al, 1982), although an

increase in gene dosage may also have occurred as a result of#an increase

in plasmid copy number as opposed to the selective amplification of

specific regions of DNA carrying the drug resistance genes (Kontomichalou

et al, 1970; Cabello et al, 1976; Futcher, 1986). It is, however, widely

believed that antibiotics select but do not induce gene amplification

(Hashimoto and Rownd, 1975; Iida et al, 1983); that is to say amplified

forms already exist at low levels in the environment as a result of

recombination or spontaneous amplification. Gene amplification in

bacteria, phage and plasmids has been shown to occur spontaneously at a

frequency ranging from 10""to 10-^ (Anderson and Roth, 1977). The

finding of a return to non amplified forms in bacterial cultures after

removal of drug stress, is further evidence for amplification merely being

the selective outgrowth of plasmid or host determinants with enhanced

amplification potential.

Investigations of the amplification process have involved studying the

structure of the molecules (Rownd et al, 1979) and proposing models to

explain the observed amplification (Clewell, 1981; Foster, 1983; Mahajan
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et al, 1985). It is known that the amplifiable DNA sequences are flanked

by directly repeated homologous sequences, often IS sequences (Ptashne and

Cohen, 1975; Chandler et al. 1977), although Peterson and Rownd (1983)

have shown that sequences other than IS elements can serve as

recombination sites, and certain host recombination and replication

functions are involved in the amplification process (Yagi and Clewell,

1980; Foster, 1983; Iida et al, 1983; Spies et al, 1983; Chandler and

Galas, 1983). Work by Mahajan et al (1985) confirmed the involvement of

the Rec A gene product in amplification and implied that the amplification

process was dependent on a large number of host genes, some of which were

not involved in recombination.

Between 1965 and 1970 there was considerable controversy as to the

exact nature of the R factors involved in amplification and this appeared

to vary with the host. Japanese coworkers supported the view that R-

plasmids were single units of transfer and replication (Watanabe, 1963;

Mitsuhashi, 1969) , whereas Anderson (1969) in Great Britain believed they

were often dissociated independent units - a resistance transfer factor

(RTF) carrying the genes for plasmid replication and transfer and the

resistance determinant (R-det) carrying the resistance genes. It is now

thought that both forms occur, the genetic nature being determined by the

particular ecological situation. In E coli and Serratia marcescens RTF

and R-dets appeared to be associated in the form of composite structures

(Cohen and Millar, 1970; Nisioka et al, 1970; Cohen et al, 1971; Rownd et

al, 1972; Clowes, 1972; Kontomichalou et al, 1970), whilst in P mirabilis

there is considerable evidence that RTF and r-dets dissociate and

reassociate in such a way as to regulate the number of copies of r-dets

(and therfore drug resistance genes) per host cell (Rownd and Mickel,

1971) . It was Anderson in 1968 who first proposed that 'under suitable
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conditions' many R-factors could dissociate physically into r-dets and RTF

and this was confirmed by further genetic experiments (Anderson and

Natkin, 1972) and by molecular studies (Milliken and Clowes, 1973). The

bacterial R plasmid NR1 of incompatability group FII is one of the most

extensively characterised systems of antibiotic resitance gene

amplification (Hashimoto and Rownd, 1975; Peterson and Rownd, 1985). The

drug resist3nce genes, apart from Tc resistance (Miki et al, 1978; Rownd et

al, 1978) are separated from the rest of the plasmid by IS1 elements in

direct orientation (Hu et al., 1975; Rownd et al, 1979). These elements

serve as recombination sites for amplification of the r-det region in drug

containing medium (Chandler et al, 1977; Silver et al, 1980; Peterson and

Rownd, 1985), resulting in tandem r-det multimers. Although the r-det

region is present as an independent supercoiled molecule, under certain

conditions, it does not appear to be a replicon (Chandler et al, 1979;

Perlman and Rownd, 1975; Rownd and Mickel, 1971; Silver et al., 1980;

Chandler et al, 1982b) although Clowes (1972) suggested that this r-det

could replicate under relaxed control. Regions other than transposable

elements have also been shown to facilitate recombination and other

genetic rearrangements eg Peterson and Rownd (1983) implicated a part of

the chloramphenicol resistance gene of NR1.

The amplification process itself, has been described in a number of

ways (Rownd et al, 1979; Clewell et al, 1979; Wiedemann, 1981; Peterson

and Rownd, 1985): the unequal crossing over between the flanking direct

repeats of two newly formed copies of a sequence in a partially

replicative genome (Edlund and Normark, 1981); the homologous exchange

between the flanking direct repeats of the same element, leading to the

excision of a small circle which can then reintegrate next to a
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preexisting homologous sequence (Yagi and Clewell, 1977). This type of

dissociation and reassociation mechanism has been described for NR1 (Rownd

et al, 1972). An alternative model involves recombination between two

copies of a circular genome at the position of the flanking repeats of the

amplifiable sequence, to generate a dimer in which the two copies of this

sequence lie in tandem. Resolution of this dimer by crossing over between

the direct repeats would generate monomers; one with both copies of the

amplified sequence and one with only one copy of the direct repeat (Yagi

and Clewell, 1977). Whilst all these models involve postreplicative

redistribution of the amplified element among the progeny genomes, leading

to clustering of several copies, Mahajan et al (1985) describe a model for

Tn9 amplification that takes place under conditions where the normal

genomic replication is inhibited. There are thus a number of ways in

which extrachromosomal DNA can be amplified and rearranged.

To investigate the possibility that the enlarged molecular species of

E coli J62(Sa-l:;Tn4135)a may have resulted from a spontaneous

amplifiction, from replicon fusion of the plasmids RP4 and Sa-1 or from

multiple transposition, the nature of this species was examined further.
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MATERIALS AND METHODS

BACTERIAL STRAINS

The strains, other than standard strains, utilised in this chapter,

and their source, are given in table 6.1.

PHAGE SENSITIVITY BY SPOT TESTING

Nutrient agar plates were flood seeded with overnight broth cultures

of the bacteria to be tested. Once dry, 20 ul quantities of the phage

suspensions were spotted on to the plate. The plates were incubated

overnight and the observation of any plaques was scored as sensitivity.

PHAGE PURIFICATION

Phage overlays were set up with neat, 10-^ and 10"^ diluted

phage, as described in chapter 5. A single large plaque was removed from

the agar and placed in 1 ml of nutrient broth. After vortexing, the

mixture was centrifuged (2874 g for 1 minute) and the supernatant

collected. This was diluted 10-^, 10-^ and 10-^ in nutrient broth

and titred on appropriate plasmid containing bacterial cells. One to two

millilitres of nutrient broth was added to the plate displaying confluent

lysis and allowed to soak in. The top agar layer was removed by gently

scraping the surface of the plate with a spreader. This was pipetted into
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TABLE 6.1: BACTERIAL STRAINS

STRAIN PLASMID/TRANSPOSON MOLECULAR RESISTANCE REFERENCE
SIZE MARKERS

E coli J62 (Sa-1::Tn4135)a 70 kb Sm/Sp Tp Chapter 5

E coli J62 (Sa-1::Tn4135)0RI 40 kb Sm/ Sp Su Ka Tp Chapter

E coli J62 HI > 90 kb Tp Chapter

E coli J62 (RP4::Tn7) 70 kb Ap Ka Tc Tp Chapter
Sm/ Sp
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an eppendorf tube and spun in a microfuge (2874 g for 1 minute) to pellet

the agar. After transferring the supernatant to a fresh eppendorf, the

solution was spun again for 4 minutes to pellet the bacteria. The

supernatant was filter sterilised and the phage suspension retitred on an

appropriate plasmid containing strain, by overlaying neat, 10"2 and

10"^ diluted samples.

The methods used for the preparation of media, resistance testing and

the standard conjugal mating are as indicated in Chapter 3. Agarose gel

electrophoresis for molecular weight determination was performed as

described in Chapter 1 and the techniques for phage overlays and

restriction enzyme analysis can be found in chapters 5 and 2 respectively.
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RESULTS

PRELIMINARY ANALYSIS OF E COLI J62(Sa-1;:Tn4135)£ BY PHAGE SENSITIVITY

The resistance profile of E coli J62 (Sa-1::Tn4135)a suggested that

neither RP4 nor Sa-1 was present. Therefore, this strain, plus E coli

J62(Sa-l), E coli J62 (RP4) and E coli J62 were tested for their

sensitivity to phage PR4 (a phage specific for strains harbouring Inc P

and Inc W plasmids) with simple spot tests. PR4 lysed Sa-1 and RP4

containing strains as expected and also lysed E coli J62 (Sa-1;:Tn4135)a

indicating that this latter strain contains an Inc W and/or an Inc P

plasmid.

INCOMPATIBILITY TESTING OF THE PLASMID HARBOURED BY E COLI

J62(Sa-l;;Tn4135)£

In order to determine whether E coli J62 (Sa-1;:Tn4135)a harboured

an Inc W or an Inc P plasmid, the plasmids RP4 (Inc P) and R7K (Inc W)

were individually introduced into E coli J62 (Sa-1::Tn4135)a and E

coli J62 (Sa-1) in standard 5 hour matings, selecting for the incoming

plasmids. Mating plates contained DM base supplemented for strains J62 or

J53, plus Ap at 20 ug/ml. Table 6.2 indicates the transfer frequencies

for the introduction of RP4 and R7K into the two strains. After

subculturing colonies twice on nutrient agar plates with out selection, a

single colony was sub-cultured in nutrient broth and incubated overnight,

before diluting 10"* 6 and plating on nutrient agar. Twenty of these

colonies from each mating were tested for cotransfer of the other

resistance markers (Table 6.3)
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TABLE 6.2: TRANSFER FREQUENCIES FOR THE INTRODUCTION OF RP4 AND R7K
INTO E COLI J53(Sa-1) AND E COLI J62(Sa-1::Tn4135)a

DONOR PLASMID RECIPIENT STRAIN TRANSFER FREQUENCY PER DONOR CELL

RP4 Sa-1 5.759 X 10-5

R7K Sa-1 3.001 X 10~5

RP4 (Sa-1::Tn4135)a 9.550 X 10"1

R7K (Sa-1::Tn4135)a 4.270 X 10_1

TABLE 6.3: SENSITIVITY OF TRANSCONJUGANTS TO Ap,Tp AND Sp

TRANSCONJUGANT Ap Tp Sp

E coli J53(RP4, Sa-1) R S R

E coli J53(R7K, Sa-1) R S S

E coli J62(RP4, Sa-1::Tn4135)a R S S

E coli J62(R7K, Sa-1::Tn4135)a R R R
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As expected the resistances indicate that RP4 and Sa-1 coexist in the

same cell, and the introduction of R7K results in the loss of Sa-1. The

introduction of RP4 and R7K into E coli (Sa-1:;Tn4135)a, however,

suggests that the large plasmid of this strain has an Inc P function,

since the introduction of RP4 results in the loss of Sa-1:;Tn4135 whereas

R7K and this large plasmid species can exist stably in the same cell.

Agarose gel electrophoresis of plasmid DNA from representative

colonies (results not shown) confirmed the antibiotic sensitivity results;

two plasmid species were observed in strain E coli

J62(R7K,Sa-1::Tn4135)a, representative of R7K and the large plasmid

species and only one, of a size commensurate with RP4, was observed in

preparations of E coli J62 (RP4,Sa-l::Tn4135)a.

SENSITIVITY OF E COLI J62 (Sa-1:;Tn4135)£ TO PHAGES PR4 AND PRR1

In order to check the hypothesis that E coli J62 (Sa-1::Tn4135)a

might contain the plasmid RP4 (as suggested by the above incompatibility

experiment), or at least the incompatibility region of this plasmid, cells

were tested for lysis with phages PRR1 and PR4. E coli strains harbouring

RP4, Sa-1, R7k, RP4::Tn4135 and RP4::Tn7_ were used as controls to check

the selectivity of the PR4 and PRR1 phage suspension. E coli

J62(Sa-1::Tn4135)0RI was also tested since this strain, unlike E coli

J62(Sa-1::Tn4135)a, had been generated without an intermediary RP4

transfer step.
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1. Lysis with stock PRR1 and PR4 phage

E coli J62 (RP4), E coli J53 (Sa-1), E coli J62 (R7K), E coli J62

(RP4::Tn7), E coli J62 (RP4::Tn4135), E coli J62 (Sa-1:;Tn4135)a and E

coli J62 (Sa-1::Tn4135)ORI were grown up overnight in nutrient broth

(4.5 ml) and diluted as appropriate. The phages PRR1 (neat and lO-^

dilutions) and PR4 (lO-^ dilution) were utilised in phage overlays of

the above cultures and the plaque counts are shown in Table 6.4.

Unexpectedly, PRR1 lysed Inc W plasmid-carrying strains, as well as Inc

P, which raised doubts as to the specificity of this phage.

11. Determination of PRR1 phage Titre

Due to the unexpected results with phage PRR1, this phage was titred

on the Inc P plasmids RP4, R751 and the Inc W plasmid Sa-1. Overnight

cultures of E coli strains harbouring these plasmids were set up and PRR1

was diluted 10"^, 10"^ and 10"^. Cultures were overlayed and the

number of plaque forming units per ml for each bacteria were calculated.

Although phage PRR1 lysed Sa containing strains, it did so at a lower

efficiency of plating (eop). The phage count on strain J53 (Sa-1) was 8.0

x 10^ pfu/ml, where as the same phage preparation gave 1.8 x 10^ pfu

on J53 (RP4) and 1.8 x 10^ pfu/ml on J62 (R751). Therefore, PRR1

genuinely does lyse cells containing the Inc W plasmid Sa, albeit at an

eop which was 800 times lower than its ability on Inc P plasmid containing

cells. This is in contrast to previously reported data on this phage.
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TABLE 6.4: PLAQUE COUNTS FOR PRR1 AND PR4 LYSIS

STRAIN PRR1 PR4

pfu/ml pfu/ml

E coli J53(RP4) confluent confluent

E coli J53(Sa-1) > 108 3 x 107

E coli J62(R7K) > 108 < 1 x 107

E coli J62(RP4: :Tn7_) confluent confluent

E coli J62(RP4::Tn4134) confluent confluent

E coli J62(Sa-1::Tn4135)a < 10 < 1 x 107
E coli J62(Sa-1::Tn4135)ORI 4.72 x 105 2.2 x 108
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111. Lysis with Purified PRR1

As phage PRR1 was unexpectedly lysing Inc W containing strains, a new

phage preparation was purified on E coli cells. The initial titre was 2.6

x lO? pfu/ml rising to 3.7 x 10^ pfu/ml after the final purification.

The phage lysis experiment (see 1. above) was repeated with this new

purified PRR1 phage diluted 10" 2 and 10-^ and a similar experiment was

run in parallel with RP4. (One drop of bacterial culture was used instead

of three). As with previous results, PRR1 lysed Inc W plasmid containing

strains (Table 6.5) but the eop was 100 fold lower than it was on strains

containing the Inc P plasmid RP4. If a difference of 100 fold in eop is

considered significant then, contrary to the incompatibility results, the

phage lysis experiments indicate that E coli J62 (Sa-1::Tn4135)a

genuinely does contain the plasmid Sa-1 rather than regions of RP4.

ANALYSIS OF THE E COLI J62 (Sa-1;;Tn4135)£ PLASMID BY CONJUGATION WITH P

AERUGINOSA

However, the phage lysis experiments remain inconclusive and thus a

conjugation experiment with P aeruginosa was used as an alternative means

of determining the presence or absence of the inc P plasmid RP4. (Inc P

plasmids are easily transferred and stably maintained within this

bacterial species, whilst Inc W plasmids are either not transferred at

all, or not as readily.), any differences in transfer frequency between E

coli J62(Sa-l:;Tn4135)a and E coli J62(Sa-1::Tn4135)ORI would

therefore help to establish the origin of the DNA in the former strain.
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TABLE 6.5: PLAQUE COUNTS FOR PURIFIED PRR1 AND PR4 LYSIS

PLASMID SPECIES PRR1 PR4

pfu/ml pfu/ml

RP4 9.92 x 109 9.0 x 108

Sa-1
. 1.00 x 107 4.0 x 107

Sa-1::Tn4135a 4.00 x 107 7.0 x 107

Sa-1::Tn4135ORI 7.00 x 108 1.4 x 108
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P aeruginosa Pa08, RP4 and Sa-1 controls were tested for their

resistance to various selection agents (Ka, Su, Nal and plates containing

methionine isoleucine and valine - met ilv - the auxotrophic requirements

of P aeruginosa Pa08), to determine suitable markers for the transfer

experiments. However, difficulties arose in finding suitable markers to

select against E coli and differentiate between P aeruginosa cells devoid

of any plasmids, and those harbouring RP4 or Sa-1 controls. Despite RP4

and Sa-1 having differing Ka MIC's, of 140 ug/ml and 40 ug/ml

respectively, the intrinsic resistance of P aeruginosa Pa08 to Ka was too

high 160 ug/ml) in the auxotrophic medium required to select against E

coli. Attempts to select against E coli using Nalidixic acid at 10 ug/ml

were unsucressful. The use of sulphonamide resistance, although

theoretically capable of distinguishing between individual strains,

produced inconclusive results and it was not possible to ascertain the

plasmid content of E coli J62(Sa-1;:Tn4135)a by transfer into

P aeruginosa.

RESTRICTION ANALYSIS OF E COLI J62 (Sa-1;:Tn4135)£ DNA

In order to characterise the large plasmid species of E coli J62

(Sa-1::Tn4135)a and determine its origin, restriction enzyme analysis

was carried out. Figure 6.1 (a, b and c) indicate the results of

restricting this strain, and E coli strains harbouring RP4, Sa-1,

(Sa-1::Tn4135)0RI, RP4::Tn4135 and transconjugant HI with the

restriction endonucleases Hind III, Bam HI and Pst I respectively.

Restriction with all three enzymes indicated differences between E

coli J62 (Sa-1::Tn4135)a and E coli J62 (Sa-1;:Tn4135)ORI. Whilst

Sa-1::Tn4135a, like RP4::Tn4135, possessed the two characteristic
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internal Hind III fragments of approximately 2.4 and 2.1 kb,

Sa-1: :Tn4135^-1-> and transconjugant HI, did not. These latter two

strains also shared a small fragment (approximately 2 kb) not found in the

former two strains. Bam HI restriction of E coli J62 (Sa-1::Tn4135)ORI

indicated that the transposon possessed at least two Bam HI sites whereas

analysis of RP4::Tn4135 and Sa-1:;Tn4135a would suggest that Tn4135

lacked any Bam HI sites. This result reiterates the view that the two

transposons are different and therefore have different origins. Bam HI

restriction of Sa-1::Tn4135a DNA, in comparison with Sa-1, indicated a

common 21 kb fragment and a possible increase in size of the smaller Sa-1

fragment, inferring, not only that Sa-1 was present in this strain but

that the transposon was located in the smaller Bam HI fragment of Sa-1.

Pst I digestion of E coli J62 (Sa-1: :Tn4135)OR-1- in comparison with E

coli J62 (Sa-1::Tn4135)a also revealed additional bands in the former

strain, confirming that the two strains harboured different transposons.

STABILITY OF (Sa-1:;Tn4135)a DNA DURING TRANSFER

In order to ascertain the stability of the plasmid harboured by E coli

J62 (Sa-1::Tn4135)a, this species was conjugated with E coli J53 in a

standard one hour mating. Selection was made on DM plates supplemented

for the J53 strain and containing Tp and Sp. (Sa-1::Tn4135)a

transferred with a frequency of 1.07 x 10~1 per donor cell and its

resistance profile revealed that transconjugants were resistant to Tp Sp

and Sm. This result, along with molecular weight analysis which revealed

that transconjugants harboured a plasmid of approximately 70 kb, indicated

that this molecular species was stable.
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DISCUSSION

The evolution of bacterial drug resistance via plasmid DNA

rearrangement is well established and many different mechanisms have been

implicated in the generation of aberant forms (Nies et al, 1986; Bennett

et al, 1986; Saunders et al, 1986; Grinsted, 1986). Genetic

rearrangements via mutation, recombinational events and conjugal transfer

are taking place all the time and those that prove to be beneficial are

selected for and become established. The transfer of Tn4135 from the Inc

P plasmid, RP4, to the Inc W plasmid, Sa-1, (Chapter 5) was shown to

generate a molecular species of uncharacteristically large size ( between

60 and 70 kb as opposed to the expected size of 36 - 40 kb) and it remains

to be seen whether this is an evolutionary step that confers a selective

advantage on the E coli host. Transfer studies have certainly indicated

that this species is stable and can be readily exchanged between E coli

J62 and J53 strains without a reduction in size. The mechanisms involved

in the generation of E coli J62(Sa-1::Tn4135)a are unclear but

transposition (Kleckner, 1981), replicon fusion (Bennett et al, 1986) and

spontaneous amplification (Schimke, 1982) could all be inferred in the

production of this large species.

The use of incompatibilty function to characterise plasmids is well

established and the present investigation demonstrates that the molecular

species harboured by E coli J62(Sa-1::Tn4135)a possesses an Inc P

function. The introduction of RP4, an Inc P plasmid (Datta et al, 1971)

into the above strain resulted in the loss of the (Sa-1;:Tn4135)a

species, whilst R7K, of Inc group W (Ward and Grinsted, 1982) and

therefore of the same group as Sa-1, was able to stably coexist with
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a

(Sa-1::Tn4135) . Whilst the resistance profile suggested that neither

RP4 nor Sa-1 was present, this result confirms that RP4 , or at least the

region of DNA encoding the incompatibility function, is present. The

above finding, coupled with the large molecular size of the species could

be explained by multiple transposition of Tn4135 into RP4. Insertional

inactivabon or transposition-associated deletion could account for the

lack of resistance determinants: Barth and Grinter (1977) have shown that

the insertion of lh7 into RP4 caused deletions. Alternatively the above

results could be accounted for by Tn4135-mediated transfer of some of the

RP4 genome, after aberrant excision from the Inc P plasmid, or by a Tn4135

encoded incompatibility P function, that somehow switched off the plasmid

encoded functions. Transposons are known to be capable of acting as

biological switches either by direct insertion (Nies et al, 1986) or by

causing polar mutations (Kleckner et al, 1975).

Contradictory results were obtained from phage lysis experiments.

Whilst lysis with PR4 - a phage specific for P-, N- and W- group plasmids

(Bradley and Rutherford, 1975) which attaches to the tips of the P-l pili

(Bradley and Cohen, 1977; Bradley, 1976) of host cells harbouring one of

the above plasmids - indicated that either, or possibly both, an Inc P or

an Inc W plasmid were present, Phage PRR1 lysis suggested that only Sa-1

was present. These latter experiments were not conclusive however,

because of the poor specificity of the phage PRR1 preparations (Olsen and

Thomas, 1973; Bradley, 1974) and they, therefore, did not rule out the

possibility that RP4 was present also. If Tn4135-mediated transfer of RP4

DNA was reponsible for the observed increase in size, the PRR1 phage

plating frequencies might be expected to be greater for E coli

J62(Sa-1::Tn4135)a than for E coli J62(Sa-1::Tn4135)ORI. This,

however, was not the case; there being little significant difference in
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the eop for the above two strains. Whilst not ruling out this mechanism

all together, the results indicate that if RP4 DNA is present, it does not

encode the genes reponsible for conferring P-l pilus production on the

host cell.

The above paradox between the presence of RP4 DNA in some experiments

and Sa-1 DNA in others, could be explained by replic on fusion (Bennett et

al, 1986). Although dual replicons are likely to express dual

incompatibility properties and demonstrate unidirectional incompatibility

towards plasmids similar to either of the constituents, it is possible

that one set of Inc functions are switched off or deleted by the fusion

process. Just as amplification is thought to pose a biosynthetic burden

on the cell, the fusion of two fairly large plasmids could result in a

species too large to be accomodated or controlled by the host cell. By

recombinational events certain genes, including those for drug resistance,

could be lost. Transposon mediated fusions (cointegrates - Bennett et al,

1986) are known to be transient; recombination events resulting in their

resolution. There is therefore the potential for aberrant resolution

leading to the loss of some regions of DNA, but not the total separation

into constituent replicons. This situation may be further complicated by

the findings of Yusoff and Stannisch (1984). They indicated that RP1,

which is physically and genetically indistinguishable from RP4, encodes

two fertility inhibitory functions against Inc W plasmids. Whilst not

thought to affect surface exclusion properties, one of these functions

affects the production of P-l pili by the host cell and this inevitably

effects phage attachment. This might account for phage results suggesting

the presence of Sa-1 only, especially if Sa-1 encodes similar functions

which affect RP4.
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Restriction data, whilst not establishing which mechanism(s) was

responsible for the generation of E coli J62(Sa-1:;Tn4135)a, revealed

differences in the origin of the extrachromosomal DNA of this species and

that of E coli J62(Sa-1: :Tn4135)ORI (Figure 6.2). A comparison of Hind

III fragments indicated that the E coli J62(Sa-1::Tn4135)a strain, like

E coli J62(RP4: :Tn4135), possessed the two characteristic "Tn_7 like'

internal fragments (Barth and Grinter,1977), but E coli

J62( Sa-1; ;Tn4135)(-)R^, like transconjugant HI, did not. This result is

further evidence for the view that the original pig isolate, P-20,

contains more than one Tp resistance gene (Chapter 3). This theory is

substantiated by the finding of a small (aproximately 2 kb) Hind III

fragment common to E coli J62(Sa-l::Tn4135)ORI and transconjugant HI

(containing the large original pig plasmid) but absent from RP4::Tn4135

and (Sa-1::Tn4135)a containing strains. A comparison of Sa-1 and

(Sa-1;;Tn4135)a Hind III digested DNA confirmed the phage lysis results

and indicated that Sa-1, or at least the large Hind III fragment,

containing the genes for transfer and replication, was present. It was

not possible to determine whether any RP4 DNA was present as well, since

Hind III restricts RP4 only once (Barth and Grinter, 1977). Whilst the

Hind III fragments of (Sa-1: :Tn4135)0R-*- added up to the predicted

molecular weight (38 kb) those of (Sa-1:;Tn4135)a did not, suggesting

that more than one copy of some of the fragments may be present.

Amplification or multiple transposition would result in an increase in the

number of copies of some fragments. Both Sa-1 and Sa-1::Tn4135a DNA

would appear to be restricted twice by Bam HI, suggesting that Tn4135 has

no Bam HI sites. Whilst this contrasts with results of Bam HI restriction

of RP4::Tn4135 (Chapter 4), which inferred that Tn4135 had one Bam HI

site, it is possible that the position of insertion of Tn4135 into Sa-1
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FIGURE 6.2: A DIAGRAMATIC COMPARISON OF THE RESTRICTION

FRAGMENTS OF THE TRANSPOSONS HARBOURED BY E COLI

J62 (Sa-1: :Tn4135)a AND E COLI J62 (Sa-1: : Tn4135)°RI

Sa-1 : Tn4135" Sa-1: :Tn4135ORI

Hind III

Bam HI

Pst I
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could have lead to the generation of a fragment too small to be detected.

This would result in the two strains appearing to have equal numbers of

restriction sites. An increase in the size of the smaller fragment of

Sa-1, indicates that the additional DNA may have inserted into the

resistance gene portion of Sa-1. Again it is not possible to confirm the

presence or absence of RP4 DNA because of the lack of restriction sites.

(Sa-1: ;Tn4135)OR-1- digestion with BamHl again indicates that two

different systems are being examined; this species has at least two BamHl

sites whilst (Sa-1::Tn4135)a has none. Similar differences were

observed after Pst 1 digestion although why (Sa-1::Tn4135)a should

possess two Pst 1 fragments when Sa-1 has only one Pst 1 site (Chapter 2)

and Tn4135a has no cuts sites; as determined by restriction of

RP4::Tn4135 and RP4::Tn7 (Chapter 4), is unclear.

In conclusion, the generation of E coli J62(Sa-1::Tn4135)a may have

involved more than one of the previously mentioned mechanisms (Figure

6.2). RP4 DNA may have been integrated into the Sa-1 molecule , along

with Tn4135, generating homologous sequences at which recombinational

events can occur. Such events may have resulted in the deletion of

unselected resistance genes as well as the spontaneous amplification of

other regions. What is evident is that two different genetic elements are

responsible for the formation of E coli J62(Sa-l::Tn4135)a and E coli

J62(Sa-1::Tn4135)ORI.

*
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CHAPTER 7

BIOCHEMICAL ANALYSIS OF THE DIHYDROFOLATE REDUCTASE ENCODED

BY THE TRIMETHOPRIM RESISTANCE TRANSPOSON Tn4135
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INTRODUCTION

Dihydrofolate reductase (DHFR) catalyses the NADPH-dependent reduction

of dihydrofolate (DHF) to tetrahydrofolate, and is therefore usually an

essential enzyme in bacterial metabolism. Its inhibition leads to

impaired synthesis of protein, RNA, and DNA and is usually lethal for

prokaryotic and eukaryotic cells (Blakely, 1969), although recently a

bacterial mutant lacking DHFR has been reported (Singer et al, 1985). Due

to the crucial role played by this enzyme in providing adequate levels of

reduced cofactors, it has long been recognised as a susceptable site for

chemotherapy of neoplastic disorders, malaria and certain other diseases

(Blakely, 1969).

Over the last 25 years DHFR has attracted intense research interest

for several different reasons. As a target for the actions of

antineoplastic (Condit, 1971) and antimicrobial folate analogs, such as Tp

(Burchall and Hitchings, 1965), the structure of the protein and of its

binding sites has received considerable attention (Kisliuk and Brown,

1979). The small size of the protein and the ease of active site

labelling have made DHFR one of the best systems for studying evolutionary

aspects of protein structure as well as structure function relationships

(Mathews, 1979; Stone et al, 1979). The importance of gene amplification

as a genetic regulatory mechanism (Nunberg et al, 1978) has been

spotlighted, as a result of studies on DHFR overproduction in drug

resistant cells, and interest has centred around the possibility that the

protein itself may be a genetic regulatory element (Sirotnak and McCuen,

1973; Sheldon and Brenner, 1976). In addition the finding that Tp drug

resistance factors code for DHFR's of unusual properties has stirred
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interest in the origins and roles of these plasmid encoded enzymes (Amyes

and Smith, 1976; Pattishall et al, 1977; Smith et al, 1979). Information

about the structure and biophysical parameters of DHFR from diverse

sources has already helped in the understanding of its activity and in the

design of species specific inhibitors. It may even have given some

insight into the characteristics of rapidly proliferating cells such as

those found in cancer and during development.

DHFR was first purified to homogeneity from T4 phages (Erickson and

Mathews, 1971) but it has been isolated and purified from many different

sources including mouse leukemia cells (Bertino et al, 1965; Perkins et al

1967), mammalian cells (Greenberg et al, 1966; Perkins et al, 1967;

Gauldie et al, 1973),trypanasomes such as Crithidia fasciulata (Iwai et

al, 1981), protozoa (Diggens et al, 1970), avian sources (Kaufman and

Gardiner, 1966), worms and schistosomes (Jaffe and McCormack, 1967), and

many bacteria (Blakeley and McDougal, 1961; D'souza et al, 1972;

Mandelbaum-shavit and Grossiwicz, 1974; Williams et al, 1977; Dann et al,

1976; Young et al, 1987). The bacterial and phage coded DHFR's have been

intensively studied because of their relative abundance and ease of

preparation. A number of DHFR genes have also been sequenced (Gleisner et

al, 1974; Bennett, 1974; Stone et al, 1977; Bitar et al, 1977; Stone et

al, 1979; Zolg and Hanggi, 1981; Swift et al, 1981; Simonson et al, 1983;

Brisson and Hohn, 1984) and X-ray crystallography has been used to

determine the structure of the DHFR molecules and their enzyme inhibitor

complexes (Mathews et al, 1977,1978; Bolin et al, 1982; Volz et al,

1982). The aim of many of the studies has centred on understanding the

interaction between the enzyme and tight binding inhibitors such as

methotrexate, for the purpose of facilitating rational drug design

(Montogomery et al, 1971; Gready, 1980; Cocco et al, 1981). However in
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recent years interest has focused on the evolution and classification of

DHFR's, and in particular those mediated by plasmids.

In 1972, Fleming et al reported the presence of bacterial R plasmids

which conferred high levels of Tp resistance upon their hosts. Later

reports (Amyes and Smith, 1974; Skold and Widh, 1974) demonstrated that

the R plasmids encoded Tp insensitive DHFR's. These resistant enzymes

were found to be much larger than the sensitive chromosomal DHFR, with

molecular weights of about 35,000 as compared vrlh 21,000 for the E coli

chromosomal enzyme (Amyes and Smith, 1974; 1976; 1978; Pattishall et al,

1977). During the initial identification of the plasmid mediated DHFR's

the properties of the enzymes from different plasmids appeared very

similar (Amyes and Smith, 1978), the only difference being in the quantity

of enzyme produced. However, it was clear from subsequent studies in a

French Hospital that some R plasmids (R67, R67bis and R27) encoded DHFR's

with very different properties (Pattishall et al, 1977). The enzymes

were not only produced in lower quantities but were less susceptible to

Tp. The plasmid encoded enzymes were therefore arbitrarily subdivided

into two major groups, although it has recently become clear that there

are at least four different classes (Amyes, 1986), distinguishable from

each other on the basis of molecular size, inhibition profiles and heat

lability (Pattishall et al, 1977; Broad and Smith, 1982; Joyner et al,

1984). The type I enzyme (exemplified by the DHFR from R483 - Barth et al

1976) was first identified in Britain on plasmids belonging to only one

incompatibility group, but was later found to have spread to other groups

(Fleming et al, 1972; Hedges et al, 1972; Datta et al, 1981). This

diversity in plasmid host can be explained by the location of this gene on



23h

a transposon, Tn7_ (Barth et al, 1976; Elwell et al, 1979). The protein

consists of two identical subunits of molecular weight 18,000 (Novak et

al, 1983), is heat labile and the level of Tp needed to inhibit the enzyme

by 50% is several 1000 fold higher than that required to inhibit the E

coli chromosomal DHFR by the same amount. An enzyme with similar

biochemical properties to the type I DHFR, but differing markedly in

molecular weight - 24,500 (Young and Amyes, 1985a) - was extracted from a

clinical plasmid isolated from a urinary pathogen in Edinburgh (Young and

Amyes, 1983; 1985a). Like the prototype type I gene, this DHFR is

encoded by a transposon, Tn4132, and due to it's strong enzymic similarity

to the DHFR of Tn_7, is thought to have evolved from the type I enzyme

(Amyes, 1986). In contrast, the type II enzyme (exemplified by R67)

consists of four subunits, all with a molecular weight of 9,000 (Smith et

al, 1979; Fling and Elwell, 1980), is relatively heat stable and is about

100 fold less sensitive to Tp than the Type I, having a value of

about 0.15 mM (Amyes and Smith, 1976; Pattishall et al, 1977; Tennhammer

Ekman and Skold, 1979), compared with 20 uM for the type I. The type II

DHFR gene itself has been described less commonly than the type I gene, in

association with the spread of Tp resistance (Hedges et al, 1972; Shapiro

and Sporn, 1977; Patishall et al, 1977), but like the type I has been

detected in plasmids of different incompatibility groups from Europe and

North and South America. Surveillance however, has not been as

comprehensive (Fling et al, 1982; Mayer et al, 1985).

Tennhammer Ekman and Skold (1979) reexamined the properties of the

DHFR encoded by R751, R388 and R483 and concluded that these three enzymes

were distinct from each other. Although R388 and R751 were found to be

similar to the type II (Patishall et al, 1977), in terms of heat

resistance and quantity of enzyme produced, they differed in their
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relative sensitivities to Tp. Broad and Smith (1982) looked at

isoelectric focusing as a means of classifying enzymes to type in a more

exacting manner, and classified R388 to type II by virtue of having a pi

of 5.5. R751 was found to exhibit a unique isoelectric point of pi 7.2

and was therefore thought to constitute a third type of DHFR. However,

R751 and R388 were found to be serologically related (Fling and Elwell,

1980), suggesting R751 should be classified as a sub group of type II and

not as a separate type.

A third type of plasmid Tp resistant DHFR (type III), encoded by

plasmid pAZl (Anderson, 1980) has recently been identified and

characterised (Fling et al 1982; Joyner et al, 1984). Unlike the type I

and type II DHFR's, this enzyme was found to be monomeric (molecular

weight 16,900), much more sensitive to Tp (K^ = 19 nM) and antiginically

distinct from type I and II DHFR's. Additionally, strains harbouring pAZl

were found to be only moderately resistant to Tp (MIC = 64 Mg/L) (Joyner

et al, 1984), in contrast to the characteristic high level resistance

expressed by strains harbouring Tp resistant plasmids encoding the type I

or type II DHFR. This phenomenon has also been reported by Towner and

Pinn (1981) who speculated that the plasmid pUN212 specified an

intermediate type of DHFR, more sensitive to Tp than the 'normal' plasmid

encoded reductases.

In 1985 Young and Amyes reported the detection of a new group of Tp R

plasmids, derived from, bacteria isolated in Southern India (Young et al,

1985;1986), which also conferred a moderate level of resistance on their

host. Characterisation of the DHFR specified by the plasmid pUK1123

(Young and Amyes, 1986a) indicated that the enzyme differed both

physically and biochemically from all previous plasmid DHFR's and , in

addition, was unique in it's capacity to be induced in the presence of
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increasing concentrations of Tp. The molecular size of the pUkll23

encoded enzyme, designated a type IV, was found to be larger (46,700)

than any other plasmid DHFR, although there has been a report that the

type II enzyme of R67 may exist in various enzymatically active forms with

molecular weights ranging up to 81,000 (Smith et al, 1979). So far, the

only other DHFR's which have a molecular size of around 45,000 are from

phages (Purohit et al, 1981). Although the type IV enzyme is less

resistant to Tp than the T4 enzyme (Purohit et al, 1981), Young and

Amyes (1986a) postulated that the phage enzyme could have been a precursor

to this plasmid DHFR. This view was based on the finding that a large

proportion of the type IV DHFR activity was precipitated at 50% ammonium

sulphate saturation; a property which was thought to be unique to the

phage encoded DHFR (Purohit et al,1981; Erickson and Mathews, 1973).

Due to the increase in incidence of pathogenic bacteria with high

level Tp resistance (Datta et al, 1981; Towner and Wise, 1983) it has been

of considerable interest to determine the origins of plasmid encoded

enzymes. However little progress has been made in this area and

comparisons of enzyme properties have not proved useful. It seems

unlikely, however, that these enzymes arose from an E coli chromosomal

Tp-sensitive ancestral enzyme, due to the molecular weight differences

between the chromosomal and plasmid mediated enzymes. A comparison of the

amino acid sequences of various DHFR's does not support the view that the

plasmid mediated Tp resistant enzymes are of chromosomal origin either

(Simonson et al, 1983), although there is sufficient homology between the

type I and other DHFR's to indicate relatedness (Doolittle, 1981). No

obvious homology has been shown to exist between the type II DHFR and any

other sequenced bacterial or vertebrate DHFR (Smith et al, 1979; Stone and

Smith, 1979), indicating that this enzyme has an evolutionary origin
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distinct from other DHFR's (Zolg and Hanggi, 1981; Swift et al, 1981;

Fling and Richards, 1983). It has previously been suggested that the

tetrameric type II enzyme may have arisen from an oxidoreductase unrelated

to DHFR (Smith et al, 1979). The type III enzyme, on the other hand, has

several properties similar to those of normal bacterial DHFR's (Joyner et

al, 1984) so it is quite feasible that the type III enzyme is identical to

the chromosomal DHFR of an (unidentified) bacterial species, that is

intrinsically resistant to moderate levels of Tp. Alternatively, DHFR

could have evolved from a reductase with another substrate (Foster, 1983),

but this event would have to have occurred at least twice since there is

no detectable homology between the genes encoding the type I and type II

enzymes (Zolg and Hanggi, 1981). Just as the type IV enzyme appears to

have a molecular size similar to that of the T4 phage (Purohit et al,

1981; Young and Amyes, 1986a) so the type I and II enzymes would appear

to have molecular weights similar to the T5 bacteriophage emzyme -

namely 31,000 (Mathews and Sutherland, 1965). Purohit et al (1981)

postulated that the type I enzyme may be related to that of T4 phages,

due to their similarity in Tp resistance levels; although significant

differences do exist (Mosher et al, 1977).

Further intrigue, with respect to the origins of DHFR genes, has

recently arisen with the characterisation of a DHFR from a multi resistant

Staphylococcus aureus (Young et al, 1987). The enzyme designated SI,

differs both physically and biochemcally from all previous plasmid

DHFR's. The molecular weight is similar to that of the S aureus

chromosomal enzyme, although the other properties suggest it is not

related to the bacterial enzyme. Hybridization studies (Archer et al,

1986) also showed no homology between an S aureus plasmid encoded Tp
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resistance gene and the SI enzyme. Structural studies have indicated that

the SI protein is monomeric, and in that respect similar to the type III

plasmid enzyme. However, in physical properties the SI enzyme is most

similar to the type I gram negative plasmid DHFR, and more especially the

smaller type lb variant encoded by Tn4132 (Young and Amyes, 1985). SI and

the type lb enzyme are unlikely to be related to each other, however,

because of their very different responses to heat and the lack of subunit

structure of the SI DHFR.

The R plasmid DHFR's appear to be unique in both the variety of

antifolate compounds to which they are resistant, and in the extreme

nature of the resistance. However, there would appear to be considerable

inter and intra evolutionary variation amongst DHFR's. The isolation of

an additional small transposon, Tn4135, from an animal source, that

appeared to encode Tp resistance only, has lead to further speculation

about the evolution and spread of Tp resistance. In order to

better
understand the behaviour of this transposon, in relation to other Tp

transposons such as Tn7_ and Tn4132, a comprehensive biochemical analysis

of Tn4135 harboured by different replicons was undertaken.
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MATERIALS AND METHODS

BACTERIAL STRAINS

The strains used in this chapter, other than standard strains are

indicated in Table 7.1.

PREPARATION OF 10 LITRE DAVIS-MINGIOLI CULTURES

Ten litre cultures of Davis-Mingioli (DM) medium were prepared by

dissolving 70g of dipotassium hydrogen phosphate and 30g of potassium

dihydrogen phosphate in 1 litre of distilled water. Litres of distilled

water were used to dissolve each of 4.5g of trisodium citrate, lg of

magnesium sulphate heptahydrate and lOg of ammonium sulphate. These were

added to the previous 1 litre and the volume was made up to 10 1 with a

further 6 litres of distilled water. After mixing, 1 litre was decanted

and autoclaved. Glucose (40g in 78 mis of distilled water) and

appropriate growth supplements were added to the two batches of medium in

a ratio of 1:9. The 1 litre of medium was inoculated with the bacterial

culture from which the enzyme was to be prepared, and incubated with

shaking overnight. This was used to inoculate the 9 litres of medium

prior to a further two and a half hour incubation, so thai the cells were

harvested in logarithmic phase.



TABLE7.1:BACTERIALSTRAINS strain

plasmid/transposon
resistance markers

MOLECULAR WEIGHTkb

source

E

coli

J62

rp4::Tri7

KaTcApTpSm/Sp
66

Chapter
4

E

coli

J62

(Sa-1::Tn4135)a
KaSm/Sp

60-70

Chapter
5

E

coli

J62

(Sa-1::Tn4135)0RI
KaSuTpSm/Sp
40

Chapter
5

E

coli

J62

(Sa-2::Tn4135)a
KaSuCmTPSM/Sp
48

Chapter
5

E

coli

J62

(Sa-2::Tn7)0RI

KaSuCmTpSm/Sp

Chapter
5

e

coli

J62

(HI)

Tp

90-100

Chapter
3
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PREPARATION OF DIHYDROFOLATE REDUCTASE

Overnight nutrient broth cultures were harvested by centrifugation

(Sorvall RC-5B Dupont superspeed: 12,200 g for 20 minutes). Cells were

washed in DM base and repelleted by centrifugation (12,200 g for 20

minutes), before resuspending in a minimum volume of buffer A (50 mM

sodium phosphate, pH 7.4: 10 mM B-mercaptoethanol and 1 mM EDTA) (Amyes

and Smith, 1974). The bacteria were disrupted ultrasonically with

constant cooling (MSE Soniprep 150: 8 um for 3x1 minute) and the lysate

cleared by centrifugation (40,000 g for 1 hour), as described by Amyes and

Smith (1976). The volume of the supernatant was measured.

PURIFICATION OF DIHYDROFOLATE REDUCTASE

The DHFR was purified by a modification of the Amyes and Smith (1974)

method. Nucleic acids were precipitated from the supernatant by the

gradual addition of a 0.1 volume of 10% streptomycin sulphate, and the

solution stirred constantly for 30 minutes at 4°C. After centrifugation

(12,000 g for 30 minutes) the supernatant was dialysed overnight against

50% saturation ammonium sulphate (made up with buffer A). After further

centrifugation (12,000 g for 30 minutes) the supernatant was dialysed for

4 hours against 80% saturation ammonium sulphate and the pellet collected

by a final centrifugation step (12,000 g for 30 minutes). The pellet was

resuspended in buffer A and applied to a sephadex G-75 column (90 cm x

2cm2). (A small amount of sample was removed at each purification

stage, for analysis of DHFR activity and protein content, and stored at

-20°C.).
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SEPHADEX EXCLUSION CHROMOTOGRAPHY

Solid Sephadex (1 g per 15 ml) was added to 250 ml of buffer A and

kept at 100°C for 3 hours. The flask was shaken and its contents

allowed to settle overnight. The fines were decanted, more buffer A added

and the process repeated. The sephadex slurry was poured into the column,

maintained at 4°C. When full the tap was connected and the flow changed

to an upward direction with an LKB peristaltic pump. The flow rate was

adjusted to between 6 and 8 ml/hour and the column washed continually with

buffer A for 48 hours. The void volume was measured with Dextran Blue

2000. Samples (2-3 ml) were applied slowly at the bottom of the column

and eluted with buffer A. Two millilitre fractions were collected and

maintained at 4°C with an LKB ultro rac fraction collector. The column

was washed between each run with buffer A for 12 hours. The void volume

of the column was 60 ml.

MOLECULAR WEIGHT DETERMINATION

Molecular weights were determined by sephadex exclusion chromatography

(Amyes and Smith,1974). Marker proteins (50 mg each of chymotrypsinogen,

ovalbumin and cytochrome C) were either dissolved in the sample or in 2 ml

of buffer A before loading on the column. The positions of the marker

proteins were found by measuring absorbance of each fraction at 280 nm and

the cytochrome C peak was confirmed by measuring absorbance at 410 nm.

All absorbance measurements were determined with a PYE Unicam SP 1800

UV/VIS spectrophotometer. The molecular weight of the sample DHFR was

determined from a standard curve produced by plotting the logarithm of the

molecular weight of the marker proteins against their elution volumes.
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PROTEIN ESTIMATION

All protein concentrations were estimated by the method of Waddell

(1956). The absorbance of each sample was read at 215 and 225 nm after

diluting 1:1000 in distilled water and the amount of protein calculated.

PREPARATION OF DIHYDR0F0LATE

A ImM solution of Dihydrofolate (DHF) was prepared by dissolving 25 mg

in 0.05 M sodium phosphate buffer, pH 7.4, containing 0.05 M B

mercaptoethanol. Aliquots were dispensed into bijoux bottles and stored

in total darkness at -20°C.

DIHYDROFOLATE REDUCTASE ASSAY

DHFR activity was assayed by the method of Osborn and Huennekens

(1958) as modified by Amyes and Smith (1976), using a Pye Unicam SP 1800

spectrophotometer. This spectrophotometer had a constant temperature

cuvette block which was continuously maintained at 37°C. The reading

wavelength was set at 340 nm and the output continuously monitored by a

chart recorder. The test cuvette was filled with 40 mM sodium phosphate

buffer, pH 6.0; 10 mM B-mercaptoethanol; 0.1 mM NADPH; enzyme (10 ul of

crude preparation or 100 ul of sample from the column) and the volume made

up to 0.95 ml with distilled water. Similarly, the blank cuvette was

filled as above, except the NADPH was omitted. The cuvettes were allowed

to equilibrate in the spectrophotometer for four minutes, and any decrease
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in absorbancy was noted before 50 ul of 1 mM DHF was added to each

cuvette. The cuvettes were mixed and the decrease in absorbancy was again

followed. The level of DHFR activity was calculated by subtracting the

decrease in absorbancy before adding the DHF, (ie. the independent NADPH

oxidase activity), from the decrease in absorbancey after adding DHF.

Enzyme activity was expressed in enzyme units - one enzyme unit was

defined as the amount of enzyme required to reduce 1 u mol of DHF/ minute,

based on a molar extinction coefficient of 12.3 x 10^ (Hillcoat et al,

1967). Trimethoprim sensitive and resistant DHFR's were distinguished by

assaying in the presence and absence of 4 uM trimethoprim (Amyes and

Smith, 1974).

DETERMINATION OF INHIBITION (IDgn) BY VARIOUS ANTIFOLATE COMPOUNDS

For each enzyme purified, an inhibitor profile was determined by

examining the effects of trimethoprim

(2,4-diamino-5-(3',4',5'-trimethoxybenzyl)pyrimidine) and methotrexate

(amethopterin). In each case, the 50% inhibitory concentration (ID50)
was determined, for each inhibitor, by assaying the enzyme in the presence

of different concentrations of the inhibitor, maintaining a constant level

of DHF. The 50% inhibitory concentrations were determined from plots of

log of inhibitor concentration versus the percentage of the uninhibited

activity. ID5q's were then obtained by interpolation at percentage

activity = 50.
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HEAT SENSITIVITY

Aliquots (200 ul) of purified enzyme preparation were maintained at

45°C for 20 s, 40 s, 60 s, 120 s, 180 s and 240 s. After the requisite

time, the samples were cooled on ice and the enzyme activity assayed in

the usual manner (Amyes and Smith, 1976).

PH PROFILES

pH profiles were determined by assaying the enzyme in the presence of

buffers at varying pH's. For pH's between 4.0 and 5.5 sodium acetate

buffer was used and for the pH ranges 6.0 to 7.5 and 8.0 to 9.0 sodium

phosphate and Tris HC1 buffers were used respectively.

DETERMINATION OF Km AND Ki VALUES

The decay of DHF was assayed spectrophotometrically with the aid of an

IBM computer connected to the Pye Unicam SP1800 spectrophotometer. The

test cuvette contained 40 mm sodium phosphate buffer (pH 6.0), 10 mm B

mercaptoethanol, 0.05 mM DHF and 0.1 ml of purified enzyme. This was

blanked against a similar cuvette containing the above solutions except

the DHF. After allowing the cuvettes to equilibrate in the

spectrophotometer for 4 minutes, lOOul of NADPH was added to the test

cuvette and 100 ul of distilled water to the blank (control) cuvette.

DHF decay was monitored for 30 minutes. The above experiment was repeated

in the presence of 0.2 ml of 10" ^ m Tp. The Km values were generated
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automatically by the computer software , which plotted the reciprocal of

the reaction velocity against the reciprocal of the substrate

concentration by the method originated by Lineweaver and Burk (1934). Ki

values were determined from the equation

Ki = I

Kp - 1

Km

where I is the inhibitor concentration, Kp is the apparent Km with

inhibitor and Km is the Km in the absence of any inhibitor (Dixon and

Webb, 1958).

^ This computer program was compiled by Dr SGB Amyes and Dr CJ Adie of

the Edinburgh Regional Computing Centre to collect enzyme kinetic data and

automatically generate suitable plots to obtain the enzyme kinetic

constants.
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RESULTS

CHARACTERISATION OF THE DHFR OF Tn4135 AND IT'S COMPARISON WITH THE DHFR

OF Tn7

In order to determine whether the DHFR's of Tn4135 and Tn7_ were related,

the specific activity and properties of the E coli J62(RP4::Tn4135), E

coli J62(R483: :Tn7_) and E coli J62(RP4: :Tn7) encoded enzymes were

determined from 5 1 nutrient broth preparations.

Specific DHFR activities were measured at pH 6.0 in phosphate buffer

at 30°C before any separation of Tp sensitive and Tp resistant enzymes

was attempted. The results in Table 7.2 indicate that the Tn4135 encoded

enzyme is synthesised in amounts similar to the Tn7 enzyme and several

fold higher than the host chromosomal enzyme.

Crude samples of each DHFR were purified by sephadex exclusion

chcromatography (for purification Tables see Appendix 7.1) and the

resultant 2 ml fractions analysed for DHFR activity, in the presence and

absence of 4 x 10"^ M Tp. Separation of Tp resistant and Tp sensitive

enzymes was achieved in all cases and the elution patterns, determined by

plotting elution volume against DHFR activity (Figure 7.1), for E coli

J62(R483::Tn7), E coli J62(RP4::Tn7) and E coli J62(RP4;:Tn4135), were

in most respects identical.

Molecular weight estimations from the gel filtration elution volumes

of marker proteins (see Appendix 7.2) indicated the expected molecular

weight (Amyes and Smith, 1974) of approximately 21000 for each

chromosomal, Tp-sensitive enzyme. A molecular weight of between 30000 and



224.8

TABLE 7.2: A COMPARISON OF THE SPECIFIC DIHYDROFOLATE REDUCTASE
ACTIVITIES OF CELL EXTRACTS OF E COLI HARBOURING Tn7 AND
Tn4135

ORGANISM SPECIFIC ACTIVITY

E coli J53(RP4) < 1.5

E coli J62(R483::Tn7) 27.33

E coli J62(RP4: :Tn7_) 16.65

E coli J62(RP4::Tn4135) 21.75

Specific activities are expressed as nmol dihydrofolate reduced
min~l (mg protein)"-'-
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49 51 53 55 57 59 61 63 65
FRACTION NUMBER

R483::In7 150 L

43 45 47 49 51 53 55 57" 59
FRACTION NUMBER

RF4::Tn4135

59 51 $1 6 z, z 7 £ q 71 i *5 7 c
FRACTION NUMBER

RP 4::Tn7

• -Tp
▼ +Tp
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33000 (Table 7.3) was determined for each Tp resistant enzyme present,

suggesting that Tn7_ and Tn4135 encoded enzymes were similar.

The pH profiles of the Tn4135 and Tn7_ encoded DHFR were compared.

Both enzymes exhibited a sharp peak at pH 6.0 in phosphate buffer (Figure

7.2).

Inhibitor profiles verified the similarity between the Tn7_ and the

Tn4135 encoded enzymes. (For example-plots of inhibitor concentrations

against the percentage of uninhibited activity see Appendix 7.3).

Purified samples of each enzyme were assayed in increasing concentrations

of trimethoprim and methotrexate (Mtx) at pH 6.0 (see Appendix 7.4) and

the concentration required to give 50% inhibition (ID5Q) of each enzyme

were determined (Table 7.4). Both enzymes were resistant to Tp and Mtx

with little variation between them.

The heat sensitivity of each purified enzyme preparation was measured

and the results (Table 7.5) indicate that both the Tn4135 and the Tn_7

encoded DHFR's lose 50% of their activity in under a minute.

Table 7.6 indicates the results of Michaelis-Menten kinetics for the

transposon encoded enzyme preparations after separation by exclusion

chromatography. Each enzyme was continuously assayed in the presence of

a decreasing concentration of dihydrofolate and Km values determined by

computerised generation of double reciprocal plots of activity versus

substrate concentration (Appendix 7.5). There was some variation between

Km values for the enzymes concerned, but these differences are probably

not significant. Assays in the presence of a decreasing concentration of

DHF were repeated in the presence of Tp. The inhibitor constants (K-[)

are seen in Table 7.6 and again, the differences observed are probably not

significant. Tn7_ and Tn4135 encoded enzymes would appear to have similar

kinetic properties and are, therefore, very likely to be related.
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TABLE 7.3: MOLECULAR WEIGHTS OF DIHYDROFOLATE REDUCTASE ENZYMES

SOURCE OF ENZYME MOLECULAR WEIGHT

RP4 23000
R483::Tn7 30500
RP4::Tn7 33500
RP4::Tn4135 31000

TABLE 7.4: TRIMETHOPRIM AND METHOTREXATE CONCENTRATIONS WHICH
CAUSE 50% INHIBITION OF DIHYDROFOLATE REDUCTASE ACTIVITIES

SOURCE OF ENZYME TRIMETHOPRIM (M) METHOTREXATE (M)

R483::Tn7 6.60 X 10"5 8.90 X 10~6
RP4::Tn7 8.30 X 10~5 6.60 X 10"6
RP4::Tn4135 3.98 X 10-5 7.59 X 10~6

TABLE 7.5: TIME TAKEN TO LOSE 50% DIHYDROFOLATE REDUCTASE ACTIVITY
AT 45°C

SOURCE OF ENZYME TIME (SECONDS)

R483: : Tri7
RP4: : Tri7
RP4::Tn4135

49
44
23
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FIGURE 7.2: PERCENTAGE OF MAXIMUM DIHYDRQFQLATE REDUCTASE ACTIVITIES

AT DIFFERENT pH VALUES FOR THE TRIMETHOPRIM RESISTANT

ENZYMES FROM E COLI STRAINS HARBOURING R483::Tn7,

RP 4 : : Tn.7 AND RP4::Tn4135

4 5 6 7 8
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TABLE 7.6: MICHAELIS-MENTEN KINETICS OF DIHYDROFOLATE REDUCTASES, WITH
DIHYDROFOLATE AS SUBSTRATE AND TRIMETHIPRIM AS INHIBITOR

SOURCE OF ENZYME Km FOR DHF (M) Ki FOR Tp (M)

R483: :Tn7_
RP4::Tn7
RP4::Tn4135

2.63 x 10~5
2.15 x 10-5
9.68 x 10-5

2.635 x 10~4
2.714 x 10-4
4.800 x 10-4
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PRELIMINARY ANALYSIS OF THE DHFR OF E COLI J62(Sa-1;;Tn4135)

Due to the possibility that multiple transposition or a spontaneous

amplification might be responsible for the large size of the

(Sa-1;;Tn4135)a molecule, the specific activity of the DHFR was

determined and compared with that of RP4::Tn4135« Enzymes were prepared

from lOlitTesof DM cultures grown up for 2.5 hours with aeration . Whilst

t'ie E coli J62(RP4: :Tn4135) enzyme was found to have a specific activity

of 12.4, that of E coli J62(Sa-12::Tn4135)a was found to be 50,

suggesting that an increased number of copies of the DHFR gene might be

present in the (Sa-1;:Tn4135)a molecule.

PRELIMINARY ANALYSIS OF THE DHFR OF E COLI J62 (Sa-1:;Tn4135)QRI

The high specific activity of the E coli J62(Sa-1::Tn4135)a enzyme,

and the large molecular size of the plasmid species harboured by this

strain demanded that a more accurate characterisation of the Tn4135

encoded enzyme, harboured by Sa-1, was needed and this was achieved by

analysing the DHFR of E coli J62(Sa-l::Tn4135)ORI. The enzyme was

prepared from 5 1 nutrient broth cultures of the two strains and the

specific activity analysed prior to purification. E coli

J62( Sa-1; :Tn4135)(->^ was found to encode a DHFR of specific activity

1.336, indicating that this enzyme was not similar to the DHFR of Tn_7

(specific activity 16.65). The DHFR encoded by (Sa-1::Tn4135)a, whilst

not as high as initial experiments, was found to have a specific axtivity

of 9.24, approximately 10 fold greater than that of (Sa-1::Tn4135).

These results not only suggest that an amplification may be responsible
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for the increased size and activity of the (Sa-1;:Tn4135) encoded

enzyme, as compared with the (Sa-1: :Tn4_135_)(-,RI encoded enzyme, but also

indicate that RP4 may be involved in the amplification process, since the

RP4::Tn4135 enzyme has a high specific activity as well (21.75).

THE EFFECT OF PASSAGE THROUGH RP4 ON THE SPECIFIC ACTIVITY OF THE Tn4135

ENCODED DHFR

It was possibile that RP4 was, in some way, responsible for the

increase both in the size of the (Sa-1::Tn4135)a plasmid species, and

the specific activity of the DHFR derived from it, compared with that of

E coli J62(Sa-l: :Tn4135)^^. Therefore, DHFR was prepared from 1 litre

overnight nutrient broth cultures of the original Pig strain (P-20), E

coli J62(RP4::Tn4135), E coli J62(Sa-l::Tn4135)0RI and E coli J62(H1).

The results (Table 7.7), in conjunction with the previous finding that E

coli J62(Sa-l::Tn4135)a has a specific activity of approximately 10 in

nutrient broth, suggest that passage through RP4 has a 'booster' affect

on Tn4135 encoded DHFR activity.

However, preliminary experimentation with Tn_7, to test the above

hypothesis, indicated that this transposon did not behave in the same

way. The specific activity of the DHFR encoded by (Sa-2: :Tn_7)0R-I (23)
was not found to be significantly different from that of R483::Tn_7 (27) or

RP4::Tn7 (17).
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TABLE 7.7: SPECIFIC ACTIVITIES OF Tn4135 - ENCODED DHFR IN DIFFERENT

PLASMID BACKGROUNDS

ENZYME SOURCE PASSAGE THROUGH RP4 SPECIFIC ACTIVITY

RP4::Tn4135 + 18.72

[(Sa-1::Tn4135)a + 10]

(Sa-2::Tn4135)a + 25.22

original pig - P-20 - 5.8

(Sa-2::Tn4135)ORI - 1.86

HI - 2.02
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CHARACTERISTAION OF THE DHFR ENCODED BY E COLI J62(Sa-1::Tn4135) AND E

COLI J62(Sa-l; :Tn4135)-2M

In order to further characterise the (Sa-1::Tn4135)a plasmid and

determine whether an amplification step had occurred, a detailed analysis

of specific activity and enzyme properties were carried out on the DHFR's

of E coli J62(Sa-1::Tn4135)a and E coli J62(Sa-1::Tn4135)0RI. E coli

J53(Sa-l) was used as a control.
Hires

Enzymes were prepared from 5 of nutrient broth and purified by

sephadex exclusion chromatography (for purification tables see Appendix

7.1), but due to the low specific activity (1.336) and therefore the small

amount of enzyme produced from (Sa-1::Tn4135)^E^, this enzyme was

prepared from 10 1 of nutrient broth. Activity levels were still low,

hampering any accurate determination of enzymic properties. A comparison

of the plasmid encoded DHFR's from the two strains is given in Table 7.8

and Figure 7.3 indicates their gel filtration elution profiles.

An analysis of enzyme properties indicates differences between the two

strains, not only in specific activity but also in Tr ID50 and

temperature sensitivity, but these differences are not consistent with an

amplification step. Since initial temperature sensitivity results

indicated an apparent increase in activity with exposure-time to a

temperature of 45°C, the assay of DHFR activity was repeated in the

presence of 2 x 10 M Tp, with exposure to heat for 0, 2 and 6

minutes. The results indicated that the E coli J62(Sa-1::Tn4135)QR^

enzyme had a TD50 of approximately 10 minutes, compared with less than 1

minute for the (Sa-1::Tn4135)a enzyme. These results are suggestive of

different origins for the two DHFR's rather than one being an amplified

product of the other.



TABLE7.8:ACOMPARISONOFTHEPROPERTIESOF(Sa-1::Tn4135)aAND(Sa-1::Tn4135)ORIMEDIATEDDHFR SOURCE

SPECIFIC ACTIVITY

TpID50(M)MtxID50(M)
KmDHF(M)

KiTp(M)

TD50 (Sec)

MOLECULAR WEIGHT

EcoliJ62(Sa-l::Tn4135)a
9.24

1.78x10-49.12x10"6
U1

1

O

f—1

X

00

o

•

2.87x10"5
38

36728

EcoliJ62(Sa-1::Tn4135)ORI
<1.0

<1.58x10-8*

>600*

34673

EcoliJ53(Sa-1)

0.0

1.58x10-9

21000

* Thesepropertiesweredeterminedwiththe80%(NH4)2S04partiallypurifiedsampleduetolackofactivityof samplesaftersephadexexclusionchromatography.
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FIGURE 7.3 ELUTIQN OF DIEYSROFOLATE REDUCTASES FROM SZPHADEX G-75

FRACTION NUMBER

39 101 103 10-5 107 109 111 11.3
FRACTION NUM3ER

# -TP
T +Tp
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EFFECT OF MEDIA ON THE ENZYMIC PROPERTIES OF THE Tn4135 DHFR

The previous identification and characterisation of DHFR's has been

carried out from cultures grown in different media, and therefore results

may not be directly comparable. DHFR's were, therefore, purified from E

coli J62(Sa-1::Tn4135)a and E coli J62(RP4:;Tn4135) strains cultured in
litres litres

10 litres DM, 5 nutrient broth and 15 Isosensitest broth. A comparison of

the properties of the transposon encoded DHFR's is given in Table 7.9.

The results indicate that growth media not only affects the

expression of DHFR but also the sensitivity of the enzyme to heat. Growth

in Isosensitest broth greatly reduces the DHFR activity levels in both

strains, whilst the expression of the two enzymes in DM and nutrient broth

appears to be variable, but higher. Whilst not significantly affecting Tp

ID50 or Mtx ID50 levels, growth in DM medium reduced the heat

sensitivity of both DHFR's as compared with growth in the other two media.



TABLE7.9:THEEFFECTOFGROWTHMEDIAONTHEENZYMICPROPERTIESOFTHETn4135ENCODEDDHFR SOURCEMEDIASPECIFICACTIVITYTpID50MtxID50TEMPERATURE PRIORTOPURIFICATIONSENSITIVITY
(SECONDS)

(Sa-1::Tn4135)a
DM

24.25

5.01

X

u-1

1

o

i—H

7.90

X

vO

1

o

r-H

142

(Sa-1::Tn4135)a
NB

9.24

1.78

X

10-4

9.12

X

10-6

38

(Sa-1::Tn4135)a
ISO

5.13

1.66

X

10-5

1.74

X

10"6

26

RP4::Tn4135

DM

12.40

4.80

X

10-5

8.32

X

10-6

154

RP4::Tn4135

NB

21.75

3.98

X

10-5

7.59

X

10"6

23

RP4::Tn4135

ISO

6.24

5.01

X

10-5

6.61

X

10~6

53
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DISCUSSION

With the continuing isolation and characterisation of DHFR's, it has

become clear that there is considerable variation in both their physical

and biochemical properties. Bacterial and mammalian enzymes can be

distinguished from each other on the basis of their relative abilities to

bind a series of small molecule analogues of DHF (Baccanari et al,

1975). These differences in binding explain how drugs can function as

potent and non toxic antibactenals even though the target is common to

both host and parasite (Bushby and Hitchings, 1968). Whilst initial

studies (Amyes and Smith, 1978) indicated a remarkable resemblance between

the DHFR's encoded by R-factors of gram negative bacteria, further

analysis has resulted in the subdivision of these enzymes into four

classes: Types I to IV. Up until 1983, high level plasmid-mediated Tp

resistance had only been found in Gram negative bacteria, but recently

some multi-resistanct Staphylococcus aureus have been found to be Tp

resistant (Lyon et al, 1983, 1984), and encode a new type of DHFR (Young

et al, 1987). The mechanisms behind the generation of such diversity is

unclear and the evolutionary origins of the different enzyme types would

appear to be more complex than at first envisaged.

The properties of the RP4::Tn4135 encoded DHFR, characterised in this

study, show marked similarities with the Tn2_ encoded enzyme, despite the

discrepancies between these and published results. Mtx and Tp ID50

results are comparable, indicating that the RP4::Tn4135 encoded enzyme,

like that of Tn_7, is a 100 - 1000 times less sensitive to inhibitors than

t*ie E coli chromosomal DHFR. Although the Tn7_ .and Tn4135 transposons

differ in size (14 kb and 4 - 6 kb respectively), the molecular weights of
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the encoded DHFR's are similar. This contrasts with reports on another

small Tp resistance transposon, Tn4132 (Young and Amyes, 1983), which was

found to have a reduced molecular weight of 24,500: a finding which

suggested Tn4132 had evolved from Tn7_ by deletion of part of the DNA

encoding the structural gene for DHFR. Whilst Tn4135 would not appear to

have been generated by such a deletion, the results do not rule out the

possibility of deletions in other regions of the Tn_7 genome.

The activity of the DHFR encoded by E coli J62(Sa-1::Tn4135)a was

initially found to be 50; a result that substantiated the view that the

large molecular size of Sa-1::Tn4135a was due to gene amplification.

Extra gene copies have been responsible for the increase in chromosomal

enzyme levels observed in mammalian cells (Schimke et al, 1977) and for

the increase in B lactamase production in E coli (Edlund et al, 1979).

The variations in specific activity observed for the Sa-1::Tn4135a DHFR

(10 - 50) could also be accounted for by differences in the degree of

amplification , when it is considered that the Sa-1::Tn4135Q^^ enzyme

was found to have a specific activity of ( 1. Examination of the

Sa-1::Tn41350^ DHFR was expected to reveal the true classification of

the Tn4135 enzyme, since this species was of the predicted size. However

the specific activity appeared to resemble a type II enzyme, in contrast

to that of the RP4::Tn4135 encoded DHFR which was indicative of a type I,

suggesting that the results may not be accounted for by a simple

amplification. The stability of the Sa-1::Tn4135a species in the

absence of drug selection would also tend to go against multiple gene

copies as an explanation of increased enzyme synthesis. However the

apparent overproduction of the DHFR of this strain may also be due to

other phenomena. Kane et al (1979) suggested that the three fold increase

CI
in DHFR activity observed in rifampin-resistant mutants of B subtilis was
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due to a pleiotropic effect of the Rif mutation; leading to an altered

recognition of the gene specifying DHFR, by RNA polymerase. Mutations in

the structural gene for DHFR can also lead to hyperproduction of this

enzyme (McCuen and Sirotnak, 1974), although such mutational events have

usually been described for chromosomal DHFR's (Sheldon and Brenner, 1976;

Flensburg and Skold, 1984), and would not explain the 'variations' in DHFR

activity that have been observed. It is possible that a change in

transcriptional regulation, brought about by insertion of Tn4135 into

Sa-1, could be reponsible for the increased levels of enzyme activity,

although this would not account for the increased plasmid size observed.

Tennhammer-Ekman and Skold (1979) suggested that overproduction of DHFR in

strain 1810 could be due to variations in transcription and Amyes and

Smith (1978) implied that both the site and direction of insertion of

transposons into other replicons could be the factor responsible for

different levels of gene transcription. The controlling elements in the

regulation of DHFR synthesis would appear to be closely associated with

the structural gene (Breese et al, 1975; Spandidos and Smiminovitch,

1977), therefore a deletion in Tnj^, could lead both to a smaller

transposon and a deregulation of DHFR synthesis.

An attempt to explain the anomaly in enzyme activity levels, and

account for the observed differences in plasmid size, lead to the

hypothesis (Figure 7.4) that the presence of RP4, and possibly other Inc P

plasmids could affect enzyme production. The activity of the DHFR

encoded by the original Pig isolate is low and when Tn4135 is transferred

direct to Sa-1 (a) the expression of Tn4135 DHFR activity is still low

possibly due to some form of repression mechanism. On transfer to RP4

(b), however, this mechanism is derepressed, possibly by loss of a small

region of DNA, and the expression of DHFR activity is high. Once this
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FIGURE 7.4: HYPOTHESIS TO EXPLAIN THE VARIABLE SPECIFIC ACTIVITY OF Tn4135

PIG ISOLATE

repression region
(LOW
ACTIVITY)

Sa-1: :Tn4135on' —(e)—* RP4::Tn4135

LOW
ACTIVITY

RP4::Tn4135 -(c)-

HIGH
ACTIVITY

(HIGH ?
ACTIVITY)

■> Sa-1::Tn4135a

HIGH
ACTIVITY

Sa-2::Tn4135

HIGH
ACTIVITY
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repression mechanism has been lost, by passage through RP4, it can not be

re-established and therefore transfer on to Sa-1 (c) again would result in

a strain with high DHFR activity. The transfer of Tn4135 via RP4 to Sa-2

(d) backs up this hypothesis, as the activity is again high.

Alternatively, because of a deletion, Tn4135 may lack its own regulatory

function (promotor) which results in low expression of DHFR activity.

Insertion of Tn4135 close to a regulatory region of RP4, could result in a

complementation of regulatory functions and a subsequent increase in DHFR

production. The transfer of a region of RP4, encoding this ' regulatory

function', to Sa-1 with Tn4135, could account for both the size increase

and the increase in DHFR activity. This latter hypothesis would not

account for the high activity of the Sa-2::Tn4135 DHFR as there is no size

increase.

It was hoped to prove the hypothesis of RP4 involvement in Tn4135 DHFR

gene expression, by examining the DHFR from a strain generated by the

transfer of Tn4135 from Sa-1;:Tn4135^^ to RP4. However, the formation

of such a strain proved difficult, possibly due to incompatibility

phenominum, and therefore the activity could not be ascertained.

The above hypotheses are based on the fact that Sa-1::Tn4135a and

Sa-1: :Tn4135(->^ encode a similar DHFR, differing only in specific

activity. However examination of the properties of the DHFR from E-coli

J62(Sa-1;:Tn4135)^R^, in comparison with those of E coli

Sa-1::Tn4135a, would tend to indicate that the two enzymes were

different. Some problems arose during the purification of DHFR from the

former strain as a result of the very low specific activities, (and

therefore the small amounts of enzyme produced), and the amount of NADPH

oxidase present, which interferes with the optical assay of DHFR. Then

and Angehrn (1979) were faced with similar problems in attempting to
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isolate DHFR's from anaerobes. Insufficient enzyme was produced from

Sa-1::Tn4135^^ to determine enzyme properties accurately, despite

attempts to isolate the DHFR from larger volumes of culture. However the

results do suggest that E coli (Sa-1: :Tn4135)^R-*- encodes an enzyme of

widely different properties from that of E coli J62(Sa-l::Tn4135)a.

Despite the fact that both strains express Tp MIC's of greater than 1000

ug/ml, the Tp ID50 °f the Sa-1::Tn4135a encoded enzyme is comparable

to a type I enzyme whilst that of the Sa-1: :Tn4135(-)^-1- DHFR more closely

resembles that of the chromosomal enzyme, or possibly even the type IV.

The TDgg's are in agreement with this proposed classification and

therefore imply that P-20, the original pig isolate, contains two

different DHFR genes. The suggestion of two different DHFR genes

residing in one R plasmid was implicated by the work of Joyner et al ,

(1984) although it is likely that, in the case of the P-20 isolate, the

genes reside on different plasmids. The introducton of RP4 and Sa-1 into

P-20 would appear to have resulted in the ' picking-up' of different DHFR

genes. This however does not explain why E coli J62(Sa-l::Tn4135)a

should harbour a plasmid of such uppredicted size. More than one

mechansism may be involved in generating a large species with high DHFR

activity.

The determination of kinetic parameters has also been dependent on

isolating sufficient pure enzyme. Various graphical methods have been

widely employed to determine the parameters involved in the Michaelis

Menten equation

V = Vm.S

Km + S where V = velocity and S = substrate

concentration, but unless the data fit the relationship represented by the

equation reasonably well, a considerable bias may be introduced in the
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graphical methods. Hence the analysis of a progressive curve in a single

experiment, by computer, has been regarded as being useful (Yoshimoto et

al, 1984). It was not possible, however, to determine the kinetic

parameters of the Sa-1: ;Tn4135^-*- encoded enzyme by computer either, as

well as analysing Tp and TT^q's, because of the very small quantities of

DHFR isolated. Gilli et al (1986) have described an alternative method to

spectrophotometric analysis for the determination of DHFR activity, which

is thought to permit the detection of very low DHFR activities

corresponding to 100 pmol of substrate reduced per minute. This method

may prove useful in confirming the results of this preliminary

investigation of the enzymic properties of the Sa-1:;Tn4135OR* encoded

enzyme, and for analysing the 'low-activity' enzyme of the P-20 isolate.

When tested in vitro, the ability of Tp to inhibit various organisms

is dependent upon the medium in which the test is performed (Bushby and

Hitchings, 1968; Darrell et al, 1968). The medium acts as an exogenous

source of metabolites whose normal de novo synthesis is blocked by the

action of Tp, but once assimilated by the cell, these compounds would be

expected to by pass, in a non competitive manner, the inhibition caused by

Tp. The effect of various substances on bacterial sensitivity to Tp has

been studied (Amyes and Smith, 1974; 1978a; 1978b; Then and Angehrn,

1974), but these results have not been applied to DHFR studies. This

enzyme has been isolated from cells grown in different media, yet the

results have been compared (Amyes, 1986). Young et al (1986) have shown

that the presence of certain metabolites in the media influences the

expression of Tp resistance, by affecting MIC's, and it is therefore

possible that DHFR levels might be affected also. Whilst Young et al

(1986) suggested that there was poorer expression of the type IV Tp

resistance gene in complex media, the specific activity results obtained
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in this study suggest that DHFR expression is poorest in Isosensitest

broth. This latter broth, like Difco Mueller Hinton broth, is low in

thymidine (Amyes and Smith, 1978), a potent antagonist of the action of

both Tp and Su (Koch and Burchall, 1971; Amyes and Smith, 1976), and is

therefore not expected to affect the action of Tp. The specific activity

results from the comparison of E coli J62(Sa-l::Tn4135)a cells grown in

DM and nutrient broth are in agreement with the view that the expression

of Tp inhibition is greatest in nutrient broth, whilst cells grown in

minimal media are four times as resistant as those grown in nutrient broth

(Breeze et al, 1975). However, this may be coincidental, as analysis of

the results of E coli J62(RP4::Tn4135) grown in similar media do not

follow this trend. Whilst it is possible to explain the observed

differences in DHFR expression by media effects, it is unclear why there

should be such a discrepancy in temperature sensitivity results. Tp

ID50 and Mtx ID50 figures are unaffected by growth in different media.
It is clear from the above findings that E coli J62(Sa-l;:Tn4135)a

and E coli J62(Sa-l: :Tn4135)(->R-1- encode different DHFR; the former

corresponding to a type I. The origin of the latter enzyme is unclear

since its molecular weight and TD50 are characteristic of a type II but

it's Tp ID50 more closely resembles that of the chromosome (Table

7.10). Just as Towner and Pinn (1981) speculated that the plasmid pUN212

specified an intermediate type of DHFR, more sensitive to Tp than the

normal plasmid encoded reductase, so the Sa-1:;Tn4135^RI encoded enzyme

may be an intermediate between chromosomal and type II DHFR's.



TABLE7.10:PROPERTIESOFPLASMIDANDTRANSPOSONDIHYDROFOLATEREDUCTASES DHFR

PLASMID

TRANSPOSON
SPECIFIC ACTIVITY
TpID50 (uM)

MtxID50 (uM)

KmDHF (uM)

KiTp (uM)

TD50 (Min)

PI

MOLECULAR WEIGHT

la

R483

Tn7

13.6

57

5.6

5.6

7.4

0.5

6.4

35000

lb

pUK163

Tn4132

4.5

32

2.8

11.0

41.0

1.2

24500

Ila

R67bis

0.85

70000

1100

4.6

6100

>12.0

5.5

35000

lib

R751

Tn402

0.07

20000

1000

4.2

400

>12.0

7.2

34000

III

pAZI

2.0

2.1

0.4

0.019

16900

IV

pUKl123

600.0

0.2

0.02

37.0

0.063

>12.0

46700

CHROMOSOME

0.02

0.01

1.2

0.006

>12.0

4.2

21000

SI

pSKI

129.6

50.0

0.002

10.8

11.6

>12.0

19700

la

RP4

Tn7

16.65

83.0

6.6

21.0

271

<1.0

33500

la

RP4

Tn4135

21.75

39.8

7.6

96.0

480

<0.5

31000

Sa-1

Tn4135a

10.0

178

9.1

10.9

28

0.5

36728

Sa-1

Tn4135ORI

<1.0

0.02

>10.0

34673

REFERENCES:Amyes(1986);Youngetai(1987) a -transposontransferredfromRP4toSa-1 ORI_Xransposontransferredfromoriginalpigisolate,P-20,toSa-1
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CHAPTER 8

EXAMINATION OF Tn4135 DNA BY DNA-HYBRIDISATION
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INTRODUCTION

During the last decade much interest has been generated in the

handling of DNA, following the introduction of gene cloning or genetic

engineering techniques. One technique that has become a very powerful

tool for the detection and quantification of specific nucleic acid

sequences, is DNA Hybridisation. This technique is based on the property

of DNA to denature and separate into single strands, on heating or

treatment with alkaline, and the ability of this single stranded DNA to

reanneal with complementary single stranded DNA, to form a stable, double

stranded molecule (Marmur and Lane, 1960; Doty et al, 1960).

In most hybridisation experiments, a sample of denatured DNA is

immobilised by binding the DNA strands to a solid surface, frequently a

nitrocellulose filter. This may be achieved by direct growth of cells on

filters - colony hybridisation (Grunstein and Hogness, 1975; Hanaham and

Messelson, 1980) or by transfer of DNA to filters by Southern blottLng

(Southern, 1975). (Recently a technique has been developed for the direct

hybridisation of labelled DNA to DNA in agarose gels (Purrello and Balazs,

1983), which has the advantage that the gel can be reutilised several

times). DNA single strands bound in this way to filters are unable to

migrate and hence are unable to re-annneal with DNA from within the

sample. Filters are challenged with radioactive probes, and after

washing, subjected to autoradiography for detection of hybridised

sequences. The probes themselves are usually generated by means of a Nick

Translation procedure (Maniatis et al, 1975; Rigby et al, 1977), where by

E coli polymerase I catalyses the replacement of existing unlabelled
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nucleotides in DNA, with radioactive ones (Walker and Gaastra, 1983). By

means of this 'hot for cold swop' of nucleotides, about 50% of the

residues in the DNA can be labelled.

The most important property of the probe is its specific activity, as

this will determine the sensitivity and accuracy of the detection and

quantification of specific sequences. Adequate detection of unique

sequences by Southern blotting, for example, requires a probe with an

activity of 10® cpm/ug DNA. For this reason a probe often- consists of a

precise restriction fragment suitably recovered from an agarose gel (Blin

et al, 1975; Smith, 1980; Burns and Beacham, 1983) and purified. The

probe must also be labelled throughout at a uniform specific activity - as

achieved by nick translation (Rigby et al, 1977), since a restriction

fragment corresponding to a poorly labelled section of probe might not be

detected in a southern blotting experiment.

The development of DNA-hybridisation has resulted in the ability to

detect specific sequences in southern blots; to analyse quantitatively

specific sequences, eg Rigby et al (1977) used nick translated SV40

DNA to detect one SV40 DNA molecule per haploid mouse genome, and Young

(1984) used this same technique to determine the number of copies of

amplified DNA in Bacillus subtilis; to screen for recombinant DNA

molecules; as well as locate chromosomal sequences (Ruddle, 1981), study

gene expression (Levitt et al, 1979; Stalder et al, 1980) and structure

(Breathnach et al, 1977), visualise restriction fragments and analyse

malfunctioning genes in various inherited cell lines (Kan and Dozy, 1978;

Maniatis et al, 1980; Geever et al, 1981).

More recently DNA hybridisation has been used to characterise

incompatibility group plasmids (Taylor and Brose, 1983) and study the

epidemiology and evolution of their drug resistance genes; in particular
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Tp resistance genes (Mayer et al, 1985). The rapid detection and

classification of these latter genes is of primary importance for clinical

and epidemiological studies of Tp resistance. Flensburg and Skold (1984)

utilised DNA-DNA hybridisation to study regulatory changes in the

formation of a chromosomal DHFR causing resistance to Tp, whilst Fling et

al (1982) were able to detect a new resistant enzyme by monitoring

plasmid-encoded Tp resistance genes with gene specific radiolabelled probe

DNA. Such probes were not only able to detect the type of DHFR gene, but

resulted in information as to the location of the type I and II genes and

also their prevalence. Steen and Skold (1985) reported that in Sweden

plasmid born or chromosomally mediated resistance by Tn_7 was the most

common responce to the ubiquitous use of Tp, a view substantiated by the

work of Pulkkinnen et al (1984) in Finland. Campbell et al (1986) looked

at the spread of Tp resistant Inc FIV plasmids via DNA hybridisation

techniques, and identified three evolutionary lines amongst human and pig

isolates. A remarkable degree of similarity was found amongst plasmids of

the third line (containing examples from both human and animal sources),

providing clear evidence of exchange of plasmid bearing E coli between

humans and pigs.

Due to the potential of DNA hybridisation to not only distinguish

between different DHFR genes (Fling et al, 1982), but also to detect novel

DNA rearrangements associated with DHFR gene amplification (Federspiel et

al, 1984), this technique was used to ascertain the origin of the Tn4135

encoded gene(s) and the nature of the plasmid spieces generated by Tn4135

transposition.
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MATERIALS AND METHODS

BACTERIAL STRAINS AND PLASMIDS

The plasmids used in this study and their relevant properties are

shown in table 8.1. All plasmids were harboured in E coli strains unless

otherwise stated. Plasmids used for DNA probes were RP4 (Datta et al,

1971), Sa-1 (Ward and Grinsted, 1982), P872 (pBR322: pFE872 1618 bp Ta£ I

partial fragment) which contains the type I DHFR structural gene (Fling

and Richards, 1983), and p700 (PUC4: PFE364 800 bp EcoRl fragment), which

will detect the type II DHFR (Elwell, personal communication). (pFE364

was constructed by inserting a 2.5 kb Bam HI - EcoRI fragment of plasmid

R67 into pBR322 - Burchall et al, 1982)

RESTRICTION OF PLASMID DNA

Restriction enzymes Pst I, Hind III, EcoRI, Hpa I and Bgl II were

purchased from Boehringer Mannheim Corporation. DNA was digested in the

presence of 1 ul of BSA (5 mg/ml) (Boehringer Mannheim Corporation), as

described in Chapter 1, unless otherwise stated. Conditions for digestion

were as directed by the manufacturers.
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TABLE 8.1: PLASMIDS USED IN HYBRIDISATION STUDY

PLASMID TRANSPOSON RESISTANCE MOLECULAR REFERENCE

PATTERN SIZE kb

Sa-1 Tn4135a Su Sm/ Sp Tp 70 Chapter 5

Sa-1 Tn4135ORI Ka Su Sm/ Sp Tp 40 Chapter 5

Sa-2 Tn4135a Ka Su Sm/ Sp Cm Tp 40 Chapter 5

RP4 Tn7 Ap Ka Tc Sm/ Sp Tp 64 Chapter 4

a - Transposon transferred from RP4
ORI _ Xransposon transferred from original pig isolate, p-20



NICK TRANSLATION PROCEDURE

Probes were labelled with ^2p dATP by a modification of the

Maniatis et al (1975) method. Each unlabelled nucleotide dCTP, dTTP and

dGTP was made up to a 1 mM stock solution in NTP buffer (5 mM Tris pH 7.5,

2 mm B-mercaptoethanol, 1 mm EDTA, 50% ethanol) and stored at - 20°C.

For use in nick translation, dCTP and dTTP were diluted 1:50 in 50%

ethanol and dGTP was diluted 1:10. Two microlitres of each of the

diluted unlabelled nucleotides was added to an eppendorf tube and dried in

a dessicator for 15 - 20 mins (until completely dry). The following

solutions were added in the order described to the dried nucleotides: 15

ul of pure DNA; distilled water to maintain volume at 20 ul; 2 ul '10x'

buffer (50 ug BSA, 50 ul NT buffer (1 M Tris, pH 7.8; 0.1 M MgC^) , 0.7

ul B-mercaptoethanol); and 2 ul of DNase stock solution (1 mg/ml) diluted

10~"7 in distilled water. Three microlitres of 32p dATP was added

and the mixture incubated at 15°C for 20 - 30 minutes, depending on

probe size. Two microlitres of a 1:10 dilution of DNA polymerase I stock

solution (20 u/ul) (BRL) was added and the reaction mixture reincubated

for 90 minutes at 15°C. The reaction was then terminated by adding 8

ul of 0.25 M EDTA. Unincorporated nucleotides were removed from the

probe by passing the DNA mixture through a 20 cm sephadex G-75

chromatography column (Biorad, California) (Figure 8.1). Excess elution

buffer (ImM Tris, 0.25 M EDTA pH 8.0 ) was removed from the top of the

column to just above the resin bed and the tubing clamped. The nick

translated mixture was loaded on to the colunm with a p-200 pippeteman and

the column allowed to run until the sample entered the top of the resin.

After adding a small amount of buffer and allowing this to run into the

resin bed, the column was refilled with buffer and the cap replaced.
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FIGURE 8.1: APPARATUS FOR THE REMOVAL OF UNINCORPORATED
NUCLEOTIDES FROM THE RADIOACTIVE PROBE
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Eight 600 ul fractions were collected in eppendorf tubes and the

radioactivity per labelled tube measured on a scintillation counter.

Fractions corresponding to the first peak were stored at - 70 c until

ready for use. (The column was allowed to wash for at least 30 minutes

before reuse).

COLONY HYBRIDISATION

Bacterial strains were grown directly on 0.45 urn nitrocellulose

filters (Schleicher and Schuell) placed on Luria broth agar plates, and

colonies lysed in situ by placing the filter, colony side up , on a sheet

of 3 MM Whatman paper soaked in 10% filtered SDS in a pyrex petri dish.

After 3 minutes the filter was transferred to a second sheet of 3 MM paper

saturated with denaturing solution (0.5 m NaOH, 1.5 M Na CI), and left for

5 minutes. The filter was then transferred to 3 MM paper soaked in

neutralising solution (2 M NaCl, 1 M Tris-Cl pH 8.0) for a further 5

minutes before placing on a final piece of 3 MM paper that had been soaked

in 2 x SSPE (0.36 M NaCl, 20 mm NaH2P04, 2 mM EDTA pH 7.4). After 5

minutes the nitrocellulose was removed to a sheet of dry 3 MM paper

(colony side up) and allowed to dry at room temperature for 30 to 60

minutes. It was then baked at 65°C overnight.

Filters were hybridised to p32 labelled probes in a manner similar

to that described by Maniatis et al (1975). Dried blots were placed in

heat sealable bags (Phillips sealobags) to which was added 25 ml of a

prewash solution (for 100 mis: 5 mis 1 M Tris; 20 mis 5 M NaCl, 0.4 ml

0.25 M EDTA; 1 ml 10% SDS, 73.6 ml sterile distilled water). After
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sealing, the bags were incubated at 42 C, with gentle shaking, for 1

hour. The prewash solution was poured off and 5 mis of preincubation

solution (for 10 ml: 5 ml formamide, 2.5 ml 20 x SSC (3M NaCl; 0.3M Na

citrate), 0.5 ml 2% SDS, 40 ul 0.25 M EDTA, 1 ml 10 x PM (0.2% Ficoll,

0.2% BSA, 0.2% polyvinyl pyrrolidone in 10 x SSC, 960 ul distilled water)

was added. Any air bubbles were removed by squeezing, before resealing

the bags and incubating, with gentle shaking, at 42°C for a further 3

hours. After this, the probe was prepared as follows; 250 ul of

sonicated herring sperm DNA (2.5 mg/ml stock in sterile distilled water)

was added to 2.5 ml of preincubation mixture in a glass scintillation

vile. The 32p labelled DNA probe was added to this and the solution

boiled for 10 minutes on a hot plate in a boiling water bath. A corner

of each bag was cut off and the preincubation mixture removed, before

adding the probe solution. Care was taken to remove all air bubbles

before resealing and incubating overnight at 42°C, with gentle

shaking. The following day the bags were opened and the ^2p liquid

waste removed. Blots were removed and submerged in a prewarmed wash

buffer of 5 x SSC, 0.1% SDS, 1 mM EDTA. Incubation proceeded for 1 hour

at 65°C, after which time the blots were quickly washed twice in 2 x

SSC, with gentle agitation . The blots were air dryed on paper towels

ready for autoradiography.

SOUTHERN HYBRIDISATION

Electrophoresed DNA was blotted from agarose gels to nitrocellulose by

the method of Southern (1975). Ethidium bromide stained gels were

photographed and excess DNA cut away with a razor blade. The remaining

gel was immersed in denaturing solution ( 0.5 M NaOH, 1.5 M Na CI) and
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incubated at room temperature, with gentle shaking. After 45 minutes the

solution was poured off and the gel neutralised by soaking in 1 M Tris, 2

M NaCl, adjusted to pH 5.5 with NaOH. The gel was left gently shaking in

this solution for 45 minutes. Nitrocellulose (BA85 Schleicher and

Schuell), cut 0.25 inches larger than the gel on all sides, was prepared

by layering onto the surface of distilled water. Once wetted the

nitrocellulose was transferred to the surface of 20 x SSC and immmersed

for up to 20 minutes. The transfer apparatus (Figure 8.2) was set up as

follows: a large glass tray was filled with 20 x SSC, on top of which was

placed a glass plate the width of the tray, but shorter than the tray. A

piece of Whatman 3MM filter paper was placed across the glass plate so

that its ends extended down into the 20 x SSC. A second piece of filter

paper the size of the glass plate was placed on top of this, and the whole

unit was kept covered with saran (plastic) wrap until ready to use.

When ready to blot 4 pieces of Whatman 3MM paper were cut the size of

the nitrocellulose. The gel was then placed on top of the apparatus and

surrounded with plastic support bars. The nirocellulose was place on top

of the gel and one of the pieces of filter paper, soaked in 20 x SSC,

placed on top of this. The remaining pieces of filter paper were placed,

dry, on top and covered with 2-3 inches of stacked paper towels. A glass

plate was placed on top of the whole system with a weight on top and left

overnight. The following day the paper towels and filter paper were

removed and the nitrocellulose, with gel attached, inverted on to a paper

towel. Well positions, date and samples, were marked on the

nitrocellulose, before removing and discarding the gel. The

nitrocellulose was washed in 2 x SSC for 5-10 minutes, with gentle

shaking, before leaving to dry at room temperature, on top of paper
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FIGURE 8.2: SOUTHERN BLOT APPARATUS

4 PIECES OF WHATMAN 3MM

NITROCELLULOSE
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towels. The nitrocellulose was baked overnight at 65 C and was

hybridised to ^2p labelled probes in the same manner as for the colony

blots, except that the prewash step was omitted.

AUTORADIOGRAPHY

Air dryed blots were exposed to X-ray film (Kodak X - AR - OMAT) at

-70°C for between 2 hours and 2 days depending on the activity of the

probe.
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RESULTS

PREPARATION OF PROBES

Gene probes were prepared from large scale preparations (Chapter 3) of

RP4, Sa-1, p872 and p700. RP4 and Sa-1 DNA was nick translated directly

to a specific activity of 3.3 x 10^ cpm/ul DNA solution. Plasmid p872

(100 ul) was digested overnight with 10 u of Hpa I in a total volume of

130 ul, and plasmid p700 (100 ul) was similarly digested with 10 u of

EcoRl in a total volume of 120 ul. Reaction mixtures were

electrophoresed in the dark in a 0.7% agarose gel in borate buffer at 80 v

for 2 hours (Figure 8.3). The 500 bp p872 fragment, containing the type

I DHFR structural gene, and the 800 bp p700 fragment, were electroeluted

from the gel (as described in chapter 3) and the fragments nick translated

to a specific activity of 3 x 10^ cpm/ul DNA solution according to the

modified Maniatis method (1975), except unlabelled nucleotides were dried

down onto the plasmid DNA to increase the efficiency of labelling.

DETERMINATION OF THE ORIGIN OF (Sa-1::Tn4135)i: DNA BY COLONY

HYBRIDISATION

In order to determine whether aberant excision of Tn4135 from RP4,

resulting in the cotransfer of some of the RP4 genome to Sa-1, was

responsible for the large size of the Sa-1::Tn4135a species (Chapters 5

and 6), this plasmid and suitable controls were probed with radiolabelled

RP4 and Sa-1 DNA. Individual E coli colonies, harbouring the following

plasmids, were grown directly on nitrocellulose filters: Sa-1, Sa-2, RP4,
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RP4::Tn4135, Sa-1::Tn4135 , Sa-1:;Tn4135 , and Sa-2::Tn4135 , and

E coli strain J53 was used as a control. Autoradiograms (Figure 8.4) were

examined after 2 hours and indicated that both RP4 and Sa-1 probes

unexpectedly hybridised to E coli J53 control DNA. Therefore no firm

conclusions could be drawn from the other results. There would also

appear to be a certain amount of cross reactivity between the RP4 and Sa-1

probes ie. the Sa-1 probe hybridised to RP4 yet did not hybridise to

Sa-2. In order to determine the cross reactivity potential of the RP4 and

Sa-1 probes, different E coli species were colony hybridised to the above

probes. However, a lack of probe intensity and problems with X-ray film

development, hampered the analysis of results and no conclusions could be

drawn. (Colony hybridization lacks the specificity of Southern

hybridization due to the larger amounts of 'unpurified' DNA present).

DETERMINATION OF THE ORIGIN OF (Sa-1: ;Tn4135).j DNA BY SOUTHERN

HYBRIDISATION

Due to the nonspecificity of the colony hybridisation results, the

same plasmid species used in the previous section were restricted, and the

DNA fragments probed with the RP4 and Sa-1 probes. DNA was prepared from

the test strains by the large scale method and purified by a CsCl density

gradient (Chapter 3). Plasmid DNA from Sa-1 containigr strains was

restricted with 9 u of Bgl II and 25 u of Pst I was utilised to digest DNA

from RP4 containing cells. DNA samples (30 ul), including Hind III

restricted lambda DNA, were subjected to agarose gel electrophoresis at 40v

overnight (Figure 8.5: A(i) and B(i)) and the DNA fragments transferred
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to nitrocellulose by the method of Southern (1975). Blots were hybridised

with the RP4 and Sa-1 probes utilised in the colony hybridisation

experiment, and exposed to X-ray film overnight (Figure 8.5: A(ii) and

B(ii) ). A comparison of the restriction and hybridisation patterns

indicates that, although the probes show some cross hybridisation with

lambda DNA, there is no cross hybridisation between RP4 and Sa-1. The RP4

probe, whilst not hybridising to Sa-1 or Sa-1::Tn4135a containing

samples, did hybridise to Sa-1: :Tn41350R-*-. This result suggests that

Tn4135 did not cotransfer some of the RP4 genome with it on transposition

to Sa-1 but, instead, indicates that Sa-1: :Tn4135<-)^--*- posseses a region

of DNA homologous to part of the RP4 genome. This finding, although

contrasting with the expected result# in which RP4 would only hybridize to

Sa-1::Tn4135, supports the view that the transposons harboured by E coli

J62 (Sa-1: :Tn4135)a and E coli J62( Sa-1: :Tn4135)QR-*- genuinely are

different. Hybridisation with the Sa-1 probe (Figure 8.5: B(i) and (ii) )

suggests that E coli J62(Sa-1::Tn4135)a does not harbour the Sa-1

plasmid either.

CLASSIFICATION OF THE DHFR GENE OF Tn4135 BY SOUTHERN HYBRIDISATION

In order to determine the relatedness of the Tn_7 and Tn4135 encoded

DHFR genes, and to determine any differences between the origin of the E

coli J62(Sa-1: :Tn4135)a and E coli J62(Sa-l: :Tn4135)0R-*- encoded genes,

hybridisation was carried out utilising DHFR type I and type II gene

probes. Plasmid DNA from E coli strains harbouring R751, R388, R483,

RP4::Tn4135, Sa-2::Tn4135a, Sa-1::Tn4135a, Sa-1::Tn41350RI, RP4 and
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FIGURE 8.5: PROBING OF Tn4135 CONTAINING STRAINS WITH

LABELLED RP4 (A) AND Sa-1 (B) DNA
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Sa-l was prepared by the method of Takahashi and Nagano (1984), and

blotted from 0.7% gels (Figures 8.6 and 8.8), run in borate buffer at 100v

for 1.25 hours, onto nitrocellulose (Figures 8.7 and 8.9). A comparison

of Figures 8.6 and 8.7 indicates that the type I probe is specific;

hybridising to R483 but not R388. However, there is some unexpected cross

reactivity with RP4. Homology was observed between this probe and

RP4:;Tn4135, indicating that this latter plasmid encodes a type I-like

DHFR gene and is therefore related to Tn7_. The (Sa-l: ;Tn4135)a and

(Sa-2::Tn4135)a plasmids also encode a type I DHFR but there was no

hybridisation of this probe to strains harbouring (Sa-1:;Tn4135).

These observations again indicate that the Tp resistance of the E coli

J62(Sa-l: :Tn4135)a and E coli J62( Sa-l: :Tn4135)^l strains is mediated

by different enzymes, and that the original pig isolate must therefore

harbour two different DHFR genes. The results of hybridisation with the

type II probe (Figures 8.8 and 8.9) are not conclusive, owing to the non

specificity of this probe, so it was not possible to positively determine

whether (Sa-l: :Tn4135)^l harboured a type II enzyme. However, the lack

of strong positive hybridisation would suggest that there is little

homology between the R67 probe and the Sa-l: ;Tn4135 encoded enzyme.

ANALYSIS OF THE TRIMETHOPRIM RESISTANCE MEDIATED BY THE ORIGINAL PIG

ISOLATE

The previous results suggest that the original pig isolate harboured

two different DHFR genes (possibly residing on different plasmids), and in

view of the fact that the genes mediating Tp resistance in E coli

J62(Sa-l::Tn4135)a and E coli J62(Sa-l::Tn4135)appeared
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AGAROSE GEL ELECTROPHORESIS OF Tn4135 CONTAINING

STRAINS

3 4 5 6 7 8 9 10

iitJ *£=.■ wu&i tuu

». \ v* . . ' ' ^

FIGURE 8.6:

1 2

FIGURE 8.7: PROBING Tn4135 CONTAINING STRAINS FOR THE TYPE

I DHFR

1 2 7 10

1. RP4 6. Sa-2 : :Tn.4135a

2. Sa-1 7. RP4::Tn4135

3. Sa-1: :Tn4135a 8. R483: : Tn7_
4. Sa-1 : : Tn4135ORI 9. R3 8 8

5. Sa-1 : :Tn41350RI 10. R751



293

FIGURE 8.8: AGAROSE GEL ELECTROPHORESIS OF Tn4135 CONTAINING

STRAINS
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different, DNA from the original pig isolate, P-20, was probed with the

type I and type II gene probes. Plasmid DNA was prepared from P-20 cells

by the method of Takahashi and Nagano (Chapter 1), and transferred from

agarose gels (Figure 8.10), run at 100 v for 1.25 hours in borate buffer,

to nitrocellulose.

Hybridisation with the type I probe (Figure 8.11) indicated that the

smaller plasmid bands encode a type I DHFR, whilst no homology was

observed between this probe and the larger plasmid band. Observations

after type II probing, although not conclusive, would suggest that there

is no homology between this probe and any of the P-20 plasmids. Thus the

E coli J62(Sa-l: :Tn4135)^^ encoded gene would appear to have an

evolutionary origin distinct from the type I and type II DHFR genes.
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FIGURE 8.10: AGAROSE GEL ELECTROPHORESIS OF P-20 STRAINS
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DISCUSSION

Nucleic acid hybridization has a number of applications in microbial

diagnostics eg in detection of enterotoxigenic E coli ( Moseley et al,

1982), and viruses (Brandsma and Millar, 1980; Chou and Merigan, 1983)

and in taxonomical studies of bacterial plasmids (Roussel and Chabbett,

1978). Although some references to the development of this technique for

detecting Tn7_ in bacterial strains have been made (Elwell et al, 1980;

Burchall et al, 1982; Fling et al, 1982), it is only recently that

epidemiological studies on the spread of Tn7_ have made use of DNA

hybridization.

The probes used to monitor this spread of Tp resistance have varied:

Datta et al (1981) utilised the whole of CoEl::Tn7_ and Fling et al (1982)

used the plasmid pFE506 as a type I probe. Both these probes contain the

type I DHFR gene, whereas Pulkkinen et al (1984) develop ed a type I

probe, containing the Bam HI fragment of Tn7, which lacked the type I

structural gene but which was still specific and able to detect the type I

DHFR. In this study of Tn4135 , probes contained the type I structural

gene of Tn_7, from a pBR322 derivative, and an 800 bp ECoRl fragment of R67

capable of detecting the type II DHFR (Elwell, personal communication),

but their specificity was not absolute. Although differentiating between

the type I (R483) and the type II (R388) enzymes, the type I probe

appeared to cross hybridise with RP4. Although this type I probe is known

to cross hybridize with the E coli chromosome (Fling and Richards, 1983;

Simonsen et al, 1983) , this lack of specificity is more likely to be due

to contaminating pBR322 DNA in the probe, as suggested by Pulkinnen et al
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(1984), or possibly as a result of non-optimal hybridization conditions.

The specificity of the hybridization reaction on filters can be affected

by two types of artefacts: non specific binding of the probe DNA to the

filter and non specific hybridization of probe DNA to the DNA sequences

bound to the filter (Caro et al, 1984). Single stranded DNA binds

efficiently to filters and if this happens during the hybridization

reaction it will cause a 'background' that can reach high levels. A

number of methods have been devised to reduce this ' background'

(Denhardt, 1966), including carrying out the reaction in the presence of a

denaturing agents, such as formamide (McConaughty et al, 1969). The

second type of background, hybridizing of probe DNA to heterologous

sequences of the DNA bound to the filter, results from the accidental

presence of short homologous sequences on both DNA's for any one of a

number of causes (insertion sequences, evolutionary relationship etc.).

The conditions of the hybridization reaction will determine how extensive

such a spurious homology has to be before it contributes significantly to

the background. Therefore, in choosing hybridization conditions, a

balance must be found between maximum specificity and maximum efficiency

(McConaughy et al, 1969). Probe concentration and sequence complexity ,

temperature, solvent and salt concentration will all effect the rate and

preci >ion of probe hybridization. This latter explanation, with RP4 and

the type I probe containing an identical sequence - possibly an IS element

- is the more likely, since probing of RP4::Tn4135 DNA revealed a similar

hybridization pattern, all be it more intense. Problems with 'background'

hybridization also arose with the type II probe, as suggested by Elwell

(personal communication). However, despite the non-specificity of the

probes, this technique was able to confirm that the Tn4135 transposon

residing in RP4, Sa-1: :Tn4135a and Sa-2: :Tn4135a encoded a Tn_7-like
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type I DHFR, and that this enzyme differred from that encoded by

Sa-1: :Tn4135(-)R-1-. The lack of strong positive hybridization with the

type II probe, although not conclusive, would suggest that the latter DHFR

has an origin distinct from the type I or type II enzymes. This view was

confirmed by probing of the P-20 isolate with both probes; only the type I

probe hybridized.

Colony hybridization was utilised to detect the presence of RP4

sequences in the Sa-1::Tn4135a plasmid, but problems arose with the

specificity of this method: the RP4 and Sa-1 probes appeared to be

non-specifically hybridizing to plasmid-free E coli J53 cells. Whilst

suggesting that the initial colony hybridisation technique described by

Grunsten and Hogness (1975), and subsequently modified by Gergen et al

(1979), was not sufficiently sensitive to detect small genes in large

naturally occurring plasmids of low copy number (such as RP4 and Sa-1),

Maas (1983) indicated that nonspecific hybridization could be decreased by

reducing the quantity of probe used. Although producing a weaker signal

this would presumably dilute out contaminant DNA. However, because of

the relatively large size of the Sa-1 and RP4 probes it is conceivable

that the E coli chromosome might contain sequences, such as IS elements,

that are also present in RP4 and Sa-1. Therefore a more likely solution

to the problem would be to remove the chromosomal DNA and restrict the

sample plasmid DNA, to increase the specificity of the hybridization.

Despite the cross reactivity with lambda DNA, Southern hybridization

did improve the specificity of the experiments, and confirmed previous

antibiotic sensitivity results that E coli J62(Sa-1::Tn4135)a did not

contain any sequences specific to RP4 or Sa-1. This data suggests that

the molecular species of E coli J62(Sa-1::Tn4135)a contains no plasmid

DNA and may, therefore, be an autonomously replicating R-determinant
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(Clowes, 1972; Rownd et al, 1978; Wiedemann ,1981) consisting of

spontaneously amplified copies of the Tp resistance gene. This would

contradict reports by Clewell et al (1974) who were unable to detect poly

r-dets in the amplification of Pam I, although Perlman and Rownd (1975),

using improved techniques, demonstrated both monomers and polymers of

r-dets in cultures of transitioned cells. In contrast, the hybridization

of probes to E coli J62(Sa-l; ;Tn4135)^^ DNA, and, in particular, the

RP4 probe, would appear to indicate that this transposon contains a

sequence specific to the RP4 plasmid. When (Sa—1;:Tn4135)0R^- DNA was

probed with RP4 DNA only the larger of the two bands hybridized, as

compared with both bands after Sa-1 probing. Non specific hybridization

can be ruled out due to the fact that RP4 does not hybridize to Sa-1

alone.

The results mentioned support the concept that E coli

J62(Sa-1;:Tn4135)a and E coli J62(Sa-l;:Tn4135)ORI contain different

DHFR genes and thus the original pig isolate, P-20, contains two Tp

resistance genes of distinct evolutionary origins. One of these genes is

related to Tn7_ but the other, encoded by Sa-1;;Tn4135^R^, showed no

sequence homology with either the type I or type II DHFR 's and therefore

awaits further characterisation.
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CHAPTER 9

BIOCHEMICAL AND GENETIC ANALYSIS OF Tn402
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INTRODUCTION

R751 is a member of the incompatibility group P-l plasmids (Jobanputra

and Datta, 1974); other members include RK2, RP1 and RP4 - which are

probably identical to one another (Burkhardt et al, 1979). This group of

plasmids was first identified in Pseudomonas aeruginosa as a result of an

investigation into the agents responsible for carbenicillin resistance in

infections in a hospital burns unit (Lowbury et al, 1969), although R751,

itself, was found in a strain of Klebsiella aerogenes (Jobanputra and

Datta, 1974). A wide range of Gram negative bacteria have now been found

to harbour plasmids of this incompatibility group and it is this broad

host range or promiscuous property that has excited an interest for study

(Datta and Hedges, 1972; Olsen and Shipley, 1975; Beringer, 1974; Cho et

al, 1975). There is speculation that in the past this group of plasmids

could have been responsible for genetic exchange between otherwise

unrelated bacterial species. Inc P group plasmids are invaluable in

initiating the genetic analysis and manipulation of potentially important

bacteria and have been used, along with their derivatives, as broad host

range cloning vehicles (Jacob and Grinter, 1975; Meyer et al, 1975; Hedges

et al, 1976). The plasmid R751 has been used primarily as an Inc P-l

group plasmid for incompatability testing (Datta, 1974; 1977).

The most extensively studied of the Inc P group plasmids are RK2, RP4

and RP1 (Barth and Grinter, 1977; Meyer et al, 1977b; Figurski and

Helsinki, 1979; Thomas et al, 1980), which all carry resistance genes for

Ka, Ap and Tc (Ingram et al, 1973). The plasmid R751, although
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approximately the same molecular size (51.4 kb compared with 56.4 kb -

Meyer et al, 1977a; Burkhardt et al, 1978), does not encode the same drug

resistances (Jobanputra and Datta, 1974). It carries a gene for

trimethoprim resistance only, which was found to reside on a transposon,

Tn402 (Shapiro and Sporn, 1977).

The genetic organization of R751 has been studied by Meyer and Shapiro

(1980) and Ward and Grinsted (1982). The restriction map, although

varying slightly between the two latter papers, was found to bear no

resemblance to that of RK2 (RP1, RP4) (Meyer et al, 1977c; Grinsted et al,

1977, 1978; Barth and Grinter, 1977; Depicker et al, 1977) but, like RK2,

the genes for replication and self transfer are located at positions which

are physically separated from one another. These positions are relatively

free from restriction sites (Meyer and Shapiro, 1980), compared with

regions encoding the antibiotic resistance genes (Meyer et al, 1977c,

Thomas et al, 1980). The lack of restriction sites is consistent with the

idea that the restriction map reflects the evolution of the broad host

range plasmids (Ward and Grinsted, 1982). Recognition sites for

restriction enzymes might be expected to be lost through evolution of

these plasmids, if it is assumed that the class II enzymes are important

in degrading foreign DNA. Regions lacking large numbers of restriction

sites would have been conserved in the evolutionary process and, as a

result, contain genes coding for essential functions. On the other hand,

regions containing many such sites, eg. DNA encoding antibiotic resitance,

would have been acquired more recently, possibly by reciprocal recombinant

events or by transposition eg. Tn402.

The origins of the trimethoprim resistance gene of R751, and whether

in fact it does lie on a transposon, are still disputed. Despite the fact

that Shapiro and Sporn (1977) have shown that Tn402 can transpose to
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phage lambda, there have been no reports of its transferability to other

replicons (Amyes, 1979; Goldstein et al, 1986). The lack of resistance to

streptomycin of strains harbouring R751 would indicate a dissimilarity

from the more common trimethoprim resistance encoding transposon, Tn7_

(Barth et al, 1976). Tn402 is also smaller than Tn_7: 7.5 kb (Shapiro and

Sporn, 1977) as compared with 14 kb for Tn_7 (Barth et al, 1976), and there

is no genetic evidence that the transposons are related. Tennhammer-Ekman

and Skold (1979) also indicated that the DHFR genes carried by Tn7_ and

Tn402 were distinct and therefore possessed different origins. Attempts

to establish the origin of R751, and thus Tn402, have included

hybridization studies with DNA from other Inc P plasmids (Ward and

Grinsted, 1982) and examination of the DHFR produced by Tn402, in

comparison with DHFR's from R388, R483::Tn7_ and R67bis. The Studies of

the DHFR have included biochemical analysis (Pattishall et al, 1977; Amyes

and Smith, 1978; Tennhammer-Ekman and Skold, 1979), hybridization of the

gene with Type I and II gene probes (Fling et al, 1982), use of reacting

sera to DHFR (Fling and Elwell, 1980) and isoelectric focusing of the DHFR

(Broad and Smith, 1982). As mentioned in chapter 7, the exact

classification of DHFR to type is still controversial in some cases,

although the features of the type I and type II enzymes are distinct.

Whilst R388 has been classified as a variant of type II ( it possesses the

resistance properties of a type I enzyme (Amyes and Smith, 1976) but is

synthesised in amounts typical of the type II), R751 has been classified

both as a type I (Amyes and Smith, 1978) and a type II (Fling and Elwell,

1980). Tennhammer-Ekman and Skold (1979) indicated from their results

that R751 did not satisfactorily fit into either classification, therefore

suggesting a putative type III classification for this enzyme. Although

not classifying to enzyme type, these authors showed that R751, like R388,
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had properties similar to R483, the only difference being the amount of

enzyme produced. However, Amyes (1986) is in agreement with Broad and

Smith (1982) that R751's properties are sufficiently similar to the type

II enzyme that it can be classified as a variant type II enzyme (like

R388). The type II class would thus consist of Type Ila (R67bis) and Type

lib (R751) (Amyes, 1986).

Much of the confusion in the classification of R751, and the apparent

variations in the properties of this plasmid may have resulted from the

extremely low production of this enzyme (Amyes and Smith, 1978). However,

major advances have now been made in the ability to clone genes into

multicopy plasmid vectors with a concomittant increase in the gene

product. Therefore, in order to re-evaluate the properties of the DHFR

encoded by R751, the trimethoprim resistance gene was cloned into the

multicopy plasmid pBR322.
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MATERIALS AND METHODS

The experimental procedures for resistance testing and plasmid

transfer are as indicated in Chapter 3, and transposon transfer was

affected as described in Chapter 4. The techniques used for phage lysis

are as in Chapter 5 and for the biochemical analysis of the Tn402 DHFR, as

in Chapter 7.

PLASMID DNA EXTRACTION AND GEL ELECTROPHORESIS

Plasmid DNA was prepared from overnight broth cultures by the method

of Takahashi and Nagano (1984) (see Chapter 1). Restriction digestion was

performed with Pst 1 (NBL Enzymes Ltd) for 3 hours by method 11 (chapter

1). Samples were electophoresed in Buffer A (chapter 1) either on 0.7 %

horizontal agarose gels (chapter 1) or on 1 % agarose minigels

(Uniscience Ltd), for the times and voltages listed.

DNA CLONING - (Hatfield Polytechnic, 1985)

Aliquots (40 ul) of restricted cloning vector and sample were placed

in eppendorf tubes and the restriction enzyme inactivated by incubating at

70°C in a water bath for 15 minutes. The contents of one tube were

transferred into the other with a micro-pipette and mixed well. Forty

microlitres were transferred back into the first tube and 5 ul of ligase

additive (NBL Enzymes Ltd) added to each tube. Five microlitres of T4 DNA
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ligase (NBL Enzymes Ltd) was added to one tube (ligase +ve) and 5 ul of

distilled water added to the other (ligase -ve). The tubes were

maintained at 4°C overnight to allow ligation to proceed. Approximately

5 ul was removed from each tube for analysis by agarose gel

electrophoresis.

BACTERIAL TRANSFORMATION

Bacterial transformation was carried out as indicated in Chapter 3,

utilising 50 ul of unrestricted cloning vector, the remainder of the

ligase -ve mixture and the remainder of the ligase +ve mixture. A

control, containing no added DNA, was also set up.
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RESULTS

TRANSPOSITION OF Tn402

a. Transfer of Tn402 from R751 to Sa (Figure 9.1)

The plasmid Sa-1 was introduced into E. coli J62(R751::Tn402) in a 5

hour standard mating, selecting for trimethoprim and kanamycin

resistances. (The transfer frequency is shown in Table 9.1, mating 1).

After promoting transposon transfer, by subculture, a single

transconjugant colony was used as a recipient in a mating with E. coli

J53(RP4). Selection was made on DM plates containing the supplements for

strain J62 and the three antibacterial drugs ampicillin, trimethoprim and

kanamycin (Table 9.1, mating 2). Transconjugants were subcultured twice

in nutrient broth and restreaked on the same DM selection plates as

before. Colonies were tested for their resistance to unselected markers

and a colony displaying the characteristics of a J62 strain harbouring RP4

Sa and Tn402 (ie. carrying the resistance determinants to Ap, Ka, Tc,

Sm/Sp) was identified. (The presence of RP4 in the strain should have

eliminated R751, a plasmid of the same incompatibility group. This strain

was used as a donor in a standard mating with E coli J53. Selection was

carried out on DM plates containing the supplements for strain J53 plus

either trimethoprim alone (selection for the transposon), streptomycin

alone (selection for plasmid Sa) and the two drugs together (Table9.1;

mating 3). Resistances of transconjugants were again checked after

subculturing and a colony was identified and purified which conferred



308

FIGURE 9.1: FLOW DIAGRAM FOR THE TRANSFER OF Tn502 FROM R751

TO Sa-1

R751::Tn402

Sa-1 Tp

R751::Tn402, Sa-1

RP4 Tp Sm/Sp Ka Su

Sa-1 ; ; Tn.40 2 , RP4

J53 Ap Ka Tc Sm/Sp Tp

Sa-1::Tn40 2

J62 Ka Sm/Sp Tp

Sa-1: : Tn.40 2

Ka Sm/Sp Tp Su
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TABLE 9.1: TRANSFER FREQUENCIES FOR THE TRANSFER OF Tn402
FROM R751 TO Sa

EXPERIMENT MATING SELECTION TRANSFER
MEDIA FREQUENCY

1 Introduction of Sa Ka Tp 5.78 x 10-^

2 Introduction of RP4 Ka Tp Ap 3.02 x 10~3

3 Transfer to E coli Tp 4.03 x 10"^
J53

Sm 7.65

Tp Sm 4.03

4 Transfer to E coli Sm Rif 1.26
J62-2

Tp Rif

Tp Sm Rif

0.84

2.53
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resistance to Ka, Sm/Sp, Tp, the markers for Sa and Tn402. This strain

was used as a donor to transfer Sa::Tn402 back into E coli J62-2.

Selection was performed on DM plates with the J62 supplements to which

had been added rifampicin and either trimethoprim, streptomycin or

trimethoprim and streptomycin (Table 9.1; mating 4). The transconjugants

were purified and found to confer resistance to Ka, Sm/Sp, Su and Tp.

This inferred the presence of plasmid Sa-1 into which had been inserted

Tn402.

b. Analysis of E. coli J6-2(Sa-1::Tn402) for the Loss of R751 by

Phage Lysis

1. Lysis with Stock PRR1 and PR4 Phage

In order to establish if the original R751 plasmid had been eliminated

E coli J62(R751), E coli J53(RP4), E coli J53(Sa-l), E coli J62(R7K) and J£_

coli J62(Sa-l::Tn402) were grown up overnight in Nutrient broth (4.5 ml)

and diluted as appropriate. The phages PRR1 (neat and 10~2 dilutions)

and PR4 (10~6 dilution) were utilized in phage overlays of the above

cultures and the plaque counts per ml are shown in Table 9.2.

Unexpectedly, PRR1 lysed Inc W plasmid-carrying strains, as well as Inc P,

which raised doubts as to the specificity of this phage.
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TABLE 9.2: PLAQUE COUNTS FOR PRR1 AND PR4 LYSIS

STRAIN PRR1 pfu/ml PR4 pfu/ml

E coll J62(R751) 8.16 x 105 1.13 x 109

E coll J53(RP4) Confluent Confluent

E coll J53(Sa-l) XS 3.00 x 107

E coll J62(R7K) XS < 107

E coll J62(Sa-1::Tn402) 2.56 x 105 1.60 x 109



11. Lysis with Purified PRR1

As a result of the PRR1 retitering experiment (Chapter 6), which

indicated that PRR1 genuinely lysed cells containing the Inc W plasmid,

albeit at an eop which was 800 times lower than its ability on Inc P

plasmid containing strains, the above lysis experiment was repeated with a

newly purified phage PRR1 preparation (Chapter 6); looking for differences

in eop (Table 9.3). Despite the lack of specificity of the phage, PRRR1

lysed Sa-1 containing strains although the plaque counts were 100 fold

lower than for strains harbouring RP4. E coli J62(Sa-l::Tn402) counts

compare more favourably with RP4 and R751 than with Sa-1, suggesting that

an Inc P plasmid may still be present within this cell.

c. Analysis of E.coli J6-2(Sa-1::Tn402) for the Loss of R751 by

Transfer to Pseudomonas

Due to the lack of phage PRR1 specificity an alternative approach to

determining the presence/absence of an Inc P plasmid in E coli

J62(Sa-l::Tn402) was adopted: transfer to P aeruginosa. Inc P plasmids

are easily transferred to this strain and stably maintained, whilst Inc W

plasmids are either not transfered at all, or not as readily. A

comparison of the transfer frequencies of Sa-1, R751, RP4 and Sa-1::Tn402

to P aeruginosa, should thus establish the origin of the DNA of the latter

plasmid species.

However, as indicated in Chapter 6, an inability to find suitable

selection markers for the incomming plasmids and P aeruginosa, whilst

selecting against the E coli donor cells, prevented any conclusive results

being obtained. Selection with Ka, naladixic acid and sulphonamide all
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TABLE 9.3: PLAQUE COUNTS FOR PRR1 AND PR4 LYSIS USING
PURIFIED PHAGE

STRAIN PRR1 PR4

E coli J62(R751) 2.4 x 108 8.00 x 107

E coli J53(RP4) 9.9 x 109 9.00 x 108

E coli J53(Sa-1) 1.0 x 107 4.00 x 107

E coli J62(Sa-1::Tn402) 8.2 x 109 2.38 x 109
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proved unsuitable due to the high intrinsic resistance of P aeruginosa to

Ka, the unexpected resistance of E coli to Nalidixic acid at 10 ug/ml and

the poor selectibility potential of Su.

d. Minimum Inhibitory Concentration(MIC) for Trimethoprim of

E. coli J62(Sa-1:;Tn402)

In order to check that the Tp resistance of E coli J62(Sa-1::Tn402)

was due to a plasmid/transposon mediated gene, and not a chromosomal

mutation, the trimethoprim MIC of this strain along with E coli J53(Sa-l)

and E coli J62(R751) were determined (Table 9.4).

E coli J62(Sa-1::Tn402) has a Tp MIC of >1000 ug/ml indicative of a

plasmid/transposon mediated resistance gene, but from the phage lysis and

Pseudomonas transfer experiments it is not possible to determine whether

R751 is still present, or whether Tn402 has transposed to Sa-1.

THE CLONING OF Tn402 INTO pBR322

Due to difficulties in obtaining enough DHFR from R751, to determine

accurately enzyme properties and therefore assign enzyme type, Tn402 DNA

was cloned into PBR322 following the protocol of Hatfield Polytechnic

(1985). pBR322 and R751 DNA were restricted with Pst I, utilising various

restriction mixture compositions (Table 9.5), ligated, and E coli C600
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TABLE 9.4: TRIMETHOPRIN MINIMUM INHIBITORY CONCENTRATIONS

STRAIN Tp MIC (ug/ml)

E coli J53(Sa-1)

E coli J62(R751)

E coll J62(Sa-1::Tn402)

< 2.5

> 1280

> 1280
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TABLE 9.5: VARIATIONS IN THE COMPOSITION OF THE RESTRICTION MIXTURE

EXPERIMENT 1 EXPERIMENT 2 EXPERIMENT 3

VOLUME OF INITIAL pBR322 4.5 ml 4.5 ml 4.5 ml
CULTURE

VOLUME OF INITIAL R751 4.5 ml 4.5 ml 9.0 ml
CULTURE

VOLUME OF DW IN WHICH 60.0 ul 150.0 ul 150.0 ul
NEWLY ISOLATED pBR322 DNA
RESUSPENDED IN

VOLUME OF DW IN WHICH 60.0 ul 34.0 ul 34.0 ul
NEWLY ISOLATED R751 DNA
RESUSPENDED IN

VOLUME OF pBR322 DNA 15.0 ul 15.0 ul 15.0 ul
RESTRICTED

VOLUME OF R751 DNA 30.0 ul 30.0 ul 30.0 ul
RESTRICTED
VOLUME OF RESTRICTION 6.0 ul 6.0 ul 6.0 ul

BUFFER

VOLUME OF Ps£ I ENZYME 1.0 ul 2.0 ul 2.0 ul

NUMBER OF Pst I UNITS 6.0 UNITS 40.0 UNITS 40.0 UNITS

TOTAL VOLUME 60.0 ul 50.0 ul 50.0 ul
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cells transformed with the resulting DNA. Transformants were examined for

the presence of Tn402 DNA inserted into pBR322.

a. Examination of Ligation Mixtures

To check that R751 and pBR322 restricted DNA had ligated, before

carrying out any transformation, cut and uncut DNA (5 ul) from PBR322 and

R751 were examined, along with an aliquot (4 ul) from the ligase +ve and

ligase -ve DNA mixture, by agarose gel electrophoresis on a submerged

minigel system. One percent gels were run for 1.5 hours at 100 v. Ligase

+ve, ligase -ve and restricted pBR322 DNA samples produced by experiment 1

(Table 9.5), failed to produce any plasmid bands. However, plasmid DNA

was present in all samples in experiment 2 (Table 9.5), but the bands were

very faint. An increase in the concentration of R751 DNA in the

restriction mixture (Table 9.5; Experiment 3) improved the sharpness of

bands (Figure 9.2) and indicated that R751 and PBR322 DNA had been

restricted by Pst 1 and that the DNA ligase was functioning properly

(Tracks 5 and 6).

b. Examination of Ligation Products by Bacterial Transformation

Ligase + DNA from each of the experiments 1-3 was used to transform

E coli C600 cells, selecting for transformants on LB plates containing

Ap,Tp, and Tc incividually, and Ap Tp together and Tc Tp together.

(Transformations utilising ligase -ve DNA, uncut pBR322 DNA and no DNA

were also set up to act as controls). pBR322 DNA transformed in

experiment 1, despite the lack of DNA visible on the gel, as did DNA from

the ligase -ve and +ve samples, but the DNA fragment of R751 carrying
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FIGURE 9.2: AGAROSE GEL OF THE DIFFERENT STAGES IN THE

LIGATION OF R751 AND Tn40 2 DNA FROM EXPERIMENT 3

TRACK 1. Uncut PBR322

2. Uncut R751

3. Pst I restricted PBR322
4. Pst. I restricted R751

5. Ligase -ve sample
6. Ligase +ve sample
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Tp resistance had not been picked up, as there was no growth on the Tp

plates. The conditions of experiment 2 greatly increased the chances of

PBR322 picking up the Tp containing fragment, and the number of

transformants per ml of undiluted sample are shown in Table 9.6. However,

Ap resistant transformants unexpectedly appeared to be as equally

prevalent as Tc resistant transformants. The resistances of transformants

from the Tp Tc and the Tp only plates were therefore checked by

restreaking on plates containing appropriate antibacterial drugs. All

transformants from the Tp Tc plates were found to be Ap resistant, as well

as Tp and Tc resistant (Table 9.7). Table 9.8 indicates the number of

transformants obtained per ml on each selective medium under the

conditions of experiment 3. The number of ligase +ve transformants

growing on the Ap plates is again comparable to those growing on Tc, but

some of the transformants from the ligase +ve plates, when restreaked out

to check their resistances markers (Table 9.9), were found to be Ap

sensitive, as expected. Those transformants resistant to Tp and Tc but

sensitive to Ap were indicative of pBR322 with Tn402 inserted into the Ap

resistance gene.

c. Examination of DNA from a Number of Transformed Colonies

In order to check transformants for the insertion of Tn402 into

pBR322, DNA from possible Tn402 containing transformants plus suitable

controls were examined by agarose gel electrophoresis. The 0.7 % gels

were run for 16 hours at 50 v. Preparations from experiment 2 failed to

show any evidence of Tn402 cloning. Transformants 3 and 4 (Table 9.7)

contained R751 DNA only. However, a DNA preparation of transformant C6
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+

T-2

Tp

Tc

+

+

+

T-3

Tp

Tc

+

+

+

T-4

Tp

-
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+

T-5

Tp

+

-

+

T-6

Tp

Tc

+

+
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TABLE9.8:NUMBEROFC600TRANSFORMANTSPERmlFOREXPERIMENT3 NATUREOF TRANSFORMINGDNA
AVERAGENUMBEROFTRANSFORMANTSPERmlFOREACHSELECTIVEMEDIUM TpApTcTpTc

NODNA-CONTROL
50ulUNCUT pBR322DNA LIGASE-VE LIGASE+VE

1.88X102

3.20X103 1.04X103 2.31X102

3.13X103 5.88X102 1.85X103

2.00X101 1.50X102

TABLE9.9:RESISTANCEMARKERSOFTRANSFORMANTSFROMEXPERIMENT3
N>

H

STRAIN

Tp

Tc

Ap

TpTc

EcoliJ53 EcollJ62(R751)+ EcoliC600(pBR322) EcollJ53(RP4) CLONE1+ 2+ 3 4+ 5+ 6+
+ + + +

+ + +

+ +
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from experiment 3 (Figure 9.3; Track 8) indicated that DNA had been

successfully cloned into pBR322. Repeated DNA preparations from clones 2

and 6 (Figure 9.4) indicated that clone 2 (Track 3) also contained pBR322

with an insert. The minimum inhibitory concentration of Tp for clones 2

and 6 was ) 1000 ug/ml compared with <[ 2.5 ug/ml for pBR322 without the

insert.

BIOCHEMICAL ANALYSIS OF THE DIHYDROFOLATE REDUCTASES OF R751, Sa-l::Tn402

AND pBR322 CLONES.

The DHFRs of R751, Sa-1:;Tn402 and the pBR322 clones (including

clone-H - Young unpublished results) were isolated, purified and their

properties examined, to establish enzyme type.

a. Separation of Chromosomal and Plasmid Enzymes

litres
E. coli J62(R751) and E. coli J62(Sa-l::Tn402) were cultured in 5 of

nutrient broth, whilst the clones were cultured in both nutrient broth,

and Isosensitest broth containing trimethoprim at 10 ug/ml. DHFR was

prepared from each culture and purified by gel filtration on Sephadex G-75

(For purification tables see Appendix 9.1). Complete separation of the

trimethoprim sensitive and trimethoprim resistant DHFR's was achieved for

each culture (Fig 9.5) and the elution patterns for each bacterial strain

were in most respects identical.
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FIGURE 3.3: EXAMINATION OF DNA FROM TRANSFORMANTS FROM

EXPERIMENT 3

1 2 3 4 5 6 7 8

TRACK 1. R751

2. PBR322

3. -

4. Clone 1

5. Clone 2

6. Clone 4

7. Clone 5

8. Clone 6
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FIGURE 3.4: AGAROSE GEL ELECTROPHORESIS OF DNA FROM CLONES

2 AND 6 (EXPERIMENT 3)

1 2 3 4 5
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FIGURE 9.5 DIEYDR0FQLAT5 Ri :iAS5 ACTIVITIES (EXPRESSED AS

ENZYME UNITS PER ML) IN FRACTIONS OBTAINED AFTER

GEL FILTRATION FOR TEE Tn4Q2 ENZYME IN DIFFERENT

STRAINS

E. coli T62(R751::Tn402;

45 47 43 51

FRACTION NUMBER

E. coli T62 (Sa-1: : Tn.40 2 (

5. coli C60Q(P3R322::Tn402)
CLONE H-C
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E- coli C60Q(PBR322::Tn402;
CLONE T-3

46 48 50 52

FRACTION NUMBER

E. coli C600 (P3R3 22 ::Tn402)
CLONE C-3

43 51 53 55 57

FRACTION NUMBER

EL coli C600 (PBR322::Tn402)
CLONE C-6

46 41 50 52

FRACTION NUMBER

Fractions were assayed in the presence (—) and absence (-—)
of 4 x 10"6 M Tp
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b. Molecular Weights

Molecular weight estimations from the gel filtration elution volumes

indicated the expected molecular weight of approximately 21,000 for the

chromosomal enzyme (Amyes and Smith, 1974). The trimethoprim resistant

DHFR's (Table 9.10) varied from 32,000 to 37,000.

c. Specific activity

The specific DHFR activities of the Tn402 enzyme in each strain were

measured at pH 6.0 in phosphate buffer A. Table 9.10 indicates the

specific activities of the crude samples (before gel filtration

purification). Cloning into PBR322 increases the specific activity of the

Tn402 enzyme between 10 and 20 fold.

d. Inhibition of the Tn402 Enzyme by Anti-folate Compounds

Each DHFR was assayed in 40 mM sodium phosphate buffer, pH6.0 in the

absence and presence of increasing concentrations of trimethoprim and

methotrexate. The concentration required to give 50 % inhibition (ID5Q)
were determined for each strain (Table 9.10).



TABLE9.10:PROPERTIESOFTHETn402DIHYDROFOLATEREDUCTASESISOLATEDFROMDIFFERENTSTRAINSUNDER VARYINGCULTURECONDITIONS
STRAIN

CLONE

CULTURE CONDITIONS
MOLECULAR WEIGHT

SPECIFIC ACTIVITY
TRIMETHOPRIM I°50

METHOTREXATE ID50

TIME (s)

SOURCE

EcoliJ62(R751::Tn402)
51NB

36307

0.468

1.30x10~4
1.047x10-3

EcoliJ62(Sa-l::Tn402)
51NB

35000

2.700

1.05x10-5
3.470x10-6
55

ThisWork

EcoliC600(pBR322::Tn402)
H-C

51NB

35000

3.720

I

o

X

o

cn

•

00

Young- unpublished results

EcoliC600(pBR322::Tn402)
H-C

51ISO+Tp

4.650

EcoliC600(pBR322::Tn402)
T-3

51NB

32360

4.650

ThisWork

EcoliC600(pBR322::Tn402)
C-2

11ISO+Tp
34276

10.850

2.30x10-5

>240

ThisWork

EcoliC600(pBR322::Tn402)
C-6

400mlISO
37583

8.600

1.25x10~7
8.700x10~7
164

ThisWork

+Tp
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e. Heat Sensitivity

Where sufficient enzyme was purified, heat sensitivities were

determined (Table 9.10). The Tn402 clone enzymes were more stable at

45°C than the DHFR produced by Sa-1::Tn402. Insufficient enzyme was

available to test the enzymes of the other strains.
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DISCUSSION

In 1977 Shapiro and Sporn identified a new transposable element

determining trimethoprim resistance, Tn402, that was able to insert into

the bacteriophage A . This transposon, originating in R751 (Jobanputra

and Datta, 1974), differred from Tn7_ (Barth et al, 1976) in that it was

smaller and lacked the streptomycin resistance determinant. Unlike Tn7_,

which transposes readily between replicons (Barth et al, 1978; Hassan and

Brevet, 1983; Taylor, 1983; Ouartsi et al, 1985), Tn402 has not been

transposed from other plasmid sources except R751 (Goldstein et al, 1986)

and has not been shown to integrate into the bacterial chromosome (Amyes,

1979).

Because of the need to compare the small trimethoprim transposon,

Tn4135 (chapter 4), with Tn7_ and Tn402, to try and determine relatedness,

all transposons were required in a common background. The Inc W plasmid

Sa (Watanabe et al, 1968; Ward and Grinsted, 1982) was chosen and the

results would appear to indicate that Tn402 is transferable to this

plasmid, contrary to previously published reports. Trimethoprim and

streptomycin resistance markers were transferred at the same frequency

indicating their coexistence on the same piece of DNA. However, because

of the uncertainty surrounding the ability of Tn402 to transfer, and

because of the possibility that R751 had not been eliminated from the

cell, transconjugants were carefully checked for resistance markers.

However, since R751 carries no resistance markers of its own, other than

trimethoprim, its loss from a bacterial cell can not easily be checked by

antibiotic resistance testing, therefore, phage lysis and transfer into P

aeruginosa were employed to distinguish between cells harbouring R751 and
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those that did not. However, as indicated in chapter 6, the lack of

specificity of phage PRR1 and the inability to provide suitable selection

markers for the transfer of plasmids into P aeruginosa, (Su is not a good

selection marker as background growth interferes with results), prevented

any confirmation of the transfer potential of Tn402 to Sa-1. (The phage

experiments served only to confirm the observation that PRR1 is capable of

lysing Sa-1 containing cells, contrary to published reports, but at a 100

fold lower eop, than lysis of RP4 containing cells.) Although the

principle of the Pseudomonas transfer experiment appeared to be sound,

since RP4 was successfully transferred to P aeruginosa and Sa-1 did not

transfer, the reason for the failure of R751 to transfer to P aeruginosa

is unclear.

In addition to the uncertainties surrounding the transferability of

Tn402, there is still confusion as to the nature of the DHFR encoded by

this transposon. Previous studies have shown that the mechanism of

plasmid associated trimethoprim resistance results from the synthesis of

novel DHFRs which are highly resistant to trimethoprim (Amyes and Smith,

1974). These enzymes appear to be quite distinct from the chromosomal

specified enzymes, on the basis of molecular weight and enzyme

characteristics (Amyes and Smith, 1976), but their origins and

evolutionary relationships with one another are unclear. Of the DHFRs

characterised, probably the greatest controversy surrounds that of R751.

Amyes and Smith (1978) postulated that the remarkable resemblence they

found between the physical properties of R-factors (including R483::Tn7_

and R751::Tn402) was due to one gene spreading through the bacterial

population. In contrast to these findings, Tennhammer-Ekman and Skold

(1979) reported that the DHFR genes mediated by Tn7_ and Tn402 were

distinct from each other, on the basis of inhibition data, pH profiles and

heat lability curves, and therefore have different origins.
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Examination of the DHFR mediated by R751;:Tn402 in this study revealed

similarities with previously published results (Amyes and Smith, 1978).

The Tp ID50 of 1.3 x 10-^ M for this strain was in agreement with that

found by Amyes and Smith (1978) (Table 9.11); a value indicative of a type

I enzyme (Table 9.12). However this result is in sharp contrast to the

findings of Tennhammer-Ekman and Skold (1979) and Broad and Smith (1982)

who found Tp ID50S to be 100 fold higher (2 x 10-^ M) and thus similar

to the type II. In the present study, the inhibitor profile for

methotrexate (ID50 1 x 10-^ M) compares favourably with more recent

views (Amyes, 1986) and suggests that R751 mediates a type II enzyme. As

seen from Table 9.11 this contradicts the initial findings of Amyes and

Smith (1978). The reason for this variation in enzymic properties could

lie in the relative amounts of enzyme produced. The classical type I DHFR

mediated by R483::Tn7_ is produced in quantities several fold higher than

the chromosomal enzyme (Pattishall et al, 1977), making the examination of

it's properties relatively easy. The type II (prototype R67bis) however

is synthesised in about the same amount, or less, as the chromosomal

enzyme. It is this low yield, coupled with losses during purification,

that hamper the accurate determination of properties. The low level of

the R751::Tn402 mediated DHFR produced in this study (Specific activity

0.46 - Table 9.10) is typical of a type II enzyme and is in agreement with

all other published results (Amyes and Smith, 1978; Tennhammer-Ekman and

Skold, 1979; Broad and Smith, 1982). It was because of this problem in

obtaining enough activity to work with, and because of the difficulties in

directly comparing results from different workers, that a method for

increasing the production of the DHFR of R751::Tn402 sort. [Different

criteria, as well as different purification and assay conditions, have

been used to classify the enzyme type of the R751::Tn402 mediated DHFR:



TABLE9.11:PROPERTIESOFTHETn402DIHYDROFOLATEREDUCTASEDETERMINEDBYDIFFERENTRESEARCHWORKERS RESEARCHTEAMSPECIFICTpID50(M)MtxID50(M)TEMPERATUREPISUBUNITENZYME ACTIVITYSENSITIVITYSTRUCTURECLASSIFICATION
AMYESANDSMITH1.341.2x10~45x10-6 (1978) TENNHAMMER-EKMAN0.9010-1/10~21x10~3 ANDSKOLD(1979) FLINGANDELWELL (1980) BROADANDSMITH (1982) AMYES(1986) THISSTUDYR751 THISSTUDY CLONES

2X10-2 2x10-21x10-3
0.401.3x10-41.1x10-3 3.70-10910_5/10_68.7x10~7

2.1 15.0 15.0 12.0 4.0

9000d
7.2 7.2

TypeI TypeIII? TypeII Different fromTypeI andII Typelib
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TABLE 9.12: PROPERTIES OF THE TYPE I AND TYPE II DHFRs

PROPERTY TYPE I
R483::Tn7

TYPE II

R67bis

SPECIFIC
ACTIVITY

13.6 0.85

Tp ID50 5.7 x 10~5 M 7.0 x 10-2 M

Mtx ID50 5.6 x 10~6 M 1.1 x 10" 3 M

TEMPERATURE
SENSITIVITY

0.5 minutes 12 minutes

PI 6.4 5.5

SUBUNIT
STRUCTURE

18000 d 9000 d

REFERENCES: Pattishall et al, 1977; Amyes and Smith, 1978;
Tennhammer-Ekman and Skold, 1979; Broad and Smith, 1982.
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early investigations were based purely on sensitivity of enzymes to

inhibitors, temperature sensitivity and specific activity measurements,

whilst more recently subunit structure and serology (Fling and Elwell,

1980) as well as iso-electric focusing (Broad and Smith, 1982) have been

used. The former two techniques have classified the R751;:Tn402 enzyme to

type II: it has a similar subunit structure (four identical 9000 d units)

to other type II DHFRs and also shows immunological cross reaction with

serum raised against Type II DHFRs. In contrast, iso-electric focusing

results (Broad and Smith, 1982) concluded that the R751::Tn402 enzyme was

different from both the type I and the type II enzymes: it had a pi value

of 7.2 compared with Pi's of 6.4 and 5.5 for the type I and type II

respectively (Table 9.11).].

DHFR production can be increased by cloning of the relevant gene into

a multicopy plasmid such as pBR322 (Bolivar and Bachman, 1979) or, if the

gene resides on a transposon, by transposing it to pBR322, and using

transformation to facilitate the movement of the plasmid in and out of the

bacterial cell. Required clones could then be identified by antibiotic

selection or phage lysis. However, because of the reported inability of

Tn402 to transpose to other plasmids (Amyes, 1979) and because of the

problems encountered with the specificity of phage lysis, Tn402 was

'cloned' into PBR322. Cloning initially depends on the ability to

restrict both the vector and the insert DNA such that the ends of both can

be ligated together. Recircularisation of linear DNA improves uptake by

bacterial cells as demonstrated by transforming E coli C600 with ligated

(ligase +) and unligated (ligase -) DNA (Table 9.8). There is, in

general, a 10 fold increase in the number of transformants obtained with

ligated DNA as compared with unligated DNA, although this varied slightly

with experiment and therefore conditions. (The restriction conditions and
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the relative proportions and absolute concentrations of plasmid vector and

insert fragment are important if effective cloning is to be maximised; as

demonstrated by comparing the results of experiments 1 - 3.) For

insertion of DNA the plasmid vector must be opened up, by a single cut,

with an enzyme that also restricts the DNA for cloning. Tn402 is

conveniently flanked by Pst I sites (Figure 9.6) and this same enzyme

restricts pBR322 once, within the Ap resistance gene (Figure 9.7). The

presence of suitable resistance markers on the vector DNA eg Ap and Tc on

pBR322 (Figure 9.6) aids easy completion of the cloning procedure ie the

transformation of cells with the ligated DNA and the selection of desired

clones. (Insertion of DNA into a resistance site inactivates the

resistance gene such that transformed clones are no longer resistant to

the particular antibiotic. On the basis of this insertional inactivation,

pBR322 clones that have picked up the Pst I fragment, encoding Tp

resistance (ie.Tn402), would be expected to be Tp and Tc resistant but

sensitive to Ap. E coli C600 cells that had picked up recircularised

pBR322 DNA without an insert would appear Tc resistant, Ap resistant and

Tp sensitive and C600 cells transformed by pBR322 DNA with a Pst I

fragment insert lacking the Tp resistance gene, would appear Tc resistant

and Ap and Tp sensitive. Examination of the transformants from experiment

2 and 3, however, revealed transformants that were Tp and Ap resistant

(Tables 9.5 and 9.8). It would appear therefore, that either the Tn402

fragment has been taken up into the cell and inserted into another region

of pBR322, thus leaving the Ap gene intact, (unlikely as pBR322 only has

one Pst I site), or R751 and pBR322 have recircularised and both plasmids

have been taken up intact into E coli C600. Examination of the DNA from a

number of transformants, however, did not indicate that R751 and pBR322

were present together in the same cell. Either, R751 was present alone
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FIGURE 3.6: RESTRICTION MAP OF R7 51 (WARD AND GRINSTED, 138 2)
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(clones T-3 and T-4: Experiment 2) or clones contained pBR322 with an

insert (clones C-2 and C-6: Experiment 3). An alternative hypothesis to

explain the prevalence of Ap resistance amongst transformants is that

R751::Tn402 encodes an Ap resistance gene. The majority of Inc P-l

plasmids are resistant to Ap (Ingram et al, 1973) but R751 is reported to

be resistant to Tp only (Shapiro and Sporn, 1977). However, Reid (1986)

reported that R751 conferred a significant degree of Cb and Ap resistance

to E coli J62-2 and J62-1 during routine sensitivity testing. It was

concluded that the plasmid R751 promoted a mutation, probably in the J62

chromosome, which allowed the expression of an SHV-1 B-lactamase (Reid,

Simpson, Harper and Amyes - unpublished results) that was otherwise

silent. The mechanism by which the R751 plasmid caused this mutation was

unclear but its presence was necessary to maintain the mutation. The

clones, however, only possess a small portion of R751 DNA, that of the

Tn402 region, suggesting that if this mutation is responsible for the

appearance of Ap resistant clones, then the genes causing it lie on the

Tn402 DNA region. Since the ampicillin resistance of PBR322 is encoded by

the TEM-1 ^-lactamase, the origin of the unexpected ampicillin resistance

of transformants could be traced. Analytical iso-electric focusing would

distiguish between clones harbouring the TEM-1 and SHV-1 ^-lactamases.

Biochemical analysis of the DHFR from a number of the clones confirmed

the initial findings of the examination of R751::Tn402. The enzyme

yields, although not as high as expected, were increased from between 10

and 25 fold (Table 9.10) enabling a more accurate determination of

properties. Trimethoprim ID50S were consistent with those of Amyes and

Smith (1978) and R751;:Tn402 from this study, suggesting the enzyme

belongs to the type I class. The Mtx ID50S, although differing
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considerably from those of R751;:Tn402 (this study), were also in

agreement with Amyes and Smith (1978). The high sensitivity of clone 6 to

methotrexate and trimethoprim (Table 9.10) suggests that a chromosomal

mutation may be involved. The E coli chromosomal DHFR has a TpID^Q of

1.1 x 10-8 and a Mtx ID50 of 1.4 x 10~9 (Amyes and Smith, 1978).

However, the molecular weight of this species (Table 9.10) is consistent

with a plasmid-encoded enzyme (35000 d) and the DNA profiles indicated the

presence of pBR322 plus an insert (Figure 9.5). The elution profile of

this clone vairies slightly from the other clones in that a secondary peak

is visible around fraction 48, corresponding to a molecular size of

48000. This could be part of a broad peak or may correspond to a type IV

enzyme (Young and Amyes, 1985), indicating the presence of two DHFR genes

in R751. The presence of two genes could explain the variation in

properties observed for the plasmid. However, the likelihood of a 7.5 kb

piece of DNA encoding two trimethoprim resistance genes is small and this

phenomenon is only observed in clone 6. The temperature sensitivities of

the Tn402 mediated DHFR do not vary significantly between authors and are

consistent with a type II enzyme.

It would thus appear, contrary to the evidence of all other reports on

R751 (Review Amyes, 1986), except for Amyes and Smith (1978), that the

DHFR of R751 possesses mainly type I properties but is synthesised in

amounts characteristic of a type II. It's temperature sensitivity is

indicative of the type II class also. As Tennhammer-Ekman and Skold (1979)

suggest, R751 may therefore belong to a class of it's own. The PI values

(Broad and Smith, 1982) certainly substantiate this view. The fact that

R751 possesses properties of both the type I and the type II classes, may

indicate an evolutionary origin intermediary between the class I and the

class II.
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DISCUSSION

Since the first report of the 14 kb transposon, Tn7, encoding Tp and

Sm/Sp resistances (Barth et al, 1976), the incidence of Tp resistance,

especially high level resistance, within the enterobacteriaceae has risen

markedly (Amyes et al, 1978; Datta et al, 1981; Amyes et al, 1981; Fling

et al, 1982; Towner et al, 1982). Examination of many of these isolates

has revealed the presence of Tn7 within both the bacterial chromosome and

R-plasmids of many different incompatibility groups. However, more recent

surveys have indicated that other transposons and Tp resistance genes may

also be contributing to the epidemiology of Tp resistance (Amyes, 1986;

Goldstein et al, 1986; Papadopoulou et al, 1986; Sundstrom et al, 1987;

Young et al, 1987). Kraft et al (1984) suggested that the reduction in

the proportion of plasmids carrying linked TpSp resistance (presumptive

evidence of Tn7) and the appearance of plasmids carrying Tp, TpTc and Tp

Km, was further evidence of the spread of other Tp transposons in the

plasmid population. Whilst DHFR's were originally thought to belong to

two classes; the type I and the type II (Pattishall et al, 1977), it has

now become clear that this enzyme displays a greater evolutionary

diversity than at first envisaged (Table iii). Type III and IV enzymes

have now been isolated and characterised (Fling et al, 1982; Young and

Amyes 1986a), and recent work by Sundstrom et al (1987) has suggested the

evolution of a type V enzyme. This continuing evolution of Tp resistance

genes is reinforced by the discovery of a possible type VI enzyme in this

thesis.



TABLEiii:THEDIVERSITYOFTHEDHFRENZYME DHFR

PLASMID

TRANSPOSON
SPECIFIC

TpID50uM
TD5QuM

MOLECULAR

REFERENCE

ACTIVITY

WEIGHT

la

R483

Tn7

13.6

57

0.5

35000

Pattishalletal,1977

Tn4132

4.5

32

1.2

24500

YoungandAmyes,1985a/b

Ila

R67bis

0.85

70000

>12.0

35000

Pattishalletal,1977

lib

R751

Tn402

0.07

20000

>12.0

34000

Amyes,1986

III

pAZI

2.0

2.1

16900

Flingetal,1982

IV

pUKl123

600.0

0.2

>12.0

46700

YoungandAmyes,1986a

V

pLM044

121.0

10-100

>5.0

Sundstrometal,1987

VI

Sa-1

Tn4135ORI

<1.0

0.02

>10.0

34673

ThisThesis

SI

pSKI

129.6

50

>12.0

19700

Youngetal,1987

CHROMOSOME

0.02

>12.0

21000

AmyesandSmith,1976
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Whilst examination of an enterobacterial strain, P-20, from a porcine

faecal isolate revealed an array of plasmids, the presence of two distinct

Tp resistance genes was also indicated (Figure ii); one mobilsised by RP4

(RP4::Tn4135 - unpublished results) and the other mobilised directly by

Sa-1 (Sa-1; :Tn4135)^R]- - this thesis). The presence of two different

R-genes within the same plasmid has been indicated previously, although it

is likely in this case, that the genes in question lie on different

plasmids of the P-20 strain: the 100 kb plasmid and one of the smaller

plasmids. The fact that P-20 possesses multiple plasmids may be

indicative of the transfer potential of this strain. Kraft et al (1983)

indicated that isolates that transfered resistance, tended to be those

that carried multiple bands, possibly because an increase in the number of

plasmids concomitantly increases the probability that one would be

conjugative. Possession of a conjugative plasmid would also make more

likely the mobilisation of non-conjugative plasmids and this might explain

why many transconjugants acquired several plasmids. The presence of both

large and small (probably non transmissible) plasmids in the same strain

is therefore suggestive of there being two methods of transfer for the Tp

resistance genes: transposition (possibly from the large plasmid) and

mobilisation of the small non-transferable plasmids. This availability of

more than one system for transfer has been suggested by Towner et al

(1982) and Papadopoulou et al (1986), and may account for the rapid

dissemination of resistance to Tp in bacteria isolated from human and

veterinary specimens. The results suggest that the small plasmid bands

are not only mobilizable, but readily integrate and excise themselves from

both plasmid and chromosome in an aberrant fas'iion, resulting in

considerable variability in the size of plasmid bands and indicating a

certain amount of instability. This instability may be a necessary

prerequisite for the adaptation to an ever changing environment. The
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FIGURE ii. THE TRIMETHOPRIM RESISTANCE GENES OF THE ORIGINAL

PIG ISOLATE, P-20
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integration and excision could not be confirmed, however, due to the

inability to transfer any of the original pig plasmids to a Rec A strain,

but if these mechanisms are in existance, they are probably mediated by

Tn4135 ifself or by IS sequences (Kleckner, 1981). Alternatively Tn4135

or IS elements could mediate the oligimerisation of some of the smaller

bands, which would help to explain the observed variations in plasmid

size.

Genetic and biochemical studies revealed that RP4::Tn4135 was very

similar to RP4::Tn_7, despite differences in transposon size (3 -6 kb as

compared with 14 kb for Tn_7 - Barth et al, 1976) and apparent intermittant

expression of Sm/Sp resistance. This strain was found to encode a type I

DHFR, with properties indistinguishable from Tn7, and was therefore

thought to have evolved from Tn_7 by deletion in a similar, but not

identical, manner to the small Tp transposon Tn4132 (Young, 1984).

Hybridisation confirmed the presence of a type I enzyme and located the

gene to one of the small plasmid bands of the original P-20 strain. The

appearance of Tp resistance genes on small, presumably nontransferable

plasmids, was suggested by Towner (1981) and Towner et al (1982) to be one

reason for the decrease in the proportion of isolates that transferred Tp

resistance. The variable expression of Sm/Sp resistance can be explained

by deletion(s) in the promoter region and subsequent integration of the

transposon adjacent to a plasmid or chromosomal promoter, or an IS

sequence that could 'switch on' expression. The ability of IS sequences

to act as novel 'switches' has been documented by Glansdorff et al

(1980), and it is therefore possible that insertion of an IS element

directly into a transposon, such as Tn4135, could result in the switching

off of Sm/Sp expression also. Loss of such an IS element on transfer

between replicons, or as a result of other cellular changes, would result

in the re-expression of the resistance genes.
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ORI

Characterisation of E coli J62(Sa-l;;Tn4135) , revealed distinct

differences between the Tp resistance element of this strain and that of

E coli J62(RP4::Tn4135)« Restriction patterns were different, with only

RP4::Tn4135 possessing the characteristic two internal Hind III fragments

of Tn_7 (Datta et al, 1979). Sa-1: :Tn41350R-*- DNA more closely resembled

that of the HI transconjugant, which contains the approximately 100 kb

large plasmid of the P-20 strain. Enzymic analysis of the DHFR encoded

by Sa-1::Tn4135ORI, although hampered by the inability to produce large

quantities of active enzyme, again implicated a different origin for this

enzyme compared with that of RP4::Tn4135. (It may be necessary to clone

the DHFR gene of Sa-1: :Tn4135ORI into a multicopy plasmid , such as

ColEl, to obtain larger quantities of this enzyme for confirmation of

properties.). The specific activity (<(1 unit ) and temperature

sensitivity (TD50 ) 10 minutes) results more closely resemble that of a

type II enzyme (Pattishall et al, 1977). However, despite a molecular

size representative of a plasmid encoded enzyme, the sensitivity of this

enzyme to Tp was 100 fold higher than that of a type I enzyme and 10^

fold greater than that typical of a type II (Tennhammer Ekman and Skold,

1979) , and in this respect the enzyme more closely resembles the

chromosomal DHFR (Amyes and Smith, 1976). This finding, coupled with the

failure of both type I and type II probes to hybridise with

Sa-1::Tn4135^^ DNA suggests that this enzyme is distinct from all other

characterised DHFR's. The results mentioned support the concept that

Sa-1: :Tn4135QR-*- (and thus P-20 - probably the large 100 kb plasmid)

encodes a type VI enzyme, which may have an evolutionary origin

intermediary between the chromosomal and the type II DHFR. Young (1984)

has suggested that the 8 kb p699 non-self transmissible plasmid, isolated

by Fling et al (1982) may also be an evolutionary intermediate, formed by
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mobilisation of part of the bacterial chromosome carrying a spontaneously

derived mutant DHFR gene, encoding an enzyme similar to that isolated from

J53TplKR. DNA sequence analysis or hybridisation studies between the

chromosomal and Sa-1: :Tn41_15^RI encoded enzymes would be required to

confirm this hypothesis and determine the degree of relatedness.

Preliminary hybridization studies of Sa-1; ;Tn4135^R-*- did however, reveal

that the transposon possesses sequences homologous to those of the Inc P

plasmid, RP4. This would help to explain the inability to transfer this

transposon from Sa-1 to RP4, by introduction of the Inc P plasmid into E

coli J62(Sa-l: :Tn4135)QR-*-, and might also explain why introduction of

RP4 into P-20 only picked up the type I enzyme.

Regarding the fact that the transfer of Tn4135 from RP4 to Sa-1

(Sa-1::Tn4135a) resulted in the formation of an unexpectedly large

species (70 kb as opposed to 35 kb), it may be concluded that more than

one mechanism may be involved in the formation of this species. Transfer

studies, coupled with resistance testing and molecular size analysis

suggested that such a large species could have been generated as a result

of :-

i. multiple transposition leading to insertional inactivation of Su

and Ka resistance,

ii. a natural amplification,

iii. transposon mediated transfer of some or part of the RP4 genome

across to Sa-1, resulting in the formation of a composite

transposon

iv. fusion of the RP4 and Sa-1 DNA, followed by deletion of non¬

essential DNA (such as resistance markers).

Multiple insertion is doubtful due to the large number of insertions

required to increase the size to 70 kb and because such an event would

result in a drastic increase in the number of restriction fragments, as
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observed for Tn4132 (Young, 1984), and this does not appear to have

occurred. Preliminary biochemical studies of the Sa-1::Tn4135a encoded

DHFR suggested that amplification was the cause of the large species and

high specific activity: slight variations in molecular size and specific

activity could be acounted for by variations in the degree of

amplification. The fact that restriction fragments of Sa-1::Tn4135a DNA

did not sum to 70 kb either, suggestd that some fragments may have been

amplified. However, the stability of this species on transfer and in drug

free medium would tend to go against this hypothesis. In addition, the

finding that the DHFR of Sa-1::Tn4135ORI differed from Sa-1::Tn4135a,

not only in specific activity, but also in TpID^Q and temperature

sensitivity and was therefore a different enzyme, ruled out the

possibility that one DHFR was an amplified form of the other. Although

incompatibility studies would tend to favour hypothesis iii, or at least

the presence of an Inc P function in Sa-1::Tn4135a, hybridisation with

whole RP4 DNA probes, indicated no homology. Whilst suggesting that RP4

DNA was not present, this does not rule out the posibility that the

transposon itself encodes an Inc P function, not directly homologous to

that of RP4, which would prevent the cohabitation of RP4 and

Sa-1::Tn4135a in the same cell, as observed. The incompatibility

results also indicate that Sa-1 is not present either, as suggested by

resistance testing, and this is confirmed by the lack of hybridisation of

an Sa-1 probe to E coli J62(Sa-1::Tn4135)a. Although replicon fusion,

mediated by Tn4135 and followed by deletion of the resistance gene regions

of RP4 and Sa-1, would account for the lack of Su and Ka resistance and

the unusual size, it would not explain the lack of RP4 and Sa-1 probe

hybridisation. The formation of an autonomously replicating

r-determinant, as described by Chandler et al (1982) and Clerget et al
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(1982) in the absence of plasmid DNA, could explain the above phenomena,

although why this should happen in the absence of selection pressure is

unclear. Alternatively Sa-1::Tn4135a may have fused with the E coli

chromosome, a not uncommon phenomonon (Bennet et al, 1986)), resulting in

the generation of homologous sites such that re-excision of Tn4135 would

bring about co-excision of some of the E coli chromosome to generate a

species of 70 kb. In favour of this hypothesis are reports of certain

R-plasmids in E coli (Nugent, 1981) and Haemophilus (Stuy, 1980) which

prefer to be integrated in the chromosome. However, although Watson and

Scaife, 1980) have shown that insertion of RP4 derivatives containing the

att region of lambda, into the bacterial chromosome of E coli, results in

loss of expression of their incompatibility function, it is generally

believed that integration of R plasmids into the chromosome of E coli is

not usually accompanied by the complete loss of expression of plasmid

function, as would appear to be the case here (Nugent, 1981). Ie.

although incompatability testing indicates Sa-1 is absent, the integration

of Sa-1::Tn4135a into the chromosome would not be expected to result in

loss of resistance markers as well. Never-the-less, several authors have

indicated that the formation of R' plasmids, by recombination of Inc P

plasmids (notably R68.45) with the bacterial chromosome, can result in

structural instability of the R-plasmid while the chromsosomal markers

remain stable (Haas and Holloway, 1976,1978). In this instance the whole

plasmid is not lost as a unit, but plasmid markers are lost progressively

during bacterial replication, until either the remnant stabilises as a

more or less permanent function of the original plasmid, or the whole

plasmid is lost (Godfrey et al, 1980). Such deletions are thought to

occur by intramolecular recombination between regions of homology. It is

conceivable, therefore , that a similar situation may have occurred here
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with Sa-1, resulting in the eventual loss of the whole of this latter

plasmid and the subsequent aberrant excision of Tn4145 from the

chromosome. This could give rise to a 70 kb species lacking RP4 and Sa-1

DNA, but containing chromosomal and transposon DNA. Replicon fusion might

also help to explain the initial inability to detect transferable Tp

resistance in P-20, (hence the need to mobilise the resistance genes with

RP4), whilst subsequent studies were able to show transfer between RP4 and

Sa-1. If it is assumed that the type I DHFR gene of RP4:;Tn4135 originated

from the small 3-6 kb plasmid of P-20, as suggested by hybridisation, and

that this small plasmid is unable to transfer on its own, its mobilisation

by RP4 and subsequent fusion with this plasmid and/or Sa-1 would lead to a

wider host range and thus transfer potential. In addition, if Tn4l35 has

evolved from Tn7 by deletion, its presence on a non transmissable plasmid

may be a further evolutionary step, resulting in the availability of two

mechanisms for the transfer of one gene.

In conclusion, the transposons of bacteria are diverse according to

criteria such as DNA sequence and structure of transposition products, and

have probably evolved along a number of separate pathways in many

different species. The evolution of Tp transposons is no exception to

this, and the isolation and characterisation of two distinct Tp resistance

transposons and their gene products from the enterobacterial P-20 isolate,

only serves to illustrate this continuing diversity.
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APPENDIX 1.1 THE ELECTROPHORETIC MOBILITIES AND
MOLECULAR WEIGHTS OF Rl, R6K, RP4 AND Sa
PLASMID DNA PREPARED BY A NUMBER OF
DIFFERENT METHODS

Birnboim and Poly

PLASMID MOLECULAR
SIZE (Kb)

LOG. MOLECULAR
SIZE

DISTANCE
TRAVELLED

Rl 90 1.954 0.70

RP4 52 1.716 0.45

R6K 38 1.580 1.15

Sa 33 1.519 1.1

Kado and Liu

PLASMID MOLECULAR
SIZE (Kb)

LOG. MOLECULAR

SIZE

DISTANCE

TRAVELLED

Rl 90 1.954

RP4 52 1.716 0.40

R6K 38 1.580 2.60

Sa 33 1.519
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Takahashi and Nagano

PLASMID MOLECULAR LOG. MOLECULAR DISTANCE

SIZE (Kb) SIZE TRAVELLED

R1 90 1.954 2.40

RP4 52 1.716 2.70

R6K 38 1.580 3.40

Sa 33 1.519 3.53

Ish-Horowitz and Burke

PLASMID MOLECULAR LOG. MOLECULAR DISTANCE
SIZE (Kb) SIZE TRAVELLED

R1 90 1.954 3.00

RP4 52 1.716 3.20

R6K 38 1.580 3.69

Sa 33 1.519
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APPENDIX 1.2 THE ELECTROPHORETIC MOBILITIES AND
MOLECULAR WEIGHTS OF Rl, RP4, R6K AND Sa
PLASMID DNA PREPARED BY THE METHODS OF
TAKAHASHI AND NAGANO, AND ISH-HOROWITZ
AND BURKE, ON A NUMBER OF SEPARATE
OCCASIONS

Takahashi and Nagano

PLASMID Rl RP4 R6K Sa

MOL SIZE 90 52 35 33

LOG. MOL SIZE 1.954 1.716 1.580 1.519

EXP 1 2.4 2.7 3.4 3.53

EXP 2 2.0 2.2 2.4 2.3

EXP 3 1.5 1.8 2.6 2.6

EXP 4 2.4 2.7 3.4 3.53

EXP 5 2.8 3.2 3.8 4.2

EXP 6 2.6 2.8 3.7 4.1

EXP 7 2.6 3.1 3.8 4.2

EXP 8 2.1 3.0 3.6 4.0

EXP 9 3.5 4.2 4.7 5.3

Ish-Horowitz and Burke

PLASMID Rl RP4 R6K Sa

MOL SIZE 90 52 35 33

LOG. MOL SIZE 1.954 1.716 1.580 1.519

EXP 1 3.0 3.2 3.8

EXP 2 1.6 1.8 1.8

EXP 3 2.8 3.5 3.35 3.7

EXP 4 3.2 3.4 3.7
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APPENDIX 7.1: PURIFICATION TABLES

R483 : :Tn7_

SAMPLE VOLUME
PROTEIN
CONCENTRATION

DHFR ACTIVITY
PER ml

SPECIFIC
ACTIVITY TOTAL DHFR * RECOVERY PURIFICATION

BULK 11. 5 55.255 1510 27.33 17365 100 1
STREPTOMYCIN
SULPHATE 11.5 45.580 1670 36.64 1 9 205 111 1.34
0-501
(NH )2So 5 . 5 3.1.605 1100 34.80 6050 34.8 1.27

PELLET 1 . 9 46.225 1440 31.15 2736 15 . 8 1.14
SEPHADEX
FRACTION 1. 9 4.300 143 33.26 271.7 1.6 1 .22

RP4 : : Tn7

SAMPLE VOLUME
PROTEIN
CONCENTRATION

DHFR ACTIVITY
PER ml

SPECIFIC
ACTIVITY TOTAL DHFR J RECOVERY PURIFICATION

BULK 15 . 5 2.0. 425 340 16.65 5270 100 1
STREPTOMYCIN
SULPHATE 15.5 22.790 400 17.55 6200 118 1. 05
0-50*
(NH )2So

4 4
7 . 5 19.135 420 21.95 3150 60 1.32

PELLET 1. 0 56.975 1820 31.94 1820 35 1 .92
SEPHADEX
FRACTION 2.3 8.6 ■ 30 3 . 49 69 1 0 .21

RP4::Tn4135

SAMPLE VOLUME
PROTEIN
CONCENTRATION

DHFR ACTIVITY
PER ml

SPECIFIC
ACTIVITY TOTAL DHRR * RECOVERY PURIFICATION

BULK 25 . 0 13 .33 290 21. 75 7250 100 1
STREPTOMYCIN
SULPHATE 25.0 20.21 430 21.28 10750 148 0 . 97
0-5OJ
(NH I2SO

4 4
12.0 10.75 350 32.56 4200 57.9 1. 50

PELLET 2 . 0 38 .70 2 200 56.85 4400 60.7 2.61
SEPHADEX
FRACTION 1.5 14.19 155 10.92 232.5 3.2 0.50
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(Sa-1: :Tn413 5)a

SAMPLE VOLUME
PROTEIN
CONCENTRATION

DHFR ACTIVITY
PER-TP 1

SPECIFIC
ACTIVITY TOTAL DHFR I RECOVERY PURIFICATION

BULK 11.5 32. 465 300 9.24 3450 100 1
STREPTOMYCIN
SULPHATE 11 . 0 23.865 220 9.22 2420 70 0 .99
0-501
(NH )2SO 5 . 0 16.125 300 18.60 1500 43 2.01

PELLET 1.6 34.400 780 22.67 1248 36 2 . 45
SEPHADEX
FRACTION 1. 9 0.559 34 60.82 64.6 2 6 .58

(Sa-1: :Tn4135 )0RI

SAMPLE VOLUME
PROTEIN
CONCENTRATION

DHFR ACTIVITY
PER- ttI

SPECIFIC
ACTIVITY TOTAL DHFR S RECOVERY PURIFICATION

BULK 63 . 0 90.3 60 0.66 3780 100 1
STREPTOMYCIN

■ SULPHATE 67 . 0 68.8 60 0.872 4020 106 1.32
0-50*
(NB 12SO

l i
30 . 0 60 . 2 120 1.993 3600 95 . 2 3.02

-SLLET 5 . 0 81. 7 120 1.469 600 15.8 2. 23
SEPHADEX
FRACTION 1 . 9 12.04 49 4.070 93.1 2.4 6.17
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APPENDIX 7.2: EXAMPLE MOLECULAR WEIGHT ESTIMATION OF DHFR AS

MEASURED BY GEL FILTRATION ON SEPHADEX G-75

OVALBUMIN

E COLI J62(RP4::Tn7) TpR DHFR

CHYMOTRYPSINOGEN

CHROMOSOMAL Tps DHFR

CYTOCHROME C

41 43 45 47 43 51 53 55 57 53 61 63 65 67

FRACTION NUMBER
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APPENDIX 7.3 : INHIBITOR PROFILES FOR TRIMETHOPRIM AND METHOTREXATE

R483::Tn7

RP4 . Tn7

RP4: : Tn.4135
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APPENDIX 7.4 DETERMINATION OF TpID50's AND MtxID50's
FOR THE DHFR's OF R483::Tn7, RP4::Tn7 AND
RP4::Tn4135

a. R483::Tn7

Tp CONC(M) LOG Tp CONC ENZ u/ml % ACTIVITY

0 — 93 100
4 x 10-6 -5.4 65 69.89
4 x 10-5 -4.4 52 55.91
4 x 10-4 -3.4 10 10.75

Mtx CONC(M) LOG Mtx CONC ENZ u/ml % ACTIVITY

0 — 93 100

4 x 10" 7 -6.4 74 29.57
4 x 10-6 -5.4 65 69.89
4 x lO-5 -4.4 0 0

b. RP4::Tn7

Tp CONC(M) LOG Tp CONC ENZ u/ml % ACTIVITY

0 — 67 100
4 x 10"6 -5.4 47 70.15
4 x 10-5 -4.4 45 67.16
4 x 10"4 -3.4 9 13.43

Mtx CONC(M) LOG Mtx CONC ENZ u/ml % ACTIVITY

0 — 67 100
4 x 10-7 -6.4 52 77.61
4 x 10-6 -5.4 39 58.21
4 x 10-5 -4.4 14 20.90

c. RP4::Tn4135

Tp CONC(M) LOG Tp CONC ENZ u/ml % ACTIVITY

0 — 144 100
4 x 10-6 -5.4 116 80.56
4 x 10"5 -4.4 73 50.69
4 x 10~4 -3.4 9 6.25

Mtx CONC(M) LOG Mtx CONC ENZ u/ml % ACTIVITY

0 — 144 100
4 x 10-7 -6.4 120 83.33
4 x 10-6 -5.4 110 76.39
4 x 10-5 -4.4 2 1.39
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APPENDIX 7.5: DETERMINATION OF MICHAELIS MENTEN KINETICS

R483::T n 7

1.09 xl0~?



RP4::Tn7
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-6.06 xlO"8 0 6 . 06 xlO"8 0.12
1/SUBSTRATE CONCENTRATION (M)

1.09 xlO"3
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RP4::Tn4135
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APPENDIX 9. 1 : PURIFICATION TABLES FOR THE DHFRs OF Tn4Q2

HARBOURING STRAINS

R7 51: : Tn4 0 2

SAMPLE VOLUME
PROTEIN
CONCENTRATION

DHFR ACTIVITY
PER ml

SPECIFIC
ACTIVITY TOTAL DHFR % RECOVERY PURIFICATION

BULK 11. 0 42.780 20 0 . 468 220 100 1
STREPTOMYCIN
SULPHATE 11 . 0 46 .870 60 1.280 660 300 2 .74
0-50%
(NH )?.SO 5 . 5 27.950 100 3.579 550 250 7 .65

PELLET 2.4 43.000 200 4.651 480 218 9 .94
SEPHADEX
FRACTION 2.2 2.150 3 1.390 6.6 3 2 .97

Sa-1::Tn402

SAMPLE VOLUME
PROTEIN
CONCENTRATION

DHFR ACTIVITY
PER ml

SPECIFIC
ACTIVITY TOTAL DHFR 1 RECOVERY PURIFICATION

BULK 11.0 29.67 80 2 .70 880 100 1
STREPTOMYCIN
SULPHATE 11.0 24.51 120 4.90 1320 150 1.815
0-50%
(NH )2SO 6 . 0 12.04 110 9.14 660 75 3.385

PELLET 0.9 16.56 60 3 .62 54 6,14 1.341
SEPHADEX
FRACTION 2 . 0 32.25 9 0 .279 18 2.70 0 .103

CLONE-H (NB)

: SAMPLE VOLUME
PROTEIN
CONCENTRATION

DHFR ACTIVITY
PER ml

SPECIFIC
ACTIVITY TOTAL DHFR * RECOVERY PURIFICATION

BULK 5 . 0 64.5 240 . 3 1 7 2 1200 100 1
STREPTOMYCIN
SULPHATE 4.5 37.84 120 3 . 1 7 540 45 0.85
p-?py
:t(M f 230

a
2.0 23 .65 90 '3.81 180 15 1.02

'

PELLET 1. 5 8 .60 100 11.62 150 12.5 3.124
SEPHADEX
FRACTION 2 . 0 3.23 7.5 2.33 15 1.25 0.626

CLONE-H (ISO + Tp)

SAMPLE VOLUME
PROTEIN
CONCENTRATION

DHFR ACTIVITY
PER ml

SPECIFIC
ACTIVITY TOTAL DHFR 1 RECOVERY PURIFICATION

BULK 20.0 45 .15 210 4.65 4200 100 1
STREPTOMYCIN
SULPHATE 20.0 51 .17 220 4.30 4400 104.8 0.92
0-501
CNH }2SO

4 4
10.0 32. 465 100 3.08 1000 23.81 0.66

PELLET 2.2 80.62 110 1.86 242 5.76 0.40
SEPHADEX
FRACTION
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CLONE S

SAMPLE VOLUME
PROTEIN
CONCENTRATION

DflFR ACTIVITY
PER ml

SPECIFIC
ACTIVITY TOTAL DHFR 8 RECOVERY PURIFICATION

BULK 5.0 34.40 160 4.65 800 100 1
STREPTOMYCIN
SULPHATE 4.2 23.65 340 14.38 1428 178 . 5 3.09
0-50*
(NH )2SO

A A
1 . 5 16.77 400 23 .85 600 75 5 .13

PELLET 2.0 10.75 280 26 .05 560 70 5.60
SEPHADEX
FRACTION 2 . 1 2.60 5.5 2.115 11,55 1 . 44 0 . 45

CLONE 2

SAMPLE VOLUME
PROTEIN
CONCENTRATION

DHFS ACTIVITY
PER ml

SPECIFIC
ACTIVITY TOTAL DHFR 8 RECOVERY PURIFICATION

BULK 24.0 25.80 280 10.85 6720 100 1
STREPTOMYCIN
SULPHATE 24.0 25.37 190 7 . 49 4560 67.85 0. 69
0-50*
(NH )2SO 13 . 0 18.28 380 20. 79 4940 73 .51 1.916

PELLET 2 . 0 25.37 110 4.336 220 3.27 0. 400
SEPHADEX
FRACTION 1 . 9 2.15 10 4.65 19 0.20 0. 429

CLONE 6

SAMPLE VOLUME
PROTEIN
CONCENTRATION

DHFR ACTIVITY
PER ml

SPECIFIC
ACTIVITY TOTAL DHFR * RECOVERY PURIFICATION

' BULK 16.0 43.0 370 8.6 5 92 0 100 i

i STREPTOMYCIN
SULPHATE 10 . 0 6.02 420 69.77 4200 71 3.11
0-501
(NH J2SO

i 1
3.5 2.15 390 181. 4 1365 23 21.09

PELLET 2 . 0 3.23 440 136. 4 880 14.8 15.86
SEPHADEX
FRACTION 1 . 9 2.80 27 9 .66 51.3 0.8 1.12


